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Contrary to the known benefits from a moderate dietary reduction during adulthood on life
span and health, maternal nutrient reduction during pregnancy is supposed to affect the
developing brain, probably resulting in impaired brain structure and function throughout
life. Decreased fetal nutrition delivery is widespread in both developing and developed
countries, caused by poverty and natural disasters, but also due to maternal dieting,
teenage pregnancy, pregnancy in women over 35 years of age, placental insufficiency,
or multiples. Compromised development of fetal cerebral structures was already shown
in our baboon model of moderate maternal nutrient reduction. The present study was
designed to follow-up and evaluate the effects of moderate maternal nutrient reduction
on individual brain aging in the baboon during young adulthood (4-7 years; human
equivalent 14-24 years), applying a novel, non-invasive neuroimaging aging biomarker.
The study reveals premature brain aging of +2.7 years (o < 0.01) in the female baboon
exposed to fetal undernutrition. The effects of moderate maternal nutrient reduction
on individual brain aging occurred in the absence of fetal growth restriction or marked
maternal weight reduction at birth, which stresses the significance of early nutritional
conditions in life-long developmental programming. This non-invasive MRI biomarker
allows further longitudinal in vivo tracking of individual brain aging trajectories to assess
the life-long effects of developmental and environmental influences in programming
paradigms, aiding preventive and curative treatments on cerebral atrophy in experimental
animal models and humans.

Keywords: BrainAGE, developmental programming, in vivo, maternal nutrient restriction (MNR), machine learning,
non-human primates, magnetic resonance imaging (MRI)

INTRODUCTION

Although, moderate dietary restriction during adulthood appears to the lengthen lifespan (Fontana
et al., 2010), dietary restriction during prenatal life has been clearly demonstrated to have the
opposite effect, i.e., being related to an altered, suboptimal development of structure and function
of multiple organ systems, a shortened lifespan, and increased prevalence for chronic diseases in
later life (Entringer et al., 2012; Schuurmans and Kurrasch, 2013; Tarry-Adkins and Ozanne, 2014;
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Rando and Simmons, 2015; Zambrano et al.,, 2015), as well
as permanent impairments in brain structure and function
(Morgane et al, 1993; Morley and Lucas, 1997; Olness,
2003; Grantham-McGregor and Baker-Henningham, 2005;
Wainwright and Colombo, 2006; Walker et al., 2007; Benton
and ILSI Europe, 2008; Antonow-Schlorke et al., 2011; Rodriguez
et al., 2012; Keenan et al, 2013; Muller et al., 2014). Still,
fetal undernutrition due to decreased nutrient delivery and
micronutrient deficiency is a worldwide societal challenge, with
a multiplicity of causes, like poverty, natural disasters, war, and
cultural habits, but also maternal dieting, teenage pregnancies,
pregnancies in women over 35 years of age, women suffering
from hyperemesis gravidarum or placental insufficiency, as well
as in multiple pregnancies (Black et al., 2008; Baker et al., 2009;
Beard et al., 2009; Roseboom et al., 2011; Raznahan et al., 2012;
Zhang et al., 2015).

However, human retrospective studies are subject to lifestyle
and environmental confounds and do not readily allow isolation
and control of individual variables presumed to cause specific
long-term outcomes, such as variable degrees of prenatal
or postnatal nutrition, maternal stress etc. (Symonds et al,
2000; Piras et al, 2014). Animal models that introduce
controlled perturbations are required to determine, quantify,
and understand the causal relationships between perinatal
nutrient delivery and life-long effects on brain maturation and
aging. Developmental programming studies have been mainly
conducted in polytocous, altricial rodents, ie., species with
substantially different trajectories of fetal and neonatal brain
development from monotocous, precocial mammals, including
humans (Ganu et al, 2012; Fontana and Partridge, 2015).
Non-human primates have many similarities in physiology,
neuroanatomy, reproduction, development, cognition, and social
complexity to humans (Vandeberg et al., 2009; Phillips et al.,
2014). The baboon is an old world primate, which is the closest
available species to relate to human programming in terms of
reproduction, developmental physiology, gene function, or brain
structure (Vandeberg et al., 2009; Atkinson et al., 2015).

To enable studies directed at translation to determine the
effects of malnutrition in humans we have developed a baboon
model of 30% reduction in global maternal nutrition during
pregnancy, while controlling for all other psychosocial stressors.
In the maternal nutrient restriction (MNR) fetus, we have already
shown an altered trajectory of brain development (Antonow-
Schlorke et al., 2011). Subsequently, the adolescent MNR baboon
offspring showed altered postnatal cognitive and behavioral
performances at 3.3 years of age (human equivalent 11.5
years) (Rodriguez et al., 2012; Keenan et al., 2013). To further
track the life-long consequences of MNR in neuroanatomical
maturation and aging we aimed to develop an in vivo, non-
invasive biomarker for brain aging in order to capture individual
deviations in the MNR offspring, which will translate and be
comparable to humans. Therefore, this study utilizes a baboon-
specific adaption of our innovative BrainAGE method, recently
developed for modeling brain aging in human samples. The
BrainAGE method is based on a fully-automatic preprocessing
pipeline for structural in vivo brain magnetic resonance imaging
(MRI) data and uses pattern recognition methods to evaluate

individual brain aging (Franke et al., 2010, 2012). In humans,
it has already been validated and applied in several studies,
indicating subtle deviations in age-related brain structure due
to various health and lifestyle conditions, with premature brain
aging being related to cognitive decline and clinical symptoms
(Franke et al., 2012, 2014; Gaser et al., 2013).

For the present study, a novel, fully automatic preprocessing
pipeline for baboon brain MRI data was developed and sex-
specific reference curves of baboon brain tissue volumes across
the adult lifespan were constructed, based on non-invasive in
vivo MRI data from 29 control subjects (aged 4-22 years;
human equivalent 14-77 years). Second, we present a species-
specific adaptation of our BrainAGE method based on pattern
recognition methods to evaluate individual brain age in the
baboon. Finally, we employed this non-invasive, non-terminal
in vivo biomarker to study structural brain aging in MNR and
control offspring at about 5 years of age (human equivalent 17.5
years). We hypothesized that moderate MNR during pregnancy
would lead to premature neuroanatomical aging in the young
adult offspring. In line with the sexual dimorphism hypothesis
in Developmental Programming, we hypothesized that effects of
decreased fetal nutrient delivery on individual brain aging would
differ between male and female offspring (Aiken and Ozanne,
2013).

MATERIALS AND METHODS
Subjects and MRI Scanning

The study included two samples. The lifespan-sample, which was
used to analyze changes in brain tissue across adulthood as well
as to build and test the baboon-specific brain age estimation
model, included 29 (15 female) healthy control subjects (Papio
hamadryas), aged 4-22 years (mean age 9.5 £ 4.9 vyears)
(Table 1), which is equivalent to 14-77 years in humans. A
second sample of 11 subjects (5 female) formed the experimental
group of subjects with fetal undernutrition due to MNR (see
Production of MNR and CTR Offspring). 12 same-aged subjects
(5 female) from the lifespan-sample were included in the control
(CTR) group. At time of MRI data acquisition, MNR and CTR
subjects were aged 4-7 years (Table 2), which is equivalent to
14-24 years in humans. Each subject was scanned on a 3 Tesla
whole body MRI scanner (TIM Trio, Siemens Medical Solutions,
Malvern, PA), using a T1-weighted sequence.

Production of MNR and CTR Offspring

Female baboons were housed in harem groups of 16 females
and one vasectomized male at the Southwest National Primate
Research Center at San Antonio, Texas, USA. Groups of mothers
that eventually gave birth to the MNR and CTR offspring were
socialized in the presence of a vasectomized male while eating
Purina Monkey Diet 5038 (Purina, St. Louis, Missouri, USA)
containing crude protein not less than 15%, crude fat not less
than 5%, crude fiber not more than 6%, ash not more than
5% and added minerals not more than 3% ad libitum. The
management of the feeding of ad libitum and nutrient reduction
has previously been described in detail (Keenan et al., 2013).
Following acclimation, the vasectomized male was replaced by
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TABLE 1 | Morphologic data in the lifespan-sample.

Females Males F statistic
n 15 14 -
Age at MR scan (years) 943 +£3.89 962 +6.02 F=0.0(@p=0.92
Absolute GM volume (ml) 87.3+86 959+88 F=7.0(p=0.01)
Absolute WM volume (ml) 60.5+70 67453 F=8.9(p=0.006)

Absolute CSF volume (ml) 384 +4.9 465+ 51 F=19.1 (p <0.001)
Absolute TIV (ml) 186.7 + 14.4 210.4 + 14.0 F=20.1 (o < 0.001)
Fractional GM volume (/TIV)  0.47 £ 0.03 0.46 + 0.02 F=1.4 (o = 0.25)
Fractional WM volume (TIV)  0.32 £ 0.02 0.32 +£0.02 F=0.1 (o = 0.73)
Fractional CSF volume (TIV)  0.21 +£0.02 0.22 £ 0.02 F=3.4 (o = 0.08)

Data are displayed as mean =+ standard deviation (SD). Bold type indicates statistical
significance.

a proven breeder male. Timing of pregnancy was performed
by following sex-skin turgescence (Hendrickx and Peterson,
1997). Following confirmation of pregnancy by ultrasound at
30 days gestation, baboons with moderate MNR received 70%
of the average daily amount of feed eaten by the ad libitum
control females on a weight adjusted basis at the same gestational
age. Water was continuously available. Mothers were of similar
age (mean age £ SD: 11.5 & 0.51 years) and morphometric
phenotype. One cage was randomly selected for ad libitum
feeding on normal primate feed pellets and one cage for mothers
fed 70% of the feed eaten by control females on a weight-
adjusted basis from the time of diagnosis of pregnancy (~30
days gestation) for the rest of pregnancy and through lactation.
Initially, 40 adult females were recruited to the study, with 18
mothers-to-be being placed on the reduced diet and 22 on ad
libitum feed. All mothers delivered spontaneously at full term.
In the whole cohort, male CTR offspring of ad lib fed mothers
weighed 930 £ 40 g (mean £ SEM; n = 10) at birth, male MNR
oftspring weighed 820 £+ 39g (n = 9; p < 0.05). Female CTR
neonates weighed 820 & 40g (n = 12), female MNR neonates
weighed 730 & 40g (n = 9; p < 0.05). Weights of the randomly
chosen MRI subsample used for the present study were within
the same range as the whole sample (Table 1). All offspring were
reared with their mothers in group-based housing until 9 months
of age. Juvenile offspring were transferred to the University of
Texas Health Science Center at San Antonio in cohorts of 5-7
subjects over a 9-months period and housed individually in the
visual and auditory presence of > 6 other peers in the Laboratory
Animal Resources facility.

All animal procedures were performed in accordance with
accepted standards of humane animal care approved by the Texas
Biomedical Research Institute and University of Texas Health
Science Center at San Antonio Institutional Animal Care and Use
Committees and conducted in facilities approved by Association
for Assessment and Accreditation of Laboratory Animal Care
International Inc (AAALAC).

Basic Concept of the Brain Age Estimation

Framework
We recently developed the brain age gap estimation (BrainAGE)
framework to model healthy human brain aging (Franke et al.,

TABLE 2 | Descriptive statistics for morphologic data and test results in subjects with maternal nutrient restriction (MNR) and ad lib fed controls (CTR).

Total

Male

Female

MNR F statistic CTR MNR F statistic CTR MNR F statistic

CTR

11
0.81 + 0.11
17.65 £ 4.90

12
0.89 £ 0.10
15.75 + 4.99
4.90 + 1.09
96.6 + 8.6
59.7 £ 9.2
41775

200.2 £ 21.6

0.09
0.21
0.21
0.43
0.62

32(p=
17
0.0

F
r
r
£
F

0.22
0.48
0.21

17 =
0.5

F
r
r
F
F

0.83 + 0.09
20.77 £ 4.65
5.55 +1.38
99.0 £ 13.2
65.1 + 8.6
41.8 £ 3.0
206.7 £ 22.4
0.48 +£ 0.02
0.32 + 0.01
0.20 £ 0.02
0.89 +2.43

0.90 + 0.10
17.91 + 5.56

—0.30)

120
72
11 (o

09

F
F

0.78 £ 0.15
13.90 + 0.98

0.87 £ 0.12
12.72 £ 1.58

4.75 £ 0.76

90.1 £ 6.9

55.6 + 8.1

Birth weight (kg)

0.03)
0.21)
0.36)
0.48)

Weight at MR scan (kg)

497 +£1.11

0.5( =

5.00 + 1.34
96.0 + 10.1
65.1 £ 5.6
46.5 + 5.9
213.7 £ 14.3

F
F
F

4.38 £ 0.20
86.4 + 4.4
53.2 + 4.6
418+ 44
195.4 +£ 21.5

Age at MR scan (years)

0.7 (p =

933 £ 11.8

61.2 £ 8.0

41.8 £ 35
195.4 + 21.5

0.74
0.89

0.1(=
0.0

Absolute GM volume (ml)

02(p=

05(p =

Absolute WM volume (ml)

0.97
0.57
0.31
0.81
0.42
0.15

110
0.1

0.7 (o
22(p

00
03

F
F
F
F
F
.

0.48 +£ 0.02
0.30 + 0.02
0.22 + 0.02
1.01 £ 1.80

0.48 + 0.01
0.31 £0.02
0.21 £0.02
—0.16 + 1.89

0.14
0.53
0.53
0.32
0.33
0.99

2.6 (p
11
1.0

0.4
0.4
0.0 p

F
F
F
F
F
F

0.47 £ 0.01
0.31 + 0.02
0.22 + 0.02
0.86 + 1.54

0.03)
0.90)
0.03)
0.23)
0.05)
0.01)

1.7 (o

6.9 (p
09
7.9 (p
5.3 (p
1.4 (p

F
F
F
F
F
F=

0.48 £+ 0.01
0.29 + 0.01
0.23 + 0.02
1.16 £ 0.80

35.0+2.0
181.3 £ 14.6
0.50 + 0.01
0.31 £0.02
0.19 £ 0.02
—1.58 + 1.36

Data are displayed as mean + standard deviation (SD). Bold type indicates statistical significance.

Fractional CSF volume (/TIV)

Fractional GM volume (/TIV)
Fractional WM volume (/TIV)
BainAGE score (years)

Absolute CSF volume (ml)

TIV ()
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2010). Its basic concept is the aggregation of the complex,
multidimensional aging pattern across the whole brain into one
single value, i.e., the estimated brain age. In human samples, the
BrainAGE framework accurately and reliably estimates the age
of individual brains with minimal preprocessing and parameter
optimization using anatomical MRI scans (Franke et al., 2010,
2012). It also has the potential to identify pathological brain aging
on an individual level (Franke et al., 2012; Gaser et al., 2013).

In general, the process includes three steps (Figure 1). First,
the raw TIl-weighted image data are preprocessed with a
standardized voxel-based morphometry (VBM) pipeline. Second,
data reduction is performed on the preprocessed MRI data
in order to reduce computational costs, to avoid severe over-
fitting, as well as to produce a robust and widely applicable age
estimation model. Third, relevance vector regression (RVR) is
utilized to capture the multidimensional aging patterns across the
whole brain in order to model brain aging over a wide age range
and to subsequently estimate individual brain ages. In the present
study, the brain age estimation framework includes a novel
baboon-specific MRI preprocessing pipeline (see Preprocessing
of MRI Data) as well as building the new species-specific model
of healthy brain aging in baboons (see The BrainAGE Method
and Its Baboon-specific Adaptation).

Preprocessing of MRI Data

T1-weighted image MR image data we acquired using a
3D acquisition scheme with in-plane images in the sagittal
orientation in order to maximize isotropic resolution while
avoiding aliasing artifacts. This acquisition strategy necessitated
the use of slice-based inhomogeneity correction to remove MR
protocol dependent slice artifacts (Figure 2A) (Van Leemput
et al., 1999; Cohen et al., 2000). Then, a spatial adaptive non-
local means (SANLM) filter (Christidis and Cox, 2006) was
applied to reduce high-frequency noise. For segmentation and
spatial registration a baboon-specific tissue probability map
(TPM) and a “Diffeomorphic Anatomical Registration using
Exponentiated Lie algebra” (DARTEL) template (Ashburner,
2007) were required. The template was created in an iterative
process based on a rescaled human template (Figure 2B). For
initialization, an affine transformation was used to scale the
human SPM12 TPM and the VBM12 Dartel template map to the
expected brain size of baboons. Image resolution of the template
was changed to isotropic voxel size of 0.75 mm. For each iteration
step, the resulting tissue maps were averaged and smoothed
with a full-width-at-half-maximum (FWHM) kernel of 2 mm to
estimate an affine registration in order to create a new TPM, T1
average map and brain mask. For averaging data, the median
function was used to reduce distortions by outliers and failed
processing. Iterations were stopped if the change compared to the
previous template was below a pre-defined threshold, resulting in
the final segmentation (Figure 2C).

Data Reduction

Preprocessed MRI data were smoothed with a 3-mm FWHM
smoothing kernel and images were resampled to 3 mm. Data
were further reduced by applying principal component analysis
(PCA).

The BrainAGE Method and Its
Baboon-Specific Adaptation

The brain age estimation framework uses RVR, which was
introduced as a Bayesian alternative to support vector machines
(SVM) for obtaining sparse solutions to pattern recognition
tasks (Tipping, 2000, 2001). Former results indicated favorable
performance of RVR to capture the typical age-specific atrophy
patterns across the whole brain (Franke et al., 2010). A linear
kernel was chosen since age estimation accuracy is not improving
when choosing non-linear kernels (Franke et al., 2010). Besides
and in contrast to the use of support vector machines, parameter
optimization during the training procedure is not necessary.
More details can be found in (Franke et al., 2010).

In general, the model is trained with preprocessed whole brain
structural MRI data as well as the corresponding chronological
ages of a training sample, resulting in a complex model of brain
aging (Figure 3A, left panel). Put in other words, the algorithm
uses those whole-brain MRI data from the training sample
that represent the prototypical examples within the specified
regression task (i.e., brain aging). Besides, voxel-specific weights
can be calculated that represent the importance of each voxel
within the specified regression task (i.e., brain aging).

Subsequently, the brain age of a test subject can be estimated
using the individual tissue-classified MRI data, aggregating the
complex, multidimensional aging pattern across the whole brain
into one single value (Figure 3A, right panel). In other words,
all the voxels of the test subjects MRI data are weighted by
applying the voxel-specific weighting matrix. Then, the brain
age is calculated by applying the regression pattern of healthy
brain aging and aggregating all voxel-wise information across
the whole brain. The difference between estimated brain age and
the true chronological age will reveal an individual deviation
score, namely the brain age gap estimation (BrainAGE) score.
Consequently, positive or negative values of this deviation score
directly quantify the amount of acceleration or deceleration in
individual brain aging, respectively (Figure 3B).

Here, gray matter (GM) images resulting from the baboon-
specific preprocessing pipeline described above were used to
build the model of neuroanatomical aging in baboons. The brain
age estimation model was trained and tested via leave-one-out
cross-validation, i.e., preprocessed MRI data from 28 out of 29
baboons was used for training and the brain age of the left-out
subject was estimated subsequently. This procedure was repeated
29 times. Brain ages in the MNR subjects were calculated using
the whole lifespan sample as the training sample.

Technical Notes

The whole brain age estimation framework works fully
automatically. All MRI preprocessing, data reduction, model
training, and brain age estimation is done using MATLAB.
Preprocessing of the in vivo T1-weighted images was done
using the toolboxes “Statistical Parametric Mapping” (SPM12;
http://www.filion.ucl.ac.uk/spm) and our new “Computational
Anatomy Toolbox for SPM” (CAT12; http://dbm.neuro.
uni-jena.de). PCA is performed using the “Matlab Toolbox
for Dimensionality Reduction”  (http://ict.ewi.tudelft.nl/~
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FIGURE 1 | General flowchart of the brain age estimation framework.
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FIGURE 2 | (A) Shown are the original T1-weighted image and the slice-corrected version. (B) For the segmentation process, a baboon specific tissue probability
map (TPM; shown as label map) was used in an iterative process, starting with a scaled human template (left) and refinements during each iteration. (C) The final
baboon TPM was used to create the final segmentation of the individual MRI.
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FIGURE 3 | Depiction of the original brain age estimation framework for humans. (A) The model of healthy brain aging is trained with the chronological age
and preprocessed structural MRI data of a training sample (left; with an exemplary illustration of the most important voxel locations that were used by the age
regression model). Subsequently, the individual brain age of a previously unseen test subject is estimated, based on MRI data (blue; picture modified from Scholkopf
and Smola, 2002). (B) The difference between the estimated and chronological age results in the deviation (i.e., BrainAGE) score. Consequently, positive deviation

scores indicate accelerated brain aging. (Image reproduced from Franke et al., 2012, with permission from Hogrefe Publishing, Bern).

Ivandermaaten/Home html). To compute the age regression
model as well as to predict the individual brain ages, the freely
available toolbox “The Spider” (http://www.kyb.mpg.de/bs/
people/spider/main.html) is used.

Baboon TPM and template generation takes around 30 min
per subject and iteration, ending up in about 48 h for the whole
sample. For modeling healthy brain aging with RVR, one cross-
validation loop in the life-span sample of 29 subjects takes
between 0.2 and 1.2s on MAC OS X, Version 10.6.8, 2.8 GHz
Intel Core 2 Duo. Thus, the whole process of training the baboon-
specific brain age estimation model and subsequent estimation of
individual brain age for all 29 subjects takes about 20 s in total.

Statistical Analyses

First, volumes of GM, white matter (WM), cerebrospinal fluid
(CSF), and total intracranial volume (TIV) were analyzed using
regression models. To test whether age effects were significantly
associated with brain volumes, F statistics of linear and quadratic
regression models were compared. To measure the accuracy
of the brain age estimation model, the correlation coefficient
between chronological and estimated brain age as well as the
mean absolute error (MAE) was calculated:

MAE = 1/n*Ei|BAi — CA|| (1)
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with 7 being the number of subjects in the test sample, CA; the
chronological age, and BA; the structural brain age estimated by
the model. Best-fit was tested comparing F statistics of linear and
quadratic regression models.

Before analyzing brain aging in MNR baboons, birth weight,
weight and age at time of MR scan, as well as brain volumes
were compared between MNR and CTR groups using analysis
of variance (ANOVA). As the range of chronological ages was
relatively broad (4-7 years), age was included as a covariate
(except for birth weight). Effect size was calculated using partial
n?. To analyze differences in individual brain aging between both
groups, the individual deviation scores, i.e., the BrainAGE scores,
were calculated:

BrainAGE score = BA; — CA; (2)

We have previously reported sex differences in
neurodevelopment and cognitive performance for the same
cohort of MNR baboon (Rodriguez et al., 2012; Keenan et al.,
2013). Therefore, we also tested the effect of sex on structural
brain aging. Female and male offspring of mothers in the control
group are referred as CTR females and CTR males, respectively,
and female and male offspring of mothers in the moderate MNR
group are referred as MNR females and MNR males, respectively.
All statistical testing was performed using MATLAB 7.11.

RESULTS

Baboon Brain Volumes across Adulthood
The lifespan-sample of healthy control subjects used to model
healthy brain aging in baboon was aged 4-22 years at the time
of data acquisition. Mean age did not differ between males
and females (Table 1). Evaluation of in vivo MRI revealed that
absolute GM volume, absolute WM volume, absolute CSF, as well
as TIV were significantly higher in male compared to female
subjects (Table 1). Absolute neocortical GM volume declined
significantly with age, especially in males (Table 3). Absolute CSF
volume increased with age only in females. Absolute WM volume
as well as TIV did not vary with age.

To analyze characteristics of baboon brain tissue volumes
during adulthood independent of individual differences in brain
size, absolute brain volumes were corrected for TIV, resulting
in individual proportions of GM, WM, and CSF in relation to
individual TIV. Fractional GM, WM, and CSF volumes did not
differ between genders (Table 1). In males and females, the GM
decline was strongly explained by age (Figure 4A; Table 3), with
a linear age effect in females (adjusted R?> = 0.85; p < 0.001)
and a quadratic age effect in males (adjusted R?> = 0.94; p <
0.001). Fractional WM volume increased with age (Figure 4B;
Table 3), with males showing a stronger relationship (quadratic
fit: adjusted R? = 0.75; p < 0.01) than females (linear fit: adjusted
R? =0.36; p < 0.05). Fractional CSF volume showed a moderate
increase with age only in females (linear fit: adjusted R*> = 0.31;
p < 0.05), but not in males (Figure 4C; Table 3).

Baboon Brain Age Estimation Model
The baboon-specific brain age estimation model included a
baboon-specific preprocessing pipeline for in vivo anatomical

MRI scans and a machine-learning algorithm for pattern
recognition in order to model a reference curve for normal
aging of the baboon brain. Using preprocessed GM images,
leave-one-out cross-validation in the whole lifespan-sample of
healthy control subjects resulted in a correlation of r = 0.80 (p
< 0.001; Figure5) between chronological age and estimated
brain age, with age estimation being slightly more accurate in
females (r = 0.88) than in males (r = 0.81). The linear regression
model resulted in the best fit (adjusted R?> = 0.62; F = 47.6; p <
0.001). The mean MAE between chronological age and estimated
brain age was 2.1 years for the whole modeling sample of healthy
control subjects (females: MAE = 1.5 years; males: MAE = 2.8
years).

Morphometric Characteristics of MNR
Model Baboon Offspring

In our whole non-human primate (NHP) model, MNR decreased
birth weight (Li et al., 2013a). Birth weights of the MRI subsample
in the present study, including a total of 11 randomly chosen
offspring (5 female) with MNR and 12 randomly chosen control
offspring (5 female) from mothers receiving full diet during
pregnancy, fell within the same range as the total sample (Li et al.,
2013a), with MNR offspring showing the tendency to weigh less
than CTR offspring [F(;, 13y = 3.2; p = 0.09; Table 2]. At time
of in vivo MRI data acquisition, subjects were aged 4-7 years
(human equivalent 14-24 years) (Table 2). Chronological age did
not differ between experimental groups [F(;, 13y = 0.1; n.s.] or
gender [F(; 1g) = 2.9; n.s.]. At the time of the MRI scan, female
MNR offspring weighed more than female CTR offspring [F(;, 7
=7.2;p < 0.05; »*> = 0.51], showing an altered postnatal growth
profile as a result of programming. No differences in weight at
time of MRI scan were found in males (Table 2).

In the sample of MNR and CTR offspring, absolute as well
as relative brain volumes did not differ between experimental
groups. However, absolute CSF volume was increased in female
MNR offspring as compared to female CTR offspring. Even more
interesting, fractional GM volume corrected for individual TIV
was significantly decreased in female MNR offspring [F(; 7) =
7.9; p < 0.05; n*> = 0.50; Table 2].

Brain Aging in Adult MNR Baboon

Baboon BrainAGE scores based on species-specific preprocessed
GM images, which quantify baboon-specific neuroanatomical
aging, were significantly increased by 2.74 years in young adult
female MNR subjects as compared to young adult female CTR
offspring [F(; 7, = 11.4; p = 0.01; n*> = 0.62; Figure 6A;
Table 2], suggesting premature brain aging in female MNR
offspring as a result of developmental programming due to fetal
undernutrition. In males, BrainAGE scores did not differ between
MNR and CTR offspring [F(;, ¢y = 0.0; n.s.; Figure 6B; Table 2].

DISCUSSION

To our knowledge this is the first study to combine the power of
in vivo MRI data acquisition and the development of a controlled
NHP model of developmental programming to follow the effects
on structural brain development and aging. The translational
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TABLE 3 | Sex-specific regression models with linear and quadratic fit for age effects in absolute and fractional (/TIV) baboon brain volumes across

adulthood.

Brain volume Regression model Female sample (n = 15)

Male sample (n = 14) Whole lifespan-sample (n = 29)

Adjusted R2 F statistic Adjusted R2 F statistic Adjusted R?2 F statistic
Absolute GM (ml) Linear 0.19 F =4.32 (p=0.06) 0.47 F =12.75 (p = 0.004) 0.27* F =11.15 (p = 0.002)
Quadratic 0.18 F=249(p=0.12) 0.55* F = 8.85 (p = 0.005) 0.24 F =5.37 (p = 0.01)
Absolute WM (ml) Linear 0.06 F=1.89(p=0.19 0.12 F=272(p=0.12) 0.08 F=3.31(p =0.06)
Quadratic 0.20 F=278(p=0.10) 0.20 F=263({p=0.12) 0.05 F=1.72(p =0.20)
Absolute CSF (ml) Linear 0.29 F =6.75 (p = 0.02) —0.08 F =0.01(p=0.93) 0.00 F=0.88(p =0.36)
Quadratic 0.33* F =4.52 (p = 0.03) —0.02 F=0.85(p =0.45) 0.09 F=233(p=0.12)
TIV (ml) Linear —0.07 F =0.07 (p = 0.80) 0.02 F=1.21(p=0.29) —0.03 F=0.25(p=0.62
Quadratic —0.06 F=0.62(p=0.55) —0.06 F =0.64(p=0.55) 0.02 F=1.24(p=0.31)
Fractional GM (/TIV)  Linear 0.85* F =58.03 (p < 0.001) 0.92 F =52.22 (p < 0.001) 0.65 F =52.22 (p < 0.001)
Quadratic 0.84 F = 26.33 (p < 0.001) 0.94* F = 33.84 (p < 0.001) 0.70* F = 33.84 (p < 0.001)
Fractional WM (/TIV)  Linear 0.36* F = 6.56 (p = 0.03) 0.67 F =19.53 (p = 0.002) 0.50 F = 28.91 (p < 0.001)
Quadratic 0.29 F =23.06 (p =0.10) 0.75* F =14.24 (p = 0.003) 0.51* F =15.47 (p < 0.001)
Fractional CSF (/TIV)  Linear 0.31* F =5.55 (p = 0.04) —0.05 F=0.56 (p =0.47) 0.09 F =3.73 (p = 0.06)
Quadratic 0.29 F=301(p=0.11) 0.08 F=1.41(p=0.31) 0.09 F=235(p=0.11)
Asterisk indicates best-fit model. Bold type indicates significance.
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FIGURE 4 | (A) Scatter plot of fractional GM volume (/TIV) against age (in years) for 29 healthy control baboons in the lifespan-sample (females in red, males in blue).
The best fitting regression lines including the 95% confidence intervals (linear for females, quadratic for males) are superimposed. (B) Scatter plot of fractional WM
volume (/TIV) against age, with linear regression curve for females and quadratic regression curve for males. (C) Scatter plot of fractional CSF volume (/TIV) against
age, with linear regression curve for females.

power of these studies is shown by a parallel MRI study in
the Dutch famine birth cohort, in which decreased total brain
volume in late adulthood was already shown in those who
had been undernourished prenatally (de Rooij et al, 2016).
Further research in the Dutch famine birth cohort will investigate
whether exposure to fetal undernutrition during early gestation
has an effect on individual brain aging in late-life. This present
study provides important novel insights into experimental brain
programming using the closest available species with regards
to human programming to model (experimentally induced)
brain changes. First, we developed a novel fully-automatic
baboon-specific MRI data preprocessing pipeline, based on
and comparable to well-established preprocessing pipelines for
human brain MRI data. The characteristics of brain structures
across the baboon adult life course were analyzed, based on non-
invasive in vivo MRI data. Second, we present a species-specific
reference curve for brain aging in baboons, resulting from the

novel adaptation of our well-established BrainAGE method.
Using BrainAGE, future studies investigating experimentally
induced brain changes in different programming paradigms can
refer and compare to these new reference curves in normal
brain volumes and individual brain aging across the adult
baboon life course. Third, applying this innovative brain aging
biomarker, the present study is the first to reveal modifications of
individual brain aging trajectories resulting from developmental
programming in a non-human primate MNR model.

The analyzes of the in vivo MRI data from healthy, untreated
baboons showed a strong decline in GM volume and increase in
WM volume during adult lifespan in males as well as females. In
comparison, MRI studies in humans suggest linear decline in GM
volume, non-linear age effect in WM volume decline as well as
increase of CSF volume to be predominant during adulthood in
both genders (Good et al., 2001; Resnick et al., 2003). In contrast,
chimpanzees and rhesus monkeys show only very small (if any)
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age-related decline in GM and WM volumes during adulthood
(Sherwood et al,, 2011; Chen et al., 2013; Autrey et al,, 2014).
Thus, our results suggest the baboon to be the animal model
closest to the human in terms of changes in brain tissue across
the lifespan, and thus best suited for future translational studies.

Based on the age-related patterns of brain tissue loss, we
have recently presented a fully-automatic brain age estimation
framework for use in humans (Franke et al., 2010), which
aggregates the complex aging patterns across the whole brain.
The result is a single global estimation score of an individual
“brain age” that accounts for the individual multidimensional
aging pattern across the whole brain. Several studies in human
samples provide evidence for the BrainAGE method to accurately

Brain age estimation in untreated baboons
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FIGURE 5 | Scatterplot of estimated brain age against chronological
age (in years) resulting from leave-one-out cross-validation in 29
healthy control baboons using their in vivo anatomical MRI scans. The
overall correlation between chronological age and estimated brain age is r =
0.80 (p < 0.001), with an overall MAE of 2.1 years.

and reliably model age-related spatiotemporal human brain
changes as well as to estimate individual deviations from
healthy brain aging trajectories. Moreover, BrainAGE results
profoundly correlate with a number of general lifestyle and health
parameters, disease markers, and cognitive functions (Franke
et al,, 2010, 2012, 2014; Gaser et al., 2013). Based on the original
BrainAGE framework, this paper presents a species-specific
adaptation for baboon brain aging, including a novel baboon-
specific preprocessing tool for MRI data and validated machine
learning methods for pattern recognition in order to model
typical brain aging characteristics and to subsequently estimate
individual brain ages. Here, this baboon-specific adaptation
of the brain age estimation framework showed excellent
performance in modeling baboon brain aging using in vivo MRI
data from 15 female and 14 male baboons, aged 4-22 years.
Applying this novel, non-invasive in vivo MRI biomarker to
a sample of baboons with 30% reduction in global maternal
nutrition during pregnancy, this study shows premature brain
aging of about 2.7 years in the young adult MNR female subjects
(4-7 years; human equivalent 14-24 years). Several studies
of fetal and postnatal MNR baboon offspring in this model
have established a multi-system altered phenotype, affecting the
cardiovascular system (Clarke et al., 2015), liver (Cox et al,
2006b), kidney (Cox et al., 2006a; Pereira et al., 2015), and
brain (Antonow-Schlorke et al., 2011; Li et al., 2013a,b). With
regards to brain development and function, a recent histological
study utilizing the same baboon model of moderate MNR during
pregnancy already indicated major impairments of fetal brain
development, including disturbances of early organizational
processes in cerebral development on a histological and gene
product level, neurotrophic factor suppression, imbalances in
cell proliferation and developmental cell death, impaired glial
maturation and neuronal process formation, as well as altered
gene expression (Antonow-Schlorke et al., 2011), resulting in
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FIGURE 6 | Neurostructural aging in MNR model baboon offspring. BrainAGE scores differed significantly between (A) young adult female CTR and MNR
offspring by 2.74 years, (B) but not between male CTR and MNR offspring. The boxes contain values between the 25th and 75th percentiles of the groups, including
the median (red/blue lines). Black lines extending above and below each box symbolize data within 1.5 times the interquartile range. Black “+” denotes outliers. Width
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an altered cognitive and behavioral phenotype during childhood
and adolescence with female but not male MNR offspring
demonstrating more variable and lower levels of persistence
and attention and less emotional arousal than female CTR
offspring by 3.3 years of age (human equivalent 11.5 years)
(Keenan et al.,, 2013). The present neuroanatomical study on
brain aging in the MNR baboon model is the first evidence
in a NHP sample with MNR that appraises and quantifies the
effects of fetal malnutrition on neuroanatomical aging in young
adulthood, employing non-invasive in vivo data collection and
a novel, baboon-specific evaluation approach. The increased
BrainAGE scores in the female MNR baboons provide the
first in vivo evidence for premature brain aging during young
adulthood following impaired fetal brain development induced
by moderate MNR during gestation. These results are in line
with our former studies of brain development and (cognitive)
function also showing stronger alterations due to MNR during
gestation in the female baboon offspring (Antonow-Schlorke
et al.,, 2011; Rodriguez et al., 2012; Keenan et al., 2013; Li et al,,
2013a).

Increasing evidence from developmental programming
studies often shows distinct differences between males and
females (Aiken and Ozanne, 2013). Potential mechanisms for
the different effects in males and females observed in this study
are varying timing of puberty and adolescence in male and
female baboons and its associated hormone changes. Puberty
and adolescence in female baboons occur around the age of 3
to 4 years with baboons attaining adult size around 6 years of
age. In contrast, puberty and adolescence in male baboons occur
between 4 and 7 years, with males reaching full size around 10
years of age (Crawford et al.,, 1997; Jolly and Phillips-Conroy,
2003). These differing maturation trajectories probably also
include brain maturation. Thus, processes of brain tissue gain
as a result of pre-pubertal growth and pruning may still be
continuing in the male subjects studied, whereas in the female
subjects brain maturation was closer to completion, such that the
processes of age-related tissue loss occurring during adulthood
had already started. For future studies we propose to continue to
apply this in vivo biomarker for brain aging in the same sample
of MNR offspring during middle and late adulthood in order to
comprehensively track the long-lasting effects of developmental
programming on gender-specific alterations of individual brain
aging trajectories.

Several established models for brain aging in humans showed
significant relationships between individual brain aging and
health and lifestyle variables as well as medical drug use (Franke
et al.,, 2014; Habes et al., 2016). Delayed brain aging has been
found to be associated with higher levels of education and
physical activity (Steffener et al., 2016) as well as higher levels of
meditation practice (Luders et al., 2016). Furthermore, advanced
brain aging was shown to be indicative of poorer physical fitness,
lower fluid intelligence, higher allostatic load, and increased
mortality (Cole et al., 2017), and even predicting the onset
of cognitive decline (Franke et al., 2012; Gaser et al.,, 2013).
Additionally, a recent study on changes of individual BrainAGE
during the course of the menstrual cycle in humans (Franke
et al., 2015) proves the BrainAGE method being capable of
reliably indicating even temporary neuroanatomical changes as

for example occurring during the course of the menstrual cycle.
Consequently, the BrainAGE method offers new approaches
to monitor subtle neuroanatomical changes in longitudinal
intervention and treatment studies in humans and experimental
animal models, e.g., exploring the effects of daily activity,
protective nutrients, or medication on individual brain structure.

In conclusion, to our knowledge this is the first study to
utilize the power of MRI brain imaging in a NHP model
of controlled decreased fetal nutrition and MNR. We have
developed a novel, species-specific, non-invasive in vivo MRI
biomarker for brain aging that shows great potential for further
studies in our well-established NHP model of developmental
programming and aging. For example, these offspring will
be maintained to follow the aging process over the rest of
their life course. The brain aging biomarker enables a well-
controlled, repeatable, and non-invasive in vivo exploration of
individual effects on subtle, yet clinically-significant, changes in
brain structure affecting neuroanatomical maturation and aging
due to various environmental challenges experienced in human
pregnancy (e.g., maternal obesity and diabetes, effects of maternal
stress and placental insufficiency). Future studies can combine
this MRI methodology with cognitive and behavioral studies, as
well as treatment and intervention studies. Additionally, there
is a clear need for gender-specific mechanisms, such as those
shown here, to be taken into account in future studies. We
observed premature brain aging in young adult female offspring.
Furthermore, a species-specific and well-performing adaptation
of the BrainAGE method for analyzing brain aging in rodents
has recently been presented (Franke et al, 2016), thus also
enabling future (longitudinal) studies of experimentally induced
changes in brain maturation and aging in rodent models. In
summary, the BrainAGE method can potentially identify a variety
of environmental factors and mechanisms that induce premature
brain atrophy at an individual level and contribute to a better
understanding of healthy and pathological brain aging in animal
models and humans.
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Aim: To assess the associations of age and diagnosis with visual ratings of medial
temporal lobe atrophy (MTA), parietal atrophy (PA), global cortical atrophy (GCA), and
white matter hyperintensities (WMH) and to investigate their clinical value in a large
memory clinic cohort.

Methods: We included 2,934 patients (age 67 + 9 years; 1,391 [47 %] female; MMSE 24
=+ 5) from the Amsterdam Dementia Cohort (1,347 dementia due to Alzheimer’s disease
[AD]; 681 mild cognitive impairment [MCI]; 906 controls with subjective cognitive decline).
We analyzed the effect of age, APOE e4 and diagnosis on visual ratings using linear
regression analyses. Subsequently, we compared diagnostic and predictive value in three
age-groups (<65 years, 65-75 years, and >75 years).

Results: Linear regression analyses showed main effects of age and diagnosis and an
interaction age*diagnosis for MTA, PA, and GCA. For MTA the interaction effect indicated
steeper age effects in MCI and AD than in controls. PA and GCA increased with age in
MCI and controls, while AD patients have a high score, regardless of age. For WMH we
found a main effect of age, but not of diagnosis. For MTA, GCA and PA, diagnostic value
was best in patients <65 years (optimal cut-off: >1). PA and GCA only discriminated
in patients <65 years and MTA in patients <75 years. WMH did not discriminate at all.
Taking into account APOE did not affect the identified optimal cut-offs. When we used
these scales to predict progression in MCI using Cox proportional hazard models, only
MTA (cut-off >2) had any predictive value, restricted to patients >75 years.

Conclusion: Visual ratings of atrophy and WMH were differently affected by age and
diagnosis, requiring an age-specific approach in clinical practice. Their diagnostic value
seems strongest in younger patients.

Keywords: Alzheimer’s disease, mild cognitive impairment (MCI), MRI, prognosis, diagnostic test assessment
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INTRODUCTION

The current diagnostic criteria for mild cognitive impairment
(MCI) and dementia due to Alzheimer’s disease (AD) advise to
apply biomarkers such as MRI features, to identify patients with
(underlying) AD pathology (Dubois et al., 2007, 2014; Albert
et al,, 2011; McKhann et al., 2011). The criteria do not specify
how MRI features should be measured, what cut-offs should be
used and whether a patients age should be taken into account
(Frisoni et al., 2011). Studies demonstrating discriminatory value
of atrophy, such as medial temporal lobe atrophy (MTA), parietal
atrophy (PA) and global cortical atrophy (GCA) in AD, often
use automatic quantitative MRI analysis (van de Pol et al., 2006;
Sluimer et al., 2008; Henneman et al., 2009a; Trzepacz et al.,
2014). However, these analyses are time consuming hence hard
to apply in daily clinical practice. A feasible way of applying
MRI features in daily practice is to use established visual rating
scales for atrophy measures and vascular white matter changes
(Scheltens et al., 1992, 1995; Wattjes et al., 2009).

The presence of MTA has been shown to differentiate
patients with dementia due to AD from controls and to predict
progression to dementia in MCI patients (Scheltens et al., 1992;
Jack et al., 2002; Korf et al., 2004; Vos et al., 2012; Clerx et al.,
2013; Ferreira et al, 2015). However, medial temporal lobe
atrophy also occurs in normal aging (Jernigan et al., 2001; van de
Pol et al., 2006; Barkhof et al., 2007). To discriminate both young
and old controls from AD, an average score of the left and right
sides of MTA > 1 has been proposed for patients <75 years and
MTA > 1.5 for patients >75 years (Scheltens et al., 1992, 1995;
Schoonenboom et al., 2008). Recently two studies, based on the
same cohort, have suggested to increase the cut-off for patients
<75 years to MTA > 1.5, for patients >75 years to MTA > 2
and to add a specific cut-off of MTA > 2.5 for patients aged >85
years (Pereira et al., 2014; Ferreira et al., 2015). Since these studies
used patients with a mean age of 75, it remains uncertain what the
optimal cut-off in younger patients would be.

In younger patients, PA is increasingly recognized as an
important feature of AD (Koedam et al, 2010). Rating PA
improves the distinction of early onset AD patients from younger
controls, but seems to be less suited to separate older AD patients
from older controls (Lehmann et al., 2012; O’'Donovan et al.,
2013). No age-specific cut-offs have yet been suggested (Koedam
et al,, 2011; Ferreira et al., 2015). Only one study assessed the
diagnostic value of combining MTA with PA, but this study did
not take age into account (Ferreira et al., 2015). Being affected
by parietal atrophy as well, the GCA scale has a lot of overlap
with the PA scale. However, no cut-offs for the use of this scale
as a diagnostic or predictive marker exist (Pasquier et al., 1996;
Scheltens et al., 1997; Henneman et al., 2009b; Fjell et al., 2013).

Particularly in older patients, dementia pathology is often
mixed including neurodegenerative and vascular changes.
Therefore, in addition to measures of atrophy, it is common
practice to estimate the extent of small vessel disease (SVD),
such as white matter hyperintensities (WMH) in the diagnostic
workup (van der Flier et al., 2004; Kester et al., 2014). A recent CT
study showed an unexpected low percentage of WMH in elderly
patients (Claus et al., 2015). It has been suggested that WMH
may predict progression in the MCI stage, but other studies have

found no such effect (Prins et al., 2013; Mortamais et al., 2014).
The WMH severity can be rated using Fazekas’ scale, but optimal
cut-offs for separating controls from AD taking into account age
have not been reported (Fazekas et al., 1987). Details regarding
the afore mentioned scales can be found in Table 1.

The aim of our study was to explore the effect of age on
the diagnostic value of visual ratings of MTA, PA, GCA, and
WMH for discriminating controls from AD and for predicting
progression to dementia in MCI in a very large memory clinic
cohort (van der Flier et al., 2014). Second, we evaluated the effect
of APOE genotype. Our ultimate goal is to provide practical
support to clinicians to improve the effective incorporation of
MRI visual ratings scale in daily practice.

METHODS

Subjects

We included 2,934 patients from the Amsterdam Dementia
Cohort who had visited the Alzheimer center between 2000 and
2015 (van der Flier et al, 2014). Of these patients, 906 were
diagnosed with subjective cognitive decline (SCD), who served
as controls, 681 with MCI and 1,347 with AD. Subjects were
included if MRI and mini mental state examination (MMSE;
Folstein et al., 1975), performed within 6 months of baseline
diagnosis, were available. The local medical ethical committee
approved the study, according to the declaration of Helsinki. All
patients provided written informed consent for their clinical data
to be used for research purposes.

Clinical Assessment

At baseline, patients received a standardized and multi-
disciplinary work-up, including medical history, physical,
neurological and neuropsychological examination, MRI and
laboratory tests. Cognitive functions are assessed with a
standardized test battery, including the MMSE and Cambridge
cognitive examination for global cognitive decline (Folstein
et al., 1975; Derix et al., 1991). For memory we use the visual
association test (VAT) and Rey auditory verbal learning task
(Saan and Deelman, 1986; Lindeboom et al., 2002). For language
we use VAT naming and category fluency (Lindeboom et al,
2002; Van der Elst et al., 2006). For attention and executive
functions we use the trail making test A and B and the digit
span (Reitan, 1958; Lindeboom and Matto, 1994). More details
can be found in our cohort paper (van der Flier et al., 2014).
Diagnoses were made in a multidisciplinary consensus meeting
(van der Flier et al., 2014). Patients were labeled as SCD when
the cognitive complaints could not be confirmed by cognitive
testing and criteria for MCI, dementia or any other neurological
or psychiatric disorder known to cause cognitive complaints
were not met. MCI was diagnosed using Petersen’s criteria; in
addition all patients fulfilled the core clinical criteria of the NIA-
AA guidelines for MCI (Petersen, 2004; Albert et al., 2011).
Patients were diagnosed with probable AD using the criteria
of the National Institute for Neurological and Communicative
Diseases Alzheimer’s Disease and Related Disorders Association;
all patients also met the core clinical criteria of the National
Institute on Aging-Alzheimer’s Association guidelines for AD
(McKhann et al., 1984, 2011).
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TABLE 1 | Details on used visual ratings scale of MTA, PA, CGA, and WMH.

MTA (Scheltens et al., 1992, 1995)

Scale rated on coronal T1 images:

0 = normal

1 = widened choroid fissure

2 = increase of widened fissure, widening temporal horn, opening of other sulci
3 = pronounced volume loss of hippocampus

4 = end stage atrophy

Cut-offs described in literature:

—>average left and right

- Original article by Scheltens (Scheltens et al., 1992)
>1 below 75 years sens 0.81 spec 0.67
>1.5 above 75 years

- Pereira (Pereira et al., 2014)
>1.5 below 75 years sens 0.79 spec 0.77
>2 above 75 years sens 0.82 spec 0.75

- Ferreira (Ferreira et al., 2015)

PA (Koedam et al., 2010)

Scale rated in sagittal and coronal T1 and axial flair images:
0 = no atrophy

1 = mild atrophy, opening of sulci

2 = moderate atrophy, volume loss gyri

3 = severe atrophy; knife blade

Cut-offs described in literature:

—>average left and right

-Original article by Koedam (Koedam et al., 2011)
>2, independent of age sens 0.58 spec 0.95
- Ferreira (Ferreira et al., 2015)

>1, independent of age sens and spec <0.65

>2.5 above 85 years sens 0.60 spec 0.88

Rater reliability (Scheltens et al., 1995; Cavallin et al., 2012) Rater reliability (Koedam et al., 2011)

Inter-rater reliability: 0.72-0.84 Inter-rater reliability: 0.65-0.84
Intra-rater reliability: 0.83-0.94 Intra-rater reliability: 0.93-0.95
GCA (Pasquier et al., 1996) WMH (Fazekas et al., 1987)

Scale rated on axial flair images: Scale rated on axial flair images:

0 = no atrophy 0 = none or single (max 3) punctate lesions

1 = mild atrophy, opening of sulci 1 = multiple (>3) punctate lesions

2 = moderate atrophy, volume loss gyri 2 = beginning confluent of lesions

3 = severe atrophy; knife blade 3 = large confluent lesions

No described cut-offs No described cut-offs

Rater reliability (Pasquier et al., 1996) No reported rater reliability

Inter-rater reliability: >0.6

Intra-rater reliability: >0.7

Sens, sensitivity; spec, specificity. Inter-rater and intra-rater reliability is presented as Cohen weighted Kappa.

Follow-Up

Follow-up for MCI patients took place by annual routine visits to
our memory clinic in which patient history, cognitive tests, and
a physical and neurologic examination were repeated. Follow-
up data were available in 464(68%) MCI patients, with a mean
duration of follow-up of 2.5 £ 1.7 years. Of these patients,
255(55%) remained stable, 161(35%) progressed to AD and
48(10%) progressed to another type of dementia.

MRI

Subjects were scanned with a standardized scan protocol on
1.0 T, 1.5 T, and 3.0 T whole body MRI systems as part
of their diagnostic work-up. Over time, the core protocol
remained comparable and always included 3DT1 with coronal
slices and FLAIR with axial slices. Details on acquisition
parameters per scanner can be found in Supplementary Table
1. All scans were visually rated by a trained rater after they
had completed the required training and obtained a weighted
kappa of at least 0.80 for MTA, 0.60 for GCA, and 0.70 for
Fazekas, and subsequently evaluated in a consensus meeting

with our experienced neuroradiologist. The raters were blinded
for diagnosis. Visual rating of MTA was performed on oblique
coronal T1-weighted images according to the 5-point (range 0-4)
Scheltens scale from the average score of the left and right sides
(Scheltens et al., 1992, 1995). PA was rated using the posterior
cortical atrophy scale (range 0-3), using T1 and FLAIR weighted
images viewed in sagittal, axial and coronal planes, computing
an average score of the left and right sides (Koedam et al., 2010,
2011; Lehmann et al., 2013). Global cortical atrophy (GCA) was
assessed visually on axial FLAIR images (range 0-3) (Pasquier
et al.,, 1996). The degree of white matter hyperintensities severity
was rated on axial FLAIR images using Fazekas’ scale (range 0-3)
(Fazekas et al., 1987). More details can be found in Table 1.

APOE Genotyping

DNA was isolated from 10 ml of EDTA blood. APOE
genotype was determined with the light cycler APOE
mutation detection method (Roche diagnostics GmbH,
Mannheim, Germany). According to APOE e4 status, patients
were dichotomized into carriers (hetero- and homozygous)
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and non-carriers. APOE status was available for 2410(82%)
subjects.

Statistical Analyses

For statistical analyses, we used SPSS version 20 (IBM, Armonk,
NY, USA). We compared visual ratings according to the baseline
diagnosis (controls, MCI and AD) using Kruskal-Wallis tests
and post-hoc Mann-Whitney U-tests. We used Spearman’s
correlations to assess correlations between visual rating
scales.

We used linear regression analyses to assess the combined
effect of age and diagnosis on visual ratings (using separate
models for each rating scale). As independent variables we
entered diagnosis (using dummy variables), age (continuous)
and the interaction terms for age*diagnosis. In a second model
we additionally added APOE (dichotomized) as independent
variable and the interaction term age* APOE. To confirm the age
effect on visual ratings we repeated the linear regression analyses
entering as independent variable, instead of diagnosis, MMSE
(continuous) and the interaction term for age* MMSE. To allow
comparison of the different models, we report standardized betas
(st beta).

Subsequently, we created three age strata (<65 years, 65-
75 years and >75 years) and evaluated the diagnostic ability of
each visual rating scale to separate patients with dementia due to
AD from controls per age group. Sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (NPV)
and the Youden index [(sensitivity + specificity)-1] (Youden,
1950) were calculated for different cut-oft points in the three
age groups using cross tabulation. When we repeated the linear
regression analyses adding APOE, we found only an effect of
APOE e4 presence on the MTA scale. Therefore, we repeated
the evaluation of diagnostic ability for MTA only, stratifying for
APOE e4 carriers (controls vs. AD) and APOE e4 non-carriers
(controls vs. AD), excluding 524(18%) of subjects in which
APOE was not available. The highest Youden index indicated
the optimal cut-point, we took a Youden index >0.50 as a
minimum. For the scales showing a Youden index >0.50, we
assessed the effect of combining the scales at their optimal cut-off.
We created a new variable consisting of 4 levels: 1. normal MTA
and normal PA (reference group), 2. normal MTA and abnormal
PA, 3. abnormal MTA and normal PA, 4. abnormal MTA and
abnormal PA. This was also done for the combination of MTA
and GCA.

Finally, we assessed the predictive value of the visual
ratings for dementia due to AD in MCI patients, stratified
by age group. We used Cox proportional hazard models,
taking into account variability in time to follow up. Baseline
MTA, PA, CGA, and WMH were entered dichotomized,
in separate models, at the earlier derived optimal, age-
specific cut-offs and, in addition as continuous values. In a
separate model, we evaluated the combined effect of MTA
and PA and of MTA and GCA using the newly constructed
4 level variables, as described above. Event variable was
progression to dementia due to AD, excluding subjects with
progression to another type of dementia, and in another
model progression to all types of dementia. Sex was entered

as co-variate. HR with 95% confidence intervals (CI) are
presented.

A p < 0.05 was considered significant. Since we focus
on discriminatory and predictive value, rather than statistical
significance, we did not adjust for multiple comparisons.

RESULTS

Baseline Characteristics

Table 2 shows the baseline characteristics of the total population.
Patients with MCI and AD were older and had more WMH
than controls. Patients with AD were more often female, more
often APOE e4 carrier, had the lowest MMSE score and highest
MTA, PA, and GCA compared to controls and MCI. When
we assessed correlations between the visual rating scales using
Spearman’s rho, we found the strongest correlation between PA
and GCA (r = 0.732) and the weakest correlation for WMH and
PA (r = 0.133; Supplementary Table 2).

Influence of Age and Diagnosis on Visual
Ratings

We used linear regression analyses to assess the combined effect
of age and diagnosis on each visual rating (Figure 1 and Table 3).
For MTA we found main effects of age and diagnosis. In addition
there was an interaction effect for age*diagnosis, indicating a
somewhat steeper age effect in patients with MCI and AD than
in controls. For PA and GCA, we found main effects of age and
diagnosis. In addition, there was an interaction effect for AD
age*diagnosis, indicating that AD patients have a higher score,
regardless of their age, while in MCI and controls, PA and GCA
increased with age. For WMH we only found a main effect of
age but no main effect of diagnosis nor interaction between age
and diagnosis. When we added APOE and age*APOE to the
model, we found a main effect of APOE on MTA indicating more
MTA in case of APOE e4 presence, and an interaction effect of
age*APOE, indicating a steeper age effect in APOE non-carriers

TABLE 2 | Baseline characteristics of controls, MCI and AD patients in the
total group.

Control MCI AD

N 906 681 1347
Age 62+9 69+ 9 69 + 92
Female 404 (45%) 271 (40%) 716 (53%)2P
MMSE 2842 26 + 2 20 + 52
Level of education 5+1 5+1 5+ 12
APOQE e4 carrier” 281 (36%) 285 (54%) 729 (54%)2P
MTA 0.4+06 1.0+ 09 1.6 +0.92P
PA 06£07 09407 1.4 +0.78
GCA 0.4+06 08407 1.2 +£0.78P
WMH 07+07 1.1+09 1.1 +0.92

Values are mean =+ standard deviation or n (%). Group differences between the different
diagnostic groups were estimated using Chi-quadrate test* and Kruskal-Wallis test and
post hoc Mann-Whitney U-tests when appropriate. Please note that although we report
mean =+ standard deviation for the visual rating scales, we used non-parametric tests. 4P
< 0.05 compared to control, PP < 0.05 compared to MCI.
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FIGURE 1 | Plots using linear regression analyses of MTA, PA, GCA, and WMH vs. age in controls, MCI and dementia due to AD, after correction for
gender. Y-as: respectively mean MTA (left + right/2), PA (left + right/2), GCA, and WMH, X-as: age in years, 95% confidence interval is presented by the gray area on
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on MTA. However, in PA, GCA, and WMH we found no main
effect of APOE nor an interaction effect of age* APOE.

When we repeated the linear regression analyses with MMSE
and age*MMSE instead of diagnosis and age*diagnosis, the same
age effects were found. Details can be found in Supplementary
Tables 3, 4.

Visual Ratings per Baseline Diagnosis and
Age Groups

Since there was a clear effect of age on visual ratings, we
categorized patients in three age strata; <65 years, 65-75 years
and >75 years. Figure 2 visualizes the mean score of each visual
rating scale in the different age strata, according to baseline
diagnosis. Group sizes for the diagnostic groups by age strata are
reported in the figure. For MTA, we found differences between
all diagnostic groups in each age group. For PA and GCA, we
found differences between all diagnostic groups in <65 years. In
addition, for GCA this was also found in the stratum 65-75 years.
For PA, in the age group 65-75 years, only AD differed from
SCD and MCI, while >75 years AD differed only from MCI. For
WMH we found differences between SCD and MCI and between
SCD and AD in age groups <65 years and, 65-75 years. There

were no differences between diagnostic groups in the >75 years
stratum.

Diagnostic Value of Visual Ratings to
Separate AD from Controls per Age Group

Based on the highest Youden index, we determined the optimal
cut-off for each rating scale in the total group and per age stratum
(Table 4). A cut-off of MTA > 1 was optimal for the total group
and for <65 years and a cut-off MTA > 1.5 for 65-75 years.
In the patients aged >75 years no satisfactory cut-off could be
derived. Both PA and GCA add sensitivity in the younger age
range, as for these scales we found a high sensitivity at the cost of
a lower specificity. A cut-off of an average PA > 1 and GCA > 1
were optimal for <65 years. PA and GCA did not discriminate
in the older age groups. WMH did not sufficiently discriminate
between groups at all. When we repeated the cross-tabulation for
finding the optimal cut-off for MTA in APOE carriers and non-
carriers results only changed marginally and optimal cut-offs
were comparable (Supplementary Table 5).

Since MTA, PA, and GCA all had diagnostic value in the
age group <65 years, we evaluated if the combination of these
scales improved their diagnostic value. Table5 shows that a
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FIGURE 2 | Clustered bars showing mean MTA, PA, GCA, and WMH scores for age group according to baseline diagnosis. Y-as: respectively mean MTA
(left 4 right/2), PA (left + right/2), GCA, and WMH, X-as: age group, 95% confidence interval is presented by the error bars, *indicates significant difference between

TABLE 3 | Combined effect of age and diagnosis on visual ratings.

MTA PA GCA WMH
Stbeta p Stbeta p Stbheta p Stbeta p

Constant —1.55 <0.001 —1.94 <0.001 —1.86 <0.001 —1.33 <0.001
Sex, male 0.07 <0.001 0.08 <0.001 0.08 <0.001 —0.06 <0.001
Age 0.30 <0.001 0.46 <0.001 0.45 <0.001 0.37 <0.001
DIAGNOSIS
MCI —-0.32 <0.001 0.39 005 0.18 <0.001 0.11 0.443
AD 0.07 0563 1.78 <0.001 1.11 <0.001 -0.17 0.227
INTERACTION
Age*MCI 0.49 <0.001 -0.36 0.014 —-0.09 0.508 —0.02 0.912
Age*AD 0.45 <0.001 —1.48 <0.001 —-0.75 <0.001 0.26 0.081
R square 0.43 0.27 0.33 0.19
F 367.98 183.04 236.90 116.93
df regression 6 6 6 6
df residual 2,927 2,926 2,927 2,927

Linear regression analyses were used, using separate models for each rating scale. As
independent variables we entered diagnosis (using dummy variables), age (continuous)
and the interaction terms for age*diagnosis. St beta: standardized coefficients beta, p,
p-value; F, Fisher; df, degrees of freedom.

combination of MTA with PA or GCA provides a very sensitive
and specific indication for AD in the age group <65 years,
especially when both ratings are abnormal. In case of one normal
and one abnormal rating, the Youden index remained at or below
0.50, and did not add over the application of MTA or GCA/PA
alone.

Prediction Ability of Visual Ratings per Age
Group in MCI

Finally, we assessed the predictive value of the visual ratings for
dementia due to AD in MCI patients. Details of the demographics
and visual ratings of these MCI patients are provided in Table 6.
In the patients 65-75 years there was more WMH in the stable
MCI as compared to progressive MCI patients, in patients
>75 years MTA differed between stable and progressive MCI
patients. Results of Cox proportional hazards models are shown
in Table 7. Using age-specific cut-offs derived from the controls-
AD comparisons, predictive value of MTA was strongest in the
oldest MCI patients. PA, GCA, and WMH were not associated
with progression to dementia due to AD in any of the age
groups. Combination of the visual ratings resulted in a predictive
effect for an abnormal MTA with and abnormal PA in the age
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TABLE 4 | Discriminatory value of different cut-off points of MTA, PA, GCA, and WMH for differentiating AD from controls in total population and in three

age groups.
Cut-off point Total <65 years 65-75 years >75 years
n = 2253 n = 1047 n=774 n =432

PPV NPV sens spec Youden PPV NPV Sens Spec Youden PPV NPV Sens Spec Youden PPV NPV Sens Spec Youden
MTA
>0.5 0.76 0.83 092 058 050 0.70 0.85 0.85 0.71 056 0.78 0.80 0.95 042 037 0.83 042 097 0.10 0.07
>1 0.84 0.74 082 0.76 058 085 0.79 0.70 090 060 0.82 0.64 084 062 046 0.85 046 094 022 0.16
>1.5 0.93 0.61 060 094 054 096 0.68 042 098 040 0.94 053 0.61 092 053 091 042 081 062 043
>2 0.95 052 040 097 037 097 061 021 100 019 096 043 040 09 036 093 032 065 077 042
>2.5 0.97 046 021 099 020 1.00 0.58 0.08 100 008 098 037 019 099 018 096 026 041 092 0.33
>3 0.97 043 0.11 100 011 100 056 0.03 100 003 1.00 0.34 0.09 100 009 096 022 025 095 0.20
PA
>1 0.74 0.73 087 055 042 070 0.84 0.84 0.71 055 0.73 054 087 033 020 082 0.18 091 009 0.01
>2 0.87 0.51 0.40 091 0.31 090 067 040 097 037 086 039 036 0838 024 086 019 046 058 0.04
>3 0.87 041 004 099 003 095 056 0.04 100 004 076 0.32 0.03 098 0.01 089 0.18 0.05 0.97 0.02
GCA
>1 0.78 0.75 0.86 0.64 050 0.75 0.82 0.79 0.79 058 0.77 0.61 086 046 032 0.83 029 093 0.13 0.06
>2 0.90 049 034 094 028 098 0.63 026 100 026 0.88 038 029 092 021 0.87 023 051 065 0.16
>3 0.96 041 002 1.00 002 100 056 001 100 001 084 032 001 100 001 1.00 019 0.04 1.00 0.04
WMH
>1 0.67 053 074 045 019 050 0.61 054 057 011 070 040 080 029 009 082 017 0.89 0.10 0.01
>2 0.77 045 026 088 014 057 056 0.09 095 006 079 036 031 083 014 083 019 043 060 0.03
>3 0.85 042 008 098 006 054 056 0.02 099 001 088 033 0.08 098 0.06 089 0.19 0.16 0.91 0.07

The results are calculated using cross tabulation. Youden index = (sensitivity + specificity) —1. Bold values are the cut-off values that showed the best differentiation.
Sens, sensitivity; Spec, specificity; PPV, positive predictive value; NPV, negative predictive value.

TABLE 5 | Sensitivity and specificity for the combination of MTA and PA
and for the combination of MTA and GCA for differentiating AD from
controls in age group <65 years.

N Sens Spec Youden

COMBINED MTA AND PA: MTA>1,PA>1

MTA and PA normal 407 Ref Ref Ref
MTA normal/PA abnormal 252 0.77 0.72 0.49
MTA abnormal/PA normal 80 0.58 0.92 0.50
MTA and PA abnormal 308 0.90 0.94 0.84
COMBINED MTA AND GCA: MTA>1,GCA >1

MTA and GCA normal 465 Ref Ref Ref
MTA normal/GCA abnormal 194 0.69 0.81 0.50
MTA abnormal/GCA normal 91 0.57 0.92 0.49
MTA and GCA abnormal 297 0.86 0.94 0.80

A new variable using 4 levels was created, using only the cut-offs with a Youden
index > 0.50 from Table 2. Sensitivity and specificity are calculated using cross tabulation.
Youden index = (sensitivity + specificity) —1. Bold values are the combinations that
showed the best differentiation. Sens, sensitivity; Spec, specificity.

groups <65 years and 65-75 years. Combination of an abnormal
MTA with an abnormal GCA resulted in the same effect in
the age group <65 years. When we entered visual rating scales
as continuous measures, MTA and WMH were slightly more
predictive in older patients, GCA in younger patients. When we
repeated the Cox analyses with lower cut-offs only HR of MTA
improved slightly in the age group >75 years. When we used
progression to any type dementia as outcome measure, results

changed only marginally. Details are shown in Supplementary
Table 6.

DISCUSSION AND CONCLUSION

In this very large memory cohort with a broad age range,
we studied the combined effect of age and diagnosis on the
visual ratings of atrophy and WMH in controls, MCI and
AD. This resulted in three main findings. First, we found an
independent effect of age and diagnosis on MTA, resulting in
different diagnostic and predictive value in the three age groups.
Second, age and diagnosis had a different effect on PA and
GCA, providing unequivocal support for their diagnostic value,
specifically in younger patients. And third, for WMH we found
hardly any diagnostic or predictive value, while this measure was
strongly related to age.

Our first finding that MTA is equally affected by age and
diagnosis, is consistent with former studies (Launer et al., 1995;
Bastos Leite et al., 2004; van de Pol et al., 2006; Barkhof et al.,
2007). Earlier studies have suggested age-specific cut-offs for
MTA (Scheltens et al., 1992; Koedam et al., 2011; Duara et al.,
2013; Pereira et al., 2014; van de Pol and Scheltens, 2014; Ferreira
et al, 2015). We found the best diagnostic performance in
MTA in the youngest group, with an identified optimal cut-
off of MTA > 1, which is the same as the original article but
lower than the cut-off of MTA > 1.5 advised by two recent
articles (Scheltens et al., 1992, 1995, 1997; Barber et al., 1999;
Pereira et al., 2014; Ferreira et al, 2015). Younger subjects
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TABLE 6 | Baseline visual ratings of MCI patients according to diagnosis
at follow-up by age group.

Stable MCI at FU Progression to AD at FU

<65 years N 105 43
Age 58+5 59+4
MTA 0.4+0.6 0.5+0.6
GCA 0.4+0.6 0.6 +0.6
PA 05+0.6 05+05
WMH 0.7+0.8 0.8+0.8

65-75 years N 120 79
Age 70+3 70+3
MTA 0.8+0.7 09+0.8
GCA 0.7+ 0.6 0.8+ 0.6
PA 0.8+0.7 09+0.7
WMH 1.3+£09 0.8 +0.8*

>75 years N 30 39
Age 78+ 2 78+ 2
MTA 1.0+£07 1.7 £0.9"
GCA 1.0+£06 1.2+06
PA 1.2+08 1.2+07
WMH 1.3+08 1.3+09

Values are mean =+ standard deviation. Group differences were estimated using Mann-
Whitney test. Please note that although we report mean + standard deviation for the visual
rating scales, we used non-parametric tests. *Difference between MCI and dementia due
to AD at follow up with p < 0.05.

should not have medial temporal atrophy at all; at an age
<65 years even a MTA score of 1 is suspicious. This finding
might be explained by differences in study populations. Our
cohort contains a large subgroup <65 years, consisting of 1,047
controls and AD with a mean age of 58 £ 5 years. In former
studies assessing the effect of age on MTA, average age of the
so-called younger groups was much higher. Also our average
MMSE is higher than in most studies, suggesting less advanced
disease. The optimal cut-off of MTA > 1.5 for 65-75 years was
similar to recent studies (Schoonenboom et al., 2008; Pereira
et al., 2014; Ferreira et al, 2015). For the subjects aged >75
years sensitivity and specificity when applying a MTA > 1.5
(sensitivity 0.81; specificity 0.62) or a MTA > 2 (sensitivity
0.65, specificity 0.78) are comparable to previous studies, but
the low Youden index indicates that diagnostic performance
is modest. When we repeated our linear regression analysis
including APOE, we found, comparable to earlier studies, more
MTA in APOE carriers and a stronger age effect on MTA in non-
carriers (Pereira et al., 2014; Ferreira et al.,, 2015). Apparently
the presence of APOE e4 results in more affected hippocampal
region (van der Flier et al, 2011; van de Pol and Scheltens,
2014). The effect of APOE on MTA was subtle however and did
not lead to different optimal cut-offs. This is in line with the
fact that APOE genotype is generally not used in the diagnostic
work-up of AD.

When we attempted to predict progression to AD dementia
in patients with MCI, MTA had strongest predictive value in
the oldest group >75 years. PA, GCA, and WMH showed

TABLE 7 | Cox proportional hazard models; influence of MTA, PA, GCA,
and WMH and combination of MTA/PA and MTA/GCA on progression of
MCI to dementia due to AD in the three age groups.

<65 years 65-75 years >75 years
n =148 n =199 n =148
MTA MTA > 1 MTA > 1.5 MTA > 2
2.0 (1.0-4.0) 1.3(0.8-2.2) 2.2 (1.1-4.6)
PA PA>1 PA>2 PA>2
1.6 (0.9-3.0) 1.7 (0.9-3.1) 1.1(0.5-2.2)
GCA GCA>1 GCA >1 GCA >2
2.1 (1.1-3.9) 1.7 (1.0-2.8) 1.4 (07-3.1)
WMH WMH > 1 WMH >2 WMH >3
1.2(0.6-2.3) 0.4 (0.2-0.8) 2.8(0.9-8.7)
MTA AND PA MTA >1/PA>1 MTA>15/PA>2 MTA>2/PA>2
- MTA and PA normal Ref Ref Ref
- MTA normal/ PA abnormal 1.4 (0.7-2.9) 1.4 (0.7-3.2) 1.1 (0.4-2.6)
- MTA abnormal/ PA normal 1.4 (0.7-2.6) 1.1 (0.8-1.4) 1.5(0.9-2.2)
- MTA and PA abnormal 1.3 (1.0-1.8) 1.4 (1.0-1.9) 1.3(0.9-1.9)

MTA AND GCA MTA>1/GCA>1 MTA>1.5/GCA>1 MTA>2/GCA>2
- MTA and GCA normal Ref Ref Ref

- MTA normal/ GCA abnormal 1.8 (0.8-3.8) 1.5(0.8-2.6) 1.5 (0.5-4.1)

- MTA abnormal/ GCA normal 1.3 (0.7-2.5) 0.8 (0.4-1.6) 1.6 (1.0-2.5)

- MTA and GCA abnormal 1.5 (1.1-2.0) 1.2(1.0-1.6) 1.3(0.9-1.9)

Data are presented as hazard ratio (HR) (95% Cl). Cox proportional hazard models
compared progression to AD with non-converters (= stable MCI at follow-up). Time
variable was time to follow-up in years; state variable was progression to AD. The
visual ratings were entered dichotomized at the optimal cut-off as was derived from
classifying controls from dementia due to AD (Table 2). For the combination of MTA/PA
and MTA/GCA a new 4 level variable as presented in Table 3, was used. Sex was entered
as co-variate. Bold values are the HR’s with p < 0.05.

no predictive value. In addition, the predictive value of MTA
in the younger patients was limited. This was an unexpected
result, as previous studies have shown predictive ability for
MTA and PA, especially in younger subjects (Korf et al., 2004;
Staekenborg et al., 2009; Lehmann et al, 2012, 2013; Prins
et al., 2013; Ferreira et al, 2015). However, in our study, the
MCI subjects aged <65 years were younger than in previous
studies and they had lower MTA scores. In addition, younger
patients were less likely to show clinical progression than older
patients (<65:28% vs. 65-75:44% vs. >75:56%), resulting in less
power. Apparently MCI patients <65 years constitute a different
patient category than older MCI patients. It is conceivable that
the prototypical patient with MCI due to AD, is a patient that
develops a typical, hippocampal type of AD, with an age-at-
onset of about 75 years. Younger subjects with the earliest stages
of cognitive decline tend to have an atypical presentation, a
longer doctors-delay because of misdiagnosis and suffer from a
larger penalty on stigmatizing them with MCI (Koedam et al,,
2010; Barnes et al., 2015). As a result, younger subjects with
AD, often present to a memory clinic already at dementia stage,
which may result in a bias for the MCI population in this
age group. In older subjects, MCI might be better recognized,
which could explain the predictive value of MTA in this group.
Also, in the patients 65-75 years there was more WMH in
the stable MCI as compared to progressive MCI patients. This
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suggests that the WMH, rather than AD, could be the cause
for their cognitive decline, explaining why this specific group
remained stable. Another reason for the low predictive value
might be our choice to use the cut-offs derived from controls-AD
comparison. One could argue that patients with MCI might have
subtler atrophy rates, being earlier in the disease trajectory, thus
requiring more sensitive cut-offs. When we repeated the Cox-
analyses with lower cut-offs however, predictive values did not
improve.

Our second finding concerned the different effects of age
and diagnosis on PA and GCA. Previous studies have shown
that PA ratings have diagnostic value in early onset AD but do
not help the separation of late onset AD from older controls
(Koedam et al., 2011; Lehmann et al., 2012, 2013; O’Donovan
et al., 2013). To date this has not been reflected by age-specific
cut-offs for PA and GCA. To our knowledge, only one study
assessed age-specific cut-offs for PA, finding a low diagnostic
value, yet advising a cut-off PA >1 for all age groups (Ferreira
et al,, 2015). In our study we found that patients with AD have
a high score on PA and GCA regardless of age, while controls
and MCI show increased PA and GCA scores with increasing
age. These findings resulted in a high diagnostic value for both
PA and GCA in patients <65 years, but no value of PA and
GCA for patients >65 years. The optimal cut-oft for both atrophy
measures was a rating of >1. The original paper proposed a
higher cut-off PA >2, resulting in a high specificity at the cost
of a low sensitivity (Koedam et al., 2011). With a lower cut-
off >1 we now found a reverse pattern in the age-group <65
years, with a high sensitivity at the cost of a lower specificity.
An additional finding of abnormal MTA greatly adds specificity
to PA. In this subgroup of patients <65 years, a combination
of an abnormal PA and MTA resulted in very high sensitivity
and specificity, hence this should be regarded as alarming. In
the preparation of this study, we also used a classification tree to
improve the utility of combining visual ratings. However, this tree
only added improvement in discriminating controls from AD
for both MTA with PA in the age group <65 years. We decided
to leave these analyses out of the paper, as the more complex
modeling did not add to our message. Furthermore, since our
aim was to evaluate the visual ratings as a clinician would, we
chose to use as simple as statistics as possible, reflecting clinical
practice.

In our study, we found WMH mainly to be affected by
age, but not by diagnosis. Various studies have advocated
a synergistic effect of SVD and AD pathology on cognitive
decline, while other studies have shown that SVD in AD
was related to age and vascular risk factors, comparable to
individuals without AD (Kester et al., 2014; Mortamais et al.,
2014; Spies et al., 2014; Benedictus et al., 2015; Claus et al.,
2015; Prins and Scheltens, 2015). Yet, in all these studies the
diagnostic value of WMH for separating AD from controls
has not been addressed. We found no diagnostic utility for
WMH in discriminating AD from controls, which cannot be
explained by the relatively young age of our study sample,
since even in the oldest age stratum, WMH did not have any
discriminatory value. Assessing WMH in the diagnostic work-
up remains important, because of the known negative effect of

WMH on many outcomes, such as functional decline, (lacunar)
infarcts, depression and mortality (Pantoni et al., 2005; van
der Flier et al.,, 2005; Inzitari et al., 2007; Verdelho et al.,
2010; Firbank et al., 2012). Furthermore, presence of WMH
indicates a possible treatable cause in order to prevent further
deterioration (Basile et al., 2006; Prins and Scheltens, 2015).
These findings do not oppose the possible interaction of SVD
and AD. Since WMH in this study was equally severe in aging
controls, one might argue that dementia at older age is by
definition “mixed.” Perhaps in older subjects, having WMH, less
AD damage is needed to develop dementia (van der Flier et al,,
2004; Mortamais et al., 2014). These age effects persisted when
we used MMSE score instead of clinical diagnosis which confirms
our finding.

These findings have several clinical implications. The value
of the visual ratings of atrophy and WMH all differ across the
age-groups. This makes it of utmost importance to take into
account the age of the patients when using MRI in diagnostic
workup. Especially in the younger patients MTA and PA/GCA
have diagnostic value; atrophy at an age <65 is a bad sign.
By combining MTA with PA/GCA, the value even increases.
Older age reduces the value of rating scales substantially, in
older patients it is harder to separate age-effect from AD-
effect. These findings are in line with the classical Braak model
for MTA (Braak et al, 2006). However, the findings for PA
are not in line with Braak, since especially young subjects
showed severe PA only in AD cases, which is not observed
in controls and MCI, whereas this difference disappears in
increasing age. This suggests a separate pathological stageing-
model for younger patients may be warranted (Jagust et al,
2008; Fjell et al.,, 2013). In this patient group, the use of visual
ratings should be used to rule-out AD in case of no atrophy
rather than proving inclusive evidence for AD when there is
atrophy. Perhaps in the future more automated measures will be
able to distinguish pathological from age-adequate brain aging,
being able to pick up more subtle effects (Koikkalainen et al.,
2016). Automatic quantification methods of brain atrophy, and
other modalities such as FDG-PET, also have the advantage
of providing objective measures, independent of the expertise
of the clinician, whereas visual ratings are a subjective visual
interpretation. Furthermore, these automatic methods are able
to extract more information and combine information, for
example on WMH and atrophy, and provide an estimate
of the underlying neurodegenerative disease. Visual rating of
MRT’s have the advantage however that they are more feasible
in daily clinical practice. Automatic quantification methods
are dependent on scan protocol and quality, whereas visual
ratings can be applied to images acquired with less advanced
scanners. Also these automatic methods often require costly
and time-consuming software-programs, while visual ratings
can be applied in an instant, with the patient in front of the
clinician.

This study has several limitations. First, the lack of
neuropathological confirmation of diagnosis. Especially in
elderly patients, with comorbid SVD, atrophy might also be the
result of WMH or hippocampal sclerosis and not of amyloid
pathology (Barkhof et al., 2007). Due to this we might have
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selected patients that have been misclassified with AD. However,
in this study we found a similar degree of WMH in all elderly
subjects, regardless of diagnosis, diminishing the importance of
specifying the etiology as mixed or not. Second, we used SCD as
controls, although we cannot exclude the possibility that these
patients had underlying AD. We feel that the comparison of AD
with SCD patients is a clinically relevant comparison however,
as this is the differential diagnosis that a clinician has to make
every day. Furthermore, underlying AD can also not be excluded
in “pure” controls, as it is known that roughly one third of
normal elderly harbors AD pathology (Chetelat et al., 2010; Vos
et al., 2013). Third, the mean follow-up of 2.5 £ 1.7 years could
imply that MCI patients, who remained stable during this period,
might still progress to dementia after longer follow up. Fourth,
in our clinical work-up clinicians are not blinded for the MRI
results. This might have resulted in bias. The effect of the MRI
results on diagnosis might have also changed throughout the
time due to changing insights in use of biomarkers. However,
all diagnoses were made in our multidisciplinary consensus
meeting, in which the clinical characteristics of the patient and
the cognitive profile on neuropsychological testing is leading.
A final limitation could be the use of different scanners with
increasing field strength throughout the time. This could also
be regarded as a strength however, as the visual ratings have the
advantage that they are robust for scanner differences and easy
to use.

Among the strengths of the current study is our harmonized
diagnostic protocol according to which all patients were analyzed.
All patients were selected from the same memory clinic. The large
sample size and the broad age spectrum ranging from 45 to 95
makes these results robust. Furthermore, the scans were rated
by experienced researchers after they had completed the required
training (van der Flier et al., 2014).

To conclude, visual ratings are of use in daily practice, but
should be interpreted with caution and with reference to a
patients’ age. The current research criteria advise the use of
MTA in the diagnostic work-up for AD, but do not specify the
amount of atrophy or the effect of age (Dubois et al., 2007,
2014). This study shows that MTA is strongly influenced by age
and that age related cut-offs are needed. PA and GCA seem
to be of equal use for the diagnostic workup in patients <65
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A number of magnetic resonance imaging (MRI) studies have shown age-related
alterations in brain structural networks in different age groups. However, the specific
age-associated changes in brain structural networks across the adult lifespan is
underexplored. In the current study, we performed a multivariate independent component
analysis (ICA) to identify structural brain networks based on covariant gray matter volume
and then investigated the age-related trajectories of structural networks over the adult
lifespan in 536 healthy subjects aged 20-86 years. Twenty independent components
(ICs) were extracted in the ICA, and statistical analyses between age and ICA weights
revealed 16 age-related ICs across the adult lifespan. Most of the trajectories of ICA
weights demonstrated significant linear decline tendencies, and the corresponding
structural networks primarily included the anterior and posterior dorsal attention
networks, the ventral and posterior default mode networks, the auditory network, five
cerebellum networks and the hippocampus-related network with the most significant
decreased tendency among all ICs (p of age = 1.11E-77). Only the temporal lobe-related
network showed a significant quadratic tendency with age (p of age? = 5.66E-06). Our
findings not only provide insight into the patterns of the age-related changes of structural
networks but also provide a foundation for understanding abnormal aging.

Keywords: independent component analysis, structural network, magnetic resonance imaging, gray matter
volume, age-related changes

INTRODUCTION

Magnetic resonance imaging (MRI) studies have shown that the brain undergoes remarkable
structural development during childhood and adolescence and that those alterations continue even
through adulthood (Good et al., 2001; Gogtay et al., 2004; Raji et al., 2012; Fjell et al., 2013; Mills
et al., 2014). The global gray matter volume decreases linearly with age, and the total white matter
volume shows an inverse U-shaped tendency in healthy adults (Good et al., 2001; Ge et al., 2002);
however, regional brain changes are heterogeneous in different regions across the adult lifespan
(Gogtay et al., 2004; Allen et al., 2005; Curiati et al., 2009; Ziegler et al., 2012; Fjell et al., 2013). For
example, the gray matter volumes of the frontal, parietal and occipital lobes present linear decreases
with age across the adult lifespan (Allen et al., 2005), while the hippocampus volume presents a
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Lifespan Changes of Structural Brain Network

non-linear trend with age (Allen et al., 2005; Fjell et al., 2013).
Early structural MRI researches used univariate methods, such as
regions of interest (ROIs) or voxel-based morphometry (VBM),
to investigate the age-related gray matter changes; however,
these studies considered ROIs or brain voxels as independent
variables and ignored the interregional covariant information
among them.

A number of brain MRI studies have investigated anatomical
network changes based on the structural covariance of gray
matter volume in normal adults (Brickman et al., 2007; Bergfield
et al,, 2010; Li et al,, 2013; Hafkemeijer et al., 2014). Li et al.
used seed-ROI regression models to explore age-related changes
of gray matter volumes in eight gray matter networks in young,
middle-aged and older groups of healthy subjects aged 18-89
years (Li et al, 2013). Hafkemeijer et al. utilized independent
component analysis (ICA) to extract nine gray matter anatomical
networks in middle-aged to older normal participants (45-85
years), who were divided into four age subgroups (Hafkemeijer
et al., 2014). Brickman et al. identified aging-related regional
MRI covariance patterns in younger and older groups of healthy
adults using a multivariate statistical model called the subprofile
scaling model (SSM; Brickman et al., 2007). These studies showed
that structural covariance patterns or networks demonstrated
different age-related changes among the different age groups
(Brickman et al., 2007; Li et al., 2013; Hatkemeijer et al., 2014).
For example, there was a negative correlation between age and
gray matter volume in four anatomical networks, including the
medial visual cortical network, sensorimotor network, default
mode network (DMN) and executive control network; however,
gray matter volume was not significantly associated with age in
five other networks, including the temporal network, auditory
network, and three cerebellar networks (Hafkemeijer et al., 2014).
It has been noted that the above-mentioned studies focused
primarily on brain structural network changes in different
age groups. However, the age-related trajectories of the brain
structural networks across the adult lifespan need to be further
explored.

Multivariate analysis methods can identify the inter-regional
covariance relationship among different brain regions. Therefore,
these approaches have been widely applied to brain imaging
studies (Damoiseaux et al., 2006; Brickman et al., 2007; Mantini
et al,, 2007; Xu et al, 2009; Bergfield et al., 2010; McIntosh
and Misic, 2013; Guo et al, 2014; Hafkemeijer et al., 2014).
ICA, as a popular data-driven multivariate analysis method,
was introduced first to the studies of brain functional networks
(Damoiseaux et al.,, 2006; Mantini et al., 2007) and then to
those of structural networks (Xu et al., 2009; Guo et al., 2014;
Hafkemeijer et al., 2014). Xu et al. presented a source-based
morphometry (SBM) approach using ICA to study gray matter
network differences between subjects with schizophrenia and
healthy control subjects and confirmed the validity of ICA in
structural MRI data (Xu et al., 2009). Guo et al. also applied
ICA to examine structural covariance networks across healthy
young adults and to determine their spatial consistency (Guo
etal., 2014). Compared with other multivariate analysis methods,
ICA is a higher-order statistical method and can decompose
linear mixed signals into maximally independent components

(Calhoun et al.,, 2009). In this way, ICA can effectively extract
independent sources from complex brain imaging data without
a priori information.

The purpose of the current study is to explore age-related
gray matter changes at the network level across the adult
lifespan. We applied the ICA method to identify structural
gray matter covariance networks among 536 healthy subjects
aged 20-86 years. Finally, regression analyses were performed
on ICA weights and age to investigate age trajectories of the
corresponding networks.

MATERIALS AND METHODS

Participants

Structural MRI data were obtained from a large public
database of the Information eXtraction from Images (IXI)
(http://brain-development.org/ixi-dataset/). In this study, 536
healthy subjects (Females/Males = 273/263, age range 20-86
years) were included. Specific information about the subjects
is presented in Table1l. More details about demographic
information of the participants are presented on the IXI database
website (Kennedy et al., 2016).

Data Acquisition

All structural MRIs were obtained on three different sites: a
Philips 1.5T system at Guy’s Hospital, a General Electric (GE)
1.5T at the Institute of Psychiatry, and a Philips 3T magnetic
resonance scanner at Hammersmith Hospital. The T1-weighted
structural MRIs were acquired using a magnetization-prepared
rapid acquisition gradient-echo (MPRAGE) sequence. Scanning
parameters for Philips 1.5T scanner were: TR = 9.8 ms, TE = 4.6
ms, flip angle = 8°; and for Philips 3T scanner were: TR = 9.6 ms,
TE = 4.6 ms, flip angle = 8°. Scanning parameters for GE 1.5T
scanner were not available.

Image Preprocessing
In this study, all structural MRI data were processed using the
VBMS toolbox (available at http://dbm.neuro.uni-jena.de/vbm8)
(Ashburner and Friston, 2000; Good et al., 2001; Ashburner,
2007) in the Statistical Parametric Mapping (SPM8) software
(available at: http://www.filion.ucl.ac.uk/spm). In brief,
using adaptive maximum posterior (MAP) and partial
volume estimation (PVE), all of the structural images were
segmented into gray matter, white matter and cerebrospinal
fluid. Subsequently, a diffeomorphic anatomical registration
exponential Lie algebra (DARTEL) approach (Ashburner, 2007)
was applied to normalize each subjects gray matter image to
the average DARTEL template, which was generated iteratively
and finally to the Montreal Neurological Institute (MNI) space.
Additionally, to preserve the total gray matter amount in the
native space, the voxel of each gray matter image was multiplied
by the Jacobian determinant from the normalization. Gaussian
smoothing was performed with a kernel of 8 mm full width at
half maximum (FWHM) on each subject’s gray matter image.
Multiple linear regression models were constructed for the
spatial preprocessed gray matter maps to account for two
confounding factors: scanner and gender. In order to avoid
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TABLE 1 | Sample characteristics of different age groups.

Age span (yr) Mean age (yr) No. subjects No. subjects in scanning site? Female/male Ethnicityb Education mean®
20-29 25.41 93 35/41/17 52/41 64/2/12/15 4.39
30-39 34.36 106 55/28/23 42/64 80/3/12/11 4.58
40-49 44.41 86 51/25/10 46/40 73/1/6/6 4.05
50-59 55.2 88 55/29/4 53/35 72/4/7/5 3.53
60-69 64.01 116 68/41/7 72/44 94/3/11/8 3.55
70-79 72.81 41 21/14/6 6/35 35/1/2/3 3.07
80-86 83.75 6 4/11 2/4 6/0/0/0 3.67
Total 536 289/179/68 273/263 424/14/50/48 3.94

aThree separate subsamples from different scanning sites in London: Guy's Hospital: Philips 1.5T/Hammersmith Hospital: Philips 3T/Institute of Psychiatry: General Electric 1.5T

bThe number of different ethnic groups in our IXI sample: Caucasian/Black/Asian/Other

CEducation levels: 1 = No qualifications; 2 = O-levels, GCSEs, or CSE; 3 = A-levels; 4 = Further education; 5 = University or Polytechnic degrees.

the possible bias of different scanners, all participants from
the three scanners (Guy’s Hospital, Institute of Psychiatry and
Hammersmith Hospital) were represented with three column
dummy independent variables of 0/1 in regression models.
Additionally, gender was a nuisance factor in this study, then
gender was also represented with one column dummy variables
of 0/1. The adjusted gray matter images were entered into the
subsequent ICA procedure.

ICA

The ICA was implemented using the fusion ICA toolbox (FIT)
(available at http://mialab.mrn.org/software/fit/index.html). In
this study, the gray matter image of each subject was spatially
concatenated as a row vector to form a subject-by-voxel input
data matrix. Then, the initial matrix was decomposed into a
subject-by-source mixing matrix (also referred to as ICA weights)
and a statistically independent source-by-voxel source matrix
(spatial components or brain networks) using the informax
algorithm which minimizes the mutual information of the
sources (Calhoun et al., 2009; Xu et al., 2009). The mixing matrix
exhibits the interrelationship in subjects and source networks,
and the source matrix exhibits the interrelationship in source
networks and voxels across the whole brain. Then each column
of the mixing matrix represents the degree to which one subject
contributes to the corresponding source network. Each row
of the source matrix indicates a spatial distribution of brain
structural network which expresses the covariant changes of
the gray matter volume within the brain (Xu et al., 2009).
Finally, each source network was converted to a z-score map and
reshaped to a 3D brain map with a threshold Z = 3 to reveal
the gray matter structural covariant patterns. The resulting ICA
coeflicient weights were used for the statistical analysis.

Statistical Analysis

Cubic, quadratic and linear regression analyses were performed
separately between age (independent variables) and each column
of the ICA weights (dependent variables) to explore the age-
related trajectories of networks throughout the adult lifespan.
Bayesian Information Criterion (BIC) was used to determine the
optimal regression model with the smallest BIC value. A single-
sample T-test was performed on the regression coeflicients of the

highest-order age item with the statistical significance threshold
set at p < 0.05 with Bonferroni correction for each optimal
regression model.

Additionally, in order to evaluate the age range effect on the
age-related patterns, we re-performed the same statistical analysis
of the ICs for subjects aged 20-80 years, 20-70 years, and 20-60
years, respectively.

RESULTS

Twenty independent components (ICs) were extracted in the
ICA. The BIC and T-test revealed 16 ICs significantly associated
with age at Bonferroni corrected P-value (Figures 1-3). Fifteen
ICs showed significant linear declines (p < 2.50E-03), and
only one IC (IC 17) had a quadratic trend (p = 5.66E-06).
These structural networks included the anterior and posterior
dorsal attention networks (DAN; Figure 1, IC 2 and IC 7), the
ventral and posterior DMN (Figure 1, IC 6 and IC 11), the
auditory network (Figure 2, IC 12), the sensory-motor network
(Figure 2, IC 15), the language-related speech network (Figure 2,
IC 3), the hippocampus-related network (Figure 2, IC 16), the
caudate-related network (Figure 2, IC 9), the thalamus-related
network (Figure 2, IC 13), the cerebellum networks (Figure 3,
IC 4, IC 5, IC 14, IC 19, and IC 20), and the temporal lobe-
related network (Figure 3, IC 17). The main brain clusters in
each IC are described in Table 2. The hippocampus-related
network (Figure 2, IC 16) showed the most significant decreasing
tendency among them (p = 1.11E-77).

Figures 1-3 show age-related changes in the ICs and the
corresponding scatterplots with best fitted curves between ICA
weights and age for each IC. Table 3 lists the results of the
regression statistics analysis.

The results for subjects aged 20-80 years showed that the ICA
weights of the same 15 ICs exhibited significant linear declines (p
< 2.50E-03), and only that of IC 17 had a significant quadratic
trend (p = 4.17E-04). The results for subjects aged 20-70 years
showed that there were still the same 14 ICs showing significant
linear declines (p < 2.50E-03), but one IC (IC 4) showed non-
significant linear reduce (p = 0.0191). In addition, IC 17 was
also had a quadratic trend with non-significant level (p of age?
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FIGURE 1 | Age-related changes in gray matter structural networks. (A) and (C) columns: IC 2, 7, 6, and 11 represent structural network maps associated with age in

536 healthy adult subjects. The color bar represents Z scores. (B) and (D) columns: the orange scatterplots show the age-related patterns in different networks. The
orange lines represent the fitted lines between age and ICA weights for each network.
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FIGURE 2 | Age-related changes in gray matter structural networks. (A) and (C) columns: IC 12, 15, 3, 16, 9, and 13 represent structural network maps associated

with age in 536 healthy adult subjects. The color bar represents Z scores. (B) and (D) column: the orange scatterplots show the age-related patterns in different
networks. The orange lines represent the fitted lines between age and ICA weights for each network.
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FIGURE 3 | Age-related changes in gray matter structural networks. (A) and (C) columns: IC 4, 5, 14, 19, 20, and 17 represent structural network maps associated
with age in 536 healthy adult subjects. The color bar represents Z scores. (B) and (D) column: the orange scatterplots show the age-related patterns in different
networks. The orange lines represent the fitted lines between age and ICA weights for each network.

= 0.0081). The results for subjects aged 20-60 years showed that  and posterior DAN. Some resting state functional studies have
all 16 ICs had the linear decreased patterns. Twelve of 16 ICs were  explored functional connectivity density (FCD) changes of DAN
still significant (p < 2.50E-03) and the remaining 4 ICs (IC 4, 17,  across lifespan (Tomasi and Volkow, 2012; Betzel et al., 2014).
19, 20) were non-significant with a minimum of p = 0.0062. Betzel et al. found two dorsal attention components (DorsAttnA
and DorsAttnB), and the modularity of DorsAttnA which mainly
located to the temporo-occipital cortex, parieto-occipital cortex,
DISCUSSION and superior parietal lobule showed a prominent age-related
linear decrease of FCD across the subjects aged 7-85 years (Betzel
In the current study, we first performed multivariate ICA to  etal, 2014). Tomasi and Volkow used a FCD mapping approach
investigate the brain structural covariance networks across the  and revealed statistically significant age-related FCD decreases in
adult lifespan based on healthy subjects’ MRI data acquired from  DAN (r = —0.23, p < 1.00E-06) from healthy subjects (13-85
the dataset IXI. Then, we further explored the trajectories of the  years) (Tomasi and Volkow, 2012). Our current results showed
structural networks associated with age. We found 16 significant ~ that gray matter volumes of IC 2 and IC 7 also exhibited
age-related networks, and ICA weights of 15 networks decreased  significant linearly decreased trends with age (p = 1.36E-34 and
linearly with age; only ICA weights of the temporal lobe-  p = 2.40E-13, respectively), which suggested that functional and
related network (IC 17) showed a significant quadratic tendency  structural DAN have similar age-related patterns.
with age. We found that ICA weights of both the ventral and posterior
In previous studies, researchers have extracted the DAN  DMN (IC 6 and IC 11) declined linearly with age ranging
based on functional MRI (fMRI) data (De Luca et al, 2006;  from 20 to 86 (Figure 1, Tables 2, 3). Several neuroimaging
Fox et al., 2006; Mantini et al., 2007; Power et al, 2011). For  studies have proposed that the structural DMN changes with
example, Mantini et al. decomposed fMRI data via ICA to  age not only during the developmental process (Bluhm et al.,
investigate the brain resting state networks from 15 healthy = 2008; Supekar et al, 2010) but also in adult life (Luo et al,
subjects (20-29 years) and obtained a DAN network mainly  2012; Spreng and Turner, 2013; Hafkemeijer et al., 2014). Spreng
including the bilateral intraparietal sulcus (Mantini et al., 2007). et al. suggested a significant linear decline between age and
We reported that IC 2 and IC 7 corresponded to the anterior  the structural covariance of the default network scores across
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TABLE 2 | Brain regions showing age-related changes in structural networks.

TABLE 2 | Continued

Brain regions Peak coordinates 4 Cluster size
MNI (X,Y,2) (mm?3)
IC 2: ANTERIOR DORSAL ATTENTION NETWORK
R middle frontal gyrus 36 27 35 10.92 11,070
L middle frontal gyrus —-35 29 32 7.93 9,140
L precentral gyrus —38 1 47 5.77 3,139
IC 3: LANGUAGE-RELATED SPEECH NETWORK
R inferior frontal gyrus 53 20 9 4.77 2,498
L inferior frontal gyrus —51 9 15 4.5 2,929
IC 4: CEREBELLUM NETWORK 1
R cerebelum 8 area 35 —59 —54 11.96 9,386
L cerebelum 8 area —35 —56 —53 10.61 6,500
R cerebellum, lobule 7b 38 —66 -53 10.12 1,887
L cerebellum, lobule 7b —38 —62 —53 9.44 1,684
IC 5: CEREBELLUM NETWORK 2
R cerebellum crus2 12 -84 —33 6.68 3,540
R cerebellum crust 14 -84 -30 6.36 2,005
IC 6: VENTRAL DEFAULT MODE NETWORK
R middle temporal gyrus 51 —38 5.72 2,636
L middle temporal gyrus —-51 —41 8.19 8,714
R angular gyrus 45 —60 27 4.94 2,656
L angular gyrus —42 57 23 7.27 3,736
IC 7: POSTERIOR DORSAL ATTENTION NETWORK
R postcentral gyrus 57 —-20 32 8.35 8,039
L postcentral gyrus —56 —24 30 5.87 2,015
R supramarginal gyrus 59 —-18 29 8.23 5,144
L supramarginal gyrus —53 —26 33 6.22 2,774
R inferior parietal lobule 32 —38 50 5.67 2,977
L inferior parietal lobule —-51 -27 36 6 5,528
IC 9: CAUDATE-RELATED NETWORK
R caudate nucleus 14 18 0 7.43 2,626
L caudate nucleus —-12 17 -2 7.01 1,715
R putamen 18 17 0 5.22 709
L putamen —-29 3 -2 6.35 1,364
IC 11: POSTERIOR DEFAULT MODE NETWORK
R precuneus 9 —-50 36 7.53 8,546
L precuneus -9 -50 35 8.89 9,383
R middle cingulate gyrus 8 —48 35 7.89 2,974
L middle cingulate gyrus -8 —-50 33 8.89 3,453
IC 12: AUDITORY NETWORK
R inferior frontal gyrus 42 27 17 7.26 2,977
R superior temporal 44 —29 17 712 2,504
gyrus
L superior temporal gyrus —42 —-33 12 8.94 6,581
R rolandic operculum 42 —27 17 7.26 2,977
L rolandic operculum -4 -33 14 8.81 1,826
IC 13: THALAMUS-RELATED NETWORK
R thalamus 3 -18 9.66 3,206
L thalamus 0 -18 9.57 3,173
IC 14: CEREBELLUM NETWORK 3
R cerebellum crus1 47 —54 —36 9.63 8,350
(Continued)

Brain regions Peak coordinates r4 Cluster size
MNI (X,Y,2) (mm3)
L cerebellum crus1 —44  —-56 —36 10.68 7,212
IC 15: SENSORY-MOTOR NETWORK
R superior frontal gyrus 17 6 65 6.3 6,423
L superior frontal gyrus -23 12 60 6.31 3,654
R middle frontal gyrus 26 14 48 4.72 1,232
L middle frontal gyrus 27 -9 53 4.4 729
IC 16: HIPPOCAMPUS-RELATED NETWORK
R hippocampus 29 -15 —21 4.08 1,033
L hippocampus —-26 —15 —21 419 1,205
R parahippocampal gyrus 24 -8 —24 3.97 1,073
L parahippocampal gyrus ~ —21 -8 —26 3.93 597
IC 17: TEMPORAL LOBE-RELATED NETWORK
R inferior temporal gyrus 38 6 —42 6.14 7,243
L inferior temporal gyrus -35 8 —42 7.52 7,459
R middle temporal pole -35 6 —44 7.1 3,750
L middle temporal pole 45 14 —36 5.83 4,138
IC 19: CEREBELLUM NETWORK 4
R cerebelum 8 area 9 —60 —56 8.9 6,247
L cerebelum 8 area -15 —-69 —53 9.04 4,604
R cerebellum crus2 15 —-80 —47 6.64 4,114
L cerebellum crus2 -1 -80 —44 6.33 3,459
IC 20: CEREBELLUM NETWORK 5
R cerebelum 6 area 20 —74 —24 6.23 6,281
L cerebelum 6 area -14 =77 —24 8.68 5,947
R cerebellum crus1 20 —77 —26 5.88 4,398
L cerebellum crus1 -12 =77 —-23 8.64 5,495

the adult lifespan of 18-96 years (Spreng and Turner, 2013).
Meanwhile, Hafkemeijer et al. revealed that there was a negative
association between age and gray matter volume in the DMN
from 45 to 85 years of age (Hafkemeijer et al., 2014), in agreement
with our results. Moreover, age-related changes can also be found
in the functional connectivity (FC) in the DMN (Damoiseaux
et al., 2008; Hatkemeijer et al., 2012; Onoda et al., 2012; Huang
et al., 2015). Damoiseaux et al. demonstrated that the FC of
the DMN decreased in older participants (age 70.7 £ 6.0 years)
relative to young participants (age 22.8 & 2.3 years) (Damoiseaux
et al., 2008). The DMN consists of sub-networks and different
sub-networks are responsible for different cognitive functions
(Uddin et al., 2009; Damoiseaux et al., 2012; Huang et al., 2015).
The degree to which age affects the relevant cognitive functions
of default mode sub-networks seems to be different (Huang
et al., 2015). We also demonstrated that these two DMN ICs
presented significant declining trends but with different degrees
(p = 4.66E-50 for the ventral DMN and p = 1.41E-06 for the
posterior DMN), possibly because of DMN sub-network’s distinct
cognitive functions. When considered together, these findings
indicate that the decreased functional connectivity within the
DMN may be associated with structural network changes of
the DMN.
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TABLE 3 | T-test for regression analyses of ICA weights with age in different ICs.

Network Regression statistics
R2 Beta* (95% confidence intervals) t P

IC 2: anterior dorsal attention network 0.246 —3.75E-04 (—4.31E-004, —3.19E-04) —13.19 1.36E-34
IC 3: language-related speech network 0.139 —3.87E-04 (—4.69E-04, —3.05E-04) —9.29 3.77E-19
IC 4: cerebellum network 1 0.025 —9.44E-05 (—1.45E-04, —4.41E-05) —3.68 2.54E-04
IC 5: cerebellum network 2 0.028 —1.07E-04 (—1.61E-04, —5.36E-05) —-3.93 9.80E-05
IC 6: ventral default mode network 0.340 —4.97E-04 (—5.56E-04, —4.38E-04) —16.57 4.66E-50
IC 7: posterior dorsal attention network 0.096 —2.29E-04 (—2.89E-04, —1.70E-04) —7.52 2.40E-13
IC 9: caudate-related network 0.168 —3.14E-04 (—3.73E-04, —2.54E-04) -10.37 4.35E-23
IC 11: posterior default mode network 0.043 —1.46E-04 (—2.04E-04, —8.71E-05) —4.88 1.41E-06
IC 12: auditory network 0.306 —4.58E-04 (—5.16E-04, —3.99E-04) —15.34 2.90E-44
IC 13: thalamus-related network 0.118 —3.92E-04 (—4.85E-04, —2.98E-04) —8.24 1.32E-15
IC 14: cerebellum network 3 0.157 —2.89E-04 (—3.45E-04, —2.32E-04) —9.96 1.56E-21
IC 15: sensory-motor network 0.280 —4.96E-04 (—5.64E-04, —4.29E-04) —14.41 5.44E-40
IC 16: hippocampus-related network 0.479 —5.67E-04 (—6.17E-04, —5.17E-04) —22.17 1.11E-77
IC 17: temporal lobe-related network 0.039 —1.01E-05 (—1.44 E-05, —5.75 E-06) —4.59 5.66E-06
IC 19: cerebellum network 4 0.070 —2.09E-04 (—2.73E-04, —1.44E-04) —6.36 4.47E-10
IC 20: cerebellum network 5 0.118 —2.80E-04 (—3.45E-04, —2.15E-04) —-8.45 2.88E-16

*Beta of the highest item in the regression model.

Our ICA results found three other gray matter covariant
networks: the auditory network (IC 12), the sensory-motor
network (IC 15), and the language-related speech network (IC
3; Figure 1 and Table 2). Significant linear decrease trajectories
were found between the ICA weights and age in these three
networks (Table 3). Li et al. also found that the structural
associations in the auditory network and language-related speech
network decreased significantly with age between the young
and middle-aged groups and were relatively preserved or mildly
changed between the middle-aged and old groups (Li et al,
2013). Whereas, they found that there was an increased tendency
in structural associations within the motor network from the
young group (18-23 years) to the middle-aged group (30-58
years) which was different from ours, and a downtrend from the
middle-aged to the old group (60-69 years) but no significant
difference between the young and old groups (Li et al., 2013). In
addition, Zielinski et al. investigated the developmental structural
changes in these networks based on children and adolescents
in four age categories (from 5 to 18 years) and found that the
primary auditory and motor networks largely developed in early
adolescence; in contrast, the language-related speech network
showed a significant expansion in late adolescence (Zielinski
et al., 2010). Further, an accelerated decline on the gray matter
volume in the middle and superior frontal gyrus (the main brain
areas of IC 15) in ages older than 20 years was reported (Giorgio
et al., 2010). A number of studies have illustrated an accelerated
loss of gray matter volume in auditory-related regions (the main
brain areas of IC 12) in aging adult brains (Good et al., 2001;
Lemaitre et al., 2005; Kalpouzos et al., 2009). The significant
decline trends from 20 to 86 years old showed by IC 12 and
IC 15 in our study are consistent with the regional patterns of
age-related gray matter loss in these studies.

Apart from the ICs discussed above, IC 16 included the left
and right hippocampus and parahippocampal gyrus (Figure 2)
and showed the most significant decreasing tendency among all
ICs (p = 1.11E-77). Several studies have consistently reported an
accelerated decline of the gray matter volume in the hippocampus
with age (Manrique et al., 2009; Fjell et al., 2013). Fjell et al.
delineated age-related trajectories of the volume of 17 ROIs in
healthy adults (18-94 years) via a non-parametric smoothing
spline approach, and the hippocampus showed the fastest loss
rate (Fjell et al., 2013). Although, we employed different method
from Fjell et al, nevertheless, the gray matter volume of
hippocampus-related network also had the most severe aging-
related atrophy (p = 1.11E-77) in comparison to those of other
networks. Further, the decline of memory and cognitive abilities
with age has been frequently discussed (Schonknecht et al., 2005;
Manrique et al., 2009; Rosenbaum et al., 2015). Our findings add
to the growing evidence that memory deficits of aging may be
related to the atrophy of the hippocampus.

We also identified five cerebellum networks: IC 4, IC 5, IC
14, IC 19, and IC 20 (Figure2 and Table 2). O’Reilly et al.
found that cerebellum contained at least two zones, including
a primary sensorimotor zone and a supramodal zone, which
were equivalent to our network IC 14 (O’reilly et al., 2010).
Dobromyslin et al. even found multiple cerebellar networks, and
four of our cerebellum networks (except IC 5) were spatially
similar to four of theirs (except a, f, g) (Dobromyslin et al., 2012).
Significant linear declines between ICA weights and age were
observed in these five cerebellum networks (Table 3). Raz et al.
revealed an age-related linear decline in the volume of cerebellar
hemispheres and vermis based on healthy adults aged 18-81
years, which is in agreement with the trajectory of our cerebellum
networks (Raz et al., 2001). The cerebellum is commonly involved

Frontiers in Aging Neuroscience | www.frontiersin.org

August 2017 | Volume 9 | Article 275


http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive

Liu et al.

Lifespan Changes of Structural Brain Network

in motor coordination and now is also considered to be related
to the modulation of cognition and learning (Raz et al., 2000;
Bernard and Seidler, 2014).

In our results, the trajectory of the temporal lobe-related
network (IC 17; Figure 2 and Table 2), a quadratic decrease over
age (t = —4.59, p of age? = 5.66E-06), showed an increasing trend
from 20 to 50 years old and was followed by an obvious decline.
Previously, age-related differences of the temporal anatomical
network have been reported (Alexander et al., 2006; Brickman
et al, 2007; Douaud et al., 2014; Hafkemeijer et al., 2014).
Hafkemeijer et al. found that the temporal lobe-related network
(network e) showed the decreased trend with non-significant
level in middle-aged to older adults (Hafkemeijer et al., 2014).
Douaud et al. assessed brain structure networks among normal
subjects (8-85 years) and the brain network mainly including
the medial temporal areas showed a symmetric and strong non-
monotonic relationship with age (Douaud et al., 2014). Alexander
etal. used the SSM method to identify structural network patterns
associated with age from healthy adults (22-77 years) and found
older age was associated with less gray matter in the frontal and
temporal brain regions (Alexander et al., 2006). Sowell et al.
found that the gray matter density in the temporal-related area
showed a non-linear change with an inverted U-shaped curve
with age across the lifespan (7 to 87 years) (Sowell et al., 2003).
Because of the late maturation pattern of the temporal lobe in the
human brain (Gogtay et al., 2004) and the memory, recognition
and other functions related to the temporal lobe (Macsweeney
et al., 2002; Diaconescu et al., 2013; Perrodin et al., 2014), the
temporal lobe-related network might mature after other brain
areas, followed by atrophy, thus presenting an inverse U-shaped
tendency with age.

For two subcortical structures, IC 9 was recognized as a
caudate-related network, and IC 13 recognized as a thalamus-
related network. Damoiseaux et al. also found that the functional
brain network K, which contains the thalamus, putamen, insular,
and transverse temporal gyrus, showed spatial overlap with
IC 13 in this study (Damoiseaux et al., 2008). The thalamus-
related network’s path in our results showed a significant linear
reduction across the adult stage (Figure2 and Table 3), in
accordance with Hafkemeijer et al.’s study, in which the gray
matter volume in this network displayed a slightly negative
association with age (Hafkemeijer et al., 2014). Although, other
studies reported age-related neuroanatomical volume changes
in subcortical structures, such as the caudate and thalamus,
their findings were not exactly consistent (Fjell et al., 2013;
Pfefferbaum et al., 2013; Serbruyns et al., 2015). Serbruyns et al.
have investigated the subregional atrophy of bilateral thalamus
and caudate from 22 to 79 years old, and the right thalamus
showed atrophy from the 5th decade, while 6th decade for the
left thalamus and the bilateral caudate (Serbruyns et al., 2015).
In Pfefferbaum et al’s study, the best fitted trajectories of the
thalamus and caudate from 20 to 85 years were quadratic models
(Pfefferbaum et al., 2013). Till now, there are relatively few studies
on these two networks. Thus, their network patterns associated
with age need to be investigated further.

We re-performed the same statistical analysis of the ICs
for three different age group (20-80, 20-70, and 20-60 years)
to evaluate the age range effect on the age-related patterns.

Compared with significant age-related results for subjects aged
20-86 years, the results for subjects aged 20-80 years showed the
same age-related patterns. Though these results had different p-
values from the original analysis, all met the significance level.
The results for subjects aged 20-70 years showed the similar
age-related patterns. To be specific, among the reported 15
linear ICs, there were still the same significant 14 ICs, but
one non-significant IC (IC 4). In addition, IC 17 was also
had a quadratic trend with non-significant level. The results
for subjects aged 20-60 years showed the slightly different
age-related patterns. Specifically, all 16 ICs showed the linear
decreased trends with significant 12 ICs and four non-significant
ICs (IC 4, 17, 19, 20). Overall, the results of these additional
analyses are consistent with our original findings and also
demonstrated reasonably the age range effect on age-related
change patterns of brain structural networks. In our results
of subjects aged 20-86 years, the trajectory of the IC 17
showed a quadratic change over age. However, for a shorter
age range, such as 20-70 and 20-60 years, a quadratic trend
over age was not so obvious or even changed to be a linear
path. Indeed, the significance level is associated with the
sample size and the age distribution of participants in each age
group. We should report the results with caution and clearly
declare the age-related patterns with the specific subject age
range.

A specific limitation of our study is the estimation of the
number of components. For ICA-related studies, there is a
lack of available standards to determine the optimal number of
ICA components. Most studies adopted 12 to 25 components
in structural networks or resting-state functional networks
(Beckmann et al., 2005; Damoiseaux et al., 2006, 2008; Smith
et al,, 2009). Based on these studies, we chose 20 as the
ICA output number. Additionally, the number of available
subjects aged more than 80 years was relatively smaller than
those of other age groups in the Information IXI database
(http://www.brain-development.org). More subjects older than
80 years needed to be included to confirm our findings. Finally,
our study only investigated structural MRI data and lacked
resting-state fMRI and diffusion tensor imaging (DTI) data.
In future studies, we shall combine multi-modality data to
examine anatomical and functional networks and the age-related
relationships between them.

CONCLUSION

In the current study, we used a multivariate ICA method to
investigate the structural covariance patterns of gray matter
volume through adulthood in 536 healthy subjects. Sixteen
structural networks, with the exception of the temporal lobe-
related network, showed a linear decline trajectory with age from
20 to 86 years. Our results largely confirmed previously reported
findings. We noticed the confirmatory nature of our findings
but for continuous age range so further extending the previous
findings. Our findings not only provide insight into the patterns
of age-related structural changes based on the network in the
human brain, but also provide a foundation for understanding
abnormal aging.
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Objective: The Theta-Alpha ratio (TAR) is known to differ based upon age and cognitive
ability, with pathological electroencephalography (EEG) patterns routinely found within
neurodegenerative disorders of older adults. We hypothesized that cognitive ability would
predict EEG metrics differently within healthy young and old adults, and that healthy
old adults not showing age-expected EEG activity may be more likely to demonstrate
cognitive deficits relative to old adults showing these expected changes.

Methods: In 216 EEG blocks collected in 16 young and 20 old adults during rest (eyes
open, eyes closed) and cognitive tasks (short-term memory [STM]; matrix reasoning [RM;
Raven’s matrices]), models assessed the contributing roles of cognitive ability, age, and
task in predicting the TAR. A general linear mixed-effects regression model was used to
model this relationship, including interaction effects to test whether increased cognitive
ability predicted TAR differently for young and old adults at rest and during cognitive
tasks.

Results: The relationship between cognitive ability and the TAR across all blocks
showed age-dependency, and cognitive performance at the CZ midline location
predicted the TAR measure when accounting for the effect of age (p < 0.05, chi-square
test of nested models). Age significantly interacted with STM performance in predicting
the TAR (p < 0.05); increases in STM were associated with increased TAR in young
adults, but not in old adults. RM showed similar interaction effects with aging and TAR
(o < 0.10).
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Conclusion: EEG correlates of cognitive ability are age-dependent. Adults who did not
show age-related EEG changes were more likely to exhibit cognitive deficits than those
who showed age-related changes. This suggests that healthy aging should produce
moderate changes in Alpha and TAR measures, and the absence of such changes
signals impaired cognitive functioning.

Keywords: cognition, aging neuroscience, Theta Alpha Ratio, EEG, aging

INTRODUCTION

From 2014 to 2060, the number of older adults in the U.S.
population is expected to more than double (US Census Bureau,
2016), an increase that will likely lead to parallel increases in
the number of age-related chronic diseases. For instance, the
prevalence of dementia—a disease with annual costs estimated to
be $157-$215 billion (Hurd et al., 2013)—increases from 1 in 20
persons for those 71-79 years of age, to 1 in 3 persons for those
over 90 years of age (Plassman et al., 2007). With aging, there
is a linear decline in executive function beginning in the third
decade of life, despite the fact that overall acquired knowledge
(crystalized intelligence) continues to improve through the first
five decades of life (Salthouse, 2012). Therefore, understanding
cognitive function in old adults and being able to identify brain
activity associated with optimal cognitive performance could
lead to the development of better prevention and treatment of
dementia and cognitive impairment.

Changes in cognition with aging have been examined in
numerous studies, but the nature of this relationship has
only more recently been examined with electroencephalography
(EEG) technology. These studies have examined age-related
changes in cognition and EEG metrics, often with inconsistent
results. Cognitive functioning, as measured by memory, declines
with increasing age (e.g., Gilbert and Levee, 1971; Salthouse,
1990; Parkin and Walter, 1991; Yokota et al., 2000; Hartman et al.,
2001; Salat et al., 2002), but the EEG metrics associated with
or underlying this decline are poorly understood. For instance,
Delta (1-4 Hz) relative power has been found to correlate with
cognitive performance with inconsistent results. Vlahou et al.
(2014) found Delta power positively associated with executive
function and perceptual speed in old, but not young adults,
suggesting that associations between cognitive performance and
Delta power may depend upon age. Finnigan and Robertson
(2011) did not show a relationship between Delta relative power
and any cognitive measure (recall, attention, executive function)
in 73 healthy old adults (mean age 60) who had subjectively
complained of memory loss but had no objective measures of
memory dysfunction.

Other EEG metrics, such as Alpha (8-12Hz), are also
associated with cognitive performance. Individual Peak Alpha
Frequency (iPAF), the peak of spectral Alpha power of the EEG, is
generally positively correlated with memory and attention at all
ages (Klimesch, 1997, 1999; Angelakis et al., 2004; Clark et al.,
2004; Grandy et al., 2013). However, Finnigan and Robertson
(2011) found no relationship between iPAF and cognitive
performance in old adults. Independent of neurocognitive

performance, Alpha rhythms decrease as a function of age
(Chiang et al., 2011), with even more dramatic change in
Alpha rhythms seen in neurodegenerative disorders leading to
dementia such as Huntington’s disease (Streletz et al., 1990) and
Alzheimer’s disease (Montez et al., 2009; Basar and Guntekin,
2013). This suggests that age should modulate the associations
of cognitive ability with Alpha power.

Theta (4-8 Hz) power studies of cognitive ability have also
generated less-consistent age-dependent findings. Significant
positive correlations were reported between Theta power and
cognitive deficits in healthy adults (Jelic et al., 1996) and higher
baseline Theta power was found to be indicative of subsequent
cognitive decline (Jelic et al., 2000; Prichep et al., 2006). In
contrast, others reported Theta power positively associated with
memory, executive functioning, perceptual speed, reasoning,
and attention in old adults (Cummins and Finnigan, 2007;
Cummins et al., 2008; Finnigan and Robertson, 2011; Vlahou
et al,, 2014). During the encoding phase of a spatial navigation
task (cognitive mapping), Lithfous et al. (2015) found that Theta
activity positively correlated with accuracy for young but not
old adults. In comparison to young adults, old adults showed
both reduced accuracy and reduced Alpha and Theta during
encoding.

In addition to separate Theta and Alpha band analyses,
their ratios have been more recently implicated as a potentially
important indicator of cognitive ability in old adults. In older
adults with amnesic mild cognitive impairment (aMCI), the
Theta to Alpha Ratio (TAR) was increased relative to controls
(Bian etal., 2014), findings echoed closely by (Moretti, 2015). The
reverse metric, the Alpha to Theta Ratio, was used to discriminate
individuals with probable Alzheimer’s disease from healthy older
controls (Schmidt et al,, 2013), and differed within patients
with mild and severe Alzheimer’s disease (Penttild et al., 1985).
Furthermore, the Alpha 1 (8-10 Hz) to Theta Ratio was able to
discriminate individuals with and without cognitive impairment
in older individuals with Parkinson’s disease (Bousleiman et al.,
2015). Differences in the TAR metric between young and old
adults has not yet been examined. In sum, changes in Theta
and Alpha bands are likely predictive of cognitive impairment
(Klimesch, 1999; Fonseca et al,, 2011) in old adults, but this
relationship may depend upon age.

To investigate the relationship between aging, EEG metrics
(Theta, Alpha, and TAR) and cognitive performance (short
term memory and reasoning), we modeled these relationships
in 36 healthy adults, 16 young and 20 old, using EEG
across six different blocks (Resting and Active states). Given
the associations of cognitive performance with Theta/Alpha
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levels within old adults, we hypothesized that EEG signatures
previously associated with cognitive functioning may differ
within healthy young and old adults. The outcome measure
evaluated was TAR in three midline regions (Fz, Cz, Pz).
Furthermore, we assessed whether the correlations between EEG
metrics (iPAF relative Alpha, relative Delta, and relative Theta)
and cognitive performance were the same during the cognitive
tasks as at rest, as most research has investigated the relationship
only between resting EEG metrics and cognition. Collectively,
this manuscript identifies whether EEG signatures of increased
cognitive performance are consistent within healthy old and
young adults, and whether aging changes these signatures in the
absence of any overt pathology.

METHOD

Participants

Sixteen young adults (20.7 £ 0.9 years, range 20-29 years
of age, 8 women and 8 men) and 20 high functioning
old adults (729 =+ 2.5 years, range 70-79 years of age,
14 women and 6 men) completed the study after signing
informed consent approved by the Institutional Review Board
of Pepperdine University. Young adults were recruited from
the university via on-campus advertisements. Old adults were
recruited from the local community via advertisements in the
local senior center newsletter. All participants received a $20
gift card to a local grocery store for participating in the
study.

Procedures

Young and old participants completed a questionnaire about
their health history. Participants diagnosed with a concussion,
stroke, epilepsy, neurological disease (dementia, Parkinson’s
disease, schizophrenia), or diabetes; or who experienced a heart
attack, congestive heart failure, or cancer in the last year;
or who were currently taking hypertensive or psychotropic
medications, were excluded from the study. After passing the
initial health history screening, qualified participants were asked
to refrain from consuming alcohol, caffeinated beverages, and
any other central nervous system stimulants for 4h prior
to the cognitive assessment session. Once the participant
arrived at the lab, he/she gave informed consent and was
screened for cognitive impairment, depression, and visual
deficits. In order to be included in the study, participants
were required to pass the cognitive assessment, scoring >26
(range 0-30) on the Mini Mental Status Examination (MMSE;
Folstein, 1975); the depression assessment, scoring <4 on
the abbreviated 15-item Geriatric Depression Scale (GDS;
Sheikh and Yesavage, 1986); and demonstrate normal or
corrected-to-normal vision (20/20). All 16 of the young adults
successfully passed all screens and 20 out of 21 old adults
passed. One older woman was excluded for scoring below 26
on the MMSE. Following these screenings, each participant
prepared for EEG recording and completed the cognitive
tasks (described below). The session took approximately
90 min.

EEG Recording

Each participant was seated in a dimly lit room and fitted
with an electrode cap. EEG was sampled with 19 electrodes in
standard 10-20 International Electrode System placements (FP1,
FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5/P7, P3, Pz, P4,
T6/P8, O1, O2), with reference to linked ears. Impedance was
maintained below 10 kOhms and within 1.5 kOhm difference
between sites. EEG data was collected using a Mitsar 201 M
amplifier, EEGStudio v1.6/WinEEG v.2.103.70 software (Mitsar
Ltd., St. Petersburg, Russia), and electrode caps (Electro-Cap Intl.
Inc., Eaton, OH).

EEG recording involved separate recording blocks in the
following order: an initial 5-min eyes-open resting baseline (EO1,
block 1), an initial 5-min eyes-closed resting baseline (EC1, block
2), randomly ordered cognitive tests (matrix and short term
memory tests, blocks 3 and 4), a final 5-min eyes-open resting
baseline (EO2, block 5), and a final 5-min eyes-closed resting
baseline (EC2, block 6). EEG data was plotted, filtered (bandpass:
0.1-30.0 Hz, notch: 55.0-65.0 Hz), and carefully inspected using
manual artifact-rejection for all tasks. Episodic artifacts including
eye blinks, eye movements, jaw tension, body movements, and
EKG interference were removed from all channels by two trained
researchers and subsequently reviewed by a third researcher
to reach consensus on any discrepancies. Relative power was
computed by dividing the band specific values by total power.
The data was divided into epochs of 500 samples of continuous
artifact free data (2s). The WIinEEG spectral analysis tool was
used to determine EEG relative power activity in the following
frequency bands: Delta (0.5-4.0 Hz), Theta (4.0-8.0 Hz), Alpha
(8.0-12.0 Hz), and Beta (12.0-24.0 Hz), during EC1 and during
the cognitive tasks. iPAF was determined by evaluating the
maximal difference peak (6.0-13.5Hz) in occipital and parietal
electrode sites during Alpha suppression (EC1-EO1). A natural
log transform was applied to all EEG variables to normalize the
data distribution.

Since Alpha rhythm changes with age, memory load, and
pathology, the logarithm of the Theta/Alpha ratio was calculated
within each block for each electrode using the maximum power
within two frequency bands for Alpha: Alpha 1 (8-10Hz.) and
Alpha 2 (10-12Hz.) as recommended by Klimesch (1999) and
Haegens et al. (2014). This allows the Alpha power to vary based
upon activity and age, yet constrains it within the frequency
band of the individual peak Alpha frequency for all but two
participants. These models were additionally replicated when
removing the two older participants whose iPAF of 7.5 Hz were
outside the 8-12 Hz region, to assess whether deviations in peak
Alpha may unduly influence the relationship between cognitive
ability and the TAR. Finally, all models were also replicated using
Alpha which was set uniformly at 8-12 Hz, to assess whether a
fixed Alpha bandpower would identify a similar relationship to a
variable Alpha.

Cognitive Tasks

The cognitive assessments were completed on a computer using
E-Prime® software. Participants completed two cognitive tasks:
Short Term Memory (STM) and Raven’s Matrices (RM). The
cognitive tasks were counterbalanced for each participant and
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occurred during EEG blocks 3 and 4. In STM, participants were
shown a list of 12 words (see Appendix A in Supplementary
Material) in random order appearing sequentially for 1s each.
Immediately after the last word, participants were given as
much time as needed to recall the words. The STM task was
repeated for a total of four trials using the same randomized 12-
item word list. In order to control for typing inability in some
participants, all participants were asked to write their responses
on a blank sheet of paper and responses were then typed into
the program by the experimenter. In the RM task, which was
used to measure reasoning, participants selected a missing image
from an incomplete 3 x 3 matrix, based on horizontally- and
vertically-progressing patterns. Participants were allotted 10 min
to complete 18 problems, and performance was measured by the
percent correct of total attempted problems.

Modeling
In primary analyses, a general linear mixed-effects regression
model was used to predict the TAR using age group (young
vs. old), block (EO, EC, STM, and RM), total STM score, and
RM percent correct. This was compared to predicting TAR
without age in a hierarchical regression, using a chi-square test
of nested models. Interaction affects were included for STM
scores/Age/RM scores to investigate whether EEG correlates of
cognitive performance may be age-dependent, and to account
for the covariance between the cognitive tests (STM and RM).
This model was assessed separately for each location (Fz, Cz,
Pz). Participant ID was included as a random effect to account
for repeated measures. To directly test the hypothesis that age
modulates the relationship between cognitive performance and
aging, a chi-square ANOVA test was used to compare models
predicting the TAR with and without age.

In secondary analyses, descriptive statistics detailing the
correlations among cognitive performance, age and EEG metrics
were computed.

RESULTS

Cognitive Tests

STM

Young adults (My = 8.75, SD = 2.02) recalled more words than
old adults (Mo = 6.70, SD = 2.06), t(34) = 3.00, p = 0.005 across
all four STM trials (see Figure 1). As seen in the T-tests for each
trial individually, the young adults recalled significantly (p <
0.05) or marginally (p < 0.10) more words than old adults for
each of the four trials. As results for each trial were similar, trial 4
was used for secondary correlational analyses.

Trial 1 [My = 4.19, Mg = 2.55, £(34) = 3.82, p = 0.001]
Trial 2 [My = 5.88, Mo = 4.65, t(34) = 2.41, p = 0.02]
Trial 3 [My = 7.13, Mo = 5.85, t(34) = 1.72, p = 0.10]
Trial 4 [My = 8.75, Mo = 6.70, t(34) = 3.00, p = 0.005].

Reasoning

Out of 18 problems, young adults had a higher percentage of
correctly completed problems [My = 55.69, SD = 15.16; Mo =
32.57, SD = 12.98; t(34) = 4.93, p < 0.0005, see Figure 1]. RM

and STM were correlated (r = 0.60), with a similar relationship
for both age groups (see Figure 2).

EEG Analyses

Primary Model: TAR and Cognitive Performance:
Cognitive performance, task, age, and gender was used to predict
TAR EEG activity across blocks in three mid-line locations. For
Fz (frontal) and Pz (posterior) locations, only block (EO, EC,
STM, RM) was statistically significant in predicting the TAR (p
< 0.001, Supplementary Tables 1, 2). For all regions, the EC
block produced significantly lower TAR than the EO, STM, or
RM blocks (p < 0.001).

For the Cz (central) regions, the TAR was dependent upon
cognitive performance only after accounting for age, determined
by a hierarchical regression comparing the ability to predict the
TAR with and without age (chi-square test of nested models, p <
0.05; Tables 1, 2). Cognitive performance significantly interacted
with age in the regression model such that young adults had
substantial increases in TAR with increased STM compared to
old adults (p < 0.05; Figure 3, Table 1). For decreased RM,
subjects showed increased TAR after holding constant the effects
of age, STM, and task (p < 0.05). The interaction effect between
aging and RM suggested that young adults also had increases in
TAR with increasing RM compared to older adults after holding
constant all else (p < 0.10; Table 2, Figure 4).

To assess sensitivity of these findings to the individual
variation in Alpha, these models were also replicated when
excluding 2 participants whose iPAF fell outside the traditional
8-12Hz window, which did not change these findings
(Supplementary Table 3). Similarly, results were consistent
when using Alpha fixed at 8-12Hz instead of separating by
Alpha 1 (8-10) Hz. and Alpha 2 (10-12) Hz. windows. This
replication suggests that the individual variation in Alpha
did not drive the interactions between aging and cognitive
performance. When modeling just Alpha separately, increased
Alpha was associated with increased cognitive ability in general,
but the aging effects were not statistically significant (p > 0.05,
Supplementary Table 4).

When assessing Theta and Alpha separately, increases in
STM performance were associated with a decrease in Theta and
Alpha for both age groups (Figure 5). Holding constant cognitive
performance, young adults had greater Theta and Alpha than old
adults. For RM, age showed different relationships with cognitive
performance in predicting Theta and Alpha power (Figure 6),
with increased RM showing increased Alpha in young adults and
decreased Alpha and decreased Theta in old adults.

Secondary Model: Descriptive Analyses of Fz, Cz,
and Pz by Age and Bandwidth:

EEG activity during EC1 and during cognition was correlated
with iPAF, relative Delta power, relative Theta power, and relative
Alpha power at the three midline sites: Fz, Cz, and Pz. The
cognitive task dependent measures were trial 4 of the STM (as
results for trials 1-3 were similar to trial 4) and RM percent
correctly completed.
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Raven's Matrices by Age
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FIGURE 1 | Young adults had significantly higher RM and STM scores. Outliers are represented by *.

Short Term Memory Score by Age
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FIGURE 2 | Performance on RM and STM was highly correlated (- = 0.6).
Shaded area indicates 95% confidence intervals.

Correlations
All correlation analyses were conducted with Pearson
correlations, two-tailed tests. Statistical significance was

not reached after Bonferroni correction, so these results
are presented descriptively with uncorrected p-values; see
Supplementary Tables 5-8 for correlations by age, for the entire
sample, and for young and old adults separately.

Age
iPAF was significantly negatively correlated with age. During
the EC1 condition, relative Delta was significantly negatively

TABLE 1 | Theta Alpha Ratio (TAR) model parameters for CZ.

Variable Estimate  Std. Error t-value Pr(>]t)) Sig
(Intercept) 0.472 1.062 0.444 0.659

STM Score (total) —0.031 0.053 —0.592 0.557

RM Score (percent —4.768 2.061 —2.314 0.026 *
correct)

Young Age —2.719 3.252 —0.836 0.408

EEG Block: EO 0.404 0.081 5.008 0.001 o
EEG Block: STM 0.875 0.100 8.751 0.001 o
EEG Block: RM 0.886 0.099 8.955 0.001 e
Gender: Female 0.067 0.140 0.478 0.635

STM Score: Young Age 0.217 0.084 2.584 0.014 *
STM Score: RM Score 0.121 0.151 0.802 0.427

RM Score: Young Age 8.364 4.509 1.855 0.071

STM Score: Young —0.363 0.184 —1.969 0.056

Age: RM Score

Cognitive performance did not predict the EEG TAR measure until accounting for the
effects of age (p < 0.05, chi-square ANOVA test of nested models). The TAR within an
EEG block was modeled using a general linear mixed-effects regression model. Increases
in STM were more strongly associated with an increased TAR (p < 0.05) in young than
old adults. Increases in RM were associated with decreases in TAR. Interpretation of
coefficients is with respect to a baseline of an Older Male during Eyes Closed EEG
block, implying that Eyes Closed condition was significantly different than all other tasks
(o < 0.001).

Significance codes: 0.001 “**”; 0.01 “*”; 0.06 “"; 0.1 “.”

correlated with age at the Fz site. Relative Theta was significantly
negatively correlated with age at Fz and Cz. Relative Alpha was
not significantly correlated with age.

iPAF

iPAF was not correlated with STM performance but was
significantly positively correlated with RM across the entire
sample. IPAF was not correlated with performance within young
or within old adults.
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TABLE 2 | Theta Alpha Ratio (TAR) model parameters for CZ without including
aging effects.

Variable Estimate Std. Error t-value Pr(>[t) Sig
(Intercept) —0.605 0.292 -2.072  0.045 *
STM Score (total) 0.025 0.013 1.895  0.065

RM Score (percent correct)  —0.120 0.485 —0.248 0.805

EEG Block: EO 0.404 0.081 5.019  0.001
EEG Block: STM 0.867 0.0987 8.788  0.001
EEG Block: RM 0.886 0.0987 8.975  0.001
Gender: Female 0.069 0.146 0.475 0.637

When not including the effects of age, the TAR changed with activity but did not
significantly depend on cognitive performance. Interpretation of coefficients is with respect
to a baseline of an Older Male during Eyes Closed EEG block, implying that Eyes Closed
condition was significantly different than all other tasks (p < 0.001).

Significance codes: 0.001 “***”; 0.01 “*”; 0.056 “”; 0.1 “.”

Relative Delta

Across the entire sample, relative Delta was generally positively
correlated with cognitive performance. During EC1, relative
Delta was significantly positively correlated with STM at all
three sites. During the STM task, relative Delta was significantly
positively correlated with STM at Pz. RM was not correlated with
relative Delta during EC1 or during the matrix task. For young
adults, during ECI1, relative Delta was significantly positively
correlated with STM at Fz and marginally correlated at Cz and Pz.
Relative Delta was not significantly correlated with performance
during the STM task. Relative Delta was also not significantly
correlated with RM performance during EC1 or during the
RM task. For old adults, relative Delta was generally positively
correlated with performance. During ECI, relative Delta was
significantly positively correlated with STM at Pz and marginally
positively correlated at Cz. Relative Delta during the STM task
was also significantly positively correlated at Pz. Relative Delta
was not correlated with RM performance.

Relative Theta

Across the entire sample, relative Theta was positively
correlated with cognitive performance, but this was sensitive
to activity/block. STM performance was not significantly
correlated with relative Theta during EC1 or during the STM
task. During ECI, relative Theta was not significantly correlated
with RM performance. During the Matrix task, relative Theta
was significantly positively correlated with RM at the Fz and Cz
sites. For both young and old adults separately, no correlations
reached statistical significance, but relative Theta was generally
negatively correlated with performance.

Relative Alpha

Relative Alpha was generally negatively correlated with cognitive
performance for the entire sample, although no correlations
reached statistical significance. Correlations for young adults
showed that relative Alpha was negatively correlated with
performance. During ECI, relative Alpha was not significantly
correlated with STM performance. During the STM task, relative
Alpha was negatively correlated with STM performance at Pz.
Relative Alpha was also not significantly correlated with RM
performance during EC1 or during the RM task. Correlations
for old adults likewise showed that relative Alpha was generally

Short Term Memory and CZ Theta/Alpha

e
n

Group
= Older

= Younger

CZ Theta/Alpha

0.0

10 20 30
Short Term Memory Score

FIGURE 3 | The relationship between short term memory score and the EEG
Theta/Alpha ratio depended on a participant’s age, with young adults showing
a much larger increase in TAR with increased STM performance than old
adults. Shaded area indicates 95% confidence intervals. Note: plots do not
illustrate the contributing effects of other covariates (e.g., block and STM).

negatively correlated with performance. During ECI1, relative
Alpha was not correlated STM performance. During the STM
task, relative Alpha was significantly negatively correlated with
STM at Pz. Relative Alpha was not correlated with RM
performance.

DISCUSSION

Consistent with the literature, young adults reliably
outperformed old adults on STM and RM measures of cognitive
function (Salthouse, 2012). The TAR marker of cognitive
performance showed different trends for high-functioning
young and old adults in the Cz region. For all locations, the
most significant predictor of TAR was activity: TAR increased in
EO, STM, and RM blocks compared to EC blocks (p < 0.001).
The most likely reason for this TAR decrease during the EC
block is the general increase in Alpha, occurring during wakeful
relaxation with shut eyes (Barry et al., 2007).

Some differences seen between the RM and STM cognitive
assessments/TAR measurement may reflect the different brain
regions recruited during such cognitive tasks; matrix reasoning
produces fMRI activation in right frontal and bilateral parietal
regions (Prabhakaran et al, 1997), while verbal short-term
memory tasks produces activation in the posterior temporal
regions, supramarginal gyri, Brocas area, and dorsolateral
premotor cortex (Henson et al., 2000). Different susceptibility of
these brain regions to the aging process, as well as compensatory
recruitment of other regions for specific cognitive tasks, also
may impact the differences seen between the two assessments
(STM, RM) within our old cohort. For example, patients with
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FIGURE 4 | Increases in matrix reasoning score was associated with a
reduced TAR (p < 0.05). The interaction between age and cognitive
performance did not reach significance (p < 0.10); when cognitive
performance was held constant, the TAR was greater in young than in old
participants. Shaded area indicates 95% confidence intervals. Note: plots do
not illustrate the contributing effects of other covariates (e.g., block and STM).

Alzheimer’s disease showed decreased fMRI cortical activation
but increased hippocampal activation during a STM task relative
to controls, suggesting compensatory recruitment (Peters et al.,
2009). Similarly, cortical recruitment strategies change with age;
healthy elderly adults used frontal areas for a spatial working
memory task, whereas healthy younger adults recruited parietal
areas (McEvoy et al., 2001).

Increased TAR was associated with decreases in RM
performance in old adults, with the opposite trend seen in young
adults. This is consistent with the findings of Bian et al. (2014),
who found that diabetic older patients with MCI had an increased
TAR compared to diabetic older adults without MCI, as well as
Moretti (2015) who found an increased Theta frequency power
in MCI adults due to Alzheimer’s disease. The increased Theta
frequency was also associated with hippocampal atrophy, which
suggests that a greater TAR would be associated with greater
hippocampal atrophy when holding Alpha constant (Moretti,
2015).

Progressive atrophy of the hippocampus, measured through
MR, also correlated with decreased EEG cortical Alpha power
in adults with Alzheimer’s disease (Babiloni et al., 2009), while
Penttild et al. (1985) found that decreases in Alpha in those with
Alzheimer’s disease was specific to late-stage disease. Jelic et al.
(1996) found cognitive impairment was associated with increased
Theta and decreased Alpha power in adults with Alzheimer’s
disease. Although our study found also that increased Theta was
associated with decreased cognitive functioning in healthy old
adults, decreased Alpha was associated with increased cognitive

ability for RM (Figure 6). This suggests that the relationship
between cognitive ability and Alpha is non-linear, where optimal
cognitive functioning occurs when Alpha shows moderate age-
associated changes. This closely echoes earlier MEG findings of
Vlahou et al. (2014), who found enhanced Delta and Theta power
with increased executive functioning and perceptual speed, but
only within healthy older adults, further suggesting a non-
linear relationship between aging, brain activity, and cognitive
functioning. Healthy aging produces changes in EEG spectra
in the absence of pathology (Polich, 1997), so age-related and
pathological-related power changes seen in diseases of the elderly
are ultimately dependent upon the “control” group being studied.

For all participants within most blocks, cognitive performance
(STM and RM) was generally positively correlated with IPAF,
relative Delta, and relative Theta, and negatively correlated
with relative Alpha (Supplementary Table 6), although these
pairwise correlations did not surpass multiple comparison
corrections and are presented descriptively. As seen in the
separate correlational analyses for young adults (Supplementary
Table 7), IPAF and relative Delta did not show correlations in
a general direction, and both relative Theta and relative Alpha
were generally negatively correlated with cognitive performance.
In contrast, old adults showed general positive correlations
between cognitive performance and both iPAF and relative
Delta (Supplementary Table 8). Similarly, old adults showed
general negative correlations between cognitive performance
and both relative Theta and relative Alpha. Furthermore,
correlations were generally similar both at rest (EC1) and
during cognition. As relative Delta activity correlated similarly
for young and old adults, our correlational data suggests
that these relationships with cognitive performance remain
stable regardless of age. Overall, few bivariate correlations
were significant after correction for multiple comparisons,
likely due to the individual blocks being underpowered
because of small sample size and the use of two-tailed (non-
directional) rather than one-tailed (directional) testing. Age was
negatively correlated with iPAF, relative Delta, and relative Theta
(Supplementary Table 5).

Overall, our correlations are consistent with other findings
in regards to iPAF (Klimesch, 1997, 1999; Angelakis et al,
2004; Clark et al., 2004; Grandy et al,, 2013), relative Delta
(Vlahou et al., 2014), relative Theta (Jensen and Tesche, 2002;
Cummins and Finnigan, 2007; Cummins et al.,, 2008; Vlahou
et al., 2014) and findings of Alpha power inversely correlated
with age (Hartikainen et al., 1992; Hong and Rebec, 2012)
but inconsistent with Finnigan and Robertson (2011), who
found positive relationships between relative Theta and cognitive
performance in old adults, but no association of resting iPAF,
relative Delta power, and relative Alpha power with cognitive
performance. Thus, while our study design was a close replication
of Finnigan and Robertson (2011), with the addition of a young
adult group and an older age range in the old adult group (70-79
instead of 55-73), and EEG metrics recorded both at rest and
during the cognitive assessment, our correlational findings align
better with other studies.

Our findings have lent some clarity to the mixed results in
literature regarding age, EEG, and cognitive performance, yet
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FIGURE 5 | As STM scores increased, Cz Theta and Alpha decreased for both age groups. Shaded area indicates 95% confidence intervals. Plots do not illustrate
the contributing effects of other covariates (e.g., block and STM).
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FIGURE 6 | Matrix reasoning scores and Cz EEG Theta and Alpha activity showed an age-dependent relationship. Shaded area indicates 95% confidence intervals.
Plots do not illustrate the contributing effects of other covariates (e.g., block and STM).

there are some shortcomings to our study. Because our sample
size was small, this study was underpowered to detect the smaller
effect-sizes in other brain regions. Thus, the insignificance of the
TAR in this analyses in frontal regions (Fz) does not confirm
the absence of an age-dependent cognition relationship, but may

rather suggest that the effect size is smaller in Fz than that of the
central region (Cz). A larger sample would also have allowed us to
evaluate more hypotheses, which were purposefully few to avoid
false positives due to multiple comparisons. Our findings were
in a subset of high-functioning healthy adults, so EEG correlates
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of cognitive performance may differ in participants having an
exclusionary medical diagnoses. Moreover, participants were not
followed after the conclusion of the study to track incidence of
exclusionary diagnoses, so some may have been in the premorbid
stages during the study period. Lastly, while we deliberately chose
to focus on a narrow age range for old adults (70-79), it is
possible that these results are not generalizable to old adults
across a larger age spectrum, which may explain the differences
between our and Finnigan and Robertson (2011)’s findings which
included patients as young as 55. Future research would benefit
from a longitudinal analysis of adult EEG activity and cognitive
performance across a larger age spectrum.

Future research should include additional measures of
cognition and brain activity. For instance, the Stroop task
would serve as a measure of inhibitory control, and may be
associated with other EEG measures such as P3 amplitude
(Saliasi et al., 2013). In addition, it is unlikely that age by
itself is the only predictor of EEG activity and performance.
Many other factors that vary widely in old adults, such as
physical activity, education, sleep quality and quantity, and
social support and interaction, are likely to co-vary with and
predict cognition. Our descriptive measures of EEG (e.g.,
localized relative power) were purposefully selected because their
simplicity makes them more clinically applicable; however, more
complex global measures of EEG behavior such as coherence
may yield a deeper understanding of the relationship between
cognitive performance and age. This also is a direction for future
work.

In conclusion, this study adds to the existing body of
knowledge by illustrating that healthy aging is associated with
changes in EEG activation patterns and cognitive performance.
EEG markers such as the TAR may disambiguate cognitive
changes specific to healthy and pathological aging. The
significant interaction effects between aging and cognitive
performance indicated that a failure to show age-related changes
resulted in “young” EEG signatures but impaired cognitive
performance. Rather than aging-related changes being a marker
of detriments in cognitive performance, a “healthy” person whose
EEG patterns do not change with age is more likely to exhibit
cognitive impairment than a person who shows normal age-
related changes.
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Task-switching (TS) paradigm is a well-known validated tool useful for exploring the
neural substrates of cognitive control, in particular the activity of the lateral and
medial prefrontal cortex. This work is aimed at investigating how physiological aging
influences hemodynamic response during the execution of a color-shape TS paradigm.
A multi-channel near infrared spectroscopy (fNIRS) was used to measure hemodynamic
activity in 27 young (80.00 £+ 7.90 years) and 11 elderly participants (57.18 4+ 9.29
years) healthy volunteers (55% male, age range: (19-69) years) during the execution of a
TS paradigm. Two holders were placed symmetrically over the left/right hemispheres
to record cortical activity [oxy-(HbO) and deoxy-hemoglobin (HbR) concentration] of
the dorso-lateral prefrontal cortex (DLPFC), the dorsal premotor cortex (PMC), and the
dorso-medial part of the superior frontal gyrus (sFG). TS paradigm requires participants
to repeat the same task over a variable number of trials, and then to switch to a different
task during the trial sequence. A two-sample t-test was carried out to detect differences
in cortical responses between groups. Multiple linear regression analysis was used to
evaluate the impact of age on the prefrontal neural activity. Elderly participants were
significantly slower than young participants in both color- (p < 0.01, t = —3.67) and
shape-single tasks (p = 0.026, t = —2.54) as well as switching (p = 0.026, t = —2.41) and
repetition trials (p = 0.012, t = —2.80). Differences in cortical activation between groups
were revealed for HbO mean concentration of switching task in the PMC (p = 0.048,
t = 2.94). In the whole group, significant increases of behavioral performance were
detected in switching trials, which positively correlated with aging. Multivariate regression
analysis revealed that the HbO mean concentration of switching task in the PMC
(p =0.01, p = —0.321) and of shape single-task in the sFG (p = 0.003, p = 0.342) were
the best predictors of age effects. Our findings demonstrated that TS might be a reliable
instrument to gather a measure of cognitive resources in older people. Moreover, the
fNIRS-related brain activity extracted from frontoparietal cortex might become a useful
indicator of aging effects.

Keywords: task-switching, physiological aging, functional near-infrared spectroscopy, cognitive control,
regression analysis
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INTRODUCTION

Task-switching paradigm is a well-known and validated tool for
exploring executive control processes and neural correlates of
cognitive cost and it is often used to assess age-related executive
deficits (Wilckens et al., 2017). Typically, this paradigm requires
the repetition of the same task over a variable number of
trials (i.e., repetition trials) and the rapid alternation between
two different tasks at some point of the trials sequence (i.e.,
switch trials). For each trial a reaction time (RT) is registered.
Switch cost refers to the finding that performance is slower
(longer RTs) and less accurate on switch trials than repeated
trials and is thought to reflect the executive processes required
to deactivate the task set relevant on the previous trial and to
activate the currently relevant task set (Monsell, 2003). Task-
switching performance may be improved using task cues, which
provide valid information about the upcoming target and allow
for time to prepare for a given trial (Schapkin et al., 2014). Task
cues “effect” is associated to maintaining and reconfiguration
processes of a task set in working memory (Wilckens et al., 2017).

In the last decades several studies have highlighted the
fundamental role of the dorsolateral and ventrolateral
prefrontal cortex (dIPFC, vIPFC), the supplementary and
pre-supplementary motor areas (SMA, pre-SMA) and the
superior and inferior lobules of the parietal cortex in task-
switching (Dove et al., 2000; Braver et al., 2003; Brass and von
Cramon, 2004; Wager et al., 2004; Ruge et al., 2005; Badre and
Wagner, 2006; Crone et al., 2006; Slagter et al., 2006; for reviews
see Ruge et al,, 2013; Jamadar et al., 2015).

Physiological aging modulation of these brain areas in
switching task has been extensively investigated by using both
structural and functional advanced magnetic resonance imaging
(DiGirolamo et al., 2001; Milham et al., 2002; Gold et al., 2010;
Zhu et al,, 2014; Hakun et al, 2015; Eich et al, 2016; Jolly
et al., 2017), suggesting that age-related changes in behavioral
performance are associated with changes in neural patterns of
activation. Specifically, older adults show a less specific cerebral
activation and the recruitment of additional frontal regions that
are not activated in younger adults (DiGirolamo et al., 2001;
Milham et al., 2002; Gold et al., 2010).

Although these neuroimaging modalities are highly effective
and reliable, these are also very expensive and invasive.
fNIRS is a non-invasive neuroimaging technique that enables
to investigate brain hemodynamic) with reasonable temporal
and spatial resolution, quantifying task-related changes in
oxygenated hemoglobin (HbO), and deoxygenated hemoglobin
(HbR) concentrations (Scholkmann et al., 2014); crucially for our
purposes, fNIRS provides a remarkable added value in cognitive
neuroscience because it allows to gather information on cortical
activity in those overcoming some limitations imposed by
other neuroimaging techniques, thereby increasing the ecological
validity of the tasks used to test participants (Cutini et al,
2012, 2014; Cutini and Brigadoi, 2014). The advantages of being
non-invasive, portable and relatively low susceptible to motion
artifacts than other neuroimaging techniques, give NIRS a
strong ecological validity for use in situated cognition paradigms
(Ferreri et al., 2014).

For this reason, this neuroimaging technique has gained
growing interest in the last 10 years, particularly in the field
of cognitive aging (Agbangla et al., 2017), focusing on several
domains cognitive function such as language (Scherer et al.,
2012; Amiri et al, 2014), episodic memory (Ferreri et al,
2014), executive functions (verbal fluency; Herrmann et al.,
2006; Kahlaoui et al., 2012; Obayashi and Hara, 2013), working
memory (Vermeij et al, 2012, 2014a,b, 2016), inhibition and
cognitive flexibility (Schroeter et al., 2003; Lagué-Beauvais et al.,
2013; Hagen et al., 2014; Miiller et al., 2014).

In the context of attentional control functions, very few
studies have monitored brain hemodynamic changes during
the task-switch execution by using fNIRS technology (Cutini
et al., 2008; Lagué-Beauvais et al., 2013). Among them, just
one study has evaluated physiological aging effect on brain
areas modulation during inhibition and switching tasks (Lagué-
Beauvais et al., 2013). The authors compared fNIRS-related
functional brain activation patterns in the prefrontal cortex
in older and younger adults during a modified Stroop task
with interference and switching conditions, by using a classical
univariate statistical approach. Conversely, the lesson learnt
from one decade of neuroimaging studies provides consistent
evidence of the advantage of multivariate analysis of moving from
group-level statistical results to a full description of a biologic
phenomenon (Habeck, 2010).

For this reason, our aim was to develop an ecologically
sound and easily applicable mean to assess both behavioral
and neurofunctional age-related changes in switching task by
using functional near-infrared spectroscopy (fNIRS) and a
multivariate statistical approach. In this study, we investigated
the hemodynamic response in the frontoparietal areas during the
execution of a task-switching paradigm by means of f{NIRS on
a population of healthy participants, and we characterized the
selective influence of physiological aging on brain hemodynamic
response by using multiple linear regression.

Within the present framework, we sought to explore whether
the recruitment of additional frontal regions is a pervasive
phenomenon that can be observed in the vast majority of the
frontal lobe or if it is restricted to a subset of regions. In this
regard, multiple linear regression gave us the chance to observe
a possible dissociation between those regions that might help to
compensate the age-related cognitive decline and those regions
that might be indeed less activated in elderly participants.

MATERIALS AND METHODS

Participants were recruited from University of Catanzaro,
Polyclinic “Magna Graecia,” community recreational centers
and hospital personnel through local advertisements. Inclusion
criteria were: (1) no evidence of dementia or depression
symptoms according to DSM-V criteria; (2) no use of
antidepressant, anxiolytic, or antipsychotic drugs that could
affect cerebral blood flow; (3) right- handedness; and (4) absence
of chronic medical conditions (heart disease, hypertension,
or diabetes); According to these criteria, 38 right-handed
healthy volunteers (21 males and 17 females, in the age range
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of 19-69 years, mean age = 37.87 £ 14.94 years) were
considered eligible for this study. All participants had normal
or corrected to normal vision, and normal color vision. All
the participants gave written informed consent. The study
was approved by the Ethical Committee of the University
“Magna Graecia” of Catanzaro, according to the Helsinki
Declaration.

Experimental Procedure

The experiment was carried out in a sound-attenuated and
dimly lit room. Participants were seated in a comfortable chair
while performed a color-shape task-switching paradigm (Hakun
et al., 2015), that was designed using E-prime 3.0 software
(Schneider et al., 2012) (Psychology Software Tools, Pittsburgh,
PA). The synchronization between fNIRS recording and timing
of stimulation was performed through the RS232 serial port
communication. The stimuli consisted of two possible shapes
(circle or square), in one of two possible colors (red or blue),
presented on a computer screen. Participants were asked to hold
the index and middle fingers of the right hand on the “left” and
“right” arrows keys of the computer keyboard throughout the
entire experiment, respectively.

At the beginning of each trial, an instructional cue was
given to participant (the word “color” or “shape”), which was
displayed for 150 ms. Upon the presentation of a color stimulus,
participants had to press “right” key in response to “red,” or
the “left” key in response to “blue.” Upon the presentation
of a shape stimulus, participants had to press “right” key
for “square,” or the “left” key for “circle.” Each stimulus was
presented for a maximum of 3,000ms, and replaced with a
black screen upon detection of a response (with a duration

randomly varying from 8 to 10s). Then a 200 ms central fixation
(plus-sign) signaled the start of the next trial. Before detection,
participants received task instructions and practiced for each
condition.

As showed in Figure 1, the task was composed by three main
blocks: (a) in the color block, participants were required to
distinguish between red and blue stimuli; (b) in the shape block,
participants were asked to judge when the stimulus was a circle or
a square; (c) in the switching block, shape and color stimuli were
shown alternatively to patients. Blocks (a) and (b) were regarded
as single blocks, whereas switching blocks included repetition
and switch trials.

In single blocks, participants performed a sequence of 20
experimental trials with the same instructional cue (color or
shape) repeated on each trial, while during switching blocks the
color and shape tasks were presented pseudo-randomly, with an
equal number of repeating/ switching in consecutive trials (40
switch trials and 40 repetition trials).

RTs and the percentage of correct response were calculated for
single blocks, repetition and switch trials.

An independent two-sample ¢-test was performed in order to
evaluate behavioral differences between groups in task-switching
performances. We calculated the Cohen’s d (Cohen, 1998) as a
measure of the effect size, which indicates the magnitude of mean
differences (using the estimated marginal means) in SD units.

On the whole group, an ANOVA analysis was carried out
on median RT values and the percentage of correct responses
in order to highlight possible differences among single blocks,
repetition and switch trials. Moreover, a simple regression
analysis was performed in order to evaluate the effect of aging
on task-switch performances.

Single task Single task
(COLOR) (SHAPE)

FIGURE 1 | Schematic illustration of Color-shape task-switching paradigm.

Switching
task
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FIGURE 2 | Anatomical ROls localization. Rendering of the skull surface
showing the detection channels to record brain activity in the right and left
dorso-lateral prefrontal cortex (DLPFC), the right and left dorsal premotor
cortex (PMC), and the right and left dorso-medial part of the superior frontal
gyrus (sFG) during color-shape task-switching paradigm, according to 10/20
system.

fNIRS Probe Location and Data Acquisition
A 52-channel NIRS machine (ETG-4000 Optical Topography
System; Hitachi Medical Co., Japan) working with two different
wavelengths (695 and 830 nm) and a sample frequency of 10 Hz
was used to measure relative changes of absorbed near-infrared
light during color-shape task switching.

Two “4 x 4” measurement grids were attached to a regular
swimming cap. Eight emitters and eight detectors -for a total
of 24 measurement channels for each hemisphere- were used
(Figure 2) and each source/detector pair at a distance of 3 cm.
According to the international 10/20 system, channel grids were
placed to cover following ROIs for each hemisphere: the dorso-
lateral prefrontal cortex (DLPFC), the dorsal premotor cortex
(PMC) and the dorso-medial part of the superior frontal gyrus
(sFG) (see “Data Sheet 1” for an example of photon migration
and penetration depth). Figure 2 shows that dorso-medial part
of sFG, DLPFC, and PMC were bilaterally covered by the present
probe spatial arrangement.

fNIRS Data Analysis

A preliminary visual inspection of the fNIRS intensity signal

time-course of each source-detector pair was used to detect the

presence of physiological activity and to test fNIRS signal quality.
Noisy source-detector pairs were manually discarded on the

base of absence of physiological activity in both 830 and 695 nm

signals. Channels that visually showed movement artifacts were
excluded from the analysis. A moving average method with a
window width of 5s was used to identify and remove any short-
term movement artifacts. Raw fNIRS data were converted into
optical density changes and then bandpass filtered between 0.005
and 0.5Hz, to remove low frequency drifts signal components
and cardiac fluctuations interferences. The relative changes in the
concentration of HbO, HbR, and total hemoglobin (HbT) were
estimated according to changes in the optical properties of the
light using the Beers-Lambert law (Cope and Delpy, 1988; Delpy
et al., 1988).

Each trial was baseline corrected by subtracting the mean
intensity of the optical signal recorded during the 2 s preceding
trial onset from the overall hemodynamic activity.

Then HbO and HbR mean concentrations during vascular
response were calculated for each subject and task in all channels
of interest from standardized grand average waveform (z-score).

Statistical Analysis

Two different statistical approaches were used to evaluate the
age-related influence on task-switching activity. Initially, we
considered aging effect as discrete factor. For this reason, we
grouped healthy sample in young and elderly populations. Age
>50 years was used as cut-off for defining elderly people,
since several studies demonstrated the presence of physiological
neurodegenerative processes starting after the so-called: non-
elderly adult phase (18-50 years; Pieperhoff et al., 2008; Terribilli
et al., 2011). Twenty-seven young participants (mean age
30.00 £ 7.90 years) and 11 elderly participants (mean age =
57.18 £ 9.29 years) were matched for gender (Chi-square test,
p < 0.05) and education level (¢-test, p < 0.05).

Next, simple regression or multivariate regression analyses
considering the impact of aging effect as a continuous factor were
employed. Statistical analyses were performed with SPSS Version
12.0 (https://www.ibm.com/software/products/it/spss-statistics).
Assumptions for normality were tested for all continuous
variables by using the Kolmogorov-Smirnov test. Unpaired -
test and analysis of variance were employed appropriately for
behavioral data. Finally, Pearson correlation analysis was used for
evaluating the relationship between age and task performance.
For all statistical analyses, a p-level of 0.05 was considered to be
significant. Moreover, Cohen’s d as a measure of the effect size
was also calculated (Cohen, 1998).

A similar approach was used for fNIRS data. We started with
an independent two-sample ¢-test to evaluate differences between
groups in hemodynamic activation (HbO and HbR mean
concentration) within ROIs. Next, to evaluate how physiological
aging could selectively influence brain hemodynamic response,
we performed a multiple linear regression, according to the
model: age = B x (predictors) + constants. In particular, with
the aim of quantifying the relative contribution to aging of
each task (color single-task, shape single-task, repetition trials,
switch trials), each hemodynamic parameter (HbO and HbR
mean concentrations) and each ROI (for both the hemispheres
separately), we performed a regression analysis using a multiple
linear model including all predictors.
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RESULTS

Demographic Data

Demographic features of all subjects are summarized in Table 1.
No differences were detected in gender (p = 0.876) and education
level (p = 0.312) between young and elderly participants.

Behavioral Data

An independent two sample ¢-test revealed significantly longer
reaction time (RT) for elderly compared to young participants
in both color- (p < 0.01, t = —3.67; Cohen’s d = —1.21, effect
size = 0.52) and shape-single tasks (p = 0.026, t = —2.54; Cohen’s
d = —0.84, effect size = 0.39) as well as switching (p = 0.026,
t = —2.41; Cohen’s d = —0.79, effect size = 0.37) and repetition
trials (p = 0.012, t = —2.80; Cohen’s d = —0.92, effect size = 0.42)
(see Table 1). No significant differences between groups were
detected in the correct response percentage (Table 1).

An ANOVA analysis was carried out on median RT values
and the percentage of correct responses of the whole group,
considering the four task conditions (color, shape, switch, and
repetition trials). As expected, switch trials were associated with
longer RTs (F = 12.4, p < 0.001) and worse accuracy (F = 5.6;
p = 0.001) with respect to single blocks (Figure 3). A simple
regression analysis was performed in order to evaluate the effect
of aging on switch trials. As expected, performance was positively
correlated with age for repetition (r = 0.378; p = 0.019) and
switching trials (r = 0.316; p = 0.045).

fNIRS Data

An independent two-sample ¢-test revealed differences in cortical
activation between young and older participants for HbO mean
concentration of switching task in the left PMC (p = 0.048,
t = 2.94; effect size = 0.44 and Cohen’s d = 0.97).

The multiple linear regression analysis, performed on the
whole sample, highlighted that age variance explained by the

TABLE 1 | Participant’s demographic and behavioral data.

Young participants Elderly participants p-value

DEMOGRAPHIC DATA

Age (years) 30.00 £+ 7.90 57.18 £9.29 <0.01%
Gender (%M) 55.56% 54.55% 0.876*
Education Level (years) 12.12(5-18) 10.44(5-13) 0.312%
BEHAVIORAL PERFORMANCES

Reaction time (ms)

Color-single task 560.91 + 149.71 802.57 + 196.24 <0.01%
Shape-single task 581.66 + 126.06 774.84 + 239.60 0.026%
Repetition trials 748.77 £ 215.05 972.08 + 226.11 0.012%
Switching trials 823.56 + 249.20 1035.82 + 244.81 0.026%
PERCENTAGE OF CORRECT RESPONSES

Color-single task 96.85 £+ 4.63 95.45 £+ 6.11 0.447%
Shape-single task 94.07 £ 17.27 96.36 + 4.52 0.669%
Repetition trials 92.50 £ 10.74 88.35 £ 12.99 0.316%
Switching trials 90.83 £+ 11.27 88.86 + 14.42 0.655%

2
xX°.
SUnpaired two-sample t-test.

linear model was about 80% (R*> = 0.806) and the best age
predictors were HbO mean concentration for shape single-task
in the sFG (p = 0.003, B = 0.342) and HbO mean concentration

for switching task in the PMC (p = 0.01, = —0.321)
(Figure 4).

DISCUSSION

In the last decades, neuroimaging studies have been

particularly focused in understanding the neurofunctional
bases of physiological aging effects on cognitive processes.
In particular, functional neuroimaging studies have shown
that cognitive control processes involve a broad network
centered on frontoparietal areas (e.g., Corbetta and Shulman,
2002; Dosenbach et al., 2008), which are thought to subserve
underlying different cognitive operations (D’Esposito et al,
1995; Duncan et al., 1996; Posner and DiGirolamo, 1998).
Age-related worsening in behavioral performance is associated
with changes in neural patterns of activation, involving the
under-recruitment of task-specific regions (deactivations and a
decreased spatial extent of activation), hemispheric lateralization,
and the recruitment of additional brain areas, especially of frontal
regions (DiGirolamo et al., 2001; Milham et al., 2002; Gold et al.,
2010). This increased frontal activation has led to opposing
interpretations: evidence of an adaptive positive compensatory
mechanism in order to preserve cognitive functioning (Reuter-
Lorenz and Cappell, 2008; Davis et al., 2009; Reuter-Lorenz and
Park, 2014) or age-related brain dysfunction (Colcombe et al.,
2005; Rypma et al.,, 2005, 2006; Zarahn et al., 2007; Stern, 2009;
Gold et al., 2013; Zhu et al., 2015).

The most common tasks used to define cognitive reserve
in elderly people are Go/NoGo (inhibitory control), n-back
(working memory), and task-switching (cognitive control). Age-
related alterations in brain activation tend to be especially
pronounced on tasks that emphasize cognitive control processes
(Drag and Bieliauskas, 2010). As a consequence, among these,
task-switching has been extensively used to evaluate physiological
aging influence on executive deficits (DiGirolamo et al., 2001;
Milham et al., 2002; Gold et al., 2010; Zhu et al., 2014; Hakun
et al, 2015; Eich et al., 2016; Jolly et al., 2017). However,
the existing knowledge on this research field has been mainly
achieved by advanced neuroimaging methods, as Positron
Emission Tomography (PET) (Berry et al, 2016) structural
MRI (Zhu et al., 2014; Jolly et al., 2017) and functional MRI
(DiGirolamo et al., 2001; Milham et al., 2002; Gold et al., 2010;
Hakun et al., 2015; Eich et al., 2016).

Albeit these conventional neuroimaging modalities have
proven to be effective and reliable, their well-known limitations
(very expensive, invasive, and with several constraints for patients
with physical limitations) make them unsuitable for a large scale
application. fNIRS is a non-invasive neuroimaging technique
able to investigate in vivo brain hemodynamic (Villringer
et al., 1993) with reasonable temporal and spatial resolution,
quantifying task-related changes in oxygenated hemoglobin
(HbO) and deoxygenated hemoglobin (HbR) concentrations
(Cutini et al., 2014).
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By the advantages of being non-invasive, more ecological
than conventional neuroimaging methodologies and able to
investigate in vivo brain hemodynamic (Villringer et al,
1993) with reasonable temporal and spatial resolution, fNIRS
technology has been recognized as a suitable tool for application
in the field of cognitive aging (Agbangla et al., 2017).

The most consistently reported pattern of age-related
differences in brain activation is the increased high involvement
of the prefrontal cortex. This overactivation in older adults
is often interpreted as a compensatory mechanism when it
is concomitant with preserved cognitive performance. Recent
results of NIRS studies on working memory (Vermeij et al,
2012, 2014a,b, 2016) are in agreement with this model, showing
that higher activation at a high cognitive load was predictive
of higher behavioral improvements, whereas relatively higher
prefrontal recruitment at a low cognitive load was related to
worse behavioral performance and improvement.

In addition, to the best of our knowledge only one study
(Lagué-Beauvais et al., 2013) monitored age-related modulation
on task switch using fNIRS during a modified Stroop task.
Their univariate statistical approach also confirmed that the two
executive processes of interference and switching are associated

with distinct patterns of prefrontal activation and that both these
patterns appear more spread out in the PFC of older adults.

Our work aimed at overcoming the intrinsic limit of univariate
statistic by combining the well-known task-switching paradigm
and the fNIRS technology by a multivariate statistical approach.
Indeed, we were able to disentangle the relative contribution of
age-related functional alterations of frontoparietal areas and to
evaluate a possible dissociation between different mechanisms
(deactivations or hyperactivation) that those regions adopt to
compensate the age-related cognitive decline.

In particular, our behavioral data confirms previous evidence
of the importance of the task-switching in defining cognitive
cost. Moreover, this greater cognitive demand correlates with
age, confirming that aging effect can be captured during specific
cognitive tasks. In addition, fNIRS confirms that this effect
also occurs at the neurobiological level, with an increase in
functional activity of the frontal areas. Although the association
between sFG activity and aging has been found in other
neuroimaging studies (DiGirolamo et al., 2001; Milham et al.,
2002; Gold et al,, 2010; Zhu et al, 2014, 2015; Hakun et al,,
2015; Berry et al.,, 2016; Eich et al, 2016; Jolly et al., 2017),
the new finding which merits to be highlight is the opposite
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trend in the correlation between PMC activity (HbO and
HbR mean concentrations) and aging. Although surprising,
this result may be explained by the fact that age-related
cognitive decline is associated to an increase in compensatory
functional activity and a simultaneous decreased cortical activity
of other regions. In particular, it has been demonstrated
that during working memory with increasing task load, older
adults showed decreased connectivity and ability to suppress
activity in other brain regions. The deactivation of other strictly
connected brain regions is essential for the correct execution
of cognitively demanding tasks (Sambataro et al, 2010). The
positive correlation between age and HbO concentration change
in the sFG during the single task could be explained in terms
of an additional effort required by working memory process
in older people. This finding is consistent with the results of
a neuropsychological study (du Boisgueheneuc et al., 2006),
which found that patients with a left sFG lesion exhibited
a working memory deficit when compared with all control
groups.

It is worth noting that the present probe arrangement did not
include short separation channels, which are typically employed
to eliminate systemic, task-dependent physiological oscillations
that might create a confounding factor when evaluating
the task-evoked brain hemodynamic response (Tachtsidis
and Scholkmann, 2016). This issue is caused by a specific
reason: beside capturing hemodynamic variations related to
cortical activity, the signal from fNIRS channels with a

standard source-detector distance (e.g., 3 cm) is contaminated
with superficial, physiological hemodynamic fluctuations (e.g.,
heartbeat and Mayer’s waves), located both in the vasculature
of the layers overlaying the brain and in the brain itself
(Caldwell et al., 2016). Given that the source-detector distance
is inversely related to the proportion of photons reaching
the cortex, short-separation channels enable to measure the
same global, superficial hemodynamic fluctuations visible in
standard channels, while also being insensitive to brain activity
(Brigadoi and Cooper, 2015); indeed, confounding effects from
extracerebral contamination and systemic factors are eliminated
by regressing out the signal obtained from short-channels from
the one observed in the standard channels. This procedure
assures that the activity found in standard channels can be
safely attributed to brain activation. Although with the present
arrangement, we cannot completely rule out the presence
of a physiological contamination in our results, two aspects
deserve careful consideration. The first one concerns the design
of the experimental protocol: the stringent control condition
provided by repetition trials makes unlikely that the different
hemodynamic pattern between switch and repetitions trials
can be attributed to physiological oscillations; the experimental
paradigm was specifically to have just one difference (i.e., the
reconfiguration of task-set) between switch and repetition trials.
The same line of reasoning has been recently highlighted in
theoretical works (e.g., Scholkmann et al, 2013; Tachtsidis
and Scholkmann, 2016) and it can be appreciated in recent
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NIRS studies on clinical populations (e.g., Cutini et al., 2016).
Second, the hallmark of extracerebral contamination is the
ubiquitous presence in all the channels, thereby implying
that all the regions should show the same hemodynamic
pattern; crucially, in our results we observed a clear functional
dissociation between PMC and sFG. Taken together, these two
observations strongly suggest that the hemodynamic activity
found in the present study is mainly driven by cortical
activation.

In conclusion, we might speculate that the two active regions
found with fNIRS are both bound to physiological aging but they
might be representative of two distinct cognitive processes that
are partially dissociable.

AUTHOR CONTRIBUTIONS

RV: analyses and interpretation of the data, statistical analysis
and drafting/revising the manuscript, final approval of the
version to be published; SC: study concept and design,
analyses and interpretation of the data, statistical analysis, and
drafting/revising the manuscript, final approval of the version
to be published; AC: study concept and design, data collection
and interpretation and drafting/revising the manuscript, final
approval of the version to be published; VG: data collection,
analysis and interpretation, and drafting/revising the manuscript,

REFERENCES

Agbangla, N. F., Audiffren, M., and Albinet, C. T. (2017). Use of near-infrared
spectroscopy in the investigation of brain activation during cognitive aging: a
systematic review of an emerging area of research. Ageing Res. Rev. 38, 52-66.
doi: 10.1016/j.arr.2017.07.003

Amiri, M., Pouliot, P., Bonnéry, C., Leclerc, P. O., Desjardins, M., Lesage, F., et al.
(2014). An exploration of the effect of hemodynamic changes due to normal
aging on the fNIRS response to semantic processing of words. Front. Neurol.
5:249. doi: 10.3389/fneur.2014.00249

Badre, D., and Wagner, A. D. (2006). Computational and neurobiological
mechanisms underlying cognitive flexibility. Proc. Natl. Acad. Sci. U.S.A. 103,
7186-7191. doi: 10.1073/pnas.0509550103

Berry, A. S, Shah, V. D., Baker, S. L., Vogel, ]. W., O’Neil, J. P., Janabi, M., et al.
(2016). Aging affects dopaminergic neural mechanisms of cognitive flexibility.
J. Neurosci. 36, 12559-12569. doi: 10.1523/JNEUROSCI.0626-16.2016

Brass, M., and von Cramon, D. Y. (2004). Selection for cognitive control:
a functional magnetic resonance imaging study on the selection of task-
relevant information. J. Neurosci. 24, 8847-8852. doi: 10.1523/JNEUROSCI.
2513-04.2004

Braver, T. S., Reynolds, J. R., and Donaldson, D. I. (2003). Neural mechanisms
of transient and sustained cognitive control during task switching. Neuron 39,
713-726. doi: 10.1016/S0896-6273(03)00466-5

Brigadoi, S. and Cooper, R. J. (2015). How short is short? Optimum source-
detector distance for short-separation channels in functional near-infrared
spectroscopy. Neurophotonics 2:025005. doi: 10.1117/1.NPh.2.2.025005

Caldwell, M., Scholkmann, F., Wolf, U., Wolf, M., Elwell, C., and Tachtsidis, 1.
(2016). Modelling confounding effects from extracerebral contamination and
systemic factors on functional near-infrared spectroscopy. Neuroimage 143,
91-105. doi: 10.1016/j.neuroimage.2016.08.058

Cohen, J. (1998). Statistical Power Analysis for the Behavioral Sciences, 2nd Edn.
Hillsdale, NJ: Lawrence EarlbaumAssociates.

Colcombe, S. J., Kramer, A. F., Erickson, K. I, and Scalf, P. (2005). The
implications of cortical recruitment and brain morphology for individual

final approval of the version to be published; GO: data collection
and final approval of the version to be published; GA and AQ:
drafting/revising the manuscript, final approval of the version to
be published.

FUNDING

This study was supported by MIUR (Ministero Universita’ e
Ricerca Italiana; PONO3PE_00009-NEUROMEASURES).

ACKNOWLEDGMENTS

The authors wish to thank Prof. Christophe Grova, Associate
Professor in Physics Department and PERFORM centre,
Concordia University and Zhengchen Cai, PhD student
in the same department for their help and support
in the determination of probabilistic model of photon
migration through the head and in performing sensitivity
analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.
2017.00433/full#supplementary-material

differences in inhibitory function in aging humans. Psychol. Aging 20, 363-375.
doi: 10.1037/0882-7974.20.3.363

Cope, M., and Delpy, D. T. (1988). System for long-term measurement of
cerebral blood and tissue oxygenation on newborn infants by near infra-
red transillumination. Med. Biol. Eng. Comput. 26, 289-294. doi: 10.1007/
BF02447083

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and
stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201-215.
doi: 10.1038/nrn755

Crone, E. A., Donohue, S. E.,, Honomichl, R., Wendelken, C., and Bunge, S.
A. (2006). Brain regions mediating flexible rule use during development.
J. Neurosci. 26, 11239-11247. doi: 10.1523/JNEUROSCI.2165-06.2006

Cutini, S., Basso Moro, S., and Bisconti, S. (2012). Functional near infrared optical
imaging in cognitive neuroscience: an introductory review. J. Near Infrared
Spectrosc.20, 75-92. doi: 10.1255/jnirs.969

Cutini, S., and Brigadoi, S. (2014). Unleashing the future potential of functional
near-infrared spectroscopy in brain sciences. J. Neurosci. Methods 232,
152-156. doi: 10.1016/j.jneumeth.2014.05.024

Cutini, S., Scarpa, F., Scatturin, P., Dell’Acqua, R., and Zorzi, M. (2014). Number-
space interactions in the human parietal cortex: enlightening the SNARC
effect with functional near-infrared spectroscopy. Cereb. Cortex 24, 444-451.
doi: 10.1093/cercor/bhs321

Cutini, S., Scatturin, P., Menon, E., Bisiacchi, P. S., Gamberini, L., Zorzi,
M., et al. (2008). Selective activation of the superior frontal gyrus in
task-switching: an event-related fNIRS study. Neuroimage 42, 945-955.
doi: 10.1016/j.neuroimage.2008.05.013

Cutini, S., Szucs, D., Mead, N., Huss, M., and Goswami, U. (2016).
Atypical right hemisphere response to slow temporal modulations
in children with developmental dyslexia. Neuroimage 143, 40-49.

doi: 10.1016/j.neuroimage.2016.08.012

Davis, S. W., Dennis, N. A., Buchler, N. G., White, L. E., Madden, D.
J. and Cabeza, R. (2009). Assessing the effects of age on long white
matter tracts using diffusion tensor tractography. Neuroimage 46, 530-541.
doi: 10.1016/j.neuroimage.2009.01.068

Frontiers in Aging Neuroscience | www.frontiersin.org

January 2018 | Volume 9 | Article 433


https://www.frontiersin.org/articles/10.3389/fnagi.2017.00433/full#supplementary-material
https://doi.org/10.1016/j.arr.2017.07.003
https://doi.org/10.3389/fneur.2014.00249
https://doi.org/10.1073/pnas.0509550103
https://doi.org/10.1523/JNEUROSCI.0626-16.2016
https://doi.org/10.1523/JNEUROSCI.2513-04.2004
https://doi.org/10.1016/S0896-6273(03)00466-5
https://doi.org/10.1117/1.NPh.2.2.025005
https://doi.org/10.1016/j.neuroimage.2016.08.058
https://doi.org/10.1037/0882-7974.20.3.363
https://doi.org/10.1007/BF02447083
https://doi.org/10.1038/nrn755
https://doi.org/10.1523/JNEUROSCI.2165-06.2006
https://doi.org/10.1255/jnirs.969
https://doi.org/10.1016/j.jneumeth.2014.05.024
https://doi.org/10.1093/cercor/bhs321
https://doi.org/10.1016/j.neuroimage.2008.05.013
https://doi.org/10.1016/j.neuroimage.2016.08.012
https://doi.org/10.1016/j.neuroimage.2009.01.068
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

Vasta et al.

Task-Switching in Physiological Aging: A fNIRS Study

Delpy, D. T., Cope, M., Vanderzee, P., Arridge, S., Wray, S., and Wratt,
J. (1988). Estimation of optical pathlength through tissue from
direct time of flight measurement. Phys. Med. Biol. 33, 1433-1442.
doi: 10.1088/0031-9155/33/12/008

D’Esposito, M., Detre, J. A., Alsop, D. C,, Shin, R. K., Atlas, S., and Grossman, M.
(1995). The neural basis of the central executive system of working memory.
Nature 378, 279-281. doi: 10.1038/378279a0

DiGirolamo, G. J., Kramer, A. F., Barad, V. Cepeda, N. J., Weissman,
D. H., Miham, M. P, et al. (2001). General and task-specific
frontal lobe recruitment in older adults during executive processes:
a fMRI investigation of task-switching. Neuroreport 12, 2065-2071.
doi: 10.1097/00001756-200107030-00054

Dosenbach, N. U,, Fair, D. A., Cohen, A. L., Schlaggar, B. L., and Petersen, S. E.
(2008). A dual-networks architecture of top-down control. Trends Cogn. Sci.
12, 99-105. doi: 10.1016/j.tics.2008.01.001

Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., and von Cramon, D.
Y. (2000). Prefrontal cortex activation in task switching: an event-related
fMRI study. Cogn. Brain Res. 9, 103-109. doi: 10.1016/50926-6410(99)
00029-4

Drag, L. L., and Bieliauskas, L. A. (2010). Contemporary review 2009: cognitive
aging. J. Geriatr. Psychiatry Neurol. 23, 75-93. doi: 10.1177/0891988709358590

du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun,
S., et al. (2006). Functions of the left superior frontal gyrus in humans: a lesion
study. Brain 129(Pt 12), 3315-3328. doi: 10.1093/brain/awl244

Duncan, J., Emslie, H., Williams, P., Johnson, R., and Freer, C. (1996). Intelligence
and the frontal lobe: the organization of goal-directed behavior. Cogn. Psychol.
30, 257-303. doi: 10.1006/cogp.1996.0008

Eich, T. S., Parker, D., Liu, D., Oh, H., Razlighi, Q. Gazes, Y,
et al. (2016). Functional brain and age-related changes associated
with congruency in task switching. Neuropsychologia 91, 211-221.

doi: 10.1016/j.neuropsychologia.2016.08.009

Ferreri, L., Bigand, E., Perrey, S., and Bugaiska, A. (2014). The promise of near-
infrared spectroscopy (NIRS) for psychological research: a brief review. Ann.
Psychol. 114, 537-569. doi: 10.4074/S0003503314003054

Gold, B. T., Kim, C., Johnson, N. F., Kryscio, R. J., and Smith, C. D. (2013).
Lifelong bilingualism maintains neural efficiency for cognitive control in aging.
J. Neurosci. 33, 387-396. doi: 10.1523/JNEUROSCI.3837-12.2013

Gold, B. T., Powell, D. K., Xuan, L., Jicha, G. A, and Smith, C. D.
(2010). Age-related slowing of task switching is associated with decreased
integrity of frontoparietal white matter. Neurobiol. Aging 31, 512-522.
doi: 10.1016/j.neurobiolaging.2008.04.005

Habeck, C. G. (2010). Basics of multivariate analysis in neuroimaging data. J. Vis.
Exp. 41:1988. doi: 10.3791/1988

Hagen, K., Ehlis, A. C., Haeussinger, F. B., Heinzel, S., Dresler, T., Mueller, L. D,
etal. (2014). Activation during the Trail Making Test measured with functional
near-infrared spectroscopy in health elderly subjects. Neuroimage 85(Pt 1),
583-591. doi: 10.1016/j.neuroimage.2013.09.014

Hakun, J. G., Zhu, Z. D., Johnson, N. F., and Gold, B. T. (2015). Evidence for
reduced efficiency and successful compensation in older adults during task
switching. Cortex 64, 352-362. doi: 10.1016/j.cortex.2014.12.006

Herrmann, M. J., Walter, A., Ehlis, A. C.,, and Fallgatter, A. J. (2006). Cerebral
oxygenation changes in the prefrontal cortex: effects of age and gender.
Neurobiol. Aging 27, 888-894. doi: 10.1016/j.neurobiolaging.2005.04.013

Jamadar, S., Thienel, R., and Karayanidis, F. (2015). “Task switching processing,”
in Brain Mapping: An Encyclopedic Reference, ed A. W. Toga (Waltham, MA:
Academic Press), 327-335.

Jolly, T. A. D., Cooper, P. S., Rennie, J. L., Levi, C. R, Lenroot, R., Parsons, M. W.,
et al. (2017). Age-related decline in task switching is linked to both global and
tract-specific changes in white matter microstructure. Hum. Brain Mapp. 38,
1588-1603. doi: 10.1002/hbm.23473

Kahlaoui, K., Di Sante, G., Barbeau, J., Maheux, M., Lesage, F., Ska, B., et al. (2012).
Contribution of NIRS to the study of prefrontal cortex for verbal fluency in
aging. Brain Lang. 121, 164-173. doi: 10.1016/j.band1.2011.11.002

Lagué-Beauvais, M., Brunet, J., Gagnon, L., Lesage, F., and Bherer, L.
(2013). A fNIRS investigation of switching and inhibition during the
modified Stroop task in younger and older adults. Neuroimage 1, 485-495.
doi: 10.1016/j.neuroimage.2012.09.042

Milham, M. P., Erickson, K. I, Banich, M. T., Kramer, A. F., Webb, A., Wszalek,
T., et al. (2002). Attentional control in the aging brain: insights from an fMRI
study of the Stroop task. Brain Cogn. 49, 277-296. doi: 10.1006/brcg.2001.1501

Monsell, S. (2003). Task switching. Trends Cogn. Sci. 7, 134-140.
doi: 10.1016/S1364-6613(03)00028-7

Miiller, L. D., Guhn, A., Zeller, J. B. M., Biehl, S. C., Dresler, T., Hahn, T. et al.
(2014). Neural correlates of a standardized version of the trail making test
in young and elderly adults: a functional near-infrared spectroscopy study.
Neuropsychologia 56, 271-279. doi: 10.1016/j.neuropsychologia.2014.01.019

Obayashi, S., and Hara, Y. (2013). Hypofrontal activixty during word retrieval in
older adults: a near-infrared spectroscopy study. Neuropsychologia 51, 418-424.
doi: 10.1016/j.neuropsychologia.2012.11.023

Pieperhoff, P., Homke, L., Schneider, F., Habel, U., Shah, N. J., Zilles, K.,
et al. (2008). Deformation field morphometry reveals age-related structural
differences between the brains of adults up to 51 years. J. Neurosci. 28, 828-842.
doi: 10.1523/JNEUROSCI.3732-07.2008

Posner, M. L, and DiGirolamo, G. J. (1998). In The Attentive Brain, ed R.
Parasuraman (Cambridge, MA: MIT Press), 401-423.

Reuter-Lorenz, P. A, and Cappell, K. A. (2008). Neurocognitive aging
and the compensation hypothesis. Curr. Dir. Psychol. Sci. 17, 177-182.
doi: 10.1111/j.1467-8721.2008.00570.x

Reuter-Lorenz, P. A., and Park, D. C. (2014). How does it STAC Up? Revisiting
the scaffolding theory of aging and cognition. Neuropsychol. Rev. 24, 355-370.
doi: 10.1007/s11065-014-9270-9

Ruge, H., Brass, M., Koch, L, Rubin, O., Meiran, N., and von Cramona, D. Y.
(2005). Advance preparation and stimulus-induced interference in cued task
switching: further insights from BOLD fMRI. Neuropsychologia 43, 340-355.
doi: 10.1016/j.neuropsychologia.2004.06.014

Ruge, H., Jamadar, S., Zimmermann, U., and Karayanidis, F. (2013). The many
faces of preparatory control in task switching: reviewing a decade of fMRI
research. Hum. Brain Mapp. 34, 12-35. doi: 10.1002/hbm.21420

Rypma, B., Berger, J. S., Genova, H. M., Rebbechi, D., and D’Esposito,
M. (2005). Dissociating age-related changes in strategy
and neural efficiency using event-related fMRI. Cortex 41, 582-594.
doi: 10.1016/S0010-9452(08)70198-9

Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., Kimberg, D. Y., Biswal, B. B.,
et al. (2006). Neural correlates of cognitive efficiency. Neuroimage 33, 969-979.
doi: 10.1016/j.neuroimage.2006.05.065

Sambataro, F., Murty, V. P, Callicott, J. H., Tan, H. Y., Das, S., Weinberger,
D. R, et al. (2010). Age-related alterations in default mode network:
impact on working memory performance. Neurobiol. Aging 31, 839-852.
doi: 10.1016/j.neurobiolaging.2008.05.022

Schapkin, S. A., Gajewski, P. D., and Freude, G. (2014). Age differences in memory-
based task switching with and without cues an ERP study. J. Psychophysiol. 28,
187-201. doi: 10.1027/0269-8803/a000125

Scherer, L. C., Fonseca, R. P., Giroux, F., Senhadji, N., Marcotte, K., Tomitch,
L. M, et al. (2012). Neurofunctional (re)organization underlying narrative
discourse processing in aging: evidence from fNIRS. Brain Lang. 121, 174-184.
doi: 10.1016/j.bandl.2011.09.008

Schneider, W., Eschman, A., and Zuccolotto, A. (2012). E-Prime User’s Guide.
Pittsburgh, PA: Psychology Software Tools Inc.

Scholkmann, F., Gerber, U.,, Wolf, M., and Wolf, U. (2013). End-
tidal CO% An important parameter for a correct interpretation in
functional brain studies using speech tasks. Neuroimage 66, 71-79.
doi: 10.1016/j.neuroimage.2012.10.025

Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Mata Pavia, J., Wolf,
U, et al. (2014). A review on continuous wave functional near-infrared
spectroscopy and imaging instrumentation and methodology. Neuroimage 85,
6-27. doi: 10.1016/j.neuroimage.2013.05.004

Schroeter, M. L., Zysset, S., Kruggel, F., and Yves von Cramon, D.
(2003). Age dependency of the hemodynamic response as measured
by functional near-infrared spectroscopy. Neuroimage 19, 555-564.
doi: 10.1016/S1053-8119(03)00155-1

Slagter, H. A., Weissman, D. H., Giesbrecht, B., Kenemans, J. L., Mangun, G.
R., Kok, A,, et al. (2006). Brain regions activated by endogenous preparatory
set shifting as revealed by fMR1. Cogn. Affect. Behav. Neurosci. 6, 175-189.
doi: 10.3758/CABN.6.3.175

cognitive

Frontiers in Aging Neuroscience | www.frontiersin.org

January 2018 | Volume 9 | Article 433


https://doi.org/10.1088/0031-9155/33/12/008
https://doi.org/10.1038/378279a0
https://doi.org/10.1097/00001756-200107030-00054
https://doi.org/10.1016/j.tics.2008.01.001
https://doi.org/10.1016/S0926-6410(99)00029-4
https://doi.org/10.1177/0891988709358590
https://doi.org/10.1093/brain/awl244
https://doi.org/10.1006/cogp.1996.0008
https://doi.org/10.1016/j.neuropsychologia.2016.08.009
https://doi.org/10.4074/S0003503314003054
https://doi.org/10.1523/JNEUROSCI.3837-12.2013
https://doi.org/10.1016/j.neurobiolaging.2008.04.005
https://doi.org/10.3791/1988
https://doi.org/10.1016/j.neuroimage.2013.09.014
https://doi.org/10.1016/j.cortex.2014.12.006
https://doi.org/10.1016/j.neurobiolaging.2005.04.013
https://doi.org/10.1002/hbm.23473
https://doi.org/10.1016/j.bandl.2011.11.002
https://doi.org/10.1016/j.neuroimage.2012.09.042
https://doi.org/10.1006/brcg.2001.1501
https://doi.org/10.1016/S1364-6613(03)00028-7
https://doi.org/10.1016/j.neuropsychologia.2014.01.019
https://doi.org/10.1016/j.neuropsychologia.2012.11.023
https://doi.org/10.1523/JNEUROSCI.3732-07.2008
https://doi.org/10.1111/j.1467-8721.2008.00570.x
https://doi.org/10.1007/s11065-014-9270-9
https://doi.org/10.1016/j.neuropsychologia.2004.06.014
https://doi.org/10.1002/hbm.21420
https://doi.org/10.1016/S0010-9452(08)70198-9
https://doi.org/10.1016/j.neuroimage.2006.05.065
https://doi.org/10.1016/j.neurobiolaging.2008.05.022
https://doi.org/10.1027/0269-8803/a000125
https://doi.org/10.1016/j.bandl.2011.09.008
https://doi.org/10.1016/j.neuroimage.2012.10.025
https://doi.org/10.1016/j.neuroimage.2013.05.004
https://doi.org/10.1016/S1053-8119(03)00155-1
https://doi.org/10.3758/CABN.6.3.175
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

Vasta et al.

Task-Switching in Physiological Aging: A fNIRS Study

Stern, Y. (2009). Cognitive reserve. Neuropsychologia 47, 2015-2028.
doi: 10.1016/j.neuropsychologia.2009.03.004

Tachtsidis, I., and Scholkmann, F. (2016). False positives and false negatives in
functional near-infrared spectroscopy: issues, challenges, and the way forward.
Neurophotonics 3:31405. doi: 10.1117/1.NPh.3.3.031405

Terribilli, D., Schaufelberger, M. S., Duran, F. L., Zanetti, M. V., Curiati, P.
K., Menezes, P. R,, et al. (2011). Age-related gray matter volume changes
in the brain during non-elderly adulthood. Neurobiol. Aging 32, 354-368.
doi: 10.1016/j.neurobiolaging.2009.02.008

Vermeij, A., Kessels, R. P., Heskamp, L., Simons, E. M., and Dautzenberg, P.
L., Claassen,].A. (2016). Prefrontal activation may predict working-memory
training gain in normal aging and mild cognitive impairment. Brain Imaging
Behav. 11, 141-154. doi: 10.1007/s11682-016-9508-7

Vermeij, A., Meel-van den Abeelen, A. S., Kessels, R. P., van Beek, A. H,
and Claassen, J. A. (2014a). Very-low-frequency oscillations of cerebral
hemodynamics and blood pressure are affected by aging and cognitive load.
Neuroimage 85(Pt 1), 608-615. doi: 10.1016/j.neuroimage.2013.04.107

Vermeij, A., van Beek, A. H., Olde Rikkert, M. G., Claassen, J. A., and Kessels,
R. P. (2012). Effects of aging on cerebral oxygenation during working-
memory performance: a functional near-infrared spectroscopy study. PLoS
ONE 7:¢46210. doi: 10.1371/journal.pone.0046210

Vermeij, A., van Beek, A. H., Reijs, B. L., Claassen, J. A., and Kessels, R. P.
(2014b). An exploratory study of the effects of spatial working-memory load
on prefrontal activation in low- and high-performing elderly. Front. Aging
Neurosci. 6:303. doi: 10.3389/fnagi.2014.00303

Villringer, A., Planck, J., Hock, C., Schleinkofer, L., and Dirnagl, U. (1993). Near
infrared spectroscopy (NIRS): a new tool to study hemodynamic changes
during activation of brain function in human adults. Neurosci. Lett. 154,
101-104. doi: 10.1016/0304-3940(93)90181-]

Wager, T. D., Jonides, ], and Reading, S. (2004). Neuroimaging studies
of shifting attention: a meta-analysis. Neuroimage 22, 1679-1693.
doi: 10.1016/j.neuroimage.2004.03.052

Wilckens, K. A., Hall, M. H., Erickson, K. I, Germain, A., Nimgaonkar,
V. L, Monk, T. H., et al. (2017). Task switching in older adults with
and without insomnia. Sleep Med. 30, 113-120. doi: 10.1016/j.sleep.2016.
09.002

Zarahn, E., Rakitin, B., Abela, D., Flynn, J., and Stern, Y. (2007). Age-related
changes in brain activation during a delayed item recognition task. Neurobiol.
Aging 28, 784-798. doi: 10.1016/j.neurobiolaging.2006.03.002

Zhu, Z., Hakun, J. G., Johnson, N. F.,, and Gold, B. T. (2014). Age-related
increases in right frontal activation during task switching are mediated by
reaction time and white matter microstructure. Neuroscience 278, 51-61.
doi: 10.1016/j.neuroscience.2014.07.076

Zhu, Z., Johnson, N. F., Kim, C., and Gold, B. T. (2015). Reduced frontal cortex
efficiency is associated with lower white matter integrity in aging. Cereb. Cortex
25, 138-146. doi: 10.1093/cercor/bht212

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Vasta, Cutini, Cerasa, Gramigna, Olivadese, Arabia and
Quattrone. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) or licensor are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org

57

January 2018 | Volume 9 | Article 433


https://doi.org/10.1016/j.neuropsychologia.2009.03.004
https://doi.org/10.1117/1.NPh.3.3.031405
https://doi.org/10.1016/j.neurobiolaging.2009.02.008
https://doi.org/10.1007/s11682-016-9508-7
https://doi.org/10.1016/j.neuroimage.2013.04.107
https://doi.org/10.1371/journal.pone.0046210
https://doi.org/10.3389/fnagi.2014.00303
https://doi.org/10.1016/0304-3940(93)90181-J
https://doi.org/10.1016/j.neuroimage.2004.03.052
https://doi.org/10.1016/j.sleep.2016.09.002
https://doi.org/10.1016/j.neurobiolaging.2006.03.002
https://doi.org/10.1016/j.neuroscience.2014.07.076
https://doi.org/10.1093/cercor/bht212
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

',\' frontiers

In Aging Neuroscience

ORIGINAL RESEARCH
published: 12 February 2018
doi: 10.3389/fnagi.2018.00028

OPEN ACCESS

Edited by:

Christian Gaser,
Friedrich-Schiller-Universitat Jena,
Germany

Reviewed by:

Nils Muhlert,

University of Manchester,

United Kingdom

Franziskus Liem,

University of Zurich, Switzerland
Martin Lotze,

University of Greifswald, Germany

*Correspondence:
James H. Cole
Jjames.cole@kcl.ac.uk;
Jjames.cole@imperial.ac.uk

Received: 18 October 2017
Accepted: 23 January 2018
Published: 12 February 2018

Citation:

Lancaster J, Lorenz R, Leech R and
Cole JH (2018) Bayesian Optimization
for Neuroimaging Pre-processing

in Brain Age Classification

and Prediction.

Front. Aging Neurosci. 10:28.

doi: 10.3389/fnagi.2018.00028

®

Check for
updates

Bayesian Optimization

for Neuroimaging Pre-processing
in Brain Age Classification

and Prediction

Jenessa Lancaster’, Romy Lorenz?, Rob Leech'’ and James H. Cole"2*

T Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine,
Imperial College London, London, United Kingdom, ? Department of Neuroimaging, Institute of Psychiatry, Psychology and
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Neuroimaging-based age prediction using machine learning is proposed as a biomarker
of brain aging, relating to cognitive performance, health outcomes and progression of
neurodegenerative disease. However, even leading age-prediction algorithms contain
measurement error, motivating efforts to improve experimental pipelines. T1-weighted
MRI is commonly used for age prediction, and the pre-processing of these scans
involves normalization to a common template and resampling to a common voxel size,
followed by spatial smoothing. Resampling parameters are often selected arbitrarily.
Here, we sought to improve brain-age prediction accuracy by optimizing resampling
parameters using Bayesian optimization. Using data on N = 2003 healthy individuals
(aged 16-90 years) we trained support vector machines to (i) distinguish between young
(<22 years) and old (>50 years) brains (classification) and (i) predict chronological
age (regression). We also evaluated generalisability of the age-regression model to an
independent dataset (CamCAN, N = 648, aged 18-88 years). Bayesian optimization
was used to identify optimal voxel size and smoothing kernel size for each task. This
procedure adaptively samples the parameter space to evaluate accuracy across a range
of possible parameters, using independent sub-samples to iteratively assess different
parameter combinations to arrive at optimal values. When distinguishing between
young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel
size = 11.5 mm®, smoothing kernel = 2.3 mm). For predicting chronological age, a
mean absolute error (MAE) of 5.08 years was achieved, (optimal voxel size = 3.73 mm?,
smoothing kernel = 3.68 mm). This was compared to performance using default values
of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3%
improvement was not statistically significant. When assessing generalisability, best
performance was achieved when applying the entire Bayesian optimization framework
to the new dataset, out-performing the parameters optimized for the initial training
dataset. Our study outlines the proof-of-principle that neuroimaging models for brain-
age prediction can use Bayesian optimization to derive case-specific pre-processing
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parameters. Our results suggest that different pre-processing parameters are selected
when optimization is conducted in specific contexts. This potentially motivates use of
optimization techniques at many different points during the experimental process, which
may improve statistical sensitivity and reduce opportunities for experimenter-led bias.

Keywords: brain aging, Bayesian optimization, T1-MRI, machine learning, pre-processing

INTRODUCTION

The aging process affects the structure and function of the
human brain in a characteristic manner that can be measured
using neuroimaging. This quantifiable relationship was key to
the early demonstrations of voxel-based morphometry (VBM)
(Good et al., 2001) and to this day represents one of the most
robust relationships between a measurable phenomenon (i.e.,
aging) and brain structure. This makes aging an ideal target
for evaluating novel neuroimaging analysis tools. More recently,
researchers have used this relationship to develop neuroimaging-
based tools for predicting chronological age in healthy people
using machine learning (Franke et al., 2010; Cole et al., 2017b).
A ‘brain-predicted age’ determined from magnetic resonance
imaging (MRI) scans represents an intuitive summary measure of
the natural deterioration associated with the effects of the aging
process on the brain, and has the potential to serve as biomarker
of age-related health (Cole, 2017).

The extent to which brain-predicted age is greater than
an individual’s chronological age has been associated with
accentuated age-associated physical and cognitive decline (Cole
et al, 2017c). Specifically, an ‘older’-appearing brain has
been associated with decreased fluid intelligence, reduced lung
function, weaker grip strength, slower walking speed and an
increased likelihood of mortality in older adults (Cole et al.,
2017c). Factors which could contribute to an increased brain-
predicted age include genetic effects, neurological or psychiatric
conditions, or poor physical health (Koutsouleris et al., 2013;
Lowe et al., 2016; Steffener et al., 2016; Cole et al., 2017¢,d;
Pardoe et al, 2017). Potentially, individuals at increased risk
of experiencing the negative consequences of brain aging, such
as cognitive decline and neurodegenerative disease, could be
identified by measuring brain-predicted age in clinical groups or
even screening the general population.

Despite promising results to-date, models for generating
brain-predicted age still continue to contain measurement error,
and efforts to improve accuracy and particularly, generalisability,
to data from different MRI scanners are warranted. Training
on large cohorts of healthy adults is one approach to reduce
error, with the lowest mean absolute error (MAE) rates between
4 and 5 years (Konukoglu et al., 2013; Irimia et al., 2014;
Steffener et al.,, 2016; Cole et al., 2017b). Notably, individual
errors range across the population from perfect prediction to
discrepancies as great as 25 years. While brain-predicted age has
high test-retest reliability (Cole et al., 2017b), and a proportion
of this variation likely reflects underlying population variability,
certainly a substantial amount of noise remains. This means
that a model with an MAE = 0 is highly unlikely, however, the
lower bound of prediction accuracy has not yet been reached, as

indicated by the gradual improvements in performance seen in
more recent methods. This means that efforts to reduce noise,
improve prediction accuracy and in particular the generalisability
to new data is essential if such approaches are to be applied to
individuals in a clinical setting, the ultimate goal of any putative
health-related biomarker.

A key issue in brain-age prediction, along with many other
neuroimaging approaches, is the choice of methods for extracting
features or summary measures from raw data for further analysis
(Jones et al., 2005; Klein et al., 2009; Franke et al., 2010;
Andronache et al., 2013; Shen and Sterr, 2013). For example,
the majority of brain-age prediction pipelines have used T1-
weighted MRI data and either generated voxelwise maps of brain
volume (e.g., Cole et al., 2015) or summary measures of cortical
thickness and subcortical volumes (e.g., Liem et al., 2017). The
parameters set during image pre-processing are commonly the
defaults supplied by the software developer or are based on prior
studies. Nevertheless, the choice of pre-processing parameters
may have a strong influence on the outcome of any subsequent
data modeling, and ideally should be optimized on a case-by-case
basis. This optimization is rarely conducted, as trial-and-error
approaches are time-consuming and often ill-posed. Importantly,
using sub-optimal pre-processing may reduce experimental
precision, which increases the likelihood of false positives or
false negatives as well as reducing reproducibility. In the worst-
case scenario, p-hacking may occur, whereby pre-processing is
manually optimized based on minimizing the resultant p-values
of the subsequent hypothesis testing within the same sample.
Here, we outline a principled Bayesian optimization strategy
for identifying optimal values for pre-processing parameters
in neuroimaging analysis, implementing sub-sampling to avoid
bias. We then demonstrate proof-of-principle applied to the
problem of age prediction using machine learning.

Bayesian optimization is an efficient and unbiased approach to
parameter selection, which avoids both the failure to adequately
search a large parameter space and the drawbacks of an
exhaustive search. Instead, it utilizes a guided sampling strategy,
assessing a subgroup of points from within the possible parameter
space and testing these values on subsets of the total sample
(Brochuetal., 2010; Snoek et al., 2012). This data division strategy
ensures performance tests reflect out-of-sample prediction and
always evaluate differing conditions on separate data, reducing
the likelihood of overfitting. This intelligent selection of a small
number of points for evaluation allows the characterization of
parameter space and the solution of the optimization problem
to be accomplished in fewer steps, making it a computationally
efficient approach (Pelikan et al., 2002).

The current work used Bayesian optimization to attempt to
optimize image pre-processing parameters for: (i) distinguishing
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the brains of young and old adults (classification), (ii) predicting
chronological age (regression), and (iii) evaluating the
generalisability of the resulting optima for the regression task to
an independent dataset. The classification task was included to
allow evaluation of Bayesian Optimization hyper-parameters and
to show the applicability of Bayesian optimization to different
contexts. We hypothesized that by using Bayesian optimization
we would improve model accuracy compared to previously
used ‘non-optimized’ values. The study was designed to show
proof-of-principle of the applicability of Bayesian optimization
to help improve neuroimaging pre-processing in a principled
and unbiased fashion.

MATERIALS AND METHODS

Neuroimaging Datasets

This study used data compiled from 14 public sources (see
Table 1), and as per our previous research (e.g., Cole et al.,
2015), referred to here as the brain-age healthy control (BAHC)
dataset. Data included T1-weighted MRI from 2003 healthy
individuals aged 16-90 years (male/female = 1016/987, mean
age = 36.50 £ 18.52). All BAHC participants were either
originally included in studies of healthy individuals, or as healthy
controls from case-control studies. As such, all were screened
according to local study protocols to ensure they had no history
of neurological, psychiatric or major medical conditions. Images
were acquired at 1.5T or 3T with standard T1-weighted MRI
sequences (see Table 1). Ethical approval and informed consent
were obtained locally for each study covering both participation
and subsequent data sharing.

Additionally, the Cambridge Centre for Aging Neuroscience
(CamCAN) neuroimaging cohort was used as an independent
validation dataset (Shafto et al., 2014; Taylor et al, 2017).
These data were obtained from the CamCAN repository'. The
CamCAN cohort consisted of T1-weighted images (acquired at
3T, using a 3D MPRAGE sequence: repetition time = 2250 ms,
echo time = 2.99 ms, inversion time = 900 ms; flip angle = 9%
field of view = 256 x 240 x 192 mm; 1 mm isotropic voxels)
from 648 participants aged 18-88 years (male/female = 324/324,
mean age 54.28 £ 18.56). This study used similar exclusion
criteria, including only healthy individuals. Ethical approval for
CamCAN was obtained locally, including the permission to
subsequently make anonymised versions of the data publicly
available.

An outline of the analysis pipeline for the study has been
included as Figure 1. The details of each stage are as follows.

Pre-processing to Prediction

Normalized brain volume maps were created following a
standa