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Editorial on the Research Topic

Forward and inverse solvers in multi-modal electric and magnetic brain

imaging: theory, implementation, and application

Understanding the complexities of brain function and structure remains one

of the most challenging and exciting frontiers in neuroscience (Sporns, 2013).

Advances in multi-modal brain imaging, integrating electrophysiological and

magnetophysiological techniques such as non-invasive electroencephalography (EEG),

invasive electroencephalography (iEEG), including both stereo-electroencephalography

(sEEG), electrocorticography (ECoG), and magnetoencephalography (MEG), have

provided unprecedented insights into neural dynamics (Hämäläinen et al., 1993; Gross

et al., 2001; Baillet et al., 2001). A central challenge in this domain is solving the forward

and inverse problems, which enable the estimation of the brain activity underlying

measured signals (Baillet et al., 2001; Wolters et al., 2004; Mosher et al., 1999; Wolters

et al., 2006; Piastra et al., 2021; Brette and Destexhe, 2012; Pursiainen et al., 2011).

This Research Topic aimed to bring together cutting-edge research on the theoretical

foundations, computational methodologies, and practical applications of forward and

inverse solvers in multi-modal electric and magnetic brain imaging. The contributions

within this Research Topic span fundamental methodological advances, novel algorithmic

frameworks, and state-of-the-art applications that push the boundaries of neuroimaging.
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Theoretical and computational
advances

One of the significant challenges in EEG/MEG source analysis

is accounting for the uncertainties in tissue conductivity. Vorwerk

et al. investigated the global sensitivity of EEG source analysis

to tissue conductivity uncertainties, emphasizing the importance

of accurate head volume conductor models in forward problem

solutions (Vorwerk et al., 2014, 2019; Lucka et al., 2012).

Their findings highlight how variations in tissue conductivity

can significantly impact source localization accuracy, concluding

that an accurate parametrization of the head volume conductor

model is as important as an accurate representation of the

geometry (Wolters et al., 2006; Vorwerk et al., 2014, 2019).

Piastra et al. conducted a validation study using stereotactic

sEEG data to assess the accuracy of head volume conductor

models. Their work underscores the necessity of precise modeling

in achieving reliable source localization in combination with

empirical validations. Erdbrügger et al. introduced the CutFEM

forward modeling approach for EEG source analysis (Miinalainen

et al., 2019; Vorwerk et al., 2017; Medani et al., 2015; Dubarry

et al., 2023). This method offers enhanced flexibility in handling

complex geometries and tissue interfaces in head volume conductor

models, contributing to more accurate forward solutions in

EEG studies.

Algorithmic innovations and
implementations

Advancements in algorithmic frameworks are crucial for

improving source localization techniques. Luria et al. presented the

SESAMEEG package, a probabilistic tool for source localization

and uncertainty quantification in MEG/EEG analysis (Wipf

and Nagarajan, 2009; Aydin et al., 2015; Mosher and Leahy,

1998). This package facilitates more robust and interpretable

source estimates by incorporating probabilistic modeling. Ghosh

et al. developed the Structured Noise Champagne algorithm, an

empirical Bayesian approach for electromagnetic brain imaging

that accounts for structured noise. This method enhances the

reliability of source reconstructions in the presence of complex

noise structures (Baillet et al., 2001; Mosher et al., 1999).

Giri et al. proposed an F-ratio-based method for estimating

the number of active sources in MEG data. Their approach

aids in determining the optimal model complexity, balancing

the trade-off between model fit and overfitting (Adler et al.,

2022).

Applications and future directions

The practical impact of these methodological advancements

has been demonstrated in numerous studies. Guillen et al.

explored optimized high-definition transcranial direct current

stimulation (tDCS) in patients with skull defects and implants,

demonstrating the clinical relevance of accurate modeling in

neuromodulation therapies (Carla Piastra et al., 2021; Rampersad

et al., 2014; Armonaite et al., 2025; Pursiainen et al., 2018).

Huang visualized interferential stimulation of human brains,

providing insights into the spatial distribution of electric fields

during stimulation protocols (Huang et al., 2018; Saturnino

et al., 2019). This work contributes to the optimization

of stimulation parameters for therapeutic interventions.

Furthermore, Prieto et al. analyzed the effects of lattice layout

and optimizer selection on generating optimal transcranial

electrical stimulation (tES) montages using the metaheuristic

L1L1 method. Their findings inform the design of more effective

stimulation configurations.

Collectively, these contributions underscore the importance of

integrating theoretical, computational, and practical perspectives

in advancing EEG/MEG source analysis as well as tES modeling.

Future research directions may include the development of

standardized pipelines (Vorwerk et al., 2014; Rampersad et al.,

2014; Erdbrügger et al., 2024; Medani et al., 2023; He et al.,

2020), the incorporation of machine learning techniques for model

selection and parameter estimation, and the expansion of open-

source tools to facilitate broader accessibility and reproducibility

in the field (He et al., 2020; Vorwerk et al., 2018; Oostenveld

et al., 2011; Tadel et al., 2011, 2019; Gramfort et al., 2013;

Delorme and Makeig, 2004; Schrader et al., 2021; Cui et al.,

2024).

We extend our sincere gratitude to all authors for their high-

quality contributions and to the reviewers for their thoughtful

feedback.We hope this Research Topic serves as a valuable resource

for both newcomers and experienced researchers aiming to advance

the state of the art in neuroelectromagnetic modeling.
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Introduction: Source analysis of Electroencephalography (EEG) data requires the

computation of the scalp potential induced by current sources in the brain.

This so-called EEG forward problem is based on an accurate estimation of the

volume conduction e�ects in the human head, represented by a partial di�erential

equation which can be solved using the finite element method (FEM). FEM

o�ers flexibility when modeling anisotropic tissue conductivities but requires a

volumetric discretization, a mesh, of the head domain. Structured hexahedral

meshes are easy to create in an automatic fashion, while tetrahedral meshes are

better suited to model curved geometries. Tetrahedral meshes, thus, o�er better

accuracy but are more di�cult to create.

Methods: We introduce CutFEM for EEG forward simulations to integrate the

strengths of hexahedra and tetrahedra. It belongs to the family of unfitted finite

element methods, decoupling mesh and geometry representation. Following a

description of the method, we will employ CutFEM in both controlled spherical

scenarios and the reconstruction of somatosensory-evoked potentials.

Results: CutFEM outperforms competing FEM approaches with regard to

numerical accuracy, memory consumption, and computational speed while being

able to mesh arbitrarily touching compartments.

Discussion: CutFEM balances numerical accuracy, computational e�ciency, and

a smooth approximation of complex geometries that has previously not been

available in FEM-based EEG forward modeling.

KEYWORDS

EEG forwardproblem, realistic headmodeling, volumeconductormodeling, unfitted FEM,

level set, finite element method

1. Introduction

Electroencephalography (EEG) is a widely used tool for the assessment of neural activity

in the human brain (Brette andDestexhe, 2012). To estimate the area of the brain responsible

for the measured data, one has to simulate the electric potential as induced by hypothetical

current sources in the brain, i.e., the EEG forward problem has to be solved. While quasi-

analytical solutions to the differential equation underlying the forward problem exist,

these are only available in simplified geometries such as the multi-layer sphere model
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(De Munck and Peters, 1993). One, thus, requires numerical

methods to incorporate accurate representations of the head’s

shape and volume conduction properties. Popular approaches

are the boundary element method (BEM) (Mosher et al., 1999;

Gramfort et al., 2011; Makarov et al., 2020), finite difference

method (FDM) (Song et al., 2015; Cuartas Morales et al., 2019),

and the finite element method (FEM) (Zhang et al., 2004;

Vallaghé and Papadopoulo, 2010; Medani et al., 2015; Acar

et al., 2016; Azizollahi et al., 2018). Here, we will focus on the

FEM due to its flexibility in modeling complex geometries with

inhomogeneous and anisotropic compartments (Schimpf et al.,

2002; Van Uitert et al., 2004; Wolters et al., 2007; Bangera et al.,

2010; Nüßing et al., 2016; Beltrachini, 2018; He et al., 2020; Vermaas

et al., 2020). Efficient solvers and the transfer matrix approach

(Wolters et al., 2004; Lew et al., 2009) allow significantly reduced

computational costs.

When employing FEM, one usually chooses between either

a hexahedral or tetrahedral discretization of the head. Both

choices come with their own strengths and limitations. The

mesh creation requires a classification of the MRI into tissue

types. This segmentation data often come in the form of binary

maps with voxels of approximately 1mm resolution, allowing

for quick and simple hexahedral mesh generation. However, as

head tissue surfaces are smooth, approximating them with regular

hexahedra is bound to be inaccurate. While the methods for

geometry adaptation exist (Wolters et al., 2007), the resulting

meshes still have an (reduced) angular pattern. Furthermore, when

applying a standard continuous Galerkin FE scheme, areas with

very thin compartments may suffer from leakage effects where

current can bypass the insulating effects of the skull (Sonntag

et al., 2013). To alleviate this, flux-based methods, such as the

discontinuous Galerkin method, offer a robust alternative (Engwer

et al., 2017). These, however, severely increase the number of

degrees of freedom (DOF) and thus necessary for computational

effort.

Surface-based tetrahedral FEM approaches, on the other hand,

are able to accuratelymodel the curvature of smooth tissue surfaces.

Creating high quality tetrahedra, e.g., ones fulfilling a delaunay

criterion, requires tissue surface representations in the form of

triangulations first. These triangulations have to be free of self-

intersections and are often nested, usually leading to modeling

inaccuracies such as neglecting skull holes or an artificial separation

of gray matter and skull. Therefore, we will not discuss surface-

based tetrahedral FEM approaches throughout this study.

In the study by Rice et al. (2013), the impact of prone vs.

supine subject positioning on EEG amplitudes was investigated.

In the small group study, average differences of up to 80% were

found. These were accompanied by differences in MRI-based CSF-

thickness estimation of up to 30% underlining the importance of

correctly modeling CSF-thickness and areas of contact between the

skull and brain surfaces.

Recently, an unfitted discontinuous Galerkin method (UDG)

(Bastian and Engwer, 2009) was introduced to solve the EEG

forward problem (Nüßing et al., 2016). Rather than working

with mesh elements that are tailored to the geometry, it uses

a background mesh which is cut by level set functions, each

representing a tissue surface. It was shown to outperform the

accuracy of a discontinuous Galerkin approach on a hexahedral

mesh while not being limited by the assumptions necessary to

create tetrahedral meshes.

Extending the ideas of the UDG method, this study introduces

a multi-compartment formulation of the CutFEM (Burman et al.,

2015) for EEG source analysis. Compared with UDG, it operates

on a simpler trial function space and adds a ghost penalty based

on the study by Burman (2010). The ghost penalty couples small

mesh elements to their neighbors to improve the conditioning of

the method.

This study is structured as follows. After introducing the

theory behind CutFEM, three successively more realistic scenarios

are tested. These scenarios include a multi-layer sphere model,

followed by realistic brain tissues embedded in spherical skull

and scalp compartments. Finally, a fully realistic five-compartment

head model is used for source analysis of the P20/N20 component

of measured somatosensory evoked potentials (SEP). Comparison

results from different FEM and meshing approaches will be

considered throughout the scenarios.

2. Methods

2.1. A cut finite element method

Deviating from classical, fitted FEM-approaches, where the

mesh cells resolve tissue boundaries, CutFEM uses a level set-based

representation of domain surfaces. Let � =
⋃

i �i be the head

domain divided into m disjunct open subdomains, e.g., the gray

matter, white matter, CSF, skull, and skin. The level set function for

compartment i is then defined as follows:

8i(x)











< 0, if x ∈ �i

= 0, if x ∈ ∂�i

> 0, else

and Li = {x ∈ � :8i(x) = 0} denotes its (zero) level set. We

proceed by defining a background domain �̂ ⊂ R3 covering the

head domain �. This background is, then tesselated, yielding a

regular hexahedral mesh T (�̂), the fundamental or background

mesh. Taking on the level set representation, submeshes T i
h

⊂

Th(�̂) are created from the background mesh, containing all cells

that have at least partial support within the respective subdomain

�i. This results in an overlap of submeshes at compartment

interfaces. For each submesh, we define a conforming Q1 space

V i
h
. Thus, up to this point, each submesh is treated the way a

conforming Galerkin method would treat the entire mesh.

The difference, then, lies in restricting the trial and test

functions to their respective compartment, effectively cutting them

off at the boundary and giving rise to the name CutFEM. A

fundamental mesh cell intersected by a level set Li is called a cut

cell. Their respective fundamental cells are contained in multiple

compartments and thus have more DOF. On the other hand,

compared with classical conforming discretizations, a coarser mesh

resolution can be chosen, as the mesh does not have to follow

small geometric features. As the trial functions are only continuous

on their respective compartment and cut off at the boundary,

using them to approximate the electric potential requires internal
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coupling conditions at the tissue interfaces. We define the internal

skeleton as the union of all subdomain interfaces.

Ŵ =
⋃

{

�̄i ∩ �̄j : i 6= j, µd−1(�̄i ∩ �̄j) > 0
}

. (1)

µd−1 is the d-1 dimensional measure in d-dimensional space. For

two sets, E, F sharing both a common interface (an element of Ŵ)

and a possibly discontinuous function u operating on them we can

define a scalar- or vector-valued jump operator as JuK : = u|E ·

nE+ u|F · nF with nE, nF the outer unit normal of the respective set.

Additionally, a (skew-)weighted average can be stated as follows:

{u} = ωEu|E + ωFu|F (2)

{u}∗ = ωFu|E + ωEu|F . (3)

with ωE = δE
δE+δF

, δE = ntEσEnE. Here, σE refers to the symmetric

3 × 3, positive definite electric conductivity tensor on E. Notably,

JuvK = JuK{v}∗ + {u}JvK. The purpose of these definitions will

become clear when deriving the weak formulation for our forward

model.

Typically, the EEG forward problem for the electric potential u

induced by a neural source term f is derived from the quasi-static

formulation of Maxwell’s equations (Brette and Destexhe, 2012).

∇ · σ∇u = f , in
⋃

i

�i (4)

〈σ∇u, n〉 = 0, on ∂�̄ (5)

And in addition we require continuity of the electric potential

and the electric current

JuK = 0, on Ŵ (6)

Jσ∇uK = 0, on Ŵ. (7)

As trial and test space, we employ Vh as direct sum of all V i
h
.

The weak formulation can be obtained by multiplying with a

test function, integrating and applying subdomain-wise integration

by parts. This yields:

∑

i

(

∫

�i

σ∇uih∇vihdx)−

∫

Ŵ

{σ∇uh}JvhKdS = −
∑

i

(

∫

�i

fvihdx),

where the jump formula for a product of two functions as well as (7)

were used. ui
h
is the restriction of uh ∈ V to Vi. A symmetry term

±
∫

Ŵ
{σ∇vh}JuhKdS is added to end up with either a symmetric or

non-symmetric bilinearform.

To incorporate (6), a Nitsche penalty term (Nitsche, 1971) is

added that weakly couples the domains. Asymptotically, it enforces

continuity of the electric potential over tissue boundaries and

ensures the coercivity necessary for the methods’ convergence

(Burman et al., 2015):

Pγ (u, v) = γ νk

∫

Ŵ

σ̂

ĥ
JuhKJvhKdS. (8)

Here, νk, ĥ, and σ̂ are scaling parameters based on the ratio

of cut cell area on each interfaces’ side, dimension, degree of trial

functions used, and conductivity. See Di Pietro and Ern (2011) for

a further discussion. γ is a free parameter to be discussed later.

A challenge is the shape of the cut-cells. Distorted or sliver-

like snippets with very small volumes lead to very small entries in

the stiffness matrix, deteriorating the conditioning of the forward

problem. To alleviate this, a ghost penalty (Burman, 2010) term

is used, which takes place on the interfaces of all the fundamental

mesh cells cut by a level set. Let

Ŵ̂ = ∪
{

∂Ei :Ei ∈ Th,Ei ∩ Ŵ 6= ∅}. (9)

Note the difference between Ŵ and Ŵ̂. Ŵ operates on

compartment interfaces, Ŵ̂ on faces of the fundamental mesh. The

ghost penalty is then defined as follows:

aG(uh, vh) = γG

∫

Ŵ̂

ĥJσ∇uhKJ∇vhKdS, (10)

where γG is again a free parameter, usually a couple orders of

magnitude smaller than γ . Penalizing the jump in the gradient

ensures that trial functions which are only active on small snippets

cannot deviate too strongly from the solution in neighboring cells.

When using higher order trial functions, higher order derivatives

are no longer zero and have to be penalized as well. Notably, by

adding a ghost penalty, the method is no longer fully consistent

with the original problem. However, due to the size of γG, the effect

on the overall result is negligible. The weak CutFEM EEG-forward

problem can now be stated as finding the electric potential uh ∈ Vh

such that

a(uh, vh)+ aNn/s(uh, vh)+ aG(uh, vh) = l(vh) ∀vh ∈ Vh, (11)

with

a(uh, vh) =
∑

i

∫

�i

σ∇uih∇vihdx,

l(vh) = −
∑

i

∫

�i

fvihdx

and

aNn/s(uh, vh) : =−

∫

Ŵ

{σ∇uh}JvhK ±

∫

Ŵ

{σ∇vh}JuhKdS

+ γ νk

∫

Ŵ

σ̂

ĥ
JuhKJvhKdS.

In the following, we will refer to these two variants

as NWIPG/SWIPG, short for the non-symmetric/symmetric

weighted interior penalty Galerkin method.

In the study by Oden et al. (1998) and Guzmán and Rivière

(2009), it was shown that the non-symmetric DG-methods may

result in a sub-optimal convergence rate in the L2-norm (full

convergence in H1), a result that also extends to CutFEM (Burman

and Hansbo, 2012). However, while SWIPG is coercive only if γ is

chosen sufficiently large (Burman andHansbo, 2012), NWIPG does

not have such a limitation. Therefore, we will employ the NWIPG

method throughout this study due to its stability with regard to the

selection of γ .
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2.1.1. Integration over the cut domains
Fundamental cells that are cut by level sets, the cut cells;

can be integrated over by employing a topology preserving

marching cubes algorithm (TPMC) (Engwer and Nüßing, 2017).

The initial cell is divided into a set of snippets, each completely

contained within one subdomain. These snippets are of a simple

geometry and therefore easy to integrate over. Thus, integrals over

the fundamental cell or subdomain boundaries are replaced by

integrals over the snippets or their boundaries. The trial functions

are effectively cut off at the compartment boundaries.

See Figure 1 for an overview of the reconstruction steps.

Notably, the trial functions are coupled to their respective submesh,

not to the TPMC reconstruction of the domain. The latter only

determines the area over which the functions are integrated.

Starting on the fundamental mesh, the algorithm is applied

once per level set. Each following iteration is applied on the cut cells

of the previous iteration, i.e., first the fundamental mesh is cut, then

the resulting snippets are cut. This ensures the correct handling of

mesh cells that are cut by multiple level sets.

2.1.2. Source model and transfer matrix
Following the principle of St. Venant, the source term f will be

approximated by a set of monopoles. Where fitted FEM use mesh

vertices as monopole locations, this is not feasible for CutFEM

as fundamental cells may have vertices not belonging to the

source compartment. Only gray matter cut cells are used, and the

locations are based on a Gauss-Legendre quadrature rule. For more

information on the Venant source model, see Buchner et al. (1997)

and Medani et al. (2015).

For an accurate source analysis, it is necessary to compute the

EEG-forward solution for a large number, i.e., tens of thousands,

of possible sources. However, the electric potential induced by a

source is only of interest at a set of predetermined points, namely,

the electrodes at the scalp. However, rather than solving (11) for

each source individually, a transfer matrix approach (Gençer and

Acar, 2004; Wolters et al., 2004) is employed, significantly reducing

the amount of computation time needed.

2.2. Numerical validation

2.2.1. Head models
For numerical evaluations, three progressively more realistic

scenarios were created, two sphere models, one of which contains

realistic brain tissues, and a five compartment model created from

anatomical data. For each model, we will compare CutFEM and

a geometry-adapted hexahedral CG-FEM approach (Hex) with a

FIGURE 1

Level sets over fundamental mesh and TPMC reconstruction. Left: Fundamental mesh with two spherical level sets, topology preserving marching

cubes reconstruction. Center: Overlapping submeshes for the two compartments enclosed by the level sets. Right: Trial function space for the inner

compartment with white dots representing degrees of freedom, cut area that the DOF are restricted to.
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TABLE 1 Radii, center, and conductivities for the shifted sphere model.

Radius
[mm]

Center
[mm]

σ [S/m]

Scalp 92 (127 127 127) 0.43

Skull 86 (127 127 127) 0.01

CSF 80 (127 127 127) 0.33

Brain 78 (129 127 127) 0.33

node shift for the geometry-adaptation of 0.33 (Wolters et al.,

2007). In the first model, the UDG approach of Nüßing et al. (2016)

will also be added to the comparisons. To balance computational

load, Hex will use 1 mm meshes, whereas for CutFEM and UDG,

we use a 2 mm background mesh. Additionally, in the sphere

model, the convergence rate for CutFEM will be investigated by

comparing models with 16, 8, 4, and 2 mm resolution. The realistic

5-compartment model will feature an additional tetrahedral head

model.

2.2.1.1. Shifted spheres

The first scenario contains the four spherical compartments,

such as the brain, CSF, skull, and scalp. The brain sphere will be

shifted to one side, simulating a situation where the subject lies

down and the brain sinks to the back of the skull. Conductivities

were chosen according to study by McCann et al. (2019), with the

exception that the CSF and brain use the same conductivity. In

terms of volume conduction, the model is thus indistinguishable

from a 3-layer concentric sphere model, and analytical solutions

(De Munck and Peters, 1993) can be used as benchmark. These

would not be available if a realistic CSF conductivity was used.

Conductivity values and radii of the compartments are shown

in Table 1. Notably, the spherical geometries used here cannot

properly represent the shape of the human head. They are

commonly used as an initial validation in a simplified scenario

where exact reference solutions are available (Wolters et al., 2004;

Medani et al., 2015). Thus, they are merely the first of three

numerical validation steps in this study.

TPMC was applied twice, once on the fundamental mesh and

once on the resulting cut cells. Notably, this additional refinement

step does not change the number of trial functions of the model. In

total, 200 evenly spaced electrodes were placed on the surface of the

outer layer, and a total of 13,000 Evaluation points were distributed

evenly throughout the inner sphere. Lead fields for both radial

and tangential source directions were computed at each point. For

CutFEM, a combination of γ = 16 and γG = 0.1 has shown

promising results. For UDG, no ghost penalty was implemented

and γ = 4 was chosen, following Nüßing et al. (2016).

2.2.1.2. Spheres containing realistic brain

In the previous section, the level set functions could be

computed analytically up to an arbitrary accuracy. In a realistic

scenario where the segmentation quality is limited by the MRI

resolution as well as partial volume effects and MRI artifacts, this

is not the case. An easy way to pass level sets to CutFEM is by

using tissue probability map (TPM), a typical intermediate result

(Ashburner et al., 2014) from segmentation which provides for each

voxel the probability that it is located in a certain compartment.

To examine the performance of CutFEM when used together

with TPM’s, another sphere model is employed, this time

containing realistic gray and white matter compartments obtained

from MRI scans of a human brain. The subject was a healthy 24-

year-old male from whom T1- and T2-weighted MRI scans were

acquired using a 3 Tesla MRI Scanner (MagnetomTrio, Siemens,

Munich, Germany) with a 32-channel head coil. For the T1, a fast

gradient-echo pulse sequence (TFE) using water selective excitation

to avoid fat shift (TR/TE/FW = 2300/3.51 ms/8◦, inversion pre-

pulse with TI = 1.1 s, cubic voxels of 1 mm edge length) was used.

For the T2, a turbo spin echo pulse sequence (TR/TE/FA= 3200/408

ms/90◦, cubic voxels, 1 mm edge length) was used. TPM’s were

extracted from both T1- and T2-MRI using SPM12 (Ashburner

et al., 2014) as integrated into fieldtrip (Oostenveld et al., 2011).

For each voxel, the average of both TPM’s was computed, and a

threshold probability of 0.4 was set as zero-line.

The inner skull surface was defined as the minimal sphere

containing the entire segmented brain with CSF filling the gaps.

The spherical skull and scalp were chosen to have a thickness of

6 mm. The same conductivities as before were used with CSF, and

gray and white matter being identical, and again 200 sensors were

placed on the scalp surface.

2.2.1.3. Realistic 5 compartment head model

As an extension of the previous model, realistic 5-compartment

head models were created using the same anatomical data,

replacing the spherical skin, skull, and CSF by realistic

segmentations. Again, level sets were created from probability

maps. To obtain smooth skull and scalp surfaces in the TPM

case, binary maps of the skull and skin were created following

the procedure in the study by Antonakakis et al. (2020). The level

sets of the skull/skin were then calculated as an average of the

binary map and the T1/T2 TPM again with a threshold of 0.4.

Following the study by Antonakakis et al. (2020), the level sets

were cut off below the neck to reduce computational load while

maintaining a realistic current flow below the skull. Again, lead

fields from a hexahedral mesh were created for comparison as well

as a 5-compartment tetrahedral model with surfaces created using

SIMNIBS’ headreco pipeline (Saturnino et al., 2019). SIMNIBS

provides an automated segmentation and meshing pipeline taking

both T1 and T2MRI into account, similar to the model using TPM.

Level sets were created from the surfaces, and another CutFEM

model was created from these, yielding four lead fields: TPM-

CutFEM and Hex, which are based on the tissue probability maps

as well as Tri-CutFEM andTet, which are based on the headreco

surface triangulations. DOF, number of cut cells/mesh elements

and the resulting number of snippets are shown in Table 2. Now,

we have lead fields based on two different segmentation routines.

TPM is closer to the original MRI while surface triangulations yield

smoother surfaces at the cost of demanding nested compartments.

The question which of the two segmentation routines is preferable

is beyond the n = 1 study performed in this paper. Thus, neither

method can be used as a reference solution. It is rather our goal to

test CutFEM in both scenarios and showcase differences compared

with the respective alternative, a standard first order tetrahedral or

hexahedral FEM.
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TABLE 2 Number of degrees of freedom/snippets/cut cells for CutFEM

and number of degrees of freedom/elements for hexahedral/tetrahedral

mesh.

DOF Cut cells/
elements

Snippets

TPM-CutFEM 917,463 716,994 7,950,120

TRI-CutFEM 1,159,831 911,567 7,647,088

Hex 3,909,303 3,475,138 -

Tet 1,135,379 6,475,318 -

2.2.2. Forward and inverse comparisons
For the two spherical scenarios, analytical forward solutions

were calculated as a reference. For the realistic cases, somatosensory

evoked potentials were recorded, and a dipole scan was performed

as described in detail in Section 2.2.2.2.

The two latter scenarios including realistic gray/white matter

use a regular 2 mm source grid created using Simbio https://www.

mrt.uni-jena.de/simbio/. It was ensured that the sources are located

inside the gray matter compartment for both approaches (Hex

+ CutFEM). The resulting source space contains 58.542 different

dipole locations with no orientation constraint being applied.

2.2.2.1. Error measures

Two different metrics were employed to quantify the observed

errors, the relative difference measure (RDM) and the magnitude

error (MAG) (Wolters et al., 2007).

The RDM measures the difference in potential distribution at

the scalp electrodes.

RDM(%)(uana, unum) = 50 ∗ ||
uana

||uana||2
−

unum

||unum||2
||2. (12)

It ranges from 0 to 100, the optimal value being 0. MAG

determines the differences in signal strength at the electrodes.

MAG(uana, unum) = 100 ∗ (
||unum||2

||uana||2
− 1). (13)

Measured in percent, its optimal value is 0. It is unbounded

from above and bound by −100 from below. uana, unum ∈ Rs

contain the analytical and numerical potential at the s different

sensor locations.

CutFEM is implemented into the DUNEuro toolbox https://

www.medizin.uni-muenster.de/duneuro (Schrader et al., 2021),

where the FEM calculations were performed. Analytical EEG

solutions were calculated using the fieldtrip toolbox (Oostenveld

et al., 2011). An example data set including somatosensory data was

uploaded to Zenodo https://zenodo.org/record/3888381#.Yf0tT_

so9H4.

For a comparison of runtime and memory usage, the forward

calculation is split into five steps. The time necessary to create

a driver, i.e., the time DUNEuro needs to setup the volume

conductor, the times needed to assemble the stiffness matrix and

AMG solver, the transfer matrix solving process using Dune-ISTL

(Bastian et al., 2021), and the calculation of the final lead field

matrix. All computations are performed on a bluechip workstation

with an AMD Ryzen Threadripper 3960X and 128 GB RAM. A

total of 16 threads are used to calculate the 200 transfer matrix/lead

field columns in parallel. In the current implementation, CutFEM

is limited to six compartments but that is an arbitrary restriction

which can be increased at will.

2.2.2.2. Somatosensory data and dipole scan

To investigate CutFEM’s influence on source reconstruction,

an electric stimulation of the median nerve was performed on

the same subject the anatomical data was acquired from. The

subject gave written informed consent before the experiment

and had no history of neurological or psychiatric disorders.

The institution’s ethical review board (Ethik Kommission der

Ärztekammer Westfalen-Lippe und der WWU) approved all

experimental procedures on 2 February 2018 (Ref. No. 2014-156-

f-S). The stimuli were monophasic square-wave pulses of 0.5ms

width in random intervals between 350 and 450ms. The stimulus

strength was adjusted such that the right thumbmoved clearly. EEG

data were measured using an 80 channel cap (EASYCAP GmbH,

Herrsching, Germany, 74 channel EEG plus additional 6 channels

EOG to detect eye artifacts). EEG positions were digitized using a

Polhemus device (FASTRAK, Polhemus Incorporated, Colchester,

Vermont, U.S.A.). In total, 2,200 stimuli were digitally filtered

between 20 and 250 Hz (50 Hz notch) and averaged to improve

signal-to-noise ratio. A single dipole scan was conducted over the

whole source space using the data at the peak and the CutFEM lead

field.

The P20/N20 component typically exerts a high signal-to-

noise ratio and a strongly dipolar topography, making it an ideal

candidate for a dipole scan approach as motivated for example by

Buchner et al. (1994).

3. Results

3.1. Shifted sphere model

The first investigated model is the shifted sphere scenario,

where the brain sphere was moved within the CSF-sphere until

there was exactly one contact point between the skull and brain

(see 2.2.1.1). In Figure 2, the convergence speed for both radial

and tangential source directions can be seen. Fundamental meshes

with a resolution of 16, 8, 4, and 2 mm were created yielding

finite element spaces with 4600/21401/111,192 and 552,985 DOF,

respectively. Mean RDM decreases from 10.54 to 3.47 to 0.63 to

0.18 while the mean of the absolute value of the MAG decreases

from 17.63 to 3.37 to 0.80 to 0.33. A 2 mm resolution, thus, already

yields excellent numerical results.

When comparing number of DOF and RAM usage, it is

clear that CutFEM is by far the most memory efficient approach,

using approximately one-fifth of the number of trial functions and

approximately one-tenth of the amount of RAM as UDG (Table 3).

Hex also uses significantly more resources than CutFEM.

Regarding computation time, as UDG has to solve a

significantly larger system, each iteration step in the solution phase

takes longer than for CutFEM. As most time is spent on solving the

system, CutFEM is overall approximately 16 min or 34% faster than

UDG. The same cannot be said for comparisons to the standard

Hex approach. While each iteration of the solver required less time

than for Hex, it required an average of 92 iterations compared with

14 for Hex. The unfitted approaches spend less time calculating
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FIGURE 2

EEG forward modeling errors for di�erent fundamental mesh resolutions in a shifted sphere scenario. Top: Errors for tangential source directions.

Bottom: Errors for radial source directions. Errors are in percent and grouped by eccentricities. The green line marks optimal error values. The gray

area indicates the physiologically most realistic eccentricities.

TABLE 3 Computation times, RAM/degree of freedom usage in the

shifted sphere model.

CutFEM UDG Hex

Number DOF 552 985 3 601 824 3 341 280

Max. RAM used 6.91 GB 64.77 GB 40.2 GB

Driver setup 44 s 45 s 52 s

Matrix assembly 319 s 161 s 25 s

Solver setup 353 s 235 s 45 s

Solving 1,111 s 2,367 s 1,550 s

Lead field 22 s 20 s 125 s

Total time 1,849 s 2,828 s 1,797 s

the final lead field as the time needed to locate each dipole within

the 2 mm background mesh is lower than the 1 mm hexahedral

mesh. In total, the hexahedral CG was only faster than CutFEM by

a negligible 3% or 52 s.

Error comparisons between CutFEM, UDG, and Hex are

shown in Figure 3. CutFEM outperforms Hex in all eccentricity

categories and for both radial and tangential source directions.

As the pyramidal cells that give rise to the EEG potential are

located in layer 5 of the gray matter (Murakami and Okada, 2006),

eccentricities corresponding to 1–2mm distance to the skull are the

physiologically most relevant. For eccentricities between 0.96 and

0.98 and both source directions, CutFEM has average RDM/MAG

values of 0.18 and −0.06%, comparable to UDGs 0.17 and −0.2%

and significantly lower than Hex’s 0.94 and 1.57%.

The most pronounced differences are at low eccentricities

or when looking at magnitudes. CutFEM performance is similar

for both radial and tangential source directions, and UDG

shows similar or slightly better results at low eccentricities.

However, except for radial RDM’s, UDG deteriorates faster at high

eccentricities above 0.98. As both operate on the same cut mesh, the

larger variance in the UDG results can most likely be explained by

CutFEM’s use of the ghost penalty stabilization. The overall largest

absolute error values for CutFEM are 3.08 % RDM and 8.21 %

MAG, underlining its performance with regard to outliers. Due to

the similar numerical accuracy of CutFEM and UDG, we will only

compare CutFEM and Hex in the following scenarios.

3.2. Sphere containing realistic brain

The results in the previous section were achieved using

analytically computed level sets. Deviating from this, we will

now use a semi-realistic case where realistic brain compartments

are contained within spheres. Again, several different penalty

parameters were tried, showing that a combination of γ = 40 and

a ghost penalty of γg = 0.5 yield good results for CutFEM.

The results are presented in Figure 4. Notably, eccentricity is

stated with respect to the distance to the skull. As source points are

only inside the gray matter, the number of source points at high

eccentricities is much lower. The eccentricity groups 0.98, 0.985,

0.99, and 0.995 were thus combined into one group containing 136

points.

Much like before, CutFEM remains well below 1.5 and 2%RDM

and MAG, respectively, whereas Hex has higher median values for
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FIGURE 3

EEG forward modeling errors for Hex and unfitted FEM approaches in a shifted sphere scenario. Top: Errors for tangential source directions. Bottom:

Errors for radial source directions. Errors are in percent and grouped by eccentricities. The green line marks optimal error values. The gray area

indicates the physiologically most realistic eccentricities.

FIGURE 4

Overview of di�erent EEG-errors for five layer continuous Galerkin- and CutFEM approaches using realistic brain compartments contained in

spherical skull and scalp shells. Top: Errors for tangential source directions. Bottom: Errors for radial source directions. Errors are in percent and

grouped by eccentricities. The green line marks optimal error values. The gray area indicates the physiologically most realistic eccentricities.

nearly all eccentricities and more outliers going up to more than

1.5% RDM and 4%MAG. CutFEM is again more stable with regard

to outliers and especially when looking at magnitudes, differences

between the two methods are in the several percent range.

Overall, it can be stated that CutFEM is about as fast as and

more accurate than Hex and about as accurate as and faster than

UDG.

3.3. Realistic 5-compartment head model

For the final part of this study, two lead fields, one from

CutFEM, one from hexahedral CG, were created using realistic 5-

compartment head models including the gray and white matter,

CSF, skull and scalp tissues. Somatosensory evoked potentials were

acquired from a medianus stimulation of the right hand.
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3.3.1. Lead field di�erences
Before looking at inverse reconstructions, we will investigate

the differences between the forward results. As the same source

space and electrodes were used for both models, we can again
compute MAG and RDM values. In the absence of an analytical
solution, these measurements cannot capture errors but rather

differences between the methods without making a clear statement
which is more accurate.

For visualization purposes, for each gray matter centerpoint
of the Hex mesh, the closest source point is identified, RDM and

MAG are computed for each spatial direction and averages over
the directions are calculated. The results are shown in Figure 5.

Looking first at the differences between theHex and TPM-CutFEM

model, we see that in both measures, the highest differences can

be observed in inferior areas near the foramen magnum and optic

channels or in superior areas. Overall, the difference in potential

distribution was 9.40 ± 4.15% and the difference in magnitude

was 18.94 ± 12.03%. Interestingly, with a correlation coefficient of

only 0.22, high RDM values do not necessarily coincide with high

MAG values.

When comparingTet to Tri-CutFEMwe see that the differences

are significantly smaller. With RDMs of 4.59± 3.54% andMAGs of

8.74 ± 8.30%, they average less than half the differences between

the TPM-based models. Additionally, the differences between Tri-

CutFEM and TPM-CutFEM are 4.52± 2.86% (RDM)/0.03 ±

14.50%(MAG) lower than when comparing Tet and Hex. This is

to be expected as the CutFEM lead fields only differ in the way the

surfaces are provided while the differences between hexahedral and

tetrahedral FEM also encompass geometry adaptation, multi-linear

vs. linear FE-spaces and local differences in mesh resolution.

3.3.2. Reconstruction of somatosensory
stimulation

Finally, all four lead fields were used to perform a source

reconstruction of the P20 component of an electric wrist

stimulation. Dipole scans were conducted over the entire source

space, the results of which are shown in Figure 6. In total, 93.03

and 92.15% of the data could be explained the TPM-CutFEM

and the Hex lead field, respectively, resulting in dipole strengths

of 5.8 and 7.56 nAm. These are slightly weaker than the Tri-

CutFEM and Tet dipoles at 8.1 and 8.7 nAm, respectively. From the

literature (Buchner et al., 1994), one expects the P20 component

to be located in Brodmann Area 3b, located in the anterior wall

of the postcentral gyrus (and oriented toward the motor cortex).

This is in line with the TPM-CutFEM reconstruction while the

other three lead fields yield reconstructed dipoles that located on

the posterior wall. Overall, the CutFEM-based reconstructions are

located slightly more medial and frontal than their counterparts.

While this is only a single subject study, it shows that the choice of

the FEM method can significantly change the localization result of

a dipole scan.

FIGURE 5

Lead field di�erences in distribution and magnitude. Top: TPM-CutFEM vs. Hex, Bottom: Tri-CutFEM vs. Tet. Di�erences are interpolated onto the

gray matter.
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FIGURE 6

Dipole reconstruction results of P20 component of the medianus stimulation based on four di�erent lead fields: Tet (dark green), Hex (dark blue),

Tri-CutFEM (light blue), and TPM-CutFEM (light green). Left to right: Axial, Coronal, and Sagittal view.

4. Discussion

The purpose of this study is to introduce CutFEM, an unfitted

FEM for applications in EEG forward modeling. After discussing

the mathematical theory behind CutFEM and implementational

aspects, three progressively more realistic scenarios are introduced,

ranging from a multi-layer sphere model to the reconstruction of

somatosensory evoked potentials.

At similar computation times, CutFEM shows preferable results

when compared with a geometry-adapted hexahedral CG-FEM

(Wolters et al., 2007) in both a shifted sphere scenario and a

sphere model with realistic brain tissues. While CutFEM requires

significantly less DOF, both methods require similar computation

times due to the different number of solver iterations. Thus, a

thorough investigation of different iterative solver techniques such

as multigrid methods and possibly a modification of the ghost

penalty will be a part of future studies.

Compared with UDG (Bastian and Engwer, 2009), it is shown

that CutFEM combined with a ghost penalty leads to a decrease in

outlier values at high eccentricities as well as a significant reduction

in memory consumption and computation time.

Using a realistic five-compartment head model based on either

tissue probability maps or surface triangulations, we found larger

differences compared with standard hexahedral or tetrahedral first

order FEM when using TPM. Of all four computed lead fields,

only CutFEM in conjunction with tissue probability maps correctly

localizes the somatosensory P20 in the expected Brodmann area

3b. Especially in applications such as presurgical epilepsy diagnosis,

such accurate reconstructions might contribute significantly to the

correct localization of the irritative zone (Neugebauer et al., 2022).

The employed somatosensory experiment featured clear peaks and

a high signal-to-noise ratio, making it an ideal candidate for an

initial study. Further investigations and a larger study size are

necessary to determine CutFEM’s contribution to accurate source

reconstructions when used with noisier data and/or more advanced

inverse methods.

In the study by Vallaghé and Papadopoulo (2010), a trilinear

immersed FEM approach was introduced that like CutFEM

employs level sets as tissue surfaces. Rather than using a Nitsche-

based coupling, continuity of the electric potential is enforced by

modifying the trial function space. Compared with CutFEM, no

free parameters such as γ and γG are introduced but the absence of

overlapping submeshes means that there is no increased resolution

in areas with complex geometries.

In the study by Windhoff et al. (2013); Nielsen et al. (2018),

the process of building a tetrahedral mesh from segmentation data

is investigated. Surface triangulations that are free of topological

defects, self-intersections, or degenerate angles have to be created

before volumetric meshing. The authors show that it is possible

to create such high quality surfaces and subsequent tetrahedral

meshes for realistic head models; however, they may come at the

cost of modeling inaccuracies such as the separation of the gray

matter and skull by a thin layer of CSF.

A main advantage of CutFEM is its flexibility with regard

to the anatomical input data. Level sets can be created from a

variety of sources, such as tissue probability maps, binary images,

or surface triangulations. This simplifies the question of how to

create a mesh from segmentation data. However, CutFEM does

not answer the question which of these sources should be used in

future. Numerically, one can expect the smoother level sets created

from surface triangulations to produce fewer distorted cut cells

than those created from TPM. As shown in the results though,

CutFEM is stable with regard to tissue probability maps. Future

investigations will show whether staying close to the raw MRI data

by using tissue probability maps is preferable over having nested,

smooth surfaces as required for tetrahedral models. The n = 1

study we performed here cannot conclusively answer this question.

From an anatomical perspective, CutFEM now offers the possibility

to accurately model supine subject positioning where the brain

touches the skull. Quantifying the impact, this has on EEG source

estimation will also be a part of future investigations.

5. Conclusion

CutFEM performed well both when the underlying head

model was created using analytical level sets or realistic

segmentation results. Application to an inverse reconstruction of

a somatosensory evoked potential yielded findings that are in line

with the literature. The level sets underlying CutFEM impose few

restrictions on the compartments, thus allowing formore simplified

segmentation routines when compared with other FEM approaches

using surface triangulations.
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Introduction: Magnetoencephalography (MEG) is a powerful technique for

studying the human brain function. However, accurately estimating the number

of sources that contribute to the MEG recordings remains a challenging problem

due to the low signal-to-noise ratio (SNR), the presence of correlated sources,

inaccuracies in head modeling, and variations in individual anatomy.

Methods: To address these issues, our study introduces a robust method for

accurately estimating the number of active sources in the brain based on the F-

ratio statistical approach, which allows for a comparison between a full model with

a higher number of sources and a reduced model with fewer sources. Using this

approach, we developed a formal statistical procedure that sequentially increases

the number of sources in the multiple dipole localization problem until all sources

are found.

Results: Our results revealed that the selection of thresholds plays a critical role

in determining the method’s overall performance, and appropriate thresholds

needed to be adjusted for the number of sources and SNR levels, while they

remained largely invariant to di�erent inter-source correlations, translational

modeling inaccuracies, and di�erent cortical anatomies. By identifying optimal

thresholds and validating our F-ratio-based method in simulated, real phantom,

and human MEG data, we demonstrated the superiority of our F-ratio-based

method over existing state-of-the-art statistical approaches, such as the Akaike

Information Criterion (AIC) and Minimum Description Length (MDL).

Discussion: Overall, when tuned for optimal selection of thresholds, our method

o�ers researchers a precise tool to estimate the true number of active brain

sources and accurately model brain function.

KEYWORDS

F-ratio, source localization, Alternating Projection (AP), source enumeration, MEG, AIC,

MDL

1. Introduction

Magnetoencephalography (MEG) is a powerful non-invasive neuroimaging technique

that offers high temporal resolution for studying human brain function (Hämäläinen et al.,

1993; Baillet, 2017). Localization of MEG sources has garnered significant interest in recent

years since it can reveal the origins of neural signals and offer valuable insights into

the complex workings of the human brain. By identifying the sources of neural activity,

researchers can study the underlying mechanisms of cognition, perception, and other brain

functions (Ahveninen et al., 2006; Giorgetta et al., 2013; Klepp et al., 2015; Pancholi et al.,

2023). Additionally, source localization can aid in diagnosing and studying neurological

disorders and identifying abnormal brain activity (Oishi et al., 2002; Westlake et al., 2012;

Wilkinson et al., 2020; Xu et al., 2021; Giri, 2022; Giri et al., 2022).

Frontiers inHumanNeuroscience 01 frontiersin.org19

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2023.1235192
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2023.1235192&domain=pdf&date_stamp=2023-09-14
mailto:amita3gb@mit.edu
https://doi.org/10.3389/fnhum.2023.1235192
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1235192/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Giri et al. 10.3389/fnhum.2023.1235192

MEG source localization methods typically involve solving an

inverse problem, which entails estimating current sources within

the brain based on the measured MEG data. This is challenging

because the measured signals are influenced by several factors,

such as the geometry and conductivity of the head, sensor noise,

and the ill-posed nature of the problem. Mathematically, the

localization problem can be cast as finding the location and

moment of the set of dipoles whose field best matches the M/EEG

measurements (Mosher et al., 1992). Localization methods can be

broadly categorized into distributed and discrete solutions.

Distributed source imaging approaches aim to estimate a density

map of active dipoles across the entire cortex. Commonly used

methods include minimum norm estimators (MNE) (Hämäläinen

et al., 1993, 1994), dynamic statistical parametric mapping (dSPM)

(Dale et al., 2020), and standardized low-resolution electromagnetic

tomography (sLORETA) (Pascual-Marqui et al., 2002). However,

these methods assume a significantly larger number of unknown

sources in a discrete surface or volumetric grid compared

to the number of MEG sensors. The ill-posed nature of the

problem poses a significant challenge, especially in the presence

of multiple active regions in the brain (Darvas et al., 2004). Non-

linear source estimation methods, such as Mixed Norm Estimate

(MxNE) (Strohmeier et al., 2016) and time-frequency mixed-

norm estimates (TF-MxNE) (Gramfort et al., 2013), address this

issue by incorporating l1-norm penalty regularizers that favor

sparse collections of focal dipolar sources. Other sparse approaches

include hierarchical reconstructions of cortical and subcortical

sources (Gramfort et al., 2012; Krishnaswamy et al., 2017; Rezaei

et al., 2021). While these methods have shown some success, they

tend to be computationally demanding and have limited accuracy

when dealing with complex multi-dipole configurations.

On the other hand, discrete multiple dipole localizationmethods

avoid the ill-posedness associated with distributed methods by

finding a small set of equivalent current dipoles (ECDs) whose

field best matches the M/EEG measurements in a least-squares

sense (Mosher et al., 1992). Dipole localization methods offer a

more classical approach to brain source localization and provide

more intuitive interpretations of brain activity by estimating

the location, orientation and amplitude of neural sources.

The most well-known methods are beamformers (Van Veen

et al., 1997; Vrba and Robinson, 2001) and MUltiple SIgnal

Classification (MUSIC) (Mosher et al., 1992), and their recursive

variants Recursively Applied and Projected MUSIC (RAP-MUSIC)

(Mosher and Leahy, 1999), Truncated RAP-MUSIC (Mäkelä

et al., 2018), and RAP Beamformer (Ilmoniemi and Sarvas,

2019). While recursive variants generally perform better than

their non-recursive counterparts, they still face limitations such

as reduced effectiveness, reliance on high signal-to-noise ratio

(SNR), and potential cancellation of correlated sources. Recent

advancements in this field have addressed some of these concerns,

including Alternating Projections (AP) (Adler et al., 2022), double-

scanning (DS-MUSIC) (Mäkelä et al., 2017; Ilmoniemi and

Sarvas, 2019), hemispherical harmonics MUSIC (HSH-MUSIC)

(Giri et al., 2018), head harmonics MUSIC (H2 MUSIC) (Giri

et al., 2019), and Flex-MUSIC (Hecker et al., 2023). Estimating

the number of independent signal components is a prerequisite

for dipole localization methods to accurately estimate dipole

sources. However, determining the correct number of active

sources contributing to the recorded signals remains a fundamental

challenge in MEG data analysis (Wendel et al., 2009), significantly

impacting the success of brain source localization. We focus on

addressing this specific problem here.

Estimating the number of active sources in MEG data poses

significant challenges due to multiple factors. First, MEG signals

generally exhibit a low SNR, which makes it difficult to differentiate

between simultaneously active sources. Second, the presence of

correlated sources adds complexity by potentially causing multiple

sources to be mistakenly identified as a single source. Last, errors in

translational head modeling and variations in individual anatomy

introduce additional noise and variability, hampering accurate

estimation of the location and strength of underlying sources.

Early attempts to estimate the number of dipoles relied on

subjective thresholds (Bartlett, 1954; Lawley, 1956; Chen et al.,

1991). These approaches involved setting a threshold that separated

the eigenvalues of the data covariance matrix from the complete

set of eigenvalues. Chen et al. (1991) proposed a method that

detected the number of sources by imposing an upper bound on

the eigenvalue magnitudes of the correlation matrix derived from

the array output. In addition to conventional eigenvalue-based

techniques, a few methods have also employed eigenvectors for

estimating the number of sources (Di and Tian, 1984; Jiang and

Ingram, 2004).

To overcome the limitations of subjective thresholds, two main

classes of methods have been developed for estimating the number

of signal sources using the distribution of the eigenvalues of the

data covariance matrix. The first class involves techniques based

on principal component analysis (PCA) (Green et al., 1988; Yao

et al., 2018), independent component analysis (ICA) (Ikeda and

Toyama, 2000), and factor analysis (Malinowski, 1977a,b). The

second class consists of information theoretic approaches (Wax

and Kailath, 1985; Knösche et al., 1998), such as the Akaike

information criterion (AIC) (Akaike, 1974) and the minimum

description length (MDL) (Rissanen, 1978; Schwarz, 1978). The

work from Wax and Kailath (1985) derived the eigenvalue forms

of AIC and MDL methods, which can be directly applied to

array signal processing problems. These methods aim to strike a

balance between model fit and complexity using principles from

information theory. However, these approaches assume source

independence, which is not always valid in the brain. As a result,

they tend to perform poorly (Zhang et al., 1989; Chen et al., 1991;

Salman et al., 2015; Yao et al., 2018), especially in the presence

of correlated sources, noise, low SNR, and limited time samples.

Hence, there is a need for more robust and accurate methods to

estimate the number of active sources in MEG signals.

To address these limitations, we propose a robust method

for accurately estimating the number of active sources in the

brain using the F-ratio statistical approach. Our method introduces

formal decision criteria that sequentially increase the number of

sources in the multiple dipole localization problem until all sources

are found. Our method is based on the F-ratio test, which is

commonly used in statistics to compare the variances of two

samples. It is sensitive to differences in the variances of the samples

and can be used to determine whether adding a source to the model

significantly improves the fit of the model to the data. The F-ratio
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statistical approach allows for a comparison between a full model

with a higher number of sources and a reduced model with fewer

sources.

We validated the F-ratio-based method on simulated, real

phantom, and human MEG data, and compared its performance

to that of other state-of-the-art statistical approaches, such as AIC

and MDL. We found that the F-ratio-based method outperformed

competingmethods in terms of accuracy and reliability. One crucial

aspect we investigated was the selection of appropriate thresholds

for the F-ratio values. We found that this selection played a

critical role in determining the overall performance of our method.

Through systematic analyses, we identified optimal thresholds that

needed to be adjusted according to the number of sources and

SNR levels. Importantly, these thresholds exhibited remarkable

consistency across different inter-source correlations, translational

modeling inaccuracies, and cortical anatomies. When fine-tuned

with the optimal selection of thresholds, our F-ratio-based method

emerged as a precise and robust tool for estimating the true number

of active sources in MEG data.

2. Materials and methods

In this section, we provide a concise overview of the notations

used to describe the measurement data, forward matrix, and

sources. We also present the problem formulation for estimating

multiple ECDs in the brain. Subsequently, we describe the F-ratio

statistical procedure, which serves as the foundation to estimate the

number of active sources in the brain, and outline the experimental

procedures we use to assess performance.

2.1. Measurement model and notations

Consider an array of M MEG sensors detecting signals from

Q ECD sources located at positions {pq}
Q
q=1. At time t, the MEG

measurement vector y(t) can be described as a superposition of the

contributions from Q source signals {sq(t)}
Q
q=1 and additive noise:

y(t) =
Q

∑

q=1

l(pq)sq(t)+ n(t), where Q < M (1)

The topography l(pq) of the qth dipole at location pq is defined

as l(pq) = L(pq)o, where L(pq) ∈ RM×3 is the lead field matrix

and o ∈ R3×1 is the orientation vector. Depending on the problem,

the orientation vector omay either be known, referred to as a fixed-

oriented dipole, or it may be unknown, referred to as freely-oriented.

Additionally, the measurements are subject to the presence of

additive white Gaussian noise, which is represented by n(t) ∈

RM×1.

Several source localization methods exist for estimating the

Q ECD sources, with each dipole source characterized by its

location, orientation, and amplitude. Recently, we introduced a

method called Alternating Projections (AP) (Adler et al., 2022),

which offers several advantages. AP source localization method

is robust to forward model errors, can handle high inter-source

correlation values, and is effective even in low SNR scenarios. It

is important to note that estimating the true number of active

sources Q is a fundamental requirement for all the aforementioned

dipole localizationmethods to accurately estimate the dipole source

parameters.

2.2. F-ratio based method

The F-test is a widely used statistical technique that leverages

the F-ratio to assess the presence of a significant difference between

the variances of two data sets. In the context of determining the true

number of sources, this technique holds particular value. It enables

us to test the hypothesis that incorporating an additional source

results in a substantial improvement in the variance accounted for

by the model. By employing the F-test, we can make informed

decisions regarding the optimal number of sources to include in

order to provide the most accurate explanation for the observed

data.

In probability theory and statistics, the F-statistic, also known

as the F-ratio, is defined as the ratio between two independent

chi-square distributions, denoted as X1 ∼ χ2
DOF1

and X2 ∼

χ2
DOF2

, where DOF1 and DOF2 represent the respective degrees of

freedom. Mathematically, the F-ratio is expressed as:

F =
X1/DOF1
X2/DOF2

(2)

This formula provides a means to calculate the F-ratio by

dividing the observed value of X1 normalized by its degrees of

freedom, DOF1, by the observed value of X2 normalized by its

degrees of freedom, DOF2. In this study, we use this idea to

compare two hypothesized models based on the variance they

explain. The first model, referred to as the “reduced model”,

explains the data with K number of sources:

y(t) = yR(t)+ nR(t), (3)

yR(t) =
K

∑

q=1

l(pq)sqR(t) (4)

where yR(t) represent the estimated signals and nR(t)

represents noise of a reduced model. On the other hand, the second

model, called the “full model,” includes one more source compared

to the reduced model, with K + 1 sources:

y(t) = yF(t)+ nF(t), (5)

yF(t) =
K+1
∑

q=1

l(pq)sqF(t) (6)

where yF(t) represent the estimated signals and nF(t) represents

noise of a full model. The estimation of yR(t) and yF(t) signals

is achieved by solving an inverse problem using a dipole

fitting method. By comparing the residual variance of these two

models, we can assess their performance and determine the most

appropriate model for the given data. Since we assume that the

noise added to the measured signal is white Gaussian noise, it can

be deduced that the sum of square errors between the measured

signal y(t) and the estimated signals yR(t) and yF(t), denoted as
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FIGURE 1

Flowchart of the F-ratio method for estimating the number of sources.

‖y(t)− yR(t)‖
2
2 and ‖y(t)− yF(t)‖22 respectively, follows chi-square

distributions. Therefore, the F-ratio test can be written as Supek and

Aine (1993):

FR→F =

∑N
t=1 ‖‖y(t)− yR(t)‖‖22

DOFR

/

∑N
t=1 ‖‖y(t)− yF(t)‖‖22

DOFF
(7)

where N is the number of time samples. For the fixed-oriented

case, the degrees of freedom (DOF) for the reduced and full models

are given by DOFR = MN − (3 + N)K and DOFF = MN − (3 +

N)(K + 1), respectively. For the freely-oriented case, the DOF for

the reduced and full models are DOFR = MN − (4 + N)K and

DOFF = MN−(4+N)(K+1), respectively. These formulas account

for a total ofMN degrees of freedom, with three degrees of freedom

deducted for position, one for orientation (in the freely-oriented

case), and N for amplitude, for each dipole.

Note that the formulas for estimating the DOF assume

independence among all data points, which is not the case in

experimental data. To address this issue, in experimental data

we implemented a two-step whitening process involving both

temporal and spatial filtering. The first step involved temporal

whitening, as depicted in the flowchart of the F-ratio method

(Figure 1). The MEG data of each trial was whitened temporally

using a six-order linear predictive coding (LPC) technique. This

method helped alleviate temporal correlations within the data,

reducing their impact on the results. Subsequently, the LPC-filtered

trials were averaged. The second step was spatial whitening, which

was achieved by applying a whitening filter derived from inverting

the noise covariance matrix. This step further mitigated inter-

dependencies among the data points, enhancing the reliability of

the analysis. A more detailed discussion of the two-step whitening

process is presented in Section 2.4.

It is important to note that the calculated F-ratio values

are influenced by the residuals obtained after dipole fitting, and

therefore, are dependent on the chosen source localization method

used for solving the ECD localization problem in MEG. In our

study, we specifically examined the behavior of the F-ratio statistical

procedure when employing the AP localization method. The AP

method solves the inverse problem iteratively and sequentially by

minimizing the least-squares (LS) criterion. For amore detailed and

comprehensive discussion of the AP method, we refer readers to

Adler et al. (2022).

To estimate the number of sources, a systematic approach

involving the comparison of a reduced model and a full model is

illustrated in Figure 1. The formal comparison begins by initializing

the reduced model with zero sources and the full model with one

source to compute the F-ratio value. The decision regarding the

number of sources involves comparing the resulting F-ratio value,

denoted as F0→1, with a threshold value, Fth. If the reduced model

is rejected (F0→1 > Fth), indicating evidence of at least one

source, the analysis proceeds to compare a reduced model with

one source against a full model with two sources, represented as

F1→2. This sequential process continues, increasing the number

of sources, until reaching a step where the reduced model

cannot be rejected, providing an estimation of the true number

of sources.
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2.3. Performance evaluation with
simulations

We evaluated the performance of the F-ratio method in

diverse simulated scenarios, considering variations in the number

of sources, SNR levels, inter-source correlations, translational

modeling errors, and cortical anatomies.

The SNR was defined as the ratio between the Frobenius

norm of the signal-magnetic-field spatiotemporal matrix and

that of the noise matrix, following the approach described in

Sekihara et al. (2001). To quantify inter-source correlation, we

employed the Pearson’s correlation coefficient. To establish the

desired correlation among the sources, we utilized the Cholesky

decomposition method. Initially, we generated fundamental cosine

signals for each simulated source, with randomized phase and

frequencies ranging from 10Hz to 30Hz. Next, we applied the

Cholesky decomposition to factorize the symmetric positive

definite target correlation matrix into the product of a lower

triangular matrix and its conjugate transpose. By multiplying

lower triangular matrix with the fundamental cosine signals, we

generated a set of correlated dipole waveforms. This procedure

ensured that the resulting source time courses closely matched the

correlation coefficients specified by the target correlation matrix,

thus incorporating the desired inter-source correlations in our

simulations.

The sensor array geometry was based on the Megin Triux MEG

system, which consists of a 306-channel probe unit with 204 planar

gradiometer sensors and 102 magnetometer sensors. The MEG

source space geometries were modeled using the cortical manifold

extracted from MR data of adult humans, employing Freesurfer

(Fischl et al., 2004). In our analysis, we used cortical anatomies

from four different adult humans. Simulated sources were restricted

to approximately 15,000 grid points distributed over the cortex.

The reconstructed sources were estimated on a distinct grid of

50,000 points covering the cortex. To avoid the “inverse crime”

problem, where identical parameters are used for data synthesis and

inversion in an inverse problem, the simulation and reconstruction

grids were non-overlapping with an average distance of 0.7 mm

between neighboring points (Colton and Kress, 1998). The forward

matrix for both grids was computed using the boundary element

method implemented in OpenMEEG (Gramfort et al., 2010) within

the BrainStorm software (Tadel et al., 2011). Simulated MEG data

was generated by randomly selecting sources from the simulation

grids. Gaussian white noise was then added to the MEG sensors to

model instrumentation noise at specified SNR levels. In order to

evaluate the effect of head model errors, we introduced translations

to the reconstruction grid before computing the forward matrix.

Last, we employed the AP method to solve the inverse problem in

the fixed oriented case. All experiments were conducted with 100

Monte Carlo simulations to ensure statistical robustness.

2.4. Performance evaluation with a real
phantom

We assessed the performance of the F-ratio method using the

freely-oriented dipoles model with phantom data provided in the

phantom tutorial (Taylor et al., 2016) of the Brainstorm software

(Tadel et al., 2011). The phantom experiment was conducted

using the Megin Neuromag system, which consists of a 306-

channel probe unit with 204 planar gradiometer sensors and 102

magnetometer sensors.

The data comprised MEG recordings obtained from the

sequential activation of 32 artificial dipoles. To activate the

phantom dipoles, an internal signal generator was used along with

an external multiplexer box that connected the signal to each

individual dipole. Each dipole was activated 20 times with an

amplitude of 200 nAm, resulting in a total of 20 trials for each

experimental condition. It is important to note that the chosen

amplitude of 200 nAm falls within the range typically observed in

inter-ictal spikes associated with epilepsy, as observed in raw data

(Oishi et al., 2002).

For each dipole and each trial, the MEG data was whitened

temporally using a six-order LPC technique. In particular, baseline

data of a 200ms pre-stimulus interval was used to compute the LPC

coefficients of sixth order. These coefficients were then averaged

across sensors and subsequently applied to the post-stimulus data

modeled as an moving average (MA) filter. The purpose of this step

was to eliminate temporal dependencies in the post-stimulus data,

as observed in the auto-regressive (AR) model of baseline data.

Following this, the LPC-filtered post-stimulus measurements were

averaged across the 20 trials. In addition to temporal prewhitening,

spatial prewhitening was also performed on the average data using

a regularized noise covariance matrix in the Brainstorm software

(Tadel et al., 2011). The regularization process included adding an

identity matrix scaled to 10% of the largest eigenvalue of the noise

covariance matrix.

To simulate the concurrent activation of multiple sources, we

combined averaged data from different dipoles since only one

dipole could be activated at a time. To introduce variability and

avoid perfect coherence, we added a random delay ranging from

0 to 50 ms for each dipole.

The reconstruction source space was defined as a sphere

centered within the MEG sensor array, with a radius of 64.5 mm.

It was sampled using a regular volumetric grid of points with a

resolution of 2.5 mm, resulting in a total of 56,762 grid points. The

forward matrix was estimated based on a single sphere head model

using the BrainStorm software (Tadel et al., 2011). The performance

of the F-ratio method was evaluated using the AP method for

localizing dipoles in the freely-oriented case.

2.5. Performance evaluation with human
MEG data

The effectiveness of the F-ratio method in practical scenarios

was assessed using human MEG data recorded from a single

human participant during an auditory task. Prior to participation,

the subject provided written informed consent, and the study

was approved by the local ethics committee (Institutional Review

Board of the Massachusetts Institute of Technology), following the

principles of the Declaration of Helsinki. During the experiment,

binaural sounds (beeps) were delivered to the subject using tubal-

insert earphones. These auditory stimuli are known to elicit specific
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brain responses that are localized in the bilateral primary auditory

cortex. A total of 166 trials were recorded, with an interstimulus

interval of 2150 ms between each auditory stimulus. The MEG data

were acquired using a MEGIN Triux MEG system, which includes

a 306-channel probe unit consisting of 102 magnetometers and 204

planar gradiometers.

The forward matrix was estimated using BrainStorm based on

an overlapping spheres head model. The reconstruction source

space samples the brain volume in an adaptive way, with a higher

density near the surface where we expect a higher spatial resolution

due to the proximity to the sensors. The density decreased gradually

toward the center of the brain, resulting in a total of 33,073

grid points. This grid is constructed using a specific adaptive

algorithm in Brainstorm: It begins with a brain envelope containing

10,000 vertices as the initial number. Then, each previous layer

is successively shrunk and downsampled by a factor of 3. This

operation is repeated for 17 layers or until no more vertices are

available.

The performance of the F-ratio method was evaluated using

the AP method for localizing dipoles in the freely-oriented case.

Before localization, the raw data underwent prewhitening in both

the temporal and spatial domains following the same procedure as

in the real phantom data.

3. Results

3.1. Optimal modeling of MEG data
requires the adjustment of F-ratio nominal
thresholds

To investigate the behavior of the F-ratio method under

different experimental conditions, we conducted a thorough

simulation analysis. Our objective was to assess the accuracy of

estimating the true number of sources by varying the threshold

values across various experimental scenarios. These scenarios

included different numbers of active sources, varying SNR levels,

inter-source correlation values, translational modeling errors, and

cortical anatomies.

We observed that the accuracy of estimating the true number

of sources using a specific F-ratio threshold was strongly influenced

by the actual number of sources Q. This relationship is depicted in

Figures 2A–C, where the estimation accuracy varied significantly

for different values of Q. Notably, as the number of true sources

increased, a lower F-ratio threshold was required to achieve higher

performance. Similarly, we discovered a strong correlation between

the accuracy of estimating the true number of sources and the SNR

level. Figures 2D–F demonstrates this dependency for various SNR

values. As the SNR level increased, a lower F-ratio threshold became

necessary to achieve higher accuracy in estimating the true number

of sources.

In contrast, we made the important observation that the

optimal F-ratio threshold remained independent of the inter-

source correlation level. This finding is illustrated in Figures 2G–

I, where we tested different inter-source correlation values (0.1,

0.5, and 0.9). The accuracy in estimating the number of sources

peaked at the same threshold value for all correlation levels.

This robustness indicates that the optimal F-ratio thresholds

were not influenced by the inter-source correlation values of the

active sources. Consequently, researchers may rely on a consistent

threshold value regardless of the degree of correlation among the

sources, enhancing the practical applicability and reliability of

the F-ratio method. We obtained similarly robust results when

testing the accuracy of estimating the true number of sources

across different model errors (Figures 2J–L) and cortical anatomies

(Figures 2M–O). In the case of model errors, we introduced

registration errors by translating the reconstruction source space

relative to the source simulation space. Specifically, we applied

translations of 1 mm posterior (X-axis), right (Y-axis), and upward

(Z-axis). Importantly, despite the presence of these registration

errors, the F-ratio method remained highly robust. Similarly, when

evaluating the F-ratio thresholds across the cortical anatomies

of four different adult humans, we observed consistent and

robust results.

In summary, our observations indicated that the performance

of F-ratio thresholds varied significantly depending on the true

number of sources and the SNR levels of the data. However, we

found that F-ratio thresholds remained robust across different

inter-source correlation values, translational model errors, and

cortical anatomies. These findings highlight the need to adapt and

optimize threshold procedures for the F-ratio test based on the

specific number of sources and SNR levels in the data. In the next

section, we determined these optimal thresholds.

3.2. Computation and evaluation of
adjusted F-ratio thresholds in simulated
data

In this section, we aimed to determine adjusted F-ratio

thresholds for accurately estimating the number of active sources in

MEG data. To accomplish this, we used a specific cortical anatomy

as a reference (referred to as Anatomy 1). Optimal threshold values

for Anatomy 1 were computed by identifying the F-ratio value that

yielded the highest average accuracy in estimating the number of

sources, considering the ρ ∈ {0.1, 0.5, 0.9} inter-source correlations

and 1mm translational modeling errors in x, y, z. It may be noted

that our study specifically examined the robustness of the method

against translational modeling errors as a representative example.

The resulting adjusted F-ratio thresholds were obtained for various

SNR levels and numbers of sources, as depicted in Figure 3. Our

findings indicate that higher threshold values are necessary in

scenarios characterized by a high SNR and a low number of sources.

To assess the effectiveness of the adjusted threshold values

obtained for the reference anatomy, we conducted tests on three

additional cortical anatomies (Figure 4). The performance of the

adjusted F-ratio thresholds in estimating the number of sources was

evaluated at 0 dB SNR and correlation levels ρ ∈ {0.1, 0.5, 0.9}.

Remarkably, the results showed that the performance of the

adjusted thresholds was comparable to that of the reference cortical

anatomy (Anatomy 1). These findings demonstrate the reliability

and robustness of the calculated optimal F-ratio thresholds across

a wide range of simulation scenarios, including variations in the

number of sources, SNR levels, inter-source correlation values,

translational modeling errors, and cortical anatomies.
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FIGURE 2

Accuracy (%) of the F-ratio method for estimating the number of active MEG sources (on vertical axis) under di�erent threshold values (on horizontal

axis). Performance evaluation was conducted across various experimental conditions: (A–C) varying number of true sources Q, (D–F) SNR levels

from -8 to 8 dB, (G–I) inter-source correlation values ρ from 0.1 to 0.9, (J–L) di�erent model errors, and (M–O) di�erent cortical anatomies. Each

experimental condition was tested using 100 Monte-Carlo repetitions to ensure statistical robustness. To account for head registration errors, we

incorporated inaccuracies into the lead field matrix by applying a translation of 1mm posterior (X-axis), rightward (Y-axis), and upward (Z-axis).

We proceeded by conducting a comparative analysis between

the proposed F-ratio method with adjusted thresholds and two

commonly used methods, namely the information criterion AIC

and MDL method, for estimating the number of sources. These

methods rely on likelihood functions derived from information

theory to assess and choose the optimal model. The comparison

results of the F-ratio, AIC, and MDL methods across different

SNR conditions and correlation levels are depicted in Figure 5. The
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FIGURE 3

Optimal F-ratio threshold values, adjusted for the signal-to-noise

ratio (SNR) level and the number of active sources in the MEG data.

results correspond to cortical anatomy 4 with 1 mm translational

modeling error in X. Remarkably, the proposed F-ratio method

with adjusted thresholds outperformed both the AIC and MDL

methods in terms of accuracy and reliability.

3.3. Performance of the F-ratio method in
estimating the number of active dipoles in
phantom data

We assessed the performance of the F-ratio method in

estimating the number of active dipoles in phantom data

(Figure 6A). The locations of the 32 artificial dipoles of the MEGIN

phantom are shown in Figure 6B. To simulate the activation of

multiple MEG sources simultaneously, we combined the data

obtained from individually activated dipoles. To avoid perfect

coherence, a random delay ranging from 0 to 50 ms was introduced

between the dipole time courses. Figure 6C illustrates an example of

MEG sensor data from two active dipoles with a randomly selected

temporal delay of 29 ms. The time courses are displayed following

temporal and spatial prewhitening, and had an estimated SNR of

5.5 dB.

We conducted 100 Monte Carlo repetitions of phantom data

simulations for each scenario involving 0 to 5 active sources.

For each repetition, we applied the optimal F-ratio thresholds

(presented in Figure 3) based on the estimated SNR of the

phantom data and the corresponding number of tested sources.

The rationale behind using the same optimal F-ratio value from

simulations to both the phantom and experimental data lies in

the observation that, while the performance of F-ratio thresholds

varied significantly based on the number of sources and SNR

levels, these thresholds remained largely invariant to variations in

inter-source correlations, translational modeling inaccuracies, and

different cortical anatomies.

The performance of the F-ratiomethod in accurately estimating

the true number of active dipoles is shown in Figure 6D. The

method successfully identified the correct number of sources up

to 2, surpassing both the AIC and MDL methods. In contrast, the

latter methods failed entirely, with no correct estimations among

the 100 simulated scenarios (results not depicted). The AICmethod

yielded mean estimates of 41 for no true sources and 42 for 1 to

5 true number of sources, respectively, across 100 Monte Carlo

repetitions. Similarly, the MDL method estimated the number of

sources as 41 in all cases of 0 to 5 true numbers of sources across

the same 100 Monte Carlo repetitions. It was found that AIC and

MDL consistently overestimated the number of sources.

It is important to note that although the performance of the

F-ratio method in experimental data was not as remarkable as

in the simulated data, we attribute this to two factors. First, the

specific configuration of the phantom dipoles played a critical

role. The 32 phantom dipoles were closely spaced and shared

similar orientations. In the 100 Monte Carlo repetitions, sources

were randomly chosen with no constraints in their simultaneous

activation. Consequently, there was a substantial probability of

selecting adjacent sources, and this likelihood increased as the

number of sources grew (3, 4, and 5). Additionally, the time courses

of the phantom dipoles had random delays ranging from 0 to 50

ms, resulting in instances of minimal delay and strong correlation.

The combined effect of proximate source selection and small time

course delay exacerbated the challenge of accurately estimating the

number of sources, particularly when dealing with a larger number

of sources.

3.4. Performance of the F-ratio method in
estimating the number of sources in human
auditory data

To evaluate the effectiveness of the F-ratio method in human

data, we utilized it to analyze brain responses captured during an

auditory task. We employed the AP source localization method to

fit dipoles within the time interval of 100–130 ms relative to the

onset of the auditory stimuli, which approximately corresponded

to the peak MEG response. The SNR within this interval was

determined to be 5.78 dB.

Figure 7A illustrates the adjusted F-ratio thresholds at 5.78

dB SNR, along with the corresponding values estimated from the

human data. By employing the F-ratio sequential procedure, we

observed the rejection of the reduced models with zero or one

source, while finding no evidence to reject (and thus accepting) a

model with two distinct sources. To further validate these findings,

we plotted the sum of squares of residuals for the competing

models, as shown in Figure 7B. This plot reinforces our conclusion

of the presence of two sources, as there was no significant reduction

in the sum of squares of residuals beyond the model order of

2. Additionally, we visualized the dipoles detected using the AP

localization method for the cases of 1, 2, and 3 sources (Figures 7C–

E). In the case of the two-source model, the dipoles were localized

bilaterally and coincided with the well-established regions in the

primary auditory cortices.

It is worthmentioning that alternative methods such as the AIC

and MDL yielded different estimates for the number of sources.

Specifically, the AIC method suggested 33 sources, while the MDL

method indicated only 31 sources. These estimates far exceed the
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FIGURE 4

Performance of adjusted F-ratio thresholds in simulated data. The thresholds were optimized for Anatomy 1 and applied to three di�erent anatomies

(Anatomies 2, 3, and 4). The F-ratio method was employed to estimate the number of sources under varying levels of source correlation (A) ρ = 0.1,

(B) ρ = 0.5, and (C) ρ = 0.9, while maintaining a signal-to-noise ratio of 0 dB.

expected number of active sources in human auditory responses

and are not in line with the existing knowledge in the field.

Lastly, we conducted a further analysis on the human data

with a reduced SNR of approximately 0 dB, achieved by averaging

a reduced number of 44 trials (originally 166). As depicted in

Supplementary Figure 1, this analysis highlights the robustness of

the F-ratio test in accurately detecting 2 sources, consistent with

the findings from the higher SNR case. It was found that AIC and

MDL consistently overestimated the number of sources even in the

presence of lower SNR. This suggests that the overestimation nature

of AIC andMDL (in phantom and real data) might be related to the

complex nature of human experimental data.

4. Discussion

We have proposed and validated an F-ratio-based method to

detect the number of active sources in MEG data. We initially

aimed to tune the method with a universal F-ratio threshold value

that, once selected, could be applied across diverse simulation

scenarios. However, we found that the performance of the F-

ratio method was inherently dependent on the SNR and number

of sources. Thus, we have concluded that it is not feasible

to determine a single threshold value that guarantees optimal

performance across all cases. Instead, we proposed a methodology

that adjusts F-ratio threshold values based on the estimated SNR

and the corresponding number of tested sources. Our results

demonstrated the reliability and robustness of the calculated

optimal F-ratio thresholds across a wide range of simulation

scenarios, including variations in the number of sources, SNR

levels, inter-source correlation values, modeling errors, and cortical

anatomies.

However, it is crucial to acknowledge that the adjusted

threshold values obtained in this study are specific to the MEG

system analyzed and may need to be adjusted for other devices

or modalities, such as EEG. When applying the F-ratio method in

different devices, it would be necessary to determine appropriate

threshold values that are specific to each case. Similarly, the

effectiveness of the proposed method is inherently linked to the

choice of the source localization technique. In this study, we

employed the AP method to compute and validate the F-ratio

thresholds. However, different source localization methods may

yield varying results and require different threshold adjustments.

Therefore, it is crucial to determine the optimal threshold values

for a particular set of experimental settings and source localization

method to ensure accurate estimation of the true number of

active brain sources. Despite these considerations, our proposed

method provides researchers with a precise tool to estimate the

true number of active brain sources and effectively model brain

function. By calculating threshold values that are tailored to the

specific modality and source localization method, researchers can

enhance the accuracy and reliability of their source estimation

process.

A study by Supek and Aine (1993) aimed to evaluate the efficacy

of three statistical measures, namely percent of variance, reduced

chi-square, and F-ratio, in determining the correct number of

sources (model order). The authors advocated for the reduced chi-

square method as a reliable measure of goodness-of-fit, whereas

they were less favorable to the percent of variance and F-ratio

because they ignored noise contributions. Although we agree

that the percent of variance has limited utility, we contend

that the efficacy of the F-ratio method was underestimated.

Indeed, the simulation results presented in Supek and Aine (1993)

demonstrated that the F-ratio remained stable across different

noise levels and successfully identified the true number of sources.

However, it is important to note that the study was confined to

simulations on a simple spherical head model, lacked assessments

using real data, and did not provide clear threshold decision criteria

for determining the correct number of sources. In this work, we

proposed a methodology to estimate the number of sources by

employing F-ratio threshold values based on the estimated SNR and

the corresponding number of tested sources.

The Bayesian multi-dipole estimation method, Sequential

Semi-Analytic Monte-Carlo Estimation (SESAME) (Sommariva

and Sorrentino, 2014; Sorrentino et al., 2014; Luria et al., 2020)

is an iterative Monte Carlo algorithm that approximates the

posterior distribution for an a-priori unknown number of dipoles.

The output of SESAME is a posterior distribution for a variable

number of dipoles and their parameters. From this distribution, a

cortical probability map is computed, quantifying for each voxel the

posterior probability of containing a dipolar source. Additionally,

the method provides a point estimate of the dipole location,
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FIGURE 5

Comparison of the F-ratio, AIC, and MDL methods in simulated data for estimating the true number of dipoles at various SNR levels: (A) SNR = -8 dB,

(B) SNR = -4 dB, and (C) SNR = 4 dB, and di�erent levels of source correlation: (D) ρ = 0.1, (E) ρ = 0.5, and (F) ρ = 0.9.

FIGURE 6

Performance of F-ratio method in phantom data. (A) Real phantom provided by the MEG vendor MEGIN (Taylor et al., 2016). (B) Location of the 32

artificial dipoles of the MEGIN phantom. (C) Example sensor measurements from two active dipoles with a temporal delay of 29 ms, following

temporal and spatial prewhitening, corresponding to SNR 5.5 dB. (D) Performance of F-ratio method in estimating the number of active dipoles.
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FIGURE 7

Performance of the F-ratio method in estimating the number of sources in human auditory data. (A) Comparison of obtained F-ratio values in human

data with optimal F-ratio thresholds, supporting a model with two active sources. (B) Plot of the sum of squares of residuals for models with di�erent

numbers of active sources. (C) Localization of a single source. (D) Localization of two sources. (E) Localization of three sources.

determined as the peak of the cortical probability map. In future

research, it would be valuable to compare the performance of

SESAME against our proposed method.

It is essential to acknowledge the fact that the performance

of the F-ratio method in phantom data was not as remarkable

as in the simulated data, we attribute this to two factors. First,

the specific configuration of the phantom dipoles played a critical

role. The 32 phantom dipoles were closely spaced and shared

similar orientations. Additionally, the time courses of the phantom

dipoles had random delays ranging from 0 to 50 ms, resulting in

instances of minimal delay and strong correlation. The combined

effect of proximate source selection and small time course delay

exacerbated the challenge of accurately estimating the number of

sources, particularly when dealing with a larger number of sources.

In the literature, it is well known that the localization errors

tend to increase when dealing with sources that have small

spatial separation. This phenomenon has also observed in the AP

method, as we reported in our previous work (Adler et al., 2019).

Second, estimating the number of sources beyond two is generally

an exceptionally challenging problem in MEG. Consequently, a

significant body of work has focused on solving the problem

of localizing up to two or three sources within simulation or

controlled environments (Mosher et al., 1992; Mosher and Leahy,

1999; Mäkelä et al., 2018; Adler et al., 2019; Ilmoniemi and Sarvas,

2019; Giri et al., 2020).

Finally, it is important to mention that the MEG human

experiment revealed the presence of two active sources. Notably,

the F-ratio method consistently exhibited excellent performance in

simulations and phantom experiments with this specific number

of sources. However, it is crucial to acknowledge that as the

number of sources increases, the suitability of the F-Ratio method

might diminish, necessitating further investigation in future

studies.

5. Conclusion

We have validated our F-ratio-based method on simulated,

real phantom, and human MEG data. In comparison to other

state-of-the-art statistical approaches like AIC and MDL, which

rely on certain assumptions that often do not hold in real-world

situations, our method demonstrated superior performance in

terms of accuracy and reliability. One crucial aspect we emphasized

is the selection of appropriate thresholds for the F-ratio values,

which significantly impacts the overall performance of the method.

We identified optimal thresholds and showed that these thresholds

needed to be adjusted for the number of sources and SNR levels.

Notably, these thresholds exhibited remarkable consistency across

different inter-source correlations, head translation modeling

errors, and cortical anatomies. Overall, by fine-tuning the selection

of thresholds, our F-ratio-based method provides researchers with

a precise and robust tool for accurately estimating the true number

of active sources in MEG data. Further research is needed to

explore and validate the proposed method in different modalities

and with various source localization techniques. By refining the

threshold determination process and investigating its applicability

across different experimental conditions, we can extend the utility

of this method to a wider range of neuroimaging studies and

enhance our understanding of the underlying mechanisms of

brain function.
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Introduction: Transcranial direct current stimulation (tDCS) has been shown to 
benefit patients with brain lesions or traumatic brain injury (TBI). These patients 
usually have skull defects with different sizes and electrical conductivities. There is 
very little data in the literature that show how to optimally stimulate these patients 
with the presence of skull defects.

Methods: Here we  leveraged high-resolution (1  mm) realistic head models to 
explore the best montages targeting right beneath the skull defects with different 
sizes and conductivities. Specifically, open-source software ROAST was used 
to solve for the lead field on the publicly available MIDA model. Four different 
skull defects/plates were modeled with the center above the right primary motor 
cortex: a larger defect (10  cm diameter) modeled as either titanium or acrylic plate, 
and a smaller defect (2.5  cm diameter) modeled as either acute state filled with 
cerebrospinal fluid (CSF) or chronic state with scar tissue. Optimized stimulation 
with maximal intensity was run using ROAST targeting the right primary motor 
cortex.

Results: We show that optimized high-definition montages can achieve an average 
of 0.3  V/m higher stimulation intensities at the target compared to un-optimized 
montages (M1-SO or 4×1). Large skull defects with titanium or acrylic plates 
significantly reduce the stimulation intensity by about 80%, while small defects with 
acute (CSF) or chronic (scar) tissues significantly increase the stimulation intensity 
by about 200%. Furthermore, one can use M1-SO to achieve almost the same 
stimulation strength as the optimized montage if the skull has a large defect with 
titanium plate, and there is no significant difference in stimulation intensity between 
4×1 montage and the optimized montage for small skull defects with scar tissue.

Discussion: Based on this work, future modeling studies leveraging individual 
anatomy of skull defects may help guide tDCS practice on patients with skull 
defects and skull plates.

KEYWORDS

transcranial direct current stimulation (tDCS), skull defect, skull plate, tramatic brain 
injury, computational models and optimization

Introduction

As an emerging neuromodulation technique, transcranial direct current stimulation (tDCS) 
has been shown to have therapeutic effects for a wide range of neurological disorders such as 
major depression (Bikson et al., 2008), epilepsy (Fregni et al., 2006b; Auvichayapat et al., 2013), 
Parkinson’s disease (Fregni et al., 2006a), chronic pain (Fregni et al., 2007), and stroke (Meinzer 
et al., 2016). It is shown that tDCS has the potential to promote motor recovery and improve 
cognitive functions after traumatic brain injury (TBI) (Kim et al., 2019; Schwertfeger et al., 2023; 
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Ziesel et al., 2023). High-definition (HD) tDCS leverages several small 
disc electrodes (~6 mm radius) to achieve better focality compared to 
conventional pad electrodes (Datta et al., 2009). We have previously 
developed algorithms to optimally guide electrode placement so that 
a specific brain region can be stimulated with HD-tDCS with either 
maximal intensity or maximal focality (Dmochowski et  al., 2011; 
Huang et al., 2018). However, all these studies are based on intact 
skulls. Skull defects and use of skull plates can significantly alter the 
injected electric current, as shown in previous computational studies 
(Datta et al., 2010; Sun et al., 2021). To the best of our knowledge, 
there is still no data reported in the literature that shows if we can 
efficiently stimulate brain regions below the skull defects or skull 
plates by optimizing the electrode montages. This is important for 
patients with TBI as they usually have defects in their skull (also 
known as the decompressive craniectomy), and tDCS has shown 
benefits to recovery after TBI (Kim et al., 2019; Schwertfeger et al., 
2023; Ziesel et al., 2023). In this study, we aim to computationally 
investigate how skull defects or plates affect the current flow induced 
by optimized HD-tDCS. Specifically, we  built a realistic, high-
resolution computational model following previous methodology 
(Huang et al., 2019). To find out how different sizes and electrical 
conductivities of skull defects / plates affect the patterns of current 
flow, we  altered the original model of normal anatomy into four 
variants that modeled a larger and a smaller skull defect with different 
conductivities. As the most common locations of the skull defect are 
unilateral with an opening on the left or right hemisphere (Fatima 
et al., 2019; Lambride et al., 2020), we modeled the skull defect above 
the right primary motor cortex. We  then performed optimized 
HD-tDCS (Dmochowski et  al., 2011) targeting the right primary 
motor cortex and compared the achieved electric field at the target 
with those from an intact skull anatomy. We found that optimization 
always increases the stimulation at the target below the skull defects. 
Large skull defects reduce the stimulation intensity while small defects 
increase the intensity. We hope that our results will provide some 
general guidelines for future tDCS on patients with skull defects and 
skull plates.

Methods

Construction of head and skull lesion 
models

A high-resolution (0.5 mm) head model publicly available at the 
IT’IS Foundation known as MIDA (Multimodal Imaging-Based 
Detailed Anatomical Model, Iacono et al., 2015) was used in this study. 
The original MIDA model has segmentation for 153 brain structures. 
As the goal of this work is to evaluate how skull defects affect 
optimized HD-tDCS, we are interested in a head model that includes 
the major head tissues. Therefore, we merged most of these structures 
into six tissue types: white matter, gray matter, cerebrospinal fluid 
(CSF), skull, scalp, and air cavities. This was done in ScanIP 
(Simpleware Ltd., Exeter, UK). The model was also downsampled to 
1 mm resolution for faster speed in computing the lead field (see 
Section of “Optimized HD-tDCS”).

Patients with a large skull defect (up to a diameter of 10 cm) that 
can be associated with decompressive craniectomy (Guo et al., 2022) 
usually have a skull plate implanted for cosmetic purposes and to 

also protect against external trauma, as the original skull cannot 
be  placed back (Sekhar and Fessler, 2016). A small skull defect 
(diameter of ~2.5 cm) is either filled with CSF in the acute state or 
scar tissues in chronic state (Jacobs et al., 2001; Soltanian-Zadeh 
et al., 2003). Based on these, we modeled the skull defects as follows: 
(1) 10-cm diameter defect modeled as a titanium plate; (2) 10-cm 
diameter defect modeled as an acrylic plate; (3) 2.5-cm diameter 
defect modeled as acute injury (filled with the CSF); (4) 2.5-cm 
diameter defect modeled as chronic scar tissue. Note in this paper 
we use “defect” to refer to the openings on the skull that are either 
implanted with a plate or filled with CSF or scar tissue. The defect 
was first modeled as a cylinder and placed manually in ScanCAD 
(Simpleware Ltd., Exeter, UK) with the center above the right 
primary motor cortex and normal to the local scalp surface. The 
intersection of the cylinder and the skull segmentation was then 
classified as the defect and was assigned a different electrical 
conductivity when computing the lead field (see the next subsection).

Optimized HD-tDCS

A customized version of the open-source software ROAST 
(Huang et al., 2019; Huang, 2020) was used to solve for the forward 
model (also known as the lead field) needed for optimized HD-tDCS 
(Dmochowski et  al., 2011). Specifically, the customized ROAST 
takes the segmentation of six tissues from the MIDA model. 74 
electrodes of 6 mm radius following international 10–10 convention 
(Klem et al., 1999) were placed on the scalp. To avoid complications 
in automatically placing electrodes near or behind the ear-lobes, 
we omitted positions TP9 and TP10. The entire volume was then 
discretized into a finite element mesh, and the forward problem was 
solved for each bipolar montage with electrode Iz as the reference. 
See Huang et al. (2013, 2019) for more details. If the skull defect was 
added into the model, then in total seven tissues were modeled. This 
entire process was done fully automated in the customized 
ROAST. Default conductivities in ROAST were assigned to the six 
tissues (in S/m: white matter – 0.126, gray matter – 0.276, CSF – 
1.65, skull – 0.01, scalp – 0.465, air cavities – 2.5 × 10−14; Huang et al., 
2013), and skull defects were assigned with the following 
conductivities (in S/m): (1) titanium – 7.4 × 105; (2) acrylic – 2.0 × 
10−13; (3) CSF – 1.65; (4) scar – 0.34 (Datta et al., 2010). Optimized 
HD-tDCS was performed to stimulate the right primary motor 
cortex (MNI coordinates x = 48, y = −8, z = 50) below the skull defect 
with highest possible intensity and stimulating current on the scalp 
not exceeding the safety limit of 2 mA (Dmochowski et al., 2013). 
This was done also in ROAST using the “roast_target()” function. 
The achieved electric field magnitude at the target location was 
recorded for each skull defect model and the normal head model 
(without any skull defect). We released the customized version of 
ROAST at the Github repository (Huang, 2020).

Comparison between models and 
montages

For all the skull defect models and the normal model, we also 
simulated the electric field distribution for two un-optimized electrode 
montages in ROAST: M1-SO and 4×1. For the M1-SO montage, 
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conventional pad electrodes were used with the anode placed on top 
of the right primary cortex (electrode C4) and the cathode placed at 
Fp1. For the 4×1 montage, 6-mm radius anode was placed at C4, with 
cathodes surrounding at FC2, FC6, CP2, and CP6. In both cases, the 
total injected current was 2 mA.

We compared the achieved electric field magnitude at the right 
primary motor cortex across different models (4 skull defect models 
and the normal model) and montages (optimized, M1-SO, 4×1). To 
test the robustness of optimized HD-tDCS and sample more data 
points from the models to compare, we also shifted the target location, 
re-ran the optimization, and compared the achieved field magnitude 
across models and montages. We shifted the target location in four 
directions: anterior by 2 cm, posterior by 2 cm, left by 2 cm, and right 
by 1 cm (instead of 2 cm which is out of the brain). Mann–Whitney U 
test was used to assess the significance of the difference 
between models.

Results

Construction of head and skull lesion 
models

The merged segmentation of the head tissues from the MIDA 
model, with the skull defects, is shown in Figure  1. Note that 
we  centered the skull defect right above the right primary motor 
cortex (Figure 2D).

Optimized HD-tDCS

Figure 3 shows the electric field from each model under different 
montages. It is notable that optimized stimulation always boosts the 
intensity at the target compared to un-optimized montages, no matter 
whether the skull has a defect or not. Specifically, for the location 
directly under the skull defect [circle marker, MNI coordinates (48, 
−8, 50)], optimized stimulation in a normal-skull model boosts the 
stimulation intensity at the target by 0.18 V/m (4×1 montage) and 
0.09 V/m (M1-SO montage). For the large defect with a titanium plate, 
the increase is 0.07 V/m for 4×1 montage and 0.01 V/m for M1-SO 
montage. For the large defect with an acrylic plate, the increase is 
0.18 V/m (4×1) and 0.12 V/m (M1-SO). For the small defect with CSF, 
the increase is 0.22 V/m for both 4×1 and M1-SO montages. For the 
small defect with scar tissue, the increase is 0.25 V/m (4×1) and 
0.29 V/m (M1-SO).

Comparison between models and 
montages

Skull defects change the stimulation intensity. As shown in 
Figure 3, for the optimized montage, electric field at the right primary 
motor cortex decreases from 0.33 V/m to 0.07 V/m for the large 
titanium plate, to 0.18 V/m for the large acrylic plate, and increases to 
0.78 V/m for the small defect with CSF, and to 0.93 V/m for the small 
defect with scar tissue. Mann–Whitney U test shows that the changes 

A

D E F

B C

FIGURE 1

3D renderings of the major tissue types in the MIDA head model: (A) white matter; (B) gray matter; (C) CSF; (D) skull with a large defect (10-cm 
diameter, gray matter can be seen through the defect); (E) skull with a small defect (2.5-cm diameter); (F) scalp.
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in stimulation intensities by skull defects are significant for all the four 
skull-defect models (p < 0.01).

Figure 2 visualizes the electric field distribution. Again we see that, 
compared to the normal anatomy, large skull defects with titanium or 
acrylic plates reduce the electric field at the right primary motor 
cortex, while small defects with CSF or scar tissue increase the electric 
field. This is true for all the montages. The small skull defect seems to 
increase the focality of the stimulation (Figures 2A4–C4, A5–C5), 
while the large defect seems to blur the stimulation focality 
(Figures  2A2–C2, A3–C3). The large titanium plate shunts away 

electric current (Figures 2A2, C2), and the large acrylic plate insulates 
the current (Figure 2B3).

When considering all the five locations (target and four shifted 
locations, Figure 3), Mann–Whitney U test showed that the boost by 
optimized stimulation is significant for all the cases (p < 0.05), except 
two scenarios: (1) for large defect with a titanium plate, the difference 
in stimulation intensity is not significant between optimized montage 
and the conventional M1-SO montage (p = 0.42, Figure 3B); (2) for 
small defect with scar tissue, optimized montage does not significantly 
increase the stimulation from 4×1 montage (p = 0.06, Figure 3E).

FIGURE 2

3D renderings of electric field around the right primary motor cortex (indicated by the red cross in (D)) generated by the normal-anatomy model (A1-
C1), large skull defect with titanium conductivity (A2-C2), large defect with acrylic conductivity (A3-C3), small defect with CSF conductivity (A4-C4), 
and small defect with scar tissue (A5-C5). Column (A) shows the results from optimized HD-tDCS with the optimal montages shown as insets at each 
panel; Columns (B) and (C) show the results from 4×1 and M1-SO montages, respectively. The skull defects are shown in panels (D) and (E). A 
colormap for each row is shown on the right side, with a unit of V/m.
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Discussion

To the best of our knowledge, this work is the first computational 
study to compare optimized HD-tDCS with conventional electrode 
montages on a head model with a skull defect. Existing work in the 
literature mostly focus on how the forward models of 
electroencephalogram (EEG) is affected by skull defects (Lau et al., 
2016), skull segmentation (Lanfer et al., 2012), skull conductivity 
(Antonakakis et  al., 2019b), and skull suture (McCann and 
Beltrachini, 2022). The only work we found that studied how skull 
defects affect optimized tDCS is Antonakakis et al. (2019a), but it 
only looked at small burr holes on the skull instead of skull plates. 
Our previous work (Datta et al., 2010) studied how skull defects 
affect the current flow but did not compare between un-optimized 
and optimized montage stimulating the cortex under the defect. 
Here we investigated how different sizes and conductivities of skull 
defects affect the current flow on the cortex beneath the defects, for 
both un-optimized and optimized stimulation. We found that large 
defects with titanium or acrylic plates significantly reduces the 
electric current reaching the target area beneath the defect by about 
80%, while small defects with CSF or scar tissue significantly 
increases the stimulation by about 200%. Optimization always 
increases the stimulation intensities at the target area, no matter if 
the skull has a defect or not, even though this increase is not 
significant when a large defect with titanium plate or a small defect 
with scar tissue is present on the skull.

From the safety standpoint, the increase in electric field by 
200% does not raise any potential theoretical safety issue. Using 
epicranial electrode stimulation in rats, Liebetanz and colleagues 

demonstrated that the threshold for tissue damage is at least two 
orders of magnitude away from the scalp charge density applied in 
humans (Liebetanz et al., 2009). Further, one may expect similar 
electric field deviation even in intact anatomy across individual 
heads (Datta et  al., 2012). If the study objective requires 
maintaining the same electric field magnitude, a simple abating 
strategy would be to reduce the scalp injected current in proportion 
to the increase. Finally, optimized HD-tDCS has already been 
safely delivered to stroke subjects including cases where the cortical 
electric field was found to triple in comparison to conventional 
tDCS delivery (Dmochowski et al., 2013; Richardson et al., 2015).

To address the 80% decrement, a compelling clinical strategy 
would be to increase the scalp injected current. Higher intensity 
tDCS (i.e., delivery of 3–4 mA scalp current) has been recently 
shown to be safe (Workman et al., 2020; Hsu et al., 2023). While 
doubling the scalp intensity would only cover for the 50% 
decrement, what is clear is that scaling scalp current offers an 
option to get closer to what may be considered as “efficacious dose.” 
Ultimately, clinicians would have to make the decision based on the 
potential risk–benefit, as tDCS may be one of the few interventions 
available considering the high vulnerability of patients with skull 
defects and plates.

Note that the strategies above are only general guidelines on 
tDCS on patients with skull defects or plates, as they are only based 
on the results from the single subject model we  obtained here. 
Future modeling studies leveraging individualized geometry of the 
skull defects/plates obtained from patients MRI and CT scans will 
be needed to further provide personalized guidelines and plans on 
improving the outcomes from tDCS therapy.

A B

D E

C

FIGURE 3

Electric field (V/m) read out from each model under different montages (optimized, 4×1, and M1-SO). (A) model with normal anatomy; (B) large skull 
defect with titanium conductivity; (C) large defect with acrylic conductivity; (D) small defect with CSF conductivity; (E) small defect with scar tissue. 
Electric fields are read out from the right primary motor cortex (circle marker) which is directly under the skull defect with MNI coordinates (48, −8, 
50), as well as from locations anterior (up-pointing triangle), posterior (down-pointing triangle), left (left-pointing triangle), or right (right-pointing 
triangle) to the right primary motor cortex.
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Besides the average of 0.3 V/m increase of stimulation intensities 
at the target compared to un-optimized montages, the utility of 
optimization is best exemplified by targeting a region directly under 
the large skull acrylic plate. In general, the very low conductivity of 
acrylic makes it difficult to deliver meaningful electric field intensity 
directly underneath the plate (Datta et al., 2010). However, using 
optimized HD-tDCS, we  are able to obtain ~0.18 V/m and as 
mentioned above, potentially deliver an efficacious dose by a simple 
scaling of scalp current. This is in stark contrast to the traditional 
montages, where the very low induced target electric field makes 
pursuing them unworthy.

There are some limitations of this work. First, we only modeled the 
skull defect at one single location which is mostly motivated by the clinical 
scenario (Fatima et al., 2019; Lambride et al., 2020). However, the same 
physics and optimization algorithm apply to defects at other locations on 
the skull. Second, we simplified the shape of the defect, while in reality the 
defect could have a complicated shape. Future work will collect image data 
from patients with skull defects to model the actual geometry of skull 
defects. Third, only one individual head was modeled. Considering inter-
individual variability, future work will repeat the modeling process on 
more heads with skull defects to confirm if the results are replicable on 
other individual heads. Lastly, all the results were obtained from 
computational models, which need to be confirmed by experimental 
measurements following previous methodology (Huang et al., 2017).
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Introduction: Transcranial electrical stimulation (TES) is limited in focally

stimulating deep-brain regions, even with optimized stimulation montages.

Recently, interferential stimulation (IFS), also known as transcranial temporal

interference stimulation (TI, TIS, or tTIS), has drawn much attention in the

TES community as both computational and experimental studies show that IFS

can reach deep-brain areas. However, the underlying electrodynamics of IFS

is complicated and difficult to visualize. Existing literature only shows static

visualization of the interfered electric field induced by IFS. These could result

in a simplified understanding that there is always one static focal spot between

the two pairs of stimulation electrodes. This static visualization can be frequently

found in the IFS literature. Here, we aimed to systematically visualize the entire

dynamics of IFS.

Methods and results: Following the previous study, the lead field was solved for

the MNI-152 head, and optimal montages using either two pairs of electrodes

or two arrays of electrodes were found to stimulate a deep-brain region close

to the left striatum with the highest possible focality. We then visualized the two

stimulating electrical currents injected with similar frequencies. We animated the

instant electric field vector at the target and one exemplary off-target location

both in 3D space and as a 2D Lissajous curve. We finally visualized the distribution

of the interfered electric field and the amplitude modulation envelope at an axial

slice going through the target location. These two quantities were visualized in

two directions: radial-in and posterior–anterior.

Discussion: We hope that with intuitive visualization, this study can contribute as

an educational resource to the community’s understanding of IFS as a powerful

modality for non-invasive focal deep-brain stimulation.

KEYWORDS

interferential stimulation, temporal interference, visualization, computational modeling,
transcranial electric stimulation

Introduction

As a non-invasive brain stimulation method, transcranial electrical stimulation (TES)
has been shown to improve cognitive functions and help treat some neurological diseases
such as major depression (Bikson et al., 2008), epilepsy (Fregni et al., 2006b; Auvichayapat
et al., 2013), Parkinson’s disease (Fregni et al., 2006a), chronic pain (Fregni et al., 2007),
and stroke (Meinzer et al., 2016). However, TES is not able to focally stimulate deep-brain
regions, even with optimized stimulation montages (Dmochowski et al., 2011; Huang and
Parra, 2019). Recently, interferential stimulation (IFS), also known as transcranial temporal
interference stimulation (TI, TIS, or tTIS), has drawn much attention in the TES community
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as both computational and experimental studies show that IFS
can reach deep-brain areas (Grossman et al., 2017; Huang et al.,
2020; Huang and Datta, 2021; Violante et al., 2022). When
optimized, it can achieve higher focality than conventional TES
(Huang et al., 2020). However, the underlying electrodynamics of
IFS is complicated and difficult to visualize. This is because the
interfered electric field is amplitude modulated and contains both
a fast-oscillating carrier signal in the kilohertz range and a slowly
oscillating modulation envelope in ∼10 Hz. The premise of IFS
is that neurons only respond to slower oscillation due to their
property of low-pass filtering (Grossman et al., 2017). To the best
of our knowledge, except for a conference poster that acknowledges
the rotational property of the interfered electric field (Turovets
et al., 2018), existing literature only shows static visualization of
the interfered electric field induced by IFS (Grossman et al., 2017;
Rampersad et al., 2019; Lee et al., 2020; Esmaeilpour et al., 2021;
von Conta et al., 2021; Violante et al., 2022). These simplified
visualizations sometimes may bring misunderstanding of the
underlying physics to the research community. For example, the
graphical abstract of Grossman et al. (2017) is only a schematic
that fails to illustrate the actual dynamics, which may lead one
to believe that there is only one static focal spot between the two
pairs of stimulation electrodes (Figure 1A). This can be frequently
found in the IFS literature (Mirzakhalili et al., 2020; von Conta
et al., 2021; Piao et al., 2022; Violante et al., 2022). See Figure 1
for a compilation of these visualizations of IFS. Although the
electric field was modeled in these studies using state-of-the-art
software packages, these schematic illustrations do not represent
the complete dynamics. Here, we aimed to visualize the entire
dynamic process of IFS including both the fast-oscillating carrier
signals and the slowly oscillating modulation envelope, in the hope
of contributing to the community with vivid educational resources
on IFS as a powerful modality for non-invasive focal deep-brain
stimulation.

Materials and methods

Construction of the head model

The forward head model was built on the ICBM152
(v6) template from the Montreal Neurological Institute (MNI,
Montreal, Canada) (Mazziotta et al., 2001; Grabner et al.,
2006), following the previously published methods (Huang et al.,
2013). Briefly, the ICBM152 (v6) template magnetic resonance
image (MRI) was segmented by the New Segment toolbox
(Ashburner and Friston, 2005) in Statistical Parametric Mapping
8 (SPM8, Wellcome Trust Centre for Neuroimaging, London,
UK) implemented in MATLAB (MathWorks, Natick, MA, USA).
Segmentation errors such as discontinuities in the cerebrospinal
fluid (CSF) and noisy voxels were corrected first by a customized
Matlab script (Huang et al., 2013) and then by hand in interactive
segmentation software Simpleware ScanIP (Simpleware Ltd.,
Exeter, UK). As TES modeling work has demonstrated the need
to include the entire head down to the neck for realistic current
flow, in particular in deep-brain areas and the brainstem (Huang
et al., 2013), the field of view (FOV) of the ICBM152 (v6) MRI
was extended down to the neck by registering and reslicing the

standard head published in Huang et al. (2013) to the voxel space
of ICBM152 (see Huang et al., 2016 for details). High-definition
electrodes (6 mm radius) following the convention of the standard
10–10 international system (Klem et al., 1999) were placed on the
scalp surface by a custom MATLAB script (Huang et al., 2013). Two
rows of electrodes below the ears and four additional electrodes
around the neck were also placed to allow for the targeting of
deeper cortical areas and the use of distant reference electrodes
in TES. A total of 93 electrodes were placed. A finite element
model (FEM, Logan, 2007) was generated from the segmentation
data by the ScanFE module in ScanIP. Laplace’s equation was then
solved (Griffiths, 1999) in Abaqus 6.11 (SIMULIA, Providence, RI,
USA) for the electric field distribution in the head. With one fixed
reference electrode Iz as cathode, the electric field was solved for all
other 92 electrodes with 1 mA current injected for each of them,
giving 92 solutions for electric field distribution representing the
forward model of the ICBM152 head.

Optimization of the IFS montage

We employed previously published methods to optimize the
montages for IFS. Specifically, we optimized the focality of
modulation depth (MD) along the radial-in direction (Eq. 3 below)
at the target with either two pairs of electrodes or two arrays of
electrodes. Briefly, for the two pairs of electrodes, the optimization
simply searches for the best two pairs that give the highest MD
focality (Lee et al., 2020; Huang and Datta, 2021); for the two
arrays of electrodes, the algorithm implements sequential quadratic
programming to maximize the MD at the target while minimizing
the energy of MD at the off-target areas (Huang et al., 2020). The
target we picked is a deep location close to the left striatum with
MNI coordinates of [−16, 10, 2] (Hampshire et al., 2019).

Visualization of IFS dynamics

Suppose the optimized montages for the two stimulating
currents are s1sin(ω1t) and s2sin(ω2t + π), where s1 and s2 are
vectors of length 93 that encode the distribution of the current
sources for each frequency ω1 and ω2, respectively. Here, we choose
a phase difference of 180 degrees simply for visualization purposes.
The total electric field in the brain induced by these two stimulating
currents is

E(r, t) = sin(ω1t)∗A(r)s1 + sin(ω2t + π)∗A(r)s2, (1)

where A(r) is the forward model of TES obtained above [also
known as the lead field in the literature of EEG source localization
(Dmochowski et al., 2017)]. r stands for any spatial location in the
brain, and t is the time. The envelope of the interfering signal E(r,
t) along a specific direction d(r) can be computed by the absolute
value of the analytic signal:

|E∼(r, t)| = |d(r)TE(r, t) + jH[d(r)TE(r, t)]|, (2)

where j is the unit imaginary number, H[] is the Hilbert transform,
and d(r) is a unit vector with | d(r)| = 1. The MD is defined as the
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FIGURE 1

Compilation of commonly used visualization of IFS in the literature. (A) Grossman et al. (2017); (B) Mirzakhalili et al. (2020); (C) Piao et al. (2022); (D)
von Conta et al. (2021); (E) Violante et al. (2022).

depth of this envelope (Huang and Parra, 2019), i.e.,

MD(r) = maxt(|E∼(r, t)|)−mint(|E∼(r, t)|) =

2min(|d(r)TA(r)s1|, |d(r)TA(r)s2|). (3)

Note MD(r) is a static value that does not change with time
and is the quantity we optimize (Huang et al., 2020; Huang and
Datta, 2021). For visualization purposes, here we are interested in
the instantaneous value of the MD, i.e.,

MD(r, t) = |E∼(r, t)| −mint(|E∼(r, t)|). (4)

We also visualize the dynamics of the two stimulating currents,
and the dynamics of the total electric field E(r, t) in 3D space as
well as along a specific direction d(r)TE(r, t). We also visualize
the distributions of d(r)TE(r, t) and MD(r, t) in a 2D brain slice.
We visualize all these quantities for two specific directions d(r):
radial-in (pointing to the center of the brain, i.e., MNI coordinates
of [0, 0, 0]) and posterior–anterior (PA, pointing to the front of
the head), and at both the target location (left striatum) and a
randomly chosen off-target location. We made animations to show
the dynamics in action. For visualization purposes, we chose the
two frequencies of the two stimulating currents to be only 10 Hz
and 12 Hz and animated the dynamics for only 1 s.

Results

Visualization of electric field from two
pairs of electrodes

Figure 2 shows a snapshot of the dynamical process of IFS
at a time point of t = 0.272 s, indicated by the black vertical
lines in panels A, B, E, and F. The optimal montage of two
pairs of electrodes shown in panels A and B is determined by
exhaustively searching through all the possible combinations from

the 93 candidate electrodes (gray circles in panels A and B) (Lee
et al., 2020; Huang and Datta, 2021). The optimal two pairs of
electrodes are shown in Table 1. This optimal montage generates
a maximal focal stimulation in terms of the MD as shown in panel
I for the target location shown as a black circle.

The frequencies of the two stimulating currents are set as 10 Hz
and 12 Hz for visualization purposes (Figures 2A, B). Each of
these two currents induces an electric field (E-field) in the brain,
and the two E-fields interfere with each other to generate a total
E-field represented by the blue arrows in panels C and D. Due
to the superposition of the two E-field vectors induced by the
two stimulating currents, the total field always resides in the blue
plane spanned by them, and the head of the total field traces a
Lissajous curve in the blue plane. See Figure 3 for a zoomed-in
version of the Lissajous curve, and the path the total field follows
on that curve; also see Supplementary Video 1 for the complete
animation. Unlike IFS, the conventional transcranial stimulation
using alternating current generates an E-field that only oscillates
along a 1D line, without any rotation of the field vector that traces
a Lissajous curve in the 3D space.

Here, we are particularly interested in the projection of the total
E-field along two exemplary directions: (1) the radial-in direction
pointing to the center of the brain and (2) the posterior–anterior
(PA) direction pointing toward the front of the head. These two
directions are represented by the red and green lines, respectively,
in Figures 2C, D and zoomed-in in Figure 3, where the projected
E-fields are depicted by the red and green arrows. The alternating
E-fields along these two directions are shown in Figures 2E, F,
for the target and off-target locations shown in Figure 2G as a
black circle and cross, respectively. The distributions of the instant
E-field along radial and PA directions in an axial slice through
the target location are shown in Figures 2G, H. The MD is the
amplitude of the slowly oscillating envelope of the total E-field
(e.g., black dashed line in Figure 2E). The distribution of the
instant MD along radial and PA directions in the axial slice is in
Figures 2I, J.
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FIGURE 2

One instant in time during IFS stimulating the target location close to the left striatum with MNI coordinates of [–16, 10, 2] [indicated by a black circle
in panel (G)]. (A,B) The optimal montages of two pairs of electrodes stimulating the target with the highest possible focality [as shown in panel (I)].
Note the topoplots in panels (A,B) show the amplitudes of the sinusoidal currents injected as shown by the right (gray circles are all candidate
electrodes for the algorithm to consider when searching for the optimal montage). (C,D) The electric field (E-field) vector in 3D space (blue arrow).
The head of the blue arrow moves in space and draws a Lissajous curve (black curve) in the 2D plane (blue plane) spanned by the two E-fields
individually induced by the two stimulating currents. The orientation of the modeled head is indicated by letters on the three axes (L, left; R, right; P,
posterior; A, anterior; I, inferior; S, superior). See Figure 3 for a zoomed-in version for more details. Specifically, we are interested in the E-field
projected onto radial-in direction (red arrow) and posterior–anterior (PA) direction (green arrow). These three arrows are constantly moving, and
panels (C,D) show the snapshots at the instant indicated by the black vertical lines in panels (A,B,E,F). (E) E-field at the target along the radial
direction (red) and PA direction (green). The black dashed line represents the envelope that defines the modulation depth (MD). (F) Same as (E) but
for E-field at an off-target location indicated by a black cross in panel G. (G,H) Distribution of E-field along radial and PA directions in an axial slice
through the target (black circle) and off-target (black cross) locations. (I,J) Distribution of MD along radial and PA directions in the same axial slice.
Panels (G,H,I,J) are constantly changing, and shown here again are the snapshots at the instant indicated by the black vertical lines in panels
(A,B,E,F). For the complete animation, please see Supplementary Video 1.

TABLE 1 Optimal montages targeting the left striatum with MNI
coordinates of [−16, 10, 2] using either two pairs of electrodes (Huang
and Datta, 2021) or two arrays of electrodes (Huang et al., 2020).

Frequency 1 Frequency 2

Two pairs of
electrodes

Pz (1.45), PO4 (−1.45) Ex15 (0.55), Ex18 (−0.55)

Two arrays
of electrodes

T8 (0.357), Ex18 (0.170), F4
(0.169), FC6 (0.126), Fp2
(0.092), Ex10 (0.052), FC4
(0.030), PO4 (0.004), AF7
(−0.002), F3 (−0.002), Ex3
(−0.003), FT9 (−0.004), AF3
(−0.006), FC1 (−0.007), C2
(−0.008), Cz (−0.010), Nk2
(−0.012), C4 (−0.014), Exz
(−0.024), P8 (−0.029), CP6
(−0.075), F8 (−0.804)

CP5 (0.875), TP8 (0.027),
Fp2 (0.022), FT10 (0.018),
AF4 (0.018), FC6 (0.016),
F4 (0.011), T8 (0.007), C6
(0.002), AF8 (0.002), F6
(0.001), CP4 (−0.006), F1
(−0.020), CP2 (−0.059), O10
(−0.062), C2 (−0.080), P4
(−0.084), Fz (−0.097), AF3
(−0.115), Exz (−0.185), Ex11
(−0.291)

Numbers in the parentheses are the amplitudes (in mA) of the sinusoidal currents, with
positive and negative values meaning currents going into and out of the head, respectively.
Ex# electrodes are from the two additional rows of electrodes below the ears, and Nk2 is the
electrode placed on the back of the neck (see Huang et al., 2013, for details).

To summarize the relationship between different dynamics,
the individual stimulating currents (Figures 2A, B) induce two
fast-oscillating E-fields in the brain. These two E-fields interfere
and generate a total E-field at the target location (blue arrow in
Figure 2C). Projection of this E-field along the radial-in direction
(red arrow in Figure 2C) traces the red waveform shown in
Figure 2E, whose envelope (black dashed wave in Figure 2E)
oscillates slowly and generates neuronal effects.

Note that the intensity of the instant E-field in the radial
direction is weaker at the target than that at the off-target (0.09
vs. 0.34 V/m; Figure 2G), but the instant MD at the target is
much higher than that at the off-target location (0.09 vs. 0.02 V/m;
Figure 2I). This can also be seen from the red wave in Figure 2F
whose envelope does not oscillate that much compared to that in
Figure 2E. In fact, the MD is determined by the weaker of the
two E-fields individually induced by the two stimulating currents
(Eq. 3). At the off-target location, even though the total E-field
is 0.34 V/m, the two stimulating currents individually induce an
E-field of 0.33 V/m and 0.01 V/m. Therefore, the MD is very
small. On the other hand, at the target location, the two stimulating
currents individually induce an E-field of 0.04 V/m and 0.05 V/m,
leading to a higher MD of 0.09 V/m (as seen in the black dashed line
in Figure 2E) even though the instant E-field is smaller than that at
the off-target location. We also note that we specifically optimized
the MD along the radial direction (Figure 2I), and thus, the MD in
the PA direction is weak for both the target and off-target locations
(green waves in Figures 2E, F; also see Figure 2J). The animation
(Supplementary Video 1) shows the entire dynamics. The E-field
oscillates slowly in the animation as the frequencies of the system
are only 10–12 Hz. In reality, the oscillation is much faster when the
injected currents are in the 1 kHz range; that is, the carrier signal
will oscillate at the kHz range, and the envelope oscillates at the
∼10 Hz range.

Note the MD in Figures 2I, J is usually illustrated as hotspots
of stimulation right in the middle of the two pairs of electrodes
in the literature (Figure 1). We found, however, that the hotspot
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C D

FIGURE 3

Zoom-in of panels (C,D) in Figure 2. Total electric field (E-field) is indicated by the blue arrow. Radial and posterior–anterior (PA) directions are
indicated by the red and green lines, respectively, with projections of the E-field onto these two directions shown by red and green arrows. Blue
planes represent the planes where the total E-field resides, and black curves are Lissajous curves drawn by the head of the moving blue arrows. The
inset of panel (C) shows the Lissajous curves viewed in the PA direction (not drawn to scale), with small black arrows on the curves indicating the
path of the head of the moving blue arrow. See Supplementary Video 1 for the entire dynamics. Orientation of the modeled head is indicated by
letters on the three axes (L, left; R, right; P, posterior; A, anterior; I, inferior; S, superior).

FIGURE 4

Same as Figure 2 but for two arrays of electrodes instead of two pairs of electrodes for focally stimulating the target. See Supplementary Video 2 for
the entire animation.

(Figure 2I) does not exactly lie in the middle of the two pairs of
electrodes, and there is more than one hotspot in the brain (e.g.,
the smaller hotspot in the left hemisphere in Figure 2I). In fact,
the location of the hotspot cannot be intuitively determined from
the electrode montage, and we employed numerical search to find
the montage that gives the most focal MD at the predefined target.
Also, the MD is sensitive to the specific direction as shown in
Figures 2I, J.

Visualization of electric field from two
arrays of electrodes

A similar snapshot at the same time point of t = 0.272 s
for two arrays of stimulating electrodes is shown in Figure 4.

The array solutions are obtained using algorithms presented
in Huang et al. (2020) to maximize the focality of MD along
the radial-in direction at the target. The optimal two arrays
of electrodes are shown in Table 1. When these montages are
used, we achieve better focality of MD in radial-in direction at
the target than that from using two pairs of electrodes. In fact,
the smaller hotspot in the left hemisphere shown in Figure 2I
disappears with array solutions shown in Figure 4I. Quantitatively,
at a similar level of instant MD at the target (0.09 V/m), the
focality of the MD is 3.72 cm from two arrays of electrodes
(Figure 4I) and 4.93 cm from two pairs of electrodes (Figure 2I).
Here, focality is defined as the cubic root of the volume in the
brain that achieves over half of the MD at the target location
(Huang and Parra, 2019), and thus, smaller number means higher
focality.
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Discussion

This study attempts to give a complete visualization of the
complicated dynamics of the underlying physics in IFS, including
both the fast-oscillating carrier signals and the slowly oscillating
modulation envelope as only static figures are available in the
literature illustrating the core concept behind IFS. As the animation
shows, the instant E-field at every single point in the brain
oscillates and rotates fast in the 3D space. The premise of IFS
is that neurons only respond to the slower oscillations of the
envelope of these fast-changing E-fields, which is quantified by
the modulation depth (MD) (Grossman et al., 2017; Huang and
Parra, 2019). The hotspot of the MD does not exactly lie in the
middle between the two pairs of stimulating electrodes as shown
commonly in the literature. The animation shows how the MD is
generated from the E-field and how it depends on the directions
of interest. It also shows that the locations of the hotspot of
MD cannot be intuitively determined, and more than one hotspot
may present in the brain, with more focal hotspots if two arrays
of electrodes are used. Note that the two directions we chose
here (radial-in and posterior–anterior) are only exemplary for the
purpose of visualization. The actual stimulation effects are highly
correlated with the directions of the electric field relative to the
cortical sheet (Rahman et al., 2013). However, the same physics
applies to any direction of the electric field (Huang and Parra,
2019).

To the best of our knowledge, only a recent publication on
IFS visualizes the complicated dynamics, but still in static figures
(Wang et al., 2023). Here, we further show everything in action to
give the readers a complete picture. We note that as the instant
E-field rotates in the 3D space, it generates different strengths of
MD along different directions. Existing optimization algorithms
for IFS (Huang et al., 2020; Lee et al., 2020) only consider the
spatial focality of the MD in a predefined direction, while ignoring
the specificity of the modulation in different directions. In other
words, it does not consider whether the optimal montage will
also generate some strength of MD in directions other than
the one being optimized that may modulate neurons in those
directions. Future computational study will improve this by adding
direction specificity to the cost function being optimized that
only encodes spatial focality. In addition, multi-scale models that
incorporate neuronal geometry are needed to investigate how the
MD in different directions affects neurons at the target location
(Wang et al., 2023). Finally, all these computational results of
optimal IFS montages need to be validated by experimental
recordings.
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Introduction:Volume conductionmodels of the human head are used in various

neuroscience fields, such as for source reconstruction in EEG and MEG, and for

modeling the e�ects of brain stimulation. Numerous studies have quantified the

accuracy and sensitivity of volume conductionmodels by analyzing the e�ects of

the geometrical and electrical features of the head model, the sensor model, the

sourcemodel, and the numerical method. Most studies are based on simulations

as it is hard to obtain su�ciently detailed measurements to compare to models.

The recording of stereotactic EEG during electric stimulation mapping provides

an opportunity for such empirical validation.

Methods: In the study presented here, we used the potential distribution of

volume-conducted artifacts that are due to cortical stimulation to evaluate

the accuracy of finite element method (FEM) volume conduction models. We

adopted a widely used strategy for numerical comparison, i.e., we fixed the

geometrical description of the head model and the mathematical method to

perform simulations, andwe gradually altered the headmodels, by increasing the

level of detail of the conductivity profile. We compared the simulated potentials

at di�erent levels of refinement with the measured potentials in three epilepsy

patients.

Results: Our results show that increasing the level of detail of the volume

conduction head model only marginally improves the accuracy of the simulated

potentials when compared to in-vivo sEEG measurements. The mismatch

between measured and simulated potentials is, throughout all patients and

models, maximally 40 microvolts (i.e., 10% relative error) in 80% of the

stimulation-recording combination pairs and it is modulated by the distance

between recording and stimulating electrodes.

Discussion: Our study suggests that commonly used strategies used to validate

volume conduction models based solely on simulations might give an overly

optimistic idea about volume conduction model accuracy. We recommend

more empirical validations to be performed to identify those factors in volume

conduction models that have the highest impact on the accuracy of simulated

potentials. We share the dataset to allow researchers to further investigate

the mismatch between measurements and FEM models and to contribute to

improving volume conduction models.

KEYWORDS

volume conduction, EEG, stereotactic EEG, empirical validation, finite element method,

head model
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1 Introduction

Volume conduction models of the head are widely

used for source reconstruction of electro- (EEG) and

magnetoencephalography (MEG) activity (Malmivuo and

Plonsey, 1995; Nunez and Srinivasan, 2006; Hansen et al., 2010),

and are used to understand and optimize the effects of electrical

(Neuling et al., 2012; Rampersad et al., 2014) and magnetic brain

stimulation (Janssen et al., 2013) applied intra- and extracranially

with transcranial electrical, deep brain, and magnetic stimulation

(tES, DBS, and TMS). Although there are numerous model

studies that quantified the accuracy of numerical approximations

of electric potentials (in the EEG case) and magnetic fields (in

the MEG case) by comparing different simulated models, there

are fewer studies that investigated differences between actual

measurements in humans and simulated potentials and fields

(Rush and Driscoll, 1968; Bangera et al., 2010; Huang et al., 2017).

Previous work shows that the accuracy of the potential resulting

from volume conduction models relies on a number of factors,

such as the geometrical representation of the model (Vorwerk

et al., 2014), the conductivity of the different tissues (Oostendorp

et al., 2000; Aydin et al., 2014), the representation of the sensors

(Pursiainen et al., 2012; Vermaas et al., 2020a), the representation

of the sources [e.g., dipoles (De Munck et al., 1988) or bipoles

(Vermaas et al., 2020b)], and the method used to solve the

mathematical problem [e.g., with analytical formulas (de Munck

and Peters, 1993; Zhang, 1995; Mosher et al., 1999), boundary

element methods (Fuchs et al., 2001; Oostenveld and Oostendorp,

2002; Akalin-Acar and Gençer, 2004; Kybic et al., 2005; Stenroos

and Sarvas, 2012; Makarov et al., 2020), finite difference methods

(Montes-Restrepo et al., 2013; Morales et al., 2018; Moridera et al.,

2021), and finite element methods (Marin et al., 1998; Schimpf

et al., 2002; Miinalainen et al., 2019)].

The geometrical, electrical, and numerical aspects of volume

conduction models are inherently interlinked. For example,

the BEM assumes the geometry to be comprised of nested

compartments with homogenous and isotropic conductivity,

resulting in a geometrical description of the boundaries between

compartments by triangulated surface meshes, where most BEM

implementations require the surfaces not to touch or intersect,

and where triangles should have a desired aspect ratio (Sun

et al., 2012). Another example is the assumption of white matter

conductivity being anisotropic, which limits the choice of the

numerical method to FEM or FDM. The specific link between

geometrical and electrical volume conduction model aspects is

exemplified by including high-resolution anatomical details in the

model, such as CSF, the compact and spongiform bone parts of

the skull, blood vessels, or the dura mater, which require the

geometrical description to have a spatial resolution that is high

enough to be able to assign the detailed conductivities (Engwer

et al., 2017; Piastra et al., 2018).

A strategy often adopted in validation studies that involve
computer simulations is to focus on one or two of these factors
and keep the remaining aspects fixed. In Nüßing et al. (2016), for

example, the geometry of the head model was kept constant and
the mathematical method to solve the forward problem was varied.

In Piastra et al. (2018), the numerical method and the source model

were changed, whereas the geometry was kept constant. In Vorwerk

et al. (2014), the geometrical description and the numerical method

were kept constant, and the conductivity profile was varied. Here,

we adopt the same strategy as, e.g., in Vorwerk et al. (2014),

keeping the identical geometry and numerical method, and explore

the effects of increasing the level of detail in the head model by

including more compartments with different conductivities. Going

beyond existing simulation studies, we empirically compared the

simulated potentials to measured potentials.

An interesting opportunity to empirically validate the

forward model accuracy is provided by stereotactic EEG (sEEG)

measurements during electric stimulation mapping, a technique

used in the pre-surgical evaluation of epilepsy patients. Electrical

stimulation mapping is essential for epilepsy surgery planning

(Ritaccio et al., 2018), where pharmaco-resistant epileptic patients

that are considered for resective surgery are implanted with

intracranial (sEEG or electrocorticography (ECoG) electrodes to

guide surgical resections of epileptiform tissue while sparing the

eloquent cortex. In particular, by detecting behavioral changes,

electrical stimulation is used to identify the epileptogenic zone

or to localize the eloquent cortex which is to be spared in the

subsequent resection. Electrical stimulation can also be combined

with simultaneous recording of brain activity, resulting in cortical

stimulation evoked potentials (CSEPs) that allow studying the

spread of the induced activity, similar to how transcranial magnetic

stimulation (TMS) evoked potentials are studied with scalp EEG

(Bonato et al., 2006; Conde et al., 2019).

In the current study, we challenged the commonly employed

strategy to improve volume conduction models based on the

comparison between one simulation to another simulation,

by validating volume conduction models using empirical data

recorded from sEEG during stimulation. Rather than looking

at the (biological) neuronal propagation of the activity of the

CSEPs, we used the (physical) spatial potential distribution of the

passively volume-conducted stimulation artifact. We compared the

measured potential to the simulated potential that was computed

with state-of-the-art FEM models based on the individuals’

anatomical CT and MRI data of three epileptic patients. We

investigate how the mismatch between recorded and simulated

potentials depends on the level of detail in the FEM model, i.e.,

tissue conductivity, and on the distance between stimulating and

recording sites.

2 Materials and methods

2.1 Ethics statement

Participants were recruited at the Guangdong Sanjiu Brain

Hospital. The placement of the depth electrodes and the cortical

stimulation were based solely on the clinical needs for the treatment

of the patients and were thus independent of the purpose of the

present study. This study did not add any invasive procedure

to the intracranial recordings. The MRI, CT, and sEEG were all

approved by the Ethics Committee of the School of Psychology,

South China Normal University (SCNU-PSY-2020-1-050), and

the Ethics Committee of Guangdong Sanjiu Brain Hospital. All

the participants gave their written informed consent prior to the

experiments in accordance with the Declaration of Helsinki.
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TABLE 1 Conductivity values (in S/m) of the three isotropic head models

created and used in this study, with five (5C), four (4C), and three

compartments (3C).

Tissue 5C
(S/m)

4C
(S/m)

3C
(S/m)

References

White
matter

0.14 – – Ramon et al., 2003

Gray matter 0.33 – – Ramon et al., 2003

Brain : 0.33 0.33 Ramon et al., 2003

CSF 1.79 1.79 – Baumann et al.,
1997

Skull 0.01 0.01 0.01 Dannhauer et al.,
2011

Scalp 0.43 0.43 0.43 Ramon et al., 2003,
Dannhauer et al.,
2011

The column (:) indicates that the compartment has been split, e.g., the brain compartment

divided between gray and white matter, while the dash (-) indicates that the relative

compartment has been neglected in the head model.

2.2 Participants and data acquisitions

This study used data recorded for pre-surgical evaluation

in three patients suffering from refractory epilepsy. The three

participants (referred to as s1, s2, and s3) were 18, 21, and 25 years

old. The three patients had 11, 9, and 15 semi-rigid multi-lead

electrode shafts implanted, respectively. The electrode shafts had a

diameter of 0.8 mm and contained 10–16 contacts that were 2 mm

wide and 1.5 mm apart, with a total of 146, 124, and 186 electrodes

per participant.

Intracranial sEEG recordings were conducted using

commercial video-intracranial monitoring systems (Nihon

Kohden). The data were bandpass filtered from 0.1 to 300 Hz and

sampled at 1,000 Hz, using a reference electrode located in the

white matter. During the CSEP recording procedures, around 40

electric stimulations were induced per patient in 20, 38, and 26

pairs of neighboring electrodes, respectively, while the sEEG signal

was recorded on all remaining contacts. The total recording time

was 17 m 15 s, 29 m 39 s, and 19 m 35 s, respectively.

Prior to the sEEG electrode implantation, T1 weighted spoiled

gradient-recalled (SPGR) MRIs were acquired with a 3T scanner

(GE Discovery MR750). Post-implantation CT images were

acquired with a Philips Brilliance 64 scanner. The MRI resolution

was 1.0 × 1.0 × 1.0, 0.5 × 0.5 × 0.5, and 0.5 × 0.5 × 0.5 mm for

participants 1, 2, and 3, respectively, and the field of view (FOV)

was 256 × 256 × 172, 390 × 435 × 418, and 374 × 424 × 377 for

participants 1, 2, and 3, respectively. The CT resolution was 0.5 ×

0.5 × 0.5 mm for all participants, and the FOV was 512 × 512 ×

368, 390 × 435 × 418, and 374 × 424 × 377 for participants 1, 2,

and 3, respectively.

2.3 Processing the sEEG data

All signal analysis was performed using FieldTrip (Oostenveld

et al., 2011). The sEEG data was high-pass filtered at 10

Hz, segmented around the stimulation moments, and baseline

corrected. Noisy channels were excluded following different

criteria: variance of the after-peak signal higher than 10 millivolts,

electrode positioned in the skull or scalp, and electrode close to or

involved in the stimulation. The sEEG data were subsequently re-

referenced to a bipolar montage (Allen et al., 1992), and the average

of the peaks occurring at the moment of the electric stimulations

was extracted.

2.4 Processing the anatomical MRI and CT
data

Each participant’s pre-implantation T1-weighted MRI scan was

coregistered with the post-implantation CT scan, using rigid affine

transformations derived from FSL’s FLIRT algorithm (Jenkinson

et al., 2002). The positions of sEEG electrodes were manually

identified on the CT scan using the procedure outlined in Stolk et al.

(2018). Some electrode contacts were located outside the brain and

therefore not used in further analysis.

The MRI and CT scans of each patient were used to construct

three individualized head models for each participant: a simple

three-compartment isotropic head model (3C), where scalp, skull,

and brain are included, a four-compartment isotropic head

model (4C), where the cerebrospinal fluid (CSF) is additionally

distinguished, and a more detailed volume conductor head model

with five isotropic compartments (5C), i.e., scalp, skull, CSF, gray

matter, and white matter.

To facilitate the segmentation procedure, the pre-implantation

T1-weighted MRI scan and post-implantation CT scan were

resampled so that the voxels of the anatomical data are cubic with 1

mm resolution. Furthermore, the images were truncated at 36, 30,

and 35 mm below the spinal cord opening of participants 1, 2, and

3, respectively, following the suggestions in Lanfer et al. (2012).

As the T1-weighted anatomical MRI provides poor contrast

to delineate the skull from the surrounding tissue, we segmented

the skull from the CT scan by thresholding the CT scan, keeping

the biggest connected components (performed in MATLAB),

manually deleting electrodes and CT artifacts, and, finally, applying

a smooth erode-dilate filter [performed in Seg3D (CIBC, 2016)].

The resulting skull geometry was closed, apart from the spinal cord

opening, and skull burr holes drilled during surgery were excluded

in the model.

The scalp, gray, and white matter compartments were

segmented from the T1-weighted MRI scan using the SPM12

(Penny et al., 2011) routine implemented in FieldTrip. Finally, a

series of binary operations was performed in Seg3D to combine

the volumetric masks deduced from the two segmentations. In

particular, the CSF compartment was constructed by subtracting

the dilated inner skull mask from the scalp, skull, and gray and

white matter masks. The dilation of the inner skull compartment

was necessary to remove artificial holes at both the outer and inner

skull interfaces generated by merging the skull segmentation from

the CT and the one from the MRI. Since no DTI scans were

acquired, we excluded the anisotropic conductivity tensors in the

model (Tuch et al., 2001; Aydin et al., 2017).

Once the masks were assembled, a 1 mm volumetric hexahedral

mesh was created (with a nodeshift of 0.3), resulting in∼3.5 million
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nodes and 3.5 million hexahedrons. For the three-compartment

(3C) and four-compartment (4C) head models, only the tissue

labels (and hence conductivities) were modified, while the mesh

remained the same as the one for the five-compartment (5C) head

model. The specific features of the three models are gathered in

Table 1.

2.5 FEM simulations

The FEM simulations computing the electric potential

difference distributions were performed using the DUNEuro

software (Schrader et al., 2021). As Pursiainen et al. (2012) and

Vermaas et al. (2020a) show that the spatial extent and geometry

of electrodes do not play a significant role, we modeled the sensors

as point-sensors. The stimulating electrode pairs were modeled as

point-dipoles located at the midpoints between the neighboring

anode and cathode.

2.6 Validation analysis/strategy

Figure 1 gives a schematic representation of the analysis

pipeline. We computed the absolute difference between measured

and simulated potentials for all combinations of the stimulation

electrode pairs and all recording electrode pairs. Since the electrical

stimulation pulse duration is only 0.3 ms and the sampling rate is

1,000 Hz (i.e., each sample represents 1 ms), the recording does

not capture the full temporal detail of the rising and falling flank

of the electrical stimulation and we were not able to retrieve the

actual peak amplitude of the stimulation artifact in the data. We,

therefore, determined a scaling factor that minimized the absolute

error between simulated and measured potentials, i.e., 200, for

all the participants and multiplied the simulated potentials by

this factor.

As we have around 30 stimulating electrode pairs which

were each recorded with about 150 electrode pairs (channels),

there are about 4,500 model simulations per participant and per

volume conduction model to be compared to their corresponding

measurements. We summarized the model errors over all

stimulation sites and all recording sites by computing the

cumulative distribution of the absolute differences between

measured and simulated potentials. In addition, we normalized

the absolute difference with the root mean square (RMS) over

time and channels of the preprocessed signal, thus obtaining a

relative difference between measured and simulated potentials. The

RMS values are ∼610, 332, and 96 µV , for participants 1, 2,

and 3, respectively. We investigated how the absolute and relative

difference between measured and simulated potentials depends on

the level of detail of the head model. In Figure 2, the absolute

cumulative distribution curve and the relative error are visualized

as boxplots.

Furthermore, we studied how the relative error depends on the

distance between stimulating and recording sites. To do so, we

computed the distances between stimulation and recording sites,

divided them into 5 mm bins, resulting in 9, 11, and 14 bins,

respectively for the three participants, and visualized boxplots of

the relative difference for each volume conduction model and for

each participant (Figure 3).

3 Results

3.1 Di�erence between measured and
simulated potentials for the three head
models and participants

For each of the participants and for each of the volume

conduction models we compared the measured potential to the

simulated potentials for all combinations of stimulation and

recording electrodes. Figure 2 shows the cumulative distribution

(in the percentage of the total number of stimulating-recording

electrode pairs) of the absolute error (top) and boxplots of the

relative error (bottom) difference between the measured and

simulated potentials in the three head models, i.e., 3C, 4C, and

5C, for the three participants, i.e., s1, s2, s3. From Figure 2 we

can see that in 80% of the stimulation-recording electrode pair

combinations, there is an absolute error of ≤5 (for s3), 15 (for s1),

and 35 (for s2) µV (Figure 2A), which corresponds to a relative

error with median values of less than 1, 2.8 and 2.4%, respectively,

(Figure 2B).

From Figure 2, we furthermore observe that the difference

between the three head models (3C, 4C, 5C; line thickness)

is considerably smaller than the difference between the three

participants (s1, s2, s3; line color). In general, there is hardly

any dependency of the error on the level of detail of the volume

conduction head model used in the FEM simulation, since the

cumulative distribution curves relative to 3C, 4C, and 5C are nearly

overlapping for most participants.

3.2 Dependance of the simulation errors
on the distance between stimulating and
recording sites

In Figures 3A–C, we used a boxplot to visualize the relative

error between measured and simulated potentials for different

distances (in mm) between stimulating and recording electrode

pairs, for the three head models and the three participants, i.e., s1,

s2, and s3, respectively. Furthermore, we showed histograms of the

distance distribution for each participant (gray bar plot on top of

the boxplots).

From Figure 3, we observe that the relative error depends on

the distance between the stimulating and recording electrode pairs.

In particular, we can see that in all three participants, the error is

very high for small distances and decreases for larger distances. For

participant 2 and, to a smaller degree, also for participant 1, we can

further notice that the relative error increases for distances larger

than 65 mm. This effect is not present for participant 3 (Figure 3C).

All in all, without considering the closest stimulating-recording

electrode combinations, i.e., the 0–5 mm bin, the medians

of the relative errors are below 15% for all of the three

participants. In particular, very low (2%) relative errors can be

found for stimulating-recording electrode distances between 35

and 45 mm. Note that the distance histograms are very different
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FIGURE 1

Schematic representation of the analysis pipeline. Following the collection of electrophysiological (sEEG) and anatomical (MRI and CT) data, the

sEEG analysis was performed to obtain the measured potentials (red box), and the volume conduction simulations were set up, starting from the MRI

and CT image processing, the electrode localization, and the source placement. Subsequently, the simulated potentials were computed (blue box)

and the measured and simulated potentials were finally compared (green box). The software tools used in each step are indicated.

among participants, which is not surprising considering that

each epileptic patient has an individualized electrode implantation

plan aligned with the clinical requirements and the suspected

epileptogenic zones.

4 Discussion

In our study, we found that increasing the level of detail

of the volume conduction head model only marginally improves

the accuracy of the simulated potentials, when compared to in-

vivo sEEG measurements of three epileptic patients undergoing

electric stimulation mapping. In 80% of the stimulation-recording

combination pairs, the relative error is around 10%; for stimulating-

recording electrode distances between 35 and 45 mm, the relative

error is 2%.

Many possible factors can explain why the difference among

patients is much larger than the differences among models. One

main difference lies in the different electrode implantation, the

positioning and the number of electrodes are individualized and

based on the collective assumptions of the epileptic network of the

patient. This means that not only the density of sampling but also

the within-tissue location of the electrodes are different. This can be

partially seen, for example, in the three gray bar plots of Figure 3.

Another possible explanation for bigger differences among

patients is the choice of fixed values for the conductivity profiles,

whose modeling represents, in our opinion, the most delicate

aspect to discuss. The standard approach used to include tissue

conductivity in the volume conduction model relies on the

MRI-based classification of the human head into a limited

number of compartments; whereas FEM allows each volume

element to have its own conductivity, we therefore only make

use of a limited number of conductivity values. On top of

this simplified compartmentalization, conductivity values are

typically assigned independent of the individual characteristics of

the participant. Moreover, template conductivity values are not

consistent throughout the literature (McCann et al., 2019). Finally,

there is no consensus on the method or technology that should

be used to deduce or estimate such values (Ferrée et al., 2000;

Verhoeven et al., 2015; Ranta et al., 2017; Acar and Makeig, 2022;

Altakroury et al., 2022).

In literature, several direct and indirect volume conduction

validation attempts have been carried out. In the pioneering

work of Rush and Driscoll (1968), for example, simulated EEG

potentials were tested both with a phantom, i.e., an electrolytic tank
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FIGURE 2

Absolute and relative errors per participant and head model. (A) Cumulative distributions in the percentage of the total number of

stimulating-recording electrode pairs of the absolute di�erence between measured and simulated potentials in the three head models, i.e., 3C, 4C,

and 5C, for the three participants, i.e., s1, s2, s3. The dashed vertical line represents 80% of the stimulation-recording combination pairs. (B) Boxplots

of the relative di�erence between measured and simulated potentials in the three head models, i.e., 3C, 4C, and 5C, for the three participants, i.e., s1,

s2, s3.

containing a human skull, and by comparison with in-vivo data

from within the brain of a monkey (Burger and Van Milaan, 1943)

and from the surface of a human head (Hayes, 1950). Given the

technology available nowadays, it would be interesting to repeat

such validation studies with, for example, 3D-printed phantoms

that more accurately mimic the complexity of human head tissues

(Avery et al., 2017; Zhang et al., 2017; Tsizin et al., 2018; Morales-

Quezada et al., 2019; Kuratko et al., 2022).

Both in our study and in Bangera et al. (2010), it is found that

increasing the level of detail of the volume conduction model does

not improve the accuracy of the iEEG forward simulations within

the skull compartment. Bangera et al. made use of stereo EEG

recordings of four epileptic patients to assess which level of detail

should be adopted in volume conduction modeling of the inner

skull head. Similar to our work, they computed FEM solutions in a

variety of headmodels with an increasing number of compartments

included in both isotropic and anisotropic models. Differently

from Bagera, where they restricted their claims to intracranial EEG

forward solutions accuracy, the overall goal of our study is to

have a critical eye on how the accuracy of forward simulations is

assessed in literature, independent of whether intra or extracranial

compartments are included in the model.

In a reciprocal sense (see, e.g., Vallaghé et al., 2008; Wagner

et al., 2016), validation conducted for transcranial electrical

stimulation (tES) simulations can be associated with and compared

to forward solutions validations. In Opitz et al. (2016), for

example, sEEG recordings during extracranial tES stimulations

were acquired and analyzed in monkeys and humans. In their

study, the focus is on assessing the intracranial amplitude of the

potential induced by tES, and did not study the effect of variations

in the volume conductor model, e.g. by varying the number of

compartments. In Datta et al. (2013), the attempt on characterizing

scalp voltages generated by tES to validate participant-specific

FEM models of current flow for clinical dose is presented. They
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FIGURE 3

Relative errors and distances. Boxplot of the relative errors in percentage between measured and simulated potentials in 3C (in blue), 4C (in orange),

and 5C (in green), for increasing distances between stimulating and recording electrode pairs, for participant 1 (A), participant 2 (B) and participant 3

(C). The gray bar plots on top of the boxplots are the histograms of the distances. Note the di�erent scaling of the y-axis.
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concluded that the FEM model accurately predicted the distinct

voltage distributions and correlated the induced scalp voltages with

current flow through the cortex, without directly validating the

model prediction of brain current flow.

In recent work of Huang et al. (2017), the influence of different

volume conduction head models is quantified in a tES/sEEG

validation. Despite multiple refinements in the head model, Huang

et al. (2017) did not find consistently that a more complex model

improves the simulation performance across the ten participants

analyzed in their work. Our findings are therefore also in line with

their conclusions.

One indirect way to validate volume conduction models is

to compare source reconstruction results with known intracranial

sources, in terms of source location, magnitude, and orientation. In

several studies (e.g., in Cohen et al., 1990; Murakami et al., 2016;

Mikulan et al., 2020; Unnwongse et al., 2023), such validation has

been performed without, nevertheless, studying the influence of the

forward model accuracy on the source reconstruction results. In

contrast, Leahy et al. (1998) performed such validation in a three-

layered human phantom, concluding that the influence of using a

realistic head model instead of a sphere for computing the forward

solution was found to be minimal on the location mismatch. In

addition, Gullmar et al. (2006) and Lau et al. (2016) made use of

in-vivo measurements of a rabbit implanted with actual dipoles

to study the influence of white matter anisotropic conductivity

(Gullmar et al., 2006), and skull defects (Lau et al., 2016), on

EEG (Gullmar et al., 2006), and MEG (Lau et al., 2016), source

reconstruction. Gullmar et al. (2006) found a strong influence of

the anisotropy on the magnitude in the forward as well as in the

inverse solution and on the orientation of dipoles in the inverse

solution. They concluded that source localization procedures in

animals will improve by including white matter anisotropy. In

Lau et al. (2016), the forward simulation of the MEG signals

reproduced the experimentally observed characteristic magnitude

and topography changes due to skull defects. They conclude that

detailed finite element head models can improve the localization of

brain function, specifically after surgery.

Despite our best efforts, there remains some model inaccuracy

that are related to data limitations. For example, partial volume

effects might lead to inaccurate brain structure quantification in

MRIs or electrode identification in CTs.

Moreover, there are features of the sEEG signal we cannot fully

take into account in our study due to limitations in recording

hardware. Both the onset and the offset of the pulse are affected

by capacitive filtering effects that last more than a millisecond.

As a result, the pulse (which has a duration of 0.3 ms) ends well

before the capacitive effect from the start has subsided. In addition,

since the sample period (1 ms) is longer than the pulse duration,

the recorded potential cannot be related directly to the stimulation

strength. As already mentioned, we, therefore, adopted a scaling

factor of 200 to fit the simulated potentials into the measured

potentials which compensates for the uncertain, but fixed, relation

between the stimulation strength and the average of the recorded

potentials. Since the technical features of the stimulation and

recording setup were the same for all participants, we believe it is

appropriate to assume the same scaling factor for all participants.

The scaling factor does not affect the main conclusion of this work,

since we would notice a consistent global rescaling of the error

curves and bars in Figure 2, but the relation between curves with

different head models would be untouched. We are nevertheless

planning to perform a similar study with higher sample rates and

longer pulse durations.

As to model inaccuracies, we know that assuming point-

like dipoles introduces modeling errors at small distances, see

Figure 3, which can be reduced if monopole models are adopted

instead. We recently developed a tool, i.e., FEMfuns (Vermaas

et al., 2020b), that is able to model monopolar sources in volume

conduction simulations, and we are planning to use it in the future.

Nevertheless, this inaccuracy does not explain why more detailed

head models do not lead to more accurate FEM solutions in our

study. We believe that a U-shaped behavior with a subsequent

descent slope might be present in all subjects, but only part of this

shape is visible given the electrode configuration, i.e., distance. In

all subjects, the errors are the highest for the smallest distances

and decrease until reaching a minimum at around 35-65 mm.

Subsequently, the errors are increasing again for higher distances,

describing a U-shape. What is visible for subjects 2 and 3 (and not

for subject 1) is that after around 95 mm for subject 2 and 75 mm

for subject 3, the errors are decreasing with higher distances. While

the U-shaped behavior of the errors in the vicinity of the sources

(i.e., dipolar vs monopolar source model) and in the proximity of

conductivity jumps (at higher distances) is clear, further analysis

is required to understand the behavior of the errors for further

higher distances.

Though they could only be important for intracranial recording

simulations, CSF shunting effects in the electrodes’ vicinity are

not sufficiently captured by our volume conduction model.

Similar to what is demonstrated in Vermaas et al. (2020a), more

accurate features of the electrodes, such as volumetric extent,

shape, and electrical properties, can be neglected since we are

looking at distances higher than the dimension of the electrodes

themselves. However, by not including the electrode structure, we

are neglecting a possible CSF layer that is around the electrodes

and relative shunting effects. During surgery, holes are drilled in

the skull and the electrode shaft is inserted into the brain, allowing

CSF to flow between the shaft and neighboring tissue.

There exist more sophisticated numerical methods to solve the

quasi-static approximation of Maxwell’s equations. Recently, for

example, the discontinuous Galerkin FEM (Engwer et al., 2017;

Piastra et al., 2018) was shown to alleviate modeling inaccuracies

that occur in head geometries when using classical FE methods,

e.g., so-called “skull leakage effects” for skull compartments with

a thickness in the range of the mesh resolution (Engwer et al.,

2017). Since we are focusing on the model accuracy in the inner

skull compartment, our study does not fall in the scenario where

the DG-FEM can be beneficial and therefore we do not expect

these numerical solutions to substantially improve the accuracy

in our study.

All in all, in the last decades, a lot of effort has been

directed toward improving volume conduction models in terms

of geometrical approximation (Vorwerk et al., 2014), source

representation (Riera et al., 2012; Gratiy et al., 2013) and

discretization (Haueisen et al., 1997; von Ellenrieder et al.,

2006), and numerical accuracy (Engwer et al., 2017; Miinalainen
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et al., 2019), each individually showing incremental improvements.

However, comparing the mismatch between measured and

simulated potentials found in our study, the improvements in FEM

models achieved in recent years that we were able to incorporate

in our forward models appear relatively marginal and result in a

limited accuracy compared to real data.

Considering our results, we feel that the commonly employed

strategy to improve volume conduction models based on the

comparison between one simulation to another simulation might

not be the most efficient, we rather might want to reorient and

channel more efforts toward actual measurements and empirical

validations. We believe that empirical validations are more likely

to reveal which aspects of the data, of the model assumptions

and/or methodological details have the most impact to improve

model potential distributions, for example, working with higher

resolution imaging data and model geometries, better use of

template anatomical models to deal with details that are too small

to be imaged, and improved approaches for conductivity estimation

such as Bayesian (Stahlhut et al., 2011) or deep learning techniques

(Rashed et al., 2020).

Finally, we share the dataset of this study to allow researchers

to shed new light on the reasons behind the high mismatch and to

contribute to improving volume conduction models.

5 Conclusions

From our empirical comparison of FEM volume conduction

model simulations with in-vivo measured sEEG potentials, we

conclude that even with state-of-the-art model, increasing the level

of detail of the volume conduction head model only marginally

improves the accuracy of the simulated potentials when compared

to the measurements. We argue that commonly employed methods

for validating volume conduction models that rely solely on

simulations should be supplemented with empirical validations

based on actual data, as these will highlight the volume conduction

model elements that have the greatest influence on the accuracy of

simulated potentials.
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Lattice layout and optimizer
e�ect analysis for generating
optimal transcranial electrical
stimulation (tES) montages
through the metaheuristic L1L1
method

Fernando Galaz Prieto*, Maryam Samavaki and

Sampsa Pursiainen

Computing Sciences, Faculty of Information Technology, Tampere University, Tampere, Finland

Introduction: This study focuses on broadening the applicability of the

metaheuristic L1-norm fitted and penalized (L1L1) optimization method in

finding a current pattern for multichannel transcranial electrical stimulation (tES).

The metaheuristic L1L1 optimization framework defines the tES montage via

linear programming by maximizing or minimizing an objective function with

respect to a pair of hyperparameters.

Methods: In this study, we explore the computational performance and

reliability of di�erent optimization packages, algorithms, and search methods in

combinationwith the L1L1method. The solvers fromMatlab R2020b,MOSEK 9.0,

Gurobi Optimizer, CVX’s SeDuMi 1.3.5, and SDPT3 4.0were employed to produce

feasible results through di�erent linear programming techniques, including

Interior-Point (IP), Primal-Simplex (PS), and Dual-Simplex (DS) methods. To solve

the metaheuristic optimization task of L1L1, we implement an exhaustive and

recursive search along with a well-known heuristic direct search as a reference

algorithm.

Results: Based on our results, and the given optimization task, Gurobi’s IP

was, overall, the preferable choice among Interior-Point while MOSEK’s PS and

DS packages were in the case of Simplex methods. These methods provided

substantial computational time e�ciency for solving the L1L1method regardless

of the applied search method.

Discussion: While the best-performing solvers show that the L1L1 method

is suitable for maximizing either focality and intensity, a few of these solvers

could not find a bipolar configuration. Part of the discrepancies between these

methods can be explained by a di�erent sensitivity with respect to parameter

variation or the resolution of the lattice provided.

KEYWORDS

transcranial electrical stimulation (tES), optimization, linear programming, L1-norm,

Interior-Point, metaheuristics

1 Introduction

Transcranial Electrical Stimulation (tES) is a non-invasive brain stimulation method

used for stimulating neuronal activity, treating psychiatric disorders, and studying

neuronal behavior by transmitting a constant low-intensity current pattern through

a set of electrode patches attached to the scalp of the subject to modulate cortical

excitability (Nitsche and Paulus, 2000). In tES, a volumetric current density in the brain
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is generated by injecting through the scalp a current pattern

that can be described via different properties, including the

number of active electrodes, their physical description (e.g.,

positioning, shape, permittivity, and impedance values), the applied

stimulus waveform (e.g., amplitude, pulse shape, pulse width, and

polarity), the number of stimulation sessions, and the time interval

(Peterchev et al., 2012). Since different electrode montages result in

distinct brain current flow, clinicians and researchers can adjust the

montage to target or avoid specific brain regions in an application-

specific manner.

An increasingly popular form of tES is the Transcranial

Direct Current Stimulation (tDCS)method (Paulus, 2011;Moreno-

Duarte et al., 2014; Thair et al., 2017; Reed and Cohen Kadosh,

2018). Compared to other non-invasive stimulation methods,

the advantages of tDCS can be attributed to its inexpensive

and approachable characteristics. Unlike the intricate machinery

required for Transcranial Magnetic Stimulation (TMS) or the

specialized frequency considerations in Transcranial Alternating

Current Stimulation (tACS), tDCS involves a simpler setup—a

direct current passed through scalp electrodes. This simplicity

not only reduces the cost of equipment but also enhances

portability, making tDCS more accessible for various settings,

including home use. The simplicity and minimal training required

contribute to its user-friendly nature enabling a broader range

of individuals to utilize or participate in studies involving this

method. Whereas tDCS is classically applied in a two-channel

configuration (Kaufmann et al., 2021), its focality can be enhanced

via multiple channels, which has motivated the introduction of

advanced optimization methods for finding an optimal multi-

channel montage (Fernandez-Corazza et al., 2020).

tES modeling involves constructing computational

representations of the head and brain anatomy, simulating

the distribution of electric fields. This process integrates factors

such as electrode placement, tissue conductivity, and finite element

method simulations to visualize and analyze the spatial distribution

of the electric field within the brain. Generating a high-resolution

forward model is critical for building an explicit patient-specific

head model, determining optimal positioning of electrodes, and

predicting electric field generation across the brain for specific

stimulation configurations (Faria et al., 2011; Rampersad et al.,

2013; Wagner et al., 2013). Using such a forward model, multi-

electrode stimulation can be optimized via specifically designed

mathematical methodology (Dmochowski et al., 2011; Ruffini et al.,

2014; Guler et al., 2016; Wagner et al., 2016; Fernandez-Corazza

et al., 2020), such as the recently developed convex optimization

schemes including the Distributed Constrained Maximum

Intensity (D-CMI) (Khan et al., 2022), and the metaheuristic

L1-norm regularized L1-norm fitting (L1L1) (Galaz Prieto et al.,

2022) which aim at an individualized distributional fit for a given

target activity.

In this study, we aim to broaden the applicability of the

linear programming (LP)-based L1L1 method for finding tES

electrode montages computationally in a comprehensive manner,

i.e., by evaluating the metaheuristic results and total computing

time through different mathematical optimization algorithms

and packages; this includes Interior-Point (IP) (Mehrotra,

1992), Primal-Simplex (PS), and Dual-Simplex (DS) (Boyd and

Vandenberghe, 2004) as alternative LP algorithms, and Matlab

(R2020b) from MathWorks (Zhang, 1999), MOSEK Optimization

Suite (Release 9.0) (Mosek, 2019), Gurobi Optimization (9.5.1)

(Gurobi Optimization LLC, 2022), SDPT3 (4.0) (Tütüncü et al.,

2003), and SeDuMi (1.3.5) (Sturm, 1999; Frenk et al., 2000; Polik

et al., 2007) as alternative packages. The latter two open-source

alternatives are available in the CVX optimization toolbox

(Grant and Boyd, 2014). We also investigate the metaheuristic

hyperparameter optimization (HPO) task of L1L1 via exhaustive

search (Bianchi et al., 2009) and recursive search (Je and Park,

2013) with heuristic direct search as a reference algorithm (Bogani

et al., 2009).

Our results suggest that the performance differences between

the above-mentioned optimization packages, algorithms, and

search methodology can be crucial regarding the optimization

results, focality stimulation current, and the availability of active

channels in the montage. Moreover, exhaustive and recursive

search methods can also be considered preferable to heuristic direct

search in terms of their overall reliability and predictability.

2 Materials and methods

In tES, a real L × 1 current pattern y is injected into the

subject’s head through a set of contact electrodes attached to the

scalp. These electrodes, ranging from 0.5 to 4.0 milliamperes (mA)

(Zaghi et al., 2010; Khadka et al., 2020; Workman et al., 2020),

form what is known as an electrode montage and are responsible

for distributing the injected volumetric current density–measured

in ampere per square meter (A/m2)–throughout the scalp, skull,

cerebrospinal fluid (CSF), and brain components, including cortical

and subcortical brain structures. The governing linear system is of

the form

L̂y = x̂, (1)

where L̂ is a real N × L lead field matrix (forward mapping)

that describes the relationship between the y, and x̂ is a real

N × 1 discretized volume current density vector. The linear system

(Equation 1) is re-interpreted component-wise as the focused field

L̂1y = x̂1, where the target field has non-zero values, and the

nuisance field L̂2y = 0, where it vanishes. Detailed mathematical

definition of the lead field matrix refer to Appendix A. Forward

model in Galaz Prieto et al. (2022).

The optimization problem needs to find the best matching

between y, and the focused field via Ly = x, where the projection of

the focused field into the direction of the target constitutes the first

component as

L =

(

L1
L2

)

=

(

PL̂1
L̂2

)

and x =

(

x1
0

)

=

(

Px̂1
0

)

with P denoting a matrix that projects a vector into the

direction of x̂1. The target amplitude ‖x1‖2 is set as 3.85 A/m2

which is an approximation of the excitation current threshold for

nerve fibers of the upper limb area of the motor cortex (Kowalski

et al., 2002).
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2.1 L1-norm fitted and regularized
optimization

The goal in L1-norm Fitted and Regularized (L1L1)

optimization method (Galaz Prieto et al., 2022) is to minimize

min
y

{ ∥

∥

∥

∥

∥

(

L1y− x1
9ε[ν−1L2y]

)∥

∥

∥

∥

∥

1

+ αζ‖y‖1

}

,

s.t. y � γ 1, ‖y‖1 ≤ µ,
L
∑

ℓ=1

yℓ = 0.

(2)

The injection on every active ℓ-th electrode channel is limited

to γ ≤ 2.0 mA, the total injection current dose flowing through

the tES head cap is within the safety limit µ ≤ 4.0 mA, and the

total sum of electric current from every active electrode channel in

yℓ, where ℓ ∈ {1, · · · , L}, must be equal to zero. The regularization

parameter α sets the level of L1-regularization with respect to the

scaling value ζ = ‖L‖1. The function

9ε[w]m = max{ |wm|, ε } for m = {1, 2, · · · ,M},

where w = (w1,w2, · · · ,wM), sets the nuisance field threshold

0 ≤ ε ≤ 1 with respect to the scaling value ν = ‖x‖∞,

meaning that entries (L2y)m with an absolute value below εν do

not actively contribute to the minimization process due to the

threshold.We refer to the set {m : |(L2y)m| ≥ εν } as the constraint

support, i.e., the index set contributing to the value of the objective

function. Detailed formulation of the linear programming system

(Equation 2) can be found in Galaz Prieto et al. (2022).

The current density Ŵ of the focused field is defined as

Ŵ =
xT1 L1y

‖x1‖2
and Ŵmax = argmax

y,α,ε
Ŵ ,

and the focality of the stimulus 2 is defined as the following

current ratio

2 =
Ŵ

‖L2y‖2/
√
M

and 2max = argmax
y,α,ε

2.

The metacriterion Ŵ ≥ Ŵ0 is applied to maintain appropriate

intensity at the target location. Namely, without a lower bound for

the intensity, the intensity of the maximizer is likely to vanish.

2.2 Two-stage metaheuristic lattice search

To derive a multi-channel tES montage following the

aforementioned equations, the optimization framework takes into

account the following indications: (A) a procedure for selecting

the most relevant electrodes in the montage for a given region

of interest; (B) a definition of the tuning parameters which will

maximize or minimize the objective function; and (C) a method

to evaluate said parameters and retrieve data (search method). In

this study, 128 electrodes were attached to the scalp following the

international 10-10 EEG hardware systemwith an impedance of 2.0

kOhm (kiloohms). Physiological impediments in the head model,

fluctuation in conductivity tissue, and behavior of the injected

current aspects are excluded. The framework of this search is as

follows:

(A) The two-stage determines which of the tES channels in the

neurostimulator headgear should be set as active or inactive

based on the field distribution on the head surface for a given

current source in the brain. After calculating the lead field

matrix, the user specifies an approximate region of interest

through forward dipole modeling (Bauer et al., 2015; Medani

et al., 2015; Pursiainen et al., 2016). This is the highlighted

region from which the two-stage procedure shall prioritize

the electrode selection as follows:

(A.1). During the first stage, the optimization model sets

all channels with an initial current of zero value and

determines a volumetric current density influenced

by the electric properties, direction, and positioning

of the dipole modeling. Then, the optimization

model filters the montage down to a (user-defined)

number of electrodes that contribute the most to

the maximal safety tES current injection based

on the initial range of α and ε values provided.

The corresponding electric potential from the now-

limited montage with channels yℓ is normalized to

meet the intended maximum current injection µ

value while the remaining electrodes are opted out of

further calculations. We constraint the total number

of active electrodes available to ℓ = 20 inspired by

commercial tES systems (Roy et al., 2019; Tost et al.,

2021).

(A.2). In the second stage, the optimization re-runs using

only the active electrodes obtained previously. In

this stage, the objective function can be retroactively

modified to retrieve a customizedmontage that favors

an intense volumetric current density Ŵ or a maximal

stimulation focality given a target current2. The final

result is then thresholded to a non-zero number of

currents in the pattern.

(B) Using metaheuristic methodology means developing an

algorithm that can produce near-optimal results in a

computationally feasible time (Bianchi et al., 2009). In the

present context, the objective is to iteratively adjust the

parameters α and ε to ascertain a solution that minimally

impairs the objective function. The aim is to secure a

heightened amplitude within the targeted focus field while

concurrently mitigating undesirable signals (the nuisance

field). We define a parameter space by specifying ranges for

αm from -100 to -20 dB and εn from -160 to 0 dB, employing

logarithmic increments. Plotting these parameter values on

a Cartesian plane elucidates the search space κ , subject to

a set of constraints delineated by the linear programming

paradigm at hand.

(C) The lattice search aspect defines the instructions on how

to retrieve information from the search space κ for

solving (Equation 2). This task can be considered as a

hyperparameter optimization (HPO) exercise (Feurer and

Hutter, 2019; Yang and Shami, 2020) for building a predictive

model that performs best when using the most fitting αm
and εn parameters. The following exploration techniques are
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evaluated for finding these parameters: exhaustive search,

direct search, and recursive search.

(C.1) The exhaustive search, or grid search, systematically

evaluates every possible candidate solution within

the search space κ , i.e., the Cartesian product of

each αm and εn value in existence (Figure 1A). The

final candidate solution is the combination that best

minimizes the objective function. We applied a coarse

grid of size κ = 15 and compared it against a finer grid

of size κ = 40.

(C.2) By direct search, we refer to the Generalized direct

search (GPS) (Bogani et al., 2009) available in the

Matlab’s optimization toolbox. It aims at finding a

point in the hyperparameter space without knowledge

of any gradient. The method begins with a given

search window D(i) and an initial estimate ψ (i)
(α,ε)

acting as a pivot. The location of this window

is centralized over the pivot along with its four

orthogonal neighbor points in the Euclidian distance

w(i), i.e.,

D(i) = {ψ
(i)
(αm ,εn)

,ψ (i)
(αm ,εn+w(i)

),

ψ
(i)
(α

m+w(i)
,εn)

,ψ (i)
(αm ,εn−w(i)

),ψ
(i)
(α

m−w(i)
,εn)

}.

Figure 1B depicts themesh and its behavior. At each

i-th iteration within the mesh, if a neighboring point

performs better than the center point, the window

reallocates this point as the new pivot. If none of these

points yields a better output, then the length of the

mesh w is reduced, and a new set of neighbor points

is adopted. That is,

w(i+1) =

{

w(i), if ψ (i+1)
(αm ,εn)

≤ ψ
(i)
(αm ,εn)

,

w(i)/2, if none satisfies.

The cycle repeats until the number of i iterations is

reached or the algorithm is unable to find any better

point.

(C.3) The recursive search is a modified version of the

three-step search block-matching algorithm (Je and

Park, 2013) that resembles a combination of the

previously mentionedmethods; it defines the subset of

the hyperparameter space as in (C.1), and converges

towards the most fitting solution by recursively

reducing the region of feasibility similar to (C.2). In

this study, we adapted the algorithm for tuning α and

ε by dividing these finite sets into two linearly-spaced

vectors with {κ̃} points, recursively through a number

of M iterations, taking their minimum and maximal

values as their lower and upper bounds, i.e.,

α̃(M+1) = {(α(M)
κ̃

− α
(M)
1 )/(κ̃ − 1)}, and

ε̃(M+1) = {(ε(M)
κ̃

− ε
(M)
1 )/(κ̃ − 1)}, respectively.

Thus, the method updates the hyperparameter

space by replacing it with a narrower subspace instead

of shrinking the search window (Figure 1C). At each

M-th iteration, the search window, with initial size

wi = βi
2, finds the center of the subspace such that

1

βi
ψ (i) ≤ ψ (i) ≤ βiψ

(i) ,

where ψ (i) is the central point at the i-th grid and

the optimal solution from the previous (or initial)

feasible region β−1
i−1ψ

(i−1) ≤ ψ (i−1) ≤ βi−1ψ
(i−1). A

search window of size wi+1 is centered at the location

of ψ (i), i.e., βi = sβi−1 with s > 0,

wM = β2M =

(

u0

l0

)1/K

and s =

(

l0

u0

)
K−1
KM

,

where u0 and l0 are the upper and lower limits from

the initial hyperparameter space, respectively, and K

equals a user-defined reference lattice size for a single

non-recursive search. We evaluate and compare this

method by setting κ̃ = {3, 5, 7, 9}, withM = {1,· · · , 3}

in each case. With this set of equations, the workload

of an exhaustive search is reduced to O(MK̃2), where

K̃ is a smaller grid size, i.e, K̃ < K√
M
.

Additionally, we estimated the limits for the lattice-induced

deviation of 2max and Ŵmax via a second-order Taylor’s polynomial

approximation (Sauer, 2018), With this strategy, the deviation

is obtained with respect to a hypothetical lattice with twice the

resolution compared to the actual one.

2.3 Reciprocity principle

The Reciprocity Principle (Fernandez-Corazza et al., 2020) is

an explicit approach for obtaining maximum current density, Ŵmax,

based on the reciprocity of the electromagnetic field propagation.

Specifically, the maximum stimulation amplitude is obtained with a

two-patch tES electrode montage corresponding to the two greatest

EEG electrode voltages generated by a desired target current in

the brain. The principle considers the connection between the

forward and reverse propagation of the electromagnetic field, which

is predicted by the lead field matrix.

2.3.1 Formulation of the reciprocity principle for
a tES lead field matrix

While gradient propagation in general electromagnetism is not

always reciprocal, it can be shown that a bipolar montage in tES

corresponds to the greatest absolute back-projected currents in the

vector LTx1. The reciprocity principle can be formulated, for a

restricted system, as

LRKyK = x, (3)

where RK denotes a real N × K (K ≤ N) restriction matrix

whose nonzero entries rij ,j = 1 correspond to an ordered subset of

electrodes

S = ij : j = 1, 2, · · · ,K, with |(LT1 x1)i1 | ≥ |(LT1 x1)i2 | ≥ · · ·

≥ |(LT1 x1)iK |.
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FIGURE 1

Schematic illustration of the Hyperparameter Optimization (HPO) techniques applied; (A) the exhaustive search method evaluates the entire

hyperparameter space, case by case; (B) The direct search method employs a pattern that shrinks in size towards the direction in which the objective

function decays; and (C) the recursive search divides the space into subspaces based on the size of the search lattice, shrinking and repositioning the

lattice towards the most fitting solution in a recursive manner.

The reciprocity principle follows by writing the intensity as

Ŵ = σK yTK sK with σK = ‖RKL
T
1 x1‖1/‖x1‖2 and sK =

RKL
T
1 x1/‖RKL

T
1 x1‖1 describing that Ŵ can be interpreted as a

projection of yK on σK sK . Thus, the maximum of Ŵ is achieved

when yK is parallel to sK . The maximizer is then up-scaled to

match the applied current dose µ, i.e., yK = µ sK . Therefore, the

correspondingmaximum intensity isŴ = µσK ‖sK‖
2
2. The optimal

maximizer montage is

max
K
µσK‖sK‖

2
2 ,

where, by definition, ‖sK‖1 = 1 for any K = 1, 2, . . . ,N, and

the entries of sK are ordered in descending order with respect to

their absolute value. Assuming that these entries are given by λ1 ≥

λ2 ≥ · · · ≥ λK ≥ 0, respectively, it holds that ‖sK‖1 =
∑K

j=1 λj,

‖sK−1‖1 = (λj − 1)−1∑K−1
j=1 λj, and

‖sK‖
2
2 − ‖sK−1‖

2
2 =

λK

1− λK



λ2K−λK+
2− λK
1− λK

K−1
∑

j=1

λ2j



 ≥

λK

1− λK



λ2K−λK+2
K−1
∑

j=1

λ2j





≥
λK

1− λK



Kλ2K−λK+

K−1
∑

j=1

λ2j



 .

The equality follows a straightforward substitution, the first

inequality is based on

2− λK
1− λK

= 1+
1

1− λK
≥ 2,

and the second one is obtained as (K − 1)λ2K ≤
∑K−1

j=1 λ
2
ij
.

Following from the discriminant, together with the Arithmetic

Mean–Quadratic Mean inequality

1

K − 1

K−1
∑

j=1

λ2j ≥





1

1− K

K−1
∑

j=1

λj





2

,

The second factor in Equation (3) does not have roots if

K

K−1
∑

j=1

λ2j ≥





K−1
∑

j=1

λj





2

≥
1

4
, i.e.,

K−1
∑

j=1

λj ≥
1

2
.

This assumption is valid since a montage with only two active

channels cannot contain more than two halves of the total dose

(otherwise, the sum of said currents will be less than zero). Hence,

‖sK‖
2
2 − ‖sK−1‖

2
2 ≥ 0 for any montage, and the maximum of Ŵ is

obtained with the bipolar pattern that corresponds to the first two

entries i1 and i2 in the set S .

2.4 Mathematical optimization software

We solve the optimization task (Equation 2) using the Interior-

Point (IP), the Primal-Simplex (PS), and the Dual-Simplex

(DS) methods. The class of the IP methods is sub-divided

into the primal-dual algorithms (predictor-corrector) (Fiacco and

McCormick, 1964; Mehrotra, 1992) and the barrier methods, which

determine the feasible set via a barrier function. While IP methods

utilize Newton’s method to operate in the interior of a feasible set

(Boyd and Vandenberghe, 2004), simplex methods seek solutions

by considering the feasible set as a convex polytope and moving

along its edges. While this strategy uses less memory than the

interior-point strategy, it has lower predictability for large-problem

convergence.

The concepts of primal- and dual-simplex refer to the

formulation of the linear programming problem; by presenting

the entries of the current pattern y as differences of non-negative

variables (yi = si − pi, si, pi ≥ 0) and the equality constraint

via two inequalities (condition a = 0 is satisfied, a ≤ 0 and

−a ≤ 0), the task can be brought back to the following standard

primal formulation:

max
z

cTz subject to Az ≤ b, z ≥ 0 ,
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TABLE 1 Description of the Linear Programming (LP) solvers applied for

solving the L1L1 optimization problem through the Interior-Point (IP),

Primal-Simplex (PS), and Dual-Simplex (DS) algorithms.

Solver Interface Method Code

Matlab 2020b Optimization
toolbox

Interior-Point
(Primal-Dual)

Matlab IP

Primal-Simplex Matlab PS

Dual-Simplex Matlab DS

MOSEK 9.0 MOSEK
toolbox

Interior-Point
(Primal-Dual)

MOSEK IP

Primal-Simplex MOSEK PS

Dual-Simplex MOSEK DS

Gurobi Optimizer Gurobi
toolbox

Interior-Point
(Barrier Method)

Gurobi IP

Primal-Simplex Gurobi PS

Dual-Simplex Gurobi DS

SDPT3 4.0 CVX 2.1 Interior-Point
(Primal-Dual)

SDPT3 IP

SeDuMi 1.3.5 CVX 2.1 Interior-Point
(Primal-Dual)

SeDuMi IP

All solvers were embedded with Matlab’s version R2020b and called by the optimizer of the

Zeffiro Interface (ZI) toolbox. Matlab, MOSEK, CVX’s SDPT3, and CVX’s SeDuMi apply

primal-dual routines, and Gurobi uses the barrier method.

whose dual is given by

min
ẑ

bT ẑ subject to AT ẑ ≥ c, ẑ ≥ 0 .

The IP algorithms applied in this study include Gurobi’s parallel

barriermethod and the primal-dual routines fromMatlab,MOSEK,

SDPT3, and SeDuMi. The simplex methods include MOSEK’s PS

and DS, Gurobi’s PS and DS, and Matlab’s DS algorithm. Matlab’s

Optimization Toolbox has two IP solvers, of which we apply

the interior-point legacy (IPL), whose origin is in the Linear-

Programming Interior Point Solvers (LIPSOL) package (Zhang,

1999). All the solvers, their types, and their abbreviations used in

this study are described in Table 1.

2.5 Numerical domain and computing
platform

As the domain of the numerical simulations, we applied a

realistic tetrahedral 1.0mmFEmesh based on an open T1-weighted

Magnetic Resonance Imaging (MRI) dataset1. Through FreeSurfer

Software Suite2, we segmented the data to find the complex surface

boundaries between different tissue compartments, including the

skin, skull, cerebrospinal fluid (CSF), gray and white matter, and

subcortical structures such as brain stem, thalamus, amygdala, and

ventricles (Fischl, 2012). Their conductivity values, which influence

the accuracy of the forward solution (Montes-Restrepo et al., 2014),

were set according to (Dannhauer et al., 2011). We discretized

the volumetric current density to solve the inverse problem using

1 https://brain-development.org/ixi-dataset/

2 https://surfer.nmr.mgh.harvard.edu/

563 spatial nodes evenly distributed in the gray and white matter

compartments of the cerebrum and cerebellum with approximately

1.3 cm (centimeters) distance between two neighboring nodes,

associating each node with three divergence-free Cartesian field

components.

Through dipole modeling (Bauer et al., 2015; Medani et al.,

2015; Pursiainen et al., 2016), we define the region of interests

from which the multi-channel tES montage should be derived.

We selected the primary somatosensory cortex in the postcentral

gyrus (Figure 2A), the primary auditory cortex of the posterior

superior temporal gyrus (Figure 2B), and the primary visual cortex

in the occipital lobe (Figure 2C) as the target areas. Each dipole is

normally oriented with respect to the surface of the gray matter to

satisfy the normal constraint of brain activity in the cerebral cortex

(Creutzfeldt et al., 1962). Each L1L1 method-based current pattern

obtained represents an approximative solution to the optimization

problem (Equation 2) corresponding to one of the aforementioned

areas.

We performed the numerical simulations using a Dell 5820

workstation with a 10-core Intel Core i9-10900X processor and

256 GB of RAM. The L1L1 solver was implemented in Matlab-

based Zeffiro Interface toolbox3 (He et al., 2019) which builds a

high-resolution finite element (FE) mesh and generates a tES lead

field matrix (Galaz Prieto et al., 2022) for a given surface-based

head segmentation incorporating the Complete Electrode Model’s

(CEM) boundary conditions (Pursiainen et al., 2012, 2017).

3 Results

The exhaustive search proved to be a reliable method for

experimental benchmarking when the required tES montage

requires careful design for clinical applications. By presenting the

exhaustive search results in the form of a heatmap with a coarse

grid of κ = 15 (Figure 3A), we can pinpoint the (α, ε) region

where the focused current amplitude reaches its maximum. Despite

a significantly increased number of evaluations, with a finer grid

of κ = 40 (Figure 3B), we can further determine a more detailed

optimal area. This area corresponds to the Cartesian product of αm
ranging from −71 to −50 dB and εn from 0 to −98 dB. In this

context, a high current injection montage, denoted by Ŵmax (yellow

star), is positioned at the peak of the amplitude, while focality-

based montages,2max (purple star), adhere closely. However, these

focality-based montages are slightly deviated due to the influence

of the nuisance field, despite being relatively close, as determined

by a threshold condition corresponding to 75% of the maximum

amplitude achievable with the two-patch bipolar tES montage. In

comparison between these grid resolutions, one can observe slight

enhancements in amplitude, increased optimization accuracy, and

improved numerical stability in the latter case. These aspects are far

more noticeable with Dual- and Primal-Simplexmethods than with

the Interior-Point, which yields overall smoother results with fewer

drastic deviations.

Figure 4 delineates the performance nuances among

optimization strategies. The whiskers along the stems signify

a second-order Taylor’s polynomial estimate, reflecting the

maximum deviation within half lattice units distance from

3 https://github.com/sampsapursiainen/ze�ro_interface
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FIGURE 2

Top row: 3D view of the head model coupled with a 128-channel electrode array (blue dots) following a 10-10 EEG hardware configuration. A

synthetic dipole, (magenta spherical arrow), which simulates a current distribution, is placed at the (A) primary somatosensory cortex in the

postcentral gyrus, (B) primary auditory cortex in posterior superior temporal gyrus, and (C) primary visual cortex in the occipital lobe, respectively.

Bottom row: 2D plane view of the head model displaying the electric field distribution generated by an optimal tES montage following the reciprocity

principle which maximizes the focused volumetric current density. The direction of the injection current pattern generated by the montage matches

the dipole’s orientation. The anodal channels (red spheres) are found by the posterior, while the cathodal channels (blue spheres) by the parietal or

frontal sections. The empty circles indicate inactive channels. The volumetric current density is given in Amperes per square meter (A/m2).

the optimizer. The reciprocity principle reference for Ŵmax is

represented by a horizontal black dashed line, and the number of

non-zero (NNZ) channels required for a tES montage is depicted

on the right side of each corresponding stem. The solvers are sorted

in ascending order based on their performance, with the exhaustive

search κ = 40 grid (blue) serving as the point of reference. Both

the direct and recursive search techniques adeptly uncover optimal

(α, ε) solutions for 2max and Ŵmax, yielding a substantial reduction

in total computing time compared to the specified hyperparameter

space.

Due to the heuristic nature of the direct search, and to

assert the efficacy of the said technique, we performed a series

of trial runs by setting the initial point to the center of the

search space. In these trials, the number of objective function

evaluations varied, ranging from 25 to 54 trials, with a 33.8 mean

among the evaluations (see Table 2). While the number of function

evaluations was slightly higher, the quality of the results was

nearly on par with those obtained with the recursive search with

a search window of K̃ = 3. With IP solvers, the search runs were

mostly successful, while PS and DS tended to fail to find a feasible

optimizer candidate.

Due to its relatively fast performance among interior-point

methods, we applied MOSEK IP to evaluate topographical maps

of stimulus focality 2max (Figure 5A) and current density Ŵmax

(Figure 5B) for an exhaustive search κ = 15 and a recursive

search K̃ = 3. Overall, the results of the recursion were close

to the outcome of the exhaustive search. Thus, the topographical

differences between the different approaches of this study were

observed to be minor.

By limiting the search space only to a narrower subspace is

a simple countermeasure for dealing with the disadvantages of

the exhaustive search. With a κ = 15 grid as a reference, it

can take approximately 850 seconds to perform a complete search

for the first stage, while the second stage only takes roughly 15%

of that time since it uses a limited lead field following from the

limited number of active electrodes. As an alternative approach,

the direct and recursive search seemed to perform well compared

to the number of objective function evaluations made during the

search process (Figure 6). In particular, MOSEK turned out to be

the superior choice, with MOSEK DS being the fastest one. The

computing time for Gurobi IP was close to that of MOSEK IP, and

Gurobi DS, PS, and Matlab IPL and DS required approximately

three times the time. The slowest-performing SDPT3 and SeDuMi

took as much as six times the run time of MOSEK IP. Overall,

the simplex methods applied to the L1L1 optimization scheme

deliver faster yet less accurate solutions than Interior-Point (IP) for

focality-based montages, while minor differences can be found for

intensity-based solutions.

4 Discussion

In this study, we analyzed the numerical and computational

performance of exhaustive search, direct search, and recursive

search techniques to find an optimal stimulation focality 2 and

current density Ŵ for solving the L1L1 optimization problem

for non-invasive transcranial electrical stimulation (tES) current

injection. This analysis was motivated by our earlier results in

(Galaz Prieto et al., 2022) which suggested that the L1L1 method
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FIGURE 3

Performance comparison of the exhaustive search for solving the L1-norm fitted and penalized (L1L1) optimization method with current density Ŵ as

the objective function. The coarse (A) search space κ = 15 produces 225 evaluations, and the finer (B) search space κ = 40 with 1600 evaluations,

both using regularization parameter α (x-axis) and the nuisance threshold level ε (y-axis). The candidate solutions with respect to current density

Ŵmax and focality 2max are marked with a yellow and purple star, respectively. The maximizers are generally found around from area in which α is

between −71 to −50 dB dB (decibels) and ε from 0 to −98 dB. Notice that in the case of using the Gurobi package, with a Simplex algorithm, both

optimal candidate solutions for either a stimulus focality or a current density both optimal solutions are taking the same (α, ε) tuning parameters due

to the sharp steepness from the coarse search space. The volumetric current density on every chart is given in Amperes per square meter (A/m2).

provides a theoretically attractive approach for obtaining a high-

gain focal stimulus as compared to complex L2-norm fitting and

regularized least squares techniques (Dmochowski et al., 2011;

Wagner et al., 2016).

The reciprocity principle, as outlined by Fernandez-Corazza

et al. (2020), served as a reference technique. Its validity was

shown for the present tES lead field matrix L (see Section 2.3.1).

When focusing on a specific target region, the current injection

pattern from a two-patch tES montage aligns with the maximum

intensity achievable through this principle. Essentially, this involves

selecting the two electrodes with the highest absolute back-

projected currents. With the absence of nuisance field constraints,

the L1L1 solution was observed to agree with the reciprocity

principle if the aforementioned algorithmic aspects were handled

appropriately.

Decisive aspects for a successful outcome of L1L1 were found

to be the choice of the optimization package, algorithm, and

search routine, which significantly affect both the performance of

the metaheuristic optimization process and output. To enlighten

this aspect, we covered the performance of several Interior-

Point (IP) (Mehrotra, 1992), Dual-Simplex (DS), and Primal-

Simplex (PS) (Boyd and Vandenberghe, 2004) methods from

different open-source and commercial optimization toolboxes.

We tested the L1L1 method using the commercial solvers of

MOSEK Optimization Suite (Release 9) (Mosek, 2019) and Gurobi

Optimization (9.5.1) (Gurobi Optimization LLC, 2022), and

compared them to the open-source alternatives (Grant and Boyd,

2014) SDPT3 (4.0) (Tütüncü et al., 2003) and SeDuMi (1.3.5)

(Sturm, 1999; Frenk et al., 2000; Polik et al., 2007) as well as Matlab

R2020b’s (MathWorks) Interior-Point-Legacy (IPL) algorithm,

which originates from the open LIPSOL (Zhang, 1999) toolbox.

We selected the IPL algorithm since we experienced stagnation

with Matlab’s main IP algorithm, which did not return any

appropriate results.

Based on the results, we consider Gurobi IP to be the preferable

choice in both optimization stages, considering 2max and Ŵmax in

each tested target region of interest and, as it was also overall

the fastest of the IP solvers. While the best-performing solvers

show that the L1L1 method is suitable for maximizing focality

and intensity, a few did not find the bipolar current pattern that

maximizes Ŵmax. Notably, SDTP3 did not find a bipolar pattern at

all, verifying our earlier hypothesis (Galaz Prieto et al., 2022) that

the performance of L1L1 might be highly solver-based. Part of the

discrepancies between the optimization methods can be explained

by a different sensitivity with respect to parameter variation or the

resolution of the lattice.
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FIGURE 4

Stem plots results from the two-stage metaheuristic lattice search using exhaustive search with coarse grid of κ = 15 (red) and fine grid of κ = 40

(blue), and a recursive one with K̃ = {3, 5, 7, 9} (cyan, magenta, green, and black, respectively) considering the somatosensory (Som.), auditory (Aud.)

and visual (Vis.) regions of interest. The whiskers in the stem plot indicate a second-order Taylor’s polynomial estimate for the maximum deviation

within a half-lattice unit distance from the optimizer. The intense current injection (Ŵmax) calculated using the reciprocity principle is shown with a

horizontal black dashed line as a reference. The number of non-zero (NNZ) channels in the Transcranial Electrical Stimulation (tES) montage is

shown on the right side next to the corresponding stem. The solvers are sorted in descending order from left to right based on their performance

with κ = 40.

From a computational complexity standpoint, the exhaustive

search method can be applied for benchmarking purposes. In

contrast, a recursive search proves an advantageous alternative and

is competitively on par with the direct search technique, each one

applied in this study. This equivalence arises from both methods

converging toward the most suitable regularization parameter

α and nuisance threshold ε values in a comparably controlled

manner. Notably, the computational complexity of recursive search

remains consistent across various optimization runs, in contrast to

the variability observed in the direct search. Results comparable to

those obtained through exhaustive search can be attained with a

reduced-resolution search window of, say, size K̃ = 3, representing

a substantial acceleration in comparison to exhaustive search.

Furthermore, the recursive approach demonstrates both numerical

stability and convergence towards exhaustive search results, both at

individual data points and in the overall topographical context, as

the probing lattice size increases.

4.1 Limitations and future work

Unlike earlier linear programming (LP) formulations for tES

optimization problems, our use of the metaheuristic process

enabled us to explore parameters freely, without imposing rigid

Frontiers inHumanNeuroscience 09 frontiersin.org65

https://doi.org/10.3389/fnhum.2024.1201574
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Galaz Prieto et al. 10.3389/fnhum.2024.1201574

TABLE 2 Comparison of stimulation focality 2max and intensity Ŵmax results obtained between exhaustive, direct, and recursive search methods.

Somatosensory Auditory Visual

Search Resolution Levels Window Evaluations 2max Ŵmax 2max Ŵmax 2max Ŵmax

Exhaustive Fixed - 15 225 2.93 0.1315 6.47 0.1486 4.98 0.1488

Exhaustive Fixed - 40 1600 3.93 0.1315 7.69 0.1725 4.98 0.1574

Direct Adaptive - - 28-54* 3.45 0.1315 7.75 0.1725 4.99 0.1488

Recursive Adaptive 3 3 27 2.99 0.1315 6.47 0.1486 5.11 0.1514

Adaptive 3 5 75 3.45 0.1315 6.92 0.1725 5.17 0.1545

Adaptive 3 7 147 3.88 0.1315 7.10 0.1725 5.17 0.1545

Adaptive 3 9 243 4.02 0.1315 7.68 0.1725 3.91 0.1545

The behavior of the search space (Resolution), number of resolution levels (Levels), search window size (Window), and the number of objective function evaluations (Evaluation) per

optimization run are given. Non-applicable features are marked with the (-) symbol.
* In direct search, the number of objective function evaluations varied between different optimization runs.

FIGURE 5

Comparison of the topographical maps for (A) maximum focality 2max and (B) current density Ŵmax using exhaustive search κ = 15 (top-row), and

recursion with K̃ = 3 (bottom-row). The contours show 20, 40, and 75% equicurves with respect to their maximum entry. Maps have been computed

using the MOSEK with the Interior-point method.

a priori constraints on the nuisance field, as observed in

Wagner et al. (2016). In L1L1, we optimally set the nuisance

field through hyperparameter optimization embedded in a two-

stage metaheuristic lattice search procedure. Interpreted as an

enhancement for localizing both pattern and volumetric density

of the stimulus, L1-norm fitting and regularization outperform

the least-squares methodology introduced in Dmochowski et al.

(2011, 2017). However, this improvement comes at a greater

computational cost, prompting our in-depth investigation into

various algorithmic aspects of metaheuristic optimization in

this study. Our present findings underscore the critical role of

computational considerations when integrating hyperparameters

and metacriteria into the tES optimization problem, aspects

overlooked in the studies mentioned earlier.

Our results concerning L1L1 are limited to numerically

simulated tES only, meaning that neither the performance of the

method in other modalities than tES nor the effects of uncertainty

causing inter-subject variability (Laakso et al., 2015) have not

been fully covered yet. Those might include, for example, any

discrepancies between the estimated and actual values of electrical

conductivity, such as skull conductivity (Schmidt et al., 2015),

strategy to specify a montage (Kaufmann et al., 2021), as well as

uncertainty about the targeted region in the brain, e.g., a possible

spread of an epileptic focus (Simula et al., 2022). While the

expected level of uncertainty can be controlled via the range of the

hyperparameter ε, a future study on its effect will obviously need to

be conducted.

Of the applied liner programming methods, interior-point is

an overall preferable option over the simplex methods, which can

be considered beneficial characteristic when hardware performance

is limited, e.g., for a potential Field-Programmable Gate Array

(FPGA) implementation (Bayliss et al., 2006; Gensheimer et al.,

2014). Another comparative method, the Alternating Direction

Method of Multipliers (ADMM) (Lin et al., 2021), was not included

in this investigation as achieving an appropriate convergence

seemed more difficult due to its dependence on a step-length

parameter. While the current results enlighten how the different

algorithms would perform with different nuisance threshold levels,

an independent study would be needed to determine the optimal

level given the mathematical uncertainty.

Possible future work directions can be to open up the function

of L1L1 on a broader scale, this include applying it for deep

brain stimulation (DBS), where the electrical stimulus is not

transcranial. Likewise, an advanced optimization technique is

needed to target subcortical nuclei of the brain; for instance, in

the recent study (Anderson et al., 2018), where the Interior-Point
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FIGURE 6

Total amount of computing time for finding the most fitting

candidate solution through the two-stage metaheuristic lattice

search on every optimization solver and method in this study. In

order of stem (top-to-bottom): exhaustive search with search space

κ = 15 (red), direct search (cyan), and recursive search with K̃ = 3

(blue). Noticeably, the non-commercial solvers from CVX (SDPT3

and SeDuMi) are significantly slower than those produced by Matlab,

Gurobi and MOSEK.

algorithm has been applied. Yet another interesting direction is

to consider a priori information for the design and application

of the L1L1 algorithm, for example, an epileptic focus based

on non-invasive measurements such as video-EEG of epileptic

activity applied to determine approximate stimulation locations.

Finally, the mathematical implications of this study can be

further enriched by incorporating transcranial direct current

stimulation and functional magnetic resonance imaging (tDCS-

fMRI) (Esmaeilpour et al., 2020). By utilizing tDCS-fMRI data

sets to explore real-time neural changes caused by electrical

stimulation–such as in the studies by Callan et al. (2016) for

investigating resting state networks linked to visual stimuli, or in

the research conducted by Mark et al. (2023) for monitoring brain

activity of pilots undergoing aviation training–further enriches

the necessity of an effective inverse problem study equipped with

optimizationmethods for simulating and understanding the signal-

to-noise (SNR) impacts with a level of mathematical uncertainty,

as some of these deficiencies were mentioned on their study

limitations.
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Introduction: To reliably solve the EEG inverse problem, accurate EEG forward

solutions based on a detailed, individual volume conductor model of the head

are essential. A crucial—but often neglected—aspect in generating a volume

conductor model is the choice of the tissue conductivities, as these may vary

from subject to subject. In this study, we investigate the sensitivity of EEG forward

and inverse solutions to tissue conductivity uncertainties for sources distributed

over the whole cortex surface.

Methods: We employ a detailed five-compartment head model distinguishing

skin, skull, cerebrospinal fluid, gray matter, and white matter, where we consider

uncertainties of skin, skull, gray matter, and white matter conductivities. We

use the finite element method (FEM) to calculate EEG forward solutions and

goal function scans (GFS) as inverse approach. To be able to generate the large

number of EEG forward solutions, we employ generalized polynomial chaos

(gPC) expansions.

Results: For sources up to a depth of 4 cm, we find the strongest influence

on the signal topography of EEG forward solutions for the skull conductivity

and a notable e�ect for the skin conductivity. For even deeper sources, e.g.,

located deep in the longitudinal fissure, we find an increasing influence of the

white matter conductivity. The conductivity variations translate to varying source

localizations particularly for quasi-tangential sources on sulcal walls, whereas

source localizations of quasi-radial sources on the top of gyri are less a�ected.

We find a strong correlation between skull conductivity and the variation of

source localizations and especially the depth of the reconstructed source for

quasi-tangential sources. We furthermore find a clear but weaker correlation

between depth of the reconstructed source and the skin conductivity.

Discussion: Our results clearly show the influence of tissue conductivity

uncertainties on EEG source analysis. We find a particularly strong influence of

skull and skin conductivity uncertainties.

KEYWORDS

EEG, forward modeling, finite element method, source analysis, sensitivity analysis,

uncertainty quantification

1 Introduction

Electroencephalography (EEG) is a frequently used tool for functional brain imaging

in both research and clinical care (Brette and Destexhe, 2012). A huge advantage of

EEG over, e.g., functional magnetic resonance imaging (fMRI), is its time resolution

in the millisecond range. To localize the brain activity underlying a measured signal

it is necessary to solve the EEG inverse problem (Knösche and Haueisen, 2022). As

a prerequisite for solving the EEG inverse problem, it is necessary to model the

propagation of the electric fields evoked by brain activity through the head tissues,
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which are measured as the EEG signal at the head surface

(EEG forward problem). Accurately solving the EEG forward

problem is one important factor to reliably solve the EEG

inverse problem (others are, e.g., the choice of an adequate

inverse method).

The EEG forward problem is commonly solved using numerical

methods, such as the boundary element method (BEM; Kybic

et al. 2005) or the finite element method (FEM; Yan et al. 1991;

Buchner et al. 1997), and, therefore, requires a discretized volume

conductor model of the head, i.e., a 3d representation of the

head distinguishing the different conductive tissues. It was shown

that the use of accurate, individual head models distinguishing

five or more tissues (skin, skull, cerebrospinal fluid/CSF, gray

matter, white matter) is important to obtain accurate EEG forward

solutions (Vorwerk et al., 2014; Nielsen et al., 2023), which, in

consequence, are essential for accurate EEG inverse solutions

(Ramon et al., 2006; Cho et al., 2015; Neugebauer et al., 2017;

Asadzadeh et al., 2020; Azizollahi et al., 2020). However, besides

the geometrical accuracy of the head model, also the values chosen

for the tissue’s electrical conductivities influence the obtained

EEG forward solution. Neglecting interindividual variations of

these conductivities in the computation of the EEG forward

solution may therefore lead to inaccurate EEG inverse solutions

(Vanrumste et al., 2000; Chen et al., 2010; Akalin Acar and

Makeig, 2013; Aydin et al., 2014; Vorwerk et al., 2019a). Such

interindividual variations may, e.g., occur due to age or disease

state (Akhtari et al., 2002; McCann et al., 2019; Antonakakis

et al., 2020). Conductivity calibration based on electrical impedance

tomography (EIT), EEG, or combined EEG/MEG has been

proposed as a means to alleviate the influence of conductivity

uncertainties (Huang et al., 2007; Acar et al., 2016; Fernández-

Corazza et al., 2017). Most of these studies focused on fitting the

skull conductivity, but it is unclear whether the dependency on

the skull conductivity is similarly strong for all source positions

and whether fitting the skull conductivity is thus always the

optimal choice.

Sensitivity studies allow estimating to what extent variations

of the tissue conductivities influence the results of EEG

forward solutions. So far, studies found that variations of

skin and skull conductivities have the strongest influence

for the EEG (Gençer and Acar, 2004; Vallaghé and Clerc,

2008; Vorwerk et al., 2019a). However, to the best of our

knowledge, existing EEG sensitivity studies only investigated

a few source positions that were assumed to be representative.

Especially in highly-detailed head volume conductor models,

as they are more and more frequently used nowadays (Buzzell

et al., 2017; Piai et al., 2017; Staljanssens et al., 2017; Gao

et al., 2019; Zaky et al., 2023), the choice of the source

positions might have a strong influence on the results of the

sensitivity analysis.

In this study, we investigate the sensitivity of EEG
forward solutions to conductivity variations for sources
distributed over the whole cortex surface. Furthermore,
we investigate the sensitivity of EEG inverse solutions
to the same conductivity variations, and determine to
what extent changes of the EEG inverse solution correlate

with the sensitivity of the EEG forward solutions to tissue

conductivity variations.

2 Materials and methods

2.1 Head model

We generated a head model based on the segmentations

provided for the New York Head (https://www.parralab.org/

nyhead/). The segmentations of brain and non-brain tissues are

based on the symmetric ICBM-152 v2009 and the symmetric

ICBM-152 v6 average atlases, respectively (https://nist.mni.mcgill.

ca/atlases/), whereas the lower parts of the head are from a

separate segmentation (Huang et al., 2016). We slightly modified

the segmentations to ensure a minimal thickness of the gray

matter of 2.5 mm. Furthermore, we reduced the number of tissue

compartments to five (white matter, gray matter, CSF, skull, skin).

We used SimNIBS 4 (https://simnibs.github.io/simnibs/; Puonti

et al. 2020) for head mesh generation and to obtain gray matter,

white matter, and central cortex surfaces for both hemispheres that

will be used for source space construction and visualization. We

chose to generate an especially fine mesh structure in the gray

and white matter volumes; the resulting tetrahedral head mesh

consisted of 3,473,632 nodes and 20,703,247 elements (see Figure 1,

left). We used the electrode positions provided with the New York

Head to create a realistic sensor configuration corresponding to a

10-10 layout, resulting in 80 electrode positions.

2.2 Source spaces and EEG forward
simulations

We created the source space for this study based on the

central surface of the cortex obtained from SimNIBS, which is

the estimated surface in the middle of gray matter/CSF and

gray/white matter boundaries. It has to be observed that this central

surface represents a closed surface for each hemisphere, i.e., the

hemispheres are split at the corpus callosum. Furthermore, these

surfaces also cover some deep brain regions that could be attributed

to subcortical brain structures such as the thalamus or the basal

ganglia, whereas brainstem and cerebellum are excluded. Due to

the symmetry of the underlying segmentation, we only considered

the left hemisphere. For reasons of computational efficiency, we

downsampled the surface to 34,997 vertices.

To achieve high numerical accuracy in our forward simulations,

we ensured that for all source positions the closest node of the

head mesh is fully contained in the gray matter compartment, i.e.,

all mesh elements this node is part of have to belong to the gray

matter compartment (Vorwerk et al., 2019b). Source positions for

which this was initially not the case were shifted toward the closest

node fully contained in the gray matter compartment until this

condition was fulfilled. For each source position, we calculated the

surface normal as a physiologically plausible source direction at

this position. We refer to this source space as sources_cortex. For

visualization purposes, we created an inflated version of the central

cortex surface underlying this source space.

To avoid an inverse crime when evaluating the sensitivity

of EEG source analysis to conductivity uncertainties, we created

a second source space based on the dual mesh of the source

space sources_cortex. This means that the source positions for this
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FIGURE 1

Visualization of the FEM head model showing electrode positions (red) and (from outside to inside) skin, skull, CSF, gray matter, and white matter

surfaces (left). Lateral and medial view of source depth (distance to inner skull surface) visualized on inflated left cortex surface (right).

second source space are the triangle centers of the cortex surface

on which the original source space sources_cortex is based. The

resulting source space consists of 69,990 vertices; we refer to this

source space as sources_cortex∗. sources_cortex∗ is used for all

inverse calculations, whereas sources_cortex is used for the forward

simulations. Again, we ensured that the closest node of the volume

conductor model for all source positions of sources_cortex∗ is

fully contained in the gray matter compartment. On average, the

distance between a node of sources_cortex∗ and the closest node in

sources_cortex is 0.8 mm, which is the average minimal localization

error, accordingly.

We used the FEM multipole approach for all forward

simulations, as it was shown to achieve high numerical accuracy

with a high computational efficiency (Vorwerk et al., 2019b). The

multipole approach was implemented based on the FieldTrip-

SimBio pipeline (Vorwerk et al., 2018).

2.3 EEG forward problem sensitivity
analysis

We mostly rely on Monte Carlo approaches for our

sensitivity analysis. To handle the large number of forward

simulations for different conductivity values necessary for the

sensitivity/uncertainty analysis, we employ generalized polynomial

chaos (gPC) expansions (Vorwerk et al., 2019a). Based on

predefined probability distributions and precomputed forward

solutions generated for corresponding sets of conductivities,

gPC expansions allow to rapidly approximate accurate forward

simulations for arbitrary conductivity values. We used UQLab

2.0 to perform the gPC calculations in this study (https://www.

uqlab.com/; Marelli and Sudret 2014). The details of the used gPC

approach are described in Vorwerk et al. (2019a).

As in Vorwerk et al. (2019a), we chose uniform distributions

for all tissue conductivities considered uncertain. The uniform

distribution represents minimal knowledge about the distribution

of these conductivities. The intervals within which each

conductivity could vary are shown in Table 1; the CSF conductivity

was not considered uncertain as it was shown to have a negligible

inter-individual variation (Baumann et al., 1997).

With four tissue conductivities varying uniformly within the

ranges indicated in Table 1, it is of interest to estimate the

contribution of each of the four uncertain tissue conductivities to

the overall variation of the EEG forward solution. Therefore, we

use Sobol indices (Sobol, 2001). These are defined as

Si1 ,...,is =
V(i1, . . . , is)

V
, (1)

i.e., the Sobol index Si1 ,...,is is defined as the ratio between the

variance caused by the interaction of the subset of input parameters

{i1, . . . , is} ⊂ {1, . . . , n} and the overall variance. It is important

to note that V(i1, . . . , is) only includes the variance caused by

the interaction of the subset of indices i1, . . . , is but not the

contributions that can be attributed to a single variable or a smaller

subset of these variables. For example, for a second-order Sobol

index Si,j, the variance V(i, j) does not include the variances V(i)

and V(j) that can be attributed to either i or j individually.

In this study, we focus on first- and second-order Sobol indices,

i.e., the share of variance caused by the uncertainty of a single

uncertain tissue conductivity or the share of variance caused by

the uncertainty of two conductivities that cannot be attributed to

the uncertainties of a single conductivity, respectively. We further

consider total-effect or full Sobol indices, STi , for which all Sobol

indices involving a certain input parameter i are summed up:

STi = Si +
∑

i6=j

Si,j +
∑

i6=j,k
j<k

Si,j,k + . . . . (2)

The Sobol indices were computed with UQLab using a Monte

Carlo approach with 50,000 samples per parameter. We found

that this number of samples guaranteed a more than sufficient

convergence of the Sobol indices for the requirements of this

study. To calculate the Sobol indices, the Janon estimator was used

(Janon et al., 2014, Equation 2.6), which has optimal asymptotic

variance and is robust against model perturbations. Further details

regarding the calculation of the Sobol indices are provided as
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TABLE 1 Tissue conductivity intervals (mS/m).

Tissue Min. σmin Max. σmax Standard σst References

Skin 280.0 870.0 430.0 Haueisen et al., 1997; Ramon et al., 2004

Skull 1.6 33.0 10.0 Akhtari et al., 2002; Hoekema et al., 2003; Dannhauer et al.,
2011

CSF 1,769.6 1,810.4 1,790.0 Baumann et al., 1997

GM 220.0 670.0 330.0 Haueisen et al., 1997; Ramon et al., 2004

WM 90.0 290.0 140.0 Haueisen et al., 1997; Ramon et al., 2004

Supplementary material. Furthermore, we would like to refer the

interested reader to the original publication of Janon et al. (2014)

or the UQLab User Manual (https://uqftp.ethz.ch/uqlab_doc_pdf/

2.0.0/UserManual_Sensitivity.pdf) for additional information.

In the sensitivity analysis of EEG forward simulations, we have

the challenge that we do not have a single output parameter, but

each computed electrode potential is a separate output parameter.

To allow for a comprehensible and easily interpretable evaluation

of the Sobol indices, we introduce the relative difference measure

(RDM) and the magnitude error (MAG) (Meijs et al., 1989).

Computing these error measures in comparison to a reference

solution, it is possible to express the topography and magnitude

change of the set of electrode potentials through a single parameter

for each source position. Interpreting RDM and MAG as functions

of the conductivities, we can then compute the Sobol indices

for the changes of RDM and MAG, expressing the influence

of changes in each tissue conductivity on signal topography

and magnitude. A similar approach was previously used by

Vallaghé and Clerc (2008). As a reference solution, we use the

forward solution for the standard conductivity values indicated

in Table 1.

RDM and MAG are defined as follows:

RDM(utest , uref ) =

∥

∥

∥

∥

∥

utest

‖utest‖2
−

uref

‖uref ‖2

∥

∥

∥

∥

∥

2

,

MAG(utest , uref ) =
‖utest‖2

‖uref ‖2
,

(3)

where utest corresponds to the vector of electrode potentials for

varied conductivities and uref corresponds to the vector of electrode

potentials for standard conductivities.

The RDM represents the change in signal topography in

comparison to the reference solution, which was shown to be

linked to source localization accuracy, whereas the MAG defines

the change in signal magnitude. In most applications of EEG source

analysis, only the change of signal topography is of relevance,

whereas there are only a few cases where the exact source

magnitude is of interest. Thus, we mainly focus on the RDM

evaluations in this study.

2.4 EEG source analysis sensitivity analysis

To evaluate the influence of conductivity uncertainties on EEG

inverse solutions, we performed forward simulations for 1,000

randomly drawn sets of conductivities. Following, for each source

position, we calculate inverse solutions using the source space

sources_cortex∗ and a leadfield matrix obtained with standard

conductivity values. This scenario corresponds to the common

problem of EEG source analysis that the actual tissue conductivities

that influence the measurement result are unknown, while the

EEG source analysis is performed using conductivity values from

the literature. The resulting 1,000 source localizations per source

position can then be evaluated to investigate the sensitivity of the

EEG inverse solution to conductivity variations.

As an inverse method, we used goal function scans (GFS) with a

free source orientation, i.e., the source position i in the source space

for which

GoF = 1−

(

‖umeas − LiL
+
i umeas‖2

‖umeas‖2

)2

(4)

is maximal is selected as the reconstructed source location. Here,

umeas is the (simulated) measurement result, ‖ · ‖2 is the Euclidian

norm, Li = L(xi) is the #sensors× 3 leadfield matrix for position xi,

i.e., a matrix containing the forward simulation results for dipoles

with moments oriented in each of the three cartesian directions at

the source position, and L+i its Moore-Penrose inverse. In a single

dipole scenario, as it is given in our simulation study, the GFS

reliably finds the source position that optimally explains the data

(Knösche, 1997; Fuchs et al., 1998).

To evaluate the influence of the conductivity uncertainties

on the source localization, we calculate and visualize the average

localization error, i.e., the distance between source localization and

original source position, for the 1,000 sets of conductivities at

each source position. This allows to understand how much the

conductivity variations affect the accuracy of the source localization

for each source position.We further calculate and visualize the ratio

between the difference in source depth and the localization error

and again take the average over all sets of conductivities to analyze

to what extent the localization error can be explained by a change in

source depth. Here, “change in source depth” denotes the absolute

value of the difference between the source depth of the original

source and the source depth of the reconstructed source.

To understand the influence of the variation of each tissue

conductivity on the source localization, we calculate and visualize

the correlation between deviations of each conductivity from the

average conductivity and distance of the source reconstruction

to the center of the point cloud of source localizations, and

the correlation between each conductivity and the source depth.

Again, these measures are calculated for each source position in

sources_cortex.
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The Sobol indices computed as described in Section 2.3

only indicate which tissue conductivities contribute most to the

variation of an output parameter, but not how strongly this output

parameter varies overall. To understand the dependency between

RDM and source analysis accuracy, we calculate the RDM for all

source positions and all 1,000 considered sets of conductivities,

and visualize the average RDM and the correlation between

localization error and RDM for each position in source space

sources_cortex.

2.5 Evaluation

We employ two kinds of evaluation in this study. On the

one hand, we visualize the results directly on an inflated cortex

surface. This allows to visually identify the most affected brain

areas. On the other hand, we plot the median Sobol indices and the

corresponding 50% confidence interval, i.e., the interval between

upper and lower quartile, as a function of the source depth. In

this case, the source depth is calculated as the distance from the

source position to the inner skull surface. These plots allow to

identify in how far the source depth affects the sensitivity of the

forward solution toward the different conductivities. Similar plots

are also created for the correlation between the tissue conductivities

and source localization error/source depth as a function of the

source depth.

Figure 1 (right) allows to understand the distribution of source

depths, which is necessary to interpret these plots. Unlike in

spherical models, there is no unique definition of source depth in

realistically shaped head models. In this study, we chose to define

source depth as the distance of a source position to the inner skull

surface. We chose this definition over the also frequently used

distance to the outer skin surface, as it led to better interpretable

results when plotting effect measures as a function of source depth.

In result, some source positions that would usually be considered

as “deep”, e.g., in the medial temporal lobe, are classified as rather

superficial in our study, as they are close to the base of the skull.

Furthermore, Figure 1 (right) shows that source depths smaller

than 5 mm correspond to sources on top of gyri, which can be

assumed to mostly have a quasi-radial orientation. An exception

are sources at the inferior surfaces of frontal and temporal lobe,

which have a rather quasi-tangential orientation. Sources up to

a depth of 30 mm correspond to sources inside of sulci, which

are assumed to be mostly located on sulcal walls and have a

quasi-tangential orientation in consequence. However, for source

depths of about 15–30 mm this also includes sources at the

bottom of sulci, which again have a rather quasi-radial orientation.

Sources at depths of 30 mm and deeper mostly correspond

to source positions in the insula, the longitudinal fissure and

subcortical regions.

As our plots are based on the median and upper and lower

quartile, the results should be stable against outliers and especially

the median should represent the results for the dominant type

of sources at each source depth well. This would correspond

to quasi-radial sources for source depths smaller than 5 mm,

quasi-tangential sources for source depths of about 5–30 mm,

and sources in the insula and the longitudinal fissure for larger

source depths.

3 Results

3.1 EEG forward problem

3.1.1 Signal topography
In this section, we analyze the sensitivity of the topography

of EEG forward solutions toward tissue conductivity variations.

Therefore, we calculated the Sobol indices of the RDM in

comparison to a reference solution (see Equation 3). Figure 2 shows

that the skull conductivity clearly has the strongest influence on

the signal topography for nearly all source depths. Looking at

the first-order and the second-order skin-skull interaction Sobol

indices (Figure 2, left), we find a median skull conductivity Sobol

index of about 60% for source positions with a depth of up to

35 mm, which includes basically all source positions except those

deep in the longitudinal fissure and in subcortical regions (see

Figure 1, right). Besides, we also find a strong influence of the

skin-skull interaction for rather superficial sources. The median

of this second-order Sobol index is at about 20% for the most

superficial sources and gradually decreases for deeper sources. All

other Sobol indices are below 10% for superficial and medium-

deep sources. For sources deeper than 35 mm, e.g., sources deep

in the longitudinal fissure, the sensitivity toward the white matter

conductivity clearly increases, whereas the skull and skin-skull

Sobol indices decrease.

The full Sobol indices (Figure 2, right), i.e., the sum of all

variations attributed to one parameter (see Equation 2), underline

the dominant influence of the skull conductivity for all sources that

are not very deep even more. The median full skull conductivity

Sobol index is higher than 80% for source depths smaller than

30 mm. As a result of the skin-skull conductivity interaction,

also the full skin conductivity Sobol index is significant at a

value of 30% for the most superficial sources. For deep sources,

again, the sensitivity toward the white matter conductivity clearly

increases.

The visualization of first- and second-order Sobol indices on

the cortex surface underlines the influence of the skull conductivity

(Figure 3). For large parts of the cortex surface, the Sobol index

for the skull conductivity is clearly above 60% (Figure 3, second

row). Lower Sobol indices are mainly found on top of gyri and

at the bottom of sulci where the Sobol index drops to about 40%.

Due to the choice of source orientations normal to the cortex

surface, these source positions correspond to quasi-radial sources.

Furthermore, the medial view shows small Sobol indices for source

positions deep in the longitudinal fissure. For the skin-skull second-

order Sobol index, we find sensitivities of about 30% for very

superficial sources, whereas the sensitivity gradually decreases for

deeper sources. For the skin conductivity, we find generally rather

low Sobol indices of around 10% and lower. Here, lower values

are especially found for deeper sources at the bottom of sulci

and in some areas on top of gyri; higher values are consistently

found on sulcal walls. For gray and white matter conductivities, the

Sobol indices are almost zero for large parts of the cortex surface.

However, strong outliers are found especially on gyral crowns and

at sulci bottoms, where these Sobol indices are clearly increased.

This corresponds to the positions for which the skull conductivity

Sobol index was decreased and where we assume quasi-radial

sources. Furthermore, we find increased Sobol indices for gray and
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FIGURE 2

Median and 50% confidence interval of first-order and skin-skull second-order (left) and full (right) Sobol indices for signal topography/RDM plotted

as a function of source depth.

white matter conductivities deep in the longitudinal fissure and in

subcortical regions as can be seen in the medial view.

Visualizing the full Sobol indices (Figure 4), the predominance

of the sensitivity toward the skull conductivity gets evenmore clear.

Only for a few areas this sensitivity drops below 75%. Due to the

addition of the skin-skull Sobol index, also the full skin Sobol index

has a value of around 50% for large parts of the cortex surface.

We especially find a notable decrease in the sensitivity to the skin

conductivity on top of gyri and at the bottom of sulci. Gray and

white matter conductivities again only show a significant sensitivity

in a few areas, such as some gyral crowns and sulci bottoms.

3.1.2 Signal magnitude
To evaluate the influence of conductivity uncertainties on the

signal magnitude, we calculated the Sobol indices for the MAG

(see Equation 3). Figure 5 shows the strongest influence for skull

and gray matter conductivities. Furthermore, we observe that first-

order and full Sobol indices are almost identical, as the higher-order

interactions are negligible for the signal magnitude. Therefore, we

only discuss the full Sobol indices here and also only provide the

cortex plots for the full Sobol indices.

For the most superficial sources, we find the strongest influence

for the skull conductivity with a Sobol index of about 50%. For

the influence of the gray matter conductivity, we find a Sobol

index of about 25% and for the skin conductivity of about 20%.

The influence of the white matter conductivity is negligible and

stays below 10% at all source depths. For slightly deeper sources

of about 5 mm depth, the influence of skin and skull conductivity

slightly increases, whereas that of gray matter slightly drops.

With increasing source depth, the influence of the gray matter

conductivity gradually increases up to a Sobol index of about 40%

for sources with a depth of 20 mm and more, whereas the influence

of skull and skin conductivities drops to Sobol indices below 40 and

20%, respectively, for sources with a depth of 20 mm and more.

The visualization on the cortex surface (Figure 6) shows

the strongest influence of the skull conductivity on the signal

magnitude for sources on top of gyri with Sobol indices above 50%.

This influence gradually decreases to values around 35% for sources

deeper inside the sulci. For the gray matter conductivity, we see

the exact opposite with the weakest influence and Sobol indices of

about 20–25% on top of gyri and a gradual increase toward values of

up to 50% at the bottom of sulci and deep in the longitudinal fissure.

For the skin conductivity, we find the same decrease from the top

of gyri to the bottom of sulci as for the skull conductivity, just at a

clearly reduced level with Sobol indices of about 25% and lower. For

the white matter conductivity, we do not find a significant influence

except for some deep brain regions visible in the medial view.

3.2 EEG inverse problem

Analyzing the influence of conductivity variations on EEG

source analysis, we first focus on the general localization

errors caused by simultaneous variations of all four tissue

conductivities considered uncertain and analyze the direction

of these localization errors, i.e., in how far these can be

explained by an incorrect depth of the reconstructed source

position. To understand the relationship between the results

obtained in the forward simulation study, we further compare

the distribution of the average localization error and the average

RDM as well as the correlation between RDM and localization

error at each source position. Subsequently, we analyze the

correlation between localization errors and conductivity variations

to understand which conductivities have the strongest influence on

the localization errors.

Figure 7 (top) shows that source positions inside the sulci are

clearly more sensitive to localization errors due to conductivity

uncertainties than superficial source positions on top of the gyri.

We find average localization errors of up to 10 mm for sources

deep inside of sulci, whereas the average localization errors remain

below 5 mm for superficial sources. For rather superficial sources

in the longitudinal fissure we find large localization errors as

well, whereas the localization errors for deep brain regions that
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FIGURE 3

First-order and skin-skull second-order Sobol indices for signal topography visualized on inflated cortex surface; (fronto-)lateral (left column) and

medial (right column) view. Please observe the di�erent scalings of the colorbar.
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FIGURE 4

Full Sobol indices for signal topography visualized on inflated cortex surface; (fronto-)lateral view.

FIGURE 5

Median and 50% confidence interval of first-order (left) and full (right) Sobol indices for signal magnitude/MAG plotted as a function of source depth.

could be attributed to subcortical structures are small. Visualizing

the ratio between change in source depth, i.e., the absolute value

of the difference between depth of the original source position

and depth of the reconstructed source position, and localization

error, i.e., the distance between the original source position and

the reconstructed source position, Figure 7 (bottom) shows that

for the quasi-tangential sources on the sulcal walls and for

sources in the longitudinal fissure the localization error is nearly

completely caused by changes in source depth, whereas this is

slightly less distinct for the quasi-radial sources at the bottoms of

the sulci. For the quasi-radial sources on top of gyri, only a small

fraction of the localization error can be explained by changes in

source depth.

Comparing the average localization error (Figure 7, top) and

the average RDM for each source position (Figure 8, top) there

seems to be no direct relation between the size of the topography
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FIGURE 6

Full Sobol indices for signal magnitude visualized on inflated cortex surface; (fronto-)lateral (left column) and medial (right column) view.

errors at a source position due to conductivity variations and the

resulting average localization error. The largest average RDMs are

found on top of gyri, which are the source positions at which

the average localization error is minimal. However, analyzing

the correlation between RDM and localization error at each

source position (Figure 8, bottom), we find a clear, positive

correlation for the source positions for which we also find

large localization errors (compare Figure 8, bottom, and Figure 7,

top). For sources that are less affected by localization errors in

general, we only find a weaker correlation between RDM and

localization errors.

To understand which tissue conductivities drive the overall

localization errors and the changes in source depth, we calculated

two different correlation coefficients. For the localization error, we

calculated correlation coefficients between the absolute value of

the deviation of a tissue conductivity from the mean conductivity
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FIGURE 7

Average localization error (top) and the average ratio between the change in source depth and localization error (bottom) visualized on inflated

cortex surface; (fronto-)lateral (left column) and medial (right column) view.

for this tissue, |σi − (σmax − σmin)/2|, and the distance of the

source localization from the center of the point cloud of source

localizations for each source position, ‖xi −
1
n

∑

j xj‖2 (Figure 9,

left). Taking the absolute value of the deviation was necessary here

to be able to properly calculate a correlation, as the localization

error can only be measured as a distance to a reference position

(in our case the center of the point cloud of source localizations),

i.e., the distance is always positive, regardless of whether the

conductivity was increased or decreased. For the source depth,

it was directly possible to calculate the correlation coefficients

between tissue conductivities and depth of the corresponding

reconstructed sources (Figure 9, right).

We find that changes in the skull conductivity have the by

far strongest influence on localization errors, with a correlation

coefficient of around 0.6 for all source depths. All other correlation

coefficients have small values below 0.1 with the skin conductivity

having the second highest correlation especially for sources deeper

than 1 cm (Figure 9, top). We find a strong negative correlation

between skull conductivity and source depth, especially for sources

deeper than 1 cm. At the same time, we find a positive correlation

of up to 0.3 between changes in skin conductivity and source depth.

This means that using a higher skull conductivity for the simulated

source leads to a more superficial source localization based on

standard conductivities, whereas a higher skin conductivity leads to

a deeper source localization. As shown in previous studies, changes

in skin and skull conductivities have opposite effects and the effect

of the skull conductivity is stronger.

We find an increasing variation in the correlation of

skull conductivity and source depth for sources 20 mm and

deeper. This is presumably caused by sources already being

located relatively deep in sulci, for which a further increase

in source depth within the sulci upon a decrease of the

skull conductivity is not possible. These sources might then

be mislocalized in a different brain structure but at a similar

source depth, e.g., in a neighboring sulci, resulting in a reduced

correlation coefficient.

Visualizing the correlation coefficients of skin and skull

conductivities and source depth shows the strongest correlations

for sources inside the sulci and especially on sulcal walls

(Figure 10). This correlates to the source positions for which

the localization error was mainly driven by an incorrect

depth of the reconstructed sources (see Figure 7, bottom).

The still relatively high correlation coefficients for sources

on top of gyri can be of less relevance, since these source

positions were previously found to be more robust against

localization errors (see Figure 7, top), so the correlations were

probably caused by rather small variations of the source

localizations. For deep brain areas the medial view shows inverted

correlation coefficients for both skin and skull conductivity.

However, due to the generally small average localization errors

in these areas (Figure 7, top) and the small influence of skin

and skull conductivity on the signal topography for these

sources (Figure 3) they presumably have only little influence

in practice.
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FIGURE 8

Average RDM (top) and correlation between RDM and localization error, i.e., distance between reconstructed and original source position, (bottom)

visualized on inflated cortex surface; (fronto-)lateral (left column) and medial (right column) view.

FIGURE 9

Median and 50% confidence interval of the correlation coe�cient between deviation of tissue conductivities from mean, |σi − (σmax − σmin)/2|, and

distance to average source localization (left) and correlation coe�cient between tissue conductivity and depth of localized source (right) plotted as

a function of source depth.

4 Discussion

4.1 EEG forward problem

In this study, we investigated the sensitivity of EEG forward

and inverse solutions to conductivity uncertainties. Making use of

Sobol indices, we found that variations of the skull conductivity

have the by far strongest influence on the topography of EEG

forward solutions (Figures 2–4). Furthermore, we found a notable

influence of skin conductivity variations, especially through the

second-order skin-skull interaction. For very deep sources (source

depth of more than 40 mm), which corresponds to sources deep in
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FIGURE 10

Correlation coe�cient between tissue conductivity and depth of source localization for skin (top) and skull conductivity (bottom) visualized on

inflated cortex surface; (fronto-)lateral (left column) and medial (right column) view.

the longitudinal fissure and in subcortical structures, the sensitivity

to white and gray matter conductivity variations increases clearly.

For the signal magnitude, we find a strong sensitivity to variations

of skull and gray matter conductivities, with an especially strong

influence of the skull conductivity for superficial, quasi-radial

sources (Figures 5, 6). Furthermore, we find a notable influence of

the skin conductivity which is almost constant for all source depths.

These results confirm the results of prior sensitivity studies

(Gençer and Acar, 2004; Vallaghé and Clerc, 2008; Vorwerk et al.,

2019a). Using realistic three- and four-layer models, Vallaghé

and Clerc (2008) found the strongest sensitivity for the skin-

skull interaction, whereas we found the strongest sensitivity for

variations of the skull conductivity in our study with a clearly lower

sensitivity to the skin-skull interaction. However, for EEG source

analysis, the variations of skin and skull conductivity were shown

to have almost identical effects on localization errors but with

opposing directions, and the influence of the skull conductivity was

found to be stronger than that of the skin conductivity (Figure 10,

Vorwerk et al. 2019a). Thus, it is hard to distinguish between the

first-order effects of variations of skin and skull conductivity and

the second-order skin-skull sensitivity in a sensitivity study, but the

practical implications are the same.

Whereas prior studies investigated the sensitivity of the EEG

forward solution toward conductivity variations only for a few

sources, we present results for sources positioned on the whole

cortex surface and variations of four tissue conductivity in our

study. Vallaghé and Clerc (2008) and Vorwerk et al. (2019a) both

analyzed a source in the postcentral gyrus, for which it is not

directly clear in how far the results are representative for general

source positions. Our study shows that the results for such a source

can indeed be generalized for most sources on sulcal walls, whereas

we find a slightly different sensitivity distribution for sources on

top of gyri and at the bottom of sulci. For such sources, the

sensitivity toward skin and skull conductivity may be reduced and

a higher sensitivity toward variations of gray and white matter

conductivities can be found. This corresponds to the results of

Gençer and Acar (2004), who found a strong dependency of the

sensitivity values on the dipole direction.

4.2 EEG inverse problem

We find the strongest influence of conductivity variations

for sources inside of sulci, especially on sulcal walls, and in

the longitudinal fissure on EEG source localizations. For these

sources, we observe a strong change of the depth of the source

reconstruction as a result of conductivity variations (Figure 7). We

find average localization errors of up to 1 cm, which corresponds

to an extent of the point cloud of source localizations of up to

2 cm. A large amount of these localization errors is caused by

incorrect reconstructions of the source depth, i.e., the sources

are localized more superficial or deeper on the sulcal wall than

the original source position, which makes these mislocalizations

relatively predictable. The localization of sources on top of gyri,

which mostly have a quasi-radial or partially quasi-radial source

orientation, is clearly less affected by conductivity variations.

However, only a small amount of these localization errors is caused

by an incorrect reconstruction of the source depth, and thus has
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to be mainly caused by mislocalizations in a direction tangential

to the inner skull surface, which could be a mislocalization

of the source position along the top of the gyri or to the

top of a neighboring gyri. In consequence, this makes these

mislocalizations—if they occur—potentially harder to predict than

those for quasi-tangential sources.

At all source depths except for very deep brain areas, we

find a strong correlation between the localization error and

the change in skull conductivity (Figure 10). Investigating the

correlation between tissue conductivity variations and the change

in source depth, we find a strong negative correlation with the skull

conductivity and a positive correlation with the skin conductivity.

This means that underestimating the skull conductivity leads to

a too shallow source reconstruction and overestimating to a too

deep source reconstruction. The opposite effect is found for the

skin conductivity. Changes in gray and white matter conductivity

neither affected the general localization error nor the source depth.

Our results are in line and expand upon prior studies

investigating the influence of tissue conductivity variations on

EEG source localizations (Vanrumste et al., 2000; Chen et al.,

2010; Akalin Acar and Makeig, 2013; Aydin et al., 2014; Vorwerk

et al., 2019a; McCann and Beltrachini, 2022). These studies mostly

focused on the effect of variations of the skull conductivity or

only investigated single source positions. Our study shows that

the effects of skin conductivity variations on the depth of source

reconstructions found in Vanrumste et al. (2000) and Aydin et al.

(2014) can be generalized for almost all source positions with

limitations for very superficial sources. Furthermore, our study

confirmed the opposing effects of variations of skin and skull

conductivity and confirmed the effect of the skin conductivity on

the depth of the reconstructed source found in Vorwerk et al.

(2019a) for general source positions. Finally, we also found that the

effects of gray and white matter conductivity variations on source

localizations remain negligible even for very deep cortical sources,

e.g., in the insula.

4.3 Limitations

To obtain results that are universally applicable, we made

use of a head model based on an averaged MRI template in

this study. Therefore, any effects due to individual anatomical

variations should be excluded. The stability of our results over

the whole cortex suggests that these can largely be transferred to

individual head models, of course, except in cases with significant

variations of the anatomy such as skull openings, brain resections,

or lesions (Oostenveld andOostendorp, 2002; Brodbeck et al., 2009;

Rullmann et al., 2009; Lanfer et al., 2012).

The headmodel used in this study has twomajor simplifications

compared to six-layer state-of-the-art headmodels with anisotropic

white matter conductivity. We did not include white matter

anisotropy in our study, as no such data are available for the New

York Head. Given the small influence of variations of the white

matter conductivity found for nearly all source positions in this

study, it can be assumed that this simplification did not have any

significant effect on the outcome of our study. Furthermore, we did

not include the distinction between skull compacta and spongiosa,

but modeled a homogeneous skull compartment instead. Prior

studies have shown that neglecting this distinction can especially

affect the accuracy of the EEG forward solution in temporal regions

(Vorwerk et al., 2014; Nielsen et al., 2023), below suture lines

(McCann and Beltrachini, 2022), or at the skull base (Montes-

Restrepo et al., 2014). Since we did not consider this distinction in

both the forward and inverse calculations, there should be no direct

impact on the results of this study. However, considering variations

of skull compacta and spongiosa conductivities separately would

add another layer of complexity and might be of interest in future

studies. To keep the computational complexity within bounds one

might neglect variations of gray and white matter conductivities in

turn, which were found to have only a minor influence in our study.

Both in the forward and inverse studies, we focused on single

dipole scenarios, i.e., extended sourcemodels were not investigated.

In general, the results of our inverse study should translate for

all inverse methods that allow for an accurate localization of

single dipoles. This includes not only dipole scans and dipole fits,

but also beamforming methods (Sekihara and Nagarajan, 2008;

Westner et al., 2022) and some current-density reconstruction

methods, e.g., Bayesian methods (Lucka et al., 2012; Costa et al.,

2017; Rezaei et al., 2020), minimum norm estimates (MNE)

with depth weighting (Fuchs et al., 1999), or LORETA variations

(Pascual-Marqui et al., 2002). Contrary to this, Stenroos and

Hauk (2013) have shown that classical MNEs are robust against

skull conductivity errors. However, this comes at the cost of an

increased localization error for sources that are not superficial

(Stenroos and Hauk, 2013, Figure A1), since MNE suffers from

depth-bias, i.e., the peak of the reconstructed current density is

generally localized too superficial for deep sources (Fuchs et al.,

1999; Lucka et al., 2012). Thus, MNEs are not a suitable inverse

approach in scenarios where deeper sources are assumed. In other

scenarios, e.g., group studies in which widespread brain activation

is reconstructed and compared between subjects, the benefit of the

robustness against skull conductivity variations might outweigh the

disadvantage of the depth-bias. In general, the effect of conductivity

variations on the reconstruction of extended sources was not

investigated in this study. However, it can be assumed that our

results can be generalized to such cases as long as the source is still

predominantly dipolar.

Finally, it has to be noted that our choice of the intervals within

which the tissue conductivities may vary (Table 1) represents a

worst-case scenario. Not only were these intervals chosen rather

widely, but it can also be assumed that the real distribution of
the conductivities is not uniform but more focused around the

literature value (McCann et al., 2019). In practice, the tissue
conductivity uncertainties could potentially be more realistically
modeled through, e.g., β- or Normal distributions (Gutiérrez et al.,

2004; Saturnino et al., 2019). However, these distributions require

additional parameters, which, again, are not known a priori and

need to be estimated based on the literature.

5 Conclusion

In this study, we found that the topography of EEG forward

solutions for source positions on the whole cortex surface is

mostly sensitive to variations of skull and skin conductivity. The

magnitude of EEG forward solutions is also very sensitive to the
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skull conductivity, but almost similarly sensitive to the gray matter

conductivity and to a smaller degree also to the skin conductivity.

Analyzing the EEG inverse problem, we find that these changes

in the EEG forward solutions translate to localization errors

particularly for sources inside of sulci, with the strongest effect on

sources on the sulcal walls. For these sources, the localization errors

clearly correlate with variations in skull and skin conductivity

resulting in changes in the source depth of the reconstructed

sources. Sources on top of gyri showed the strongest topography

changes for varying tissue conductivities, but these changes resulted

in smaller source reconstruction errors than for sources inside of

sulci. We are convinced that these results help to better estimate the

uncertainty inherent to EEG source localizations. Furthermore, our

study shows the additional value of skull conductivity calibration,

as the inter-individual variation of the skull conductivity is one

of the main sources of EEG source analysis uncertainties affecting

almost all cortex areas.
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Source localization from M/EEG data is a fundamental step in many analysis

pipelines, including those aiming at clinical applications such as the pre-surgical

evaluation in epilepsy. Among the many available source localization algorithms,

SESAME (SEquential SemiAnalytic Montecarlo Estimator) is a Bayesian method

that distinguishes itself for several good reasons: it is highly accurate in localizing

focal sources with comparably little sensitivity to input parameters; it allows

the quantification of the uncertainty of the reconstructed source(s); it accepts

user-defined a priori high- and low-probability search regions in input; it can

localize the generators of neural oscillations in the frequency domain. Both a

Python and a MATLAB implementation of SESAME are available as open-source

packages under the name of SESAMEEG and are well integrated with the main

software packages used by the M/EEG community; moreover, the algorithm is

part of the commercial software BESA Research (from version 7.0 onwards).

While SESAMEEG is arguably simpler to use than other source modeling

methods, it has amuch richer output that deserves to be described thoroughly. In

this article, after a gentle mathematical introduction to the algorithm, we provide

a complete description of the available output and show several use cases on

experimental M/EEG data.

KEYWORDS

Bayesian inference, inverse problems, MEG, EEG, open-source software, MATLAB,

Python

1 Introduction

The electromagnetic signals at the scalp produced by neural currents in the brain

are the most direct consequences of brain electrical activity and can be non–invasively

measured by means of MagnetoEncephaloGraphy (Hämäläinen et al., 1993) (MEG) and

ElectroEncephaloGraphy (Baillet et al., 2001) (EEG). Remarkably, M/EEG recordings can

be acquired at the outstanding sampling rate of the order of the millisecond (Gratta et al.,

2001), thus opening the door to the study of the dynamics of neural processes in a wide

variety of conditions, both normal (Sorrentino et al., 2006; Brookes et al., 2011) and

pathological (Stoffers et al., 2007; Stam et al., 2009; Uda et al., 2012; Luria et al., 2020),

with very high precision in time.

Mapping the activity of known sources in the brain to the corresponding M/EEG

signals is called the forward problem (Pursiainen et al., 2011; Vorwerk et al., 2016). This

is a well-posed problem which is solved by giving a parametric representation of the
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sources and by modeling how the electromagnetic field propagates

through the brain compartments. Two main source models have

been proposed in the literature so far: the Distributed Source (DS)

model and the Equivalent Current Dipole (ECD) model. While in

the former the neural current is assumed to be a continuous vector

field inside the brain volume, the latter model assumes instead the

whole brain activity underlying the M/EEGmeasurements to occur

only in a small number of clusters of thousands of synchronously

activated pyramidal cortical neurons. In this setting, each cluster is

represented by a point source, called ECD, and the whole primary

current distribution is approximated by the superposition of a

given number of ECDs. Notably, the ECD model is currently

the standard approach in clinical applications of MEG, such as

the pre-surgical localization of epileptic spikes, and the only one

recommended by the American Clinical Magnetoencephalography

Society (Bagic et al., 2011; Carrette and Stefan, 2019). In order

to model the propagation of the electromagnetic field through

the head, it is crucial to exploit the information about the

physical and geometrical properties of the head, which can be

gathered from high resolution anatomical Magnetic Resonance

Imaging (MRI). Then, discretization of the differential equations

governing the electromagnetic fields can be done using Boundary

Element Methods (BEM) or Finite Element Methods (FEM);

however, BEM can only be used to model homogeneous and

isotropic conductivity, which is clearly a too simplistic model;

FEM, on the other hand, allow to model inhomogeneous and

anisotropic conductivity, but accurate estimates of the spatially-

varying conductivity tensor are typically difficult to obtain. As

a consequence, despite being a well-posed problem, the forward

solution is typically affected by modeling errors as well as

numerical inaccuracies.

The capability of solving the forward problem leads to the

possibility of inferring the location of the generators of brain

activity from M/EEG data, which in turn is called the inverse

problem. This last is ill-posed, since it suffers from the non-

uniqueness of the solution, and exhibits a high sensitivity to noise.

As a consequence, data need to be complemented with anatomical

and physiological prior knowledge, thus sacrificing the exact match

between the recorded and the reconstructed electromagnetic field.

The vast majority of available methods for source localization

provide a single, unique “best” reconstruction of neural activity

from a given dataset, with no quantification of the degree of

reliability of the reconstruction itself, nor any clue about the

existence of alternative solutions. However, ill-posedness implies

that it is impossible to restore the neural generators exactly;

hence, when solving the inverse problem we should not content

ourselves with a single best estimate, and should instead answer the

following questions too: are there other potential solutions? how

certain are we of the single estimate provided? Answering these

questions is difficult: in order to do it, it is necessary to characterize

the probability distribution of the neural current conditioned

on the measured data, i.e. the posterior distribution of the

Bayesian approach.

In a set of publications (Sorrentino et al., 2013, 2014; Luria

et al., 2019; Viani et al., 2021, 2022) we proposed a fully Bayesian

algorithm, based on the ECD source model and belonging to

the class of Sequential Monte Carlo (SMC) samplers (Del Moral

et al., 2006), to solve the M/EEG localization problem. This inverse

solver, called SEquential Semi-Analytic Montecarlo Estimator

(SESAME), is able to sample the whole posterior distribution for the

multi-dipole configuration, thereby providing multiple alternative

solutions, each with an associated quantification of its reliability. In

a couple of recent studies SESAME has been shown to score very

well in terms of localization accuracy when compared to wMNE

and MUSIC in Luria et al. (2020) and to a larger set of inverse

solvers in Pascarella et al. (2023), while also being particularly stable

with respect to input parameters.

In the present paper we present both a Python and a MATLAB

open-source implementation of SESAME, under the name of the

SESAMEEG package. The main idea behind SESAMEEG is to

provide a user-friendly tool that can be used out-of-the-box by the

general audience, but also lets the experienced user the possibility

of providing different kinds of prior knowledge about the problem.

Moreover, to facilitate the entire analysis pipeline, SESAMEEG is

well integrated with the most popular open sourceM/EEG software

and SESAME is also implemented in the commercial CE-marked

software package BESA Research.

The paper is organized as follows. In Sections 2.1.1–2.1.2 we

provide a gentle mathematical introduction to the ECD model and

to the Bayesian approach to source modeling. In Section 2.1.3 we

discuss the impact of input (hyper)parameters on the output of

SESAME, described in Section 2.1.5 A very brief summary of the

computations behind SESAME is provided in Section 2.1.4 and

the factors affecting the computational cost of the algorithm are

discussed in 2.1.6. The SESAMEEG package is described in Section

2.2 and we then proceed with exemplar analysis of experimental

datasets: an MEG dataset in Section 3.1 and an EEG dataset

in Section 3.2. Finally, in Section 4 we discuss the current and

future work.

2 Method

2.1 SESAME: a Bayesian algorithm for
M/EEG source modeling

2.1.1 The source model
Source localization of M/EEG data is typically based on the

following model:

y(t) =
N

∑

i=1

G(ri) qi(t)+ ǫ(t) (1)

where:

• y(t) is the measured data at time t, modeled as the

superposition of contributions of different sources;

• G(ri) is the lead field corresponding to a point source located

at ri;

• qi(t) represents the neural current at location ri at time t;

• ǫ(t) is (Gaussian) noise, accounting for measurements noise as

well as forward modeling errors.
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In (1) the sum over i represents the additive contributions of

sources located at different points ri in a given discretized source

space. For the sake of simplicity, we henceforth omit the time

dependence of all variables.

We underline that it is perhaps not common to include forward

modeling errors in the additive noise term ǫ; however, we reckon

it is important to do so because even exact measurements cannot

be explained exactly in a real environment, due to the unavoidable

approximations in the forward model. The use of a Gaussian

distribution to model this contribution might be questionable: so

far this choice is mainly based on practical reasons and lack of

better knowledge; the same model was used in other studies, e.g.,

Rimpiläinen et al. (2019).

In distributed models, source locations {ri}i=1,...,N are assumed

to be known a priori and the number N of distinct source locations

is typically large (∼ 10, 000). The only unknowns would be the

values {qi}i=1,...,N : once these have been estimated, one can localize

brain activity as the points corresponding to maximum values of qi.

The number of unknowns is large (∼ 3× 10, 000) but data depend

linearly on the unknowns.

In the multi-dipole model, the same Equation (1) is used with

the following differences: the number N is now unknown but small

(lower than 10); source locations are also unknown. Therefore the

total number of unknown parameters to be estimated is much

fewer than the corresponding number in the distributed model, but

data depend non-linearly on N and {ri}i=1,...,N , which makes the

problem harder.

In our formulation, we adopt a multi-dipole model for brain

activity. We assume that, within the considered time interval, both

the number and location of the active sources remain fixed; the

only parameter that has a time dependence is the intensity of each

active source.

2.1.2 The Bayesian model
The starting point of Bayesian methods is a set of conceptual

tenets (Kaipio and Somersalo, 2007; Pascarella and Sorrentino,

2011):

• probability is used to quantify uncertainty about any variable

involved in the problem;

• because of the previous item, all variables are considered

random variables; this does not imply that such variables are

random in an ontological sense, but just that our knowledge

of their values is imperfect, and such imperfection can be

represented with a probability distribution;

• the mathematical rule to combine a priori information with

information coming from the data is Bayes rule.

SESAME is a Bayesian inference tool applied to a multi-dipole

model: it aims at approximating the posterior distribution of the

number of sources N, the source locations R = {ri}i=1,...,N and the

source strengths Q = {qi}i=1,...,N , given the data

p(N,R,Q | y) =
p(y |N,R,Q) p(N,R,Q)

p(y)

where

• p(N,R,Q | y) at the left hand side is the posterior distribution;

• the likelihood function p(y |N,R,Q) is set to be Gaussian of

standard deviation σǫ , accounting for the presence of noise in

the data as well as errors in the forward model;

• the second term at the right hand side is the prior p(N,R,Q);

• the denominator is a normalizing constant.

In SESAME we make the further assumption that the

unknowns are a priori independent p(N,R,Q) = p(N) p(R) p(Q)

and set a Gaussian prior on the source strengths p(Q) = N (0, σq);

combined with the Gaussian likelihood, this leads to a conditionally

linear Gaussian model for source strengths. As a consequence, in

the following standard splitting of the posterior

p(N,R,Q | y) = p(Q |N,R, y) p(N,R | y)

the first bit at the right hand side can be computed analytically,

while the second bit is approximated with a SMC sampler algorithm

(Del Moral et al., 2006), briefly described in Section 2.1.4.

2.1.3 Hyper-parameters
It is important to remark that the posterior distribution

depends on the two hyper-parameters mentioned above, namely

the standard deviation σǫ of the Gaussian likelihood and the

standard deviation σq of the Gaussian prior on the dipole strength.

Here we briefly explain how to deal with them.

We start by considering the Gaussian prior on the dipole

strength, with its corresponding standard deviation σq. It is

important to remark that a Gaussian prior is a fairly strong prior,

that forces the unknown to be of the same order of magnitude

as the standard deviation. In principle, this fact can be even used

to our own advantage: in Luria et al. (2019) we showed that

SESAME can be used to mimick distributed sources by setting a

small σq, that forces small dipoles and produces more widespread

reconstructions. On the other hand, for a standard analysis with

a purely dipolar model the dependence of the solution on the

value of σq is actually annoying, but can be strongly reduced by

introducing a hyper-prior, i.e. a prior on the hyper-parameter σq.

This was done originally in Viani et al. (2021), where we presented

an updated model in which the hyper-parameter σq is considered

unknown, and treated as an additional parameter, i.e. sampled

from the hyper-prior and then updated in the SMC steps. In

order to provide as little information as possible on the order of

magnitude of the sources, we chose to use a log-uniform hyper-

prior in the interval [σmin
q , 103σmin

q ], where σmin
q is chosen based

on the order of magnitude of the data and of the lead field. We have

shown that the introduction of the hyper-prior makes the estimated

configuration stable across over three orders of magnitude of the

(hyper-)hyper-parameter. In the SESAMEEG package, the user can

choose whether to use the hyper-prior and basically ignore the

problem of setting σq, or else to use the value estimated from the

lead field and the data, or else to set a value manually.

The standard deviation of the Gaussian likelihood σǫ currently

represents the main hyper-parameter of SESAME. Understanding

its role is key for an effective use of the algorithm. Roughly

speaking, the value σǫ represents a threshold below which the

discrepancy between the measured data and the data produced
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by the solution can be ignored: if this threshold is set low, then

the algorithm will do its best to reproduce the data accurately;

to this aim, it will likely produce solutions with larger number

of dipoles (which also takes a lot of time). If the threshold is set

high, then the algorithm will produce simple solutions that fit the

data only approximately. As already pointed out in Section 2.1.2,

the role of this hyper-parameter in the Bayesian model is to take

into account both noise in the data and uncertainties/errors in

the forward model. Therefore finding a good value is not always

straightforward, and we are working on removing the dependence

on this hyper-parameter too (Viani et al., 2023). In the open-

source SESAMEEG packages, σǫ is by default estimated as the 20%

of the peak of the signal, as a rule-of-thumb assessment of the

two contributions of measurement noise and forward modeling

error; the experienced user is allowed to change the value of this

hyper-parameter to their liking.

2.1.4 The SMC sampler algorithm
At the core of SESAME is a Sequential Monte Carlo sampler

that approximates p(N,R | y) with a weighted set of candidate

solutions, termed particles, {(Ni,Ri),wi}i=1,...,I , where wi represents

the weight of the i-th candidate solution (Ni,Ri).

In this subsection we provide a very brief summary of the

computations behind SESAME: for more details we invite the

reader to consult (Sommariva and Sorrentino, 2014; Sorrentino

et al., 2014; Viani et al., 2021), where the mathematical model and

the algorithm have been thoroughly described.

The recipe is as follows. An initial set of particles is drawn

from the prior distribution, then the following steps are repeated

until convergence:

1 [MCMC step] each particle is randomly perturbed within a

neighborhood; also, dipoles can be added or removed from the

particle; the perturbation can be accepted or rejected, based

on whether the perturbed version fits the data better than the

original one;

2 [Reweighting] particle weights are updated based on an

importance sampling rule,

3 [Resampling] the particle set may undergo a resampling

procedure, i.e.: particles with low weights are discarded and

particles with large weights are duplicated.

The final set of particles is then used to produce estimates from

the posterior distribution.

2.1.5 SESAME output
Once the posterior has been approximated, SESAME can

provide answers to the following questions: how many sources are

there? What are most probable source locations? How certain are

we about the source locations?

In particular, standard SESAME output encompasses:

• the posterior probability of different number of sources p(N =

i | y) for i = 0, 1, . . . ; this can be visualized e.g. as a pie chart,

as is done below;

• the posterior probability of source locations p(R | y), typically

visualized as a probability map on the brain surface or in

the brain volume; here, a highly focused map indicates low

uncertainty on the estimated source locations; on the contrary,

a widespread map indicates high uncertainty;

• the most probable source locations, identified by first

estimating the number of sources as the number N̂ by

maximizing P(N | y), and then identifying N̂ peaks in the

posterior probability p(R | y, N̂);

• the source time courses of the most probable sources.

At times, the posterior probability of the number of sources

will assign comparable probabilities to distinct models: for example,

it can happen that 60% probability is assigned to a one-dipole

model and 40% probability is assigned to a two-dipole model. In

these cases, SESAME provides both alternative solutions, so that

the user can evaluate which one is more likely to be correct, based

on additional information they might have.

2.1.6 SESAME computational cost
While the specific implementation, outlined in the next Section,

has an impact on the computational cost of the algorithm, few basic

facts are common to all implementations:

• the vast majority of the computational cost is due to theMonte

Carlo sampling of p(N,R | y), while the subsequent calculation

of the source time courses according to p(Q |N,R, y) has a

comparably negligible cost;

• the computational cost of the SMC sampler depends on the

complexity of the posterior distribution, and in particular

grows non-linearly with the estimated number of sources;

• such computational cost is linear in the number of particles.

2.2 The SESAMEEG packages

The SESAME algorithm has been implemented into two

distinct open–source packages, one coded in Python and one

coded in MATLAB, under the collective name of SESAMEEG; a

commercial version is also available as a part of the BESA Research

7.0+ software. The software is platform independent and has been

tested on Windows, macOS and Linux. Apart from being able to

be used as a standalone software, SESAMEEG is well integrated

within the most popular open–source packages for analyzing

human neurophysiological data: Brainstorm (Tadel et al., 2011),

MNE–Python (Gramfort et al., 2013a), FieldTrip (Oostenveld et al.,

2011) and Zeffiro Interface (He et al., 2020). Such integration

has the virtue of letting the user perform all the analysis pipeline

steps—such as data pre-processing and visualization—within the

same toolbox.

Figure 1 summarizes themain inputs of the algorithm; formore

advanced settings the reader is referred to the API documentation,

as detailed below.

The mandatory inputs are the forward solution (namely the

source space and the lead field matrix) and the M/EEG data.

SESAMEEG can run in different analysis scenarios: the source

space can be both cortically constrained and volumetric, and the
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FIGURE 1

Main inputs of the SESAME algorithm. Apart from the mandatory inputs listed in the top blue box, all other inputs have an automatically estimated

default value.

source orientations in the forward solution can be both free and

orthogonal to the surface of the cortex.

Each of the remaining inputs has its own default value, which

has been engineered to let SESAMEEG perform well out–of–

the–box in most common scenarios. However, a high degree of

customization is available to experienced users.

As described in Section 2.1.5, the output of SESAME is an

empirical posterior distribution for a variable number of sources

and for their parameters.

From this distribution, maximum a posteriori estimates are

computed and—conditioned on the estimated number of sources—

a cortical probability map is worked out, which quantifies for each

voxel the posterior probability of containing a dipolar source.

SESAMEEG can visualize SESAME outputs in several different

ways, which vary according to the software environment and

which may also depend on the inputs: as an example, whenever

a volumetric source space is used and a MRI image such as

T1 is available, it becomes feasible to visualize source estimates

overlaid on MRI and to morph estimates to a template brain for

group analysis.

2.2.1 SESAMEEG Python
The Python package SESAMEEG is available at the Python

Package Index (PyPI) repository (https://pypi.org/project/

sesameeg/) and distributed under a Berkeley Software Distribution

(BSD) 3-Clause “New” or “Revised” License. The source code is

available at the GitHub repository (https://github.com/pybees/

sesameeg) while the documentation can be found at https://pybees.

github.io/sesameeg/ and comes with an example gallery in which

all most common use cases are illustrated.

The code is object oriented and its core functionalities are

implemented in the class Sesame. When working in the MNE–

Python framework the latter class has to be instantiated bymeans of

the function mne.prepare_sesame; otherwise, if SESAMEEG

is used as a standalone software, it has to be instantiated directly.

Calling the method apply_sesame on the Sesame instance

then applies SESAME on the given M/EEG data and computes

point estimates from the posterior distribution.

SESAME output can be visualized in multiple ways by means of

the following built-in methods:

• plot_source_number plots the posterior probability of

the number of sources p(N = i | y) as either a pie chart or a

bar plot;

• plot_source_amplitudes plots the amplitude of the

estimated sources as function of time;

• plot_sources plots the posterior probability of source

locations p(R | y) and the estimated sources. By default,

these quantities are visualized on the cortical surface or

superimposed on the MRI image when working within the

MNE–Python framework, and as a PyVista (Sullivan and

Kaszynski, 2019) PolyData object otherwise.

The entire source model analysis can be saved into and loaded

fromHierarchical Data Format (HDF) files by means of the built-in

methods save_h5 and io.read_h5.

Regarding the software architecture, SESAMEEG consists of

the modules sesame.py, emp_pdf.py, particles.py and

dipoles.py, and also comprises several subpackages:

• sesameeg.io implements functionality to save and load

SESAMEEG output;
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• sesameeg.viz implements several functions to visualize

SESAMEEG output;

• sesameeg.mne implements functionality to interface with

MNE–Python objects;

• sesameeg.metrics implements the metrics Goodness

of Fit (GOF), Optimal subpattern assignment (OSPA)

(Schuhmacher et al., 2008), Map Localization Discrepancy

(MLD) and Spatial Dispersion (SD) (Luria et al., 2020).

GOF provides information on how well the reconstructed

electromagnetic field fits the measured data, while SD

quantifies the spatial dispersion of each cortical map and thus

the uncertainty of the reconstruction. By default, GOF and SD

are evaluated and printed at the end of each run of SESAME.

All the four metrics help in quantifying the performance of

SESAME whenever the ground truth is known.

• sesameeg.utils implements a number of utility

functions. These include estimate_noise_std, which

estimates the standard deviation σǫ as the 20% of the

analyzed signal peak and estimate_dip_mom_std,

which estimates the hyper-parameter σq from both the lead

field and the data.

2.2.2 SESAMEEG MATLAB
The Matlab version of SESAMEEG is available at https://

github.com/pybees/sesameeg_MATLAB. The documentation,

which comes with an example script, can be found at https://

pybees.github.io/sesameeg_MATLAB/.

The code is function oriented: SESAME is run by calling

the inverse_SESAME function, taking as input the lead field

matrix, the data matrix and the source space matrix as well

as a configuration structure containing optional configuration

parameters; the output of inverse_SESAME is a structure

containing analysis parameters and representations of the posterior

probability distribution; the essential information can be visualized

by the inverse_SESAME_viewer function which shows both

the posterior probability distribution for the number of sources and

the cortical probability map.

A Brainstorm plugin is also available at https://github.com/

pybees/sesameeg_MATLAB/tree/main/Brainstorm in the form of

the two scripts process_sesame and process_posterior:

the former runs SESAME with the inputs that have been set in

the Pipeline editor GUI (Figure 2); the latter takes the posterior

distribution (which is the output of process_sesame) in input

and computes point estimates.

As detailed in the Brainstorm tutorial on creating new

processes (https://neuroimage.usc.edu/brainstorm/Tutorials/

TutUserProcess), the provided scripts must be copied into the

Brainstorm user folder in order to make SESAMEEG available in

the pipeline editor menus.

2.2.3 Commercial version: BESA
SESAME is also implemented in the commercial CE-marked

software package BESA Research version 7.0 and higher. While

not being substantially different from its open-source counterparts,

SESAME in BESA has the added value of being part of a complete,

user friendly software for EEG andMEG data analysis. The user can

FIGURE 2

Pipeline editor GUI of Brainstorm calling the SESAME algorithm. The

first process (SESAME) runs the algorithm in the selected time

window, with the optional input parameters. The output of SESAME
may be the input of the Plot Sources process which computes

dipole estimates from the posterior distribution.

analyze any data segment of EEG, MEG, or combinedM/EEG data.

Unlike in the open-source packages, the baseline interval is used

to estimate the noise variance. Like in the open-source packages,

parameters for noise and signal estimation, as well as hyper-prior

usage can be adjusted by the user; spatially non-uniform priors

can be set additionally, e.g., by reading in other modality data like

fMRI or by running a different distributed source reconstruction

method prior to invoking the SESAME algorithm. The posterior

probability map is displayed in a 3D viewer. The user can browse

through detected maxima in the map, and seed discrete sources

from those, e.g. to determine the precise temporal activation

pattern. The computation time depends on the complexity of

the probability distribution. Figure 3 shows the application to an

averaged EEG segment of inter-ictal epileptic discharges that had

several activation foci. For this data set, computation with default

parameters (using hyper-priors, perform 50 iterations) took 15

seconds on a Windows laptop with Intel Core i9 processor (2.4

GHz) and 8 cores.

3 Results

The present Section showcases the application of SESAMEEG

in source modeling analyses from M/EEG experimental datasets.

The main focus of this Section is on the presentation and

interpretation of SESAME output, particularly how this is affected

by the choice of the noise standard deviation parameter. For

examples concerning the benefits of using of non-uniform
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FIGURE 3

SESAME implementation in the BESA software applied to an averaged EEG segment of inter-ictal epileptic discharges. (A) SESAME runs through

several iterations, converging to the most likely posterior map. (B) After completion, the user can browse through the maxima. (C) Sources can be

seeded from maxima to examine the temporal activation pattern. (D) display of model, residual, and global field power after the SESAME-informed

dipole solution was created.

spatial priors we refer to Viani et al. (2022), while for an

example of application in the frequency domain we refer to

Luria et al. (2019).

3.1 MEG experimental data

Figures 4A, B portray experimental MEG data consisting in

the average evoked response to auditory stimuli presented to the

left ear. The description of the entire experiment can be found in

Gramfort et al. (2013a,b) andwill not be repeated here. Data and the

forward solution are freely available in the sample open dataset

which comes with the MNE-Python package.

In this Section, we exploit these data to conduct a threefold

analysis with SESAMEEG Python: we first show how SESAME

reconstructs the brain activity when default values are used as input

parameters; then we explore how the choice of the noise standard

deviation influences the obtained solution in terms of both the

number and the location of the estimated dipoles; finally we present

an example in which SESAME finds two alternative scenarios with

non-negligible probabilities.

We extract the topographies from 45ms to 135

ms around the M100 peak and we perform the source

localization running SESAMEEG with its default values

(see Figure 1).

As shown in Figures 4C, D, SESAME identifies, with full

probability, two active dipoles as the generators of the measured

field. Figure 4C depicts the cortical probability map on an

inflated brain, with colored dots representing the estimated

dipole locations, one in the right auditory cortex and the other

contralateral very near to the auditory cortex. The posterior

distribution looks sharply peaked around the estimated loci,

which holds the information of a very small uncertainty in

the reconstruction. We stress the fact that this map is distinct

from an intensity map, as it is solely associated with the

probability of the source locations. Figure 4D shows the estimated

source amplitude time courses, with the same color code as in

Figure 4C: the source located in the right hemisphere activates

before the other, with a peak to peak latency difference between

the cortices for the M100 activity that is quantified in 17

ms. The estimated source configuration is therefore fairly in

line with the literature (Kaiser et al., 2000; Gramfort et al.,

2013b).

The whole script can be found in the documentation example

gallery. For this data set, computation with the default parameters

took 79 seconds on a Linux laptop with Intel Core i7 processor (3.3

GHz) and 8 cores.
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FIGURE 4

Top row: average evoked response to auditory stimuli presented to the left ear as recorded by MEG magnetometers (A) and gradiometers (B); the

vertical blue translucent rectangle denotes the time window from 45ms to 135ms analyzed by SESAME. Bottom row: Reconstructed source

configuration. (C) shows a pie chart indicating 100% probability of the 2-dipole configuration, and the cortical probability map on an inflated brain,

with colored dots representing the estimated dipole locations; preserving the same color code, the estimated source amplitude time courses are

plotted in (D).

We now want to show the impact of the noise standard

deviation parameter on the solution, as discussed in Section

2.1.3. To do so, we modify the analysis setting by explicitly

underestimating and overestimating the parameter value

with respect to SESAMEEG’s default. We present the results

in Figure 5.

In the top row the parameter value has been underestimated as

the 6.5% of the maximum measured magnetic field. The estimated

number of sources is six, with negligible probability assigned to

other configurations. This result is in line with Section 2.1.3: when

underestimating the noise standard deviation, SESAME has to

introduce additional sources in order to explain finer details of the

data. In this case, each of the two sources of Figure 4 is practically

split into three components.

In the bottom row the parameter value has been overestimated

as the 65% of the data peak. The estimated number of sources is one,

again with negligible probability assigned to other configurations.

This result is in line with Section 2.1.3 too: as lesser fit is required

with the data, the estimated solution is simpler, the location is more

uncertain and the estimated source time course weaker. Of the two

sources of Figure 4 only the stronger one has survived.

In Figure 6 we finally present a case where SESAME provides

two alternative solutions with non-negligible probabilities.

This output was obtained by setting the noise standard

deviation as the 64% of the data peak, i.e., slightly smaller

than the value used in Figures 5C, D. We happen to fall in

a borderland in which both the one dipole configuration

and the two dipoles configuration can possibly explain the

measured field: the most probable solution clearly resembles that

of Figure 5; however, with a 20% of probability, SESAME

consider an alternative scenario more similar to that of

Figure 4, even if the spatial localization is more uncertain in

this case.

We stress the fact that being able to automatically provide

information about the existence of alternative solutions and

characterize their relative probabilities is an asset of SESAME

which, to the best of our knowledge, is not provided by other

inverse solvers that typically limit their output only to the most

probable source configuration.

3.2 EEG experimental data

Figure 7A shows the average of multiple Interictal Epileptiform

Discharges (IED) as recorded by a 128 channels EEG and

acquired in a patient who suffered from focal epilepsy. Data are

part of a Brainstorm tutorial dataset (https://neuroimage.usc.edu/

brainstorm/Tutorials/Epilepsy) and we refer the reader therein for

a thorough clinical description. For application of SESAME we

built a BEM forward model using OpenMEEG (Gramfort et al.,

2011) with three compartments and standard conductivities (scalp

1, skull 0.0125, brain 1).

We perform a source modeling analysis by means of the

Brainstorm plugin of SESAMEEG. Referring to the Pipeline editor
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FIGURE 5

(A–D) SESAME source modeling results from the same data portrayed in Figure 4, with di�erent values of σǫ . Top row: Parameter value

underestimated as the 6.5% of the maximum measured magnetic field. Bottom row: Parameter value overestimated as the 65% of the data peak. Left

column: cortical probability maps, with colored dots representing the estimated dipole locations. Right column: the estimated source amplitudes.

FIGURE 6

(A–D) Alternative SESAME solutions from the same data portrayed in Figure 4, with σǫ set to the 64% of the data peak.
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FIGURE 7

(A) EEG experimental data consisting in the average of multiple IEDs

acquired in a patient who su�ered from focal epilepsy; the vertical

blue translucent rectangle denotes the time window from -11ms to

0ms analyzed by SESAME. (B) Cortical probability map which

indicates that the irritative zone is probably contained within the

superior frontal gyrus.

GUI depicted in Figure 2, we select the time window from -11ms to

0ms, we leave the noise standard deviation field empty

so that SESAMEEG automatically estimates the parameter value

as the 20% of the analyzed signal peak and we run the SESAME

process using 100 Monte Carlo samples.

The resulting cortical probability map shown in Figure 7B

indicates that SESAME localizes the irritative zone in the superior

frontal gyrus with the estimated epileptic focus in the left

hemisphere. This agrees with the clinical history of the patient

who, after invasive monitoring of the supposed epileptogenic zone

(Dümpelmann et al., 2012), underwent a left frontal resection

which led to an Engel 1A postsurgical outcome with a follow-up

of 5 years.

For this data set, computation with the default parameters took

27 seconds on a Linux laptop with Intel Core i7 processor (3.0 GHz)

and 8 cores.

4 Discussion

Amongst available methods for source localization from

M/EEG data, SESAME represents an unicum: on the one hand,

it outperforms the majority of other localization methods in

terms of reconstruction accuracy with focal sources, as shown

recently (Pascarella et al., 2023); on the other hand, to the best

of our knowledge, it features the unique capability of quantifying

the degree of confidence of the estimated source configuration,

and to provide multiple alternative scenarios whenever the data

are ambiguous.

In this paper we presented SESAMEEG, a set of software

packages written in different languages and easily integrated in

most commonly used software analysis pipelines. In Section 3 we

showed that SESAMEEG provides good reconstructions of neural

activity from both MEG and EEG data when used with the default

parameters. The aim of SESAMEEG is therefore to make the

benefits of Bayesian source modeling of M/EEG data available to

the largest possible audience.

A long way has been gone but there is still just as much to go.

To begin with, the dipolar model SESAME is based on clearly

limits the applicability of the method to experimental conditions in

which the involved sources are highly focused. We are currently

working at a generalization of the method that encompasses the

source extent among the unknown parameters to be estimated.

Successful work in this direction would have the additional benefit

of enabling a quantification of the extent of the source, with its

associated uncertainty.

A second key point in the future development of SESAME

concerns a more detailed modeling of the forward model errors.

While these are currently accounted for as an zero-mean additive

component, more can be done along the lines suggested e.g.,

in Rimpiläinen et al. (2019). Better modeling of this component

would lead to more accurate source reconstruction as well as better

uncertainty quantification.

Finally, as the whole Monte Carlo procedure underlying

SESAME can be a bit heavy particularly when the number

of sources is large, implementation of the code in a parallel

environment exploiting GPUs should be pursued.
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Introduction: Electromagnetic brain imaging is the reconstruction of brain

activity from non-invasive recordings of electroencephalography (EEG),

magnetoencephalography (MEG), and also from invasive ones such as

the intracranial recording of electrocorticography (ECoG), intracranial

electroencephalography (iEEG), and stereo electroencephalography EEG

(sEEG). These modalities are widely used techniques to study the function of the

human brain. E�cient reconstruction of electrophysiological activity of neurons

in the brain from EEG/MEG measurements is important for neuroscience

research and clinical applications. An enduring challenge in this field is the

accurate inference of brain signals of interest while accounting for all sources of

noise that contribute to the sensor measurements. The statistical characteristic

of the noise plays a crucial role in the success of the brain source recovery

process, which can be formulated as a sparse regression problem.

Method: In this study, we assume that the dominant environment and biological

sources of noise that have high spatial correlations in the sensors can be

expressed as a structured noise model based on the variational Bayesian factor

analysis. To the best of our knowledge, no existing algorithm has addressed

the brain source estimation problem with such structured noise. We propose to

apply a robust empirical Bayesian framework for iteratively estimating the brain

source activity and the statistics of the structured noise. In particular, we perform

inference of the variational Bayesian factor analysis (VBFA) noisemodel iteratively

in conjunction with source reconstruction.

Results: To demonstrate the e�ectiveness of the proposed algorithm, we

perform experiments on both simulated and real datasets. Our algorithm

achieves superior performance as compared to several existing benchmark

algorithms.

Discussion: A key aspect of our algorithm is that we do not require any additional

baseline measurements to estimate the noise covariance from the sensor data

under scenarios such as resting state analysis, and other use cases wherein a

noise or artifactual source occurs only in the active period but not in the baseline

period (e.g., neuro-modulatory stimulation artifacts and speech movements).

KEYWORDS

electromagnetic brain imaging, magnetoencephalography (MEG), brain source

reconstruction, Bayesian inference, structured noise learning, factor analysis
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1 Introduction

Electromagnetic brain imaging is an effective technique

being used intensively to understand the neural mechanisms

of the complex human brain and behavior important for both

neuroscience research and clinical applications (Phillips et al.,

1997; He et al., 2018). In particular, electroencephalography

(EEG) and magnetoencephalography (MEG) are two widely

used techniques that provide non-invasive recordings of

the electrical activity of the brain by sensing its remote

magnetic and electric fields, respectively (Baillet et al., 2001).

Electromagnetic brain imaging requires solving an ill-posed

inverse problem for reconstruction of brain activity (at cortical

brain sources) from non-invasive EEG/MEG recordings. In

particular, it is crucial to determine both the spatial location

and the temporal dynamics of neurophysiological activity. In

tomographic EEG/MEG source localization pipelines, current

dipole sources are considered to be located on each voxel inside

the brain. As a result, the number of locations of potential

brain sources (thousands of voxels) is typically much larger

than the number of sensors (just a few hundred). In addition,

several types of noise (such as environmental interference and

sensor noise) inevitably affect EEG/MEG signals (Michel and

He, 2019; Edelman et al., 2015). Therefore, reconstructing brain

source activities accurately from scalp EEG/MEG measurements

becomes a challenging task. It opens up the possibility of using

sophisticated mathematical or neurophysiological priors of both

brain signals and noise statistics to achieve improved recovery of

brain activities.

Integral to inversemodeling algorithm in electromagnetic brain

imaging (Riaz et al., 2023) are forwardmodels. The primary current

density is mathematically defined as a vector field in a continuum

(volume space or surface space, depending on the assumptions for

the source space). Then an electric scalar field or magnetic vector

field that is produced by the primary current density is described

by quasi-static equations of electromagnetism. A discretization

of the space of the brain and surrounding tissues is employed

to provide these equations with a numerical solution. Note that

the forward problem aims to achieve a solution for the electric

or magnetic fields given the location and timing of brain source

activity. The recovery of the primary current source location and

timing is basically the Cauchy inverse problem of electromagnetism

(Riaz et al., 2023).

Several methods have been introduced over the past decades

to solve the inverse problem of brain source imaging. Common

inverse solvers for EEG/MEG source imaging can be broadly

classified into three categories—model-based dipole fitting, dipole

scanning methods, and distributed whole brain source imaging

methods (Baillet et al., 2001; Cai et al., 2018; Hosseini et al.,

2018; Cai et al., 2023). The working principle of dipole fitting

methods is to approximate brain activity with a small number

of equivalent current dipoles (Scherg, 1990). These classical

methods achieve good solutions when the source activity is

relatively simple consisting only one to two dipoles (Delorme

et al., 2012; Matsuura and Okabe, 1995). However, the quality of

their solutions degrades for even slightly more complicated source

configurations (Mosher et al., 1992). In addition, it is practically

challenging for dipole fitting-based methods to determine the

true number of current dipoles to be estimated. Dipole scanning

methods are also referred to as methods of spatial filtering or

beamforming which estimate the time course at every candidate

location while suppressing the interference from activity at the

other candidate source locations (Van Veen et al., 1997; Zumer

et al., 2006; Cai et al., 2023). Examples of scanning techniques

are minimum-variance adaptive beamforming (Robinson and

Rose, 1992; Sekihara and Scholz, 1996) as well as several variants

of adaptive beamformers (Sekihara and Nagarajan, 2008). The

fidelity of such brain signal estimates is affected by many factors

such as signal-to-noise ratio (SNR), source correlations, and

the number of time samples. However, the reconstruction

performance of beamforming methods can be significantly

compromised if the brain sources are highly correlated,

although recent Bayesian extensions overcome this limitation

(Cai et al., 2023).

Distributed whole-brain source imaging methods do not

require prior knowledge of the number of sources (Wipf and

Nagarajan, 2009). These methods approximate the primary

electrical current density by discretizing the whole brain volume,

assuming a dipolar current source at each voxel. The task

is then to estimate the amplitudes (and orientations) of the

sources by minimizing a cost function (He et al., 2011). Some

form of prior constraints or regularizers are used to obtain a

unique and neurophysiological meaningful solution (Ioannides

et al., 1990). The minimum-norm estimation algorithm (MNE)

(Hämäläinen and Ilmoniemi, 1994) minimizes the L2 norm of the

solution favoring smaller overall power of the brain activity. Other

variants of MNE include the weighted MNE (wMNE) (Dale and

Sereno, 1993), low-resolution brain electromagnetic tomography

(LORETA) (Pascual-Marqui et al., 1994), and standardized

LORETA (sLORETA) (Pascual-Marqui et al., 2002). However,

L2 norm minimization methods produce diffuse estimates that

lack sufficient resolution to localize and distinguish multiple

sources. To overcome this limitation, algorithms based on L1
norm minimization (Ding and He, 2008; Liu et al., 2022)

and sparsity-inducing norms induced by empirical Bayesian

inference (referred to as sparse Bayesian learning, SBL) (Wipf

et al., 2010) are developed. Friston et al. (2008) introduced a

sparse solution for distributed sources, of the sort enforced by

equivalent current dipole (ECD) models. These sparsity-based

source reconstruction algorithms can be derived within a Bayesian

framework (Wipf et al., 2010; Liu et al., 2019; Oikonomou and

Kompatsiaris, 2020; Liu et al., 2020; Cai et al., 2021; Hashemi

et al., 2021b, 2022; Ghosh et al., 2023; Cai et al., 2023). We argue

that these Bayesian techniques are found to be most efficient

in estimating the model hyper-parameters directly from the

data using hierarchical algorithms. Importantly, the Champagne

algorithm (Wipf et al., 2010) is derived in an empirical Bayesian

fashion, incorporating deep theoretical ideas about sparse-source

recovery from noisy constrained measurements. Inspired by its

promising performance, attempts have further been made by

several researchers to improve upon Champagne algorithm (Wipf

et al., 2010). One potential direction of improvement is to

accurately model noise that exhibits structured precision parameter

(Liu et al., 2020).
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Accurate inference of brain signals of interest while accounting

for all sources of noise that contribute to sensor measurements is

the key challenge in electromagnetic brain imaging. Noise statistics

in the model play a crucial role in the success of sparse source

recovery. In particular, the statistical characteristics of the noise

in sensor data plays an important role in the working of Bayesian

algorithms for electromagnetic brain imaging. Existing studies have

considered noise covariance matrices with either diagonal (Wipf

et al., 2010; Cai et al., 2019) or full structure (Hashemi et al., 2022).

In this study, we consider another type of realistic noise whose

covariance can be characterized by a structured matrix. This type

of noise is present when there are just a few active sources of

environmental noise, each of which may be picked up by multiple

MEG/EEG sensors with high spatial correlations. A key aspect

of our noise estimation algorithm is that we do not require any

additional baseline measurements to estimate the noise covariance

from the sensor data under scenarios such as resting-state analysis,

and other use cases wherein a noise or artifactual source occurs

only in the active period but not in the baseline period (e.g.,

neuromodulatory stimulation artifacts and speech movements). To

the best of our knowledge, no existing algorithm has addressed the

brain source estimation problem with a structure-noise covariance.

The main contributions of this paper are as follows:

1. We introduce a novel robust empirical Bayesian framework

for electromagnetic brain imaging under the structured noise

covariance assumption. In particular, we perform inference

of the variational Bayesian factor analysis (VBFA) noise

model iteratively in conjunction with source reconstruction. It

provides us a tractable algorithm for iteratively estimating the

noise covariance and the brain source activity. The proposed

algorithm is found to be quite robust to initialization and

computationally efficient.

2. The proposed algorithm does not require any additional baseline

measurements to estimate noise covariance from sensor data.

We note that this is not the case for many of the existing

algorithms for electromagnetic brain imaging.

3. We perform exhaustive experiments to demonstrate the

effectiveness of the proposed electromagnetic brain imaging

algorithm on both simulated and real datasets. In particular,

we quantify the correctness of the localization of the sources

and the estimation of source time courses for simulated brain

noise with structured covariance matrix. We show that the

new algorithm achieves competitive performance with respect

to benchmark methods on both synthetic and real MEG

data and is able to resolve distinct and functionally relevant

brain areas.

This paper is summarized as follows. In Section 2.1, we

introduce generative model of the inverse problem. Table 1 list

a summary of the variables and definitions used in Section 2.

The proposed Bayesian formulation along with a brief account

of existing Bayesian frameworks are presented in Section 2.2 and

Section 2.3. Then, we present experiments applying our approach

on synthetic (Section 3) and real MEG data (Section 4), where

we also compare the proposed algorithm with baseline and state-

of-the-art methods for electromagnetic brain imaging. Finally, we

discuss implications and future directions in Section 5.

2 Method

2.1 Generative model

In the typical electromagnetic brain imaging problem setup,

brain activity is modeled by a number of electric current dipoles,

where the location, orientation, and magnitude of each dipole

collectively determine the signal observed at the EEG/MEG

electrodes. The position of the dipoles within the brain contains

valuable information on brain function, which is used in clinical

applications and cognitive neuroscience studies (Leahy et al., 1998;

Gross, 2019). The inverse problem of estimating the locations and

the moments of the current dipoles from the recorded EEG signal

is ill-posed in nature.

The forward model, describing the EEG/MEG measurements

as a function of the brain sources, is given by

yk = Lxk + zk, (1)

where yk = [yk(1), · · · , yk(m)]⊤, yk ∈ Rm×1 is the sensor

measurements at time point k, m is the number of sensor

measurements. Moreover, xk = [xk(1), · · · , xk(n)]
⊤, xk ∈ Rn×1

is the activity of the brain sources at time point k, n is the number

of voxels. In addition, the whole time series data {y1, y2, . . . , yK}

are collectively denoted y, and the whole time series data

{x1, x2, . . . , xK} are collectively denoted x. The lead-field matrix

is given by L = [l1, l2, · · · , ln] ∈ Rm×n whose columns reflect

the sensors response induced by the unit current sources. Note

that, in simulations here, we assume a pre-defined orientation (e.g.,

normal constraint) for the local lead-field at each voxel. Therefore,

it can be reduced to a m × 1 vector (Sekihara and Nagarajan,

2015). However for real data, we use a three-column lead-field for

each voxel and estimate the source time-series at the orientation

corresponding to maximum power at each vowel. Furthermore,

zk ∈ Rm×1 refers to additive noise in the measurements not

arising from brain sources. We consider that zk is drawn from

a multivariate Gaussian probability distribution parameterized by

the precision matrix 3
−1. In particular, we assume that noise

refers to any background interference including biological and

environmental sources outside the span of the lead-field as well

as sensor noise. It is assumed that EEG/MEG measurements

are collected for spontaneous brain activity (i.e., resting-state),

such that separate recording time-windows capturing noise only

activity might not be available. Another scenario where noise-

only recordings may not be available are task-induced contrastive

experimental designs where noise or artifact signals are only present

in the active condition but not in the baseline. One such example is

active post-movement related paradigms such as speaking or other

movement tasks wherein any artifacts observed in the sensors due

to the movement will be present in the post-movement period;

that is, the baseline pre-movement periods cannot be used to

estimate the noise statistics. Therefore, here, we jointly infer both

source estimate and noise statistics from the same data segment as

described below.
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TABLE 1 Summary of the variables and definitions used in Section 2

Method.

Symbol Description

n Number of voxels in the brain.

m Number of MEG/EEG sensors.

K Number of time-points in the MEG/EEG signal.

x Brain source signal. (size n× K)

y Observed MEG/EEG sensor data. (sizem× K)

L Lead-field matrix of sizem× n.

3 Precision of normal distribution of noise. (size
m×m)

8 Precision of normal distribution of source signal.
(size n× n)

Ŵ Precision of normal posterior distribution of
source signal x given observed data y. (size n× n)

p(xk) Prior distribution of xk .

p(yk|xk) Conditional probability density of yk given xk .

p(xk|yk) Posterior probability density of xk observed yk .

xk Posterior mean of p(xk|yk).

p(y|8) Marginal likelihood.

F(8) Logarithm of marginal likelihood log p(y|8).

F̃(8) Cost function with the convex bounding.

z
(l)
k Residual noise at k-th time-point during l-th

iteration. (sizem× 1)

A Mixing matrix for the factor analysis. (sizem× q)

uk k-th component of factor analysis. (size q× 1)

ε Modeling noise of factor analysis. (sizem× 1)

� Diagonal precision matrix of the modeling noise at
factor analysis step.

9 Precision matrix of the posterior distribution of
column of mixing matrix A.

Rzz Covariance of residual noise z.

Ruu Covariance of factor analysis coefficient vector u.

2.2 Source estimation

Given prior distributions of sources and noise, the generative

model in Equation 1 becomes a probabilistic model. We assume

a zero-mean Gaussian prior with diagonal covariance 8 =

diag(φ) for the underlying source distribution. In other words,

xk ∼ N(0,8−1), k = 1, . . . ,K, where the diagonal φ =

[φ1, . . . ,φn]⊤ contains n distinct unknown variances associated

with n brain sources.

We propose to solve the inverse problem within the Bayesian

learning framework. Modeling independent sources through a

Gaussian zero-mean prior with diagonal covariance matrix leads to

sparsity of the resulting source distributions, that is, at the optimum

many of the estimated source variances are zero. The goal is to

find the maximum a posteriori probability (MAP) solution for xk.

The posterior probability p(xk|yk) can be derived by using Bayes’

theorem (Sekihara and Nagarajan, 2015):

p(xk|yk) ∝ p(yk|xk)p(xk), (2)

where p(yk|xk) = N(Lxk,3
−1) and p(xk) = N(0,8−1). In this

case, it is straightforward to show that the posterior probability

density p(xk|yk) is also Gaussian. Suppose, the posterior probability

takes the following form:

p(xk|yk) = N(xk,Ŵ
−1),

where xk is the posterior mean, and Ŵ is the posterior precision

matrix. Furthermore, we adapt the derivation in Sekihara and

Nagarajan (2015)[See pages 233–235 in Section B.3] to obtain:

Ŵ = 8 + LT3L,

xk = 8
−1L⊤(3−1 + L8

−1L⊤)−1yk.
(3)

Note that we need both 8 and 3 to compute xk. Assuming 3 and

8 as follows are known, we repeat the following three iterative steps

until convergence. At the (l+ 1)-th iteration:

1. Estimate x(l+1)
k

, assuming known 3
(l) and 8

(l).

2. Estimate 8
(l+1), assuming known x

(l+1)
k

and 3
(l).

3. Estimate 3
(l+1), assuming known x

(l+1)
k

and 8
(l+1).

We estimate 8 in the (l + 1)-th iteration by maximizing

the following cost function, which is defined as the logarithm of

marginal likelihood p(y|8) given 8:

F(8) = log |6y| +
1

k

K
∑

k=1

y⊤k 6
−1
y yk, (4)

where the model data covariance

6y = 3
−1 + L8

−1L⊤. (5)

Then, similar to Champagne (Wipf et al., 2010; Cai et al., 2019), we

utilize a convex bounding on the cost logarithm (Equation 4),

F̃(8) =
1

K

K
∑

k=1

[

(yk − Lx̄k)
⊤
3

−1(yk − Lx̄k)
]

+
1

K

K
∑

k=1

x̄⊤k 8
−1x̄k + tr(g⊤8)+ g0,

(6)

where g = diag(g1, g2, · · · , gn) and g0 are auxiliary variables. Setting

the derivative of F̃(8) with respect to φi and gi generates the update

rules below,

φ̂i =

√

√

√

√

√

1

K

∑K
k=1 x̄

2
k
(i)

ĝi
,

ĝi = l⊤i 6
−1
y li.

(7)

The update rule of 8 is defined as 8̂ = diag(φ̂1, φ̂2, · · · , φ̂n).
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2.3 Structured noise estimation using
variational Bayesian factor analysis

To estimate 3, we perform inference on a variational Bayesian

factor analysis model of the following residual noise at the l-th

iteration (Nagarajan et al., 2007):

zk = yk − Lx̄k, (8)

where the residual noise at the k-th time-point is zk ∈ Rm×1. We

note that our estimation problem involving a multivariate Gaussian

noise process becomes intractable if both the source covariance is

non-diagonal and non-sparse and the noise covariance is full rank.

The assumption of structured noise helps with accurate estimation

with the use of the variational Bayesian factor analysis methods

which are robust to smaller data sizes and to the underlying factor

dimension specification. The joint estimation of both diagonal

sparse source covariance and structured noise covariance is what

we are aiming for. Currently, we perform factor analysis-based

decomposition of xk as follows:

zk = Auk + ε,

where A ∈ Rm×q is a mixing matrix, uk is a q-dimensional column

vector, and ε is modeling noise. Notice that we drop the iteration

symbol l for simplification of notations.

We further assume the prior probability distribution of the

factor uk to be the zero-mean Gaussian with its precision matrix

equal to the identity matrix as follows:

p(uk) = N(0, I).

We define the j-th row of mixing matrix A as a column vector aj
such that

A =













aT1
aT2
...

aTM













.

Currently we assume the prior distribution of aj to be:

p(aj) = N
(

0, (σjα)
−1), (9)

where the j-th diagonal element of the modeling noise precision

matrix 6 is denoted σj, and α = diag(α1,α2, . . . ,αq) is a diagonal

matrix. It can be further shown that the posterior probability

distribution has the form of the Gaussian distribution:

p(aj|z) = N
(

āj, (σj9)−1),

where z = [z1, · · · , zK] is the residual signal of K time points,

and āj and σj9 are the mean and precision matrix of the

posterior distribution.

For simplicity, the prior probability distribution of the factor uk
is assumed to be the zero-mean Gaussian with its precision matrix

equal to the identity matrix,

p(uk) = N(0, I).

The factor activity u = [u1, · · · , uK] is assumed to be

independent across time. Thus, the joint prior distribution has

the form

p(u) =
K

∏

k=1

p(uk) =
K

∏

k=1

N(0, I),

where I is an identity matrix of size P × P. The modeling noise ε is

assumed to be Gaussian with the mean of zero:

p(ε) = N(0,�−1),

where � is a diagonal precision matrix. Currently, one can show

that the posterior distribution p(uk|zk) is also Gaussian, which we

assume to be:

p(uk|zk) = N(uk,6
−1
u ),

where uk and 6u are mean and precision, respectively.

By using the variational Bayesian expectation maximization

(EM) algorithm, it can be derived that

6u = A⊤
�A+m9

−1 + I (10)

ūk = 6
−1
u A⊤

�zk (11)

A = Rzu(Ruu + α)−1 (12)

9 = Ruu + α, (13)

where Ruu = Eu
[
∑K

k=1 uku
⊤
k

]

, Rzu = Eu
[
∑K

k=1 zku
T
k

]

. Note that

the hyper-parameters α and � can be updated as follows:

α
−1 = diag

[ 1

m
A⊤

�A+ 9
−1]

�
−1 =

1

K

[

Rzz − ARuz

]

,

(14)

where Rzz = Eu
[
∑K

k=1 zkz
⊤
k

]

and Ruz = RT
zu. Finally, we

iteratively update the above equations until the free energy function

converged and the covariance matrix of the structured noise

computed only using the signal of interest is given by

3 = E[zz] =
1

K
ARuuA

⊤ +
1

K
�

−1tr(Ruu9
−1). (15)

We refer to the proposed brain source imaging method as

structured noise Champagne (SNC). The key aspect is the novel

way of estimating the covariance of the residual noise within

each iteration.

3 Simulation experiments

In this section, we focus on experiments with simulated data.

In particular, we follow a standard protocol from the literature for

simulating MEG source signals. We combine this with simulated

structured noise of which the precision matrix has low rank. More

details are provided in Section 3.3.
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3.1 Quantifying performance

The performance of brain source reconstructions is evaluated

using response receiver operating characteristics (FROC) (Cai et al.,

2021). It basically measures the probability of detecting a true

source in an image vs. the expected value of the number of false-

positive detection per image. We further compute the A′ metric

which is the area under the FROC curve (Owen et al., 2012;

Snodgrass and Corwin, 1988). Note that the A′ metric determines

the hit rate (hr) of correctly detecting the active sources. We define

the hit rate (hr) as the number of hits for dipolar sources divided by

the true number of dipolar sources in the brain. A dipolar source is

considered as hit when recovered signal power is beyond a certain

threshold value. First, the voxels localized by each algorithm that

are included in the calculation of hit rates are defined as voxels that

are (i) at least 1% of the maximum activation of the localization

result and (ii) within the largest 10% of all of the voxels in the brain.

Within these subsets of voxels, we test whether each voxel is within

the ten nearest voxels to a true source. If estimated activity of a

particular voxel lies within a true source, that source gets labeled

as a “hit.” We also define another metric false positive rate (fr) as

the number of potential false-positive dipolar sources divided by

the total number of false dipolar sources. Note that a larger AOC

value indicates a higher hit rate (hr) than a false-positive rate (fr).

The expression for the A′ metric (Owen et al., 2012) is given by:

A′ =
1

2
(hr + fr)+

1

2
. (16)

In our experiments, we also study the accuracy of the time course

reconstructions. This accuracymetric R is defined as the correlation

coefficient between the seed and estimated source time courses

for each hit. The overall performance of both the accuracy of the

localization and reconstruction of time courses is computed by

combining A′ and R. The aggregated performance (AP) is given by

Cai et al. (2019):

AP =
1

2
(A′ + hrR). (17)

We see that AP values range in [0, 1]. A higher value of AP

indicates a better overall performance of source localization and

time course reconstruction.

3.2 Benchmarking methods

We compare our method structured noise Champagne (SNC)

with the following existing source localization methods:

1. Minimum current estimate (MCE) (Matsuura andOkabe, 1995),

2. Standardized low-resolution brain electromagnetic tomography

(sLORETA) (Pascual-Marqui et al., 2002),

3. Linearly constrained minimum variance (LCMV) (Van Veen

et al., 1997),

4. Noise learning Champagne (NLC) (Cai et al., 2021).

We apply these existing methods within the targeted structured

noise model. For experiments with real data, we first estimate

the noise variance using the variational Bayesian factor analysis

(VBFA) algorithm (Nagarajan et al., 2007) and use the original

Champagne (Nagarajan et al., 2007) to estimate the location of

active brain sources. This result would set an upper bound on the

performance of Champagne with noise learning when baseline data

are not available for real data.

3.3 MEG simulations

We generate source signal data by simulating dipole sources

with a fixed orientation. Damped sinusoidal oscillations with

frequencies sampled randomly between 1 and 75 Hz are created

as voxel source time courses. The time-courses are then projected

to the sensors using the lead-field matrix generated by the

forward model. We consider 271 MEG sensors and a single-

shell spherical model (Hallez et al., 2007) implemented in SPM12

(http://www.fil.ion.ucl.ac.uk/spm) at the default spatial resolution

of 8,196 voxels corresponding approximately to a 5-mm inter-voxel

spacing. We simulated 480 samples for which sampling frequency

is 1200 Hz and signal duration is 0.8 s.

To evaluate the robustness of the proposed method, we

randomly choose noise activity with real brain noise consisting of

actual resting-state sensor recordings collected from ten human

subjects presumed to have only spontaneous brain activity and

sensor noise. Signal-to-noise ratio (SNR) and correlations between

voxel time courses are varied to examine algorithm performance.

The SNR and time course correlation are defined in Owen et al.

(2012). We show an example of time-course reconstruction using

our proposed method in Figures 1, 2. The top plot in Figure 1 is the

simulated ground-truthMEG signal with five active sources. This is

followed by the time-course at the MEG sensor (before adding the

noise). Moreover, finally, the time-course at the bottom in Figure 1

is the measured signal at the MEG sensor with additive noise of

5 dB. The reconstructed time-series using our method SNC is

shown in Figure 2. We also display the time-series reconstructions

obtained using NLC (Cai et al., 2021), sLORETA (Pascual-Marqui

et al., 2002), LCMV (Van Veen et al., 1997), and MCE (Matsuura

and Okabe, 1995). It is noteworthy that the new method SNC is

able to reconstruct the time-series best. For all simulations, the

inter-source correlation coefficient was fixed at 0.99 and the SNR

was fixed at 3 dB. To highlight the source localization by all five

methods, we show the power at each voxel of the reconstructed

time-series and compare it with the ground-truth in Figure 3.

Notice that our method SNL achieves the best results to rightly

localize the brain sources. In other words, it shows the localization

performance of the methods in the simulation experiment.

We also evaluate algorithm performance as a function of SNR,

as shown in Figure 4. The reconstruction performance is evaluated

for five randomly seeded dipolar sources with an inter-source

correlation coefficient of 0.99. The simulations were performed

at SNRs from –8 dB to 10 dB at a step of 1 dB. Both metrics

suggest that our method structured noise Champagne (SNC) is

able to localize the active brain sources more accurately than the

existing methods.

Our method structured noise Champagne (SNC) deviates from

the original Champagne algorithm by the way of noise precision

update step. In the original Champagne algorithm, 3 is learnt
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FIGURE 1

Simulated MEG signal, structured noise, and measurement from MEG sensors. In this experiment, we have five brain sources as we see on the top

plot. The second plot shows the noise generated as per our model of structured noise. The third plot presents the measured signal at the MEG sensor

resulting only from the active brain source time-series—Lx in Equation 1. Finally, the time-series at the bottom is the one captured at MEG sensors

resulting from both active sources and noise—y in Equation 1. For all these, we show 480 time-points.

FIGURE 2

Reconstruction results on the simulated MEG measurement shown in Figure 1. Recall, we have five brain sources in this experiment. It is desirable for

a good brain source imaging method to recover the brain source signal successfully while also suppressing the noise. Notice that in this experiment

for the considered structured noise model, noise learning Champagne (NLC), and our method structured noise Champagne (SNC) are able to

mitigate the noise more successfully. Between them, SNC is able to produce cleaner brain source time-series. In this experiment, standardized

low-resolution brain electromagnetic tomograph (sLORETA), linearly constrained minimum variance (LCMV), and minimum current estimate (MCE)

failed to achieve satisfactory reconstruction.

from available baseline or control measurements (Wipf et al.,

2010). In contrast, here in structured noise Champagne (SNC), we

update rules for estimation of a diagonal noise covariance, without

baseline measurements. In Figure 5, we demonstrate how well the

structured noise is reconstructed. In particular, we compute the

geodesic distance (Venkatesh et al., 2020) between true structured
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FIGURE 3

Localization results of simulation experiment (visualization of brain sources power). In this experiment, we simulated five brain sources: S1, S2, S3, S4,

and S5. For each brain source, we display the localization by all five methods. Notice that our method SNC is able to localize the sources most

accurately.

FIGURE 4

Aggregate performance in simulations for varying noise levels for the number of noise factors m = 40. In this experiment, we use five active brain

sources in our simulation. On the other hand, we first simulated a structured noise drawn from N(0,3−1). Furthermore, we use the knowledge of the

structured noise model at the heart of our method to reconstruct the voxel-level time-series. Notice that our method structured noise Champagne

(SNC) performs better than every existing method in terms of correctly localizing the active brain sources.
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FIGURE 5

Geodesic distance (Venkatesh et al., 2020) between true and

estimated precision matrices of structured noise for a di�erent

number of noise factors m.

noise and the reconstructed one using SNC. Then, we plot the

geodesic distance across a range of signal-to-noise ratio (SNR)

for different values of rank. We found that our method SNC is

able to predict the structured noise fairly consistently across SNR

values. However, we empirically also found that there is still scope

for improvement in the estimated noise precision. We will focus

on new technical innovations to address this limitation in our

future research.

4 Analysis on real MEG data

Real MEG data were acquired in the Biomagnetic Imaging

Laboratory at the University of California, San Francisco (UCSF)

with a CTF Omega 2000 whole-head MEG system from VSM

MedTech (Coquitlam, BC, Canada) at a 1,200 Hz sampling rate.

Formal consent was collected from each participant in our study

for using his/her data for research studies. All study protocols were

approved by the Committee for Human Research at UCSF. The

lead-field for each subject was calculated in NUTMEG (Hinkley

et al., 2020) using a single-sphere head model and an 8-mm voxel

grid corresponding to 5,300 voxels. Each lead-field column was

normalized to have a norm of unity. The MEG data were digitally

filtered from 1 to 45 Hz to remove artifacts and DC offset. In

addition, trials with clear artifacts or visible noise in the MEG

sensors that exceeded 10 pT fluctuations were excluded prior to

source localization analysis. We experimented on one real MEG

auditory evoked fields (AEF) dataset (Cai et al., 2021) to evaluate

the performance of our newly introduced brain source imaging

method SNC.

4.1 Auditory evoked fields data

In this section, we discuss the neural source localization

performance of our method structured noise Champagne (SNC)

on auditory evoked fields (AEF) in the MEG signal. AEF are

often characterized as a function of latency, scalp topography,

and the perceptual/cognitive process (Godey et al., 2001). Source

localization from auditory evoked fields (AEF) data using MEG

measurement is a potential alternative for studying human brain

function (Teale et al., 1996). In all experiments with AEF data, the

neural response time-series was elicited during passive listening to

binaural tones (600 ms duration, carrier frequency of 1 kHz, 40 dB

SL). The post-stimulus window in which AEF were analyzed was

set to be +50 ms to +150 ms.

Figure 6 shows auditory evoked field (AEF) localization results

vs. the number of trials from a single representative subject. We

compare our result with other methods—sLORETA, LCMV, MCE,

and NLC. The power at each voxel around the M100 peak is

plotted for each algorithm. SNC is able to localize the expected

bilateral brain activation with focal reconstructions under all trial

settings. Specifically, the activities localize to Heschl’s gyrus in the

temporal lobe, which is the characteristic location of the primary

auditory cortex. NLC is able to localize the bilateral auditory activity

but with shrinkage on one side of the brain activity. The other

algorithms do not show robustness compared to SNC. Notice that

localization of MCE is biased toward the edge of the head. On the

other hand, sLORETA and LCMV produce several areas of pseudo-

brain activity. We further note that the LCMV beamformer has

a disadvantage in this structured noise scenario due to its well-

described weakness for temporally correlated sources as they occur

in the auditory cortices for AEFs.

In Figure 7, we present the performance results of sLORETA,

LCMV, MCE, NLC, and SNC for AEF localization vs. number of

trials for one subject. The error bars in each plot show standard

error. Trials are randomly chosen from around 120 trials from each

subject, and the number of trials is set in a range from 5 to 60.

Each condition is repeated over 30 times for each subject. In this

case, we consider the ground truth as the brain activity estimated

from approximately 120 trials. In general, increasing the number

of trials increases the performance of all algorithms. Notice that

all algorithms perform similar when the number of trials is under

10. However, both NLC and SNC work better when the number of

trials is above 20. Importantly, when the number of trials increases

higher than 40, SNC outperforms all other methods in terms of

efficiently localizing the active brain sources.

5 Discussion

This study offers an efficient way to estimate contributions to

sensors from noise without the need for additional “baseline” or

“control” data, while preserving robust reconstruction of complex

brain source activity. The underlying data estimation part of our

algorithm is based on a principled idea of estimating noise statistics

from the model residuals at each iteration of the alternating

minimization step of the Champagne algorithm. The key step

of the noise learning operation is accomplished by the fact that

the residual noise at each iteration exhibits structured precision

statistics. The proposed algorithm is readily available to handle a

variety of configurations of brain sources under high noise and

interference conditions without the need for additional baseline

measurements—a requirement that commonly arises in datasets
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FIGURE 6

Auditory evoked field (AEF) localization results vs. number of trials from one representative subject using standardized low-resolution brain

electromagnetic tomograph (sLORETA), linearly constrained minimum variance (LCMV), minimum current estimate (MCE), noise learning

Champagne (NLC), and our method structured noise Champagne (SNC). Note that NLC is able to localize the bilateral auditory activity. In contrast,

MCE localization is biased toward the edge of the head. Both sLORETA and LCMV produce some areas of pseudo brain activity.

like resting state data analyses. In this context, we note some of

the noise/interference reduction strategies—signal space separation

(SSS) (Taulu et al., 2005), signal-space projection (SSP) (Uusitalo

and Ilmoniemi, 1997), and dual signal subspace projection (DSSP)

(Sekihara et al., 2016) for EEG/MEG signals. These methods

are primary preprocessing techniques for the EEG/MEG analysis

pipeline. In fact, these methods are precisely used to mitigate the

noise/interference from theMEG/EEG sensor and external sources.

However, none of these are designed to reconstruct the voxel-level

time-series. On contrary, ourmethod SNC estimates theMEG/EEG

time-series at each voxel of the sensor data.

Exhaustive experimental results demonstrate that the

proposed source imaging method offers significant theoretical

and empirical advantages over the existing benchmark algorithms

when the noise covariance cannot be accurately determined in

advance. In simulations, we particularly explored noise learning

algorithmic performance for complex source configurations

with highly correlated time-courses, and high levels of noise

and interference. These simulation results establish the fact that

our method outperforms the classical Champagne algorithm

(Nagarajan et al., 2007) with an incorrect noise covariance

as it achieves higher score of aggregated performance as

compared to this and other existing benchmarking methods

(Matsuura and Okabe, 1995; Pascual-Marqui et al., 2002;

Van Veen et al., 1997; Cai et al., 2021). It is relevant to

mention that data-driven approaches, that is, artificial neural

networks (ANN)-based inverse solutions, are receiving increasing

interest in the literature (Razorenova et al., 2020; Sun et al.,

2020; Hecker et al., 2021; Liang et al., 2023). It would be

an interesting future extension to explore the scope of our

proposed noise learning scheme within these recent artificial

intelligence techniques.
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FIGURE 7

Aggregate performance results vs. number of trials for auditory

evoked field (AEF) data using standardized low-resolution brain

electromagnetic tomograph (sLORETA), linearly constrained

minimum variance (LCMV), minimum current estimate (MCE), noise

learning Champagne (NLC), and our method structured noise

Champagne (SNC). It is interesting to note that SNC achieves the

best aggregated performance after 40 trials. As expected, the

performance also improves with the number of trials.

To the best of our understanding, the improved performance

of this algorithm arises from the efficient the method of estimating

the noise statistics via factor analysis of the residual component.

Moreover, the proposed structured noise Champagne (SNC)

algorithm is found to be robust even when the algorithms

are initialized to incorrect noise values. Most importantly, the

proposed method is able to robustly localize brain activity with

a few trials or even with a single trial in the AEF dataset. This

is indeed a significant advancement in electromagnetic brain

imaging. We argue that this phenomenon may dramatically cut

down the duration of data collection up to 10-fold. This scan-

time reduction is particularly important in studies involving

children with autism, patients with dementia, or any other subjects

who have difficulty tolerating long periods of data collection. In

summary, our proposed method offers significant advantages over

many existing benchmark algorithms for electromagnetic brain

source imaging.

Finally, we would like to discuss some tradeoffs in the current

algorithm. Here, we restrict to a diagonal source covariance matrix

estimate, which ensures the sparsity of brain sources (Hashemi

et al., 2021a), and our convex bounding cost function ensures

guaranteed convergence (Wipf et al., 2011; Wipf and Nagarajan,

2009). The structured low-dimensional manifold assumption of

the noise covariance helps with accurate estimation with the

use of the variational Bayesian factor analysis methods which

are robust to smaller data sizes and to the underlying factor

dimension specification (Nagarajan et al., 2006, 2007). However,

if we want to solve a joint signal and noise estimation problem

where both the source and noise covariances are non-diagonal

and non-sparse, this problem can become intractable (Hashemi

et al., 2020, 2021a). We hope to examine this problem in our

future study.
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Appendix

A1. Proof of Equation 3

Recall that the posterior probability distribution function

p(xk|yk) is Gaussian which we assumed to be N(xk,Ŵ
−1).

Furthermore, the exponential part of this Gaussian distribution is

given by:

− 1
2 (xk − xk)

T
Ŵ(xk − xk)

= − 1
2x

T
k
Ŵxk + xT

k
Ŵxk + C, (18)

where C stands for the terms that do not contain xk.

We also know that p(yk|xk) = N(Lxk,3
−1) and p(xk) =

N(0,8−1). Hence, the posterior probability p(xk|yk) can be

derived by using Bayes’ rule in Equation 2. We see that the

exponential part of the posterior probability p(xk|yk) takes

the form:

− 1
2

[

xT
k
8xk + (yk − Lxk)

T
3(yk − Lxk)

]

= − 1
2x

T
k
(8 + LT3L)xk + xT

k
LT3yk + C≃, (19)

where C≃ again stands for the terms that do not contain xk.

Comparing the quadratic terms of xk on the right sides of

Equations 18, 19:

Ŵ = 8 + LT3L. (20)

Similarly, comparing the linear terms of xk on the right sides of

Equations 18, 19:

xk = Ŵ
−1LT3yk. (21)

Furthermore, using the matrix inversion formula of Equation

(C.92) in Sekihara and Nagarajan (2015), Equation 21 can be

rewritten as:

xk = 8
−1L⊤(3−1 + L8

−1L⊤)−1yk. (22)
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