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Editorial on the Research Topic

Community series in post-translational modifications of proteins in
cancer immunity and immunotherapy, volume II
The emergence of immune checkpoint inhibitors (ICIs) allows cancer immunotherapy

to move to the frontiers of cancer therapy. ICIs targeting CTLA-4, PD-1, and PD-L1 are

applied to patients with advanced malignancies and prolong their survival. Among the

ICIs, therapeutic antibodies against the PD-1/PD-L1 improve the clinical outcome,

supporting the evidence that PD-1/PD-L1 axis strongly contributes to anti-tumor

immunity. Nevertheless, it is also reported that some cancer patients exhibit limited

response rates and resistance to ICIs, therefore restricting the clinical application of ICIs.

To overcome this issue, elucidating molecular mechanisms underlying cancer immunity

and optimizing the combination therapy of ICIs with other therapeutic strategies using

molecular target drugs would be required. Especially, the enzymes that catalyze post-

translational modifications (PTMs) would be promising molecular targets for

immunotherapy or combined therapy. During the past few years, immune checkpoint

molecules, including TIM-3, LAG-3, and TIGIT, have been newly identified. However,

most papers listed in this Research Topic focused on PTMs of PD-L1. Therefore, we

summarized the current pieces of evidences on PTMs of PD-L1 in this editorial.
PTMs in regulating the PD-L1 expression

The PD-L1 stability was regulated by many E3 ligases and deubiquitinases, since PD-L1

expression is tightly regulated in a context-dependent manner. To date, the E3 ubiquitin

ligases b-TRCP, SPOP, STUB1, HRD1, DCUN1D, NEDD4, RNF144A, c-Cbl, and ARIH1

were reported to regulate PD-L1 expression. Contrary, it is reported that PD-L1 can be

deubiquitinated by CSN5, USP22, USP7, USP9X, and OTUB1 (Feng et al.).
frontiersin.org0154

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1289016/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1289016/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1289016/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1289016/full
https://www.frontiersin.org/research-topics/50937
https://www.frontiersin.org/research-topics/50937
https://doi.org/10.3389/fimmu.2023.1230135
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1289016&domain=pdf&date_stamp=2023-09-26
mailto:zichuan.liu@tju.edu.cn
mailto:daixiangpeng@jlu.edu.cn
https://doi.org/10.3389/fimmu.2023.1289016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1289016
https://www.frontiersin.org/journals/immunology


Nihira et al. 10.3389/fimmu.2023.1289016
Cell cycle

PD-L1 expression fluctuates during the cell cycle; it increases in

the M and early G1 phases and rapidly decreases in the late G1 and

S phases. SPOP promotes the rapid reduction by the poly-

ubiquitination of PD-L1. Since Cyclin D/CDK4 enhances the PD-

L1 ubiquitination, CDK4/6 inhibitors, Palbociclib and Ribociclib,

increase PD-L1 expression and enhance the efficacy of anti-PD-1

immunotherapy in vivo (1).
Inflammatory stimulation

Upon TNFa stimulation, NF-kB up-regulates expression of

deubiquitinase CSN5, resulting in increased PD-L1 expression

without affecting the transcription level of PD-L1 (2). Curcumin,

a CSN5 inhibitor, can be used with anti-CTLA4 antibody together

to decrease PD-L1 level and inhibit PD-L1 to enhance the efficacy of

immunotherapy (2). Therefore, manipulation of PD-L1 stability

could be promising strategy for increased efficacy of combination

treatment with immunotherapy.
Cancer metabolisms

Dysregulation of cellular metabolism is one of the hallmarks of

cancer progression, which was defined by Hanahan and Weinberg

in 2011. Two independent studies demonstrated that energy

metabolism regulates PD-L1 status at both transcriptional and

post-translational levels. Dai et al. demonstrated that energy

deprivation activates AMPK kinase, which subsequently

phosphorylates PD-L1 at Ser283, resulting in PD-L1 degradation

(3). CMTM4 and CMTM6 are critical regulators for lysosomal
Frontiers in Immunology 0265
degradation of PD-L1. Mechanistically, phospho-mimic PD-L1

S283D mutation or treatment with AMPK-specific agonist A-

769662 markedly attenuated the interaction between PD-L1 and

CMTM4, and the dissociation triggers lysosomal degradation.

Simultaneously, AMPK induces the expression of IFN- and

antigen presentation-related genes through phosphorylation of

EZH2 (3) (Figure 1). Furthermore, the mouse tumor model

showed that ketogenic diet- or A-769662-induced PD-L1

degradation enhanced the CTLA-4 immune checkpoint blockade

efficacy (3).

On the other hand, Lin et al. showed that high glucose condition

increases expression of PD-L1 depending on NF-kB activation.

Glycolytic enzyme hexokinase 2 (HK2) activation induced by high

concentration of glucose phosphorylates IkBa at Thr291 and triggers

its degradation, and then NF-kB translocates into the nucleus to

upregulate PD-L1 transcription (Figure 1). In cancer cells, glucose

uptake and the production of lactate are dramatically increased due to

the expression of glucose transporters (GLUTs) and activation of

glucose-responsible kinases. This characteristic might increase PD-L1

expression and trigger immune surveillance in tumors.
PTMs regulating the cellular
distribution of PD-L1

Not only the expression control, the subcellular localization of

PD-L1 is also tightly regulated by PTMs. After translation in the

endoplasmic reticulum, translocation of newly synthesized PD-L1

to the plasma membrane from Golgi is regulated by K63-linked

ubiquitination by mind bomb homolog 2 (MIB2) (4). Yu et al.

screened the E3 ubiquitin ligases using shRNA library and found

that knockingdown of MIB2 reduces PD-L1 expression on the

plasma membrane without affecting the total amount of PD-L1
FIGURE 1

PTMs in the regulation of PD-L1 expression in cancer metabolism.
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(4). K63-linked poly-ubiquitination of PD-L1 at Lys136 in trans-

Golgi network triggers RAB-8-mediated exocytosis, and then

expresses on the plasma membrane (4).

On the other hand, several research groups reported that small

portions of PD-L1 function in the cytoplasm and nucleus. Notably,

Lys263 residue within PD-L1 is constitutively acetylated by

acetyltransferase p300 (5). HDAC2-mediated PD-L1 deacetylation

enables it to bind with regulators of sub-cellular localization,

including Adaptin b2, Clathrin heavy chain, Vimentin, and Importin

a1. RNA sequence analysis reveals that the expression of immune

response-, NF-kB signaling-, type I IFN-, and type II IFN-related genes

are induced by nuclear PD-L1 (5). It was reported that inhibition of

nuclear translocation of PD-L1 by HDAC2 inhibitor increases the

efficacy of anti-PD-1immunotherapy in mouse tumor models (5). To

date, numerous HDAC inhibitors have developed and exhibited

improved outcomes for cancer patients (Lian et al.). Among HDAC

inhibitors, a class I HDAC inhibitor, Romidepsin, in combination with

PD-1 blockade increases the efficacy of immunotherapy in lung

adenocarcinoma. In addition, Entinostat is also implied in the

combination treatment with ICIs (Lian et al.).
Novel PTM regulating the
tumor immunity

Aerobic glycolysis is also an important feature of cancer

metabolism, which is well-known as the Warburg effect. Production

of aerobic glycolysis, lactate, promotes the proliferation of tumor-

related immune cells to build an immunosuppressive tumor

microenvironment (TME). It is newly reported that protein

lactylation is involved in the regulation of gene expression, which is

considered the other function of lactate. Histone lactylation on Lys

residues functions as an epigenetic hallmark during macrophage

polarization (6). Thus, protein lactylation might be an essential

biological event that links cancer metabolism to tumor immunity.

Yang et al. compared the differentially expressed genes in tumor versus

normal tissue and identified 11 lactylation-related genes. Among the 11

candidate genes,HIBCH expression is negatively correlated with tumor

grade and TME score. Furthermore, the expression ofCTLA-4 and PD-

1 is also negatively linked with HIBCH expression, suggesting that

HIBCH would be a potential biomarker to speculate ICI response.
Frontiers in Immunology 0376
Conclusion

This Research Topic provides an overview of PTMs of PD-L1

and the combination therapy with ICIs. Further research about

PTMs of PD-L1 must expand the choice of drugs that can be

combined with ICIs.
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Inhibition of histone
deacetylases attenuates tumor
progression and improves
immunotherapy in breast cancer

Bi Lian, Xiaosong Chen* and Kunwei Shen*

Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao
Tong University School of Medicine, Shanghai, China
Breast cancer is one of the common malignancies with poor prognosis

worldwide. The treatment of breast cancer patients includes surgery, radiation,

hormone therapy, chemotherapy, targeted drug therapy and immunotherapy. In

recent years, immunotherapy has potentiated the survival of certain breast

cancer patients; however, primary resistance or acquired resistance attenuate

the therapeutic outcomes. Histone acetyltransferases induce histone acetylation

on lysine residues, which can be reversed by histone deacetylases (HDACs).

Dysregulation of HDACs via mutation and abnormal expression contributes to

tumorigenesis and tumor progression. Numerous HDAC inhibitors have been

developed and exhibited the potent anti-tumor activity in a variety of cancers,

including breast cancer. HDAC inhibitors ameliorated immunotherapeutic

efficacy in cancer patients. In this review, we discuss the anti-tumor activity of

HDAC inhibitors in breast cancer, including dacinostat, belinostat, abexinostat,

mocetinotat, panobinostat, romidepsin, entinostat, vorinostat, pracinostat,

tubastatin A, trichostatin A, and tucidinostat. Moreover, we uncover the

mechanisms of HDAC inhibitors in improving immunotherapy in breast cancer.

Furthermore, we highlight that HDAC inhibitors might be potent agents to

potentiate immunotherapy in breast cancer.

KEYWORDS

HDAC, inhibitors, breast cancer, immunotherapy, targets
Introduction

Breast cancer is one of the common tumors worldwide. Approximately 2.3 million new

breast cancer cases were estimated in 2020 in the 185 countries (1). It has been estimated

that there are 297,790 new cases of breast cancer and 59,910 deaths due to this deadly

disease in the United States (2). Approximately 11%-20% of breast cancer patients are triple

negative breast cancer (TNBC) due to lack of expression of HER2, ER and PR (3). TNBC

patients often have aggressive behavior, metastasis and poor prognosis (4). For the

treatment of local breast cancer, there are surgery and radiation, while the systemic
frontiersin.org0187

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1164514/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1164514/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1164514/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1164514/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1164514&domain=pdf&date_stamp=2023-03-09
mailto:chenxiaosong0156@hotmail.com
mailto:kwshen@medmail.com.cn
https://doi.org/10.3389/fimmu.2023.1164514
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1164514
https://www.frontiersin.org/journals/immunology


Lian et al. 10.3389/fimmu.2023.1164514
therapies of breast cancer include chemotherapy, hormone therapy,

targeted drug therapy and immunotherapy (5, 6). Histone

acetyltransferases can lead to histone acetylation on lysine

residues, which can be reversed by histone deacetylases (HDACs)

(7, 8). It has been known that HDACs function on remodeling of

chromatin and modulation of gene expression by specific epigenetic

regulation (9). There are 18 HDACs that have been characterized to

regulate various biological processes, which are classified into four

groups (I-IV). Class I includes HDAC1, HDAC2, HDAC3 and

HDAC8, which are related to RPD3 gene. Class II includes HDAC4,

HDAC5, HDAC6, HDAC-7, HDAC9 and HDAC10. Class III

includes sirtulin 1-7 and class IV includes HDAC11 (10–12).

Dysregulation of HDACs via mutation and abnormal expression

contributes to oncogenesis and tumor progression (10–12).

Therefore, modulation of HDACs could be a potent strategy for

cancer treatment.
Role of HDAC in immunotherapy

Immunotherapy has emerged for fighting cancer via using the

patient’s own immune system (13). Immunotherapy includes

monoclonal antibodies, chimeric antigen receptor (CAR) T-cell

therapy, CAR NK cell therapy, tumor infiltrating lymphocyte

(TIL) therapy, endogenous T cell (ETC) therapy, immune

checkpoint inhibitors (ICIs), cancer vaccines, cytokines and

immunomodulators (14–17). It has been known that ICIs block

immune checkpoints, which allow immune cells to respond to

tumor. Inhibitory immune checkpoint molecules include

programmed cell death ligand (PD-1), programmed death ligand

(PD-L1), PD-L2, B7-H3 (CD276), B7-H4 (VTCN1), LAG3, TIM-3,

and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) (18,

19). Although immunotherapy has improved the survival of certain

cancer patients, primary resistance and acquired resistance in

immunotherapy attenuate the cancer treatment outcomes (20,

21). Hence, it is pivotal to uncover the mechanism of

immunotherapy resistance and to develop the compounds that

improve immunotherapy.

Several HDAC inhibitors have been developed and exhibited

the potent anti-tumor activity in a various cancer types, including

inhibition of tumor growth, metastasis and drug resistance (22–24).

For instance, abexinostat, givinostat and mocetinostat decreased the

expression of Slug and increased the expression of E-cadherin in

mammary tumor cells (25). Breast epithelial cells with E-cadherin

depletion were sensitive to several HDAC inhibitors, including

entinostat, vorinostat, pracinostat, and mocetinostat, due to

inhibition of proliferation and upregulation of cell apoptosis (26).

Here, we discuss the function of HDAC inhibitors in tumorigenesis,

especially in improving immunotherapy in breast cancer.
Vorinostat

Vorinostat, also known as SAHA (suberoylanilide hydroxamic

acid), is an oral inhibitor of class I and II of HDACs, which was the

first time to approve for clinical application in patients with
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cutaneous T-cell lymphoma in 2006 (27–29). Vorinostat has been

determined by preclinical experiments and clinical trials to decide

its therapeutic efficacy in combination with other antitumor drugs

in breast cancer (30). Vorinostat plus CDK inhibitor flavopiridol

treatments exhibited synergistic lethality in breast cancer cells via

suppression of ERK1/2 and AKT pathways and regulation of

apoptosis pathways (31). Using breast cancer brain metastatic

cells and intracranial xenograft model, radio-sensitivity was

increased by vorinostat (32). Vorinostat accelerated radio-

sensitivity of breast tumor cells, leading to suppression of lung

metastasis via inhibition of MMP-9, DNA repair proteins and

modulation of autophagy and endoplasmic reticulum stress (33).

TRAIL-resistant breast cancer cells became more sensitive after

vorinostat treatment in BALB/c nude mice because vorinostat

inhibited the expression of NF-kB, cyclin D1, Bcl-2, Bcl-xL,

VEGF, MMP-2, MMP-9, HIF-1a, IL-6, IL-8, increased the

expression of DR4, DR5, p21, PUMA, TIMP-1, TIMP-2, Bax,

Bak, Bim and Noxa (34). It has been reported that vorinostat

overcame apoptosis-inducing ligand Apo2L/TRAIL resistance via

regulation of Bax, DR5, caspase-3, caspase-8, caspase-9 and PARP

cleavage in human MDA-MB-231 breast cancer cells (35).

Vorinostat increased the sensitivity of olaparib, one PARP

inhibitor, in TNBC cells via induction of DNA damage, apoptosis

and autophagy (36). Vorinostat restrained brain metastasis and

stimulated DNA double-strand breaks and induced the

downregulation of Rad52 in a TNBC model (37). Vorinostat

promoted taxol-mediated cell death and triggered inhibition of

cell growth and induced cell cycle arrest at G2/M phase in breast

cancer (38). Vorinostat in combination with Aurora kinase

inhibitor (MK-0457) displayed synergistical inhibition of

proliferation of breast cancer cells (39). Vorinostat activated the

expression of estrogen receptor a (ERa) and sensitized a ligand of

the aryl hydrocarbon receptor, aminoflavone, -mediated growth

inhibition in mesenchymal-like TNBC cells, such as MDA-MB-231

and Hs578T cells (40). Co-treatment with vorinostat and

simvastatin exhibited synergistic functions on cell proliferation

and apoptosis via inhibition of Rab7 prenylation in TNBC cells

(41). It has been found that tamoxifen sensitivity was enhanced by

vorinostat treatment in TNBC cells (42).

Vorinostat in combination with chemotherapeutic agent

decitabine increased sensitivity of Fas ligand (FasL)-induced

apoptosis and CTL immunotherapy via promotion of CD8+ T

cells in colon cancer cells (43). Vorinostat increased sensitivity of

anti-GD2 monoclonal antibody (mAb) treatment and reduced

tumor growth through elevation of macrophage effector cells with

high expression of Fc-receptors and reduction of MDSC number in

neuroblastoma (44, 45). In pancreatic cancer, vorinostat and

sorafenib co-treatment enlarged the efficacy of anti-PD-1

antibody via promotion of CD8+ cells, M1 macrophages and NK

cells in mice (46). A combination therapy by vorinostat and anti-

PD-L1 to abrogate the immune escape has been reported via

induction of cell apoptosis and G1 phase arrest in melanoma

(47). In head and neck and salivary cancer patients with

vorinostat plus pembrolizumab treatments, NLR, neutrophils,

lymphocytes and T helper cells were associated with poor overall

survival (48). The MDA-MB-231 breast carcinoma cells and LNCaP
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prostate cancer cells displayed sensitivity to vorinostat therapy via

enhancement of the immune evasion, leading to promotion of T-

cell-induced lysis. HDAC1 was further identified to play a pivotal

role in tumor immune escape in breast cancer cells (49). Data from

ER-positive breast cancer patients after vorinostat, tamoxifen and

pembrolizumab treatments revealed that exhausted T cell signature

was linked to immunotherapy response (50). Hence, combination

of HDAC inhibitors and immunotherapy could obtain synergistic

effects in cancer therapy in breast cancer.
Entinostat

Entinostat, a class I HDACs inhibitor, has been uncovered to

attenuate cell proliferation and stimulated cell apoptosis in breast

cancer (51, 52). Moreover, entinostat was critically involved in

reversal of tumor immune escape in breast cancer (51). One study

revealed that entinostat promoted lapatinib efficacy via inhibition of

AKT phosphorylation, activation of FOXO3 transcription, leading

to elevation of Bim1 expression in breast cancer cells with HER2

overexpression (53). Entinostat can attenuate the resistance of

trastuzumab/lapatinib-resistant breast cancer cells with HER2

overexpression to the trastuzumab/lapatinib treatment (53).

Entinostat plus MEK inhibitor pimasertib retarded cell growth in

TNBC cells and inflammatory breast cancer (IBC) cells, and

reduced tumor growth in mice via regulation of NOXA-

participated MCL1 degradation (54).

One study used microarray analysis and revealed that

doxorubicin and entinostat regulated numerous gene expressions

related to differentiation, inflammation and proliferation.

Entinostat sensitized doxorubicin-mediated cell cycle arrest at G2

phase (55). Doxorubicin and entinostat inhibited the expression of

E2F and Myc genes, elevated interferon genes and increased the

numbers of tumor-infiltrating lymphocytes. Moreover, entinostat

and doxorubicin enhanced the expression of tumor testis antigens,

such as IL13RA2, and elevated the expression of ICOSL and GITRL

in MDA-MB-231 cells, which were immune checkpoint agonists

(55). PD-L1 expression was increased by entinostat and reduced by

doxorubicin treatment. Entinostat, all-trans retinoic acid, and

doxorubicin together stimulated cell death and differentiation,

leading to regression of tumor growth in mice by a xenograft

model of TNBC (55). A combination of entinostat, all-trans

retinoic acid, and doxorubicin caused tumor regression via

targeting tumor-initiating cells in TNBC and modulating the

ESE-1 and ELF-3 (56).

Entinostat, a cancer vaccine, and an IL15 agonist N-803

displayed a synergistic effect on tumor growth via upregulation of

infiltration of CD8+ T cells, promotion of tumor inflammation-

related gene expressions, enhancement of T cell responses to

antigens, reduction of VISTA expression in 4T1 TNBC murine

carcinoma model and MC38-CEA colon mouse model (57).

Combined treatments with vaccine, entinostat, ICIs, and

chemotherapy had exhibited a potential efficacy in advanced

breast cancer (58). The breast cancer cells and prostate tumor

cells exhibited sensitivity to entinostat by T-cell-involved lysis (49).

Entinostat altered the tumor-related antigens, including PSA,
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brachyury, CEA and MUC1, and elevated the expression of

several proteins that governed tumor immune recognition and

ant igen process ing (49) . Ent inos ta t combined wi th

immunotherapy could be a potential strategy for breast

cancer therapy.
Romidepsin

Romidepsin (FK228), a class I HDAC inhibitor, has been

reported to inhibit the tumor growth in different types of cancers

(59, 60). For example, in colon cancer cells, romidepsin attenuated

cellular immune functions via upregulation of PD-L1 expression by

enhancing the acetylation of histones H3 and H4 and modulation of

BRD4 (61). Romidepsin accelerated the number of FOXP3+

regulatory T cells, reduced the number of IFN-g+ CD8+ T cells,

and alleviated Th1/Th2 ratio in TME in subcutaneous model and

colitis-related cancer mice. Moreover, Romidepsin-mediated tumor

suppression was abrogated by anti-PD-1 antibody treatment in

colon cancer cells (61). One case report showed that romidepsin

might be safe and effective for treatment of anaplastic large cell

lymphoma (ALCL), which did not impair cellular immunity to

HTLV-1 (62).

Romidepsin increased paclitaxel sensitivity and blocked tumor

metastasis in inflammatory breast cancer (63). Specifically,

romidepsin impaired tumor emboli and lymphatic vascular

structure, and suppressed the expression of VEGF and HIF-1a in

inflammatory breast cancer. Moreover, romidepsin induced the

expression of acetylated Histone 3 proteins, triggered cell apoptosis

and upregulated p21 expression level (63). Recently, romidepsin

treatment upregulated the expression of chemokines, stimulated T-

cell infiltration, and promoted T-cell-induced tumor regression. A

combination of romidepsin and PD-1 blockade elevated T-cell

infi l t ra t ion and increased the e fficacy of ant i -PD-1

immunotherapy in lung adenocarcinoma (64). One group

reported that a triple combination (gemcitabine, romidepsin,

cisplatin) accelerated cell death in MDA-MB-231 and MDA-MB-

468 cells (65). Moreover, a triple combination treatment using

gemcitabine, romidepsin and cisplatin inhibited cell survival and

invasion via targeting EMT in an ROS-dependent way, leading to

suppression of tumor development, recurrence, and metastasis in

TNBC (66).
Panobinostat

It has been known that panobinostat (LBH589), a pan-HDAC

inhibitor, performs a tumor suppressive function in various cancer

types (67, 68). The function of panobinostat has bene verified in

breast carcinogenesis and progression. Panobinostat enhanced the

acetylation of GRP78 (glucose-regulated protein 78) and increased

endoplasmic reticulum stress via upregulation of p-eIF2a, CHOP

and ATF4, and elevation of BIK, BIM, Bax and BAK expression,

acceleration of the caspase-7 activity and UPR in breast cancer cells

(69). Panobinostat inhibited proliferation of breast cancer cells via

modulation of aromatase gene expression, and synergized the anti-
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tumor function of letrozole in hormone-dependent breast cancer

(70). In addition, panobinostat exposure elevated histone

acetylation, induced G2/M cell cycle arrest and alleviated cell

proliferation in TNBC cells. Panobinostat increased the

expression of E-cadherin and changed the cell morphology in

MDA-MB-231 cel ls (71). Another study showed that

panobinostat inhibited the expression of ZEB family (ZEB1 and

ZEB2) and led to suppression of tumor metastasis in TNBC (72).

The proliferation of breast cancer cells with aromatase inhibitor

resistance was mitigated by panobinostat in part via inactivation of

NF-kB1 pathway (73). The invasive and migratory ability of breast

cancer cells was also repressed by panobinostat via induction of E-

cadherin and alteration of Slug, MTA3 and Snail (74). Using a

claudin-low TNBC PDX model, one group revealed that

panobinostat inhibited the mesenchymal phenotype, such as

inhibition of collagen expression (75). Panobinostat accelerated

the expression of APCL and blocked Wnt/b-catenin pathway via

promotion of b-catenin degradation in breast cancer, resulting in

inactivation of b-catenin targets, including c-Myc, CD44, Cyclin D1

and c-Jun, which contributed to inhibition of tumor growth and

metastasis (76). Panobinostat plus rapamycin led to increased

efficacy against TNBC on inhibition of proliferation, invasion,

migration and induction of apoptosis, which could be due to

overproduction of ROS ad activation of endoplasmic reticulum

stress in breast cancer (77). Panobinostat inhibits tumor growth by

induction of autophagy and accelerated secretory autophagy via

targeting Vps34/Rab5C pathway in breast cancer (78).

Panobinostat has shown the treatment benefits in oncolytic

herpes simplex virus in combination with anti-PD-1/PD-L1

therapy in glioma and squamous cell carcinoma (79). The efficacy

of panobinostat was spatially correlated with multiple gene

expressions, including galectin-3, cleaved caspase-3, PD-L1,

neuropilin-1 and calrecticulin in breast cancer, suggesting that

panobinostat (80). Without a doubt, the function of panobinostat

in altering immunotherapy warrant to further exploration in

breast cancer.
Mocetinotat

Mocetinostat, a class I/IV HDAC inhibitor, has been identified

to suppress the tumorigenesis and tumor development in a various

types of human cancers (81). Mocetinostat increased PD-L1

expression and elevated the expression of antigen presentation

genes in NSCLC (82). Mocetinostat interacted with the promoters

of a class I HDAC and increased active histone marks, and

enhanced IFN-g activity in governing class II transactivator. In

mice, mocetinostat reduced the number of Tregs and MDSCs, but

elevated the number of CD8+ population in tumors. Mocetinostat

and PD-L1 antibody displayed a synergistic function in mouse lung

tumor models (82). Mocetinostat plus the BET inhibitor JQ1

reduced viability of breast cancer cells via modulation of cell

cycle-associated gene expressions. Mocetinostat and JQ1

cotreatment upregulated the expression of USP17 family

members in breast cancer cells, resulting in inactivation of Ras/

MAPK pathway and attenuation of cell viability (83).
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Fyn-related kinase (FRK) has been known to be repressed in

cancer cells due to its promoter CpGmethylation (84). Cell migration

and invasion were reduced by FRK overexpression via inactivation of

MAPK, AKT and JAK/STAT pathways and blockade of EMT in

breast cancer cells, including inhibition of slug, vimentin, fibronectin,

and upregulation of E-cadherin (85). Mocetinostat and entinostat can

induce re-expression of FRK at mRNA and protein levels in basal B

breast cancer cells, contributing to tumor regression (86). Similarly,

mocetinostat exhibited anti-cancer functions in basal-like breast

cancer cells with HDAC2 overexpression (87). Moreover,

mocetinostat plus azacytidine increased chemotherapeutic

sensitivity in mammary mesenchymal tumors via targeting EMT

process (25). One group used TCGA database and found that

mocetinostat and vorinostat exhibited the functional similarity with

the FDA-approved drugs for the treatment of HER2-postive breast

cancer (88). Mocetinostat combined with capecitabine showed a

synergistic effect on suppression of proliferation and induction of

apoptosis in 4T1 breast cancer cells via targeting Bax, Bcl-2, PI3K/

AKT, c-Myc, PTEN, p53, caspase-7, -9, and cleaved PARP (89). It is

required to further dissect the function of mocetinostat in improving

immunotherapy in breast cancer.
Abexinostat

Abexinostat (PCI-24781, CRA-024781) is a Pan-HDACs

mainly targeting HDAC1. It has been reported that abexinostat

increased tumor radio-sensitivity in NSCLC (90). PCI-24781 was

developed to decrease cell proliferation, differentiation and

metastasis via influencing calcium influx by activation of RGS2 in

breast cancer (91). Abexinostat triggered the differentiation of

cancer stem cells in breast cancer with low level of lncRNA Xist

expression (92). Moreover, low expression of lncRNA Xist could

indicate abexinostat response in breast tumor PDXs and linked to

an inhibition of cancer stem cells in breast cancer (92).

Interestingly, administration of abexinostat did not change the

expression of ESR1, ERa, and ESR1-associated genes in xenograft

models (93). This study indicated that it is doubtable to use a

combination of abexinostat and hormone therapy for the

management of breast cancer patients. Due to unclear role of

abexinostat in immune response, it is pivotal to define the

function of abexinostat in regulation of immunotherapy of breast

cancer patients.
Belinostat

Belinostat (Beleodaq, PXD101) is a HDACi with antineoplastic

function in part via targeting HDAC6. One study showed that

TNBC cells and HER2-enriched breast cancer cells were remarkably

sensitive to belinostat and panobinostat treatment. Moreover,

belinostat and panobinostat increased doxorubicin sensitivity in

TNBC cells (94). Belinostat and SAHA sensitized TNBC cells to the

PARP inhibitor olaparib treatment, showing the synergistic

inhibition of proliferation of TNBC cells and induction of cell

apoptosis (95). Belinostat plus Hsp90 inhibitor 17-AAG displayed a
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synergistic effect on suppression of invasion and cell growth in

TNBC cells via inhibiting the expression of TEAD family proteins

and elevating YY1AP1 phosphorylation and MLC1 (modulator of

VRAC current 1) (96). Chemotherapeutic drugs led to cancer stem

cell (ALDH+/CD44+) abundance in breast cancer, which was

abrogated by belinostat exposure (97). One group has

demonstrated that belinostat stimulated the expression of CXCL1

in TBNC cells, suggesting that CXCL1 clone evolution could be an

indicator for TNBC prognosis (98).
Dacinostat

Dacinostat (LAQ-824) has been observed to tackle cancer

chemoresistance in multiple myeloma ad acute myeloid leukemia

(99). One study demonstrated that dacinostat and givinostat can

restore the activity of cytotoxic T lymphocytes in in pancreatic

cancer cells (100). NVP-LAQ824 attenuated tumor growth and

angiogenesis and enhanced VEGFR inhibitor PTK787/ZK222584-

mediated inhibition of angiogenesis via upregulation of p21 and

downregulation of angioprotein-2, Tie-2, VEGF, HIF-1a, and
survivin (101). Using an orthotopic breast tumor model, NVP-

LAQ824 plus PTK787/ZK222584 induced a greater suppression of

tumor growth (101). LAQ824 can regulate the expression of

miRNAs in SKBR-3 breast cancer cells (102). It has been known

that noncoding RNAs, including microRNAs, lncRNAs and

circRNAs, are critical in carcinogenesis in a variety of human

cancers (103–105). LAQ824 increased 22 miRNA expressions and

decreased 5 miRNA expressions in breast cancer cells (102).

LAQ824 in combination with 5-Aza-2’-deoxycytidine, known as

decitabine, displayed a greater antineoplastic effect on breast cancer

cells (106). LAQ824 reduced the expression of ERa, PRb, c-Myc,

cyclin D1 and HDAC6 in breast cancer cells, leading to suppression

of cellular proliferation (107). LAQ-824 sensitized drug sensitivity,

including taxotere, epothilone B, trastuzumab and gemcitabine, via

downregulation of HER-2 expression in breast cancer cells (108).

LAQ824 was found to work as a sensitizer to immunotherapy with

adoptive T-cell transfer in melanoma (109). Further exploration is

pivotal to determine the LAQ824-enhanced immunotherapy in

cancer patients via improving the anticancer function of tumor

antigen-specific lymphocytes.
Other HDACs

Pracinostat (SB939) attenuated tumor growth and metastasis

via blocking the IL6/STAT3 pathway in breast cancer (110). YF479,

a HDACi, exhibited antitumor functions in breast cancer, including

suppression of growth, metastasis and recurrence (111). NK-

HDAC-1 was designed and synthesized for fighting breast cancer,

which induced apoptosis and cell cycle arrest via upregulation of

p21 and inhibition of Cyclin D1 (112). Givinostat (ITF2357)

increased cell death and reduced cell proliferation in urothelial

carcinoma cells and acute lymphocytic leukemia (113, 114).

Givinostat enhanced CTL sensitivity in pancreatic cancer cells

(100). In addition, givinostat reduced cancer stemness and
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reversed transformed phenotype in glioblastoma (115, 116). The

function of givinostat is breast tumorigenesis is unclear, which

should be explored in the future. Tubastatin A and alisertib reduced

the number of pulmonary metastases via suppression of HDAC6

and AURKA in breast tumor xenograft models (117). Tubastatin A

in combination with palladium nanoparticles triggered cell

apoptosis in breast cancer cells (118). MPT0G211, a HDAC6

inhibitor, exhibited an inhibition of tumor metastasis via

attenuation of HDAC6 activity in breast cancer cells (119).

Trichostatin A (TSA) inhibited the expression of DNMT1

(DNA methyltransferase 1) via reduction of DNMT1 mRNA

stability in Jurkat T leukemia cells (120). TSA decreased the

transcript and protein levels of aromatase CYP19 and

phospholipase C gamma-1 (PLC-g1) in MCF-7 breast cancer cells

(121, 122). SK-7041, a HDACi via a hybrid of TSA and MS-275,

induced cell apoptosis and G2/M arrest in breast cancer cells (123).

MAGE-C1 (melanoma-associated antigen-C1) and MAGE-C2

expressions were linked to advanced tumor grade and poor

survival in breast cancer patients. TSA treatment increased 5-aza-

CdR-induced MAGE-C2 transcription in breast cancer cells,

indicating that MAGE-C2 could be a target for cancer

immunotherapy (124). Tucidinostat, an inhibitor of HDAC1,

HDAC2, HDAC3 and HDAC10, has shown a remarkable

anticancer activity and a synergistic ability with immunotherapy

(125). Tucidinostat combined with selinexor, an exportin 1

inhibitor, showed a greater antitumor effect on TP53 wild-type

breast cancer (126). Breast cancer patients with HR+/HER2-

received CDK4/6 inhibitor treatment and then obtained

tucidinostat-based therapy, which displayed better clinical

outcomes (127). DNMT inhibitor 5-zazcytidine and HDACi

butyrate ameliorated the tumorigenicity of CSCs and retarded

breast tumor growth (128). We believe more HDAC inhibitors

will be developed for potentiating immunotherapy in the future.
Conclusion and perspectives

In conclusion, HDAC inhibitors improve immunotherapy via

targeting HDACs and their downstream targets in breast cancer

(Figure 1). Although HDAC inhibitors might be useful to enhance

tumor immunotherapy, several concerns should be mentioned. So

far, only five HDAC inhibitors have been approved by FDA for

cancer therapy, including vorinostat, belinostat, panobinostat,

pracinostat and romidepsin (129). These HDAC inhibitors

exhibited clinical advantage in hematological malignancies. It is

required to measure the efficacy of HDAC inhibitors in solid tumors

(130). Sirtuins inhibitors, such as nicotinamide, sirtinol and

splitomicin, have shown their activities in regulation of

metabolism, DNA repair, proliferation, drug resistance and

immunotherapy (131). Due to limited space, we do not discuss

the role of sirtuins inhibitors in modulation of breast cancer

immunotherapy. Among dozens of HDAC inhibitors, which one

is the best choice for enhancement of immunotherapy in breast

cancer? The development of inhibitors based on the differential

expression of HDAC isoforms is pivotal to rationally develop

selective and effective inhibitors for personalized-medicine
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1164514
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lian et al. 10.3389/fimmu.2023.1164514
Frontiers in Immunology 061312
treatment (132, 133). Notably, HDAC inhibitors also have adverse

side effects and cause drug resistance, which should be overcome.

The resistant reasons of HDAC inhibitors are still incomplete. This

might be due to cancer cell types, tumor-specific mutations, tumor

microenvironmental conditions, upregulation of efflux pumps (P-

glycoprotein), overexpression of HDAC enzymes. Lastly, triple

combination of HDACi, immunotherapy and other inhibitors

could be a promising approach for the treatment of breast cancer.
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FIGURE 1
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Glossary

ATF activating transcription factor

BET bromodomain and extra C-terminal

Bim1 a BH3 domain-containing pro-apoptotic protein

CDK cyclin-dependent kinase

CHOP CAAT/enhancer binding protein homologous protein

eIF2 eukaryotic translation initiation factor

ER estrogen receptor

ERK1/2 extracellular signal-regulated kinase 1/2

HER2 human epidermal growth factor receptor 2

HIF-1 hypoxia-inducible factor-1

HLA human leukocyte antigen

HTLV-1 human T-lymphotropic virus type 1

IFN-g interferon gamma

LAG3 lymphocyte activation gene-3

MAPK mitogen-activated protein kinase

MDSC myeloid-derived suppressor cells

MHC major histocompatibility

MMP matrix metalloproteinase

mTOR mammalian target of rapamycin

NF-kB nuclear factor-kappa B

NLR neutrophil-to-lymphocyte ratio

PARP poly ADP-ribose polymerase

PDX patient-derived xenograft

PI3K phosphatidyl inositol 3 kinase

PTEN phosphatase and tensin homolog

PR progesterone receptor

ROS reactive oxygen species

STAT signal transducers protein kinase

TIM-3 T-cell immunoglobulin domain and Mucin domain 3

TIMP-1 tissue inhibitor of metalloproteinase-1

TNBC triple-negative breast cancer

TRAIL tumor necrosis factor-related apoptosis-inducing ligand

Treg T-regulatory cell

UPR unfolded protein response

VEGF vascular endothelial growth factor.
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N6-methyladenosine reader
YTHDF family in biological
processes: Structures, roles,
and mechanisms

Lin Chen1†, Yang Gao1†, Simiao Xu2†, Jinxiong Yuan1,
Min Wang1, Tianyu Li3 and Jun Gong1*

1Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China, 2Division of Endocrinology, Affiliated
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of
National Clinical Research Center for Metabolic Disease, Wuhan, China, 3Trauma Center/Department
of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China
As the most abundant and conserved internal modification in eukaryote RNAs, N6-

methyladenosine (m6A) is involved in a wide range of physiological and pathological

processes. The YT521-B homology (YTH) domain-containing family proteins

(YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic

m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive

functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family

in specific cell types or developmental stages result in prominent differences in

multiple biological processes, such as embryonic development, stem cell fate, fat

metabolism, neuromodulation, cardiovascular effect, infection, immunity, and

tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis,

metabolism, drug resistance, and immunity, and possesses the potential of

predictive and therapeutic biomarkers. Here, we mainly summary the structures,

roles, and mechanisms of the YTHDF family in physiological and pathological

processes, especially in multiple cancers, as well as their current limitations and

future considerations. This will provide novel angles for deciphering m6A regulation

in a biological system.

KEYWORDS

M6A, YTHDF, biological process, cancer, clinical applications
1 Introduction

In recent years, more than 170 different chemical RNA modifications have been

identified, drawing more attention to the epitranscriptome (1). Among them, N6-

methyladenosine (m6A), which adds a methyl group to the sixth nitrogen atom of

adenine, is the most abundant internal transcriptome modification in eukaryotes (2, 3). By

identifying the consensus motif “RRACH” (R = A/G; H = A/C/U), m6A usually occurs in the
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3’ untranslated region (3’UTR) and coding sequence (CDS),

especially in the vicinity of stop codons (4, 5). Accordingly, m6A

modification regulates the metabolism of multiple types of RNAs and

are ultimately participating in various pathophysiological processes.

The m6A methylation is dynamic and reversible, regulated by a

series of m6A-modifying enzymes which can be classified into

“writers”, methyltransferases that install m6A modifications, and

“erasers”, demethylases that remove m6A from mRNA, as well as

“readers” that recognize and bind to m6A-modified mRNA to mediate

their ultimate fate. Methyltransferase complex (MTC) is the main

“writers”, including methyltransferase like 3/14 (METTL3/14), Wilms’

tumor 1-associating protein (WTAP) (6, 7). They catalyze the

formation of m6A methylation synergistically. Conversely, the fat

mass and obesity-associated protein (FTO) and AlkB homolog 3/5

(ALKBH3/5) that belong to the “erasers” act as key proteins in m6A

demethylation (8, 9). Moreover, “readers” are important m6A binding

proteins such as YTHDFs, YTH domain-containing 1/2 (YTHDC1/2),

heterogeneous nuclear ribonucleoproteins (HNRNP) family, insulin-

like growth factor 2 mRNA-binding proteins (IGF2BP1/2/3), and

eukaryotic initiation factor 3 (eIF3) (5, 10–16). They influence RNA

splicing, export, translation, and decay, and then regulate diverse

downstream signaling pathways.

The YTHDF family is the most studied “readers” of m6A, which

includes YTHDF1, YTHDF2, and YTHDF3. They regulate the

translation and stability of target mRNAs to alter the expression of

downstream molecules, thus affecting diverse biological processes (10,

17). In this review, we summarize the structures and functions of the

YTHDF family, especially the m6A-binding specificity. Moreover, we

focus on its underline mechanisms in multiple physiological and

pathological processes, especially in tumors, hoping to provide

possible application value.
2 M6A methylation regulators

In “writers”, MTC is the main component that catalyzes the

formation of m6A. Among them, METTL3 installs methyl groups in

S-adenosylmethionine to RNA target sites, while METTL14 selects

RNA adenine bases and stabilizes the catalytic process (6, 18, 19).

WTAP, RBM15/15B, VIRMA, and ZC3H13 are also components of

the MTC, directing complexes to nuclear speckles as well as RNA sites

(7, 20–22). In addition to MTC, METTL16, ZCCHC4, and METTL5

also can catalyze m6A modification of specific RNAs (23–25). In

contrast, FTO and ALKBH3/5 act as key “erasers” proteins in m6A

demethylation (8, 9, 26). FTO and ALKBH5 target mRNA and are

associated with obesity and spermatogenesis, respectively (9, 27).

Whereas ALKBH3 removes m6A on tRNA (26).

Moreover, “readers” are required in m6A-regulated diverse

downstream signaling pathways. For example, YTHDC1 promotes

mRNA splicing in the nucleus as well as nuclear export (11, 12).

Furthermore, YTHDC1 accelerates the function of XIST to silence the

transcription of genes on the X chromosome (20). Interestingly,

YTHDC2 promotes mRNA translation with a concomitant decrease

in mRNA abundance and has ATPase and 3’ to 5’ RNA helicase

activities (13, 28). In addition, the HNRNP family regulates the
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alternative splicing of mRNA through an “m6A-switch” mechanism

(29–33). IGF2BPs stabilize target mRNAs in different ways under

normal and stress conditions (15). And eIF3 binds m6A on the 5’UTR

of mRNA and promotes mRNA translation in a cap-independent

manner (16).

The YTHDF family was identified by selecting proteins containing

the YTH domain and subsequently obtained in pull-down experiments

using methylated RNA bait (5, 34, 35). Now, the features of the

YTHDF family have been gradually unraveled. The YTH domains of

YTHDFs have a hydrophobic pocket, which is critical to the

recognition of m6A in the cytoplasm (36). But the role of each

protein is different, for example, YTHDF1 promotes RNA

translation, YTHDF2 facilitates RNA decay, and YTHDF3 exhibits a

dual function depending on its binding partner (37). Thus, the YTHDF

family is closely associated with many cancers and other biological

processes (Figure 1).
3 The structures and functions of the
YTHDF family

The YTHDF family is composed of a C-terminal YTH domain and

an N-terminal domain rich in P/Q/N (Pro/Gln/Asn). The YTH

domain is the basis of recognizing m6A RNA specifically and its

targeted position and consensus sequence are similar to the distribution

pattern of m6A sites on mRNA (20, 38). YTH domain can also directly

bind to N1-methyladenosine (m1A), but with a lower affinity thanm6A

(39). The prion-like low-complexity sequence regions (LCRs) of the N-

terminal domain are associated with the liquid-liquid phase separation

(LLPS) (40). The mRNA-YTHDF complexes are located in different

membrane-less compartments in the cytoplasm, such as processing

bodies (P-bodies), stress granules (SGs), or neuronal granules, which

are the result of LLPS and can be enhanced by multivalent m6A

modifications (41). Proteomic studies revealed that YTHDFs can be

phosphorylated and myristoylated to regulate their expression and

clustering (42). Additionally, the EGFR/SRC/ERK pathway stabilizes

YTHDF2 protein by phosphorylating YTHDF2 at serine39 and

threonine381 in glioblastoma cells (43). YTHDF2 can also be

SUMOylated at site K571, thereby enhancing its binding affinity with

m6A-modified mRNAs and accelerating cancer advancement (44).

Therefore, targeting post-translational modifications represent a novel

opportunity for YTHDFs to regulate their functions.

The crystal structures of the three YTH domains and

their complexes with an m6A mononucleotide (or m6A

oligoribonucleotides) have been revealed (45, 46). The YTH domains

share a mixed a-helix-b-sheet fold, where the a-helices surround a

barrel-shaped center arranged by the b-sheets. The surface of the YTH
domain has a positively-charged groove in which m6A is tightly locked.

Specifically, m6A is located in a hydrophobic pocket formed by three

highly conserved aromatic residues called an aromatic cage. In the

YTHDF-m6A complex, the m6A adenine moiety is sandwiched

between the rings of two aromatic residues, paralleling them (Trp411

and Trp470 in YTHDF1, Trp432, and Trp491 in YTHDF2, Trp438,

and Trp497 in YTHDF3). And the methyl group of m6A points to the

ring of one aromatic residue (Trp465 in YTHDF1, Trp486 in
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YTHDF2, Trp492 in YTHDF3) (36, 47, 48). As well as aromatic

residues, some amino acids (aa) of the YTH domain also interact with

m6A. For example, the backbone NH of Tyr397 in YTHDF1 and

Tyr418 in YTHDF2 form hydrogen bonds with the N3 of m6A. The

carbonyl oxygen of Cys412 in YTHDF1, Cys433 in YTHDF2, and

Cys439 in YTHDF3 bind to the N6 of m6A by hydrogen bonding. To

sum up, theP-P interactions between them6A adeninemoiety and the

aromatic cage, the cation-P interactions between the methyl group and

the aromatic cage, and a series of hydrogen bonds lay a foundation for

m6A recognition (36) (Figure 2).

Evidence confirms that the YTHDF family plays an integral role in

the translation and degradation of m6A-modified mRNAs. YTHDF2 is

the most explored YTHDFs and is generally expressed at much higher

levels than YTHDF1 and YTHDF3 in most cells (42). YTHDF2 binds

to m6A-modified mRNAs and recruits the CCR4-NOT deadenylase

complex through its N-terminal 101-200 aa to initiate deadenylation,

which is a prior condition of P-body localization and decay of targeted

mRNAs (10, 49, 50). Additionally, m6A-modified mRNAs can also

bind to YTHDF2 in an HRSP12-dependent manner, and subsequently

cleaved by RNase P/MRP (endoribonucleases) (51, 52). In particular,

HRSP12 bridges the N-terminal 100 aa of YTHDF2 and RNase P/

MRP, contributing to the rapid degradation of mRNAs. And m6A-

containing circular RNAs (circRNAs) are also degraded by this

pathway. Interestingly, under heat shock stress, nuclear-translocated

YTHDF2 protects m6Amotifs in the 5’ untranslated region (5’UTR) of

stress-induced transcripts and activates cap-independent translation

initiation (53). The N-terminal of YTHDF1 (100-200 aa) is in charge of

the translation of mRNAs with m6A modifications (54). YTHDF1 not

only transports more mRNAs to translation machinery and promotes

ribosome occupancy, but also enhances the translation-initiation rate

by correlating eIF4G-mediated loop structure through interaction with
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eIF3 in a cap-dependent manner (17). YTHDF1 can also trigger

translational elongation through interaction with elongation factors

in some cancer cells (55–57). Apart from the above results, Li et al.

found that YTHDF1 interacts with Argonaute 2 (AGO2) to stimulate

the production of P-bodies for mRNA degradation (58). In addition,

YTHDF3 augments m6A-mRNA translation by cooperating with

YTHDF1 and interacting with the 40s/60s ribosome subunits (59).

Besides that, YTHDF3 recruits eIF4G2 to m6A sites, driving translation

initiation of circRNAs (60). YTHDF3 also promotes m6A-modified

mRNA decay by working together with YTHDF2 (37). A recent study

found that the effect of YTHDF3 in regulating targeted mRNA

deadenylation during somatic cell reprogramming relies on the

recruitment of the PAN2-PAN3 deadenylase complex (61).

Interestingly, the YTHDF family forms a classic functional

model: upon entry into the cytoplasm, m6A-modified mRNAs

are first bound by the YTHDF3 or YTHDF3-YTHDF1 complex

and then recognized by YTHDF2, thereby regulating the

different fates of the targeted mRNA (62). Nevertheless, it has

recently been discovered that YTHDFs have redundant

functions to a large extent (63). Those three YTHDFs share

highly homologous structures (about 85% of aa sequence

similarity) (64), similar RNA-binding properties (20), and a

similar set of binding proteins, jointly regulating mRNA

destiny in an m6A-dependent manner (65). Indeed, the distinct

functions of YTHDFs depend on their expression levels, spatial

locations, and post-translational modifications. Also, YTHDFs

are affected by additional RNA-binding proteins that interact

with YTHDFs, such as fragile X mental retardation protein

(FMRP) (66, 67), and Proline-rich coiled-coil 2 A (Prrc2a)

(68). Collectively, the role of YTHDFs in regulating gene

expression is complex and requires further investigation.
FIGURE 1

The regulation mechanism of m6A modification. METTL3, METTL14, WTAP, RBM15, VIRMA, and ZC3H13 all belong to the “writers” and catalyze the
formation of m6A modification by constituting MTC. The “erasers” includes FTO and ALKBH5, which act as key proteins in m6A demethylation.
YTHDF1/2/3, YTHDC1, IGF2BP, hnRNP family, and EIF3 as “readers” that bind to m6A and affect RNA splicing, output, translation, and decay.
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4 The roles of the YTHDF
family in physiological and
pathological processes

4.1 Embryonic development

Among the three YTHDFs, YTHDF2 is expressed and plays a

pivotal role throughout mammalian gametogenesis. YTHDF2-

knockout female mice are infertile while male mice are hypo

fertile (65, 69). Specifically, YTHDF2 is intrinsically required for

oocyte competence to support early zygotic development rather

than MII oocytes formation and fertilization process (69).

YTHDF2 regulates appropriate maternal transcript dosage

during oocyte maturation by selectively mediating transcript

destabilization. Additionally, YTHDF2 clears m6A-dependent

matrix metallopeptidase transcripts to promote the adhesion

and proliferation of spermatogonia during spermatogenesis (70).

Knockout of YTHDF2 results in morphologically deformed and

functionally impaired sperm, even severe loss (65, 71).

Intriguingly, unlike the previous view that maternal mRNAs

clearance and maternal-to-zygotic transition (MZT) are dependent

on YTHDF2, Kontur et al. found that individual YTHDFs deletion

does not prevent embryonic development, whereas double mutations

of YTHDF2/YTHDF3 disrupts oogenesis and triple YTHDF depletion

causes lethality in zebrafish (72, 73). Despite evidence for the

redundant functions of YTHDFs in early mouse embryonic
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development, depletion of YTHDF2 causes lethality at late

embryonic development stages with embryos exhibiting severe

neurological deficits (65, 74). Zheng et al. found that YTHDF3

reduction is an adaptive mechanism under a hypoxic environment

in early embryonic development (75). Specifically, YTHDF3 binds to

the m1A site of insulin-like growth factor 1 receptor (IGF1R) mRNA

and degrades IGF1R mRNA, hindering migration and invasion

of trophoblast.
4.2 Stem cell fate

Somatic cells are reprogrammed into induced pluripotent stem

cells (iPSCs), which have unlimited proliferation and pluripotent

differentiation potential similar to human embryonic stem cells

(ESCs) (76). YTHDF2 and YTHDF3 play an essential role in this

reprogramming process by clearing somatic mRNAs, especially Tead2,

through distinct m6A-dependent deadenylation mechanisms (61).

While YTHDF1 is capable of increasing the expression of the

transcription factor Btg2 and promoting the reprogramming of

induced neuronal cells (77). In terms of iPSCs functions, the

YTHDF1/YTHDF2 orchestration is involved in METTL3-m6A-

mediated maintenance of pluripotent state in porcine iPSCs by

elevating JAK2 level, reducing SOSC3 expression, and provoking

STAT3/KLF4/SOX2 signal axis (78). YTHDF1 upregulation depends

on MATR3 and maintains a MATR3-mediated pluripotent state in

human iPSCs by maintaining the expression of OCT4 and LIN28A
FIGURE 2

The structures of the YTHDF family, especially the YTH domain. (A) The YTH domain of YTHDFs: YTHDF1 (UniProt ID: Q9BYJ9), YTHDF2 (UniProt ID:
Q9Y5A9), YTHDF3 (UniProt ID: Q7Z739). (B) Structures of YTHDFs in complex with m6A. YTHDF1 (PDB ID:4RCJ), YTHDF2 (PDB ID:4RDN), YTHDF3
(PDB ID:6ZOT). The secondary structures of proteins are shown in gray, and RNA molecules are shown in color.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1162607
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1162607
transcripts (79). Importantly, YTHDF2 is overexpressed and disrupts

the expression of a group of m6A-modified mRNAs associated with

neurodevelopment, thereby blocking neural differentiation and

promoting pluripotency in human iPSCs (80). Similarly, YTHDF3

reduces gene expression associated with the formation of three germ

layers, and the absence of YTHDF3 impairs pluripotency in ESCs (81).

Several studies have revealed that the specification and

characteristics of hematopoietic stem cells (HSCs) are significantly

regulated by YTHDF2. The m6A-YTHDF2-mediated decay of Notch1

mRNA is critical for the generation of the earliest hematopoietic stem/

progenitor cells (HSPCs) during the endothelial-to-hematopoietic

transition (EHT) in both zebrafish and mice embryos (82, 83). Li

et al. first reported that YTHDF2 specifically mediates the ex vivo

expansion of human HSCs due to the regulation of the stability of

multiple mRNAs essential for HSC self-renewal (84). Therefore,

inhibition of YTHDF2 makes it possible to obtain a sufficient

number of HSCs from human umbilical cord blood (hUCB), which

facilitates the application of hUCBHSCs transplantation. Furthermore,

YTHDF2 deletion also promotes the expansion and regeneration of

HSCs by eliminating the decay of both WNT-targeted and survival-

related genes under stress conditions (85). Interestingly, although

YTHDF2 is dispensable for steady-state multilineage hematopoiesis,

long-term deficiency of YTHDF2 dramatically impairs HSCs activity

and blocks reconstitution of multilineage hematopoiesis (86). Given

that hematopoietic-specific YTHDF2 deficiency-induced long-term

HSCs impairment is consistent with the adverse consequences of

inflammation in HSCs, the inflammation-induced increase in

YTHDF2 may be a protective mechanism for the long-term integrity

of HSCs. YTHDF3 is also involved in the regulation of HSCs. YTHDF3

binds m6A on the 5’UTR of CCND1 mRNA and cooperates with

PABPC1 and EIF4G2 to promote the expression of CCND1, a positive

regulator of HSCs reconstitution capacity (87). While YTHDF3

facilitates the translation of FOXM1 and ASXL1 transcripts and is

critical for maintaining HSC properties under stress conditions (88).

YTHDF1 is indispensable for maintaining intestinal stem cells

(ISCs) during regeneration after intestinal damage by driving a positive

feedback loop of the YTHDF1/TCF4/WNT signaling axis (89).

Similarly, YTHDF1 sustains the stemness of ISCs through a targeted

translation of transcriptional-enhanced associate domain 1 (TEAD1)

(90). In addition, YTHDF1 is also involved in the m6A-mediated self-

renewal of mouse female germline stem cells (mFGSCs) (91).
4.3 Fat metabolism

YTHDFs play key roles in adipogenesis, particularly YTHDF2.

YTHDF2 binds and degrades JAK1 mRNA to block the JAK1/STAT5/

C/EBPb pathway, thereby inhibiting the adipogenic differentiation of

bonemarrow stem cells (92). Similarly, YTHDF2-mediated silencing of

the JAK2/STAT3/C/EBPb pathway impedes adipogenesis (93). Indeed,

YTHDF2 also impairs adipogenesis by degrading multiple target

transcripts through methylation-dependent modifications. Cell cycle

factors, including CCNA2, CDK2, and CCND1 promote cell cycle

progression and mitotic clonal expression in adipocytes (94, 95).

Epigallocatechin gallate (EGCG) and metformin reduce CCNA2 and

CDK2 levels by increasing m6A modification in an FTO-YTHDF2-
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dependent manner (96, 97). Conversely, Zinc finger protein (Zfp217)

binds and sequesters YTHDF2 to reduce m6A levels, thus reversing

CCND1mRNA degradation (98). YTHDF2 also reduces the content of

FAM134B, fatty acids synthesis-related proteins such as FASN, and

autophagy-related proteins, including ATG5 and ATG7, which inhibit

adipogenesis (99–101). Furthermore, the liver Bmal1 regulates the

circadian clock of lipid metabolism by controlling the abundance of

m6A modifications on transcripts (102). Mechanistically, Bmal1

knockdown inhibits PPARa expression in an m6A-YTHDF2-

dependent manner, which increases lipid accumulation. Moreover,

AMPK upregulates CD36 levels through YTHDF2-dependent Parkin

reduction, which enhances intestinal long-chain fatty acid uptake and

induces obesity in high-fat diet mice (103).

Intriguingly, YTHDF1 inhibits ovine adipogenesis and promotes

porcine adipogenesis by promoting the expression of PNPLA2 and

MTCH2, respectively (62, 104). Chen et al. found that YTHDF1

restrains PPARg expression in mice by promoting the translation of

m6A-modified TRAF4 transcripts, while curcumin exerts an anti-

obesity role by reducing the effect of ALKBH5 demethylation on

TRAF4 m6A modification (105). In addition, YTHDF1 together with

METTL3 amplifies the function of Rubicon that inhibits autophagy by

stabilizing Rubicon mRNA, and further blocks the clearance of lipid

droplets (LDs) in mouse nonalcoholic fatty liver disease

(NAFLD) (106).
4.4 Neuromodulation

YTHDF1 mainly regulates axonal function as well as learning and

memory, and YTHDF2 is mainly involved in neural development and

differentiation. Functional axon regeneration under peripheral nervous

system injury is supported by m6A-YTHDF1-derived increases in

global protein translation (107). And YTHDF1 is a key player in

enhancing Robo3.1 mRNA translation and guidance of pre-crossing

commissural axons in the spinal cord, whereas YTHDF1 is inhibited by

floor plate-induced signals in post-crossing axons guidance (108).

Furthermore, dual depletion of YTHDF1/YTHDF3 affects spine

morphology and excitatory synaptic transmission in hippocampal

neurons (109). Further study revealed that YTHDF1 accelerates basal

transmission and long-term potentiation of synapses by advancing

neuronal stimulation-induced protein translation, thereby promoting

learning and memory, especially long-term memory (110). In a

Drosophila short-term memory experiment, memory-storing

neurons require YTHDF to maintain normal memory function

during aging (111). Furthermore, YTHDF1-mediated Dvl1 mRNA

translation has a synergistic effect with YTHDF2-mediated Wnt5a

mRNA degradation in inhibiting axon growth of cerebellar

neurons (112).

During neural development, YTHDF2 is overexpressed and

positively regulates early brain development by promoting the

proliferation and differentiation of neural stem/progenitor cells

(NSPCs) (74). Knockout of YTHDF2 significantly reduces cerebral

cortical thickness and induces differentiated neurons to produce

abnormal stress-sensitive neurites. Interestingly, YTHDF2-silenced

NSPCs cannot differentiate into glial cells. Wu et al. showed that

YTHDF2 competes with Prrc2a for binding to Olig2 mRNA, resulting
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in impaired oligodendrocyte specification and myelination (68).

Moreover, YTHDF2 is detrimental to the extension and maintenance

of retinal ganglion cell (RGC) dendritic arborization (113).

YTHDFs are also involved in a variety of brain disorders. For

example, downregulated miR-421-3p in microglia after cerebral artery

occlusion/reperfusion (MCAO/R) relieves the repression of YTHDF1,

thereby promoting p65 mRNA translation, leading to aggravated

inflammation and brain injury (114). Impairments of fine motor and

cognitive function in young mice exposed to multiple sevoflurane are

attributable to a specific decrease in YTHDF1 expression (115).

Overexpression of YTHDF1 ameliorates diabetes-induced cognitive

impairment (116). Additionally, elevated YTHDF2 under persistent

light impedes cognitive behavior in mice by perturbing the stability of

TrkappaB mRNA (117). And a recent case report found that most

individuals with YTHDF3 haploinsufficiency show intellectual

disability and/or developmental delay of variable degrees (118).
4.5 Cardiovascular effect

YTHDF1 promotes cardiomyocyte (CM) differentiation, whereas

YTHDF3 does the opposite (81). YTHDF1, which is positively

regulated by ALKBH5, also promotes CM proliferation in injury-

induced cardiac regeneration by enhancing YAP mRNA translation

(119). Xu et al. indicated that YTHDF2 degrades Myh7 mRNA to

mitigate cardiac hypertrophy during heart failure development (120).

Conversely, lncRNA MIAT-induced YTHDF2 high expression

stimulates cardiac hypertrophy by downregulating CPT-1a levels in

the PPARa pathway (121). Moreover, YTHDF1 and YTHDF2

promote ocular pathological angiogenesis via the METTL3-m6A-

LRP6 axis and the FTO-m6A-FAK axis, respectively (122, 123).

YTHDF1/YTHDF2 cooperation stimulates the atherogenic

inflammatory cascade in the vascular endothelium by upregulating

NLRP1 and downregulating KLF4 (124). Furthermore, loss of either

YTHDF1 or YTHDF2 alleviates the proliferation of pulmonary arterial

smooth muscle cells and pulmonary hypertension under hypoxia.

Mechanistically, YTHDF1 promotes the translation of MAGED1

mRNA while YTHDF2 activates the PI3K/AKT signaling pathway

by degrading PTEN mRNA (125, 126). And YTHDF3 knockout

protects lung epithelial cells from inflammatory injury by inhibiting

inflammatory cytokine secretion after hypoxia/reoxygenation (127).
4.6 Viral infection

YTHDFs play anti-viral roles in the life cycle of Epstein-Barr virus

(EBV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Zika virus

(ZIKV), and enterovirus 71 (EV71) (128–133). For example, the

knockdown of each DF in EBV-infected cells promotes EBV lytic

replication and reactivation. Mechanistically, YTHDF1 attracts ZAP,

DDX17, and DCP2 forming RNA degradation complexes to accelerate

the decapping of m6A-modified RNAs and degrade EBV cleavage gene

transcripts (128). Furthermore, activation of caspases cleaves D166 and

D367 sites on YTHDF2 upon EBV reactivation reduces YTHDF2

expression, thereby increasing caspase-8 protein levels and enhancing

EBV replication (129). Alternatively, YTHDFs inhibit HCV infection
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by reducing viral particle production rather than blocking viral RNA

replication (131). During the chronic HCV infection state, YTHDFs

relocate to lipid droplets, bind to the m6A site in the HCV E1 region,

and antagonize viral packaging caused by the binding of the viral core

protein to the non-m6A site in the E1 region. In contrast, YTHDF2

promotes simian virus 40 (SV40) and influenza A virus (IAV)

replication (134, 135). Moreover, YTHDF1 and YTHDF3 induce

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

infection, YTHDF1 inhibits chikungunya virus (CHIKV) infection,

and YTHDF2 functions opposite to that of YTHDF1 in both SARS-

CoV-2 and CHIKV (136–138).

Notably, the regulation of YTHDFs in the transcription and

replication of human immunodeficiency virus type 1 (HIV-1) and

Kaposi’s sarcoma-associated herpesvirus (KSHV) remains

controversial. Evidence suggests that YTHDFs hinder HIV-1

replication in target cells contradicting previous views that YTHDFs

increase viral transcript and protein levels (139–141). Specifically, after

HIV-1 infection into cells, YTHDFs impede HIV-1 reverse

transcriptase by degrading incoming HIV-1 genomic RNA (gRNA)

in an m6A-dependent manner, thereby limiting viral replication (139).

Nevertheless, YTHDFs facilitate HIV-1 structural protein Gag

synthesis and virus release, while forming a complex with HIV-1

Gag protein and viral and cellular RNAs in virus-producing cells (140).

To ensure optimal HIV-1 infectivity, HIV-1 protease cleaves YTHDF3,

which enters the virion in a nucleocapsid-dependent fashion (142).

Additionally, Hesser et al. showed that YTHDF2 exerts pro- and anti-

KSHV effects in iSLK and B cell lines, respectively (143). Instead, Tan

et al. observed that YTHDF2 inhibits KSHV gene expression and virion

production in iSLK cells (144). Together, the paradoxical phenomenon

of YTHDFs in viral regulation may be explained by differences in cell

types, viral life cycle stages, and experimental approaches.
4.7 Immunity

The type I interferon (IFN) signaling pathway relies on the

expression of IFN-stimulated genes (ISGs) to mediate a powerful

innate antiviral immune response. YTHDF1-mediated upregulation

of IFITM1, a subset of ISGs, initiates antiviral responses (145). Another

study showed that YTHDF1 prevents viral double-stranded RNA

(dsRNA)-driven IFN responses (146). YTHDF1 induces the IFN-

mediated expression of ADAR1, which disrupts the secondary

structure of dsRNA in an adenosine-to-inosine (A-to-I) RNA editing

manner. Furthermore, YTHDF2 deletion enables increased levels of

IFN-band inflammatory factors, including interleukin-6 (IL-6) by

stabilizing host antiviral transcripts (147, 148). YTHDF2 also binds

and sequesters m6A-modified viral RNA, which protects viral RNA

from RIG-I recognition, thereby inhibiting RIG-I activation and the

downstream IFN signaling pathway (149, 150). In contrast, YTHDF2 is

an essential cofactor for the IFN-a-induced degradation of m6A-

methylated HBV RNA by ISG20 (151). Additionally, enterovirus 2A

proteases cleave YTHDFs and limit antiviral responses during early

viral infection (152). Among them, the cleavage of YTHDF3 dampens

the IFN-I-stimulated JAK/STAT signaling pathway. Interestingly, only

YTHDF3 attenuated ISGs expression in the absence of viral infection

(153). Mechanistically, YTHDF3 rapidly translates forkhead box
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protein O3 (FOXO3) mRNA through cooperation with PABP1 and

eIF4G2 in an m6A-independent way, thereby suppressing

ISGs expression.

Inflammatory responses are also an important part of immunity.

YTHDF1 counteracts the excessive and persistent development of

inflammation in the septic response by promoting the expression of

SOCS1, a negative regulator of macrophage-mediated inflammation

(154). However, YTHDF1 knockout suppressed inflammatory lung or

intestinal damage (155, 156). Macrophage-specific YTHDF1

knockdown may be a protective therapy against brain injury in

severe sepsis rats with ECMO by enhancing adaptive immune

function and alleviating inflammatory damage (157). YTHDF2 also

negatively regulates inflammation. YTHDF2 inhibits the MAPK and

NF-kB signaling pathways by downregulating the expression of

MAP2K4, MAP4K4, STAT1, and PPAR-g, and subsequently

prevents macrophage polarization and proinflammatory cytokine

secretion (158–160). And YTHDF2-dependent decay of KDM6B

mRNA restricts H3K27me3 demethylation, which impedes

transcription of proinflammatory cytokine genes (161).

Strikingly, the expression of YTHDFs has a strong relationship

with the immune regulation of various tumors. The expression of

YTHDF1 is not only the highest in normal immune cells but also

dramatically correlated with tumor immune-infiltrated cells in cancer,

especially CD8+ T cells, macrophages, and dendritic cells (DCs) (162).

Han et al. revealed that YTHDF1 is an important target for anti-tumor

immunotherapy (163). YTHDF1 depletion accelerates tumor antigen

presentation and cross-priming of CD8+ T cells by retarding lysosomal

cathepsin translation in DCs in an m6A-dependent manner. And the

loss of YTHDF1 recruits DCs and activates IFN-g receptor 1 and JAK/
STAT1 signaling pathways, thereby promoting antitumor immunity in

GC (164). Li et al. demonstrated that YTHDF1 hinders CD8+ T cell

infiltration and increases immune checkpoint expression, such as PD-

L1 and V-domain Ig suppressor of T cell activation (VISTA), in CRC

(165). To this end, YTHDF1 consumption can be synergistic with anti-

PD-1/PD-L1 immunotherapy for effective anti-tumor therapy.

Similarly, YTHDF2-deficient tumors increased the sensitivity to anti-

PD-1/PD-L1 immunotherapy by stabilizing PD-L1 mRNA in ICC

(166). However, YTHDF2 participates in anti-tumor and anti-viral

infection by regulating the maturation, proliferation, and effector

functions of NK cells (167) (Figure 3).
5 The role of the YTHDF
family in cancers

5.1 Digestive system cancers

5.1.1 Liver cancer
Studies have reported that YTHDF1 is an oncogene that is highly

expressed and positively correlates with the pathology stage in

hepatocellular carcinoma (HCC) (168, 169). YTHDF1 is also an

independent factor for an unfavorable HCC prognosis. Lin et al.

suggested that Snail induces epithelial-mesenchymal transition

(EMT) to enhance the metastasis of HCC cells. Mechanistically,

m6A-modified CDS facilitates translational elongation of the Snail
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mRNA in a YTHDF1/eEF2-dependent manner (55). In addition, the

YTHDF1-mediated aggressive phenotypes are also associated with the

activation of the AKT/GSK-3b/b-catenin pathway (170). Chi et al.

perceived that the effect of YTHDF1 in enhancing HCC proliferation

can be antagonized by hsa-miR-139-5p (171). YTHDF1 also promotes

HCC cell growth by upregulating the PI3K/AKT/mTOR signaling

pathway (172). Hu et al. showed that METTL3-m6A-YTHDF1-

mediated RBM14 overexpression promotes Kupffer cell polarization

and HCC progression (173). Furthermore, YTHDF1 is involved in the

regulation of HCC under hypoxic stress. For example, hypoxia-

inducible factor-1a (HIF-1a)-mediated upregulation of YTHDF1

promotes autophagy-associated genes ATG2A and ATG14

translation, thus aggravating HCC malignancy behavior (174).

FOXO3 is a negative regulator of hypoxia-induced autophagy and

mediates the sorafenib sensitivity in HCC (175). Importantly, YTHDF1

binds to METTL3-methylated m6A modification in the FOXO3

mRNA 3’UTR and increases its mRNA stability rather than

translation. Moreover, under the sublethal heat stress from

insufficient radiofrequency ablation (IRFA), YTHDF1 binds to the

m6A site on the 5’UTR of EGFRmRNA and triggers EGFR translation,

eventually resulting in HCC recurrence after IRFA (176).

Notably, YTHDF3 is also reported as a potential oncogene in HCC.

YTHDF3 enhances HCC metastasis by maintaining ZEB1 mRNA

stability in an m6A-dependent mechanism (177). YTHDF3/integrin

subunit alpha 6 (ITGA6) is positively regulated by the lysine-specific

demethylase 5B (KDM5B)/microRNA-448 axis and thereby enhances

the self-renewal of HCC cells (178).

Intriguingly, YTHDF2 has a paradoxical effect on HCC in

different studies. Zhong et al. professed that hypoxia-induced

YTHDF2 downregulation reverses the repression of YTHDF2 on

the ERK/MAPK signaling pathway, subsequently removing the

inhibitory effect of YTHDF2 on the proliferation and growth of

HCC cells (179). Mechanistically, YTHDF2 suppresses the

activation of the ERK/MAPK signaling pathway by selectively

recognizing the m6A site at the 3’UTR and triggering EGFR

mRNA degradation. Hou et al. confirmed that YTHDF2 is

significantly downregulated in HCC cells and YTHDF2

deficiency elicits inflammation, vascular abnormalization, and

metastatic progression (180). Specifically, YTHDF2 destabilizes

the mRNA of m6A-modified interleukin 11 (IL11) and serpin

family E member 2 (SERPINE2) to exert an inhibitory effect.

Conversely, YTHDF2 is also considered a tumor-promoting

factor in HCC (181, 182). Yang et al. discovered that

microRNA-145 targets the 3’UTR of YTHDF2 mRNA to

attenuate its expression and thereby inhibits the proliferation

of HCC cells (183). And YTHDF2 participates in METTL3-m6A-

mediated HCC malignancy by shortening the half-life of the

suppressor of cytokine signaling 2 (SOCS2) mRNA (184).

Additionally, YTHDF2 increases the m6A levels in the 5’UTR

of OCT4 mRNA in tandem with promoting OCT4 expression,

eventually accelerating the HCC cancer stem cell (CSC)

phenotype and metastasis (185). And PA2G4 depends on

YTHDF2 to stabilize FYN mRNA and promote EMT-induced

HCC metastasis (186). The discrepancy in the effect of YTHDF2

on HCC may be due to different cellular microenvironments or

tumor heterogeneity (187).
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In addition, YTHDF1 and YTHDF2 facilitate the advancement of

intrahepatic cholangiocarcinoma (ICC) through increasing EGFR

mRNA translation and IFIT2 mRNA decay, respectively (188, 189).

Meanwhile, YTHDF2 silencing restrains ICC resistance to the exposure

of cisplatin by reversing the degradation of cyclin-dependent kinase

inhibitor 1B (CDKN1B) mRNA (190).
Frontiers in Immunology 082524
5.1.2 Gastric cancer
YTHDF1 mutations occur in approximately 7% of gastric cancer

(GC) patients, and high expression of YTHDF1 is correlated with high-

risk progression and poor prognosis in patients (191–193). YTHDF1

deficiency is capable to attenuate GC progression, including

proliferation and metastasis in vitro and in vivo. Mechanistically,
frontiersin.or
FIGURE 3

The roles of the YTHDF family in embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, viral infection, and
immunity. In embryonic development, YTHDF2 is essential for sperm, oocyte, zygote, and embryo formation. In stem cell fate, the YTHDF family
promotes somatic cell reprogramming and the properties of iPSCs. In addition, YTHDF2 and YTHDF3 participate in the fate of HSC, and YTHDF1 in
the fate of ISCs as well as mFGSCs. In fat metabolism, YTHDF1 and YTHDF2 regulate adipogenesis and fatty acid metabolism. In neuromodulation,
YTHDF1 affects axonal function as well as learning and memory, YTHDF2 regulates neural development and differentiation, and YTHDF3 participates
in intellectual development. In cardiovascular effect, YTHDF1 and YTHDF2 are closely related to the fate of CM, vascular endothelial cells, and
pulmonary artery smooth muscle cells. In a viral infection, the YTHDF family is involved in the life cycle of several viruses, especially EBV, HCV, and
HIV. In immunity, the YTHDF family plays an important role in antiviral immunity, inflammatory immunity, and anti-tumor immunity.
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YTHDF1 relies on m6A modification to promote the translation of

frizzled7 (FZD7) and USP14, which transmit WNT/b-catenin
signaling and AKT/ERK signaling, respectively (192, 193). In

addition, METTL3 promotes the malignancy behavior of GC

through YTHDF1/eIF3a-dependent post-transcriptional translation

of SPHK2 (194).

Zhang et al. showed that the knockdown of YTHDF2 inhibits GC

cell proliferation and accelerates apoptosis in vitro (195). And lncRNA

LINC00470 relies on YTHDF2 to degrade m6A-containing PTEN

mRNA and thus promote GC advancement (196). Additionally, the

HIF-1a-induced increase of lncRNA-CBSLR suppresses ferroptosis

and chem-sensitive under hypoxic stress through the YTHDF2-CBS-

ACSL4 axis (197). Specifically, CBSLR contributes to CBS mRNA

destabilization by binding to the m6A site on the CDS of CBS mRNA

by recruiting YTHDF2. However, Shen et al. found that YTHDF2 plays

a suppressive role in GC by destabilizing FOXC2 mRNA (198).

5.1.3 Pancreas cancer
Among the YTHDF family, YTHDF2 is the most studied protein

in pancreatic cancer. YTHDF2 is elevated in pancreatic cancer and

orchestrates the migration/proliferation dichotomy (199). Specifically,

YTHDF2 prevents EMT, migration, and invasion by downregulating

YAP signaling and enhances proliferation by activating AKT/GSK3B/

CCND1 pathway. However, YTHDF2 downregulates the levels of

PERP and PER1 mRNA to promote cell proliferation and migration

in an m6A-dependent manner (200, 201). METTL3-m6A-YTHDF2-

mediated decay of nucleobindin 1 (NUCB1) mRNA counteracts the

effects of NUCB1 in halting pancreatic cancer growth and augmenting

the antitumor with gemcitabine (GEM) (202). Conversely, another

study showed that the rs142933486 G>T polymorphism in PIK3CB

improves PIK3CB mRNA and protein levels by derailing m6A-

YTHDF2-dependent degradation mechanisms, which is significantly

associated with the poor prognosis of PTEN-deficient pancreatic

cancer patients (203). And compared with PIK3CB[T], YTHDF2

mainly binds to PIK3CB[G]. Similarly, FTO reverses YTHDF2-

regulated degradation of platelet-derived growth factor C (PDGFC)

mRNA and promotes cell proliferation by reactivating the AKT

signaling pathway (204). Notably, YTHDF1 is associated with the

immune microenvironment and prognosis of pancreatic cancer (205–

207). A recent study found that a novel antineoplastic drug, Olean-

28,13b-lactam (B28), inhibits glutamine metabolism by reducing the

expression of YTHDF1, which induces pancreatic cancer cell death

(208). In addition, YTHDF3-mediated downregulation of lncRNA

DICER1-AS1 reverses the repression of glycolysis by miR-5586-5p in

pancreatic cancer (209).

5.1.4 Colorectal cancer
In colorectal cancer (CRC), YTHDF1may be amolecular target for

diagnosis and treatment (210). Mechanistically, elevated YTHDF1 in

CRC is mainly attributed to an increase in DNA copy number (211).

The oncogene c-MYC, WNT signaling, and APC mutation can also

upregulate YTHDF1 expression at the translational level (89, 212).

Further studies found that YTHDF1 promotes tumorigenicity and

CSC-like activity by amplifying theWNT/b-catenin pathway with little
effect on normal intestinal development (211). And deletion of
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YTHDF1 in ISCs shrinks tumor size and prolongs the lifespan of

CRC-formed mice substantially. YTHDF1 can promote CRC

progression and metastasis by translating m6A-modified Rho/Rac

guanine nucleotide exchange factor 2 (ARHGEF2) mRNA and

activating RhoA signaling (213). Furthermore, circular RNA protein

tyrosine kinase 2 (circPTK2) restores the miR-136-5p-mediated

repression of YTHDF1 by competitively binding to miR-136-5p,

resulting in the CRC advancement and chemoresistance (214). Chen

et al. suggested that YTHDF1-mediated glutamine metabolism reduces

the sensitivity of CRC cells to cisplatin (215). Specifically, YTHDF1

targets the m6A of glutaminase 1 (GLS1) mRNA 3’UTR to promote its

translation. And METTL3 deletion inhibits LDHA mRNA translation

by reducing the binding of YTHDF1 to LDHA mRNA CDS, thereby

hindering glycolysis and promoting 5-fluorouracil sensitivity in CRC

cells (216). Interestingly, the rs8100241 G>A mutation in ANKLE1

increases ANKLE1 levels in an m6A-YTHDF1-dependent fashion,

thereby inhibiting proliferation and maintaining the genomic stability

of CRC (217).

In addition, YTHDF2 often collaborates with “writers” and

participates in CRC progression. For example, METTL3

downregulates YPEL5 in an m6A-YTHDF2-dependent manner and

boosts CRC progression (218). METTL14 exerts an inhibitory effect in

CRC by promoting the degradation of SYR-related high-mobility-

group box 4 (SOX4) mRNA and long noncoding RNA XIST, which is

dependent on YTHDF2 (219, 220). Han et al. deciphered that

glutaminolysis inhibition increases ATF4 expression through FTO-

mediated demethylation and YTHDF2-regulated decay, which further

inactivates mTOR and promotes pro-survival autophagy of CRC cells

(221). Moreover, in CRC, silencing of microRNA-6125 destabilizes

GSK3bmRNA by upregulating the expression of YTHDF2, ultimately

increasing WNT/b-catenin/Cyclin D1 pathway-related proteins and

promoting CRC growth (222). Intriguingly, Zhou et al. found that HIF-

1a-induced upregulation of lncRNA STEAP3-AS1 activates theWNT/

b-catenin signaling pathway through overexpression of STEAP3,

leading to CRC progression in a hypoxic environment (223).

Specifically, after combining YTHDF2, STEAP3-AS1 prohibits

STEAP3 mRNA from binding with YTHDF2, thus antagonizing

STEAP3 mRNA decay.

Moreover, Ni et al. revealed that the long noncoding RNA GAS5-

YAP-YTHDF3 axis forms a feedback loop in CRC (224). In detail, the

downregulation of GAS5 enhances CRC proliferation and invasion by

inhibiting phosphorylation and ubiquitin-mediated decay of YAP,

which positively regulates YTHDF3. And YTHDF3 promotes the

degradation of GAS5 mRNA by recognizing the m6A in GAS5

mRNA. Furthermore, YTHDF3 recruits eIF2AK2 and eIF3A on the

5’UTR of target mRNAs and promotes translation in oxaliplatin-

resistant CRC (225).
5.2 Respiratory system cancers

The expression of YTHDF1 and YTHDF2 is markedly upregulated

in tumor tissues of lung cancer series and possesses tumor-promoting

activities (226). Shi et al. demonstrated that YTHDF1 is amplified and

increases the translation of key regulators of the G0/G1 cell cycle
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transition, including CDK2, CDK4, and cyclin D1 mRNAs,

intensifying non-small cell lung cancer (NSCLC) progression under

normoxia conditions (227). In addition, microRNA-376c, delivered by

endothelial cells through extracellular vesicles, inhibits the YTHDF1

and WNT/b-catenin pathway in NSCLC cells, resulting in the

malignant progression of NSCLC cells (228). Nevertheless, under

cisplatin-induced oxidative stress, YTHDF1 deficiency activates the

antioxidant Nrf2-AKR1C1 axis by inhibiting the Keap1 mRNA

transition, which resulted in cisplatin resistance and poor prognosis.

Furthermore, the YTHDF1-m6A-enolase1 (ENO1) translation axis is a

crucial pathway for stimulating glycolysis and tumorigenesis (229). In

KRAS and TP53 co-mutated lung adenocarcinomas, YTHDF1

recognizes m6A modification and contributes to tumor proliferation

and poor prognosis through the upregulation of cyclin B1 (230).

In addition, YTHDF2 promotes translation but not clearance of 6-

phosphogluconate dehydrogenase (6PGD) mRNA in an m6A-

dependent manner by interacting with eIF3a/b, which enhances the

pentose phosphate pathway (PPP) flux for tumor growth (231). The

transcriptional repressor ZBTB4 and the tumor suppressor DAPK2 are

negatively regulated by YTHDF2 and significantly associates with

smoking-induced lung cancer (232, 233). However, ALKBH5

attenuates YTHDF2-mediated downregulation of oncogenic drivers

such as SOX2, SMAD7, and MYC, contributing to the progression of

aggressive lung cancer with KRAS mutation/LKB1 loss (234).

Furthermore, YTHDF2 produces a positive effect on lung

adenocarcinoma progression through the mRNA decay of AXIN1, a

negative regulator of the WNT/b-catenin pathway (235). YTHDF2

produces the same effect in a VIRMA-m6A-dependent fashion in lung

adenocarcinoma and NSCLC by reducing BTG2 mRNA and DAPK3

mRNA stability, respectively (236, 237). Nevertheless, YTHDF2

induces sensitivity of lung adenocarcinoma to gefitinib via cleavage

of circASK1 (238). Interestingly, YTHDF2 promotes proliferation and

downregulates the FAM83D-TGFb1-SMAD2/3 pathway to inhibit

migration and invasion in lung adenocarcinoma cells (239). In lung

squamous cell carcinoma, up-regulation of YTHDF2 under hypoxic

conditions activates the mTOR/AKT signaling pathway and induces

EMT to play a tumor-promoting role (240).

Interestingly, YTHDF1 and YTHDF2 regulate YAP expression by

competitively binding to YTHDF3-m6A-YAP mRNA, thereby

aggravating and attenuating the malignancy behavior of NSCLC,

respectively (241). YTHDF1/3 recruits eIF3a/b to promote YAP

mRNA translation, while YTHDF2/3 recruits AGO2 to promote

YAP mRNA decay. And YTHDF3 indirectly increased YAP levels to

empower NSCLC progression and drug resistance by enhancing

MALAT1 mRNA stability (242).
5.3 Urogenital system cancers

5.3.1 Bladder cancer
YTHDF family plays a tumor-promoting role in bladder cancer.

Specifically, METTL3 and YTHDF1 are closely related to malignant

transformation and tumorigenesis in the presence of chemical

carcinogens, with the m6A-methylated 3’UTR promoting oncogene

CDCP1 translation (243). Moreover, YTHDF1/3 promotes aggressive

phenotypes by translating ITGA6 mRNA, while YTHDF2 facilitates
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migration by degrading the mRNAs of the tumor suppressors SETD7

and KLF4 (244, 245).

5.3.2 Prostate cancer
YTHDF2 acts as a facilitator and is negatively regulated by miR-

493-3p in prostate cancer (PCa) (246). Du et al. considered that

KDM5A abrogates the inhibition of miR-495 on YTHDF2, and then

upregulated YTHDF2 intensifies PCa progression by inducing m6A-

MOB3B mRNA decay (247). In addition, YTHDF2 clears METTL3-

mediated m6A-dependent mRNA of LHPP, NKX3-1, and USP4 (248,

249). The decrease of LHPP and NKX3-1 causes PCa proliferation and

migration by inducing AKT phosphorylation. And downregulated

USP4 promotes ARHGDIA expression by reducing ELAVL1 protein,

thus accelerating invasion and metastasis of PCa. METTL14-mediated

m6A modification of Thrombospondin 1 (THBS1) mRNA promotes

PCa proliferation in a YTHDF2-dependent manner of transcriptome

degradation (250).

5.3.3 Breast cancer
In breast cancer, high expression of YTHDF1 and YTHDF3 is

associated with gene copy number amplification and induces a poor

prognosis (251, 252). YTHDF1 targets FOXM1 mRNA and positively

regulates breast cancer progression (253). Additionally, hypoxia-

mediated downregulation of miR-16-5p restored YTHDF1

expression, thereby promoting tumor glycolysis by enhancing PKM2

mRNA translation (254). Sun et al. demonstrated that YTHDF1

stabilizes E2F8 mRNA, which accelerates DNA damage repair and

chemoresistance to adriamycin, cisplatin, and the PARP inhibitor

olaparib in breast cancer cells (255). YTHDF1/eEF1-mediated

translational elongation of KRT7 mRNA and YTHDF3-induced

mRNAs translation of ST6GALNAC5, GJA1, and EGFR is involved

in breast cancer lung and brain metastasis, respectively (57, 256). And

YTHDF3 can be antagonized by miR-106b-5p (257). Moreover,

YTHDF3 stabilizes ZEB1 mRNA to promote the invasion and

migration of triple-negative breast cancer (TNBC) cells (258).

Furthermore, YTHDF2 is upregulated in TNBC cells and prevents

cell apoptosis (259, 260). YTHDF2 also targets the m6A site 5’UTR

region of ATF3 mRNA to mitigate the resistance of breast cancer cells

to tamoxifen (261).
5.3.4 Ovarian cancer
YTHDF1 and YTHDF2 are considered oncogenes in ovarian

cancer. YTHDF1 is recruited to the m6A site of EIF3C mRNA and

stimulates EIF3C as well as overall protein translation (262). YTHDF1

also confers cisplatin-resistant ovarian cancer cells with CSC-like traits

by promoting m6A-TRIM29 mRNA translation (263). Furthermore,

FBW7 abrogates the mRNA degradation of YTHDF2 on pro-apoptotic

gene BMF by inducing YTHDF2 decay, disrupting ovarian cancer

progression (264). Moreover, YTHDF2 can be directly targeted and

inhibited by miR-145 in ovarian cancer cells (265).

5.3.5 Cervical cancer
In cervical cancer (CC) cells, YTHDF1 accelerates m6A-augmented

glycolysis and cancer progression by promoting translational

elongation of pyruvate dehydrogenase kinase 4 (PDK4) mRNA and
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stabilization of hexokinase 2 (HK2) mRNA (56, 266). Specifically, the

YTHDF1/eEF-2 complex binds the m6A site of PDK4 mRNA at the

5’UTR and YTHDF1 recognizes the m6A-modified 3’UTR of HK2

mRNA. Furthermore, YTHDF1 plays a tumor-promoting role by

facilitating mitosis-associated RANBP2 mRNA translation in an

m6A-mediated approach, while YTHDF2 exerts the same role by

degrading the tumor suppressor GAS5 mRNA (267, 268). YTHDF2

deficiency suppresses the proliferation of CC cells, promotes apoptosis,

and arrests the cells at the S phase (269). YTHDF2 can also facilitate

EMT and cisplatin resistance in CC cells by stabilizing AXIN1

mRNA (270).

5.3.6 Endometrial cancer
YTHDF1 and YTHDF2 modulate the negative regulator PHLPP2

and positive regulator mTORC2 of AKT respectively, which is

unfavorable to the tumorigenicity of the AKT pathway in

endometrial cancer (EC) (271). In addition, YTHDF2-mediated

transcript degradation of IRS1 is accompanied by inhibition of the

AKT/MMP9 signaling pathway, thereby impairing the activity of

endometrial cells (272). And YTHDF2 deficiency activates the WNT

signaling pathway by reducing the decay of HOXB13 mRNA, and thus

promotes EC invasion and metastasis (273). Conversely, YTHDF2

degrades lncRNA FENDRR to enhance the expression of SOX4, which

ultimately promotes EC cell proliferation and hinders apoptosis (274).
5.4 Cancers in other systems

5.4.1 Glioblastoma
YTHDF1 and YTHDF2 were found to be highly overexpressed in

glioblastoma (GBM) tissues compared to normal tissues (275).

YTHDF1 is required for maintaining GBM CSC properties and

promoting proliferation, migration, and chemoresistance (276). And

Musashi-1(MSI1) is a GBM hyper-oncogenic regulator and positively

regulates YTHDF1 expression. YTHDF1 also assists METTL3 in

increasing levels of ADAR1 and thereby stimulates GBM cell growth

(277). In addition, YTHDF2 is positively regulated by the EGFR/SRC/

ERK pathway and facilitates the malignancy progression of GBM by

degrading downstream transcripts, including LXRa, HIVEP2, UBXN1,
and ASS1 mRNAs in an m6A-dependent manner (43, 278, 279).

Among them, LXRa and ASS1 are related to cholesterol homeostasis

and arginine metabolism, respectively. Strikingly, YTHDF2 recognizes

m6A methylation to maintain MYC mRNA stability, thereby

promoting the expression of the downstream effector IGFBP3,

leading to GBM CSC growth (280). And this process occurs

specifically in GBM CSCs but not in normal neural stem cells

(NSCs). Chen et al. verified that YTHDF2 promotes temozolomide

desensitization in GBM cells (281). Mechanistically, YTHDF2 activates

PI3K/AKT and NF-kB signaling pathways by targeting the 3’UTR and

downregulating the mRNAs stability of EPHB3 and TNFAIP3.

5.4.2 Melanoma
YTHDF1 is amplified in melanoma, and the combination of

YTHDF1 and HNRNPA2B1 significantly increases the diagnostic

validity (282). However, YTHDF1 inhibits ocular melanoma
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progression by facilitating HINT2 mRNA translation (283).

YTHDF2 knockdown promotes tumor growth and reduces the

sensitivity of anti-PD-1 therapy by enhancing the mRNAs stability of

the intrinsic genes PD-1 (PDCD1), CXCR4, and SOX10 in an m6A-

dependent fashion (284). Yu et al. discovered that histone lactylation

promotes YTHDF2 expression in ocular melanoma, and YTHDF2

stimulates tumorigenesis by degrading m6A-modified PER1 and TP53

mRNAs (285). Similarly, YTHDF3 also promotes ocular melanoma

progression by promoting CTNNB1 mRNA translation in an m6A-

dependent manner (286).

5.4.3 Merkel cell carcinoma
The occurrence of Merkel cell carcinoma (MCC) is mostly

attributed to the attack of the small T antigen of Merkel cell

polyomavirus (MCPyV) (287). Meanwhile, overexpression of

YTHDF1 improves the proliferative and clonogenic capacity of MCC

cells by recruiting eIF3a/b to promote the translation initiation of small

T antigen mRNA. Mechanistically, overexpression of YTHDF1 is

caused by increased gene copy number.

5.4.4 Acute myeloid leukemia
Nguyen et al. first reported that YTHDF2 is identified as a novel

acute myeloid leukemia1 (AML1) T translocation partner gene (288).

Notably, YTHDF2 is highly expressed in different AML subtypes (289).

And inhibition of YTHDF2 specifically impairs AML initiation and

progression while expanding hematopoietic stem cells (HSCs) and

maintaining normal hematopoietic function. In detail, YTHDF2

promotes the development and propagation of AML CSCs by

degrading multiple m6A-modified mRNAs such as TNF receptor

superfamily member 1b (TNFRSF1b) that are associated with the

functional integrity of AML CSCs. Moreover, the AML1/ETO-HIF1a
loop transactivates the YTHDF2 promoter to promote t (8, 21) AML

cell proliferation (290). However, YTHDF2 may interfere with the

glycolytic process of AML cells by destabilizing transcripts of

phosphofructokinase platelet (PFKP) and lactate dehydrogenase B

(LDHB) (291). Interestingly, the three YTHDFs can jointly degrade

the associated transcripts and inhibit the differentiation of AML cells

(63) (Figures 4–6) (Tables 1–3).
6 Limitations and perspectives

Although it has been revealed that the YTHDF family is involved

in a variety of biological processes as the “readers” of m6A

modification, there are still many mysteries about the YTHDF family

that need to be discovered and solved in terms of structure, function,

and treatment.

The discussion of the structure and function of YTHDFs is

partially doubtful due to the limitations of technology and

conditions. The reason why YTHDFs select the same or different

target mRNAs and m6A sites on mRNAs, and why YTHDFs pair with

different cooperating m6A regulators, has not been reached. In

addition, YTHDFs can be localized in different cellular

compartments and may re-enter the nucleus or transport out of the

cell membrane, thus expanding the regulation of YTHDFs. The post-
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transcriptional modifications of YTHDFs and interactions of YTHDFs

with other proteins also add to the structure and function complexity of

YTHDFs. Therefore, the development of emerging technologies, the

control of various conditions, and the change of different stimulus

states are necessary to further investigations in the YTHDF family.

At present, many experiments have successfully constructed the

YTHDF1/2/3 genetic KO mouse model using different techniques.

First, the whole-body YTHDF1/2/3 KO mice are generated directly

based on CRISPR/Cas9 by deleting a certain exon or inducing the

premature appearance of a stop codon (87, 88, 110, 213). Second, the

Cre/LoxP technique is used to generate cell-specific conditional

YTHDF1/2/3 KO mice (74, 84, 108, 165, 167, 174, 227, 289). This

represents an improvement in experimental research moving from in

vitro to in vivo. However, the specific mutation of functional RNA

binding sites of YTHDFs in mice needs to be further realized. In

addition, one of the important purposes of experimental research is

clinical transformation, so it is of great need to explore the application

value of targeting YTHDFs in the clinic, especially in tumors. Many

clinical-related studies have analyzed the expression profile of the m6A

regulator in tumors and its association with the immune

microenvironment, grading, staging, therapeutic effect, and

prognosis. For example, the analysis of 162 HCC samples from the

Zhou et al. and 177 HCC samples from the Nakagawa et al. showed

that YTHDF1 was related to poor prognosis of HCC and YTHDF2 was

related to HCC recurrence, respectively (169, 182). YTHDF1 was

associated with a poor prognosis of GC in a study of 379 patients

with GC (164). Interestingly, high expression of YTHDF1 and

YTHDF2 was associated with a better prognosis in 603 cases of

resected NSCLC, which might be due to increased tumor-infiltrating

lymphocytes (TILs) and decreased co-inhibitor molecule PD-L1 (226).
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In addition, an assessment of single nucleotide polymorphisms (SNPs)

in the YTHDF1 gene in 313 cases of hepatoblastoma showed that

rs6090311 A>G was correlated with a reduced risk of hepatoblastoma

(292). A similar SNPs assessment found that the YTHDF2 rs3738067

variant significantly increased glioma risk in 171 pediatric patients

(293). Moreover, increasing evidence confirms the efficacy of

bioinformatics analysis based on TCGA and other databases for the

YTHDFs-associated model. To sum up, the expression of YTHDFs is

significantly correlated with the grades and stages of various tumors

and may be used as indicators to judge the occurrence and

development of tumors. YTHDFs may act as independent prognostic

factors for many tumors and affect survival-related indicators such as

overall survival (OS), disease-free survival (DFS), and progression-free

survival (PFS). At the therapeutic level, targeting YTHDFs can not only

directly modulate the malignancy behavior of tumors, but also affect

the sensitivity of chemotherapy and immunotherapy. Besides,

YTHDFs also have the possibility of effective clinical application in

non-cancer, including hematopoietic, anti-obesity, anti-viral, and

anti-inflammatory.

However, studies of YTHDFs are still in the preclinical stage and

many issues need attention. First, the clinical application of YTHDFs in

different diseases, alone or in combination with other targets, requires

further investigation. Second, the effectiveness of YTHDFs in

diagnosing and predicting prognosis may vary across disease types,

grades, and stages. Most importantly, the specific molecules targeting

YTHDFs have not yet been developed. So how can YTHDFs be used in

clinical treatment? The expression of YTHDFs can be regulated by

other strategies. Targeting upstream or metabolic mechanisms of

YTHDFs is an alternative approach to indirectly regulate the levels of

YTHDFs (Figure 7). YTHDF2 has the capability of inhibiting the
FIGURE 4

The mechanism of the YTHDF1 family in cancers. “↓” is the decrease
of target mRNAs. “↑” is the increase of target mRNAs.
FIGURE 5

The mechanism of the YTHDF2 family in cancers. “↓” is the decrease
of target mRNAs. “↑” is the increase of target mRNAs.
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TABLE 1 The role of the YTHDF1 in cancers.

Cancers Roles Cooperative
m6A regula-

tors

Target
mRNAs

“Rea
pos

Hepatocellular
carcinoma

Oncogene METTL3 Snail CDS

METTL3 RBM14 –

– ATG2A and
ATG14

CDS

METTL3 EGFR 5’UTR

Tumor
suppressor

METTL3 FOXO3 3’UTR

Intrahepatic
cholangiocarcinoma

Oncogene – EGFR 3’UTR

Gastric cancer Oncogene – FZD7 3’UTR

– USP14 CDS

METTL3 SPHK2 –

Colorectal cancer Oncogene – ARHGEF2 3’UTR

– GLS1 3’UTR

METTL3 LDHA CDS

Tumor
suppressor

METTL3/14 and
WTAP

ANKLE1 –

Chen et al. 10.3389/fimmu.2023.1162607
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progression of HCC, and this effect can be antagonized by HIF-2a
(180). Therefore, the HIF-2a antagonist (PT2385) can indirectly

restore the effect of YTHDF2. And CDK1 inhibitors promote

YTHDF2 proteolysis in AML (294). Furthermore, the delivery of

target genes using viral vectors is also a feasible approach to target

YTHDFs. YTHDF1 overexpression therapy can be achieved by

injecting adeno-associated virus (AAV)-YTHDF1 into the

hippocampus of diabetic cognitively impaired mice (116). In

conclusion, clarifying the limitations of YTHDFs is conducive to

better clinical transformation.
7 Conclusions

With multi-omics advancement, the roles of m6A

modification have been gradually and seriously excavated. By

binding to m6A, the YTHDF family plays an important role in

the regulation of various physiological and pathological processes,

including embryonic development, stem cell fate, fat metabolism,

neuromodulation, cardiovascular effect, viral infection, immunity,

and especially in tumors. In particular, YTHDFs regulate multiple

tumor phenotypes such as proliferation, metastasis, metabolism,

drug resistance, and immunity. Additionally, YTHDFs can be

used as biomarkers for the diagnosis, treatment, and predictors of
FIGURE 6

The mechanism of the YTHDF3 family in cancers. “↓” is the decrease
of target mRNAs. “↑” is the increase of target mRNAs.
ding”
ition

The mechanism
of target mRNAs

Functional classifica-
tion

References

Promoting translation EMT and metastasis (55)

Promoting expression Growth and metastasis;
Kupffer cells polarization

(173)

Promoting translation Hypoxia-induced
autophagy, growth, and
metastasis

(174)

Promoting translation Viability and metastasis (175)

Increasing stability Sorafenib sensitivity (176)

Promoting translation Proliferation, migration,
and invasion

(188)

Promoting translation Proliferation and
metastasis

(192)

Promoting translation Proliferation and
metastasis

(193)

Promoting translation Proliferation, migration,
and invasion

(194)

Promoting translation Growth and metastasis (213)

Promoting translation Cisplatin resistance (215)

Promoting translation Glycolysis and 5-
fluorouracil resistance

(216)

Promoting translation Proliferation (217)

(Continued)
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TABLE 1 Continued

Cancers Roles Cooperative
m6A regula-

tors

Target
mRNAs

“Reading”
position

The mechanism
of target mRNAs

Functional classifica-
tion

References

Lung cancer Oncogene – CDK2, CDK4,
and cyclin D1

– Promoting translation Proliferation (227)

METTL3 and
ALKBH5

ENO1 CDS Promoting translation Glycolysis and growth (229)

– cyclin B1 3’UTR Promoting translation Proliferation (230)

METTL3 and
ALKBH5

YAP – Promoting translation Growth and metastasis (241, 242)

Tumor
suppressor

– Keap1 – Promoting translation Cisplatin sensitivity (227)

Bladder cancer Oncogene METTL3 and
ALKBH5

CDCP1 3’UTR Promoting translation Growth (243)

METTL3 and
ALKBH5

ITGA6 3’UTR Promoting translation Adhesion, migration, and
invasion

(244)

Breast cancer Oncogene – FOXM1 CDS Promoting translation Proliferation and
metastasis

(253)

– PKM2 CDS Promoting translation Glycolysis, growth, and
metastasis

(254)

METTL14 E2F8 – Increasing stability Growth, DNA damage
repair, and
chemoresistance

(255)

FTO KRT7 CDS Promoting translation Lung Metastasis (57)

Ovarian cancer Oncogene – EIF3C – Promoting translation Proliferation and
metastasis

(262)

– TRIM29 3’UTR Promoting translation The CSC-like phenotype (263)

Cervical cancer Oncogene METTL3 PDK4 5’UTR Promoting translation Glycolysis, proliferation,
and doxorubicin resistance

(56)

METTL3 HK2 3’UTR Increasing stability Warburg effect and
Proliferation

(266)

– RANBP2 – Promoting translation Growth, migration,
invasion, and apoptosis

(267)

Endometrial cancer Tumor
suppressor

METTL3/14 PHLPP2 – Promoting translation Proliferation (271)

Glioblastoma Oncogene METTL3 ADAR1 – Promoting translation Proliferation (277)

Ocular melanoma Tumor
suppressor

METTL3 and
ALKBH5

HINT2 3’UTR Promoting translation Growth and migration (283)

Merkel cell
carcinoma

Oncogene – small T
antigen

– Promoting translation Proliferation and Cloning (287)

The meaning of the symbol "-" is that the specific content has not yet been revealed in the corresponding research.
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TABLE 2 The role of the YTHDF2 in cancers.

Cancers Roles Cooperative
m6A regula-

tors

Target
mRNAs

“Reading”
position

The mechanism
of target
mRNAs

Functional classification References

Hepatocellular
carcinoma

Oncogene METTL3 SOCS2 – Promoting
degradation

Proliferation, migration, and
colony formation

(184)

– OCT4 5’UTR Promoting
translation

CSC phenotype and cancer
metastasis

(185)

– FYN – Increasing stability EMT and metastasis (186)

Tumor
suppressor

– EGFR 3’UTR Promoting
degradation

Proliferation and growth (179)

– IL11 and
SERPINE2

3’UTR Promoting
degradation

Inflammation, vascular
reconstruction, and metastatic
progression

(180)

Intrahepatic
cholangiocarcinoma

Oncogene METTL3 IFIT2 – Promoting
degradation

Proliferation, apoptosis, cell
cycle process, invasion, and
migration

(189)

METTL3 CDKN1B – Promoting
degradation

Proliferation, apoptosis, cell
cycle process, and cisplatin
resistance

(190)

Gastric cancer Oncogene METTL3 PTEN – Promoting
degradation

Proliferation, migration, and
invasion

(196)

METTL3 CBS CDS Decreasing stability Ferroptosis and
chemoresistance

(197)

Tumor
suppressor

– FOXC2 – Decreasing stability Proliferation, migration, and
invasion

(198)

Pancreas cancer Oncogene METTL14 PERP 3’UTR Decreasing stability Growth and metastasis (200)

ALKBH5 PER1 3’UTR Promoting
degradation

Proliferation and metastasis (201)

METTL3 NUCB1 5’UTR Promoting
degradation

Growth and GEM resistance (202)

Tumor
suppressor

METTL3/14 and
WTAP

PIK3CB – Decreasing stability Proliferation and migration (203)

FTO PDGFC 3’UTR Decreasing stability Proliferation (204)

Colorectal cancer Oncogene METTL3 YPEL5 CDS Promoting
degradation

Growth and metastasis (218)

– GSK3b 3’UTR Promoting
degradation

Proliferation (222)

Tumor
suppressor

METTL14 SOX4 – Promoting
degradation

migration, invasion, and
metastasis

(219)

METTL14 XIST – Promoting
degradation

Proliferation and metastasis (220)

FTO ATF4 – Decreasing stability Autophagy (221)

METTL14 STEAP3 – Promoting
degradation

Proliferation and metastasis (223)

Lung cancer Oncogene – 6PGD 3’UTR Promoting
translation

Growth (231)

METTL3 DAPK2 – Decreasing stability Proliferation and migration (233)

– AXIN1 – Promoting
degradation

Proliferation and metastasis (235)

VIRMA BTG2 3’UTR Decreasing stability Proliferation and metastasis (236)

(Continued)
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TABLE 2 Continued

Cancers Roles Cooperative
m6A regula-

tors

Target
mRNAs

“Reading”
position

The mechanism
of target
mRNAs

Functional classification References

VIRMA DAPK3 3’UTR Promoting
degradation

Proliferation, migration, and
invasion

(237)

Tumor
suppressor

ALKBH5 SOX2,
SMAD7, and
MYC

– Decreasing stability Proliferation and migration (234)

METTL3 circASK1 – Promoting
degradation

Gefitinib sensitivity (238)

– FAM83D – Promoting
degradation

Migration and invasion (239)

METTL3 and
ALKBH5

YAP – Promoting
degradation

Growth and metastasis (241)

Bladder cancer Oncogene METTL3 SETD7 and
KLF4

– Promoting
degradation

Migration (245)

Prostate cancer Oncogene – MOB3B – Promoting
degradation

Proliferation, migration,
invasion, and apoptosis

(247)

METTL3 LHPP and
NKX3-1

– Promoting
degradation

Proliferation and migration (248)

METTL3 USP4 CDS Promoting
degradation

Invasion and metastasis (249)

METTL14 THBS1 – Promoting
degradation

Proliferation (250)

Breast cancer Tumor
suppressor

– ATF3 5’UTR Decreasing stability Tamoxifen sensitivity (261)

Ovarian cancer Oncogene – BMF 3’UTR Promoting
degradation

Proliferation (264)

Cervical cancer Oncogene ALKBH5 GAS5 – Promoting
degradation

Growth and metastasis (268)

– AXIN1 – Increasing stability EMT and cisplatin resistance (270)

Endometrial cancer Oncogene FTO FENDRR – Promoting
degradation

Proliferation and apoptosis (274)

Tumor
suppressor

METTL3/14 mTORC2 – Promoting
degradation

Proliferation (271)

METTL14 and
ALKBH5

IRS1 CDS Promoting
degradation

Proliferation and invasion (272)

FTO HOXB13 3’UTR Promoting
degradation

Invasion and metastasis (273)

Glioblastoma Oncogene – LXRa and
HIVEP2

– Promoting
degradation

Proliferation, invasion, and
cholesterol dysregulation

(43)

METTL3 UBXN1 – Promoting
degradation

Proliferation and migration (278)

METTL14 ASS1 – Promoting
degradation

Proliferation, migration, and
invasion

(279)

METTL3 MYC – Increasing stability CSC growth (280)

– EPHB3 and
TNFAIP3

3’UTR Decreasing stability Temozolomide resistance (281)

Melanoma Tumor
suppressor

FTO PDCD1,
CXCR4, and
SOX10

5’UTR and
3’UTR

Promoting
degradation

Growth and anti-PD-1
blockade immunotherapy
sensitivity

(284)

(Continued)
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TABLE 2 Continued

Cancers Roles Cooperative
m6A regula-

tors

Target
mRNAs

“Reading”
position

The mechanism
of target
mRNAs

Functional classification References

Ocular melanoma Oncogene – PER1 and
TP53

3’UTR Promoting
degradation

Proliferation and migration (285)

Acute myeloid
leukemia

Oncogene – TNFRSF1b – Promoting
degradation

The development and
propagation of AML CSCs

(289)

– TNFRSF1b 3’UTR Decreasing m6A
levels

Proliferation (290)

Tumor
suppressor

FTO PFKP and
LDHB

– Promoting
degradation

Glycolysis (291)

The meaning of the symbol "-" is that the specific content has not yet been revealed in the corresponding research.

TABLE 3 The role of the YTHDF3 in cancers.

Cancers Roles Cooperative
m6A regulators

Target mRNAs “Reading”
position

The mechanism of
target mRNAs

Functional classifi-
cation

References

Hepatocellular
carcinoma

Oncogene – ZEB1 – Increasing stability Metastasis (177)

Pancreas
cancer

Oncogene – DICER1-AS1 – Decreasing stability Glycolysis, proliferation,
and metastasis

(209)

Colorectal
cancer

Oncogene – GAS5 – Promoting degradation Proliferation and
invasion

(224)

Lung cancer Oncogene METTL3 MALAT1 – Increasing stability Cisplatin resistance,
growth, and metastasis

(242)

Breast cancer Oncogene – ST6GALNAC5,
GJA1, and EGFR

– Promoting translation Brain metastasis (256)

– ZEB1 – Increasing stability Migration, invasion, and
EMT

(258)

Ocular
melanoma

Oncogene – CTNNB1 – Promoting translation Proliferation and
migration

(286)

The meaning of the symbol "-" is that the specific content has not yet been revealed in the corresponding research.
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FIGURE 7

The upstream regulations of the YTHDF family.
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prognosis evaluation. On-going explorations of YTHDFs in

modeling disease progression are still warranted for a better and

deeper understanding of epigenetic modifications.
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The role of E3 ubiquitin
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in bladder cancer development
and immunotherapy
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and Xueju Wang*
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Bladder cancer is one of the common malignant urothelial tumors. Post-

translational modification (PTMs), including ubiquitination, acetylation,

methylation, and phosphorylation, have been revealed to participate in bladder

cancer initiation and progression. Ubiquitination is the common PTM, which is

conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme

and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder

oncogenesis and progression and drug resistance in bladder cancer. Therefore,

in this review, we summarize current knowledge regarding the functions of E3

ubiquitin ligases in bladder cancer development. Moreover, we provide the

evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder

cancer. Furthermore, we mention the multiple compounds that target E3

ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope

our review can stimulate researchers and clinicians to investigate whether and

how targeting E3 ubiquitin ligases acts a novel strategy for bladder

cancer therapy.

KEYWORDS

E3 ligases, bladder cancer, immunotherapy, resistance, ubiquitination
Abbreviations: ANKRD1, ankyrin repeat domain 1; BET, bromodomain and extraterminal domain; CSN5,

COP9 signalosome subunit 5; CTGF, connective tissue growth factor; CYR61, cysteine-rich angiogenic

inducer 61; EGFR, epidermal growth factor receptor; ERK1/2, extracellular signal-regulated kinase 1/2;

GRIM19, gene associated with retinoid-interferon-induced mortality-19; LAPTM5, lysosomal-associated

multispanning membrane protein 5; mTORC1, mammalian target of rapamycin complex 1; MIBC, muscle

invasive bladder cancer; MRE11, meiotic recombination 11 homolog; NSCLC, non-small cell lung cancer;

NSR-SCCUB, non-schistosomiasis related-squamous cell carcinoma of urinary bladder; NEDD4, neuronally

expressed developmentally downregulated 4; PD-1, programmed cell death protein 1; PD-L1, programmed

death ligand-1; PI3K, phosphoinositide 3-kinase; POI, protein of interest; PROTACs, proteolysis targeting

chimeras; PTMs, post-translational modifications; qRT-PCR, quantitative real-time polymerase chain

reaction; SIRT1, silent information regulator sirtulin 1; SOX2, Sex-determining region Y-box 2; SREBP1a,

sterol regulatory element-binding protein 1a; TCGA, the Cancer Genome Atlas; TCR, T cell receptor; TILs,

tumor-infiltration T cells; USP7, ubiquitin-specific processing protease 7.
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Introduction

Bladder cancer is one of the common malignant tumors

worldwide (1). It was estimated that there are 82,290 new cases

and 16,710 deaths in 2023 in the United States. In men, bladder

cancer was the eight-leading cause of cancer-associated death in the

United States (2). In the world, there were approximately 573,278

new cases with bladder cancer and 212,536 deaths due to this

disease (3, 4). Tobacco smoking could be a reason for bladder

cancer incidence. In addition, some risk factors, such as chemicals

and aromatic amines, arsenic contamination and aluminum, could

increase the bladder cancer development. The treatments of bladder

cancer often include endoscopic resection, chemotherapy,

radiation, intravesical immunotherapy and combination therapy

(5–7). The gold standard therapy for MIBC was chemotherapy and

radical cystectomy. Bladder-sparing trimodal therapy is also

available for MIBC patients. Chemoimmunotherapy is the key

strategy for bladder cancer with metastatic feature (8). The

treatment of immunotherapy and immune checkpoint inhibitors

has not shown the good efficacy in bladder cancer patients (9).

However, bladder cancer exhibits immune evasion and poor

outcomes, suggesting that novel therapies need to be developed

for treating bladder cancer (10).

Several genes have been known to regulate development and

aggressiveness in bladder cancer, including Wnt, STAT3, PI3K,

AKT, mTOR and PTEN (11–15). For instance, monocarboxylate

transporter isoform 1 (MCT1) has been found to govern aggressive

and metabolic phenotypes in bladder cancer because higher

expression of MCT1 was associated with lymph node, poor

survival and distant metastasis (16, 17). Silencing of MCT1

blocked proliferation, invasion, migration and altered the

expression of EMT-associated proteins (16). MCT1, MCT4 and

CD147 displayed a prognostic implication and a potential role in

bladder cancer metabolism (18). MCT1 and CD147 also

participated in cisplatin resistance and tumor aggressiveness in

bladder cancer (19). In addition, some proteins could be post-

t rans la t ional ly modified , inc luding phosphoryla t ion ,

ubiquitination, acetylation, glycosylation, methylation and

SUMOylation (20). Post-translational modification (PTM) has

been known to govern tumorigenesis and progression in various

cancer types, including bladder cancer (21, 22).

PTMs include ubiquitination, acetylation, phosphorylation,

methylation, hydroxylation, lipidation, palmitoylation, and

glycosylation (23–27). Autophagy-lysosome pathway and the

ubiquitin-proteasomal system (UPS) are common PTMs to

control protein stability (28, 29). Ubiquitination is an ATP-

mediated process: an E1 ubiquitin-activating enzyme activates

ubiquitin, E2 ubiquitin-conjugating enzyme links ubiquitin via a

transesterification reaction, E3 ubiquitin-protein ligase makes the

binding between E2 enzyme and substrate proteins, leading to

ubiquitin transfer from E2 to the specific substrate (30, 31). E3

ubiquitin ligases are critically involved in oncogenesis and

progression as well as drug resistance in bladder cancer (32, 33).

Targeting E3 ubiquitin ligases has demonstrated to be a novel

approach for bladder cancer therapy (34). In this review, we
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summarize current knowledge regarding the roles of E3 ubiquitin

ligases in bladder oncogenesis. Furthermore, we discuss the insights

of E3 ubiquitin ligases in regulation of immunotherapy in bladder

cancer. Moreover, we highlight the efforts on targeting E3 ubiquitin

ligases to improve the efficacy of bladder cancer treatments. We

hope our review can encourage researchers to explore how can

improve the benefit of bladder cancer therapy via targeting E3

ubiquitin ligases.
Deubiquitinases in bladder cancer

USP2a

USP2a has been reported to regulate oncogenesis and

progression in a variety of human cancers (35–37). USP2a mRNA

expression was reduced in bladder cancer tissues compared with

age-matched bladder tissues, and USP2a mRNA expression was

decreased in higher stage of MIBC (38). Kim et al. found that USP2a

increased tumor progression in part via regulation of cyclin A1 in

bladder cancer (39). Specifically, overexpression of USP2a increased

cell invasion, migration, chemotherapeutic drug resistance and

proliferation. Downregulation of USP2a showed the opposite

effects in bladder cancer. USP2a overexpression increased the

Erk/MAPK phosphorylation after HB-EGF stimulation in T24

cells. Overexpression of USP2a in T24 cells caused more

resistance to cisplatin-induced apoptosis due to inhibition of the

cleaved form of PARP (c-PARP). USP2a interacted with cyclin A1

and blocked the ubiquitination of cyclin A1, contributing to cyclin

A1 accumulation, which led to promotion of cell proliferation in

bladder cancer (39). Frizzled 8-associated APF (antiproliferative

factor) maintained the stability of p53 via modulation of USP2a and

murine double minute 2 (MDM2) (40). APF decreased USP2a

expression and caused MDM2 ubiquitination, leading to inhibition

of the interaction between p53 and MDM2, thereby impairing p53

ubiquitination (40). Overexpression of USP2a increased cell growth

through upregulation of cyclin D1 at the mRNA and protein levels,

while depletion of USP2a reduced cell proliferation in part via

increased cellular p53 levels in T24 cells (40).
USP21

USP21 has been gradually uncovered the essential role in

carcinogenesis (41, 42). One integrative assay of 1q23.3 copy

number gain in urothelial cancer patients with metastasis after

platinum-based chemotherapy demonstrated that USP21, F11R,

PPOX, DEDD, PFDN2 genes were closed linked to poor

outcomes (43). Similarly, USP14 and USP21 were found to be

associated with chemoresistance in bladder urothelial carcinoma

with metastasis (44). Another study showed that USP21 expression

was elevated in bladder cancer. High expression of USP21 was

closely correlated with tumor metastasis and tumor size.

Intriguingly, poorer survival rate was found in bladder cancer

patients with higher levels of USP21 (45). In bladder cancer cells,
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increased expression of USP21 promoted cell proliferation,

stimulated cell migration and invasion, enhanced tumor

metastasis (45). Notably, overexpression of USP21 led to the

development of EMT. Mechanistically, USP21 deubiquitinated

EZH2 and stabilized its protein levels. USP21 could be a potential

target for bladder cancer therapy (45). PD-L1 is observed in

membrane of immune cells ad tumor cells. PD-L1 can bind to

PD-1, leading to protection of tumor cells from an immune attack.

The inhibitors of PD-1/PD-L1 can impair this binding and enhance

the immune response against tumor cells (46, 47). USP21 has been

identified to act as a deubiquitinase of PD-L1. Increased USP21

elevated PD-L1 abundance, whereas depletion of USP21 promoted

PD-L1 degradation. Hence, targeting USP21 could be helpful to

improve tumor immunotherapy (48).
USP22

USP22 has been known to involve in tumor cell proliferation,

invasion, stemness, cell cycle arrest, metastasis, immune response

and drug resistance in human cancer (49). In bladder cancer,

silencing USP22 by siRNAs induced cell cycle arrest and

attenuated cell proliferation (50). USP22 siRNA transfection

increased the expression of p53 and p21, decreased cyclin E

expression in bladder cancer cells. Silencing of USP22 promoted

the degradation of MDM2 in bladder cancer cells. USP22 siRNA

transfection induced cell cycle at G0/G1 phase via upregulation of

p53, p21 and downregulation of cyclin E in bladder cancer cells

(50). Depletion of USP22 expression retarded the tumor growth of

implanted bladder cancer cells in mice (50). Another study also

revealed that USP22 depletion reduced cell cycle progression and

retarded tumor growth in animal models of bladder cancer, liver

cancer, lung cancer, breast cancer and ovarian cancer (51). USP22

has been reported to regulate immune evasion and drug sensitivity

in cancer (52). USP22 has been identified to work as a new regulator

of PD-L1. USP22 interacted with PD-L1 and maintained PD-L1

stability via deubiquitination in A549, H1299 and H1792 NSCLC

cells (53). USP22 also interacted with CSN5 and kept its stability via

deubiquitination. Either CSN5 or USP22 enhanced the binding of

PD-L1 with the other one. The K6, K11, K27, K29, K33 and K63-

linked ubiquitin chains were removed by USP22 in PD-L1 and

CSN5 in HEK293FT cells. Hence, USP22 governed the PD-L1

protein levels via CSN5/PD-L1 pathway in HEK293FT cells (53).

Silencing of USP22 enhanced T cell cytotoxicity and blocked lung

tumorigenesis. This study showed a critical role of USP22 in

regulation of immune evasion via maintenance of PD-L1 protein

levels (53). It is required to define the role of USP22 in

bladder tumorigenesis.
E3 ubiquitin ligases in bladder cancer

FBXW7

FBXW7 belongs to F-box protein family and shows a tumor

suppressive function in cancer development (54). F-box proteins
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target numerous substrates and regulate proliferation, metastasis,

EMT, cancer stem cells, and drug resistance (55–57). FBXW7

exhibited single nucleotide variants or insertion or deletion in

non-schistosomiasis related-squamous cell carcinoma of urinary

bladder (NSR-SCCUB) patients (58). NSR-SCCUB is not common

type in urothelial carcinoma, which could have genomic alterations

(58). FBXW7 targeted an epigenetic regulator ZMYND8 for

ubiquitination and degradation in bladder cancer (59). ZMYND8

increased cell viability and colony formation, migrative ability in

bladder cancer. FBXW7 interacted with and degraded ZMYND8 in

a polyubiquitin-dependent manner. By a gene set enrichment

analysis, ZMYND8 was observed to be positively correlated to

tumor stemness markers, including FOXM1, SOX2 and NANOG

(59). One group revealed that overexpression of p65 increased cell

migration via FBXW7-induced ubiquitination and degradation of

RhoGDIa protein in bladder cancer (60). RhoGDIa protein was

found to be a p65 downstream target and mediated p65-induced cell

migration in bladder cancer. Mechanistically, p65 enhanced

FBXW7 stability via attenuating the mRNA transcription of

PTEN (60). Hence, p65 inhibited PTEN mRNA transcription and

subsequently promoted FBXW7 stability, leading to degradation of

RhoGDIa in bladder cancer cells (60). Liu et al. found that

upregulation of FBXW7 reduced the invasion and growth of

bladder cancer cells, caused cell cycle arrest at G0/G1 phase.

Increased FBXW7 activated GSK-3b phosphorylation and

inhibited the expression of SREBP1a in bladder cancer cells (61).

SREBP1 is a transcription factor, including two isoforms, SREBP-1a

and SREBP-1c, which regulates the expression of lipogenesis genes.

Studies have shown that SREBP1 regulates the expression of

stearoyl-CoA desaturase, fatty acid synthase, and acetyl-CoA

carboxylase (62). FBXW7 can bind with SREBP1a by a co-

immunoprecipitation assay. In vivo study further validated the

role of FBXW7 in regulation of SREBP1a (61). The role of

FBXW7 in bladder cancer indicated that targeting FBXW7 is a

novel approach for bladder cancer therapy.
MDM2

MDM2 (mouse double minute 2 homologue) is involved in

tumorigenesis mainly targeting p53 protein in different cancer

types, including bladder cancer (63, 64). In 1994, upregulation of

MDM2 and p53 expression was observed in bladder cancer patients

(65). Moreover, p53 and MDM2 were found to be key factors in the

progression of bladder cancer (66). There was an association

between TP53 (codon 72, arginine> proline), MDM2 (SNP309,

T>G) polymorphisms and patient’s survival in bladder cancer after

chemoradiotherapy (CRT) (67). Patients with MDM2 T/G + G/G

genotypes exhibited a good survival rate after CRT. TP53 and

MDM2 with more than two of variant alleles exhibited an

improved survival (67). For example, MDM2 SNP309 G-variant

was revealed to be correlated with tumor cell invasive growth and

the risk of bladder cancer (68, 69). Mao et al. found that OCT3/4

increased tumor immune escape via upregulation of TET1 and

NRF2 expression, leading to enhancement of MDM2 expression,

which contributed to acceleration of tumor immune evasion in
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bladder cancer (70). Small-molecule MDM2 inhibitors have been

detected in clinical trials for improving the efficacy of cancer

treatment (71, 72). MDM2 inhibitor APG-115 was reported to

enhance the efficacy of PD-1 blockade via increasing anticancer

immunity in the tumor microenvironment (73). One MDM2

inhibitor, AMG-232, sensitized tumor cells to T-cell-induced

killing in tumors with high expression of MDM2 (74). The

MDM2 ligand Nutlin-3 modulated the expression of PD-L1 and

CD276 (75). Nutlin-3 induced the expression of PD-L1, while

MDM2 did not bind PD-L1 (75). Suppression of MDM2 by

HDM201 inhibitor facilitated anticancer responses via interaction

with the stromal and immune microenvironment in tumor cells

with p53 wild-type (76). MDM2 gene amplification could be a

useful biomarker for prediction of a better response for targeted

therapies in PD-L1 positive or negative urothelial bladder

cancer (77).
TRIM38

TRIM38 functions as a SUMO ligase or an E3 ubiquitin ligase

and targets several cellular signaling components (78). Glucose

transporter type 1 (GLUT1) was upregulated in bladder cancer and

correlated with poor survival rate and poor prognosis in patients

with bladder cancer (79, 80). Moreover, GLUT1 was identified as an

independent biomarker for prognosis in bladder cancer patients

after radical cystectomy treatment (81). GLUT1 was also taken part

in cisplatin resistance in bladder cancer, which can be regulated by

miR-218 (82). According to TCGA bladder cancer database,

TRIM38 expression was low in bladder cancer patients. Lower

expression of TRIM38 was linked to shorter survival rate and worse

prognosis in patients with bladder cancer (83). TRIM38 was further

found to regulate proliferation, stemness and invasion of bladder

cancer cells. Strikingly, TRIM38 had an interaction with GLUT1

and enhanced the ubiquitination and degradation of GLUT1 in

bladder cancer cells. Accordingly, BAY-876, an inhibitor of GLUT1,

inhibited proliferation and tumor growth in bladder cancer cells

and mouse models (83).
Other deubiquitinases and E3
ubiquitin ligases

Accumulating evidence has shown that many E3 ubiquitin

ligases are involved in bladder tumorigenesis. For instance, the E3

ubiquitin ligase cIAP2 (cellular inhibitor of apoptosis protein 2) was

elevated after inhibition of histone deacetylase (HDAC) in bladder

cancer. MRE11, which regulates DNA repair pathways and double-

strand breaks, was also inhibited by HDAC inhibitors (84). The

cIAP2 was found to bind with MRE11 and governed radio-

sensitization after HDAC inhibitor treatment. cIAP2 modulated

the ubiquitination of MRE11 and caused the downregulation of

MRE11 in bladder cancer cells (84). Therefore, cIAP2 might be a

promising target for improving chemoradiation strategy in bladder

cancer . Suppression of GRIM19 expression impaired
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ubiquitination-mediated degradation of Bcl-xL in bladder cancer

cells, conferring to promotion of cisplatin chemoresistance (85).

Overexpression of GRIM19 potentiated cisplatin sensitivity and

reduced the invasion and proliferation of bladder cancer cells,

which was due to attenuation of Bcl-xL polyubiquitination and

degradation (85).

Yes-associated protein (YAP) is one of key effectors in the Hippo

tumor suppressor pathway, which regulates organ size and tissue

growth and tumorigenesis (86, 87). Luo et al. reported that MINDY1,

a DUB enzyme, interacted with YAP and acted as a deubiquitylase of

YAP to stabilize YAP protein levels in bladder cancer (88).

Consistently, silencing of MINDY1 reduced proliferation of

bladder cancer cells. Overexpression of YAP abrogated the

MINDY1 depletion-induced inhibition of cell proliferation in

bladder cancer cells (88). Connective tissue growth factor (CTGF)

controls differentiation, adhesion and proliferation, and involves in

Hippo pathway, NF-kB and p53 pathways, leading to regulation of

cancer, inflammation and fibrosis (89). Cysteine-rich protein 61

(CYR61) was reported to involve in the development of melanoma

(90), glioma (91) and esophageal squamous cell carcinoma (92).

Exosomal miR-217 mimic promoted migration and proliferation in

5637 and T24 cells via upregulation of YAP and its targets, such as

CTGF, CYR61 and ANKRD1 (93). Downregulation of MINDY1

disrupted the YAP stabilization and inhibited the expression of YAP

downstream genes, such as CTGF, CYR61 and ANKRD1 in bladder

cancer (88). MINDY1 could be a possible biomarker and therapeutic

target for bladder cancer (88). RNF126 (ring finger protein 126),

acting as a E3 ubiquitin ligase, has been reported to be overexpressed

in numerous cancer types and correlated with tumorigenesis (94).

RNF126 expression was elevated in bladder cancer tissues via a

TCGA database analysis. Depletion of RNF126 remarkably impaired

proliferation and metastasis of bladder cancer cells via modulation of

the EGFR/PI3K/AKT pathway. RNF126 silencing reduced EGFR

expression and AKT phosphorylation, slightly inhibited PI3K

expression, and remarkably increased the PTEN protein levels in

UMUC3 and T24 cells. The mRNA levels of AKT and EGFR were

reduced after RNF126 downregulation, but PTEN mRNA levels did

not change in RNF126-silencing cells. Notably, PTEN was identified

as a new substrate of RNF126 (95). RNF126 bound to PTEN and led

to polyubiquitination and degradation of PTEN. Inhibition of

RNF126 oncoprotein could be a novel approach for bladder cancer

therapy (95). It has been known that c-Cbl is an E3 ubiquitin ligase

that targets its substrates for degradation (96). C-Cbl was reported to

target the EGFR for ubiquitination and degradation (97). Another

study revealed that USP8 can regulate SOX2 ubiquitination and

degradation in bladder cancer (98).
Deubiquitinases and E3 ubiquitin
ligases regulate immunotherapy

The E3 ubiquitin ligases have been approved as important

factors to govern the tumor microenvironment and affect

immunotherapy in human cancers (99). Evidence has dissected

that the E3 ubiquitin ligases control PD-1/PD-L1 protein levels and
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enhance tumor immunotherapy (100). For example, FBXO38,

FBXW7 and C-Cbl target PD-1, whereas SPOP and FBXO22

target PD-L1. In addition, USP7, USP8 and USP22 target PD-L1

to maintain the PD-L1 protein levels (100, 101).
RNF144A regulates PD-L1

RNF144A is an E3 ubiquitin ligase for the degradation of DNA-

PKcs (DNA-dependent protein kinase catalytic subunit), leading to

promotion of apoptosis during DNA damage (102, 103). RNF144A

governed PARP inhibitor sensitivity via targeting PARP1 in

ubiquitin-dependent manner in breast cancer cells (104). In

addition, RNF144A expression was decreased due to promoter

hypermethylation in breast cancer cells (105). Moreover,

RNF144A targeted the stability of HSPA2 via ubiquitin-

dependent regulation in breast cancer (106). Furthermore,

RNF144A degraded YY1 and inhibited the expression of GMFG

as well as suppressed oncogenesis in breast cancer (107). RNF144A

maintained the activation of EGFR signaling pathway to enhance

EGF-involved cell proliferation (108). RNF144A controlled the

stability of LIN28B via the uniquitin-proteasome manner and

inhibited stem cell properties in ovarian cancer cells (109).

In bladder cancer cells, depletion of RNF144A elevated the

stabilization of PD-L1 protein and enhanced carcinogen-mediated

bladder oncogenesis (110). Mice with RNF144A deficiency were

more prone to initiation of bladder cancer after carcinogen

exposure. RNF144A knockout mice displayed the higher

expression of PD-L1. RNF144A can bind with PD-L1 and

enhanced ubiquitination and disruption of PD-L1 in the

intracellular vesicles and plasma membrane (110). RNF144A

depletion in mice caused a decrease of tumor infiltration CD8+

T-cells in the carcinogen-induced bladder cancer. Moreover,

RNF144A depletion stimulated cellular differentiation, showing

that a luminal subtype marker GATA3 was increased in

RNF144A knockout tumors (110). This phenotype could be due

to that RNF144A maintained EGFR expression. Hence, depletion of

RNF144A increased the expression of PD-L1, DNA-PKcs and

BMI1, resulting in the carcinogen-mediated the development of

bladder cancer (110).
NEDD4 regulates PD-L1

An E3 ubiquitin ligase NEDD4 (also known as NEDD4-1)

belongs to NEDD4 family, which has shown a critical function in

carcinogenesis and progression (111, 112). NEDD4 performs its

biological functions via targeting numerous substrates for

ubiquitination and degradation (113, 114). NEDD4 has been

revealed to regulate many functions, including growth, cell cycle,

proliferation, differentiation, invasion, motility, apoptosis, necrosis,

autophagy and metastasis (115). NEDD4 has been identified to take

part in bladder cancer initiation and development. Inhibition of

LAPTM5 blocked cell viability and growth and caused cell cycle

arrest at G0/G1 phase via inhibition of p38 and ERK1/2 activation

in bladder cancer (116). Depletion of NEDD4 suppressed the
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transportation of LAPTM5 from Golgi to lysosome, which could

affect bladder tumorigenesis (116). Suppression of NEDD4

displayed antitumor activity in bladder cancer cells (117). Mao

et al. found that NEDD4 can bind to KLF8 (Kruppel-like factor 8)

and target the miR-132 and NRF2 (nuclear factor E2-related factor

2) axis in bladder cancer, contributing to acceleration of tumor

growth, recurrence and lung metastasis (118). NEDD4 depletion

reduced K63-linked polyubiquitination of KLF8 and inhibited the

stability and transcriptional ability of KLF8 (118). NEDD4

promoted the interaction between KLF-8 and miR-132 promoter

region, resulting in suppression of miR-132. Moreover, miR-132

inhibited the expression of NRF2 in bladder cancer cells, leading to

repression of cell migration and viability (118).

Fibroblast growth factor receptor 3 (FGFR3) has been known to

play a key role in bladder cancer development. FGFR3

rearrangements and missense mutations were reported in bladder

cancer (119). One study showed that suppression of FGFR3

increased PD-L1 protein levels in FGFR3-expressing bladder

cancer due to influencing its ubiquitination, leading to

suppression of the anticancer activity of CD8+ T cells. FGFR3

expression was negatively associated with PD-L1 expression levels

in bladder cancer tissues. FGFR3 activation can promote NEDD4

phosphorylation. NEDD4 catalyzed K48-linked polyubiquitination

of PD-L1 via their interactions. CD8+ T-cell infiltration and

anticancer ability were largely impaired because of upregulation

of PD-L1 in bladder tumor cells in mice with NEDD4 knockout

bladder cancer. Targeting FGFR3 and PD-L1 increased CD8+ T-

cell-induced anticancer efficacy and exhibited effective tumor

suppression in bladder cancer. This work provided a molecular

clue among NEDD4, PD-L1 and FGFR3, suggesting that targeted

therapy in combination with immune therapy could be much better

for the treatment of bladder cancer. Therefore, NEDD4 targets PD-

L1 for ubiquitination and destruction in FGFR3-overexpressing

bladder cancer, indicating that NEDD4 is associated with immune

surveillance via regulation of PD-L1 in bladder cancer (120). One

group showed that a natural compound lycorine downregulated the

expression of NEDD4 in bladder cancer, leading to suppression of

cell growth and invasiveness (121). Hence, natural compounds

targeting NEDD4 could be useful to improve immunotherapy in

bladder cancer.
USP7 regulates PD-L1 expression

USP7 (ubiquitin-specific protease 7), also named as HAUSP

(herpesvirus-associated protease), has been discovered to be

associated with oncogenesis in some cancer types, including

bladder cancer (122–125). USP7 has been revealed to control the

anti-tumor immune responses. Inhibition of USP7 by its inhibitors

impedes the activity of Treg cells, enhances polarization of tumor-

related macrophages in tumor cells (126). It has been reported that

USP7 modulated the expression levels of CCDC6 in bladder cancer.

One USP7 inhibitor, P5091, regulated CCDC6 degradation and

enhanced cell sensitivity to PARP inhibitors. Combined therapy

with DNA damage inducer RRx-001 and P5091 promoted the

tumor cell sensitivity to PARP inhibitors (127).
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DNA methylat ion is regulated by DNMTs (DNA

methyltransferases). SB216763, an inhibitor of GSK3 (glycogen

synthase kinase-3), increased cell proliferation and upregulated

the expression of pGSK3b, b-catenin and DNMT1 (128). The

expression of USP7, DNMT1, UHRF1 and b-catenin was

inhibited after re-expression of WIF-1 and treatment with

DNMT1 inhibitor DAC (128). One study revealed that PD-L1

expression was positively associated with USP7 levels in gastric

cancer patients. USP7 directly bound to PD-L1 and stabilize it

(129). Abrogation of USP7 impaired the interaction between PD-1

and PD-L1, leading to sensitization of cancer cells to T cell killing in

cancer cells and in mice. In addition, inhibition of USP7 by its

inhibitor reduced cell proliferation due to p53 stabilization in

gastric cancer cells (129). Hence, USP7 suppression by its

inhibitors not only blocked gastric tumor cell proliferation but

also inhibit the expression of PD-L1 to improve anti-cancer

immune response in gastric cancer (129). It is required to explore

whether USP7 inhibitors could enhance the immune response of

bladder cancer. USP7 inhibitors have been developed to perform

anticancer ability in various cancer types (130). It is necessary to

determine whether these USP7 inhibitors can improve

immunotherapy in bladder cancer.
Other E3 ubiquitin ligases regulate
immunotherapy

One group used TCGA and GEO database to analyze

ubiquitination-related molecular subtypes for bladder cancer

(131). This group found a total of four ubiquitination-related

molecular subtypes of bladder cancer. These four subgroups had

various tumor microenvironment, prognosis, clinical characteristics

and PD-L1 expression level. In addition, six ubiquitination-related

genes (URGs), including HLA-A, UBE2D1, UBE2T, USP5,

TMEM128 and UBE2N, could be useful for prognostic

markers (131).
Compounds regulate E3 ligases in
bladder cancer

In recent years, some compounds have been uncovered to

regulate the expression of E3 ubiquitin ligases in human

malignancies, including bladder cancer (132–134). b-lactam
cephalosporin antibiotic cefepime has been uncovered to deplete

PD-L1 and promote tumor DNA damage and increase sensitivity of

DNA-damaging compounds in multiple tumor cell lines, such as

bladder cancer, melanoma, GBM (glioblastoma multiforme) and

ovarian cancer (135). Cefepime inhibited tumor PD-L1 via

regulation of its ubiquitination, enhanced efficacy of DNA-

damaging compounds in mice, stimulated immunogenic tumor

STING pathway. Ceftazidime exhibited the similar performance

as cefepime in regulation of PD-L1 and DNA-damaging agent

therapeutic efficacy. Taken together, cefepime and ceftazidime

could improve immunotherapy and DNA-damaging agent
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efficacy in bladder cancer (135). Hispolon from Phellinus linteus

is a natural polyphenol and conducted a function as a cancer killer

via targeting several signaling pathways (136). Hisplon inhibited

tumor cell growth via upregulation of p21 in bladder cancer cells

(137). Hispolon promoted the ubiquitination and degradation of

MDM2 in bladder cancer cells. ERK1/2 was activated and recruited

to MDM2 and led to MDM2 ubiquitination. Inhibition of ERK1/2

by U0126 blocked hispolon-mediated caspase-7 cleavage. Hence,

hispolon downregulated MDM2 via degradation in bladder

cancer (137).

Allyl isothiocyanate was often obtained from cruciferous

vegetables and caused mitotic arrest via upregulation of

ubiquitination and degradation of alpha and beta-tubulin in

bladder cancer cells (138). PR-619 was an inhibitor of

deubiquitylating enzymes and overcame cisplatin resistance via

the inhibition of c-Myc in bladder urothelial carcinoma cells (44).

Stevioside was identified by high-throughput screening as a useful

compound to increase cell apoptosis via activation of GSK-3b and

induction of FBXW7, contributing to downregulation of MCL-1 in

bladder cancer (139). Similarly, OSU-T315, an inhibitor of integrin-

linked kinase, was observed to inhibit Mcl-1 expression levels via

targeting the GSK-3b/FBXW7 axis in bladder cancer cells (140).

Green tea polyphenol EGCG plays a tumor suppressive role in

bladder cancer via inactivation of NF-kappa B. Moreover, EGCG

promoted the anticancer activity of doxorubicine via modulation of

NF-kB/MDM2/p53 pathway in bladder cancer (141). Proguanil,

which is often used as an anti-malarial drug, inhibited the cell

growth by promotion of EGFR degradation and induction of

autophagy in bladder cancer (97). Proguanil enhanced the

interaction between EGFR and Caveolin-1, leading to endocytosis

and recruiting c-Cbl to elevate EGFR degradation via the lysosomal

pathway (97). 4-hydroxynonenal (HNE), a pro-oxidant compound,

conducted tumor suppressive function via altering several signaling

pathways. HNE upregulated YAP phosphorylation and

ubiquitination, caused promotion of YAP proteasomal

degradation in bladder cancer cells (142). One compound ChlA-F

blocked cell invasion via inhibition of SOX2 protein by USP8-

mediated SOX2 degradation in bladder cancer (98). Therefore,

compounds can regulate E3 ubiquitin ligases to enhance the

ubiquitination and degradation of specific targets, which lead to

antitumor activity in bladder cancer (Table 1).
Noncoding RNAs target E3 ligases

Multiple studies have shown that noncoding RNAs govern

carcinogenesis in bladder cancer (143–146). Noncoding RNAs are

transcribed from DNA, but not translated into proteins, including

microRNAs (miRNAs), lncRNAs (log noncoding RNAs), siRNAs

(small interfering RNAs), snRNAs (small nuclear RNAs) and

piRNAs (147–149). Noncoding RNAs target E3 ubiquitin ligases

to control bladder cancer initiation and progression. For example,

miR-143 inhibited the expression of MDM2 and performed a tumor

suppressive function via inhibition of cell growth and migration in

bladder cancer (150). LncRNA SNHG1 sponged miR-9-3p

expression and upregulated the expression of MDM2 in bladder
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cancer cells. MDM2 targeted PPARg for ubiquitination and

degradation, leading to facilitating the development of bladder

cancer (151). LncRNA LNPPS displayed a tumor suppressive

function via modulation of MDM2/p53 degradation in bladder

cancer (152). LncRNA SNHG18 was downregulated in tumor

specimens of bladder cancer patients. The bladder cancer patients

with high expression of SNHG18 had a better survival rate.

Upregulation of SNHG18 reduced proliferation of bladder cancer

cells and decreased tumor sizes in mice (153). SNHG18 impaired

the expression of c-Myc via targeting its ubiquitination and

degradation, resulting in p21 upregulation in bladder cancer (153).

LncRNA PVT1 promoted the expression of MDM2 and

accelerated the p53 ubiquitination and degradation, leading to

promoting cell invasion and cell resistance to doxorubicin (154).

AURKB (Aurora kinase B) was increased after MDM2 upregulation

induced by lncRNA PVT1 in bladder cancer cells. AURKB further

promoted the p53 ubiquitination that was induced by MDM2 (154).

LncRNA LOC572558 overexpression was downregulated in tumor

tissues of bladder cancer patients. In T24 and 5637 bladder tumor
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cells, upregulation of LOC572558 suppressed cell growth and

invasion, induced apoptosis and caused cell cycle arrest, which

was correlated with p53 phosphorylation, MDM2, AKT

dephosphorylation (155). Chen et al. reported that a circRNA

circNUDT21 altered the miR-16-1-3p/MDM2/p53 axis and

accelerated tumor progression in bladder cancer (156). Hence,

noncoding RNAs are pivotal to regulate E3 ubiquitin ligases in

bladder tumorigenesis (Figure 1).
Conclusions and future perspectives

In conclusion, E3 ubiquitin ligases are critical in bladder cancer

initiation and development via targeting specific substrates. E3

ubiquitin ligases alter tumor immunotherapy and drug resistance

in bladder cancer (Figure 2). Targeting E3 ubiquitin ligases could be

an effective strategy for bladder cancer therapy. It is necessary to

mention several points regarding the roles of E3 ubiquitin ligases in

bladder cancer. First, besides ubiquitination, there are many other
FIGURE 1

Noncoding RNAs regulate E3 ubiquitin ligases in bladder cancer.
TABLE 1 Compounds regulate E3 ligases in bladder cancer.

Item Target Function Ref.

Cefepime PD-L1 ubiquitination, activation of STING. Enhances efficacy of DNA-damaging compounds (135)

Ceftazidime PD-L1 ubiquitination Increases immunotherapy and DNA-damaging agent efficacy (135)

Hispolon MDM2 ubiquitination and degradation, p21 upregulation. Inhibits tumor cell growth (137)

Allyl isothiocyanate Alpha and beta-tubulin ubiquitination and degradation Causes mitotic arrest (138)

PR-619 Inhibits c-Myc expression Overcomes cisplatin resistance (44)

Steviosode Activates GSK-3b/FBXW7, inhibits Mcl-1. Increases cell apoptosis (139)

OSU-T315 Inhibits Mcl-1, targets GSK-3b/FBXW7 Reduces cell growth and increases apoptosis (140)

EGCG Targets NF-kB/MDM2/p53 Increase antitumor activity of doxorubicine (141)

Proguanil Promotes EGFR degradation Induces autophagy (97)

HNE Upregulates YAP phosphorylation and ubiquitination and degradation Performs tumor suppressive function (142)

ChlA-F Inhibits SOX2 via USP8-mediated degradation Blocks cell invasion (98)
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types of PTMs to involve in bladder tumorigenesis. For example,

activation of autophagy altered acetylation profile relevant for

mechanotransduction in bladder tumor cells (157). PD-L1

methylation was found to be an independent biomarker for

patient survival in bladder cancer (158). Histone demethylase

JMJD1A promoted glycolysis via coactivation of HIF1a and led

to promotion of urinary bladder cancer progression (159). SIRT1

(silent information regulator sirtulin 1), a NAD+ dependent

deacetylase, elevated the expression of GLUT1 and stimulated

tumor progression in bladder cancer via modulation of glucose

uptake (160).

Second, in addition to E3 ubiquitin ligases, E2 enzyme has also

been involved in bladder carcinogenesis. Ubiquitin-conjugating

enzyme E2S (UBE2S) is a type of E2 enzyme in the ubiquitin

system, which has displayed several activities in carcinogenesis

(161). UBE2S has been suggested to promote the ovarian cancer

development via targeting PI3K/AKT/mTOR pathway and

modulating cell apoptosis and cell cycle (162). UBE2S reduced

cell chemosensitivity via regulation of PTEN-AKT pathway in

hepatocellular carcinoma (163). UBE2S expression was increased

in urinary bladder cancer cells. Knockdown of UBE2S led to

reduction of proliferation and induction of cell apoptosis, while

upregulation of UBE2S resulted in an inverse phenotype in bladder

cancer cells (164). Moreover, UBE2S performed the oncogenic

functions via modulation of the mTORC1 pathway in bladder

cancer cells. UBE2S targeted tuberous sclerosis 1 (TSC1) for

ubiquitous degradation (164). Collectively, UBE2S promoted

bladder cancer progression via degradation of TSC1 and

activation of mTOR signaling pathway.

Third, noncoding RNAs have been identified as potential

biomarkers for bladder cancer prognosis (165, 166). Besides

lncRNAs, miRNAs and circRNAs, one study showed that PIWI-
Frontiers in Immunology 084948
interacting RNAs (piRNAs) and snRNAs are important in bladder

carcinogenesis (167, 168). In this work, it has been shown that 106

piRNAs were increased and 91 piRNAs were decreased in bladder

tumor specimens. Upregulation of piRABC reduced proliferation,

colony formation, but enhanced cell apoptosis in bladder cancer

cells. Moreover, piRABC increased the expression of TNFSF4

protein in bladder cancer cells (167). Fourth, several F-box

proteins have been described to target PD-1/PD-L1 in cancers;

however , whether other F-box proteins can regulate

immunotherapy is unclear. For example, FBXO45 has shown an

essential role in tumorigenesis and malignant progression (169–

171). FBXO22 targeted PD-L1 for degradation and sensitized tumor

cells to DNA damage (172). FBXO1, FBXO20, FBXO22, FBXO28,

FBXO32 and FBXO45 have been found to be associated with

immune infiltration in pancreatic cancer (173). Hence, it is

required to explore whether these F-box proteins are involved in

immunotherapy in bladder cancer.

Fifth, it has been validated that PROTACs are novel tools for the

enhancement of immunotherapy in human cancers (174).

PROTACs have been designed to degrade a protein of interest

(POI), resulting in a reduction of the expression of the POI (175,

176). One study has shown that one BET (bromodomain and

extraterminal domain) inhibitor mivebresib synergized with a

Bcl-xL PROTAC degrader PZ703b increased cell apoptosis

through the mitochondrial pathway in bladder cancer (177).

Another study showed that BRD4 PROTAC degrader QCA570

increased the degradation of BRD4 protein, leading to induction of

cell apoptosis and cell cycle arrest, which caused antiproliferation

ability in bladder cancer (178). All in a word, E3 ubiquitin ligases

are essential for the initiation and progression of bladder cancer.

Regulation of E3 ubiquitin ligases might be a potential therapeutic

strategy for bladder cancer treatment.
FIGURE 2

E3 ubiquitin ligases regulate several proteins in bladder cancer.
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The overexpression of actin
related protein 2/3 complex
subunit 1B(ARPC1B) promotes
the ovarian cancer progression
via activation of the Wnt/b-
catenin signaling pathway

Junning Huang, Haiqin Zhou, Caichun Tan, Shien Mo,
Tingji Liu and Yan Kuang*

Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
Introduction:Ovarian cancer is one of the most fatal malignancies of the female

reproductive system. The purpose of this study is to explore the mechanism of

Actin Related Protein 2/3 Complex Subunit 1B(ARPC1B) in the progression of

ovarian cancer.

Methods: The expressions and prognostic value of ARPC1B in ovarian cancer

were identified using the GEPIA database and the Kaplan-Meier Plotter database.

The expression of ARPC1B was manipulated to evaluate its impact on the

malignant phenotypes of ovarian cancer. The cell proliferation ability was

analyzed through CCK-8 assay and clone formation assay. The cell migration

and invasion capacity was evaluated through wound healing assay and trans well

assay. Mice xenografts were conducted to measure the effects of ARPC1B on

tumor development in vivo.

Results: Our data suggested that ARPC1B was overexpressed in ovarian cancer,

which was correlated with a poorer survival compared to low mRNA expression

of ARPC1B in ovarian cancer patients. The overexpression of ARPC1B promoted

cell proliferation, migration, and invasion of ovarian cancer cells. Conversely, the

knockdown of ARPC1B resulted in the opposite effect. Additionally, ARPC1B

expression could activate Wnt/b-catenin signaling pathway. The administration

of the b-catenin inhibitor XAV-939 abolished the promotion of cell proliferation,

migration, and invasion activities induced by ARPC1B overexpression in vitro.

Conclusions: ARPC1B was overexpressed in ovarian cancer and was correlated

with poor prognosis. ARPC1B promoted ovarian cancer progression through

activation of Wnt/b-catenin Signaling Pathway.

KEYWORDS

ovarian cancer, actin related protein 2/3 complex subunit 1B, b-catenin, XAV-939,
prognosis, oncogene
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1 Introduction

Over the past several decades, significant progress has been made

in improving cancer survival rates for most types of cancer (1).

However, ovarian cancer remains a significant challenge. As the fifth

most common cause of cancer-related death among women and the

leading cause of mortality among gynecologic malignancies (1),

ovarian cancer presents a critical public health concern.

Unfortunately, the absence of specific symptoms and diagnostic

biomarkers often leads to late diagnosis, with more than 70% of

patients being diagnosed at clinical stage III or IV according to the

Federation International of Gynecology and Obstetrics (FIGO)

classification system (2). This results in a high mortality rate, with

more than 75% of women with advanced ovarian cancer succumbing

to the disease. In contrast, when ovarian cancer is diagnosed at an

early stage, with the tumor confined to one or two sides of the ovaries,

the cure rate can reach 90% (3). The current main therapeutic

strategies for ovarian cancer include chemotherapy, surgery, and

targeted therapy (4). Despite abundant research on the pathogenesis

and therapy for ovarian cancer, there is still a lack of authoritative

treatment. Therefore, the identification of effective predictive

biomarkers for early diagnosis and personalized treatment is an

urgent need in the field of ovarian cancer research.

Actin Related Protein 2/3 Complex Subunit 1B (ARPC1B), also

known as ARC41, P41-ARC, P40-ARC, PLTEID, and IMD71,

encodes one of seven subunits of the human Arp2/3 protein

complex (5). This complex has been implicated in a variety of

crucial biological functions, including regulation of cell

differentiation, migration, adhesion, and cargo transport (6, 7).

Recent studies have demonstrated that ARPC1B promotes cancer

cell invasion and metastasis in several types of cancer, including

glioblastoma and prostate cancer (8, 9). Additionally, ARPC1B has

been linked to radiotherapy resistance, as ARPC1B-deficient

patients exhibit increased sensitivity to ionizing radiation and the

drug bleomycin (10).Furthermore, the overexpression of ARPC1B

has been shown to promote radiotherapy resistance and maintain

mesenchymal phenotype in glioma stem cells (11). Despite its

known role in other types of cancer, the role of ARPC1B in

ovarian cancer has not yet been reported in the literature.

b-catenin, also known as CTNNB1, is the key downstream

component of the canonical Wnt/b-catenin signaling pathway (12).

This pathway plays a crucial role in tumorigenesis and is activated

in many ovarian epithelial carcinomas (13). Upon activation of the

Wnt/b-catenin pathway, b-catenin is released from the cell

membrane and redistributes to the nuclei and cytoplasm of tumor

cells (14). Wnt/b-catenin signaling pathway is associated with

tumor proliferation, metastasis, epithelial-to-mesenchymal

transition (EMT), recurrence, chemoresistance, and anti-tumor

immune regulation (15, 16). As such, the Wnt/b-catenin signaling

pathway represent important targets for the development of new

therapeutic strategies for ovarian cancer.

In this work, we conducted a bioinformatics analysis and found

that the expression of ARPC1B was significantly elevated in ovarian

cancer patients. Survival analysis revealed that high expression of

ARPC1B was associated with poor overall survival and progression-
Frontiers in Immunology 025655
free survival in these patients. We then explored the effects of

modulating ARPC1B expression on ovarian cancer cells and found

that it significantly influenced cell proliferation, metastasis, and

invasion in vitro, as well as the growth of ovarian cancer tumors in

vivo. Further investigation revealed that these effects were linked to

the regulation of the Wnt/b-catenin signaling pathway.
2 Materials and methods

2.1 Databases and data analysis

The relationship between ARPC1B expression level and overall

survival in ovarian cancer was assessed using Gene Expression

Profiling Interactive Analysis (GEPIA) and Kaplan-Meier Plotter

(KM plotter) databases that include the Gene Expression Omnibus

(GEO), European Genome-phenome Archive (EGA), Genotype-

Tissue Expression (GTEx), and The Cancer Genome Atlas (TCGA).
2.2 Clinical specimens

The study was approved by the Institutional Research Ethics

Committee of Guangxi Medical University. In the study, ovarian

specimens were collected from patients who were hospitalized in

the First Affiliated Hospital of Guangxi Medical University from

January 2021 to November 2022. The specimens were taken from

both normal and cancer tissues and stored at -80°C for further

experiments. All patients signed informed consent forms and none

of them received any treatment before surgery. The normal ovarian

specimens were taken from patients who underwent adnexectomy

for uterine myoma or adenomyosis. The patients were between 18-

70 years old with an average age of 46 years and all diagnoses were

determined by pathological examination of the ovarian tissues.
2.3 Cell culture, cell transfection,
and reagents

The ovarian epithelial cell line IOSE80 and ovarian cancer cell

lines A2780, CAOV3, and SKOV3 were purchased from the China

Center for Type Culture Collection (CCTCC, Wuhan, China). The

cells were propagated in RPMI-1640 medium (Procell, Wuhan,

China) containing 10% fetal bovine serum (Procell) and incubated

at 37°C under a humidified atmosphere containing 5% CO2.

Plasmid vectors expressing small hairpin RNA (shRNA) targeting

ARPC1B were named shRNA1 or shRNA2. The complementary

cDNAs of ARPC1B were synthesized and the plasmid

overexpressed vectors pLV3-CMV-3×FLAG-CopGFP-Puro

(Miaolingbio, Wuhan, China) of ARPC1B were constructed as

ov-ARPC1B. The shRNA and scramble control sequences were

listed in Table 1. The plasmid vectors were transfected into A2780

and SKOV3 cells using Lipofectamine 3000 (Invitrogen, Carlsbad,

California, USA) according to the manufacturer’s instructions. To

determine the effect of ARPC1B on the Wnt/b-catenin signaling
frontiersin.org
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pathway, we used XAV-939 (MedChemExpress, USA), an inhibitor

of b-catenin, at a concentration of 5.0 mM.
2.4 RNA extraction, rt-PCR, and RT-qPCR

The extraction of RNA was performed from ovarian cancer

tissue or cell lines using a Total RNA Extraction Kit (Axygen, USA)

according to the manufacturer’s protocol. The genomic DNA

present in the RNA samples was eliminated, and cDNA was

synthesized using an RNA Reverse Transcription Kit (Servicebio,

Wuhan, China). Subsequently, RT-qPCR was carried out using 2x

Universal Blue SYBR Green qPCR Master Mix (Servicebio) on a

CFX Touch Real-Time PCR Machine (Bio-rad, USA). The reaction

mixture was subjected to denaturation at 95°C for 30 seconds,

followed by 40 cycles of 15 seconds at 95°C, 10 seconds at 55°C, and

30 seconds at 72°C. The expression levels of ARPC1B was

quantified using the 2-DDCt method. The primers for ARPC1B and

b-actin were synthesized by GeneSys (Nanning, China), and their

sequences are listed in Table 2.
2.5 Protein extraction and western blot

Total protein was extracted from ovarian cancer tissue or cell

lines as per the manufacturer’s instruction using RIPA (Solarbio,

Beijing, China). The protein concentration was quantified using

BCA Protein Assay Kit (Beyotime, Shanghai, China), and 40 mg of
protein was subjected to electrophoresis on a 10% SDS-PAGE gel.

The proteins were then transferred onto a 0.22 mm PVDF

membrane (Merck, USA). The protein bands were incubated with

primary antibodies at 4°C overnight, after being blocked with Non-

Protein Blocking Solution (Servicebio). Subsequently, the

membranes were incubated with dylight-800 labeled secondary

antibodies (Invitrogen; 1:10000) at 37°C for one hour. The

protein probes were visualized on Odyssey CLx (LI-COR, USA).

The primary antibodies used were ARPC1B (Proteintech, Wuhan,
Frontiers in Immunology 035756
China; 1:3000), b-tubulin (Proteintech; 1:2000), b-catenin
(Servicebio; 1:1000), cyclin D1 (Huabio, Hangzhou, China;

1:2000), c-myc (ABmart, Shanghai, China; 1:500).
2.6 Cell counting Kit-8 assay (CCK-8 assay)

In accordance with the manufacturer’s protocol, the Cell

Counting Kit-8 (CCK-8) assay was employed to determine the

effect of ARPC1B on cell proliferation. Infected cells were plated

into 96-well plates and were cultured for 0 hours, 24 hours, 48

hours, 72 hours, and 96 hours. Then, a 10 mL aliquot of the CCK-8

kit (Servicebio) was added to each well and incubated at 37°C with

5% CO2 for 2 hours. The optical density (OD) value was measured

at 450 nm using a modular multimode microplate reader machine,

the Synergy H1 (BioTek, USA).
2.7 Colony formation assay

After being infected for 24 h, 500 cells of SKOV3 or 1000 cells of

A2780 were seeded in each well of a six-well plate to assess the

impact of ARPC1B on cell clonogenesis. The cells were allowed to

grow for 10-14 days, forming colonies which were then fixed with

methanol and stained with 0.5% crystal violet. The number of

colonies was subsequently counted.
2.8 Wound healing assay

The cellular migration ability was evaluated using the wound

healing assay. After being infected for 24 hours, infected cells were

plated into 6-well plates. After 24 hours of cell culture, a wound was

achieved in each well by 1 mL pipette tips. The cells were rinsed

with a serum-free medium. Photographic documentation of the

distance between cells was taken at 0 hours, 24 hours, and 48 hours.
2.9 Transwell assay

After being infected for 24 h, infected cells were harvested and

placed in the upper chambers of transwell inserts (Corning, USA),

with a non-serum medium. In the lower chambers, 900 mL of

medium containing 10% FBS was added, and the system was

maintained for 48 hours. The cells were then fixed with methanol
TABLE 2 The primers for qRT−PCR analysis.

Gene Primer Sequence

ARPC1B Forward 5’- GACAAGAAGATGGCCGTCGC -3’

Reverse 5’- TGCGAGCTCTGCTTAGGAAC -3’

b-actin Forward 5’- CTCAGGATTTAAAAACTGGAACG -3’

Reverse 5’- GACAAAAAAGGGGGAAGGG -3’
TABLE 1 The sequences of shRNAs and scramble control.

Group Sequence

Scramble control 5’-CAACAAGATGAAGAGCACCAAT-3’

shRNA1 5’-GTGTGATCTCCATCTGTTATT-3’

shRNA2 5’-CCAAGGTGCACGAGCTCAAGG-3’
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and stained with 0.5% crystal violet (Servicebio). The number of

migrated cells in the lower chambers was quantified to reveal the

cell invasion ability.
2.10 Tumor xenograft model

Six-week-old BALB/c nude mice (Guangxi Medical University,

Nanning, China) were handled and managed in accordance with

the agreement approved by Guangxi Medical University.

Exponentially growing infected cells (either SKOV3 or A2780

cells) were subcutaneously inoculated into the armpit region of

the mice. One week after the injection, the tumor diameter was

measured every 4 days and used to calculate the tumor volume. The

mice were sacrificed on the 27th day after inoculation and the

tumors were then utilized for Western Blot analysis.
2.11 Statistical analysis

The statistical analyses in this study were executed utilizing the

R software version 4.2.2. The data were represented as the mean and
Frontiers in Immunology 045857
standard deviation, derived from a minimum of three independent

experiments. To assess the differences between two groups, the

Student’s t-test was employed, whereas, for comparisons among

three or more groups, an ANOVA was conducted. A p-value of less

than 0.05 was considered as statistically significant.
3 Results

3.1 The expression of ARPC1B and its
co-relation of the overall survival of
ovarian cancer

The relationship between ARPC1B expression level and overall

survival in ovarian cancer was assessed using Gene Expression

Profiling Interactive Analysis (GEPIA) and Kaplan-Meier Plotter

(KM plotter) databases that include the Gene Expression Omnibus

(GEO), European Genome-phenome Archive (EGA), and The

Cancer Genome Atlas (TCGA). Our results showed that ARPC1B

was significantly overexpressed in ovarian cancer tissues compared

to normal tissues (Figures 1A). The survival analysis indicated that a

high expression level of ARPC1B was associated with poorer overall
A B D

E F G

I

H

J K L

C

FIGURE 1

The expression of ARPC1B and its co-relation of the overall survival of ovarian cancer. (A) Boxplot of ARPC1B in ovarian cancer. TPM, transcripts per
million. (B) Overall survival time between patients with high and low ARPC1B expression by GEPIA with median cut-off. Dotted lines indicated the 95%
confidence interval. HR, hazard ratio. (C, D) Overall survival time and progression-free survival time between patients with high and low ARPC1B
expression by KM Plotter with median cut-off. (E, F) Relative mRNA and protein expression of ARPC1B in normal ovarian tissues and ovarian cancer
tissues. (G, H) Relative mRNA and protein expression of ARPC1B in ovarian epithelial cell line IOSE80 and ovarian cancer cell lines A2780, CAOV3, and
SKOV3. (I, J) Relative protein expression of ARPC1B in infected SKOV3 cells. (K, L) Relative protein expression of ARPC1B in infected A2780 cells.
Measurement data were expressed as mean ± SD of three independent experiments. NS, Not statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001.
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survival and progression-free survival in ovarian cancer patients

(Figures 1B–D), suggesting the prognostic significance of ARPC1B.

We determined the mRNA and protein expression of ARPC1B in

ovarian tissue and ovarian cells, including ovarian epithelial cell line

IOSE80 and ovarian cancer cell lines A2780, CAOV3, and SKOV3.

The results demonstrated that ARPC1B was significantly

overexpressed in ovarian cancer tissues compared to normal

ovarian tissues, and significantly overexpressed in ovarian cancer

cell lines compared to ovarian epithelial cell line (Figures 1E–H).

ARPC1B expression was low in A2780 cells and high in SKOV3

cells (Figures 1G, H). We then artificially regulated the expression of

ARPC1B in A2780 and SKOV3 cells and confirmed through

Western Blot analysis (Figures 1I–L).
3.2 Effects of ARPC1B on the progression
of ovarian cancer cells

Using the clone formation assay and CCK-8 assay, we evaluated

the proliferation ability of ovarian cancer cells. The results of the

clone formation assay showed that knocking down ARPC1B

significantly decreased the proliferation of A2780 and SKOV3 cells,

but the effect was weaker in A2780 cells (Figures 2A, B).

Overexpression of ARPC1B significantly enhanced the proliferation

of A2780 and SKOV3 cells, but the effect was weaker in SKOV3 cells

(Figures 2C, D). The results of the CCK-8 assay were consistent with

those of the clone formation assay. Knocking down ARPC1B

significantly reduced the proliferation of A2780 and SKOV3 cells,

but the effect was weaker in A2780 cells (Figures 2E, F).
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Overexpression of ARPC1B significantly increased the proliferation

of A2780 and SKOV3 cells, but the effect was weaker in SKOV3 cells

(Figures 2G, H). We also assessed the migration ability of ovarian

cancer cells using the Transwell assay and wound healing assay. The

results of the Transwell assay showed that knocking down ARPC1B

significantly reduced the migration ability of A2780 and SKOV3 cells

(Figures 3A, B), while overexpression significantly increased the

migration ability of A2780 and SKOV3 cells, but the effect was

weaker in SKOV3 cells (Figures 3C, D). The results of the wound

healing assay were consistent with those of the Transwell assay.

Knocking down ARPC1B significantly reduced the migration ability

of A2780 and SKOV3 cells, but the effect was weaker in A2780 cells

(Figures 3E, F). Overexpression of ARPC1B slightly increased the

migration ability of A2780 and SKOV3 cells (Figures 3G, H). Overall,

our results suggest that knocking down ARPC1B reduces the

proliferation and migration ability of A2780 and SKOV3 cells, and

this effect is generally more significant in SKOV3 cells than in A2780

cells. On the other hand, overexpression of ARPC1B enhances the

proliferation and migration ability of A2780 and SKOV3 cells, and

this effect is generally more significant in A2780 cells than in

SKOV3 cells.
3.3 Effects of ARPC1B on the Wnt/b-
catenin signaling pathway in ovarian
cancer cells

To further explore the mechanism of the effects caused by

ARPC1B, the expression of key proteins (b-catenin, c-myc, and
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C

FIGURE 2

Effects of ARPC1B on the proliferation of ovarian cancer cells. (A–D) Cellular clone forming ability was evaluated by colony formation assay. (E–H)
Cell proliferation ability was assessed by CCK-8 assay. Measurement data were expressed as mean ± SD of three independent experiments. NS, Not
statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001.
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cyclin D1) in the Wnt/b-Catenin signaling pathway was evaluated.

Western Blot demonstrated that the knockdown of ARPC1B

attenuated the expression of b-catenin in SKOV3 cells, leading to

the low expression of c-myc and cyclin D1 (Figure 4A). The

overexpression of ARPC1B promoted the expression of b-catenin
in A2780 cells, causing the up-regulation of c-myc and cyclin D1,

and the promotion was abolished by the administration of b-
Catenin inhibitor XAV-939 (Figure 4B). The results of the colony

formation assay, transwell assay, wound healing assay, and CCK-8

showed that ARPC1B overexpression-induced promotion of

cellular proliferation and migration was abolished by the

administration of b-Catenin inhibitor XAV-939 (Figures 4C–F).

These data confirmed that the administration of b-Catenin
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inhibitor XAV-939 could reverse the malignant process caused by

the up-regulated ARPC1B in ovarian cancer. Our results suggested

the possibility that the overexpression of ARPC1B promoted the

expression of cell proliferation or metastasis-related proteins by the

activation of the Wnt/b-Catenin signaling pathway in

ovarian cancer.
3.4 Effects of ARPC1B on the growth of
ovarian cancer tumor in vivo

To confirm the effects of ARPC1B on the growth of ovarian

cancer tumor in vivo, xenograft tumor models were built with
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FIGURE 3

Effects of ARPC1B on the migration of ovarian cancer cells. (A–D) Cell invasion ability was detected by transwell assay. (E–H) Cell migration ability
was assessed by wound healing assay. Measurement data were expressed as mean ± SD of three independent experiments. NS, Not statistically
significant. *p < 0.05, **p < 0.01, ***p < 0.001.
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SKOV3 cells infected with shRNA1 and shRNA2 or A2780 cells

infected with ov-ARPC1B. Compared to scramble control, ARPC1B

interference markedly ameliorated the average tumor volume.

However, compared to vector, the overexpression of ARPC1B

significantly increased the average tumor volume (Figures 5A–D).

Then, we verified the expression of ARPC1B and further proved the

association between ARPC1B and Wnt/b-Catenin signaling

pathway using Western Blot. The protein expression of b-Catenin
was weakened in tumors derived from the infected SKOV3 cells

model, causing the attenuated expression of c-myc and cyclin D1

(Figures 5E). The protein expression of b-Catenin was elevated in

tumors derived from the A2780 cells model, leading to the up-

regulation of c-myc and cyclin D1 (Figures 5F). The results

suggested that the overexpression of ARPC1B promoted the

growth of ovarian cancer tumors in vivo via the activation of the

Wnt/b-Catenin signaling pathway.
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4 Discussion

Despite a decrease in incidence rates in recent years due to

increased use of oral contraceptives (17), ovarian cancer remains

the leading cause of death from gynecologic cancer, with a five-year

survival rate of only 48% (18). The cure rate of early stage ovarian

cancer can reach 90% (3), however, screening for ovarian cancer

remains challenging due to its vague and nonspecific symptoms.

The positive predictive value of routine screening methods,

including ultrasound and serum CA-125, is less than 50% with a

false-positive rate of up to 44% (19). Treatment of ovarian cancer

typically involves a combination of chemotherapy and surgery,

including surgical staging of affected tissue, tumor debulking

surgery, subsequent chemotherapy, and target therapy such as

PARP inhibitors (20, 21). However, late diagnosis and drug

resistance present significant challenges in the treatment of
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FIGURE 4

Effects of ARPC1B on the Wnt/b-Catenin signaling pathway in ovarian cancer cells. (A) The protein expression of b-catenin, c-myc, cyclin D1 in
SKOV3 cells following ARPC1B knockdown. (B) The protein expression of b-catenin, c-myc, cyclin D1 in A2780 cells following ARPC1B
overexpression. (C) Cellular clone forming ability was evaluated by colony formation assay. (D) Cell invasion ability was detected by transwell assay.
(E) Cell migration ability was measured by wound healing assay. (F) Cell proliferation ability was assessed by CCK-8 assay. Measurement data were
expressed as mean ± SD of three independent experiments. NS, Not statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001.
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ovarian cancer. To address these challenges, immediate research

priorities should focus on developing novel diagnosis marker and

therapy for ovarian cancer (22). It is well established that certain

genes are associated with an increased risk of ovarian cancer (17,

23). Mutations in the BRCA1, BRCA2, and MMR genes can

increase the risk of ovarian cancer from 1.6% to 40%, 18%, and

10%, respectively (24). To identify novel oncogenes in ovarian

cancer, we conducted a data mining analysis of public cancer

genomics databases.

In this study, we conducted a bioinformatics analysis and found

that the expression of ARPC1B was overexpressed in ovarian

cancer. Further analysis revealed that patients with high

expression of ARPC1B had a poorer overall survival and

progression-free survival compared to those with low expression.

To investigate the effect of ARPC1B on ovarian cancer progression,

we modulated its expression in ovarian cancer cell lines SKOV3 and

A2780. The results showed that overexpression of ARPC1B

enhanced cell proliferation and migration in vitro through

activation of the Wnt/b-Catenin signaling pathway. Conversely,

knockdown of ARPC1B resulted in the opposite effect.

Furthermore, administration of b-Catenin inhibitor XAV-939 was
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observed to abolish the proliferation and migration induced by

ARPC1B overexpression. Our findings in vivo confirmed that

ARPC1B overexpression facilitated the growth of ovarian cancer

xenograft tumors, while ARPC1B interference suppressed tumor

growth. This is the first report to suggest that ARPC1B is involved

in ovarian cancer progression and may act as an oncogene in

ovarian cancer.

The oncogene role of ARPC1B has been observed in other

cancers as well. The overexpression of ARPC1B in glioma cells has

been shown to maintain the malignant phenotype, including

migration, invasion, and epithelial-to-mesenchymal transition

(EMT) status (8, 11). On the other hand, knockdown of ARPC1B

in prostate cancer cells has been observed to reduce the

proliferation, migration, and invasion and cause cell cycle arrest

at the G2/M phase via the downregulation of AURKA (9). Further

research is needed to explore the effects of ARPC1B on the cell cycle

in ovarian cancer and its underlying mechanisms. In the field of

immunology, the overexpression of ARPC1B has been shown to

promote macrophage recruitment through the activation of the NF-

kB and STAT3 pathways (8). Neutrophils were defective in actin

microfilament reorganization due to a mutation in ARPC1B or
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FIGURE 5

Effects of ARPC1B on the growth of ovarian cancer tumor in vivo. Xenograft tumor models were built with infected SKOV3 cells or A2780 cells. (A–D)
The volume of xenograft tumors. The tumors were extracted on day 27 (E, F) Relative protein expression of b-catenin, c-myc, cyclin D1. Measurement
data were expressed as mean ± SD of three independent experiments. NS, Not statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001.
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inhibition of its upstream regulator, and Rac2 lose their ability to

upregulate complement receptor immunoglobulin expression (25).

ARPC1B is also associated with radiotherapy resistance, and

patients with ARPC1B deficiency have increased sensitivity to

ionizing radiation and bleomycin (11). ARPC1B has been found

to promote radiotherapy resistance and maintenance of the

mesenchymal phenotype in glioma stem cells (12). Additionally,

ARPC1B plays a crucial role in metabolism and the upregulation of

ARPC1B in the hypothalamic arcuate nucleus has been linked to the

improvement of high-fat diet induced hypothalamic inflammation

and leptin resistance (26). The exploitation of cancer metabolism is

providing new insight into cancer biology and can potentially lead

to the development of more effective targeted treatments for

patients (27).

ARPC1B encodes one of seven subunits of the human Arp2/3

protein complex (5), which is the only molecular machine that

generates branched actin networks (7), and plays a crucial role in

the regulation of various biological functions, including cell

differentiation, migration, adhesion, as well as cargo transport (6,

7). Immunohistochemical analysis has revealed that Arp2/3

subunits are overexpressed in a number of cancers, including

bladder (28), breast (29), colorectal (30), gastric (31), gliomas

(32), and lung cancers (33). In this study, we have discovered that

ARPC1B promotes the progression of ovarian cancer by activating

the Wnt/b-Catenin signaling pathway. However, it is still unclear

whether ARPC1B indirectly activates the pathway through the

Arp2/3 protein complex or whether it directly activates a known

molecule within the pathway. Further research is needed to clarify

this mechanism.

Interestingly, our results suggest that knocking down ARPC1B

leads to a more significant decrease in the proliferation and

migration abilities of ovarian cancer cells in SKOV3 cells than in

A2780 cells. Conversely, overexpression of ARPC1B leads to a more

significant increase in the proliferation and migration abilities of

ovarian cancer cells in A2780 cells than in SKOV3 cells. We

hypothesize that this difference may be due to the characteristics

of the cells, as A2780 cells are derived from primary tissues of

ovarian adenocarcinoma, while SKOV3 cells are derived from

ascites fluids of patients with ovarian serous carcinoma (34, 35).

A wound healing assay involving 10 types of ovarian cancer cell

lines showed that at 30 hours, the healing rate of SKOV3 cells could

reach over 80%, while the healing rate of A2780 cells was less than

20% (36). This suggests that active cell lines like SKOV3 may be

more suitable as models for observing anticancer effects, while less

active cell lines like A2780 may be more suitable as models for

observing cancer-promoting effects. Alternatively, adjusting the

observation time points flexibly may be necessary to ensure that

the most significant differences between different treatment groups

can be observed. However, this speculation is based on limited

experimental evidence and cannot completely rule out the

possibility of accidental circumstances. We also concern the

involvement of other proteins in a compensation process, which

could mask the effects of ARPC1B. Additionally, the effects

observed in vivo appear to be clearer than those observed in vitro,

suggesting that cellular interactions between tumor cells and the
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tumor microenvironment (TME) may play a role in vivo that is not

observable in vitro. We will continue to pay attention to these issues

in future research.

In summary, this study advances our knowledge of the

molecular pathogenesis of ovarian cancer. Further research is

needed to fully understand the mechanism by which ARPC1B

activates the Wnt/b-catenin signaling pathway in ovarian cancer

cells and to assess the potential therapeutic value of targeting

ARPC1B. Future studies should focus on examining a greater

number of tissue samples using immunohistochemistry to further

validate the diagnostic value of ARPC1B and exploring the impact

of ARPC1B on the tumor microenvironment, metabolism, drug

resistance, and radiotherapy resistance in ovarian cancer.
5 Conclusion

The expression levels of ARPC1B were found to be elevated in

ovarian cancer tissues. The overexpression of ARPC1B has been

shown to contribute to the malignant phenotype in ovarian cancer

via activation of the Wnt/b-Catenin signaling pathway. These

findings suggest that ARPC1B may be a novel target in the

arsenal to treat ovarian cancer.
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Glycolytic enzyme HK2
promotes PD-L1 expression
and breast cancer cell
immune evasion
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Immune therapies targeting the PD-1/PD-L1 pathway have been employed in the

treatment of breast cancer, which requires aerobic glycolysis to sustain breast

cancer cells growth. However, whether PD-L1 expression is regulated by

glycolysis in breast cancer cells remains to be further elucidated. Here, we

demonstrate that glycolytic enzyme hexokinase 2 (HK2) plays a crucial role in

upregulating PD-L1 expression. Under high glucose conditions, HK2 acts as a

protein kinase and phosphorylates IkBa at T291 in breast cancer cells, leading to

the rapid degradation of IkBa and activation of NF-kB, which enters the nucleus

and promotes PD-L1 expression. Immunohistochemistry staining of human

breast cancer specimens and bioinformatics analyses reveals a positive

correlation between HK2 and PD-L1 expression levels, which are inversely

correlated with immune cell infiltration and survival time of breast cancer

patients. These findings uncover the intrinsic and instrumental connection

between aerobic glycolysis and PD-L1 expression-mediated tumor cell

immune evasion and underscore the potential to target the protein kinase

activity of HK2 for breast cancer treatment.
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1 Introduction

Breast cancer is commonly diagnosed cancer and is a leading

cause of cancer-related deaths in females worldwide (1).

Accumulated evidence has indicated that the immune system

response is critical for the therapeutic efficacy and survival of

breast cancer patients. In addition, breast cancer cells exhibit

immune evasion capabilities (2, 3). Tumor cell membrane protein

programmed cell death ligand1 (PD-L1, also known as B7-H1)

binds to the receptor protein programmed cell death 1 (PD-1) on

the surface of T lymphocyte cells, resulting in the blockage of T cell

proliferation, cytokine production, and the inhibition of the

immune response (4–6). PD-L1 expression is often upregulated in

breast cancer cells and plays a role in immune evasion (7, 8). A

study on breast cancer patients showed that the abnormal

expression of PD-L1 was closely related to the reduction of

overall survival rate and poor prognosis (9). PD-1/PD-L1

immune checkpoint inhibitors have been used in various cancer

treatments, including clinical trials in breast carcinoma. However, a

portion of patients did not respond to the immunotherapy (2, 10).

Therefore, further research on the regulation of PD-L1 expression

in breast cancer cells will shed light on the mechanism underlying

breast cancer cell immune evasion and help increase immune

checkpoint therapy’s clinical effectiveness.

Nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB) is a nuclear transcription factor highly expressed in breast

cancer tissues (11, 12). In unstimulated cells, NF-kB composed of Rel

A (p65)/p50 dimers is bound by IkBa protein and sequestrated in the

cytoplasm. In response to cytokine stimulation, IkBa undergoes

rapid ubiquitylation-mediated proteasome degradation that releases

the bound, cytoplasmic NF-kB dimers (13). Then, NF-kB enters the

nucleus and promotes PD-L1 transcription (14, 15). NF-kB can be

regulated by hexokinase (HK) in glioblastoma cells (16). HK is a rate-

limiting enzyme in aerobic glycolysis, which converts glucose to the

metabolic intermediate glucose-6-phosphate (G-6-P) (17). Four

isotypes of the HK family are founded in mammals: HK1, HK2,

HK3, and HK4 (18, 19). HK2 binds to mitochondrial outer

membrane voltage-dependent anion channel 1 (VDAC1) protein

(20, 21), which enables HK2 to utilize ATP produced by

mitochondria for glycolysis. High glycolysis-produced large amount

of G-6-P disassociates HK2 from the mitochondria by a feedback-

regulated mechanism (22). The expression of HK2, which can be

induced by erbB2/Neu (23), was significantly increased in breast

cancer specimens compared to normal tissue (24). HK2 deletion

inhibited breast cancer metastasis (25). HK2 not only has the

function of a glycolytic enzyme but also has non-metabolic

functions (16, 26, 27). A recent study demonstrated that HK2 in

glioblastoma cells acts as a protein kinase and phosphorylates IkBa,
resulting in IkBa degradation and NF-kB activation for PD-L1

transcription (16). However, the relationship between HK2 and

immunoregulation in breast cancer remains unclear.

In this study, we demonstrated that aerobic glycolysis induces

PD-L1 expression in an HK2-dependent manner. HK2

phosphorylates IkBa at T291, resulting in IkBa rapid degradation

and NF-kB activation, resulting in enhanced PD-L1 transcription

and breast cancer cell immune evasion.
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2 Materials and methods

2.1 Materials

Rabbit antibodies that recognize human HK2 (Cat#ab209847;

RRID: AB2904621) and p65 (Cat#ab32536; RRID: AB776751) were

obtained from Abcam (Shanghai, China). Rabbit antibodies against

PD-L1 (Cat#ab13684; RRID: AB2687655) and a-tubulin
(Cat#ab2125; RRID: AB2619646) and mouse antibody against

IkBa (Cat#ab4814; RRID: AB390781) were purchased from Cell

Signaling Technology. Rabbit antibodies against Flag (Cat#20543-1-

AP; RRID: AB11232216) and histone H3 (Cat#ab17168; RRID:

AB2716755) were purchased from Proteintech (Wuhan, China).

Rabbit polyclonal anti-IkBa pT291 from Signalway Biotechnology

(Pearland. TX). Goat anti-rabbit IgG (H+L) secondary antibody

(Cat#A-11008; RRID: AB-143165) was obtained from Invitrogen.

G-6-P (Cat#D9434) was purchased from Sigma (Shanghai, China).

Glucose (Cat#A501991) was obtained from Sangon Biotech

(Shanghai, China). CHX (HY-12320) was purchased from

MedChemExpress (Shanghai, China). Lipofectamine 2000

(L3000015) transfection reagents and Blasticidin (Cat#R21001)

were obtained from Thermo Fisher Scientific (Waltham, MA).
2.2 Cell culture and cell transfection

Human breast cancer MCF-7 (RRID: CVCL 0031), BT-549

(RRID: CVCL 1092), SK-BR-3 (RRID: CVCL 0033), and human

embryonic kidney 293T (RRID: CVCL LF52) cells were purchased

from ATCC and maintained in Dulbecco’s modified Eagle’s

medium (DMEM) or McCoy’s 5A medium supplemented with

10% fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37°

C with 5% CO2. The transfection using Lipofectamine2000 reagent

(Invitrogen) was performed as previously described (28). For G-6-P

treatment, 1M G-6-P was mixed with 5 ml Lipofectamine2000 in

OPTI-MEM for 30 minutes at room temperature and supplemented

into the culture medium in a 6-well plate.
2.3 Subcellular fractionation

Nuclear and cytosolic fractions were prepared as previously

described (29). Briefly, Flag-HK2 or vector was transfected into

MCF-7 cells with Lipofectamine2000 reagent (Invitrogen). 48 h

later, cells were collected and suspended in 300 ml Buffer A (10 mM

HEPES, 10 mM KCL, 0.1 mM EDTA,0.1 mM EGTA, 0.15% NP-40,

protease inhibitors), shaken by hand, and placed on ice for 10 min,

13000 rpm at 4°C for 30 seconds, and the supernatant is the

cytoplasm. Then, the precipitate was suspended with 700 ml
Buffer A, left for 3min, 13000 rpm for 30 seconds at 4°C to clean

the nuclear components. Repeat the above steps 2 times to wash the

remaining pulp components from the core. Discard the supernatant

and add 70 ml CST lysis, 25% ultrasonic for 6 times, centrifuged at

13000 rpm for 20 min at 4°C. The supernatant is the

nuclear component.
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2.4 Quantitative PCR

Quantitative PCR analyses were performed as described previously

(30). Total RNA was extracted from cells using TRIzol reagent and

reverse transcribed with Maxima Reverse Transcriptase according to

the manufacturer’s instructions. Quantitative PCR analysis was carried

out using a 7500 Real-Time PCR system (Applied Biosystems) with an

SYBR Premix ExTaq kit (Bimake). The relative expression was

determined using the DDCT method of normalization. The

following primers were used for quantitative PCR, Human CD274

forward: 5’-CTGCACTTTTAGGAGATTAGATC-3’; Human CD274

reverse: 5’-CTACACCAAGGCATAATAAGATG-3’; Human b-actin
forward: 5’-TGGCACCCAGCACAATGAA-3’; Human b-actin
reverse: 5’-CTAAGTCATAGTCCGCCTAGAAGCA-3’.
2.5 Western blot analysis

Total proteins were extracted with CST lysis buffer containing

protease and phosphatase inhibitors. The protein concentration was

determined using a Bradford reagent kit (Thermo Fisher Scientific),

and proteins were separated by SDS-PAGE and transferred to

PVDF membranes. Membranes were blocked with 5% milk for 1

hour and then incubated with primary antibody at 4°C overnight.

Membranes were washed with Tris-buffered saline containing

Tween-20, incubated with secondary antibodies, and developed

with an enhanced chemiluminescence kit.
2.6 Flow cytometry analysis

Flow cytometry analysis was performed as described previously

(31). Cells were fixed with 4% paraformaldehyde for 15 minutes at

room temperature and then were washed with PBS. An anti-PD-L1

antibody was added to the cells for 1 hour at room temperature. The

cells were washed with PBS three times. A fluorescence antibody

was added to the cells for 30 minutes at room temperature. After

incubation, the cells were washed with PBS and detected by a

Beckman cytometer.
2.7 Immunoprecipitation analysis

Immunoprecipitation analysis using antibodies as described

previously (32). Briefly, cells were collected and lysed in CST lysis

buffer (20 mM Tris-HCl [pH7.5], 150 mM NaCl, 1 mM

Na2EDTA.2H2O, 1 mM EGTA, 1% TritonX-100 and 2.5 mM

Na4P2O7) containing protease inhibitor cocktail (Bimake) and

phosphatase inhibitor cocktails (Bimake). For coimmunoprecipitation,

the cell lysate supernatant was mixed with indicated antibodies overnight

at 4°C and incubated with 30 ml protein A/G agarose beads for 3 hours at

4°C on a rocking platform and then washed the beads 3 times with

NETN buffer (20 mM Tris-HCl [pH8.0], 100 mM NaCl, 1 mM EDTA,
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0.5% NP-40) and boiled with 50 ml of 2×SDS loading buffer for 10 min.

Finally, the obtained proteins were subject to Western blotting.
2.8 Lentiviral generation and infection

Lentiviral constructs expression shControl and shHK2 were co-

transfected into HEK293T cells with package plasmids with PEI

(Invitrogen) as described previously (33). Lentivirus was collected

72 hours after transfection and was filtered by a 0.45 mm filter

membrane. The filter lentivirus was infected with MCF-7 using 10

mg/ml polybrene. Screening stable expression cells by Blasticidin.
2.9 Patients and tissue samples

We retrospectively collected 220 human breast carcinoma

specimens from Shandong Second Provincial General Hospital

(Jinan, China), and obtained clinical data by reviewing the

patients’ medical histories.
2.10 Ethics statement

The studies involving human breast cancer specimens and the

database were approved by the institutional research ethics

committee of the Oncology Department, Shandong Second

Provincial General Hospital. All patients involved in the study

were conducted strictly with the national ethical policy. Informed

consent was obtained from all the patients whose tissue samples

were allowed to be used for scientific research, and patient privacy

was protected.
2.11 Immunohistochemical analysis

IHC staining was performed using the VECTASTAIN ABC kit

(Vector Laboratories) according to the manufacturer’s instructions.

Human breast cancer tissues were stained with antibodies HK2

(dilution 1:500), PD-L1 (dilution 1:400), IkBa pT291 (dilution

1:50) or nonspecific IgG (as a negative control). We quantitatively

scored the sections based on the percentage of positive cells and the

intensity of staining of the sections (34). The staining intensity is

scored as follows: 0, no signal; 1, weak; 2, moderate; and 3, strong.

The IHC scores were assessed by independent pathologists. We

then multiply the intensity and percentage of positive cells to obtain

a total score.
2.12 TIMER database analysis

TIMER (http://timer.cistrome.org/) is an estimating immune

cell infiltration database and provides comprehensive analysis and
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visualization functions of tumor infiltrating immune cells which

uses data from TCGA (35–37). In the study, we examined the

correlation between HK2 mRNA levels and CD274 mRNA levels.

Then, we examined tumor-infiltrating CD4+ T cells through

TIMER algorithm and tumor-infiltrating CD8+ T cells through

CIBERSORT algorithm in TIMER2.0 database. Spearman’s rho

value was used to evaluate the degree of their correlation. HK2

expression and breast cancer patient survival analysis was tested

using the Kaplan-Meier Plotter (https://kmplot.com/analysis/) (38,

39), which searched for breast cancer cohorts in NCBI Gene

Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and in

the Genomic Data Commons Data Por ta l (h t tps : / /

portal.gdc.cancer.gov/).
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3 Results

3.1 High glucose enhances PD-L1
expression in an HK2-dependent manner

To determine whether changes of glucose level modulate PD-L1

expression in breast cancer cells, we treated MCF-7 and BT-549

cells with different concentrations of glucose. We found that a high

glucose concentration increased PD-L1 expression (Figure 1A). In

addition, flow cytometry analyses revealed that high glucose

concentration enhanced PD-L1 expression on the surface of

MCF-7 cells (Figure 1B). This increase was decreased by

treatment with both protein synthesis inhibitor cycloheximide
B

C D E

F
G

A

FIGURE 1

High glucose enhances PD-L1 expression in an HK2-dependent manner. (A), MCF-7 and BT-549 cells were treated with the indicated glucose
concentrations for 24 h. Immunoblotting analyses were performed with the indicated antibodies. (B), MCF-7 cells were treated with low (5 mM) or high
glucose (50 mM) for 24 h. Flow cytometry analyses were performed. *p < 0.05. (C), MCF-7 and BT-549 cells were treated with the indicated glucose
concentrations for 24 h in the presence or absence of cycloheximide (CHX) (100 mg/ml). Immunoblotting analyses were performed with the indicated
antibodies. (D), MCF-7 cells were cultured with high glucose (50 mM) for 24 h with or without pretreatment with actinomycin D (1 mg/ml). (E), Real-time
PCR analyses of CD274 mRNA in MCF-7 cells and BT-549 cells cultured with the indicated glucose concentrations for 24 h. Data are the means ± SD of
3 independent experiments. ***p < 0.001. (F), MCF-7 and BT-549 cells stably expressing a control shRNA or HK2 shRNA were treated with or without G-
6-P for 12 h. Immunoblotting was performed with the indicated antibodies. (G), MCF-7 cells stably expressing a control shRNA or HK2 shRNA were
cultured in medium containing high glucose (50 mM). Immunoblotting analyses were performed with the indicated antibodies. *p<0.05.
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(CHX) (Figure 1C) and transcription inhibitor actinomycin D

(Figure 1D), suggesting extracellular glucose levels regulate PD-L1

at both transcriptional and posttranslational levels. Consistent with

this finding, quantitative PCR analyses showed that high glucose

treatment increased mRNA expression of the CD274 gene

(encoding PD-L1) in MCF-7 and BT-549 cells (Figure 1E).

Notably, depletion of HK2 by expression of its shRNA in MCF-7

and BT-549 cells reduced PD-L1 expression, and this reduction was

not rescued by supplementation with HK2 product G-6-P

(Figure 1F), suggesting that glycolytic reactions downstream of

HK2 are not involved in the regulation of PD-L1 expression.

Consistently, HK2 depletion decreased PD-L1 expression in

MCF-7 cells under high glucose conditions (Figure 1G). These
Frontiers in Immunology 056968
results indicated that high glucose upregulates PD-L1 expression in

an HK2-dependent manner.
3.2 HK2-mediated IkBa phosphorylation
reduces IkBa expression

HK2 phosphorylates IkBa T291 and promotes IkBa
degradation in glioblastoma cells (16). To define the mechanism

underlying HK2-upregulated PD-L1 expression in breast cancer

cells, we performed co-immunoprecipitation analyses and showed

that endogenous HK2 interacted with endogenous IkBa in MCF-7

and BT-549 cells (Figure 2A). In addition, high glucose-induced
B

C D

E F

A

FIGURE 2

HK2-mediated IkBa phosphorylation reduces IkBa expression. (A), MCF-7 and BT-549 cells were analyzed by immunoprecipitation and immunoblotting
analyses with the indicated antibodies. (B), MCF-7 cells stably expressing a control shRNA or HK2 shRNA were cultured in medium containing the indicated
concentrations of glucose for 24 h. Immunoblotting analyses were performed with the indicated antibodies. (C), MCF-7 cells with or without HK2 shRNA
were treated with cycloheximide (CHX) (100 mg/ml) and harvested at the indicated periods of time. Immunoblotting analyses were performed with the
indicated antibodies. (D), A control vector or a vector expression Flag-HK2 was transfected into MCF-7 cells. Immunoblotting analyses were performed with
the indicated antibodies. (E), MCF-7 cells expressing Flag-HK2, WT Flag-IkBa or Flag-IkBa T291A were treated with CHX (100 mg/ml) for the indicated
periods of time. Immunoblotting analyses were performed with the indicated antibodies. (F), WT Flag-IkBa or Flag-IkBa T291A was expressed in MCF-7 and
BT-549 cells. The cells were cultured with the indicated concentrations of glucose for 24 h.
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IkBa T291 phosphorylation and decreased IkBa expression.

Notably, this change was abrogated by HK2 depletion

(Figure 2B), which prolonged the half-life of IkBa (Figure 2C).

Consistently, Flag-HK2 overexpression considerably enhanced

IkBa T291 phosphorylation and reduced IkBa expression

(Figure 2D) and decreased the half-life of wild-type (WT) IkBa
compared to that of IkBa T291A (Figure 2E). In contrast to WT

Flag-IkBa, Flag-IkBa T291A displayed resistance to degradation in

MCF-7 and BT-549 cells upon high glucose treatment (Figure 2F).

These results indicated that HK2 phosphorylates IkBa T291
Frontiers in Immunology 067069
phosphorylation and decreases IkBa expression under high

glucose conditions.
3.3 Overexpression of HK2 induces nuclear
translocation of p65 and CD274
transcription

To determine whether aerobic glycolysis regulates the NF-kB in

breast cancer cells, we overexpressed Flag-HK2 in MCF-7 cells. We
B

C D

A

FIGURE 3

Overexpression of HK2 induces nuclear translocation of p65 and CD274 transcription. (A), Cytoplasmic and nuclear fractions of MCF-7 cells with or without
expressing Flag-HK2 were analyzed by immunoblotting analyses with the indicated antibodies. (B), MCF-7 and BT-549 cells were transfected with a control
vector or Flag-HK2 for 48 hours. A real-time PCR analysis was performed. Data are the means ± SD of 3 independent experiments. **p < 0.01, *p < 0.05.
(C), Flag-HK2, WT Flag-IkBa or Flag-IkBa T291A was expressed in MCF-7 cells. Immunoblotting analyses were performed with the indicated antibodies.
(D), SK-BR-3 cells were cultured in medium containing low (5 mM) or high glucose (50 mM) for 24 h. Immunoblotting analyses were performed with the
indicated antibodies.
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found that Flag-HK2 expression promoted the nuclear

translocation of p65 with a corresponding decrease of IkBa
expression in the cytosol (Figure 3A). In addition, HK2

overexpression considerably elevated the mRNA level of CD274

in both MCF-7 and BT-549 cells (Figure 3B) and increased

expression of WT Flag-IkBa to a higher level than that of IkBa
T291A (Figure 3C). Notably, high glucose conditions also enhanced

IkBa T291 phosphorylation and PD-L1 expression in HER2-

positive SK-BR-3 breast cancer cells (Figure 3D), suggesting that

HK2-regulated PD-L1 expression is independent of HER2

expression. These results suggested that HK2-mediated IkBa
T291 phosphorylation promotes nuclear translocation of p65 and

PD-L1 expression.
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3.4 HK2 expression is positively correlated
with CD274 expression and negatively
associated with CD8+ T cell infiltration and
survival time of breast cancer patients

To determine whether HK2 expression is correlated with PD-L1

expression in human breast cancer specimens, we analyzed 1100 breast

cancer cases in The Cancer Genome Atlas (TCGA) database. We

revealed that HK2mRNA levels were positively associated with CD274

mRNA levels (correlation: 0.169, p=1.63e-08) (Figure 4A). Analyses of

the associations between HK2 expression and immune cells infiltration

using the TIMER2.0 database (40), which showed that HK2 mRNA

levels in breast cancer specimens were inversely correlated with the
D

A B

C

FIGURE 4

HK2 expression is positively correlated with CD274 expression and negatively associated with CD8+ T cell infiltration and survival time of breast cancer
patients.(A), Correlative expression of CD274 mRNA with HK2 mRNA expression in the TCGA cohort of BRCA samples (n = 1100) was analyzed. Spearman’s
rho value is presented for correlations. (B), The correlation between HK2 mRNA expression levels and the infiltrating levels of CD4+ T cells was analyzed by
TIMER algorithm in the TIMER2.0 database in breast cancer patients specimens (n=1100). Spearman’s rho value is presented for correlations. (C), The
correlation between HK2 mRNA expression levels and the infiltrating levels of CD8+ T cells was analyzed through CIBERSORT algorithm in TIMER2.0
database in breast cancer patients specimens (n=1100). Spearman’s rho value is presented for correlations. (D), The association between HK2 mRNA
expression levels and breast cancer patient survival was analyzed using the Kaplan Meier plotter database.
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infiltration of CD4+ T cells (correlation: 0.184, p=4.91e-08) (Figure 4B)

and CD8+ T cells (correlation: 0.166, p=1.42e-07) (Figure 4C) through

TIMER algorithm and CIBERSORT algorithm analyses, respectively.

In addition, analyses of the association between HK2 expression and

breast cancer patient survival using the Kaplan Meier plotter database

(https://kmplot.com) revealed that HK2 expression levels were

inversely correlated with the survival time of breast cancer patients

(Figure 4D). These results indicated that HK2 expression is positively

correlated with CD274 expression and negatively associated with CD8+

T cell infiltration and survival time of breast cancer patients.
3.5 HK2 expression is positively correlated
with IkBa T291 phosphorylation and PD-L1
expression in human breast cancer
specimens

To further determine the clinical significance of HK2-mediated

IkBa T291 phosphorylation, thereby promoting the expression of PD-

L1 in breast cancer patients, we performed immunohistochemistry

(IHC) analyses of 220 breast cancer specimens with a specificity-

validated anti-IkBa T291antibody and antibodies against HK2 and
Frontiers in Immunology 087271
PD-L1 (16). We analyzed the correlation between HK2 expression and

clinicopathological characteristics. We found a positive correlation of

HK2 expression levels with larger tumor sizes, progesterone receptor

(PR)-negative expression, and higher Ki67 levels (Table 1). In addition,

IHC staining showed that HK2 expression levels were positively

correlated with levels of IkBa T291 phosphorylation and PD-L1

expression (Figure 5A). Statistical analysis showed that these

correlations were significant (Figure 5B). These results support the

role of HK2-mediated IkBa T291 phosphorylation in upregulated PD-

L1 expression in breast cancer specimens.
4 Discussion

Metabolic reprogramming and immune evasion are

characteristic of many cancers (41). PD-L1 is overexpressed in

various tumors, including breast cancer, leading to immune evasion

(42). PD-L1 can be regulated by different mechanisms. A recent

study showed that energy deprivation activates AMPK kinase,

which phosphorylates and promotes PD-L1 degradation (7, 43).

Our study showed that high glucose regulates the transcription of

PD-L1 in a NF-kB-dependent manner. In breast cancer cells, HK2
TABLE 1 The Correlation between HK2 Expression and Clinicopathological Characteristics in Breast Cancer Patients (n=220 cases).

Characteristic Number (%) HK2 expression p value

Total 220 Positive
(103, 46.82%)

Negative
(117, 53.18%)

Age, years

<50 64 (29.09%) 24 (10.91%) 40 (18.18%) 0.076

≥50 156 (70.91%) 79 (35.91%) 77 (35.00%)

Tumor size, cm

≤2 62 (28.18%) 20 (9.09%) 42 (19.09%) 0.021

2~5 123 (55.91%) 63 (28.64%) 60 (27.27%)

≥5 35 (15.91%) 20 (9.09%) 15 (6.82%)

Histological grades

I 23(10.45%) 7 (3.18%) 16 (7.27%) 0.151

II 127 (57.73%) 70 (31.82%) 67 (30.45%)

III 70 (31.82%) 26(11.82%) 34 (15.45%)

Lymph node status

0 138 (62.73%) 60 (27.27%) 78 (35.45%) 0.436

1-3 42 (19.09%) 22 (10.00%) 20 (9.09%)

≥4 40 (18.18%) 21 (9.55%) 19 (8.64%)

ER

Positive 156 (70.91%) 68 (30.91%) 88 (40.00%) 0.134

Negative 64 (29.09%) 35 (15.91%) 29 (13.18%)

PR

(Continued)
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TABLE 1 Continued

Characteristic Number (%) HK2 expression p value

Total 220 Positive
(103, 46.82%)

Negative
(117, 53.18%)

Positive 144 (65.45%) 60 (27.27%) 84 (38.18%) 0.035

Negative 76 (34.55%) 43 (19.55%) 33 (15.00%)

HER2

Positive 46 (20.91%) 26 (11.82%) 20 (9.09%) 0.138

Negative 174 (79.09%) 77 (35.00%) 97(44.09%)

Ki67

≥30% 110 (50.00%) 62 (28.18%) 48 (21.82%) 0.006

<30% 110 (50.00%) 42 (18.64%) 69 (31.36%)
F
rontiers in Immunology
 fron097372
ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor 2. Two-sides Chi-Square tests.
B

A

FIGURE 5

HK2 expression is positively correlated with IkBa T291 phosphorylation and PD-L1 expression in human breast cancer specimens. (A), IHC analyses
220 human breast cancer specimens with HK2, PD-L1 and IkBa T291 antibodies. Two representative tumor IHC staining images were shown. Scale
bars, 100mM. (B), IHC staining was scored, and the correlations between the expression levels of HK2, PD-L1, and IkBa T291 phosphorylation were
analyzed by Pearson correlation test. Note that some of the dots on the graphs are overlapped.
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is highly expressed and is associated with the occurrence and

progression of breast cancer (3, 44, 45). We demonstrated that

HK2 plays a key role in regulating PD-L1 in breast cancer cells in

response to high glucose (Figure 6).

Cell metabolism and gene expression are two fundamental

biological processes that can be mutually regulated (27). Recent

research demonstrated that metabolic enzymes could possess

protein kinase activity to phosphorylate protein substrates (46). For

instance, phosphoenolpyruvate carboxykinase1 (PCK1) (29),

phosphoglycerate kinase 1 (PGK1) (47–49), ketohexokinase

(KHK)-A (50, 51), pyruvate kinase M2 isoform (PKM2) (52–54),

choline kinase a (CHKa) (55, 56) phosphorylate a variety of protein
substrates thereby regulating instrumental cellular activities, such as

gene expression. Intriguingly, it was shown that fructose-1,6-

bisphosphatase 1 (FBP1) functions as a protein phosphatase to

dephosphorylate histone H3, highlighting the critical control of

protein phosphorylation and dephosphorylation by metabolic

enzymes (57, 58). We showed here that HK2, acting as a protein

kinase, phosphorylates IkBa at T291 in breast cancer cells, leading to

IkBa degradation and subsequent activation of NF-kB for

upregulation of PD-L1 transcription. Bioinformatic analysis showed

that HK2 expression is associated with upregulated CD274 mRNA

expression, reduced infiltration of CD4+ and CD8+ T cells in breast

cancer specimens, and decreased survival time of breast cancer

patients. In addition, the clinical significance of HK2-upregulated

PD-L1 expression is evidenced by the positive correlation of HK2

with IkBa T291 phosphorylation and PD-L1 expression in human

breast cancer samples. Our findings highlight the interplay between

metabolic enzymes and tumor immunity, suggesting that HK2 serves

as an effective molecular biomarker for PD-L1 antibody therapy.
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Immune evasion is essential for carcinogenesis and cancer progression.

Programmed death-ligand 1 (PD-L1), a critical immune checkpoint molecule,

interacts with programmed death receptor-1 (PD-1) on immune cells to suppress

anti-tumor immune responses. In the past decade, antibodies targeting PD-1/

PD-L1 have tremendously altered cancer treatment paradigms. Post-

translational modifications have been reported as key regulators of PD-L1

expression. Among these modifications, ubiquitination and deubiquitination are

reversible processes that dynamically control protein degradation and

stabilization. Deubiquitinating enzymes (DUBs) are responsible for

deubiquitination and have emerged as crucial players in tumor growth,

progression, and immune evasion. Recently, studies have highlighted the

participation of DUBs in deubiquitinating PD-L1 and modulating its expression.

Here, we review the recent developments in deubiquitination modifications of

PD-L1 and focus on the underlying mechanisms and effects on anti-

tumor immunity.

KEYWORDS

deubiquitinating enzymes, deubiquitination, cancer immunotherapy, post-translational
modification, programmed death-ligand-1 (PD-L1)
1 Introduction

Immune evasion is essential for carcinogenesis and cancer progression. Cancer cells have

developed multiple mechanisms to evade immune surveillance, including reducing

immunogenicity, limiting antigen recognition, inducing T cell exhaustion, and expressing

inhibitory immune checkpoint proteins (1). Among these checkpoint molecules, programmed

death-ligand 1 (PD-L1) is one of the most critical players. PD-L1 interacts with programmed
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death receptor-1 (PD-1) on immune cells, including T cells, dendritic

cells, macrophages, and natural killer (NK) cells to restrain anti-tumor

immunity (2). Elevated PD-L1 expression has been observed in

multiple cancers including cervical cancer, non-small cell lung cancer

(NSCLC), and hepatocellular cancer (3). Currently, PD-1/PD-L1-

targeting treatments have significantly affected cancer treatment

approaches, and PD-L1 expression has emerged as an indicator for

the selection of patients who are more likely to benefit from PD-1/PD-

L1 inhibitors (4, 5). Therefore, exploring PD-L1 regulatory

mechanisms is of great importance.

The expression of PD-L1 is modulated at various levels,

including epigenetic, transcriptional, post-transcriptional, and

post-translational mechanisms (3, 6–8). Deubiquitination and

ubiquitination are among the most important post-translational

modifications, which dynamically control protein degradation and

stability, thereby influencing cellular processes. Deubiquitination,

mediated by deubiquitinating enzymes (DUBs), involves the

covalent cleavage of conjugated monoubiquitin or polyubiquitin

chains from various substrates (9, 10). To date, approximately 100

DUBs have been discovered. Based on their structural homology,

DUBs can be classified into seven categories as follows: ubiquitin-

specific proteases (USPs), otubain proteases (OTUs), and JAB1/

MPN/Mov34 metalloenzymes (JAMMs), ubiquitin C-terminal

hydrolases, Machado-Joseph disease proteases, MIU-containing

novel DUB family proteases, and Zn-finger and UFSP domain

proteins. With the exception of JAMMs, all of these DUBs belong

to the cysteine protease family.

DUBs have been extensively studied in a variety of cellular

activities including cell proliferation, apoptosis, cell cycle control,

and adaptive immune response (11). Several DUBs have been

demonstrated to deubiquitinate PD-L1 and regulate its expression

in cancer (7) (Figure 1). Here, we provide a comprehensive review

of the recent advancements in deubiquitination modifications of

PD-L1, focusing on their impact and the underlying mechanisms

related to anti-tumor immunity (Table 1).
Frontiers in Immunology 027877
2 Emerging progress on the regulation
of PD-L1 by DUBs in cancer

2.1 CSN5

The constitutive photomorphogenesis 9 signalosome 5 (CSN5)

contains a conserved JAMM motif, which belongs to the JAMM

subfamily (32). On one hand, CSN5 could directly interact with a

variety of molecules, including c-Jun and p53, thereby influencing

tumor proliferation (12). On the other hand, as a deubiquitinase,

CSN5 deubiquitinates PD-L1, promoting tumor progression and

immune escape (12). One study demonstrated that the activation of

nuclear factor kB (NF-kB), further transactivates CSN5, leading to

PD-L1 deubiquitination and stabilization (12). Moreover, PD-L1

and CSN5 expression levels are positively correlated in breast

cancer (12). The application of a CSN5 inhibitor, curcumin,

results in PD-L1 destabilization, increases the cytotoxic activity of

T cells, and synergizes with anti-cytotoxic T-lymphocyte associated

protein 4 antibodies (12).

Multiple mechanisms regulate CSN5-mediated PD-L1

deubiquitination. Golgi membrane protein 1 upregulates the

expression of PD-L1 in hepatocellular cancer cells through the

CSN5-mediated deubiquitination of PD-L1, leading to the

suppression of CD8+ T cells (14). Ma et al. reported that protein

disulfide isomerase family A member 6 interacts with CSN5 and

promotes the deubiquitination of PD-L1 in pancreatic cancer cells

(15). In colorectal cancer, macrophages-derived C-C motif

chemokine ligand 5 (CCL5) promotes the activation of NF-kB
p65 activation, which binds to the CSN5 promoter, increases CSN5

expression, and upregulates PD-L1 protein level (16). In triple

negative breast cancer, long non-coding RNA GATA binding

protein 3 antisense RNA 1 stabilized PD-L1 via the miR-676-3p/

CSN5 axis (13). Interestingly, berberine, an established anti-

inflammatory drug, interacts with CSN5 and inhibits CSN5/PD-

L1 interaction, resulting in PD-L1 ubiquitination (17).
B CA

FIGURE 1

Deubiquitination of PD-L1 protein by DUBs causes increased PD-L1 stability and suppressed T-cell cytotoxicity. (A) Binding of PD-L1 on the tumor
cell surface to their receptor PD-1 on the T cell surface releases the immune suppression signal, thereby inhibiting T cell activation and cytotoxicity.
(B) The administration of specific antibodies to PD-L1/PD-1 reverses the T cell activation suppression signal, facilitating for the immune attack form
of cytotoxic T cells to target tumor cells. (C) DUBs of PD-L1 stabilize PD-L1 and protect it from ubiquitin-mediated proteolysis, promoting tumor cell
immune escape from T cell attack. The figure was created with Biorender.com. PD-L1, programmed death-ligand-1; DUB, deubiquitinating enzyme;
MHC-I, major histocompatibility complex class I; PD-1, programmed death receptor-1; TCR, T cell receptor.
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2.2 USP7

USP7 is a deubiquitinase that contains a USP domain (33), and

is aberrantly expressed in several human cancers. USP7 mediates

cell cycle control, tumor growth, chemoresistance, and tumor

immunity by regulating multiple cellular signaling pathways,

including the p53 and Wnt pathways (33, 34).

Regulatory T cells (Tregs) suppress the activity of effector T cells

and promote immune escape (35). Moreover, Tip60, a histone

acetyltransferase, promotes the acetylation and dimerization of

the key transcription factor, forkhead box P3 (Foxp3), and

regulates the activity of Tregs (35). A previous study discovered

that USP7 directly deubiquitinates Foxp3 and stabilizes it. Further,
Frontiers in Immunology 037978
USP7 depletion disrupts the immunosuppressive functions of Tregs

in vivo (36). Another investigation revealed that USP7 is a

deubiquitinase of both Tip60 and Foxp3, which enhances Tregs

functions by increasing protein abundance (37).

Emerging studies have demonstrated that USP7 expression

correlates with PD-L1 levels in cancer (18, 38). One recent

investigation observed the overexpression of USP7 and PD-L1

proteins in glioma (18). USP7 mediates the deubiquitination of

PD-L1, leading to increased PD-L1 expression. Abrogated USP7

expression promotes CD8+ T cell proliferation, elevates tumor

necrosis factor (TNF) alpha and interferon gamma (IFN-g) levels,
and inhibits glioma cell immune evasion, which can be reversed by

PD-L1 overexpression (18). Similarly, USP7 expression is
TABLE 1 Major deubiquitinating enzymes (DUBs) of PD-L1 and their biological effects in cancer.

DUBs Categories Mechanism Types of
cancer

Related
molecules Effects References

CSN5 JAMM Removes K48-linked ubiquitin
on PD-L1

Breast cancer NF-kB p65,
GATA-AS1

Inhibits anti-tumor function of T cells (12, 13)

Hepatocellular
cancer

GOLM1 Inhibits CD8+ T cell cytotoxicity (14)

Pancreatic
cancer

PDIA6 Inhibits NK cell function (15)

Colorectal
cancer

CCL5, NF-kB
p65

Inhibits CD8+ T cell cytotoxicity (16)

NSCLC BBR Inhibits intratumor T cell infiltration 17)

USP7 USP Stabilizes PD-L1 through
deubiquitination

Glioma N/A Inhibits CD8+ T cell cytotoxicity (18)

Gastric cancer N/A Inhibits T cell mediated cytotoxicity and
tumor cell proliferation

(19)

USP8 USP Removes K63-linked ubiquitin
on PD-L1

Multiple cancer
types

TRAF6, NF-kB Inhibits MHC-I-dependent antigen
presentation

(20)

Stabilizes PD-L1 through
deubiquitination

Pancreatic
cancer

N/A Inhibits CD8+ T cell cytotoxicity (21)

NSCLC LncRNA
SNHG12, HuR

Inhibits CD8+ T cell cytotoxicity (22)

USP5 USP Stabilizes PD-L1 through
deubiquitination

NSCLC N/A Inhibits CD8+ T cell cytotoxicity (23)

USP9X USP Stabilizes PD-L1 through
deubiquitination

Oral cancer N/A Inhibits T cell cytotoxicity (24)

USP20 USP Stabilizes PD-L1 through
deubiquitination

Breast cancer TINCR N/A (25)

USP21 USP Removes K48-linked ubiquitin
on PD-L1

Lung cancer N/A N/A (26)

Colorectal
cancer

STAT3, Foxp3 Promotes Treg cell function (27)

USP22 USP Stabilizes PD-L1 through
deubiquitination

NSCLC CSN5 Inhibits T cell cytotoxicity (28)

Liver cancer N/A Inhibits intratumor T cell infiltration (29)

OTUB1 OTU Removes K48-linked ubiquitin
on PD-L1

Breast cancer N/A Inhibits T cell cytotoxicity (30)

NSCLC PKP3 Inhibits CD8+ T cell infiltration (31)
PD-L1, programmed death-ligand-1; DUBs, deubiquitinating enzymes; USP, ubiquitin-specific proteases; OTU, otubain proteases; JAMM, JAB1/MPN/Mov34 metalloenzymes; NF-kB, nuclear
factor kB; GATA-AS1, GATA binding protein 3 antisense RNA 1; CSN5, The constitutive photomorphogenesis 9 (COP9) signalosome 5; GOLM1, Golgi membrane protein 1; PDIA6, protein
disulfide isomerase family A member 6; CCL5, C-C motif chemokine ligand 5; NSCLC, non-small cell lung cancer; BBR, berberine; N/A, not applicable; TRAF6, TNF receptor associated factor 6;
LncRNA SNHG12, lncRNA small nucleolar RNA host gene 12; HuR, human antigen R; TINCR, tissue differentiation inducing non-protein coding RNA; STAT3, signal transducer and activator
of transcription 3; Foxp3, forkhead box P3; PKP3, plakophilin 3; MHC-I, major histocompatibility complex class I; NK, natural killer.
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upregulated and positively associated with PD-L1 in gastric cancer.

Silencing USP7 decreases PD-L1 expression on cell surfaces, and

augments the T cell-mediated killing of cancer cells (19). However,

the regulatory relationship between USP7 and PD-L1 appears to be

context-dependent. A negative association between the USP7 and

PD-L1 expression in lung adenocarcinoma was revealed using The

Cancer Genome Atlas data (38). In addition, the targeted inhibition

of USP7 significantly increases PD-L1 protein levels in both cancer

cells and the tumor microenvironment. Furthermore, abrogated

USP7 expression inhibits the M2 macrophages transformation and

their function, and promotes IFN-g+CD8+ T cells infiltration,

augmenting anti-tumor immunity. Additionally, a USP7 inhibitor,

P5091, has shown a synergistic anti-tumor effect with a PD-1

inhibitor in vivo (38, 39).
2.3 USP8

Increasing evidence suggests that USP8 expression is

upregulated, which stabilizes multiple oncogenes, in various

cancers (22, 40). Additionally, USP8 is involved in T cell

development and homeostasis. It is also essential for thymocyte

maturation, proliferation, and the suppressive function of Treg cells

on gd T cells. Mechanistically, USP8 interacts with Gads and 14-3-

3b, forming a complex with the T cell receptor (TCR)−CD28 cluster

upon stimulation. Subsequently, USP8 is degraded via a caspase-

dependent pathway, leading to the downregulation of interleukin-7

receptor subunit alpha (IL-7Ra) levels through the Forkhead box

protein O1−IL-7Ra axis (41). Another study demonstrated that

USP8 deubiquitinates and increases the expression of the type II

transforming growth factor-b receptor (TbRII) in tumor-derived

extracellular vesicles (TEVs). The inhibition of USP8 reduces the

abundance of TbRII+ circulating TEVs and prevents CD8+ T cell

exhaustion (42).

In a screening study performed by Xiong et al., it was revealed

that DUBs-IN-2, a USP8 inhibitor, significantly increases PD-L1

protein levels in multiple cancer cell lines (20). Furthermore, a

negative association between USP8 and PD-L1 was confirmed in

lung squamous cancer tissues. Mechanistically, USP8 specifically

removes K63-linked ubiquitination, but promotes the K48-linked

ubiquitination of PD-L1, which finally promotes PD-L1

degradation. Furthermore, by deubiquitinating the K63-linked

modification of TNF receptor associated factor 6 (TRAF6), USP8

up-regulates the expression of most genes in the major

histocompatibility complex class I pathways, which limits the NF-

kB signaling pathway and inhibits the immune response and

antigen presentation. A USP8 inhibitor synergizes with anti-PD-

1/PD-L1 treatments, dramatically inhibits tumor growth, and

improves survival rates in mouse colon cancer models (20).

Conversely, a recent study showed that the expression levels of

USP8 and PD-L1 are positively correlated in pancreatic cancer.

USP8 deficiency decreases PD-L1 protein abundance by promoting

PD-L1 ubiquitination-mediated degradation. Moreover, a

combined strategy comprising a USP8 inhibitor and PD-L1

inhibitor decreases tumor growth and enhances CD8+ T cell

mediated killing of cancer cells (21).
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2.4 USP5

USP5 belongs to the USP subfamily and can specifically

recognize unconjugated polyubiquitin and cleave ubiquitin

linkages. USP5 participates in multiple cellular procedures,

including inflammatory responses (43, 44). The NLR family pyrin

domain-containing 3 (NLRP3) inflammasome is critical for defense

against microbial pathogens, and its dysregulation is implicated in

various inflammatory diseases. Notably, USP5 is involved in

regulating NLRP3 inflammasome activity, unrelated to its DUBs

function. Mechanistically, USP5 acts as a pivotal scaffold protein

recruiting a specific E3 ligase to NLRP3, promoting its

ubiquitination and autophagic degradation. In addition, in alum-

induced peritonitis mouse models, the overexpression of USP5

reduces interleukin 1 beta (IL-b) levels and polymorphonuclear

infiltration (45). Furthermore, recent studies have demonstrated

that USP5 directly deubiquitinates and stabilizes PD-L1. In NSCLC

tissues, elevated USP5 expression correlates with PD-L1 expression,

indicating of unfavorable clinical outcomes. Moreover, the

inhibition of USP5 suppresses tumor growth in vivo by

downregulating PD-L1 expression (23).
2.5 USP9X

USP 9, X-linked (USP9X) is a positive regulator of the TCR

signaling pathway. Silencing of USP9X in vivo suppresses T-cell

growth, cytokine production, and the differentiation of T helper

(Th) cells, without affecting T-cell survival and the development of

specific T-cell populations in the thymus. Moreover, USP9X

knockdown in human and mouse T-cell lines attenuates the TCR

signal ing-mediated act ivat ion of NF-kB through the

deubiquitination of Bcl10 (46). USP9X knockout also results in a

proliferation defect in both CD4+and CD8+ T cells, impairs the

development of T cells in the thymus, and downregulates proximal

TCR signaling. In vivo studies demonstrated that the T cell-specific

knockout of Usp9x elevates PD-1-expressing T cell populations,

leading to the incidence of specific autoimmune disease (47). In B

lymphocytes, USP9X is necessary for the kinase activity of protein

kinase C beta after B cell antigen receptor-dependent activation

(48). In a model of sepsis with liver injury, USP9X promotes CD8+

T cells dysfunction in the liver through the inhibition of autophagy,

which can be reversed by the conditional depletion of mechanistic

target of rapamycin (49). Moreover, USP9X directly binds PD-L1,

and USP9X reduces PD-L1 ubiquitination and increases its protein

abundance. Additionally, a positive association was found between

USP9X and PD-L1 expression in oral cancer (24).
2.6 USP20

USP20 has been linked to antiviral response, metabolic disease,

neuroinflammation, and tumor progression (50–52). Tax is a viral

oncoprotein which persistently activates NF-kB signaling and

causes adult T cell leukemia. Through deubiquitination of TRAF6
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and Tax, USP20 suppresses activation of NF-kB signaling and

inhibits proliferation of leukemia cells (53).

A recent study demonstrated that USP20 interacts with PD-L1

and deubiquitinates it, which can be regulated by a long non-coding

RNA, tissue differentiation inducing non-protein coding RNA

(TINCR). Mechanistically, LncRNA TINCR acts as a competing

endogenous RNA, which promotes stability of USP20 mRNA and

upregulates the expression of PD-L1 in breast cancer (25).
2.7 USP21

Numerous studies have implicated USP21 in regulating cancer

cell stemness, tumor growth, and metastasis (26, 54). In regard to

immune regulation, Yang et al. have demonstrated a direct

interaction between USP21 and PD-L1, whereby USP21 removes

polyubiquitin chains from PD-L1, leading to its stabilization.

Notably, the expression of USP21 is upregulated in lung cancer

tissues, showing a positive association with PD-L1 protein levels

(26). Additionally, USP21 has a role in regulating Treg cell

functions (27). Li et al. demonstrated that USP21 suppresses the

transformation of Th1-like Treg cells by deubiquitinating and

stabilizing Foxp3. Mouse models of Usp21 depletion in Tregs

exhibit spontaneous T cell activation and the expanded

transformation of Tregs toward the Th1-like phenotype (55).

Furthermore, emerging evidence suggests that USP21 suppresses

antiviral responses in various immune cell types, including mouse

embryonic fibroblasts and bone marrow-derived dendritic cells.

This is achieved through the binding and deubiquitination of

retinoic acid-inducible gene-I, which restricts type-I interferon

production and antiviral immune defense (56). Notably, Usp21-

knockout mice display enhanced resistance to vesicular stomatitis

virus infection with increased production of interferons (56).
2.8 USP22

USP22, of which expression levels are elevated in various cancer

types, is correlated with disease progression and an unfavorable

prognosis (57, 58). This DUB plays a critical role in regulating PD-

L1 stability. On one hand, USP22 directly deubiquitinates PD-L1.

On the other hand, USP22 interacts with CSN5 and deubiquitinates

it, thereby facilitating the interaction between PD-L1 and CSN5

(28). Moreover, USP22 and PD-L1 protein levels are positively

correlated in NSCLC samples. The inhibition of USP22 enhances

the cytotoxicity of T cells and reduces tumor growth (28). Another

study revealed that USP22 interacts with the C terminus of PD-L1

and deubiquitinates it. In mouse models of hepatocellular

carcinoma, knockout of Usp22 increases the infiltration of tumor-

infiltrating lymphocytes, augments anti-tumor immunity, and

synergizes with anti-PD-L1 treatments and chemotherapy (29).

Furthermore, USP22 plays a part in regulating the tumor

microenvironment. The knockout of USP22 in pancreatic ductal

adenocarcinoma cells results in reduced myeloid cells infiltration

and increased tumor infiltration of NK cells and T cells, leading to a

synergistic response with combined immunotherapy (59). USP22 is
Frontiers in Immunology 058180
also involved in regulating invariant NK T (iNKT) cells. USP22

suppression inhibits the development of iNKT cells, and attenuates

iNKT1 and iNKT17 cell differentiation, while favoring iNKT2

polarization (60).
2.9 OTUB1

OTUB1, a member of the OTU superfamily, exhibits a preference

for deubiquitinating K-48 and K-63 ubiquitin chains. Its involvement

in cancer development and progression has also been observed (61).

Extensive research has highlighted the role of OTUB1 in modulating

immune cell responses. Depletion of OTUB1 activates NK cells and

CD8+ T cells, leading to increased tumor infiltration of NK cells, DCs

and T cells. Additionally, OTUB1 depletion enhances the cytokine

production and the proliferation of CD4+ T cells (62, 63).

Moreover, OTUB1 has been reported to specifically interact

with of PD-L1, wherein it removes the K48-linked ubiquitin chain

from PD-L1 and stabilizes it. Functionally, OTUB1 depletion

decreases PD-L1 expression, and increases the cytotoxicity of

human peripheral blood mononuclear cells against tumor cells.

The expression of OTUB1 is positively correlated with PD-L1

expression in breast cancer samples. Furthermore, OTUB1

depletion increases CD8+ T cell infiltration, elevates serum IFN-g,
and augments anti-tumor immune responses in mouse models (30).

Liu et al. reported that circIGF2BP3 acts competitively to upregulate

plakophilin 3 (PKP3) expression, which further stabilizes OTUB1

mRNA. CircIGF2BP3/PKP3 suppression synergized with anti-PD-1

treatment in mouse models of lung cancer (31).
3 Discussion

Over the past few decades, the application of anti-PD-1/PD-L1

treatments has significantly improved the clinical prognoses of patients

with cancer. Nevertheless, the clinical response to single-agent anti-PD-

1/PD-L1 antibody therapy is limited to only a subset of patients (64,

65). Combinatorial treatments comprising anti-PD-1/PD-L1

antibodies with antiangiogenic drugs, chemotherapy, and targeted

therapy have resulted in more promising clinical outcomes (66). As

described above, several DUBs are participated in deubiquitination

modifications of PD-L1, and regulated its expression. Thus, developing

small-molecule inhibitors targeting these DUBs and the combination

therapy represent an attractive therapeutic strategy.

However, despite the importance of these reported DUBs, there

are still questions remain to be elucidated. One such question is

determining which specific DUB plays the predominant role in

regulating PD-L1 expression within a particular type of cancer.

Second, although some studies have demonstrated synergistic

efficacy of DUBs inhibitors with anti-PD-1/PD-L1 treatments,

further exploration through clinical trials is needed to validate

these findings and assess their potential for clinical application. In

recent years, multiple selective inhibitors of DUBs, including

inhibitors of USP7, USP8, and USP9X, have been developed (11).

Accordingly, further investigation of these inhibitors in clinical

trials is required.
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Post-translational modifications
and immune responses in
liver cancer
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Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University,
Tianjin, China
Post-translational modification (PTM) refers to the covalent attachment of

functional groups to protein substrates, resulting in structural and functional

changes. PTMs not only regulate the development and progression of liver

cancer, but also play a crucial role in the immune response against cancer.

Cancer immunity encompasses the combined efforts of innate and adaptive

immune surveillance against tumor antigens, tumor cells, and tumorigenic

microenvironments. Increasing evidence suggests that immunotherapies,

which harness the immune system’s potential to combat cancer, can

effectively improve cancer patient prognosis and prolong the survival. This

review presents a comprehensive summary of the current understanding of

key PTMs such as phosphorylation, ubiquitination, SUMOylation, and

glycosylation in the context of immune cancer surveillance against liver

cancer. Additionally, it highlights potential targets associated with these

modifications to enhance the response to immunotherapies in the treatment

of liver cancer.

KEYWORDS

hepatocellular carcinoma, post-translational modifications, immune surveillance,
phosphorylation, ubiquitination, SUMOylation, glycosylation
Introduction

Liver cancer is one of the most common malignancies worldwide and directly causes

nearly one million deaths each year (1). According to global cancer statistics in 2020, liver

cancer is the sixth most diagnosed cancer and the third most common cause of cancer

death (2). In 2020, about 900,000 people worldwide were diagnosed with liver cancer and

about 800,000 died of liver cancer. It is estimated that the number of liver cancer diagnoses

could reach 1.3 million by the year of 2040 (3). Primary liver cancer mainly includes four

types: hepatoblastoma (HB), hepatocellular carcinoma (HCC), cholangiocarcinoma

(CCA), and combined hepatocellular carcinoma and cholangiocarcinoma (cHCC-CCA)

(4). HCC is the main type of primary liver cancer, accounting for approximately 75% of the
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total number of liver cancer cases worldwide. CCA is the second

most common primary liver cancer, of which intrahepatic

cholangiocarcinoma (ICC) is a highly heterogeneous primary

epithelial liver cancer (5). While novel therapeutic approaches

have demonstrated notable clinical efficacy or promising

prospects in cancer treatment (6), the current primary approach

for liver cancer therapy is still surgical intervention.

Protein translational modifications (PTMs) are covalent

attachment of functional groups to protein substrates and can

alter the activity, stability, protein interaction, and intracellular

localization of target proteins (7). These modifications involve

addition of chemical groups (methylation, acetylation,

phosphorylation, etc.), addition of polypeptide chains

(ubiquitination, SUMOylation, etc.), amino acid modification

(racemization, citrullination, etc.), and addition of complex

molecules (palmitoylation, oxidation, glycosylation, etc.) (8, 9).

PTMs, whether direct or indirect, have a significant impact on the

immunogenicity of cancer cells, thereby affecting their recognition

and susceptibility to immune system. Furthermore, these

modifications also play a crucial role in shaping the response of

various immune cells, influencing their interactions with liver

tumor cells within the microenvironment. PTMs exert a

significant influence on the initiation, progression, immune

evasion, and immunotherapy of cancers. By investigating PTMs,

we can gain valuable insights into the mechanisms governing

cancer-immune cell interactions and potentially develop novel

strategies to enhance anti-cancer immune responses.

Acetylation and methylation have received extensive attention

in previous reviews (10, 11). In this review, our primary focus will

be the profound influence of phosphorylation, ubiquitination,

glycosylation, and SUMOylation on liver cancers, with a

particular emphasis on their immunological significance.
Phosphorylation

Phosphorylation, a highly conserved type of PTM (12),

primarily targets serine, threonine, or tyrosine residues, and

involves a reversible reaction mediated by protein kinases and

protein phosphatase (13). This essential modification plays a

pivotal role in numerous biological processes, including protein

interactions, stability, signal transduction, transcriptional

regulation, and intracellular localization (14).

T cells play a central role in the immune system and tumor

immune response. Some immunotherapies that target T cells, such

as CAR (Chimeric Antibody Receptor)-T cell therapy and

checkpoint inhibitors (15, 16), have shown promising results in

cancer immunotherapy. T-cell development, differentiation, and

activation are intricately regulated by phosphorylation events which

target various transcription factors. These phosphorylation events

play a critical role in dictating T cell fates and functions. The

phosphorylation of specific transcription factors, such as signal

transducer and activator of transcription 1 (STAT1) in Th1 cells,

STAT6 in Th2 cells, and STAT3 in Th17 cells, contributes to their
Frontiers in Immunology 028584
differentiation and functional specialization (17–21). In patients

with HCC, Th1 cytokines of serum level are often suppressed, while

Th2 cytokines are frequently elevated (22). Interleukin-6 (IL-6), one

of the Th2 cytokines, has been observed to exhibit a negative

correlation with overall survival rate and can independently serve

as a predictive factor for survival. Conversely, increase of Th1

cytokine responses have been linked to favorable immunological

effects on the prognosis of HCC (23). An increase in Th1-related

cytokines and a decrease in Th2-related cytokines was observed in a

study on primary HCC after radiofrequency ablation (RFA)

treatment (22). Th17 cells, a specific subset of T-helper cells, play

a pivotal role in immune responses through the production of IL-17

(24, 25). IL-17 acts on HCC cells and triggers the activation of AKT

(protein kinase B) through phosphorylation. This activation leads to

the production of IL-6 by HCC cells (26). In patients with HCC,

there is an elevated presence of Th17 cells compared to healthy

individuals, and as the severity of HCC malignancy worsens, the

levels of Th17 cells further escalate (27).

Macrophages are the main effector cells in chronic

inflammation, a known driver of carcinogenesis (28). Serine/

threonine-protein kinase 4 (STK4) was considered as a pivotal

tumor suppressor gene in HCC. Notably , s ignificant

downregulation of STK4 expression observed in macrophages

isolated from HCC patients. This decrease in STK4 expression

shows a strong inverse correlation with the levels of IL-1 receptor-

associated kinase 1 (IRAK1). Through its interaction with IRAK1

and subsequent phosphorylating it, STK4 exerts inhibitory effects

on the secretion of proinflammatory cytokines, including IL-6, IL-

1b, and tumor necrosis factor-a (TNF-a), particularly following the
activation of Toll-like receptor 4/9 (TLR4/9). This implies that the

regulatory mechanism mediated by STK4 attenuates the chronic

inflammatory response and significantly reduces the probability of

HCC development (29).

Macrophages can be categorized into two subpopulation based

on their distinct functions: M1 macrophages, which promote

inflammatory responses, and M2 macrophages, which support

tissue repair and cell proliferation (30). In liver cancers,

macrophages tend to exhibit excessive M2-like polarization,

thereby suppressing immune responses against cancer cells.

Recent findings highl ight the importance of protein

phosphorylation in the cancer microenvironment for macrophage

polarization (31). Sirtuin 1 (SIRT1) has been shown to enhance the

infiltration of M1-like macrophages and inhibit HCC metastasis.

This effect is mediated by SIRT1’s ability to enhance nuclear factor

kappa-B (NF-kB) activation and promote the phosphorylation of

p65, IkB, and IkB kinase (IKK) (22). Zinc finger protein 64

(ZFP64), a gene upregulated in HCC patients with unfavorable

prognosis in anti-PD1 treatment, undergoes direct phosphorylation

at S226 by protein kinase Ca (PKCa), leading to its nuclear

translocation and the transcriptional activation of macrophage

colony-stimulating factor (CSF1). CSF1 derived from HCC cells

further promotes macrophage polarization towards M2 phenotype.

NK (natural killer) cells earned their name due to their

remarkable ability to “naturally” eliminate cancer cells without
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the need for prior sensitization, and without being restricted by the

major histocompatibility complex (MHC) (32). Upon entering the

tumor microenvironment (TME) or encountering cancer cells, NK

cells can eliminate cancer cells through self-destruction

mechanisms (perforin/granzyme mediated) or +antibody-

dependent cell-mediated cytotoxicity (ADCC) mechanism (33). In

contrast to the NK cells found in peripheral blood, the liver harbors

two distinct types of NK cells: one shares similarities with

circulating NK cells (cNK cells), while the other primarily resides

within liver tissue (trNK cells) (34). Despite various pathways easily

active NK cell cytotoxicity, the killing capacity of NK cells can also

be easily inhibited, especially within the TME of HCC. The PI3K/

AKT/mTOR (phosphoinositide 3-kinase, protein kinase B, and

mammalian target of rapamycin) signaling pathway plays a

crucial role in the development of HCC and the immune

response of NK cells against HCC. Aberrant activation of the

PI3K/AKT/mTOR pathway confers HCC cells with enhanced

metabolic capacity, promoting their proliferation and metastasis

(35). The development and cytotoxic capability of NK cells also

heavily rely on the activation of the PI3K/AKT/mTOR signaling

pathway (36). PI3K consists of a catalytic subunit, p100, and a

regulatory adapter subunit, p85. The p85 subunit is responsible for

linking p100 to activated receptor tyrosine kinases (RTKs), thereby

activating PI3K and initiating the PI3K/AKT/mTOR signaling

pathway (37). Tim-3 is one of the checkpoint molecules expressed

on the surface of NK cells. Its expression levels are significantly

elevated in HCC. Bind with phosphatidylserine induces

phosphorylation of Tim-3, which further interferes with PI3K/

AKT/mTOR pathway in NK cells. By competitively binding to

p85, phosphorylated Tim-3 reduces the opportunity for PI3K p110

to bind with p85 and leads to decreased activity of the downstream

AKT/mTOR pathway, thereby suppressing the activity of liver NK

cells, including cNK and trNK (38).
Ubiquitination and SUMOylation

Ubiquitination is a posttranslational modification wherein

ubiquitin molecules are covalently attached to target proteins

(39). This process relies on the coordinated action of three key

adaptor proteins: ubiquitin activating enzyme (E1), ubiquitin

conjugating enzyme (E2), and ubiquitin ligase (E3) (40). The

canonical ubiquitination pathway involves the attachment of

ubiquitin lysine amino acids (Ub) to glycine residues located at

the C-terminus of target proteins, while the atypical pathways

involve the conjugation of ubiquitin to cysteine, serine, and

threonine residues on target proteins (41). Ubiquitination can

facilitate various downstream responses, including degradation,

alterations in activity, changes in subcellular localization, or

modulation of protein-protein interactions (42–44). Modulating

ubiquitin levels has been shown to have a profound impact on T cell

activation and can effectively enhance antitumor responses, as

indicated by reference (45). Here, we will shift our focus towards

the impact of ubiquitination on other immune cells.
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IL-2, IL-15, and IL-21 are members of the common gamma

chain receptor family cytokines. While they share numerous

similarities, these cytokines also show distinct functions within

NK cells. IL-15 is primarily involved in promoting NK cell

maturation, whereas IL-2 enhances NK cell cytotoxicity (32). IL-

21 facilitates NK cell proliferation without causing telomere

shortening (46). However, the mechanisms underlying the

discriminatory capacity of NK cells among these closely related

cytokines, despite their shared receptors, have not been fully

elucidated. IL-15 serves as a critical regulator in the development

and maturation of NK cells (47), and it has demonstrated the ability

to restore NK cell dysfunction that is impaired by HCC (48).

Ubiquitination and deubiquitination processes also play vital roles

during IL-15-mediated NK cell maturation. Similar to IL-2, IL-15

binds to its receptor trigger not only phosphorylation, but also

ubiquitination of AKT. Otub1, a deubiquitinases enzyme, is

involved in inhibiting the ubiquitination of AKT. This negative

regulation exerted by Otub1 serves as a checkpoint mechanism,

influencing the function of NK cells (49). IL-2 and IL-15 share two

identical chains in their receptors, and their downstream effects in

NK cells are highly similar. However, Otub1 has minimal impact on

the activation of AKT by IL-2. Investigating the differential

ubiquitination patterns of downstream molecules may provide

new insights and potential avenues for fully understanding the

function and signal transduction mechanism of these common

gamma chain cytokines.

Although the application of CAR-T cell therapy in liver cancer

is still in its early stages, it holds tremendous promise for future

advancements. A major hurdle in the effectiveness of CAR-T cell

therapy lies in the rapid ubiquitination and subsequent degradation

of CAR upon interaction with tumor antigens. This phenomenon

presents a significant challenge in maintaining the sustained efficacy

of CAR-T cell therapy. Fortunately, recent studies have shown that

by introducing specific mutations that target the amino acid

residues involved in CAR ubiquitination, the long-term killing

capacity of CAR-T cells can be significantly improved (50).

Ubiquitination is also linked to other protein or gene regulatory

mechanisms. For instance, in a study focusing on Treg cells in HCC,

it was observed that the expression level of long noncoding RNA

lnc-EGFR (Epidermal Growth Factor Receptor) was elevated,

showing a positive correlation with tumor size and EGFR/

forkhead box protein 3 (Foxp3) expression levels. By directly

binding to EGFR protein, lnc-EGFR preventing its ubiquitination

and subsequently stabilizing EGFR, thereby enhancing Treg

function and promoting the progression of HCC (51).

SUMO (or SUMOylation), which stands for Small Ubiquitin-

like Modifier, is a protein modification process that commonly

targets lysine residues, involving the attachment of small regulatory

peptides of approximately 11 KDa. Like ubiquitin, this post-

translational modification regulates various biological processes

such as cell division, DNA replication/repair, signal transduction,

and cell metabolism (52). HCC-derived exosomes play a significant

role in remodeling the TME and promoting HCC progression (53).

One key factor involved in this process is the pyruvate kinase M2
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isoform (PKM2) found within these exosomes (54, 55). HCC-

derived exosomal PKM2 not only induces metabol ic

reprogramming in monocytes but a l so t r igger s the

phosphorylation of nuclear STAT3. This phosphorylation leads to

the up-regulation of differentiation-associated transcription factors,

promoting M2-like macrophage differentiation. The SUMOylation

of PKM2 is responsible for its plasma membrane targeting and

subsequent excretion through interaction with arrestin-domain-

containing protein 1 (ARRDC1). Additionally, the cytokines and

chemokines secreted by macrophages further reinforce the

association between PKM2 and ARRDC1 in HCC. This

reinforcement occurs through a CCL1-CCR8 axis-dependent

mechanism, ultimately promoting the excretion of PKM2 from

HCC cells. Consequently, a feed-forward regulatory loop is formed,

contributing to tumorigenesis (55).
Glycosylation

Glycosylation is a form of co-translational and post-

translational modification that involves the attachment of glycans

to proteins. It is primarily categorized into two types: N-chain

glycosylation, where the glycan is linked to asparagine residues, and

O-chain glycosylation, where the glycan is attached to oxygen atoms

on the hydroxyl groups of serine or threonine amino acid residues

within protein (56). Many tumor-associated antigens related to

HCC are highly glycosylated proteins, and their glycosylation

profiles undergo significant changes in HCC patients (56).

Aberrant glycosylation not only promotes the proliferation and

metastasis of HCC but also plays an important role in immune

recognition and immune escape.

Abnormally expressed alpha-fetoprotein (AFP) in HCC has an

inhibitory effect on tumor immune surveillance. It has long been

observed that AFP in HCC undergoes different glycosylation

compared with normal AFP (57). Tumor-derived AFP exhibits

stronger immunosuppressive effects, characterized by lower

dendritic cell maturation and decreased T cell activation (58).

Recent studies using single-cell metabolic profiling and single-cell

energetic metabolism by profiling translation inhibition techniques

have found that HCC-derived AFP binds significantly more

polyunsaturated fatty acids than normal AFP. Phagocytosis of

HCC-derived AFP reduced fatty acid uptake by dendritic cells,

increased glucose uptake and metabolism, decreased expression of

co-stimulatory molecules, and increased expression of immune

checkpoint molecules such as PD-L1. These mechanisms help the

tumor evade T cell mediated immune surveillance (59).

IL-12 is a cytokine of significant importance in promoting T cell

differentiation and IFN-g production. IL-12 not only activates CD8+

T cells and NK cells in HCC tumors (60) but also enhances the

cytotoxicity of Glypican-3-targeting CAR-T cells (61). IL-12 (p70)

is composed of two subunits, p30 and p40. The free p40 subunit can

act as a negative regulator by blocking the binding of IL-12 to its

receptor, thereby inhibiting the biological activity of IL-12 (62). The

IL-12 cytokine and its family members are glycoproteins (63). Post-
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translational glycosylation is a critical step in regulating IL-12

secretion (64). Through molecular biology techniques, mutations

in the N-glycosylation site (N220) of the p40 subunit, a component

of the Th1 cytokine IL-12, have been shown to reduce the secretion

of free p40. However, these mutations have minimal impact on IL-

12 secretion. As a result, they significantly enhance long-term CD8+

T cell responses and provide protection against tumor attacks.

These mutations can be utilized as adjuvants to generate long-

term memory T cells (65).

Keratinocyte-associated protein 2 (KRTCAP2) is a critical

protein involved in N-glycosylation processes, which play a

fundamental role in the modification of proteins with complex

sugar molecules in various cellular contexts. In HCC, there is a

notable upregulation of KRTCAP2 expression, highlighting its

potential significance in HCC pathogenesis and progression.

Interestingly, high levels of KRTCAP2 are associated with a

decreased infiltration of CD8+ T cells and CD68+ macrophages,

both in the tumor region and the surrounding stroma. Furthermore,

the expression level of KRTCAP2 shows a negative correlation with

the expression of PD-L1 in HCC (66). The interaction between PD-

1 and PD-L1 serves as a critical immune checkpoint and has gained

significant recognition as a prominent target for cancer

immunotherapy. Elucidating the precise role of KRTCAP2 in the

modulation of the TME holds considerable scientific significance

and translational potential for overcoming immunosuppression

in HCC.
Summary and discussion

Liver cancer is a common malignant tumor, which poses a great

threat to human health and life. Protein posttranslational

modification and immune response play an important role in the

development of liver cancer, the immune surveillance against liver

cancer, and the treatment of patients with liver cancer. Figure 1

summarized a mechanism by which PTM contributed in cytokine

mediated cancer immune surveillance. Numerous studies have

shown promising therapeutic potential in targeting PTM for liver

cancer treatment. STT3A is a endoplasmic reticulum-associated N-

glycosyltransferase, which glycosylates PD-L1 and maintain its

stability (67). One notable finding is that spermine, a natural

polyamine compound, can activate b-catenin, a protein involved

in cell adhesion and signaling pathways. Activation of b-catenin
leads to the transcriptional expression of PD-L1 and N-

glycosyltransferase STT3A (68). Targeting STT3A might be a

potential strategy for improving the response to checkpoint

inhibitors in HCC patients.

In the treatment of HCC, certain drugs have been observed to

induce alterations in glycosylation. Sorafenib, for instance, has

been identified as capable of modifying the glycosylation patterns

of multiple proteins in HCC. Further research is needed to

determine whether these changes can be targeted to enhance

the efficacy of this HCC therapeutic drugs (69). Additionally,

researchers are exploring novel approaches that focus on the
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aberrant glycosylation sites of tumor-associated antigens in HCC.

These strategies involve the utilization of antibodies or antigen

specific T cells with the aim of converting specific tumor-

associated antigens into tumor-specific antigens. Although

these studies are still in their early stages, promising preclinical

prospects have already emerged (70). Some studies aiming to

establish PTM based immunotherapy strategies against HCC

were listed in Table 1.

In this review, we summarized the current knowledge of post-

translational modification of protein in liver cancer cells, tumor

infiltrated immune cells, and the microenvironment of liver cancer.

Unraveling the intricate network of post-translational modifications

in liver cancer holds great promise for advancing our understanding

of this disease and undoubtedly contributes to the development of

more effective and personalized treatments.
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TABLE 1 Examples of PTM targeting immunotherapy studies for HCC.

Drug Immune
cells PTM Treatment rationale References

TLR3 agonist with
sorafenib

DCs Phosphorylation Decreasing phosphorylation of AKT, MEK1/2, ERK1/2 and played an anti-HCC role. (71)

MY1340 DCs Phosphorylation
Inhibiting tumor growth in vivo by blocking the VEGF-NRP-1 axis through
phosphorylation of p65 NF-kB and ERK1/2.

(72)

Caffeic acid (C9H8O4)
Macrophages,

T cells
Ubiquitination

Inducing ubiquitination-mediated mortalin degradation to inhibit angiogenesis and
reverse sorafenib resistance.

(73)

DMC CD8+T cells Ubiquitination
Promoting the ubiquitin degradation of PD-L1 in HBx-induced HCC and showing an
anti-hepatoma function.

(74)

Targeting MUC1
Glycosylation

CAR-T cells Glycosylation Targeting MUC1 aberrant O-glycosylation can control HCC growth. (75)
MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; MEK, MAPK/ERK kinase; HCC, hepatocellular carcinoma; VEGF, vascular endothelial growth factor; NRP,
neuropilin; NF-kB, nuclear factor kappa-B; DMC, 2,5-dimethylcelecoxib; HBx, hepatitis B virus X; MUC1, Mucin1.
FIGURE 1

Cytokine relevant post-translational modification and immune surveillance. IL-15 active PI3K/AKT/mTORC1 pathway through phosphorylation and
ubiquitination. Phosphorylated Tim-3 competitively inhibits this pathway, while Otub1 downregulates it by deubiquitination. Glycosylation of p40
increases the secretion of free p40, leading to the attenuation of IL-12 signaling.
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E3 ubiquitin ligases and
deubiquitinases in bladder
cancer tumorigenesis
and implications for
immunotherapies
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Yasheng Zhu1,2*‡ and Chuanliang Xu1*‡
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With the rapidly increasing incidence of bladder cancer in China and worldwide,

great efforts have been made to understand the detailed mechanism of bladder

cancer tumorigenesis. Recently, the introduction of immune checkpoint

inhibitor-based immunotherapy has changed the treatment strategy for

bladder cancer, especially for advanced bladder cancer, and has improved the

survival of patients. The ubiquitin–proteasome system, which affects many

biological processes, plays an important role in bladder cancer. Several E3

ubiquitin ligases and deubiquitinases target immune checkpoints, either

directly or indirectly. In this review, we summarize the recent progress in E3

ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and further

highlight the implications for bladder cancer immunotherapies.

KEYWORDS

bladder cancer, E3 ubiquitin ligase, deubiquitinases, immunotherapy, tumorigenesis
1 Introduction

Bladder cancer (BCa) is one of the most common types of cancer, with 550,000 new

cases and 200,000 deaths annually (1). While the 5-year survival rate of all bladder cancer

patients is 77.1%, the rate drops dramatically to 36.3% for regional disease and 4.6% for

metastatic disease (2). Therefore, adjunctive therapy is needed to improve the prognosis of

invasive and metastatic diseases. Cisplatin and gemcitabine combination chemotherapy

has been applied for advanced bladder cancer (3); however, no major improvements in

survival rate have been achieved until recently. The 5-year survival rate for patients with

metastasis is 15% (3).

Immunotherapy, especially immune checkpoint inhibitors, is widely used for the

treatment of different cancers (4, 5). BCa has been reported to be relatively sensitive to

immunotherapy (6, 7). In May 2016, atezolizumab was the first PD-L1 inhibitor approved
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by the Food and Drug Administration (FDA) for bladder cancer (8).

Since then, another four immune checkpoint inhibitors targeting

PD-1 or PD-L1 for locally advanced and metastatic bladder cancer,

including Nivolumab, Pembrolizumab, Avelumab, and

Durvalumab have been approved by FDA for bladder cancer (8–

10). However, owing to a lack of response, only a small group of

patients with BCa can benefit from these agents (11). Taking PD-L1

as example, many studies have verified that PD-L1 expression is

correlated with anti-PD-1/PD-L1 treatment, where high PD-L1

expression is equal to a good response to anti-PD-1/PD-L1

treatment (12). Thus, exploring the mechanism and identifying

other reagents that can improve the efficacy of immune checkpoint

blockade (ICB) is urgently needed (13). A series of mechanisms of

PD-L1 regulation by post-translational modifications have been

revealed in different cancers among recent research, including

bladder cancer (14–16).

Ubiquitination and deubiquitinating modifications are highly

conserved posttranslational modifications (PTMs) in mammals that

play important roles in many biological processes and diseases,

including cancers. The ubiquitin-activating enzyme E1, ubiquitin-

conjugating enzyme E2, and ubiquitin ligase E3 contribute to the

step-by-step process of ubiquitination. Ubiquitination involves the

transfer of the C-terminal glycine of ubiquitin to the -NH2 group of

t he sub s t r a t e l y s i n e r e s idue . Monoub iqu i t i n a t i on ,

multiubiquitination, and polyubiquitination, which lead to

proteolysis and signal transduction, are the three main types of

ubiquitination (17). On the other hand, deubiquitinases (DUBs) can

reverse ubiquitination by removing ubiquitin chains, thereby

preserving the expression of the substrate protein while

preventing ubiquitination. Most elements of biological activity

depend on the interplay between ubiquit ination and

deubiquitination (13).

Numerous studies have demonstrated that the ubiquitin

proteasome system (UPS) is related to the occurrence and

progression of bladder cancer and that E3 ubiquitin ligases may

be promising therapeutic targets (18–21). Meanwhile, the

interaction between ubiquitination modification and immune-

related molecules is emerging as a crucial regulatory mechanism

and has recently draws great research interest (16, 22–25).

In this review, we summarize recent findings on protein

ubiquitination and deubiquitinating enzymes in bladder cancer

tumorigenesis and progression, as well as recent advances in the

regulation of cancer immunotherapy effects.
2 Roles and mechanisms of E3
ubiquitin ligases in bladder cancer

2.1 The category of E3 ubiquitin ligases

Over 600 types of E3 ubiquitin ligases involved in the

degradation of proteins have been discovered in humans (26). E3

ligases are classified into three subtypes: the interesting new gene

(RING)-type, the homologous to E6AP carboxyl terminus (HECT)-

type, and the RING-between-RING (RBR)-type (27). RING E3
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ligases contain multiple subtypes, including monomers (c-CBL,

E4B), homodimers (cIAP, CHIP), heterodimers (MDM2-

MDMX), cullin-RING ligases (CRLs), and other RING E3s (28).

CRLs are comprised of multiple subunits, which consist of four

components: a cullin (CUL1,2,3,4A,4B,5,7,9), an adaptor protein, a

substrate-recognizing receptor, and one RING protein (29–32).

Moreover, SCF is the largest complex, consisting of SKP1,

Cullin1, RBX1, and F-box proteins (29, 33). HECT structures are

divided into three subfamilies: NEDD4 subfamily, HERC subfamily,

and other HECT E3 ligases (34). RBRs are grouped into the Ariadne

family and other RBRs (35). In particular, E3 ubiquitin ligases

determine substrate specificity in the ubiquitination process.
2.2 Roles of E3 ubiquitin ligases in
bladder cancer

In addition to maintaining the balance of intracellular proteins,

E3 ligases are involved in multiple non-degradable functions

including intracellular transport, autophagy, DNA damage repair,

and metabolism (36). Thus, E3 ubiquitin ligases are critical for

cellular processes. Therefore, their dysregulation may have a

potential effect on the pathogenesis of cancer. Disorders of E3

ligases result in aberrant activation or inactivation of signaling

pathways and the accumulation of misfolded or dysfunctional

proteins (37), which promotes the occurrence and progression

of cancer.

Numerous E3 ligases have been reported to be involved in

bladder cancer tumorigenesis. They are involved in the regulation of

key molecules including PD-L1, PTEN, and p53 (Table 1). In this

section, we provide a detailed description of each E3 ligase in

bladder cancer.

2.2.1 RNF126
RNF126 is a RING domain E3 ligase. A group of RNF126

substrates has been identified, including frataxin (62–64), epidermal

growth factor receptor (64), pyruvate dehydrogenase kinases (65)

and insulin-like growth factor II receptor (66). RNF126 is highly

expressed in various cancers and strongly associated with

tumorigenesis, including bladder cancer (38, 67–69). In BCa,

RNF126 directly binds to PTEN via its C-terminal containing the

RING domain and promotes the polyubiquitination and

degradation of PTEN through the proteasome pathway (38). In

vivo and in vitro studies have demonstrated that PTEN acts as an

anti-oncogene, and PTEN silencing is closely related to the poor

prognosis of patients with BCa (70). RNF126 silencing stabilizes

PTEN, which antagonizes PI3K/AKT signaling pathway (38, 39),

and promotes cell proliferation and metastasis when activated.

Moreover, previous studies revealed that RNF126 promotes the

repair of DNA double-strand breaks via NHEJ and HR through

different mechanisms (71, 72). The Ku70-Ku80 heterodimer

recognizes DNA double-strand breaks (DSBs) and recruits

proteins responsible for DNA repair by non-homologous end

joining (NHEJ). While prolonged retention of Ku70/80 at DSBs

prevents the completion of DNA repair, RNF126 ubiquitylates
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Ku80 at DSBs and promotes Ku70/80 dissociation from DSBs. In

contrast, RNF126 can ubiquitinate and quench RNF168 function in

the DNA damage response (71). Cisplatin has been widely used as

first-line treatment for patients with advanced BCa (73).

Furthermore, cisplatin induces cell apoptosis by accumulating

DNA double-strand breaks. RNF126 depletion markedly increases

the effect of cisplatin in inducing apoptosis in BCa cells (38). It has

also been reported that RNF126 can directly bind and regulate

PTEN stability through polyubiquitination, making RNF126 an

attractive target for augmenting cisplatin-based chemotherapy

and regulating bladder cancer tumorigenesis.

2.2.2 RNF144A
RNF144A belongs to the RBR E3 ubiquitin ligase family.

Epigenetic depletion of RNF144A has been detected in numerous

human cancers, including glioblastoma (74), breast cancer (75), and

bladder cancer (40), indicating that RNF144A may act as a tumor

suppressor. Previous studies have found that RNF144A is

upregulated by various DNA-damaging agents (76) and further

promotes cancer cell apoptosis of cancer cells by ubiquitinating and

degrading DNA-PKcs and BMI1 (74, 77).

In a recent study, the basal-squamous subtype of bladder cancer

has been found to express relatively low levels of RNF144A and high

levels of immune checkpoint protein programmed cell death

ligand-1(PD-L1) (41). The carboxyl-terminal region (aa 250–292)

of RNF144A is responsible for its interaction with PD-L1, and
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RNF144A mainly targets glycosylated PD-L1 for degradation (40),

further indicating a complex mechanism between protein

ubiquitination and glycosylation.

2.2.3 NEDD4
NEDD4 is a HECT family E3 ubiquitin ligase (78). Mounting

evidence has demonstrated that NEDD4 participates in the

tumorigenesis of human cancers, such as cervical cancer (79),

hepatocellular carcinoma (80), and breast cancer (81). NEDD4 is

highly expressed in bladder cancer and promotes tumor cell

migration and invasion (42, 43). KLF8 acts as a transcription

factor in the Sp/KLF family and stimulates and promotes

migration of bladder cancer cells. Moreover, miR-132 is

downregulated by KLF8, which is overexpressed in bladder

cancer. NEDD4 is conformed to interact with KLF8 (44). In

bladder cancer, NEDD4 depletion significantly downregulated

endogenous KLF8 ubiquitination, which affected the K63-linked

polyubiquitination of KLF8, while K48-linked polyubiquitination

remained unchanged. NEDD4 intensifies the stability and

transcriptional activity of KLF8 through ubiquitination and affects

the miR-132/NRF2 ax i s , the reby promot ing tumor

progression (44).

The ubiquitin ligase activity of NEDD4 can be promoted by

FGFR1 and EGFR activation via tyrosine phosphorylation of

NEDD4 (82). Previous studies have demonstrated that there is

relatively decreased expression of PD-L1 in bladder cancer with
TABLE 1 E3 ligases in bladder cancer tumorigenesis.

E3 Function Substrate Pathway Reference

RNF126 Promoting/oncogene PTEN PI3K/AKT (38, 39)

RNF144A Promoting/oncogene PD-L1 (40, 41)

NEDD4 Promoting/oncogene PD-L1 (16, 42)

KLF8 microRNA-132/NRF2 (43, 44)

PTEN (42)

RBX1 Promoting/oncogene p-IkBa NF-kB (45)

DEPTOR mTOR (46)

SUFU RBX1-SUFU-GLI2 (47)

cIAP2 DNA damage response MRE11 (48, 49)

FBW7 Tumor suppressor ZMYND8 (50)

RhoGDIa p65/PTEN/FBW7/RhoGDIa (51)

TRAF4 Promoting/oncogene BMP/SMAD (21)

TRIM21 Promoting/oncogene ZHX3 (52)

TRIM65 Promoting/oncogene ANXA2 (53)

TRIM25 Promoting/oncogene RBPJ Notch1 (54)

TRIM26 Promoting/oncogene AKT/GSK3b/b-catenin (55)

CUL4B Promoting/oncogene H2AK119 CUL4B/miR-372/373/PIK3CA/AKT (56)

TRIM38 Promoting/oncogene GLUT1 (57)

RFWD3,HUWE1 MDM2,DTL Promoting/oncogene (58–61)
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FGFR3 mutations or high expression (41, 83, 84). Jing et al. (16)

have indicated that the activation of FGFR3 promoted NEDD4

binding and phosphorylation and it had been reported that NEDD4

can be phosphorylated to greatly improve its ubiquitination

capacity. NEDD4 depletion using CRISPR/Cas9-sgRNA

remarkably upregulated PD-L1 expression in bladder cancer cells.

NEDD4 targets and catalyzes the K48-linked polyubiquitination of

PD-L1. These results reveal that NEDD4 is a critical regulator of

PD-L1 expression in bladder cancer upon FGFR3 activation. This

study provides powerful evidence for the combination of anti-PD-1

antibody therapy and erdafitinib, a tyrosine kinase inhibitor of

FGFR1–4 (16).

As mentioned earlier, PTEN acts as an oncogene in bladder

cancer. NEDD4 regulates PTEN levels in several types of human

cancers (85). In bladder cancer, PTEN levels were increased by

NEDD4 silencing (42). NEDD4 downregulation inhibits cell

proliferation and apoptosis. However, the precise mechanism by

which NEDD4 regulates PTEN expression has not been

fully elucidated.

2.2.4 RBX1
The cullin/RING ubiquitin ligase (CRL)family is the largest UPS E3

family (86). RBX1 forms the catalytic core of CRL complexes with

different Cullin subunits (87). RBX1 is widely reported to be associated

with poor clinical prognosis and is highly expressed in many cancers,

including bladder cancer. In particular, RBX1 expression is significantly

higher inmuscle-invasive BCa and positively correlated with epithelial–

mesenchymal transition (EMT) via inhibition of mTOR kinase activity

by accumulation of the cullin-RING ligase (CRL) substrate mTOR-

inhibitory protein DEPTOR (46).

Moreover, RBX1 has been confirmed to be positively correlated

with activation of the NF-kB signaling pathway and nuclear p65

expression (45). p65 plays a key role in the canonical NF-kB
pathway and is inactive in the cytoplasm upon binding to IkBa.
Upon receiving the relevant signals, IkBa is phosphorylated, which

is then ubiquitinated and degraded. Finally, p65 enters the nucleus

and activates gene transcription (88). Therefore, IkBa-p65 is a key

regulatory factor in the NF-kB signaling pathway. Activation of the

NF-kB signaling pathway promotes tumor progression (89). By

enhancing p-IkBa ubiquitination and degradation, RBX1 activates

NF-kB signaling, which promotes p65 nuclear translocation and

causes the transcription of several metastasis-related target genes

including matrix metalloproteinase 9 (MMP9), vascular cell

adhesion molecule 1 (VCAM1), and urokinase-type plasminogen

activator receptor (uPAR) (45). Recently, Wang et al. demonstrated

that RBX1 can activate the hedgehog pathway through the

ubiquitinate suppressor of fused homolog (SUFU) for

degradation, and dysregulation of the RBX1–SUFU–GLI2 axis

play a pivotal role in bladder cancer progression (47).

2.2.5 cIAP2
IAP family members have been indicated to act as a key role in

the regulation of NF-kB signaling and participate in intrinsic and

extrinsic cell death pathways (90). cIAP2 is a RING-type E3 ligase in

the IAP family and has been demonstrated to play a pivotal role in
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DNA repair (91, 92). Although the expression of cIAP1 examined

by immunohistochemical testing is highly correlated to bladder

cancer TNM stage, tumor grade, disease recurrence, and tumor-

related death (93) and cIAP2 precise function and substrate

specificity is unclear, previous studies have a common sense that

there is redundancy between cIAP1 and cIAP2 in the regulation of

cell death (94, 95). Recently, cIAP2 was reported to be involved in

regulating radiosensitization in bladder cancer (48).

Histone deacetylase (HDAC) inhibitors exhibit low toxicity in

normal cells, and panobinostat, an HDAC inhibitor, is a promising

radiosensitizer (96). Panobinostat downregulates MRE11 (49), which

is a key player in DNA repair, leading to a decreased ability to repair

DNA, thereby enhancing radio sensitization. In T24 cells, transfecting

cIAP2 into cells in increasing quantities, a growing decrease in

MRE11 levels was observed. cIAP2 downregulates MRE11 via

proteasomal pathways and increases the ubiquitination of MRE11.

Furthermore, T24 cells became more radiosensitive after

panobinostat treatment when cIAP2 was silenced.

2.2.6 FBW7
F-box and WD repeat domain-containing 7(FBW7) is a

member of the RING E3 ligase family, which is a subunit of the

SKP1, cullin1, and F-box protein ubiquitin ligase complex (29). Low

expression and mutation of FBW7 has been frequently detected in

various human tumors such as breast cancer (97), colon cancer (98),

and gastric cancer (99). Therefore, FBW7 is generally considered a

tumor suppressor. According to the analysis of public datasets

TCGA-BLCA and GSE13507, it has been verified that the mRNA

expression levels of FBW7 are significantly downregulated in

bladder tumors compared with normal samples (50). Kaplan–

Meier analysis suggested that patients with BCa with high FBW7

expression levels exhibited longer survival times. Collectively, these

results indicate that FBW7 may serve as a tumor suppressor in

bladder cancer. ZMYND8 was acted as a common oncogene in

numerous tumors, including bladder cancer (50). Bioinformatics

predictive analysis from the UbiBrowser platform (http://

ubibrowser.ncpsb.org/) and ubiquitination assays demonstrated

that in T24 cells, ZMYND8 was a substrate target of FBW7.

FBW7 is a tumor suppressor that is and downregulated in BCa.

Low expression of FBW7 can increase the protein levels of

ZMYND8 and promote BCa progression (50). This result was

further confirmed in clinical samples.

Moreover, FBW7 was verified to be an NF-kBp65 downstream

effector. Through promoting RHO guanosine diphosphate

dissociation inhibitor (RhoGDIa) protein degradation, FBW7

significantly inhibited BCa migration (51). Mechanistically, p65

inhibited PTEN mRNA transcription, whereas PTEN accelerated

FBW7 protein degradation. This revealed the function of the p65/

PTEN/FBW7/RhoGDIa axis in mediating bladder cancer

migration and expands the theoretical support for the regulation

of the NF-kBp65 and PTEN pathways in BCa treatment.

2.2.7 MDM2
MDM2 is reported to mainly target p53 protein in various types

of cancer, including bladder cancer (100). The SNP309
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polymorphisms of MDM2 is associated with an improved survival

rate of bladder cancer (101). MDM2 is upregulated by the OCT3/4/

TET1/NRF2 axis, which contributes to increased immune escape in

bladder cancer (102). Amounts of inhibitors, such as MDM2

ex e r t e d an i nflu en c e on immun i t y i n t h e t umo r

microenvironment, such as APG-115 and AMG-232. APG-115

can enhance the efficacy of PD-L1 blockade (103) and AMG-232

(104) can increase the ability to kill T cells. Furthermore, gene

amplification of MDM2 can act as a predictive marker for PD-L1

targeted therapy response (105).
2.3 Other E3 ubiquitin ligases

Several other E3 ubiquitin ligases are also involved in bladder

tumorigenesis. RFWD3 is highly expressed in bladder cancer tissue

and correlates with a higher N stage and poorer prognosis (58). A

bladder cancer genome-wide CRISPR/Cas9 KO screen showed that

HUWE1 was correlated with cisplatin sensitivity in bladder cancer;

however, the underlying mechanism has not been elucidated (59).

MDM2 binds to PPARg to ubiquitinate and downregulate its

PPARg expression (60). Denticleless E3 ubiquitin protein ligase

homolog (DTL) is overexpressed in BCa, and increased DTL

expression correlates with malignant biological behavior and

promotes BCa progression through the AKT/mTOR pathway

(61). A pan-cancer study also showed that DLT could be a

potential immunotherapy biomarker (106).

TRAF4 can bind to and target another E3 ligase, SMURF1, for

proteasomal degradation (21). As SMURF1 is a negative regulator

of the BMP/SMAD signaling pathway, TRAF4 can promote BMP/

SMAD signaling and inhibit bladder cancer progression (21).

TRIM21 acts as a ubiquitin E3 ligase to degrade ZHX3, which is

involved in bladder cancer progression and metastasis (52). The

expression level of TRIM65 is frequently upregulated and ANXA2

is ubiquitinated and degraded by TRIM65. Bladder cancer patients

with low ANXA2 expression and high TRIM65 expression showed

the poorest outcome (53). RITA1 recruits TRIM25 to ubiquitinate

RBPJ to accelerate its degradation via the proteasome, which leads

to transcriptional inhibition of Notch1 downstream targets (54).

TRIM26 plays an oncogenic role in bladder cancer by regulating cell

proliferation, migration, and invasion via the AKT/GSK3b/b-
catenin pathway (55). CUL4B is a scaffold protein in the CUL4B–

RING ubiquitin ligase (CRL4B) complexes. CUL4B levels are

overexpressed and positively associated with the malignancy of

BCa, and CUL4B epigenetically represses the transcription of miR-

372/373 by catalyzing the monoubiquitination of H2AK119 in the

gene cluster encoding miR-372/373, which further leads to the

upregulation of PIK3CA and activation of AKT (56).

Reprogramming cell metabolism is a hallmark of cancer (107,

108). Aerobic glycolysis has been extensively studied in several

cancers, including bladder cancer (107). It is characterized by

increased glucose uptake and lactate production under normal

oxygen conditions. Elevated glycolytic flux in cancer cells is

mediated by glycolysis-associated signature genes, including

GLUT1 (109). GLUT1 driven glycolytic reprogramming is

considered necessary for tumor cell growth (110).Wang et al.
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identified GLUT1 as the downstream substrate of TRIM38 and

TRIM38 can constrain bladder tumor progression through

ubiquitination and degradation of GLUT1 (57). TRIM38 has been

verified to be a predictive biomarker related to prognosis, with low

expression in BCa (57).
3 Deubiquitinases in bladder cancer

3.1 Overview of deubiquitinases

Deubiquitinases (DUBs) are proteases that remove ubiquitin

from substrates or cleave ubiquitin chains to regulate ubiquitination

(111). It is important to regulate the processes of deubiquitination

and ubiquitination (112). DUBs consist of cysteine proteases and

metalloproteinases that specifically cleave ubiquitin molecules on

protein substrates (113). Approximately 100 different DUBs can be

broadly classified into seven distinct superfamilies (114). Six of

these families are cysyrine-based DUBs, including Ub C-terminal

hydrolases (UCHs), Ub-specific proteases (USPs), Machado-

Josephin domain proteases (MJDs), ovarian tumor proteases

(OTUs), motifs interacting with the Ub-containing novel DUB

family (MINDY), zinc-finger-containing Ub peptidase (ZUP1),

and Jab1/Mov34/MPN+ protease (JAMM) family members,

which are zinc-binding metalloproteases (115).

Numerous studies have demonstrated that the effect of protein

deubiquitination is associated with the occurrence and development

of cancers, such as prostate cancer, lung cancer, stomach cancer,

and bladder cancer (116–120). A summary of the deubiquitinases

involved in BCa is presented in Table 2.
3.2 Roles of deubiquitinases in
bladder cancer

3.2.1 OTUD5
There are 16 types of cysteine protease OTU family members,

including OTUB, OTUD, A20-like, and OTULIN subfamily (113).

The OTUD family is one of the subfamilies including OTUD1,

OTUD2/YOD1, OTUD3, OTUD4, OTUD5/DUBA, OTUD6A,

OTUD6B, and ALG13 (113, 136). OTUD5 has been the focus of

numerous studies and plays pivotal roles in various cellular

processes. The first report of function of OTUD5 is to negatively

regulate IFN-1 expression by cleaving the polyubiquitin chains on

TRAF3 (137). Furthermore, OTUD5 regulates DNA damage repair,

transcription, and innate immunity (138, 139).

In bladder cancer, OTUD5 has been shown that is highly

expressed in tumor tissues compared with normal urothelial cells

(121). OTUD5 knockdown inhibited the cell proliferation, and

OTUD5 positively regulated the mTOR signaling pathway to

promote cell proliferation. Specifically, OTUD5 stabilizes RNF186

by deubiquitination, leading to sestrin2 degradation, which acts as a

feedback inhibitor of the mTOR signaling pathway (140, 141).

Everolimus treatment, an mTOR inhibitor, with simultaneous

OTUD5 knockdown seems to be an ideal strategy for bladder

cancer treatment (121).
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3.2.2 OTUB1
The deubiquitinase OTUB1 is significantly more highly

expressed in bladder cancer tumor tissues than in normal tissues

(122). Kaplan–Meier survival analysis confirmed that bladder

cancer patients with low OTUB1 expression had significantly

superior overall survival compared to those with high OTUB1

expression. It has been found that OTUB1 can stabilize activating

transcription factor 6a (ATF6a) in response to endoplasmic

reticulum stress and promote bladder cancer progression (122).

Numerous studies have indicated that ferroptosis is an important

and independent mechanism of tumor suppression (142). Solute

carrier family 7, membrane 11 (SLC7A11), a 12-pass

transmembrane protein, acts as a potential biomarker for

protecting cancer cells from oxidative stress and ferroptosis (143).

Liu et al. discovered a distinct mechanism by which OTUB1

mediates ferroptosis in bladder cancer via the stabilization of

SLC7A11 (123).

3.2.3 MINDY1
MINDY1 (also known as FAM63A) has been reported that

contains MIU motifs with high selectivity for binding and cleaving

K48-linked polyUb (144). The Hippo signaling pathway has

emerged as a critical pathway in the regulation of bladder cancer

tumorigenesis, and TAZ and YAP are important effectors of this

pathway (145–147). MINDY1 removes the K48-linked ubiquitin

chain from YAP, thus inhibiting proteasome-mediated YAP

degradation, which will in turn promote the expression of YAP

downstream genes, CTGF, ANKRD1, and CYR61 (119).

3.2.4 UCHL5
UCHL5 is abnormally upregulated in human cancer tissues and

cell lines, such as pancreatic adenocarcinoma, gastric cancer,

endometrial cancer, and bladder cancer (124, 148–150).

Upregulation of the TGF signaling pathway is the main
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mechanism by which UCHL5 modulates malignant tumor

progression (151–153). UCHL5 is overexpressed in patients with

bladder cancer patients, and high expression is associated with poor

prognosis and tumor progression. Mechanistically, UCHL5

activates the AKT/mTOR signaling pathway and increases c-Myc

expression, which promotes tumor occurrence and progression

(124). Meanwhile, it has been reported that the UCHL5 inhibitor

b-AP15 suppresses bladder cancer stemness by inhibiting the b-
catenin and c-Myc signaling pathways and overcomes cisplatin

resistance (125). b-AP15 has been demonstrated to have synergistic

effects in combination with cisplatin, gefitinib, gemcitabine, and

vinorelbine in lung cancer cells (154). In bladder cancer cell lines

and mouse xenograft models, b-AP15 combined with cisplatin

showed superior therapeutic effects compared to cisplatin

monotherapy (125). These studies indicate that UCHL5 may act

as a potential therapeutic target, and that b-AP15 may be a new

choice for patients with cisplatin resistance.
3.2.5 USP24
Ubiquitin-specific peptidase 24 (USP24), consisting of 2,620

amino acids, serves as a deubiquitinase (155). However, the

biological function of USP24 in cancer is poorly understood. It

has been reported that USP24 binds to GSDMB to deubiquitinate

and stabilize GSDMB. GSDMB promotes cancer cell growth by

activating STAT3, which increases the expression of HK2, LDNA,

ENO2, and IGFBP3 to enhance glycolysis in bladder cancer cells

(126). EOAI3402143, a USP24 inhibitor, can block this process,

which provides a therapeutic strategy for inhibiting the GSDMB/

STAT3 axis (126).

3.2.6 USP13
USP13 belongs to the Ub-specific protease subfamily of

deubiquitinase family. USP13 has been indicated in suppressing

tumor occurrence by deubiquitinating anti-oncogenes, including p53
TABLE 2 Deubiquitinases in bladder cancer tumorigenesis.

DUBs Function Substrate Pathway Reference

OTUD5 Promoting/oncogene RNF186 mTOR (121)

OTUB1 Promoting/oncogene ATF6a (122)

SLC7A11 (123)

MINDY1 Promoting/oncogene YAP (119)

UCHL5 Promoting/oncogene c-Myc AKT/mTOR (124)

Cisplatin resistance b-catenin, c-Myc (125)

USP24 Promoting/oncogene GSDMB GSDMB/STAT3 (126)

USP13 Tumor suppressor PTEN (127)

USP7 Tumor suppressor CCDC6 (128, 129)

USP8 Promoting/oncogene AUF1 USP8/AUF1/RhoGD1b (130)

USP38 Tumor suppressor METTL14 (131)

USP22
USP18,USP28 Promoting/oncogene (132–135)
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(156), PTEN (157), andMITF (158), and subsequently stabilizing these

proteins. As mentioned above, PTEN acts as a key tumor suppressor in

bladder cancer via inhibition of the PI3K/AKT/mTOR signaling

pathway. Otherwise, NF-kB activation has been reported to be

essential for inhibition of PTEN expression (159, 160). PTEN is

deubiquitinated by USP13 in bladder cancer, and its stabilized

expression suppresses tumor progression (127). There is also a

potential regulatory loop in which NF-kB induces miR-130b/301b

overexpression, decreasing USP13 expression and subsequently leading

to the downregulation of PTEN overexpression (127).
3.2.7 USP2a/7/8/18/22/28/38
Several studies have demonstrated that other USPs serve as

oncogenes in BCa tumorigenesis (128, 130, 132–134, 161). Jeong

et al. detect the mRNA expression of USP2a in bladder cancer

tissues and normal tissues. The results indicate that the expression

of USP2a in bladder cancer is downregulated and that high stage

muscle invasive bladder cancer (MIBC) has lower USP2a

expression. USP2a can be specifically used as a potential marker

to stratify the more invasive phenotype of MIBC (132).

USP7 has been reported to modulate CCDC6 levels in bladder

cancer and lung neuroendocrine cancers (129). CCDC6 acts as a

tumor suppressor, its deficiency determines the sensitivity of PARP-

inhibitors (162, 163). In a recent study, P5091, an inhibitor of USP7,

promoted CCDC6 degradation and sensitized bladder cancer cells

to the cytotoxic effect of the PARP-inhibitor olaparib (128).

The non-canonical NF-kB subunit p52 upregulates USP8

expression at the transcriptional level, and USP8 modulates AUF1

protein degradation. USP8 plays a significant role in the p52/miR-

145/Sp1/USP8/AUF1/RhoGD1b axis, which can act as a positive

regulator of bladder cancer invasion (130).

USP22 is a positive regulator of tumor growth. Silencing USP22

by interfering with RNA inhibits proliferation and induces cell cycle

arrest in BCa cells (133). USP18 and USP28 have been reported to

serve as prognostic markers for bladder cancer (134, 135). A study

also revealed a feedback loop of USP38 and METTL14 in bladder

cancer to suppress BCa progression. METTL14 stabilizes USP38

mRNA expression through YTHDF2-dependant m6A modification

and USP38 enhances the stability of METTL14 by deubiquitination

of METTL14 (131).
4 Role of E3 ligases and DUBs in
immunotherapy of bladder cancer

The concept of immunotherapies for bladder cancer can be

divided into cytokine-based treatment, genetically engineered

immune cells (adoptive cell therapy), oncolytic viruses, bispecific

antibodies, intravesical therapy with Bacillus Calmette–Guerin

(BCG) vaccine, immune checkpoint inhibitors (ICIs), and

antibody–drug conjugates (ADCs) (10, 164, 165).

BCG immunotherapy remains the gold standard treatment for

patients with non-muscle-invasive bladder cancer (NMIBC) at a

high risk of progression or recurrence (166). Although it has been

used in clinical practice since 1976, the mechanism of the BCG
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vaccine in BCa is not completely understood. Upon attachment to

the urothelium and internalization, it is thought to induce innate

and adaptive immune responses. However, whether a combination

of reagents targeting E3 ligases or DUBs can augment the response

to BCG or conquer certain patients’ unresponsiveness to BCG

warrants further exploration (167).

The adoption of ICIs in bladder cancer has dramatically

changed its treatment landscape (168). ICIs are now approved for

the treatment of BCa at all stages, depending on the specific tumor

characteristics (10). Immune checkpoint inhibitors can enhance T-

cell responses and provide promising clinical outcomes in bladder

cancer. However, this treatment strategy has only a 13%–24%

response rate among patients with bladder cancer. A deeper

exploration of the mechanisms that regulate PD-1/PD-L1

expression and stability may help increase clinical effectiveness.

During the last decade, intensive evidence has demonstrated that

PD-1/PD-L1 protein expression is regulated by the ubiquitin-

mediated proteasome degradation pathway (169–172).

RNF144A and NEDD4 have been reported to participate in the

regulation of PD-L1 expression (Figure 1). The basal-squamous

subtype of bladder cancer expresses relatively low levels of

RNF144A and high levels of immune checkpoint protein

programmed cell death ligand-1 (PD-L1) (41). The carboxyl-

terminal region (aa 250–292) of RNF144A is responsible for its

interaction with PD-L1 and RNF114A mainly targets glycosylated

PD-L1 for degradation (40). PD-L1, primarily in the insoluble

fraction, interacts with RNF144A, which contains the plasma

membrane and intracellular vesicles (40). RNF114A knockout

stabilizes PD-L1 and leads to a reduction in tumor-infiltrating

CD8+ T-cell populations in BBN-induced bladder tumors (40).

Thus, RNF144A E3 ligase may be a promising therapeutic target for

immunotherapy or combined therapy.

FGFR3 is an eligible target for the treatment of bladder cancer.

p-FGFR3 and NEDD4 co-localized at the cell surface of bladder

cancer cells. It has been demonstrated that NEDD4 can be

phosphorylated to greatly improve its ubiquitination capacity by

FGFR3 (16). NEDD4 depletion using CRISPR/Cas9-sgRNA

remarkably upregulated PD-L1 expression in bladder cancer cells.

NEDD4 targets and catalyzes the K48-linked polyubiquitination of
FIGURE 1

Graphic model of interaction between PD-L1 and E3 ligases in
bladder cancer.
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PD-L1. These results revealed that NEDD4 is a critical regulator of

PD-L1 expression in bladder cancer with FGFR3 activation (16).

Thus, NEDD4 E3 ligase may be a promising therapeutic target in

the bladder with immunotherapy or combined therapy.

USP7 has been shown to regulate anti-tumor immune responses.

The activity of Treg cells is impeded by its inhibitor and the polarization

of tumor-related macrophages is enhanced (173). One study reported

that USP7 expression is positively related to PD-L1 expression and

USP7 directly binds to PD-L1 which stabilized it in gastric cancer

(117).However, the function of USP7 inhibitors in enhancing the

immune response in bladder cancer remains unclear. Therefore, it is

essential to investigate the role of USP7 in bladder cancer.

Although some other DUBs, including USP22 (174) and USP9X

(175), have been shown to regulate PD-1/PD-L1 expression, no

research has been conducted on bladder cancer. Because

ubiquitination or deubiquitination of certain molecules can be

cellular context-dependent, E3 ligases and DUBs targeting PD-1/PD-

L1 in other tumors should be further verified in bladder cancer. Several

E3 ligases and DUBs, especially DUBs, can be directly targeted by small

molecular drugs; thus the combination of specific inhibitors and ICIs

might be attractive and promising for enhancing ICI treatment effects

(176). Notably, deubiquitinating enzymes are potential biomarkers for

treatment selection and prognosis prediction (177).

In addition to PD-1 or PD-L1 based immunotherapy,

antibody–drug conjugates (ADCs) have recently shown great

progress. An ADC targeting nectin-4 (Enfortumab Vedotin) has

shown significantly prolonged survival in patients with locally

advanced or metastatic urothelial carcinoma who previously

received platinum-containing chemotherapy and progressed after

treatment with a PD-1 or PD-L1 inhibitor (178). For patients who

are not eligible for cisplatin-containing chemotherapy, Enfortumab

Vedotin Plus Pembrolizumab may be a safe and effective surrogate

for previously untreated advanced bladder cancer patients (179,

180). Nectin-4 is a transmembrane protein overexpressed in

bladder cancer and several other malignancies, making it an

appropriate target antigen for ADCs. However, little is known

about its role in tumor development, progression, and

immunomodulatory functions. It might also be interesting to

investigate the regulation of stabilization and degradation (180).

Casitas B lymphoma-b (Cbl-b) is an E3 ligase that can modulate

PD-L1 ubiquitination and degradation after inhibition of PI3K/Akt,

Jak/Stat, and MAPK-Erk signaling (181). Cbl-b can also target the

ubiquitination of PI3K NEDD4, PLCg, and the zeta-subunit of TCR.
Interestingly, Cbl-b also serves as a downstream regulator of both

CD28 and CTLA-4 signaling pathways. Thus, both innate and

adaptive immune cells are regulated by E3 ubiquitin ligase,

promoting an immunosuppressive tumor microenvironment. This

implicated a complex regulatory loop between CTLA-4, E3 ligase

Cbl-b, and PD-L1. Novel Cbl-b inhibitors offer antigen-specific

immune stimulation and are promising therapeutic tools in the field

of immune-oncology (182).

5 Summary and perspectives

In summary, patients with advanced bladder cancer have poor

survival rates, and immunotherapy may be a promising method for
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these patients. The use of single-agent immunotherapy or combined

immunotherapy may be a further direction for treating advanced

bladder cancer. A better understanding of bladder cancer

progression and its regulation of immune-related molecules will

help us to develop better therapeutic drugs and select appropriate

patients. However, the overall efficacy is unsatisfactory, and a large

number of patients cannot benefit from these agents due to a lack of

response. PTMs have been indicted to play a significant role in the

regulation of protein stabilization of the PD-1/PD-L1 axis. The

ubiquitinase–protease system plays a pivotal role in bladder cancer,

including in tumor progression, cisplatin resistance, tumor

suppression, and predictive biomarkers. Notably, numerous E3

ligases and DUBs act as oncogenes, including RBX1, cIAP2,

CUL4B, OTUD5, MINDY1, and USP24. FBW7, USP13, USP2a,

USP8, and USP7 serve as tumor suppressors. Furthermore,

emerging evidence has demonstrated that RNF114A and NEDD4

can modulate PD-L1 ubiquitination, which in turn leads to the

subsequent modula t ion o f immunosuppres s ion and

anticancer effects.

This review highlights the significant role of the UPS in bladder

cancer carcinogenesis and in the regulation of certain immune

therapy-related molecules, including PD-1/PD-L1. These findings

indicate that E3 ligases and DUBs may act as potential targets for

bladder cancer therapy or a promising therapeutic approach to

promote immunotherapy effectiveness by regulating ubiquitination

and deubiquitination.
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The immune checkpoint molecules programmed cell death receptor 1 (PD-1)

and programmed death ligand 1 (PD-L1) are one of the most promising targets

for tumor immunotherapy. PD-L1 is overexpressed on the surface of tumor

cells and inhibits T cell activation upon binding to PD⁃1 on the surface of T cells,

resulting in tumor immune escape. The therapeutic strategy of targeting PD-1/

PD-L1 involves blocking this binding and restoring the tumor-killing effect of

immune cells. However, in clinical settings, a relatively low proportion of

cancer patients have responded well to PD-1/PD-L1 blockade, and clinical

outcomes have reached a bottleneck and no substantial progress has been

made. In recent years, PD-L1 post-translation modifications (PTMs) have

gradually become a hot topic in the field of PD-L1 research, which will

provide new insights to improve the efficacy of current anti-PD-1/PD-L1

therapies. Here, we summarized and discussed multiple PTMs of PD-L1,

including glycosylation, ubiquitination, phosphorylation, acetylation and

palmitoylation, with a major emphasis on mechanism-based therapeutic

strategies (including relevant enzymes and targets that are already in clinical

use and that may become drugs in the future). We also summarized the latest

research progress of PTMs of PD-L1/PD-1 in regulating immunotherapy. The

review provided novel strategies and directions for tumor immunotherapy

research based on the PTMs of PD-L1/PD-1.

KEYWORDS

post-translational modification, tumor immunotherapy, programmed death ligand 1,
glycosylation, ubiquitination, phosphorylation, acetylation, S-palmitoylation
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1 Introduction

In the past decade, tumor immunotherapy has emerged as a

therapeutic tool and been characterized as the most important

scientific breakthrough of the year by SCIENCE magazine in 2013

due to its high specificity toward tumor cells and low adverse effects

on patients. Immunotherapy mainly stimulates the human immune

system to produce tumor-specific immune response in an active or

passive way to enhance the immunity of the body against tumor and

control/kill tumor cells. At present, five main types of tumor

immunotherapy are known: 1) molecular targeted therapy; 2)

immune checkpoint inhibitors (PD-1/L1 and CTLA-4 inhibitors);

3) adoptive cel lular immunotherapy (CAR-T cel lular

immunotherapy, TCR-T cellular immunotherapy, etc.); 4)

cytokine therapy; 5) tumor vaccines. T cells are activated by

recognit ion of T ce l l receptor (TCR) pept ide-major

histocompatibility complexes (MHC) in antigen-presenting cells

(APCs) or other target cells and participate in the immune response

(1, 2). This process is regulated by a combination of co-stimulatory

and co-inhibitory factors involved in the immune checkpoint

system. Under normal physiological conditions, the balance

between co-stimulatory and co-inhibitory molecules (3) and the

balance of immune checkpoint molecules, maintains the optimum

immune effect of T cells (4). However, tumor cell growth can

disrupt this balance, causing an abnormal upregulation of co-

suppressor molecules and their related ligands, such as PD-1 and

PD-L1 (5). Pardoll and his co-workers (6) showed that blocking co-

inhibitory molecules from binding to ligands (blocking the PD-1/

PD-L1 signaling pathway) can reverse the tumor immune

microenvironment and enhance and maintain the endogenous

anti-tumor effect, resulting in durable tumor control (7).

Therefore, immune checkpoint blocker anti-PD-1 and anti-PD-L1

antibodies have now become one of the most promising directions

in antitumor therapy (5, 7–9).

Proteins are important performers in the regulation of cellular

functions in the organism and affect almost all aspects of normal cell

biology and pathogenesis. PTMs are required for proteins to

perform their biological functions, and they alter protein stability

and activity, are one of the most important modifications in the

regulation of protein biological functions. Recent studies on PD-L1/

PD-1 have demonstrated that PD-L1 protein levels harbor dynamic

changes in the development of the tumor, and corresponding

expression changes also occur after immunotherapy, and these

dynamic changes are partially regulated by posttranslational

modifications (PTMs) (10). Given that PTMs machineries are

often therapeutic targets for pharmacological inhibition of cancer,

targeting PD-L1 PTMs may be a novel strategy for enhancing

antitumor immune responses. Therefore, in this review, we

summarized and discussed currently defined multiple PTMs of

PD-L1 and the latest research progress of PD-L1/PD-1PTMs in

regulating cancer immunotherapy. The review provided references

for development of novel strategies and directions for tumor

immunotherapy regarding with the PTMs of PD-L1/PD-1.
Frontiers in Immunology 02104103
2 PD-L1 and immune escape

PD-L1 (also known as CD274 or B7-H1) serves as the primary

ligand for PD-1. The frequency of PD-L1 presence is typically low in

the steady state, but it can be expressed in malignant cells,

lymphocytes, APCs, hematopoietic cells and epithelial cells in

response to certain inflammatory or tumor cell stimuli. In

malignant cells, the PD-1/PD-L1 signaling pathway is aberrantly

activated, and PD-1 and PD-L1 bind with each other to regulate the

proliferation and activity of T cells. This reduces their immune

response to surrounding tissues, helping tumor cells achieve

immune escape (11, 12). In addition, PD-L1 can protect tumor

cells from the cytotoxic effects mediated by interferon and cytotoxic

lymphocytes (CTL), even in the absence of PD-1 of T cells (13).

Thus, the role of PD-L1 in tumor immunity is remarkably crucial

than that of PD-1 because of its characteristics.

The examination of molecular mechanisms of tumor immune

escape is one of the core challenges in immuno-oncology research,

in which PD-1/PD-L1-mediated immune escape mechanisms are

particularly important. PD-1 exerts its effects mainly because of

three structural domains in the extracellular, intracytoplasmic and

transmembrane parts, which also contain the immunoreceptor

tyrosine-based switch motif (ITSM) and the immunoreceptor

tyrosine-based inhibitory motif (ITIM) (14). PD-L1 does not have

a typical signaling motif because its tail consists of a shorter

cytoplasmic group. The interaction of the extracellular structural

domain of PD-1 with PD-L1 results in a change in PD-1

conformation and tyrosine phosphorylation in the PD-1

cytoplasmic structural domain, which leads to an increase in the

linkage of SHP-2 tyrosine phosphatase to ITSM (15). The increase

in SHP-2 leads to a decrease in phosphorylation of TCR molecules.

PD-1/PD-L1 inhibitors can block the combination of both, thereby

restoring the immune cell-mediated killing of tumor cells (16, 17).
3 PTMs of PD-L1 and immunotherapy

Post-translational modification is an important and reversible

process for protein regulation. Currently reported PTMs of PD-1/

PD-L1 include glycosylation, ubiquitination, phosphorylation,

acetylation, palmitoylation. These modifications not only regulate

the expression level and stability of PD-L1, but also play an

important role in regulating PD-1/PD-L1-related signaling

pathways and improving the anti-tumor performance of T cells

(18, 19). Therefore, PTMs of PD-1/PD-L1 may emerge as a novel

strategy to enhance the efficacy of target PD-1/PD-L1-related drugs.
3.1 Glycosylation of PD-L1

Glycosylation modifications are fundamental to the stable

expression and normal physiological function of membrane

proteins and affect protein activity (20). PD-L1 is inserted into
frontiersin.org
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the endoplasmic reticulum to begin the process of glycosylation and

is processed and transported through the secretory pathway. The

process is completed within the Golgi apparatus. Glycosylated PD-

L1 is transferred to the cell membrane to participate in immune

regulation of the cell. Once glycosylation is dysregulated, aberrant

or non-glycosylated PD-L1 can be recognized by endoplasmic

reticulum-associated protein degradation (ERAD) and E3 ligase.

This is followed by polyubiquitination, translocation from the

endoplasmic reticulum to the cytoplasm and degradation by the

proteasome (21). Depending on the glycosidic bond site,

glycosylation modifications of proteins can be classified into two

types: N-glycosylation and O-glycosylation (22). N-glycosylation is

the process that the N-glycan chain is covalently attached to the

dissociative NH2 group of the aspartic acid of the protein. O-

glycosylation is the process that the O-glycan chain is covalently

linked to the dissociative OH group of the serine or threonine of the

protein. Glycosylation of proteins usually leads to the observation of

heterogeneous patterns on western blot, such as PD-L1 (B45 kDa)

(23). After removal of the entire n-glycan structure with

recombinant glycosidase (peptide-n -glycosidase F; PNGase F)

followed by western blot analysis of cell lysates, it was found that

the size of PD-L1 was reduced from 45 kDa to 33 kDa, but O-

glycosidase failed to produce a similar effect (24). This indicates that

the higher molecular weight PD-L1 is indeed attributed to

glycosylated form, which is mainly N-glycosylation. N-

glycosylation plays a key role in determining protein structure

and function, especially the glycosylation of membrane receptor

proteins is important for protein interactions (e.g., between ligands

and receptors) and has been shown to affect protein activity (25). N-

glycosylation was divided into three subtypes, complex, mixed and

mannose-rich, according to the composition of their glycan chains,

and the glycosylation type of PD-L1 was mainly complex N-

glycosylation. The mass spectrometry analysis showed that the

asparagine residues of PD-L1 extracellular structural domains

N35, N192, N200, and N219 were highly glycosylated (24).

Glycosylation is involved in the stability of PD-L1 structure and

PD-1/PD-L1-mediated tumor immunosuppressive function and

affects the accuracy of PD-L1 detection.

Three main effects of glycosylation on PD-L1 are known (24):

firstly, glycosylation of PD-L1 at the N192, N200 and N219 sites

impedes the recognition of PD-L1 binding by E3 ubiquitin ligases,

which protects PD-L1 from degradation and enhances its protein

stability (24). Secondly, N-glycosylation modification of PD-L1 is

fundamental for its binding to PD-1 and its immunosuppressive

function. Upon N-glycosylation, it enhances protein stability by

blocking phosphorylation and subsequent ubiquitination

degradation of the adjacent region of the T180/S184 site (24, 25),

which in turn binds to PD-1 and inhibits CLT activity (21, 26).

Third, Lee et al. (23), also found that the affinity of glycosylated PD-

L1 to PD-L1 antibodies was significantly reduced, which may be due

to the fact that deglycosylase PD-L1 may eliminate the gap that

exists in the space that would be detected by the antibody. Thus, the

use of anti-PD-L1 immunohistochemistry can significantly improve

the sensitivity of PD-L1 recognition. Furthermore, the

deglycosylation of PD-L1 also has potential acting as a diagnostic
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biomarker that can well predict the response to PD-L1

immunotherapy and more accurately assess PD-L1 protein levels.

PD- L1 can also express in exosomes as a soluble protein (27).

Exosomal PD- L1 exists in a highly N-glycosylated form and plays

an important role in the regulation of immune escape. Experiments

by Zhu et al, showed that exosomal PD- L1 glycosylation is the key

structural basis for PD - L1/PD-1 interaction and inhibition of

CD8+ T cell proliferation (27). Glycosylated PD- L1 in exosomes

may be a promising new target for immunotherapy.

Due to the aforementioned role of glycosylation onPD-L1, Pu et al,

proposed the concept of “non-glycosylated PD-L1” for tumor cellular

immunotherapy (28). Glycosyltransferase 1 domain-containing 1

(GLT1D1), the staurosporine temperature sensitivity 3 (STT3), G-

fructose amidotransferase1 (GFAT1), Glyco-PD-L1-processing

enzymes, as well as several molecules and proteins, can be blocked.

Non-glycosylated PD-L1 can effectively reduce the interaction between

PD-L1 and PD-1, weaken the regulatory effect of tumor cells on T cells,

and inhibit the immune escape of tumor cells.

3.1.1 Glycosyltransferase 1 domain 1
GLT1D1 is an enzyme that translocates polysaccharides to

target proteins. Current analysis of clinical specimens has

demonstrated high expression of GLT1D1 in B-cell non-

Hodgkin’s lymphoma and early relapsed diffuse large B-cell

lymphoma (29). High expression of GLT1D1 increases PD- L1

glycosylation and promotes tumor immune escape and tumor

growth. Hence, it is negatively correlated with patient prognosis.

Downregulation of GLT1D1 significantly decreases PD- L1

glycosylation, which leads to a significantly higher proportion of

non-glycosylated PD-L1, enhances cytotoxic activity of cytotoxic T

cells against lymphoma cells, and influences PD- L1/PD-1

interaction, implying that GLT1D1 can be a novel target for

immunosuppressive therapy in non-Hodgkin’s lymphoma (29).

3.1.2 STT3
The ER-associated N-glycosyltransferase STT3 is essential for N-

glycosylation and PD- L1 stability. Epithelial-mesenchymal transition

(EMT) enriches PD-L1 in CSCs by the EMT/b-catenin/STT3/PD-L1
signaling axis, in which EMT transcriptionally induces N-

glycosyltransferase STT3 through b-catenin, and subsequent STT3-

dependent PD-L1 N-glycosylation stabilizes and upregulates PD-L1

(30). In hepatocellular carcinoma (HCC), IL- 6 activates JAK1/PD-L1

phosphorylation at the Y112 site, followed by stimulation of STT3A

recruitment and subsequent glycosylation to increase PD-L1

expression. Inhibition of the IL- 6/JAK1 pathway resulted in loss of

STT3A and subsequent decrease in PD- L1 stability (26). Etoposide

(ETO) (30), a DNA topoisomerase inhibitor, inhibits STT3 expression

induced by EMT, thereby suppressing STT3-mediated PD-L1

glycosylation modification. More non-glycosylated PD-L1 reduces

the stability of PD-L1 proteins in tumor stem cells and promotes the

clearance of tumor-infiltrating T lymphocytes (TILs) from tumor stem

cells. In addition, ETO improves the therapeutic effect of TIM-3

(hepatitis A virus cellular receptor 2) monoclonal antibody in a

tumor-bearing mouse model, further enhancing the CD8+ T cell-

mediated anti-tumor immune response. Secondly, in colorectal cancer,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1230135
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2023.1230135
KYA1797K inhibits the b-catenin/STT3 signaling pathway and

downregulates the expression of STT3, thereby inhibiting PD- L1

glycosylation, reducing its stability and suppressing immune escape

(31, 32). In addition, a recent study in nasopharyngeal carcinoma

found that transforming growth factor b (TGF-b) promotes

upregulation of the expression of glycosyltransferase STT3A via c-

Jun, which promotes PD-L1 glycosylation and enhances its stability

(33). Therefore, the efficacy of immune checkpoint blockade may be

enhanced by interferingwithTGF-b or combining it with PD-1/PD-L1

blockade strategies.

3.1.3 G-fructose amidotransferase1
GFAT1 is the rate-limiting enzyme of the hexosamine

biosynthetic pathway, generating the glycosylation precursor

uridine diphosphate-N-acetyl-glucosamine (UDP-GlcNAc), which

is fundamental for the glycosylation of many proteins (34), also one

of the substances necessary for the stability of PD-L1 protein.

Inhibition of GFAT1 significantly reduces PD-L1 glycosylation

and protein stability which leaving more PD- L1 in a non-

glycosylated state. And it promotes T cell activity and NK cell

antitumor activity, significantly enhancing tumor immunity. This

mechanism has been demonstrated in lung cancer (35).

3.1.4 Glyco-PD-L1-processing enzymes
Glyco-PD-L1-processing enzymes are also involved in the

regulation of N-linked polysaccharide-mediated PD- L1

modification in tumor cells. Biochemical tests revealed that

resveratrol (RSV) (36) can directly inhibit N-linked glycan chain

modifying enzymes, retaining unglycosylated PD- L1 in the

endoplasmic reticulum, reducing the stability of PD- L1,

preventing the migration of fully glycosylated PD- L1 to the cell

membrane, and affecting the interaction between extra-membrane

PD- L1 and PD- 1, limiting immune escape to a certain extent and

significantly enhancing the activity of T lymphocytes. The

enhancement of T-cell immune function by RSV mediated by

targeting PD-1/PD- L1 immune checkpoints is an important

mechanism for its oncogenic function.

3.1.5 Glucose analogues 2-deoxyglucose
2-DG inhibits N-glycosylation modifications. 2-DG, as a

glucose analogue with glycolysis inhibitor, significantly inhibits

the glycosylation modification of PD-L1 (37). Inhibition of

protein n-linked glycosylation using 2-DG enhances anti-tumor

T-cell immunity in TNBC in vivo (38, 39). Furthermore, co-culture

experiments with human peripheral blood mononuclear cells

(PBMCs) showed that the combination of 2-DG and Olaparib

significantly attenuated the immunosuppressive effect of Olaparib

monotherapy on PBMCs and enhanced PBMC-mediated killing of

tumor cells (40). 2-DG can play a role in immunotherapy treatment

of tumors not only directly but also in combination with other

drugs through non-glycosylation, achieving a 1 + 1>2 effect.

3.1.6 b-1,3-N-acetylglucosaminyl transferase
As a type II transmembrane protein in the Golgi apparatus, b-

1,3-N-acetylglucosaminyl transferase B3GNT3 (25), is responsible
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for catalyzing the synthesis reaction of poly-N-acetylgalactose sugar

chains and is involved in the glycosylation of various proteins. Li

et al, confirmed in cytological experiments that B3GNT3 promotes

the glycosylation of PD-L1 in response to EGF stimulation and

enhances the binding of PD-L1 to PD-1, thereby inhibiting the

killing effect of T cells on tumor cells (25). This effect can be blocked

by N-glycosylation inhibitors.

3.1.7 PD-L1-associated chaperone Sigma1
Sigma1 facilitates PD-L1 glycosylation in the endoplasmic

reticulum, preventing autophagic degradation of PD-L1, thereby

stabilizing PD-L1 in tumor cells. Maher et al, confirmed in their

molecular cell experiments that (41) (1-(4-iodophenyl)- 3 -(2-

adamantyl) guanidine) (IPAG), an inhibitor of the endoplasmic

reticulum molecular chaperone Sigma1, can inhibits the

glycosylation modification of PD-L1 and reduces the binding

ability of PD-L1 to PD-1, which promotes the killing of tumor

cells by CD8+ T cells.

3.1.8 Other genes involved in the regulation
of glycosylation

In addition, there are other genes involved in the regulation of

glycosylation. fK506-binding protein 51 spliceosomes (FKBP51s)

act as chaperone molecules for PD-L1 and stabilize PD-L1 in tumor

cells by assisting its folding in the endoplasmic reticulum, thereby

promoting PD-L1 glycosylation (42). Induction of GSK3b
inactivation by EGF in tumor cells leads to increased

glycosylation PD-L1. Glycogen synthase kinase 3b (GSK3b)
induces phosphorylation-dependent proteasomal degradation of

PD-L1 via b-TrCP, but this interaction is antagonized by PD-L1

glycosylation at N192, N200 and N219. Hence, inactivated GSK3b
helps increase PD-L1 stability and aids tumor immune escape (24).

The Chinese herbal medicine Shikonin may inhibit PD-L1

glycosylation through NF-kB and signal transducer and activator

of transcription 3 (STAT3), which in turn promotes its degradation

(43–45). These enzymes, molecules or their inhibitors can reduce

the glycosylation of PD-L1 and therefore may become new targets

for immunotherapy (46). The most widely used glycosylation

inhibitor tunicamycin (42), however, cannot be used clinically

because its own specific structure can affect the glycosylation of

many glycoproteins, and the matter that toxin production

associated with endoplasmic reticulum stress cannot be resolved.
3.2 Ubiquitination of PD-L1

Ubiquitination is the binding of ubiquitin as a monomer or

multimer to specific amino acids of proteins with the participation

of ubiquitin-activating enzymes. Damaged or unwanted proteins in

cells need to be modified by ubiquitination before they can be

recognized and degraded by the proteasome (47). The ubiquitin-

proteasome pathway is responsible for most of the intracellular

protein degradation and involves three enzymes: ubiquitin activating

enzymes (E1s), ubiquitin binding enzymes (E2s) and ubiquitin ligases

(E3s) The conjugative cascade of the ubiquitin pathway consists of
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three enzymatic reaction steps (48, 49): first, the ubiquitin C -terminal

glycine residue is activated by E1 in an ATP-dependent manner;

second, the activated ubiquitin is delivered to the E2 enzyme cysteine

residues; third, the E3 enzyme catalyzes the covalent attachment of

ubiquitin to the lysine residues of the substrate protein. Ubiquitination

and deubiquitination together regulate the half-life of PD-L1.

Degradation of PD-L1 by ubiquitination greatly reduces its half-life,

decreases its stability, and affects the regulation of binding to PD-1,

preventing immune escape of tumor cells. The process of

ubiquitination can be reversed by deubiquitination (50, 51).

The different ubiquitin chain modifications of ubiquitination

have different functions (52–55), among which the polyubiquitin

chains linked by K48 and K11 can be recognized by the 26S

proteasome, which in turn degrades the substrate protein. The

K63-linked polyubiquitin chain can also be sorted into endosomes

by internalization and finally degraded by lysosomes. However, in

recent years, strong evidence has shown that PD-L1 protein

expression is usually regulated by the ubiquitin (UB)-mediated

proteasomal degradation pathway. Therefore, here, we mainly

discuss the degradation via the proteasome pathway.

3.2.1 b-TrCP
b-TrCP (also known as BTRC) E3 ubiquitin ligase, often

functions in combination with SCF (SKP1-CUL1-F-box protein) to

form the SCFb-TrCP E3 ubiquitin ligase complex. b-TrCP mediates

the ubiquitination of proteins involved in cell cycle progression,

signal transduction, and transcription in a phosphorylation-

dependent manner (56). Phosphorylation of PD-L1 by GSK3b (see

Phosphorylation below for details) leads to the association of PD-L1

with the E3 ligase b-TrCP, resulting in the degradation of PD-L1 in

the cytoplasm (24). b-TrCP binds to theDSGmotif on PD-L1 (where

D is aspartate, S is serine, and G is glycine) to catalyze its

ubiquitination at the K48 site and subsequent degradation of PD-

L1 via the 26S proteasome. Glycosylation of N192, N200 and N219

creates a spatial barrier that disrupts the interaction between GSK3b
and PD-L1 (24), leading to stabilization of PD-L1 protein. Inhibition

of b-TrCP or certain specific molecules that inactivate GSK3b can in

turn block PD-L1 ubiquitination, promote its stability, and ultimately

induce cancer immunosuppression. In addition, recent in vivo

experiments in mice revealed that eukaryotic elongation factor 2

kinase (eEF2K) (57) promotes immunosuppression of melanoma via

PD-L1 stabilization mediated by GSK3b inactivation. Screening of

the FDA-approved antitumor drug library identified Cytarabine as a

potentially clinically applicable eEF2K inhibitor (58). The association

revealed that cytarabine could be used synergistically with the

downward regulation of the oncogene expression SPP1 by other

BET inhibitors (for example I-BET282E) (59) for the treatment of

melanoma. This finding was also confirmed in a clinical trial of 38

patients with melanoma treated with anti-PD-1 therapy, providing a

potential combination treatment strategy to improve the efficacy

of immunotherapy.

3.2.2 SPOP
Speckled POZ protein (SPOP) is a typical CRL3 adaptor

protein. SPOP interacts with Cullin scaffold protein 3 in CRL3,
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and 3 (cullin 3)-SPOP interacts with the 283-290 region of PD-L1 to

promote polyubiquitination and degradation of PD-L1 in a cell

cycle-dependent manner (49). This process can be catalyzed by the

cell cycle protein D-CDK4 (60). Then conversely, SPOP

inactivating mutations reduce the ubiquitinated degradation of

PD-L1, significantly upregulate PD-L1 expression and reduce the

number of tumor-infiltrating lymphocytes at tumor sites. In vivo

studies have shown that when the MATH structural domain of

SPOP polypeptide chain was mutated, the protein content of PD-L1

was significantly increased in the tumor tissues of tumor-bearing

mice, improving the therapeutic effect of PD-L1 monoclonal

antibody. It is also noteworthy that inhibition of CDK4/6 blocked

cell cycle protein cyclin D-CDK4-mediated phosphorylation of

SPOP, which significantly increased the expression of PD-L1

protein. Paboxicillin and Ribociclib (61), inhibitors of CDK4/6

combined with PD-L1 antibody enhance the ability of CD8+ T

cells to secrete IFN-g (interferon-g), promote T cell-mediated anti-

tumor immune response and significantly increase survival (61).

3.2.3 STUB1
STUB1 ubiquitin ligase is considered a tumor suppressor because

it promotes the ubiquitination and degradation of some oncogenic

proteins. It also negatively regulates the suppressive activity of

regulatory T cells (Treg) by promoting the degradation of the

transcription factor Foxp3, which is often reduced or absent in

cancer cells (62, 63). Similarly, STUB1 ubiquitin ligase catalyzes the

ubiquitination of lysine sites in the cytoplasmic region of PD-L1,

promoting PD-L1 degradation in a proteasome-dependent manner

and is involved in regulating PD-L1 stability. The knockdown of

CMTM6 induces polyubiquitination of PD-L1 in circulating

endosomes, which leads to degradation via the lysosomal pathway

(53, 64). In addition,Mezzadra et al. (53), and Burr et al. (64), showed

that the binding of CMTM6 to PD-L1mediates the internalization of

a larger fraction of PD-L1 on the cell membrane and recirculation to

the plasma membrane and circulating endosomes. Furthermore,

CMTM6 also specifically regulates PD-L1 in these two cell

compartments. This results in reduced ubiquitination of PD-L1

during the cell cycle and lysosomal degradation of PD-L1 during

the cell cycle, thereby prolonging its half-life, inducing and stabilizing

PD-L1 expression at the cell membrane, and enhancing the ability of

PD-L1-expressing tumor cells to suppress T cells and cancer cells for

evasion of immune surveillance. Notably, STUB1 downregulation

leads to a significant upregulation of PD-L1 expression in CMTM6-

insufficient cells compared with that in CMTM6-proficient cells,

which suggests that STUB1 initiates the ubiquitination of PD-L1,

either indirectly or through direct regulation of the lysine in the PD-

L1 cytoplasmic domain.

3.2.4 HMG-coenzyme A reductase
degradation protein 1

In the endoplasmic reticulum, the E3 ubiquitin ligase HRD1 is

involved in the immune regulation of antigen-presentation function

of dendritic cells and sensitization of T and B lymphocytes. Deletion

of the HRD1 gene results in a corresponding decrease in the

number of T cells, and the clonal expansion and differentiation of
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T cells is inhibited. Therefore, HRD1 is considered to be a positive

phase regulator of T cell activity. HRD1 induces polyubiquitination

of aberrantly glycosylated PD-L1, leading to degradation of PD-L1

via the ERAD pathway (65). Reduction of HRD1 significantly

blocked metformin-stimulated ubiquitination of endogenous PD-

L1 and revealed that HRD1 acts as a positive regulator of T-cell

activity in immune regulation (21).

3.2.5 Defective cullin neddylation 1
domain‐containing 1

Defective cullin neddylation 1 domain‐containing 1/squamous cell

carcinoma‐related oncogene (DCUN1D1/SCCRO) is a ring-finger

domain ubiquitin E3 enzyme that is involved in the growth and

metastasis of malignancies such as colorectal (66), glioma (67) and

prostate cancers (68). A recent study revealed the oncogenic

mechanism of DCUN1D1 in non-small cell lung cancer (69).

Upregulation of the expression of DCUN1D1 significantly increased

the levels of PD - L1 protein in non-small cell lung cancer cells. The

regulatory mechanism may be related to FAK pathway; however, the

exact mechanism of action is not fully understood.

3.2.6 Other enzymes and factors involved in the
regulation of ubiquitination

Additionally, there are several enzymes and factors involved in the

regulation of ubiquitination of PD-L1. Metformin-stimulated amp-

activated protein kinase (AMPK) phosphorylates PD-L1 at the S195

site, blocking its ER-to-Golgi translocation and leading to the

degradation of PD-L1 by the ERAD system (21). E3 ligase Neural

precursor cell express developmental downregulated protein 4

(NEDD4) can be inhibited by activated fibroblast growth factor

receptor 3 (FGFR3) in tumor cells, contributing to polyubiquitination

and degradation of PD-L1 (70). The membrane-bound ubiquitin ligase

RNF144A interacts with PD-L1 in the cytosolic membrane and

intracellular vesicles to promote polyubiquitination and proteasomal

degradation of PD-L1 (71). Epidermal growth factor (EGF) (72) induces

PD-L1 monoubiquitination and increases protein expression. In

addition, epidermal growth factor receptor (EGFR) inhibitors

Osimertinib significantly reduce PD-L1 ubiquitination (73, 74). The

Cbl familymembers, c-Cbl andCbl-b, are RING finger E3 enzymes that

catalyze the transfer of ubiquitin from specific E2 enzymes to target

substrates. They can inhibit PD-L1 expression by inactivating STAT,

AKT, and ERK signaling pathways and are also promising therapeutic

manipulation targets for anti-PD-1/PD-L1 tumor immunotherapy.

CDK5 can mediate activation by phosphorylation of FBXO22, which

acts as E3 to promote degradation of PD-L1 in lung cancer cells (75). A

recent study identified ARIH1 as an E3 ubiquitin ligase responsible for

targeting PD - L1 degradation associated with GSK3a phosphorylation

(see below for details of the mechanism involved) and promoting

antitumor immunity, suggesting that ARIH1 may be a potential drug

target for enhancing antitumor immunity and immunotherapy (76).

A growing body of data shows that, blocking the interaction

between PD-1 and PD-L1 by anti-PD-1/PD-L1 monoclonal

antibody has shown great anti-tumor efficacy in various kinds of

solid tumors (77). However, many immune related adverse
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reactions with fatal consequences of monoclonal antibodies have

been reported in these years. Based on this situation, small molecule

immunotherapy has emerged. PROTACs are ternary chemical

complexes that usually consist of three functional parts, an E3

ligase-recruiting chemical ligand, a POI-binding chemical ligand

and a linker (78, 79). It uses ubiquitination mechanism to degrade

the target protein via both proteasomal and lysosomal pathways to

achieve the inhibition of the target protein, and enable targeted

degradation of proteins hard to target by conventional methods. We

have mentioned above that PD-L1 protein is subject to ubiquitin-

mediated proteasomal degradation, therefore, it is feasible to design

novel PD-L1 small molecule degraders based on PROTAC

technology. Typically, von Hippel–Lindau disease tumor

suppressor (VHL) and Cereblon (CRBN) are the most commonly

used endogenous E3 ligases in the PROTAC field. Cheng et al. (80),

synthesized a novel resorcinol diphenyl ether-based PROTAC

molecule P22 for the first time, targeting the involvement of PD-

1/PD-L1 pathway. Not only did it inhibit PD-1/PD-L1 interaction,

but also moderately reduced PD-L1 protein levels in a lysosome-

dependent manner, enhancing the anti-tumor effect of PD-L1

antibody. Liu et al, designed a group of PROTACs consisting

of multiple PD-L1 extracellular segment ligands (BMS-37)

-junction -CRBN ligands in three parts. The most active

PROTAC molecule, BMS-37-C3, has been confirmed to

significantly enhance the killing ability of T cells while reducing

the protein level of PD-L1 in various molecular tests (81, 82).

Besides the traditional inhibitor based PROTAC of PD-L1, Cotton

et al, developed first antibody-based PROTACs (AbTACs) inducing

the degradation of PD-L1, which can target both PD-L1 and the E3

ligase RNF-43 to induce the lysosomal degradation of PD-L1 (83).
3.3 Deubiquitination of PD-L1

As mentioned above, ubiquitination is an essential protein post-

translational modification process that degrades proteins via the

proteasomal pathway, thereby affecting various physiological

metabolisms within the cell. Deubiquitination is the reverse

process of ubiquitination modification, and this process requires

the involvement of deubiquitinase (DUB). DUB reverse regulates

the ubiquitination process by removing individual ubiquitin

molecules or polyubiquitin chains from the tagged target protein

by hydrolyzing the peptide bond at the carboxyl terminus of

ubiquitin, ester bond or isopeptide bond. The reversible

regulation of protein ubiquitination modification and

deubiquitination puts the protein expression level in dynamic

equilibrium, maintains the stability of its expression level and

function, and affects the function of proteins in cellular

life activities.

3.3.1 COP9 signalosome 5
The constitutive COP9 signalosome 5 acts as a large

multiprotein complex, similar to the 19S lid of the 26S

proteasome and plays an integral role in the regulation of cullin-
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RING ubiquitin E3 ligases (CRLs). CSN5 is the fifth member of the

CSN family and is involved in a subgroup of biological processes

that including transcription factor specificity, denuclearization

modification of NEDD8 and nuclear to cytoplasmic translocation

of primary molecules. CSN5 is associated with cancer survival and is

considered a biomarker of poor prognosis in some tumors.

Consistently, CSN5 acts as a DUB with deubiquitinating activity

and is a negative regulator of PD-L1 ubiquitination (52, 84).

Macrophages secrete the pro-inflammatory cytokine TNF-a to

activate NF-kB and induce tumor cells to express CSN5 (85),

which subsequently inhibits ubiquitination and degradation of

PD-L1, thereby enhancing PD-L1/PD-1 interactions and evading

immune surveillance by T cells. However, the CSN5 inhibitor

curcumin reversed this situation and improved the therapeutic

efficacy of CTLA4 blockade therapy (52). CC chemokine receptor

5 (CCR5) and its ligand ligands (e. g. CCL5) are involved in the

suppressive effect of tumor-associated macrophages (TAMs), one of

the most potent immune cell types in the cancer tumor

microenvironment, on CD8+ T cell immunity. They demonstrate

oncogenic and immunosuppressive effects. The activity is further

enhanced by the production of NF-kB p65/signal transducer and

activator of transcription 3 (STAT3) complexes linked to the CSN5

promoter by macrophage-derived CCL5 (85). The NF-KB inhibitor

Shikonin (46) decreased PD-L1 glycosylation and increased PD-L1

degradation, whereas activated STAT3 and overexpressed CSN5

reversed these trends. Thus, stabilization of PD-L1 by inhibiting

NF-kB/CSN5 is a potential strategy to treat cancer-associated

inflammation. Overall, CSN5 plays an important role in PD-L1

regulation and may be a promising therapeutic target in

tumor immunotherapy.
3.3.2 Ubiquitin-specific proteases
A variety of USPs are involved in the regulation of PD-L1

deubiquitination mediated by different mechanisms. USP22 is

observed in a variety of malignancies and is especially highly

expressed in HCC. It interacts with the C-terminus of PD-L1,

deubiquitinates PD-L1 (86), and inhibits its degradation via the

USP22-CSN5-PD-L1 axis (87), which is closely associated with the

prognosis of HCC (88). Moreover, in NSCIC (86), USP22 deletion

can promote the therapeutic effect of PD-L1-targeted tumor

immunotherapy. Recent experiments in mouse models of lung

cancer have shown that (89) targeting USP7 with USP7 inhibitor

P5091 upregulates the expression of PD-L1 protein in Lewis tumor

cells and blocks PD-1, leading to an effective anti-tumor response in

lung cancer. However, the underlying mechanism of its inhibition

of PD-L1 upregulation is still unclear. Another ubiquitin-specific

protease, USP9X (also known as FAM), which reduces PD-1

expression on T cells is involved in immune regulation of tumors.

As a member of DUBs, ubiquitin-specific peptidase 9, Xlinked

(USP9X) has a role in the control of tumor cell proliferation,

adhesion, and apoptosis, among other things (90). And it has

been found to be inappropriately expressed in non-small cell lung

cancer, melanoma as well as breast cancer (91–93). Next, USP9X

was found to be expressed at high levels in EGR-positive prostate

cancer and the USP9X inhibitor WP1130 was found to induce ERG
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degradation and thus inhibit tumor growth (94). In addition,

USP9X is highly expressed in oral squamous cells carcinoma

(OSCC) cells. The high expression of USP9X in OSCC cells

increases the stability of PD-L1 in OSCC cells by deubiquitinating

the tumor and promoting immune escape (95). Therefore, targeting

PD-1/PD-L1 by inhibiting the activity of USP9X may be a

promising anti-cancer therapeutic strategy. In addition, USP21

(96), a novel deubiquitinating enzyme of PD-L1, was recently

identified. Its overexpression significantly upregulated PD-

L1 expression.

3.3.3 OTU domain, ubiquitin aldehyde binding 1
The deubiquitinating enzyme OTUD1 is involved in the

deubiquitination of apoptosis inducing factor (AIF) and plays a

role in regulating apoptosis. It interacts with the K48-linked

polyubiquitin chain in the intracellular region of PD-L1 and

impedes the degradation of PD-L1 via the ERAD pathway by

mediating its deubiquitinase activity (97). In non-small cell lung

cancer experiments, the overexpression of the cyclic RNA insulin-

like growth factor 2 mRNA-binding protein 3 (circIGF2BP3)

upregulates the expression of OTUD1 by stabilizing mRNA (98).

This, in turn, antagonizes the ubiquitinated degradation of PD-L1

and suppresses CD8+ T cell function, leading to immune escape. In

addition, in mice with breast cancer (97), the number of infiltrating

CD8+ T cells and the serum levels of IFN-g were significantly

increased after PD-L1 destabilization induced by OTUD1 deletion,

promoting tumor immunotherapy.
3.4 Phosphorylation of PD-L1

Phosphorylation modification is the process of transferring

ATP phosphate groups to amino acid (tyrosine, serine, threonine)

residues of substrate proteins catalyzed by protein kinases. The

phosphorylation sites of PD-L1 are mainly concentrated in the

extracellular structural domain and are often found together with

the sites of glycosylation and ubiquitination (24). However,

different kinases induce phosphorylation of different sites of PD-

L1 with completely different effects. Among the five widely studied

protein kinases that mediate PD-L1 phosphorylation, GSK3b/a and

AMPK-mediated phosphorylation of PD-L1 leads to degradation by

ubiquitination in the cytoplasm, whereas JAK1 and NIMA-

associated kinase 2 (NEK2)-mediated phosphorylation of PD-L1

stabilizes PD-L1 by promoting PD-L1 glycosylation and inhibiting

PD-L1 ubiquitination.

3.4.1 Glycogen synthase kinase 3b/a
GSK3b induces phosphorylation of non-glycosylated PD-L1 at

the T180 and S184 sites of its extracellular structural domain by

binding to the post-translational motif of PD-L1 (S/TXXXS/T,

where S is serine, T is threonine and X is any amino acid) (24).

The phosphorylated PD-L1 is further ubiquitinated by K48 via

binding to the E3 ligase b-TrCP. This induces degradation of PD-L1

via polyubiquitination in the cytoplasm. For PD-L1 that has

undergone glycosylation, the glycosylation of N192, N200 and
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N219 blocks its spatial site, inhibiting the effect of GSK3b on PD-L1

and preventing PD-L1 phosphorylation and subsequent

degradation. Here, b-TrCP mediates the GSK3b-dependent
phosphorylation of PD-L1 for PD-L1 degradation. In contrast,

GSK3b-independent PD-L1 needs to be induced by mTORC1/

p70S6K to phosphorylate it, which, in turn, leads to b-TrCP-
mediated PD-L1 degradation (99). PARP1 inhibitor Olaparib

(100, 101), tyrosine kinase inhibitors (TKIs) (100), and resveratrol

(36) inhibit GSK3b activity, which further affects the interaction

between PD-L1 and b-TrCP. In addition, epidermal growth factor

(EGF) acts as an upstream signal that regulates the expression and

function of GSK3b protein. Gefitinib, Erlotinib, Osimertinib and

ES-072 are inhibitors of the EGF receptor EGFR (24, 76, 102, 103),

induce phosphorylation of non-glycosylated PD-L1, rendering it

susceptible to degradation. Secondly, the novel apropionate

derivative SA-49 (104) can enhance the killing of co-cultured

tumor cells by NK cells and T cells via the PKCa-GSK3b cascade,

which ultimately promotes PD-L1 lysosomal degradation.

In addition, GSK3a also plays a role similar to that of GSK3b
(24). GSK3a phosphorylates the S279 and S283 sites of PD-L1, and

the phosphorylated PD-L1 is then degraded by the proteasome

mediated by the E3 ubiquitin ligase ARIH1 mentioned above (76).

Therefore, GSK3a/GSK3b may be a potential target for regulating

PD-L1 phosphorylation/ubiquitination.

3.4.2 Metformin activates the AMP-activated
protein kinase

AMPK is a key molecule that stimulates glucose utilization by

phosphorylating targets involved in glucose transporter transport. It

is an enzyme necessary for the body to maintain glucose

homeostasis. AMPK phosphorylation is also involved in the

regulation of PD-L1, and although it phosphorylates different

sites of PD-L1 to promote PD-L1 degradation, the mechanisms

are not the same. First, phosphorylation of PD-L1 at the S195 site

(21) leads to abnormal PD-L1 glycosylation. The aberrantly

glycosylated PD-L1 cannot be transferred from the endoplasmic

reticulum to the Golgi apparatus, resulting in a large amount of

aberrantly glycosylated PD-L1 being degraded via the ERAD

pathway of endoplasmic reticulum-associated degradation. The

study confirmed that D-mannose (105) can activate AMPK,

which is involved in regulating the whole process mentioned

above. Combined treatment with D-mannose and PD-1 blockade

therapy in mice greatly inhibited the growth of TNBC and

prolonged the survival of tumor-bearing mice. Metformin (106),

an AMPK agonist, induced PD-L1 degradation via the ERAD

pathway (105) by activating its serine protein kinase activity. It is

a process that inhibits the immune escape of tumor cells by

reducing the stability and membrane localization of PD-L1.

Second, because abnormal energy status leads to cancer

development, and energy deprivation activates AMPK, the

activated AMPK mediates PD-L1 phosphorylation at the S283 site

(107), which disrupts its interaction with chemokine superfamily

member 4 (CMTM4) and leads to PD-L1 degradation. In addition,

Cha et al. (108), demonstrated that metformin significantly

improved the therapeutic effect of immune checkpoint CTLA-4
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(cytotoxic T-lymphocyte associated protein 4) monoclonal

antibody in mice. The combination of these two drugs promoted

the secretion of granzyme B (GZMB) by CD8+ T cells and enhanced

the killing effect of TILs cells in breast cancer cells. These findings

indicate a novel hypothesis for cancer immunotherapy.

3.4.3 Tyrosine kinase JAK1
In 2019, Chan et al, demonstrated that the tyrosine kinase JAK1

induces phosphorylation of PD-L1 at the Y112 site upon

interleukin-6 (IL-6) stimulation (26). JAK1 binds to PD-L1 in the

endoplasmic reticulum and promotes phosphorylation at the PD-

L1 Y112 site, thereby recruiting oligosaccharyltransferase (OST).

OST acts on the same position of the n-glycosyltransferase STT3A

to catalyze PD-L1 glycosylation and upregulate PD-L1 expression,

thereby promoting PD-L1 stability and inducing tumor immune

escape. This has been demonstrated by the results of in vitro CD8+

T cell killing experiments (26), where the protein stability of PD-L1

in cancer cells was reduced when a point mutation of Y112 was

noted in PD-L1, rendering PD-L1 unable to bind to PD-1 on the

membrane surface of CD8+ T cells. This, enhanced the killing effect

of CD8+ T cells on tumor cells. Phosphorylation of PD-L1 and its

stability is closely related to its stability and may also serve as a

potential target for enhanced immunotherapy. There are already

drugs based on JAK1 such as to Tofacitinib, Ruxolitinib and

Fedratinib (76, 109, 110). And the combination of IL-6 inhibitor

with anti-T cell immunoglobulin mucin-3 (anti-Tim-3) enhances

the efficacy of T cell-mediated killing of tumor cells (26, 76).

3.4.4 NIMA related kinase 2
In a study of cytological experiments in pancreatic cancer,

Zhang et al (111), confirmed that dephosphorylation of PD-L1 by

NEK2 is one of the main reasons for the poor immunotherapeutic

effect observed with pancreatic cancer. NEK-binding motifs (F/

LXXS/T) could be identified in the glycosylation-rich region of PD-

L1 (112). NEK2 interacts with PD-L1, phosphorylates T194/T210

residues and prevents ubiquitin-proteasome pathway-mediated

degradation of PD-L1 in the ER lumen. This is followed by

further promotion of glycosylation at the N192, N200 and N219

sites, preventing PD-L1 degradation and promoting PD-L1 stability

(111). Hence, we can speculate that the inhibition of NEK2 and PD-

L1 is a promising anti-cancer strategy. And a small molecule drug

NCL 00017509, based on NEK2, is currently in preclinical

studies (111).

In addition, phosphorylation of heat shock transcription factor

1 (HSF1) (113), a major regulator of the proteotoxic stress response,

at the Thr120 site induces its binding to the PD-L1 promoter and

upregulates PD-L1 expression. It is expected to be a new

immune target.
3.5 Acetylation of PD-L1

Acetylation is the process of adding acetyl groups to

protein residues, which is mediated by acetyltransferases

of acetyl coenzymes A (114, 115) [including histone acetyltransferases
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(HATs), lysine acetyltransferases (KATs), and Na-acetyltransferases
(NATs) (116)]. And this process can be reversed by deacetylases of

acetylated proteins [including histone deacetylases (HDACs) and

Sirtuins (SIRTs) (117)]. PD-L1 acetylation can promote tumor

immune escape along with glycosylation, but they show completely

different mechanisms. As mentioned above, PD-L1 glycosylation

inhibits its ubiquitination-mediated degradation, prolongs the half-life

of PD-L1, maintains PD-L1 stability, and promotes its binding to PD-1

to help tumor immune escape. Differently, PD-L1 acetylation is able to

translocate PD-L1, which is mainly expressed on the cell membrane to

function, into the nucleus (118). The accumulation of PD-L1 in the

nucleus helps tumor cells evade immune surveillance during metastasis

and promotes further tumor development and metastasis.
3.5.1 Histone acetyltransferase P300
PD-L1 is acetylated by p300 at the Lys263 site in the

cytoplasmic structural domain, promoting the translocation of

PD-L1 to the nucleus via cytocytosis and nucleoplasmic

translocation pathways (118). The increased levels of PD-L1 in

the nucleus lead to its bindings to DNA and is involved in the

regulation of IFN, nuclear factor kB (NF-kB), major

histocompatibility complex I (MHCI), and other immune

response genes, thus promoting tumor immune escape. HDAC2

inhibitors Trichostatin A in combination with anti-PD-1 antibodies

enhance tumor growth inhibition and improve survival in MC38

homozygous use models (119, 120). Therefore, inhibition of

HDAC2 in combination with PD-1/PD-L1 blockade is a new

strategy for tumor immunotherapy. In addition, binding of

hepatitis B virus X-interacting protein (HBXIP) to P300 in breast

cancer enhances acetylation of the PD-L1 K270 site, leading to

stabilization and accumulation of PD-L1 in cancer cells, thereby

enhancing tumor immune escape (121). A study by Gao et al. (118),

found that HDAC2 genetic depletion or pharmacologic inhibition

of HDAC2 reduced the nuclear portion of PD-L1, thereby

enhancing the antitumor efficacy of PD-1 blockers.
3.5.2 Huntingtin interacting protein 1-related
After deacetylation of PD-L1 on the cell membrane by

unacetylated PD-L1 or by HDAC2, HIP1R binds specifically to

the C-terminus of PD-L1, allowing the b-subunit (AP2B1) of the
lattice protein-dependent endocytic junction protein complex

(AP2) to recognize HIP1R via a double leucine motif D/E-x-xx-

x-L-L/I and bind to PD-L1 to form a complex. The formation of

this complex is mediated by lattice proteins to achieve

endocytosis, accumulation in the nucleus, and enhancement of

the activation of multiple immune response pathways (122). PD-

L1 acetylation can mediate its translocation and degradation, but

its role in these processes requires further investigation. High

expression of PD-L1 is widely used as a marker for patient

selection, and we also speculate PD-L1 nuclear expression or

PD- L1 acetylation status could be a useful biomarker for future

cancer immunotherapy.
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3.6 S-palmitoylation of PD-L1

Protein palmitoylation, also known as S-palmitoylation, is a

reversible form of PTM of protein lipidation in which palmitoyl

groups are attached to the sulfhydryl groups of cysteine residues of

proteins by thioester bonds. This process is usually catalyzed by a

family of DHHC protein acyltransferases (DHHC-PATs)

containing the Asp-His-His-Cys active center (123, 124). S-

palmitoylation mainly affects protein membrane anchoring,

transport, and degradation.
3.6.1 Aspartate-histidine-histidine-cysteine
rich sequence

Yang et al. (125), first reported that palmitoyl transferases can

interact with PD-L1 in breast cancer and catalyze its palmitoylation at

the Cys272 site. Yao et al (126, 127), recently reported a similar

finding in a mouse colon cancer model. C272 is the main site of

palmitoylation, and after palmitoylation of PD-L1 at the C272 site in

the cytoplasm, PD-L1 inhibits the ubiquitination of PD-L1 and

prevents its movement to the multivesicular body (MVB). This

prevents PD-L1 from being degraded by the lysosomal degradation

pathway, thus inducing the development of tumor immune escape.

The mutated C272 site inhibits PD-L1 palmitoylation, reduces PD-L1

levels on the membrane surface and its binding to PD-1, and

cont inuous ly act ivates T cel l -mediated cytotoxic i ty .

Bromohexadecanoic acid (2-bromopalmitate, 2-BP) (126), as an

inhibitor of DHHC-PATs enzyme activity, reduces the protein

stability of PD-L1 by inhibiting its palmitoylation modification and

is the only validated effective PD-L1 palmitoylation targeting drug.

However, the inhibitory effect of 2-BP onDHHC-PATs is not specific

(127). In the subsequent studies, the development of targeted drugs

that specifically inhibit DHHC3/9 could be considered to achieve

specific modulation of PD-L1 palmitoylation, and targeting PD-L1

palmitoylation could increase the sensitivity of tumor cells toward T-

cell-mediated killing and retard tumor growth. Next, the investigators

designed a PD-PALM peptide based on the amino acid sequence

profile near the C272 site. It inhibits the palmitoylation of

endogenous PD-L1 by competitively binding DHHC3 enzyme,

reduced the level of PDL1 expression in tumor cells, and enhanced

T cell-mediated anti-tumor immune responses. Clinical studies (114)

also found PD-L1 palmitoylation in cisplatin-resistant bladder cancer

cells, and inhibition of fatty acid synthase (FASN) inhibited PD-L1

palmitoylation and its expression. The PTMs of PD-L1 and

immunotherapy summarized above are detailed in Table 1.
4 Interactions and correlations of
PTMs of PD-L1

In the regulation of different post-translational modifications of

PD-L1, they do not work singularly, but rather are closely related

and participate in the regulation of PD-L1 in collaboration.
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TABLE 1 Various PTMs of PD-L1.

Related
enzymes

Modification
site Biological effects Cancer type Molecules References

N-glycosylation

GLT1D1

N35
/N192
/N200
/N219

Enhanced stability of PD-L1 Non-Hodgkin’s (29)

STT3

N35
/N192
/N200
/N219

Enhanced stability of PD-L1 Liver cell carcinoma IL- 6 (30)

Colon cancer (31, 32)

Nasopharyngeal Carcinoma TGF-b (33)

GFAT1

N35
/N192
/N200
/N219

Enhanced stability of PD-L1 Lung cancer (34)

Glyco-PD-L1-
processing
enzymes

Reduced stability of PD- L1;
Blocking PD-L1 from binding
to PD- 1 binding

Breast cancer (36)

2-DG
Blocking PD-L1 from binding
to PD- 1 binding

Triple negative breast cancer (37–40)

B3GNT3
N192
/N200

Promoting PD-L1 binding to PD-1 EGF (25)

Sigma1 Enhanced stability of PD-L1
Prostate Cancer/Triple negative
breast cancer

(41)

FKBP51s Enhanced stability of PD-L1 Glioma GSK3b,b-TrCP (42)

STAT3
Suppresses glycosylation of PD-
L1, Activates the NF-kB/STAT3
and NF-kB

Pancreatic cancer (43–46)

Ubiquitination
b-TrCP K48 Catalytic degradation of PD-L1 Breast cancer

GSK3b,
mTORC1/
p70S6K

(56, 57)

SPOP Decreases PD-L1 level Prostate cancer
Cullin 3, D-
CDK4/6

(60, 61)

STUB1 Downregulates level of PD-L1 Melanoma CMTM6 (53, 62–64)

HRD1
Downregulates level of PD-L1,
Positively regulates T‐cell
immunity

Breast cancer ERAD, Metformin (65)

DCU
N1D1

Increases PD-L1 level
Colorectal cancer, Glioma,
Prostate cancer and Lung cancer

FAK Pathway (68, 69)

NEDD4 K48 Promotes PD-L1 degradation Bladder caner FGFR3 (70)

RNF
144A

Promotes PD-L1 degradation Bladder Tumor EGFR (71)

c-Cbl Cbl-b Inhibition of PD-L1 expression
Melanoma, Gastric cancer,
NSCLC

STAT5a, AKT,
and ERK signaling
pathways

(73, 74)

ARIH1 Degradation of PD - L1 Breast cancer GSK3a (76)

Deubiquitination
CSN5

suppresses degradation of PD-
L1

Triple negative breast cancer,
NSCLC

TNF-a,
NF-kB
signaling pathway

(52, 84)

USP22 Enhanced stability of PD-L1
Liver Cancer,
NSCLC, PDA

CSN5 (86–88)

(Continued)
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Glycosylation of PD-L1 is involved in the regulation of its

ubiqui t inat ion and phosphorylat ion . GSK3b- induced
phosphorylation of non-glycosylated PD-L1 activates b-TrCP-
mediated degradation of PD-L1 (99). Glycosylation antagonizes

the binding of GSK3b to PD-L1 and inhibits PD-L1

phosphorylation (24). Thus, glycosylation of PD-L1 can directly

inhibit its phosphorylation and indirectly inhibit its ubiquitination

and degradation. PD-L1 glycosylation does not affect its acetylation

and nuclear translocation. AMPK phosphorylates PD-L1 at the

Ser195 site leads to aberrant glycosylation of PD-L1 and impaired

translocation from the endoplasmic reticulum to the Golgi

apparatus, resulting in the accumulation of PD-L1 in the

endoplasmic reticulum and promoting degradation via.

ubiquitination (21). With IL-6 stimulation, JAK1 binds to PD-L1

in the endoplasmic reticulum and promotes phosphorylation at the

PD-L1 Y112 site, lead to the n-glycosyltransferase STT3 to catalyze

PD-L1 glycosylation and upregulate PD-L1 expression, thereby

promoting PD-L1 stabil ity (26). NEK2 (111) induced

phosphorylation of PD-L1 inhibits PD-L1 ubiquitination, thereby

increasing PD-L1 stability. S-palmitoylation of PD-L1 at the C272

site in the cytoplasm, PD-L1 inhibits the ubiquitination of PD-L1

and prevents its movement to the multivesicular body (MVB) (116,

117). Peracetylation of forkhead box P3(Foxp3), has been reported

to inhibit its ubiquitination and degradation (129). And Lysine

acetylation of non-histone proteins can compete with ubiquitination
Frontiers in Immunology 11113112
and thus affect the stability or subcellular localization of the protein

(115). However, there is no clear support for whether PD-L1

acetylation will prevent its ubiquitination in cancer cells and

further studies are needed. (See Figure 1 for details of the

relationship between several PTMs of PD-L1).

Glycosylation-targeted drugs prevent immune escape of tumor

cells by inhibiting glycosylation and increasing the number and

proportion of non-glycosylated PD-L1. Ubiquitination-targeted

drugs mainly promote the process of PD-L1 ubiquitination to

exert their anti-tumor effects. Phosphorylation-targeted drugs

exert their anti-tumor effects mainly by regulating related kinases

to achieve the effect of inhibiting glycosylation or promoting

ubiquitination degradation. Acetylation-targeted drugs inhibit

PD-L1 acetylation and prevent its translocation into the nucleus,

preventing immune cells from evading immune surveillance to

exert their antitumor effects. Palmitoylation-targeted drugs

promote palmitoylation, prevent PD-L1 glycosylation, and reduce

PD-L1 stability (See Table 2 for details of specific drugs and

mechanisms of action).
5 Discussion

PD-L1/PD-1 has garnered significant interest in recent years as

a signaling pathway that inhibits immune cell activation and
TABLE 1 Continued

Related
enzymes

Modification
site Biological effects Cancer type Molecules References

USP7 Enhanced stability of PD-L1 Lewis lung carcinoma FOXP3 (89)

USP9X Enhanced stability of PD-L1
OSCC,
prostate cancer

EGR (94, 95, 128)

OTUD1 K48 Blocking PD-L1 degradation Triple negative breast cancer
ERAD,
circIGF2BP3

(97, 98)

Phosphorylation
GSK3b T180/S184;

Promotes b-TrCP-mediated
PD-L1 degradation

Gastrointestinal tumors, Breast
cancer, Lung cancer, Renal cell
carcinoma, etc.

b-TrCP,
EGF, EGFR

(24, 99, 100,
104)

GSK3a S279/S283
Promotes ubiquitinated
degradation of PD-L1

Colon cancer, Cervical cancer,
Pancreatic cancer, Lung cancer,
Prostate cancer

ARIH1 (24, 76)

JAK1 Y112 (26, 76)

AMPK S195
Aberrant glycosylation of PD-
L1 upon degradation by
ubiquitination

Breast cancer
ERAD,
D-mannose

(21, 105, 106)

S283 Induction of PD-L1 degradation Breast cancer
metformin,
CMTM4

(107)

NEK2 T194/T210
Glycosylation of PD-L1 to
promote its stability

Liver Cancer
IL-6, OST,
STT3A

(111, 112)

Acetylation
P300 K263/K270

Promotes PD-L1 internal
transfer

Liver cell carcinoma
NF-kB, MHCI,
HDAC2

(118, 119,
121)

HIP1R
Promotes PD-L1 internal
transfer

AP2B1

S-palmitoylation
DHHC C272

Colon cancer, Breast cancer,
Bladder cancer

Protects PD-L1 from
degradation by lysosomes

(126, 127)
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promotes immune escape of tumor cells. Given that PTMs are often

therapeutic targets for drug-mediated inhibition of cancer, it is

crucial to better understand PD-L1 PTMs in malignant tumors.

This review summarizes the types of post-translational

modifications of PD-L1 that have been identified, the mechanisms

underlying regulation of PD-L1 by different post-translational

modifications, and the PTMs that have been identified and used

to target PD-L1, providing a solid theoretical basis for the

improvement of immunotherapeutic effects and combination of

drugs. We aim to provide new ideas and directions for tumor

immunotherapy research. (See Figure 2 for the six PTMs of PD-L1.

See Figure 3 for the pathways of PTMs related to PD-L1 in tumor

cells and the main related molecules).

PTMs of PD-L1 have made some achievements. Firstly, an

increasing number of mechanisms have been translated into clinical

drugs (see Table 2 for details).

Secondly, PD-L1/PD-1 related immunotherapy has more side

effects and only some cancer patients respond well to PD-1/PD-L1

blockade, thus a tumor vaccine with PD-L1/PD-1 immunotherapy

strategy is proposed to overcome these limitations. Recent studies

identified Local tumor photothermal treatment with the near-

infrared light at the second window (NIR-II) (131) is a boosting

strategy in triggering the in-situ tumor vaccination (ISTV) for cancer

therapy. It is responsible to reverse the immunosuppressive

microenvironment of tumors, increasing the antigen presentation

efficacy and promoting the immunological responses of T-cells to

attack the remaining tumor cells (131). However, most of the

previously developed ISTV adjuvants may indiscriminately

damage tumor cells and immune cells, limiting the overall effect of

the immune response. Fan et al, designed a “cocktail” nano adjuvant

that significantly enhanced the immune response to NIR-II light-

induced DC mutation and T-cell differentiation, and had a stronger

inhibitory effect on tumor growth (132). Moreover, Hu et al,

explored a synergistic strategy to combine in situ vaccination and
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gene-mediated anti-PD therapy. It was generated by unmethylated

cytosine-phosphate-guanine (CpG) and pshPD-L1 gene co-delivery.

PEI worked as the delivery carrier to co-deliver the CpG and pshPD-

L1 genes, the formed PDC (PEI/DNA/CpG) nanoparticles were

further shielded by aldehyde modified polyethylene glycol (OHC-

PEG-CHO) via pH responsive Schiff base reaction for OHC-PEG-

CHO-PEI/DNA/CpG nanoparticles (P(PDC) NPs) preparation

(133). In mouse experiments, the synergistic effect of this step was

rapid and effective (133).

However, some challenges still remain to be addressed. Firstly, the

effects of various PD-L1 PTMs on tumor immune escape mentioned in

this paper have been largely clarified, but due to the diversity and

complexity of post-translational modification forms and mechanisms,

the regulatory mechanisms of PD-L1 PTMs still need to be explored

further. For example, the effects of various PTMs on the subcellular

localization and physiological functions of PD-L1, and the existence of

novel PD-L1 PTMs processes need to be further investigated.

Secondly, most of the corresponding intervention strategies or

combination drug regimens for PTM are still in the experimental stage

in cellular and animal models. Therefore, future studies will continue

to investigate in depth at the mechanistic level on the one hand, and

focus on the clinical translation and combination of existing

intervention strategies for PD-L1-based PTM on the other hand.

Thirdly, different forms of PTMs mentioned in the text also

have their particular breakthrough points.

Glycosylation and Phosphorylation: Glycosylation of PD-L1

inhibits 26S proteasome-mediated protein degradation, which, in

turn, maintains PD-L1 stability, and GSK3b is the central node that

regulates PD-L1 stability (24). Furthermore, glycosylated PD-L1

inhibits GSK3b phosphorylation and b-TrCP ubiquitination-

mediated degradation (99), but the mechanism of the translocation

of ER-bound PD-L1 into the cytoplasm and degradation by the

26S proteasome is unclear. Future work may focus on how

phosphorylation and glycosylation of PD-L1 regulate the ERAD
FIGURE 1

The relationship between several PTMs of PD-L1. Glycosylation and ubiquitination of PD-L1 play a direct role in promoting and inhibiting its stability.
Deubiquitination indirectly promotes the stability of PD-L1 by antagonizing its ubiquitination. Different enzyme-mediated phosphorylation of PD-L1
plays different roles. GSK3b-mediated phosphorylation which can be inhibited by glycosylation promotes ubiquitination of unglycosylated PD-L1 and
indirectly inhibits its stability. AMPK-mediated phosphorylation inhibits glycosylation of PD-L1 and indirectly reduces its stability. In contrast, JAK1-
mediated phosphorylation facilitates PD-L1 glycosylation, indirectly contributing to its stability. Both NEK2-mediated phosphorylation and
palmitoylation indirectly promote PD-L1 stability by inhibiting ubiquitination of PD-L1. Acetylation of PD-L1 may inhibits its ubiquitination.
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pathway. In addition, EGFR-activated AKT is associated with

cytomembrane PD-L1 expression and survival in patients with lung

cancer (134–137). EGFR-activated AKT inhibits GSK3b activity via

Ser9 phosphorylation, suppresses EGF signaling in basal-like breast

cancer (BLBC) cells, reduces PD-L1 stability, and decreases cancer cell

immune escape, thereby demonstrating a therapeutic benefit. Similar

regulation was observed by Akbay et al. (138), in PD-L1 mouse lung

tumor cells. However, no study has yet indicated whether AKT can
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directly regulate PD-L1 expression. More in-depth analysis is needed

to demonstrate the role of AKT in EGFR-mediated PD-L1 protein

stabilization. The effect of the catalysis of ATP uptake mediated by the

endoplasmic reticulum on PD-L1 phosphorylation in the endoplasmic

reticulum is not understood. Furthermore, the mechanism of how

AMPK is localized in the lumen of the endoplasmic reticulum is also

unclear. Ubiquitination: Novel small molecule immunotherapeutic

agents, PROTACs, generated against PD-L1 ubiquitination have
TABLE 2 PTMs of PD-L1 currently exist for clinical treatment.

Drug name Combination therapy Target Action mechanism References

N-Glycosylation Etoposide Etoposide + TIM-3 mAb STT3 Inhibiting EMT-induced STT3 expression and
reducing PD-L1 stability

(30)

2-DG 2-DG + Olaparib 2-DG Inhibition of PD-L1 Glycosylation Modification (40)

IPAG Unknow Sigma1 Inhibition of PD-L1 Glycosylation Modification (41)

Shikonin Unknow STAT3 Inhibition of PD-L1 Glycosylation Modification (43–46)

Ubiquitination Resveratrol Unknow b-TrCP Blocking PD-L1 from binding to PD- 1 binding (36)

Cytarabine Unknow GSK3b Down-regulation of the expression of oncogenic
gene SPP1

(58, 59)

Palbociclib Palbociclib + PD-1 mAb CDK4/6 Promotes T cell-mediated anti-tumor immune
response

(60)

Curcumin Curcumin + CTLA-4 mAb CSN5 Promotes ubiquitination and degradation of PD-L1 (52)

PROTACs
PD- LYSO

Unknow PD- L1 degradation (81–83, 130)

Phosphorylation Metformin Metformin + CTLA-4 mAb AMPK Induced PD-L1 degradation via ERAD pathway (21, 37, 108)

SA-49 Unknow PKCa-
GSK3b

Promotes PD-L1 lysosomal degradation (104)

Erlotinib, Osimertinib
and ES-072

Erlotinib, Osimertinib and ES-
072 + PD-1 mAb

EGFR Induces phosphorylation of non-glycosylated PD-
L1

(24, 76, 102,
103)

Tofacitinib, Ruxolitinib
and Fedratinib

Unkonw JAK1 Downregulation of PD- L1 via suppression of
STAT1/3- mediated transcription

(76, 109, 110)

IL-6 mAb IL-6 mAb + TIM-3 IL-6 Inhibits downstream JAK1 activation and promotes
PD-L1 degradation

(26, 76)

Acetylation Trichostatin A Trichostatin A+ PD-1 mAb HDAC2 Inhibition of PD-L1 translocation to the nucleus (119, 120)

S-
Palmitoylation

2-BP Unknow DHHC
family

Decreased palmitoylation and thus increased
degradation of PD- L1

(126, 127)
FIGURE 2

Regulations of PD-L1 by glycosylation, ubiquitination, deubiquitination, phosphorylation, acetylation and palmitoylation.
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been generated. However, whether these PROTACs can show better

clinical outcomes than primary antibodies need to be explored in depth

(83). Acetylation: Nuclear PD-L1 expression is higher in metastatic

tumors than in primary tumors (118), but the mechanism by which

nuclear PD-L1 is increasing the aggressiveness of tumors is currently

unclear. Furthermore, whether PD-L1 acetylation is associated with

drug resistance is unclear and needs to be explored.

Fourthly, PD-1 modification is also critical in the anti-cancer

immune response. However, the mechanisms underlying the

regulation of PD-1 PTMs remain largely unknown.

Fifthly, Although PD-L1 has emerged as an important target for

drug development, and several approved drugs and related clinical

trials targeting PD-L1 are available demonstrating the potential of

PD-L1 as a drug target, the response rate is still below 40% in most

cancer types. Post-translational modulation of PD-1/PD-L1 and the

proposed combination therapeutic strategies to improve the PD-1/

PD-L1 blockade efficacy by providing new avenues.
Frontiers in Immunology 14116115
Finally, Most FDA-approved therapeutic antibodies are typically

produced by E. coli or other host microorganisms that do not exhibit

PTMs. This renders the detection of PD-L1 suboptimal, and therefore,

new technologies areneeded to improve theefficacyof antibody therapy.
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FIGURE 3

Pathways related to PTMs of PD-L1 in tumor cells and the main related molecules. PD-L1 glycosylation begins in the ER and ends in the Golgi, where it
reaches the cell surface and binds to PD-L1 on the surface of T cells, inhibiting lymphocyte function and causing immune escape of tumor cells. STT3,
Sigma 1 (which can be inhibited by IPGA), and other enzymes that promote glycosylation (see previous section for details) all promote PD-L1 glycosylation
in the endoplasmic reticulum. B3GNT3 (which can be inhibited by EGFR) further promotes the completion of PD-L1 glycosylation in Golgi. Ubiquitination of
PD-L1 takes place in the lysosome and 26s proteasome. b-TrCP promotes ubiquitination of PD-L1 after phosphorylation by GSK3b; along with STBU1
(which can be boosted by CMTM6) and other E3 enzymes (see previous section for details on particular enzymes), HRD1 encourages the ubiquitination of
abnormally glycosylated PD-L1 so that it can be degraded via the 26s proteasome pathway. Ubiquitination of PD-L1 can be reversed by DUBs including
CSN5 and USPs, etc, which inhibitthe degradation of PD-L1. PD-L1 phosphorylated by JAK1 undergoes glycosylation mediates by STT3; PD-L1
phosphorylated by NEK2 inhibits its ubiquitination; PD-L1 phosphorylation mediated by AMPK (which can be inhibited by metformin) inhibits its
glycosylation and promotes the degradation of aberrantly glycosylated PD-L1 by ubiquitination; and phosphorylation of PD-L1 mediated by GSK3b (which
can be inhibited by EGFR) all promotes it ubiquitination and can be degraded by the 26s proteasome. HDAC2 deacetylates PD-L1 (inhibited by SCA) into the
cytoplasm and forms a complex with AP2B1 mediated by HIP1R, which is later reacetylated by P300 and translocated into the nucleus through the action of
P300. DHHC promotes PD-L1 palmitoylation and inhibitis its transport to MVB, preventing PD-L1 degradation via the lysosomal pathway.
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Prognostic and tumor
microenvironmental feature of
clear cell renal cell carcinoma
revealed by m6A and lactylation
modification-related genes

Lin Yang †, Xiaoyu Wang †, Jiahao Liu †, Xiaoqiang Liu †, Sheng Li,
Fuchun Zheng, Qianxi Dong, Songhui Xu*, Jing Xiong*

and Bin Fu*

Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
Background: Both lactylation andm6Amodification have important implications

for the development of clear cell renal cell carcinoma (ccRCC), and we aimed to

use crosstalk genes of both to reveal the prognostic and immunological features

of ccRCC.

Methods: Our first step was to look for lactylation-related genes that differed

between normal and tumor tissues, and then by correlation analysis, we found

the genes associated with M6A. Following that, ccRCC subtypes will be identified

and risk models will be constructed to compare the prognosis and tumor

microenvironment among different subgroups. A nomogram was constructed

to predict the prognosis of ccRCC, and in vitro, experiments were conducted to

validate the expression and function of key genes.

Results: We screened 100 crosstalk genes and identified 2 ccRCC subtypes. A

total of 11 prognostic genes were screened for building a risk model. we

observed higher immune scores, elevated tumor mutational burden, and

microsatellite instability scores in the high-risk group. Therefore, individuals

classified as high-risk would derive greater benefits from immunotherapy. The

nomogram’s ability to predict overall survival with a 1-year AUC of 0.863

demonstrates its significant practical utility. In addition, HIBCH was identified

as a potential therapeutic target and its expression and function were verified by

in vitro experiments.

Conclusion: In addition to developing a precise prognostic nomogram for

patients with ccRCC, our study also discovered the potential of HIBCH as a

biomarker for the disease.
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Background

Renal cell carcinoma (RCC), particularly clear cell cancers

which account for approximately 80% of cases, are highly

aggressive and heterogeneous tumors (1). Due to the lack of

specific symptoms in early RCC, nearly 30% of patients present

with distant metastases at the time of initial diagnosis, which is one

of the major reasons for the poor prognosis of RCC patients (2, 3).

An excellent outcome is usually achieved by surgically resecting the

primary lesion of a low-risk limited clear cell renal cell carcinoma

(ccRCC), but a significant proportion of patients still recur within a

short period (approximately 40%). Patients with high-risk

metastatic or limited ccRCC must undergo systemic therapy to

improve their prognosis (4, 5). In recent years, combination

therapies based on anti-angiogenic agents and immune

checkpoint inhibitors have been shown to improve the survival of

ccRCC patients (6). Nevertheless, the current problem is that

effective long-term treatment responses can only be observed in a

small number of patients (7, 8). In the era of precision medicine, it is

crucial to thoroughly understand the tumor microenvironment

(TME) and identify biomarkers associated with therapeutic

response to effectively manage ccRCC patients in the long term.

Aerobic glycolysis is an important feature of tumor cell energy

metabolism known as the “Warburg effect”, which leads to a large

accumulation of lactic acid in the TME (9). Recent findings suggest

that lactate in TME can regulate immune cell metabolism through

mitochondrial metabolic pathways, thereby affecting immune

surveillance and escape-related behaviors (10, 11). A study by

Zhao et al. proposed a novel epigenetic modification that

translates the cellular metabolic state into a stable gene expression

pattern through histone lactylation modification (12). This provides

a new direction for understanding the mechanisms by which lactate

regulates cellular metabolism and immune function. Currently, it

has been demonstrated that lactylation plays a key role in the

progression of ccRCC. Yang et al. found that Inactive von Hippel-

Lindau-triggered (VHL) histone lactylation can drive the

progression of ccRCC (13). More interestingly, Yu and Xiong

et al. found that histone lactylation drives N6-adenylation

methylation modifications (m6A) to promote tumor progression

and immunosuppression (14, 15). Moreover, ccRCC progression

and immune landscapes are strongly influenced by m6A

modification (16). However, the impact of crosstalk between
Abbreviations: RCC, Renal cell carcinoma; ccRCC, Clear cell renal cell

carcinoma; TME, Tumor microenvironment; VHL, Von Hippel-Lindau-

triggered; m6A, N6-adenylation methylation modifications; TCGA, The Cancer

Genome Atlas; FC, Fold change; DEGs, Differentially expressed genes; DECGs,

Differentially expressed crosstalk genes; TMB, Tumor mutational load; GO, Gene

Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PCS, Principal

component analysis; OS, Overall survival; HLA, Human leukocyte antigen;

LASSO, Least absolute shrinkage and selector operation analysis; K-M, Kaplan-

Meier; GSEA, Gene set enrichment analysis, IPS, Immunophenotype score; ROC,

Receiver Operating Characteristics; AUC, Area Under Curve; DCA, Decision

curve analysis; MTGs, Mitochondria genes; FBS, Fetal bovine serum; qPCR,

Quantitative PCR.
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histone lactylation and m6A modification on the ccRCC TME

is unclear.

Therefore, we utilized the interaction between histone

lactylation and m6A modification-related genes to forecast patient

survival and assess the response to immunotherapy in ccRCC.
Methods

Datasets

A training set of TCGA-KIRC data was downloaded from the

Cancer Genome Atlas (TCGA) database, which contained gene

expression data from 541 tumor tissues and 72 normal tissue

samples, as well as corresponding clinical information. The E-

MTAB-1980 validation set, which contains clinical and gene

expression data from 101 patients with ccRCC, was generated from

ArrayExpress. Our next step was to remove genes with raw counts

below 10 in more than 25% of the samples. The TPM data were

transformed into log2 (TPM+1). There are 1223 genes associated

with lactylation modification according to Zhang et al. (12).
Correlation and difference analysis

The 1223 lactylation modification-related genes were subjected

to Pearson correlation analysis with 23 m6A genes to obtain

crosstalk genes with screening criteria of correlation>0.5 and

padj<0.01. To identify differentially expressed genes (DEGs)

between cancer and paracancerous tissues, we used the “DESeq2”

package [padj <0.05, |log2fold change (FC)|>1]. Subsequently, the

crosstalk genes were merged with DEGs and the intersection was

taken to finally obtain the differentially expressed crosstalk genes

(DECGs). The correlation results between DECGs were visualized

using the “circlize” package.

Each sample’s tumor mutation load (TMB) was calculated using

the “Maftools” package. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses of DECGs

were performed using the “clusterProfiler” package.
Identification of ccRCC subtypes

We identified ccRCC clinical subtypes using the consensus

clustering R package “ConsensusClusterPlus” (17). The ability of

DECGs to discriminate between subtypes was assessed using

principal component analysis (PCA). After that, we compared the

differences between subtypes in terms of clinical variables (age,

gender, grade, and stage) as well as overall survival (OS).
The immune landscape
of different subtypes

Every sample was analyzed for the TME score using the

“estimate” package. In each TCGA-KIRC sample, immune cell
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infiltration was assessed using the online analysis tool TIMER2.0

(CIBERSORT algorithm). Based on our knowledge of the close

relationship between immune-inhibitory, immune-stimulatory, and

human leukocyte antigen (HLA) genes and TME, a comparison of

expression levels between subtypes was made (18, 19).
Constructing risk model

Univariate COX regression analysis was first performed on the

DECGs to screen for genes associated with OS according to p<0.05,

and they were used to perform a least absolute shrinkage and

selection operation (LASSO) analysis to screen for genes most

associated with prognosis for constructing the risk model and to

derive a risk coefficient for each gene. The expression of each

modeled gene was multiplied by the risk coefficient to calculate

the risk score for each patient. Each group of patients was

categorized according to the median risk score. To test whether

the model was able to discriminate between patients at different

risks, PCA and Kaplan-Meier (K-M) survival analyses were

performed. In addition, the relationship between clinical variables

and risk scores for different clinical characteristics in the high- and

low-risk groups was assessed.
Immune landscape
and enrichment analysis

Based on the above results, we evaluated the differences between

the two risk groups in terms of TME scores, immune cell

infiltration, and immune-related gene expression. Then, we

calculated immune-related function scores using the “ GSEABase”

and “GSVA” packages based on the “ immune. gmt” file. The DEGs

were determined using the “limma” package, followed by GO,

KEGG, and gene set enrichment analysis (GSEA) using

“ClusterProfiler”. The “enrichplot” and “GseaVis” packages were

used to visualize the enrichment analysis results.

As a result of the analysis above, we obtained the sample TMB

and then downloaded the MSI score file via the “cBioPortalData”

package. We defined samples as MSI when the score exceeded 0.3,

and MSS if the score was below it. Moreover, the “easier” package

calculates an immunotherapy response score based on TME

character is t ics , where higher scores indicate greater

immunotherapy sensitivity (20). We downloaded each patient’s

immunophenotype score (IPS) from the Cancer Immunome Atlas

(TCIA, https://tcia.at/home) and divided it into <=8 and >8 groups

according to IPS. The relationship between these metrics and risk

scores was finally evaluated to reflect the predictive value of risk

scores on immunotherapy response.
Constructing a nomogram

Through multivariate and univariate COX regressions, several

independent predictors of OS were identified. A nomogram was

then created with the help of the “survival” and “rms” packages.
Frontiers in Immunology 03122121
Calibration plots, Receiver Operating Characteristics (ROC), and

Area Under Curve (AUC) were used to assess the predictive

capability of the nomogram. Decision curve analysis (DCA) was

used to determine the clinical value of the nomogram.
Comprehensive analysis of key genes

Both the metabolism of lactate and the lactylation modification

process are closely related to the function of mitochondria. We

obtained 1136 mitochondria genes (MTGs) from the MitoCarta 3.0

database (https://www.broadinstitute.org/) and then took

intersections with risk model genes to obtain key genes. Following

the pan-cancer analysis, key genes were assessed for differential

expression and prognostic value across multiple cancer types. An

assessment of the association between clinical features and TME of

ccRCC was conducted using the TISIDB database (http://

c i s .hku .hk/TISIDB/) . The ChEA3 database (ht tps : / /

maayanlab.cloud/chea3/#top) was used to obtain potential TF

regulating key genes, and we selected the “Mean Rank” panel and

took the top 10 genes for subsequent analysis and further screened

the TF regulating key genes by differential analysis and K-M

survival analysis. Patients with ccRCC were categorized into two

groups according to the expression of key genes. After performing a

differential analysis using the “limma” package, downstream

pathways were identified using GO, KEGG, and GSEA analyses.
Cell culture, transfection, and infection

Cell lines used in this study were obtained from Procell Life

Science&Technology Co., Ltd (Wuhan, China). An incubator

containing 37°C and 5% CO2 was used to grow HK-2 and

ACHN cells. Medium: MEM + 10% fetal bovine serum (FBS) +

1% antibiotics (HK-2 and ACHN), 1640 + 10% FBS + 1%

antibiotics (786-O).

The overexpression plasmids and control plasmids of HIBCH

were synthesized by Obio Technology (Shanghai) Corp., Ltd. We

transfected the plasmid into 293T cells using calcium phosphate

transfection to collect the viral fluid, which was then used to infect

ACHN and 786-O cells, resulting in elevated levels of HIBCH

expression in the cells. The RNA extraction was performed 48 hours

after cell infection, and PCR was carried out to determine

overexpression efficiency. Meanwhile, further cell phenotyping

experiments were carried out.
Quantitative PCR

For RNA extraction, we used TRIzol reagent (Invitrogen,

Thermo Fisher Scientific, Inc.) (Eight pairs of ccRCC cancer and

paracancerous tissue specimens were obtained from the Human

Genetic Resources Center, The First Affiliated Hospital of

Nanchang University.), and then reverse transcribed by Takara

PrimeScript RT kit (Takara Bio, Inc., Otsu, Japan). The qPCR was

performed on a Roche LightCycler96 real-time fluorescent
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quantitative PCR system using an SYBR premix Ex Taq kit (Takara

Bio, Inc., Otsu, Japan). The relative expression of genes was

calculated based on the 2^-DDCt method. Primer sequences:

HIBCH-F: 5’-GGAGTTGGTCTCTCAGTCCATG-3’, HIBCH-R:

5’-CCAAGTTTTCCTTGGAGTCGTGG-3’.
Cell migration

Cell migration was measured using 24-well transwell chambers,

each upper chamber was inoculated with approximately 30,000

cells, and 200ul of FBS-free medium was added; the lower chamber

was filled with 600ul of medium containing 20% FBS and counted

after 36 hours. Cells were cultured to 80% density in 6-well plates,

scratched, and then switched to an FBS-free medium and

photographed in the same field of view at 0 h and 24 h, respectively.
Statistical analysis

Statistical analyses were conducted using R (version 4.2.2) or

GraphPad Prism (version 9.0), and p<0.05 was considered

statistically significant. Analysis of variance was used to compare

categorical variables, and t-tests were used to compare continuous

variables. Correlations between continuous variables were

examined by Spearman or Pearson correlation analysis. Non-

parametric samples comparing two independent samples were

compared using Wilcoxon, while multiple independent samples

were compared using Kruskal-Wallis.
Results

Screening and analysis of DECGs

By correlation analysis, we obtained 604 crosstalk genes,

including 105 DEGs (Figure 1A). Then we removed 5 genes that

were not detected in the validation cohort and finally obtained 100

DECGs. As shown in the volcano plot, there were 27 low and 73 high-

expressed genes in the tumor tissue (Figure 1B). Subsequently,

correlation network plots demonstrated a close association between

DECGs (Figure 1C). the results of GO and KEGG analysis suggested

that DECGs may be involved in biological processes such as protein

modification and energy metabolism, and may play an important role

in the HIF-1 signaling pathway (Figure 1D). Interestingly, the VHL/

HIF pathway is linked to lactate production in ccRCC (13), which

certainly suggests to us that these DECGs deserve to be studied in

depth. According to Figure 1E, DECGs are mutated in 45.83% of

samples, withMTOR showing the highest mutation frequency (18%).
Clinical features of the two
ccRCC subtypes

Two subtypes of ccRCC were identified (Figure 2A), and the

PCA confirmed this (Figure 2B). A comparison of the clinical
Frontiers in Immunology 04123122
characteristics of the two subtypes was conducted following that.

In the TCGA cohort, age and gender did not differ between the two

groups, whereas the distribution of grading and stage showed

significant differences, with the C2 group having a higher nuclear

grade and a more advanced clinical stage (Figure 2C). Although the

E-MTAB-1980 cohort also showed the same trend, the C2 group in

the cohort had more male patients (Figure 2D). The C2 group

suffered a worse prognosis in both cohorts according to the K-M

survival analysis (Figure 2E). In addition, the Sankey diagram more

visually demonstrates the close association between subtypes and

clinical features (Figure 2F).
Two subtypes of the immune landscape

The results showed that all scores, except for tumor purity,

showed higher levels in the C2 group (Figure 3A). Figure 3B shows

that the two subtypes infiltrated differently with immune cells, for

example, the C1 group had more abundant monocytes and

macrophages; the C2 group was infiltrated with more T cell

follicular helper (TFH), T cell regulatory (Tregs), and NK cell

activated. In addition, it is clear from the heat map that most of

the immunoinhibitory, immunostimulatory, and HLA genes were

expressed at higher levels in the C1 group (Figures 3C–E). In

conclusion, all of the above results indicate that the ccRCC

subtypes identified by DECGs have distinct TME and clinical

characteristics. Therefore, an in-depth analysis of the predictive

value of DECGs for the prognosis and immunotherapy of ccRCC

is warranted.
Prognostic risk characteristics
of ccRCC patients

For the risk model, LASSO regression analysis identified 11

prognostic genes in the training set (Figure 4A). All were

associated with a better prognosis, except TTLL3 and CHFR

(Figure 4B). Risk score per patient = SORL1*(-0.056) + HIBCH*

(-0.122) + KDR*(-0.047) + VASH1*(-0.016) + VWA7*(-0.036) +

TMEM25*(-0.202) + PLCL1*(-0.116) + PRUNE2*(-0.055) +

TTLL3*0.069+CHFR*0.501+ABCG1*(-0.054). According to

PCA, these 11 risk genes (RGs) could be assigned to different

risk groups of ccRCC patients (Figure 4C). K-M survival curves

show that the high-risk group has shorter long-term survival times

(Figure 4D). The validation cohort also demonstrated similar

results. Figures 4E, F demonstrate the distribution of survival

status and RGs with a risk score, which is almost consistent with

the trend in both cohorts.

Subsequently, we analyzed the risk characteristics of the

different clinical variables. Among patients of different ages (<=65

vs >65), gender (Male vs Female), grades (G1/2 vs G3/4), and stages

(Stage I/II vs Stage III/IV), the cumulative risk was increasing year

by year in the high-risk group and was consistently higher than in

the low-risk group (Figures 5A–D). We also found large differences

in risk scores between variables within each variable. Although risk

scores did not differ significantly between the two age groups, male,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1225023
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1225023
high-core graded (G3/4), and late-stage (Stage III/IV) patients

tended to have higher risk scores (Figures 5E–H). In the Sankey

diagram depicting the correlation between C1/C2 subtypes and risk

groupings, we can observe that the C2 group with a worse prognosis

is almost exclusively distributed in the high-risk group, whereas the

C1 group, with a slightly better prognosis, is in a homogeneous

distribution in the two risk groups (SF1 I).
Immunological characterization and
enrichment analysis of the two risk groups

In the TME score, both the immune score and the estimated

score were higher in the high-risk group (Figure 6A). And the

higher abundance of CD8 T cells and TFH clustered in the high-risk

group (Figure 6B), which usually exerts anti-tumor immune effects.

Additionally, only a few HLA genes showed differential expression,

but most of the immunoinhibitory and immunostimulatory were

different from them. High-risk patients expressed more CD96,

CTLA4, IL10RB, LAG3, LGALS9, PDCD1, and TIGIT levels

among immunoinhibitory molecules. The same is true for
Frontiers in Immunology 05124123
immunostimulatory, most of which are highly expressed in high-

wind samples, such as CD70, IL6, and TNFRSF18 (Figure 6C). A

similar expression pattern was observed in cohort E-MTAB-

1980 (Figure 6D).

The immune-related function scores were generally higher in

the high-risk group than in the other group (Figures 7A, B).

Furthermore, the results of GO, KEGG, and GSEA also showed a

strong association of risk grouping with immune-related functions.

Biological pathways and functions related to immunity were

enriched in DEGs between high- and low-risk groups (Figure 7B).

Moreover, primary immunodeficiency and cytokine-cytokine

receptor interaction pathways were enriched in the high-risk

group (Figure 7C). The series of results suggest a close association

between risk groups and the immune microenvironment, especially

in high-risk groups.
Prediction of immunotherapy response

Patients with ccRCC were analyzed based on TMB, MSI, IPS,

and easier scores to predict their response to immunotherapy.
B

C

D

E

A

FIGURE 1

Identification and preliminary analysis of DECGs. (A) Venn diagram of crosstalk genes and DEGs intersected. (B) Volcano plots show the differential
distribution of DECGs. (C) Correlation network diagram of DECGs. (D) DECGs are enriched for biological functions and BP, Biological Process; MF,
Molecular function; CC, Cellular component). (E) Mutational landscape of DECGs.
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High-risk samples showed significantly higher levels of TMB and

easier scores, and the samples in the MSI group had higher risk

scores (Figures 8A–C). Similarly, higher scores in the IPS scores

about immune checkpoints were associated with higher risk

scores (Figure 8D). According to the above results, TME differs

greatly between the two risk groups, and the immunotherapy

response may be more durable and effective in patients at high

risk. Interestingly, we got the same results in a bladder cancer

immunotherapy cohort. We found that patients in the immune-
Frontiers in Immunology 06125124
responsive group had higher risk scores and more high-risk

patients (Figure 8E).
Nomogram accurately predicts survival of
ccRCC patients

Using the training set, we performed univariate and

multivariate COX regression analysis to identify independent
B

C

D

E F

A

FIGURE 2

DECGs-based ccRCC subtypes. (A) Consensus clustering identified 2 ccRCC subtypes. (B) Principal component analysis based on DECGs. (C, D)
Distribution of the 2 subtypes across clinical variables in the TCGA and E-MTAB-1980 cohorts. (E) K-M analysis to compare survival differences
between the 2 subtypes. (F) Sankey diagrams show the interchangeable relationships between clinical variables, subtypes, and survival status.
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predictors of OS, including age, stage, and risk score (Figures 9A, B).

Based on the sum of the corresponding scores for each factor, a

nomogram was constructed to predict patient survival at 1, 3, and 5

years (Figure 9C). Both the training and validation data sets showed

the predicted probabilities to be almost in line with the actual

probabilities (Figure 9D). Furthermore, the results of the ROC

analysis also showed strong predictive performance of the model

with 1-year AUC=0.863 for the TCGA cohort and 1-year

AUC=0.900 for the validation cohort (Figure 9E). The DCA
Frontiers in Immunology 07126125
demonstrated that the nomogram was superior to the TNM

staging for clinical purposes (Figure 9F).
The role of the key gene HIBCH in ccRCC

From risk model genes, we identified HIBCH, a gene closely

related to the mitochondrial function that may play a role in the

development of ccRCC (Figure 10A). To begin with, HIBCH is
B C

D E

A

FIGURE 3

Immune landscape of the 2 subtypes. (A) Differences in TME scores between C1 and C2 groups. (B) Heat map of the distribution of 22 immune cells
in the two subtypes. (C–E) Heat map of the difference in expression levels of HLA genes, immunoinhibitory, and immunostimulatory in the two
subtypes. "**" <0.01, and "***" <0.001.
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expressed at lower levels in tumor tissues, and high levels are

associated with better clinical outcomes (Figures 10B, C). High

levels of HIBCH expression are associated with lower tumor grades

and stages, reflecting its relationship to clinical variables

(Figure 10D). The immune microenvironment and HIBCH also

appear closely linked, which classify ccRCC into 6 immune subtypes

and may be useful to classify different types of ccRCC according to

their immune response (Figure 10E). In addition to having a

negative correlation with immune cell infiltration, HIBCH

expression was also found to be negatively correlated with TME
Frontiers in Immunology 08127126
scores (Figures 10F, G). More interestingly, the immune

checkpoints CTLA4 and PDCD1 showed a negative correlation

with the expression level of HIBCH as well (Figure 10H). According

to the pan-cancer analysis, HIBCH displayed similar effects in

numerous cancers (SF2). Based on these findings, there may be a

mechanism through which HIBCH interacts with ccRCC’s immune

microenvironment, which may influence tumor development and

treatment response.

To further explore the regulatory mechanisms of HIBCH in

ccRCC, we identified several potential TFs that regulate HIBCH
B

C D

E F

A

FIGURE 4

Risk model based on 11 genes. (A) LASSO regression analysis was performed to identify the genes used to construct the risk model. (B) Hazard ratio
of the 11 model genes. (C) Principal component analysis based on model genes. (D) K-M analysis comparing OS of high and low-risk groups. (E, F)
Trends in the distribution of survival status and model gene expression levels with changes in risk scores.
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expression, as well as potential pathways that inhibit ccRCC

development. The co-expression heat map demonstrated the

relationship between HIBCH expression and the top 10 TFs, most

of which had high correlation coefficient values (Figure 11A).

Difference analyses revealed significant differences between

tumors and normal tissues in the expression levels of SPI1,

GATA1, NR1H3, FLI1, SP2, MYBL2, and TFAP2C (Figure 11B).

Subsequent K-M survival analysis of these DEGs revealed that FLI1,

SP2, MYBL2, and TFAP2C were associated with OS (Figure 11C).

Moreover, SP2 was lowly expressed in tumor tissues and associated

with a good prognosis, while MYBL2 was highly expressed in tumor

tissues and associated with a poorer prognosis. It is more likely that

these two genes play a role in the regulation of HIBCH, but more

experiments are needed to verify this conjecture. Following

enrichment analysis, DEGs between high and low HIBCH

expression groups had enriched biological functions associated

with immunity (Figure 11D). More importantly, the GSEA results

suggested that HIBCH is closely associated with FCGR-related
Frontiers in Immunology 09128127
pathways (Figure 11E). This gene family encodes the receptor for

the Fc portion of immunoglobulin G, which is involved in a range of

immune processes. This further suggests a complex mechanism of

interaction between HIBCH and the immune microenvironment

and has the potential to be a relevant biomarker for

immunotherapeutic response.
Experimental verification results

Our in vitro studies revealed that HIBCH was higher expressed

in HK2 than in ACHN and 786-O (Figure 12A). Moreover, by

extracting RNA from kidney cancer and paraneoplastic tissues for

qPCR, the same results were obtained, and the cancer tissues

expressed lower levels of HIBCH (Figure 12B). Subsequently, we

further explored the effect of abnormal expression of HIBCH on the

migration ability of kidney cancer cells to elucidate its role in the

metastasis of kidney cancer. Figure 12C showed that we successfully
B C D

E F G H

A

FIGURE 5

Risk characteristics for each subgroup of clinical variables. (A–D): Cumulative hazard over time for <=65 and >65 years of age, male and female, G1/
2 and G3/4, and Stage I/II and III/IV patients in high and low-risk groups. (E–H): Differences in risk scores between patients <=65 years and >65
years, male and female patients, G1/2 and G3/4 patients, StageI/II and StageIII/IV.
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overexpressed HIBCH in ACHN and 786-O. As compared to the

overexpression group, the number of cells in the control group was

significantly higher (Figure 12D); in the scratch assay, the control

cell migration rate was also higher (Figures 12E, F), and these results

were statistically significant.
Discussion

There are two primary mechanisms responsible for tumor

occurrence and development: inactivation of tumor suppressors
Frontiers in Immunology 10129128
and activation of tumor promoters. In this process, epigenetic

modifications play a key role in regulating the expression of genes

(21). Current studies have shown that epigenetic aberrations are

common in RCC, especially histone modifications, and are closely

associated with their prognosis and treatment (22, 23). According to

Zhang et al., histone lactylation modification (12) is a new

epigenetic modification modality that provides new insights into

the pathogenesis of RCC. Cancer is characterized by two crucial

features: immune escape and metabolic reprogramming. Linking

these aspects together is lactate, a metabolite that facilitates

immunosuppression through lactylation modification. Recent
B

C D

A

FIGURE 6

Immunological characteristics of the two risk groups. (A) Differences in TME scores between the high and low-risk groups. (B) Levels of infiltration of
22 immune cell types in the two risk groups. (C, D) HLA gene, immunoinhibitory, and immunostimulatory expression levels in the TCGA and E-
MTAB-1980 cohorts in the high- and low-risk groups. “*” <0.5, "**" <0.01, and "***" <0.001.
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research reveals that high levels of lactate in the tumor

microenvironment (TME) hinder T cell-mediated immune

responses, effectively facilitating tumor immune evasion.

Additionally, histone lactylation in macrophages drives a

transition toward an immunosuppressive M2 macrophage

phenotype (10, 13, 24). This evidence suggests that tumor

metabolism and lactylation modification can modulate each other

and influence the function of immune cells in TME (25, 26). As a

result, it is imperative to investigate in depth the effect of histone

lactylation modifications on TME in ccRCC to predict patient

survival and immunotherapeutic response.

In this study, we identified DEGs with histone lactylation

modifications interfering with m6A, which were used to reveal

the prognosis and TME characteristics of ccRCC. At first, the

DECG obtained by screening classified ccRCC patients into two
Frontiers in Immunology 11130129
subtypes with different clinical and immunological characteristics,

and then we constructed a risk model based on 11 prognostic genes.

Patients at higher risk have shorter survival but had higher levels of

TMB, MSI, and anti-tumor immune cell infiltration, and the easier

score suggested that this group of patients was more sensitive to

immune checkpoint inhibitors. The screening of patients suitable

for immunotherapy is an urgent clinical problem, and our results

are certainly instructive for the design of future prospective studies.

The nomogram is a practical prediction tool that has important

reference value in both the clinical decision-making of ccRCC and

the long-term management of the disease.

As seen in our findings, patients in different risk groups have

very different TME characteristics, with high-risk patients having

higher immune scores. However, we also observed that the C2

subtype, which has a worse prognosis, has a lower immunization
B

C D

A

FIGURE 7

Biofunctional and pathway analysis. (A, B) Comparison of immune-related functions between high and low-risk groups. (C) Results of GO and KEGG
enrichment analysis. (D) Visualization results of GSEA. “*” <0.5, "**" <0.01, and "***" <0.001.
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score than the C1 group, which may seem paradoxical. A Sankey

diagram of the correlation between the C1/C2 subtypes and the risk

grouping may explain this phenomenon, and that the C1 group,

which has a slightly better prognosis, is not all distributed in the

low-risk group, and that it contains a significant portion of high-

risk patients. Therefore, there is some heterogeneity within the C1

group, and a more detailed delineation is needed in the future.
Frontiers in Immunology 12131130
It is well known that the TME at which the tumor cells are

located is one of the key reasons for this difference (27, 28). Various

cells, stroma, and non-cellular components together constitute the

TME, and not only do these components have complex interactions

with each other, but they are also influenced by other factors such as

metabolic and epigenetic modifications (19, 29, 30). Both lactylation

modifications and m6A modifications can influence the TME, and
B C

D

E

A

FIGURE 8

Prediction of the immune response. (A) TMB levels in high and low-risk groups, Pearson correlation analysis of TMB and risk scores. (B) Differences
in risk scores between MSI and MSS groups, Pearson correlation analysis of risk scores with MSI scores. (C) Differences in easier scores in high and
low-risk groups, and Pearson correlation analysis with risk scores. (D) The relationship between IPS grouping and risk scores. (E) Relationship
between immunotherapy response and risk scores in a bladder cancer immunotherapy cohort.
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they can not only affect the chemotaxis and activation of immune

cells, but also regulate the molecules on the surface of immune cells,

and thus the function of immune cells and the intensity of immune

responses (31–33). The study by Jia Xiong et al. confirmed the effect

of the interaction between these two epimodification modalities on

the immune microenvironment (15), in other words, they may have

synergistic effects in the immune microenvironment of tumors,

jointly affecting tumor growth and the effectiveness of

immunotherapy. For the first time, we have combined the
Frontiers in Immunology 13132131
analysis of these two epigenetic modifications for exploring the

heterogeneity of ccRCC in terms of TME. More importantly, our

model is not only able to accurately predict the long-term survival

of patients but also has implications for immunotherapy.

Furthermore, we have identified a crucial gene in the model

known as HIBCH (3-Hydroxyisobutyryl-CoA Hydrolase), which is

an enzyme that plays a vital role in the metabolism of fatty acids

(34). It also means that HIBCH is not only closely related to histone

lactylation modification (12), but may also influence the process of
B

C D

E F

A

FIGURE 9

Nomogram predicts survival probability. (A, B) Univariate and multivariate COX regression analysis. (C) Nomogram constructed based on TCGA
cohort. (D) Nomogram calibration plots for 1, 3, and 5 years. (E) 1, 3, and 5-year ROC curves and ACU to assess the predictive performance of the
model. (F) 5-year DCA curves to assess the clinical application value of the model.
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mitochondrial energy metabolism. HIBCH’s role in cancer is

currently unknown in the current state of research. Shan et al.

delved into the implications of HIBCH in the progression and

treatment of colorectal cancer. Colorectal cancers express higher

levels of HIBCH, and its function depends on its localization in
Frontiers in Immunology 14133132
mitochondria, and blocking the function of HIBCH not only can

inhibit the growth of cancer cells but also can improve the efficacy

of targeted therapy (35). In our study, HIBCH was suggested to be

reduced in expression in ccRCC and associated with a good

prognosis, and the results of in vitro experiments also showed
B C

D E

F G

A

H

FIGURE 10

The significance of HIBCH in ccRCC. (A) The Venn diagram identified the key gene HIBCH. (B) HIBCH expression levels in tumor and normal tissues.
(C) K-M survival curves between high and low expression groups of HIBCH. (D) HIBCH expression levels in samples of different grades and stages.
(E) HIBCH can classify ccRCC into 6 immune subtypes. (F, G) Lollipop plot of the correlation between HIBCH and immune cell infiltration level, TME
score. (H) Correlation of HIBCH with the expression of CTLA4, PDCD1. "***" <0.001.
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that HIBCH inhibits the migration ability of kidney cancer cells. To

our knowledge, mitochondrial energy metabolism is not only

closely related to the process of lactate metabolism (36) but also

plays an important role in the progression of ccRCC (37).

Therefore, we believe that HIBCH is important for finding new

biomarkers in the field of ccRCC, however, more rigorous in vitro

and in vivo experiments are still needed in the future to clarify the

specific mechanism of HIBCH action in ccRCC.

In conclusion, our study provides a novel perspective on

the prognostic significance and characteristics of the tumor
Frontiers in Immunology 15134133
microenvironment (TME) in clear cell renal cell carcinoma

(ccRCC). We have developed a reliable nomogram and

identified a potentially valuable biomarker. However, it is

important to acknowledge certain limitations in our study.

The first limitation of our study is that we rely mainly on

retrospective data collected from public databases. It also

means that we lacked much valuable clinical information to

perform a comprehensive analysis. A second limitation is that we

did not fully elucidate the specific mechanisms driving the

key gene functions. While our study has limitations, it
B

C

D E

A

FIGURE 11

Regulatory mechanisms of HIBCH. (A) Heat map of HIBCH co-expression with the top 10 potential TFs. (B) Expression levels of potential TFs in
tumor and normal tissues. (C) K-M survival curves of the screened TFs. (D) Visualized scatter plots of GO and KEGG analysis. (E) Visualized-mountain
range plot of the top 5 of |NES| in GSEA analysis results. “*” <0.5, "**" <0.01, and "***" <0.001.
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contributes to our understanding of ccRCC and provides a basis

for future research.
Conclusion

From an epigenetic standpoint, our research has uncovered

distinct traits within the TME of ccRCC. Moreover, we have

successfully established robust prognostic models that accurately

predict patient outcomes and offer valuable insights for the effective

utilization of immunotherapy. Furthermore, our data analysis and
Frontiers in Immunology 16135134
in vitro experiments have pinpointed a promising therapeutic target

for ccRCC treatment, namely HIBCH. These findings hold great

potential for advancing the field of ccRCC research and potentially

improving patient outcomes.
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FIGURE 12

Experimental verification results. (A) Expression levels of HIBCH in HK-2, ACHN, and 786-O cell lines. (B) Differential expression of HIBCH in kidney
cancer and paraneoplastic tissues. (C) Overexpression efficiency of HIBCH. (D) Transwell assay results in ACHN and 786-O cell lines. (E, F) Results of
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Protein post-translational modification (PTM) is a regulatory mechanism for

protein activity modulation, localization, expression, and interactions with other

cellular molecules. It involves the addition or removal of specific chemical groups

on the amino acid residues of proteins. Its common forms include

phosphorylation, ubiquitylation, methylation, and acetylation. Emerging research

has highlighted lactylation, succinylation, and glycosylation. PTMs are involved in

vital biological processes. The occurrence and development of diseases depends

on protein abundance and is regulated by various PTMs. In addition, advancements

in tumor immunotherapy have revealed that protein PTM is also involved in the

proliferation, activation, and metabolic reprogramming of immune cells in tumor

microenvironment. These PTMs play an important role in tumor immunotherapy.

In this review, we comprehensively summarize the role of several types of PTMs in

tumor immunotherapy. This review could provide new insights and future research

directions for tumor immunotherapy.

KEYWORDS

post-translational modification, tumor immunotherapy, phosphorylation,
ubiquitylation, succinylation
1 Introduction

Tumor immunotherapy is a novel and effective treatment that overcomes tumor immune

escape by activating or reversing immune cells with failed functions, thereby inhibiting or killing

tumor cells (1). According to molecular mechanisms, it includes immune checkpoint inhibitors

(ICIs), acceptance and commitment therapy (ACT), and monoclonal antibody therapy (2). ICIs

can block the inhibitory effect of tumor cells on immune cells. In the 1990s, immunologists James

P. Alison and Tasuku Honjo discovered ICIs, which marked the new era of tumor

immunotherapy (3). In 2011, ipilimumab, a cytotoxic T lymphocyte antigen-4 antibody, was

first used to treatmelanoma (4). ACT suppresses tumorsmainly by injecting specific immune cells

targeting cancer cells into patients after being expanded and cultured in vitro (5). Anti-CD19

chimeric antigen receptor T-cell therapy (CAR-T) for B-cell lymphoma has been approved for

clinical use (6). Monoclonal antibody therapy can inhibit tumors mainly by recruiting T cells to

the tumor site and directly targeting tumor cells (7). Monoclonal antibodies are widely used in the

field of tumor immunotherapy. Currently, the Food andDrug Administration has approvedmore
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than 100 monoclonal antibody products to enter the market (8).

Immunotherapy can treat various solid and hematological tumors.

New immunotherapy targets and corresponding immunotherapeutic

drugs have been continuously discovered. Thus, treatment strategies for

tumors have gradually shifted from inhibiting malignant proliferation

and invasion of tumor cells to exploring the complex relationship

between the tumor and the microenvironment around the tumor (9).

Post-translational modification (PTM) is a covalent modification of

the side chains of amino acids in translated proteins. Under physiologic

and pathologic conditions, it can expand the functional diversity of

proteins by regulating protein folding, activity, stability, localization,

signal transduction, and binding (10). Its main forms include ubiquitin,

phosphorylation, methylation, acetylation, glycosylation, and

succinylation (11). It is closely related to immune cell activation,

signal regulation, immune response, and tumor metabolic

reprogramming (12–14). It can affect the efficacy of immunotherapy

directly or indirectly by regulating immune checkpoints or remodeling

tumor immune microenvironment (15–17). In this review, we

summarize potential mechanisms of several types of PTMs affecting

cancer development and immunotherapy (Figure 1).
2 Phosphorylation and
tumor immunity

Phosphorylation is a classical and reversible PTM in which

phosphate groups are covalently modified to amino acid residues

after catalysis of protein kinases. It is the most common and

essential PTM in eukaryotes. Approximately 30% of the proteins in

mammals can be phosphorylated (18). Protein phosphorylation plays
Frontiers in Immunology 02139138
an important role in cell division, signal transduction, gene expression

regulation, and protein interaction (19). Therefore, mutation of a

protein phosphate site can lead to the occurrence and progression of

cancer by inducing tumor cell proliferation, invasion, and metastasis

and inhibiting apoptosis (18, 20). The activation or inhibition of

mitogen-activated protein kinases, such as phosphoinositide 3-kinase

(PI3K) and Akt kinase, and other signaling pathways is related to the

phosphorylation and dephosphorylation of related proteins or enzymes

in tumors, followed by regulation of the proliferation, differentiation,

apoptosis, and migration of tumor cells (18).

The progression and inhibition of breast cancer are significantly

related to the phosphorylation of upstream and downstream regulatory

factors of nitric oxide (NO) (21). The growth and proliferation of breast

cancer cells are partly induced by NO synthase, which maintains the

phosphorylation of Akt and mitogen-activated protein kinase 1/2

(extracellular signal-regulated protein kinases 1 and 2 [ERK1/2]) (22,

23). However, a high NO concentration can induce apoptosis of breast

cancer cells through dephosphorylation of Akt and ERK (24). Nuclear

transcription factor kappa B-interacting long noncoding RNA (lncRNA)

can inhibit breast cancer metastasis by blocking inhibitor of nuclear

factor kappa B (NF-?B) phosphorylation (25). Chao et al.’s study

revealed that fructose-1,6-bisphosphatase 1 and 6‐phosphofructose‐2‐

kinase/fructose‐2,6‐bisphosphatase 3 can promote breast cancer cell

genesis, glycolysis, and paclitaxel resistance through phosphorylation

by proviral insertion in murine lymphomas 2 (26, 27). The PI3K–Akt–

mammalian target of rapamycin kinase pathway is abnormally activated

in non-small cell lung cancer, and overexpression of phosphorylated Akt

leads to tumor cell proliferation (28). Phosphorylation of S308 and S30

of cyclase-associated protein 1 can stimulate the proliferation, migration,

and metastasis of lung cancer cells (29).
FIGURE 1

PTM is closely related to tumor immunity. Its main forms include ubiquitination, phosphorylation, glycosylation, succinylation, and lactylation.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1229397
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1229397
The search for immune checkpoints and ICIs is a research direction

in the field of tumor immunotherapy (30). Considering the significant

effect of phosphorylation on tumor characteristics, inhibitors targeting

phosphokinases or phosphorylated molecules can be used as targets for

tumor therapy (31). Phosphorylated transforming growth factor beta

(TGF-b)-induced factor homeobox 2 (TGIF2) can induce epithelial–

mesenchymal transition (EMT) and metastasis of lung adenocarcinoma,

and p-TGIF2 is a potential therapeutic target for lung adenocarcinoma

metastasis (32). The expression level of the CD274 molecule

programmed cell death ligand-1 (PD-L1) in tumors is regulated in

many aspects of translation and post-translation. Guo proved that

hexokinase 2 can be used as a protein kinase to phosphorylate the

Thr291 site of I?Ba, thereby promoting combined protease u-calpain

and I?Ba and degrading I?Ba, in turn promoting the entry of the NF-?B

transcription subunit into the nucleus and the PD-L1 expression,

ultimately leading to the immune escape of the tumor (33). Combined

hexokinase 2 inhibitor and PD-1 antibody in glioma can significantly

improve the therapeutic effect of the PD-1 antibody. Li showed that

epidermal growth factor receptor (EGFR) overexpression in tumors

inhibited the phosphorylation of PD-L1 through glycogen synthase

kinase-3b/a (GSK3b/a), which hindered the ubiquitination and

improved the stability of PD-L1 (34). In contrast, the EGFR inhibitor

osimertinib can interfere with the aforementioned process, induce

ubiquitin, degrade PD-L1, and enhance the antitumor immune

function of T cells (35, 36). Chen et al. found that interleukin (IL)-6

can phosphorylate PD-L1 by activating Janus kinase 1 (JAK1), in turn

catalyzing PD-L1 glycosylation, enhancing its stability, and promoting

tumor immune escape (37). In an animal model, the anti-IL-6 antibody

combined with anti-T-cell immunoglobulin 3 induced the synergistic T-

cell killing effect (37). Drugs targeting phosphokinases can be used as the
Frontiers in Immunology 03140139
focus of tumor immunotherapy. Thus, the potential application value of

PTM in tumor immunotherapy has been sufficiently proven (Figure 2).

Some immune drugs related to phosphorylation have been developed

and applied. MYCi975, a small-molecule compound, can increase the

degradation of MYC by enhancing the phosphorylation of MYC on

threonine-58, mediated by proteasome. In addition, it can upregulate PD-

L1 and make tumors sensitive to PD1 immunotherapy (38). Simvastatin,

a potential therapeutic drug for immunotherapy in colorectal cancer,

inhibits the phosphorylation of YAP, mediated by the lncRNA SNHG29,

and promotes antitumor immunity by inhibiting the PD-L1 expression

(39). Ursodeoxycholic acid, a clinically approved compound, can enhance

antitumor immunity by phosphorylating TGF-b at T282 along the

Takeda G-protein-coupled receptor 5–cyclic adenosine

monophosphate–protein kinase A axis and inhibiting the differentiation

and activation of Treg cells in mice (40). Elesclomol was identified in the

differential cytotoxicity screening of the internal tool compound library. It

promoted YAP phosphorylation and inhibited its nuclear accumulation

through the reactive oxygen species/large tumor suppressor kinase 1

kinase signaling pathway (41). In addition, the PD-L1 expression and

signal transducer and activator of transcription 3 phosphorylation

increased after the nintedanib therapy for lung cancer. Nintedanib

combined with aPD-L1 can enhance the therapeutic response of ICIs,

further activating the tumor immune microenvironment and showing

remarkable antitumor effects (42) (Table 1).

Targeted phosphorylation performs therapeutic and predictive

functions in tumor immunity. The immunohistochemistry of

ERK1/2 phosphorylation can predict the overall survival rate of

patients with independent recurrent glioblastoma after blocking

PD-1 (43). Therefore, the development of related kits would help

adjust the treatment plan of patients with PD-1 blockade.
FIGURE 2

Regulation of PD-L1 by PTMs. Molecular regulation of PD-L1 N- linked glycosylation, phosphorylation and ubiquitination.
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3 Ubiquitylation and tumor immunity

In ubiquitination, ubiquitin molecules are covalently attached to

specific residues of substrate proteins. Ubiquitination, a dynamic and

reversible process, plays important roles in protein localization,

metabolism, function, regulation, and degradation. Signal transduction

proteins are regulated by PTM, and their ubiquitin level is second only to

phosphorylation (44). Some ubiquitin-modified proteins change their

function and location (45), while most are degraded by the ubiquitin–

proteasome system (UPS) or lysosome degradation pathways, thus

regulating various life activities, such as cell cycle, proliferation,

apoptosis, differentiation, gene expression, transcriptional regulation,

signal transduction, damage repair, inflammation, and immunity (46,

47). Currently, three ubiquitin enzymes are involved in ubiquitination

modification: ubiquitin-activating enzyme (E1), ubiquitin-binding

enzyme (E2), and ubiquitin ligase (E3). Ubiquitination is terminated by

deubiquitinating proteins (DUBs). Among them, the E3 ubiquitin ligase
Frontiers in Immunology 04141140
can recognize the type of substrate protein; therefore, the specificity of the

ubiquitin ligase ismainly realized by the ubiquitin ligase. The E3 ubiquitin

ligase is believed to play an important role in tumor immunity (48, 49).

Casitas B-lineage lymphoma proto-oncogene b (CBL-b), as a E3

ubiquitin ligase, is an immune tolerance factor directly related to T-cell

activation (50). Naramura’s study revealed that c-cbl-knockout T cells

were more responsive to CD3 stimulation and promoted T-cell

receptor beta variable 20/OR9-2 clearance on the cell surface, thereby

inhibiting T-cell activation (51). Mutations in the ubiquitin-mediated

protein degradation system can be involved in at least 10% of

tumorigenesis and development (47, 52). The ubiquitin protein ligase

E3 component n-recognin 5 (UBR5), an E3 ubiquitin ligase, is essential

for the embryonic development of mammals (53). Elevated UBR5

expression is closely related to the survival and poor prognosis of

patients with ovarian cancer (54). The E3 ubiquitin ligase regulates the

activity and function of immune cells and plays an important role in

regulating tumor cells and microenvironment (55).
TABLE 1 PTM-related immunotherapy drugs.

PTM-related immunotherapy drugs

Phosphorylation

drug Molecular target

osimertinib EGFR

MYCi975 MYC

Simvastatin YAP

nintedanib STAT3

Metformin PD-L1

2DG HK2

Ubiquitination

M435-1279 UBE2T

ES-072 EGFR

HUWE1 TMUB1

Albendazole UBQLN4

gefitinib EGF

61 OTUB1/USP8

BC-1471 STAMBP

HOIPIN-8 LUBAC

glycosylation

NGI-1 B7-H4

gPD-L1 PD-L1

Stattic PD-L2

all-trans retinoic MGAT3

polyphenol resveratrol PD-L1

tunicamycin PTX3

rituximab Fc

SAR566658 huDS6

gefitinib PD-L1

swainsonine MAN2A1
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UPS is the intracellular system responsible for protein degradation.

Abnormal activation of the system accelerates the degradation of

intracellular proteins. UPS can affect the survival of tumor cells by

promoting the degradation of tumor-suppressor proteins, such as the

tumor protein p53, or blocking the degradation of carcinogenic

proteins. Song’s study proved that tumor-derived UBR5 plays a dual

role in promoting tumorigenesis and affecting immune

microenvironment. UBR5 can regulate tumor spheroid formation of

ovarian cancer through the p53–b–catenin pathway and then enhance

immunosuppression by recruiting tumor-associated macrophages

(TAMs) (54). Considering the aforementioned mechanism, targeted

UBR5 significantly inhibits tumor growth, eliminates the ability of

ovarian cancer to resist conventional chemotherapy and

immunotherapy, and significantly improves the effect of the

standard treatment of ovarian cancer. In lung cancer, ubiquitin

ligase interleukin 17 receptor B (CRL4) and WD repeat domain 4

promotes the progression of lung cancer through ubiquitin

degradation of the promyelocytic leukemia protein. Therefore,

targeted regulation of the E3 ubiquitin ligase or its substrate protein

can provide new opportunities for tumor immunotherapy (56). Yu

et al. showed that the ubiquitin-binding enzyme E2T (UBE2T) can

promote the entry of b-catenin into the nucleus through ubiquitin

degradation of the receptor for activated C kinase 1, thus promoting

the occurrence and development of gastric cancer (57). The team

further targeted the upstream ubiquitin-binding enzyme UBE2T to

develop a small molecular inhibitor M435-1279 with low cytotoxicity

that can inhibit the progression of gastric cancer in vivo and in

vitro (Figure 3).
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Owing to its role in tumor immunity, ubiquitination would be

helpful in clinical immunotherapy to find new E3s and DUBs for

antitumor immunomodulation and clarify their functional

mechanisms. Finding and developing specific inhibitors targeting

the E3 ligase and DUBs are important for clinical applications of

ubiquitination. In addition to developing inhibitors, adoptive cell

therapy has a clinical application potential, such as knocking-out

specific E3 and DUB to improve the therapeutic effect. This method

is particularly attractive for adoptive T-cell and natural killer cell

therapy based on the chimeric antigen receptor.
4 Succinylation and tumor immunity

Succinylation modification is a type of PTM that mainly occurs

in lysine residues. Compared with methylation and acetylation

modification, succinylation modification has a greater effect on

the structure and function of proteins. Enzymes in cell metabolism,

particularly mitochondrial metabolism, are widely regulated by

succinylation modification. Currently, the regulatory enzyme

system of succinylation (including transferase and de-modifier

enzyme) and biological function have become hot research topics.

Lu et al. first discovered histone-succinylated transferase-lysine

acetyltransferase 2A, which can use succinyl coenzyme A as a substrate

to catalyze the succinylation of the histone H3K79 site, thus promoting

the transcription of oncogenes, tumorigenesis, and cancer development

(58). In addition, glutaminase was overexpressed in pancreatic ductal

carcinoma. Compared with normal cells, the growth and survival of
FIGURE 3

Regulation of macrophage polarization by ubiquitination. E3 ligases TRAF6, Peli1, Praja2, TRAF2, TRAF3, and cIAP promote M1 polarization, among
which A20 and CYLD inhibit this process. Nrdp1 promotes the expression of M2 gene induced by IL-4 by mediating ubiquitination of K63 and
activation of transcription factor C/EBP. TRIM24 inhibits M2 polarization by ubiquitination of acetyltransferase CBP.
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pancreatic ductal cancer cells depended more on glutamine

metabolism. In addition, glutaminase was overexpressed in

pancreatic ductal carcinoma. Compared with normal cells, the

growth and survival of pancreatic ductal cancer cells depended more

on glutamine metabolism. Succinylation modification occurred on the

glutaminase protein. Succinylation at the K311 site of the glutaminase

protein was directly mediated by succinyl coenzyme A, which

promoted the conversion of glutaminase from the monomer to the

tetramer form. As a result, catabolism of glutamine was enhanced (59).

Tumor immunotherapy is closely related to protein succinylation

modification. Tumor immune metabolism in immune cell proliferation,

differentiation, response, and outcome is a research frontier worldwide.

Advancements in this research would aid our understanding of immune

cell biology in theory and exhibit an application prospect in maintaining

immune homeostasis and tumor immunotherapy. When activated by

lipopolysaccharide, macrophages consume abundant glucose, enhance

glycolysis, express M1 molecular markers, and produce abundant

inflammatory factor IL-1b. The mechanism involves the accumulation

of succinate, the intermediate product of glucose metabolism. Succinate

promotes hypoxia inducible factor-1 (HIF-1a) to enhance the

transcription of IL-1b, in which the activation of pyruvate kinase M2

(PKM2), a key enzyme in glycolysis, plays an important role. Yang et al.

further discovered that PKM2 is desuccinylated by sirtuin-5 (60). In

SIRT5-deficient cells, the succinylation level of PKM2 increased; PKM2

transformed from the tetramer to the dimer form; and pyruvate kinase

activity decreased. Dimerized PKM2 enters the nucleus and cooperates

with HIF-1a to bind to the promoter region of IL-1b, which
significantly enhances the transcription of IL-1b and glycolysis of

macrophages. These results suggest that SIRT5 regulates macrophage

metabolism and plays an important role in the malignant

transformation of colitis and even colitis cancer. Metabolic changes in

tumor microenvironment significantly regulate tumor immune

sensitivity, but the underlying mechanism remains unclear. Cheng

et al. found that tumors deficient in fumarate hydratase (FH) showed

functional CD8+ T-cell activation, expansion, and inhibition and

enhanced malignant proliferation (61). Regarding the mechanism, FH

depletion in tumor cells can accumulate fumarate in tumor interstitial

fluid. Elevated fumarate levels can directly succinate ZAP70 at C96 and

C102 sites and eliminate the activity of infiltrating CD8+ T cells, thus

inhibiting the activation of CD8+ T cells and antitumor immune

response in vitro and in vivo. In addition, removing fumarate by

increasing the FH expression can significantly enhance the antitumor

effect of anti-CD19 CAR T cells. Thus, these findings prove the role of

fumarate in controlling TCR signal transduction and suggest that the

accumulation of fumarate in tumor microenvironment is a metabolic

disorder of the antitumor function of CD8+ T cells. Potentially, fumarate

depletion may be an important strategy for tumor immunotherapy.

Immune-targeted drugs for succinylation have not been confirmed in

the clinical treatment of cancer. They remain in the research stage in vivo

and in vitro. Nevertheless, in a previous study, 90Y-labeled succinylated

streptavidin significantly inhibited the growth of breast cancer in the pre-

targeted radiotherapy group (p < 0.05) (62). In ovarian cancer cells,

inhibition of dihydrothionyl succinyltransferase, a subunit of a-KGDC in

the tricarboxylic acid cycle, reduced oxidative phosphorylation and the

expression and function of immunosuppressant markers in myeloid cells

(63). Lactb is a positive regulator of the NF-kB signal in dendritic cells,
Frontiers in Immunology 06143142
and succinylation of the lysine 288 residue is inhibited by Suclg2.

Therefore, the development of succinylated immune-targeting drugs

may be a research direction for immunotherapy.
5 Lactylation and tumor immunity

Lactic acid is a metabolite of cellular glycolysis. However, it has

been considered a simple cellular energy substance and metabolite.

Its regulatory role in biological function has been unknown. Lactic

acid-mediated protein PTM lactylation plays a regulatory role in

immune cells and cancer metabolism.

Regarding the tumor metabolism, Zhao et al. found that lactic acid

accumulated during metabolism can be used as a precursor to induce

lactylation of histone lysine and participate in the homeostasis regulation

of M1 macrophages infected by bacteria (64). In addition to a study on

the epigenetic regulation of histone lactic acid modification, Gao et al.

drew a panoramic map of lactic acid modification in hepatocellular

carcinoma for the first time. Lactylation occurs in histones and plays a

global regulatory role in hepatocellular carcinoma by affecting widely

distributed non-histone proteins. E1A-binding protein p300. Histone

deacetylase causes the activation and deactivation of non-histone

lactylation (65). Lu et al. found that the metabolite lactic acid affects

the tumor microenvironment and promotes tumorigenesis by

regulating the lactylation of M protein Lys72 in Treg cells and

enhancing TGF-b signal transduction, which provides a new

theoretical basis for cancer immunotherapy by targeting Treg cells

(66). Zhao et al. found that activated macrophages play an important

role in ulcerative colitis. Lactic acid can enhance histone H3K18

lactylation in macrophages, inhibit macrophage coking, and restore

intestinal immune function (67). In addition, Zhang et al. found that

lactic acid-mediated lactylation of PKM2 at the K62 site can enhance the

pyruvate kinase activity of PKM2 to inhibit the Warburg effect and

ultimately promote the transition of macrophages from the

proinflammatory to the repair phenotype (68). The underexpression

of sirtuin 3 in hepatocellular carcinoma promotes the lactylation of

cyclin E2, which in turn promotes tumor progression, and sirtuin 3 is a

potential therapeutic target for hepatocellular carcinoma (69).

The lactate score model can be used to predict tumor immune

escape (70). A lactic acid-related model study on gastric cancer

revealed numerous infiltrated immune cells (macrophages to the

highest degree), characterized by an increased lactic acid score. ICIs

showed a decreased response rate in gastric cancer with a high

lactate score. Tumors with a high lactate fraction have high tumor

immune dysfunction, implying higher risks of immune escape and

dysfunction. These findings indicate that the lactate score can be

used to predict malignant progression and immune evasion of

gastric cancer. However, the application of lactic acid drugs in

clinical tumor immunity remains under development.
6 Glycosylation and tumor immunity

Glycosylation is an important protein PTM in which O-linked N-

acetylglucosamine (O-GlcNAcylation) refers to addition of

monosaccharide modification to serine and/or threonine residues of
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1229397
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1229397
protein in cells, which is the most common glycosylation form in

eukaryotes (71). This modification is a highly dynamic modification

method, which would change with the nutritional status in cells and

extracellular stimuli. It widely occurs in intracellular proteins and

regulates important biological processes, such as gene transcription,

signal transduction, protein synthesis, and metabolic reprogramming.

As early as 1991, Crowley et al. discovered the effect of non-

enzymatic glycosylation on the function of mesangial cells (72).

Khidekel discovered a new strategy to monitor the glycosylation

kinetics of O-GlcNAc using protein omics based on quantitative mass

spectrometry (73). Fogel et al. found that site-specific N-glycosylation

affects the structure and function of binding synaptic cell adhesion

molecule interaction (74). In addition, some studies have summarized

the current knowledge of immunoglobulin glycosylation and paid special

attention to the research and vaccination for infectious diseases,

considered to be a field with many interesting opportunities (75). Hu

et al. analyzed 83 high-grade serous ovarian cancer and 23 non-tumor

tissues prospectively with comprehensive protein omics and

glycochemistry. Tyagi et al. comprehensively summarized the

discovery of RNA glycosylation, conceptually understood its previous

potential discovery and its biological consequences, and explained the

dynamic impact of this modification on its molecular versatility,

determining the immunological fate of cancer and the potential

impact of glycosylation on cell interaction, signal transduction,

immunomodulation, cancer escape, and proliferation (76). Shi et al.

found that glucose metabolism in TAM was modified by enhancing O-

GlcNAcylation, promoting tumor metastasis and chemotherapy

resistance. They revealed that M2-like TAM is the immune cell

subgroup with the strongest glucose uptake ability in tumor

microenvironment and discovered the new function of O-linked N-

acetylglucosamine transferase located in lysosomes (77). They clarified

the significance of competitive uptake and utilization of glucose by TAM,

particularly M2-like TAM, in shaping cell-specific tumor-promoting

function, which provided a potential target for tumor treatment.

The star molecule of glycosylation in tumor immunotherapy is

PD-L1. Glycosylation can stabilize PD-L1, which prevents PD-L1

from degradation of 26S proteasome mediated by GSK3b, thus
enhancing its interaction with PD-1 on CD8+ T cells. In addition,

the catalytic subunit of oligo-glycosyltransferase STT3 transfers the

core glycan structure to PD-L1, which leads to EMT. Combined

PD-L1 and PD-1 is also influenced by the glycosylation of PD-L1. In

a study on EGF/EGFR signal transduction, PD-L1/PD-1 interaction

requires b 1,3-N- acetylglucosamine transferase 3 (B3GNT3) to

mediate the glycosylation of poly-N-acetyllactosamine on PD-L1

N192 and N200. The 4T1 cells lacking B3GNT3 expression grew in

severe combined immunodeficiency mice, but not in

immunocompetent BALB/c mice (78). Therefore, glycosylation

targeting PD-L1 is a breakthrough in tumor immunotherapy.
7 Conclusions

PTMs are chemical changes that occur after protein synthesis that

play a vital role in regulating protein function, stability, localization, and

interactions. In addition to the types of PTMs summarized above, other

PTMs play a vital role in tumor immunity. Currently, immune-related
Frontiers in Immunology 07144143
PTM drugs mostly include phosphorylation inhibitors. In addition,

some PTM models can predict tumor immune evasion, such as the

lactic acid score model. Immune-targeted drugs for succinylation have

not been confirmed in the clinical treatment of cancer and remain in

the research stage in vivo and in vitro. In addition to developing

inhibitors, adoptive cell therapy carries clinical application potential,

such as knocking-out specific PTM-related proteins to improve the

therapeutic effect. This method is particularly attractive for adoptive T-

cell and natural killer cell therapy based on the chimeric antigen

receptor. This may be the direction of PTM immunotherapy in the

future. In general, protein PTM is a regulator of tumor immunity. Its

disorders affect various immune processes, including T-cell activation,

immune checkpoint regulation, cytokine production, and immune cell

interaction in the tumor microenvironment. Understanding its role in

tumor immunity may provide insights for the development of new

immunotherapies and targeted therapies for cancer.
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