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Background: Renal clear cell carcinoma (ccRCC) is one of the most prevailing type of malignancies, which is affected by chemokines. Chemokines can form a local network to regulate the movement of immune cells and are essential for tumor proliferation and metastasis as well as for the interaction between tumor cells and mesenchymal cells. Establishing a chemokine genes signature to assess prognosis and therapy responsiveness in ccRCC is the goal of this effort.
Methods: mRNA sequencing data and clinicopathological data on 526 individuals with ccRCC were gathered from the The Cancer Genome Atlas database for this investigation (263 training group samples and 263 validation group samples). Utilizing the LASSO algorithm in conjunction with univariate Cox analysis, the gene signature was constructed. The Gene Expression Omnibus (GEO) database provided the single cell RNA sequencing (scRNA-seq) data, and the R package “Seurat” was applied to analyze the scRNA-seq data. In addition, the enrichment scores of 28 immune cells in the tumor microenvironment (TME) were calculated using the “ssGSEA” algorithm. In order to develop possible medications for patients with high-risk ccRCC, the “pRRophetic” package is employed.
Results: High-risk patients had lower overall survival in this model for predicting prognosis, which was supported by the validation cohort. In both cohorts, it served as an independent prognostic factor. Annotation of the predicted signature’s biological function revealed that it was correlated with immune-related pathways, and the riskscore was positively correlated with immune cell infiltration and several immune checkpoints (ICs), including CD47, PDCD1, TIGIT, and LAG-3, while it was negatively correlated with TNFRSF14. The CXCL2, CXCL12, and CX3CL1 genes of this signature were shown to be significantly expressed in monocytes and cancer cells, according to scRNA-seq analysis. Furthermore, the high expression of CD47 in cancer cells suggested us that this could be a promising immune checkpoint. For patients who had high riskscore, we predicted 12 potential medications.
Conclusion: Overall, our findings show that a putative 7-chemokine-gene signature might predict a patient’s prognosis for ccRCC and reflect the disease’s complicated immunological environment. Additionally, it offers suggestions on how to treat ccRCC using precision treatment and focused risk assessment.

Keywords: chemokine, renal clear cell carcinoma, immunotherapy, tumor microenvironment, gene signature

1 INTRODUCTION
Kidney cancer is among the top 10 most common cancers, with 400,000 new cases and 175,000 deaths from cancer globally each year, and it accounts for 4% of all newly diagnosed cancers. (Kotecha et al., 2019; Siegel et al., 2021). Renal clear cell carcinoma (ccRCC) is the most prevalent subtype of the disease and is one of the principal reasons for patient death. (Hsieh et al., 2017). Surgery remains the primary therapy for kidney cancer patients, and despite the popularity of some emerging treatments, many patients develop distant metastases and locally advanced disease. (Capitanio and Montorsi, 2016). Therefore, novel treatment strategies are urgently needed.
Immunotherapy is a powerful treatment approach that has changed the landscape of treatment for many tumors. (Riley et al., 2019; Kennedy and Salama, 2020). Immunotherapy remains a promising therapeutic approach in the field of kidney cancer, and more new and rational immunotherapy approaches are needed besides targeting PD-1, CTLA4 or PD- L1. (Braun et al., 2021). The successful realization of immunotherapy cannot be achieved without the contribution of the TME. Chemokines have been found to either directly or indirectly affect tumor immune in the TME. (Nagarsheth et al., 2017). It is noteworthy that chemokines can entice various immune cells to reach the TME.
Chemokines are divided into four families: CC-chemokines, CXC-chemokines, XC-chemokines and CX3C-chemokines. (Griffith et al., 2014). They are not only involved in tumor proliferation and invasion, but also in inflammatory response and regulation of neoangiogenesis. (Ozga et al., 2021). The chemokine system is intricate, as shown by the fact that a single chemokine can draw in and activate both pro- and anti-tumor regulatory cells, hence promoting both pro- and anti-tumor actions. (Ozga et al., 2021). Studies have been performed to analyze the tertiary lymphoid structure-related chemokines in ccRCC. (Xu et al., 2022). In glioma and lung squamous cell carcinoma, comprehensive analyze of chemokines have been performed through public transcriptome databases, (Fan et al., 2022; Lai et al., 2022), while in ccRCC there are rarely. Thus, there is a need to further analyze the relationship between chemokines and ccRCC.
There is increasing evidence that chemokines are involved in the pathophysiological processes of tumors. (Reschke and Gajewski, 2022). Thus, it is necessary to incorporate chemokines into preclinical models to develop prognostic signature and new therapeutic targets. To address the above issues, we sought to apply chemokine family genes to develop and validate risk stratification signature of ccRCC patients from an independent public database to assess prognosis and discover new candidate drugs. This work may help to optimize precise treatment and further improve clinical outcomes for patients with ccRCC.
2 MATERIALS AND METHODS
2.1 Acquisition of samples and datasets
We downloaded clinicopathological information and RNA sequencing data for ccRCC patients from The Cancer Genome Atlas (TCGA) database (accessed on 2022/9/11 at https://xenabrowser.net/datapages/). Transcripts per kilobase million (TPM) values were derived by converting the gene expression values (FPKM values) from the RNA sequencing data. This study used 526 ccRCC tumor samples, which were randomly split into a training cohort (N = 263) and a validation cohort (N = 263) in a 1:1 ratio. All 526 qualifying ccRCC patients’ clinical features were compiled (SupplementaryTable S1). Patients whose survival information was unknown were excluded from further analysis.
2.2 Construction of 7-chemokine-genes signature
Firstly, we conducted differential expression analysis on training cohort samples and normal samples using the R package “DESeq2” to find differentially expressed genes (DEGs). According to the criteria of | [image: Logarithm with base two.] FoldChange|>1 & p < 0.05, we deemed them statistically significant. The 37 chemokine-related genes we chose to focus on were then intersected with these genes. After taking the intersection, genes associated with prognosis were further filtered using univariate Cox regression analysis. Lastly, seven genes were identified using the least absolute shrinkage and selection operator machine learning algorithm (LASSO). (Tibshirani, 1997). The expression values of the seven chemokine genes were multiplied by their corresponding correlation coefficients and then summed to obtain the riskscore.
2.3 Validation of 7-chemokine-genes signature
The median riskscore used as the dividing line between the high-risk and low-risk patient groups. In order to evaluate the effectiveness of the signature’s predictive ability, we conducted survival analysis, receiver operating characteristic (ROC) curve, univariate, and multivariate analysis. The “survival” package was used to run survival analysis on the training and validation cohorts. ROC curves for 1, 3, and 5 years were plotted using the “timeROC” R package. Using IBM SPSS Statistics 26, univariate and multivariate Cox regression analysis were carried out.
2.4 Construction of a nomogram for evaluation of gene signatures
Nomogram analysis was carried out for the training and validation cohorts using the R package “rms”. The scoring system and prediction system are located in the upper and bottom portions, respectively. In ccRCC patients, the overall score and the sum of the scores for each component correctly predicted the 1-, 3-, and 5-year survival. For both cohorts of patients, the predictive accuracy of OS was validated. To demonstrate the accuracy of survival prediction, calibration curves and C-index values were used.
2.5 GO analysis and gene set variation analysis (GSVA)
By using Pearson correlation analysis (R > 0.3, p < 0.05), it was possible to identify genes that were positively correlated with riskscore. These genes were then uploaded to the DAVID database (https://david.ncifcrf.gov/home.jsp) for annotation, visualization, and integrated discovery. Homo sapiens was chosen as the species and official gene symbol as identifier. The Gene Ontology (GO) study produced rich results in the end. The MSigDB database was used to acquire the HALLMARK gene set. Using the “GSVA” package (Hänzelmann et al., 2013), functional enrichment scores were computed for each sample, and a heatmap of the data was created (https://www.xiantao.love/). To ascertain the relationship between the riskscore and the HALLMARK set, Pearson correlation analysis was used.
2.6 Gene mutation analysis
The TCGA database (https://portal.gdc.cancer.gov/) was utilized to get somatic mutation data, which were analyzed using the “maftools” R package. The tumor mutation burden (TMB), based on somatic mutation data, was then determined for each patient in the training cohort, and the TMB between the high-risk and low-risk groups was compared. The TMB score was used as the basis for the survival analysis.
2.7 scRNA-seq analysis
The Gene Expression Omnibus (GEO) database provided the scRNA-seq data GSE152938 for ccRCC. Seurat is a R package for scRNA-seq expression data quality control, normalization, downscaling, and processing. It was used to evaluate the expression of 7 chemokine genes in tumor tissues. Expression data were normalized and downscaled for clustering using the UMAP method. Cellular markers were obtained from “CellMarker” (http://xteam.xbio.top/CellMarker/).
2.8 Evaluation of immune cell infiltration status
We evaluated the absolute proportion of 22 infiltrating immune cells in the training cohort ccRCC samples using the “CIBERSORT” algorithm in order to investigate the relationship between riskscore and immune cell infiltration. (Newman et al., 2015). The relative abundance of each TME cell infiltration in the training cohort ccRCC samples was also determined using the single sample gene set enrichment analysis (ssGSEA) algorithm. (Hänzelmann et al., 2013).
2.9 Drug sensitivity analysis
An R package called “pRRophetic” can analyze gene expression data to forecast the effectiveness of clinical chemotherapy and the sensitivity to targeted treatments. (Geeleher et al., 2014). Based on gene expression and drug sensitivity data from Cancer Genome Project (CGP) cell lines, we utilize the “pRRophetic” package to predict responsiveness to therapeutic drugs based on half maximal inhibitory dose (IC50) for each ccRCC sample.
2.10 Statistic analysis
R software (version 4.1.3 & 4.2.1), IBM SPSS Statistics (version 26), and GraphPad Prism (version 9) were used to conduct the statistical analyses. The assessment and comparison of survival times was done using Kaplan-Meier (K-M) survival curves. To determine whether there was a correlation between the variables, Spearman or Pearson correlation analysis was used. The Wilcoxon test was used to continuous variables. For all statistical methods, a difference was deemed significant if p < 0.05.
3 RESULTS
3.1 Construction of a 7-chemokine-genes signature for predicting prognosis of ccRCC
A total of 37 chemokines were used in this work, including 21 CC-chemokines, 13 CXC-chemokines, 2 XC-chemokines, and 1 CX3C-chemokine (Supplementary Table S2). We constructed a signature of the 7-chemokine-genes (Figure 1A). Firstly, the TCGA database’s ccRCC tumor samples were separated into a training cohort and a validation cohort at random. Then, the training cohort samples were subjected to differential analysis with normal samples to obtain DEGs (| [image: Mathematical expression showing "log base 2 of g".] FoldChange|>1 & p < 0.05), which were intersected with the selected 37 chemokine genes to gain 22 chemokine genes. Next, 11 chemokines related to prognosis were discovered by a univariate Cox regression analysis (Supplementary Table S3). Subsequently, we executed the LASSO algorithm and identified 7 chemokines (Figures 1B,C). Finally, the expression values of the seven candidate chemokine genes and their corresponding correlation coefficients were used to construct a prognostic index with the following equation:
[image: RiskScore equals the sum from i of Coef(i) multiplied by Expr(i).]
[image: Flowchart in panel A details the study's data collection and processing approach. Panel B shows a graph of deviance against log lambda values with colored lines. Panel C features a plot of cross-validated errors against log lambda values. Panels D and E present PCA plots with red and blue data points representing different groups in both training and validation cohorts.]FIGURE 1 | Construction of 7-chemokine-genes prognostic signature. (A) Flow chart of model construction. (B) Cross-validation was performed to optimize the parameter selection of the LASSO regression model. (C) Distribution of lasso coefficients of 11 prognosis-related chemokine genes. (D, E) Correlation between chemokine genes signature and profiles of seven chemokine genes’ expression in the training cohort and validation cohort.
In addition, to further investigate the association between the signature and the expression profiles of the 7 potential genes, we used principal component analysis (PCA). The results showed a significant association between riskscore and the expression profiles of the seven potential genes (Figures 1D, E).
3.2 Association of clinicopathological features of ccRCC with gene signature
In order to ascertain the clinicopathological implications of this gene signature, we analyzed the relationship between riskscore and clinicopathological information, such as age, gender, histological grade, and tumor stage. Patients with different riskscore exhibited different clinical and pathological features. Histological grade and tumor stage showed an uneven distribution as the riskscore increased in either the training and validation cohorts (Figures 2A, B). The various groups of these samples underwent comparison analysis. Riskscore was higher in high-grade ccRCC in the training cohort (Figure 2C). In addition, stage III/IV tumor samples showed higher riskscore (Figure 2D). The validation cohort verified the aforementioned findings (Figures 2E, F). Overall, these findings collectively imply that the signature and clinicopathological traits are tightly connected.
[image: Two cohort plots display overall survival (OS) with risk scores, age, gender, grade, and tumor stage. Panel A shows the Training Cohort and Panel B the Validation Cohort, both indicating days of survival, outcomes, and risk factors. Panels C-F illustrate risk scores by grade and tumor stage, showing distinct distributions in training and validation cohorts with significant p-values.]FIGURE 2 | Association between chemokine-based gene signature and clinical features in ccRCC. (A) Correlation of riskscore and clinicopathological characteristics of patients in the training cohort. (B) Correlation of riskscore and clinicopathological characteristics of patients in the validation cohort. (C, E) In the training and validation cohorts, riskscore considerably rise at higher-grade ccRCC. (D, F) In the training and validation cohorts, riskscore considerably rise at higher-stage ccRCC. The significance of the difference was tested with Wilcoxon test.
3.3 Prognostic value of the 7-chemokine-genes signature
The expression levels of the seven chemokine genes and patient survival times were ordered by riskscore values in order to further evaluate the relationship between signature and overall survival time of patients. All patients were classified into high-risk and low-risk patient groups based on the median riskscore values. (Figures 3A, B). The results of the survival analysis showed that patients with low risk had a significantly better prognosis than those with high risk (Figure 3C). The validation cohort provided strong confirmation of the aforementioned findings (Figure 3D). Notably, for patients with ccRCC in both cohorts, riskscore is shown to be an independent prognostic factor of overall survival times. (Supplementary Tables S4, S5). Furthermore, an individualized prediction model was created to aid in the clinical use of prognostic prediction models. Age, gender, histological grade, tumor stage, and riskscore were included as independent predictors in the construction of the OS prediction model. The results showed that the prediction model may be used to assess the likelihood of 1-, 3-, and 5-year overall survival times in patients with ccRCC. (Figure 3E). Notably, the nomogram and calibration curves actually observed results in the training and validation cohorts are satisfactory, showing excellent prediction accuracy (Figure 3F). This nomogram model has a C-index of 0.769, which is better compared to any other prediction model (Figure 3G). The above results are verified in the validation cohort (Supplementary Figures S1A, B). Collectively, the signature can well predict the prognosis of ccRCC and is expected to translate into clinical applications.
[image: Charts illustrate survival analysis using two cohorts. Panels A and B show risk scores and outcomes in training and validation cohorts, with OS indicating overall survival. Panels C and D exhibit Kaplan-Meier survival curves demonstrating risk differentiation. Panel E details a nomogram prediction model for training cohort OS. Panels F and G include calibration plots for prediction accuracy and a bar graph comparing the model's predictive effect using C-Index metrics, indicating higher performance of the prediction model.]FIGURE 3 | K-M survival analysis and nomogram survival prediction. (A, B) Distribution of riskscore, survival status and survival time in ccRCC patients, and heat map of 7 chemokine genes. (C, D) K-M survival curves for OS and ROC curves for 1-, 3-, and 5-year survival rates. (E) Nomogram prediction combining clinicopathological features and riskscore. (F) Predicted and observed 1-year, 3-year and 5-year survival in calibration plots for training and validation cohorts. (G) The C-index is used to visualize the predictive effect of predictive model, riskscore, predictive model without riskscore, and clinicopathological factors.
3.4 Biological function and signaling pathways analysis
To investigate the biological processes and the pathways related to the 7 chemokine genes signature, we used GO and GSVA analyses. First, we sought genes positively associated with riskscore (Pearson correlation, R > 0.3 & p < 0.05), finding 657 and 466 genes in the training and validation cohorts, respectively. Then, GO analysis revealed that genes with positively associations were mainly associated with mitosis (Figures 4A–D). In addition, the hallmark analysis also showed that riskscore were positively correlated with EMT and KRAS signaling pathways, but negatively correlated with TGF-β and WNT signaling pathways (Figure 4E). The validation cohort verified the aforementioned findings (Figure 4F). This suggests that our signature can also predict the malignant course of ccRCC.
[image: Four data plots and two heatmaps are shown. Plots A, B, C, and D display enrichment analysis for different cohorts, marked by dots representing pathways against -log10 p-values, with color indicating count. Heatmaps E and F illustrate expression patterns in the training and validation cohorts, respectively, with pathways listed beside them. Blue and red colors denote different expression levels. Bar graphs indicate enrichment scores next to the heatmaps.]FIGURE 4 | Biological functions associated with the 7-chemokine-genes signature. (A–D) The biological processes (BP) and cell components (CC) that are enriched by genes that are positively correlated with riskscore. (E, F) Correlation of riskscore with the HALLMARK gene set. The heat map shows the enrichment scores of the HALLMARK for each patient. Bar and line plots show R- and p-values for correlation analysis.
3.5 Comparison of somatic mutations and TMB characteristics
In order to compare the differences in gene mutations between the high-risk and low-risk groups, data on single nucleotide variations were gathered from TCGA. VHL (49%), PBRM1 (35%), TTN (21%), SETD2 (15%) and BAP1 (12%) were the top 5 genes with the highest frequency of mutations in the training cohort’s high-risk group (Figure 5A). In contrast, VHL (45%), PBRM1 (45%), TTN (15%), MUC16 (12%) and BAP1 (11%) were the top 5 genes with the highest frequency of mutations in the training cohort’s low-risk group (Figure 5B). The TMB of the two groups were also compared and no significant differences were found (Figure 5C). No difference in survival time existed between the groups with high and low TMB. (Figure 5D). After merging our models, the high-risk + high-TMB group’s prognosis was noticeably poorer than the low-risk + low-TMB group’s. (Figure 5E). This indicates that our chemokine gene predictive signature combined with TMB can more accurately predict the prognosis of patients.
[image: Panel A shows a complex graphical representation of genetic alterations in a high-risk group, with various bar graphs and color-coded elements indicating different data types. Panel B presents similar data for a low-risk group. Panel C is a violin plot comparing TMB between high and low-risk groups, labeled as not significant. Panel D displays a Kaplan-Meier survival curve comparing overall survival based on high or low TMB. Panel E shows a survival analysis differentiating based on both TMB and risk level.]FIGURE 5 | Differences in mutations between high- and low-risk groups. (A, B) Somatic mutation waterfall plots in the training cohort. (C) TMB difference between low-risk and high-risk group. (Wilcoxon test). (D) K-M survival curves comparing the groups with high and low TMB levels. (E) Intergroup K-M survival curves for the four groups.
3.6 Single-cell analysis
To estimate the TME in patients with ccRCC, we performed scRNA-seq analysis. We first collected single-cell sequencing data from 2 ccRCC patients in the GSE152938 dataset. The dataset’s overall picture was plotted (Supplementary Figures S2A, B). After quality control, quality control visualization and removal of samples with gene expression less than 200 and mitochondrial gene proportion greater than 20%, a total of 22,623 genes and 18,032 cells were preserved. Variable features were set to 2000, and the top 10 genes of the 2000 highly variable features were plotted (Supplementary Figure S2C). Subsequently, PCA was conducted out to show the genes included in the 12 PCs in the PCA (Supplementary Figure S2D). Dimensionality reduction analysis was performed using the “UMAP” method. Cells were clustered into 19 clusters (Supplementary Figure S2E). According to the expression of marker genes (Supplementary Figures S2F, G), we identified five different cell clusters and one unidentified cell cluster (Figure 6A), namely, T cell, Endothelial cell, Mesangial cell, Cancer cell, and Monocyte. The signature genes CXCL2, CXCL12 and CX3CL1 were mainly expressed in cancer cells and monocytes (Figures 6B,C). In addition, we further downscaled the cancer cell subtypes using the “UMAP” method, and the cells were clustered into 7 clusters (Figure 6D), and we investigated the distribution of signature genes across clusters (Figures 6E, F). This suggests that genes in our signature have an impact on the physiological processes of cancer cells, especially the CXCL2 and CX3CL1 genes.
[image: Panel of six images related to cell analysis. Image A shows a scatter plot of cell types, with clusters marked in different colors. Image B presents several box plots comparing expression levels of CCR genes across samples. Image C includes six UMAP plots, each displaying gene expression on a colored scale. Image D is a UMAP plot with dots in various colors, labeled "Cancer cell." Image E shows box plots similar to B but with different data points. Image F contains more UMAP plots with varying gene expressions depicted through a color gradient.]FIGURE 6 | scRNA-seq data analysis in GSE152938. (A) Cell-type annotation of clusters. (B) Signature genes expression levels in several cell subtypes. (C) UMAP shows expression of signature genes in all cell subtypes. (D) Subtypes of Cancer cells. (E) Signature genes expression levels in different subtypes of cancer cells. (F) UMAP shows expression of signature genes in subtypes of cancer cells. (CCL11 is unavailable).
3.7 Immune checkpoints and immune cell infiltration associated with gene signatures
We evaluated the correlation between riskscore and known suppressive ICs. The findings revealed that the riskscore was positively correlated with CD47, PDCD1, TIGIT, LAG3 and negatively correlated with TNFRSF14 (Figure 7A). scRNA-seq analysis indicated that TNFRSF14 and CD47 were highly expressed in cancer cells (Figure 7B), suggesting that CD47 may be better therapeutic targets. Previous studies have shown that both inflammatory response and TME are essential for the development of tumors. Therefore, we further examined the association between this signature and TME. Using the ssGSEA approach, we compared the enrichment scores of 28 different immune cell types. The analysis revealed a higher enrichment score of activated CD4 T cells, activated dendritic cells, central memory CD8 T cells, gamma delta (γδ) T cells, macrophages, myeloid-derived suppressor cells (MDSC) and natural killer T cells in the high-risk group compared to the low-risk group. In contrast, higher enrichment scores of memory B cells, neutrophils, and plasmacytoid dendritic cells were found in the low-risk group. (Figure 7C). Subsequently, we analyzed the proportion of 22 immune infiltrating cells in the tumor microenvironment using the CIBERSORT method. Our findings reveal that the abundance of monocyte was elevated in the low-risk group and negatively correlated with the riskscore. In contrast, the abundance of γδ T cell and M0 macrophage were positively correlated with the riskscore (Figure 7D). The study imply that the signature may partially reflect the tumor immunological microenvironment.
[image: Panel A depicts a circular plot showing gene expression and risk scores for training and validation cohorts, with color-coding indicating expression levels. Panel B contains violin plots for TNFRSF14, CD47, PDCD1, TIGIT, and LAG3, showcasing expression levels across different groups. Panel C features a bar graph of ssGSEA scores, and Panel D presents a box plot of CIBERSORT results across various immune cell types, with multiple sample groups compared.]FIGURE 7 | Immune infiltration reflected by gene signature. (A) Correlation between riskscore and inhibitory ICs. The R-value is shown by the band’s width. The p-value is indicated by the band’s color. The correlation was examined using Pearson correlation analysis. (B) Expression levels of inhibitory ICs in various subtypes of cancer cells. (C) Comparison of 28 immune cell enrichment scores. (D) Comparison of the difference in the abundance of immune infiltrating cells by the CIBERSORT algorithm. The significance of the difference was tested with Wilcoxon test. *p < 0.05, **p < 0.01, and ***p < 0.001.
3.8 Identification of potential therapeutic agents
Given that chemotherapy remains a common adjuvant therapy in clinical practice, we explored drug candidates with higher drug sensitivity in high-risk patients. To assess the therapeutic drug response, we determined the IC50 of each ccRCC sample using the “pRRophetic” algorithm. First, compounds with IC50 estimates negatively correlated with riskscore were chosen (Spearman correlation, R < −0.30 & p < 0.05). Crossover results between the training and validation cohorts yielded 12 compounds, including SB 216763, MS-275, PFI-1, rTRAIL, HG-5-88–01, 17-AAG, LFM-A13, YK 4–279, Mitomycin C, Vinblastine, Bryostatin 1, CI-1040 (Figures 8A, C). Among them, SB 216763 acted as an inhibitor of GSK-3 targets in the WNT signaling pathway. Further analysis revealed that the IC50 estimates for each of these compounds were lower in the high-risk group (Figures 8B, D). This means that these drugs are promising therapeutic options for ccRCC patients at high risk. Finally, we evaluated the difference in IC50 of several VEGFR inhibitors (sunitinib, sorafenib, pazopanib, and axitinib) in the two cohorts. In contrast to the low-risk group, the high-risk group had higher pazopanib IC50 values (Figures 8E, F). This indicates that high-risk patients may not be sensitive to pazopanib treatment.
[image: Two panels display data analysis results. Panel A shows a correlation heatmap for the training cohort, with notable gene correlations marked. Panel B presents box plots comparing high-risk and low-risk groups across multiple variables in the training cohort. Panel C depicts a similar correlation heatmap for the validation cohort, marked similarly. Panel D shows box plots for the validation cohort variables. Panels E and F feature box plots comparing drug responses (IC50) for high-risk and low-risk groups across four drugs in both cohorts. Statistical significance is noted with asterisks.]FIGURE 8 | Twelve drug agents were identified as well as four VEGFR inhibitors for analysis. (A, C) Correlation between riskscore and the IC50 estimates for the 12 agents. The correlation was examined using Spearman correlation analysis. (B, D) Differences in the estimated IC50 for 12 agents between the high- and low-risk groups. (E, F) Comparison of IC50 estimates of four VEGFR targeted drugs (sunitinib, sorafenib, pazopanib and axitinib). The significance of the difference was tested with Wilcoxon test. *p < 0.05, **p < 0.01, and ***p < 0.001.
4 DISCUSSION
Renal clear cell carcinoma is the most common solid cancer in the kidney. (Capitanio and Montorsi, 2016). The advent of targeted therapies and immune checkpoint inhibitors (ICIs) has transformed the treatment of patients with ccRCC. In addition, many targeted therapeutic agents and ICIs have been applied to treat advanced ccRCC. (Ward and Stadler, 2010; Powles et al., 2020; Rini et al., 2020). However, these treatments inevitably lead to some significant adverse events. Chemokines are key players not just in the immune system, but also in the development, growth, and metastasis of tumors. (Strieter et al., 2004; Zlotnik, 2004; Tsaur et al., 2012). Recently, it has been shown that chemokine-based risk signatures show good predictive power in clinical prognosis and response to immunotherapy in glioma, lung adenocarcinoma and pancreatic adenocarcinoma. (Chen et al., 2021; Huang et al., 2021; Fan et al., 2022). As a result, we investigated thoroughly the chemokine genes in ccRCC. First, we selected seven chemokine genes with prognostic value for study. Additionally, we created a brand-new prognostic signature for ccRCC patients and validated it. We discovered that the TME and the response to immunotherapy were connected with our prognostic signature, which may offer practical leads for predicting the prognosis of patients and selecting drug options for patients on immunotherapy.
In the previous study, expression of both CXCR4 and its ligand CXCL12 in VHL-null 786-O cells, even in the lack of exogenous CXCL12, may promote ccRCC proliferation and metastatic dissemination by stimulating autocrine receptors. (Struckmann et al., 2007). In addition, Jin et al. (2019). Reported that miR-34a-5p/CCL22 axis positively regulates the proliferation and metastasis of renal cell carcinoma (RCC). Also, the CCL22-derived peptide vaccination successfully slowed the progression of tumors in vivo and demonstrated good therapeutic efficacy. (Lecoq et al., 2022). In other chemokine genes, Parenchymal polymorphonuclear-MDSC (PMN-MDSC) positively correlates with CXCL5, IL1b, IL8, and Mip-1a, which are able to attract PMN-MDSC into ccRCC parenchyma. (Najjar et al., 2017). Interestingly, CXCL5 expression in non-small cell lung cancer was related to a reduced survival rate. (Kowalczuk et al., 2014). In addition, according to research by Dai, et al. (2021), CXCL13+CD8+ T cell infiltration levels within tumors are independent predictors of poor OS and RFS in ccRCC and are related with immune evasion of TME. Moreover, CX3CL1 plays a role in tumor promotion and dissemination in patients with RCC besides CXCL12. (Tsaur et al., 2012). There is a lack of articles discussing the tumorigenic aspects of CCL11 and CXCL2 in ccRCC. However, these chemokines have been found to be associated with tumorigenesis and progression in ovarian and hepatocellular carcinoma. (Nolen and Lokshin, 2010; Xu et al., 2021). The gene signature we developed includes each of the chemokines mentioned above. It also implies that this gene signature might play a key role in identifying patients with advanced ccRCC who have poor prognoses and reflecting TME. Moreover, among the clinicopathologic characteristics of malignancy that strongly correlate with high riskscore are high histologic grade and tumor stage. High-risk patients also have shorter survival times. It is noteworthy that this gene signature also functions as an independednt predictor. The nomogram, which included the riskscore and clinicopathological characteristics, demonstrated good accuracy. The aforesaid results were supported by the validation cohort. These findings suggest that the 7-chemokine gene may someday be applied in the clinic.
Chemokines can not only control the migration and localization of immune effector cells in tissues, but also coordinate the interactions between immune cells to reshape the tumor immune microenvironment. (Sokol and Luster, 2015; Nagarsheth et al., 2017). As a result, when we analyzed immune cell infiltration between the high-risk and low-risk groups in our study, we discovered that the high-risk group had a higher density of immune cell infiltration. The high-risk group also showed an increase in T cell activation and antigen-presenting capacity. According to our findings, the high-risk group had greater enrichment fractions of natural killer T cells, activated CD4 T cells, activated dendritic cells, central memory CD8 T cells, γ δ T cells, macrophages, and MDSC. One study reported that MDSC may protect cancer from the patient’s immune system. (Tesi, 2019). These might help to partially explain why the prognosis is worse for patients in the high-risk group. Furthermore, scRNA-seq analysis revealed that CD47 was substantially expressed in tumor cells, and we discovered that riskscore were positively linked with CD47, PDCD1, TIGIT, and LAG3. This shows that the high-risk group may benefit more therapeutically from targeting CD47. The therapeutic potential of CD47 has also been demonstrated in earlier research. (Liu et al., 2015; Logtenberg et al., 2020). Collectively, these results suggest that our 7-chemokine-genes signature may serve as an indicator of the tumor’s immune infiltration status and a promising therapeutic target for immunotherapy of ccRCC patients.
Finally, we obtained 12 drugs that are expected to be therapeutic agents for patients at high risk of ccRCC. Through Genomics of Drug Sensitivity in Cancer (GDSC) and ClinicalTrials.gov (https://clinicaltrials.gov/ct2/home), we obtained the details of these drug candidates (Supplementary Table S6). These drugs act on signaling pathways such as WNT, MAPK, and Apoptosis regulation. Wnt signaling acts as a targeted growth factor to induce cell proliferation and holds promise as a real therapy. (Nusse and Clevers, 2017). Among them, MS-275, 17-AAG, Mitomycin C, Vinblastine, Bryostatin 1, and CI-1040 are already in clinical trials. However, further trials are needed to validate them. Furthermore, we compared four VEGFR inhibitors, sunitinib, sorafenib, pazopanib and axitinib, and showed that the IC50 estimates for pazopanib were elevated in the high-risk group compared to the low-risk group. This indicates that patients in the high-risk group had less responsiveness to the medication pazopanib. In order to prevent overtreatment or adverse effects in non-responders, clinicians can utilize this signature as a predictor of the sensitivity of chemotherapeutic and targeted medicines prior cancer treatment.
However, there are still some limitations of this study that need to be resolved. First off, all of the cohorts used in our analysis were obtained from the TCGA database, and external cohorts are required to confirm the findings. Although the use of an immunotherapy cohort would provide additional insights, our dataset sample size is less than fifty and these data will be presented in our further studies. Second, additional research into the molecular mechanisms needs to be conducted in subsequent studies.
In summary, we established and validated a genetic signature for ccRCC patient prognosis and explored the function of chemokine-related genes in patients with ccRCC. To predict patient OS, a predictive nomogram was created by incorporating factors such as age, sex, tumor stage, histological grade, and riskscore. Also noteworthy, we also developed 12 drug candidates. In addition, the signature can be utilized by clinicians to forecast patient receptivity to targeted and immunochemotherapy treatments.
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Introduction: Glioblastoma is one of the most lethal cancers and leads to more than 200,000 deaths annually. However, despite lots of researchers devoted to exploring novel treatment regime, most of these attempts eventually failed to improve the overall survival of glioblastoma patients in near 20 years. Immunotherapy is an emerging therapy for cancers and have succeeded in many cancers. But most of its application in glioblastoma have been proved with no improvement in overall survival, which may result from the unique immune microenvironment of glioblastoma. Arginine is amino acid and is involved in many physiological processes. Many studies have suggested that arginine and its metabolism can regulate malignancy of multiple cancers and influence the formation of tumor immune microenvironment. However, there is hardly study focusing on the role of arginine metabolism in glioblastoma.
Methods: In this research, based on mRNA sequencing data of 560 IDH-wildtype glioblastoma patients from three public cohorts and one our own cohort, we aimed to construct an arginine metabolism-related genes signature (ArMRS) based on four essential arginine metabolism-related genes (ArMGs) that we filtered from all genes with potential relation with arginine metabolism. Subsequently, the glioblastoma patients were classified into ArMRS high-risk and low-risk groups according to calculated optimal cut-off values of ArMRS in these four cohorts.
Results: Further validation demonstrated that the ArMRS was an independent prognostic factor and displayed fine efficacy in prediction of glioblastoma patients’ prognosis. Moreover, analyses of tumor immune microenvironment revealed that higher ArMRS was correlated with more immune infiltration and relatively “hot” immunological phenotype. We also demonstrated that ArMRS was positively correlated with the expression of multiple immunotherapy targets, including PD1 and B7-H3. Additionally, the glioblastomas in the ArMRS high-risk group would present with more cytotoxic T cells (CTLs) infiltration and better predicted response to immune checkpoint inhibitors (ICIs).
Discussion: In conclusion, our study constructed a novel score system based on arginine metabolism, ArMRS, which presented with good efficacy in prognosis prediction and strong potential to predict unique immunological features, resistance to immunotherapy, and guide the application of immunotherapy in IDH-wild type glioblastoma.
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INTRODUCTION
Glioblastoma, a type of malignant diffuse glioma, presented with extremely poor prognosis (Stupp et al., 2005). Despite after standard treatment regime, including surgery, chemotherapy, and radiotherapy, the prognosis of IDH-wildtype glioblastoma patients remains unsatisfactory with a median overall survival of fewer than 2 years (Chinot et al., 2014; Gilbert et al., 2014; Stupp et al., 2015). Therefore, many studies aimed to explore brand-new therapies to improve overall survival of glioblastoma patients. Abundant attempts of multiple novel treatments have failed to improve overall survival of glioblastoma patients (Westphal et al., 2013; Chinot et al., 2014; Gilbert et al., 2014; Wick et al., 2017). Immunotherapy, which aims to discharge the immunosuppressive microenvironment of tumors and enhance anti-tumor effects delivered by immune cells, has been proved effective in multiple cancers, including non-small-cell lung cancer (Janjigian et al., 2021; Kamdar et al., 2022), melanoma (Reck et al., 2016), breast cancer (Larkin et al., 2015), and digestive tract cancer (Larkin et al., 2015). However, most of the attempts for the application in immunotherapy in glioblastoma eventually failed to improve overall survival (Reardon et al., 2020; Lim et al., 2022; Omuro et al., 2022). The reasons of these failure for the application of immunotherapy in glioblastoma have attracted a lot of attention and researchers. The unique immunological behavior and environment of brain was considered as a critical reason. However, some studies which aimed to apply immune checkpoint inhibitors (ICIs) in metastatic brain tumors have succeeded to improve patients’ overall survival (Tawbi et al., 2018; Hendriks et al., 2019), which suggested that the unique immune microenvironment of brain may not be the key reason for the failures in glioblastoma. Other studies also attempted to alter the timing of immunotherapy use. Inspiringly, the application of neoadjuvant ICIs in glioblastoma can enhance the immune response and convert immunological features (Cloughesy et al., 2019; Schalper et al., 2019). These studies encouraged us that if we can get a better understand of immunological behaviors of glioblastoma, we may be able to reshape immunological features and ease the resistance to immunotherapy in glioblastoma.
Metabolism pattern of cancer cells and its impact on the immunological features of tumor microenvironment is becoming more and more attractive to researchers. Based on public database and our own data, we have explored the correlation of several compounds and amino acid metabolism with the immune microenvironment of glioma (Chen et al., 2022a; Chen et al., 2022b; Zhang et al., 2022). However, formation of the unique immunological features of glioma is an extremely complex process and is influenced by the metabolism pathways of massive compounds in cancer cells. None of any separated metabolism pathway can totally explain the special immune microenvironment of glioma. Hence, here we intended to explore the relationship between tumor immunological features and another conditionally essential amino acid for human, arginine, which functions as a precursor for synthesis of multiple compounds, including urea, nitric oxide, proline, glutamate, creatine, and agmatine (Morris, 2006) and plays key roles in cell growth and survival (Delage et al., 2010). Most cancer cells lose the capacity of intracellular arginine synthesis because of the loss of a key enzyme that produces arginine, argininosuccinate synthetase 1 (ASS1) (Bronte and Zanovello, 2005). Consequently, cancer cells depend on exogenous arginine to meet the demands, indicating a unique pattern of arginine metabolism in cancers. Besides, arginine was also proved to execute powerful regulation for immune system (Dillon et al., 2004; Wheatley et al., 2005). Arginine could modulate T Cells metabolism and enhance their anti-tumor activity (Geiger et al., 2016). The cell cycle of T cells was also influenced by arginine availability (Rodriguez et al., 2007). The large consume of extracellular arginine by cancer cells decreases the arginine level in the tumor microenvironment (TME). Moreover, tumor-associated macrophages (TAMs) could produce arginase, an enzyme to degrade arginine, to decrease the arginine level in TME (Currie, 1978; Currie et al., 1979). These synergistic effects contribute to shortage of arginine in TME and lead to dysfunctions of T cells, resulting in an immunosuppressive phenotype. Therefore, to prevent arginine degradation and replenish arginine supply in the TME can enhance the anti-tumor effects delivered by T cell and NK cell (Geiger et al., 2016). These studies indicated that arginine plays an essential role in tumor progression and process of antitumor immunity, and the metabolism of arginine has a significant impact on immunological feature of tumors. However, the role of arginine metabolism in the progression and immune landscape of glioblastoma was still not well elucidated.
Different with our previous studies, to avoid potential disturbance from tumor heterogeneity, we tried to focus on a subdivision of glioma, IDH-wildtype glioblastoma, which may result in smaller cohort scale but more convinced evidence. In this study, we included multiple IDH-wildtype glioblastoma patients’ cohort, including TCGA, CGGA325, CGGA693, and our own cohort, to explore how the unique arginine metabolism pattern of cancers influenced the malignant behaviors and immunological features in glioblastoma. We filtered all genes that were related to arginine metabolism and found out essential genes that had most influences on glioblastoma. Then, based on these essential genes, we constructed a score system, which was named as arginine metabolism-related gene signature (ArMRS) and showed with its satisfactory efficiency on prognosis prediction. Furthermore, we conducted multiple analyses to elucidate the relationship between ArMRS and immunological features of glioblastoma. Additionally, we also put forward the potential ability of ArMRS to predict response to immunotherapy. Based on these analyses, we hope to explore the potential applications of arginine metabolism in improving responses to immune checkpoint inhibitors and guiding selection of immunotherapy in IDH-wildtype glioblastoma patients. Combination of this study and our previous studies may contribute to establishing a more detailed model that comprehensively explained the relationship between metabolism and immune of glioma.
MATERIALS AND METHODS
Patient cohorts and data preprocessing
Gene expression profiles (fragments per kilobase million, FPKM) and clinicopathological features in this research were fetched from three public datasets and extracted from the mRNA-seq data of our own patient cohort. Those patients diagnosed with primary IDH wild-type glioblastoma were included in this research. Those patients with recurrent glioblastomas or under 18 years old were excluded from this research. The three public cohorts consisted of one cohort from the Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) and two cohorts from the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/). The cohort from TCGA contained 237 primary IDH-wildtype glioblastoma samples and 234 of which had complete survival data. The two cohorts from CGGA were CGGA325 and CGGA 693 cohorts, which contained 112 and 175 primary IDH-wildtype glioblastoma samples, respectively.
Our own cohort contained 36 primary IDH-wildtype glioblastoma patients from West China Hospital (WCH). We gained these tumor samples during resection surgery and then sequenced them for mRNA. Subsequently, the mRNA sequencing data was quantified and normalized to FPKM using STAR. The survival data of these 36 patients was recorded through regular follow-up every 3 months. Besides, the genes with too low FPKM values (maximum FPKM < 0.1 or standard deviation < 0.01) were excluded from further analyses in succeeding preprocessing procedure. Table 1 listed out detailed clinicopathological features of the patients in all these four cohorts.
TABLE 1 | Clinicopathological characteristics of patients in TCGA, CGGA325, CGGA693, and WCH cohorts.
[image: Table comparing patient characteristics across four cohorts: TCGA, CGGA325, CGGA693, and WCH. It includes age and range, gender distribution, histology (all glioblastoma), grade, IDH status (wild-type), TERT and MGMT promoter status, and ATRX status. TERT promoter shows mutant in 70.5% for TCGA and 27.8% for WCH. MGMT is methylated in 54.4% for TCGA, 65.2% for CGGA325, 38.3% for CGGA693, and 33.3% for WCH. ATRX status shows mutants in 3.4% for TCGA and 77.8% for WCH. NA indicates data not available.]Definition of essential arginine metabolism-related genes and construction of the arginine metabolism-related genes risk signature
The arginine metabolism-related genes (ArMGs) were exported from the Molecular Signature Database (MSigDB) with the keyword “arginine metabolic process”, “arginine transport”, “arginine catabolic process”, “arginine biosynthetic process”, and 26 genes were kept after excluding lowly expressed genes. After that, we constructed a gene risk signature based on the expression levels of several essential ArMGs to explore the relationship between arginine metabolism and the malignancy of glioblastoma, which was named as arginine metabolism-related genes risk signature (ArMRS). First, we split the TCGA cohort into training and validation sets with a ratio of 6:4. The other three cohorts were utilized as validation cohorts. The 26 ArMGs were filtered using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis in the training set. If the coefficient of an ArMG was not zero at the optimal model with maximum C-indices in over 100 random repetitions of LASSO Cox regression, this ArMG was defined as an essential ArMG in glioblastoma. Subsequently, we fitted a concluding multivariate Cox regression model to the training set with the essential ArMGs. The ArMRS was calculated with the following formula: 
[image: Mathematical formula depicting ArMRS equals the summation from i equals 1 of the product of beta sub i and Exp sub i.]
In this formula, the β and Exp represented the coefficients and expression levels of each essential ArMG in the final multivariate Cox regression, respectively. Moreover, we determined the optimal cut-off value of ArMRS in each cohort by using the “surv_cutpoint” function in the R package “survminer” with group proportion ≥ 0.3. Based on these cut-off values, all patients of these four cohorts were classified into ArMRS high-risk group or low-risk group. Eventually, we illustrated the receiver operating characteristic (ROC) curves in validation sets of 6-, 12-, and 18-month survival rates and used the R package “time ROC” to calculate the area under the ROC curve (AUC) to validate the efficacy of the prognostic prediction.
Functional enrichment analyses based on ArMRS risk groups
R package “limma” was utilized to identify differentially expressed genes (DEGs) between ArMRS risk groups. Those genes with adjusted p-value <0.05 and |log2FC| > 0.5 were defined as DEGs. To perform gene set enrichment analyses, Gene set enrichment analysis (GSEA) and over-representation were used to evaluate the differentially expressed genes (DEG) with Gene Ontology (GO) enrichment using the R package “clusterProfiler” based on different ArMRS risk groups. Moreover, we transferred the logFPKM matrix of genes to the pathway expression matrix using the R package “GSVA” and used the “limma” package to identify the differentially expressed pathways between risk groups.
Analyses of gene alterations and copy number variation
We obtained the gene alterations and copy number variations (CNV) data of patients of the TCGA cohort from the cBioPortal database (https://www.cbioportal.org/) to elucidate the different patterns of gene alterations and CNVs between different ArMRS risk groups. The R package “maftools” was used to illustrate the gene alterations. Besides, the mean Genomic Identification of Significant Targets in Cancer (GISTIC) score of 1 Mb chromosome segments was used to depict the CNV levels.
Nomogram construction based on ArMRS and other potential prognostic factors
To construct a nomogram based on ArMRS that could effectively predict glioblastoma patients’ prognosis, we utilized the univariate and multivariate Cox regression analyses to clarify independent prognostic factors. Firstly, the ArMRS, together with other potential prognostic patient and tumor factors, including age, gender, KPS, MGMT promoter methylation status and TERT promoter mutation status, were included in the univariate Cox regression analysis. Subsequently, those prognostic factors with p-value < 0.05 in the univariate Cox regression analysis were enrolled into the following multivariate analysis. Those factors with a p-value <0.05 in multivariate Cox regression analysis were defined as independent prognostic factors.
The nomograms were also constructed based on the prognostic patient factors with p-value < 0.05 in the univariate Cox regression analysis as well as the adjuvant therapies, using the R package “rms”. To evaluate the efficacy of nomograms in the prediction of prognosis, we computed calibration curves for each nomogram.
Analyses of the association between ArMRS and immunological features, and prediction of response to immunotherapy in glioblastoma
To elucidate the impact of arginine metabolism on the tumor immune microenvironment, we performed multiple analyses to characterize the differences in the tumor immune microenvironment between different ArMRS risk groups. First, we utilized the web-based CIBERSORTx suite (https://cibersortx.stanford.edu/) to compute the absolute infiltration fraction of 22 types of immune cells in glioblastoma based on the LM22 reference gene signature. Subsequently, the immune microenvironment-related scores, including stromal and immune scores, were evaluated by a previously reported algorithm, the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) (Yoshihara et al., 2013). Additionally, we also evaluated the tumor purity according to the ESTIMATE score and consensus purity estimation (CPE) data published by Aran et al. (2015). To assess the tumor immunological phenotype (TIP), we utilized another previously published algorithm (Wang et al., 2021) to calculate the TIP gene signature. According to the TIP gene signature, we could determine the immunological phenotype of tumor as either relatively “cold” or “hot” tumors. Finally, the TIDE suite (https://tide.dfci.harvard.edu/) was utilized to perform in silico analyses to predict the response to immune checkpoint inhibitors therapy in glioblastomas.
Statistical analysis
We used the R software (version 4.2.1) to conduct all the above bioinformatic analyses unless otherwise specified. We used the Wilcoxon rank sum test to evaluate the differences between different ArMRS risk groups for continuous variables. The chi-square test was used to evaluate the differences for categorical variables. All the survival analyses were conducted using the R package “survminer”. The log-rank test was utilized to test the differences between Kaplan-Meier (K-M) curves. The “coxph” function of the R package “survival” was used to conduct univariate and multivariate Cox regression analyses. The LASSO Cox regression analysis was performed using the R package “glmnet”. The T Iterative Grubbs test was utilized to exclude the outliers in linear regression analysis.
Ethic approval and data availability
The collection of clinical data and tumor samples were approved by the institutional review board of West China Hospital (No. 2018.569) following the 1964 Helsinki declaration and its later amendments. Besides, every patient signed written consent for collecting and using tumor tissue and clinical information. All the tumor tissue sequencing data from West China Hospital were available at the Genome Sequence Archive for Humans with accession code: HRA002839 (https://ngdc.cncb.ac.cn/gsa-human/s/XRStoK4w).
RESULTS
Definition of essential arginine metabolism-related genes and construction of the arginine metabolism-related genes risk signature
First, we screened the 26 ArMGs with the LASSO Cox regression in the training set to determine essential genes for the construction of arginine metabolism-related genes risk signature (ArMRS). After that, four ArMGs, including SLC7A7, DDAH1, ASS1, and NOS1, were identified as essential ArMGs for the construction of ArMRS (Figure 1A). A calculation formula of ArMRS was also derived by fitting a final multivariate Cox regression model to the expression of the 4 essential ArMGs in the training set. The calculation formula of ArMRS was as following:
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[image: Panel A shows a line graph indicating partial likelihood deviance across different log(lambda) values for LASSO regression analysis. Panel B features a forest plot displaying hazard ratios and confidence intervals for audited variables, highlighting FAM92B as significant. Panel C contains three box plots comparing FAM92B expression across cancer and normal tissues. Panels D to G present Kaplan-Meier survival curves for datasets TCGA-NB, GSE14468, GSE49710, and VCH, comparing high and low FAM92B expression groups. Panel H features ROC curves for one-, three-, and five-year survival predictions across the same datasets, evaluating FAM92B's predictive performance.]FIGURE 1 | Construction of ArMRS and its efficacy on prediction of glioblastoma patients’ survival (A). Average of coefficients of 4 essential ArMGs in the LASSO Cox regression at each lambda value (B). The effect of every essential ArMG on the prognosis of glioblastoma (C). Optima cutoff values of ArMRS in all four cohorts (D). K-M curve of ArMRS risk groups in TCGA validation cohort, (E) CGGA325 cohort, (F) CGGA693 cohort, and (G) WCH cohort (H). ROC curves and matched AUC of 6-, 12-, 18-month survival rate in all four cohorts.
Univariate analyses also demonstrated that SLC7A7 and ASS1 were hazardous prognostic factors for glioblastoma, while DDAH1 and NOS1 were proved as protective factors for glioblastoma (Figure 1B). Then we utilized the “surv_cutpoint” algorithm to determine the optimal ArMRS cut-off values for all these four cohorts. And based on these cut-off values, the patients of these four cohorts were allocated into ArMRS high-risk and low-risk groups (Figure 1C). Further survival analyses on the TCGA-validation cohort confirmed that the glioblastoma patients in the ArMRS high-risk group had remarkably poorer overall survival than in the ArMRS low-risk group (Figure 1D). This conclusion was also confirmed by survival analyses of CGGA325 and CGGA693 cohorts (Figures 1E, F). As to our own cohort, despite no statistical difference on the survival between two groups, there was also a trend that patients of high-risk group had poorer prognosis (Figure 1G). To evaluate the efficiency of ArMRS in predicting glioblastoma prognosis, we first performed ROC analyses to evaluate the performance of ArMRS alone in predicting glioblastoma patient survival at 6, 12, and 18 months. In the TCGA validation cohort, the AUCs of ArMRS at 6, 12, and 18 months were 0.534, 0.630, and 0.645, respectively (Figure 1H). Similar efficiencies were also observed in the other three validation cohorts (Figure 1H).
We also aligned a heatmap in the order of ArMRS that integrated the expression levels of these four essential ArMGs and clinicopathological characteristics, including TERT promoter status and MGMT promoter status (Figure 2A). As for the analyses of gene mutations, these four essential ArMGs rarely mutated in glioblastoma (Figure 2B), which excluded aberrant expression caused by gene mutations. The EGFR and TTN mutations were the most frequent mutations in glioblastoma of ArMRS low-risk group (Figure 2C). And PTEN and EGFR were the most frequent in ArMRS high-risk group (Figure 2D). Other mutations that ranked in top 20 most frequent for ArMRS low- and high-risk group were also listed. Furthermore, the incidence of EGFR amplification and CDKN2A/B homozygous-deletion were also significant higher in ArMRS high-risk group compared to low-risk group (Figures 3A, B). Moreover, the tumor mutation burden (TMB) analysis between ArMRS high- and low-risk groups revealed a significantly higher TMB in ArMRS high-risk group compared to low-risk group (Figure 3C). The analyses of clinicopathological features also showed that ArMRS high-risk group had a higher incidence of TERT promoter mutation (Figure 3D), but no differences in MGMT promoter status (Figure 3E). Besides, the pilocytic astrocytoma-like (PA-like) glioblastomas demonstrated significantly lower ArMRS than other three glioblastoma molecular subtypes (Figure 3F). There was also no difference in ArMRS between glioblastomas with methylated and unmethylated MGMT promoter (Figure 3G). But the glioblastomas with TERT promoter mutation had a significantly higher ArMRS than TERT promoter wild-type glioblastomas (Figure 3H), which suggested that the TERT promoter mutation may be associated with arginine metabolism. Additionally, the analysis of CNVs demonstrated that gain of chromosome 7 and loss of chromosome 10 occurred frequently both in ArMRS high- and low-risk groups (Figure 3I).
[image: Four panels display genomic data using heatmaps and bar charts. Panel A shows various gene expression levels across samples, with a color-coded legend for expression and sample categories. Panel B illustrates mutation data in a subset of samples, highlighting sample details and mutations. Panels C and D display focused views of mutation data in specific gene subsets, emphasizing differences in mutation frequency among samples.]FIGURE 2 | Expression level of four essential ArMGs and differences in gene mutations between ArMRS risk groups (A). Expression level of four essential ArMGs and its relationship with clinicopathological features (B). Gene mutations of four essential ArMGs and top eight frequently mutated genes in glioblastoma ordered by ArMRS risk groups (C). Top 20 frequently mutated genes in ArMRS low-risk group (D). Top 20 frequently mutated genes in ArMRS high-risk group.
[image: A grouping of scientific charts and graphs:  A. Line graph with red and blue dots showing variable comparisons. B. Similar line graph with different data points. C. Scatter plot comparing two data axes, with a box plot overlay. D. Bar graph depicting two groups with distinct colors. E. Stacked bar chart showing categorical distributions. F-H. Box plots comparing groups with scatter points showing distribution. I. Heatmap displaying a grid of data with varying color intensities and an accompanying color legend indicating data significance.]FIGURE 3 | Differences in clinicopathological features and copy number variations between ArMRS risk groups (A). Top 10 frequent amplification genes in ArMRS risk groups (B). Top 10 frequently homozygously deleted genes in ArMRS risk groups (C). Difference in tumor mutation burden between ArMRS risk groups and correlation between ArMRS and tumor mutation burden (D). Difference in the incidences of TERT promoter mutation and (E) MGMT promoter methylation between ArMRS risk groups (F). Difference in ArMRS among different subtypes of glioblastoma (G). Difference in ArMRS between different MGMT promoter status, and (H) TERT promoter status (I). Copy number variation and its relationship with clinicopathological features ordered by ArMRS risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
Functional enrichment analyses based on ArMRS risk groups
To evaluate the pathway alterations in different ArMRS risk groups, we conducted a series of functional enrichment analyses. The over-representation analysis illustrated the pathway alterations with high odds ratio and significance in the KEGG dataset, including allograft rejection and graft versus host disease (Figure 4A). The pathway alterations with high odds ratio and confidence in the REACTOME dataset were also illustrated (Figure 4B). Furthermore, extracellular matrix receptor interaction (normalized enrichment score (NES) = 2.285, adjusted p-value = 0.003) and the focal adhesion (NES = 2.261, adjusted p-value = 0.003) were ranked among the top five of the KEGG gene sets in the differentially expressed genes (DEGs) between ArMRS high- and low-risk groups (Figure 4C). Innate immune system (NES = 3.196, adjusted p-value < 0.001) and neurotransmitter release cycle (NES = −3.569, adjusted p-value < 0.001) were ranked in the top five of the REACTOME gene sets (Figure 4D). Finally, the GSVA result demonstrating the top 20 differentially expressed pathways in KEGG and REACTOME gene sets were illustrated through heatmaps (Figures 4E, F).
[image: Graphs and heatmaps illustrate pathway enrichment analysis. Panels A and B show scatter plots for KEGG and REACTOME pathways with count, confidence, and significance levels shown. C and D present enrichment scores over ranked genes for the top pathways. E and F display heatmaps of gene expression data categorized by KEGG and REACTOME pathways, with annotations for antimicrobial resistance and related groups.]FIGURE 4 | Functional enrichment analyses between ArMRS risk groups (A). Pathways with high odds ratio and confidence in the KEGG gene sets (B). Pathways with high odds ratio and confidence in the REACTOME gene sets (C). The top five pathways with the highest normalized enrichment score in the KEGG gene sets between ArMRS risk groups (D). The top five pathways with the highest normalized enrichment score in the HALLMARKS gene sets between two ArMRS risk groups (E). Top 20 differentially expressed KEGG gene sets (F). Top 20 differentially expressed REACTOME gene sets.
Prediction of glioblastoma prognosis with ArMRS-Based nomograms
To construct nomograms for the prediction of glioblastoma patients’ prognosis, we first conducted univariate followed by multivariate Cox analyses to determine potential independent prognostic factors. Result demonstrated that the age, ArMRS, and TERT promoter status were significant univariate prognostic factor (Figure 5A). Subsequently, these factors were enrolled in multivariate Cox regression analysis and the result revealed that ArMRS were independent prognostic factors in glioblastoma (Figure 5B). Eventually, we combined the potential prognostic patient factors as determined in the univariate analysis along with the adjuvant therapies to construct a nomogram for personalized survival prediction in the TCGA cohort (Figure 5C). Furthermore, the same process was also conducted to construct a nomogram for individualized survival prediction in CGGA325 cohort (Figure 5D). The corrected C-index of this nomogram based on TCGA cohort was 0.574. These two nomograms’ performance in predicting the prognosis of glioblastoma patients was validated by the 6-, 12-, and 18-month calibration curves (Figures 5E, F).
[image: Forest plots (A and B) display hazard ratios for various variables, with significance indicated by p-values. Nomograms (C and D) predict survival probabilities at different time intervals for TCGA and CGGA325 datasets. Calibration plots (E and F) compare actual versus predicted survival probabilities for six months and eighteen months, demonstrating model accuracy for TCGA and CGGA325 data.]FIGURE 5 | Prognostic value of ArMRS and construction of ArMRS-based nomograms (A). Univariate and (B) Multivariate Cox regression analysis of potential prognostic factors in overall survival of glioblastoma. Nomogram of 6-, 12-, and 18-month survival of glioblastoma patients based on (C) TCGA cohort, (D) CGGA325 cohort. Calibration plots of the nomogram based on (E) TCGA cohort and (F) CGGA325 cohort.
Correlation of ArMRS with immune cells and immune microenvironment
Finally, to elucidate the correlation between ArMRS and the immune landscape of glioblastomas, we conducted comprehensive analyses to evaluate the relationship between ArMRS and multiple immunity-related indexes. Firstly, we used the CIBERSORTx algorithm to compute the infiltration fractions of 22 types of immune cells in the tumor microenvironment. The results demonstrated that in the tumor microenvironment of ArMRS high-risk glioblastomas, there are more M2 macrophages and neutrophils and fewer plasma cells (Figure 6A), indicating different immune cell infiltration models between ArMRS high- and low-risk glioblastomas. Furthermore, we calculated the immune-related scores and tumor purity using the ESTIMATE algorithm. The results revealed that glioblastomas of ArMRS high-risk groups had remarkably higher stromal score, immune score, and ESTIMATE score compared to ArMRS low-risk groups in TCGA, CGGA325, and WCH cohorts (Figure 6B), suggesting more complex tumor microenvironment in glioblastomas with higher ArMRS. Subsequently, the analyses of tumor purity also confirmed that glioblastomas of the ArMRS high-risk groups had significantly lower tumor purity compared to low-risk groups (Figure 6C), in line with the results of immune-related scores. Additionally, correlation analyses also confirmed that the stromal score, immune score, and ESTIMATE score were positively correlated with the value of ArMRS in these cohorts (Figures 6D, F). The tumor purity was negatively correlated with the value of ArMRS in these cohorts (Figure 6G).
[image: A series of graphs depicting various data comparisons in four sections labeled A, B, C, and D-G. Section A contains box plots comparing gene expression across multiple categories with two risk groups. Section B shows violin plots for immune score distributions across three databases: TCGA, GGA325, and WCH. Section C presents violin plots for stromal score variations across the same databases. Sections D, E, F, and G feature scatter plots showing correlations between risk scores and gene expression metrics. Colors differentiate risk groups in all plots.]FIGURE 6 | Comprehensive analyses on differences in immunological features between ArMRS risk groups (A). Differences in the estimated infiltration fraction of 22 types of immune cells between glioblastomas of different ArMRS risk groups (B). Differences in the stromal, immune, and ESTIMATE scores between ArMRS risk groups in TCGA, CGGA325, and WCH cohorts (C). Differences in tumor purity between ArMRS risk groups in TCGA, CGGA325, and WCH cohorts (D). Analyses of correlations of ArMRS with the (D) stromal score, (E) immune score, (F) ESTIMATE score, and (G) tumor purity in TCGA, CGGA325, and WCH cohorts. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
Moreover, to investigate the relationship between ArMRS and response to immunotherapy, we analyzed the correlation between multiple immunotherapy-related markers and ArMRS. The results revealed that glioblastomas of ArMRS high-risk group had significantly higher expression levels of CD44, CD48, CD276 (B7-H3), and PD1 (PDCD1) compared to low-risk group in the TCGA cohort (Figure 7A), suggesting higher ArMRS may indicate more abundant expression of immunotherapy targets. Additionally, the ArMRS showed significant positive correlation with expression of CD44, CD48, CD276, and NRP1, which is a inhibitory immune checkpoint involved in M2 polarization of microglia and TGF-β release from regulatory T cells (Figure 7B) (Roy et al., 2017). Besides, we also computed the TIP score to identify the relationship between immunological phenotype and ArMRS in glioblastoma. The result demonstrated that the glioblastomas of ArMRS high-risk group in TCGA cohort would highly express genes associated with relatively ‘hot’ tumor immunological phenotype (Figure 7C). This observation was also confirmed in the CGGA325 cohort (Figure 7D). Additionally, the analysis of cytotoxic T cells (CTLs) revealed that the glioblastomas of ArMRS high-risk group harbored more CTLs infiltration compared to the low-risk group in TCGA and CGGA325 cohort (Figure 7E). Immune checkpoint inhibitor response prediction with the TIDE suite revealed that the glioblastoma patients of ArMRS high-risk group were more likely to benefit from therapy of immune checkpoint inhibitors in the TCGA and CGGA325 cohorts (Figure 7F).
[image: A series of data visualizations related to genetics and cancer research. Image A shows a box plot with various gene expressions. Image B presents scatter plots analyzing risk groups and gene correlations. Panels C and D display heatmaps with annotations related to genetic data. Images E and F feature pie charts comparing high and low-risk groups across different datasets, highlighting percentages for various factors.]FIGURE 7 | Differences in potential respond to immunotherapy in glioblastomas of different ArMRS risk groups (A). Differences in the expression level of 33 immunotherapy-related genes between ArMRS risk groups in TCGA cohort (B). Analyses of correlations between ArMRS and the expression levels of CD44, CD48, CD276, and NRP1 in TCGA cohort (C). Analysis of tumor immunological phenotype (TIP) score and related gene expression levels ordered by ArMRS in TCGA cohort (D). Analysis of TIP score and related gene expression levels ordered by ArMRS in CGGA325 cohort (E). Difference in proportion of patients with high cyto-toxic T lymphocytes infiltration between ArMRS risk groups in TCGA and CGGA325 cohort (F). Difference in proportion of patients with predictive response to immune checkpoint inhibitors between ArMRS risk groups in TCGA and CGGA325 cohort.
DISCUSSION
Malignant tumors of central nervous system cause at least 200 thousand death worldwide every year (Siegel et al., 2021). As the most common malignant tumor of central nervous system, glioblastoma is responsible for more than a half of these deaths. Despite abundant attempts worldwide try to search novel potential therapy for glioblastoma, there is still hardly any satisfactory breakthrough d in about recent 20 years. After thorough treatment regime, which contains surgery, radiotherapy, chemotherapy with temozolomide, and even tumor treating fields, the median overall survival of glioblastoma patients was still less than 2 years (Stupp et al., 2005; Stupp et al., 2017). Immunotherapy, as an extremely attractive breakthrough in cancer treatment, have succeeded to improve the length and quality of patients in many cancers (Eggermont et al., 2018; Gandhi et al., 2018; Choueiri et al., 2021; Cortes et al., 2022; Luke et al., 2022). Spontaneously, researchers have high expectations on immunotherapy to break through the dilemma of glioblastoma treatment. However, studies about immunotherapy in glioblastoma have faced unprecedented challenges, and almost all these attempts failed to improve overall survival (Weller et al., 2017; Wakabayashi et al., 2018; Reardon et al., 2020; Lim et al., 2022; Omuro et al., 2022). There are many potential reasons that impede immunotherapy to work for glioblastoma treatment. One of these reasons is that brain has a totally distinctive immune landscape compared to other organs. Endothelial cells that form blood vessels in brain are unique compared to other tissues, and compose a unique structure, the blood-brain barrier (BBB), which functions to prevent most peripheral immune cells from entering brain and subsequently form an immunological quiescent environment (Obermeier et al., 2013). Therefore, in a long period, brain is considered as an immune privilege site, resulting in failures of immunotherapy. However, recent studies have proved that even with the existence of BBB, brain can exchange immune cells with circulation sites through a novel lymphatic pathway (Louveau et al., 2015). Through this transport method, the peripheral T and B lymphocytes can be primed and then infiltrate to brain and deliver immune effects in brain (Lim et al., 2018). These studies inspire us that brain is not a forbidden zone for immunotherapy. With further and better understand of immune landscape of glioblastoma, immunotherapy is still with great potential to improve length and quality of glioblastoma patients’ life.
The correlation between reshaped metabolic model of tumors and immunological landscapes has attracted surging attention (Xia et al., 2021). Our previous studies also suggested that the metabolism of specific compounds of cancer cell, including purine, tryptophan, serine, and glycine was tightly related to immunological features of glioma (Chen et al., 2022a; Chen et al., 2022b; Zhang et al., 2022). However, we also found that any of these metabolism pathways can totally explain the unique metabolism characteristics of glioma. There must be many other metabolism pathways that influenced and reshaped the immunological features of tumor microenvironment of glioma. Many evidence have indicated that arginine metabolism plays an essential role in many physiological processes of cells (Delage et al., 2010). And the arginine metabolism in cancers is totally reshaped because of the lack of ASS1, a key enzyme during the production of arginine (Bronte and Zanovello, 2005). Therefore, cancer cells must obtain arginine from tumor microenvironment to meet their own demands for arginine, which would lead to arginine deficiency in the tumor microenvironment. It has been proved that arginine deficiency would increase the expression of PD-1 (Mussai et al., 2019), and decrease the proliferation rate of chimeric antigen receptor T cells (CAR-T cells) (Fultang et al., 2020). Therapeutic attempts have demonstrated that supplementation of arginine might potentiate the response to immune checkpoint inhibitors in tumors (He et al., 2017; Canale et al., 2021). Arginine could also evoke metabolic adaption in brain metastases and enhances therapeutic effects of radiation (Marullo et al., 2021).
After filtering ArMGs, four ArMGs were determined as essential genes for glioblastoma patients’ prognosis. For example, Solute Carrier Family 7 Member 7 (SLC7A7), which encodes the light chain of a cationic amino acid transport system (He et al., 2009), could function to transport cationic amino acids such as arginine and lysine across cell membrane (Kanai et al., 2000). It has been proved that glioblastoma overexpressed SLC7A7 compared to normal brain tissue, and overexpression of SLC7A7 was correlated with poor prognosis in glioblastoma (Fan et al., 2013). Overexpressed SLC7A7 could accelerate the velocity that cancer cells obtained arginine from tumor microenvironment, and then exacerbate the arginine deficiency in tumor microenvironment. Besides, ASS1, as a key enzyme in the production of arginine, was also identified as an essential gene. Higher ASS1 expression level was correlated with poorer prognosis, indicating that the production of arginine could relief the arginine deficiency in tumor but may not be able to improve prognosis. Because although extracellular arginine can function to enhance the anti-tumor effects of immune cells, the tumor cells also could utilize the high concentration of extracellular arginine to replenish intracellular arginine pool. Deprivation of arginine is cytotoxic to glioblastoma cells which lack ASS1(Khoury et al., 2015).
In the last part of this study, we focused on the relationship between arginine metabolism and immunological features of glioblastoma. To achieve this goal, we utilized multiple algorithms from independent studies to comprehensively analyzed the differences in immune microenvironment between ArMRS high- and low-risk groups. First, we utilized the CIBERSORTx algorithm, which aimed to analyze immune cells infiltration, to analyze the differences in the infiltration fractions of 22 types of immune cells between ArMRS risk groups. The results revealed that the infiltration of plasma cells and M2 macrophages were strongly correlated with ArMRS. For instance, M2 macrophages in the tumor microenvironment were generally believed as pro-tumor subtype of macrophages, can promote tumor proliferation and suppress local anti-tumor immunity (Noy and Pollard, 2014). In our study, we found that the infiltration of M2 macrophages in ArMRS high-risk group was enormously greater compared to low-risk group. This finding suggested that higher ArMRS value, which represented for more arginine deficiency, was a marker for more M2 macrophage infiltration and suppressed anti-tumor immunity. Moreover, the ESTIMATE analyses demonstrated that the complexity of tumor microenvironment of glioblastoma was strongly positively correlated with the ArMRS, indicating that more arginine deficiency might contribute to reconstructing a more complex tumor microenvironment in glioblastoma. The expression levels of multiple targets for immunotherapy, for example, PD-1, were also tightly positively correlated with the ArMRS. The high expression level of immunotherapy targets, including PD-1 and PD-L1, was considered as a signal for better response to corresponding immunotherapy (Reck et al., 2016; Bajorin et al., 2021). Therefore, the correlation between ArMRS and expression of PD-1, which was introduced in this study, might endorse the potential ability of ArMRS to predict the response to immunotherapy. Higher ArMRS was also correlated with more potential responders to ICIs and more expression of ‘hot tumor’ features, which can validate the previous results. All these results from multiple algorithms on immunological features indicated that high ArMRS would predict worse prognosis and more suppression of anti-tumor immunity. But it also represented for more expression of multiple immunotherapy targets, which endorsed the potential ability of ArMRS to direct the application of immunotherapy in glioblastoma. Additionally, the combined application of ArMRS and prognostic scores of our previous studies may provide more comprehensive evaluation tools for each patient. For example, the ArMRS could guide the application of novel therapies targeted on arginine metabolism. If a novel therapy targeted on another metabolism pathway, to use the prognostic score that based on that metabolism pathway may be better. And comprehensive application of these prognostic scores may provide more choice and accuracy than every single one.
Despite multiple analyses can endorse same results and function as a validation for each other in our current study, there were still multiple limitations. First, due to the four patent cohorts were from different databases, the protocol of sequencing and data preprocessing differed among these four independent cohorts. Second, these findings of our current study were totally based on mRNA sequencing data and consequently required further basic experiment validation and more convincing evidence. Next, like our previous studies, we focused on one metabolism pathway, the arginine metabolism, in this study. This result in that our study can only depict the relationship between metabolism and immunological features from one perspective. Together with our previous studies, we are trying to depict this relationship as detailed as possible. But there must be many other metabolism pathways that impacted on the formation of immunological features of glioblastoma, which calls for more comprehensive research. Finally, the mechanism of how arginine metabolism impacted the immunological feature of glioblastoma remained blurred and demands further research.
CONCLUSION
In conclusion, we constructed a novel arginine metabolism evaluation score system based on four essential arginine metabolism-related genes, ArMRS, which showed for a strong ability to predict prognosis of IDH-wildtype glioblastoma patients. Besides, higher ArMRS, which represents for more arginine deficiency, was correlated with more immune infiltration, more immunosuppression, and more expression of targets for immunotherapy, which endorsed the usages of ArMRS in directing immunotherapy in glioblastoma.
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Immunotherapy is a promising strategy for triple-negative breast cancer (TNBC) patients, however, the overall survival (OS) of 5-years is still not satisfactory. Hence, developing more valuable prognostic signature is urgently needed for clinical practice. This study established and verified an effective risk model based on machine learning methods through a series of publicly available datasets. Furthermore, the correlation between risk signature and chemotherapy drug sensitivity were also performed. The findings showed that comprehensive immune typing is highly effective and accurate in assessing prognosis of TNBC patients. Analysis showed that IL18R1, BTN3A1, CD160, CD226, IL12B, GNLY and PDCD1LG2 are key genes that may affect immune typing of TNBC patients. The risk signature plays a robust ability in prognosis prediction compared with other clinicopathological features in TNBC patients. In addition, the effect of our constructed risk model on immunotherapy response was superior to TIDE results. Finally, high-risk groups were more sensitive to MR-1220, GSK2110183 and temsirolimus, indicating that risk characteristics could predict drug sensitivity in TNBC patients to a certain extent. This study proposes an immunophenotype-based risk assessment model that provides a more accurate prognostic assessment tool for patients with TNBC and also predicts new potential compounds by performing machine learning algorithms.
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INTRODUCTION
Breast cancer is one of the most common cancers among women worldwide, which has different pathological and molecular subtypes including luminal A, luminal B, human epidermal growth factor receptor overexpression (HER-2+) and triple-negative breast cancer (TNBC) (Chodosh, 2011). TNBC is a subtype of breast cancer that estrogen receptors (ERs), progesterone receptors (PRs) and HER-2 are absent and accounts for approximately 15%–20% of all breast cancers (Brenton et al., 2005). Notably, TNBC present the worst prognosis and highest mortality compared with other subtypes and has a wide range of genetic, immunophenotypic, morphological and clinical characteristics (Carey et al., 2007; Dent et al., 2007). Only 30%–50% TNBC patients present pathologic complete response (pCR) after given the standard neoadjuvant chemotherapy regime (including taxane and anthracyclines), which is significantly lower than HER-2+ breast cancer (von Minckwitz et al., 2012; Cortazar et al., 2014). Although various treatment strategies have been developed, however, more than 70% TNBC patients present metastasis and recurrence within 3 years after surgical resection, meaning the prognosis is still poor (Sharma, 2016; Huynh et al., 2020).
Immunotherapy for cancer is often based on the cancer immune cycle theory, which includes the enhancement of stimulatory immune factors and immune checkpoint inhibitors (ICIs) (Gao, 2019; Pio et al., 2019; Sanmamed and Chen, 2019; Hegde and Chen, 2020). The successful application of ICIs has been observed in various types of cancers, including melanoma, hepatocellular carcinoma and lung cancer, and this has caused great excitement (Chee et al., 2017; Luke et al., 2017; Llovet et al., 2018). Unfortunately, the clinical benefit of immunotherapy for most TNBC patients is still limited until nowadays. Previous studies have explored classification strategies for cancer immunotyping (Chen et al., 2020; Zhao et al., 2021). The classification strategy based on immune score and infiltration score has been used in lung cancer and urothelial cell carcinoma (Fu et al., 2018; Tan et al., 2020). However, until nowadays, few research has been done to categorize TNBC using these scores, and to further investigate their correlation with TNBC prognosis and drug sensitivity.
Therefore, establishing reliable predictive biomarkers to identify subgroups that may benefit for TNBC is urgently needed. Besides, adopting comprehensive evaluation of tumor immunophenotype-based treatment strategies for each patient through cancer immune-cycle and immune cell infiltration status are essential to promote the development of effective immunotherapies. In the current study, publicly accessible data of TNBC were retrieved from The Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) database and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database to establish the robust signature through a series of bioinformatics methods. By combining multi-gene expression datasets, we developed and validated the risk model based on cancer immunophenotypes, and explored its performance in predicting prognosis. In addition, we comprehensively investigated the association between this signature with immune-related characteristics, immunotherapy response and drug sensitivity in TNBC patients. Our results suggested that this cancer immunophenotype-based signature could be used as a promising biomarker in predicting clinical outcome and immunotherapy response in TNBC patients.
MATERIALS AND METHODS
Data collection and procession
This research was conducted on publicly available database through a series of bioinformatics methods. Transcript profiles and corresponding clinical information of six cohorts containing a total of 694 TNBC patients were acquired to construct and validate the risk signature after removing the samples with unknown survival time and outcome. Details were as follows: microarray dataset GSE103091 (107 samples) was downloaded from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo) and was selected as the training cohort on account of the optimal sample size. Another three microarray datasets named GSE16446 (107 samples), GSE20685 (225 samples) and GSE20711 (78 samples) were also obtained from GEO database and used as the validation cohorts, in addition, TNBC RNA sequencing datasets which downloaded separately from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, https://www.cbioportal.org/) were used as another two validation cohorts, respectively. Summary information of above cohorts was listed in Table 1. Besides, three real-world immunotherapy cohorts (GSE91061, GSE135222, IMvigor210) were chosen to verify the ability of the risk signature on prediction of immunotherapy response. All the raw data were normalized and log2 transformed.
TABLE 1 | Distribution of clinical characteristics among two immune subtypes in three datasets.
[image: A table comparing clinical data for two cancer subtypes with columns for Subtype 1 and Subtype 2 samples, displaying dataset sources, age ranges, grades, primary tumor stages, regional lymph nodes, metastasis occurrence, and status, alongside corresponding p-values. The table includes numbers and percentages for each category.]Identification of TNBC molecular subtypes
The Tumor Immunophenotype (TIP) database (http://biocc.hrbmu.edu.cn/TIP) is a webtool that can assess the immune microenvironment on the base of the cancer-immunity cycle (Xu et al., 2018). The marker genes were retrieved from the TIP database and employed to classify TNBC patients into diverse clusters in the training cohort through “ConsensusClusterPlus” R package (Wilkerson and Hayes, 2010). Pam algorithm and “spearman” were used as the metric distance. Each bootstrap process including 80% of the training cohort of patients and was repeated by 500 times. The number of clusters was set to be 2 to 10, and the optimal classification was determined by calculating the consistency matrix and consistency cumulative distribution function (CDF).
Quantification of the infiltration immune cells and immune-related pathways
The stromal score, immune score and estimate score of training cohort were calculated by ESTIMATE algorithm and were used to compare the immune infiltration between different subtypes and different risk models (Danilova et al., 2019). Then, the c2. cp.kegg.v7.5.1 gene set was downloaded from Molecular Signatures Database (MSigDB, https://www.gsea-msigdb.org/) and employed to quantify the pathways through “ssGSEA” method. The infiltration level of 10 immune cells were also quantified through “MCPcounter” algorithm. Next, we also calculated the relative infiltration level of 22 kinds of immune cells by CIBERSORT method. Then, the characteristic genes of 28 immune cells which obtained from previous study (Charoentong et al., 2017) were used to calculate the degree of infiltrating immune cells between different risk groups in TNBC.
Differential expression analysis and functional enrichment
Differential expression analysis between diverse molecular subtypes and risk models were conducted by “limma” package and visualized through volcano plot. The selection criterion was |log2FC| > 2 and FDR < 0.05 for molecular subtypes, and |log2FC| > 1.5 and FDR < 0.05 for diverse risk models, respectively. The “WebGestaltR” package was used to further investigate the functions involved in differential expressed genes (DEGs), and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. The Gene set enrichment analysis (GSEA) was then conducted to further analysis the difference of biological functions between different groups based on the Hallmark gene set through “clusterProfiler” package.
Construct risk model based on machine learning
To develop a consensus model with high accuracy and stable performance, we integrated 10 machine learning algorithms and 101 algorithm combinations. The integrative algorithms included random survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial least squares regression for Cox (plsRcox), supervised principal components (SuperPC), generalised boosted regression modelling (GBM), and survival support vector machine (survival-SVM). The signature generation procedure was as follows: (a) Firstly, univariate Cox regression was employed to identify the prognostic genes in training cohort; (b) Then, 101 algorithm combinations were performed on the prognostic genes to fit prediction models based on the leave-one-out cross-validation (LOOCV) framework in the training cohort; (c) All models were detected in five validation datasets (GSE20685, METABRIC, TCGA-TNBC, GSE16446, and GSE20711); (d) For each model, the Harrell’s concordance index (C-index) was calculated across all validation datasets, and the model with the highest average C-index was considered optimal. The risk score was calculated as following formula: [image: Risk score equals the summation of exponential terms multiplied by coefficients from one to n.].
Mutational landscape analysis
The “maftool” package was used to explore the somatic mutations in TCGA-TNBC patients and the top 10 mutated genes were presented in waterfall plot. Besides, the copy number variation (CNV) data of TCGA-TNBC was also downloaded and used to display the proportion of deletion and amplification of genes according to the risk model.
Comparison of risk models with clinical parameters and TIDE performance
In order to explore the superiority of the risk signature, the time-dependent area under curves (tAUC) of the signature and other clinicopathological features were analyzed and compared in METABRIC cohort and TCGA-TNBC cohort, respectively. Then, the TIDE score of three immunotherapy cohorts (GSE91061, GSE135222 and IMvigor210) were calculated through the online tool (http://tide.dfci.harvard.edu/) for immune treatment effect evaluation. The tAUC of risk signature and TIDE score were analyzed in the three cohorts and the comparison between these two indicators were also performed to distinguish the sensitivity and specificity to immunotherapy response.
Drug sensitivity analysis
To further investigate potential therapeutic target drugs in the high-/low-risk group, we used the drug-sensitive cell lines in the CCLE database (https://portals.broadinstitute.org/ccle) as a training set. The drug sensitivity of each patient in the GSE103091 cohort was predicted by CTRP and PRISM methods. Then screening for potential regulation of drugs through the setting as |cor| > 0.3.
Statistical analysis
R software (https://www.r-project.org, version 4.1.3) and GraphPad Prism 8.0 (GraphPad Software Inc., San Diego, CA, United States) were used for all statistical analysis and visualization. Univariate Cox regression analysis was performed to evaluate the significant prognostic genes. Quantitative data were compared between different groups through Wilcoxon rank sum test. Relationships between risk scores and expression levels of different genes were examined by Spearman’s correlation analysis. Unless otherwise specified, p < 0.05 was considered as statistically significant.
RESULTS
Diagram of the research
The workflow of our research was presented in Figure 1. The research contents mainly included three parts: 1) Identifying different prognostic immune types and their related DEGs and pathways; 2) Building risk models based on machine learning methods according to these DEGs and exploring the regulatory pathways of different risk models, as well as the relationship with immune cells and chemokines; 3) Analysis of potential targeting drugs for different risk groups.
[image: Flowchart detailing a process involving identification of immune subtypes and a risk model. On the left, immune subtypes are identified using mRNA expression matrices and consensus clustering. The right section, labeled "Risk Model," involves DEGs/FCGA/Mutations analysis, machine learning, and drug sensitivity analysis. The process includes training and testing sets, validation of immune mechanisms, and risk score based on seven genes.]FIGURE 1 | The flowchart of this study.
Two diverse molecular subtypes were gathered based on TIP-related genes
A total of 166 marker genes were collected in the seven stages of the cancer-immunity cycle, including checkpoints, cytotoxic factors, chemokines, and major histocompatibility complex (MHC) molecules (Figure 2A). The CDF delta area curve indicated that k = 2 could gather relatively stable clustering results which named Cluster 1 (C1) and Cluster 2 (C2) (Figures 2B–D). Further analysis of the prognostic characteristics of these two molecular subtypes revealed significant overall survival (OS) difference between them in the training cohort (Figure 2E). In general, C1 subtype had a poor prognosis compared with C2 subtype (p < 0.05). Similar results were observed in GSE20685 cohort (Figure 2F, p < 0.05). Then, PCA analysis was conducted based on Neutrophils marker genes, and PCA dimension reduction distributions of the two subtypes were shown in Figure 2G. The results demonstrated an obvious batch effect between the two cluster samples.
[image: Composite image depicting various data visualizations. Panel A shows a heatmap of signature gene expression with color gradients. Panel B presents a cluster diagram. Panel C features line graphs with different trajectories. Panel D displays a curve graph. Panels E and F provide survival curves with p-values indicated. Panel G illustrates two scatter plots for distinct datasets.]FIGURE 2 | Expression of TIP-related genes in the GSE103091 dataset (A); Sample clustering heat map when consensus k = 2 (B); CDF curve of GSE103091 cohort sample (C); CDF Delta area curve of GSE103091 cohort sample. Delta area curve of consensus clustering, indicating the relative change in area under the cumulative distribution function (CDF) curve for each category number k compared with k-1. The horizontal axis represents the category number k and the vertical axis represents the relative change in area under CDF curve (D); Prognostic relationship between two subtypes of GSE103091 (E) and GSE20685 (F); The two data sets were clustered using PCA (G).
C2 exhibit relative higher level of immune cell infiltration and immune-related pathway activity
Above results indicated that the patients in C2 showed a better prognosis than the patients in C1. Next, the study explored the differences in immunity between these two clusters. Obviously, C2 displayed a higher immune score, stomal score, and ESTIMATE score compared with the C1 (Figure 3A). In addition, the two clusters showed significant differences in most immune-related pathways, including JAK-STAT signaling pathway, NF-kappa B signaling pathway, Toll-like receptor pathway, B cell receptor signaling pathway, T cell receptor signaling pathway and inflammatory response (Figure 3B). Besides, the quantitative infiltration levels of most immune cells were much higher in C2 than C1, suggesting the patients in C2 may act more immune activity, detailed information were presented in Figures 3C, D. The difference of KEGG pathways were visualized by heatmap and a coincident result was obtained, that is the C2 exhibit higher activity in tumor immunity related pathways, such as apoptosis and JAK-STAT pathway, et al. (Figure 4A). GSEA analysis further suggested the C1 showed positively correlation with cancer-related pathways, including G2M checkpoint and E2F targets, et al., while the C2 presented positively relationship with immune-related pathways, including INF-alpha response and INF-gamma response, et al. (Figure 4B). Finally, the results of “ssGSEA” score showed that five tumor-related pathways were significantly different between two clusters, including WNT, TP53, PI3K, NRF1, and HIPPO, which have been linked to the development and progression of cancer and have great potential in predicting the prognosis of TNBC patients (Figure 4C).
[image: Boxplots labeled A, B, and C show the distribution of values for clusters C1, C2, and C3 across different categories. Graph D is a heatmap displaying expression levels for various cell types, color-coded by cluster. Clusters C1, C2, and C3 are distinguished by shades of blue and red, indicating different data groupings.]FIGURE 3 | Comparison of immune scores of two molecular subtypes (A); Comparison of scores of 6 inflammatory pathways (B); MCPcounter calculated the abundance scores of 8 immune cells compared with 2 stromal cells (C); ssGSEA calculated the scores of 28 immune cells, and the results were presented in heat maps of the two subtypes (D).
[image: Panel A displays a heatmap showing gene expression levels in two clusters with variations marked in blue and red. Panel B features a dot plot highlighting pathways, with dot size representing significance. Panel C presents box plots comparing gene expression levels between two clusters for specific genes, showing statistical differences.]FIGURE 4 | Heat map of enrichment scores of two subtype enrichment pathways in the GSE103091 dataset (A); Bubble map of C1 subtype enrichment to pathway in GSE103091 data set (B); Box plots of ssGSEA scores for 10 tumor-associated pathways (C).
DEGs between the two diverse clusters showed remarkable functional enrichment in immune-related pathways
In order to further investigate and verify the differences of biological functions between the two clusters, the differential analysis was performed to complete this task. The heatmap was showed in Figure 5A. A total of 590 DEGs were collected, among which contains 11 upregulated genes and 579 downregulated genes (Figure 5B). KEGG enrichment indicated the DEGs were mainly participate cytokine-cytokine receptor pathway, chemokine signaling pathway, cell adhesion molecules, hematopoietic cell lineage and viral protein interaction with cytokine and cytokine receptor (Figure 5C). GO biological process results showed these DEGs were enriched in T cell activation, leukocyte mediated immunity, leukocyte cell-cell adhesion, regulation of T cell activation and lymphocyte mediated immunity (Figure 5D). The top five cellular component (CC) and molecular functions (MF) were showed in Figures 5E, F, respectively.
[image: Heatmap on the left with red and blue clusters indicating different gene expressions, labeled A. B shows a volcano plot with upregulated and downregulated genes. C, D, E, and F are dot plots, illustrating enriched pathways in red and blue according to scale value, with cluster identifications.]FIGURE 5 | Heat map of differential gene expression between two subtypes in the GSE103091 cohort sample (A); Differential gene volcano map (B); Differential gene enrichment analysis, KEGG, BP, CC, MF (C–F).
Construct the risk model based on machine learning
A total of 454 genes were collected from the intersection of DEGs, TCGA, METABRIC, GSE20685, GSE20711 and GSE16446 data sets (Figure 6A). Then, univariate Cox analysis was performed to calculate the relationship between 454 DEGs and TNBC prognosis in the training cohort, and 30 prognostic genes were finally screened after filtering p < 0.05, among which were all protective factors. Next, these 30 genes were used to develop a consistent prognostic model through our integrated program based on machine learning approach. In brief, 101 prediction models were filtered through the LOOCV framework, meanwhile, the C-index for each model was also calculated in the training cohort and validation cohorts to select the most outstanding candidate. Interestingly, the optimal model was a combination of CoxBoost and RSF, with the highest average C-index equal to 0.622 (Figure 6B). Finally, seven key genes were screened to establish the prognostic signature (Figure 6C). The risk score was calculated as above mentioned and subsequently normalized by the “scale” method. The Z-score equal to zero was selected as the cut-off value to separate the cohorts into high-risk group and low-risk group. Survival analysis indicated that the patients in low-risk group presented significant longer OS compared with the high-risk patients both in the training cohort and the validation cohorts (all p < 0.05, Figure 6D). So, this is considered a robust model and worthy to further study.
[image: A composite image displaying several data visualizations related to a genomic study. Panel A shows a Venn diagram with overlapping regions. Panel B presents a heatmap with colored bars representing data across various samples. Panel C includes a table with hazard ratios and p-values for different genes. Panel D consists of six Kaplan-Meier survival plots comparing groups with distinct variables. The visuals collectively convey statistical analyses and research findings.]FIGURE 6 | Veen diagram of intersection between GSE103091 differential genes and testing set genes (A); Machine learning screening to construct the optimal combination of risk models (B); Forest map of optimal model-related genes (C); KM curves of high and low risk groups in training set and verification set (D).
Comprehensively analysis of the risk signature and tumor immunity
A total of 1,145 DEGs were collected between high-risk group and low-risk group in the training cohort (Figure 7A). Functional enrichment analysis indicated these DEGs may play a vital role in immune-related pathways and biological functions (Figure 7B). GSEA results showed that immune-related pathways were significantly enriched in the low-risk group, including innate immune system, adaptive immune system, signaling by GPCR, hemostasis, and cytokine signaling in immune system (Figure 7C). On the other hand, only three pathways were enriched in the high-risk group and most of them were related to cell proliferation process (Figure 7D). Due to the strong correlation between risk characteristics and immune-related biological pathways, we further investigated the association between risk scores and tumor-infiltrating immune cells. Firstly, we use an estimation algorithm to quantify the overall somatic immune cells based on the TCGA sequence. From Figure 8A, we found that the risk score and the immune score presented a strong negative correlation (p < 0.001), indicating that the low-risk group which evaluated based on our model had a higher immune infiltration. We further analyzed the differences in the distribution of somatic immune cells between the two subpopulations and found significant differences in T cells and three types of macrophages in the low-risk group (Figure 8B). Then, using the characteristic genes of 28 immune cells obtained from previous study (Charoentong et al., 2017), the infiltration scores of 28 immune cells were calculated by “ssGSEA” method, and 9 out of 12 T cells showed significant differences in the two risk groups (Figure 8C). Furthermore, we analyzed the correlation between risk score and these 12 types of T cells (Figure 8D), and the results showed that there was a strong negative correlation between risk score and T cell scores. It was also found that M1 macrophage score was negatively correlated with risk score, while M0 and M2 showed an opposite trend (Figure 8E). The scores of three macrophage-related pathways were also significantly negatively correlated with risk scores (Figure 8F). It can be seen that 14 out of 40 chemokines were significantly different between the two risk groups, suggesting that different risk groups may have different degrees of immune cells infiltration, and these differences may directly affect the progress of tumor and the effect of immunotherapy (Figure 9A). In addition, we calculated and compared the expression of chemokine receptor genes in the different risk groups and found that there were significant differences in the expression of chemokine receptor genes, including CCR1, CCR2, CCR5, CCR6, CCR7, CCR8, CXCR2, CXCR5 and CXCR6 (Figure 9B). Finally, further analysis indicated the risk score was significant negatively correlated with these genes (Figure 9C). Thus, our study identified and validated two robust immune subtypes based on comprehensively bioinformatics methods.
[image: A composite image displaying four panels: A shows a volcano plot with blue and red dots indicating low and high gene expression, respectively. B is a circular chart depicting genomic alterations across different categories. C and D are line and bar graphs illustrating gene set enrichment analysis for low and high-risk cohorts, with different colored lines representing various pathways.]FIGURE 7 | Volcano plot of differential genes in high and low risk groups (A); Loop diagram of enrichment analysis visual display (B); GSEA enrichment analysis of high-low risk group (C, D).
[image: A collection of six visualizations related to microbial diversity and immune response. Panel A shows a scatter plot with regression lines indicating correlations. Panel B and C display box plots comparing microbiome diversity across groups. Panel D is a heatmap showing correlation coefficients among various variables, with red and blue indicating positive and negative correlations, respectively. Panel E features another scatter plot with a fit line showing a correlation. Panel F contains three scatter plots with regression lines, each illustrating different relationships between variables.]FIGURE 8 | Correlation between risk score and immunity score (A); The scores of immune cells in the high-low risk group in the 22 calculated by CIBERSORT (B); Comparison of T cell scores in high and low risk groups (C); Heat map of correlation between risk score and T cells (D); Correlation graph between three types of macrophages and risk score (E); Correlation between three macrophage-related pathway scores and risk scores (F).
[image: Chart group depicting different aspects of gene expression data:   A) Box plots show gene expression levels across three conditions, highlighting variability and distribution.   B) Box plots present specific gene expression levels, with significant differences marked.  C) Heatmap illustrates gene correlation, with an adjacency diagram showing connections between gene pairs.]FIGURE 9 | Boxplot of 40 chemokine genes in the high-low risk group (A); Boxplot of 18 chemokine receptor genes expressed in the high-low risk group (B); Heat map of correlation between risk scores and chemokines (bottom left) and chemokine receptors (top right) (C).
To further explore the mutational landscape between diverse risk groups, the somatic mutational data was downloaded from TCGA database and used to complete the procession. As a result, top 10 mutated genes were shown in waterfall plot, including TP53, TTN, MUC16, SYNE1, FAT3, SPTA1, CSMD3, DMD, DYNC2H1 and PIK3CA (Supplementary Figure S1A). CNV analysis presented the proportion of deletion and amplification of these seven genes were remarkable changed, especially the CD160 (Supplementary Figure S1B). These findings suggested that these genes with significant mutational differences may play an important role in different immune scores.
Risk signature performed robust prognostic value and immune response compared with clinical features and TIDE performance
In order to verify the prognostic performance of risk signature, we conducted tAUC analysis to compare the specificity and sensitivity with other clinicopathological features. Results showed the risk score played a significantly strong survival prediction ability in METABRIC cohort (Figure 10A). Similar results were viewed in the TCGA cohort (Figure 10B). In addition, we calculated the AUC values of the risk model and TIDE score in IMvigor210 cohort, GSE135222 and GSE91061, respectively. Besides, the prognostic value of risk signature and TIDE score were also compared in these three immunotherapy cohorts. All the results indicated the risk signature displayed better ability in prognosis prediction and immunotherapy response (Figures 10C–K).
[image: Graphs A and B display line charts of AUC values over five years for different clinical factors, with Risk Score consistently performing best. Graphs C to K show ROC curves and calibration plots for various models, illustrating performance differences with Risk Score generally outperforming other factors like Stage, Age, T Stage, N Stage, and Grade.]FIGURE 10 | METABRIC and TCGA risk scores compared with AUCs during 1–5 years of clinical characteristics (A, B); ROC curve of risk score of GSE91061 dataset (C); ROC curve of TIDE predicted immunotherapy response in data set GSE91061 (D); ROC curve of risk score and TIDE effect on immunotherapy in dataset GSE91061 (E); ROC curve of risk score of GSE135222 dataset (F); ROC curve of TIDE predicted immunotherapy response in data set GSE135222 (G); ROC curve of risk score and TIDE response to immunotherapy in dataset GSE135222 (H); ROC curve of risk score of data set IMvigor210 (I); ROC curve of TIDE predicted immunotherapy response in the data set IMvigor210 (J); ROC curve of risk score and TIDE effect on immunotherapy in data set IMvigor210 (K).
Low-risk patients presented higher chemotherapy sensitivity
To assess the usefulness of risk models in clinical treatment, we analyzed chemotherapy drug sensitivity in low- and high-risk patients. We used the CCLE database of drug-sensitive cell lines as the training set and the GSE103091 data set as the validation set. In the end, a total of 18 CTRP (Figure 11B) and 26 PRISM (Figure 11D) compounds were obtained. The results showed that the high-risk group had higher IC50, indicating that the high-risk group was not sensitive to chemotherapy. Results showed that high-risk groups were more sensitive to MR-1220, GSK2110183 and temsirolimus. Therefore, high-risk samples should be sensitive to these compounds, which may be new options for future TNBC treatment.
[image: Four-panel figure analyzing drug correlations and AUC values. Panel A shows a bar chart with positive and negative drug correlation coefficients. Panel B presents a box plot comparing AUC values for different drugs, categorized by high and low risk types. Panel C is similar to A, with different drugs analyzed. Panel D mirrors B, comparing AUC values for another drug dataset.]FIGURE 11 | Histogram and boxplot of drug susceptibility predicted by CTRP algorithm and the absolute value of risk score correlation greater than 0.3 (A, B); Histogram and boxplot of drugs with absolute value of correlation between drug sensitivity predicted by PRISM algorithm and risk score greater than 0.3 (C, D).
DISCUSSION
TNBC is a subtype of breast cancer with a worst prognosis. However, there is no detailed classification for accurate prognostic assessment and effective treatment at present. Up to now, several studies has developed effectively prognostic assessment based on tumor score and tumor immune cycle characteristics in liver cancer and rectal cancer (Cao et al., 2020; Filho et al., 2021; Hou et al., 2022). Recently, a secondary analysis of a Phase 3 randomized clinical trial showed significant differences in pCR rates among different immunophenotypes during neoadjuvant therapy for TNBC, with higher pCR rates in basal-like and immunomodulatory subgroups. Biological processes associated with basal-like phenotype and immunomodulatory phenotype were analyzed to determine that tumor cell proliferation and immune scores were independent factors associated with the acquisition of pCR. Further validation of immunophenotypes using existing biomarkers may help improve the level of treatment in patients with TNBC (Denkert et al., 2015). CALGB 406036 trail also confirmed a positive association between immune activation and pCR (Meador and Oxnard, 2019). High proliferation and/or immune scores were associated with higher pCR rates when compared with those with low proliferation and/or immune scores. Importantly, immune score was associated with pCR, independent of proliferative score. Therefore, clarifying the immune subtype and providing a precise prediction tool have positive significance for screening the dominant populations of immunotherapy.
Therefore, in the present study, the tumor-infiltrating lymphocyte evaluation was added to develop and validate novel characteristics based on cancer immune cycle for risk stratification, prognosis assessment and drug sensitivity exploration of TNBC patients. Multiple datasets and cluster analysis were used to find the robust immune subtype among TNBC patients. The prognosis was significantly better in the C2 subtype with a higher immune score than the C1 subtype. Thus, predicting immune subtype by a small number of genes expression profiles might contribute to the patient decision of treatment immunotherapies. Recently, a 10-gene lymphoid transcriptomic signature could be used to predict immunotherapy response in human pan-cancer (Ballot et al., 2020). Based on six genes, some researchers had constructed a lung cancer risk score model to provide a reference for individual immunotherapy strategy (Zhang et al., 2021). Some studies constructed the prediction model of immunotherapy response for urothelial carcinoma or lung cancer using deep learning of noninvasive radionics biomarkers (Xu et al., 2019; Park et al., 2020). However, a user-friendly classifier is still not available for TNBC patients. Therefore, the robust signature constructed in the current study will contribute to the clinical implementation of immunotherapy in TNBC.
Immunotherapy was considered one of the effective means for cancer treatment to improve the prognosis of patients (St Paul and Ohashi, 2020; Munari et al., 2021; Li et al., 2022). According to our research, the results demonstrated that C2 showing the higher immune scores, and enriched in T cell, activated CD8 T cells Tleukocyte mediated immunity, leukocyte cell-cell adhesion, which is closely related to T cell activation and lymphocyte mediated immunity regulation. So Patients from C2 would be more likely to be respond to immunotherapy like hot tumors, which had higher levels of T-cell infiltration and some immune checkpoints such as PD-1 and PD-L1 (Galon and Bruni, 2019).
A total of seven key genes were found in our signature, including IL18R1, BTN3A1, CD160, CD226, IL12B, GNLY and PDCD1LG2. As we all know, IL18R1 was expressed on T cytotoxic cells and act as a crucial molecule in the immune microenvironment (Zhang et al., 2020). Its expression level was significantly correlated with stromal, immune, and estimate scores, as well as immune cell levels in lung squamous cell carcinoma (LUSC). The study found that high-IL18R1 and low-IL18R1 groups differed significantly in immune cell composition, including CD8 T cells, NK CD56dim cells, cytotoxic cells, and other immune cells. Moreover, IL18R1 expression was linked with PDCD1, CTLA4, CD8A, and other immune cell markers, highlighting the connection between IL18R1 and the immune microenvironment of LUSC. BTN3A1 was upregulated in TNBC cells and associated with clinical features and immunomodulatory subtype (Poggi and Zocchi, 2014). Interestingly, TNBC patients showed a positive correlation between BTN3A1 and immune cell infiltration. As the primary isoform of the butyrophilin 3A (BTN3A, CD277) family (Zocchi et al., 2017), BTN3A1 directly binds phosphor-antigens, activating the Vγ9Vδ2 T cells in the colorectal cancer microenvironment, generating an anti-tumor response of zoledronate (D'Addio et al., 2013). CD160 played a critical role in bolstering the immune system and was a key member of the CD160/HVEM/LIGHT/BTLA pathway (del Rio et al., 2010). CD160 acts as a costimulatory agent and can be found on multiple immune cells, including intestinal intraepithelial T lymphocytes, CD56dimCD16+ NK lymphocytes, and a minor subset of CD4+ and CD8+ T cells (Gilfillan et al., 2008). CD226 was a receptor molecule that competing with TIGIT for the same ligands, and has been shown to enhance the cytotoxic and anti-tumor responses of mouse NK cells. Meanwhile, lower levels of CD226+ NK cells have been linked to tumor immune escape (Peng et al., 2016). IL12B variants have been associated with both Crohn’s disease and psoriasis (Cargill et al., 2007). GNLY, encoded by the GNLY gene in chromosome 2p11.2 (Jongstra et al., 1987), has a recombinant 9-kDa form that is cytotoxic to tumors and broadly antimicrobial, killing gram-positive and gram-negative bacteria, yeast, fungi, and parasites (Stenger et al., 1998). PD-L2 has been suggested to play a role in inducing immune tolerance under physiological and pathological conditions (Latchman et al., 2001; Rozali et al., 2012), while also promoting CD8+ T cell-mediated anti-tumor immunity (Liu et al., 2003). Higher PD-L1 expression has been observed in TNBCs than non-TNBCs (Muenst et al., 2013; Mittendorf et al., 2014; Muenst et al., 2014), possibly due to genomic amplification of 9p24.1, which contains CD274 (PD-L1) and PDCD1LG2 (PD-L2) in some TNBCs (Barrett et al., 2015). These genes may influence the prognosis of TNBC patients by regulating infiltration of immune cells, such as plasma cells, CD8 cells, M0 macrophages, M1 macrophages, M2 macrophages, and neutrophils. The hub genes identified in the current study play crucial roles in the immune system and constitute a network for determining the prognosis of patients with TNBC.
Comprehensive immune subtyping was developed by immunization scores. The results showed significant prognostic differences between the high and low immune groups. GSEA analysis was performed to explore possible signaling pathways associated with diverse risk groups. These signaling pathways have not been experimentally verified, and further studies are needed to explore the specific mechanisms influencing immune scores in TNBC patients. We further verified the risk model constructed by machine learning. The results showed that a strong negative correlation was found between risk score and immune score, indicating that the low-risk group had higher immune infiltration. Compared with other clinicopathological features, risk score showed strong survival prediction ability, which was very effective and accurate in evaluating the prognosis of TNBC patients. This study suggested the possibility of immunotyping for clinical therapeutic efficacy monitoring, so more TNBC immunotyping data are needed to further support future clinical treatment. But there were several study limitations. Although the evaluation and validation of this risk model across multiple datasets, it remains essential to conduct a large-scale, multicenter, prospective study to authenticate our discoveries. In the time ahead, a series of investigations should be carried out to authenticate the risk model in vitro and in vivo. As the field of TNBC evolves, it will be important to understand if immune checkpoint inhibitors will improve pCR rates among those patients less likely to respond to standard NAC (e.g., with low proliferation and/or low immune scores).
Considering the application prospect of this model, we further studied the potential therapeutic target drugs in the high-/low-risk group, and screened the potential regulatory drugs according to the drug sensitivity of patients in the data set. New agents and new combinations of immunotherapies may unlock the key to truly personalized cancer medicine. Specifically, efforts focused on understanding biology, biomarker selection, and strategies to enhance immunotherapy response are vital to the success of immunotherapy in TNBC and other cancers in general.
CONCLUSION
This study proposed an immunophenotype-based risk assessment model that provide a more accurate prognostic prediction ability for TNBC patients by machine learning algorithms. Meanwhile, new potential compounds which may influence the chemotherapy response were also performed. The disadvantage of this study is that the drug-related conclusions obtained from our research have not been clinically proven at present, and further analysis is still needed to support the study results.
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Immunotherapy for neuroblastoma remains unsatisfactory due to heterogeneity and weak immunogenicity. Exploring powerful signatures for the evaluation of immunotherapy outcomes remain the primary purpose. We constructed a ferroptosis-related gene (FRG) signature by least absolute shrinkage and selection operator and Cox regression, identified 10 independent prognostic FRGs in a training cohort (GSE62564), and then verified them in an external validation cohort (TCGA). Associated with clinical factors, the signature accurately predicts overall survival of 3, 5, and 10 years. An independent prognostic nomogram, which included FRG risk, age, stage of the International Neuroblastoma Staging System, and an MYCN status, was constructed. The area under the curves showed satisfactory prognostic predicting performance. Through bulk RNA-seq and proteomics data, we revealed the relationship between hub genes and the key onco-promoter MYCN gene and then validated the results in MYCN-amplified and MYCN–non-amplified cell lines with qRT-PCR. The FRG signature significantly divided patients into high- and low-risk groups, and the differentially expressed genes between the two groups were enriched in immune actions, autophagy, and carcinogenesis behaviors. The low-risk group embodied higher positive immune component infiltration and a higher expression of immune checkpoints with a more favorable immune cytolytic activity (CYT). We verified the predictive power of this signature with data from melanoma patients undergoing immunotherapy, and the predictive power was satisfactory. Gene mutations were closely related to the signature and prognosis. AURKA and PRKAA2 were revealed to be nodal hub FRGs in the signature, and both were shown to have significantly different expressions between the INSS stage IV and other stages after immunohistochemical validation. With single-cell RNA-seq analysis, we found that genes related to T cells were enriched in TNFA signaling and interferon-γ hallmark. In conclusion, we constructed a ferroptosis-related gene signature that can predict the outcomes and work in evaluating the effects of immunotherapy.
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INTRODUCTION
Neuroblastoma (NB) is the most common extracranial solid malignancy in children (London et al., 2005). Accounting for 15% of cancer-related mortalities, it has the characteristics of rapid metastasis and strong malignancy (Ishola and Chung, 2007). The prognosis of patients is affected by factors such as age, stage, histology, MYCN status, and DNA ploidy. A significant amount of effort has been directed toward the improvement of treatment results in advanced neuroblastoma; however, the prognosis of about half of the patients remains poor (Hara, 2012).
To overcome treatment difficulties, additional targeted therapies for adult malignancies have been tried for NB, yet powerful treatments are still being explored (Louis and Shohet, 2015; Whittle et al., 2017; Lochmann et al., 2018). NB denotes a variable biological character. Although an extensive description of copy number alterations are found in NB, few single gene alterations have been shown to be driver mutations in NB oncogenesis (Combaret et al., 2015). Therefore, the discovery of specific drugs remains one difficult obstacle (Schulte et al., 2013; Moreno et al., 2020). Besides, NB can spontaneously downregulate MHC-I and inhibit antitumor immune components in the microenvironment (Wienke et al., 2021). Stimulating the immunogenicity of NB cells and transforming “cold tumors” into “hot tumors” has gradually become a new research hot spot. There is an urgent requirement for more effective biomarkers to guide the immune reaction such as in immune checkpoint blockage therapy (Whittle et al., 2017).
Ferroptosis is recognized as an iron-dependent and reactive oxygen species (ROS)–dependent cell death, which may act as an adaptive process to be critical for eradicating carcinogenic cells (Xie et al., 2016; Dixon, 2017). Besides, ferroptosis is closely related to other death modes like autophagy and may play a vital role in shaping the tumor immune microenvironment (Dai et al., 2020). Several studies have applied ferroptosis-related genes (FRGs) to predict prognosis and evaluate components of the immune microenvironment of various malignancies, although not yet in NB (Liu et al., 2020). However, ferroptosis may play an important role in the occurrence and development of ferroptosis, and there might be a variety of therapeutic targets in the ferroptosis pathway of NB (Geng et al., 2018; Monteleone et al., 2021). Therefore, the interplay between ferroptosis and immunity in NB has to be elucidated, as does the identification of the key prognostic FRGs that regulate the microenvironment.
In the present study, we first shed light on the role of ferroptosis-related genes in immunity, metabolism, and autophagy of NB. Furthermore, we developed and externally validated a ferroptosis-related signature that can accurately predict the 3-, 5-, 10-year prognosis of patients. By analyzing the RNA-seq of tissues, cell lines, proteomics, and qRT-PCR in vitro, we explored the relationship between hub genes and the key onco-promoter MYCN. The RiskScore calculated by the signature can to a certain extent divide the disease into “hot tumor” and “cold tumor,” besides reflecting the mutation load of tumors. The nodal genes AURKA and PRKAA2 were correlated with prognosis and verified by immunohistochemistry (IHC) to be related to the degree of malignancy. Moreover, we found that genes related to T cells were enriched in TNFA signaling and interferon-γ hallmark via single-cell RNA-seq analysis. Finally, this signature had proved meaningful to understand the immune microenvironment and guide immune checkpoint blockade.
MATERIALS AND METHODS
Data collection and preprocessing
In this study, the RNA-seq data and corresponding clinical information of 498 NB samples, which were downloaded from the Gene Expression Omnibus (GEO, http://ncbi.nlm.nih.gov/geo)—GSE62564 database, were named the training set (Su et al., 2014). While the validation cohorts were obtained from The Cancer Genome Atlas (TCGA) (121 NB) (https://portal.gdc.cancer.gov/) (Wang et al., 2016). We performed transcriptomic and immune profiling on tumor biopsies from melanoma patients treated with combined anti-PD-1 and anti-CTLA-4 (n = 51) to find the correlates of responder (n = 35) vs. non-responder (n = 16) to the therapy from Tumor Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.harvard.edu/download/) (Gide et al., 2019). The proteomics data of 49 patients with NB were obtained from the literature (Birte et al., 2021) We obtained expression profiling in NB cell lines (29 cell lines and 38 samples) from the GSE19274 database (Cole et al., 2011). After removing data with unknown MYCN status, we retained 21 MYCN-amplified and 13 MYCN–non-amplified cell lines. A total of 259 FRGs were acquired from the FerrDb data set (http://www.zhounan.org/ferrdb/). The data on RNA-seq were log2 transformed. In terms of the proteomics data, we used the Perseus software (2.0.6.0) to preprocess the data as follows: contaminants and protein groups identified by a single peptide were filtered from the data set. The proteinGroup LFQ intensities were log2 transformed to reduce the effect of outliers. The missing values were replaced from the normal distribution. We used “limma,” “ggplot2,” “ggpubr,” and “ggstatsplot” packages to verify the correlation between molecule expression and MYCN status.
Construction and validation of the prognostic ferroptosis-related risk signature
To construct an FRG signature, we proceed as follows: 1. in total, 236 FRG mRNAs were obtained by intersecting between mRNAs of the training set and the FRGs, 2. FRGs with prognosis were evaluated by univariate Cox regression analysis, 3. the DEGs with a p < 0.01 were chosen as the candidate variables and entered into the least absolute shrinkage and selection operator (LASSO) regression, 4. the stepwise multivariate Cox regression analysis was subsequently applied for reserved genes from the LASSO regression analysis to select the candidate DEGs tested by the Akaike information criterion (AIC) for identifying the risk signature, 5. model: RiskScore = [image: Summation from i equals one to n of EXP subscript i multiplied by Coe subscript i.], where EXP and Coe represent the expression value and regression coefficient of the DEGs from the multivariate cox regression analysis.
Then, patients with their corresponding calculated RiskScore were divided into the low- and high-risk prognostic groups based on the median risk value. Subsequently, the Kaplan–Meier survival curves and receiver operating characteristic (ROC) curve were performed to test the prognostic and predictive efficacy of the FRG risk signature. Additionally, the prognostic value derived from the training set was then applied to the validation set (TCGA), the immunotherapy data set of melanoma, and the NB cell data set (GSE19274) to calculate the RiskScores.
Survival analysis of NB FRG signature and correlations with pathological features
A nomogram was established through the univariate and multivariate Cox regression analysis, employing the independent prognostic factors in the training set. The C-index and ROC analysis of the training and validation sets were used to value the availability of the nomogram.
Functional enrichment analysis
Based on the computational algorithm of the gene set enrichment analysis (GSEA) for analyzing the molecular profiles of the data set, we compared the low- and high-risk groups from the training cohort to identify the enriched pathway. The Gene Set Variation analysis (GSVA) was used to detect the difference in expression with the RiskScore. Meanwhile, the c2.cp.v7.4.symbols.gmt gene sets were downloaded from the Molecular Signatures Database (http://www.Gsea-msigdb.org) and then calculated by using single-sample gene set enrichment analysis (ssGSEA) in the “GSVA” R package (Hanzelmann et al., 2013). Furthermore, the DEGs between the high- and low-risk groups were identified by |log2FC|>2 and adjusted p < 0.05, and then functionally annotated by the Gene Ontology (GO).
Evaluation of the immune landscape
The penetration fraction was calculated using the ssGSEA for 28 immune cells. The immune scores and stromal scores of NB patients were calculated using the “estimate” package (ESTIMATE algorithm: estimation of stromal and immune cells in malignant tumor tissues using expression data) (Yoshihara et al., 2013). As in a previous study, there were seven steps involved in the activation of anti-cancer immunity cycle, and these steps could be downloaded from the tracking the tumor immunophenotype web (http://biocc.hrbmu.edu.cn/TIP/index.jsp) (Liwen et al., 2018) and scored by using the ssGSEA based on the gene expression of each sample. In addition, CYT, which reflects the cell killing function by a geometric mean of gene expressions of granzyme A (GZMA) and perforin 1 (PRF1), could be put to value immune-mediated attack against cancer cells (Rooney et al., 2015). Moreover, a Wilcoxon rank-sum test was performed to examine the association between the signature group and immune checkpoints, which included PD-L1, PD-1, CTLA-4, and IDO-1. The univariate Cox regression and Kaplan–Meier survival analysis on each immune checkpoint were performed.
RiskScore of FRG signature correlates with genome instability and tumor mutation burden
We downloaded the somatic mutation data of 209 NB patients from the TCGA database and calculated the TMB for each case using the formula. Then, we used the “maftools” package to visualize the mutational profiles (Mayakonda et al., 2018). Toward the end, we performed a correlation analysis between the TMB and RiskScore.
Cell culture and quantitative real-time polymerase chain reaction
Human NB cell lines, SK-N-AS (MYCN–non-amplified) and SK-N-BE2 (MYCN-amplified), were purchased from the American Type Culture Collection (ATCC, United States). The cell lines were cultured in DMEM (VivaCell, China), enriched with 10% FBS (VivaCell, China), and maintained in a humidified incubator at 37°C, 5% CO2. The FRGs with their consistent correlation with MYCN expression between both tissue and cell databases were included for the qRT-PCR analysis.
The total RNA of each cell line was extracted via TRIzol (Thermo, United States), followed by reverse transcription into cDNA with PrimeScript™ RT Master Mix (TaKaRa, Japan) according to the manufacturer’s instructions. qPCR was carried out using the TB Green® Premix Ex Taq™ II kit (TaKaRa, Japan). The amplification reaction for cDNA detection was carried out for 40 cycles. Each cycle contained denaturation at 95°C for 30 s, annealing for 5 s, and an extension at 60°C for 20 s. β-actin served as the internal control. The relative expression levels were quantified with the 2−ΔΔCt method. The primer sequences are listed in Supplementary Table S1.
Screening nodal genes and immunohistochemistry analysis
To screen out the nodal gene in this FRG signature, we used the integrated interactions database (http://iid.ophid.utoronto.ca/search_by_proteins/), which can construct tissue-specific protein–protein interaction (PPI) networks across species. The two selected genes were analyzed for overall survival (OS) and event-free survival (EFS). A total of 10 NB tissues were obtained from the Tianjin Medical University Cancer Institute and Hospital, which included INSS stage IV and other stages (INSS I–III, IVS). Our study was approved by the Ethics Committee of the Tianjin Medical University Cancer Institute and Hospital. A written informed consent was signed by every patient or legal guardian before the study started. Primary antibodies that included PRKAA2 (18167-1-AP, 1:100 for IHC) purchased from Proteintech and AURKA (DF6845, 1:50 for IHC) purchased from Affinity were applied. IHC was performed according to previously described procedures (Tian et al., 2021). The IHC score was calculated with staining percentage and intensity (Yin et al., 2021). Two experienced pathologists were blinded to the clinical information and independently assessed the slides.
Single-cell RNA sequence analysis
We obtained single-cell RNA-seq profiles (NB02, NB16, NB23, and NB24) from GSE147766 (Verhoeven et al., 2022). Using the “Seurat” and “SingleR” packages to conduct data analysis, we moved cells with a number of features <50 and genes detected <3 cells. By subjecting the 1,500 feature genes to the principal component analysis (PCA), we obtained single-cell clusters. The “SingleR” was used for cell-type annotation. Then, we recognized the marker genes of each cell type by absolute log2 fold change >0.5 and an adjusted p <0.05. Expression correlation assays between the RiskScore and T-cell marker genes were performed using the Spearman’s coefficient correlation on the GSE62564 and TCGA data sets, respectively. The GSEA hallmark pathways enriched in the intersection genes above, ordered by the −log10 false discovery rate (FDR).
Statistical analysis
All statistical analyses were performed using R (version 4.0.3) and its appropriate packages (Sepulveda, 2020). The statistical significance was defined with a two-tailed p < 0.05. We used either Pearson’s r correlation or Spearman’s rank-order correlation to measure the correlation between two continuous variables. The 3-, 5-, and 10-year prognosis were taken as follow-up nodes (Hassanzadeh et al., 2017; Tuomainen et al., 2020; Berberi, 2021). The comparison of a continuous variable in two or more than two groups was made using either a parametric test (Student’s t-test or analysis of variance) or non-parametric test (Wilcoxon rank-sum test or Kruskal–Wallis test) if the variable was normally distributed.
RESULTS
Construction and validity of prognostic gene signature related to NB and ferroptosis
A brief flowchart is shown in Figure 1. In the GSE62564 data set, after performing the match between the Ensembl ID and mRNA annotation file, 236 FRG mRNAs were sorted out by intersecting the FRG list (Figure 2A). First, a univariate Cox regression analysis was performed to single out genes associated with patient survival. Then, by p < 0.01, there were 149 FRGs selected in NB patients. The LASSO Cox regression model and multivariate Cox regression were applied to find key genes that were most associated with the prognosis of NB (Figures 2B–D). Subsequently, a gene-based prognostic model of 10 FRGs (AURKA, DPP4, ELAVL1, G6PD, MAP1LC3A, PRDX6, PRKAA2, PROM2, SCD, and ULK2) was established to evaluate the risk of patients as described by the abovementioned methods. The risk score of the FRG signature named RiskScore was calculated from the expression of the 10 genes and the relative coefficient. Additionally, NB patients were divided into the low-risk and high-risk groups on the basis of their median RiskScore. Ordering by RiskScore in the training cohort (GSE62564) and the validation set (TCGA), heatmaps were shown to present the different expression levels of the 10 genes and clinical information (Figures 2E, F). In the training set, with an increase in RiskScore, the expression levels of AURKA, ELAVL1, G6PD, PRDX6, and SCD were upregulated. Meanwhile, ULK2, DPP4, MAP1LC3A, PRKAA2, and PROM2 were distinctly downregulated. MYCN-amplified status, INSS stage IV, and death were enriched in the high-risk group. The validation cohort showed similar levels of genes and clinical information. These results have indicated that the high RiskScore positively correlated with NB malignancy. Meanwhile, the characteristics of NB patients in the training and validation cohorts are shown in Supplementary Figure S1.
[image: Workflow diagram illustrating the construction and validation of a prognostic gene signature related to neuroblastoma and ferroptosis. Sections include analysis from databases (GEO, FerrDb), LASSO regression, clinical prognosis markers, in vitro experimental verification, functional enrichment analyses, immune landscape, prediction of immunotherapy benefit, risk score and single-cell analysis, immunohistochemistry, and tumor somatic mutation analysis. Various charts and graphs depict data and results for each section.]FIGURE 1 | Study design and workflow of the present study.
[image: Venn diagram and graphs (A-D) and heatmaps (E-F) depict data analysis results. A shows overlapping genes between two datasets. B and C are plots of gene expressions. D is a forest plot of risk factors. E and F are heatmaps showing gene expression in GSE62564 and TCGA datasets, with red indicating higher expression and blue lower. Various annotations are included for sample classification.]FIGURE 2 | Construction and definition of the FRG signature. (A) Venn diagram to identify 236 FRGs in NB patients from the GSE62564 data set. (B, C) LASSO Cox regression model constructed from the 149 signature FRGs. Optimal lambda value is 0.02880196. According to the best fit contour, a 21-FRGs group was determined to the next step. (D) Multivariate Cox regression analysis confirmed independent prognostic factors which included 10 FRGs with HRs and p values. Grouping and heatmap of patients in GSE62564 (E), TCGA (F).
The Kaplan–Meier survival curves for the 10 hub FRGs are shown in Supplementary Figure S2. Besides, the Kaplan–Meier curves for the training set shows that the low-risk group had significantly longer OS than the high-risk group in NB (Figure 3A). The consistency of results was validated for the TCGA data set (Supplementary Figures S3A, B). Meanwhile, the 3-, 5-, and 10-year calibration plots for the probability of survival showed optimal agreements between observation and prediction (Supplementary Figure S3). The ROC curve was used to predict the 3-, 5-, and 10-year survival of NB patients. The signature of the 10 FRGs exhibited striking prognostic validation, with the AUC values of 0.924, 0.932, and 0.939 in GSE62564, and 0.709, 0.709, and 0.765 in TCGA databases (Figure 3B; Supplementary Figure S3C). Besides, we combined the RiskScore levels (high vs. low), age (<18 months vs. ≥18 months), INSS stages (I–IV, IVs), MYCN status (amplified vs. not amplified), and vital status to draw a comprehensive Sankey diagram, from which we explored that the low-risk group corresponded to a younger age, better MYCN status, earlier INSS staging, and very low mortality, while the high-risk group corresponded to completely the opposite (Figure 3C). These results have illustrated that the signature of the 10 FRGs is a reliable prognostic indicator in NB.
[image: Survival analysis graphs and charts. Panel A shows Kaplan-Meier survival curves with different groups indicated by colors. Panel B presents an ROC curve for predictive model accuracy. Panel C is a Sankey diagram illustrating patient transitions. Panels D and E display forest plots of hazard ratios for various factors. Panel F includes gene expression data with aligned tracks for different samples. Panels G and H contain additional ROC curves for model validation.]FIGURE 3 | FRG signature’s ability of prognosis prediction and the construction of nomogram. (A) Signature could divide the overall prognosis into the high-risk and low-risk groups. (B) Time-dependent ROC curve of the RiskScore in the training cohort. (C) Sankey diagram directly shows the relationship of the signature with age, MYCN status, INSS stage, and mortality. Forest plot of univariate (D) and multivariate (E) Cox regression results of the RiskScore and clinical variables. (F) Establishment of the nomograms which include the RiskScore and clinical variables. ROC curves of the model for predicting the 3-, 5-, and 10-year survival in the training cohort (G) and external validation cohort (TCGA) (H).
FRG signature serves as valuable marker for clinical prognostic targets
Moreover, univariate Cox regression and multivariate Cox regression of the FRG signature RiskScore was performed in the training set (p < 0.001, univariate Cox regression; p < 0.001, and multivariate Cox regression). It verified the independence of the clinical prognostic significance of the RiskScore (Figures 3D, E). The consistency of results was also validated in the validation set. Then, a 3-, 5-, and 10-year survival nomogram prediction model was built with independent prognostic factors for the OS of patients in the training set (Figure 3F). The C-index was 0.865. We selected the patient GSM1529160. Then, the INSS stage S4 equaled 63 points, ≥18 months equaled 62 points, MYCN-amplified equaled 66 points, and high risk equaled 100 points by the nomogram. In total, the chosen sample equaled 291 points with the prediction values of 0.605, 0.767, and 0.828 for OS <3, <5, and <10 years. In fact, the chosen patient’s OS was 4.64 years. Using the ROC curve to predict the 3-, 5-, and 10-year survival of NB patients, the AUC values were, respectively, 0.902, 0.912, and 0.924 in GSE62564 and 0.727, 0.706, and 0.749 in TCGA database (Figures 3G,H). This meant that RiskScore combined with prognostic clinical features showed a good predictive value.
Association with MYCN status
As a significant prognostic factor in NB, MYCN proto-oncogene amplification consistently predicts malignant diseases. So, the MYCN status was performed to explore the different gene expressions of each FRG of the signature. Except for the p-value of G6PD that was not significant, AURKA, ELAVL1, PRDX6, and SCD had higher expression levels in the MYCN-amplified set than in the MYCN–non-amplified set in the training group (345 patients: 58 MYCN-amplified, 287 MYCN–non-amplified) (p < 0.001) (Figure 4A). Meanwhile, ULK2, DPP4, MAP1LC3A, PRKAA2, and PROM2 showed the opposite trends (p < 0.001) (Figure 4B). Similar trends were revealed in the validation cohort (Supplementary Figures S4A, B). Furthermore, in Figure 4C, the NB cell line data set showed that AURKA, ELAVL1, PRDX6, and SCD were significantly enriched in the MYCN-amplified cell lines, whereas DPP4 and MAP1LC3A were enriched in the MYCN–non-amplified cell lines.
[image: Violin plots and bar charts comparing gene expression levels between MYCN amplified (MYCN_amp) and non-amplified (MYCN_nonamp) groups. Each panel (A-E) examines different genes, including AURKA, ELAVL1, PRDX6, SCD, DPP4, MAP1LC3A, ULK2, PRKAA2, and PROM2. Significant differences in expression levels are indicated by asterisks, with p-values provided for each gene.]FIGURE 4 | Differential expression of hub FRGs between MYCN amplification and MYCN non-amplification in tissue samples and cell lines and verification in qRT-PCR. (A) Differential expression of protective FRGs in tissue samples between MYCN amplification and MYCN non-amplification. (B) Differential expression of risk FRGs in tissue samples between MYCN amplification and MYCN non-amplification. Consistent with the expression trends in the tissue, differential expressions of AURKA, ELAVL1, PRDX6, SCD, DPP4, and MAP1LC3A between MYCN amplification and MYCN non-amplification in NB cell lines (C). (D) Differential expressions of six FRGs among SK-N-AS (MYCN–non-amplified) and SK-N-BE2 (MYCN-amplified). (E) Differential protein expression of four FRGs among tissues with different MYCN statuses.
We performed qRT-PCR applying two cell lines: SK-N-AS (MYCN–non-amplified) and SK-N-BE2 (MYCN-amplified). The six genes (Figure 4C) screened with the cell line and tissue database were verified by experiments. Experimentally, these genes mostly showed the same trend as the NB cell lines database revealed, except for PRDX6. There were significant differences in the expressions of ELAVL1, SCD, and DPP4 and insignificant differences in the expressions of AURKA, MAP1LC3A, and PRDX6 between the SK-N-AS (MYCN–non-amplified) and SK-N-BE2 (MYCN-amplified) cell lines (Figure 4D).
Through the analysis of protein sequencing results, we obtained a total of 6,389 proteins, of which four proteins corresponded to the genes in the signature, namely, G6PD, PRDX6, ELAVL1, and PRKAA2. The results (Figure 4E) showed that G6PD, PRDX6, and ELAVL1 were highly expressed in MYCN(+) (p < 0.05); PRKAA2 was highly expressed in MYCN(−) (p > 0.05).
Functional enrichment analyses
To clarify the potentially functional signature characteristics of the FRG signature in NB, we conducted GSEA to analyze the differences between the enriched gene sets. Setting p < 0.05 as the cutoff value, we found that multiple autophagy- and immunity-associated pathways were involved (Figure 5A), indicating that lower RiskScores were associated with antitumor immunity, which included the downregulation of the ERBB2 signal pathway. Yet, a higher RiskScore was associated with the aurora A and B pathways. Subsequently, the GSVA was applied for validation. Consistent with the GSEA results, it was shown that the RiskScore was markedly associated with autophagy- and immunity-associated pathways (Figure 5B). In the GO analysis, the DEGs were remarkably enriched in neuron projection, MHC class II protein complex, cell chemotaxis, and T-cell–related immune response (Figure 5C). Thus, we found that the FRG signature leads to a very differential characteristic of the TME immune cells infiltration phenotype.
[image: Composite image with three panels: Panel A shows a line graph comparing gene pathways, with lines in different colors representing various pathways and corresponding annotations. Panel B displays a heatmap representing gene expression data across different samples, with a color gradient indicating expression levels. Panel C presents a circular diagram illustrating relationships among gene pathways, with segments in various colors and connecting lines depicting interactions.]FIGURE 5 | Results of functional and pathway analysis for the FRG signature. (A) Significantly enriched pathways by GSEA. (B) Significantly enriched pathways by GSVA. (C) Significant results of functional analysis of GO terms.
Immune landscape of FRG signature
Since prior work has demonstrated that functional enrichment is an immune-related function, we explored whether the RiskScore of the FRG signature was correlated with NB immunity. With the immune score defined by 28 categories of immune cells using the ssGSEA algorithm, the analysis of immune cell infiltration illustrated the abundance of innate immune cell infiltration such as natural killer cell, macrophage, mast cell, plasmacytoid dendritic cell, and eosinophil in the low-risk group. Meanwhile, specific immune cells were abundant, namely, CD8 T cell, immature B cell, T follicular helper cell, T helper cell except activated CD4 T cell, and memory B cell, in the low-risk group (Figure 6A). Accordingly, an important index named the seven-step cancer-immunity cycle was evaluated for the status of anti-cancer immunity. In the high-risk group, activities of various steps in the cycle were seen to be upregulated such as the release of cancer cell antigens (Step 1) and recognition of cancer cells by T cells (Step 6). Whereas in the low-risk group, cancer antigen presentation (Step 2), priming and activation (Step 3), trafficking of immune cells to tumors (Step 4, such as CD4 T cell, CD8 T cell, NK cell, dendritic cell, B cell, Treg cell, and TH1 cell), infiltration of immune cells into tumors (Step 5), and killing of cancer cells (Step 7) were stronger than that in the high-risk group. These elevated activities of the steps showed potent immunological potential (Figure 6B). In the training set, the high-risk group showed significantly lower stroma, immune, and ESTIMATE scores, but higher tumor purity than the low-risk group (Figure 6C).
[image: Panel A and B show box plots of gene expression across different genes, highlighting high-risk (red) and low-risk (blue) groups. Panel C displays a scatter plot of immune cell proportions. Panel D shows a scatter plot with regression line displaying a correlation, including a histogram in the margins. Panel E presents a Kaplan-Meier survival curve comparing low-risk (blue) and high-risk (red) groups, with a p-value of 0.0011.]FIGURE 6 | FRG signature reflects immune cell activation. (A) Histogram shows the normalized absolute abundance of 28 immune cell categories in individual samples of high- and low-risk groups. (B) TIPs to estimate the activity scores and major immune-related cells in tumor tissues. (C) Degree of the stromal, immune, estimate score, and tumor purity in high- and low-risk groups. (D) Relationship between the RiskScore and CYT. (E) Level of the CYT index significantly distinguishes survival.
As a result, high CYT was associated with the low-risk group and better survival (Figures 6D,E), which reflected that the low-risk group had a stronger immune-mediated attack against cancer cell function. These differential analyses between the two risk subgroups were shown to be the same in the validation cohort, and similar results were observed in the validation cohort (Supplementary Figure S5).
FRG signature could predict immunotherapy benefit
Subsequently, the immune checkpoints (PD-1, PD-L1, CTLA-4, and IDO-1) and human leukocyte antigen (HLA-A, HLA-B, and HLA-C) were upregulated in the low-risk group (Figure 7A). As shown in Figures 7B, D, F, H, the RiskScore of the FRG signature was significantly negatively correlated with immune checkpoint genes (r = −0.222 and p < 0.001 for PD-1, r = −0.386 and p < 0.001 for PD-L1, r = −0.209 and p < 0.001 for CTLA-4, and r = −0.37 and p < 0.001 for IDO-1). The expression of immune checkpoints affected the prognosis of patients (Supplementary Figure S6). In addition, to further investigate the effect of crosstalk between RiskScore and immune checkpoints on survival, patients were stratified into four parts based on the combination of RiskScore and immune checkpoints. Survival comparisons revealed that the RiskScore could distinguish the outcomes of NB with similar levels of immune checkpoint genes. Furthermore, patients with a low RiskScore and high expression level of immune checkpoints illustrated markedly longer survival rates than those with a high RiskScore and high expression level of immune checkpoints (p < 0.0001 for PD-1, PD-L1, CTLA-4, and IDO-1) (Figures 7C, E, G, I).
[image: Panel A displays a scatter plot of gene expression across several groups with color-coded dots representing high and low values. Panels B to I show scatter plots and Kaplan-Meier survival curves, illustrating correlations and survival differences with statistical significance highlighted on each graph. Panels J and K contain box plots comparing different datasets with p-values indicated. Panel L provides a time-to-event analysis with a survival function, and panel M features a receiver operating characteristic (ROC) curve with an area under the curve (AUC) value noted.]FIGURE 7 | Correlation between immune checkpoint genes, HLA genes, and RiskScores, and validation of the signature in melanoma immune therapy data. (A) Immune checkpoint gene expression that includes PD-1, PD-L1, CTLA4 and IDO1, and HLA-ABC in the high- and low-risk groups stratified by the risk signature. (B–I) Respective correlation between the RiskScore and individual immune checkpoint gene, and the combination divides prognosis into four groups with significant differences (p < 0.0001). Comparison of ROC curves with PD-1 and CTLA4 shows the superiority of the FRG signature in predicting overall survival (J) and progression-free survival (K). (L) Generally, melanoma patients are divided into high- and low-risk groups. (M) This AUC showed the predictive value of the RiskScore for the response of immunotherapy.
Furthermore, the abovementioned observed associations have led us to hypothesize that the RiskScore may be predictive of the response to immunotherapy. So, we tested the predictive value of the RiskScore in the melanoma combined anti-PD-1 and anti-CTLA-4 immunotherapy data sets. In OS, the RiskScore achieved an AUC of 0.816, which is comparable with the immune checkpoint gene markers (0.579 for CTLA-4 and 0.708 for PD-1) (Figure 7J). Moreover, the discriminative ability of the RiskScore was also observed to be higher in progression-free survival (PFS) than in CLTA-4 and PD-1. The AUC increased from 0.692 (CLTA-4) and 0.647 (PD-1) to 0.781 (RiskScore) (Figure 7K). Concurrently, the Kaplan–Meier curves show that the prognosis of the high-risk group is worse, although the p-value was not significant due to limited cases (Figure 7L). These results have indicated that lower RiskScore values are associated with better OS and PFS in tumor patients receiving immunotherapy. To explore the association between the response to immunotherapy and RiskScores, the RiskScore achieved an AUC of 0.68 in predicting the response to immunotherapy (Figure 7M).
Tumor somatic mutation in distinct RiskScore patterns
We next classified the mutation data into various categories, where missense mutation occupied the most part, single-nucleotide variant (SNV) mutates most frequently, and C>A played the top type of SNVs in NB. Furthermore, we compared the mutational difference between the high- and low-risk groups and found that the high-risk group ALK mutated more than MUC16 in the low-risk group (Figure 8A). Moreover, we observed that TMB in the low-risk group was higher than it was in the high-risk group (Figure 8B). The Kaplan–Meier curves also proved the same trend, that the high-TMB group had significantly more OS than the low-TMB group in NB (Figure 8C). Moreover, patients with a low RiskScore and high TMB indicated significantly longer survival rates than those with high RiskScore and low TMB (p = 0.035) (Figure 8D).
[image: The image consists of four panels showing genetic and survival data. Panel A is a mutation landscape for 44 out of 207 samples with various gene mutations indicated by colored squares. Panel B is a violin plot contrasting two groups, with statistical significance noted. Panel C presents a Kaplan-Meier survival curve comparing high-risk and low-risk groups with a p-value of 0.029. Panel D provides another Kaplan-Meier curve, showing different survival outcomes based on certain variables, with a p-value of 0.036.]FIGURE 8 | Correlation between RiskScores and TMB. (A) Mutation genes and types between high- and low-risk groups. (B) TMB level distribution between high- and low-risk groups. (C) TMB level significantly divided the prognosis. (D) TMB level, combined with RiskScore, can further divide prognosis into four groups.
Identification of nodal genes and immunohistochemistry
According to the integrated interactions database, we identified two key genes specific in NB, AURKA, and PRKAA2 (Figure 9A). In the survival analysis, high AURKA expression showed worse OS and EFS. Nevertheless, PRKAA2 was the opposite of AURKA (Figures 9B–E). The results confirmed the previous analysis in that AURKA was a risk factor and PRKAA2 was a protective one. Besides, at ×200 magnification, AURKA was expressed significantly higher in the INSS stage IV than in the other stages in the IHC analysis, whereas PRKAA2 was the opposite of AURKA (Figures 9F, G).
[image: Diagram showing AURKA and PRKAA2 genes with four survival analysis graphs (B, C, D, E) displaying DFS and OS comparisons across two groups with significant p-values. Immunohistochemistry images (F) compare AURKA and PRKAA2 expressions in MSS and Non-MSS IV stages. Scatter plots (G) indicate IHC scores, with notable differences marked by asterisks.]FIGURE 9 | Identification of nodal FRGs and immunohistochemistry analysis. (A) Identification of two nodal genes specific in NB. (B–E) Survival analysis of AURKA and PRKAA2. (F–G) Different expression trends of AURKA and PRKAA2 in the INSS stage IV and non–INSS stage IV at ×200 magnification.
Correlation between FRGs and T cells in NB microenvironment
As previously mentioned, our FRG signature could predict immunotherapy benefits and well distinguish the TME, so we further explored the correlation with T-cell killing at the single-cell level. First, the t-SNE plot showed the immune components in the NB microenvironment (Figure 10A) and second, the expression of the major marker genes (CD3D, CD3E, CD3G, and IL7R) for T cell (Figure 10B). We next took 76 intersection genes of the Spearman’s coefficient correlation >0.2 between the RiskScore and T-cell marker genes in the GSE62564 and TCGA data sets (Figure 10C). The pathway analysis revealed that the TNFA signaling via NFKB and interferon-γ response were regulated (Figure 10D).
[image: Scatter plots and visualizations of data sets showing immune cell clustering (A), expression of markers CD2R, CD3E, CD3G, and IL2RG (B), a Venn diagram comparing GSE126964 and TCGA data sets (C), and a bar graph of hallmark pathway enrichment highlighting various immune and signaling functions (D).]FIGURE 10 | scRNA-seq reveals the correlation between FRG signature and T-cell marker genes in NB microenvironment. (A) t-SNE plot of cells from the NB microenvironment. (B) Distribution characteristics of major marker genes for T cell. (C) Venn diagram to identify 76 significantly associated genes. (D) GSEA hallmark analysis obtained from genes in the intersection.
DISCUSSION
As one of the most lethal childhood malignancies, NB presents clinicians with challenges and difficulties (Hara, 2012). There are multifarious means of immune escape, such as infiltrating immunosuppressive cells, modulation of antigen presentation machinery (APM), and secreting immunosuppressive factors (Vanichapol et al., 2018). The process to awaken the immune action in the microenvironment of NB has been considered a novel means to activate the effect of immunotherapy (Carlson et al., 2013). Ferroptosis is associated with the MYCN gene and might be closely related to shaping the tumor immune microenvironment (Angeli et al., 2019; Lu Y. et al., 2021). Our results also implied that the hub FRGs with an independent prognostic value might act as downstream bioactive molecules of MYCN onco-promotor gene in terms of the expression trends (Figure 4). Besides, immunotherapy for NB requires novel targets and powerful estimating models, so we developed this hub FRG–based prognostic signature and revealed the association between the signature and diverse immunophenotypes in NB.
After screening with LASSO and Cox regression, FRGs which included five protective genes, namely, ULK2, MAP1LC3A, DPP4, PROM2, and PRKAA2 and five risk genes, namely, AURKA, SCD, PRDX6, G6PD, and ELAVL1 were identified as the component genes of the FRG signature. In addition to tumor tissues in training and validation cohorts, we divided the cell line data according to the MYCN-amplification status, and the differential expressions of the abovementioned FRGs were compared. Subsequently, based on cell line data analysis, our PCR results revealed the potential relationship between six key genes and the MYCN gene. MYCN oncogene, as a promoter, may significantly drive the expression of a variety of oncogenes, such as AURKA and SCD (Huang and Weiss, 2013; María et al., 2017). Meanwhile, the expression trend of PRDX6 was inconsistent with the overall cell line data, but after consulting the GSE19274 database (Cole et al., 2011), the PRDX6 of SK-N-AS cell line was highly expressed than that of SK-N-BE2. More cell lines should be included in the research and verification processes.
The ferroptosis level cannot represent the malignant potential of tumor development. In fact, targeting ferroptosis in cancer might be a double-edged sword (Chen et al., 2021a; Chen et al., 2021b). As Supplementary Figure S2 shows, genes that had the same promoting/suppressing effect on ferroptosis can have different effects on prognosis. For example, as key activators of autophagy and regulators of ferroptosis, ULK2 and MAP1LC3A (also known as LC3) both take part in diverse carcinogenesis. Promoting autophagy and ferroptosis may cooperatively induce drug sensitivity and inhibit the development of NB (Liu et al., 2019). Second, the prognostic role of DPP4 is controversial. However, it is not only in our study that higher DPP4 might be associated with better survival in various cancers such as head and neck malignancies (Javidroozi et al., 2012). Besides, DPP4 is related to activation of AMPK in neural cell line SK-N-MC, providing a new version for NB treatment (Kornelius et al., 2015). Third, when compared to that in normal tissues, PROM2 was significantly overexpressed in breast, lung, bone marrow, and ovarian cancers, whereas it was underexpressed in colon, esophageal, gastric, kidney, prostate, and skin cancers (Subbroto et al., 2020). The protective relationship between PROM2 and prognosis of NB was first revealed in our study and worthy of further experimental verification. Finally, PRKAA2 has been shown to inhibit cell proliferation through the p53/p21 pathway and through modulation of the expression of p27 (Jones et al., 2005). Besides, PRKAA2 knockout in liver cancer enhanced tumor inflammation, also associated with the immune microenvironment (Qiu et al., 2019). The overexpression of PRKAA2 in NB could promote ROS production and cell apoptosis after bupivacaine treatment (Lu et al., 2011). Our screening of hub genes has also revealed the key node role of PRKAA2, which had significant impact on both event-free survival and overall survival. Besides, the results showed the molecular localization of PRKAA2 and might be further helpful for the development of target therapy in NB.
On the contrary, AURKA shows significantly higher expression in cancer tissues than in normal control tissues for multiple malignancies according to the TCGA database (Du et al., 2021). The silencing of AURKA is effective in antitumor efficacy of NB in vitro and in vivo (Yang et al., 2020). From the perspective of immunity, natural killer–derived exosomal miR-186 can directly inhibit the expression of AURKA and simultaneously inhibit growth, spreading, and TGFβ-dependent immune escape mechanisms in NB (Neviani et al., 2019; Schmittgen, 2019). Moreover, nodal gene results have shown that other than PRKAA2, AURKA was one of the nodal FRGs that had an important relationship with NB. Understanding the physical and chemical properties and its distribution in the cytoplasm and nucleus would be helpful to explore therapeutic targets for advanced disease (Ruijuan et al., 2021). Second, SCD may promote carcinogenesis while the inhibition of SCD can help rescue rapid alpha-synuclein toxicity in a neural cell model and affect αS homeostasis and toxicity in neuronal cells (Imberdis et al., 2019; Terry-Kantor et al., 2020). However, the role of SCD in NB prognosis was explored for the first time in the present study. Third, PRDX6 promotes the development of several cancer cells (Yun et al., 2014; Hu et al., 2020). Exogenous PRDX6 can rescue cellular damage induced by cellular hypoxia (CoCl2) chemically and significantly decrease CoCl2-induced apoptosis in SK-N-SH human NB cells (Asuni et al., 2015). Fourth, G6PD takes part in neuronal differentiation in the SH-S5Y5 cell line, meanwhile the aberrant activation of G6PD leads to enhanced cell proliferation and adaptation in many types of cancers (Almeida et al., 2018; Yang et al., 2019). Hence, we speculated that G6PD may be associated with the adverse biological behavior of NB cells. Finally, ELAVL1 might act as a part of the central oncogenic driver for malignant peripheral nerve sheath tumors (Palomo-Irigoyen et al., 2020). Moreover, activating ELAV may play a role in neurodegenerative diseases (Marchesi et al., 2016). Therefore, further experimental exploration of the mechanisms responsible for the poor prognostic effect of ELAVL1 in NB development is required.
The RiskScores calculated from FRG signatures were strongly correlated with clinical prognostic factors. In comparison, the Sankey diagram analysis revealed that a higher RiskScore was consistent with older age, MYCN amplification, and advanced INSS stage. Besides, as expected, the increase of the RiskScore might mean a higher relapse rate and worse prognosis. To further evaluate the prognosis, we used Cox regression to screen and construct a nomogram that included the RiskScore and clinically independent prognostic factors, which can accurately calculate long-term prognosis (until 10-year survival) of children with NB. External data validation also revealed that it had a satisfied prediction ability.
The GO analysis significantly revealed the relationship of the present signature with T-cell development and adaptive immunity, as well as neuron projection and cell adhesion that might participate in the development of NB. After comparison with groups, some clues about carcinogenesis were revealed. For example, first, aurora kinase A and B were both reported to correlate with poor survival and MYCN expression in NB, and aurora kinases A may have a direct physical interaction with the MYCN protein (Otto et al., 2009; Hsieh et al., 2019). Moreover, researchers used gene enrichment analysis and found that the carbohydrate metabolic process, fatty acid metabolic process, lipid biosynthetic process, and response to hypoxia were associated with aurora kinase inhibition in Th-MYCN transgenic NB mice, which would simultaneously have potential effects on the regulation of autophagy and ferroptosis (Lu J. et al., 2021; Chen et al., 2021c; McLeod et al., 2021; Ni et al., 2021; Wang et al., 2021). Second, the FOXM1 pathway was discovered to be involved in the tumorigenicity of aggressive NB cells through the maintenance of the undifferentiated state (Wang et al., 2011). Besides, the overexpression of FOXM1 might lead to malignant phenotypes by directly upregulating genes such as AURKB and MYC or indirectly upregulating genes such as ZEB1 and ZEB2 (Katoh et al., 2013). Meanwhile, the inhibition of FOXM1 induced apoptosis by inhibiting the activation of PI3K and AKT in NB cell lines (Liao et al., 2020). Next, a positive feedforward regulatory loop between the PLK and MYC pathways was revealed (Xiao et al., 2016). Iliaki et al. (2021) have reported that PLK1 was involved in immune and neurological disorders such as Alzheimer’s disease. Furthermore, Grinshtein et al. (2011) screened and then suggested that PLK1 inhibitors could be an attractive candidate therapy for metastatic NB. On the other hand, immune-related pathways like the IL17 and TCR JNK pathways were found to be enriched in the low-risk group. The role of IL17 in malignancy disease remains controversial (Lin et al., 2015; Tsai et al., 2021). The research value of IL17 secreted from different cells in the NB microenvironment has to be confirmed by further experiments due to the limited research at present (Zhang et al., 2020). Besides, JNK, known as c-Jun N-terminal kinase, is activated when T-lymphocytes are stimulated with the T-cell receptor (TCR) and CD28 (Kirk et al., 1999). Furthermore, the activation of JNK may induce the death of tumor cells accompanied with the release of mitochondrial cytochrome C and increase in autophagy inducing factors (Yu et al., 2019; Zheng et al., 2020). In addition, the downregulation of the ERBB2 pathway was found to be significantly related with good prognosis and immunotherapy response in another nervous system tumor, glioma (Mei et al., 2021). Last but not the least, the regulation of the autophagy pathway was also found enriched in the low-risk group, which is consistent with previous reports and worthy of further research (Meng et al., 2020).
Since the functional enrichment results have revealed a close relationship with metabolism, autophagy, and immunity, ssGSEA was performed, which showed that there were more active immune components in the microenvironment of NBs in the low-risk group, such as activated CD8 T cell, natural killer cell, and neutrophil cell, providing us with the possibility of low-risk patients being included in the “hot tumor” group. In addition, estimates of tumor immune infiltration found that the low-risk group had higher stromal scores, immunization scores, and estimation scores, implying more active immunity. Meanwhile, the low-risk group had lower immune purity, which meant low malignancy and low invasiveness. Moreover, the CYT score, defined by granzyme A and perforin expression and reflecting the immune cell killing function, was successfully used for underlying immunity (Takahashi et al., 2020). We also hypothesized that CYT-high NBs had low risk in the present FRG signature and significantly better prognosis . Furthermore, we found that the low-risk group was more activated as a whole in tracking the analysis of the tumor immunophenotype, except step 1 release of cancer cell antigens and step 6 recognition of cancer cells by T cells (Liwen et al., 2018). Furthermore, the low-risk group had a higher expression of immune checkpoints and markers, such as PD-L1 and HLA-ABC, which is similar to several reports by Ming et al. (2021). Therefore, the results have supposed that patients in the low-risk group would benefit more from immune checkpoint blocking therapy. Moreover, we can accurately predict the treatment effect by further subdividing the KM curves.
Unfortunately, although NB is one of the most common childhood tumors, there is still no available data on the outcome of immunotherapy. However, melanoma with publicly available immunotherapy data shares several similar characteristics with NB. First, both of them share a common origin, arising from the neuroectodermal tissue, the portion of the ectoderm that gives rise to the central and peripheral nervous systems (Morandi et al., 2018). Second, NB and melanoma share common immune markers, such as GD2, a therapeutic target that has been carried out in both malignancies (Cheresh et al., 1986; Rakhmilevich et al., 2017; Tran et al., 2017). Moreover, Avitabile et al. (2020) have found that NB and melanoma share 1p13.2 as the susceptibility locus and SLC16A1 as the common oncogene by cross-disease meta-analysis of GWAS. Finally, in clinics, neuron-specific enolase (NSE) can aid the diagnosis of both melanoma and NB (Dhillon et al., 1982). The serum levels of cytoplasmic melanoma-associated antigen at diagnosis may predict clinical relapse in NB patients (Morandi et al., 2011). In addition, immune mechanisms underlying spontaneous regression in NB can predict melanoma response to immune checkpoint blockade (Auslander et al., 2018). Therefore, as Sha et al. (2022) have previously reported, we used melanoma data for immunotherapy validation. In the present study, the signature could classify the melanoma population into the high- and low-risk groups. The AUCs showed more predictive power of the signature for the prognosis. Moreover, the signature was capable of predicting immune checkpoint blocking responses.
Numerous reports have shown that tumor cells with higher TMB were more easily recognized by the immune system, and immunotherapy was more likely to respond (Maleki, 2018). A higher tumor mutation burden can also induce more antigens and anti-tumor immunity, which finally results in better prognosis in NB. Moreover, MUC16 and ALK mutation were common in the NB cohort, meanwhile MUC16 mutation was especially more common in the low-risk group. Li et al. (2018) have reported that MUC16 mutations might be associated with higher tumor mutation load, as well as better survival outcomes and immune response. Furthermore, the role of MUC16 mutation in NB is worthy of further explanation (Lee et al., 2020). Besides, as was reported, high ALK mutation in NB was associated with poor prognosis (Borenas et al., 2021). All of these findings have shown that the FRG signature not only distinguished the TME immune cell infiltration but also correlated with the mutation landscape, underling the significance of ferroptosis in NB development again. Moreover, scRNA-seq analysis showed that the signature was related to T cells, and TNFA signaling and interferon-γ might be the target pathway to overcome immunotherapy tolerance (Lorenzi et al., 2012).
There is no doubt that our research still has some limitations. Generally, a large sample of the clinical multicenter prospective cohort is required to verify our results and the clinical value of these genes still require further verification through follow-up research. Besides, the gene set used in this study cannot accurately represent the type and function of all immune cells, and the mRNA and protein levels cannot be accurately equivalent. Finally, the FRG signature showed a moderate predictive effect on immune checkpoint treatment of melanoma, which should further be verified in the data set of NB immune treatment in the future.
CONCLUSION
In summary, our study established and validated an FRG-based signature, which could divide patients into high-risk and low-risk groups in multiple cohorts. Meanwhile, the RiskScore calculated by the signature showed a significant relationship with a variety of cell components of the immune microenvironment and immune checkpoint expression and could effectively predict the response to immunotherapy. Moreover, this study proposed many effective pathways and targets related to the biological behavior of NB.
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Objective: Our study aims to assess the effectiveness and safety profile of Disitamab Vedotin (DV, RC48-ADC), an innovative humanized anti-HER2 antibody conjugated with tubulin-disrupting antimitotic drug monomethyl auristatin E (MMAE) via a cleavable peptide linker. This treatment combined immune checkpoint inhibitors as part of the bladder sparing approach for selected patients suffering from locally and locally advanced bladder urothelial carcinoma.
Patients and methods: We conducted a two-center, real-world study involving locally advanced urothelial carcinoma (UC) patients. Patients were classified based on HER2 expression (IHC 3+/2+/1+) or lack of HER2 expression (IHC 0). The primary endpoint was the objective response rate (ORR), assessed by the investigator following the criteria of RECIST V1.1. Secondary endpoints encompassed the pathological complete response rate (pCR), pathological partial response rate (pPR), and pathological stable disease (pSD), along with recurrence-free survival (RFS), the pathological downstaging rate, and the safety profile of the treatment.
Results: In this study, nine patients were enrolled, with a median follow-up duration of 12.0 months. The overall confirmed ORR was 88.9%, Five patients achieved a complete response (CR), and three patients achieved a partial response (PR). The radiological complete response (rCR) aligned perfectly with pCR. The median radiological progression-free survival (rPFS) spanned 12.0 months (range from 8.0 to 17.0 months). One patient diagnosed with disease progression (PD) underwent a radical cystectomy. The pathological stage evolved from T2N0M0 to T3aN2M0, followed by adjuvant chemotherapy with a gemcitabine-cisplatin (GC) combination radiotherapy. At the 9-month follow-up, neither recurrence nor metastasis was observed. The rate and intensity of complications were manageable among these patients, with no evidence of grade 4 and 5 adverse events.
Conclusion: The combination of DV and PD-1 demonstrated considerable activity in the objective response rate (ORR) in patients with HER2 IHC 0/1+/2+/3+ muscle-invasive bladder cancer (MIBC), along with the longest reported median radiological progression-free survival (rPFS) to date. With an extended duration of treatment, the safety profile of DV plus PD-1 was also confirmed to be manageable.
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1 INTRODUCTION
Urothelial bladder cancer (UC) ranks the ninth most common cancer worldwide, with an annual incidence of over 500,000 new cases and 200,000 deaths attributable to the disease (Bray et al., 2018). Only 30% of these newly diagnosed cases involve muscle-invasive bladder cancer (MIBC), where the tumor invades the detrusor muscle (Charlton et al., 2014). A combination of Neoadjuvant chemotherapy plus Radical cystectomy (RC) has traditionally been the standard of care for MIBC. Current RC methodologies have achieved 5-year overall survival (OS) rates ranging from 56% to 66% (Grossman et al., 2003; Sherif et al., 2004; Stein et al., 2001; Zehnder et al., 2011).
Over recent decades, there has been a growing trend toward organ-preserving therapies in treating numerous cancers. Within the sphere of bladder cancer, introducing a disciplinary approach has led to the development of bladder-sparing approaches. These approaches combine maximal transurethral resection (TURBT) with radiotherapy and concurrent radio-sensitizing chemotherapy to treat MIBC. While no definitive randomized studies have compared RC and this bladder-sparing trimodal therapy (TMT), multiple series suggest that TMT may produce favorable outcomes for carefully chosen patients (Hoskin et al., 2010; Efstathiou et al., 2012; James et al., 2012a; Mak et al., 2014).
The recent application of immune checkpoint inhibitors (ICIs) has yielded significant clinical outcomes, thereby establishing a role in treating metastatic UC (mUC) and MIBC. This includes inhibitors such as pembrolizumab, nivolumab, avelumab, tislelizumab, and toripalimab. Using neoadjuvant cisplatin-based chemotherapy (NAC) and PD-1/PD-L1-based immunotherapy has demonstrated pathologic complete response rates of approximately 30%–40% and 30%–50%, respectively, (APOLO et al., 2017; SHARMA et al., 2017; Powles et al., 2019; Guptal et al., 2020; Sheng X. et al., 2021; Necchi et al., 2019; Bellmunt et al., 2021; Ye et al., 2021; Christopher et al., 2022). Furthermore, immunotherapy has been linked to a notably high complete response rate (up to 80%) in conjunction with bladder-sparing treatment, an improvement compared to traditional TMT, which achieves 60%–70% (COPPIN et al., 1996; SAUER et al., 1998; JAMES et al., 2012b; Balar et al., 2021; Garcia delMuro et al., 2021). The observed outcomes underscore the need for additional research into the application of ICIs in combination therapies for the curative treatment of MIBC patients.
In bladder cancer, human epidermal growth factor receptor 2 (HER2) overexpression is strongly linked with tumor progression and poor prognosis, although HER2 genomic amplification is not a typical mechanism (Chow et al., 2001; Jimenez et al., 2001; Kruger et al., 2002; Fleischmann et al., 2011). Disitamab vedotin (DV, RC48-ADC) is an innovative humanized anti-HER2 antibody, conjugated with MMAE via a cleavable linker. DV has demonstrated promising antitumor activity and a tolerable safety profile toward mUC, exhibiting an objective response rate (ORR) of 51.2% and median progression-free survival (PFS) of 6.9 months (Sheng Xinan et al., 2021). In the RC48-C014 trial, 32 patients with metastatic UC were treated with DV and toripalimab, resulting in an ORR of 71.8% in the overall population and 73.9% in first-line previously untreated patients (Sheng et al., 2022). Additionally, DV combined with PD-1 inhibitors has yielded satisfactory efficacy in patients with MIBC and non-muscle Invasive Bladder Cancer (NMIBC) (Wen, 2022; Hu et al., 2023; Huang et al., 2023). Nevertheless, real-world studies, which provide crucial information on a drug’s efficacy and safety within the actual patient population, are lacking for the role of DV in MIBC. Therefore, this study aims to explore the use of DV for the treatment of locally advanced bladder urothelial carcinoma, utilizing real-world data.
2 METHODS
2.1 Study design
This real-world study retrospectively analyzed the clinicopathological and follow-up results of patients with locally or locally advanced primary urothelial carcinoma of the bladder, treated with DV and immunotherapy at Fujian Provincial Hospital and the Union Hospital Affiliated with Fujian Medical University. The inclusion criteria should meet the following requirements, patients without DV or immunotherapy contraindications; ECOG score were 0 or 1; aged between 18 and 85 years; patients without underlying severe medical conditions. In addition to the following requirements, they should also meet the criteria as follows:
	1. Diagnosis and treatment were managed comprehensively within the two centers.
	2. Detailed clinicopathological data were available.
	3. Primary urothelial cell carcinoma of the bladder was confirmed pathologically, excluding specific differentiation, such as sarcoma or clear cell.
	4. The study only included locally and locally advanced UC, with the staging at cT2-T4aN0-2M0.
	5. At least two or more courses of this combined neoadjuvant therapy were included.
	6. The therapeutic response could be evaluated.

DV was administered according to the RC48-C014 study protocol, i.e., DV 2 mg/kg (Equivalent to dose of 1.5 mg/kg using DV-based extinction coefficient outside of China) every 2 weeks (Q2W), and the immunotherapy consisted of either tislelizumab 200 mg every 3 weeks (Q3W) or toripalimab 3 mg/kg Q2W. The study was approved by the ethics committees of both centers and received written informed consent from the patients’ families.
2.2 Data collection and evaluation
Patients enrolled in this study started drug combination therapy in December 2021, with follow-ups extending until July 2023. The collected data encompassed demographic information, bladder cancer history, pathological data, details of neoadjuvant drugs and course of treatment, surgical interventions, and primary and secondary study endpoints. The pathological grade was classified into Grade 1, grade 2, and Grade 3 according to WHO 1973 criteria. HER2 expression was evaluated by immunohistochemistry (IHC), with categories being IHC 0; 1+; 2+; 3+, or positive or negative as determined by the FISH gene testing. The expression of programmed cell death protein 1 (PDL-1) was evaluated and was classified as ≥1% and <1%. All patients had a pelvic Magnetic Resonance Imaging (MRI) for bladder measurable lesions in baseline before combination therapy.
Neoadjuvant immunotherapy drugs included tirelizumab, administered at 200 mg every 3 weeks (Q3W), or toripalimab, dosed as per literature at 3 mg/kg every 2 weeks (Q2W) for 12 weeks. The RECIST 1.1 standard evaluated the efficacy of neoadjuvant therapy. We assessed the imaging efficacy (categorized as rCR, rPR, rSD, and rPD) of bladder lesions in patients by MRI, and assessed pathological efficacy (categorized as pCR, pPR, and pSD) by MRI combined with bladder biopsy or TURBT, and evaluated the lungs and abdomen by Computed Tomography (CT) to assess the presence of distant metastases at a frequency of every 3–6 months.
After neoadjuvant therapy, patients underwent a second surgical treatment, including diagnostic radical transurethral resection of bladder tumor (TURBT) and/or bladder biopsy, partial cystectomy, or radical cystectomy. Secondary study endpoints such as pCR, pPR, and pSD were determined based on pathological findings. Secondary study endpoints included the rPFS in months following neoadjuvant therapy and pathological degradation. Concurrently, side effects and their severity were evaluated according to the adverse reaction classification.
3 RESULTS
3.1 General information
We screened 53 patients, and nine patients with primary bladder urothelial carcinoma from two institutions were finally included in this study, among which the ratio of males to females was 8:1 (Table 1). All of these patients were platinum-tolerable. Still, after detailed explanation and communication, these patients accepted DV combined immunotherapy as a new treatment. These patients had a median age of 72 and a median BMI of 22.3 kg/m2. Eight patients had an Eastern Cooperative Oncology Group (ECOG) performance status score of 0, while one scored 1. Among the participants, six patients were newly diagnosed, and three experienced recurrences after bladder sparing treatment (two for the third time and one for the second time).
TABLE 1 | Detailed general patient information.
[image: A detailed table presents clinical data for nine cases. It includes columns for age, sex, BMI, ECOG status, comorbidities, previous treatment, initial diagnosis, number of lesions, cTNM and pTNM staging, pathology type, pathological grading, HER2 and PDL-1 expression, immunotherapy, DV therapy, ycTNM and ypTNM results, imaging assessment, pathological efficacy, subsequent treatment, and follow-up in months. Each row lists specific data points for individual cases, addressing variations in treatment and outcomes.]All patients have pathologically diagnosed with bladder urothelial carcinoma: eight were diagnosed with diagnostic TURBT, and one was diagnosed through laparoscopic radical ureteral carcinoma resection (during which ureteral carcinoma was found to involve the bladder wall during the operation with positive incisal margin, postoperative MRI review showed bladder wall thickening and enhancement, which was considered as residual bladder cancer). Staging for all cases was T2-T4aN0-3M0, with four cases each at stages T2 and T3. All pathological grades were Grade 3. Four patients accepted some cycles of gemcitabine-cisplatin (GC) treatment; these patients had a recurrence of bladder lesions or lesions remaining after GC treatment and then received DV combined immunization as neoadjuvant or bladder-sparing therapy.
Immunohistochemistry demonstrated that three cases were HER2 (2+), four cases were (3+), and the remaining two cases were (1+) and (0+), respectively. Roche VENTANA PD-L1 (SP263) tests all resulted in a combined positive score of <1%. Of these, three cases presented with underlying comorbidities, including three with hypertension, one with diabetes, and one with a lower risk of prostate cancer.
The median follow-up duration for these patients was 12.0 months (range from 8.0 to 17.0 months), calculated from the initiation of combination therapy to the end of follow-up.
3.2 Treatment and efficacy
All patients underwent treatment with DV combined with PD-1 inhibitors. This included six patients who received three courses of combined therapy, two patients who underwent four or more courses of treatment, and one patient who underwent two courses of treatment. Regarding the choice of PD-1 inhibitors, five patients were treated with tislelizumab 200 mg every 3 weeks (Q3W), and four patients were treated with toripalimab 3 mg/kg every 2 weeks (Q2W) (Table 1).
The treatment efficacy was finally evaluated by comparing imaging changes, urine cytological alterations, and results from transurethral resection. An ORR was achieved in eight cases, which included CR in five cases (Figure 1) and PR in three cases. rCR was entirely consistent with pCR.
[image: MRI scans in four panels labeled A to D, each highlighting different abdominal cross-sections. Each panel has a red arrow pointing to key areas, indicating areas of interest or abnormalities in the tissues. Panels A and B focus on a section with a larger central area, while panels C and D show more complex tissue structures.]FIGURE 1 | A typical case of neoadjuvant therapy of DV in combination with an immune checkpoint inhibitor. A 72 years old male patient with “gross hematuria” was admitted; MRI showed that a bladder tumor in the right wall of the bladder with the inner segment of the right ureteral bladder wall involved (A); multiple mildly enlarged lymph nodes paravascular were found on the right iliac with a maximum of 1.1 cm, and lymph nodes metastasis were considered (C). Pathology of biopsy confirmed bladder high-grade urothelial carcinoma, with PD-L1 low expression (IHC) and HER2 (2+) (IHC). DV 2 mg/kg plus toripalimab 3 mg/kg, Q3w was given as neoadjuvant therapy for three circles. Then MRI was performed to evaluate the outcomes of the neoadjuvant treatment; it showed a radiological complete response (B, D). After laparoscopic right pelvic lymph node dissection with partial bladder incision and right ureteral bladder replantation, the postoperative pathology confirmed no evidence of cancer, suggesting a pathological complete response.
By the end of the follow-up period, the median rPFS of these patients was 12.0 months (range: 8.0–17.0 months) (Table 2). One patient with HER2 (0+) was diagnosed with PD and underwent radical cystectomy; the pathological stage progressed from ypT2N0M0 to ypT3aN2M0. The treatment was then switched to GC combined with radiotherapy as adjuvant chemotherapy and primary radiotherapy. No tumor recurrence or metastasis was observed at the 9-month follow-up.
TABLE 2 | Assessment of treatment efficacy.
[image: A table with three columns labeled "Valuable," "CR," and "Numbers." It lists different metrics: ORR, PR, SD, PD, with subcategories rCR, pCR, rPR, pPR, rSD, pSD, rPD, and pPD, displaying corresponding numbers in parentheses, such as \( n = 5 \), \( n = 3 \), and 0. The final row lists "rPFS (m.)" with a range of 8.0 to 17.0 and a median of 12.0.]3.3 Advance effects and classification
In general, the incidence and severity of complications were manageable in these patients, and no grade 4 or 5 adverse events were observed. Treatment-related adverse reactions were reported in eight patients. The most observed symptoms included loss of appetite, rash, and fatigue, each occurring in three cases, all classified as grade I or II.
Additional adverse reactions such as hypothyroidism, fatigue, abnormal liver function, and peripheral sensory neuropathy were reported in two cases, grade I or II. A single instance of each of the following was reported: immune pneumonia (grade I), abdominal pain (grade I), nausea (grade II), joint congestion (grade II), gastrointestinal bleeding (grade III), and intestinal obstruction (grade III) (Table 3).
TABLE 3 | Adverse reactions and grading.
[image: Table listing treatment-related adverse reactions with grades. Reactions include decreased appetite, rash, and fatigue, with varying percentage occurrences across grades I-II and III-IV. Any event shows the highest at 88.9% for any grade.]4 DISCUSSION
This real-world study explores the application of DV combined with PD-1 inhibitors in locally advanced bladder urothelial carcinoma. In this study, DV combined with either tislelizumab or toripalimab demonstrated promising responses in patients with locally advanced urothelial carcinoma. The study enrolled nine patients with locally advanced urothelial carcinoma, of which five achieved confirmed CR and three achieved PR, resulting in an ORR of 88.9%. rCR was entirely consistent with pCR. The median rPFS was 12.0 months (range: 8.0–17.0 months).
An open-label, single-arm, multicenter phase Ib/II clinical trial demonstrated that four patients with locally advanced urothelial carcinoma and HER2 IHC 1+/2+/3+ achieved a cCR rate of 100% after receiving DV plus tislelizumab as neoadjuvant therapy (Wen, 2022). However, our study involved a more diverse patient population: nine patients, including three recurrent cases and one with HER2 (0). In another retrospective study, seven patients with HER2 overexpressing (IHC 2+ or 3+) NMIBC, who could neither have their bladder tumor completely resected nor tolerate surgery, were treated with either DV or a combination of DV and ICIs, showing promising efficacy and an ORR of 85.7% for all patients (Hu et al., 2023). The patient populations in these studies were distinct; the previous study enrolled all NMIBC patients, while our study focused on MIBC, which is associated with poorer survival outcomes for patients with urothelial carcinoma. Overall, this retrospective study represents a successful exploration of neoadjuvant or bladder-preserving therapy in the real-world setting using DV combined with immunotherapy.
Besides short-term efficacy, the safety of DV combined with PD-1 inhibitors during therapy in patients with MIBC is of utmost importance. In this study, no adverse events (AEs) of grades 4 or 5 were observed, with grade 1 or 2 AEs accounting for 88.9% of the total. Anorexia, rash, and fatigue were the most frequently reported AEs. Importantly, these events were of grade 1 or 2 severity, transient, and could be effectively managed in the outpatient setting without necessitating any dose modification or interruption. No new AEs were reported, and all observed AEs were manageable. Furthermore, there were no recorded fatalities during the therapy period.
An essential finding of this study was the anti-tumor activity of DV combined with PD-1 inhibitors in patients with HER2 IHC1+, IHC 0, and PD-L1< 1%. This effect is not solely due to the nonspecific bystander effects of the cytotoxic drugs released by DV. Our data strongly support a T cell-dependent mechanism and the efficacy of the combination therapy. This effect is achieved through non-redundant yet complementary mechanisms. Specifically, DV enhances T cell infiltration into the tumor by inducing tumor-specific, adaptive anti-tumor immunity, while PD-1 blockade rejuvenates exhausted T cells (Huang et al., 2022). Other chemotherapy regimens have had similar therapeutic benefits (Haratani et al., 2020; D’Amico et al., 2019; Wang et al., 2018).
Some limitations to our study should be acknowledged. The most significant was the lack of a mature follow-up period to provide survival outcomes. Extended follow-up was required, particularly focusing on long-term bladder preservation and survival. Another limitation was the small sample size of patients with cT2-T3bN0-2M0 tumors included in our study; we will embark on a prospective, case-control multicenter study, including evaluating the efficacy of the combination therapy in specific subgroups based on HER2 expression levels, to further validate our findings and provide new approaches to guide neoadjuvant therapy or bladder-sparing treatment for bladder cancer. Furthermore, we could not obtain data on survival rates with our limited observation period and sample size; we will include this subset of patients to observe survival data in future studies.
The promising safety profile and anti-tumor activity demonstrated by the combination of DV and PD-1 inhibitors in this real-world study lay a solid foundation for a phase 2 clinical trial exploring DV in combination with PD-1 inhibitors in patients with MIBC. Our study data were the most extended median follow-up time for DV plus immunotherapy to date, and our findings provided a new possibility for DV plus immunotherapy as neoadjuvant therapy or treatment of sparing bladder.
5 CONCLUSION
The combination of DV and PD-1 inhibitors demonstrated significant improvements in ORR in patients with MIBC across all HER2 IHC levels (0/1+/2+/3+). This regimen also reported the longest median rPFS to date, solidifying the combination of DV and PD-1 inhibitors as a compelling treatment choice for patients with T2-T4aN0-3M0 staging. Furthermore, this study confirms that the combination treatment maintains a manageable safety profile even with extended treatment duration.
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Among all malignant tumors, lung cancer has the highest mortality and morbidity rates. The non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the most common histological subtypes. Although there are a number of internationally recognized lung cancer therapy regimens, their therapeutic effects remain inadequate. The outlook for individuals with lung carcinoma has ameliorated partly thanks to the intensive study of the tumor microenvironment and immune checkpoint inhibitors. Numerous cancers have been effectively treated with immunotherapy, which has had positive therapeutic results. Global clinical trials have validated that PD-1/PD-L1 inhibitors are effective and safe for treating lung cancer either independently or in combination, and they are gradually being recommended as systemic treatment medications by numerous guidelines. However, the immunotherapy resistance restricts the immunotherapy efficacy due to the formation of tumor immunosuppressive microenvironment and tumor mutations, and immunotherapy is only effective for a small percentage of lung cancer patients. To summarize, while tumor immunotherapy is benefiting an increasing number of lung cancer patients, most of them still develop natural or acquired resistance during immunotherapy. Consequently, a crucial and urgent topic is understanding and tackling drug resistance triggered by immunotherapy in lung cancer treatment. This review will outline the presently recognized mechanisms of immunotherapy resistance and reversal strategies in lung cancer.
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1 INTRODUCTION
Most often, lung cancer is fatal and has a poor prognosis (Nooreldeen and Bach, 2021; Thai et al., 2021; Siegel et al., 2023). Patients with advanced lung cancer have a 5-year survival rate of less than 10% (Ning et al., 2021). Late-stage lung cancer can spread to other organs, most commonly the brain, bone, lymph nodes, and other areas, causing severe pain and possibly endangering patients’ lives. At the time of diagnosis, most NSCLC patients had metastases (Ko et al., 2021); among them, bone and brain are the most frequently metastatic locations. As the tremendous advances of various immune checkpoint inhibitors in hematologic tumors and melanoma develop, the gradual rise of immunotherapy brings new opportunities and challenges and is currently one of the primary focus areas for researchers (Horn et al., 2017; Wang et al., 2019; Reck et al., 2022; Xie et al., 2022). In contrast to conventional chemotherapy or targeted therapy, immunotherapy primarily regulates and enhances the function of the human immune system through advanced immunotherapy technology, relying on the recovery and improvement of autoimmunity to kill tumor cells (Szeto and Finley, 2019; Carlino et al., 2021). Immunotherapy approaches that are now in use include medication therapy (such as anti-PD1/PDL1 monoclonal antibodies, interleukin 2, interferon alpha, and so on), cell therapy, and tumor vaccines, among others. In theory, immunotherapy can treat all types of cancer patients. According to clinical experience, preoperative immunotherapy can fight for the chance of surgery, and reduce the recurrence rate after surgery (Forde et al., 2018; Lee et al., 2019; Reuss et al., 2020). In addition, postoperative immunotherapy can reduce the risk of recurrence after surgery by promoting physical recovery and killing residual tumor cells (Zhu et al., 2021; Chaft et al., 2022). The toxicity of radiation treatment can be mitigated and the effectiveness of radiotherapy medications can be improved by combining them with immunotherapy. Advanced cancer patients can benefit from immunotherapy, which can result in long-term survival from tumors (Ueta et al., 1998; Kato et al., 2019; Wang et al., 2022b) (Figure 1).
[image: Diagram of a human body with percentages showing the probability of developing metastases in different organs. The brain shows 2.2%, heart 0.19%, liver 13.0%, pancreas 6.9%, bones 3.9%, skin 0.9%, lungs 23.8%, kidneys 3.38%, stomach 1.2%, spleen 0.8%, intestines 9.5%, blood 2.1%, reproductive organs 2.0%.]FIGURE 1 | Lung cancer is the primary contributor to cancer-related mortality among individuals aged 50 and above, surpassing the total fatalities attributed to breast, prostate, and colorectal cancer. In the year 2020, China witnessed a total of 3 million deaths caused by cancer, with lung cancer being the leading cause, accounting for a significant proportion of 710,000 deaths, representing 23.8% of the overall cancer-related fatalities. In 2020, the leading cancer types in China were as follows: lung cancer (710,000 cases), liver cancer (390,000 cases), gastric cancer (370,000 cases), esophageal cancer (300,000 cases), colorectal cancer (290,000 cases), pancreatic cancer (120,000 cases), breast cancer (120,000 cases), nervous system cancer (70,000 cases), leukemia (60,000 cases), and cervical cancer (60,000 cases). These ten types of cancer are responsible for approximately 83% of the total number of deaths caused by cancer.
Immunotherapy, including cell Programmed Death 1 (PD- 1), Programmed Death- Ligand 1(PD-L1), and Cytotoxic T- Lymphocyte Antigen- 4 (CTLA-4) inhibitors, has been an effective treatment for lung cancer in the last few years. The integration of immunotherapy and chemotherapy has become the established initial treatment for advanced NSCLC lacking gene mutations. Several licensed medications, in accordance with clinical standards, are available for marketing and utilization in this context. However, research into immunotherapy for lung cancer has not stopped, and drug resistance remains a prevalent and serious clinical challenge that requires urgent attention. Moreover, multiple studies have indicated that individuals diagnosed with lung cancer exhibit a higher propensity for developing resistance to PD-L1 inhibitors in comparison to other patient cohorts (Schoenfeld and Hellmann, 2020; Schoenfeld et al., 2021; Passaro et al., 2022).
The definition of immune resistance is still not completely unified based on clinical manifestations and biological characteristics, and the cancer immunotherapy society’s classification of immune resistance modes is widely accepted: primary resistance, acquired resistance, and patients who relapse after stopping treatment for reasons other than toxicity. Primary resistance is characterized as the advancement of disease following a minimum of two cycles of immunotherapy within a time frame of no longer than 6 months. Secondary resistance refers to disease progression in patients who have seen clinical benefit or whose disease has been stable for more than 6 months (Rizvi et al., 2023). Progression or relapse in clinical practice might emerge as primary immunological resistance, mixed resistance, or acquired resistance, which can be difficult to recognize. This is due to the fact that we cannot fully explain the mechanism of immune resistance, and the diversity and complexity of biology, as well as the presence of hyper progression and spurious progression, make defining this mechanism more difficult (Cheson et al., 2016; Danylesko et al., 2021), and the different mechanisms of resistance will influence the formulation of follow-up treatments. According to current research, the mechanism of immunotherapy drug resistance may be correlated with changes in tumor internal factors (such as driver genes, tumor mutation burden) and the formation of tumor immunosuppressive microenvironment, which fails the immune system’s typical response, manifested as primary or secondary drug resistance. Based on this, further research into immunotherapy resistance prediction and reversal strategies following drug resistance is required (Schoenfeld and Hellmann, 2020). This article will also examine tumor internal elements and immunological microenvironment in immune resistance formation.
2 THE CURRENT STATE OF LUNG CANCER IMMUNOTHERAPY
Lung cancer has the most somatic mutations and acquired treatment resistance (Schoenfeld and Hellmann, 2020). According to WHO pathological analysis (Marx et al., 2015), there are four distinct classifications of lung cancer, namely, small cell lung cancer (SCLC), lung adenocarcinoma, lung squamous cell carcinoma, and large cell lung cancer, the latter three of which can also be referred to collectively as non-small cell lung cancer (NSCLC). Furthermore, NSCLC and SCLC were detected through genetic testing; the latter is a collection of multi-gene abnormalities, with numerous driver genes cooperating (Oser et al., 2015; Hamilton and Rath, 2019). SCLC has early metastasis, predominantly multiple metastases, and a poor prognosis based on its pathological characteristics (Molina et al., 2008; Hamilton and Rath, 2019). The treatment of lung cancer has seen significant transformations over the past decade as a result of the introduction of immune checkpoint inhibitors (ICIs). Prior to more than a decade ago, terminal NSCLC and SCLC had a Median Survival Time (MST) of only 1 year, and platinum-based chemotherapy emerged as the primary therapeutic approach for these individuals. Due to their discovery and availability, immune checkpoint inhibitors have revolutionized lung cancer treatment, particularly NSCLC (Gadgeel et al., 2020). Immunotherapy has significantly improved NSCLC Patient Overall Survival (OS), whether they are adjuvant or neoadjuvant (Paz-Ares et al., 2018). When advanced disease is treated with immunotherapy, the overall survival rate for SCLC patients is minimally improved compared with NSCLC patients (Hamilton and Rath, 2019). Suppressing PD-1/PD-L1 or CTLA-4 in NSCLC and SCLC at different stages has been the subject of multiple clinical investigations.
2.1 Immunotherapy advancements in NSCLC
The Impower trial is a phase III clinical trial that encompasses a cohort of 1,280 patients diagnosed with stage IB-IIIA non-small cell lung cancer (NSCLC) and who have undergone complete surgical removal of their tumors. 1,269 of them were treated with cisplatin-based chemotherapy (cisplatin plus pemetrexed, docetaxel, gemcitabine, or vincristine), then 1,005 were given either 16 rounds of Atezolizumab or the best supportive care (BSC). The primary goal of the trial was disease-free survival (DFS), with Overall Survival (OS) serving as the secondary outcome of the study. There was a significant difference between how well Atezolizumab and BSC worked to cure people in stage II-III A who had PD-L1 positive (TPS 1%) cancer. According to the most recent OS data in 2022, the most significant improvement in OS (76.8% vs. 67.5%) was reported in stage II-III A patients with PD-L1 expression1%. Atezolizumab-treated patients with PD-L1 TPS 50% and no EGFR/ALK + saw a 17.3% increase in OS over BSC-treated patients (84.8% vs. 67.5%) (Felip et al., 2021).
Besides PD-L1 inhibitors, PD-1 inhibitor Nivolumab paired with chemotherapy has made significant advances in neoadjuvant lung cancer therapy (Forde et al., 2022). Nevertheless, CTLA-4 inhibitors are yet to be evaluated in the treatment of NSCLC. Researchers found that dual immunosuppressant therapy with or without chemotherapy is superior to monotherapy based on preliminary results from studies of Checkmate-9LA and Checkmate-227 (Hellmann et al., 2019; Paz-Ares et al., 2021; Brahmer et al., 2023). The creation of dual immune checkpoint inhibitors is an additional significant development in recent research. Among them, AK104 is the first bispecific antibody to target PD-1/CTLA-4 to enter clinical trials worldwide, is significantly more effective than monotherapy with PD-1/PD-L1 and CTLA-4, and effectively reduces toxic side effects associated with monotherapy (Pang et al., 2023) (Table 1).
TABLE 1 | Trials using combination immunotherapies for NSCLC.
[image: Table listing clinical trials for drug resistance in immunotherapy for NSCLC. It includes trial identifiers, targets, treatment strategies, phases, and end points. Targets include PD-1 and PD-L1. Treatment strategies feature combinations like Pembrolizumab and Docetaxel. Phases range from 1 to 3, with end points like Overall Survival (OS) and Objective Response Rate (ORR).]2.2 Immunotherapy advancements in SCLC
Based on the biological characteristics of SCLC (Hamilton and Rath, 2019; Raso et al., 2021), previous single-agent immunotherapy has been less effective when compared to NSCLC (Reck et al., 2016; Pavan et al., 2019), but in the past few years, IMpower133, CASPAIN, and ASTRUM005 have made significant breakthroughs in clinical studies (Paz-Ares et al., 2019; Mansfield et al., 2020; Cheng et al., 2022), making immunotherapy combined with chemotherapy the new standard first-line treatment for advanced SCLC. The development and utilization of immunosuppressants in advanced SCLC patients is expected to yield a substantial enhancement in their survival prognosis (Goldman et al., 2021). The CASPAIN study’s long-term follow-up findings revealed a significantly reduced occurrence of pneumonia of any grade in the group treated with Durvalumab compared to the chemotherapy group (4% vs. 7%). However, it is necessary to enhance and thoroughly assess the safety of current treatment protocols (Paz-Ares et al., 2019). Other research has indicated that PD-1 inhibitors exhibit a greater incidence of serious adverse effects compared to control groups. Furthermore, immunotherapy for advanced SCLC patients has plenty of room for improvement (Antonia et al., 2016; Pakkala and Owonikoko, 2018). The question of whether patients can continue to use immunotherapy after first-line immunotherapy combined with chemotherapy is a current research hotspot, and OS data from several clinical studies suggest that continued immunotherapy improves survival, but a large amount of evidence-based medical evidence is required (Table 2).
TABLE 2 | Trials using combination immunotherapies for SCLC.
[image: Table listing clinical trials of drug resistance in immunotherapy for small cell lung cancer (SCLC). It includes columns for trial identifier, target, treatment strategy, phase, and endpoint. Trials cover various targets and treatment combinations, including PD-1, PD-L1, VEGF, and others, across different phases, with endpoints such as ORR (Objective Response Rate), PFS (Progression-Free Survival), and OS (Overall Survival).]3 MECHANISMS OF IMMUNOTHERAPY RESISTANCE
Immunotherapy resistance is not yet formally defined, and the fundamental mechanisms are being intensively researched. It is possible to analyze immunotherapy resistance in terms of tumor microenvironment (TME) and internal tumor factors (Figure 2).
[image: Immunological diagram illustrating cellular interactions involving Tregs, TAMs, monocytes, MDSCs, effector T cells, DCs, and CAFs. Arrows indicate pathways and interactions, with labels noting cell types and markers like GITR, CTLA4, and IL-10.]FIGURE 2 | The primary site of immunotherapy resistance is the tumor microenvironment, which can be thought of as the tumor immune system’s battleground for promotion and repression. Tregs, MDSCs, and TAMs are immune-inhibitory cells that limit effector T cell function and encourage the recruitment and initiation of immune-suppressive cells by secreting cytokines including interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ). ECM and CAFs are both implicated in the control of immunosuppression, according to recent studies.
3.1 The tumor microenvironment
The TME consists of blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, various signaling substances, and extracellular matrix (ECM). Previously assumed to be bystanders in carcinogenesis, these host cells and extracellular matrix components are now understood to play an important part in tumorigenesis, treatment resistance, and other processes (Belli et al., 2018; Petitprez et al., 2020; Li and Qiao, 2022). Current research indicates that the microenvironment of the tumor is the primary site of immunotherapy drug resistance and that the mechanism of drug resistance is highly heterogeneous (Passaro et al., 2020; Tang et al., 2021). A tumor’s microenvironment can influence the tumor’s metabolic and physiological functions in both positive and negative ways. Positive tumor microenvironment regulation: immune effector cells and effector cytokines.
3.1.1 Positive tumor microenvironment regulation: immune effector cells and effector cytokines
The immune cells and associated matrix components recruited and/or activated by tumor cells in the TME will create a special anti-tumor inflammatory microenvironment in the early stages of tumor cell colonization or growth, thus slowing down tumor development (Belli et al., 2018; De Visser and Joyce, 2023). Immune effector cells, like CD4+ and CD8+ T lymphocytes, play a direct or indirect role in the elimination of tumor cells through the induction of channel apoptosis and/or the production of cytokines in both the innate and adaptive immune responses. B cells have received less attention in this regard, yet, there is evidence suggesting that B cells may also assume an effector function inside TME (Liu et al., 2021). Furthermore, both T cells and B cells are capable of generating memory cells that possess anti-cancer capabilities (Xiang et al., 2021; Tong et al., 2022). Increasingly, the identification of the role of DC cells in maintaining adaptive immune responses is being identified (Marciscano and Anandasabapathy, 2021; Huang et al., 2022). In addition, the TME is functionally depleted after continuous stimulation of tumor antigen and immune activation. Insufficient infiltration of effector cells, dysfunction, depletion, and impaired memory cell formation may lead to their inability to perform normal functions or even transform into a pro-cancer phenotype, thus forming an immunosuppressive microenvironment (Belli et al., 2018; Shen and Kang, 2018; De Visser and Joyce, 2023) and leading to the development of drug resistance.
3.1.2 Negative tumor microenvironment regulation: immunosuppressive cells and immunosuppressive cytokines
Negative regulatory cells and cytokines make up a large portion of the immunosuppressive microenvironment surrounding solid tumor tissues. Tumor-infiltrating immune cells like Tregs, TAMs, and MDSCs also produce a significant amount of chemokines, cytokines, and proteases that block antitumor immunity and help tumors grow and spread (Tong et al., 2022; Wu et al., 2022; Yan et al., 2022). Enhancing the recruitment and penetration of TAMs, MDSCs, Tregs, and other immunosuppressive cells at tumor sites might not only improve tumor-mediated immunosuppression but also diminish tumor sensitivity to immunotherapy, which can lead to primary or acquired drug resistance (Meyer et al., 2014; Sharma et al., 2017). Tregs consist mostly of immunological subsets of CD4+ T cells (Paluskievicz et al., 2019). These subsets play a crucial role in suppressing the activation and proliferation of cytotoxic CD8+ T cells and effector CD4+ T cells. This suppression is achieved by reducing the expression of CD80 and CD86 on antigen-presenting cells (APCs), as well as impairing the function of both naive T cells and memory T cells. Tregs may discharge perforin and granzyme to promote the lysis of effector cells, as well as TGF-β, IL-10, and IL-35, which suppress IL-2R expression in target cells and reduce their proliferation; they can also release IL-10 to induce monocytes to differentiate into TAMs, which release IL-6 and IL-10 to activate Tregs, and they can release CCL22 to stimulate CCR4+Tregs (Paluskievicz et al., 2019; Koyama and Nishikawa, 2021).
MDSCs are bone marrow-derived cells that serve as precursors for DC cells, macrophages, or granulocytes. They are capable of inhibiting immune responses, stopping T cell and NK cell activity, which promotes tumor growth, and making tumor cells resistant to the body’s immune surveillance, which results in immune drug resistance (Birbrair, 2020; Law et al., 2020). MDSCs secrete TGF-β and IL-10, which inhibit effector T cell function, and they may enhance FOXP3+ Treg formation in malignancies like melanoma by releasing IL-10 and IFN-γ, according to multiple studies (Huang et al., 2006; Li et al., 2020). Also, CXCR2+ MDSCs are the primary subpopulation mediating immune escape in the TME of pancreatic and hepatocellular carcinoma, which can be reversed by CXCR2 antagonists (Steele et al., 2016; Wang et al., 2022).
Monocytes and macrophages in the peripheral circulation can be recruited into the tumor microenvironment, where macrophages respond to signals from tumor cells and stromal cells by changing their functional phenotype. M1-type macrophages are associated with inflammatory responses and anti-tumor immunity, whereas M2-type macrophages, which resemble TAMs, have pro-tumor properties (Gambardella et al., 2020; Boutilier and Elsawa, 2021). In a variety of cancer types, TAM infiltration is associated with poor patient outcomes. TAMs inhibit T-cell function by reducing their antigen-presenting ability and unleashing immunosuppressive factors, including IL-10 and TGF-β (Chen et al., 2019; Wang et al., 2022).
The TME contains non-immune cells that are implicated in carcinogenesis, tumor recurrences, and metastases, which are associated with resistance to treatment. ECM deposition and remodeling inside the tumor microenvironment are primarily controlled by cancer-associated fibroblasts (CAFs). Prior laboratory examinations have showcased that CAFs impede the attraction and stimulation of T cells through the secretion of CXCL12 and TGF-β. This action contributes to the deposition of ECM (Mao et al., 2021; Li et al., 2022). CAFs also release IL-6, IL-1, VEGF, and CCL2, which suppress anti-tumor immunity and promote the formation of Tregs, which are immunosuppressive. Furthermore, the CD10+GPR77+CAF subset has been found in human cancer tissue samples to contribute to tumor stem cell proliferation by secreting IL-6 and IL-8, hence contributing to tumor growth and resistance to chemotherapy (Freeman and Mielgo, 2020; Dhandapani et al., 2023). VEGF and its downstream signaling pathways can promote angiogenic conversion (Fukumura et al., 2018), and may be a significant contributor to immune resistance (Shojaei et al., 2007; Kandalaft et al., 2010; Hack et al., 2020).
3.1.3 The metabolism of nutrients in the TME
To maintain the tumor’s anabolic requirements, an acidic, hypoxic tumor microenvironment is created in the TME. Metabolic changes in the TME, in turn, can impede immune cell infiltration by creating immunosuppressive metabolites, lowering the response to immunosuppression (Li et al., 2019). Glutamine, a functional substance in metabolites, produces ammonia during catabolism, which activates autophagy in immune cells (Keulers et al., 2022; Ma et al., 2022); arginine was discovered to be degraded in the tumor microenvironment by arginase, which is expressed by immunosuppressive cells such as epithelial M2 macrophages and Tregs, leading to T-cell function inhibition (Lemos et al., 2019; Azambuja et al., 2020). Elevated levels of extracellular adenosine, depletion of tryptophan, and dysregulated activation of the PI3K/Akt pathway may lead to the development of immune tolerance within the tumor microenvironment, hence diminishing the sensitivity and efficacy of immunotherapy interventions (Lemos et al., 2019; Giannone et al., 2020; Wang et al., 2020).
3.2 Tumor internal factors
3.2.1 The activation of driver genes
Different metabolic pathways might be affected by the inheritance of particular genes. Lung cancer cells, particularly NSCLC, have a plethora of driver genes capable of mediating immune escape. Mutations, insertions, and amplifications in relevant signaling pathways and proteins, such as mutations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), Kirsten rats arcomaviral oncogene homolog (KRAS), and other molecular changes such as ROS1, RET rearrangement, and MET amplification, have all been linked to immunoresistance (Imielinski et al., 2012; Dantoing et al., 2021). EGFR mutations are prevalent in NSCLC (Dearden et al., 2013), and it has been shown in clinical trials that people with these mutations don't respond to immune monotherapy. This may be because suppressive cytokines are made when the EGFR signaling pathway is activated, which stops effector CD8+ T cells from working, and because the EGFR/GSK-3/FOXP3 axis makes Tregs multiply, which makes the immune system weaker (Borghaei et al., 2015; Wang et al., 2016). Patients with ALK fusion can decrease neoantigen formation via the PI3K-AKT and MEK-ERK pathways (Ducray et al., 2019; Hao et al., 2019) while increasing the number of immunosuppressive cells, leading to poor immunological monotherapy. Patients with KRAS mutations, on the other hand, have shown that KRAS mutations may cause immune escape by upregulating neoantigen expression and possibly PD-L1 expression without significantly activating immunosuppressive cells (Coelho et al., 2017). The immune milieu is influenced by a number of factors, and gene mutations may currently be one of the mechanisms of immunological resistance, but their clinical application needs to be explored and interpreted further.
3.2.2 Tumor mutation burden (TMB)
TMB means the number of nonsynonymous mutations occurring in a particular genomic region in somatic cells. This number is typically stated as how many mutations per megabase (mut/Mb), however earlier studies also used the term directly to refer to the number of mutations (Chan et al., 2019). Several clinical phase III randomized controlled trials have shown TMB’s predictive role in efficacy (Hodi et al., 2021; Rozeman et al., 2021). Because of its ability to indirectly reflect the ability and degree of neoantigen creation. Several following clinical phase III randomized controlled trials have similarly shown TMB’s predictive role in efficacy (Tawbi et al., 2022). Tumor neoantigens are tumor-cell specific and are derived mostly from point mutations, gene insertion knockouts, shift mutations, and structural alterations in tumor cell genomes. Because of their greatest distinguishing trait, tumor cell-specific expression, they are also known as tumor-specific antigens (Schumacher and Schreiber, 2015). In clinical studies, it was discovered that a proportion of NSCLC patients treated with Pembrolizumab developed treatment resistance, losing 7–18 mutation-associated neoantigens that produce an effective response and generating complex de novo mutations that result in a decreased proportion of involved coding tumor antigens and altered TCR clonality, thus causing drug resistance (Anagnostou et al., 2017).
3.2.3 MHC degeneration: decreased ability to present
The major histocompatibility complex (MHC), also called the major histocompatibility complex gene, is a group of highly dynamic genes that code for antigen-presenting and T-cell-activating factors that are important in immune response and control (Kumánovics et al., 2003). In 2017, a team identified HLA alleles in NSCLC patients and discovered that HLA mutations are a prevalent immune evasion mechanism in the progression of lung cancer (McGranahan et al., 2017). In NSCLC, inactivation of the B2M gene leads to improper folding and transport of MHC class I molecules to the cell surface, which results in diminished or missing expression of MHC class I molecules, rendering them unrecognized by CD8+ T cells and leads to immunological treatment resistance (Wang et al., 2021). Additionally, it has been discovered that TILs where drug resistance occurs exhibit deficient expression of MHC-II class II molecules (He et al., 2017). Some lung cancer cells are less immunogenic due to the lack of MHC molecules, which helps them evade immune monitoring and contributes to immunotherapy resistance.
3.2.4 Epigenetic modifications
In recent years, there has been a significant focus on investigating the epigenetics of lung cancer, which has led to the discovery of the involvement of various mechanisms such as DNA methylation, non-coding RNA expression, and post-transcriptional regulation. These mechanisms have been found to play crucial roles in the development of lung cancer. Additionally, there has been a growing interest in understanding the interplay between epigenetics and the effectiveness of immunotherapy and targeted therapy in treating lung cancer (Jen et al., 2017; Huang et al., 2022). Epigenetic mutations in lung cancer are also anticipated to function as potent markers for lung cancer diagnosis, staging, and prognosis of treatment efficacy. Lung cancer development is now believed to be a protracted process that results in the progressive accumulation of epigenetic abnormalities. In turn, epigenetic alterations can promote the invasive behavior of lung cancer cells, which can be resistant to immunotherapy (Duruisseaux and Esteller, 2018).
3.3 Individual heterogeneity
In addition to factors in the tumor and its microenvironment, the patient’s age, weight, smoking history, gut microbial composition, the presence of other underlying diseases such as hypertension and diabetes, and previous hormone and antibiotic use may influence the effectiveness of immunotherapy (Routy et al., 2018; Knippel et al., 2021).
4 REVERSAL STRATEGIES IN LUNG CANCER IMMUNOTHERAPY
Due to cancer immunotherapy resistance is the result of the collaboration of tumor microenvironment, host-related factors, and internal tumor cell factors, only a comprehensive assessment of the patient’s drug resistance status and immune status, analysis of the cause of drug resistance, and precise individualized treatment for the specific drug resistance mechanism are required. The therapy of these tumors’ internal and external factors is critical (Figure 3).
[image: Diagram titled "Strategies for overcoming immunotherapy resistance" lists four categories: Promote neoantigen production (immunocombined radiotherapy, tumor vaccine, CAR-T therapy), Blocking the co-inhibitory receptors (LAG-3, TIM-3, TIGIT, Others), Tumor microenvironment (target immunosuppressive cells, target immunosuppressive factors), and Others (immuno-combination chemotherapy, antibody-drug conjugate, re-challenge immunotherapy).]FIGURE 3 | Immunotherapy resistance is common in lung cancer treatment. In this article, methods for increasing the development of tumor neoantigens, focusing on co-inhibitory receptors, and focusing on the tumor microenvironment are developed as techniques for overcoming immunotherapy resistance. Neoantigen production has been shown to be stimulated by radiotherapy, oncology vaccines, and CAR-T therapy. Inhibitors of immune checkpoints can also enhance the clinical effects of immunotherapy by targeting immune-suppressive cells and factors in the TME. Additionally, immunotherapy for lung cancer can be more sensitive when used in combination with chemotherapy other ADC medications or when given again after a pause.
4.1 Immuno-combination chemotherapy
Chen Lieping’s team suggested that the lower level of immune effector cell infiltration and functional depletion led to immunosuppression and thus mediated immune escape, which led to the suggestion that based on PD-L1 expression and TIL status, TIME can be classified into four types: PD-L1-/TIL- (type I), PD-L1+/TIL+ (type II), PD-L1-/TIL+ (type III), PD-L1+/TIL- (type IV), which can provide some predictive value as well as therapeutic value for immune drug resistance. With the gradual discovery of TCR’s capacity to recognize neoantigens, a combination therapy strategy based on its clonal heterogeneity and dynamic evolution pattern, combined with different typing, can be adopted (Kim et al., 2022).
Additional research, including CHECKMATE012, IMPOWER130, and IMPOWER133, demonstrated that patients receiving chemotherapy in addition to various immune checkpoint inhibitors had much greater survival times than those receiving chemotherapy alone (Negrao et al., 2019; West et al., 2019; Mansfield et al., 2020). Nevertheless, the phase II clinical trial encompassed patients with NSCLC who had undergone chemotherapy treatment and experienced tumor progression subsequent to receiving immunotherapy in the second and third lines, and continued treatment with the immune-combination chemotherapy regimen did not result in an improvement in survival compared to chemotherapy alone. It has been postulated that the initial chemotherapy causes severe myelosuppression and that the reduction of TILs is the key to immunotherapy resistance (Cheng et al., 2022). As a result, balancing the doses and sequencing of chemotherapy and immunotherapy may be a strong method for overcoming immunotherapy resistance and improving efficacy.
4.2 Immuno-combination radiotherapy
It has been shown that radiotherapy can help T-cells start working by increasing MHC-I expression and making it easier for antigen-presenting cells to get rid of damaged tumor cells (Theelen et al., 2019). Radiotherapy may also encourage the creation of new antigens. Furthermore, radiotherapy can alter the tumor microenvironment, notably angiogenesis, promoting lymphocyte infiltration and thereby increasing immunotherapeutic efficacy (Wilkins et al., 2019). The PEMBO-RT study showed that combining Pembrolizumab and targeted radiotherapy improved objective remission rates in NSCLC patients (Theelen et al., 2019; 2021). According to a retrospective analysis, 208 patients with NSCLC who developed immunotherapy resistance had the best survival benefit following resistance with local therapy combined with immunotherapy compared to other regimens (chemotherapy, anti-angiogenesis, etc.). Thus, radiation combined with immunotherapy restored drug resistance to some extent, providing a novel treatment concept (Xu et al., 2021).
4.3 Immuno-combination immunotherapy and blocking the co-inhibitory receptors
Based on immune-mediated resistance mechanisms, blocking co-inhibitory receptors, targeting immunosuppressive factor signaling, and inhibiting interferon sustained activation signaling can increase immune efficacy. PD-1 inhibitors combined with CTLA-4 inhibitors, which have distinct mechanisms of action and can act synergistically, are the most common dual immune combination regimens (Wei et al., 2017; Rotte, 2019). When used early in the immune response, CTLA-4 inhibitors increase the number of effector T cells, while PD-1 inhibitors prevent the attachment of PD-1 to its receptor and lessen T cell depletion (Duraiswamy et al., 2013). In addition, LAG-3, TIM-3, and TIGIT are three more immune checkpoints that are gaining popularity in tumor immunotherapy research (Anderson et al., 2016; Das et al., 2017; Chauvin and Zarour, 2020). Given the strong relationship between TIGIT expression and T-cell depletion, as well as the ongoing development and clinical trials of TIGIT monoclonal antibodies, the function of inhibiting TIGIT in reversing immunological resistance remains hopeful. By attaching to MHC-II-like molecules on the surface of APCs, the LAG-3 antibody activates APCs and elicits an immune response that fights tumors. The combination of LAG-3 with Pembrolizumab resulted in an objective remission rate (ORR) of up to 38.6% in advanced or metastatic NSCLC patients that were EFGR/ALK-negative in the phase II trial TACTI-002. This ORR was much higher in patients with strong PD-L1 expression (ORR = 52.6%) (Felip et al., 2022). Therefore, it stands to reason that LAG-3 paired with ICI therapy merits additional research into how it performs in the event of immunological resistance. Another IDO1 inhibitor increased IDO1 activity in tumor cells leading to increased KYN products (Triplett et al., 2018), which suppress CD4+ Th1 cells, Th17 cells, CTLs, and NK cells, all of which are overexpressed in malignant tissue. However one study found that IDO1 expression in the tumor microenvironment and normal tissue in NSCLC was not significantly different (Long et al., 2019), which may be one of the reasons for the lack of clinical benefit of IDO1 inhibitors. Adenosine is abundantly expressed in the tumor microenvironment of NSCLC, where it supports the growth and differentiation of Tregs and MDSCs, increasing tumor development and metastasis (Mao et al., 2022). Moreover, treatment leading to cell death, etc. is accompanied by a large quantity of ATP release, producing high concentrations of adenosine to promote the formation of immunosuppressive line TME and further suppress immune activity. Because the therapeutic efficacy of A2aR inhibitors is still being investigated, addressing the adenosine pathway may offer promise for overcoming immunological resistance (Leone and Emens, 2018; Xia et al., 2023). Anti-angiogenesis can boost T-cell infiltration in the tumor immunological milieu, and when combined with ICI, it has also shown improved efficacy in various clinical studies, which can be investigated further to confirm the benefit of clinical application after immune resistance (Rahma and Hodi, 2019). Since prolonged IFN signaling activation causes high ligand expression of the JAK/STAT1 pathway-mediated multiple co-inhibitory receptors TCIR, resulting in T-cell depletion, and may induce tumor epigenetic and transcriptomic alterations with significant immunosuppressive effects that mediate immune resistance, JAK1 inhibition may reverse immune resistance (Kurdi and Booz, 2007). In glycolytic tumors, lactate exerts an immunosuppressive effect (Li et al., 2023). As a result of tumor cells’ Warburg effect, lactate accumulates to dangerous levels in the TME. In addition to serving as a medium for tumor development and metastasis, elevated lactate levels can also facilitate tumor proliferation and evasion of the immune system through the activation and recruitment of immunosuppressive cells and molecules. By inducing the production of vascular endothelial growth factor (VEGF) and arginase-1 (Arg1) via the HIF1-signaling pathway, lactate can promote the polarization of TAMs to the M2 subtype and assist TAMs to promote tumor growth. In addition, elevated concentrations of lactic acid in the TME may cause Tregs to develop resistance to PD-1 antibody therapy (Watson et al., 2021; Wang et al., 2022).
Other combination therapeutic options, such as targeting metabolic pathways, targeting epigenetic pathways, intestinal microbiota, and others, have emerged as new therapeutic strategies for reversing immunotherapy resistance; however, plenty of research is still being conducted because the mechanism of action is uncertain. In addition to the efficacy of immune-combination strategies for reversing immune resistance, the monitoring of side effects and safety should not be overlooked.
4.4 Lysovirus and CAR-T therapy
Oncolytic virus therapy involves infecting tumor cells selectively with natural or genetically modified viruses, killing and cleaving cells by virus replication, and releasing viruses to infect other tumor cells. Moreover, lytic tumor cells will produce tumor antigens, eliciting an immune response (Raja et al., 2018). CAR-T therapy, a breakthrough immunotherapy treatment, uses chimeric antigen receptors to target cancer cells. These modified T-cells recognize and attack different tumor cells when reintroduced into the patient. While, because there are currently few CAR-T cell epitopes and the recruitment rate in solid tumors is limited, current clinical studies only show significant advantages in hematological cancers (Ma et al., 2019; Sterner and Sterner, 2021). Oncolytic viruses have the potential to alleviate the problem of CAR-T not being able to infiltrate the tumor microenvironment (Evgin et al., 2022). It has been discovered that oncolytic viruses can boost the expression of CD19 on the cell surface before killing it, enhancing the cytotoxicity targeting CD19+CAR-T and achieving a higher curative impact (Park et al., 2020).
4.5 Tumor vaccines
Tumor vaccination stands out as a recent focal point in research. Various formats are utilized to introduce tumor antigens to patients, including tumor cells, proteins or peptides associated with tumors, genes that express tumor antigens, exosomes, and other such forms (Xu et al., 2020). With this approach, tumor immunosuppression will be overcome, immunogenicity will be boosted, the innate immune system will be activated, and both cellular and humoral responses will be triggered. The objective is to attain the aspiration of anti-tumor immunity.
4.6 Antibody-drug conjugates
Antibody-drug conjugates (ADCs) are a new type of medication that combines antibodies and tiny molecular cytotoxins. ADCs are composed of humanized or human monoclonal antibodies (mAbs), cytotoxic payload, and connections (Tsuchikama and An, 2018), allowing them to target and destroy cancer cells. The development of more accurate targets, the enhancement of targeted antigen-antibody binding, and the stabilization of connector coupling mode in accordance with the action characteristics of ADC drugs are the main areas of the current study. As of now, 14 ADCs are approved for use in treating advanced, recurring/refractory, and metastatic malignant cancers. More than 100 different types of ADCs are currently undergoing clinical trials (Fu et al., 2022), indicating that significant advancements have been made in the study and development of precision therapy as represented by ADC medications. This provides patients in the last line of defense against tumor survival with more treatment options and hope. The benefits of ADC alone are limited due to the evolution of drug resistance as well, so combining ADC with other anticancer medications has emerged as a key area for its drug development (Fuentes-Antrás et al., 2023). Right now, ADC-combined immunotherapy is mostly used with drugs that block PD-(L)1 and CTLA-4. Studies have shown that ADC increases antigen presentation and stimulates T-cell infiltration. It increased the immunosuppressive action of TME while promoting positive immunological modulation, achieving the impact of one plus one greater than two (Boshuizen et al., 2021). Simultaneously, researchers are looking into the potential benefits of combining ADC with other treatments, like as chemotherapy, targeted therapy, and anti-angiogenesis drugs, to provide cancer patients with even more treatment alternatives.
4.7 Re-challenge immunotherapy
A retrospective analysis found that the degree to which a patient was resistant to Nivolumab treatment was proportional to how well the drug worked the first time it was used (Giaj Levra et al., 2020). During subsequent administration, the utilization of an alternative PD-1/PD-L1 inhibitor has demonstrated certain therapeutic effectiveness; but the underlying rationale behind this occurrence remains unexplained. This phenomenon requires further investigation and extensive clinical evidence to understand both its cause and effectiveness.
5 CONCLUSION
Immunotherapy has given hope to lung cancer patients and resulted in long-term survival for some, however, the lack of an effective prediction method, as well as the relatively solitary and fragmented indicators, result in low predictive ability (Brueckl et al., 2020). Currently, there is no clear understanding of how the tumor microenvironment interacts with tumor cells, and clinical research data are also in the process of improvement. Clinically, there is no agreement on the definition of immunological resistance, and pseudoprogression complicates the evaluation of immunotherapy outcomes (Cheson et al., 2016; Danylesko et al., 2021). As immunotherapy gains popularity, however, medication resistance will become an increasingly pressing issue. Recently, some researchers have revealed tumor immune characteristic maps of 12 distinct types of cancers (Combes et al., 2022), providing an important notion for enhancing the relationship between tumors and immunity. However, the mechanism of immune drug resistance is diverse, and reversal strategies for various drug resistance mechanisms can improve the accuracy of customized immunotherapy targets. As a result, the treatment scheme must be chosen in conjunction with the individual tumor immunological features. It is envisaged that in the future, we will be able to create precise and tailored combined treatment plans by using programmed algorithms to assess the tumor immune microenvironment and microbiology of lung cancer patients (Jia et al., 2020). A wide range of novel therapeutic approaches can also be actively investigated and tested in an effort to improve patient survival and treatment duration, which has a promising future.
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Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. In the past decade, with the development of early diagnostic techniques, a clear decline in GC incidence has been observed, but its mortality remains high. The emergence of new immunotherapies such as immune checkpoint inhibitors (ICIs) has changed the treatment of GC patients to some extent. However, only a small number of patients with advanced GC have a durable response to ICI treatment, and the efficacy of ICIs is very limited. Existing studies have shown that the failure of immunotherapy is mainly related to the development of ICI resistance in patients, but the understanding of the resistance mechanism is still insufficient. Therefore, clarifying the mechanism of GC immune resistance is critical to improve its treatment and clinical benefit. In this review, we focus on summarizing the mechanisms of primary or acquired resistance to ICI immunotherapy in GC from both internal and external aspects of the tumor. At the same time, we also briefly discuss some other possible resistance mechanisms in light of current studies.
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1 INTRODUCTION
Gastric cancer (GC) has the fourth highest mortality and fifth highest incidence globally, and the GC prevalence is usually higher in East Asia than in Europe and the US (Sung et al., 2021). The early symptoms of GC are usually less obvious. Most patients with GC are already advanced when the tumor is found in their body, and the 5-year relative survival rate is very low (Thrift and El-Serag, 2020). Currently, endoscopic resection is the optimal treatment with favourable prognosis for early GC. Nonearly operable GC is treated with surgery. The extent of surgical resection depends on tumor location, histological subtype and TNM (Tumor Node Metastasis) category. Perioperative chemotherapy and adjuvant treatment can improve the survival rate of patients to a certain extent. The first-line treatment of advanced or metastatic unresectable GC is sequential lines of chemotherapy, such as a platinum and fluoropyrimidine doublet. Currently, trastuzumab (HER2-positive patients) and nivolumab or pembrolizumab are approved targeted therapeutic agents for GC (Lordick et al., 2022).
In the last 10 years, immunotherapy has rapidly developed, especially the application of immune checkpoint inhibitors (ICIs). These drugs work by targeting specific molecules such as programmed death-1 (PD-1) or its ligand programmed death ligand-1 (PD-L1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) to reestablish anti-tumor responses and prevent tumor cells from evading immune surveillance. Many advanced GC patients treated with ICIs have a good respond and a significantly longer survival (Jin et al., 2022; Kaushik et al., 2022). However, in GC patients, the efficacy of single-agent immunotherapy has been unsatisfactory despite breakthroughs in PD-1 antibody research (Wang et al., 2021). Clinical trials have also confirmed that the effectiveness of targeted drugs such as CTLA-4 and PD-1 alone or in combination with other drugs is limited for patients with advanced GC, which is far less than that of melanoma, lung cancer and other tumors (Kooshkaki et al., 2020). Existing studies have shown that the failure of immunotherapy is mainly related to the development of ICI resistance in patients, but the understanding of the resistance mechanism is still insufficient (Baxter et al., 2021). Therefore, understanding the immune resistance mechanism in GC is critical to improve its treatment and clinical benefit. The ongoing clinical trials of PD-1/PD-L1 in advanced gastric cancer (Table 1).
TABLE 1 | The ongoing clinical trials of PD-1/PD-L1 in advanced gastric cancer.
[image: Table showing clinical trials for various cancer treatments. Columns include Intervention/Treatment, Phase, Target, Condition, Study size, Estimated completion date, and NCT number. Treatments listed are Durvalumab, Tremelimumab, Pembrolizumab, Trastuzumab, Nivolumab, Ipilimumab, and Atezolizumab, targeting conditions like gastric cancer and gastroesophageal cancer, with study sizes ranging from one hundred seven to one thousand seven. Completion dates range from 2023 to 2027, with respective NCT numbers provided.]In this review, we focus on the mechanisms of primary or acquired resistance to ICI immunotherapy in GC, including tumor-intrinsic, tumor-extrinsic and other mechanisms (Figure 1), and emphasize the importance of these resistance mechanisms for GC treatment in immuno-oncology.
[image: Diagram illustrating immunosuppressive factors within a tumor environment. It shows interactions among tumor cells, T cells, regulatory T cells, and dendritic cells. Key points include T cell rejection, reduced co-inhibitory receptor expression, and tumor antigen mutation. Elements like microbials and abnormalities in antigen presentation are also depicted.]FIGURE 1 | Mechanisms of ICI immunotherapy resistance. Tumor-intrinsic mechanisms: a, Reduced expression of co-inhibitory receptors, such as B7-H1(PD-L1) and B7-1; b, Abnormalities in critical signaling pathways, including IFN-γ, MAPK and Wnt/β-catenin signaling pathway; c, Loss or mutation of immunoedited antigens; d, Deficiency of tumor antigen presentation. Tumor-extrinsic mechanisms: e, T cell rejection; f, Immunosuppressive cells; g, Inhibitory factors in the TME; h, Microbiota.
2 MECHANISMS OF ICI IMMUNOTHERAPY RESISTANCE
Resistance to ICI immunotherapy can be divided into primary resistance and acquired resistance based on clinical outcomes. Primary resistance refers to an initial failure to respond to immunotherapy, whereas acquired resistance refers to disease progression after an initial response to immunotherapy. In some ways, primary and acquired resistance mechanisms overlap, which may underlie why GC develops resistance to ICIs. At present, as our research on acquired resistance is still in its infancy, in this paper, we will mainly focus on the basic and potential mechanisms of ICI treatment resistance, which are divided into tumor-intrinsic, tumor-extrinsic and other mechanisms, and do not classify them as primary or acquired to avoid complicating the problem.
2.1 Tumor-intrinsic mechanisms
2.1.1 Reduced expression of co-inhibitory receptors
PD-1/PD-L1 inhibitors are the first group of ICIs to be used in clinical practice. The expression intensity of tumor B7-H1/PD-L1 is closely related to ICI response, so it has become a commonly used biomarker to predict the effect of ICIs (Ott et al., 2019). The combination of PD-1 and PD-L1 weakens the ability of T cells to kill tumors, inhibits T-cell receptor-mediated cytokine secretion and lymphocyte proliferation, and ultimately leads to tumor cells evading the immune system (Freeman et al., 2000). In addition, tumor-associated B7-H1 can also evade the host immune response by promoting T-cell apoptosis (Dong et al., 2002). Targeting PD-L1 with antibodies is an important strategy for GC treatment. For example, avelumab, an anti-PD-L1 mab, was shown to be well tolerated in the clinical trial in advanced GC patients and to obtain promising results in patients in some countries (Bang et al., 2018). However, according to accumulated data from several independent studies, there is still a significant proportion of cancers that express low levels of B7-H1 or even do not express B7-H1, and these patients have a poor response to anti-PD treatment (Kim et al., 2018). Thus, GC with a lack or low expression of PD-L1 is theoretically more likely to be resistant to anti-PD therapies, which is supported by the apparent decrease in PD-L1 expression levels in some GC patients (Li et al., 2020). Notably, although PD-L1 has shown important utility as a predictive biomarker in some tumor types, some patients with high levels of PD-L1 expression do not respond well to anti-PD-1 therapy, while some patients with a lack of PD-L1 expression actually do better, suggesting that apart from PD-L1, other receptors that interact with PD-1 molecules, such as PD-L2, and other factors may be involved in the response to ICIs (Yearley et al., 2017; Li et al., 2020).
CTLA-4 is a previously studied coinhibitory molecule of the B7 family, which is mainly expressed on activated T lymphocytes and introduced as a target of ICIs in the immunotherapy of tumors (Brunet et al., 1987). The interaction between B7-1/B7-2 receptors and CTLA-4 transmits signals that inhibit the activation of T lymphocytes, resulting in the inhibition of the corresponding immune response. Humanized monoclonal antibodies, such as tremelimumab and ipilimumab, inhibit the effect of CTLA-4, leading to enhanced T-cell-mediated cytotoxicity (Kooshkaki et al., 2020). In the past decade, due to their amazing antitumor efficacy and promising prospects, these anti-CTLA-4 antibodies (including other ICIs) have been accepted for the treatment of cancer, and some of them combined with other methods (such as chemotherapy and radiotherapy) have become the standard first-line therapy for some advanced cancers, such as GC, gastroesophageal cancer, and melanoma (Daud et al., 2016; Janjigian et al., 2021; Shitara et al., 2022). In general, CTLA-4 combination therapy shows enhanced antitumor efficacy, but the monotherapy of CTLA-4 inhibitors for advanced GC is still limited, and the resistance mechanism of anti-CTLA-4 treatment needs to be further studied (Jin et al., 2022). In addition, B7-1/B7-2 can interact with CD28 to transmit stimulatory signals to activate T lymphocytes. Some studies have shown that B7-1, as one of the costimulatory factors, can inhibit lymph node metastasis by enhancing immunogenicity, so the transduction of B7-1 gene may become an effective therapy for GC lymph node metastasis (Sakate et al., 2004). Compared with normal gastric tissues, the B7-1 expression is less and the mutation rate is higher in GC tissues based on the statistic data (Li et al., 2020). Accordingly, we hypothesized that the decreased expression of B7-1 in GC cells may be one of the reasons for the resistance to anti-CTLA-4 immunotherapy in GC patients.
To date, anti-PD-1/PD-L1 and anti-CTLA-4 therapy remain the two most widely used ICI immunotherapies (Kraehenbuehl et al., 2022). However, tumor cells, including GC cells has learned to evade the immune system by upregulating the expression of related receptors such as PD-L1 and PD-L2, which becomes one of their most powerful weapons against ICIs. Interestingly, the reduced or abnormal expression of related receptors in some tumor cells not only helps them evade the immune system, but also enhances their resistance to ICI treatment, which may be the result of tumor adaptation to the host immune response. Meanwhile, this undoubtedly brings great challenges to current ICI immunotherapy.
2.1.2 Abnormalities in critical signaling pathways
In GC, ICI immunotherapy resistance involves the transduction of multiple signaling pathways and the complex interactions associated with them, especially certain crucial signaling pathways, such as the IFN-γ signaling, the mitogen-activated protein kinase (MAPK) pathway, and the Wnt/β-catenin pathway. Aberrant alterations in these pathways usually affect the expression of immune checkpoint molecules, which weakens T-cell recruitment and function (Figure 2). IFN-γ signaling can upregulate the expression of related cytokines and costimulatory factors in antigen presenting cells (APCs) and thus enhancing the presentation of tumor-associated antigens (TAAs). Moreover, IFN-γ triggers numerous signals in T cells, facilitating their optimal functioning. The lack of IFN-γ signaling pathways in T cells hampers T-cell responses, thereby promoting tumor growth and invasion (Ni and Lu, 2018). Recently, Mimura et al. found that PD-L1 expression is mainly controlled by JAK-STAT pathway-associated IFN-γ in GC, and clinical GC samples with PD-L1 expression are strongly positively correlated with CD8 (+) T cells in the stroma as well as IFN-γ expression (Mimura et al., 2018). Therefore, the mutation or deficiency of the IFN-γ signaling pathway not only causes abnormal T-cell function but also the lack of PD-L1 expression in these patients, which eventually contributes to ICI resistance.
[image: Illustration of cancer cell resistance to T-cell attacks. T-cell, tumor cell, and microenvironment interactions are detailed, highlighting IFN-γ, PD-L1, and IDO pathways. Insets show TLR activation and gene regulation, emphasizing immune evasion mechanisms. Arrows depict signaling path directions.]FIGURE 2 | Abnormalities in critical signaling pathways. The mutation or loss of IFN-γ signaling pathway not only causes abnormal T cell function, but more importantly, the lack of PD-L1 expression in these patients, which in turn leads to ICI resistance. As a hallmark of MDSCs, the S100A8/A9 heterodimer upregulates CXCL1 expression in GC cells via the TLR4/p38 MAPK/NF-κB pathway, and CXCL1 induces the accumulation of PMN-MDSCs in GC. The activation of the S100A8/A9-TLR4/AKT/mTOR pathway eventually leads to the exhaustion CD8 (+) T cells. This exhaustion manifests as a decrease in glycolysis, proliferation, and the production of key cytokines such as TNF-α and IFN-γ and directly reduces the effectiveness of ICI treatment. In some cases, B7-H1 deficiency or binding to certain antibodies leads to increased activation of p38 MAPK, which induces apoptosis in T cells, thus reducing immunotherapy efficacy. The aberrant Wnt/β-catenin pathway activation in GC cells promotes their invasion and migration abilities, but reduces the sensitivity to PD-1 antibody.
The MAPK pathway, including the canonical RAS-RAF-MEK-ERK signaling cascade, plays an important role in regulation of physiological processes such as cell proliferation, differentiation, survival, and death by sending upstream signals to downstream effectors (Liu et al., 2018). The accumulation of myeloid-derived suppressor cells (MDSCs) in a variety of tumors is associated with ICI resistance. As a hallmark of MDSCs, the S100A8/A9 heterodimer upregulates CXCL1 expression in GC cells via the TLR4/p38 MAPK/NF-κB pathway, and CXCL1 induces the accumulation of PMN-MDSCs in GC. Moreover, the activation of the S100A8/A9-TLR4/AKT/mTOR pathway eventually leads to the exhaustion CD8 (+) T cells. This exhaustion manifests as a decrease in glycolysis, proliferation, and the production of key cytokines such as TNF-α and IFN-γ and directly reduces the effectiveness of ICI treatment. Furthermore, this study also showed that the accumulation of PMN-MDSCs was diminished by inhibiting CXCR2, leading to an enhanced immune response against tumors and increased sensitivity to anti-PD-1 therapy in GC cells. This preclinical study provides a crucial basis for the development of the combined therapeutic approach (Zhou et al., 2022). The study by D'Souza et al. showed that the Erk MAPK pathway plays an important role in the proliferation of activated CD8 T cells (D'Souza et al., 2008). According to another investigation, circMAPK1 expression was found to be lower in GC tissues compared to the neighboring healthy tissues. CircMAPK1 can inhibit the growth and infiltration of GC cells by encoding protein MAPK1-109aa. The protein, acting as a potent suppressor of tumors, competitively associates with MEK1 to hinder the phosphorylation of MAPK1, which ultimately leads to the inhibition of its subsequent downstream factors in the MAPK pathway (Jiang et al., 2021). In addition, compared with the typical B7-H1 blocking antibody, the antitumor effect of B7-H1 antibodies that are able to activate p38 MAPK is compromised due to the elimination of B7-H1 tumor-responsive CD8 T cells through the p38 MAPK pathway. In some cases, B7-H1 deficiency or binding to specific antibody leads to increased activation of p38 MAPK and induces apoptosis in T cells, thus reducing immunotherapy efficacy (Liu et al., 2016). Taken together, these results reveal that GC cells with aberrant MAPK pathways may be more resistant to ICI treatment, but more work is needed to determine how abnormalities in the MAPK pathway contribute to ICI therapy resistance.
Dysregulation of the Wnt/β-catenin signaling pathway is strongly associated with the progression of GC (Yu et al., 2021). Non-T-cell inflammatory tumors exhibit a heightened enrichment of tumor-intrinsic Wnt/β-catenin signaling as identified in The Cancer Genome Atlas (TCGA). Tissues with activated Wnt/β-catenin signaling showed significantly reduced expression of T-cell inflammatory genes in non-T-cell inflammatory tumors compared to matched normal tissues (Luke et al., 2019), which results in immune rejection of the cancer and affects ICI therapy. A recent study revealed, high Wnt/β-catenin expression in certain types of GC cells is generally related to the striking loss of CD8 (+) T-cell infiltration, while the blockage of this pathway can inhibit their ability to migrate and invade other cells. They also found that Wnt/β-catenin downregulation may enhance the sensitivity of GC cells to PD-1 antibodies in vitro (Li et al., 2022). Another study found low levels of ISG12a, an innate immune effector that can suppress PD-L1 expression by affecting the canonical Wnt/β-catenin signaling pathway in gastrointestinal tumors, especially GC (Deng et al., 2020). Theoretically, increased expression of PD-L1 via aberrant Wnt/β-catenin pathway activation in GC might boost anti-PD-L1 therapy, but no relevant experiments have been reported. Taken together, aberrant Wnt/β-catenin pathway activation in GC may enhance immune evasion and resistance to ICI therapy, but the exact molecular mechanism is yet to be studied.
2.1.3 Loss or mutation of immunoedited antigens
By establishing conditions in the tumor microenvironment (TME) that promote tumor growth, the immune system can not only inhibit tumors by suppressing their growth or killing cancer cells but also promote tumor progression, which is called cancer immune editing. There are three distinct stages in the current framework for cancer immune editing: elimination, balance, and evasion (Schreiber et al., 2011; Vesely and Schreiber, 2013). In the field of tumor immunology, a main advance has been the demonstration that cancer patient’ immune systems can react strongly to antigens expressed in their tumors by developing high levels of specific antibody and T cells (Schreiber et al., 2011). Immunoedited antigens on the surface (or inside) of tumors, such as PD-L1, are essential for tumor recognition and activation by immune cells (especially T cells). The loss or mutation of these antigens is likely to have implications for different types of immunotherapies that require corresponding antigenic targets, as supported by a study of a subset of GC patients (Li et al., 2022). Vesely et al. showed that a mechanism by which cancer cells evade immune detection is by immune selection for tumor variants lacking strong tumor-specific antigens (Vesely and Schreiber, 2013). Another study has also shown that as tumors grow they can acquire mutations and produce neoantigens that may affect the response of patients to ICIs. Subclonal neoantigens induced by cytotoxic chemotherapy have been shown to contribute to increasing tumor mutational burden (TMB) and are enriched in some poor responders (McGranahan et al., 2016). This suggests that loss or variation of neoantigens may affect immune surveillance and the efficacy of ICIs. In addition, TMB can influence the tumor response to ICIs by promoting a high immunogenic antigen load, as demonstrated in several experiments (Le et al., 2015; Goodman et al., 2017; Cristescu et al., 2018). The study by Kwon and others reported that increased microsatellite instability (MSI) and TMB were observed in 20% of GC patients and were associated with a clinical benefit with PD-1 antibody (Kwon et al., 2021). Similarly, a case report by Chen et al. showed that a GC patient with mismatch repair proficiency and microsatellite stability showed a definitive objective response to anti-PD-1 therapy treated with pembrolizumab (Chen et al., 2016). In conclusion, the results of multiple independent studies have shown that mutation or loss of mutation-associated neoantigens makes tumors resistant to anti-PD-1 therapy, but some markers may not be able to adequately predict anti-PD-1 therapy resistance in GC, and the relevant mechanisms and clinical experiments need to be further studied.
2.1.4 Deficiency of tumor antigen presentation
Antigen presentation refers to the process in which antigens are taken up by antigen presenting cells (APCs), processed and presented on the cell surface in the form of major histocompatibility complex (MHC) peptide complexes, and finally recognized by T lymphocytes. To trigger an effective antitumor response, it not only requires dendritic cells (DCs) to take up the cancer cell surface antigen and cross-presented to activate CD8 T cells but also, the tumor with the antigen must be recognized accurately and thus killing by the T cells. In these two steps, tumors can evade immune recognition by exploiting a variety of escape mechanisms (Sánchez-Paulete et al., 2017; Jhunjhunwala et al., 2021). Since MHC-I molecules are not crucial for cell survival, the loss or defect of MHC-I antigen presentation is an important mechanism by which cancers evade immune system. This not only impairs the ability of the natural immune response to inhibit cancer but also affects the effectiveness of ICIs, which work by reactivating antitumor CD8 T cells (Dhatchinamoorthy et al., 2021). Therefore, increasing MHC-I expression in treatment can enhance ICI efficacy, which has been demonstrated in preclinical trials (Gu et al., 2021). Shukla et al. developed a computational pipeline capable of accurately inferring Class I HLA-A, B, and C germline alleles and using their inferred alleles as a reference to detect mutations in these genes. As a result, a total of 298 non-silent HLA mutations were identified in tumors from 266 patients based on whole-exome sequencing data from 7,930 pairs of tumor and healthy tissue from the same patient. Moreover, GC is more susceptible to HLA-I mutations than some other types of cancers such as ovarian cancer and chronic lymphocytic leukemia (Shukla et al., 2015). This demonstrates that there is a certain degree of HLA-I deficiency in tumor patients, and even in subtypes of the same cancer, there are clear differences. In a GC study, Iwasaki and others compared 58 MSI, 44 EBV-positive, and 107 non-EBV non-MSI tumors. The results showed that the frequency of HLA-I defects (≥1%) in MSI tumors was obviously higher (52%) than that in EBV-positive tumors (23%) and other tumors (28%). Additionally, HLA-I-deficient tumor areas had a significant lower levels of CD8 (+) cells infiltration than HLA-I-preserved tumor areas within the tumor (Iwasaki et al., 2021). I believe that these experimental results will leave adequate room for imagination about the effect of tumor antigen alteration and its presentation on ICIs.
Notably, APscore, a predictor of prognosis and response to ICIs, was developed by Wang and the team recently based on genes associated with antigen processing and presentation in advanced GC (Wang et al., 2022). This provides a new way of thinking to avoid the possible situation of ICI resistance. In summary, defects in tumor antigen presentation, such as the failure of MHC-I antigen presentation, may be a source of ICI resistance.
2.2 Tumor-extrinsic mechanisms
2.2.1 T cell rejection
In the treatment of ICIs, T cells are undoubtedly one of the most critical players because killing tumors needs to be mediated by cancer-specific T cells. The full potential of T-cell-mediated tumor immunotherapy, including ICIs, will not be realized if T cells are rejected or have too little infiltration in the TME. Cancer cells in the TME are generally able to prevent T-cell infiltration to achieve T-cell rejection through a variety of mechanisms (Joyce and Fearon, 2015; Yu et al., 2022). One example is that tumor-secreted transforming growth factor-β (TGF-β) suppresses antitumor immunity by shaping the TME and limiting T-cell infiltration (Mariathasan et al., 2018). To test whether selective TGF-β inhibition is sufficient to overcome ICI resistance, Martin et al. utilized SRK-181, a fully human antibody with a strong affinity, to specifically bind to TGF-β and inhibit its activation. The results showed that a combination of the antibody and anti-PD-1 treatment led to an increase in intratumoral CD8 T-cell infiltration and a decrease in immunosuppressive myeloid cells (Martin et al., 2020). This implies that TGF-β signaling activity may serve as a potential intervention point to overcome ICI resistance, but whether targeting TGF-β to overcome ICI resistance will be successful in GC patients is uncertain and needs to be verified by relevant clinical trials. In another study, to predict the efficacy of ICIs for cancer treatment, Jiang and his team developed TIDE, a computational approach, which can model two major mechanisms of tumor immune evasion: preventing T-cell infiltration and inducing T-cell dysfunction in the TME. Furthermore, in large tumor cohorts, they examined how the expression of each gene interacted with cytotoxic T lymphocyte infiltration to characterize T-cell dysfunction. They also used the expression profile of immunosuppressive cells to mimic the factors by which the tumor ruled out T-cell infiltration (Jiang et al., 2018). To a certain extent, this can avoid the occurrence of resistance to first-line anti-PD-1 or anti-CTLA-4 therapy due to T-cell rejection, but it is not from enough to solve the fundamental problem of ICI resistance, and further clinical research is needed. Additionally, a recent study has shown that when the immune system attacks tumor cells, they will be close to each other to hide under the overlapping cell membranes, while T cells cannot achieve direct contact with them, resulting in immune escape of the inner tumor cells. More importantly, certain signals released by T cells can be detected by tumor cells, enabling them to recognize when the immune system will attack. Gutwillig et al. found some of these signals and revealed that blockade of these signals could prevent the tumor from escaping the immune cells, which is beneficial to immunotherapy (Gutwillig et al., 2022). Thus, this signaling pattern of cancer cells rejecting T-cell killing may lead to ICI resistance, and blocking the probe signal of the relevant tumor could enhance the immune response to ICIs.
2.2.2 Immunosuppressive cells
Immunosuppressive cells commonly found in the TME, such as regulatory T cells (Tregs), MDSCs, tumor-associated macrophages (TAMs), and other immunosuppressive cells, may affect ICIs through a variety of direct or indirect mechanisms (Figure 3). These include affecting the expression of molecules related to ICIs, reducing the number of infiltrating T cells and weakening T-cell function (Liu et al., 2022). Although there is no clear clinical evidence, we speculate that immunosuppressive cells are likely to be an essential factor in ICI resistance based on the results of preclinical experiments (Table 2).
[image: Diagram showing interactions between various immune cells and a tumor cell. Tregs and MDSCs secrete immunosuppressive molecules like IL-10 and TGF-beta. T cells and tumor cells exchange cytokines and express PD-L1 and MHC-I. TAMs promote metastasis. Arrows indicate pathways and effects.]FIGURE 3 | Immunosuppressive cells. Immunosuppressive cells within the TME establish cellular networks to suppress host immunity and promote tumor growth, which may affect the potential of ICI treatment. Tregs upregulate immune checkpoint molecules, such as CTLA-4, which block the activation of T cells, enhance the accumulation of Treg, and promote tumorigenesis. They also release granzyme B and perforin to induce cytolysis of effector T cells. MDSCs increase PD-L1 expression to induce T-cell anergy and induce Treg proliferation through cellular networks in the TME. TAMs promote peritoneal metastasis of GC through the epidermal growth factor receptor signalling pathway.
TABLE 2 | Factors and functions associated with induction of GC immune resistance in the TME.
[image: A table with three columns labeled "Factors," "Functions," and "References." The table lists various immune-related factors such as PD-1/PD-L1, CTLA-4, Tregs, MDSCs, and their functions, including inhibiting T cell activity, antigen presentation, and promoting inflammation. References are cited for each function, including authors and years.]As we know, naturally occurring Tregs play an important role in the maintenance of immune self-tolerance and immune homeostasis (Wing et al., 2008). However, some Tregs are also one of the main types of tumor-infiltrating immune cells, which are able to establish cellular networks with other immunosuppressive cells within the TME and have strong immunosuppressive properties (Lucca and Dominguez-Villar, 2020). In preclinical models of cancer, it has been found that CD25 molecules are expressed at high levels on Tregs, and the precise targeting of CD25 Tregs combined with anti-PD-1 treatment works synergistically (Arce Vargas et al., 2017). This partially demonstrates the negative effect of Tregs in the TME on ICI treatment. Tregs in the TME have been found to have upregulated levels of immune checkpoints/coinhibitory receptors, such as CTLA-4, which can block T-cell activation, enhance the accumulation of themselves, and promote tumorigenesis (Saleh and Elkord, 2019). Another study reported that GC patients showed higher Treg infiltration and advanced disease progression as well as reduced survival (Ichihara et al., 2003; Mao et al., 2017). These tumor-associated Tregs exerted significant immunosuppressive properties and suppressed CD8 T-cell immune functions, including the production of granzyme B and CD8 T-cell proliferation in vitro. They also promote GC cell growth and development through IL-10 secretion and cell‒cell contact mechanisms (Mao et al., 2017), which may reduce the effect of ICI treatment.
MDSCs are heterogeneous cell populations arising from many pathological conditions from inflammation to cancer. These cells inhibit the function of T cells and reduce the efficacy of antitumor immunity (Veglia et al., 2018; Oya et al., 2020; Li et al., 2021). Using a preclinical mouse model system, De Henau and others showed that ICI resistance is closely associated with the inhibitory activity of infiltrating myeloid cells in several tumors. Targeting selectively the phosphoinositide 3-kinase gamma (PI3Kγ), which is highly expressed in myeloid cells, can restore sensitivity to ICIs (De Henau et al., 2016). The study mentioned above revealed that PMN-MDSC frequency but not M-MDSC frequency is related to survival in GC patients. In addition, the CXCR2 antagonist can reduce PMN-MDSC accumulation, increase CD8 T cell infiltration in the tumor, and further enhance the efficacy of anti-PD-1 in tumor-bearing mice (Zhou et al., 2022). This shows the difference in different MDSC subtypes in tumor immunosuppressive effects and the enhancement of ICI efficacy by inhibiting MDSCs, highlighting the role of MDSCs in ICI resistance. In conclusion, there is increasing evidence that GC patients who show a high level of MDSC infiltration have a relatively poor prognosis and are more likely to be resistant to ICIs (Gabitass et al., 2011; Zhuang et al., 2012; Kim et al., 2021).
TAMs can promote tumor cell proliferation, angiogenesis and immunosuppression, resulting in tumor progression, metastasis and drug resistance (Gambardella et al., 2020; Chen et al., 2021; Zhou et al., 2021). Recently, it has been shown that immunosuppressive macrophages promote tumor immune escape and impede anti-PD-1 therapy in preclinical GC models in vitro and in vivo (Shi et al., 2022). In one study, a set of data from 298 GC patients from TCGA suggested that IL-10+ TAM infiltration generates an immune evasion TME characterized by Treg infiltration and CD8 (+) T-cell dysfunction (Zhang et al., 2022). The above experiments to some extent revealed the correlation between TAMs and resistance to ICI treatment in GC. However, more studies have shown that high infiltration of TAMs can lead to an increase of PD-L1 expression on tumor cells (Harada et al., 2018; Lin et al., 2019; Yagi et al., 2019), thereby enhancing the sensitivity of tumors to anti-PD-L1 in theory. This contradiction may be that the effect of high expression of tumor PD-L1 in the treatment of ICIs is not enough to offset the other immunosuppressive effects of TAMs in the complex TME. Therefore, research on relevant mechanisms needs to be carried out. Currently, targeting these immunosuppressive cells is a major focus of clinical research and is also considered a promising strategy to overcome ICI resistance (Mantovani et al., 2017).
Other cells that exert immunosuppressive functions in the TME, such as cancer-associated fibroblasts (CAFs) and tumor-associated neutrophils (TANs), have similar immunosuppressive mechanisms and can also affect the potential of ICI therapy in GC patients (Wang et al., 2017; Kato et al., 2018; Hiramatsu et al., 2020; Shan et al., 2022; Sun et al., 2022).
2.2.3 Inhibitory factors in the TME
Inhibitory molecules in the TME, including various novel immune checkpoint molecules that have been identified, such as lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) (Anderson et al., 2016; Qin et al., 2019), some cytokines and immunosuppressive factors, such as IL-8 (Schalper et al., 2020; Fousek et al., 2021; Li et al., 2022), IL-10 (Ouyang and O'Garra, 2019), and TGF-β (Batlle and Massagué, 2019; Derynck et al., 2021), can inhibit host immune function through direct or indirect pathways, leading to tumor growth and immune escape. However, the extent to which these inhibitory molecules contribute to resistance to ICI therapy in cancers, particularly in GC, remains largely poorly understood owing to a lack of clinical data. Here, we briefly discuss the inhibitory molecules in GC that have a high likelihood of having an impact on ICI resistance (Table 2).
LAG-3 is an immunosuppressive receptor, and MHC-II is considered to be its typical ligand (Maruhashi et al., 2022). The blockade of one of PD-1, LAG-3, and CTLA-4 showed compensatory upregulation of other immune checkpoint molecules, enhancing their ability to suppress local T cells in a tumor model study (Huang et al., 2017). In addition, Woo et al. revealed that LAG-3 and PD-1 were widely coexpressed on CD8 and CD4 T cells in three different transplantable tumors, and they synergistically regulated T-cell function and promoted tumor progression (Woo et al., 2012). This suggests that when anti-PD-1, anti-CTLA-4 or anti-PD-1/anti-CTLA-4 in combination is used alone, tumor cells can develop immune resistance through compensatory upregulation of the immunosuppressive molecule LAG-3 and reduce the therapeutic effect. These data show promising prospects for LAG-3 blockade to alleviate resistance to ICI treatment, such as anti-PD-1 therapy. Multiple strategies of LAG-3 antibodies combined with other immunotherapies are being implemented (Maruhashi et al., 2020). TIM-3, a transmembrane protein, is the member of the TIM gene family (Acharya et al., 2020). In a mouse model of cancer that progressed after anti-PD-1 treatment, TIM-3 was found to be upregulated in the antibody-bound T cells. The blockade of TIM-3 after PD-1 blocking failed showed an improved survival. At the same time, data revealed that some tumor patients developing immune resistance to anti-PD-1 therapy showed a similar upregulation of TIM-3 when the treatment failed (Koyama et al., 2016). This suggests that TIM-3 may play a role in the resistance of ICI treatment. Previous studies have showed that IL-8 may be an independent and essential prognostic factor in GC patients (Kido et al., 2001). A large retrospective analysis also revealed that some advanced tumor patients treated with ICIs had an elevated baseline serum IL-8 level which was associated with poor prognosis. This further shows the importance of IL-8 as an independent biomarker for patients with associated tumors (Schalper et al., 2020). The finding also implies that elevated serum IL-8 may be connected with ICI treatment resistance in GC patients, although the mechanism involved remains unclear. In addition, a study recently found that tumor-derived IL-8 upregulates PD-1 in CD8 T cells, which promotes lymph node metastasis of GC (Li et al., 2022). This may be the result of negative feedback mechanisms of autoregulation. Overall, despite some encouraging results, the current evidence is still insufficient to determine the extent to which upregulation of immune checkpoint molecules contributes to anti-PD-1 or anti-CTLA-4 resistance in GC patients. The mechanism by which IL-8 and other cytokines are involved in ICI resistance is also not completely understood. Therefore, more relevant studies need to be carried out.
2.2.4 Microbiota
As an integral part of the human body, the microbiota not only provides assistance for immune function but also contributes to homeostatic immunity (Rooks and Garrett, 2016; Belkaid and Harrison, 2017). Meanwhile, the microbiota and its metabolites are thought to have systemic and local effects on tumor onset, progression, and response to immunotherapy (Elinav et al., 2019). As ICIs become the forefront in the development of immunotherapy, the role of microbiota in ICI immunotherapy has become a research hotspot as well. In the following, we will focus on the possible involvement of the microbiota and its metabolites in ICI resistance in GC patients.
In microbiota, H. pylori infection is closely related to GC (Lee et al., 2016). Recently, 34 H. pylori-positive patients (44.2%) in 77 advanced GC patients treated with PD-1 antibody were found to have a higher risk of nonclinical response to anti-PD-1 therapy than H. pylori-negative patients, with an OR of 2.91 (95% CI: 1.13–7.50) (Che et al., 2022). Some patients with other types of tumors also showed similar results (Oster et al., 2022). This suggests that H. pylori infection may affect the function of ICIs through some as-yet-unelucidated mechanism, thereby reducing the survival time of patients treated with ICIs. In preclinical and clinical studies, multiple lines of evidence have gradually demonstrated that the gut microbiota influences antitumor immunity and ICI immunotherapy efficacy through pathways such as metabolites (Lu et al., 2022). For example, Mirji et al. recently identified trimethylamine N-oxide (TMAO), a gut microbiota-derived metabolite, and found that it can enhance the type I IFN pathway and thus exert antitumor effects. Moreover, in a mouse model, coadministration of TMAO with ICIs (anti-PD-1 and/or anti-TIM-3) can obviously reduce tumor burden and improve survival patients compared with TMAO or ICIs alone (Mirji et al., 2022). At present, many studies have revealed that the diversity of the gut microbiome is closely related to a good response to ICIs in tumor patients (Gopalakrishnan et al., 2018; Jin et al., 2019; Mager et al., 2020), and some species may become potential biomarkers for improving patient stratification in future immunotherapy studies (Lee et al., 2021; Derosa et al., 2022). Therefore, intestinal dysbiosis, such as a lack of certain bacterial species, may be one of the causes of ICI resistance in GC patients, which would impair the response to ICI treatment. This insight is supported by data from multiple clinical studies (Derosa et al., 2018; Pinato et al., 2019; Tinsley et al., 2020). Additionally, clinical studies also revealed that patients with advanced cancer who receive antibiotics have a shorter survival time than similar patients who do not receive antibiotics. More importantly, the clinical benefit of ICIs in these patients is reduced. In contrast, fecal microbiota transplantation (FMT) can help overcome resistance to anti-PD-1 therapy in patients with refractory cancer (Routy et al., 2018; Baruch et al., 2021; Davar et al., 2021). Therefore, under certain conditions, antibiotics should be prescribed with caution to these patients treated with ICIs. Interestingly, FMT has also been suggested to help address immune-related adverse events (irAEs), such as treatment-refractory ICI-associated colitis (Wang et al., 2018), which to some extent shows the suppression of the potent toxic effects of ICIs by the microbiota. Considering the unique microbial ecological environment in the gastrointestinal tract and the current research results, we have reason to believe that the microbiota will play an important role in ICI resistance in GC patients.
3 OTHER MECHANISMS
3.1 Metabolism
In recent years, it is believed that metabolism in the TME may contribute to ICI resistance. Since the discovery of the Warburg effect in the last century, the role of cancer cell metabolism in maintaining its occurrence, progression, metastasis and drug resistance has been largely clarified (Icard et al., 2018; Martínez-Reyes and Chandel, 2021). In contrast, metabolic reprogramming of immune cells (especially T cells) has been less studied, and this process is thought to be one of the mechanisms that can promote antitumor immunity and enhance ICI efficacy (Biswas, 2015). For example, in a preclinical study, tumor-specific CD4 and CD8 T cells were found to metabolically reprogram phosphoenolpyruvate carboxylation kinase 1 (PCK1) by increasing the glycolytic metabolite phosphoenolpyruvate (PEP) to enhance the antitumor response (Ho et al., 2015). Similarly, in several other similar studies, it has been found that the antitumor activity and survival of T cells are enhanced by modulating selective amino acid and cholesterol metabolic changes (Geiger et al., 2016; Yang et al., 2016; Leone et al., 2019), thereby enhancing ICI responses. Thus, dysregulation of immune metabolism may reduce the rate of response to ICIs and produce GC immune resistance. In addition, the role of inflammation, hypoxia, acidity and other factors related to cell metabolism in the TME in immunotherapy resistance has also been elucidated with the progress of related research (Huber et al., 2017; Wattenberg and Beatty, 2020; Kopecka et al., 2021). For exmaple, lactic acid in the TME can inhibit immune cells and promote immunosuppressive cells to hinder anti-tumour immunity directly or indirectly (Hayes et al., 2021). In GC, increased lactic acid level was correlated negatively with percentages of Th1 cells and cytotoxic T lymphocytes (Ping et al., 2018), which may lead to ICI resistance. However, whether metabolism can cause immune resistance to GC treatment still lacks sufficient evidence, and some therapies targeting related metabolic pathways combined with ICI treatment are currently being tested in clinical trials (Kraehenbuehl et al., 2022).
3.2 Epigenetics
The process of heritable changes in a gene’ function without altering its DNA sequence of is called epigenetics. By driving aberrant transcriptional programs, dysregulation of the epigenome affects tumor immunogenicity and the function of immune cells involved in the TME and promotes tumor growth and progression, potentially leading to ICI immune escape or resistance (Hogg et al., 2020). For example, tumors with high alternative promoter burden (APB) were found to have little human T-cell infiltration in a preclinical model of GC. Meanwhile, data from patients with gastrointestinal cancer who received immunotherapy showed that APB-high tumors were more resistant to ICIs (Sundar et al., 2022). Mechanistically, changes in the epigenetic promoter region allow tumors to utilize alternative transcriptional start sites and to reduce expression of immunogenic N-terminal peptides, which ultimately leads to ICI resistance (Sundar et al., 2019). Scott et al. found that the nuclear factor TOX is a key regulator of tumor-specific T-cell differentiation. In vitro, experiments have shown that a transcriptional program associated with T-cell depletion may be activated when the expression of TOX becomes abnormal in effector T cells. Furthermore, deletion of TOX in the T cells disabled the original depletion program, as tumor-specific T cells lacking TOX no longer upregulated genes for inhibitory receptors. However, to the scientists’ surprise, the TOX-deleted T cells with a lack of PD-1 and other inhibitory molecules remained dysfunctional and did not survive for a long period (Scott et al., 2019), which can impair ICI therapy. A study has shown that the SWI/SNF chromatin remodeling complex, a chromatin regulator, is associated with immune resistance. The response of tumor cells with the mutated genes to ICIs is stronger (Pan et al., 2018). In addition, recent studies have shown that noncoding RNA (ncRNA), as a key player in epigenetic regulation, can play a potential role in ICI resistance by directly or indirectly regulating genes involved in immunoregulation (Vishnubalaji et al., 2020). These studies suggest that the mechanisms of ICI resistance may involve deeper, epigenetically driven programs. Finally, although there is currently no clear evidence for epigenetics as one of the mechanisms of ICI resistance in GC, the strategy of combining selective epigenetic modifiers or inhibitors with immunotherapy is ongoing and has shown some benefit in some clinical and preclinical studies (Zhang et al., 2018; Fang et al., 2021; Kumar et al., 2021; Micevic et al., 2022).
4 CONCLUSION AND PROSPECTS
ICIs play an important role in the field of tumor immunotherapy and bring hope to a considerable number of patients with advanced malignant tumors. However, most patients with advanced GC do not have satisfactory clinical benefit due to treatment ineffectiveness or strong resistance to ICIs. The combination of some chemotherapeutic agents, such as platinum, fluorouracil and taxane, and surgical treatment are still the standard options for the treatment of GC patients. At present, the complex mechanisms of resistance to ICIs remain largely unknown, which greatly limits their therapeutic potential. Therefore, this review focuses on summarizing the mechanisms of resistance to ICI immunotherapy in GC, to provide a better understanding for related research.
ICIs have shown encouraging efficacy in some tumors, paving the way for their wider development. However, in GC, our understanding of the complex resistance mechanisms of ICIs is still in its infancy, and some questions remain. First, ICIs can only induce longer-lasting antitumor responses in a few subsets of advanced GC, and the efficacy of single-agent therapy is limited. The extent to which resistance mechanisms to ICIs are consistent across different GC cell subsets is not clear, nor can it be determined which types of GC cells have specific resistance mechanisms. Second, the current research on GC immunotherapy resistance is significantly less than that on other cancers, such as melanoma and lung cancer. Some of the resistance mechanisms mentioned above have not been confirmed in GC, and some animal research results lack the support of corresponding clinical data, which hinders the application of ICIs in GC patients. Additionally, there is still a lack of clinical evidence on whether the unique physicochemical environment in the stomach, such as digestive juice, the type of food ingested, and the intestinal microbiota mentioned in this review, is related to ICI resistance. The combination of immunotherapy with other standard treatments such as chemotherapy and radiotherapy has been used to overcome resistance to ICIs. New strategies will involve the combination of drug usage, the combination of ICIs and CAR-T therapy, and the search for the biomarkers for ICI resistance. In the future, to more fully understand the resistance mechanism of ICIs in GC patients, apart from solving some of the above problems, it is also necessary to give attention to the new discoveries of resistance mechanisms in some well-studied cancers and transfer them to the background of GC for further research to lay a foundation for achieving better clinical efficacy of ICIs in GC.
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Introduction: Non-small cell lung cancer (NSCLC) exhibits heterogeneity with diverse immune cell infiltration patterns that can influence tumor cell behavior and immunotherapy. A comprehensive characterization of the tumor microenvironment can guide precision medicine.
Methods: Here, we generated a single-cell atlas of 398170 cells from 52 NSCLC patients, and investigated the imprinted genes and cellular crosstalk for macrophages. Subsequently, we evaluated the effect of tumor cells on macrophages and verified the expression of marker genes using co-culture experiments, flow cytometry and RT-qPCR assays.
Results: Remarkable macrophage adaptability to NSCLC environment was observed, which contributed to generating tumor-associated macrophages (TAMs). We identified 5 distinct functional TAM subtypes, of which the majority were SELENOP-positive macrophages, with high levels of SLC40A1 and CCL13. The TAMs were also involved in mediating CD8+ T cell activity and form intercellular interaction with cancer cells, as indicated by receptor-ligand binding. Indirect coculture of tumor cells SPC-A1 and THP-1 monocytes, produced M2-like TAMs that highly expressed several markers of SELENOP-positive macrophages. The abundance of this type TAMs seemed to be associated with poorer overall survival rates [hazard ratio (HR) = 1.34, 95% confidence interval (CI) = 0.98-1.83, p = 0.068] based on deconvolution of TCGA-LUAD dataset.
Discussion: In summary, we provided a high-resolution molecular resource of TAMs, and displayed the acquired properties in the tumor microenvironment. Dynamic crosstalk between TAMs and tumor cells via multiple ligand-receptor pairs were revealed, emphasizing its role in sustaining the pro-tumoral microenvironment and its implications for cancer therapy.
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INTRODUCTION
Lung cancer is one of the most common cancers worldwide, and it remains the leading cause of cancer-related deaths (Sung et al., 2021). Although immune checkpoint inhibitors have shown remarkable efficacy in treating non-small cell lung cancer (NSCLC), only a fraction of patients respond to these therapies (Zhang Y. et al., 2023; Lin et al., 2023). Identifying the factors that contribute to the development and progression of lung cancer is critical for improving patient outcomes. In recent years, single-cell sequencing (scRNA-seq) technology has been utilized to depict the immune microenvironment of NSCLC, which offered insight into the complex interactions between tumor cells and immune cells, primarily mediated through cytokines and chemokines (Wang et al., 2022; Pai et al., 2023). This technology allows for a granular analysis, uncovering diverse cell populations within the tumor ecosystem and their molecular features, shedding light on potential therapeutic targets.
Tumor-associated macrophages (TAMs) are an essential component of the tumor microenvironment (TME) surrounding cancer cells. TAMs exhibit a heterogeneous population of macrophages that are derived from tissue-resident macrophages, monocytes, and bone marrow-derived progenitor cells. They accumulate progressively during disease progression, with high densities of TAMs being associated with poor prognosis in lung cancer patients (Garrido-Martin et al., 2020; Yoshida et al., 2021). The polarization of TAMs has been studied extensively, and two main phenotypes have been described: M1 and M2. M1 macrophages produce pro-inflammatory cytokines, involved in tumor cell killing, whereas M2 macrophages release anti-inflammatory cytokines and promote tumor growth and angiogenesis (Zhang H. et al., 2021). The function of airway macrophages can be epigenetically regulated and resulting transcriptomic and phenotypical changes (Hey et al., 2021). The majority of scRNA-seq studies have reported that the phenotype of TAMs is plastic and can be reprogrammed, contributing to exert a mixture of phenotypic characteristics (Kim et al., 2020). Targeting these modified macrophages could potentially offer therapeutic avenues for patients with lung diseases.
Recent advances in tumor biology have revealed that the differentiation and intricate communication of TAMs can be leveraged as a promising target for the development of effective therapies aimed at disrupting critical interactions within the tumor microenvironment. Ruella et al. reported that immunosuppressive M2-type TAM expressed high levels of CD123 in Hodgkin lymphoma TME, and anti-CD123 chimeric antigen receptor (CAR) T cells could recognize and kill TAMs thereby overcoming immunosuppression, representing a promising new therapeutic approach (Ruella et al., 2017). Sánchez-Paulete and colleagues developed CAR-T cells targeting macrophages to achieve significant antitumor efficacy and reprogram the immunosuppressive TME in mouse models of lung, ovarian, and pancreatic cancer (Sánchez-Paulete et al., 2022). Liang et al. engineered a macrophage-mediated cellular phagocytosis-boosting hydrogel that reshaped the TME, leading to the acceleration of TAMs’ polarization into the anti-tumoral M1-like phenotype and the initiation of tumor-specific CD8+ T cell responses (Liang et al., 2023).
In the present study, we conducted an integrative inference of previously published scRNA-seq data to profile the TME of NSCLC, characterizing the interconvertibility and interaction among different types of macrophages, with a particular focus on the cellular crosstalk of TAMs. We reported the comprehensive single-cell transcriptome profiling of NSCLC covering 52 patients, and unveiled cellular dynamics and molecular features associated with the tumor progression for TAMs, thus extending our understanding of adaptive immune system. Deciphering the foundational cellular mechanisms and orchestrating these interactions holds the potential approach for indirectly impeding the interplay among cancer cells. This novel avenue could significantly advance the creation of effective and secure therapeutic strategies in the battle against cancer. The workflow for this study is depicted in Figure 1.
[image: Flowchart illustrating a research process for non-small cell lung cancer (NSCLC). It starts with 137 samples from 62 patients analyzed using the scVI tool, leading to high-resolution single-cell atlas creation. This branches into immune infiltration, tissue-specific imprinting, and cellular crosstalk immune checkpoint analysis. Results are further validated by TCGA bulk RNA-seq deconvolution linked to survival analysis, showcasing a Kaplan-Meier plot, and experimental verification in vitro with cytometry and RT-qPCR. The chart uses a color-coded legend for immune dominance types.]FIGURE 1 | The workflow of the present study.
METHODS
Single-cell RNA-seq datasets collected in this study
The scRNA-seq data of NSCLC used in this study were downloaded from website (http://lungcancer.chenlulab.com(Lambrechts et al., 2018; Zhang et al., 2022), https://doi.org/10.24433/CO.0121060.v1(Bischoff et al., 2021). To ensure the stability and comparability of integration, scRNA-seq datasets based on the 10x Genomics Chromium platform were included. Cell annotation tables along with quality control metrics were obtained from the original publications. The quality-passed cells were used for downstream analysis.
Normalization and integration of scRNA-seq data
Cells with fewer than 200 genes detected or > 40% mitochondrial counts or > 50% ribosomal counts were removed for following analysis; genes detected in > 3 cells and with unique molecular identified (UMI) count > 1,000 were kept. We ran the Scrublet algorithm to eliminate any potential doublets, setting the expected doublet rate to 0.05 (Wolock et al., 2019). Subsequently, individual datasets were merged into a single AnnData object, and then were integrated using the scVI algorithm. This algorithm has demonstrated its capability as one of the top-performing methods for integrating atlas-level data and scaling to over one million cells (Lopez et al., 2018). Two-dimension Uniform Manifold Approximation and Projection (UMAP) embeddings and unsupervised Leiden-clustering with scanpy were computed based on a cell-cell neighborhood graph derived from scVI latent space (Becht et al., 2018). Cell clusters in the resulting two-dimensional representation were annotated to known biological cell types using canonical marker genes.
Identification of differentially expressed genes
We applied the Wilcoxon Rank-Sum test in FindAllMarkers function to identify differentially expressed genes for each cell clusters, with the following parameters: only considering positive markers, fraction of expressing cells inside the cluster to be ≥ 0.25, log fold change between cells inside and outside the cluster to be ≥ 0.25. Based on the subpopulation-stratified scRNA-Seq data, pseudo-bulk samples were created for differential expression assessment, and samples with fewer than 10 cells were removed.
Scoring samples for M1/M2 polarization signatures
To comprehend the characteristics of distinct macrophage subsets, scores for M1/M2 polarization were acquired utilizing the AddModuleScore function within the “Seurat” package. M1 and M2 gene profiles were obtained from the study conducted by Azizi et al (Azizi et al., 2018).
Receptor–ligand communication between cell types
We used the cellphonedb (CPDB) database to investigate differences in cell-to-cell communication (Efremova et al., 2020), and identified differentially expressed signaling molecules through this analysis (Salcher et al., 2022). Furthermore, using NicheNet, we additionally identified receptor-ligand interactions that are likely to have an impact on particular gene-expression changes in a target cell lineage with the prior knowledge on signaling and gene regulatory networks (Browaeys et al., 2020).
Estimating cell-type proportions in the lung adenocarcinoma bulk RNA-seq from LUAD TCGA
The level 3 RNA-sequencing data (HTseq counts) along with metadata were downloaded from the TCGA (The Cancer Genome Atlas), specifically by selecting “lung adenocarcinoma (LUAD)” in the GDC data portal (portal.gdc.cancer.gov). Bulk RNA-seq counts were converted to transcripts per million (TPM) and matrices were deconvoluted with CIBERSORTx using scRNA-seq annotations (Newman et al., 2019). The reference matrix was created by randomly downsampling each cell-type to a maximum of 500 cells, and then utilized to generate a signature matrix file.
The TCGA-LUAD dataset comprised 530 valid cases, with a median overall survival time of 50.0 months, and out of these, 188 patients died. The prognostic significance of macrophage marker expression and percentage of macrophage subpopulation for overall survival was assessed using Kaplan-Meier curves. Univariate Cox regression analysis was applied to calculate hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs).
Cell culture and polarization of THP-1
The human lung cancer cell line SPC-A1 and human monocyte-like cells (THP-1) were purchased from the Chinese Academy of Sciences, China. Cells were cultured in RPMI 1640 medium (Gibco, USA), and supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. After THP-1 cells were treated with phorbol 12-myristate 13-acetate (PMA, 180 ng/ml) for 24 h, the cells differentiated into macrophages, and then co-cultured with SPC-A1. At termination, tumors were excised, and single-cell suspensions were prepared, and then stained with anti-CD68-APC and anti-CD163-PE (BioLegend) and analyzed by flow cytometry.
Reverse transcription quantitative polymerase chain reaction (RT-qPCR)
Total RNA was extracted from cells using TRIzol reagent (Invitrogen, USA; 15596026), and Primescript RT Reagent Kit (TaKaRa, Japan; RR036A) was used for reverse transcription. A 7500 Real-Time PCR System (Applied Biosystems, USA) was applied for RT-qPCR using SYBR Premix Ex Taq Kit (TaKaRa, Japan; RR091A). The primers used for amplification were listed in Supplementary Table S1.
Quantification and statistical analysis
Utilizing the Wilcoxon Rank-Sum test or the two-sided Student’s t-test, differential analysis was conducted between the two groups. The Kruskal-Wallis test was used to analyze differences among multiple pairwise comparisons. p-values under 0.05 were regarded as significant.
RESULTS
Transcriptomic characterization of the TME in NSCLC by comprehensively integrating scRNA-seq data
In order to depict the TME of NSCLC, we integrated and analyzed scRNA-seq data from three studies comprising 137 samples and 52 patients (Supplementary Table S2). The scVI tool was used to remove the batch effect, which yielded a total of 398170 cells. After quality control, normalization, identification of most variable genes, and dimensionality reduction, UMAP analyses created 26 unsupervised clusters (Figure 2A). Based on the expression levels of cell-type-specific markers, we identified 18 major cell populations, including alveolar type I cells (AT1, marked with AGER, CLIC5 and PDPN), alveolar type II cells (AT2, marked with LPCAT1, NAPSA, PGC and SLC34A2), basal cells (Basal, marked with KRT17, KRT5 and KRT6A), ciliated cells (Cilia, marked with AKAP14, ALDH3B1, ANKRD66, C11orf88, C11orf97 and DNAI1), club cells (Club, marked with PIGR, SCGB1A1 and SCGB3A1), endothelial cells (EC, marked with CDH5, CLDN5 and RAMP2), fibroblasts (Fib, marked with C1R, COL1A2 and DCN), macrophages (Mφ, marked with CD68, CD86, FCGR1A, ITGAX and CD163), Monocytes (marked with FCN1, CXCL8, EREG, S100A12), dendritic cells (DC, marked with C1orf54, LGALS2 and MZB1), mast cells (Mast, marked with KIT, MS4A2, PTGS1 and RGS13), B cells and plasma cells (marked with CD19, CD79A and MS4A1), natural killer cells (NK, marked with GNLY and NKG7), regular T cells (Tregs, marked with FOXP3, IL2RA and TNFRSF4), CD4+ T cells (T_CD4, marked with CD3D, CD3E, CD3G and CD4) and CD8+ T cells (T_CD8, marked with CD8A, CD8B and GZMK, Figures 2B, C). Based on the tissue of origin, epithelial cell compartments were classified as normal or malignant cell clusters (Figure 2D), which was mainly consistent with the copy-number status of cells (Supplementary Figure S1). Besides, the dominant malignant cells in NSCLC were AT2 and basal cells.
[image: Graphical abstract comprising four panels. Panel A shows three UMAP plots labeled with cell clusters from different datasets. Panel B displays a heatmap of immune cell markers with color-coded expression levels, indicating various cell types. Panel C depicts a UMAP plot with labeled subpopulations, including AT1, AT2, monocytes, and others. Panel D features a UMAP plot highlighting tumor versus normal cell clusters.]FIGURE 2 | Integration of NSCLC from three scRNA-seq datasets. (A) UMAP plots showing the integration of three scRNA-seq datasets by scVI tool. (B) Dot plot displaying average and percent expression of marker genes for clusters in Figure 2A. UMAP plots showing the overview of NSCLC atlas colored by (C) major cell types, and (D) tissue type.
Characterization of the NSCLC immune cell atlas
Single-cell immune profiling could accurately reveal the contribution of the TME, making it possible to detect diverse immune cell compositions within different cancer types. The proportion of eleven immune cell lineage varied between LUAD and LUSC (Figure 3A), revealing a heterogeneous cellular status. In addition, we found that the frequency of macrophages was significant higher in LUAD than LUSC (p = 0.016, Figure 3B). Salcher et al. have revealed four distinct tumor immune phenotypes in NSCLC, (i) immune-desert (ID); (ii) B cell dominance (B); (iii) myeloid dominance (M); and (iv) T cell dominance (T) (Salcher et al., 2022). As shown in Figure 3C, correlating immune cell population frequencies in NSCLC identified an intriguing phenomenon that patients with LUAD had high infiltration of the macrophages (the subtype of tumors with myeloid dominance, M).
[image: Bar, box, and heatmap charts depicting immune cell proportions in LUAD and LUSC patients. Part A shows a stacked bar chart for cell types. Part B offers box plots comparing immune cells between LUAD and LUSC. Part C provides a heatmap of immune infiltration across patients with tumor type annotations.]FIGURE 3 | The immune infiltration phenotypes in NSCLC based on scRNA-seq. (A): Proportion of each immune cell type in LUAD and LUSC patients. (B) Bar plots represent the distribution of eleven immune cell types between LUAD and LUSC. (C) Characteristics of the NSCLC patients and classification of the tumor immune phenotypes.
Diversity within macrophage subsets in NSCLC
TAMs have diverse functions in cancer with both anti- and pro-tumorigenic properties (Ma et al., 2022). Analysis of the single-cell transcriptomic profile of 91260 macrophage cells, revealed 8 distinct clusters, including 3 normal macrophage clusters and 5 TAM clusters (Figure 4A). Compared to normal macrophage, TAMs highly expressed EBI3 which is subunit of the composite cytokines IL-27 and IL-35 and monocyte differentiation markers, such as F13A1, CCR2 and CSF1R (Figure 4B). As shown in Figure 4C, TAM_c1 cluster was characterized by a high expression of SELENOP and CCL13, that have been related to M2 polarization (Solinas et al., 2010; Sathe et al., 2020). Meanwhile, SLC40A1 is highly expressed on this subset where it mediates iron efflux from the breakdown of haem. TAM_c2 cluster displayed high expression of SPP1, which was reported to mediate macrophage polarization and associated with an immunosuppressive TME (Zhang et al., 2017). TIMP1 was significantly elevated in this subcluster, that play a crucial role in extracellular matrix regulation (Ishihara et al., 2023). There is an upregulation of M1 polarized markers (proinflammatory cytokines CXCL10 and IL1B) in the TAM_c3 subcluster. TAM_c4 showed high expression of mitochondrial genes reflecting enhanced ATP metabolism. Finally, we observed TAM_c5 subpopulation displaying high expression of LUAD markers such as SCGB3A1, SCGB3A2 and SFTPB, that seemed to have anti-inflammatory effects and anti-fibrotic activity in lung (Cai et al., 2014). The transcriptional profiles of the TAM subsets indicated their heterogeneity and plasticity. Gene set variation analysis (GSVA) of hallmark pathways revealed there were increased activities of inflammatory response and glycolysis in TAMs (Supplementary Figure S2). We further assessed the M1, and M2 signatures of different TAM subsets. The classical M1/M2 model could not completely explain the polarization of macrophages, and both M1 and M2 associated genes frequently expressed in the same subsets. TAM_c1, c2 and c4 subsets showed high anti-inflammatory M2 scores, and TAM_c3 subset had high pro-inflammatory M1 score (Figure 4D). We further calculated the fractions of all TAM clusters in 31 LUAD and 14 Lung squamous cell carcinoma (LUSC) patients. The distribution of TAM c1-c4 clusters was not significant between LUAD and LUSC, whereas a higher fraction of TAM_c5 were observed in LUAD (Figure 4E).
[image: Panel of graphs and charts analyzing macrophage data. (A) UMAP plot showing clusters of macrophage and TAM subsets. (B) Volcano plot illustrating gene expression differences, highlighting significant genes. (C) Heatmap displaying gene expression profiles across different clusters. (D) Violin plots comparing M1 and M2 macrophage marker scores. (E) Box plots for immune scores across different TAM clusters, with significant p-values indicated.]FIGURE 4 | Dynamic restructuring of macrophages in NSCLC. (A) UMAP plots showing the macrophages in NSCLC, classified into tumor-associated macrophages (TAMs) and normal-adjacent associated macrophages (Mφ). (B) Volcano plot of differentially expressed genes between TAMs and Mφs. (C) Heatmap showing the differentially expressed genes (rows) across different macrophage clusters (columns). (D) Module scores of gene signatures related to M1/M2 polarization across different TAM clusters. (E) Boxplot showing cellular fractions of TAM clusters in 31 LUAD and 14 LUSC patients. One-sided unpaired Wilcoxon test was used.
Cellular crosstalk in the TME
To explore the contribution of TAM subsets in NSCLC, we analyzed the cellular interactions between TAMs with cancer cells and CD8+ T cells, based on the differentially expressed TAM ligands [False Discovery Rate (FDR) < 0.01, absolute log2FC > 1]. As shown in Figure 5A, we discovered VEGFA signaling toward cancer cells in all TAM subsets, highlighting its significant proangiogenic significance. Enhancement of the SPP1 signaling was observed in the TAM_c1, c2 and c4 subsets and suppressed T cell activation, which partially explained their high M2 scores. Expression of CXCL12 is highest in TAM_c1 subset, supporting revascularization of ischemic tissue and tumor growth (Teicher and Fricker, 2010). We further used the NicheNet algorithm to identify intercellular communication of tumor cells that might influence the transcriptional phenotype of TAMs. Interestingly, we found PTHLH derived from tumor cells can target macrophages and regulate the expression of CCL13, PLAU and ICAM1, resulting the phenotype of TAM_c1. Ligand APP from tumor cells and fibroblasts might increase the expression of SELENOP in macrophages (Figure 5B).
[image: Heatmap and circular plot depicting macrophage clusters and gene interactions. The heatmap shows differential expression (log2 fold change) of the top 30 DE ligands across macrophage clusters, with color gradients indicating changes. Circle and dot sizes reflect expression fraction. Circular plot illustrates TAM_c1 upregulated genes with connections to tumor and fibroblast ligands, using colored arcs and lines to denote interactions.]FIGURE 5 | The cellular crosstalk of macrophages in NSCLC. (A) Outgoing interactions of different macrophage subclusters with cancer cells and CD8+ T cells. (B) Predicted ligands in tumor cells and fibroblasts that regulate respective target genes in TAM_c1 cluster.
While five tumor-associated macrophage (TAM) subtypes are present in both LUAD and LUSC, macrophages are notably more abundant in adenocarcinoma. Furthermore, we used in vitro transwell co-culture experiment to verify the certain cytokine secreted by tumors could induce THP-1 monocyte differentiated into the state in the LUAD TME (Figure 6A). When THP-1 monocytes co-cultured with SPC-A1 cells, about 33.7% THP-1 could be successfully polarized into M2 macrophages (THP1-M2, Figure 6B). Importantly, the expression of SELENOP, SLC40A1, CCL13 and SPP1 in the macrophages were significantly upregulated in THP1-M2, while FABP4, CES1 and MCEMP1 displayed slight variation during the induction (Figure 6C).
[image: Panel A shows a schematic of macrophage differentiation from THP-1 cells to tumor-associated macrophages (TAM), with a UMAP plot illustrating marker detection. Panel B presents flow cytometry plots showing CD86 and CD163 expression, with percentages for THP-1-M0 and THP1-M2. Panel C is a bar graph comparing relative expression of genes FABP4, CES1, MCM3AP, SELENOP, SLC40A1, CCL13, and SPP1 between THP1-M0 and THP1-M2, with statistical significance indicated. Panel D displays a forest plot for gene expression analysis with hazard ratios, confidence intervals, and p-values for each gene.]FIGURE 6 | Dissection of the interaction between macrophages and tumor cells. (A) Workflow depictingTHP-1 monocyte-derived macrophages that were co-cultured with SPC-A1. (B) Flow cytometry analysis of M2-like macrophages. (C) Boxplot showing the mean expression of the marker genes of Mφ_c1 and TAM_c1 clusters for M2-like macrophages. (D) Univariate Cox regression analysis of macrophage markers expression and TAM_c1 abundance associated with the survival in LUAD patients. LUAD patients were stratified into high and low groups based on the median TPM (transcripts per million) values of the analyzed genes, as well as the median TAM_c1 abundance.
Using clinical data collected from TCGA, we next evaluated the impact of these TAM marker genes on prognosis. Forest plot from univariate regression analysis demonstrated that LUAD patients with high levels of SPP1 were related to poor prognosis (Figure 6D, Supplementary Figure S3A), whereas high SELENOP expression indicated favor prognosis (Figure 6D, Supplementary Figure S3B). Focusing on the clinical relevance of TAM_c1 in LUAD, we utilized CIBERSORTx to estimate the proportion in TCGA dataset based on the cell-type markers in scRNA-seq. Estimates of the TAM_c1 showed high intra-group correlation within other TAM groups (TAM_c2-4, Supplementary Figure S4A), and CCL13 was included in the signature matrix for TAM_c1 deconvolution (Supplementary Figure S4B). Importantly, TAM_c1 abundance seemed to be associated with poorer overall survival rates (HR = 1.34, 95% CI = 0.98-1.83), but the difference was not statistically significant (p = 0.068, Figure 6D, Supplementary Figure S3C).
DISCUSSION
Some clinical studies have demonstrated that decreasing the number of TAMs might be an effective tumor treatment. Hu et al. reported that tissue-resident macrophages were expanded after neoadjuvant immunotherapy in NSCLC, and M2-TAMs were more likely remodeled into a neutral (M0) instead of an anti-tumor phenotype (M1) (Hu et al., 2023). Francisco-Cruz et al. found that a higher level of infiltration of PD-L1+ macrophages (CD68+PD-L1+) that were in closer proximity to malignant cells in the NSCLC was associated with poor overall survival (Francisco-Cruz et al., 2023). Backman et al. investigated the spatial immunophenotyping of TME for NSCLC using multiplex immunofluorescence staining. They found that the high densities of M1 and CD163 macrophages exhibited a positive prognostic influence, whereas short M2–M1 distances were prognostically unfavourable (Backman et al., 2023). Therefore, identification of targets that can prevent M2-like TAM transition is a crucial task for future research.
In our study, Mφ_c1 cells are tissue-resident alveolar macrophages with the expression of the canonical markers (FABP4 and MCEMP1). FABP4 is a member of the fatty acid-binding protein family and plays important functions in inflammation and metabolism (Xu et al., 2015). We also found that this cluster showed activity related to fatty acid metabolism, which is an accessory characteristic of alveolar macrophages. Moreover, macro_FABP4 alveolar macrophages were reported to be significantly elevated in post-treatment NSCLC patients who received neoadjuvant PD-1 blockade combined with chemotherapy (Hu et al., 2023). This phenomenon indicated that alveolar macrophages might work together with AT2 cells, being involved in alveolar epithelial regeneration. TAM_c1 showed high expression of SELENOP, which was previously reported to have an anti-inflammation role (Barrett et al., 2015). This cluster also highly expressed LGMN and HLA-DP, DQ, DR, indicating their intimate correlation with antigen processing and presentation. The JAK-STAT signaling shows dynamic activity in TAM_c1 and c3 clusters that is essential for a wide range of cytokines such as CCL13, CXCL10 and IL1B, leading to critical cellular events, such as hematopoiesis. Besides, the TAM_c2 cluster highly expressed SPP1 and demonstrated maximum activity in glycolysis, which produces adenosine triphosphate (ATP) and carbon intermediates to facilitate TAM reprogramming (Zhang Q. et al., 2021). Enhanced glycolysis in TAMs supported several metabolic pathways and regulated cell signaling to promote tumor development (Zhang X. et al., 2023). Matsubara et al. found that SPP1 was highly expressed in immunologically “hot” areas such as CD163-positive TAMs, which predicted a poor prognosis in LUAD, but this association did not hold for LUSC. Additionally, they found that macrophage-derived SPP1 suppresses the apoptosis of cancer cells when exposed to anticancer drugs (PTX or PEM) (Matsubara et al., 2022).
We have also demonstrated molecular interactions between the tumor cells and immune compartments. Several significant interactions (such as SPP1-CD44, CXCL12-CXCR4 and PDCD1LG2-PDCD1) were inferred among TAMs, tumor cells and CD8+ T cells, which involved the activation of ERK, TGF-β and NF-κB signaling pathways in tumor cells and the negative regulation of activated T cell proliferation. Besides, we quantified fully polarized THP-1-derived M2-type macrophages using flow cytometry based on CD68 and CD163, and validated the expression of SELENOP, SLC40A1, CCL13 and SPP1. It is particularly noteworthy that cell-based cancer immunotherapies hinge on the capacity of natural or engineered receptors present on immune cells to interact with specific antigens on cancer cells, resulting in the induction of tumor cell destruction. The combination of CXCR4 therapeutic agent blockade and PDCD1 resulted in the reduction of suppressive leukocytes and promoted the transition of M2-to-M1 macrophage polarization within the tumor (Pei et al., 2023). Martinez-Usatorre et al. reported that both TAMs derived from monocytes, reliant on CSF1R, and alveolar-origin TAMs, sensitive to cisplatin, played a pivotal role in shaping TME enriched in TGF-β, which facilitated the presence of PD-1+ Tregs. The concurrent targeting of TAMs through a combination of a CSF1R inhibitor and cisplatin diminished Tregs, redirected the function of PD-1 antibodies toward CD8+ T cells, and bolstered the efficacy of antiangiogenic immunotherapy, resulting in significant tumor regression (Martinez-Usatorre et al., 2021). Hence, exploring cellular dynamic crosstalk can serve as a novel strategy to indirectly disrupt the interplay of cancer cells, which contributing to the development of efficient and safe therapeutic strategies for combating cancer.
By integrating bulk and single-cell RNA sequencing, high levels of TAM_c1 subset seemed to be correlated with poor survival for lung cancer patients. Deconvolution typically relies on a set of known marker genes, that are expressed at different levels in different cell types (Erdmann-Pham et al., 2021). While certain marker genes demonstrated discernible prognostic potential, the process of deconvoluting bulk transcriptome data to estimate the relative proportions of various cell types remained unaffected. This disparity may lead to incongruities in prognostic implications between marker genes and TAM subgroups. Besides, we have observed a certain degree of correlation among different TAM subtypes based on single-cell technology, which could introduce some error when inferring the expression of individual TAM subgroups. Therefore, a more comprehensive understanding of the regulatory mechanisms governing different macrophage subsets is imperative for future research.
CONCLUSION
In summary, our study generates an intricate high-resolution portrait of TME in NSCLC with 18 major cell types. Notably, we elucidate distinct cell-type composition patterns within LUAD and LUSC, providing more precise functional transcriptomic classification of macrophages in both histotypes. The biology of TAMs presented in this study could provide the theoretical basis for developing immune-checkpoint therapies for patients with NSCLC.
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Background: Disulfidptosis is a metabolically relevant mode of cell death, and its relationship with acute myeloid leukemia (AML) has not been clarified. In this study, disulfidptosis scores were computed to examine the potential biological mechanisms.
Methods: Consensus clustering was applied to detect disulfidptosis-related molecular subtypes. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to construct a DRG prognostic model.
Results: DRGs are upregulated in AML and associated with poor prognosis. The higher the disulfidptosis activity score, the worse the clinical outcome for patients, accompanied by increased immune checkpoint expression and tumor marker pathway activity. The two molecular subtypes exhibited distinct prognoses and tumor microenvironment (TME) profiles. A prognostic risk score model was established using six DRGs, and the AML cohort was divided into high- and low-risk score groups. Patients in the high-risk group experienced significantly worse prognosis, which was validated in seven AML cohorts. Receiver Operating Characteristic (ROC) curve analysis indicated that the area under the curve values for risk score prediction of 1-, 3-, and 5-year survival were 0.779, 0.714, and 0.778, respectively. The nomogram, in conjunction with clinicopathological factors, further improved the accuracy of prognosis prediction. The high-risk score group exhibited a higher somatic mutation frequency, increased immune-related signaling pathway activity, and greater immune checkpoint expression, suggesting a certain degree of immunosuppression. Patients with advanced age and higher cytogenetic risk also had elevated risk scores. According to drug prediction and AML anti-PD-1 therapy cohort analysis, the low-risk score group displayed greater sensitivity to chemotherapy drugs like cytarabine and midostaurin, while the high-risk score group was more responsive to anti-PD-1 therapy. Finally, clinical samples were collected for sequencing analysis, confirming that the progression of myeloid leukemia was associated with a higher risk score and a negative disulfidptosis score, suggesting that the poor prognosis of AML may be associated with disulfidptosis resistance.
Conclusion: In conclusion, a systematic analysis of DRGs can help to identify potential disulfidptosis-related mechanisms and provide effective new biomarkers for prognosis prediction, TME assessment, and the establishment of personalized treatment plans in AML.
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INTRODUCTION
Acute myeloid leukemia (AML) is a hematologic tumor that originates from hematopoietic stem cells (HSCs) (Shimony et al., 2023). The prognosis for patients with AML is extremely poor. Currently, the conventional treatment involves induction chemotherapy. However, due to variations in age, individual physical condition, and disease heterogeneity, this treatment often yields suboptimal responses, frequently resulting in relapse or drug resistance (Bhansali et al., 2023). Therefore, finding new therapeutic targets and prognostic markers is imperative for the management of patients with AML.
Regulatory cell death (RCD) refers to a mode of cell death that is governed by specific molecular pathways and can be regulated through artificial means, such as genetics or pharmacology (Galluzzi et al., 2018). The controlled occurrence of RCD plays a pivotal role in bodily development and cellular homeostasis. Conversely, dysregulated RCD is closely associated with various diseases, including cancer. Evading cell death is recognized as a fundamental hallmark of cancer. The presence of apoptosis resistance in tumor cells has prompted researchers to investigate alternative RCD mechanisms (Mohammad et al., 2015). Non-apoptotic RCD encompasses autophagy, ferroptosis, pyroptosis, and necroptosis. Among these, ferroptosis is a form of RCD induced by iron-dependent lipid peroxidation discovered in recent years, which has a unique morphology and mechanism of occurrence (Dixon et al., 2012). Recent studies have shown that certain cancer cells that are resistant to conventional therapies are particularly susceptible to ferroptosis (Zhang et al., 2022). Ferroptosis regulated by solute carrier family 7 member 11 (SLC7A11; also known as xCT)-mediated cystine uptake plays a key role in promoting glutathione biosynthesis and mitigating oxidative stress (Koppula et al., 2021). However, a 2017 study demonstrated that SLC7A11 significantly promotes cell death under glucose-starvation conditions (Goji et al., 2017; Koppula et al., 2017; Shin et al., 2017), contradicting prior research findings. In 2020, Liu et al. (2020) uncovered the mechanism by which SLC7A11-mediated reduction of ingested cystine to cysteine depends heavily on reduced nicotinamide adenine dinucleotide phosphate (NADPH) generated by the glucose-pentose phosphate pathway. Consequently, in glucose -starvation conditions, NADPH is depleted in cells overexpressing SLC7A11, leading to abnormal accumulation of disulfide stress, such as cystine, which triggers rapid cell death. Recently, Gan et al. revealed the mechanism behind disulfide stress-induced cell death and coined this novel mode of cell demise as disulfidptosis (Liu et al., 2023).
In the context of AML, inhibiting SLC7A11 can enhance the effects of chemotherapy by preventing cystine uptake (Pardieu et al., 2022). Furthermore, AML cell growth and proliferation also depend on more active glucose metabolism (Chen et al., 2014). Therefore, inducing disulfidptosis through glucose starvation as a treatment strategy for AML holds potential therapeutic value. In this study, we conducted a comprehensive analysis of the expression patterns of disulfidptosis-related genes (DRGs) in AML samples. We computed disulfidptosis-related scores using single-sample gene set enrichment analysis (ssGSEA) and analyzed the relationship between DRGs and AML prognosis, pathway activity, and the tumor microenvironment (TME). Additionally, we developed a risk score model to predict the prognosis and immunotherapy response of patients with AML. This research furnishes a more substantial theoretical foundation and data support for the exploration of AML disulfidptosis and provides personalized guidance for the clinical treatment and prognosis evaluation of AML.
MATERIALS AND METHODS
Data acquisition and processing
A total of 1,653 AML samples and 337 normal samples were included in this study. AML samples included The Cancer Genome Atlas-Acute Myeloid Leukemia (TCGA-LAML) cohort and seven GEO cohorts (GSE10358-GPL570, GSE12417-GPL96, GSE12417-GPL570, GSE37642-GPL96, GSE37642-GPL570, GSE71014-GPL10558), GSE14468-GPL570) (Supplementary Table S1), and normal samples were Genomic tissue expression (GTEx)-whole blood cohort. For GEO cohort data from the affymetrix platform, raw “CEL” files were downloaded and normalized with the use of the robust multiarray averaging (RMA) method, whereas microarray data from the other platforms were directly downloaded with a normalized matrix file. TCGA-LAML and GTEx RNA-seq data (RSEM TPM) were downloaded from the UCSC XENA database (https://xenabrowser.net/datapages/). The “human.gtf” file was adopted to raw matrix annotation. All data were analyzed using R x64 and the associated R Bioconductor software package, and the data information is shown in Supplementary Table S1. Ten DRGs were retrieved from the study by Gan et al., of which, SLC7A11, SLC3A2, RPN1, and NCKAP1 are drivers, and GYS1, NDUFS1, OXSM, LRPPRC, NDUFA11, and NUBPL are suppressors.
Calculation of disulfidptosis-related scores
We used the ssGSEA algorithm to calculate enrichment scores for disulfidptosis drivers and suppressors, defined as disulfidptosis positive score and negative score, respectively, and subtracted the negative score from the positive score to obtain disulfidptosis activity score (Subramanian et al., 2005).
Consensus cluster analysis of DRGs
Based on the expression profiles of 10 DRGs, the “ConsensusCluster” package was used to perform unsupervised clustering of the TCGA-LAML dataset by consensus clustering method (Wilkerson and Hayes, 2010), and two cluster subtypes with significant differences were obtained. We performed 1,000 replicates to ensure stable and reliable clustering.
Weighted correlation network analysis (WGCNA)
WGCNA can assess patterns of gene expression correlations and perform methods for visualization of co-expression networks. We used the “WGCNA” software package to identify genes associated with disulfidptosis scores in the TCGA-LAML cohort (Langfelder and Horvath, 2008). Pearson correlation analysis was used for adjacency matrix formation for all paired genes, and a scale-free topology of the adjacency matrix was implemented based on the optimal soft threshold power. Then, we further transform the adjacency matrix into the topological overlap matrix (TOM). Based on the TOM difference measure, a minimum module size of 30 and a cut height of 0.2 were set to partition genes with similar expression patterns into the same modules by average linkage hierarchical clustering. Then, the correlation between module eigengenes (MEs) and disulfidptosis score was evaluated, and the modules that met the study purpose were determined according to the degree of correlation.
Pathway enrichment analysis
For the target module genes identified by WGCNA, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to identify gene functions. The Gene Set Variation Analysis (GSVA) algorithm was used to calculate the activity scores of individual gene sets in different samples, and the Gene Set Enrichment Analysis (GSEA) algorithm was used to evaluate the difference in pathway activity between patients with high- and low-risk score groups to analyze the biological differences among patients with different risk scores. We used q value < 0.05 as a threshold for significant enrichment.
Assessment of TME and immune cell infiltration
We used the ESTIMATE algorithm (Yoshihara et al., 2013) to evaluate the immune and stromal scores for each AML sample and applied the CIBERSORT algorithm (Newman et al., 2015) to determine the proportion of immune cell subsets in each sample.
Construction of risk score model
We performed univariate Cox regression analysis of disulfidptosis activity score related genes based on p < 0.01 was used to identify the DASRGs significantly related to AML prognosis. In order to limit the influence of multicollinearity between variables, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to further reduce the dimension and screen out the optimal variables to prevent instability caused by model estimation distortion, so as to construct an accurate prognostic risk score model. The risk score for each sample was obtained by multiplying the expression value of each model gene with its corresponding coefficient and adding it. Then, the risk scores of all patients were ranked, and AML patients were divided into high-risk score group and low-risk score group based on the optimal cut-off value, and the differences in clinicopathological factors and biological characteristics between the two groups were further analyzed.
Assessment of mutation and treatment sensitivity
We download the somatic mutation data from the TCGA database (https://portal.gdc.cancer.gov/), and compared the mutation differences in high- and low-risk score groups. The “pRRophetic” package was used to predict the half maximal inhibitory concentration (IC50) of AML samples to commonly used therapeutic drugs (Geeleher et al., 2014). A smaller IC50 value indicates a better treatment effect. We further used the SubMap (https://cloud.genepattern.org/gp) algorithm to predict the response of different risk score groups to anti-PD-1 and anti-CTLA4 immune checkpoint inhibitors.
Single-cell RNA-seq data processing
We downloaded AML single-cell sequencing data containing 21 cell types (GSE116256) from the GEO database, as well as another group of AML Single-cell sequencing data in the context of PD-1 blocking (GSE198052). We referred to previously published literature related to single cells (Jiang et al., 2022; Zheng et al., 2023). The 10 × scRNA-seq data were processed by R software according to a standardized procedure. The original gene expression matrix was introduced into the “Seurat” package for processing, only genes expressed in at least three single cells, and cells with unique molecular identifiers (UMI) counts <200 were removed. Moreover, only cells expressing more than 1,500 genes and less than 6,000 genes were included. The percentage of mitochondrial or ribosomal genes was calculated for each cell, and cells with more than 20% mitochondrial gene expression were considered low quality cells and also not subjected to downstream analysis. Then, normalized counts were obtained by using the library size normalization of the original matrix, and the top 2,000 genes with a large coefficient of variation were obtained by using the “FindVariableFeatures” function. After z-score processing, principal component analysis (PCA) was performed based on high-variable genes. The uniform manifold approximation and projection (UMAP) algorithm was used to realize the visualization of clustering. Cell types were referred to the annotation file provided by van Galen et al. (2019).
Myeloid leukemia clinical sample collection
Clinical samples were collected in accordance with the Declaration of Helsinki and institutional guidelines, and informed consent was obtained from each patient and healthy volunteer. Ethical approval was obtained from the Ethics Committee of the Second Affiliated Hospital of Nanchang University [No. review. (2018) No. (092)], and all experimental protocols and methods were performed in accordance with relevant protocols and regulations. Five samples from patients with newly diagnosed chronic myeloid leukemia without any previous treatment, five samples from patients in blast crisis, and five normal samples from healthy volunteers were collected according to the World Health Organization classification of tumors of hematopoietic and lymphoid tissues. Detailed details of sample collection, next-generation sequencing, and processing procedures are available in our previous publications (Li et al., 2020).
Statistical analysis
Wilcoxon and Kruskal–Wallis tests were used for between-two and multiple-group comparisons, respectively. The “survminer” package was used to determine the optimal cut-off value. The number of patients in a single risk group was set to be no less than 30% of the total population. Kaplan-Meier survival analysis was performed using the log-rank test. The receiver operating characteristic (ROC) curve was used to evaluate the specificity and sensitivity of the risk score, and the area under the curve (AUC) was determined. Bilateral p < 0.05 was considered statistically significant.
RESULTS
Analysis of DRG expression and scoring patterns in bulk RNA-sequencing
In comparison with normal samples, DRGs exhibited upregulated expression in AML samples, suggesting potential crosstalk between DRGs and AML (Figure 1A). Expression correlation analysis indicated positive correlations among most DRGs, with suppressor NDUFA11 showing a negative correlation with drivers SLC7A11 and NCKAP1. Additionally, NCKAP1 and GYS1 exhibited a negative correlation (Figure 1B), suggesting the presence of an antagonistic regulatory mechanism in disulfidptosis. Cox regression analysis identified DRGs as risk factors, except for NUBPL (Figure 1C). K-M curve analysis demonstrated that high expression groups of SLC7A11, SLC3A2, OXSM, NDUFA11, and NDUFS1 had significantly worse prognoses than low expression groups, while the high expression group of NUBPL had a significantly better prognosis (Supplementary Figures S1A, B). PPI network analysis revealed NDUFS1 as the hub gene among the suppressors (Figure 1C). Furthermore, a set of TFs with potential regulatory roles with DRGs was identified (Figure 1D). Using the GSVA algorithm, disulfidptosis positive, negative, and activity scores were computed. Compared to normal samples, AML samples exhibited higher disulfidptosis positive and activity scores and lower negative scores, indicating AML cell resistance to disulfidptosis (Figure 1E). K-M curve analysis showed that patients in both high positive and activity score groups had worse prognoses than those in low score groups, with the opposite observed for the negative score (Figures 1F–H). The occurrence of disulfidptosis was found to be influenced by glucose starvation, with glucose metabolic pathways such as citrate cycle (TCA cycle), glycolysis gluconeogenesis, pentose and glucuronate interposition, and pentose phosphate pathway enrichment scores being significantly positively correlated with disulfidptosis negative score. Conversely, the TCA cycle was significantly negatively correlated with the positive score (Figure 1I), implying that increased glucose metabolism activity is unfavorable for disulfidptosis occurrence.
[image: The image consists of multiple panels displaying various data visualizations. Panel A shows box plots comparing gene expression in normal and tumor samples. Panel B displays a network diagram indicating interactions among molecules. Panel C features a protein-protein interaction network. Panel D is a Sankey diagram showing pathways and connections. Panel E illustrates a scatter plot of scores across different samples. Panels F, G, and H provide Kaplan-Meier plots for survival analysis with different scores. Panel I contains a heatmap of pathway activity scores for several pathways.]FIGURE 1 | Expression characteristics of disulfidptosis-related genes (DRGs) and correlation analysis of disulfidptosis score. (A) Differential expression analysis of DRGs between AML samples and normal samples; The red ones are drivers and the blue ones are suppressors. (B) Correlation analysis of DRGs expression and its relationship with AML prognosis. (C) PPI network connectivity diagram of DRGs. (D) Potential regulatory relationships between transcription factors (TFs) and DRGs. (E) Differences in disulfidptosis score between AML samples and normal samples. (F–H) K-M curve analysis of positive, negative, and activity scores for disulfidptosis. Log-rank test. (I) Correlation analysis between disulfidptosis score and glucose metabolic pathway activity. (*p < 0.05; **p < 0.01; ***p < 0.001).
Validation of DRG expression and scoring patterns in single-cell sequencing
The GSE116256 cohort included bone marrow samples from 16 patients with AML and 5 healthy participants, encompassing 21 cell types (Figure 2A). Among these, six types of AML malignant cells were identified as HSC-like, progenitor-like, granulocyte-monocyte-progenitor (GMP)-like, promonocyte-like, monocyte-like, and conventional dendritic cell-like. Expression profile analysis revealed that disulfidptosis suppressor genes like LRPPRC and NDUFA11 exhibited higher detectable expression rates in single cells, particularly in GMP-like cells (Figure 2B). Furthermore, the calculation of disulfidptosis scores in various cells showed that AML malignant cells, especially GMP-like cells, had higher negative scores (Figures 2C–F). Additionally, malignant cells demonstrated higher positive scores, resulting in no significant difference in activity scores between them and normal cells (Figure 2G).
[image: Various data visualizations depict gene expression and cell type analysis. Graphs include scatter plots, dot plots, and heatmaps, highlighting different cell populations and expression patterns. Heatmaps show relative expression in multiple cell types, with a range of colors indicating expression levels. Bar charts display comparative data, and the diagrams are labeled for clarity.]FIGURE 2 | Analysis of potential biological mechanisms of disulfidptosis. (A) UMAP analysis of the AML single-cell sequencing dataset GSE116256 shows the distribution characteristics of all cell types. (B,C) The bubble maps show the expression characteristics of disulfidptosis genes and scores in all cell types. (D–F) Heatmaps showe the distribution characteristics of disulfidptosis scores in all cells. (G) Differences in disulfidptosis scores between normal cells and AML malignant cells. (H–K) Correlation analysis of disulfidptosis score with immune cell infiltration (H), TME score (I), immune checkpoint expression (J), and tumor marker pathway activity (K). (*p < 0.05; **p < 0.01; ***p < 0.001).
Exploration of the potential mechanism of disulfidptosis
Correlation analysis of immune infiltration showed that a high disulfidptosis activity score was associated with reduced infiltration of M2 macrophages and memory B cells, and increased infiltration of neutrophils. Conversely, high disulfidptosis negative scores were associated with increased infiltration of memory B cells, M1 macrophages, mast cells, and resting CD4+ T cells, along with reduced infiltration of monocytes and activated CD4+ T cells (Figure 2H). Analysis of TME characteristics demonstrated that higher disulfidptosis activity scores were associated with higher immune and stromal scores and lower tumor purity, whereas the opposite trend was observed for negative scores (Figure 2I). This suggests the involvement of disulfidptosis in antitumor responses within the AML TME. Moreover, the disulfidptosis activity score was significantly positively correlated with the expression of most immune checkpoints, with the opposite seen for the negative score (Figure 2J). Pathway analysis revealed that the activity score was positively correlated with the enrichment score of most tumor marker pathways (Figure 2K). Among these pathways, proliferation-related signaling pathways like MYC targets V1/V2 and DNA repair were negatively correlated with the activity score, indicating a potential inhibitory effect of disulfidptosis on cell viability. Correlation analysis with clinicopathological factors showed that white blood cell (WBC) count exhibited a negative correlation with both the positive score and activity score, while age showed a positive correlation with the activity score and a negative correlation with the negative score (Figure 3A). In the comparison of categorical variables, the activity score and positive score increased with an increase in cytogenetic risk, with the highest values observed in the French-American-British (FAB) classification of M6 and M7 (Figures 3B, C). Moreover, disulfidptosis scores did not show significant differences among patients (Figure 3D).
[image: Heatmap and multiple plots depicting gene expression data analysis. Panel A shows a correlation matrix with colors indicating correlation levels. Panels B, C, and D are scatter plots comparing various conditions. Panel E displays a gene dendrogram and heatmap. Panels F and G show scale independence and mean connectivity plots, respectively. Panel H is a dendrogram from hierarchical clustering. Panel I illustrates module detection in a network dendrogram. Panel J features module-trait relationships in a heatmap. Panel K is a scatter plot, and Panel L presents an association plot with significance levels.]FIGURE 3 | Analysis of clinical relevance of disulfidptosis scores and identification of potential DRGs. (A) Correlation analysis between disulfidptosis scores and clinicopathological factors. (B–D) Differences in disulfidptosis scores among clinicopathological factors. (E) Clustering dendrogram of AML samples. Color intensity was positively correlated with disulfidptosis scores. (F,G) Scale-free fit index (F) and average connectivity (G) analysis of various soft threshold powers. (H) the cluster of module feature genes. The red line indicates the cutting height (0.2). (I) Dendrogram of clustering based on different measures (1-TOM). (J) Heatmap of correlation between module signature genes and disulfidptosis score. Each cell contains a p-value and a correlation coefficient. (K) Scatter plot of module characteristic genes associated with disulfidptosis activity score in magenta modules. (L) KEGG enrichment analysis of magenta module genes. (*p < 0.05; **p < 0.01; ***p < 0.001).
Identification of potential DRGs and signaling pathways
The weighted correlation network analysis (WGCNA) analysis was performed on The Cancer Genome Atlas—Acute Myeloid Leukemia (TCGA-LAML) dataset to identify additional potential DRGs. The cluster dendrogram displayed an increase in color depth corresponding to the magnitude of the disulfidptosis score (Figure 3E). Figures 3F, G show the scale-free fit exponent and average connectivity analysis for various soft threshold powers. The blue and purple module feature genes were combined with a cut height of 0.2 (Figures 3H, I). A soft threshold power of β = 5 (unscaled R2 = 0.9) was selected to categorize the top 5,000 genes, sorted by standard deviation, into 14 independent co-expression modules (Figure 3J). The correlation plot of the module-trait relationship indicated that the magenta gene module, comprising 152 genes, exhibited the highest correlation with the disulfidptosis activity score (Figures 3J, K; Supplementary Table S2). KEGG analysis highlighted that these genes were mainly enriched in signaling pathways such as metabolic pathways, hematopoietic cell lineage, platelet (PLT) activation, and proteoglycans in cancer (Figure 3L).
Identification of disulfidptosis-related molecular subtypes and analysis of their differences in biological characteristics
We performed a consensus cluster analysis based on the expression of DRGs retrieved in the study of Gan et al. According to the distribution characteristics of the cluster plots and considering the small size of samples in the TCGA-LAML cohort (Supplementary Figure S2). We chose cluster number 2 as optimal. Two disulfidptosis-related molecular subtypes, Cluster A and Cluster B, were thus identified (Figure 4A). Cluster B demonstrated a significantly worse prognosis than Cluster A (Figure 4B). The expression of RPN1, GYS1, SLC3A2, and NDUFA11 was significantly higher in Cluster B than in Cluster A (Figure 4C). Additionally, Cluster A exhibited a higher disulfidptosis negative score, while Cluster B displayed a higher activity score (Figure 4D). TME analysis indicated that Cluster B possessed higher stromal and immune scores (Figure 4E), primarily due to a greater proportion of monocyte infiltration. In contrast, Cluster A was enriched in more naive B cells, resting memory CD4+ T cells, and eosinophils (Figure 4F). Higher expression of PD-1, TNFRSF9, and CD86 was observed in Cluster B, suggesting the potential presence of immunosuppression in this subtype (Figure 4G). Difference analysis results showed that the activity of 50 tumor marker pathways in Cluster B exceeded that in Cluster A (Figure 4H).
[image: Panel of scientific plots and diagrams:   A. Heatmap depicting consensus clustering of samples with varying intensity of blue.   B. Kaplan-Meier survival plot comparing clusters A and B.   C. Heatmap showing gene expression with a color gradient from blue to yellow.   D. Scatter plot indicating clustering accuracy metrics.   E. Violin plot illustrating data distribution for different groups.   F and G. Bar graphs comparing expression levels of various genes between cluster A and B.   H. Heatmap of gene set enrichment analysis with a color gradient.]FIGURE 4 | Identification of disulfidptosis-related molecular subtypes and analysis of differences in biological characteristics between subtypes. (A) Two molecular subtypes were identified by consensus clustering. (B) Survival analysis between subtypes. (C) Heatmap shows the expression characteristics of DRGs between subtypes. (D–H) Differences in disulfidptosis score (D), TME score (E), immune cell infiltration (F), immune checkpoint expression (G), and tumor marker gene set score (H) between subtypes. (*p < 0.05; **p < 0.01; ***p < 0.001).
Prognostic predictive value of DRG analysis
Univariate Cox regression analysis on potential DRGs identified by WGCNA analysis revealed significant correlations between AML prognosis and GCLM, PLEKHH3, NEO1, CSF1, ST6GALNAC4, AK1, and SLC14A1 (Figure 5A). To reduce dimensionality and construct a prognostic risk score model, LASSO regression analysis was performed using six genes, excluding PLEKHH3 (Figures 5B, C) (Supplementary Table S3). Patients with AML were stratified into high- and low-risk score groups based on the optimal cut-off value (Figure 5D). Compared to the low-risk score group, the high-risk score group exhibited a higher number of deceased patients (Figure 5E), higher expressions of GCLM, NEO1, CSF1, ST6GALNAC4, and AK1, and lower expression of SLC14A1 (Figure 5F). Survival analysis demonstrated that the high-risk score group had a significantly worse prognosis than the low-risk score group (Figure 5G). ROC curve analysis revealed high area under the curve (AUC) values for the risk score at 1, 3, and 5 years (0.779, 0.714, and 0.778, respectively), indicating the robust prognostic value of the risk score (Figure 5H). Univariate and multivariate Cox regression analyses confirmed the risk score as an independent factor for predicting AML prognosis (p < 0.001) (Figures 5I, J).
[image: Figure shows multiple panels with various types of data visualizations related to risk assessment and survival analysis. Panel A presents a forest plot; B and D display line graphs; C and H showcase receiver operating characteristic (ROC) curves; E and G provide scatter plots and Kaplan-Meier survival curves; F contains a heatmap; I and J feature analysis plots. Each panel is labeled and highlights specific data points related to risk scores, patient status, and statistical analyses.]FIGURE 5 | Construction of risk scoring model. (A) Cox regression analysis was used to identify DRGs significantly associated with prognosis. (B) The penalty coefficient of the minimum 10-fold cross-validation error point was calculated to determine the corresponding model gene. (C) Determination of model gene coefficients. (D–F) Based on the optimal cut-off value, patients in the TCGA-LAML cohort were divided into high- and low-risk score groups (D), the survival status distribution (E), and model gene expression (F) in high- and low-risk score groups. (G) Survival analysis between high- and low-risk score groups. (H) Time-dependent ROC curve analysis of risk scores. (I,J) Univariate and multivariate Cox regression analysis of clinicopathological factors and risk score.
Validation of prognostic ability of risk score model and clinical nomogram construction
The prognostic prediction ability of the risk score model was further validated across seven AML cohorts, with the high-risk score group consistently exhibiting a significantly worse prognosis than the low-risk score group (Figures 6A–G). Univariate Cox regression analysis confirmed the prognostic power of risk score model (p < 0.05) (Figure 6H). A clinical nomogram was constructed by combining clinicopathological factors significantly associated with AML prognosis, namely, age and cytogenetic risk (Figure 6I). Calibration curve analysis demonstrated the consistency between observed overall survival (OS) and predicted OS (Figure 6J). ROC curve analysis showed high AUC values for the nomogram at 1, 3, and 5 years (0.784, 0.769, and 0.871, respectively), confirming its strong prognostic value (Figure 6K).
[image: Several survival analysis plots (A-G) show Kaplan-Meier curves for different gene expression datasets, indicating survival probability over time. Panel H presents univariate analysis findings in a forest plot. Panel I displays time-series data with three subplots showing trends for CRP, hemoglobin, and neutrophils. Panel J is a line chart depicting neutrophil-to-platelet ratio trends over time by different treatment groups. Panel K is a receiver operating characteristic curve illustrating the predictive accuracy of a model, with area under the curve values annotated.]FIGURE 6 | Validation of risk score model and construction of nomogram. (A–G) survival analysis between high- and low-risk score groups in the validation cohorts. (H) Univariate regression analysis were performed to evaluate the prognostic predictive power of risk score model in the training cohort and the validation cohorts. (I) Nomogram constructed by risk score combined with clinicopathological factors to predict OS of AML patients. (J) time-dependent calibration curve to verify the predictive power of the nomogram. (K) ROC curve analysis of nomogram.
Immunological features, pathway activity, genomic traits, and clinicopathological factors differences between high- and low-risk score groups
Further exploration was conducted to explore potential reasons for the significant prognostic differences between the high- and low-risk score groups. The high-risk score group had a higher count of monocytes, while the low-risk score group had more memory B cells and resting and activated mast cells (Figure 7A). Notably, immune checkpoint expression, including PD-L1, CTLA1, LAG3, PD-1, PD-L2, CD80, CD86, and TNFRSF9, was significantly upregulated in the high-risk score group (Figure 7B). GSEA enrichment analysis revealed heightened activity in immune-related signaling pathways, such as antigen processing and presentation, B cell receptor signaling, chemokine signaling, cytokine-cytokine receptor interaction, and neutrophil extracellular trap formation in the high-risk score group (Figure 7C). Conversely, metabolism-related pathways, including ascorbate and aldarate metabolism, glycosaminoglycan biosynthesis-heparan sulfate/heparin, hedgehog signaling, lipoic acid metabolism, and pentose and glucuronate interposition, were enriched in the low-risk score group (Figure 7D). The high-risk score group displayed a higher gene mutation rate, with DNMT3A, NPM1, FLT3, TP53, and RUNX1 being the most frequently mutated genes (Figures 7E, F). Risk scores also significantly differed across various clinical characteristics, with patients of advanced age, male gender, and worse cytogenetic risk demonstrating higher risk scores (Figures 7G–I). In terms of the French-American-British (FAB) classification, patients with the M3 type had the lowest risk scores, while patients with the M5-M7 type exhibited higher risk scores (Figure 7J). Notably, risk scores did not differ significantly across white blood cells (WBC) and platelet (PLT) count groups (Figures 7K, L).
[image: Panel A displays a bar chart comparing fractions of immune cells across low and high-risk groups. Panel B shows another bar chart focusing on gene expression discrepancies between these groups. Panel C illustrates a line plot of pathway enrichment analysis for high-risk samples. Panel D features similar analyses for low-risk samples. Panel E presents a heatmap depicting immune cell infiltration patterns. Panel F includes a second heatmap for gene correlations. Panels G to L are box plots highlighting expression levels of specific genes across different conditions and risk scores.]FIGURE 7 | Differences in clinical characteristics and biological factors between high- and low-risk score groups. Differences in immune cell infiltration (A), immune checkpoint expression (B), enriched pathways (C,D), and somatic mutation frequency (E,F) between high- and low-risk score groups. Differences in risk scores between subgroups with different clinicopathological factors (G–L). FAB, French–American–British; WBC, white blood cell. (*p < 0.05; **p < 0.01; ***p < 0.001).
Sensitivity of chemotherapy and immunotherapy differences between high- and low-risk score groups
Sensitivity to commonly used AML drugs was predicted, with the low-risk score group exhibiting lower IC50 values for cytarabine and midostaurin, indicating greater sensitivity to these drugs. No significant difference in sensitivity to doxorubicin was observed (Figures 8A–C). Predictive results for immunotherapy showed that the high-risk score group was more responsive to anti-PD-1 treatment, with significantly upregulated PD-1 expression (Figure 8D). We further analyzed the differences in risk scores among different patients in a set of AML single-cell sequencing datasets after anti-PD-1 treatment. Figures 8E–G shows AML cell distribution, treatment response versus non-response population, and expression levels of risk scores in patients with AML, respectively. Analysis of the risk scores revealed that the single-cell risk score and average risk score were higher in patients with AML who did not respond to anti-PD-1 therapy compared to those who responded (Figures 8H, I). In the TCGA-LAML cohort, patients with both high PD-1 expression and high-risk scores exhibited the worst prognosis, while those with low levels of both had the best prognosis (Figure 8J). These results suggest that the risk score can predict the sensitivity of patients to chemotherapy and immunotherapy.
[image: Box plots in panels A, B, C, H, and I compare groups with varying values. Panel D shows a heatmap with color-coded correlations, while panels E, F, and G present scatter plots of data points in different colors. Panel J displays a Kaplan-Meier survival curve with lines in distinct colors.]FIGURE 8 | Differences in chemotherapy sensitivity and immunotherapy response between high- and low-risk score groups. (A–C) Sensitivity prediction of cytarabine, doxorubicin, and midostaurin for AML in high- and low-risk score groups. (D) Prediction of response to anti-PD-1 and anti-CTAL4 immunotherapy in different risk score groups. (E) UMAP analysis of the AML single-cell sequencing dataset GSE198052 shows the distribution of AML cell expression (indicated by different colors) in different patients. (F) Distribution of AML cells in patients with and without response to anti-PD-1 therapy. (G) Risk scores for all AML cells of patients with and without response to anti-PD-1 therapy. (H,I) Analysis of differences in all AML cellular risk scores (H) and mean risk scores (I) between patients who responded and those who did not respond to anti-PD-1 therapy. (J) Survival analysis of TCGA-LAML patients grouped according to risk score and PD-1 expression. PT, The patient.
Validation in a real-world clinical cohort
In a real-world clinical cohort, transcriptome sequencing was performed on samples from five normal individuals, five myeloid leukemia chronic-phase patients, and five myeloid leukemia acute-phase patients. Compared to the normal samples, the expression of CSF1 was upregulated in the chronic and acute phase samples, while AK1, NEO1, and SLC14A1 were downregulated. The expression of GCLM was upregulated in the chronic phase samples, while ST6GALNAC4 showed no significant change (Figure 9A). Risk scores increased with the progression of myeloid leukemia (Figure 9B). Correlation analysis with clinicopathological factors indicated positive correlations between the risk score and WBC, PLT, hemoglobin (HB), and age, while red blood cell (RBC) count showed a negative correlation (Figure 9C). Although the small sample size did not yield significant correlations (p < 0.05), disulfidptosis negative scores increased and activity scores decreased with the progression of myeloid leukemia (Figure 9D), confirming the presence of disulfidptosis resistance. Notably, there were no significant differences in disulfidptosis scores between gender groups (Figure 9E). Positive and active scores were positively correlated with WBC, RBC, PLT, HB, and age, while negative scores exhibited negative correlations with WBC, PLT, and HB (Figure 9F).
[image: A collection of charts and heatmaps analyzing gene expression in various samples: Panel A shows a scatter plot comparing genes across normal, sclerotic, and active samples; Panel B features a box plot highlighting statistical differences in gene activity; Panel C is a heatmap depicting gene signature deviations; Panel D and E are scatter plots representing positive, negative, and activity scores for different categories; Panel F is a heatmap illustrating correlations among gene expressions, with red and blue indicating positive and negative correlations, respectively, in different study phases.]FIGURE 9 | Clinical cohort was used to verify the correlation of disulfidptosis scores and risk score with disease progression. (A,B) Differences in the expression of risk scoring model genes (A) and risk score (B) among normal samples, myeloid leukemia chronic-phase samples and myeloid leukemia acute-phase samples. (C) Correlation analysis between risk score and clinicopathological factors. (D) Differences in disulfidptosis scores among normal samples, myeloid leukemia chronic-phase samples and myeloid leukemia acute-phase samples. (E) Differences in disulfidptosis scores between patients with different genders. (F) Correlation analysis between disulfidptosis scores and clinicopathological factors.
DISCUSSION
Evasion of cell death plays a crucial role in the occurrence and development of tumors, contributing significantly to drug resistance (Strasser and Vaux, 2020). The rapid proliferation of AML cells seriously affects the hematopoietic and immune systems of patients, leading to complications like bleeding and infections that pose substantial health risk (Shimony et al., 2023). Tumor cells benefit from heightened energy metabolism and rely on antioxidants such as glutathione to scavenge reactive oxygen species generated during metabolism, protecting the cells from oxidative damage (Hole et al., 2011). Disulfidptosis, a novel metabolism-related cell death mechanism proposed by Liu et al. (2023), relies on glutamate intake through xCT and is influenced by glucose scarcity. Our study has revealed abnormal expression patterns of DRGs in AML, showing a strong correlation with patient prognosis. It has also identified two subtypes related to disulfidptosis with significant differences in biological characteristics. Our DRG-based risk score model can accurately predict the prognosis and treatment sensitivity of patients with AML.
All 10 DRGs were significantly upregulated in AML samples, with all except NUBPL serving as prognostic risk factors, indicating the potential role of DRGs in carcinogenesis. Patients with higher disulfidptosis positive and activity scores exhibited a poorer prognosis, while the opposite was true for negative scores. AML cells with heightened activity scores may be more sensitive to disulfidptosis. Analysis of single-cell data also confirmed the overexpression of disulfidptosis suppressor genes in AML malignant cells and revealed a higher ferroptosis inhibition score. These findings align with our clinical cohort analysis, suggesting that AML progression is accompanied by greater resistance to disulfidptosis. Thus, patients with a poor prognosis might benefit from disulfidptosis induction to inhibit AML cell activity. Moreover, a significant negative correlation between the TCA cycle, a vital glucose metabolism pathway, and activity scores suggests its pivotal role in inhibiting disulfidptosis in AML cells (Kreitz et al., 2019). A high activity score was associated with greater immune scores, higher immune checkpoint expression, and more active tumor marker pathways. These factors may contribute to the poorer prognosis seen in these patients.
Furthermore, based on the expression clustering of DRGs, we identified two molecular subtypes, with Cluster B patients exhibiting significantly worse prognosis. This group displayed higher expressions of PD-1, TNFRSF9, and CD86, along with increased enrichment scores for tumor marker pathways, distinguishing them from Cluster A patients.
Our analysis of potential DRGs, identified through WGCNA, revealed close associations with metabolic pathways. This highlights the intricate relationship between tumor metabolism and disulfidptosis. The DRG-based risk score model can accurately predict the prognosis of patients with AML and patients with high-risk scores exhibiting worse clinical outcomes. The risk score demonstrated robust predictive accuracy, with AUC values for 1-, 3-, and 5-year prognosis prediction exceeding 0.7. The model’s prognostic value was consistently confirmed across seven AML cohorts. Both univariate and multivariate regression analyses supported the risk score’s independence as a prognostic factor for AML. Moreover, our clinical cohort analysis confirmed a positive correlation between the risk score and myeloid leukemia progression. The nomogram, constructed by combining clinicopathological factors, offers an intuitive prediction of patient OS with high accuracy.
Next, we focused on the clinical and biological differences between high- and low-risk score groups. High-risk score patients exhibited more active immune-related signaling pathways, but their elevated immune checkpoint expression, particularly of PD-1, likely contributed to the poorer prognosis. These patients also showed a higher somatic mutation rate, a common characteristic of AML, with unfavorable cytogenetic risk, older age, and male gender associated with higher risk scores. The analysis indicated that patients with high-risk scores may respond well to anti-PD-1 therapy. Furthermore, their sensitivity to common chemotherapy agents such as cytarabine and midostaurin was lower. This underscores the importance of personalized treatment for patients with AML based on their risk scores.
In conclusion, our findings demonstrate a connection between DRGs and the occurrence and progression of AML. This connection is closely related to TME characteristics, immune status, and pathway activity. The DRG-based risk score model is a powerful tool for predicting prognosis, revealing differences in immune characteristics, and guiding personalized AML treatment. While this study has shed light on the expression patterns, potential biological mechanisms, and prognostic value of DRGs and pathways, further in vivo and in vitro experiments are necessary to elucidate their role in AML cells. Additionally, larger real-world cohorts will be required to validate the prognostic potential of the risk score model. Our future studies aim to provide deeper insights into the mechanisms of disulfidptosis in AML.
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Background: Metastatic castration-resistant prostate cancer (mCRPC) presents significant treatment selection challenges due to limited therapeutic options. This study aimed to comprehensively assess the efficacy of multiple treatment regimens for mCRPC through a network meta-analysis (NMA) of randomized controlled trials (RCTs).
Methods: A systematically comprehensive search for randomized controlled trials (RCTs) was performed in Pubmed, Cochrane Library, Embase, and Web of Science databases. The network meta-analysis was employed to compare the overall survival (OS), progression-free survival (PFS), and radiographic progression-free survival (rPFS) among different interventions at specific time points. This study was prospectively registered with PROSPERO (CRD42023422823).
Results: A total of 29 RCTs, involving 12,706 patients and investigating 16 interventions, were included in the analysis. Chempretarget ((capivasertib or cabozantinib) + docetaxel + prednisone)) and PARP (Olaparib or rucaparib) inhibitors emerged as interventions that significantly improved survival outcomes compared to first-line treatment in mCRPC patients. Chempretarget demonstrated superior overall survival starting from the 12th month, while PARP inhibitors showed a clear advantage in progression-free survival within the 3–18 months range. Notably, chempre ((Docetaxel or Cabazitaxel) + prednisone) exhibited favorable performance in radiographic progression-free survival during the 3–18 month period.
Conclusion: Our findings underscore the efficacy of chempretarget, PARP inhibitors, and chempre in enhancing survival outcomes for mCRPC patients. Further head-to-head comparisons are warranted to validate these results. These findings carry important implications for treatment decision-making in mCRPC and may guide the development of more effective therapeutic strategies.
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INTRODUCTION
Prostate cancer ranks among the most prevalent malignancies in men, second only to lung cancer. Over the period from 2014 to 2019, the United States is projected to witness an annual increase of 3% in the incidence rate of prostate cancer, leading to the emergence of 99,000 new cases annually (Siegel et al., 2023). Castration-resistant prostate cancer (CRPC) refers to the radiological or biochemical progression of prostate cancer despite standard androgen deprivation therapy (ADT) when serum testosterone levels have reached castration levels (testosterone levels less than 50 ng/dl or 1.7 nmol/L) (Zarour and Alumkal, 2010/5). Median survival for CRPC stands at approximately 14 months, with a range of 9–30 months (Kirby et al., 2011/11). Furthermore, around 2 years after the onset of CRPC, 15%–33% of patients will experience metastasis, leading to a significant escalation in mortality rates (Hirst et al., 2012/12; Smith et al., 2005/5).
Given the aggressive nature of metastatic castration-resistant prostate cancer, the treatment options available for this disease remain limited. Recently, numerous well-designed RCTs have investigated multiple treatment approaches with the aim of enhancing outcomes for patients with mCRPC. These approaches encompass castration therapy, Poly ADP Ribose Polymerase (PARP) inhibitors, programmed cell death protein 1 (PD-1) inhibitors, and chemotherapy. The findings have demonstrated that castration therapy, including PARP inhibitors have shown encouraging anticancer activity (Teyssonneau et al., 2021; Bieńkowski et al., 2022). PD-1 inhibitors and chemotherapy have also exhibited positive effects on survival (Nuhn et al., 2019; Merseburger et al., 2021).
Given the diverse range of treatment options available for metastatic castration-resistant prostate cancer, it is crucial to assess their relative efficacy and identify the optimal treatment strategy. Although previous meta-analyses have examined comparisons of specific treatment types, such as between targeted drugs or between PARP inhibitors (Poorthuis et al., 2017; Wang et al., 2018; Rizzo et al., 2022), as far as we are aware, no study has comprehensively evaluated combined or isolated comparisons across multiple treatment modalities.
Therefore, this study aimed to conduct a network meta-analysis of RCTs to evaluate the efficacy of different treatment regimens for metastatic castration-resistant prostate cancer. The results of this analysis will enhance our understanding of the relative effectiveness of these treatments and provide valuable information to guide clinicians and patients in making informed decisions about the most appropriate treatment.
MATERIALS AND METHODS
The present meta-analysis adhered to the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Shamseer et al., 2015) and was prospectively registered with PROSPERO (ID: CRD 42023422823).
Literature search strategy
We conducted a comprehensive search in multiple databases including Cochrane Library (CENTRAL), PubMed, Web of science and Embase. The search spanned from the inception of these databases to 30 May 2023, and utilized specific MeSH terms as follows: “castration resistant prostate cancer”, “mcrpc”, “castration-resistant prostate cancer”, “carcinoma”, “tumor”, “Docetaxel”, “Cabazitaxel”, “Mitoxantrone”, “Platinum-based chemotherapy”, “Abirateone”, “Enzalutamide”, “Apalutamide”, “PARP”, “Olaparib”, “Niraparib”, “Rucaparib”, “Veliparib”, “Talazoparib”, “PD-1”, “pembrolizumab”, “CTLA4”, “ipilimumab”, “Ipatasertib”, and “random”. Furthermore, we performed a manual search and review of relevant references to ensure comprehensive coverage and minimize the risk of omitting any relevant studies. Only studies published in English were included in the reference list.
Study selection
The PICOS approach was used to define the inclusion criteria (Siegel et al., 2023). The mCRPC patient population (Zarour and Alumkal, 2010/5); experience any systemic treatment within 6 months (Kirby et al., 2011/11); Patients were treated with the following drugs alone or in combination: Abiraterone, Enzalutamide, olaparib, Docetaxel, Cabazitaxel, DCVAC, ipatasertib, carboplatin, capivasertib, cabozantinib, ipilimumab, atezolizumab, tivantinib, rucaparib, buparlisib, Orteronel (Hirst et al., 2012/12); one or more of the following outcomes:OS, PFS or rPFS; and (Smith et al., 2005/5) RCTs.
Following are the exclusion criteria (Siegel et al., 2023):observational studies (Zarour and Alumkal, 2010/5); conference abstract, review or letters observational studies (Kirby et al., 2011/11);studies with unavailable data for analysis (Hirst et al., 2012/12);a comparative study between a class of drugs and (Smith et al., 2005/5) non-English literature.
Data extraction and quality assessment
For the included studies, two investigators (YL and DX) independently extracted the data. The Cochrane Risk of Bias 2.0 tool was utilized to assess the risk of bias for each randomized controlled trial (RCT), and any discrepancies were resolved through arbitration by a senior reviewer (YX). The following variables were recorded: first author’s name, country of study, publication year, number of patients, drug type, therapeutic drugs, median follow-up time, hazard ratios (HR) and 95% confidence intervals (CI) associated with progression-free survival (PFS), radiographic progression-free survival (rPFS) and overall survival (OS). Subsequently, Kaplan-Meier curves were analyzed using Getdata 2.26 to extract the data pertaining to PFS, rPFS and OS at 6, 12, 18, 24, 30, and 36 months.
Data analysis
To compare multiple treatments for progression-free survival (PFS), radiographic progression-free survival (rPFS) and overall survival (OS) at each time point, a network meta-analysis (NMA) was conducted using Stata 15.1 software (StataSE, United States). The NMA allowed for both direct and indirect comparisons between treatments. Odds ratios (OR) and 95% confidence intervals (CI) were calculated to evaluate the effects of treatments on PFS, rPFS and OS at each time point. Furthermore, treatment ranking was performed using the surface under the cumulative ranking curve (SUCRA) values. The significance of the effect size between any treatment pair was determined using the net-league table, also known as a matrix in algebra. Inconsistency tests and consistency tests were conducted to examine the presence of inconsistency in the results.
To generate Napierian logarithm odds ratios (lnOR) and standard errors of lnOR (selnOR) for each study, conventional meta-analyses were conducted using Stata 15.1 software. The resulting data, including lnOR and selnOR for OS, PFS and rPFS, were then input into Rstudio 4.1.2 and proceed the network meta-analysis (NMA).
If the I2 statistic was less than 50% and the p-value was greater than 0.01, a fixed-effect model was implemented. If the I2 statistic was between 50% and 75%, a random-effect model was applied. If the I2 statistic exceeded 75%, a Galbraith plot was used to identify and exclude any studies outside the outlined range. Markov-chain Monte Carlo (MCMC) simulations were utilized to obtain posterior distributions, with a burn-in of 20,000 iterations and 150,000 iterations of 4 each chain, with a thinning interval of 10 for each outcome. Brooks-Gelman-Rubin diagnostics and trace plots were employed to assess and visualize the convergence of the model over iterations. Matrices were also generated using Rstudio 4.1.2.
RESULTS
Characteristics of the included studies
During the initial search, a total of 5,796 publications were identified. After removing duplicates and screening titles and abstracts, 1,078 studies were considered eligible for full review. Eventually, 29 studies (Fizazi et al., 2012; Kluetz et al., 2013; Rathkopf et al., 2014; Fizazi et al., 2015; Ryan et al., 2015; Saad et al., 2015; Beer et al., 2017; Bouman-Wammes et al., 2018; Clarke et al., 2018; Miller et al., 2018; Monk et al., 2018; Corn et al., 2019; de Bono et al., 2019; De Wit et al., 2019; Armstrong et al., 2020; De Bono et al., 2020; Fizazi et al., 2020; Hussain et al., 2020; Annala et al., 2021; Hedley Carr et al., 2021; Madan et al., 2021; Saad et al., 2021; Sternberg et al., 2021; Sweeney et al., 2021; Crabb et al., 2022; Powles et al., 2022; Vogelzang et al., 2022; Fizazi et al., 2023) were included in our analysis, as depicted in Figure 1. Among these studies, there were 29 RCTs involving a total of 12,706 patients and investigating 16 different interventions. The interventions encompassed castratepre (Abiraterone or Enzalutamide + prednisone), prednisone, castratepreparp (Abiraterone or Enzalutamide + prednisone + olaparib), chempre (Docetaxel or Cabazitaxel + prednisone), chempre DCVAC (DCVAC + docetaxel + prednisone), castratepre400ipa (abiraterone + prednisone + 400 mg ipatasertib), chemprept (cabazitaxel or docetaxel + carboplatin + prednisone), chempretarget (capivasertib or cabozantinib + docetaxel + prednisone), chemprePD1 (ipilimumab + docetaxel + prednisone), castrateprepd1 (atezolizumab + enzalutamide + prednisone), target (cabozantinib), castratepre200ipa (abiraterone + prednisone + 200 mg ipatasertib), 2castratepre (Abiraterone and Enzalutamide), castratepretarget (ipatasertib or tivantinib + abiraterone + predisone) and parp (Olaparib or rucaparib) and targetpre (buparlisib or Orteronel + prednisone). A detailed description of the included studies can be found in Table 1. The reported median follow-up period ranged from 8.9 months to 54.8 months. The assessment of the risk of bias is presented in Figure 2.
[image: Flowchart depicting the selection process for studies via databases and registers. Initially, 5,796 records are identified. After removing 3,929 duplicates, 1,867 records are screened. From these, 84 reports are sought for retrieval; none are lost. Of these, 29 studies are included in the quantitative synthesis. Excluded reports cover reasons such as non-randomized trials, non-mCRPC patient studies, non-blinding, and undesired outcomes.]FIGURE 1 | PRISMA flow diagram for the systematic review.
TABLE 1 | Characteristics of first-line systemic therapy for metastatic castration-resistant prostate cancer studies included in the network meta-analysis.
[image: A table listing various studies with columns for author/year, age, treatment, drug type, size, study type, follow-up months, and outcomes. Treatments include combinations of drugs like abiraterone, prednisone, and others. Outcomes measured are overall survival (OS), progression free survival (PFS), and radiographic progression-free survival (rPFS) among others. Follow-up durations and study sizes vary across entries.][image: Horizontal stacked bar chart showing risk assessment percentages for various categories related to intention-to-treat analysis. Categories include overall bias, selection of reported results, measurement of the outcome, missing outcome data, deviations from intended interventions, and randomization process. Bars indicate levels of risk: low (green), some concerns (yellow), and high (red). Overall bias shows 90% low risk, 5% some concerns, and 5% high risk. Other categories vary in their distribution of risks.]FIGURE 2 | Risk of bias graph presented as percentage across all included studies.
OS at each time point
Among the 29 included articles, 18 provided data on overall survival (OS) outcomes. For this study, sufficient data were available at 3, 6, 12, 24, and 30 months to conduct the network meta-analysis (NMA). The pairwise comparison of treatment regimens for each OS time point is presented in Figure 3. Castratepre (Abiraterone or Enzalutamide + prednisone) was the most commonly used intervention, and chempre (Docetaxel or Cabazitaxel + prednisone) was the most frequently compared treatment. Considering the widespread clinical use of castratepre as the first-line standard treatment, it was chosen as the primary reference, while the intervention with the highest SUCRA ranking served as the secondary reference. Detailed results of direct and indirect comparisons of 16 interventions at each time point are shown in the Supplementary Table S1A–F.
[image: Six network graphs comparing regimens at different months: 3, 6, 12, 18, 24, and 30 months for overall survival (OS). Each graph shows nodes with varying sizes connected by weighted lines, indicating pairwise comparisons. Nodes represent regimens, and line thickness represents comparison strength.]FIGURE 3 | Network graphs of pairwise comparison of regimens on each time point of the overall survival; OS, overall survival; castratepre (Abiraterone or Enzalutamide + prednisone), prednisone, castratepreparp (Abiraterone or Enzalutamide + prednisone + olaparib), chempre (Docetaxel or Cabazitaxel + prednisone), chempre DCVAC (DCVAC + docetaxel + prednisone), castratepre400ipa (abiraterone + prednisone + 400 mg ipatasertib), chemprept (cabazitaxel or docetaxel + carboplatin + prednisone), chempretarget (capivasertib or cabozantinib + docetaxel + prednisone), chemprePD1 (ipilimumab + docetaxel + prednisone), castrateprepd1 (atezolizumab + enzalutamide + prednisone), target (cabozantinib), castratepre200ipa (abiraterone + prednisone + 200 mg ipatasertib), 2castratepre (Abiraterone and Enzalutamide), and targetpre (buparlisib or Orteronel + prednisone).
At the 3rd month, castratepre400ipa showed significant superiority over castratepre (OR = 1.93, 95%CI: 1.02–3.63) and prednisone (OR = 2.53, 95%CI: 1.22–5.24), indicating its greater significance in the initial 3 months.
At the 6th month, no treatment demonstrated a significant advantage over castratepre.
At the 12th month, chempre (OR = 1.66, 95%CI: 1.08–2.58), chempretarget (OR = 2.88, 95%CI: 1.09–7.62), and chemprePD1 (OR = 2.14, 95%CI: 1.13–4.05) exhibited a significant increase in OS compared to castratepre. According to the SUCRA rankings, chempretarget ranked first, followed by chemprePD1.
At the 18th month, chempre (OR = 2.63, 95%CI: 1.71–4.04), chempreDCVAC (OR = 2.03, 95%CI: 1.16–3.56), chemprept (OR = 3.1, 95%CI: 1.54–6.22), chempretarget (OR = 5.43, 95%CI: 2.44–12.09), and chemprePD1 (OR = 3.82, 95%CI: 2.13–6.87) exhibited a significant increase in the OS rate compared to castratepre. According to the SUCRA rankings, chempretarget ranked first, followed by chemprePD1.
At the 24th month, castratepreparp (OR = 6.12, 95%CI: 2.14–17.52), chempre (OR = 3.04, 95%CI: 1.77–5.2), chempreDCVAC (OR = 2.74, 95%CI: 1.51–4.96), chemprept (OR = 2.89, 95%CI: 1.35–6.19), chempretarget (OR = 5.46, 95%CI: 2.41–12.35), chemprePD1 (OR = 4.91, 95%CI: 2.57–9.4), and castrateprepd1 (OR = 1.64, 95%CI: 1.16–2.32) showed a significant increase in the OS rate compared to castratepre. Castratepreparp ranked the highest in terms of SUCRA, while chempretarget ranked second.
At the 30th month, chempre (OR = 2.44, 95%CI: 1.05–5.66), chempreDCVAC (OR = 2.59, 95%CI: 1.08–6.22), chempretarget (OR = 5.14, 95%CI: 1.75–15.1), and chemprePD1 (OR = 3.93, 95%CI: 1.55–9.97) exhibited a significantly higher OS rate compared to castratepre. According to the SUCRA rankings, chempretarget achieved the best performance, followed by chemprePD1.
Regarding overall survival (OS), significant differences were observed between castratepre and chempre, chempretarget, chemprePD1, as well as chempreDCVAC from 12 to 30 months. Additionally, chempre, chempretarget, and chemprePD1 showed significant differences from 12 to 30 months, while chempreDCVAC exhibited significance from 18 to 30 months Table 2 provides a comprehensive summary of interventions with significant results compared to castratepre.
TABLE 2 | Overall survival for each time point for interventions that were significant compared to castratepre (shown as odds ratio and 95% confidence intervals).
[image: A table showing various treatment groups and their efficacy at different time points in months. Columns list treatments like castratepre, chempre, with other variations. Rows indicate time points: 3, 6, 12, 18, 24, and 30 months, showing treatment efficacy with either a value, a check mark, or a cross. The bottom clarifies symbols: check marks show significance compared to the control; crosses show non-significance.]PFS at each time point
For progression-free survival (PFS), outcomes from 14 out of 29 articles were reported. Adequate data were available at 4 time points, namely 3, 6, 12, and 18 months, to conduct a network meta-analysis (NMA) for PFS. Figure 4 displays network graphs illustrating the pairwise comparison of regimens at each time point for PFS. Castratepre was the most frequently used intervention, and the most common comparisons were between chempre and castratepre, as well as between castratepre and castratepretarget. A detailed comparison of 16 interventions at each time point is presented in Supplementary Tables S2A–D.
[image: Four network graphs compare pairwise regimens over 3, 6, 12, and 18 months. Each graph shows varying line thickness and node sizes, indicating regimens' relationships and differences over time. Blue nodes and connecting lines illustrate changes in regimen pairings.]FIGURE 4 | Network graphs of pairwise comparison of regimens on each time point of the Progression free survival; PFS, Progression free survival; castratepre (Abiraterone or Enzalutamide + prednisone), prednisone, chemprept (cabazitaxel or docetaxel + carboplatin + prednisone), chempre (Docetaxel or Cabazitaxel + prednisone), castratepretarget (ipatasertib or tivantinib + abiraterone + predisone), parp (Olaparib or rucaparib), targetpre (buparlisib or Orteronel + prednisone).
At the 3rd month, there was a significant increase in PFS rates with chemprept (OR = 8.68, 95% CI: 4.09–18.4), chempre (OR = 3.92, 95% CI: 2.58–5.98), castratepretarget (OR = 2.14, 95% CI: 1.21–3.79), and parp (OR = 1.96, 95% CI: 1.09–3.52) compared to castratepre. Among these interventions, chemprept ranked the highest according to the SUCRA rankings, followed by chempre.
At the 6th month, there was a significant improvement in PFS compared to castratepre with chemprept (OR = 5.73, 95% CI: 2.54–12.92), chempre (OR = 2.97, 95% CI: 1.73–5.09), castratepretarget (OR = 2.86, 95% CI: 1.36–6), and parp (OR = 1.96, 95% CI: 1.09–3.52). When compared to the top-ranked intervention chemprept, chempre ranked second.
At the 12th month, there was a significant increase in PFS for chempre (OR = 4.21, 95% CI: 1.16–15.28), castratepretarget (OR = 2.82, 95% CI: 1.14–6.95), and parp (OR = 3.14, 95% CI: 1.86–5.32) compared to castratepre. Among these interventions, chempre had the highest SUCRA ranking, followed by parp.
At the 18th month, there was a significant increase in PFS for parp (OR = 3.08, 95% CI: 1.67–5.71) compared to castratepre.
Regarding progression-free survival (PFS), significant effects were observed for interventions ranging from 3 to 18 months, including chemprept, chempre, castratepretarget, and parp in descending order of their impact. Table 3 provides a comprehensive summary of the interventions with significant outcomes when compared to castratepre.
TABLE 3 | Progression free survival for each time point for interventions that were significant compared to castratepre (shown as odds ratio and 95% confidence intervals).
[image: Table showing treatment comparisons over time with columns for chemoprevention regimens, including "chempret," "Chempre," "castratepertarget," "Parp," and "Targetpre." Rows represent time points: 3, 6, 12, and 18 months, marking significant differences with a check (√) and non-significant with a cross (×). Numerical values in parentheses indicate confidence intervals. Castratepre and prednisone are listed as control groups. Further explanations and treatment compositions are provided below the table.]rPFS at each time point
Out of the 29 articles included in this study, 16 reported outcomes related to radiographic progression-free survival (rPFS). Sufficient data were available at 3, 6, 12, and 18 months to perform a network meta-analysis (NMA) for rPFS. The pairwise comparison of different treatment regimens at each rPFS time point is illustrated in Figure 5. Among the agents studied, castratepre was the most frequently utilized, and comparisons were predominantly made between castratepreparp and chempre. A detailed comparison of 17 interventions at each time point is presented in Supplementary Tables 3A–D.
[image: Four network graphs depict pairwise comparisons of medical regimens at intervals of three, six, twelve, and eighteen months. Nodes represent regimens, while lines indicate comparisons; thicker lines suggest stronger connections. The graphs show changes in network structure over time.]FIGURE 5 | Network graphs of pairwise comparison of regimens on each time point of the radiographic Progression free survival; rPFS: radiographic Progression free survival; castratepre (Abiraterone or Enzalutamide + prednisone), prednisone, target (cabozantinib), castratepretarget (ipatasertib or tivantinib + abiraterone + predisone), chempre (Docetaxel or Cabazitaxel + prednisone), castratepreparp (Abiraterone or Enzalutamide + prednisone + olaparib), targetpre (buparlisib or Orteronel + prednisone), 2castratepre (Abiraterone and Enzalutamide), castratepre400ipa (abiraterone + prednisone + 400 mg ipatasertib), castrateprepd1 (atezolizumab + enzalutamide + prednisone), castratepre200ipa (abiraterone + prednisone + 200 mg ipatasertib).
At the 3rd month, there was a statistically significant increase in radiographic progression-free survival (rPFS) rates observed with the following interventions: target (OR = 6.88, 95% CI: 1.6–29.6), castratepretarget (OR = 4.15, 95% CI: 1.53–11.2), chempre (OR = 2.99, 95% CI: 1.91–4.68), and castratepreparp (OR = 2.54, 95% CI: 1.14–5.63) compared to castratepre. Among these interventions, target achieved the highest ranking according to the SUCRA rankings, followed by castratepretarget in the second position.
At the 6th month, there was a statistically significant improvement in radiographic progression-free survival (rPFS) compared to castratepre with the following interventions: chempre (OR = 2.57, 95% CI: 1.71–3.86), castratepreparp (OR = 2.25, 95% CI: 1.16–4.38), 2castratepre (OR = 1.62, 95% CI: 1.15–2.3), and castratepre400ipa (OR = 1.73, 95% CI: 1.18–2.53). In terms of ranking according to the SUCRA scores, chempre held the highest position, followed by castratepreparp in the second rank.
At the 12th month, there was a statistically significant increase in radiographic progression-free survival (rPFS) for chempre (OR = 3.74, 95% CI: 2.21–6.59), castratepreparp (OR = 1.98, 95% CI: 1.1–3.56), 2castratepre (OR = 1.45, 95% CI: 1.11–1.89), and castratepre400ipa (OR = 1.71, 95% CI: 1.24–2.36) compared to castratepre. Among these interventions, chempre achieved the highest SUCRA ranking, followed by castratepreparp.
At the 18th month, there was a statistically significant increase in radiographic progression-free survival (rPFS) for chempre (OR = 2.94, 95% CI: 1.19–7.26), 2castratepre (OR = 1.52, 95% CI: 1.18–1.95), castratepre400ipa (OR = 1.58, 95% CI: 1.15–2.17), and castrateprepd1 (OR = 2.64, 95% CI: 1.09–6.4) compared to castratepre.
In terms of radiographic progression-free survival (rPFS), the interventions that showed a significant impact compared to castratepre spanned from 3 to 18 months. These interventions, in descending order of their effectiveness, included chempre, castratepreparp, 2castratepre, and castratepre400ipa. A comprehensive summary of the interventions with significant outcomes compared to castratepre can be found in Table 4.
TABLE 4 | Radiographic Progression free survival for each time point for interventions that were significant compared to castratepre (shown as odds ratio and 95% confidence intervals).
[image: Table displaying treatment groups compared across different time points (3, 6, 12, and 18 months) with various combinations of drugs. Each cell shows the treatment efficacy with values, confidence intervals, or symbols (√ or ×) indicating significant or non-significant differences compared to the control. Definitions of treatments and symbols are noted below the table.]The Brooks-Gelman-Rubin diagnostic indicated that the inferential iterations for each Markov-chain Monte Carlo (MCMC) were stable and reproducible across all outcomes. Furthermore, the convergence of the model for all outcomes was confirmed using the history feature. Supplementary Figures 1A–C and Supplementary Figures 2A–C could provide comprehensive details of the results.
Heterogeneity
For all outcomes, the Brooks-Gelman-Rubin diagnostic indicated that the inferential iterations for each Markov-chain Monte Carlo (MCMC) were stable and reproducible. Additionally, we employed the history feature to verify the convergence of the model for all outcomes. Comprehensive results can be found in Supplementary Figures 1A–C and Supplementary Figures 2A–C, providing further details.
The heterogeneity of the results in our study was all less than 30%, which demonstrated the robustness of our findings. Therefore, we did not conduct subgroup analysis and meta-regression to identify the source of heterogeneity.
DISCUSSION
The present study aimed to evaluate the efficacy of multiple regimens for the treatment of metastatic castration-resistant prostate cancer (mCRPC) through a comprehensive network meta-analysis (NMA) of RCTs.
To our knowledge, this is the first comparison of various treatment regimens alone or in combination at each time point for mCRPC patients with overall survival (OS), progression-free survival (PFS), and radiographic progression-free survival (rPFS). The results of the study are as follows: In terms of OS, compared with the mainstream castratepre, we found that chempre, chempretarget, and chemprePD1 showed a significant survival advantage from the 12th month, and chemprept and chempreDCVAC also demonstrated better efficacy from the 18th month. However, due to the limited availability of data, we could not obtain data beyond 30 months. We believe that chempretarget is the preferred choice for improving patients’ OS. In terms of PFS from 3 to 18 months, PARP inhibitors showed a clear advantage and, therefore, are the preferred choice for improving PFS in patients. Chempre demonstrated better efficacy in rPFS from 3 to 18 months and, thus, is considered the preferred treatment for improving rPFS.
Chempretarget showed encouraging results for overall survival. The studies included Capivasertib + Docetaxel and Cabozantinib + Docetaxel. Capivasertib is a potent selective inhibitor of three AKT subtypes (AKT1/2/3) and has demonstrated efficacy in various cancers (Coleman et al., 2021; Gasmi et al., 2021). The PI3K/AKT/PTEN pathway has been shown to be abnormally activated in patients resistant to taxane chemotherapy (Liu et al., 2015), which may explain why Capivasertib + Docetaxel works better than first-line chemotherapy treatment. It is not yet known why adding Capivasertib to chemotherapy improves OS, and the ongoing Phase 3 phase 3 CAPItello-280 trial (NCT05348577) may provide us with the answer. Cabozantinib targets VEGFR2 and C-MET and is used in various cancers (Grüllich, 2018). The combination with docetaxel allows for a lower dose of cabozantinib over a longer period, leading to sustained clinical benefits. Recent pharmacokinetic and pharmacodynamic studies have shown that combining a standard dose of docetaxel with approximately 20 mg of cabozantinib per day can optimize anti-tumor effects and potential treatment duration (Chen et al., 2018). In addition, biological compensation mechanisms caused by the discontinuation of antiangiogenic drugs such as codo can improve clinical efficacy by limiting clinical rebound through cytotoxic therapy such as docetaxel (Smith et al., 2016; Zhang et al., 2017).
For PFS, our study demonstrates that PARP inhibitors seem to have better efficacy. The PARP inhibitors included in our analysis were rucaparib and olaparib, respectively. Approximately 30% of mCRPC patients have DNA gene damage (Abida et al., 2017; Freedland and Aronson, 2017), with BRCA1 and BRCA2 being genes involved in homologous repair (Walsh, 2015; Blackford and Jackson, 2017). PARP inhibitors mainly induce DNA double-strand breaks and exploit homologous recombination repair defects associated with these pathological genes through PARP trapping (O'Connor, 2015). The efficacy of PARP inhibitors in the progression-free survival of mCRPC patients has been widely reported (Mateo et al., 2020), with the greatest benefit observed in the BRCA subgroup. The study found that the median duration of olaparib exposure was shorter in patients who transitioned from control treatment to olaparib (4.8 months) than in patients randomly assigned to receive olaparib (7.6 months). Therefore, early treatment with olaparib may have advantages over use later in the course of the disease (Hussain et al., 2020). Although the studies we included had substantial crossover from control treatment to parp, improvements in patients’ PFS were noted. Recently Several phase 2-3 studies have demonstrated the clinical efficacy of combining PARP inhibitors with second-generation ARPI as a frontline treatment for metastatic castration-resistant prostate cancer patients. These studies suggest that the benefits of this combination therapy are particularly enhanced in patients with gene alterations associated with DNA damage, highlighting the potential advantages of this approach (Clarke et al., 2018; Hussain et al., 2020; Saad et al., 2021). However, limitations of trials include the immaturity of overall survival data and exploratory nature of some subgroup analyses.
Generally, ARPI (Androgen Receptor Pathway Inhibitors) is the preferred treatment option for mCRPC (metastatic castration-resistant prostate cancer) patients, given its well-established survival benefits and tolerability (Ryan et al., 2015; Beer et al., 2017; Annala et al., 2018). However, certain patients with adverse prognostic clinical features do not derive equivalent levels of benefit from ARPI therapy.Chemotherapy as a first-line treatment can overcome resistance mechanisms to androgen-targeted inhibitors, such as increased androgen signaling and PTEN loss (Fitzpatrick and de Wit, 2014; Antonarakis et al., 2015; Palapattu, 2016; Rescigno et al., 2018). The CARD trial demonstrated an overall survival advantage of cabazitaxel over ARPI. However, it is important to note that the population in the CARD trial had previously received docetaxel and ARPI treatment. Thus, the study was evaluating cabazitaxel as a third-line therapy in patients who were already known to have ARPI resistance in first and second-line treatments.
STRENGTHS AND LIMITATIONS
We conducted a comprehensive analysis by evaluating 16 first-line interventions using 29 carefully selected high-quality studies. The analysis covered a follow-up period of up to 30 months for overall survival (OS) and 18 months for progression-free survival (PFS) and radiographic progression-free survival (rPFS). We demonstrated the stability and replicability of each MCMC chain iteration using Brooks-Gelman-Rubin diagnostics and estimated the convergence of the model.
Despite the valuable insights provided by this network meta-analysis (NMA), several limitations need to be acknowledged. Firstly, although we compared various treatment combinations directly or indirectly, it is essential to recognize that this approach cannot fully replace head-to-head comparative clinical trials. Moreover, we have merely demonstrated an association between treatment and outcomes, without establishing a causal relationship. Therefore, direct comparative trials remain indispensable. Secondly, the quality of the trials included in this analysis may have been influenced by various types of bias, potentially impacting the overall validity of the outcomes. Thirdly, the study population consisted exclusively of patients with metastatic prostate cancer. Additionally, certain confounding factors (e.g., drug dose, number of focal metastases, patient risk class, etc.) had missing data in some trials, and we were unable to account for these factors through meta-regression. Therefore, caution should be exercised when interpreting the results of this NMA in light of these limitations.
CONCLUSION
Chempretarget and PARP inhibitors demonstrate superior efficacy in improving survival outcomes for mCRPC patients compared to first-line treatment. However, further head-to-head comparisons are required to validate these findings.
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Background: Cytokines modulate the glioma tumor microenvironment, influencing occurrence, progression, and treatment response. Strategic cytokine application may improve glioma immunotherapy outcomes. Gliomas remain refractory to standard therapeutic modalities, but immunotherapy shows promise given the integral immunomodulatory roles of cytokines. However, systematic evaluation of cytokine glioma immunotherapy research is absent. Bibliometric mapping of the research landscape, recognition of impactful contributions, and elucidation of evolutive trajectories and hot topics has yet to occur, potentially guiding future efforts. Here, we analyzed the structure, evolution, trends, and hotspots of the cytokine glioma immunotherapy research field, subsequently focusing on avenues for future investigation.
Methods: This investigation conducted comprehensive bibliometric analyses on a corpus of 1529 English-language publications, from 1 January 2000, to 4 October 2023, extracted from the Web of Science database. The study employed tools including Microsoft Excel, Origin, VOSviewer, CiteSpace, and the Bibliometrix R package, to systematically assess trends in publication, contributions from various countries, institutions, authors, and journals, as well as to examine literature co-citation and keyword distributions within the domain of cytokines for glioma immunotherapy. The application of these methodologies facilitated a detailed exploration of the hotspots, the underlying knowledge structure, and the developments in the field of cytokines for glioma immunotherapy.
Results: This bibliometric analysis revealed an exponential growth in annual publications, with the United States, China, and Germany as top contributors. Reviews constituted 17% and research articles 83% of total publications. Analysis of keywords like “interleukin-13,” “TGF-beta,” and “dendritic cells” indicated progression from foundational cytokine therapies to sophisticated understanding of the tumor microenvironment and immune dynamics. Key research avenues encompassed the tumor microenvironment, epidermal growth factor receptor, clinical trials, and interleukin pathways. This comprehensive quantitative mapping of the glioma immunotherapy cytokine literature provides valuable insights to advance future research and therapeutic development.
Conclusion: This study has identified remaining knowledge gaps regarding the role of cytokines in glioma immunotherapy. Future research will likely focus on the tumor microenvironment, cancer vaccines, epidermal growth factor receptor, and interleukin-13 receptor alpha 2. Glioma immunotherapy development will continue through investigations into resistance mechanisms, microglia and macrophage biology, and interactions within the complex tumor microenvironment.

Keywords: cytokine, glioma, immunotherapy, scientometrics, immune microenvironment, citespace, VOSviewer

1 INTRODUCTION
Glioma, categorized as one of the most common and aggressive brain tumors, persistently confronts current medical frameworks in diagnosis, treatment, and prognostication (Liu et al., 2018). Despite substantial advancements in surgical techniques, radiation therapy, and chemotherapy, the median survival duration for patients with high-grade glioma remains limited to approximately 15 months (Hover et al., 2016). This urgent context underscores the imperative to explore innovative therapeutic modalities. Immunotherapy, leveraging the body’s immune system to detect and eradicate tumor cells, has shown promising results in a range of cancers and is increasingly being recognized as a viable therapeutic strategy in the management of glioma (Deng et al., 2014; van der Zanden et al., 2020).
Cytokines, a group of small protein molecules synthesized by immune cells, are critical in maintaining immune equilibrium and modulating pathophysiological processes in diseases such as cancer and autoimmune disorders. These molecules are categorized into various subtypes, including chemokines, interferons (IFNs), interleukins (ILs), and tumor necrosis factors (TNFs), distinguished by their receptor structures. Given their profound impact on the immune response, numerous cytokines have been identified as promising therapeutic agents in oncology. In this context, several cytokines, such as recombinant IL-2 (Sahin et al., 2020), IFNs (Tran et al., 2023), and TNFs (Gong et al., 2018; Zhu et al., 2018), have garnered clinical approval for use in immunotherapy. Their pivotal role in facilitating intercellular communication within the immune system underscores their potential in developing treatments for glioma. As research in this field expands, a thorough assessment of the academic landscape becomes imperative to identify prevailing trends, acknowledge key contributors, and unveil existing research gaps.
Bibliometrics, a methodological cornerstone for the quantitative evaluation of scientific literature (Aria and Cuccurullo, 2017), provides invaluable perspectives on the progression and dominant tendencies within specific research fields (Durieux and Gevenois, 2010; Sugimoto et al., 2019). The integration of visualization tools significantly enhances the ability of researchers to unravel complex relationships and trends within extensive data sets. Recently, there has been a marked increase in the application of bibliometric methods across diverse medical research disciplines. In oncology, for example, a multitude of studies have employed bibliometric analysis to delineate research emphases in various tumor types (Shi et al., 2021; Liu et al., 2022; He et al., 2023). In the realm of immunotherapy, these techniques have been extensively utilized to chart the development of immunotherapeutic strategies for a range of diseases (Shen et al., 2022; Zhong et al., 2022; Chen et al., 2023; Zhang et al., 2023). Although there are focused bibliometric studies on individual cytokines (Cai et al., 2019; Qin et al., 2022; Jin et al., 2023), a notable gap exists in comprehensive investigations examining the collective evolution of inflammatory mediators in glioma immunotherapy. To bridge this gap, our study leverages the combined power of bibliometric and visualization analyses to map out the research landscape surrounding cytokines in glioma immunotherapy (CGI), identifying key contributors, seminal works, and emerging trends. This initiative is of paramount importance for researchers and clinicians seeking to comprehend the current research environment and pinpoint prospective areas of investigation. Our goal is to stimulate further research, foster interdisciplinary collaboration, and accelerate therapeutic advancements in glioma treatment by offering a thorough understanding of this evolving sector.
2 MATERIALS AND METHODS
2.1 Search strategies and dataset establishment
The Web of Science (WoS), a product of Clarivate Analytics, stands as a preeminent academic database, hosting in excess of 12,000 high-impact journals (Birkle et al., 2020). Recognized as the gold standard for bibliometric research, the WoS core collection facilitates extensive scholarly analyses. In our investigation of CGI, a methodical and exhaustive search strategy was implemented, encapsulated in the formula: total search equation = (#1 Cytokines) AND (#2 Glioma) AND (#3 Immunotherapy). The intricacies of this search methodology are delineated in Figure 1 and Table 1.
[image: Flowchart illustrating a research process for cytokines in glioma immunotherapy. The first step is "Search Strategy" in green, leading to "Publications Exclusion Process" in yellow. This progresses to "Data Screening and Bibliometric Analysis" in black, followed by "Comprehensive Visualization and Bibliometric Analysis" in red. The fourth step, "Answering Questions," is in blue. A central brain icon connects all stages, labeled with "Data Collection" and "Brainstorming" arrows.]FIGURE 1 | Flow diagram of this study.
TABLE 1 | Retrieval formula of this bibliometric analysis.
[image: A table with three sections: Cytokines, Glioma, and Immunotherapy. Each section has search formulas using various abbreviations and terms related to their categories. The total search formula combines these sections using logical operators.]The inclusion criteria for source selection in this research were defined as follows: 1) Manuscripts must explicitly address the topic of CGI and be fully accessible; 2) Literature must be published within the timeframe of 1 January 2000, to 4 October 2023; 3) Only documents categorized as “articles” or “reviews” were considered; and 4) All publications had to be in English. The exclusion criteria were: 1) Articles not directly related to CGI; 2) Other document formats such as letters, reports, short communications, abstracts, et al.; 3) Duplicate studies. Two investigators, HZ and XJ, independently evaluated each publication for compliance with these criteria. Any disagreements were reconciled through consultative discussions with co-authors, ensuring the precision of data curation. The comprehensive screening methodology is illustrated in Figure 1. Employing this systematic approach, a total of 1,529 publications were extracted from the Web of Science, as detailed in Supplementary Table S9.
2.2 Bibliometric analysis and visualization
This study entailed a bibliometric analysis to scrutinize the corpus of literature pertaining to CGI across multiple facets: temporal publication trends, contributions by countries, institutions, authors, journals, literature co-citation, and keyword prevalence. A suite of software tools was employed for this comprehensive analysis: Microsoft Excel 2021, Origin 2023, Microsoft Charticulator, VOSviewer 1.6.19, Citespace 5.7R3, and the Bibliometrix package within RStudio. Specific aspects of the analysis included: examining annual publication trends using Excel and Origin; assessing country-level research contributions with Excel, Charticulator, VOSviewer, and Bibliometrix; institutional activities were analyzed via Excel and Citespace; author contributions were evaluated using VOSviewer, Bibliometrix, and Excel; journal publication metrics were derived using Origin, VOSviewer, Citespace, and Bibliometrix; co-citation networks were mapped using Citespace; and keyword trends were analyzed through VOSviewer and Citespace.
Within the visual network diagrams, nodes symbolize various parameters, including countries, institutions, or keywords. The dimension of each node is indicative of its relative importance, with larger nodes signifying greater prominence. Both nodes and their interconnecting lines are distinguished by distinct color schemes, corresponding to specific clusters. The spatial proximity between nodes is representative of the intensity of co-authorship or co-citation links, wherein thicker lines signify more robust connections.
3 RESULTS
3.1 Analysis of publication trend
This bibliometric investigation encompassed an analysis of 1,529 papers on CGI, published across 433 journals, originating from 1,778 institutions in 49 countries. The temporal distribution of these publications, as depicted in Figure 2A, illustrates a fluctuating pattern from 2000 to 2019, with the annual publication count initially falling below 25 in 2005. Although there was a steady increase in yearly publications throughout this period, the count did not exceed 100. This trend indicates a relatively limited focus on this area by researchers during these years. However, a pronounced surge in the annual number of publications was observed from 2019 to 2023. In 2020, the count exceeded 100 for the first time, reaching 101, and further escalated to 170 by 2022. The dotted line in the figure represents the total number of publications over this period. An exponential time prediction curve model was applied to this data, yielding the formula y = 69.249e0.1379x. This model demonstrated a statistically significant correlation (R2 = 0.9824) between the year and the cumulative number of publications, suggesting a strong fit. The cumulative growth rate of publications was modest from 2000 to 2016 but became more pronounced from 2016 to 2023. By 2022, the total number of publications had reached approximately 1,400. It is projected that the annual publication count in this domain might reach its zenith in 2023, a prediction contingent on the fact that 2023 has not yet concluded, and the peak may still be forthcoming.
[image: Panel A shows a bar and line graph depicting the annual and cumulative publications from 1995 to 2020, indicating trends over time. Panel B is a horizontal bar chart showing publication contributions by country, with the USA leading, followed by China and Germany. Panel C is a pie chart showing 83% of publications as articles and 17% as reviews. Panel D is a stacked bar chart showing annual publications by country from 1995 to 2020, highlighting the contribution of multiple countries, with a prominent increase over time.]FIGURE 2 | (A) Global publication trends from 1 January 2000, to 4 October 2023 on CGI; (B) Bar graph of the annual volume of reviews and articles published during the aforementioned period; (C) Pie chart of the proportion of reviews and articles in this field; (D) Bar graph of annual publications from the top ten countries in the field. Abbreviation: CGI, cytokines in glioma immunotherapy.
Figures 2B,C delineate the composition of the total publications in the field of CGI, revealing that reviews account for 17% and research articles for 83%. During the period from 1 January 2020, to 4 October 2023, the highest incidence of review publications occurred in 2021, reaching a total of 30, while the year 2001 registered the lowest with only one review. In parallel, the year 2022 witnessed the zenith of article publications, numbering 144, in stark contrast to 2001, which saw the minimum at 21 articles. Figure 2D exhibits an ascending trajectory in the output of the top ten contributing countries in this domain over the past 23 years, with the United States, China, and Germany being particularly prominent. This trend underscores the escalating scholarly interest in CGI, highlighting its emerging prominence in academic research.
3.2 Analysis of research countries
This statistical analysis delineates the distribution and comparative evaluation of cytokine research in glioma immunotherapy across various countries, spanning from 1 January 2000, to 4 October 2023. Within this timeframe, 49 countries have engaged in this research area. The leading 10 countries in terms of publication output are predominantly developed nations, with China and South Korea as notable exceptions (Table 2). The data reveals that the United States serves as a hub of international collaboration, maintaining the most substantial cooperative ties with China. The United States and China are the foremost contributors to the literature, accounting for 49.9% and 23.7% of total publications, respectively. The upward trend in publications is especially evident in the United States, China, and Germany (Figure 3D and Supplementary Table S1). Geographically, the bulk of cytokine research in glioma immunotherapy is concentrated in North America, South America, Europe, Asia, and Oceania (Figure 3A). Figure 3B shows the United States, China, and Germany at the forefront of global collaboration, as measured by the analysis of international partnerships. Among all countries, China exhibits the most extensive collaboration with the United States, followed by Germany and Canada. Recent years have seen the emergence of new partnerships with countries like Iran, Slovenia, and Ireland, while the United States maintains longstanding collaborations (Figure 3C). Notably, only Belgium and Germany among the top ten countries have published more papers through international collaboration than domestic efforts, suggesting a need for increased international cooperation among scholars in countries with lower rates of global collaboration (Figure 3E and Supplementary Table S2). In terms of average citations per paper, Switzerland surpasses the United States, although the latter leads in total citations. China, despite being second in publication volume, has the lowest citation count among the top ten countries. However, the recent increase in international collaborations and annual publications from China since 2022 highlights its growing significance in the field, underscoring the need for Chinese researchers to focus on enhancing the quality and citation impact of their publications.
TABLE 2 | Top 10 countries by number of publications on CGI.
[image: Table ranking countries by research impact in cytokines in glioma immunotherapy. The United States leads with 763 publications and 44,002 citations. Other top countries include China, Germany, Japan, and Italy, with varying numbers of publications, citations, and H-indices. Abbreviations: CGI, cytokines in glioma immunotherapy; ACPP, average citation per publication.][image: A composite image shows multiple data visualizations: A) a world map with regions shaded in blue. B) a circular chord diagram with various connections between labeled segments. C) a network diagram with nodes connected by lines. D) a 3D bar chart with multicolored bars on a grid. E) a stacked bar chart with blue and orange segments representing different categories.]FIGURE 3 | (A) Geographical distribution of publications worldwide; (B) An analysis of international collaborations among countries is provided. Connections between countries denote collaborative ties, with thicker lines signifying more robust collaborations; (C) A country analysis visualized using VOSviewer is displayed. Nodes represent countries, with their size correlating to the number of publications. The color gradient, from purple (earliest) to yellow (most recent), signifies the timeline of publications for each country; (D) Bar graph of the number of publications per year from 2000 to 2023 for the top ten countries; (E) The number of publications of SCP and MCP in the top 10 countries by volume. Abbreviation: SCP refers to Single Country Publications, where all authors hail from the same nation. Conversely, MCP stands for Multiple Country Publications, denoting articles with authors from different countries, signifying international collaboration.
3.3 Analysis of research institutions
Citespace was utilized to analyze the contributions of leading institutions in the field of CGI. Among the 1,529 publications reviewed, a total of 433 distinct institutions were identified as contributors. The top ten most prolific institutions are enumerated in Table 3. Within this group, three institutions are based in China, while seven are located in the United States, reflecting the overall geographic distribution of the contributing countries. Duke University emerged as the foremost institution in terms of publication volume with 78 studies, followed by the University of Pittsburgh with 46, Harvard Medical School with 44, and the University of California, Los Angeles with 41 publications. Capital Medical University in China ranked fifth in terms of publication count. The radar plots in Figure 4A and data in Supplementary Table S3 indicate that among these top five institutions, Duke University demonstrated the highest degree centrality, while Harvard Medical School exhibited the highest h-index. Degree centrality, defined by the number of connections a node has, serves as an indicator of an institution’s significance within bibliometric networks. Institutions with high degree centrality are typically well-connected and extensively cited, both within and across various research domains, denoting their influential role. Such pivotal works often mark research hotspots and contextual developments, forming crucial nodes in scholarly networks. Therefore, degree centrality is instrumental in identifying key literature to map knowledge domains and track disciplinary evolution, serving as a vital measure of academic impact. In terms of Average Citation Per Paper (ACPP), the University of Texas MD Anderson Cancer Center ranked highest, followed by Harvard Medical School, which, despite having the highest overall citation count, ranked second. This finding is congruent with the national analysis, where the United States has made significant contributions and maintained a dominant position in the field.
TABLE 3 | The top 10 institutions ranked by number of publications on CGI.
[image: Table showing the top ten institutions ranked by cytokines in glioma immunotherapy research. It includes columns for rank, institution, number of publications, total citations (TC), average citations per paper (ACPP), H-index, degree centrality, and country. Duke University ranks first with 78 publications and 6,213 citations. Institutions from the United States and China are listed, with Harvard Medical School having the highest ACPP of 171.7.][image: Diagram A shows a radar chart evaluating universities based on several metrics including number, H-index, average citations, and degree centrality, highlighting Duke University and others. Diagram B displays a network visualization of institutions, with color-coding indicating degree of connectivity, identifying hubs like Duke University and University of Pittsburgh with significant linkages to other entities.]FIGURE 4 | (A) Radar chart of the top five published institutions. (B) The co-occurrence map of research institutions generated by CiteSpace. Each node signifies an institution, with its size reflecting publication output. Connections between nodes indicate collaboration, with thicker lines suggesting closer partnerships. Node and line colors denote publication years, with lighter shades representing more recent years. Nodes with a centrality value greater than 0.1 are highlighted by purple rings.
An analysis of institutional cooperation was conducted to elucidate collaborative dynamics between institutions (Figure 4B). In these visualizations, nodes represent individual institutions, with the size of each node proportional to its publication output. The connecting lines between nodes signify collaborative relationships, with line thickness indicating the strength of cooperation; denser lines denote more robust collaboration. The color gradient in the nodes, transitioning from purple to yellow from 2000 to 2023, represents the centrality of each institution. Notably, Capital Medical University and Fudan University in China, along with Johns Hopkins University in the United States, demonstrated degree centralities of 16, 18, and 20, respectively, but exhibited relatively weaker connections to other institutions. In light of these findings, it is advisable for these institutions to actively pursue enhanced international cooperation, such as by engaging in global research collaborations and participating in international academic conferences, to expand their academic networks beyond their current spheres.
3.4 Analysis of research authors
To analyze authors in this research field, VOSviewer software, Microsoft Excel, and RStudio were used. The initial pool of 8,900 authors was narrowed to 70 by applying a threshold of at least 8 publications per author for in-depth analysis. The top 10 most prolific authors in the field were identified based on the stated criteria and are visualized in Table 4. The top 10 most-cited authors determined through co-citation analysis are presented in Table 5. Figure 5A illustrates that the majority of global partnerships involved core authors hailing from the United States, who served as the central point for multiple subgroups. Notable individuals within these subgroups include John H. Sampson, Hideho Okada, Michael Lim, and several others. Strengthening such international cooperation will likely contribute to further development of this field. Average citations per paper and h-index are key indicators for evaluating the academic influence of authors (Figure 5C). As former director of the Department of Neurosurgery at Duke University, Sampson has published 44 total articles in this field, accruing 3,861 citations to date. His H-index is 32 and total link strength 64,537, ranking first among the top ten authors by volume of publications, reflecting his outstanding contributions to the field. His primary research interests include glioblastoma treatment and immunotherapy, though he does not have the highest average citations per paper. That distinction belongs to David A. Reardon of Harvard Medical School, whose average citations per paper are 143, the highest among the top ten authors. Dr. Reardon’s research focuses on neuro-oncology, particularly treating malignant brain tumors through novel therapeutic strategies, clinical trials, immunotherapy, targeted therapies, and disease biology. Figure 5D depicts the annual publication counts of the top ten authors between 2006 and 2023. Figure 5A displays circles of varying sizes that represent the number of publications, where bigger circles indicate a higher number of publications. The color gradient, transitioning from purple to red, also represents increasing publication counts. It is evident from the data that these ten authors had a prolific output between 2013 and 2015. Specifically, in 2013, John H. Sampson, Duane A. Mitchell, and Darell D. Bigner had notably high publication output. John H. Sampson was particularly prolific in 2014, authoring 8 publications that year (Supplementary Table S4).
TABLE 4 | Top 10 authors ranked by number of publications.
[image: Table displaying the ranking of ten authors based on publications, ACPP (average citations per paper), H-index, citations, and total link strength. John H. Sampson ranks first with 44 publications and a total link strength of 64,537. David A. Reardon ranks tenth with 16 publications and a total link strength of 22,253.]TABLE 5 | Top 10 co-cited authors in citations.
[image: Table listing the top ten authors by rank with columns for author, citations, total link strength, and country. All authors are from the United States. John H. Sampson ranks first with 3,861 citations and a total link strength of 1,617.][image: Network diagrams and circular charts analyzing publication data. Panels A and B show network visualizations with nodes colored in blue, green, and red. Panel C displays a circular chart representing authors, with segments in blue, green, and orange. Panel D presents a matrix of circles varying in size and color, possibly indicating different metrics like citations or collaborations.]FIGURE 5 | A network map depicting authors is illustrated with the following key features: (A) Authors with the most publications; (B) Most frequently cited authors. (C) Jade block plot of the top 10 authors with the highest number of publications in the field; (D) Bubble plot of the number of publications per year by the top 10 authors. The size of each circle indicates the number of publications an author has, with larger circles representing a greater number of documents. The color gradient of the circles, transitioning from purple to red, signifies an increase in the number of publications an author has in a given year.
Figure 5B, employing VOSviewer’s co-citation analysis, depicts the functional and thematic significance of authors cited over 100 times in the field of CGI research. This analysis formulated a network comprising 70 authors who are highly cited in this domain. In this network, each node symbolizes an author, with the node size proportional to their publication count. The thickness of the lines connecting these nodes indicates the strength of co-citation relationships between authors. Authors grouped by similar colors suggest a tendency for their works to be frequently cited together. The outcomes of this author-centric analysis align closely with the results of the co-citation analysis, showing that more prolific authors are likely to be co-cited more frequently. According to Table 5, among the top 10 cited authors, John H. Sampson emerged with the highest number of citations (3,861) and the greatest overall link strength, followed by Hideho Okada with 3,373 citations, and Duane A. Mitchell with 3,295 citations. Notably, there were active co-citation linkages observed, such as those between John H. Sampson, Amy B. Heimberger, Roger E. McLendon, and Michael Weller, as well as between Michael Lim, Jacob Ruzevick, and Anhua Wu. Analyzing these interconnected relationships provides deeper insights into the collaborative dynamics among these authors, thereby enriching the understanding of research trends and networks within this specialized field.
3.5 Analysis of research journals
3.5.1 Research journals
The examination of publication sources revealed the primary journals in this particular area. Table 6 and Figure 6D present the specifics of the top ten journals, which were selected according to their highest publication volume. Supplementary Table S5 presents the list of the top 10 co-cited journals obtained from citation analysis, while Figure 6G provides a visual representation of the same. Cancer Immunology Immunotherapy emerged as the journal with the highest number of publications, totaling 59, while Journal of Neuro-Oncology followed closely with 58 publications and an impact factor of 3.9. Additionally, Frontiers in Immunology contributed significantly with 47 publications and an impressive impact factor of 7.3, which corresponds to the density map depicted in Figure 6B. The Journal of Neuro-Oncology had an impact factor of 3.9, while Neuro-Oncology had an impact factor of 15.9, making them the top journals in terms of impact factors. Cancer Research ranked first among the top 10 journals with the highest number of citations (4,864), while Clinical Cancer Research (3,880) and Neuro-Oncology (2,499) followed suit, which corresponds to the density map depicted in Figure 6C. In publications on glioma, Cancer Research made significant contributions to cytokine immunotherapy, as evidenced by its highest total link strength of 419,653. Through the use of dual-map overlay analysis, distinct patterns within the worldwide scientific journal landscape were uncovered. Figure 6A generated a dual map of research on cytokine immunotherapy for glioma that was published from 2000 to 2023.The colored lines starting from the source journal collection map (on the left) and leading to the destination journal collection map (on the right) represent the trajectory of citation connections. The overlay of the biplot suggests a significant clustering of journals that focus on this subject. The majority of the source journals and references pertain to molecular biology and genetics, with the citation chain mainly confined to these fields and limited cross-disciplinary research. In the future, potential research areas in this field include physics, materials science, chemistry, veterinary science, medicine, neurology, sports science, ophthalmology, and psychology. Emerging areas of research are expected to include education and health. As can be seen from the Figure 6E and Supplementary Table S6, during the period from 2000 to 2023, FRONTIERS IN IMMUNOLOGY showed an obvious increase from 2018, while the other four journals showed a stable increase. For burst monitoring of journals (Figure 6F), the top three ranked journals were NEUROSURGERY, bursting from 2000 to 2012, followed by JOURNAL OF NEUROSURGERY, bursting from 2000 to 2010, and GENE THERAPY, bursting from 2000 to 2010.
TABLE 6 | Top 10 Journals in terms of the number of published papers.
[image: A table ranks ten journals in terms of metrics such as Number, Total Citations (TC), Average Citations Per Paper (ACPP), Impact Factor (IF), and Quartile in category. Journals include Cancer Immunology Immunotherapy, Journal of Neuro-Oncology, Clinical Cancer Research, and others. Clinical Cancer Research has the highest ACPP and IF. Most journals are in the Q1 quartile, with some in Q2.][image: A collage of visual data representations related to academic journals. Panel A shows a network map of citing and cited journals. Panels B and C display heat maps with different color intensities. Panel D features a bar chart with horizontal lines and circles. Panel E presents a line graph depicting publication trends over time. Panel F lists the top 25 cited journals with citation bursts. Panel G contains a scatter plot with various data points. The visuals illustrate trends and relationships in academic publishing.]FIGURE 6 | (A) The dual-map overlay, produced using CiteSpace, presents CGI research. On this map, the journals being cited are displayed on the right, while the citing journals are on the left. Wider lines denote predominant citing pathways; The density map of journals (B) and co-cited journals (C) about CGI research; A Cleveland dot plot presents the top 10 journals, ranked by publications (D) and citations (G), spanning from 1 January 2000, to 4 October 2023; (E) Line graph of the publication trends of the top ten journals over the years; (F) Top 25 cited journals with the strongest citation bursts. Abbreviation: CGI, cytokines in glioma immunotherapy.
3.5.2 Landscape of cytokine research for glioma immunotherapy in journals with high impact factors (>20)
Several recent studies published in prestigious journals like Nature, Science Immunology, and Cancer Cell highlight promising progress in cytokine research to enhance glioma immunotherapy. Approaches include targeting inhibitory cytokines like IL-8 to potentiate immune checkpoint blockade (Cancer Cell), exploiting IFNγ signaling pathways to improve CAR T cell efficacy (Nature), using an engineered cytokine nanocarrier for deliver and tumor vessel normalization (Nature Nanotechnology), and modulating abnormal tryptophan metabolism via cytokines to overcome immunosuppression (Nature Cancer). Beyond inhibitory cytokines, other strategies aim to stimulate key cytokines to reinvigorate anti-tumor immunity, such as using CCL3 cytokine synergistically with antigens (Nature). Some translational insights indicate cytokines like IL-12 can enhance dendritic cell vaccine potency in glioblastoma patients (Nature).
While counteracting inhibitory cytokines and harnessing stimulatory cytokines show promise, an emerging frontier is targeting cytokine signaling cascades intracellularly to more potently reprogram tumor microenvironments. For example, recent work published in Nature Cancer revealed that inhibiting KDM6B epigenetically reprograms cytokine networks, shifting macrophages from immunosuppressive to immunostimulatory phenotypes and sensitizing gliomas to PD-1 checkpoint blockade. Similarly, directly manipulating cytokine transcription pathways, like disrupting abnormal lysine catabolism to restore histone marks, can allow cytokine effector programs to be rewritten (Nature). And deeper analysis of single cell cytokine networks via RNA sequencing continues to uncover opportunities for immunomodulation, with recent work delineating cytokine dynamics of tumor progression in Nature Immunology. Translationally, JCO (Journal of Clinical Oncology) papers demonstrate patient cytokine responses, as vaccines inducing CD8+ T cells and antigen-specific immunity in recurrent gliomas. Overall, manipulation of cytokine signaling is garnering high interest, with various innovative methodologies published in top journals demonstrating the ability of cytokines to stimulate, sustain, or restore anti-tumor immune responses. Key challenges remain in optimizing combination therapies, minimizing toxicities, and translating promising immunotherapies to clinical studies. But the field displays enthusiasm for cytokines’ potential to improve outcomes for glioma patients. Advanced intracellular targeting of cytokine signaling combined with deeper interrogation of glioma immune ecology shows immense promise to make immunotherapy more efficacious. Rational combination therapies and sequencing of cytokine modulators with existing treatments like checkpoint inhibitors could provide synergistic benefits. The breadth of innovation indicates cytokines may be key complements making immunotherapies smarter and more precise (Supplementary Table S7).
3.6 Analysis of research keywords
Keywords represent the core themes of an article. Analyzing these keywords reveals the central focus of an article. To examine the co-occurrence of keywords, we employed overlay visualizations that included network and density maps. After starting with a total of 5,317 keywords, we incorporated the keyword occurrence of over 27. This criterion aimed to concentrate on the most pertinent and recurrent terms, narrowing our analysis to the 79 most frequent keywords. These were then categorized into four distinct clusters, as depicted in Figure 7A.
[image: Panel A shows a co-citation network with nodes linked by lines, highlighting relationships between studies. Panel B lists the top 25 keywords with citation bursts from 2000 to 2023, using a timeline bar graph. Panel C is a keyword co-occurrence network depicted with interconnected nodes in red and green. Panel D is a density visualization showing areas of high keyword concentration in yellow, transitioning to blue in less dense areas.]FIGURE 7 | (A) Using VOSviewer, keywords are represented as nodes; distinct colored vertical lines indicate keyword clustering, and connections between nodes signify keyword co-occurrence. From blue to red, it represents time from the past to the present; (B) Top 25 cited keywords with the strongest citation bursts; (C) Thematic network maps depict keyword trends related to CGI research between 1 January 2000, and 4 October 2023; (D) The density of keyword co-occurrence is shown, with the most prevalent keywords accentuated in yellow. Abbreviation: CGI, cytokines in glioma immunotherapy.
The network graphs primarily organized the keywords into four distinct categories. From left to right, the first column, represented research related to strategies involving the use of cytokines for targeted therapy of glioma, this group included regression, stem cells, multiforme, interleukin-13, efficacy, safety, epidermal growth factor receptor, target, antitumor activity, antibody and chimeric antigen receptor. The second column, focused on the mechanisms by which cytokines regulate the activity of immunosuppressive factors in the tumor microenvironment and tumor-infiltrating immune cells, with keywords such as Regulating immune microenvironment (inflammation, immunosuppression, macrophages, microglia, myeloid cells); Blood-brain barrier (central nervous system); Immune cell activity (activation, cytotoxicity, NK cells, T cells); Signaling pathways and transcription factors (NF-kappaB, pathway); Immunosuppressive factor (TGF-beta, suppressor cells). The third column, encompassed terms commonly associated with direct activation and enhancement of antitumor immune responses by cytokines, such as Stimulates anti-tumor immunity (antitumor immunity, immunotherapy, induction); Activating immune cells (activated killer cells, CD8+ T cells, dendritic cells, lymphocytes); Cytokines and cancer vaccines (cancer vaccine, cytokine, GM-CSF, interleukin-2, peptide); Clinical trial (in vitro, in vivo, phase I/II trial). The fourth column, represented research related to important players and potential targets of immunotherapy, such as angiogenesis, immune, chemokines, endothelial growth factor, proliferation, growth, differentiation, mutations, protein, combination, chemotherapy, radiotherapy and bevacizumab. The size of the circle represents how often the keyword appears, and from blue to red, the time is getting closer to the present. Upon examining the trend topics over time, it became evident that they sequentially represented the evolving understanding of CGI, mirroring the shifts in research emphasis and progression within this domain. These emergent topics indicate a shifting emphasis toward a more nuanced comprehension of the intricate interactions between tumors and the immune system. Significantly, keywords in the fourth column, including immune checkpoint, endothelial growth-factor, pd-1, pd-11, tumor microenvironment, nanoparticles, and angiogenesis, indicate a clear shift in the direction and focus of forthcoming research efforts.
Figure 7B illustrates the significant bursts of keywords identified from 2000 to 2023, portraying the evolution and trend of these keywords visually. We determined the occurrence, importance, and unexpectedness of mentioned sources (minimum duration 2). Each slice represents 1 year and references are organized based on the year the burst started. The strength-value represents the burst strength of the citation. Research hotspots that evolved over time were identified, with the earliest occurrences of “brain tumor,” “gene therapy,” “malignant glioma,” and “cytokines” indicating keyword bursts. “Prognosis,” “inhibition,” “resistance,” “microglia,” “macrophages” and “tumor microenvironment” continued into 2023.To narrow down to the most important and commonly used terms, a minimum occurrence threshold of 27 was applied from a starting set of 5,317 keywords. This refined the analysis to the 79 most common keywords, which were divided into four distinct clusters (Figure 7C). This was consistent with Figure 7A, with keyword co-occurrence density mapped based on frequency (Figure 7D). The keywords “glioblastoma” (1,213 occurrences), “immunotherapy” (803 occurrences), and “t-cells” (409 occurrences) are the most prevalent, as determined by co-occurrence density.
3.7 Analysis of literatures Co-citation
Between 1 January 2000, and 4 October 2023, out of the 54,395 references examined, 12,900 were co-cited. Supplementary Table S8 displays the top 20 co-cited references in terms of citations. Donald M. O'Rourke garnered the highest number of citations for his clinical trial article titled “A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma,” published in Science Translational Medicine. For enhanced visualization in CiteSpace, we configured the parameters to display co-citations, setting the time slice to 1 year, covering the period from 2000 to 2023, and focusing on the top 30% of cited references. Figure 8A depicts the co-cited reference network alongside a visualization cluster map. Each circle symbolizes a reference, with consistent colors indicating the same topic.
[image: A composite image includes three sections: A) a cluster map with different colored regions labeled as scientific topics such as metabolism, cell recognition, and tumor microenvironment; B) a ranked list titled “Top 25 References with the Strongest Citation Bursts,” showing years and burst duration; C) a timeline chart displaying keyword citation bursts over time, with keywords like tumor microenvironment and apoptosis in varied colors. The chart includes a color gradient legend from purple to yellow.]FIGURE 8 | (A) Network visualization and clustering of co-cited references; (B) Top 25 references exhibiting citation bursts, arranged by the commencement year of the burst. The strength value indicates the intensity of the citation bursts, with red bars representing the duration; (C) Timeline visualization of co-citation analysis for references.
The results of our study show that the values achieved for modularity Q and mean silhouette S were 0.6678 and 0.886, respectively. The values indicate a significant clustering phenomenon and a remarkable level of uniformity. The data were organized into nine separate clusters, as shown in Figure 8A. Current research directions for cytokines on glioma immunotherapy mainly focus on #0 tumor microenvironment, #1 clinical trial, #2 apoptosis, #3 immunology, #4 epidermal growth factor receptor, #5 microspheres, #6 cancer vaccine, #7 vaccine virus and #8 interleukin-13 receptor alpha 2. The timeline display demonstrates the advancement of topic investigation, mapping the sequential path and length of co-citation growth in each cluster. For each year, the timelines showcase the most frequently referenced sources. Co-citation relationships are represented by lines that connect the nodes, and the clusters are organized vertically in a descending order based on their size. The colored curves represent co-citation connections that correspond to the year of each respective color. Nodes that are larger in size or have red tree-rings represent either bursts of citations, high counts of citations, or both. Figure 8C displays the arrangement of clusters along horizontal timelines in CiteSpace’s timeline visualization. This figure illustrates the distinctions within the nine clusters spanning from 2000 to 2023. The clusters are numbered from 0 to 8, with Cluster #0 being the biggest and Cluster #4 the second biggest. According to Figure 8B, certain clusters remained for a decade (until 2023), whereas others had a briefer lifespan. Figure 8B displays the prominent citation bursts from 2000 to 2023, illustrating the visual representation of the evolution and trend of cited references. Sorting is based on the year the burst commenced, with each year represented by a slice. The term “strength-value” indicates the intensity of the citation burst. Several reference bursts were identified in total. Research hotspots evolved over time. The earliest was “Liau LM, 1999,” emerging in 2000. “Reardon DA, 2020,” “Cloughesy TF, 2019,” “Hambardzumyan D, 2016,” “O'Rourke DM, 2017,” and “Louis DN, 2016” continued up to 2023, highlighting emerging areas of study, as depicted in Figure 8B.
4 DISCUSSION
4.1 Publication trend
The rapid growth in publications on CGI in recent years indicates rising interest and activity in this research area. The exponential growth curve predicts continued growth, suggesting this will be an important area of focus going forward. The potential drivers of increased research interest in cytokines for glioma immunotherapy maybe consist in the following several aspects: Advances in cancer immunology and immunotherapy have spurred interest in harnessing the immune system against glioblastoma. Meanwhile, improved understanding of the glioma microenvironment is uncovering opportunities for cytokine-based strategies to overcome tumor immunosuppression. Technological developments like CAR T-cell therapies provide new tools for cytokine delivery (Lin et al., 2022). Increased recognition of the challenges in treating heterogeneous glioblastomas encourages the search for fresh immunotherapeutic approaches. Growing collaborations between neuro-oncologists and immunologists have brought new perspectives. Enhanced omics analyses of the tumor microenvironment enable more sophisticated evaluations of cytokine activity. Expanded funding and high unmet need for better glioblastoma therapies also contribute to rising interest in cytokine immunotherapy as an alternative, potentially improved treatment strategy. Further analysis of research and collaboration trends could provide additional insights into the factors stimulating increased activity focused on cytokines for glioma immunotherapies.
The predominance of articles over reviews suggests that this is still an emerging research area with many new findings being reported. As the field matures, we may expect to see more review publications synthesizing the state of the literature. The geographic distribution of publications reveals active research clusters in countries like the US, China, and Germany. Further bibliometric analysis of author affiliations and collaborations will be discussed later, which could shed light on connections between these research hubs. Tracking geographic trends over time can reveal the diffusion of CGI research around the globe. The recent rapid increase in publications provides opportunities for new synthesis and evaluation of the field. Bibliometric analysis provides helpful context for interpreting patterns in the CGI literature.
4.2 Countries
The United States and China hold dominant positions in cytokine research on glioma immunotherapy, with increasingly frequent collaborations between the two nations reflecting abundant research resources that could be further strengthened to promote disciplinary development. Although China ranks second in publication quantity, lower citation rates indicate Chinese scholars should enhance research quality to generate higher-impact outputs, through avenues like strengthened international partnerships, emphasized originality, and improved study designs. China should actively collaborate with leading Western countries to exchange talent and assimilate successful experiences for advancing its research capabilities. Emerging research powers like Iran and Slovenia are also progressively participating in this domain, providing opportunities for China to broaden perspectives through enhanced exchanges. Establishing international collaborative research centers could help congregate resources for rigorous multicenter clinical trials that elevate research quality. While international cooperation has grown substantially, ample potential remains based on bibliometric findings. Experts globally should increase communication to construct productive collaborative relationships and collectively propel advancements in this research field. Government agencies and funding bodies could institute special funds supporting international cooperative studies on glioma immunotherapy.
4.3 Institutions
The identified top 10 most productive institutions were primarily American, with just 3 Chinese centers represented, echoing the publication dominance of the United States in this research field. Bibliometric findings clearly demonstrate the substantial contributions and leading position maintained by American institutes like Duke University, the University of Pittsburgh, Harvard Medical School, and the University of California, Los Angeles. The high degree centrality exhibited by Duke University highlights its influence through well-connected and highly cited research constituting pivotal nodes that outline disciplinary progression. Capital Medical University ranked fifth for output volume as the top Chinese institute, underscoring China’s emerging significance. However, network analysis revealed the relatively low degree centralities and weaker connections of Chinese centers like Capital Medical University and Fudan University compared to American institutes. These findings indicate Chinese institutions should strengthen international cooperation through collaborative projects, academic exchanges, and engagement in global conferences to complement their existing research circles. Broader and deeper cooperative relationships can facilitate knowledge sharing between top Chinese and American institutes to the benefit of glioma immunotherapy research overall, while supporting the continued growth of China’s contributions. Focused efforts to build partnerships and participation in high-impact research could further enhance the position of Chinese institutions in this rapidly evolving field.
4.4 Authors
The identified prominence of American authors as the top contributors in glioma immunotherapy cytokine research highlights the leading role of the United States in this domain. Focused efforts to strengthen cooperative relationships between these influential American researchers and their subgroups could facilitate continued advancement and knowledge sharing. Bibliometric analysis spotlights authors like John H. Sampson and David A. Reardon as particularly impactful based on citation counts and h-indices, reflecting their pioneering contributions through high-volume, high-influence publications. Meanwhile, emerging authors from China and other nations with expertise in glioma immunotherapies should be integrated into these international collaborative networks to enrich perspectives. Co-authorship of publications involving experts across multiple countries could help disseminate knowledge and reinforce the global connections required to accelerate progress against this difficult disease. The symbiotic examination of co-citation and collaboration patterns provides a blueprint for reinforcing relationships between widely cited authors and identified research clusters. Strategic efforts to increase interconnectedness could pay dividends for the field.
4.5 Journals
Currently, source journals are concentrated in the fields of molecular biology and genetics, with less interdisciplinary linkage. However, based on projected citation pathways, emerging research areas are predicted in physics, materials science, chemistry, veterinary and animal science, clinical medicine, neurology, ophthalmology, psychology, education, and health sciences. Specifically, some new concepts and techniques in physical sciences and engineering, such as physics, materials science, and chemistry, may bring novel perspectives to this research field. For example, newly developed biomaterials and nanomaterials in materials science may provide better carrier options for immunotherapy. Additionally, advanced imaging technologies and high-throughput analytical techniques could also enable more precise experimental approaches in this field. From clinical medicine, neurology and other aspects, researchers may need to integrate interdisciplinary knowledge and view cytokine functions in the tumor microenvironment from a more comprehensive angle, establishing more accurate associations with disease progression and prognosis. This could facilitate translational medicine research in this field. Social sciences like psychology and education may also bring new research ideas to this field. For instance, how patients’ psychological status affects therapeutic efficacy, and how to improve patients’ cognition of and compliance with immunotherapy through health education.
In summary, these emerging potential interdisciplinary research directions provide great expansion opportunities for this field. Researchers should proactively engage in interdisciplinary collaboration and integration to propel further development of this research area. This study provides a comprehensive perspective on the publishing landscape, influential journals, projected research directions, and historical trends. The findings will inform researchers on impactful publication avenues and opportunities for cross-disciplinary collaboration in advancing cytokine research for glioma immunotherapies.
4.6 Keywords
79 keywords were analyzed in depth. The most frequent were “glioblastoma,” “immunotherapy,” and “T-cells”. The density of co-occurrences between keywords was visualized. The analysis shows how glioma immunotherapy research has progressed from an early focus on core therapies to a more nuanced understanding of the tumor environment and potential targets. The keywords and trends reflect the development of the field over time.
The keyword analysis provides valuable insights into the evolution of glioma immunotherapy research over time. The categorization of keywords into four main clusters reflects the multifaceted nature of this field. The first two clusters point to important developments in cytokine-based therapies and understanding cytokine regulation of the tumor microenvironment. The identification of core cytokine therapies like interleukin-13 and key mechanisms like TGF-beta modulation of immunosuppression reveals foundational areas of focus.
Meanwhile, the third and fourth clusters highlight the maturation of the field with keywords indicative of more sophisticated immunotherapeutic approaches. The activation of dendritic cells and focus on prime targets like angiogenesis denote an increased understanding of how to directly stimulate anti-tumor immunity. The keyword trends also mirror the progression of the field, with an increasing emphasis on illuminating the tumor microenvironment in recent years.
The burst analysis provides further evidence that glioma immunotherapy has built upon early groundwork in gene therapy and progressed to intricate concepts like the role of microglia. The frequency analysis showing “glioblastoma,” “immunotherapy” and “T-cells” as most common demonstrates the consolidation around key concepts.
Gene therapy: Another early hotspot, gene therapy represented an attempt to genetically modify tumor cells to make them more susceptible to immune-mediated killing. Strategies like introducing cytokines and costimulatory molecules into tumors helped establish important proof-of-concept evidence that modulating gene expression could render the tumor microenvironment more conducive to an antitumor immune response. “Malignant glioma”: Specifically focusing on malignant gliomas, the most aggressive primary brain tumors, was a sensible early emphasis. Glioblastoma is the most common and deadly glial malignancy. Defining its complex heterogeneity, invasive capacity, and resistance mechanisms was critical groundwork for the field. “Cytokines”: Cytokines represented logical early immunotherapeutic candidates. As key immune signaling proteins, directly augmenting cytokines like interferons and interleukins laid the groundwork for immunotherapy. Early insights into cytokine actions against gliomas proved an effective springboard. “Prognosis”: This hotspot points to research on predicting outcomes based on tumor and immune response markers. Prognosis reflects deeper understanding of how interactions between gliomas and immunity impact tumor progression and patient survival. “Inhibition”: Research on inhibitory mechanisms that suppress antitumor immunity expanded as the field grew more sophisticated. Checkpoint inhibitors targeting molecules like PD-1 emerged as key therapies, validating this as an important hotspot. “Resistance”: Gliomas exhibit primary and acquired resistance to immunotherapies, highlighting the need to unravel these mechanisms. Resistance remains a major challenge and hotspot for ongoing research. “Microglia”: Native CNS microglia play complex roles in gliomas, exhibiting both antitumor and immunosuppressive properties. Their contribution to the immunosuppressive microenvironment has made them an important recent hotspot. “Tumor microenvironment”: Beyond individual cells, the overall tumor microenvironment has risen as a central hotspot as researchers appreciate its multifaceted contribution to glioma progression and therapeutic resistance. Further unraveling its complexity is critical.
Overall, as shown through the keywords and their interconnectedness, glioma immunotherapy has clearly advanced considerably from preliminary attempts to modulate the immune system to an intricate and multi-faceted approach targeting specific mechanisms and cell types. The study provides a quantitative understanding of this evolution. Future research may benefit from focusing on undersaturated nodes in the keyword network as well as continuing to explore emerging topics like the tumor microenvironment.
4.7 Literatures Co-citation
The co-citation analysis provides a quantitative mapping of the knowledge structure and research evolution of cytokines for glioma immunotherapy over the past 2 decades. Clustering the most co-cited references reveals the main research directions in this field, with tumor microenvironment and EGFR as the largest clusters, indicating their importance as core research foci. The timeline visualization clearly traces the rise and fall of research topics, with some persisting over long periods while others were short-lived bursts of activity. Tracking the citation bursts quantifies the historically most impactful contributions, from foundational early works like Liau 1999 to recent advances like Reardon 2020 that point to emerging subfields.
This scientometric mapping at a macro-level reveals the research landscape and developmental trajectory of this field. The findings could inform researchers on influential historical works to build upon, understudied areas warranting more investigation, and projected impactful directions to pursue next. Researchers should consider opportunities to integrate knowledge across the clusters through cross-disciplinary collaboration. For example, synergizing insights from tumor microenvironment, immunology, and clinical trials research may accelerate translation of basic cytokine biology findings into clinical applications. Strategic collaboration across specialties and institutions can help unify and strengthen the field. The quantitative mapping of scientific progress over time provides an evidence base to guide future discovery and innovation in cytokines for glioma immunotherapy.
#0 Tumor Microenvironment (Barthel et al., 2022): The tumor microenvironment cluster highlights the importance of studying cytokine signaling and immune dynamics in the context of the complex glioma microenvironment. Key knowledge gaps exist regarding how various immune components interact and are modulated by cytokines and other signals from cancer and stromal cells. Further research should aim to unravel these complex dynamics through high-dimensional profiling and integrative modeling; #1 Clinical Trials (Chen et al., 2017): The clinical trials cluster underscores the need to translate cytokine biology findings into human studies. As a core pillar of glioma immunotherapy research, well-designed trials are essential to systematically evaluate safety, efficacy, and biomarkers; #2 Apoptosis (Chang et al., 2021): The apoptosis cluster suggests that delineating cytokine regulation of cell death pathways in glioma remains pivotal. Therapeutically inducing glioma apoptosis through cytokine signaling may overcome resistance. Further mechanistic work should clarify how cytokine-mediated apoptosis interconnects with autophagy, necrosis, and other death modalities in glioma; #3 Immunology: The immunology cluster highlights active investigation into modulating anti-glioma functionality of immune cell types via cytokines; #4 Epidermal Growth Factor Receptor: The EGFR cluster indicates this remains a key target for cytokines and immunotherapy given its frequent dysregulation in glioma. Studies should continue elucidating mechanisms of cytokine-mediated EGFR inhibition and related therapeutic resistance. Combining EGFR- and cytokine-targeted therapies may improve outcomes; #5 Microspheres: The microspheres cluster suggests drug delivery systems are important to optimize cytokine delivery and release kinetics; #6 Cancer Vaccines: The cancer vaccines cluster highlights their rising potential to stimulate anti-glioma immunity through cytokine activation. Combining cytokine adjuvants with tumor antigens may improve vaccine potency; #7 Vaccine Viruses: This cluster indicates oncolytic viruses are gaining promise as novel cytokine delivery platforms. Combining cytokine transgene expression with viral oncolysis may amplify antitumor immune responses; #8 Interleukin-13 Receptor Alpha 2: The IL13Rα2 cluster suggests this glioma antigen is a promising target for cytokine-mediated immunotherapy. Studying IL13Rα2-targeted cytokine delivery and related immune effects can refine targeting specificity. The clustered research directions provide a roadmap for progress across key facets of cytokine immunotherapy for glioma. Targeting these areas through cross-disciplinary collaboration promises to advance the field towards improved patient outcomes.
4.8 Overview of cytokines in glioma immunotherapy
Cytokines are low molecular weight proteins or peptides synthesized and secreted by a variety of cells in response to immunogen, mitogen or other stimuli (Liu et al., 2021). They have a wide range of biological activities and can mediate signal transduction and interaction between cells. Cytokines play an important role in innate and adaptive immune responses and can nonspecifically stimulate the activation, proliferation and differentiation of T cells (Zeng et al., 2021).
4.8.1 Classification of cytokines
According to their main functions, cytokines can be divided into six categories.
4.8.1.1 Interleukin
Interleukin (IL) family is a kind of cytokine that regulates the immune system bidirecally and participates in the differentiation and activation of immune cells. IL can be divided into IL-1 family, IL-10 family, IL-12 family, etc (Tavakolpour et al., 2020).
4.8.1.2 Interferon
Interferon (IFN) is a protein or glycoprotein produced by the body when stimulated (Milanés-Virelles et al., 2008). It can be divided into three categories: IFN-α, IFN-β and Ifn-γ. Type I IFN is mainly produced by innate immune cells (Kim, 2021). Type II IFN is mainly produced by innate and acquired immune cells (Banchereau et al., 2017). IFN can synergistically promote immune responses and have antiviral, antitumor and immunomodulatory functions (Li et al., 2007).
4.8.1.3 Tumor necrosis factor
Tumor necrosis factor (TNF) is a kind of pro-inflammatory cytokines, including Tnf-α and TNF-β, which are mostly produced by immune cells (Weersma et al., 2007). High expression of TNF-α can activate T cells and promote the production and secretion of a variety of cytokines, thereby causing inflammatory responses such as fever and macrophage aggregation (Cruceriu et al., 2020).
4.8.1.4 Colony-stimulating factor
Colony-stimulating factor (CSF) can promote the proliferation and differentiation of hematopoietic progenitor cells (Stachura et al., 2013). It is a component of the proinflammatory cytokine network and participates in the inflammatory process. CSF can upregulate the number of macrophages in the inflammatory site, leading to the persistence and amplification of inflammation (Liu X. et al., 2022).
4.8.1.5 Chemokines
Chemokines are a class of low molecular weight proteins that are divided into four subfamilies based on their amino acid sequence (Uza et al., 2011). Different subfamilies of chemokines can specifically regulate the movement and homing of various immune cells and participate in a variety of physiological processes. Some chemokines are pro-inflammatory while others serve to maintain homeostasis (Bikfalvi and Billottet, 2020).
4.8.1.6 Growth factors
Growth factors, such as IGF, EGF, and TGF-β, are peptides that can affect cell growth, differentiation, apoptosis and immunity (Almodóvar et al., 2014). Different growth factors regulate cell functions through various pathways and are widely involved in physiological processes (Haque and Morris, 2017).
4.8.2 Roles of several important cytokines in glioma immunotherapy
4.8.2.1 IL
Interleukin-2 (IL-2) has been extensively studied for the immunotherapy of gliomas (Liu et al., 2017). IL-2 can significantly promote the proliferation and activation of T cells, particularly CD8+ cytotoxic T cells (Smith et al., 2017), which can directly kill tumor cells. Furthermore, as shown in the Figure 9, IL-2 may help maintain the population of CD4+ helper T cells (Liu Y. et al., 2021), which are critical for coordinating the overall antitumor immune response. Additionally, IL-2 can mediate the proliferation and activation of natural killer (NK) cells (Kong et al., 2017), enhancing their tumor lytic capabilities. IL-2 has also been demonstrated to drive the sustained expansion and survival of cytotoxic T lymphocytes (CTLs) (Rollings et al., 2018). In summary, while appropriate doses of IL-2 remain an important component of glioma immunotherapy, IL-2 needs to be used in combination with other immunotherapeutic strategies to maximize synergistic therapeutic effects.
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IL-6 is highly expressed in human glioma specimens and cell lines, and activates the transcription of multiple tumor suppressor genes through STAT3 (signal transducer and activator of transcription 3) signaling pathway to promote the proliferation and inhibit apoptosis of U251 and A172 cell lines. Studies have shown that IL-6 can promote the migration of glioma cells (Wang et al., 2019), and cucuritin-1, a specific inhibitor of STAT3, can inhibit this promoting effect of IL-6 (Lin et al., 2011), suggesting that IL-6 may regulate the invasion of glioma through JAK/STAT pathway. In addition, IL-6 promoted tumor angiogenesis and tumor growth by activating STAT3 in glioma. A previous study reported that elevated circulating levels of IL-6, IL-8, IL-17, TNF-α, TGF-β, and CRP are significantly linked to an increased risk of glioma. Furthermore, circulating IL-6 and CRP have the potential to act as potent prognostic biomarkers for unfavorable outcomes in glioma patients (Feng et al., 2019). Further study of the downstream signaling pathways of IL-6 will help to understand its role in glioma and its clinical application.
Interleukin-8 (IL-8) is an important proinflammatory chemokine and key regulator in the tumor microenvironment (Orlikova and Diederich, 2012). Specifically, IL-8 can promote the recruitment and activation of immunosuppressive granulocytes in glioma tissues (Törnblom et al., 2019), which inhibits the cytotoxic activity of effector T cells against tumor cells. A study by Iglesia et al. using U87 and A172 human glioma cell lines with tumor suppressor gene deletions found that phosphorylated STAT3 molecules transcriptionally repressed IL-8 by occupying its promoter in the nucleus, thereby inhibiting tumor cell proliferation and invasion (de la Iglesia et al., 2008). Knocking out IL-8 expression via RNA interference in U87 cells inhibited proliferation and invasion, indicating IL-8 can promote glioma cell proliferation and invasion.
4.8.2.2 IFN
Interferon (IFN) plays a pivotal role in the immunotherapy of glioma (Li et al., 2020). IFN can directly inhibit glioma cell proliferation (Pasquali and Mocellin, 2010) and enhance anti-tumor immune responses through multiple pathways (Li et al., 2017). It upregulates major histocompatibility complex (MHC) molecule expression on glioma cells, enhancing their immunogenicity (Giannandrea et al., 2009; Ahmed et al., 2018). In vitro studies show IFN-γ strongly inhibits human glioma cell proliferation and reduces hyaluronic acid adhesion (Knüpfer et al., 1997). Besides IFN-γ, IFN-α also has immunotherapeutic potential in glioma. Intramuscular injection of plasmid DNA encoding mouse IFN-α exerts potent anti-tumor effects against primary and metastatic tumors like glioma and melanoma in mice (Horton et al., 1999). In summary, IFN plays dual anti-tumor and immunotherapeutic roles in glioma by coordinately regulating immune responses, and is a key immunomodulator for glioma immunotherapy.
4.8.2.3 TNF
TNF directly induces apoptosis and necrosis in tumor cells (Adjuto-Saccone et al., 2021). It elevates the expression of death receptors on tumor cell surfaces, binding to them to activate downstream apoptotic pathways (Zhang et al., 2020). Furthermore, TNF enhances the cytotoxic activity of immune effector cells, such as macrophages and NK cells, against tumor cells (Müller and Kontermann, 2010). It also promotes apoptosis in tumor vascular endothelial cells and suppresses tumor neovascularization (Van Hauwermeiren et al., 2013). In glioma immunotherapy, TNF is predominantly utilized in gene therapy (Wang et al., 2012). Fukushima et al. conducted a study with 17 malignant astrocytoma patients. They divided the participants into two groups: the MR Group received ranimustine chemotherapy (MCNU) combined with radiotherapy, while the TMR Group received the same treatment plus recombinant human tumor necrosis factor-alpha (TNF-SAM2). The findings indicated that anaplastic astrocytoma patients in the TMR Group had a longer survival rate than those in the MR Group. This suggests a potential benefit in combining chemotherapy and radiotherapy with TNF-SAM2 for anaplastic astrocytoma patients, although the sample size was limited (Fukushima et al., 1998). In conclusion, TNF modulates the anti-tumor immune response through various mechanisms, establishing its significance in glioma immunotherapy.
4.8.2.4 CSF
Colony-stimulating factor (CSF) is a crucial hematopoietic growth factor that fosters the proliferation and differentiation of various white blood cell lineages, underscoring its significance in glioma immunotherapy. CSF facilitates the differentiation of bone marrow stem cells into immune effector cells, including dendritic cells, macrophages, and natural killer cells, thereby bolstering the body’s overall immune function (Shi et al., 2006). Moreover, CSF directly enhances the activity and anti-tumor capabilities of these immune cells. For instance, CSF fosters the maturation of dendritic cells, augmenting their antigen-presenting capacity and boosting cytotoxicity by activating natural killer cells and macrophages (Palata et al., 2019). Additionally, CSF synergizes with other cytokines, such as IL-24, to amplify the body’s tumor immune response (Deng et al., 2020). In summary, CSF elevates the body’s immune status and anti-tumor efficacy through various mechanisms, solidifying its role as a pivotal immunomodulatory factor in glioma immunotherapy.
4.8.2.5 Chemokines
Chemokines are a class of small molecule cytokines that can specifically recruit immune cells and play an important role in the immunotherapy of gliomas (Nong et al., 2023). Chemokines can promote the directional migration and aggregation of various immune effector cells to tumor tissues (Do et al., 2020). For example, CXCL10 can promote the recruitment of T lymphocytes and natural killer cells (Pociask et al., 2011); CCL2 can promote the aggregation of monocytes and macrophages (Loomis-King et al., 2013). In addition, some chemokines can directly enhance the activity of immune cells (Glodde and Hölzel, 2017). In the immunotherapy of glioma, the application of exogenous chemokines can significantly increase the infiltration of immune cells at the tumor site and enhance the antitumor immune response (Song et al., 2022). In conclusion, chemokines are important links that connect and amplify the systemic and local immune systems of the body, which is an effective method to optimize the immunotherapy of glioma.
4.8.2.6 Growth factors
Growth factors serve bifunctional roles in tumor immunotherapy (Miller et al., 2008; Naber et al., 2012). While certain growth factors, such as EGF and FGF, can stimulate glioma cell proliferation (Karl et al., 2008), high VEGF expression is crucial for glioma angiogenesis (Yamanaka and Saya, 2009). Overexpressing these factors can compromise the anti-tumor immune response. Conversely, some growth factors, like GM-CSF, amplify the antigen-presenting activity of dendritic cells and macrophages and heighten macrophage cytotoxicity against tumor cells (Triozzi et al., 2005). Therefore, in glioma immunotherapy, interventions should be tailored based on the distinct functionalities of these factors. Strategies should encompass inhibiting the expression and activity of tumor-promoting growth factors while judiciously employing those with immune-enhancing properties. Merely inhibiting tumor growth is insufficient; optimizing the body’s immune status is vital to enhance the efficacy of glioma immunotherapy.
The potent immunosuppressive cytokine TGF-beta has also emerged as an attractive target for glioma immunotherapy. TGF-beta facilitates immune evasion and cancer progression through promoting epithelial-mesenchymal transition (EMT) and inhibiting functions of lymphocytes. Targeting TGF-beta therefore offers dual benefits by reversing immunosuppression and reducing invasiveness. Recently, bispecific antibodies simultaneously targeting TGF-beta and the immune checkpoint PD-L1 have shown promising antitumor effects. The lead asset YM101 exhibits subnanomolar affinity for human TGF-beta and PD-L1, potent TGF-beta neutralization, and T cell activation. Preclinical studies of YM101 demonstrated robust T cell proliferation, cytokine production, and cytolytic activity against glioma cells. Another bispecific antibody termed BiTP, targeting murine TGF-beta and PD-L1, showed survival benefits in glioma mouse models through increased tumor immunogenicity and cytotoxic T cell infiltration.
These pioneering anti-TGF-beta/PD-L1 bispecific antibodies exemplify a synergistic approach harnessing blockade of immunosuppression and reinvigoration of anti-tumor immunity. Further optimization of affinity, half-life, and effector functions should enable clinical translation. As the glioma immune microenvironment exhibits abundant extracellular TGF-beta, ongoing Phase I trials of YM101 and related bispecific antibodies may unlock exceptional responses beyond anti-PD-L1 monotherapy. Altogether, joint cytokine and checkpoint immunotherapies represent a promising frontier in the continuing search for glioma treatment advances.
4.9 Strengths and limitations
This bibliometric analysis provides the first quantitative mapping of the research landscape on cytokines for glioma immunotherapy. Notably, bibliometric analysis offers a more comprehensive perspective than traditional literature reviews and provides enhanced visualization. The findings offer scholars an evidence-based guide to recognize influential contributors, publications, and research directions in this domain. Illuminating the rising focus on intricacies of the glioma microenvironment will help scholars shape investigations. Identifying understudied areas provides opportunities for scholars. Historic research patterns clarify current developmental contexts to inform scholarly inquiry. The analysis spotlights cross-disciplinary collaboration as key for scholars to collectively advance glioma immunotherapies. This macro-level visualization of the glioma immunotherapy cytokine research topography acts as an invaluable strategicorienting resource for scholars worldwide. In addition, various software tools were employed in this bibliometric analysis for data analysis and visualization, including Microsoft Excel 2021, Origin 2023, Microsoft Charticulator, VOSviewer 1.6.19, Citespace 5.7R3, and the Bibliometrix package in RStudio. By utilizing these tools, a thorough comprehension of the pertinent literature, focal points of research, and current patterns concerning the impact of cytokines on glioma immunotherapy was facilitated. There are certain constraints to this research. Initially, solely papers written in English from the WoSCC database were incorporated; forthcoming research should examine additional databases. Moreover, the bibliometric evaluation was limited to metadata instead of the complete text, which may result in the omission of important findings exclusively present in the articles. Given the ongoing updates to the database, this analysis covers pertinent records starting from 1 January 2000, until 4 October 2023.As a result, there could be variations between these discoveries and the latest research on CGI.
5 CONCLUSION
In our groundbreaking bibliometric analysis of CGI literature spanning 1 January 2000, to 4 October 2023, we noted a marked increase in research activity, with the United States taking the lead. Future research will likely focus on the tumor microenvironment, cancer vaccines, epidermal growth factor receptor, and interleukin-13 receptor alpha 2. Glioma immunotherapy will continue to develop through investigations into resistance mechanisms, microglia and macrophage biology, and interactions within the complex tumor microenvironment. Enhanced global collaboration is vital for advancements in these domains.
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Background: The clinical selection of three CDK4/6 inhibitors presents a challenging issue, owing to the absence of distinct clinical case characteristics, biomarkers, and their comparable clinical benefits in progression-free survival and overall survival To inform clinical treatment decisions, we conducted a comprehensive evaluation of the adverse events associated with CDK4/6 inhibitors in combination with endocrine therapy for hazard ratio+/HER2-breast cancer.
Methods: We searched Cochrane, PubMed, Embase, and Web of Science databases from their inception until 1 August 2022. The results were summarized narratively, and we assessed the methodological quality, reporting quality, and evidence quality of AEs by AMSTAR-2, PRISMA, and GRADE.
Results: Our analysis included 24 meta-analyses systematic reviews that evaluated the quality of AEs in 13 cases of early breast cancer (EBC) and 158 cases of advanced breast cancer The addition of CDK4/6 inhibitors was found to significantly increase AEs of any grade and AEs of grade 3 or higher in early breast cancer, along with a significant increase in the risk of treatment discontinuation. In advanced breast cancer, high and moderate-quality evidence indicated that CDK4/6 inhibitors significantly increased AEs across all grades, including grade 3/4 AEs, leucopenia, grade 3/4 leucopenia, neutropenia, grade 3/4 neutropenia, anemia, grade 3/4 anemia, nausea, grade 3/4 constipation, fatigue, pyrexia, venous thromboembolism abdominal pain, and cough. However, they did not significantly elevate the incidence of grade 3/4 diarrhea. Subgroup analysis revealed that palbociclib primarily increased hematologic toxicity, particularly grade 3/4 neutropenia, anemia, and thrombocytopenia. Ribociclib was mainly associated with grade 3/4 neutropenia, prolonged QT interval, and alopecia. Abemaciclib was closely linked with diarrhea and elevated blood creatinine levels.
Conclusion: The AEs associated with CDK4/6 inhibitors vary, necessitating individualized and precise clinical selection for optimal management. This approach should be based on the patient’s medical history and the distinct characteristics of different CDK4/6 inhibitors to improve the patient’s quality of life.
Systematic Review Registration: [https://systematicreview.gov/], identifier [CRD42022350167]
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1 INTRODUCTION
One of the primary factors contributing to the recurrence and metastasis of hormone receptor-positive (HR+)/HER2-negative (HER2-) early breast cancer (EBC) and advanced breast cancer (ABC) is resistance to endocrine therapy (ET) (Jeselsohn et al., 2015). Due to significant advancements in molecular biology, molecular targeted therapy for breast cancer has become increasingly popular. Notably, CDK4/6 inhibitors represent a major breakthrough in overcoming ET resistance and reducing the recurrence and metastasis of breast cancer. Numerous global, multicenter, clinical randomized controlled trials (RCTs) (PALOMA, MONARCH, MONALEESA, PALLAS, PENELOPE-B, etc.) conducted from 2014 to the present have investigated the efficacy of CDK4/6 inhibitors in combination with ET for HR+/HER2- EBC and ABC(Romero, 2017; Slamon et al., 2018; Tripathy et al., 2018; Hortobagyi et al., 2019; Loibl et al., 2021; Mayer et al., 2021). These combination therapies have significantly improved clinical prognosis. Consequently the Food and Drug Administration (FDA) approved three CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, for use as first and second-line treatments for HR+/HER2-metastatic breast cancer (MBC), based on these promising clinical trials (Mullard, 2017; Burstein et al., 2021). Additionally, abemaciclib received FDA approval for concurrent use with ET adjuvant treatment in patients with EBC who are HR+/HER2-, Ki-67 ≥ 20%, lymph node positivity, and at high risk of recurrence (Royce et al., 2022).
The safety profile of CDK4/6 inhibitors has garnered considerable attention. A thorough assessment of the adverse events (AEs) associated with CDK4/6 inhibitors can enhance clinical decision-making, monitoring, and management, thereby improving patient compliance and quality of life. Numerous systematic reviews/meta-analyses (SRs/MAs) have evaluated the safety of CDK4/6 inhibitors in combination with ET, focusing on diverse aspects such as bone marrow, gastrointestinal, skin AEs, and deep vein thrombosis (DVT) (Shohdy et al., 2017; Kassem et al., 2018; Thein et al., 2020; Silvestri et al., 2021). Nevertheless, limitations in study design, methodology, and procedures have resulted in varied evidence strengths, offering limited guidance for clinical practice. Based on this, this study is the first to summarize the AEs of CDK4/6 inhibitors combined with ET from SRs/MAs included in RCTs and to provide a comprehensive assessment using methodological quality, report quality and quality of evidence, with the aim of providing a basis for selection and reliable evidence for the clinical use of CDK4/6 inhibitors.
2 MATERIALS AND METHODS
An umbrella review of the AEs of CDK4/6 inhibitors in the treatment of breast cancer patients was conducted according to the Joanna Briggs Institute (JBI) Manual for Evidence Synthesis. The protocol has been previously registered and published in The International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42022350167).
2.1 Search strategy
A comprehensive literature search was conducted in the Cochrane, PubMed, Embase, and Web of Science databases from their inception until August 1st. The objective was to gather literature pertaining to the use of CDK4/6 inhibitors in combination with ET for breast cancer. Both subject terms and free terms were employed in each database. Search phrases included “breast cancer," “Cyclin-Dependent Kinases 4 and 6 Inhibitors,” “Systematic review,” “Meta-analysis,” and the searches were limited to English (Supplementary Data S1).
2.2 Eligibility criteria
Inclusion criteria were based on the PICOS (participant, intervention, comparison, outcome, and study type) framework (P) Participants were breast cancer patients of any race, age, or disease stage (I/C) the trial group received CDK4/6 inhibitors combined with ET, while the control group received ET alone or with placebo (O) outcomes measured included AEs, with data such as risk difference (RD), relative risk (RR), odds ratio (OR), hazard ratio (HR) (S) Study types were meta-analyses (MAs) and systematic reviews (SRs) comprising exclusively RCTs.
Exclusion criteria were: (a) duplicate publications; (b) articles that did not report the necessary data; (c) systematic review reevaluation plans, conference abstracts, etc.
2.3 Literature screening and data extraction
Two reviewers (WY and XDB) independently conducted the screening and data extraction process. Initially, duplicate titles were removed, followed by screening of titles and abstracts, and then full-text evaluation based on the inclusion and exclusion criteria. Data extracted included first author, publication year, country, study population, sample size, interventions/control measures, outcome measures, and quality assessment methods. Any disagreements were resolved through the consensus of a third reviewer (CHH).
2.4 Data analysis
Following the Joanna Briggs Institute guidelines for Umbrella Reviews, we conducted a descriptive analysis of AEs for CDK4/6 inhibitors in combination with ET for breast cancer, without reanalyzing data from RCTs or MAs/SRs (Aromataris et al., 2015). We summarized indicators for CDK4/6 inhibitors, including RD, RR, OR, HR, 95% confidence interval (95% CI), and p-value. I2 was utilized to assess study heterogeneity, with statistical significance set at a p-value <0.05.
Two independent evaluators (WY and XDB) performed assessments using the Assessment of Multiple Systematic Reviews 2 (AMSTAR-2) scale, PRISMA statement, and the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) instrument and resolved disagreements by consensus of a third-party reviewer (Supplementary Data S2). First, the AMSTAR-2 scale, a systematic evaluative methodological quality assessment tool, was used to assess the study’s methodological quality (Shea et al., 2009; Shea et al., 2017). The AMSTAR-2 scale, a tool for assessing methodological quality, includes 16 items scored as “yes,” “no,” or “partially yes,” based on the criteria fulfillment. The PRISMA 2020 checklist was employed for assessing reporting quality, comprising 27 items (42 sub-item levels) (Hutton et al., 2015). Each item was scored as 1 for complete reporting, 0.5 for partial, and 0 for non-reporting, with a total possible score of 42. Scores of 33–42 indicated relatively complete reporting, 25–32 indicated some deficiencies, and scores below 25 signified serious information deficiencies (Page et al., 2021). The GRADE tool evaluated evidence quality for each outcome by examining risk of bias, inconsistency, indirectness, precision, and publication bias, categorizing outcome indicators as high, moderate, low, or very low based on downgrades (Schunemann et al., 2020; Zeng et al., 2021).
3 RESULTS
3.1 Basic characteristics of the included literature
From four database searches, 425 pieces of literature were initially retrieved. After removing duplicates, screening titles and abstracts, and evaluating full texts, 24 studies met the inclusion criteria. The literature screening process and results are depicted (Figure 1). Publications spanned from 2017 to 2021, with study numbers ranging from 3 to 9 and sample sizes from 1,352 to 12,647. Regarding the included population, two studies focused on HR+/HER2- EBC(Agostinetto et al., 2021; Gao et al., 2021), with the remainder addressing HR+/HER2- ABC. In terms of therapeutic interventions, one study (Ramos-Esquivel et al., 2020) compared CDK4/6 inhibitor combined with fulvestrant versus fulvestrant alone, two studies (Ramos-Esquivel et al., 2018; Shimoi et al., 2020) compared CDK4/6 inhibitor with AI versus AI alone, and the rest involved CDK4/6 inhibitor combined with ET versus ET treatment. For study outcomes, 11 studies reported pooled AE outcomes, such as all-grade AEs, grade 3/4 AEs, and grades 3–5 AEs (Deng et al., 2018; Martel et al., 2018; Messina et al., 2018; Ramos-Esquivel et al., 2018; Ramos-Esquivel et al., 2020; Shimoi et al., 2020; Zheng et al., 2020; Agostinetto et al., 2021; Gao et al., 2021; Li et al., 2021; Tian et al., 2021). The other studies reported specific AE outcomes without pooled AE data (Table 1).
[image: Flowchart illustrating the selection process for studies. Initially, 723 records were identified from various databases. After excluding 182 duplicates, 243 records were screened. Of these, 175 were excluded for reasons including not being about breast cancer or not containing relevant data, leaving 68 full-text articles assessed. Another 44 were excluded for reasons such as irrelevant outcomes, summary of meetings, or missing specific data, resulting in 24 studies included in the overview.]FIGURE 1 | The flowchart of the literature screening. SR: systematic review; MA: meta-analysis.
TABLE 1 | Main characteristics of systematic reviews and meta-analyses included in the umbrella review.
[image: A detailed table presents various studies on HR+/HER2- breast cancer from 2007 to 2021. This table covers authors, year of study, country, number of trials, population, interventions, control treatments, adverse events, quality assessments, and AMSTAR-2 and PRISMA-2 ratings. Countries include Belgium, China, Australia, Italy, Costa Rica, Japan, Egypt, and the United States. Interventions mostly involve CDK4/6i combined with endocrine therapy. Adverse events include neutropenia, anemia, fatigue, nausea, and more. Quality assessments are based on Cochrane criteria, with variability in AMSTAR-2 results ranging from very low to low.]3.2 Methodological quality of the included studies
AMSTAR-2, an extensive critical appraisal tool, facilitates rapid and reproducible assessments of systematic reviews of randomized controlled trials (RCTs) for interventions, thereby identifying high-quality evaluations for decision-makers (Shea et al., 2017). We utilized the AMSTAR-2 scale to appraise the methodological quality of the included studies. Two studies were evaluated as low quality (Agostinetto et al., 2021; Yang et al., 2021), while the remainder were deemed very low quality. For specific AMSTAR-2 criteria, entries 1, 3, and 11 achieved 100% compliance, indicating all included PICO, specified the types of literature included, and employed appropriate statistical methods for combined result analysis. Conversely, entries 7, 8, 10, and 14 had compliance rates of 0%, 13%, 8%, and 17%, respectively, highlighting significant gaps in justifying the inclusion of study types, listing and explaining excluded literature, detailing study characteristics, reporting funding sources, and elucidating result heterogeneity (Table 1; Figure 2, and Supplementary Data S3).
[image: Scatter plot showing the volume of literature articles along the vertical axis and AMSTAR-2 entries along the horizontal axis. Data points are color-coded with green, red, and purple, representing different sets of data. A blue dotted line represents the entry compliance rate on a secondary vertical axis.]FIGURE 2 | Results of the AMSTAR-2 assessment. Abbreviations: Y, Yes; N, No; PY, Partial Yes; each entry is Y for full compliance, PY for partial compliance, and N for non-compliance; entry compliance rate = (number of documents complying with this entry/total documents) * 100%.
3.3 Methodological quality of the included studies
PRISMA 2020 serves as a reporting guideline for systematic reviews of health intervention studies, regardless of study design. Its comprehensive reporting allows readers to evaluate the methodological soundness and credibility of study results (Page et al., 2021). We applied the PRISMA checklist to assess the reporting quality of the 24 included papers, which scored between 23.5 and 36. Two reports, scoring from 33 to 42, were relatively complete (Agostinetto et al., 2021; Gao et al., 2021). Nineteen reports, scoring from 25 to 32, exhibited some deficiencies. Three reports (Lasheen et al., 2017; Lee et al., 2019; Li et al., 2021) scoring less than 25 had serious deficiencies. Common omissions included item 7 (detailing the search strategy for databases), 13f (conducting sensitivity analysis in synthesis methods), 15 (assessing certainty), 16b (explaining literature exclusion reasons in results), 20d (providing sensitivity analysis in synthesis results), 22 (providing evidence certainty in results), 23c (discussing any limitations in the review process), and 24abc (providing registration and protocol-related information) (Figure 3; Table 1 and Supplementary Data S4).
[image: Bar graph illustrating PRISMA 2020 entries with percentages of no reporting (purple), partial reporting (orange), and complete reporting (green). X-axis lists PRISMA criteria; y-axis shows percentages from 0% to 100%. Most entries show high complete reporting, with varied partial and no reporting.]FIGURE 3 | Results of the PRISMA 2020 assessment.
3.4 Adverse event
Patients treated with CDK4/6 inhibitors, compared to ET alone, experienced a higher incidence of AEs. The main AE categories were distributed across nine areas (n = number of MAs): summary AEs (n = 14), hematological AEs (n = 15), gastrointestinal AEs (n = 13), systemic AEs (n = 11), liver AEs (n = 2), circulatory AEs s (n = 2), skin AEs (n = 5), pain-related AEs (n = 5) and other types AEs (n = 2). Notably, hematological and gastrointestinal AEs were more prevalent, with frequent reports of leucopenia, neutropenia, thrombocytopenia, anemia, diarrhea, nausea, and vomiting. Among systemic AEs, reports of fatigue were substantial (Figure 4).
[image: Bar chart displaying the distribution of various adverse effects (AEs) across different categories, such as hematologic, gastrointestinal, systemic, and others. Each category is color-coded with frequency numbers above each bar, showcasing a prominent peak in the hematologic AEs category.]FIGURE 4 | Summary of adverse events of CDK4/6 inhibitors combined with ET treatment.
3.4.1 AEs in early breast cancer
A total of 2 MAs for EBC investigated the AEs of CDK4/6 inhibitors in combination with ET, focusing on summary AEs, hematologic AEs, gastrointestinal AEs, systemic AEs, and other AEs (Agostinetto et al., 2021; Gao et al., 2021). Adjuvant CDK4/6 inhibitors were notably associated with an increased overall incidence of all-grade AEs and grade 3 AEs, although the results showed considerable heterogeneity and the evidence quality was extremely low, based on data pooled from two studies. Gao HF’s research highlighted a focus on hematologic and systemic AEs, especially grade 3/4 leucopenia, neutropenia, lymphopenia, thrombocytopenia, and fatigue. However, the incidence of other AEs did not significantly differ between combination therapy and ET alone (Gao et al., 2021). Gao HF also conducted a subgroup analysis of CDK4/6 inhibitors, finding no significant differences in grade 3/4 AEs between abemaciclib and palbociclib. Agostinetto E et al. reported that adding a CDK4/6 inhibitor to ET significantly increased the likelihood of early treatment cessation (OR = 22.11, 95%CI: 9.45–51.69, p < 0.001) (Agostinetto et al., 2021) (Figure 5, Supplementary Data S5).
[image: Bar chart depicting the number of patients experiencing adverse events, divided into categories like general adverse events (AEs), hematologic AEs, gastrointestinal symptoms, and other AEs. Each category is labeled with specific types of AEs, such as anemia, neutropenia, and leukopenia, along with corresponding patient counts and relative effect measurements. The chart highlights differences in patient numbers across categories, with general AEs showing fewer patients compared to other categories. The x-axis lists AEs while the y-axis represents the number of patients.]FIGURE 5 | Summary chart of adverse events in EBC.
3.4.2 AEs in advance breast cancer
3.4.2.1 Summary AEs
Twenty-two MAs reported on the AEs of CDK4/6 inhibitor combined with ET in patients with ABC, pooling the most comprehensive data and high-quality evidence for each AE (Figure 6, Supplementary Data S5). Nine studies were examined for summary AEs (Deng et al., 2018; Messina et al., 2018; Ramos-Esquivel et al., 2018; Shimoi et al., 2020; Zheng et al., 2020; Li et al., 2021; Tian et al., 2021). The results showed that the combination of CDK4/6 inhibitor and ET significantly increased the incidence of all-grade AEs and grade 3 or higher AEs in postmenopausal, bone metastasis-only, or ABC patients. Despite the overall benefit of CDK4/6 inhibitors combined with ET for AEs, Ramos-Esquivel A et al. reported more favorable outcomes for CDK4/6 inhibitors combined with fulvestrant, indicating that while the number of serious AEs was higher in the combination group, the advantage ratio for any serious AE was not statistically significant (OR = 1.51.95% CI: 0.74–3.08, p = 0.26), and the evidence quality was low (Ramos-Esquivel et al., 2020).
[image: Five bar graphs labeled A to E compare the relative effect and number of citations for various categories. Each graph has two sets of data represented by light blue and gray bars, with separate scales on the left and right vertical axes. The horizontal axis labels vary for each graph.]FIGURE 6 | Summary chart of adverse events in advanced breast cancer (A) summary AE、skin AEs and systemic AEs (B) hematological AEs (C) gastrointestinal AEs (D) Liver AEs and pain-related AEs (E) Circulatory AEs and other types AEs (n = 2).
3.4.2.2 AEs of any grade
In the category of any-grade AEs, the incidence of hematologic and gastrointestinal AEs significantly increased when CDK4/6 inhibitors were combined with ET. Notably, significant increases were observed in Neutropenia (n = 9), Leukopenia (n = 8), Anemia (n = 8), Thrombocytopenia (n = 3), Febrile Neutropenia (n = 1), Diarrhea (n = 6), Fatigue (n = 6), Alopecia (n = 3), and VTE (n = 2). However, the association between nausea, vomiting, and decreased appetite in the gastrointestinal tract with combination therapy showed mixed results. Li JM(Li et al., 2020), Xu ZH (Xu et al., 2020), and Yang L (Yang et al., 2021) found no significant difference in nausea and vomiting between the two treatment groups. In contrast, six and three additional studies, respectively, concluded that CDK4/6 inhibitors significantly increased the incidence of nausea and vomiting. Furthermore, Shohdy KS (Shohdy et al., 2017) analyzed 1,350 patients from three clinical trials and observed a significant increase in decreased appetite with combination therapy, while Yang L analyzed 3,685 breast cancer patients from six clinical trials and reported no significant difference between the groups (Yang et al., 2021).
3.4.2.3 Grade 3/4 AEs
In the category of grade 3/4 AEs, hematologic, gastrointestinal, and systemic AEs were prevalent in the CDK4/6 inhibitor group combined with ET. Among hematologic AEs, grade 3/4 neutropenia (n = 8), leukopenia (n = 7), anemia (n = 6), and thrombocytopenia (n = 3) were significantly more common in the combination treatment than in the ET group alone. Notably, GUO LH (Guo et al., 2019) was more controversial regarding the grade 3/4 Fatigue outcome in systemic AEs. Guo LH (Guo et al., 2019) reported no significant risk of grade 3/4 fatigue in the combination therapy group, while six other studies indicated a higher risk (Lasheen et al., 2017; Martel et al., 2018; Toss et al., 2019; Li et al., 2020; Lin et al., 2020; Tian et al., 2021). Interestingly, diarrhea, which showed a significant increase in any-grade AEs, did not significantly differ in grade 3/4 AEs (Shohdy et al., 2017; Toss et al., 2019; Li et al., 2020; Lin et al., 2020; Tian et al., 2021).
3.4.2.4 Subgroup analysis
Seven studies conducted a subgroup analysis of AEs by CDK4/6 inhibitor type (Lasheen et al., 2017; Kassem et al., 2018; Ramos-Esquivel et al., 2018; Li et al., 2020; Lin et al., 2020; Ramos-Esquivel et al., 2020; Tian et al., 2021) Palbociclib exhibited increased hematologic toxicity, particularly in grade 3/4 neutropenia (n = 2), anemia (n = 1), and thrombocytopenia, while ribociclib was more associated with grade 3/4 neutropenia (n = 2), prolonged QT interval (n = 2), and alopecia (n = 1). Abemaciclib was closely linked to diarrhea (n = 4) and elevated blood creatinine (n = 1).
3.4.2.5 Dose reduction and drug withdrawal due to AEs
The likelihood of drug toxicity necessitating therapeutic dose reduction and cessation is a crucial aspect of drug safety assessment. In a meta-analysis by Kassem L, the rate of dose reduction in the CDK4/6 inhibitor group varied from 31.6% to 53.9%, and discontinuation rates due to toxicity ranged from 2.6% to 19.6% (Kassem et al., 2018). Most dose-limiting toxicities were hematologic AEs, although clarity is lacking on whether AEs like fatigue, stomatitis (Lasheen et al., 2017), and gastrointestinal toxicity (Shohdy et al., 2017) can be managed through dose adjustment or discontinuation.
3.5 Evaluation of the quality of evidence for AE outcomes
GRADE provides a framework for authors of systematic reviews and health technology assessments to rate the certainty of their evidence (Zeng et al., 2021). This study summarized 13 AE outcomes for two EBCs and 158 AE outcomes for 22 ABC studies. The evidence quality for EBC was predominantly low (4 items, about 30.77%) and very low (9 items, about 69.23%), as assessed using GRADE. The highest level of evidence in ABC was for the venous thromboembolism (VTE) outcome (Thein et al., 2020), Moderate quality evidence was found in five studies (Deng et al., 2018), Tian Q (Tian et al., 2021), Xu ZH (Xu et al., 2020), Li J (Li et al., 2020), Toss A (Toss et al., 2019) addressing various AEs including all-grade AEs, grade 3/4 AEs, leukopenia, grade 3/4 leukopenia, neutropenia, grade 3/4 neutropenia, anemia, grade 3/4 anemia, grade 3/4 diarrhea, and nausea, among others (20 items, about 12.66%). The remaining evidence was categorized as low quality (70 items, about 44.30%) and very low quality (67 items, about 42.40%). Overall, the reduced quality of evidence was largely attributed to inconsistency, risk of bias, and publication bias (Supplementary Data S5).
4 DISCUSSION
MA and SR have emerged as crucial supports for clinical decision-making, representing the highest level of evidence in the hierarchy of evidence-based medicine. Conducting effective quality evaluations is essential for the efficient utilization of MA and SR (Gelardi et al., 2021). The meticulous summarization and quality assessment of the clinical AEs of CDK4/6 inhibitors in combination with ET in this study aimed to enhance clinical decision-making, monitoring, and management, thereby improving patient compliance and clinical outcomes.
4.1 Main findings
Our review identified 24 MAs and SRs evaluating AEs in 13 EBC cases and 158 ABC cases. Our findings indicated that AEs associated with CDK4/6 inhibitors spanned nine disease areas, including summary AEs, hematologic AEs, gastrointestinal AEs, systemic AEs, liver AEs, circulatory AEs, skin AEs, pain-related AEs, and other AEs. In HR+/HER2- EBC patients, CDK4/6 inhibitor addition significantly correlated with all-grade AEs and grade 3/4 AEs, and notably increased early treatment discontinuation risk. Subgroup analysis showed that EBC AEs were independent of whether palbociclib or abemaciclib was used. For HR+/HER2- ABC patients, combined therapy significantly elevated AEs across all grades, including grade 3/4 leukopenia, neutropenia, anemia, diarrhea, nausea, constipation, fatigue, pyrexia, VTE, abdominal pain, and cough. However, their safety profile was considered acceptable, with evidence quality mostly high to medium. Subgroup analysis of CDK4/6 inhibitor types in ABC revealed that palbociclib was associated with greater hematologic toxicity, especially grade 3/4 neutropenia, anemia, and thrombocytopenia, while ribociclib was linked mainly to grade 3/4 neutropenia, QT interval prolongation, and alopecia. Abemaciclib is closely associated with diarrhea and elevated blood creatinine.
With the increasing use of CDK4/6 inhibitors combined with ET in first and second-line clinical settings, anticipating AEs' risk, timely diagnosis, and management are pivotal in enhancing patients' quality of life (Martel et al., 2018). Despite a high incidence of hematologic, gastrointestinal, and systemic AEs in both EBC and ABC, most were reversible and manageable. Neutropenia was the most common hematologic toxicity, particularly with palbociclib and ribociclib, but it led to febrile neutropenia or infection at much lower rates than chemotherapy. The mechanism of CDK4/6 inhibitors involves reversible blocking of neutrophil precursor cycles, inhibiting proliferation, which is reversible upon discontinuation and tends to lessen over time (Kassem et al., 2018). Thus, clinical applications require monitoring of complete blood counts and timely intervention through discontinuation, dose adjustment, or symptomatic treatment based on individual safety and tolerability (Thill and Schmidt, 2018). Gastrointestinal AEs, such as diarrhea and nausea, especially with abemaciclib, did not significantly increase serious gastrointestinal risk. This may be attributed to abemaciclib’s CDK9 inhibitory effect (Marra and Curigliano, 2019). As diarrhea is typically short-lived and of low severity, it can be managed through dose adjustment or antidiarrheal medications like loperamide. Fatigue, significantly increased in any grade and grade 3/4 AEs, poses a challenge in systemic AEs due to its vague and multidimensional nature, making identification of contributing factors and mitigation measures difficult (Lasheen et al., 2017).
Significantly, the findings related to nausea and vomiting associated with CDK4/6 inhibitors were inconsistent across different AE categories. This inconsistency may stem from variations in the types of CDK4/6 inhibitors used in clinical trials, their modes of administration, differences in study subjects, and the range of clinical trials included in the SRs. Consequently, further research is necessary to reach definitive conclusions. Additionally, we noted substantial heterogeneity in some outcomes. Fundamental aspects of the included studies, such as study population, design, intervention/control measures (dose), follow-up activities, analysis procedures, and outcome indicators, were not adequately detailed, and limited raw data might have contributed to this heterogeneity.
The clinical selection of the three CDK4/6 inhibitors presents a challenging issue, primarily due to the absence of distinct clinical case characteristics, predictive biomarkers, and comparable clinical benefits in PFS and OS(Agostinetto et al., 2021; Gao et al., 2021; Munzone et al., 2021; Falato et al., 2023). A subgroup analysis focusing on CDK4/6 inhibitor types in ABC aimed to address this issue. Palbociclib was associated with increased neutropenia, anemia, and thrombocytopenia, while ribociclib was linked mainly to neutropenia, prolonged QT interval, and alopecia. Abemaciclib was strongly correlated with diarrhea and elevated blood creatinine. This suggests that patients with ABC who have hematological disorders or tendencies may be better suited for abemaciclib, while those with gastrointestinal disorders and renal dysfunction or tendencies might be more appropriate for ribociclib or palbociclib. Furthermore, patients with cardiac disorders or tendencies might be more suitable for ribociclib or abemaciclib. This could be a significant opportunity to improve patient quality of life, advance clinical decision-making accuracy, and achieve personalized precision medicine.
4.2 Strengths and limitations
To our knowledge, this is the first to use an umbrella review of studies to summarize CDK4/6 inhibitors combined with ET for HR+/HER2-breast cancer AEs. This approach mitigates the bias inherent in individual MAs/SRs and enhances the accuracy of study outcomes. Second, we included MAs/SRs that used only RCT study types and excluded literature that used single-arm studies, and non-randomized prospective, retrospective, and observational studies as study types, which further reduced the interference of subjective factors and improved the scientific validity of the findings. In Additionally, this review employed the recently published PRISMA 2020 guidelines for reporting quality assessment (Sohrabi et al., 2021), a significant update over the PRISMA 2009 guidelines typically referenced in most MAs/SRs (Shea et al., 2009). The PRISMA 2020 guidelines offer improvements in areas like data items, data synthesis methods, study outcome selection, and results synthesis. These updated guidelines facilitate the generation of high-quality evidence that can support clinical decision-making and practice (Page et al., 2021).
This review, however, is not without limitations. Firstly, despite employing the latest versions of AMSTAR-2, PRISMA 2020, and GRADE for quality assessment of the selected literature, it is important to note that all three scales are inherently subjective, which could introduce bias to our findings. To mitigate this, two researchers independently conducted the assessments, with any differences resolved through consensus by a third-party reviewer (CHH), thereby aiming to maximize the accuracy of our evaluation. Moreover, the MAs/SRs included in this study were based on global multicenter RCTs, potentially leading to publication bias and a diminished quality of evidence due to the limited number of RCTs.
5 CONCLUSION
In patients with HR+/HER2- EBC, the addition of CDK4/6 inhibitors significantly increased the incidence of all-grade AEs and grade 3/4 AEs compared to ET alone, along with a notable rise in the risk of early treatment discontinuation. In patients with HR+/HER2- ABC, palbociclib was associated with increased hematologic toxicity, primarily grade 3/4 neutropenia, anemia, and thrombocytopenia, while ribociclib was linked mainly to grade 3/4 neutropenia, QT interval prolongation, and alopecia. Abemaciclib was closely related to diarrhea and elevated blood creatinine. Despite these findings, the safety of these inhibitors was deemed acceptable, and the overall quality of evidence was mostly moderate. The comprehensive summary and evaluation of these AEs will aid in the selection of tailored and precise treatments based on the history of breast cancer patients. Furthermore, it will assist clinicians in effectively anticipating, diagnosing, and managing AEs associated with CDK4/6 inhibitors, ultimately enhancing patients' quality of life.
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Background: Collagen represents a prominent constituent of the tumor’s extracellular matrix (ECM). Nonetheless, its correlation with the molecular subtype attributes of clear cell renal cell carcinoma (ccRCC) remains elusive. Our objective is to delineate collagen-associated molecular subtypes and further construct diagnostic model, offering insights conducive to the precise selection of ccRCC patients for immunotherapeutic interventions.
Methods: We performed unsupervised non-negative matrix factorization (NMF) analysis on TCGA-KIRC samples, utilizing a set of 33 collagen-related differentially expressed genes (33CRDs) for clustering. Our analysis encompassed evaluations of subtype-associated differences in pathways, immune profiles, and somatic mutations. Through weighted gene co-expression network analysis (WGCNA) and four machine learning algorithms, two core genes were found and a diagnostic model was constructed. This was subsequently validated in a clinical immunotherapy cohort. Single cell sequencing analysis and experiments demonstrated the role of core genes in ccRCC. Finally, we also analyzed the roles of MMP9 and SCGN in pan-cancer.
Results: We described two novel collagen related molecular subtypes in ccRCC, designated subtype 1 and subtype 2. Compared with subtype 1, subtype 2 showed more infiltration of immune components, but had a higher TIDE (tumor immunedysfunctionandexclusion) score and increased levels of immune checkpoint molecules. Furthermore, reduced prognosis for subtype 2 was a consistent finding in both high and low mutation load subgroups. MMP9 and SCGN were identified as key genes for distinguishing subtype 1 and subtype 2. The diagnostic model based on them could better distinguish the subtype of patients, and the differentiated patients had different progression free survival (PFS) in the clinical immunotherapy cohort. MMP9 was predominantly expressed in macrophages and has been extensively documented in the literature. Meanwhile, SCGN, which was overexpressed in tumor cells, underwent experimental validation, emphasizing its role in ccRCC. In various cancers, MMP9 and SCGN were associated with immune-related molecules and immune cells.
Conclusion: Our study identifies two collagen-related molecular subtypes of ccRCC and constructs a diagnostic model to help select appropriate patients for immunotherapy.
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BACKGROUND
In recent years, the incidence of kidney cancer, particularly renal cell carcinoma (RCC), has been on the rise (Siegel et al., 2023). RCC is the most prevalent renal malignancy, accounting for approximately 5% of all cancer diagnoses in men and 3% in women (Capitanio et al., 2019). Among the various pathological types, ccRCC is the most common, constituting around 75% of all RCCs and presenting a high mortality rate (Moch et al., 2016). For localized ccRCC, the preferred treatment is surgery; when faced with postoperative recurrence, metastasis, or advanced stages of ccRCC, targeted therapy and immunotherapy are commonly employed (Ljungberg et al., 2022). Despite these treatment modalities, a significant portion of patients do not respond favorably to immune checkpoint blockade (Díaz-Montero et al., 2020). Genomic investigations have unveiled complex heterogeneity within and among tumors in ccRCC patients (Li et al., 2023). To address these challenges, there is an urgent need to enhance our ability to identify high-risk tumor subtypes and discover more effective biomarkers (Barata and Rini, 2017).
Tumor heterogeneity is evident in the intricate tumor microenvironment (Xiao and Yu, 2021). The non-neoplastic ECM significantly influences this environment. Recent research highlights the correlation between ECM composition changes and immunotherapy response (Lim et al., 2019). As a major ECM component, the role of collagen in tumors is gradually being recognized (Necula et al., 2022). Studies demonstrate that oncogenic collagen I homotrimers foster pancreatic cancer cell proliferation, while their deficiency enhances anti-PD-1 immunotherapy efficacy (Chen et al., 2022). Tumor derived type III collagen sustains tumor dormancy, and its disruption restores tumor cell proliferation through DDR1-mediated STAT1 signaling (Di Martino et al., 2022). In breast cancer, collagen promotes tumor growth and invasion through multiple mechanisms (Maller et al., 2021; Li et al., 2023). COL4A1 accelerates liver cancer progression, while XVII collagen drives metabolic reprogramming in lung cancer (Wang et al., 2020; Hsu et al., 2020). In urological tumors, Collagen VI can not only promote the proliferation and invasion of bladder cancer, but also cause integrin α1-deficient CD4+ T cells to accumulate in the prostate tumor stroma, thereby inhibiting anti-tumor T cell responses (Piao et al., 2021; Pruitt et al., 2023). However, there is currently an inadequate comprehension of the relationship between collagen and the heterogeneity of the tumor microenvironment in ccRCC.
In this study, we developed a new subtyping system of ccRCC based on prognosis associated collagens. We explored the two new subtypes from multiple perspectives, and based on the core genes, a diagnostic device to distinguish the two subtypes was constructed.
METHODS
Data collection and sources of data
Collagen related genes (CRGs) were obtained from the Gene Cards (https://www.genecards.org/), and genes with a correlation score greater than 5 were selected (Stelzer et al., 2016). The gene expression RNA-seq count data (535 tumor samples and 72 normal samples), clinicopathological information and CNV (copy number variation) data of TCGA-KIRC were all obtained from the xena website (http://xena.ucsc.edu/) (Goldman et al., 2020). We downloaded the tumor mutation data of TCGA-KIRC using the TCGAbiolinks package (Version 2.27.2). We analyzed the PFS of patients treated with Avelumab + Axitinib in the JAVELIN Renal 101 cohort to evaluate the prognosis of immunotherapy (Motzer et al., 2020).
Differential analysis
EdgeR package (Version 3.38.4) and Deseq2 package (Version 1.36.0) were used to identify differential expression genes (DEGs) between ccRCC tissue and normal kidney tissue. The identification conditions of DEGs were set as | log2 (fold change) | >2 and p-value <0.05. For the differential genes identified between the two kidney cancer subtypes, EdgeR package (Version 3.38.4) and Deseq2 package (Version 1.36.0) were also used for differential analysis, and the standards were also | log2 (fold change) | >2 and p-value <0.05. In the analysis among patients of different ages, we defined patients aged 60 and older as elderly patients (Siegel et al., 2018; Motzer et al., 2019). Collagen related DEGs, differential genes for typing, and differential genes between two ccRCC subtypes were visualized with the pheatmap package (Version 1.0.12). We used the tinyarray package (version 2.2.7) to draw the Venn diagram. The ggpubr package (version 0.4.0) was used for the visualization of boxplots after differential analysis, but the difference in mRNA expression of MMP9 and SCGN in ccRCC tissues and normal tissues was analyzed with UALCAN (https://ualcan.path.uab.edu/) (Chandrashekar et al., 2017). The immunohistochemical image data in this study came from the Human Protein Atlas (HPA) database (https://www.proteinatlas.org/) (Sjöstedt et al., 2020).
Protein-protein interaction (PPI) network construction and correlation analysis
We imported the 33CRDs obtained through univariate cox analysis into the string tool (https://string-db.org/) for PPI network analysis (Szklarczyk et al., 2021). Cytoscape software (version 3.8.2) was used to further analyze the data exported in string for constructing the PPI network. Hub genes and three modules were respectively identified by Cytohubba and MCODE.
Copy number variation analysis
Using the downloaded ccRCC copy number variation data, we analyzed the frequency of gain or loss of copy number for 33 genes used for disease subtype identification. Afterwards, we visualized the chromosomal loci where copy number variations occurred for these genes using the RCircos package (version1.2.2).
NMF clustering algorithm was used to cluster the KIRC samples
A NMF clustering algorithm was used to cluster the KIRC samples. When using the NMF algorithm, we chose brunet for clustering. We chose the number of iterations nrun to be 50. The rank was set from 2 to 6 for calculation. Cophenetic was used to determine the optimal number of clusters. The R package Rtsne (version0.16) was used to downscale the samples of subtype 1 and subtype 2, and the downscaling results were visualized with the R packages paletteer (version1.5.0) and ggplot2 (version3.4.0). Verification of clustering stability was completed based on the RECA-EU ICGC cohort.
Gene set enrichment analysis (GSEA)
The log2FC used in the enrichment analysis was based on the Deseq2 package. Pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were taken out for GSEA. The clustetrProfiler package (version4.7.1.3) and the org.Hs.eg.db package (version3.15.0) were used for GSEA, and the enrichplot package (version1.16.2) and the ggplot2 package were used for visualization of the results. The pathway screening criteria were |normalized enrichment score (NES)| > 1, p-value <0.05, and pathways meeting these criteria were defined as significantly enriched pathways.
Immune landscape analysis
We used the estimate package (version1.0.13) to calculate the immune score, stromal score, estimate score, and tumor purity. We used the single-sample GSEA (ssGSEA) algorithm to calculate the active level of immune cells and immune function for each sample. We obtained the TIDE score for each sample at TIDE (http://tide.dfci.harvard.edu/) (Sjöstedt et al., 2020; Fu et al., 2020). We compared the expression of molecules related to immune evasion and T cell exhaustion in subtype 1 and subtype 2, which included PDCD1, TIGIT, LAG3, CTLA4, CD80, and CD86.
Mutation analysis
The acquisition of TCGA mutation data for ccRCC samples relied on the TCGAbiolinks package (version 2.27.2). We performed mutation analysis on the obtained data by maftools package (version 2.12.0) and then calculated the tumor mutation burden (TMB) for each patient and compared TMB between subtype 1 and subtype 2.
WGCNA and machine learning model screening for subtype markers
Using the gene expression matrix and subtype grouping information as input data, an appropriate soft threshold β was extracted to construct a co-expression matrix. We set the upper limit of module genes to 6000, set the lower limit of module genes to 30, set the height threshold of module merging to 0.25. Correlation coefficient between the modules and subtypes was calculated. The samples involved in subtypes identification were randomly divided into training set and validation set according to 7:3 using the caret package (version6.0.93). The randomForest package (version 4.7.1.1), kernlab package (version 0.9.32), xgboost package (version 1.7.3.1) and stats package (version 4.2.2) were used to train the four models of RF (random forest), SVM (support vector machine), XGB (extreme gradient boosting) and GLM (generalized linear model) respectively. We visualized the evaluation results through residual reverse cumulative distribution plot (RCDP), boxplot of Residuals (BPR) and gene importance plot. We calculated the receiver operating characteristic (ROC) of the four machine learning models using the pROC package (version1.18.0), and the Area Under the Curve (AUC) value of each model was shown in the legend.
Build diagnostic models for subtypes
We constructed a diagnostic nomogram with the rms package and drew a calibration curve to represent its calibration. ROC was used to demonstrate the discrimination of the nomogram.
Single-cell analysis
Single-cell transcriptome sequencing data of KIRC_GSE171306, all from untreated ccRCC samples, were used for analysis. The Tumor Immune Single cell Hub (TISCH) was used for single cell analysis (Sun et al., 2021). The FindMarkers function in the Seurat package was used to calculate DEGs. Subsequently, functional enrichment analysis was performed using ClusterProfiler. Monocle was used to perform pseudotime trajectory analysis (Trapnell et al., 2014).
Cell culture and transfection
786-O and ACHN cells obtained from Procell Life Science & Technology (Wuhan, China) were used in this study. The shRNAs were purchased from GeneCopoeia (United States). 786-O was cultured in RPMI-1640 medium containing 10% fetal calf serum (Gibco; United States) and maintained in a humidified atmosphere with 5% CO2 at 37°C. ACHN was cultured in MEM medium containing 10% fetal calf serum (Gibco; United States) and maintained in a humidified atmosphere with 5% CO2 at 37°C. SCGN shRNA or shControl were transfected into 786-O cells and ACHN cells with Lipofectamine 2000 (Thermo Fisher Scientific, United States).
Quantitative real-time PCR (RT-qPCR)
The RT-qPCR method was reported previously (Ai et al., 2023). RNA was extracted using TRIzol reagent (Thermo Fisher Scientific, United States). RT-qPCR was performed by using a reverse transcription kit and PCR kit (#RR037A PrimeScriptTM RT reagent Kit, #RR430A, TB GreenTM Fast qPCR Mix, Takara Bio Inc. Shigo, Japan) following the manufacturer’s instructions. GAPDH served as the reference gene and the 2−ΔΔCT method was used to quantify fold change. The primer sequences for RT-PCR were provided in Supplementary Figure S1.
Colony formation assays and transwell assays
Colony formation assays were used to observe cell proliferation ability. The cells counted and diluted were plated on a six-well plate and cultured for 12 days. Next, paraformaldehyde fixation and crystal violet staining were performed. Grouped as follows: 786-O (NC, shSCGN #1, shSCGN #2), ACHN (NC, shSCGN #1, shSCGN #2). According to the same grouping method, we conducted transwell assays to observe the changes of invasion ability. 24-well plates and transwell chambers were used for transwell experiments. Add the serum-free diluted cells to the Transwell chamber (2 × 104 cells per well), add 500 μL 10% FBS culture medium to the well under the chamber, and place it in a 37°C, 5% CO2 incubator for 20 h. The next day, they were fixed with methanol for 30 min and stained with 0.1% crystal violet for 30 min. Finally, the results can be obtained by taking pictures and counting.
Statistical analysis
We used the Wilcoxon test to determine the difference between the two groups, as well as p-value calculations. For survival analysis, the log-rank test and Kaplan-Meier (KM) curve were performed. Univariate Cox regression analysis was used to assess prognostic factors and calculate hazard ratios (HR). The experimental data were presented as the mean ± standard deviation (mean ± SD). GraphPad Prism 5 software was used for calculation of experimental data, Student’s t-test was used to compare values between two groups. One-way analysis of variance (ANOVA) and Tukey’s multiple comparison were used to compare values between more than two groups. Difference was considered statistically significant when the p-value was less than 0.05. The significance of the differences was indicated as follows: *p < 0.05; **p < 0.01; ***p < 0.001; not significant, p > 0.05.
RESULTS
33CRDs required for subtype identification were found
Differentially expressed genes between tumor tissue and normal tissue were intersected with 307 collagen-related genes, and finally 56 genes were identified (Figures 1A, B). Subsequently, by univariate Cox analysis, we obtained 33 genes associated with prognosis, among which 6 genes were protective factors and the other 27 genes were risk factors (Figure 1C). The PPI network and hub genes of the 33 genes were shown in Figure 1D. The CNV was common among 33CRDs (Figure 1E). Figure 1F showed the CNV locations on the chromosome for 33 genes.
[image: Composite image of various data visualizations and network analyses. A: Venn diagram showing overlap between different gene sets. B: Heatmap illustrating gene expression across samples with a color scale indicating levels. C: Forest plot displaying hazard ratios and p-values for survival analysis. D: Network diagrams illustrating interactions among genes and pathways. E: Bar graph showing significant differences in gene mutations between groups. F: Circular plot depicting chromosome distribution of genetic variants.]FIGURE 1 | Screening and analysis of 33 CRGs required for subtype identification. (A, B) CRGs Differentially expressed between tumor tissues and normal tissues. (C) 33CRDs correlated with OS in ccRCC. (D) PPI network, core network and core genes of 33CRDs. (E) Frequencies of CNV gain, loss, and non-CNV among 33CRDs. (F) Circus plots of chromosome distributions of 33CRDs. CRGs, collagen-related genes; 33CRDs, 33 collagen-related DEGs; OS, overall survival; CNV, copy number variation.
Two new collagen-associated subtypes in ccRCC
The cophenetic correlation coefficient was used to determine k, which represented the optimal number of clusters. The optimal number of clusters was determined to be 2 (Figure 2A). We named the two molecular subtypes identified as subtype 1 and subtype 2, as shown in Figure 2B. Subtype 1 and subtype 2 showed significant differences in distribution (Figure 2C) and Overall Survival (OS) (Figure 2D). The expression of the 33CRDs between subtype 1 and subtype 2 was shown in Figure 2E. The clustering result of RECA-EU ICGC samples and 33CRDs showed that they can still be clustered into subtype 1 and subtype 2 (Supplementary Figure S2A). Subtype 1 and subtype 2 showed significant differences in OS (Supplementary Figure S2B) and distribution (Supplementary Figure S2C), which was consistent with the results based on TCGA.
[image: Five-panel image showing data analysis results. Panel A: Line graph of NMF rank survey. Panel B: Consensus matrix heatmap showing subtypes. Panel C: Scatter plot of data clusters in subtypes. Panel D: Kaplan-Meier survival curves for different subtypes, indicating significant survival differences (P<0.0001). Panel E: Heatmap of gene expression across subtypes, featuring various gene names.]FIGURE 2 | Identification of collagen subtypes in KIRC. (A) The cophenetic correlation coefficient is for optimal number of subtypes. (B) Consensus matrix of the molecular subtypes: subtype 1 and subtype 2. (C) t-SNE scatterplot supports ccRCC subtypes based on mRNA expression profiles. (D) Kaplan-Meier OS curves for subtype 1 and subtype 2. (E) Expression differences of 33CRDs between subtype 1 and subtype 2.
Functional differences between subtype 1 and subtype 2 in pathways related to immunity and tumor progression
Differential genes between subtype 1 and subtype 2 were shown together with TNM stage, clinical stage, sex and age (Figure 3A). GSEA was performed on the pathways in GO, and pathways related to immunity and protein secretion were enriched (Figure 3B). GSEA of KEGG related pathways revealed that subtype 1 and subtype 2 mainly differed in Cell cycle, Cytokine-cytokine receptor interaction, IL-17 signaling pathway, NF-kappa B signaling pathway and Wnt signaling pathway (Figure 3C).
[image: Panel A displays a heatmap with patient data, indicating variables such as tumor stage and gender, alongside a color key. Panel B shows dot plots highlighting enriched pathways with dot size representing count and color denoting adjusted p-values. Panel C features a line graph demonstrating gene set enrichment analysis with various pathways, indicated by different colored lines, and related statistics below.]FIGURE 3 | Difference analysis and GSEA between subtype 1 and subtype 2. (A) DeSeq2 differential analysis heatmap and corresponding clinical information between subtype 1 and subtype 2. (B) GSEA results on pathways in GO, including BP, MF and CC. (C) GSEA results on pathways in KEGG. GSEA, gene set enrichment analysis; GO, gene ontology; KEGG, Kyoto-encyclopedia of genes and genomes; BP, biological process; MF, molecular function; CC, cellular component; *p < 0.05; **p < 0.01; ***p < 0.001; not significant, p > 0.05.
Subtype 1 and subtype 2 had different immune characteristics
As shown in Figures 4A–D, the immune score, stromal score and estimate score of subtype 2 were higher than those of subtype 1, but the tumor purity of subtype 2 was lower than that of subtype 1. Subtype 2 was associated with more immune cell infiltration (Figure 4E). In terms of immune function, most of the immune functions of subtype 2 were stronger than those of subtype 1 (Figure 4F). TIDE analysis showed that the TIDE score of subtype 2 was significantly higher than that of subtype 1 (Figure 4G), predicting that subtype 2 had poorer immunotherapy efficacy. Compared with subtype 1, subtype 2 had higher expression of PDCD1, TIGIT, LAG3, CTLA4, CD80, and CD86 (Figure 4H–L).
[image: Box plots (A-M) comparing various immune markers between two subtypes. Plots A-D and G-M show individual metric variations, while E and F display comprehensive immune function differences. Subtype 1 is in blue, subtype 2 in red. Statistical significance is highlighted with asterisks and brackets.]FIGURE 4 | Immune infiltration analysis of collagen-associated ccRCC subtypes. The immune score (A), stromal score (B), ESTIMATE score (C) and tumor purity (D) between subtype 1 and subtype 2. Comparisons of immune cells (E) and immune functions (F) between subtype 1 and subtype 2. (G) The differences in the TIDE score between subtype 1 and subtype 2. (H–M) Differences in expression of six molecules related to Immune evasion and T cell exhaustion compared between subtype 1 and subtype 2. TIDE, tumor immunedysfunctionandexclusion.
Tumor mutation characteristics of subtype 1 and subtype 2
TMB did not differ significantly between subtype 1 and subtype 2 (Figure 5A). Compared with subtype 1, in subtype 2, VHL had a higher proportion of missense mutation, and PBRM1 had a higher proportion of frameshift deletion (Figures 5B, C). The prognosis of the low TMB group was significantly better than that of the high TMB group (Figure 5D). Combined with the identified two subtypes of ccRCC (Figure 5E), it can be concluded that the prognosis of subtype 2 was worse than that of subtype 1 no matter in the high—TMB group or the low - TMB group. Moreover, the prognosis of high - TMB + subtype 2 was significantly worse than that of low - TMB + subtype 1.
[image: Scatter plot (A) compares two subtypes with a statistical test. Waterfall plots (B, C) show genetic alterations in two subtypes, highlighting mutation frequencies. Kaplan-Meier curves (D, E) illustrate survival differences based on TMB levels across subtypes.]FIGURE 5 | Analysis of TMB characteristics. (A) Comparison of TMB between subtype 1 and subtype 2. Waterfall maps of the somatic mutations in the subtype 1 (B) and the subtype 2 (C). (D) Difference in OS between high TMB and low TMB groups. (E) Difference in OS based on TMB and two subtypes. TMB, tumor mutation burden. OS, overall survival.
MMP9 and SCGN were screened as core gene markers of two ccRCC subtypes
No outliers were detected during sample clustering. A minimum soft threshold value of 5 for building a scale-free network was finally extracted (Figure 6A). We prohibited gene redistribution within modules, and constructed a co-expression network. A dendrogram (Figure 6B) containing the module colors was drawn to show the module division results of the gene co-expression network. The modules (pink module and turquoise module) with |correlation coefficients|≥0.5 were selected for further analysis (Figure 6C). We built machine learning models using the training set data and validated its performance in the validation set. When |residual|≤1, the curves of RF, SVM and XGB closed to 100%, almost all observations were covered, and the prediction accuracy of the models were high (Figure 6D). In BPR, RF, SVM and XGB had smaller box ranges which indicated better predictive performance (Figure 6E). The AUCs of RF, SVM, XGB and GLM were 0.963, 0.956, 0.962, and 0.581, respectively (Figure 6F). We selected the top 10 most important genes in each model (Supplementary Figure S3). Taking the intersection of the genes selected from the three models with the best performance, it was found that MMP9 and SCGN were the genes they shared (Figure 6G).
[image: Panel A shows plots of scale independence and mean connectivity against soft threshold power. Panel B presents a cluster dendrogram with module colors. Panel C is a heatmap of module-trait relationships. Panel D displays a reverse cumulative distribution of residuals comparing models RF, GLM, SVM, and XGB. Panel E shows boxplots of residuals for different models. Panel F contains a receiver operating characteristic curve comparing model performances. Panel G is a Venn diagram indicating overlaps between model features RF, SVM, GLM, and XGB.]FIGURE 6 | Identification of core genes that differentiate subtypes. (A) Scale independence and mean connectivity analyzes are used to determine the optimal soft threshold. (B) Gene dendrogram as a result of clustering, where colored rows below the dendrogram indicate different modules. (C) Heatmap of correlations between modules and two subtypes. (D) RDCP for RF, SVM, XGB, and GLM, each curve represents a model. (E) BPR for RF, SVM, XGB, and GLM, each boxplot represents a model. (F) ROC represents the discriminative performance of the four machine learning models for subtype 1 and subtype 2 in the validation set. (G) The most important top ten genes of the three models with significantly high and similar predictive performance are intersected. RDCP, reverse cumulative distribution plot; RF, random forest; SVM, support vector machine; XGB, extreme gradient boosting; GLM, generalized linear model; BPR, boxplot of Residuals; ROC, receiver operating characteristic.
Diagnostic nomogram could distinguish patients receiving immunotherapy into subtype 1 and subtype 2, whose PFS were different
The expression level of MMP9 in subtype 2 was higher than that in subtype 1, and the expression level of SCGN in subtype 2 was lower than that in subtype 1 (Figures 7A, B). We quantified the magnitude of the molecular changes and found that the magnitude of changes was greater in SCGN than in MMP9 (Supplementary Figure S4A). We constructed a diagnostic nomogram based on the expression of MMP9 and SCGN to distinguish subtypes (Figure 7C). The AUC of this nomogram was 0.951 (Figure 7D). The calibration curve indicated good calibration (Figure 7E). Patients treated with avelumab + axitinib in the JAVELIN Renal 101 cohort were distinguished by our nomogram into subtype 1 and subtype 2. The expression level of MMP9 was increased in subtype 2, while the expression level of SCGN was increased in subtype 1 (Figures 7F, G). We quantified the magnitude for changes of molecules (Supplementary Figure S4B). There was a significant difference in prognosis between subtype 1 and subtype 2 starting at 9 months of treatment. (Figure 7H). In the immunotherapy cohort, immune cell infiltration was similar to that in TCGA (Figure 7I).
[image: Nine-panel image showing various scatter plots, a nomogram, ROC curve, calibration curve, and a Kaplan-Meier survival curve. Panels A and B show scatter plots comparing two subtypes for different parameters. Panel C features a nomogram predicting subtype risk. Panels D and E display an ROC curve and calibration plot assessing model performance. Panels F and G present scatter plots for specific biomarkers in different cohorts. Panel H displays a Kaplan-Meier survival analysis comparing subtype outcomes over time. Panel I shows a box plot for gene expression across multiple subtypes.]FIGURE 7 | Diagnostic model based on MMP9 and SCGN can predict immunotherapy efficacy. (A, B) The expression level of MMP9 and SCGN in subtype 1 and subtype 2. (C) Nomogram of diagnostic model. (D) ROC of nomogram. (E) Calibration curve of nomogram. (F, G) In the JAVELIN Renal 101 cohort, the expression level of MMP9 and SCGN in subtype 1 and subtype 2. (H) In the JAVELIN Renal 101 cohort, patients treated with avelumab + axitinib are classified as having low PFS in subtype 2. PFS, progression free survival. (I) Immune cell infiltration of subtype 1 and subtype 2 in the immunotherapy cohort.
Single cell distribution characteristics of MMP9 and SCGN were different
Through the analysis of KIRC_GSE171306, we performed dimensionality reduction on the data (Figure 8A). MMP9 was highest expressed in monocytes/macrophages (Figures 8B, D). SCGN was highest expressed in malignant cells (Figures 8C, E). Because our subsequent functional experiments were conducted on SCGN, we selected SCGN for further single-cell transcriptome studies. We further classified the malignant cells where SCGN was located (Supplementary Figure S5A) and found that SCGN was highly abundant in subgroup 3 (Supplementary Figure S5B). We performed molecular function enrichment analysis, and the results showed that subgroup 3 was related to the transmembrane transport of multiple substances (Figure 8F). We conducted an enrichment analysis and subgroup 3 had the highest enrichment of metabolism-related pathways (Figure 8G). We performed pseudotime analysis in repartitioned cells and mapped the cell differentiation trajectories (Supplementary Figure S5C). Unfortunately, the expression of SCGN in malignant cells at different stages of differentiation did not change (Supplementary Figure S5D).
[image: A series of scientific visualizations showing data analysis results. Panel A displays a UMAP plot with clusters in different colors indicating cell types. Panels B and C show gene expression levels of MMP9 and SCGN with color gradients. Panels D and E include violin plots representing expression levels across various cell clusters. Panel F features a heatmap highlighting gene expression patterns with annotations. Panel G consists of a dot plot showing pathway enrichment with dots of varying sizes and colors representing significance and expression levels.]FIGURE 8 | Single-cell expression analysis of MMP9 and SCGN in ccRCC. (A) Cell clustering of GSE171306. (B) Distribution of MMP9 in different cell populations. (C) Distribution of SCGN in different cell populations. (D) Expression levels of MMP9 in different cell populations. (E) Expression levels of SCGN in different cell populations. (F) Molecular function enrichment analysis of SCGN in different subpopulations of malignant cells. (G) Enrichment analysis of metabolic pathways of SCGN in different subpopulations of malignant cells.
SCGN increased the proliferation and invasion ability of tumor cells
The role of MMP9 in ccRCC had been thoroughly studied. Therefore, we performed validation on SCGN. At both the mRNA and protein levels, the expression of SCGN in tumor tissues was higher than that in normal tissues (Figures 9A, B), which was confirmed by IHC staining of HPA (Figure 9C). We performed knockdown of SCGN and verified the effect by RT-qPCR (Figure 9D). In addition, transwell experiments showed that the invasion ability of tumor cells was weakened after SCGN knockdown (Figure 9E). Through colony formation assays, we observed that tumor cell proliferation was weakened after SCGN knockdown (Figure 9F).
[image: A series of images displaying experimental data:   A) Box plot comparing SGCN expression in KIRC using TCGA samples, showing increased expression in primary tumors versus normal samples.  B) Box plot of protein expression of SGCN1 in clear cell RCC from CPTAC samples, with higher expression in primary tumors compared to normal samples.  C) Immunohistochemistry staining images from the Human Protein Atlas showing SGCN1 expression in tissue samples at different magnifications.  D) Bar graph displaying relative mRNA expression levels in different cell lines with control and knockdown conditions.  E) Images and bar graph showing cell migration assays with different treatments, illustrating reduced migration upon SGCN1 knockdown.  F) Colony formation assay images with bar graph indicating reduced colony numbers in knockdown conditions compared to the control.  ]FIGURE 9 | SCGN increases the proliferation and invasion ability of tumor cells. (A, B) SCGN protein and mRNA expression levels in normal and tumor tissues, from UALCAN (https://ualcan.path.uab.edu/). (C) Comparison of IHC staining of SCGN in tumor tissue and normal tissue, from HPA (https://www.proteinatlas.org/), Anti-body:CAB068232. (D) After knocking down SCGN in 786-O and ACHN cell lines, the relative expression of SCGN decreased. (E) Cell invasion was attenuated after knockdown of SCGN in 786-O and ACHN cell lines. (F) Knockdown of SCGN in 786-O and ACHN cell lines weakened cell proliferation. IHC, Immunohistochemistry.
Diagnostic genes were associated with prognosis of patients in ccRCC and with immunity in pan-cancer
We further explored the expression levels and prognosis of diagnostic molecules in ccRCC. MMP9 was upregulated in ccRCC tissues compared with normal tissues (Supplementary Figure S6A). Patients with high expression levels of MMP9 in ccRCC tissues had worse prognosis (Supplementary Figure S6B–F). SCGN expression was downregulated in ccRCC tissues compared with normal tissues (Supplementary Figure S6G). Patients with high expression of SCGN in ccRCC tissues had better prognosis (Supplementary Figure S6H–K). MMP9 and SCGN not only played regulatory roles in ccRCC, they had also shown value in pan-cancer. Compared with normal tissues, the expression levels of MMP9 and SCGN generally changed in pan-cancer (Supplementary Figure S7A). MMP9 and SCGN were generally associated with OS in pan-cancer, including ccRCC (Supplementary Figure S7B). In pan-cancer, both MMP9 (Supplementary Figure S8A) and SCGN (Supplementary Figure S9A) were associated with a variety of immune regulatory molecules, including chemokines, receptors, MHC molecules, immunosuppressive molecules, and immune activating molecules. In pan-cancer, both MMP9 (Supplementary Figure S10A) and SCGN (Supplementary Figure S10B) were associated with multiple immune checkpoint molecules. MMP9 and SCGN were poorly associated with microsatellite instability (MSI) in pan-cancer (Supplementary Figures S10C, D). MMP9 and SCGN were associated with a variety of immune cells (Supplementary Figures S11A, B).
DISCUSSION
The advent of immunotherapy has undoubtedly enhanced the prognosis of ccRCC patients. However, a significant proportion of patients remain unresponsive to immunotherapy, warranting the identification of patients suitable for immunotherapy (Luo et al., 2019).
Collagen, being a major protein component of the ECM, plays a multifaceted role in both intracellularly and extracellularly (Phang et al., 2008; Wu et al., 2021). Previous studies have shown that clear cell renal cell carcinoma can be divided into different subtypes from different perspectives (Bai et al., 2021; Yang et al., 2023). However, the contribution of collagen to ccRCC classification remains unknown. Our study distinguishes two distinct ccRCC subtypes, named subtype 1 and subtype 2.
Results of enrichment analysis show that the differences between the two subtypes are mainly in immunity and tumorigenesis, so we continue the analysis. Subtype 2 exhibits higher infiltration of immune cells and stromal components compared to subtype 1. High levels of exhausted immune cell infiltration are associated with poorer prognosis in ccRCC patients (Peng et al., 2020; Braun et al., 2021). Prior studies have indicated elevated cytotoxic T lymphocyte (CTL) levels and an enrichment of T cell dysfunction in ccRCC, leading to enhanced tumor immune evasion through a more severe degree of T cell dysfunction (Jiang et al., 2018). It has also been shown that in ccRCC, CXCL13+CD8+ T cell abundance impairs total CD8+ T cell function, and CXCL13+CD8+ T cell infiltration indicates poorer clinical outcomes in ccRCC patients (Dai et al., 2021). Our further analysis reveals that subtype 2 exhibited higher TIDE score and expressions of molecules related to immune evasion and T cell exhaustion. Consequently, we hypothesize that despite subtype 2’s higher immune cell infiltration, immune escape may prevail due to immune cell dysfunction and overexpression of immune checkpoint. In the immunotherapy cohort, even though immune cells in subtype 2 are widely infiltrated, the prognosis of subtype 2 is poor. This also illustrates the stability of immune cell infiltration in different subtypes. Regardless of the TMB level (high or low), the prognosis of subtype 1 is superior to that of subtype 2. The new subtypes we identified can be a good addition to patient selection.
Based on subtype 1 and subtype 2, using core genes to build a diagnostic model makes it easier to determine the patients’ subtype. The discrimination and calibration of our model are relatively good. Although the analysis of immune-related indicators of the two subtypes indicates that subtype 2 is prone to immune escape, clinical evidence is lacking. Clinical cohort validation shows that subtype 2 patients receiving anti-PD-L1 therapy have shorter PFS. We believe that in the absence of differences in tumor mutational burden, tumor heterogeneity between the two subtypes partially contributes to differences in the immune system’s ability to kill tumor cells.
MMP-9 is upregulated in ccRCC (Ma et al., 2020). In ccRCC, an increasing number of studies have shown that MMP9 promotes tumor invasion and migration (Wu et al., 2019; Wang J. et al., 2020; Zhang et al., 2022). High expression level of MMP9 is associated with poor prognosis in patients with ccRCC (Niu et al., 2018). MMP9 affect the survival of circulating tumor cells in clear cell renal cell carcinoma by adapting to tumor immune microenvironment (Guo et al., 2023). Besides, a study shows that in ccRCC, MMP9 can regulate tumor immunity (Xu et al., 2021). The inhibition of MMP2/MMP9 by SB-3CT prolongs survival time by promoting anti-tumor immunity (Ye et al., 2020). Yiming Lu et al. find the MMP9+ macrophages to be terminally differentiated tumor-associated macrophages (TAMs) (Lu et al., 2022). Our single-cell transcriptome analysis also showed that MMP9 is mainly expressed in monocytes/macrophages. Secretagogin (SCGN), a calcium-sensor protein, promotes the expression of matrix metalloprotease 2 (MMP2) in neurons (Qin et al., 2020). Loss of SCGN can lead to activation of inflammation (Liu et al., 2023). In the context of cancer, SCGN has emerged as a novel marker for cervical neuroendocrine carcinoma and has been linked to sorafenib resistance in hepatocellular carcinoma (Yu et al., 2021; Wang et al., 2022). SCGN protein is detected in kidney cancer samples but not in normal tissues (Kim et al., 2010). One study shows that SCGN is associated with tumor metastasis in ccRCC (Ilhan et al., 2011). Recent study has shown that SCGN has the potential to become an indicator for ccRCC subtype classification (Lai et al., 2023). Metabolites such as amino acids secreted by tumor cells can affect the status of immune cells in the microenvironment, but the impact is complex (Mellman et al., 2023). Our results indicate that SCGN may affect tumor response to immunotherapy by regulating various metabolisms of tumor cells.
The pan-cancer analysis we performed also shows that the diagnostic molecules are associated with many immune molecules and immune cells, but not with MSI. Both in ccRCC and other tumors, the diagnostic molecules are associated with immune-activating and immunosuppressive molecules or cells, suggesting that they may be involved in complex immune regulation within the tumor.
CONCLUSION
In summary, we construct two new molecular subtypes of ccRCC and a diagnostic model based on subtype-specific marker molecules to define the subtype to which patients belong. These may help doctors to select more suitable patients for immunotherapy.
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LDL lipoprotein receptor-related protein 11 (LRP11) plays a role in several tumors. However, their roles in hepatocellular carcinoma remain unclear. The present study aimed to explore the expression profile and prognostic value of LRP11 in liver hepatocellular carcinoma (LIHC) patients using various cancer databases and bioinformatic tools. In bioinformatics analysis, The Cancer Genome Atlas datasets showed increased LRP11 expression in tumor tissues compared to that in non-tumor tissues in various cancers. Moreover, patients with high expression LRP11 correlated with poor prognosis and clinical features. The LRP11 expression positively correlated with the infiltration of immune cells such as macrophages, neutrophils, and myeloid-derived suppressor cells and a combination of high LRP11 expression and high immune infiltrates was associated with the worst survival in LIHC tumors. Our results also indicated that LRP11 expression was closely associated with immune-modulate function, such as antigen presentation. In DNA methylation profiling, hypomethylation of LRP11 is widely observed in tumors and has prognostic value in LIHC patients. Functional enrichment analysis revealed that LIHC-specific LRP11 interacting genes are involved in protein binding, intracellular processing, and G-protein-related signaling pathways. Analyses of drug sensitivity and immune checkpoint inhibitor predict a number of drugs that could potentially be used to target LRP11. In addition, in vitro experiments verified the promoting effect of LRP11 on the migration, invasion, and colony formation capacity of hepatocellular carcinoma cells. Collectively, our results aided a better understanding of the clinical significance of LRP11 in gene expression, functional interactions, and epigenetic regulation in LIHC and suggested that it may be a useful prognostic biomarker for LIHC patients.
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INTRODUCTION
In recent years, cancer has become one of the main causes of mortality worldwide, and its incidence has been gradually increasing, with a significant negative impact on human health and social development (Siegel et al., 2022). Liver hepatocellular carcinoma (LIHC) is the most common primary liver cancer and the third leading cause of cancer-related deaths worldwide (Rumgay et al., 2022). Despite extensive cancer diagnosis, treatment, and molecular characterization research in LIHC patients, overall recurrence and mortality rates remain high (Heimbach et al., 2018; Sung et al., 2021). Poor prognosis and clinical progression are related to the fact that most LIHC cases may not be diagnosed in the early stages (Cervello et al., 2020). Hence, there is an urgent need to identify reliable biomarkers to explain the molecular mechanisms of LIHC incidence and improve prognosis.
Low-density lipoprotein receptor-related protein (LRP11) is a member of low-density lipoprotein receptor (LDLR) family member (Roslan et al., 2019). The LDLR family consists of transmembrane proteins that encode single-span transmembrane receptors, usually called LDLR-related proteins (LRP) (Campion et al., 2020). LDLR is associated with various cancers, including liver, leukemia, lung, breast, colorectal, and prostate (Huang et al., 2016; Kimbung et al., 2016). Among the LDLR family members, LRP11 was recently identified as a prognostic marker and therapeutic target in prostate and cervical cancers (Wang et al., 2019; Gan et al., 2020; Gu et al., 2023); however, the underlying association and role of LRP11 in LIHC remain unknown.
This is the first study to comprehensively investigate the association between LRP11 and LIHC. In this study, we investigated the expression of LRP11 in LIHC and its relationship with prognosis and clinicopathological parameters. We also examined the effect of LRP11 expression on tumor microenvironment and epigenetic profiling and explored the role of LRP11 in gene networks and biological functions. Further in vitro experiments evidenced that LRP11 regulated the potential of cell migration, invasion, and colony formation of LIHC cells, and it also involved in the regulation of epithelial-mesenchymal transition (EMT).
Our results demonstrated the importance of LRP11 in determining the prognosis of LIHC. They showed that LRP11 expression may be regulated by epigenetic differences related to prognosis and is associated with cancer immunity. Collectively, our study suggested that LRP11 is a significant prognostic biomarker and a new treatment target for LIHC.
MATERIALS AND METHODS
Bioinformatic analysis of LRP11 expression from public database
The GEPIA database was used to compare LRP11 expression between various cancers including LIHC and normal tissues, as well as access overall survival (OS) and disease-free survival (DFS) based on the expression of LRP11. This database was also used to further associations between LRP11 and the expression of immune-related marker genes have been verified. The Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) dataset (GSE25097, GSE36376, GSE36411, GSE45436, GSE54236, and GSE76427) was used as LIHC validation sets. The KM plotter database was applied to analyze the prognostic value of LRP11 in LIHC (Lanczky and Gyorffy, 2021). The correlation between LRP11 and clinicopathological feature was explored using UALCAN database. OSdream database was used to predict whether LRP11 has a risk of recurrence of LIHC patients, and clinical feature with univariate and multivariate Cox regression prognostic values were included in the nomogram analysis. BEST tool (https://rookieutopia.com/) was used to predict the clinical association including radiotherapy and sorafenib treatments, immunomodulation related gene, and candidate agents in patients with LIHC. To evaluate the therapeutic potential of LRP11 in a variety of cancer cell lines, shinyDepMap was used to analyze Cancer Dependency Map (DepMap) datasets (Shimada et al., 2021).
Analysis of microenvironmental characteristics in LIHC
The expression of LRP11 in malignant and non-malignant cells in LIHC was analyzed Human Liver Browser and Single-cell Atlas in Liver Cancer (scAtlasLC) (Ma et al., 2021). The Tumor Immune Estimation Resource Database (TIMER 2.0) used to characterize immune-infiltrates and visualization of TCGA in the TIMER database (Li et al., 2020). This database also used to analyze the LIHC-infiltrating immune cells with LRP11 gene expression and strength of correlations.
LRP11 methylation analysis
The CpG methylation (β-values) associated with LRP11 in TCGA-LIHC and Heatmap analysis were evaluated using platform MethSurv (Modhukur et al., 2018). Moreover, Shiny Methylation Analysis Resource Tool (SMART) was used to analyze differential methylation by each LRP11 probe and Spearman’s correlation between methylation level and LRP11 expression. The significant CpGs were classified according to their functional roles in genomic locations such as promoters within 1,500 bps of a transcription start site (TSS) (TSS1500); within 200 bps of a TSS (TSS200); 5′ untranslated regions (5′UTR); first exon (1stExon); body (non-promoter); 3′UTR (non-promoter). The OS analysis for each CpG site was assessed using KM plots. Log-rank tests were used to measure the statistical significance and Log-rank p < 0.05 was considered significant.
Gene enrichment analysis and network construction
Using Pathway Commons database, we selected 16 genes with the strongest correlation with LRP11, which allowed to generate a protein-protein interaction (PPI) network for the LRP11 gene as well as binding and target genes. The common genes were then used for further analysis using PANTHER database (http://pantherdb.org/) for constructing pathways in molecular function, biological process, and pathway in this study.
Cell culture
Cell culture and RNA extraction were performed as described (Yoo et al., 2023). Briefly, Huh7 and Hep3B, and HepG2, and FOCUS were maintained in Dulbecco’s modified Eagle’s medium containing 10% FBS (GIBCO, Grand Island, NY, USA). HepaRG cells were grown in William’s E medium supplemented with 10% of FBS, 5 μg/mL insulin, 2-mM Glutamax, 1% penicillin–streptomycin, and 50 µM hydrocortisone hemisuccinate (Sigma-Aldrich) in a humidified incubator with 5% CO2 at 37°C.
Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis
Total RNA was extracted using a TRIzol reagent-based kit (Intron Biotech, Seongnam-Si, Republic of Korea). cDNA was reverse transcribed with the SuperScript IV First-Strand Synthesis System for RT-PCR (Thermo Fisher Scientific, Waltham, MA, United States) according to the manufacturer’s protocol. cDNA was amplified using the reported primers (Supplementary Table S1) and SYBR Premix Ex Taq (Takara Bio, Otsu, Shiga, Japan and Agilent Technologies, Santa Clara, CA, United States). The relative mRNA levels were detected by qPCR with the manufacturer’s instructions (Applied Biosystems, Foster City, CA, United States, and Agilent Technologies). The relative quantification of gene expression was performed using the 2−ΔΔCT method.
Cell migration assay and matrigel invasion assay
After transfection of 48 h with hLRP11 siRNA (Bioneer, Republic of Korea, CAT # SDO-1001), HepG2 and Hep3B cells in RPMI with 0.5% serum were seeded into the upper chamber of the transwell. The insert was then placed in a 24-well plate containing RPMI with 10% serum in the lower chamber as a chemoattractant. After cells were allowed to migrate for 24 h in a humidified chamber, those that had migrated were stained with a 0.5% crystal violet (w:v) 20% methanol and counted by light microscopy in five random fields (×100 original magnification) per sample. For the Matrigel invasion assay, the insert was coated with a thin layer of 0.5 mg/mL Matrigel Basement Membrane Matrix (BD Biosciences). siRNA LRP11 transfected HepG2 and Hep3B cells were placed in the upper chamber with 0.5% serum containing RPMI medium, and 0.5 mL of growth medium containing 10% FBS was placed in the lower chamber. The cells were incubated at 37°C and allowed to invade through the Matrigel layer for 48 h. The invading cells on the lower surface were stained with 0.5% crystal violet (w:v) 20% methanol and stained cells were counted under the light microscopy.
Cell colony formation assay
siRNA Control (siControl) or siRNA LRP11 (siLRP11) transfected HepG2 and Hep3B cells (500 cells/well) were seeded in a 6-well plate and cell culture medium was replaced ever 2–3 days for 10 days. The colonies appeared in the 6-well plates, cells were washed twice with PBS. Next, the cells were fixed with methanol for 15 min and stained with 0.5% crystal violet (w:v) 20% methanol for 10 min. The number of cell colonies were counted.
Statistical analysis
The statistical analysis was calculated automatically based on the online database above. Student’s t-test implemented by GraphPad Prism (Version 9). Correlations were analyzed by Spearman and Pearson’s correlation. p < 0.05 was considered statistically significant.
RESULTS
Expression and prognostic value of LRP11 in various human cancer
Using the GEPIA2 database, mRNA expression of LRP11 was investigated in all cancers. As shown in Figure 1A, higher expression of LRP11 was observed in colon adenocarcinoma, lymphoid neoplasm diffuse large B cell lymphoma, liver hepatocellular carcinoma, pancreatic adenocarcinoma, prostate adenocarcinoma, rectum adenocarcinoma, stomach adenocarcinoma, and thyroid carcinoma. In contrast, LRP11 expression decreases in glioblastoma multiforme and ovarian serous cystadenocarcinoma. To explore the prognostic significance of LRP11, overall survival (OS) and disease-free survival (DFS) were investigated in a pan-cancer analysis. Patients with higher LRP11 levels had worse OS than that of patients with lower LRP11 levels in adrenocortical carcinoma (ACC, HR:2.5; 95% CI; Logrank-p = 0.02), breast invasive carcinoma (BRCA, HR:1.7; 95% CI; Logrank-p<0.001), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC, HR:2; 95% CI; Logrank-p = 0.0049), head and neck squamous cell carcinoma (HNSC, HR:1.4; 95% CI; Logrank-p = 0.01), kidney renal papillary cell carcinoma (KIRP, HR:2.4; 95% CI; Logrank-p = 0.0072), LIHC (HR:1.6; 95% CI; Logrank-p = 0.011), lung adenocarcinoma (LUAD, HR:1.4; 95% CI; Logrank-p = 0.019), and uterine carcinosarcoma (UCS, HR:2.2; 95% CI; Logrank-p = 0.025), while patients of kidney renal clear cell carcinoma (KIRC, HR:0.67; 95% CI; Logrank-p = 0.0095), brain lower grade glioma (LGG, HR:0.68; 95% CI; Logrank-p = 0.037), and THCA (HR:0.3; 95% CI; Logrank-p = 0.028) with higher LRP11 level had better OS (Figure 1B upper panel and Supplementary Table S1). When analyzing the DFS, high expression of LRP11 was associated with a worse prognosis in ACC (HR:1.9; 95% CI; Logrank-p = 0.049), CESC (HR:2.6; 95% CI; Logrank-p = 0.0024), and LIHC (HR:1.9; 95% CI; Logrank-p<0.0001), while low expression of LRP11 indicated better prognosis in KIRC (HR:0.62; 95% CI; Logrank-p = 0.01) (Figure 1B lower panel and Supplementary Table S1). Because LRP11 expression was high and the prognosis was poor in ACC, CESC, and LIHC, LRP11 expression levels were further compared using TCGA and GTEX normal tissues. Here, the data demonstrated that LRP11 was significantly increased in LIHC tissues compared to that in normal liver tissues, while there was no change in ACC and CESC (Figure 1C). Thus, LRP11 is deemed a major prognostic factor for LIHC in various human cancers, and further studies have focused on LIHC.
[image: Panel A shows a dot plot of transcript per million (TPM) values across various tissues, indicating variability in expression levels. Panel B displays heat maps for overall survival (OS) and disease-free survival (DFS), highlighting differences between groups. Panel C presents box plots comparing expression levels in tumor versus normal tissues for ACC, CESC, and LIHC, showing higher expression in tumors.]FIGURE 1 | The impact of LRP11 expression on prognosis in various human cancers. (A) Expression levels of LRP11 in GEPIA database. (B) Prognostic value of LRP11 in various cancers. (C) Transcription levels of the LRP11 gene using GEPIA based on the TCGA and GTEx database. Normal tissues are matched TCGA adjacent tissue and GTEx data. ACC (tumor n = 77, normal n = 128), CESC (tumor n = 306, normal n = 13), and LIHC (tumor n = 369, normal n = 160) samples, respectively. The method for differential analysis is one-way ANOVA. ACC, Adrenocortical carcinoma; BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; COAD, Colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B cell Lymphoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LAML, Acute Myeloid Leukemia; LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; MESO, Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular Germ Cell Tumors; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; UCS, Uterine Carcinosarcoma; UVM, Uveal Melanoma.
Clinical signification and validation analysis of the LRP11 in LIHC
Because the expression of the LRP11 gene was upregulated in various cancers and was associated with the worst prognosis in LIHC, validation was performed on an additional six independent LIHC GEO databases. As shown in Figure 2A, the expression of LRP11 in tumors was significantly higher than that in non-tumor tissues and was considerably upregulated in the 52 LIHC-paired tumors (Figure 2B). In agreement with the results from the GEO database, LRP11 mRNA levels in LIHC cell lines were significantly upregulated compared to those in HepaRG cells, similar to human hepatocytes (Figure 2C). To better understand the role of LRP11 as a prognostic biomarker in LIHC, we used a Kaplan–Meier plot (KM-plot) to analyze the effect of LRP11 on survival time in LIHC. As expected, the high LRP11 group exhibited significantly worse OS, RFS, PFS, and DSS (Figure 2D). These results implied that LRP11 may play an oncogenic role in LIHC progression.
[image: Various charts and graphs show gene expression and survival analysis data. Panel A features box plots for different GSE datasets, indicating significant differences between groups. Panel B presents a paired comparison for GSE76427. Panel C displays a bar graph of B7-H3 mRNA expression across multiple cell lines. Panel D contains Kaplan-Meier survival curves for overall survival (OS), relapse-free survival (RFS), progression-free survival (PFS), and disease-specific survival (DSS), with significant differences indicated between groups.]FIGURE 2 | Validation of LRP11 expression and prognostic value of LRP11 in LIHC. (A) Validation of LRP11 expression in cohorts from the independent GEO dataset including GSE25097 (normal n = 5, non-tumor = 243, tumor = 268), GSE36376 (non-tumor n = 193, tumor = 240), GSE36411 (non-tumor n = 21, tumor = 42), GSE45436 (non-tumor n = 39, tumor n = 95), GSE54236 (non-tumor n = 80, tumor = 81), and GSE76427 (non-tumor n = 52, tumor n = 115). (B) The expression level of LRP11 in paired non-tumor (n = 52) and tumor tissues (n = 52) from the GSE76427 dataset. (C) Upregulation of LRP11 in LIHC cell lines. qRT-PCR were performed in 5 different liver cell lines. Data represent means ± s.e.m. *: vs. HepaRG. *p < 0.05 and **p < 0.01. (D) The prognostic value of the expression of LRP11 in Kaplan-Meier plotter: overall survival (OS), relapse-free survival (RFS), progression-free survival (PFS), and disease-specific survival (DSS). LRP11 expression levels; p-values derived from the log-rank test are indicated in each comparison and the " best cutoff " for LRP11 mRNA was used.
Relationship between LRP11 expression and clinicopathological features in LIHC patients
We then determined the relationship between LRP11 expression and clinicopathological features of LIHC, including sex, age, race, tumor stage, tumor grade, and histological subtype, using TCGA data from the UALCAN database (Table 1). LRP11 expression was upregulated in different subgroups of LIHC compared to its expression in the corresponding normal group, demonstrating that LRP11 might be a potential diagnostic marker for LIHC patients. To enhance the model’s predictive power, we constructed a nomogram to predict recurrence-free survival using TCGA data from the OSdream database of LIHC patients. Kaplan-Meier analysis indicated that high LRP11 levels were associated with decreased recurrence-free survival (HR = 1.4428; p = 0.0326) (Figure 3A). According to the nomogram, the stage had the greatest influence on prognosis, and the total points were used to predict the probability of 1-, 3-, and 5-year survival, as displayed at the bottom of the nomogram (Figure 3B). Univariate and multivariate Cox regression analyses used the Cox proportional hazards model (Figure 3C). Univariate Cox analysis suggested that the increased mortality risk of LIHC patients was due to the clinical stage (HR:1.8244; 95% CI, 1.4953–2.2259; p < 0.0001) and LRP11 (HR:1.4428; 95% CI, 1.0309–2.0192; p = 0.0326). Multivariate Cox regression analysis also revealed that clinical stage clinical stage (HR:1.9035; 95% CI, 1.5563–2.3281; p < 0.0001) and LRP11 expression (HR:1.5321; 95% CI, 1.0818–2.1879; p = 0.0165). These results suggest that LRP11 is significantly correlated with clinical parameters in LIHC patients and may also be a promising biomarker for the postoperative management of patients.
TABLE 1 | Clinicopathological features using TCGA data in HCC.
[image: Table presenting the expression of LRP11 (transcript per million, median value) with \( p \)-values across different categories: sex, age, race, tumor stage, tumor grade, histological subtype, and nodal metastasis subtype. Significant differences are marked with an asterisk, indicating \( p < 0.001 \) in most categories.][image: Kaplan-Meier curve in panel A shows patient survival based on LRP11 expression, with survival probability decreasing over time for low and high expressions. Nomogram in panel B predicts survival probability with points assigned to variables like LRP11 and stage. Table in panel C summarizes univariate and multivariate Cox regression analysis, showing hazard ratios and confidence intervals for stage and LRP11, highlighting statistical significance.]FIGURE 3 | Cox regression analysis and nomogram predicting recurrence-free survival in LIHC patients. (A) Recurrence-free survival plot based on TCGA data from OSdream database. (B) Construction and verification of nomogram for predicting 1-, 3-, and 5-year survival in LIHC patients based on LRP11 expression. (C) Univariate and multivariate Cox regression analysis of LRP11.
Association between LRP11 expression and tumor microenvironment (TME) in LIHC
To explore the potential molecular mechanism of LRP11 in LIHC, we investigated the association between LRP11 expression and TME profiling using scAtlasLC datasets. LRP11 was mainly expressed in hepatocytes, T cells, and tumor-associated endothelial cells (TECs) in malignant cells. In contrast, it was weakly expressed in TECs, cholangiocytes, and cancer-associated fibroblasts in nonmalignant cells (Figure 4A). Next, we analyzed LRP11 expression and immune cell infiltration in LIHC cells using TIMER. As shown in Figure 4B, the expression of LRP11 significantly correlated with B cells (r = 0.272, p = 2.89e-07), CD8+ T cells (r = 0.199, p = 2.14e-04), CD4+ T cells (r = 0.348, p = 3.21e-11), macrophages (r = 0.368, p = 2.11e-12), neutrophils (r = 0.371, p = 1.03e-12), and dendritic cells (r = 0.322, p = 1.25e-09) in LIHC. In addition, a correlation analysis was performed between LRP11 expression and infiltrating immune cells in LIHC using the TIMER and GEPIA databases. As shown in Table 2, LRP11 expression positively correlated with B cell (CD17 and CD79A), T cell general (CD3E, CD2), CD8+ T cell (CD8A), CD4+ T cell (CD4), TAM (CD68, IL10), M1 macrophages (NOS2, IRF5, and PTGS2), M2 macrophages (VSIG4, MS4A4A), neutrophils (ITGAM,CCR7), natural killer cell (KIR2DL4, KIR2DL3, KIR3DL3, KIR3DL2), DC (HLA-DPB1, HLA-DRA, HLA-DPA1, NRP1, ITGAX), Th1 (STAT4, STAT1, IFNG, TNF), Th2 (GATA3, STAT6, IL13, STAT5A), Tfh (BCL6), Th17 (STAT3), Treg (FOXP3, CCR8, TGFB1, STAT5B), and T cell exhaustion (PDCD1, CTLA4, LAG3, HAVCR2). To further expand and correlate the results of immune cell infiltration, a comprehensive prognostic analysis was performed to compare LRP11 expression and infiltrating immune cells in LIHC. The results revealed that the low expression of LRP11 and low immune infiltration of macrophages, macrophage M0, macrophage M2, and myeloid-derived suppressor cells (MDSC) was associated with better prognosis than that associated with a high expression of LRP11 in LIHC (Figure 4C). At the same time, no significant correlation was observed in CD8+ T cells, CD4+ T cells, B cells, neutrophils, DC, and NK cells (data not shown). We further analyzed the role of LRP11 in immunomodulation. Through difference analysis and correlation analysis, we found that LRP 11 was positively associated with many immunomodulators including TAP1, TAP2, and B2M, HLA class on antigen presentation; CCL28, CCL20, and CCL25 on chemokine, TNFSF4, PVR, and IL6R on immunostimulator; TGFBR1, IL10RB, and ADORA2A on immunoinhibitor; CCR10 on receptor (Figures 5A, B). These findings suggest that LRP11 expression is not only correlated with immune cell infiltration and immunomodulation, but also plays a role in the prognosis of LIHC.
[image: Panel A displays two plots showing clusters of non-malignant and malignant cells with annotations. Panel B includes six scatter plots illustrating the correlation between different immune cell types and infiltration levels. Panel C features six Kaplan-Meier survival curves, each with distinct hazard ratios, linked to the infiltration levels of various cell types.]FIGURE 4 | Characterization of LRP11 expression on TME in LIHC. Single-cell analysis of LRP11 gene using scAtlasLC (A). (B) Correlation analysis between LRP11 expression and immune infiltrates in LIHC. (C) Comprehensive prognostic value of LRP11 expression and macrophage, macrophage M0, macrophage M2, neutrophile, and MDSC infiltration levels based on the TIMER algorithm. CAFs, cancer-associated fibroblasts; TAMs, tumor associated macrophages; TECs, tumor-associated endothelial cells.
TABLE 2 | Correlation between LRP11 expression level and gene markers of tumor infiltrating immune cells in TCGA-LIHC.
[image: Table displaying immune cells with corresponding biomarkers, R-values, and p-values. Biomarkers are listed under immune cell categories such as B cells, T cells, macrophages, neutrophils, natural killer cells, dendritic cells, and subsets like Th1, Th2, Tfh, Th17, Treg, and T cell exhaustion. R-values quantify correlation, while p-values indicate significance levels: "***" (p < 0.001), "**" (p < 0.01), "*" (p < 0.05), and "n.s" (not significant).][image: Panel A displays heatmaps of various gene expressions across different samples, with color gradients indicating expression levels. Panel B shows scatter plots correlating UBTF1 expression with multiple variables, highlighting trends with scattered data points and trend lines.]FIGURE 5 | Correlation between LRP11 expression and immunomodulatory genes. (A) The correlation between LRP11 expression and immunomodulator. (B) Diagrams of Spearman’s correlation between LRP11 (TCGA-LIHC) and representative immunomodulator genes.
Association between LRP11 gene methylation and clinicopathological features of LIHC patients
To explore the potential mechanism of LRP11 upregulation in LIHC, we analyzed the methylation levels of LRP11 using the SMART database. As shown in Figure 6A, the methylation levels of LRP11 were significantly lower in LIHC tissues than in normal liver tissues. Specific methylation positions are illustrated on heatmaps using the MethSurv database (Figure 6B). In total, we found that the average methylation of all 17 CpG sites on LRP11 (Overall; Aggregation, p = 2.5e-10), including S_Shore (Aggregation, p = 3e-13), Island (Aggregation, p = 1.3e-13), and N_Shore (Aggregation, p = 1.3e-13), was significantly lower in LIHC tissues than in normal liver tissues. At the same time, Open_Sea was not significantly changed (Aggregation, p = 0.062) (Figure 6C and Supplementary Figure S1). In the correlation analysis between the methylation of LRP11 and LRP11 expression, we found a negative correlation between the methylation level and the expression of LRP11 (Overall; Aggregation, p = 2.2e-16), including S_Shore (aggregation, p = 2.9e-07), Island (aggregation, p = 2.2e-16), N_Shore (aggregation, p = 2.2e-16), and Open_Sea (aggregation, p = 5.2e-14) (Figure 6D and Supplementary Figure S2). Based on the above methylation profile, we determined whether the cause of the increased expression of LRP11 was hypomethylation in the promoter region (Figure 7A). Notably, we found that the average methylation level of CpGs on the predominant form of the LRP11 promoter was significantly downregulated in the tumor group compared to its expression in the corresponding normal group (aggregation, p = 4.3e-13) (Figure 7B) and negatively correlated with the expression levels of LRP11 (aggregation, p = 1.9e-07) (Figure 7C), suggesting that the increase in LRP11 expression might be tightly regulated by promoter methylation. Considering the previously mentioned results, we assessed the correlation between methylation and the prognosis of the LRP11 gene in LIHC. As shown in Table 3, cg1549455 (HR = 0.7; p = 0.0423), cg11708358 (HR = 0.71; p = 0.0487), and cg12232274 (HR = 0.7; p = 0.0415) predicted better prognosis of LIHC patients, while cg24112628 (HR = 1.47; p = 0.0273), cg07807409 (HR = 1.8; p = 0.0008), and cg25083496 (HR = 1.47; p = 0.0273) were associated with poor clinical outcomes. Collectively, these results suggest a mechanism by which the expression of LRP11 could be regulated by promoter methylation but also suggest that methylation profiling might be a prognostic biomarker in LIHC patients.
[image: A set of four panels illustrating data analysis in a scientific study. Panel A shows a dot plot with red markers, indicating varying values across different categories. Panel B consists of box plots for different genomic regions (S. Shore, Island, N. Shore, Open Sea) comparing normal and tumor samples, displayed in blue and red. Panel C features a heatmap with a color gradient from blue to red, representing gene expression levels. Panel D includes scatter plots correlating LRP11 methylation with another variable across different genomic regions.]FIGURE 6 | The DNA methylation of LRP11 in LIHC from TCGA data. (A) The methylation levels of LRP11 across tumor tissues and corresponding normal tissues in SMART database. (B) Heatmap integrating DNA methylation of the LRP11 gene in LIHC by MethSurv. (C) Average methylation levels between normal and tumor tissue stratified by genomic location (Wilcoxon rank sum test). (D) Spearman’s correlation between mRNA expression of LRP11 and methylation level. S_Shore, South Shore; N_Shore, North Shore.
[image: Panel A shows a schematic of the LRP11 gene with CpG sites and groupings labeled. Panel B displays box plots of beta values for normal and tumor samples, highlighting differences. Panel C presents scatter plots of LRP11 methylation versus LRP11 expression, with trend lines indicating correlations.]FIGURE 7 | Correlation analysis between DNA methylation and gene expression in LRP11 promoter region. (A) Chromosomal distribution and detailed CpG sites. The promoter region includes six probes (cg05971912, TSS200; cg7310318, TSS200; cg12232274, TSS1500; cg20206129, TSS1500; cg20685554, TSS200; cg25083496, TSS200). (B) The methylation level of six probes between LIHC tumor group and normal group. (C) Spearman’s correlation between LRP11 expression and methylated sites.
TABLE 3 | CpGs methylation across the patients with Hepatocellular carcinoma based on SMART database.
[image: Table showing different CpG island positions, grouped by UCSC RefGene, with associated probe numbers, hazard ratios for overall survival with confidence intervals, and p-values. Notable values include hazard ratios ranging from 0.7 to 1.8 and p-values as low as 0.0008.]Biological analyses and target drug prediction of LRP11 in LIHC
Next, to verify the biological role of LRP11, genes interacting with LRP11 were identified using Pathway Commons, and a prognostic analysis was conducted in the normal and LIHC groups (Figure 8A; Table 4). Based on the prognostic analysis, LIHC-specific LRP11-related proteins were selected (Figure 8B), and these proteins were further used for subsequent bioinformatic analyses according to the PANTHER database regarding functional clusters. As shown in Figure 8C, the functions of LRP11 and its interacting proteins were classified into molecular functions, biological processes, and pathways. The results demonstrated that proteins were mainly enriched in molecular function including “binding”, “catalytic activity”, and “molecular transducer activity”; in biological processes including “cellular process”, “biological regulation”, and “response to stimulus”; in pathway including “angiotensin II-stimulated signaling through G proteins and beta-arrestin”, “CCKR signaling map”, “heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway”, “inflammation mediated by chemokine and cytokine signaling pathway”, and “Wnt signaling pathway”. Because the therapeutic efficacy of immune checkpoint inhibitors is associated with the expression of target genes and their complementary receptors, the expression of LRP11 and 23 ICI-related genes was evaluated based on gene expression data from TCGA-LIHC (Figure 9A). The results revealed that the expression of CD276, CD274, CD200, CD86, TNFSF4, HAVCR2, LAIR1, CD28, and CD80 positively correlated with LRP11 expression in LIHC (Figure 9B). Furthermore, when analyzing the relationships between standard treatment for LIHC and LRP11 expression, we found that among all the patients in sorafenib treatment of GSE109211 rather than radiotherapy treated group in TCGA-LIHC, the patients in the non-responding group showed relatively upregulated in LRP11 expression (Figures 9C, D). In addition, elevated LRP11 expression was positively correlated with resistance to various chemotherapy drugs, including Selumetinib, Nutlin-3a, and AZD6482, while it was associated with sensitivity including GSK1904529A, Thapsigargin, and Elesclomol in LIHC patients (Figure 9E). These results indicate that LRP11 may play a biological role in LIHC through these pathways, and LRP11-specifically related genes could also be associated with poor prognosis and affect the efficacy of ICIs and chemotherapeutics.
[image: Network diagram of UPF1 interactions (A) shows relationships with various genes, indicating binding and expression. Table (B) details hepatocellular carcinoma data, listing genes LRP6, PLAC2G7, AP3B2, UPF1, highlighting survival rates. Pie charts (C) illustrate molecular functions, biological processes, and pathways, with categories like binding, catalytic activity, biological adhesion, and angiogenesis signaling pathways.]FIGURE 8 | Network analysis between LRP11 and interacting proteins. (A) Diagram of potential interacted proteins with LRP11 by Pathways Commons. (B) Interacting protein list of statistically significant between prognosis and LRP11 expression in LIHC-TCGA. (C) Pie charts showing the molecular function, biological process, and pathway class from PANTHER database.
TABLE 4 | Correlation analysis between LRP11 and predicted interactions in pathways commons.
[image: Table comparing gene correlations in normal and HCC groups, showing Pearson and Spearman correlations with p-values. Bold indicates statistical significance in the HCC group.][image: Heatmap A shows gene expression levels across different samples, with blue indicating low expression and red high. Heatmap B highlights LRRTM1's correlation with immune checkpoints. Boxplots C and D depict LRRTM1 expression levels in TCGA_LIHC and GSE102123 datasets, respectively, comparing radiotherapy and sorafenib treatments. Heatmap E displays relationships among various gene expressions and immune cell types, again using red and blue to signify expression differences.]FIGURE 9 | Effect of LRP11 on ICI-related gene efficacy and in LIHC patients. (A) Schematic of the 24 gene expression clusters containing LRP11 defined in TCGA-LIHC. (B) Spearman’s correlation analysis of LRP11 across the 23 ICI-related gene clusters. (C) LRP11 expression in radiotherapy group and no-radiotherapy treatment group based on TCGA-LIHC. (D) Comparison of LRP11 in sorafenib responders and nonresponders based on GSE109211. (E) Heatmap integrating candidate agents of LRP11 in LIHC by Genomics of Drug Sensitivity in Cancer (GDSC1) database.
The effects of LRP11 on malignant phenotype of hepatocellular carcinoma cells
Based on previous findings of LRP11 expression in various LIHC cell lines (Figure 2C), HepG2 and Hep3B cells were selected, and these cell lines were further validated the malignant performance of LRP11. Interestingly, siRNA-LRP11 decreased levels of EMT markers, including Twist1, N-cadherin, and Zeb2 in HepG2 cells, and Zeb2 and FOXC1 in Hep3B cells; however, the expression of mesenchymal epithelial transition markers (MET) including ZO-1 and DPS was not changed in these 2 cells (Figure 10A). Cell migration and invasion depend on EMT; therefore, we next performed transwell migration and invasion assay. After downregulating LRP11 in HepG2 and Hep3B cells, their ability of migration and invasion was significantly lower than those of control group (Figure 10C). Moreover, the result of colony formation assay showed that knockdown of LRP11 significantly inhibited colony-forming efficiency (Figure 10D). Taken together, these results demonstrated that LRP11 enhanced the malignant ability of LIHC cells.
[image: Four-panel image analyzing gene expression and cellular behavior in HepG2 and Hep3B cells. Panel A shows a bar graph comparing relative gene expression levels between control and silenced conditions, highlighting significant variations. Panel B presents stained cellular images with corresponding bar graphs comparing migration areas. Panel C includes stained images with bar graphs showing the number of invaded cells. Panel D features colony formation assays with circular petri dish images and graphs illustrating differences in colony numbers between conditions.]FIGURE 10 | Effect of LRP11 on malignant phenotype of HepG2 and Hep3B cells. (A) qRT-PCR analysis of EMT and MET marker expression in HepG2 and Hep3B cells transfected with siControl or siLRP11 transfection. (B) Migration and (C) invasion ability assessed by transwell assay (magnification, ×100). (D) Colony formation ability and quantification of colonies showed cell growth of the indicated cells (magnification, ×100). Data represent means ± s.e.m. *: vs. siControl. *p < 0.05, **p < 0.01, and ***p < 0.001.
DISCUSSION
Hepatocellular carcinoma is one of the deadliest malignant tumors worldwide because of its intratumor, intrapatient, and interpatient heterogeneity (Chan et al., 2022). The prognosis of LIHC is mainly determined at the tumor stage, and the survival rate for advanced-stage patients undergoing systemic treatment is approximately 1–1.5 years. In contrast, the 5-year survival rate exceeds 70% for patients with early diagnosed LIHC (Llovet et al., 2016; Villanueva, 2019). Although various treatments are available for LIHC, the survival rate remains unsatisfactory. Therefore, there is an urgent need to identify additional biomarkers to contribute new insights into treatment decision management through a biological understanding of LIHC.
In our study, we analyzed data from the TCGA database and found that LRP11 was upregulated and was associated with poor survival in LIHC. Although the prognostic value of LRP11 has been previously reported in prostate and cervical cancers, its role of LRP11 in LIHC remains unclear. To our knowledge, this study of LRP11 in LIHC is the first to comprehensively evaluate the prognostic value, tumor microenvironment, methylation profiling, gene networks, and biological functions. In the present study, results from various databases indicated that LRP11 was upregulated in multiple cancers, including LIHC, and that patients with adverse clinicopathological characteristics had high levels of LRP11 expression. Kaplan–Meier survival analysis of OS, RFS, PFS, and DSS revealed that LIHC patients with a higher level of LRP11 had a shorter survival time, consistent with the nomogram validation showing dependency on the LIHC stage in recurrence-free survival. Subsequently, we validated knockdown of LRP11 markedly reduced the capacity of cell migration, invasion, and colony formation of LIHC cells, at least partly dependent on EMT. These findings strongly suggest that high LRP11 expression is closely associated with worse outcomes and might be involved in malignancy of LIHC patients.
The tumor microenvironment consists of stromal cells, fibroblasts, endothelial cells, and immune cells and plays a key role in tumor development (Sadeghi Rad et al., 2021). Because these cells organize a microenvironment favorable for tumor progression via cell-to-cell interactions or the release of various molecules, this correlation could be an important factor in determining the effectiveness of cancer immunotherapy and is strongly associated with the prognosis of multiple cancers (Satge, 2018; Riley et al., 2019). This study found that LRP11 was mainly expressed in the T cells, hepatocytes, and TECs of malignant LIHC cells. Further correlation analysis revealed that the expression of LRP11 was positively associated with B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DC in LIHC. Moreover, we observed that high LRP11 expression and high infiltration of immune cells, including macrophages, neutrophils, and MDSC, were associated with the worst patient prognosis, emphasizing the importance of LRP11 and its role in cancer-related immune processes. Immunomodulators provide an opportunity to design powerful substances that modify or regulate the immune system to help the body respond to cancers, as well as the interaction between anti-cancer agents and cancer cells (Khurana et al., 2019). Therefore, understanding the immunomodulatory response provides a strong basis for developing combination therapy for cancers, including immunotherapy. We identified a correlation between LRP11 gene and immunomodulators in various LIHC datasets and demonstrated that the expression of TAP1, CCL28, TNFSF4, TGFBR1, and CCR10 was shown to be linked with positive association in the levels of LRP11 mRNA. In the previous bioinformatic analysis, the high expression of TAP1 and TNFSF4 were risk factors in patients with LIHC (Tabassum et al., 2021; Xu et al., 2023). According to Mazzocca et al. (2009), transforming growth factor beta (TGF-β) receptor 1 (TGFR1) is shown to involve in neo-angiogenesis and tumor growth in LIHC and it has been proved that CCL28 and CCR10 play a significant role in tumor growth and carcinogenesis in LIHC (Ren et al., 2016; Wu et al., 2018). The analysis of the present study revealed a significant correlation between LRP11 and immunomodulatory genes, especially carcinogenesis and prognosis in LIHC, so it is hypothesized that LRP11 is linked with the immune pattern of LIHC including immunomodulators, as well as the useful therapeutic targets.
Because DNA methylation is an important epigenetic factor for gene expression, we next analyzed LRP11 expression at the epigenetic level. Methylation profiling indicated that the overall methylation levels were low in LIHC, which positively correlated with LRP11 expression. Subsequently, hypomethylation of LRP11 in the promoter region significantly correlated with worse prognosis in patients with LIHC. Hypomethylation of the gene promoter tended to correlate with gene expression positively, and the inverse correlation between promoter methylation of LRP11 and its expression levels were consistent with previous studies (Herman and Baylin, 2003; Jones, 2012).
To further explore the biological function of LRP11, we selected four genes with prognostic power for LIHC among the 16 proteins that interacted with LRP11. Functional analysis revealed that LRP11-related genes were closely associated with multiple intracellular functions, such as regulation, transduction, responses to stimuli, and binding activity, in addition to some signaling pathways, including G-protein-mediated signaling and Wnt signaling. Notably, G-protein-coupled receptors and Wnt/β-catenin signaling were involved in pathophysiological mechanisms, including cancer progression, metastasis, and poor prognosis (Bagnato and Rosano, 2019; Yu et al., 2021). Thus, the functional analysis of LRP11 suggested that it may have a certain impact on tumor occurrence and prognosis and provide new insights into the recognition and challenges aimed at such signaling in cancer. Moreover, we found that the expression of CD276, CD274, CD200, CD86, TNFSF4, HAVCR2, LAIR1, CD28, and CD80 positively correlated with that of LRP11 in LIHC. These genes were well-characterized immune checkpoint biomarkers that reflect the effects of immunotherapy. Therefore, our findings indicated that LRP11 tended to respond effectively to immunotherapy, although it may promote the development and progression of LIHC. Through the correlation analysis between LRP11 expression and sorafenib, which has been considered the standard of patients with LIHC, we found that LRP11 was upregulated in sorafenib nonresponse group. Sorafenib was the only first-line drug approved by FDA for patients with advanced LIHC, however only 30% of LIHC patients are responding to Sorafenib. Based on the accumulating results of clinical trials and experimental evidences, it was confirmed that LIHC patients showed existing innate or acquired resistance to sorafenib (Llovet et al., 2008; Ford et al., 2009). In addition, we also observed LRP11 expression was significantly linked with drug sensitivities such as Selumetinib-, Nutlin-3a, and AZD6482 in GDSC database, this suggests that LRP11 is likely to mediate acquired or innate drug resistance to various drugs, as sorafenib response in LIHC patients.
CONCLUSION
In the present study, bioinformatics analysis confirmed that LRP11 may be important for the development and prognosis of LIHC. However, because our study was conducted based on bioinformatics analysis, further clinical and experimental validation should be conducted to confirm the results of this prediction in LIHC. We hope the current research provided new insights to potentially be used as cancer treatment and prognostic biomarkers for LIHC.
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Author/year Age Treament Size Study Follow-up
type (months)
Carr2021 NA olaparib + abiraterone + predisone castratepreparp | 25 RCT NA 1PFS
NA abiraterone + predisone castratepre 2
Clarke2018 70 (65-75) olaparib + abiraterone + predisone castratepreparp | 71 RCT 159 (8.1-25.5) OSPFS
67 (62-74) abiraterone + predisone castratepre 7 245 (8.1-27.6)
Crabb2022 NA capivasertib + docetaxel + predisone chempretarget | 75 RCT 35 0s
NA docetaxel + predisone chempre 7 32
Sweeney2021 69 (47-93) ipatasertib + abiraterone + predisone | castratepretarget | 554 RCT 19 (0-33) TPFS,PES
70 (44-90) abiraterone + predisone castratepre s
66 (48-91) buparlisib + predisone targetpre 17
Bono20191 68.8(7.2) abiraterone + castratepre200ipa | 86 RCT NA OS,PFS,rPES
predisone+200mgipatasertib
67.6 (7.8) abiraterone + predisone castratepre 83
66.9 (8.5) abiraterone + castratepre400ipa | 84
predisone +400mgipatasertib
Madan2020 69 (54-80) | cabozantinib + docetaxel + Prednisone | chempretarget 13 RCT NA 0s
69 (50-83) docetaxel + prednisone chempre 12
Monk2018 67 (43-84) tivantinib + abiraterone + predisone | castratepretarget | 52 RCT 89 (2.3-19.6) PES
66.5 (48-85) abiraterone + predisone castratepre 2
Powles2022 NA atezolizumab + enzalutamide + castrateprepdl | 380 RCT NA OS,PFS,rPFS
prednisone
NA enzalutamide + prednisone castratepre 379
Voge2022 68 (46-89) DCVAC + docetaxel + predisone chempreDCVAC | 787 RCT NA 0s
69 (46-89) docetaxel + predisone chempre 395
Annala2020 67.5 abiraterone + predisone castratepre 50 RCT NA 0s
(603-71.0)
68.0 Cabazitaxel + predisone chempre 45
(59.0-73.0)
Saad2021 71(66-78)  apalutamide + abiraterone + predisone 2castratepre 492 RCT 548 (51:5-58.4) OSRpfs
71 (65-77) abiraterone + predisone castratepre 490
67.7 (7.75) prednisone prednisone 7
69 (49-86) enzalutamide + predisone castratepre 64
Bono2019 70.0 (46-85) enzalutamide + prednisone castratepre 129 RCT 92 OS,PFS,rPFS
710 (45-88) cabazitaxel + predisone chempre 126
Bono2020 69 (47-91) Olaparib parp 256 RCT 132 OS,Rpfs
69 (49-87) abiraterone + predisone castratepre 131
Fizazi2020 69.0 Ipilimumab + docetaxel + predisone chemprePD1 399 RCT 50 (407, 72.0) 0s
(63.0-74.0)
67.5 docetaxel + predisone chempre 400
(62.0-72.5)
Fizazi2023 70 (45-90) rucaparib parp 270 RCT NA TPFS,PES
71 (47-92) abiraterone + predisone castratepre 135
" Hussin2020 NA abiraterone + predisone castratepre 162 RCT 219 OSPFS
NA Olaparib parp 83
Sterberg2021 74 (70-88) abiraterone + predisone castratepre 6 RCT 92 OS,PFS,rPFS
76 (70-85) Cabazitaxel + predisone chempre 66
Bouman2018 69.2 (61-85) docetaxel + predisone + carboplatin chemprept 36 RCT NA OSPFS
70.1 (60-84) docetaxel + predisone chempre 37
Com2019 72 (67-76) cabazitaxel + carboplatin + predisone chemprept 81 RCT 310 (20-5-37:1) OSPFS
66 (61-69) cabazitaxel + carboplatin chempre 79
Fizazi2015 69.5 (43-89) Orteronel + predisone targetpre 734 RCT 106 (02-29.5) OSPFS
70 (48-87) prednisone prednisone 365
Kluetz2013 NA abiraterone + predisone castratepre 546 RCT NA 0s
NA prednisone prednisone 542
Smith2016 695 (35-87) cabozantinib target 682 RCT NA OSRpfs
69 (43-89) prednisone prednisone 346
Fizazi2012 69 (42-95) abiraterone + predisone castratepre 797 RCT 202 (18:4-22:1) OS,PFS,rPFS
69 (39-90) prednisone prednisone 398
Beer20171 72 (43-93) enzalutamide + prednisone castratepre 872 RCT NA TPFS,PES
71 (42-93) prednisone prednisone 845
 Mile201s 70 (64-76.5) abiraterone + predisone castratepre 264 RCT NA OS,Rpfs
71 (64-77) prednisone prednisone 824
Rathkopf2014 71 (65-77) abiraterone + predisone castratepre 546 RCT 271 OS,PFS,iPES
70 (63-76) prednisone prednisone 542
Ryan2015 NA abiraterone + predisone castratepre 546 RCT 492 (47:0-51.8) 0s
NA prednisone prednisone 542
Armstrong2020 NA enzalutamide + prednisone castratepre 872 RCT 69 0s
NA prednisone predisone 845
Saad2015 710 Orteronel + prednisone targetpre 781 RCT 207 (14-2-25-4) OS,Rpfs
(650-77.0)
720 prednisone prednisone 779
(660-770)

I; PFS: progression free survival; rPFS: radiographic progression-free survivs

RCT: randomized controlled trials.
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Ipilimumab CTLA4 | GastroEsophageal Cancer
Nivolumab m PD-1 Advanced Cancer 794 2025 | NCrovasiss
 esoliuma I PD-LI  Gastric Cancer 674 2027 NCT03421288

Adenocarcinoma

Gastroesophageal Junction
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Factors

PD-1/PD-L1

CTLA-4/B7-1 or CTLA-4/B7-2

DCs

Functions
Inhibiting CD8 T cell activation/proliferation
Reducing the production of proinflammatory cytokines
Delivering inhibitory signals to CD8 T cells

antigen presentation

References

Freeman et al. (2000), Dong et al. (2002)

Brunet et al. (1987)

Jhunjhunwala et al. (2021)

Tregs

Bregs

MDSCs

M1 macrophage

M2 macrophage

CAFs

TANs

Mast cells

LAG-3

TIM-3

IL-8

TGE-p

Producing IL-10, TGF-f; upregulating immune checkpoint
molecules, such as CTLA-4

releasing granzyme B and perforin to induce cytolysis of Teffs

establishing cellular networks with other immunosuppressive
cells within the TME

Producing IL-10, IL-35, TGF-f; expressing inhibitory
molecules such as FasL. and PD-L1

increasing PD-L1 expression to induce T cell anergy
suppressing host immunity through Arg-1, iNOS and ROS
inducing Treg proliferation

promoting inflammatory reaction through producing type I
proinflammatory cytokines such as IL-1p, IL-1a, IL-12, TNE-a

inhibiting inflammatory reaction through producing IL-4, IL-6,
1L-10 and having pro-tumorigenic functions

inducing angiogenesis
promoting peritoneal metastasis of GC
facilitating GC cell proliferation through CAF-derived IL-6
controling angiogenesis

expressing high levels of immunosuppressive molecules FasL
and PD-L1

promoting GC cell proliferation, migration, invasion and
inhibiting apoptosis

Inhibiting CD8 T cell activation/proliferation; enhancing the
activity of Tregs in the TME

promoting MDSCs
inducing CD8 T cell exhaustion
increasing angiogenesis

recruiting infiltrating immune suppressive cells, especially
MDSCs and TAMs

Reducing the production of proinflammatory cytokines;
inhibiting APCs; inhibiting memory Th17 and Th2 cells

promoting the survival and activity of Tregs
inhibiting Th1 and CD8 T cells
promoting differentiation of CD4 T cells to a Treg phenotype

inducing DCs dysfunction

Ichihara etal. (2003), Mao et al. (2017), Saleh and Elkord (2019)

Jing et al. (2021)

Veglia et al. (2018), Oya et al. (2020), Li et al. (2021)

Gambardella et al. (2020)

Gambardella et al. (2020), Chen et al. (2021), Zhou et al. (2021)

Kato et al. (2018), Sun et al. (2022)

‘Wang et al. (2017), Hiramatsu et al. (2020), Shan et al. (2022)

Zhong et al. (2018)

Anderson et al. (2016), Qin et al. (2019)

Anderson et al. (2016)

Schalper et al. (2020), Fousek et al. (2021), Li et al. (2022c)

Ouyang and O’Garra (2019)

Batlle and Massagué (2019), Derynck et al. (2021)





OPS/images/fphar-14-1230824/fphar-14-1230824-t002.jpg
Trial identifier Target Treatment strategy Phase End point
NCT05228496 PD-1 Tislelizumab + Sitravatinib Phase 2 PES
RTK
NCT04501029 Topoisimerase | Gimatecan Phase 2 DLT, RP2D. ORR
NCT05353257 PD-1 HLX10+carboplatin Phase 3 0s
Or cisplatin-etoposide + radiotherapy
NCT04996771 PD-1 Surufatinib + Chemotherapy Phase 1 PES
VEGE Phase 2
NCT05224141 PD-1 MK-7684A Phase 3 os
TIGIT
NCT03319940 PD-1 AMG757+Pembrolizumab Phase 1 DLT. AEs
DLL3
cp3
NCT04453930 PD-1 Camrelizumab + Trinotecan + Platinum Phase 2 PFS, OS
VEGE Camrelizumab + apatinib
NCT05001971 PD-1 Anlotinib + Penpulimab Phase 2 ORR
VEGF
NCT05815160 WEEL Debio 0123+Etoposide + Carboplatin Phase 1 DLTs, TEAE
NCT04539977 PD-LL TQB2450 Phase 2 ORR
NCT04542369 | b1 BGB-A317+Chemotherapy Phase 2 Safety
NCT05091567 PD-LL Atezolizumab + Lurbinectedin Phase 3 PFS, OS
RNA polymerase IT
DNA synthesis
NCT05384015 |t | Lenvatinib + Pembrolizumab + Chemotherapy | Phase 2 Safety and Tolerability, PFS
VEGE
NCT04397003 PD-LL Neoantigen DNA vaccine + durvalumab Phase 2 Safety and Tolerability
Neoantigen DNA vaccine
Clinical trials of drug resistance in immunotherapy for SCLC.
NCT05450965 PLK1 Onvansertib Phase 2 ORR
NCT05153239 DNA Lurbinectedin or Lurbinectedin Phase 3 os
+ Irinotecan
NCT05296603 PD-L1 IBI-322+Lenvatinib Phase 2 ORR
cp47
VEGE
NCT04951947 PD-1 J5201+Lenvatinib Phase 2 ORR
TGE-p
VEGE
NCT05049863 Inosine monophosphate dehydrogenase I/ll | MMEF + Irinotecan + Allopurinol Phase 1 AE. ORR. RP2D. DLTs
Topoisomerase I inhibitors Phase 2
ROS
NCT05060016 DLL3 Tarlatamab Phase 2 OR. AEs
NCT05728619 PARP1/2 HTMC0435+Temozolomide Phase 1 DLT. AE, MTD
Phase 2
NCT05509699 PD-()1 Surufatinib + PD-(L)-1 Phase 2 PES
VEGF
NCT05162196 PD-1 SBRT + Niraparib + Toripalimab Phase 2 ORR

PARP1/2
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ICt immune checkpoint inhibitor

B7-H1 B7 homolog 1

PD-L1 programmed death ligand 1
MAPK mitogen-activated protein kinase
Treg regulatory T cell

Breg regulatory B cell

MDSC myeloid-derived suppressor cell
TAM tumor-associated macrophage
TME tumor microenvironment

LAG-3 lymphocyte-activation gene 3
TIM-3 T cell immunoglobulin and mucin domain-containing molecule 3
IL interleukin

TGF- transforming growth factor-p
TCR T cell receptor

DC dendritic cell

MHC major histocompatibility complex
JAK Janus kinase

STAT signal transducer and activator of transcription
MSI microsatellite instability

T™MB tumor mutational burden
TMAO trimethylamine N-oxide

GC gastric cancer

[ENGR IEN-y receptor

APC antigen presenting cell

TAA tumor-associated antigen

CTLA4  cytotoxic T lymphocyte-associated antigen-4

ARG-1 arginase-1
EGF epidermal growth factor

iINOS inducible nitric-oxide synthase
ROS reactive oxygen species

Teff effector T cell
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Trial identifier Target reatment strategy Phase End poi
NCT04638582 PD-1 Pembrolizumab + Platinum-pemetrexed Phase 2 CDNA, 0S, DFS
NCT05565378 PD-1 Dostarlimab + GSK4428859A Phase 2 ORR. 0S. PFS
NCT04581824 PD-1 Dostarlimab + Chemotherapy Phase 2 ORR, 0S. PFS
NCT05085028 PD-1 Pembrolizumab Phase 3 08, PFS
NCT04475939 PD-1 Pembrolizumab + niraparib or placebo Phase 3 08, PFS
PARP
NCT03377023 PD-1 Nivolumab + Ipilimumab + Nintedanib Phase 1 MTD, ORR
VEGF Phase 2
NCT03800134 PD-L1 Durvalumab/placebo + platinum-based chemotherapy Phase 3 PCR, EFS
NCT05221840 PD-LI Durvalumab + Oleclumab or Monalizumab/placebo Phase 3 PFS. OS
cD73
NKG2A
NCT04171284 PD-1 SCT-110+ Docetaxel/Placebo Phase 3 0s
NCT03866980 PD-1 AK105+Carboplatin + Pemetrexed Phase 3 PES
NCT05635708 PD-1 Tislelizumab + BGB-A445 or LBL-007 Phase 2 ORR
LAG-3
O0X-40
NCT04547504 PD-1 Pembrolizumab or Pembrolizumab + Chemotherapy drugs | Phase 3 PFS
NCT05557591 PD-1 BNT116+Cemiplimab Phase 1 TEAEs. SAE. ORR
Oncology vaccines Phase 2
NCT04614103 TIL LN-145 Phase 2 ORR
Clinical trials of drug resistance in immunotherapy for NSCLC.
NCT04691817 PD-L1 Atezolizumab and Tocilizumab Phase 1 ORR, 0S
IL-6R Phase 2
NCT04655976 PD-1 Docetaxel + cobolimab dostarlimab. Phase 2 0s
TIM-3 Phase 3
NCT03377023 PD-1 Nivolumab + Ipilimumab + Nintedanib Phase 1 MTD, ORR
VEGF Phase 2
NCT05142189 PD-1 BNT116+Cemiplimab/Docetaxel Phase 1 DLT. TEAE. ORR
Cancer vaccines
NCT05195619 PEP-DC vaccine PEP-DC vaccine + cyclophosphamide Phase 1  Number of patients, AE. ORR
NCT03847519 PD-1 ADXS-503+pembrolizumab Phase 1 AEs, DLTs, PES
Tumor neoantigens Phase 2
NCT04656652 TPRO-2 DS-1062a and Docetaxel Phase 3 PES, O
NCT05555732 PD-1 Dato-DXd + Pembrolizumab (+ Platinum Chemotherapy) | Phase 3 PFS. OS
TROP2
NCT05467748 PD-1 combination of tazemetostat and pembrolizumab Phase 1 ORR. Safety and Tolerability
EZH2 Phase 2
NCT05671510 CTLA-4 ONC-392 Phase 3 0s
NCT05788926 112 TG6050 Phase 1 Safety and tolerability

VEGF
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adverse reactions

Any event 8 (88.9) 8 (88.9) 2(222)
Decreased appetite 3(333) 3(333) =
Rash 3(333) 3(333) [-
Weak 3(333) | 3(333) =

| Hypothyroidism 2(222) | 2(222) [=
Fatigue | 2(222) 2(222) =

7 Abnormal liver function 2(222) 2(222) | -
Peripheral sensory neuropathy 2(222) | 2(222) [
Immune pneumonia 111 1(111) -

 Abdominal pain 1311 1011 —
Nausea 1(111) 1(111) -
Joint congestion 1L 1L -

Gastrintestinal bleeding 1L = 1(111)
Intestinal obstruction 111 - 1(1L1)
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Age (years) B

Sex Male

B () 23

06 o

Comorbidies o

Previous trcatment Disgnostic:
TURBT

nital diagnosis or nital

Recurrence

Number of Lesons More than 3

Y T2NIMO

pTNM T2N2M0

“Type of pahology. ve

Pathological Grading 3

HER? expresionlHO) | 2+

PDLT expression <

Immunotherapy islizumay
200 mgQIW,two
eyces

DV therapy ROIS 2 mglks,
QW, o cyles

yeTNM ToNoMO

yTNM ToNoMD

Imaging efficacy assessment | MRI; 1CR

and results

Pathologial effcacy PR

asscsament and rsuls

Subsequent tretment. | Radical
epsectomy.

Follow-up (months) 20

Prostate cancer
(ower risk)

Diagnostic
TURBT.

Iniial

Single (>3 cm)
TNV
TNV

ve

2

<%

tiselizumab
200 mQIW, o
eycles

KOS 2 mykg,
Qaw, o ey

ToxoMo

TURST + Biopsy

130

Case 4

& E

Male Male

54 23

o 0

Diabetes o
Disgnostc-
TURBT

Inital Iniial

More than 3 More than 3

T2N0M0 TINMO.

T280M0 TIN2MO

UC: Carcinoma in | UC
situ, micropapillary

subtype
3 3
3+ 20%) 34 (0%

24 (%)
<% <
islelizumab 200 mg | oripalimab
QW cight acles | 3 mgkg Q2W,

seven cycles
RCA8 2 myfkg, Q2W, | RCHS 2 my/kg,
cight ycles QW five cycles
ToNomo TONOMO
ToNomo TONOMO
MRE rCR MRE 1CR
R pCR
TURBT + Biopsy | Uretoscopy +

Biopsy
140 20

Case 6
@ 50
Male Male
22 26
o 1
Diabetes,
Hypertension
Diagrostic- TURBT, | Diagost
GC (3 eycles) TURBT
Inital Initial
More than 3 More than 3
T2N0M0 T2NOMO.
T280M0 T2NOMO.
ve ve
3 3
26 (70%) o
<1 <%
tiselizumab 200 mg | tiselizumab
QAW three cycles | 200 mg Q3W,
three cycles
RC18 2 mgkg, RC18 2 mykg.
QW, three cycles | Q2W, three cycles
TINMO THaNoMo
ToxoMo TN2MO
MRE; PD.
PR pPD
TURBT, Partal Radical
eystectomy and eystectomy, GC,
dissection of pelvic | radiotherapy
Iymph nodes
80 90

Case 7
s

Female

187

o
Hypertension

Diagnostic-TURBT, GC
+BCG

Bladder cancer recurrence
(e second time)

More than 3

TINIMO

TIBNIMO

ve

<
oripalimab3mgg Q2W,
thee cyles

RCA8 2 mykg, Q2W, four
eydles

T2N0MO.
T2NOMO.

MR rPR

PR

TURBT + Biopsy,
ROAS pls Teripulimab
Maintenance

90

Case 8

Male
57
o

Hypertension

Rightsided
Iaparoscopic radical
esection for ureteral
cancer, GC (2 cyeles)
Bladder cancer
recurrence after
ureteral cancer

More than 3
THNIMO.
THN3MO

ve

2

<%

toripalimab 3 mg/kg
Q2W, 10 cycles

RCA8 2 my/kg, Q2W,
o cycles

T28M0

T282M0

MRE rPR

PR

TURBT + Biopsys
ROAS plus
Teripulimab,

170

Case 9
”
Male

3

Disgnostc-
TURBT, GC +
Triprlimab

(6 cycles)

Bladder cancer
recurrence (the
second time)

More than 3
T4aNIMO
THaNIMO

ve

3

<%
toripalimab,
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QW, 14 ydes

TINOMO
TINOMO

MRE PR

PPR

TURBT + Biopsy,
ROAS plus
Teripulimab

150





OPS/images/fphar-14-1333124/fphar-14-1333124-t003.jpg
Rank ons ACPP ndex egree centrality Country
1 Duke University 78 6213 797 41 45 United States
2 University of Pittsburgh 46 3,668 797 32 33 United States
3 Harvard Medical School 44 | 7553 | 43 34 United States
4 University of California, Los Angeles a 3497 853 2 4 United States
5 Capital Medical University 32 s o 13 [ 16 China
6 University of Texas MD Anderson Cancer Center 2 5407 1865 30 31 United States
7 University of California, San Francisco 28 | 4019 s 31 [ 35 United States
i Huazhong University of Science and Technology 28 269 96 10 2 China
9 Fudan University 28 o ne 13 18 China
10 Johns Hopkins University 27 1434 531 14 20 | United States

Ailsoviiton: OBL Gackin i dions antnamateaes T0. sl Gt ACED, sieics





OPS/images/fphar-14-1333124/fphar-14-1333124-t002.jpg
Country umber (%) Citations ACPP
1 United States 763 (49.9%) 44,002 57.7 105
2 China 362 (23.7%) 6782 187 42
3 Germany 136 (8.9%) 6960 512 40
4 Japan 107 (7.0%) 3973 371 31
5 Ttaly 67 (4.4%) 2,654 396 28
6 England 45 (3.0%) 3241 703 19
7 Switzerland 43 (28%) 3243 754 26
8 Sweden 37 (2.4%) 862 233 16
9 South Korea 35 (2.3%) 711 203 14
10 Belgium 31 (2.0%) 1,565 505 19

Milsoviiton OBL Gavlkas i dinns antronieaens ACI sveries abiion e orblition
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#1

%)

#

Cytokines

Glioma

Immunotherapy

Total Search Formula

Search formulas

TS=(IL *) OR TS=(interleukin *) OR TS=(ILIF11) OR TS=(Interleukin-1 Family Member
11) OR TS=(Interleukin-1 Family, Member 11) OR TS=(IL-1F11) OR TS=(Tumor
Necrosis Factor *) OR TS=(TNF *) OR TS=(IFN *) OR TS=(Interferon *) OR TS=(*EGF)
OR TS=(*Epidermal Growth Factor) OR TS=(SDF) OR T$=(SDF-1) OR TS=(SDF 1) OR
TS=(SDFG1) OR T$=(C-X-C Motif Chemokine Ligand 12) OR TS=(C-X-C Motif
Chemokine Ligand-12) OR TS=(C-X-C Motif Chemokine Ligand12) OR TS=(G-CSF) OR
TS=(GCSF) OR TS=(G CSF) OR TS=(Granulocyte Colony Stimulating Factor) OR
TS=(Granulocyte-Colony Stimulating Factor) OR TS=(GM-CSF) OR TS=(GM CSF) OR
TS=(GMCSF) OR TS=(Granulocyte-Macrophage Colony Stimulating Factor) OR
TS=(Granulocyte Macrophage Colony Stimulating Factor) OR TS=(M-CSF) OR
TS=(MCSF) OR TS=(M CSF) OR T$=(Macrophage Colony Stimulating Factor) OR
TS=(Macrophage-Colony Stimulating Factor) OR TS=(EPO) OR TS=(Erythropoietin) OR
T$=(TPO) OR TS=(Thrombopoietin) OR TS=(*chemokines) OR TS=(CXCL *) OR
TS=(CCL *) OR TS=(XCL *) OR TS=(fractalkine) OR TS=(CX3C*) OR TS=(RANTES)
OR TS=(Regulated upon Activation, Normal T cell Expressed and Secreted) OR
T$=(MCP*) OR TS=(Monocyte Chemoattractant Protein *) OR TS=(MIP*) OR
TS=(Macrophage Inflammatory Protein *) OR TS$=(Transforming Growth Factors *) OR
TS=(TGF *) OR TS=(Bone Morphogenetic Protein *) OR TS=(BMP *) OR
TS=(Amphiregulin) OR TS=(AREG) OR TS=(Betacellulin) OR TS=(BTC) OR
piregulin) OR TS=(EREG) OR TS=(Neuregulin) OR TS=(NRG) OR TS=(Activin)
OR TS=(Inhibin) OR T$=(Growth and Differentiation Factor *) OR TS=(GDF *) OR
TS=(NGF) OR TS=(Nerve Growth Factor) OR TS=(BDNF) OR TS=(Brain-Derived
Neurotrophic Factor) OR TS=(NT *) OR TS=(Neurotrophin *) OR TS=(Fibroblast Growth
Factor *) OR TS=(FGF *) OR TS=(KGF) OR TS=(keratinocyte growth factor) OR
TS=(GAF) OR TS=(glia-activating factor) OR TS=(Insulin-like Growth Factor *) OR
TS=(IGF *) OR TS=(Somatomedin C) OR TS=(Platelet-Derived Growth Factor *) OR
TS=(PDGF*)

TS= (glioma *) OR TS=(neurolipocytoma) OR TS=(neurospongioma) OR
TS=(neuroglioma *) OR TS=(glioblastoma *) OR TS=(GBM) OR TS=(gliosarcoma) OR
TS=(astrocytoma)

‘TS=(ipilimumab) OR T$=(pembrolizumab) OR TS=(nivolumab) OR TS=(tremelimumab)
OR T$= (immune checkpoint blockade) OR TS=(*immunotherapy) OR TS=(vaccine) OR
TS=(CAR-T) OR TS=(immune checkpoint inhibitor) OR TS=(PD-1) OR TS=(PD-L1) OR
TS=(CTLA-4) OR TS=(LAG-3)

(#1) AND (#2) AND (#3)
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CGGA325 (N CGGA693 (N = 175)

Age: mean(range) 60 (21-89) 51 (18-79) 50 (19-76) 52 (19-77)
Gender

Female 93 (39.2%) 39 (34.8%) 79 (45.1%) 11(30.6%)

Male 143 (60.3%) 73 (65.2%) 96 (54.9%) 25 (69.4%)

NA 1(0.4%) 0 0 0
Histology

Glioblastoma 237 (100%) 112 (100%) 175 (100%) 36 (100%)
Grade

G4 237 (100%) 112 (100%) 175 (100%) 36 (100%)
IDH status

Wild-type 237 (100%) 112 (100%) 175 (100%) 36 (100%)

TERT promoter status

Mutant 167 (70.5%) NA NA 10 (27.8%)
wT 17 (7.29%) NA NA 19 (52.8%)
NA 53 (22.4%) NA NA 7 (19.4%)

MGMT promoter status

Methylated 129 (54.4%) 73 (652%) 67 (383%) 12 (33.3%)

Unmethylated 78 (329%) 35 (313%) 79 (45.1%) 14 (38.9%)

NA 30 (127%) 4(36%) 29 (166%) 7 (19.4%)
ATRX status

Mutant 8 (3.4%) NA NA 28 (77.8%)

wT 225 (94.9%) NA NA 7 (19.4%)

NA 4(1.7%) NA NA 1(2.8%)

Abbreviation: TCGA, the cancer genome atlas; CGGA, chinese glioma genome atlas; WCH, west c
O6-methylguanine-DNA, methyltransferase; ATRX, alpha-thalassemia x-linked intellectual disability syndrome; WT, wild type; NA, not a

hospital; IDH, isocitrate dehydrogenase; TERT, telomerase reverse transcriptase; MGMT,
ble.
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