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Editorial: Methods in
computational genomics

Lei Chen1 and Nathan D. Olson2*
1College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2National Institute
of Standards and Technology (NIST), Gaithersburg, MD, United States
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Editorial on the Research Topic
Methods in computational genomics

In the rapidly evolving field of Methods in Computational Genomics, this editorial
series illuminates the forefront of experimental techniques and methodologies. From
dissecting large multidimensional numeric datasets to predicting the functions of novel
genomic entities, these approaches have revolutionized our understanding of genomic
data. This editorial underscores two pivotal themes: the development of innovative
tools and software, and the integration of artificial intelligence (AI) and machine
learning in genomic research. These themes exemplify the significant impact
computational methods have had on genomics, providing novel insights into
complex biological questions.

Theme 1—Tools and Software. Tools and software are fundamental to
computational genomics. This section underscores the broader impact of these
innovations in advancing genomic research, particularly in metagenomics and gene
expression analysis.

Melzer et al.- CLARITY App. This application, developed for high-resolution genetic
mapping, exemplifies the integration of computational tools with traditional genomics. Its
capacity to interconnect physical and genetic maps and visualize recombination hotspots
illustrates how software can significantly enhance genomic research, making complex data
more accessible and interpretable.

Munro et al.- Real-time ONT Sequence Analysis Pipeline. Their tool addresses the need
for efficient pathogen monitoring. By optimizing sequencing time and costs, this pipeline
demonstrates the practical benefits of computational tools in real-time sequence analysis,
which is crucial for epidemiological surveillance.

Liang et al.–ARGem: Antimicrobial Resistant Pipeline. This user-friendly pipeline for
profiling antibiotic resistance genes reflects the growing importance of metagenomics in
environmental monitoring. Its high performance in analyzing aquatic metagenomes
highlights the tool’s flexibility and utility in diverse research contexts.

Alves et al.- EasySSR. This web tool for microsatellite analysis streamlines genomic
comparisons, catering to the need for simple yet effective tools in genomic research.
EasySSR’s functionality, providing outputs like PTT files and interactive charts,
demonstrates how computational tools can facilitate complex genomic analyses.

Each manuscript in this theme showcases how computational tools and software are not
just auxiliary but integral to genomic research, offering innovative solutions to traditional
challenges and opening new avenues for exploration and discovery in the field.
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Theme 2–AI/Machine Learning. This theme highlights the
transformative impact of AI and machine learning in
computational genomics, showcasing a range of algorithms from
statistical learning to advanced deep learning.

Sub-theme 1–Genomic Analysis. Genomic analysis is critical in
computational genomics for its ability to unravel complex biological
mechanisms.

Ju et al.—DNA N4-methylcytosine (4mC) Analysis. The use of
deep learning models for predicting 4mC sites, as demonstrated in the
brief research report, exemplifies the potential of these advanced
techniques in enhancing our understanding of gene regulation and
genome stability.

Jia et al.—Enhancer Prediction. Jia et al.’s iEnhancer-DCSV
method, which employs densely connected convolutional networks,
showcases how AI can be leveraged to predict enhancers, thus
contributing to the understanding of gene transcription and expression.

Zhang et al.—CTCF Binding Sites Analysis. Zhang et al.’s
machine learning model for predicting chromatin loop anchors
from CTCF binding sites underscores the role of AI in dissecting
complex genomic structures.

Deng et al.—Osteoporosis Genomic Research. Deng et al.’s
investigation into osteoporosis demonstrates the power of
bioinformatics in identifying immune-related genetic markers,
highlighting the intersection of AI and medical genomics.

Sub-theme 2–Protein/Peptide Analysis. Protein/peptide analysis
is essential for understanding complex biological functions and
disease mechanisms.

Su et al.—Outer Membrane Protein Prediction. Su et al.’s
computational model for predicting outer membrane proteins
illustrates the application of AI in protein analysis, enhancing
our understanding of cellular structures.

Liu et al.—Neuropeptide Prediction. Liu et al.’s ensemble tool,
integrating multiple convolution neural network models, demonstrates
the effectiveness of AI in predicting biologically significant peptides.

Wang et al.—Antimicrobial Peptide Prediction. Wang et al.’s
deep learning strategy for predicting antimicrobial peptides
represents a significant advance in therapeutic research, offering
potential applications in treating conditions like diabetic foot.

Livesey et al.- Cancer Genomic Analysis. Livesey et al.’s approach
to kidney renal clear cell carcinoma employs AI for gene analysis,
showcasing how these techniques can lead to meaningful insights in
cancer research.

Throughout this theme, the diverse range of AI/ML methods
and their specific applications in different genomic contexts
highlight the vast potential of these technologies in pushing the
frontiers of genomic research.

The transformative impact of these methods is particularly evident
in precision medicine. The perspective by Latapiat et al., focusing on
individualized co-expression networks, is a testament to this evolution.
Their approach to patient stratification in complex diseases underscores
the real-world implications of computational genomics, enhancing
diagnostics and treatment personalization. This aligns with the
ongoing need for tool and software development aimed at
optimizing data generation and information extraction, furthering
our understanding of biological systems.

This series has showcased remarkable advancements in
computational genomics, exhibiting the synergy between innovative
software tools, AI, and machine learning techniques. These

manuscripts demonstrate how both cutting-edge and established
algorithms contribute to the field’s robustness and innovation. From
the efficient mapping of genetic landscapes with tools like CLARITY to
the sophisticated prediction of neuropeptides using ensemble AImodels,
these studies exemplify the diverse range of applications in genomics.

As we conclude, the integration of novel computational
methodologies with traditional approaches is not just enhancing
genomic research but is pivotal in deciphering the complexities of
life sciences. The future of genomics, rich with potential, is set to be
driven by these innovative computational strategies.
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iEnhancer-DCSV: Predicting
enhancers and their strength
based on DenseNet and improved
convolutional block attention
module

Jianhua Jia1*, Rufeng Lei1*, Lulu Qin1, GenqiangWu1 and XinWei2

1School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, China, 2Business
School, Jiangxi Institute of Fashion Technology, Nanchang, China

Enhancers play a crucial role in controlling gene transcription and expression.
Therefore, bioinformatics puts many emphases on predicting enhancers and their
strength. It is vital to create quick and accurate calculating techniques because
conventional biomedical tests take too long time and are too expensive. This
paper proposed a new predictor called iEnhancer-DCSV built on a modified
densely connected convolutional network (DenseNet) and an improved
convolutional block attention module (CBAM). Coding was performed using
one-hot and nucleotide chemical property (NCP). DenseNet was used to
extract advanced features from raw coding. The channel attention and spatial
attentionmodules were used to evaluate the significance of the advanced features
and then input into a fully connected neural network to yield the prediction
probabilities. Finally, ensemble learning was employed on the final categorization
findings via voting. According to the experimental results on the test set, the first
layer of enhancer recognition achieved an accuracy of 78.95%, and the Matthews
correlation coefficient value was 0.5809. The second layer of enhancer strength
prediction achieved an accuracy of 80.70%, and the Matthews correlation
coefficient value was 0.6609. The iEnhancer-DCSV method can be found at
https://github.com/leirufeng/iEnhancer-DCSV. It is easy to obtain the desired
results without using the complex mathematical formulas involved.

KEYWORDS

enhancer, DenseNet, channel attention, spatial attention, ensemble learning

1 Introduction

Genes are functional areas of an organism’s DNA (Dai et al., 2018; Kong et al., 2020) that
hold genetic information. The gene is transferred to the protein through a sequence of
transcription (Maston et al., 2006) and translation (Xiao et al., 2016), and proteins control
the organism’s exterior phenotypic shape (Buccitelli and Selbach, 2020). Transcription is one
of the most crucial aspects of gene expression. The enhancer and promoter (Cvetesic and
Lenhard, 2017) are the most significant sequence regions for transcriptional activity. An
enhancer is a brief non-coding DNA fragment on DNA (Kim et al., 2010) and controls rapid
and slow gene expression (Shrinivas et al., 2019). According to previous studies, several
illnesses (Yang et al., 2022) are produced as a result of enhancer mutations and deletions
(Emison et al., 2005; Liu G. et al., 2018; Boyd et al., 2018; Wu et al., 2019). In terms of the
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activities they express, the enhancers may be categorized into
groups, such as strong and weak enhancers, closed (balanced)
enhancers, and latent enhancers (Shlyueva et al., 2014).
Therefore, understanding and recognizing these specific gene
sequence segments is an urgent problem (Pennacchio et al., 2013).

Traditional medical experimental methods (Yang et al., 2020) in
bioinformatics are costly and time-consuming. Therefore, it is
crucial to develop computational techniques and derive some
excellent predictors (Firpi et al., 2010; Fernández and Miranda-
Saavedra, 2012; Erwin et al., 2014; Ghandi et al., 2014; Kleftogiannis
et al., 2015; Lu et al., 2015; Bu et al., 2017; Yang et al., 2017).
However, these techniques have limitations in the prediction of
strong and weak enhancers. Liu et al. (2015) developed a predictor
called iEnhancer-2L based on the support vector machine (SVM)
algorithm and used the sequence pseudo-K-tuple nucleotide
composition (PseKNC) approach to encode features. Afterward,
machine learning-based methods were applied to the prediction of
enhancers, such as SVM (Jia and He, 2016; He and Jia, 2017), RF
(Singh et al., 2013;Wang et al., 2021), and XGBoost (Cai et al., 2021),
and many excellent predictors have been created. However, a single
machine learning classifier has obvious performance drawbacks. A
predictor based on an ensemble learning model (Liu B. et al., 2018)
was developed to address this problem, which generally has a
significantly better performance. The ensemble learning model
has diversity and complexity in feature processing. For instance,
Wang C. et al. (2022) developed a predictor called Enhancer-FRL,
which used 10 feature methods for feature coding. The manual
creation of feature coding is a relatively difficult problem, and the
presence of many complex feature coding types can lead to
dimensional disasters. Furthermore, the effectiveness of
conventional machine learning models depends on the extracted
complex features. Consequently, the development of a predictor that
requires only simple features is crucial.

Nowadays, deep learning is becoming increasingly popular.
Nguyen et al. (2019) proposed the iEnhancer-ECNN model based
on convolutional neural networks (CNNs). Niu et al. (2021)
proposed a model called the iEnhancer-EBLSTM based on bi-
directional long short-term memory (Bi-LSTM). They used one-
hot and K-mers coding techniques to encode the enhancer
sequences and then fed these features into the deep learning
network to get relatively good prediction results. For example, in
the iEnhancer-ECNN model, the ACC and MCC of enhancer
recognition results were 0.769 and 0.537, and the ACC and MCC
of enhancer strength prediction results were 0.678 and 0.368,
respectively. However, there is a wide gap in prediction precision
using a better deep learning model.

In deep learning networks, CNNs with more convolutional
layers extract more advanced local features but lead to the
problem of gradient disappearance and network degradation. To
solve this problem, the residual neural network (ResNet) (Li et al.,
2022) uses a short-circuit connection structure, which allows the
convolutional layers to be connected several layers apart and can
solve the problem of network degradation to some extent. However,
the densely connected convolutional network (DenseNet) (Huang
et al., 2010) has been enhanced based on ResNet. DenseNet extracts
richer feature information by reusing the features of each previous
layer, and it is more effective than ResNet. The attention model is
also increasingly used, and the essence of the attention model is to

focus on more useful feature information and suppress useless
feature information. Convolutional block attention module
(CBAM) (Zhang et al., 2022) can focus on more useful feature
information from channel and spatial dimensions. The current
computational method has the disadvantages of poor
performance and complex features. For this purpose, we
developed a new predictor called iEnhancer-DCSV. The predictor
is conducted using a modified DenseNet and an improved CBAM
attention module. The DenseNet framework makes it easier to
extract more advanced features. Experimental results show that
our model outperforms the existing models. The iEnhancer-
DCSV model is currently the optimal choice for predicting
enhancers and their strengths.

2 Materials and methods

2.1 Benchmark dataset

The benchmark dataset was created by Liu et al. (2015). They
took the enhancer fragments from nine cell lines, removed 80% of
the redundant sequences with the CD-HIT (Huang et al., 2010) and
then calculated the ideal fragment length of 200 bp for each
enhancer sequence to create the final dataset. The dataset is split
into two sections: a training dataset for the model’s training and an
independent test dataset for model testing. The independent test
dataset is made up of 200 enhancer samples (with 100 strongly and
100 weakly enhancer samples) and 200 non-enhancer samples,
whereas the training dataset is made up of 1,484 enhancer
samples (with 742 strongly and 742 weakly enhancer samples)
and 1,484 non-enhancer samples. All enhancer samples in the
independent test dataset were different from the training dataset
to guarantee that the samples are independent. The benchmark
dataset is described in Table 1 and may be downloaded conveniently
from the website: https://github.com/leirufeng/iEnhancer-DCSV.

2.2 Feature coding schemes

Two simple and effective coding techniques are used in this
study: one-hot and NCP. Notably, these two coding techniques
produce columns with a dimension of 200, so they can be feature-
combined. For instance, an enhancer sequence with a length of
200 bp can obtain a 4 × 200 feature matrix and a 3 × 200 feature

TABLE 1 Specifics of the benchmark dataset.

Layer Original
dataset

Enhancer Non-enhancer

First layer Training dataset 1,484 1,484

Testing dataset 200 200

Original
dataset

Strong
enhancers

Weak
enhancers

Second
layer

Training dataset 742 742

Testing dataset 100 100
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matrix after one-hot and NCP coding, respectively. Finally,
combining these two matrices through feature fusion can yield a
7 × 200 feature matrix. In this study, the enhancer sequence is
considered a gray image by the feature coding matrix. The 7 ×
200 matrix is directly used as the original feature input.

2.2.1 One-hot coding
In the field of bioinformatics, one-hot coding is one of the most

used coding techniques. The advantages of this coding technique are

its feasibility, efficiency, and ability to assure that each nucleotide
letter is coded independently. Themethod is effective in avoiding the
expression of interdependencies. This coding technique is
particularly popular in bioinformatics. The double helix structure
(Sinden et al., 1998) of DNA is widely known, and it is made up of
four nucleotides: A (adenine deoxyribonucleotide), C (cytosine
deoxyribonucleotide), G (guanine deoxyribonucleotide), and T
(thymine deoxyribonucleotide) (Chou, 1984). The enhancer
sequences are DNA sequences designated “0,1,2,3” in the order

FIGURE 1
Overview of the iEnhancer-DCSV model. (A) Feature coding. One-hot and NCP are used to encode the enhancer sequence, and a 7 × 200matrix is
produced. (B) Framework of the iEnhancer-DCSVmodel. The original features are input directly to the modified DenseNet structure (which includes four
dense blocks, normalized layers, and transition layers), and the improved structure is used to extract advanced features. Modules for spatial and channel
attention are introduced to assess the extracted advanced features’ importance. The two evaluated advanced feature maps are multiplied together
at the corresponding positions. The fully connected neural network is used to output the prediction probabilities. (C) Ensemble model. The model uses
fivefold cross-validation, where each fold is tested using an independent test set, each test enhancer sequence generates five prediction probabilities, and
the final classification is voted using ensemble learning.
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“ACGT.” The nucleotides in the sequences are then coded, and the
coding length is four nucleotides. The coding elements are 0 and 1.
The position corresponding to the nucleotide letter marker is coded
as 1, and the other positions are coded as 0. For instance, “A” is
coded as (1,0,0,0), “C” is coded as (0,1,0,0), “G” is coded as (0,0,1,0),
and “T” is coded as (0,0,0,1) (Zhang et al., 2022). The one-hot coding
is shown in Figure 1A.

2.2.2 NCP coding
The four DNA nucleotides are structurally different from each

other and have different chemical molecular structures (Zhang et al.,
2022). For instance, C and T contain one loop each, whereas A and G
have two loops between the four nucleotides. G and T may be
classified as ketone groups from the standpoint of chemical
composition, whereas A and C can be classified as amino groups.
A and T have two hydrogen bonds, but C and G have three hydrogen
bonds. The strength between C and G is more powerful than that
between A and T. The specific chemical properties between
nucleotides are shown in Table 2.

Then, coding is performed based on the chemical characteristics.
The nucleotide Ni is located in position i in the sequence. Three
chemical characteristics of nucleotide Ni are “ring structure,”
“functional group,” and “hydrogen bond strength” (Xiao et al.,
2019). The vector representation of Ni � (xi, yi, zi), xi, yi, zi is
expressed as ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xi � 1, ifNi ∈ A,G{ },
0, ifNi ∈ C, T{ },{

yi � 1, ifNi ∈ A,C{ },
0, ifNi ∈ G, T{ },{

zi � 1, ifNi ∈ A, T{ },
0, ifNi ∈ C,G{ }.{

(1)

A, C, G, and T may be encoded using this approach as (1,1,1),
(0,1,0), (1,0,0), and (0,0,1). NCP coding is shown in Figure 1A.

2.3 Model construction

In this study, we constructed a network framework to
automatically learn advanced features called iEnhancer-DCSV.
The framework of iEnhancer-DCSV is divided into three parts:
(A) feature coding, (B) framework of iEnhancer-DCSV model, and
(C) ensemble model. The details are shown in Figure 1.

2.3.1 DenseNet
In this study, we modified the initial DenseNet structure. The

original DenseNet consists of a convolutional layer, a dense block
layer, and a transition layer. First, convolution is applied to the
original features. Then, the convolution features are processed by the
dense block and transition layers. The dense block layer is a dense
connection of all the preceding layers to the following layers. In
particular, each layer accepts all its preceding layers as its additional
input, enabling feature reuse. The transition layer, which mainly
connects two adjacent dense blocks, reduces the feature map size.
Instead, we deleted the first convolutional layer and added a batch
normalization layer between the dense block layer and the transition
layer. This processing method can extract better-quality feature
information and reduce the risk of overfitting.

2.3.1.1 Dense block
The traditional CNN network does not perform very well in

extracting feature information. A convolutional structure called
dense convolutional block extracts richer feature information by
reusing previous features. Experimentally, the dense convolutional
network feature extraction is proven better than traditional CNN.
The structure diagram is shown in Figure 2.

In the dense block, the input of layer i is related to not only the
output of layer i − 1, but the output of all the previous layers. TheXl

level is represented as follows:

Xl � Hl X0, X1, X2, . . . , Xl−1[ ]( ), (2)
where is denoted as layers X0 to Xl−1 stitched together by the
dimension of the channel. H is a non-linear combinatorial function.
It is a combination of batch normalization, ReLU activation
function, and convolution (3 × 3).

In this study, we used four dense blocks, each containing three
layers of convolution. The final extraction of features was X(seq).

2.3.1.2 Transition layer
The l-1 layers in front of the dense block are combined by

channel dimension. As the number of channels in the l-layer
becomes larger, it leads to an explosion of parameters, along with
a slow training speed.We can improve the efficiency by connecting a
transition layer with the dense block layer. The transition layer

TABLE 2 Nucleotide chemical property.

Chemical property Category Nucleotide

Ring structure Purine A, G

Pyrimidine C, T

Functional group Amino A, C

Keto G, T

Hydrogen bonding Strong C, G

Weak A, T

FIGURE 2
Structure of a dense block.
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consists of a 1 × 1 convolution and a 2 × 2 average pooling. It is a
function of reducing the number of channels and parameters in the
dense block layer by downsampling to compress the model.

2.3.2 Batch normalization
Gradient explosion and gradient disappearance are serious

problems in deep learning training, and this phenomenon tends
to occur more likely in the deeper network structure. If the shallow
parameters are changed, their fluctuations during backpropagation
may be significant, resulting in significant variable shifts in the
deeper network. Batch normalization (Min et al., 2016) has been
shown to improve the generalization ability of the model. The batch
normalization is expressed as follows:

x̃i � xi − μ�����
σ2 − ϵ

√ , (3)
yi � γx̃i + β, (4)

whereA is the set of the feature dataset [x1, x2, . . . , xi], μ is the mean
of datasetA, and σ2 is the variance of datasetA. γ and β are trainable
parameters.

2.3.3 Improved CBAM attention module
The CBAM attention module comprises channel attention and

spatial attention modules (Chen et al., 2017). First, we use the
channel attention module to evaluate the original features. Second,
we take the feature map output from the channel attention module
and feed it back into the spatial attention module. Finally, we output
the final feature maps from the spatial attention module. This serial
connection of CBAM attention modules has the disadvantage that
the attention modules are all computed in a specific way, and the
computation of weights destroys the feature shape of the input. This
leads to inaccurate weight calculation of the spatial attention
modules and loss of channel weighting information in the final
feature map. We change the original serial approach in the CBAM
attention module to a parallel method. The principle is to input the
original features into the channel attention module and the spatial
attention module and let the output features be multiplied by their
corresponding positions. By this method, the effect of each attention
model after evaluation can be maximally preserved and the
expressiveness of the features can be improved.

2.3.3.1 Channel attention module
In deep learning, the degree of importance varies between

different feature map channels, so we use the channel attention
module to calculate different weights for each channel. By weighting
each channel of the feature map, the model automatically pays
attention to the more useful channel information to achieve the
fixation of channel dimension and compression of spatial
dimension. The channel attention module comprises the max
pooling layer, the average pooling layer, the MLP module, and
the sigmoid activation function. The CBAM’s channel attention
module structure is shown in Figure 3.

The channel attention module starts with the feature map
passing through two parallel max pooling and average pooling
layers, which are input into the fully connected neural network
(MLP) module separately. Second, the two results of theMLP output
are summed element by element, and the channel attention module
weights are obtained using the sigmoid activation function. Finally,
these weights are multiplied by the feature map to obtain the feature
map of the channel attention model weighting. The CBAM’s
channel attention model is expressed as follows:

Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( ), (5)
F � Fscale F,Mc F( )( ) � Mc F( ) · F, (6)

where pooling here is the global max pooling and the global average
pooling. Fscale(F,Mc(F)) denotes each channel-specific value of F
multiplied by the weight Mc(F).

2.3.3.2 Spatial attention module
In deep learning, different receptive fields have different

degrees of value to the feature map, so we use a spatial
attention model to calculate the weights between receptive
fields. By weighting the receptive fields, we allow the model to
focus on the more useful target location information to achieve a
constant spatial dimension and a compressed channel
dimension. The spatial attention model is implemented
through a max pooling layer, an average pooling layer, a CNN
module, and a sigmoid activation function. The CBAM’s spatial
attention module structure is shown in Figure 4.

The spatial attentionmodel first passes the feature maps through
two parallel max pooling and average pooling layers and performs a

FIGURE 3
CBAM’s channel attention module structure.
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stitching operation on the two pooling feature maps. Then, the
newly obtained features are input into the CNN module to be
transformed into a feature map with channel number 1, and the
spatial attention module weights are obtained by the sigmoid
activation function. Finally, this weight is multiplied by the
feature map to obtain the weighted feature map of the spatial
attention model. The CBAM’s spatial attention model is
expressed as follows:

Ms F( ) � σ f7×7 AvgPool F( );MaxPool F( )[ ]( )( ), (7)
F � Fscale F,Ms F( )( ) � Ms F( ) · F. (8)

Pooling here is the global max pooling and global average
pooling. The size of the convolutional kernel used in the CNN
module is 7 × 7. Finally, Fscale(F,Mc(F)) denotes each receptive
field of F multiplied by the weight Mc(F).

2.3.4 Fully connected neural network
We used a fully connected neural network (Wang. et al.,

2022b) to predict the enhancers and their strength. After we
extracted the advanced features, the size of the advanced features
was reduced using a pooling layer. Then, these features are
flattened into vectors, which are later input into the fully
connected neural network. Finally, the softmax function is
used to calculate the predicted probability of the enhancers.
The softmax formula is expressed as

P y � i
∣∣∣∣x( ) � eW

s
i pX

∑C

j�1e
Ws

jpX
, (9)

where Ws
i and Ws

j denote the weights in the fully connected
neural network, X denotes the sample, and C is the number of
categories. P(y � i|x) denotes the probability that x is predicted
to be i. This is a dichotomous problem, i = 0 or i = 1.

2.3.5 Ensemble model
There is an ensemble method called bagging (Bauer and Kohavi,

1999). It is accomplished by training several different models,
allowing independent test data to calculate the predicted results
using different models and then averaging them. This ensemble
learning approach is called model averaging. The advantage of
model averaging is that different models do not usually produce
the same error on the test data, and it is a very powerful method for
reducing generalization errors.

In this study, we used a fivefold cross-validation method (Shang
et al., 2022). The training dataset was divided into five parts: four for
training and one for validation. We used an independent test set put
into each fold in cross-validation, by which five predictions are
obtained. Finally, the final prediction results are obtained by the
voting method. The ensemble method is shown in Figure 1C.

2.4 Performance evaluation

Scientific evaluation metrics are a measure of model
performance. In this study, the evaluation of model performance
contains four metrics: sensitivity (Sn), specificity (Sp), accuracy
(Acc), and Mathew’s correlation coefficient (MCC) (Sokolova and
Lapalme, 2009). The specific calculation formula is shown as follows:

Sp � TN

TN + FP
,

Sn � TP

TP + FN
,

Acc � TP + TN

TP + TN + FP + FN
,

MCC � TP × TN − FP × FN��������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

FIGURE 4
CBAM’s spatial attention module structure.
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where TP, TN, FP, and FN are the four metrics in the confusion
matrix, representing true positive, true negative, false positive, and
false negative, respectively (Niu et al., 2021). In addition, we added
the ROC curve area AUC metric (Vacic et al., 2006) to evaluate the
model, and higher values of these metrics indicate better model
performance.

3 Results and discussion

3.1 Construction of the first layer (enhancer
recognition) model

The recognition of enhancers in the first layer is very important
to complete the prediction mission. For the first layer of enhancer
recognition, we used the iEnhancer-DCSV network framework. The
advanced feature extraction and weight assignment are performed
automatically by the model’s iEnhancer-DCSV network framework.
First, the enhancer sequences are encoded using the one-hot and
NCP methods, and then feature coding is fed into the DenseNet to
extract advanced features. These advanced features are input into the
channel attention module and the spatial attention module,
respectively. The two evaluated advanced feature maps are
multiplied at the corresponding positions, and then the pooling
layer is used to compress the feature size. Finally, a fully connected
neural network is used to derive the predicted probabilities. We
validate the model by putting independent test sets into each fold of
the fivefold cross-validation. The aforementioned five-time results
are passed through a soft voting mechanism to arrive at the final
prediction. The whole process was cycled 10 times to verify the
stability of the model, and the obtained individual performance

metrics were averaged. The experimental results for SN, SP, Acc, and
MCC were 80.25%, 77.65%, 78.95%, and 0.5809, respectively.

3.2 Construction of the second layer (strong
and weak enhancer prediction) model

On the basis of the correct identification of enhancers in the first
layer, the second layer predicts the strengths and weaknesses of
enhancers. As the second layer has less training data and the complex
network structure can lead to overfitting, we removed the attention
module from the iEnhancer-DCSV network framework and used the
same training as the first layer, with experimental results of 99.10%,
62.30%, 80.70%, and 0.6609 for SN, SP, Acc, and MCC, respectively.

3.3 Comparison of different codingmethods

Currently, feature engineering has been a very important part of
the process because building a model and using a simple and
efficient coding method is crucial. In this study, we compared the
one-hot + NCP coding, one-hot coding, and NCP coding to
determine the final coding method. We input the three encoding
methods into the two network frameworks, layer 1 and layer 2,
respectively, and the results of the experiment are shown in Table 3.
In the first layer (enhancer recognition), the one-hot + NCP coding
was slightly better than the one-hot coding and better than the NCP
coding. In the second layer (strong and weak enhancer prediction),
the one-hot + NCP coding was much better than these two coding
types. Therefore, we adopted one-hot + NCP coding as the final
coding method in this study.

TABLE 3 Comparison results of different coding schemes.

Layer Coding SN (%) SP (%) Acc (%) MCC AUC

First layer One-hot 81.70 75.50 78.60 0.5737 0.8275

NCP 83.25 70.50 76.88 0.5428 0.8168

One-hot + NCP 80.25 77.65 78.95 0.5809 0.8527

Second layer One-hot 60.30 72.80 66.55 0.3418 0.7491

NCP 90.50 53.40 71.95 0.4780 0.7666

One-hot + NCP 99.10 62.30 80.70 0.6609 0.8686

TABLE 4 Comparison with different architecture methods at layer 1 (enhancer recognition).

Model framework SN (%) SP (%) Acc (%) MCC AUC

ResNet 69.80 77.90 73.85 0.4927 0.8211

DenseNet 83.10 68.50 75.80 0.5219 0.8108

DenseNet + channel attention 78.20 78.35 78.27 0.5686 0.8316

DenseNet + spatial attention 78.75 78.20 78.48 0.5717 0.8304

DenseNet + CBAM attention 83.70 67.25 75.48 0.5183 0.8046

DenseNet + improved CBAM attention 80.25 77.65 78.95 0.5809 0.8527
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TABLE 5 Performance of iEnhancer-DCSV in 10 trials.

Layer Cycle index Sn (%) Sp (%) Acc (%) MCC

First layer 0 78.50 78.00 78.25 0.5650

1 83.00 75.50 79.25 0.5866

2 80.50 75.00 77.75 0.5558

3 74.00 85.50 79.75 0.5989

4 77.00 81.50 79.25 0.5855

5 87.50 68.00 77.75 0.5658

6 80.50 80.00 80.25 0.6050

7 79.50 80.00 79.75 0.5950

8 80.50 78.00 79.25 0.5851

9 81.50 75.00 78.25 0.5661

Mean ± STD 80.25 ± 3.39 77.65 ± 4.47 78.95 ± 0.84 0.5809 ± 0.0158

Second layer 0 99.99 61.99 81.00 0.6702

1 95.99 62.99 79.50 0.6250

2 95.99 64.99 80.50 0.6416

3 99.99 60.99 80.50 0.6624

4 99.99 56.99 78.50 0.6313

5 99.99 61.99 81.00 0.6702

6 99.99 60.99 80.50 0.6624

7 99.99 64.99 82.50 0.6938

8 99.99 58.99 79.50 0.6468

9 98.99 67.99 83.50 0.7047

Mean ± STD 99.10 ± 1.58 62.30 ± 3.00 80.70 ± 1.38 0.6609 ± 0.0243

FIGURE 5
ROC curves for layer 1 (enhancer recognition).

Frontiers in Genetics frontiersin.org08

Jia et al. 10.3389/fgene.2023.1132018

14

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1132018


3.4 Comparison of different model
frameworks

In this study, we used six network frameworks: ResNet,
DenseNet, DenseNet + channel attention model, DenseNet +
spatial attention model, DenseNet + CBAM attention model, and
DenseNet + improved CBAM attention model. We tested these five

network frameworks in the first layer (enhancer recognition) task
because the amount of data for the second layer (enhancer strength
prediction) task was too small. The original features were extracted
using each of these five network frameworks for the high-level
features, and the best-performing network framework was
selected based on the experimental results. The experimental
comparison results are shown in Table 4. Adding an attention

FIGURE 6
ROC curves for layer 2 (enhancer strength prediction).

TABLE 6 Comparison with other methods on the same independent datasets.

Layer Predictor SN SP Acc MCC AUC Source

First layer iEnhancer-2L 71.00 75.00 73.00 0.4604 0.8062 Liu et al. (2015)

EnhancerPred 73.50 74.50 74.00 0.4800 0.8013 Jia and He (2016)

iEnhancer-EL 71.00 78.50 74.75 0.4964 0.8173 Liu et al. (2018a)

iEnhancer-ECNN 78.50 75.20 76.90 0.5370 0.8320 Nguyen et (2019)

iEnhancer-XG 75.75 74.00 77.50 0.5150 — Cai et al. (2021)

iEnhancer-EBLSTM 75.50 79.50 77.20 0.5340 0.7720 Niu et al. (2021)

Enhancer-FRL 80.50 75.50 78.00 0.5607 0.8573 Wang et al. (2022a)

iEnhancer-DCSV 80.25 77.65 78.95 0.5809 0.8527 This study

Second layer iEnhancer-2L 47.00 74.00 60.50 0.2181 0.6678 Liu et al. (2015)

EnhancerPred 45.00 65.00 55.00 0.1021 0.5790 Jia and He (2016)

iEnhancer-EL 54.00 68.00 61.00 0.2222 0.6801 Liu et al. (2018b)

iEnhancer-ECNN 79.10 56.40 67.80 0.3680 0.7480 Nguyen et (2019)

iEnhancer-XG 70.00 57.00 63.50 0.2720 — Cai et al. (2021)

iEnhancer-EBLSTM 81.20 53.60 65.80 0.3240 0.6580 Niu et al. (2021)

Enhancer-FRL 98.00 49.00 73.50 0.5391 0.8723 Wang et al. (2022b)

iEnhancer-DCSV 99.10 62.30 80.70 0.6609 0.8686 This study
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model behind the DenseNet is already very effective, and the
improved CBAM attention model integrates the advantages of
both attention models. However, the improved effect is limited
because the shape of the feature map is too small. The results show
that the DenseNet + improved CBAM attention network framework
works better. Therefore, we finally chose the DenseNet + improved
CBAM attentional network framework model.

3.5 Performance of iEnhancer-DCSV on the
training dataset

To verify the performance of the iEnhancer-DCSV classifier, we
cycled through 10 times of fivefold cross-validation, and the
experimental results are shown in Table 5. We found that the
values of the evaluation metrics fluctuated relatively steadily on
the first (enhancer recognition) and second (enhancer strength
prediction) layer tasks, indicating that the iEnhancer-DCSV
model has good generalization capability. Figure 5 shows the
ROC curves of the first layer (enhancer recognition) with a mean
AUC value of 0.8527 in 10 experiments, and Figure 6 shows the ROC
curves of the second layer (enhancer strength prediction) with a
mean AUC value of 0.8686 in 10 experiments. The results show that
our proposed iEnhancer-DCSV has good performance.

3.6 Comparison of iEnhancer-DCSV with
existing predictors

The iEnhancer-DCSV predictor proposed in this study is compared
with seven existing predictors. The performance of independent
datasets under different methods is shown in Table 6. The
iEnhancer-DCSV predictor has better Acc and MCC metrics
compared with others. The improvement ranges for ACC and MCC
in the first layer (enhancer recognition) were 1.95%–5.95% and
0.0202–0.1205, respectively, and the improvement ranges for ACC
and MCC in the second layer (enhancer strength prediction) were
7.2%–25.7% and 0.1218–0.5588, respectively. Meanwhile, in the first
and second layers, the SN and SP metrics also have some advantages,
indicating that iEnhancer-DCSV is more balanced and has more stable
and superior performance in identifying positive and negative samples.
The iEnhancer-DCSV predictor is expected to be the most advanced
and representative tool for predicting enhancement and its strengths
and weaknesses.

4 Conclusion

In this study, we propose a new predictor of enhancer
recognition and its strength called iEnhancer-DCSV. It is based
on DenseNet and an improved CBAM attention module approach.
The experimental results demonstrate that the MCC value for
enhancer identification on the independent test set is 0.5809, and
the MCC value for enhancer strength prediction is 0.6609. This
indicates that the iEnhancer-DCSV predictor has good performance
and generalization ability, which is better than the existing
prediction tools. We combine deep learning methods with
enhancer research to innovate computational methods in the

field of bioinformatics and enrich enhancer research. In the
future, the iEnhancer-DCSV predictor not only is applicable to
enhancer classification tasks but can also be used in different
prediction tasks, making its use convenient for researchers.

Of course, some deficiencies must be overcome in our proposed
model. The current enhancer sample of data is small and fails to
sufficiently promote the performance of the iEnhancer-DCSV
model using a big data-driven approach. In addition, data
enhancement strategies were not employed to augment our data
samples, such as generative adversarial networks (GANs) (Li and
Zhang, 2021). This will be our future work issue to address.
However, as the research on enhancers progresses, the
disadvantage of a small amount of data will gradually disappear,
and better deep learning methods will be used in the research,
creating more possibilities for future enhancer recognition and
strength prediction.
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The ongoing SARS-CoV-2 pandemic demonstrates the utility of real-time
sequence analysis in monitoring and surveillance of pathogens. However, cost-
effective sequencing requires that samples be PCR amplified and multiplexed via
barcoding onto a single flow cell, resulting in challenges with maximising and
balancing coverage for each sample. To address this, we developed a real-time
analysis pipeline tomaximise flow cell performance and optimise sequencing time
and costs for any amplicon based sequencing.We extended our nanopore analysis
platform MinoTour to incorporate ARTIC network bioinformatics analysis
pipelines. MinoTour predicts which samples will reach sufficient coverage for
downstream analysis and runs the ARTIC networks Medaka pipeline once
sufficient coverage has been reached. We show that stopping a viral
sequencing run earlier, at the point that sufficient data has become available,
has no negative effect on subsequent down-stream analysis. A separate tool,
SwordFish, is used to automate adaptive sampling on Nanopore sequencers
during the sequencing run. This enables normalisation of coverage both within
(amplicons) and between samples (barcodes) on barcoded sequencing runs. We
show that this process enriches under-represented samples and amplicons in a
library as well as reducing the time taken to obtain complete genomes without
affecting the consensus sequence.

KEYWORDS

bioinformactics, software, pipeline, viral sequence analysis, genomics, nanopore
sequencing, oxford nanopore minION, oxford nanopore technologies (ONT)

1 Introduction

Oxford Nanopore Technologies (ONT) sequencers (MinION, GridION,
Promethion) have allowed sequencing to become a dynamic, real-time process (Jain
et al., 2016). By writing batches of sequenced reads to disk after DNA has finished
translocating a pore, these data become available immediately, enabling parallel data
analysis and so reducing the time required to provide insight into the sequenced sample.
Even prior to the ongoing SARS-CoV-2 pandemic, the benefits of real-time analysis of
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sequence data have been demonstrated (Quick and Loman, 2016;
Gardy and Loman, 2018), and rapid lineage assignment and
Variant of Concern/Variant under Investigation (VoC/VuI)
status can be time sensitive when tracking a new variant
(O’Toole et al., 2021).

The ARTIC Network (Quick et al., 2017; Tyson, 2020) (https://
artic.network) provides comprehensive protocols for both wet lab
and downstream best practice informatics analyses for SARS-CoV-
2, amidst other pathogenic viruses. The use of PCR amplification can
lead to unequal coverage of individual amplicons in a sequencing
library such that some reach sufficient coverage for reliable analysis
faster than others. Further sequencing of these amplicons with
sufficient coverage will not benefit the final down-stream
analysis. Even using 96 barcodes to multiplex samples, the
average ONT MinION/PromethION flowcell is capable of
providing more data than required. Ideally, sequencing would be
stopped as soon as sufficient data are available for analysis with
balanced coverage of amplicons in the library. Aside from wet lab
optimisations, ONT sequencers offer Run Until, the ability to stop
sequencing once some pre-defined condition has been met, and
adaptive sampling (Payne 2020), the ability to stop sequencing and
unblock off target DNA from the pore, whichmay help address these
problems.

As part of the COG-UK network (Cog, 2020; Nicholls et al.,
2021) we generated thousands of SARS-CoV-2 consensus
sequences using ONT sequencers. To test the utility of run

until in this context, we incorporated the ARTIC pipeline into
our minoTour tool (Munro et al., 2021) (https://github.com/
looselab/minotourapp) and developed a model to predict if
sufficient coverage will be obtained for each barcoded sample
on a flowcell, stopping sequencing when all samples predicted to
achieve sufficient coverage do so. We demonstrate this has no
effect on the ability to assign lineages (O’Toole et al., 2021) to
samples and minimal impact on SNP calls. The resultant shorter
sequencing runs preserve flow cell health, allowing them to be
flushed and reused for other experiments, reducing the effective
cost per sample for sequencing.

To determine if adaptive sampling could be used to select
individual amplicons from one or more samples to improve and
balance the coverage across SARS-CoV-2 genomes we developed
SwordFish. This tool enables truly “dynamic” adaptive sampling
by providing feedback between minoTour and the ReadFish
pipeline (https://github.com/looselab/swordfish). SwordFish
couples ReadFish to minoTour by querying minoTour for
information on specific sequencing runs and updating
ReadFish (Payne et al., 2021) with new barcode/amplicon
targets in response to ongoing data generation (see Figure 1).
Using a custom 1,200 base pair amplicon scheme (Supplementary
File S3.5) we show adaptive sampling can filter out over abundant
samples and individual amplicons, and coupled with run until,
results in time savings and an increase in the number of
amplicons reaching median 20× coverage.

FIGURE 1
Flowchart demonstrating ReadFish/SwordFish/minoTour interactions. The slow analysis loop (green) is used to update ReadFish’s target TOML file.
The loop is run once every 60 s. MinFQ uploads FASTQ sequence data to minoTour, which tracks coverage for each amplicon on each barcode.
SwordFish queries minoTour for the set of amplicon coordinates on each barcode to unblock. These are defined as those exceeding a specified level of
coverage (e.g., 50×). SwordFish updates a TOML file that can be read by ReadFish. The fast analysis loop (red) is run every read batch (approximately
0.8 s). ReadFish updates its coordinates from the TOML file, base calls and demultiplexes all reads in the batch using Guppy, and then sends unblock
signals to MinKNOW for any reads that align inside any amplicon with sufficient coverage.
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2 Implementation

2.1 MinoTour ARTIC pipeline
implementation

The standard ARTIC pipeline uses Nanopolish (Loman et al.,
2015; Quick et al., 2017) for signal level analysis of raw ONT data
during variant calling. Unfortunately, signal level data are
unavailable within minoTour. Instead we integrated ARTIC’s
alternate Medaka (https://github.com/nanoporetech/medaka)
workflow to enable real-time generation of consensus genomes
during sequencing. MinoTour’s workflow contrasts with other
web based analysis platforms which either do not exploit the
real-time features of the nanopore platform or do not have
access to the sequence data themselves for further analysis
(Bruno et al., 2021; Ferguson et al., 2021). The ARTIC network
does provide a tool, RAMPART, which can monitor a run over time
and complete analysis for individual samples, but does not provide
many of the other features shown here at this time, such as lineage
analysis or adaptive sampling. (https://artic.network/rampart). We
integrated the ARTIC SARS-CoV-2Medaka pipeline intominoTour
as a custom python script, which is run as a Celery task (https://docs.
celeryproject.org/en/stable/), processing read batches as they are
uploaded. The pipeline is asynchronous, preventing blocking of any
other analyses being performed. Uploaded reads are filtered by
length, with the minimum and maximum read lengths
permissible calculated from the underlying amplicon scheme.
Reads are further filtered by the QC score assigned by Guppy
(assigned pass by Guppy) and then mapped to an appropriate
SARS-CoV-2 reference using minimap2 (Li, 2018). Per base
coverage is tracked in optimised numpy arrays using the mapped
reads in real-time (Walt and Varoquaux, 2011).

Coverage is tracked for each individual amplicon on a sample as
defined by the primer scheme in use. Default parameters for triggering
the analysis of a specific sample are at least 90% of the amplicons
(completeness) covered at a median depth of at least 20×, though these
are user configurable. Once triggered, the accumulated mapped reads
for that sample are passed to the ARTIC network’s Medaka pipeline.
Numerous primer schemes can be chosen, including custom schemes,
simply by creating the appropriate primer scheme and reference files
and uploading them to minoTour.

MinoTour uses pangolin (O’Toole et al., 2021) to assign a PANGO
lineage from the most recent lineage classifications. Consensus
sequences are also compared with current VoC/VuI definitions as
defined at https://github.com/phe-genomics/variant_definitions,
using the Aln2Type tool (https://github.com/connor-lab/aln2type).
Both PANGO lineages and VoC/VuI designations are
automatically updated daily by minoTour. A report is generated
for each sample (see Supplementary Figures S1A, B) and optionally
users can be notified of VoC/VuI identifications via the minoTour
Twitter API. Sequences within each run are also globally aligned using
MAFFT (Katoh et al., 2002), with an illustrative tree generated using
iQ-Tree (Minh et al., 2020) and visualised with figtree.js or ToyTree
(Rambaut, 2021). Additional background sequences can be included
in these trees if desired and the distribution of SNPs within consensus
sequences from the run, compared with the reference are displayed in
a SNIPIT plot (https://github.com/aineniamh/snipit) (Supplementary
Figure S1A).

Results from the pipeline are maintained for historical record,
with files stored on disk and metadata and metrics about the ARTIC
sequencing experiment stored in a SQL database. These results are
then visualised in the minoTour web server. Once a run has
completed, which is automatically recognised by the fact that no
further data are added to the flow cell within a fixed period of time,
all analyses are automatically re-run to ensure maximum coverage
for consensus generation. A retention policy for sequence data is set
globally for the site and all read data can be automatically scrubbed
from the server after consensus generation, if desired.

2.2 ARTIC visualisations and reports

If running an ARTIC analysis on a flow cell, minoTour provides
a custom page containing all ARTIC data and visualisations
(Supplementary Figures S1A–D). This page shows the
performance of all samples in the run and then visualises
detailed performance and information available for an individual
sample. A sortable and searchable summary table shows users
metrics about each sample in the run, with average coverage,
number of amplicons at different depths and basic statistics such
as mean read length and read count. If the sample had sufficient data
to be run through the ARTIC pipeline, we display the assigned
lineage and VoC/VoI status.

Further details can be seen for a chosen sample such as per base
coverage plots for the sample genome. Assigned PANGO lineage
information is provided in tabular form, with links out to further
information describing each lineage (https://cov.lineages.org and
https://outbreak.info). The VoC/VuI report generated by Aln2Type
is visualised and the final status assigned displayed. A PDF report for
each barcoded sample and the overall run can be exported, showing
all above metrics for each sample. An example can be found in
Supplementary File S3.1.

Pass and fail VCF files, BAM files and pangolin lineages can be
downloaded. Optionally, these features can be disabled and
minoTour will remove all files that may contain identifiable
sequence information from the server. By maintaining
compatibility with standard ARTIC bioinformatics pipelines, this
tool can be adapted to run any ARTIC compatible pathogen analysis
simply by uploading the appropriate reference files.

2.3 Amplicon coverage prediction model

To predict if individual samples are likely to result in an
informative genome sequence, providing the basis for minoTour’s
decision on when to stop the run, minoTour assumes the user is
seeking minimal useful genome completeness (default 90%
amplicons with at least 20× median “pass” read coverage). Using
median coverage depth reduces the impact of small insertions/
deletions on monitoring amplicon coverage. In addition, median
coverage is only calculated for unique regions of each amplicon,
removing any overlap between amplicons. This prevents amplicons
with more than 50% overlap being incorrectly labelled as complete
due to the coverage of a neighbouring amplicon. MinoTour then
assumes that each ONT flow cell can generate a minimum of
100,000 reads for each sample detected and so projects whether
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each sample will reach minimal useful completeness using a simple
model (Equation 1). A sample is projected to finish if 90% of the
amplicons have a predicted final coverage over the minimum
required coverage (default 20×). All sequencing runs gather data
for 1 h before any of our strategies are used to ensure reasonable
sampling of the loaded library.

Ampliconmedian coverage
Totalmapped reads

× Barcodes identified × 100, 000( )
≥Min. required coverage (1)

2.4 SwordFish–real-time readfish target
updating software

Swordfish provides a python based command line interface to
connect minoTour to ReadFish via minoTour’s Representational
State Transfer (REST) Application Programming Interface (API),
querying for updates at a user specified interval. In the context of
amplicon based sequencing, SwordFish receives a list of barcodes
and amplicon genomic coordinates for each barcode from
minoTour, where the median coverage for any returned
amplicon exceeds the user defined threshold. SwordFish then
adds the coordinates of these over coverage amplicons to the
rejection targets for the correct barcode in ReadFish’s
configuration file. ReadFish will then reject any future reads
corresponding to that amplicon. If a barcoded sample has
completed analysis, SwordFish can switch off that barcode
entirely for the remainder of the experiment. The relationship
between minoTour, swordfish and ReadFish is shown more
clearly in Figure 1. It is worth noting that whilst this manuscript
focuses on SARS-CoV-2, this approach is applicable to any viral
amplicon primer scheme that can be used with the ARTIC field
bioinformatics pipeline provided the amplicons are sufficiently long
and ligation, not rapid, sequencing is used. If rapid kit based
sequencing were to be used, the amplicons would have to be of
sufficient size to generate a library with a long enough mean read
length that the software would have time to unblock them.

2.5 Post run genome analysis

To determine how manipulating run time affects results, we
defined three time points of interest for a sample during a
sequencing run. The Full Run time point, the Run Complete time
point and the Sample Complete time point. Full Run is defined as the
time at which the run completed with no intervention. Run Complete
is the point in a run where all samples our algorithm predicted would
complete (90% completeness, 20×) had done so. Finally, Sample
Complete is the point at which an individual sample in a run
reached sufficient completeness and is automatically put through
the ARTIC pipeline by minoTour, whilst the run continues. A
sequencing run will have only one Full run time point, one Run
complete time point, but will have many Sample Complete time
points. This concept is visualised in Figure 2.

To create consensus genomes from time points equivalent to
our ARTIC pipeline and compare the results of both Medaka and

Nanopolish we had to calculate the sets of both the signal
(FAST5) and FASTQ files equivalent to those that would have
been uploaded to minoTour at each of the time points. We
iteratively mapped all reads from each barcode across
13 reference ARTIC runs using minimap2 (Li, 2018), in
FASTQ file creation order, creating cumulative alignment files.
Using mosdepth (Pedersen and Aaron, 2018) we determined
cumulative coverage at each base across the reference genome,
for each FASTQ file creation time point, and then the median
coverage for each amplicon using the same primer scheme based
approach as in minoTour. This identifies the time points in each
run when sufficient data are available to trigger minoTour to
analyse the samples, as well as the points that minoTour would
have recommended stopping the run based on it is amplicon
coverage predictions. The creation time point for the FASTQ file
that results in sufficient coverage to meet any appropriate
thresholds was used to identify the time in the sequencing run
when analysis would occur. Using this method, we can identify
the equivalent FAST5 file for that FASTQ file from the ONT
sequencing summary file, enabling us to analyse the data with
both Medaka and Nanopolish (code available from https://
github.com/LooseLab/artic_minotour_analyses). For each
time-point, we generated consensus FASTA files to calculate
genome recovery, defined as the proportion of non N
positions in the final sequence. This is a close approximation
of the minoTour completeness metric, as any base that has 20×
coverage going into the ARTIC Medaka pipeline will most likely
be called as non N.

3 Results and discussion

3.1 Amplicon coverage prediction model

The amplicon prediction model performed well across all runs
(Figure 3A, R2 = 0.991). The model proved to be conservative,
slightly under-predicting against final coverage, which prevented
minoTour fromwaiting for genomes to complete which would never
do so. After an hour of data, predicted genome recovery collection
compares well with that observed at the calculated Run Complete
times for the 13 runs (Figure 3B). The strong correlation (R2 = 0.993)
between predicted values and values actually recovered provides
confidence in our algorithm. Comparing the genome recovery
achieved at the Run Complete time point with the genome
recovery seen at Full Run (Figure 3C) shows some small further
benefits in recovery (R2 = 0.996) when allowing the run to reach
natural completion. This is expected as continuing the run for longer
allows the missing 10% of each genome to acquire some further
coverage. However the longer a run continues the more it is
information return diminishes, so stopping earlier accelerates
time to answer as well as allowing the flow cell to be reused and
save costs. This can be seen more clearly in Figure 3D, (R2 = 0.994)
when filtering out those runs where no time is saved by our model, as
these runs have the same time defined for Run Complete and
Full Run.

Our model confidently predicts if a sample will generate
sufficient data to provide useful information with enough
accuracy to support a decision on whether or not to continue
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sequencing. There is a potential small loss in data as a consequence
of reducing the sequencing time. We therefore quantify the
consequences of this on time saved, lineage assignment and SNP
calling below.

3.2 Run until time savings

To quantify whether this approach results in useful time savings,
we tracked metrics and predicted amplicon coverages per barcoded
genome sample using minoTour for 13 sequencing runs. We
visualised a comparison of calculated Run Complete time and
Full Run time in Figure 4A. Runs 9 through 13 were actively
monitored with minoTour and manually stopped at earlier run
times in response to the model predictions, resulting in the shorter
Full Run length and the similarly quick Run Complete time point.
Time savings using this approach are dependent on the sample
composition, but are often significant (for example, Run 4,
Figure 4A). By plotting all barcodes on every run, we can
visualise the point in time in a run when all barcodes predicted
to finish in a run cross the threshold. Negative controls are treated as
a sample, and are predicted to fail, so they do not prevent a run from
completing. Time savings are greater in runs with fewer samples as
each has relatively more sequencing capacity available as can be seen
in Figures 4B–N.

3.3 SNPS and lineages

Finally we investigated whether stopping early affected the
information you can retrieve from consensus genomes, and
compared whether minoTour loses SNP accuracy by using the
Medaka pipeline rather than Nanopolish.

3.3.1 Lineage assignment to consensus genomes
Across all 13 sequencing runs, a total of 508 SARS-CoV-

2 samples were sequenced (including negative and positive
controls). The number of genomes produced by the ARTIC
Pipeline at each time point were: Full run, 456 genomes; Run
Completed, 454 genomes; Sample Completed, 334 genomes. The
two additional genomes produced at the Full Run time over the Run
Complete time are both extremely low completeness genomes (only
1% of the genome has consensus sequence) that failed to call at the
Run Complete time. Across all time points for any given sample in
any run, we observe complete concordance in lineage assignment
between either Medaka or Nanopolish generated genomes
(Supplementary File S3.2). Any loss of data seen by stopping
sequencing early did not impact PANGO lineage assignment in a
SARS-CoV-2 sequencing run. We note that these sequences are
predominantly from the B.1.1.7 lineage due to the time periods in
which they were collected, but given our observations on SNP calling
below do not envisage this being an issue.

3.3.2 Comparing SNPs between Medaka and
Nanopolish consensus genomes

We compared Nanopolish and Medaka consensus genome
sequences for all genomes in our data set (1,245 genomes across
Full Run, Run Complete and Sample Complete time points from
508 unique samples). The SNPs were called using nextclade (https://
clades.nextstrain.org) with the output data available in
Supplementary Files S3.3, S3.4.

Of the 456 genomes generated at the Full Run time-point,
341 called SNPs identically whether they were generated by
Medaka or Nanopolish. The majority of the remaining genomes
eitherMedaka or Nanopolish are unable to confidently call a site and
so assigns an ambiguous base (N), altering the SNP call. Of more
concern, there are some sites which are incorrectly assigned as a

FIGURE 2
An example run, showing how timepoints are calculated. Five barcodes are displayed. Black horizontal line indicates the 20× coverage on 90% of
amplicons threshold. The time at which a barcode reaches this threshold is recorded as the “Sample Completion” (SC) time point. Two illustrative samples,
barcode 1 and 3, are not predicted to finish, and do not cross this threshold. Hence they have no associated SC time. Once all barcodes predicted to finish
are complete, we record the “Run Completed” (RC) time point. This is the time minoTour would recommend stopping the run. The Full Run time is
when the run stopped without any early intervention.
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reference call by Medaka (Table 1), 27 total. Upon inspection, the
majority of these are for one single site in the genome at position
28,111 (Figure 5A).We also note one site, 913, for which Nanopolish
rarely can call a SNP at lower coverage, but changes to an ambiguous
call at higher depth, however this is a very unusual case. It is very
infrequent that an increase in coverage over 20× alters a call. An
example of this is illustrated at Figure 5B.

At the Run Complete time point, there is an increase in the
number of ambiguous (N) sites called by both pipelines, most likely a
consequence of the slightly lower coverage data available (Tables 1,
2). However overall the difference between calls made in consensus
genomes generated by both pipelines at this time point is very slight
(99.7% identical calls). It is worth mentioning that as this is the time
point that genomes would finish in a minoTour ARTIC run, we
conclude that there is very little effect in using Medaka in our
pipeline. There is a very slight increase in the number of SNPs being
called by one pipeline being called as an N in the other (1 for
Nanopolish SNPs and 3 for Medaka SNPs), although again this is
likely due to slightly lower coverage.

The Sample Complete time genomes are of lower quality, with
approximately a 5 fold increase in the number of Ns seen in a

generated consensus genome (Table 2). However we note that only
one sample finishes at this time point in an actual run (the last to
reach our completion threshold). When comparing Nanopolish and
Medaka genomes at the Sample Complete time point, we can see
that there is a very small increase over the Run Complete time point
generated genomes in disagreement between the SNP calls
(0.00013% of all calls). However the calls are effectively
concordant even at this earliest time point, and as previously
noted, only one generated genome actually finishes at this time
point in an actual run.

Finally we compared the genomes that did not reach our
completion threshold in our run, thus lacking a Sample Complete
time point. As shown in Table 3, these genomes are of much lower
quality, and do not improve by allowing the run to continue to the Full
Run length. They are approximately 48% Ambiguous N calls on
average, and there is no gain in the average number of SNPs called.

Thus we conclude the majority of SNP call differences between
Medaka and Nanopolish are differences in ambiguous calls. Overall,
we conclude that Medaka is sufficient for variant calling and lineage
assignment, but in our downstream analysis workflows we routinely
run both pipelines for confirmation.

FIGURE 3
Genome recovery throughout all 13 runs. Blue line (line of best fit), Orange line (x = y). (A) Compares the predicted genome recovery based on
1 hours sequencing (X-axis) with the actual coverage seen at the end of the run (Y-axis). Predicted recovery is the proportion of amplicons in a sample
expected to reach 20× coverage. Actual coverage is the proportion of nonN bases in the consensus genomes obtained at the end of the run (Full Run). (B)
Compares the same predicted genome recovery with the actual coverage observed at the Run Complete time as defined by minoTour. (C)
Compares the actual coverages reported in A (Full Run) and B (RunComplete). (D) Is the same as C but ignores those runswhere the RunComplete time is
the same as the Full Run time.
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3.4 SwordFish based adaptive sampling

Sequencing libraries were prepared using the standard ARTIC
protocol and a custom set of 1,200 base pair primers (Freed, 2020)
(BED file available in Supplementary File S3.5). Sequencing was
monitored in real-time using minoTour (Munro et al., 2021) and
SARS-CoV-2 samples analysed using minoTours ARTIC pipeline.
ReadFish at commit 0ccb5932 (https://github.com/LooseLab/
readfish/tree/0ccb59324906635a0d077f94d7f82388039885cb) was used
to perform targetted sampling, as unlike ONTs adaptive sampling,

experimental configurations can be updated during a run (Payne
et al., 2020). MinKNOW was configured to provide data in 0.8 s
chunks. Sequencing was performed on a GridION Mk1 (ONT).
The method requires Guppy version 4.2 or later for barcode de-
multiplexing. Basecalling was performed using the HACmodel for
final analysis with “require both ends” for de-multiplexing set to
true. ReadFish was configured to use fast base calling, requiring
barcodes at one end. Starting configuration TOMLs and
commands can be found at https://github.com/looselab/
swordfish-experiments.

FIGURE 4
Time savings by using minoTours ARTIC Pipeline and amplicon coverages for each run, across the course of the run. (A) The Full Run time point
plotted against minoTours Run complete time point as hours since the run started, for each run. Number of samples shown in brackets below the run
label. (B–N) Samples across 13 runs showing the percentage of amplicons at 20× over time. Barcodes that we project to finish are displayed with solid
lines, whilst barcodes we project not to finish are dashed. 90% (Our threshold for firing) is marked on each plot. Once all barcodes that are projected
to finish cross the 90% threshold, we would instruct MinKNOW to stop the run. This time is marked by a solid blue vertical line.
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In our first demonstrative experiment, we selected a range of
representative clinical samples (see Supplementary Table S1) with
Cycle threshold (Ct) values ranging from 14 to 30, as well as some
samples for which no Ct values were available. We utilised the
standard ARTIC requirement for reads being barcoded at each end
and sequenced using the LSK109 library protocol (ONT).
Barcoding at both ends undoubtedly favours downstream
analysis as rejected reads will only possess a single starting

barcode, and so are assigned as unclassified, Even so, this
approach provides an ideal test for throughput and the
performance of ReadFish. We ran three separate experiments
on our flow cell, visualised in Supplementary Figure S2. The
library was not normalised prior to loading, and four barcodes
were clearly abundant 58, 64, 76, 88, when no adaptive sampling
was applied to the library Supplementary Figure S2A. We began by
unblocking based purely on barcode assignment Supplementary

TABLE 1 Contingency table comparing SNP calling between Medaka and Nanopolish for all three time points. Displayed are total counts across all sites called as
either reference (Ref), SNP or unknown (N). Only genomes present in each category (Full Run, Run Completed and Sample Completed) are included in the analysis.

Medaka

Full Run Run completed Sample completed

N SNP Ref N SNP Ref N SNP Ref

Nanopolish N 151,292 29 418 183,709 32 412 837,973 116 253

SNP 25 10,727 5 26 10,697 6 78 9,984 13

Ref 24 0 9,818,580 33 0 9,786,167 37 2 9,132,765

FIGURE 5
SNIPIT plots demonstrating particularly divergent positions for SNP calls between Medaka and Nanopolish. The tracks from top to bottom show
SNPs as called from consensus genomes for the Sample Complete time, Run Until and Full run time points (in this order) for both the Medaka and
Nanopolish pipelines. (A) SNIPIT plot showing an example pair of consensus genomes with Nanopolish calling a SNP at position 28111 but Medaka calling
reference. (B) SNIPIT plot, showing the Nanopolish pipeline switch from a SNP to an N at position 913 with more data, on a single sample across our
three time points.
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Figure S2B. Unexpectedly, even given the 1200bp read lengths, this
resulted in the ability to detect 16 more amplicons at 50× coverage
on the less abundant barcodes, compared with the control run after
110 min of sequencing, as shown in Supplementary Table S2.

We next used SwordFish to update ReadFish’s targets in real-
time, based on real-time analysis by minoTour, to provide
granular control of individual amplicon/barcode combinations.
Using the same library as our previous experiment, we applied a
simple threshold approach rejecting reads from amplicon/
barcode combinations once coverage exceeded 50×. More
sophisticated algorithms for normalisation, for example
probabilistic discard, could be considered but would have to
account for the large dynamic range of amplicon concentration in
samples. As shown in Supplementary Table S2, it is possible to
individually address each amplicon/barcode combination to
ensure the total coverage does not exceed a predetermined
threshold. Inspection of the relative change in amplicon/
barcode proportion reveals that some amplicons within
abundant barcodes are themselves effectively enriched,
suggesting that this targeted approach is better than simple
inactivation of entire barcodes. The relative change in
proportion of classified amplicon/barcode combinations is
slight, as expected for the short amplicons sequenced here
(Supplementary Figure S3C, Supplementary Figure S3E and
Supplementary Figure S3G). Enrichment efficiency is further
reduced by short fragments present within these libraries
(Supplementary Figures S4, S5).

The current maximum number of barcodes in a library available
for nanopore sequencers is 96, at the time of writing. We proceeded
to test our approach against the maximum number of samples,
targeting 200× coverage of each sample, running for 6 h on a

TABLE 2 Contingency table displaying the mean count for sites called as either reference (Ref), SNP or unknown (N), for all three time points (Full Run, Run
Completed and Sample Completed), for each SNP calling pipeline. Note, The total of each column, excluding (N. genomes) represents every position in a SARS-
CoV-2 genome. Only genomes present in each category (Full Run, Run Completed and Sample Completed) are included in the analysis.

Medaka Nanopolish

Full run Run complete Sample completed Full run Run complete Sample completed

N 453 550 2,509 454 551 2,510

SNP 32 32 30 32 32 30

Ref 29,398 29,301 27,345 29,397 29,300 27,343

N. Genomes 334 334 334 334 334 334

TABLE 3 Contingency table displaying the mean count for sites called as either
reference (Ref), SNP or unknown (N). Note, The total of each column, excluding
(N. genomes) represents every position in a SARS-CoV-2 genome. Only
genomes NOT present in the Sample completed category are included in the
analysis.

Medaka Nanopolish

Full Run Run Until Full Run Run Until

N 14,519 14,813 14,495 14,813

SNP 19 19 19 19

Ref 15,353 15,059 15,374 15,056

N. Genomes 123 120 123 120

FIGURE 6
The median amplicon read count for each barcode, for the same
library across different swordfish threshold targets. (A) Baseline, where no
adaptive sampling was applied. 100 and 200 aremarked as the targets for
the other 2 experiments. (B) SF100 had a 100× coverage swordfish
threshold target. 100× is marked on the graph. (C) Fold change for the
median amplicon read count per barcode, between SF100x and Baseline.
(D) SF200 had a 200× coverage threshold target. 200 is marked on the
graph. (E) Fold change for the median amplicon read count per barcode,
between SF200x and Baseline.
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MinION Mk1b. Given that our amplicon primer scheme has
29 amplicons, we are tracking a total 2,784 unique amplicon/
barcode combinations. We then ran the same library targeting
amplicon coverage of 100× for a further 6 h. Finally we ran a 6 h
control experiment, with no adaptive sampling. The median
amplicon coverages for each sample achieved are displayed in
Figure 6. As each condition was run on the same flowcell, after a
nuclease flush and reload, there was a small decrease in total
sequence yield for each experiment (Supplementary Table S3).
Potential maximum enrichment was again brought down by the
presence of some short material in the library (Supplementary
Figure S6), but ReadFish displayed sufficient performance to keep
up with 96 barcodes, with the unblocked read length falling far
short of the sequenced. Inspecting some illustrative barcodes
(unclassified, 32, 62, 92, 93), we see that indeed our analysis bins
all unblocked reads into unclassified, as shown in Supplementary
Figure S7. Figure 7 illustrates that using adaptive sampling with
ReadFish/Swordfish resulted in an increase in the number of
amplicons reaching useful coverages, as well as accelerating the
time at which these amplicons reached this coverage. We also see an
increase in the number of amplicons that we recover in the
SwordFish enabled runs, recovering up to 108 more amplicons at
50× coverage when compared to the control run, as shown in
Supplementary Table S4. It is worth noting that these amplicons
may have reached this coverage in the control run with more time, as
there was a smaller yield in our control run due to having had two
experiments run on the flowcell beforehand. Thus, although the
effects are relatively small, this approach of individually addressing
each amplicon on each barcode in a 96 barcode library will benefit
the sequencing run.

In a third set of experiments, Swordfish/Readfish was applied to
the midnight protocol 1,200 base pair amplicon scheme using the

RBK110.96 rapid library preparation kit, and sequenced on a
GridION Mk1. As anticipated, the rapid protocol results in reads
shorter than the amplicon length and so we saw no benefit as either a
filter to balance barcodes or the speed at which amplicons reached
completion Supplementary Figures S8A–C, S9. This experiment was
run in triplicate.

Overall, applying adaptive sampling to ARTIC SARS-CoV-
2 sequencing reveals the fundamental challenges of enriching
short material. Reads must be long enough to benefit from time
saved by rejecting unwanted reads. Effectively this application is
more of a simple filter to remove unnecessary excess reads with
minimal enrichment benefits. Longer read lengths would improve
enrichment capabilities, but are less useful for viral amplicon
sequencing due to the risk of drop out. In the future, as flow cell
yield increases, and these features become available on the
PromethION, this approach will enable dynamic adjustment of
yields obtained from individual samples in barcoded libraries.
The model presented here relies on real-time analysis of the data
obtained to determine if an experimental objective has been
achieved. Any method that does not consider the final data risks
bias as a result of unexpected read length distribution differences
between barcoded samples.

4 Conclusion

We demonstrate that by reducing the run time for a SARS-
CoV-2 sequencing run using real-time analysis to calculate the
best stopping point, it is possible to balance flow-cell health and
time to answer while minimising any information loss.
Significant time savings are possible using this approach; this
has previously been described as “Run Until”, a method described
by Oxford Nanopore Technologies but to date, not widely used.
We show that stopping a run at the earliest point where sufficient
data are available does not negatively affect subsequent
downstream analysis. In addition, Read Until provides further
benefits to a SARS-CoV-2 sequencing run, by reducing the
number of unnecessary reads in the analysis, reducing the
time taken to complete individual genomes and focusing
sequencing capacity on incomplete samples. Real-time analysis
in conjunction with adaptive sampling demonstrates powerful
balancing of amplicon coverage on up to 96 samples, even
providing limited enrichment in some cases. In order for this
method to work, amplicons must be sufficiently long. Whilst the
current maximum barcode number is 96, we anticipate this
approach being able to handle many more samples.
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FIGURE 7
Overlapped runs in our second experiment (6 h of sequencing)
marking the time at which a barcode reached 90% of amplicons at
20×. It is worth noting the increased performance of 200× is likely due
to the increased yield, as this was the first run to go on. Time
saved is considered to be points for a run that are shifted left of their
equivalents on the y-axis. Any points above the Control run (at the
same time) are considered as extra barcodes recovered.
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Prediction of CTCF loop anchor
based on machine learning
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Laboratory of Computational Science and Application of Hainan Province, Haikou, China, 4School of
Physical Science and Technology, Inner Mongolia University, Hohhot, China

Introduction: Various activities in biological cells are affected by three-
dimensional genome structure. The insulators play an important role in the
organization of higher-order structure. CTCF is a representative of mammalian
insulators, which can produce barriers to prevent the continuous extrusion of
chromatin loop. As a multifunctional protein, CTCF has tens of thousands of
binding sites in the genome, but only a portion of them can be used as anchors of
chromatin loops. It is still unclear how cells select the anchor in the process of
chromatin looping.

Methods: In this paper, a comparative analysis is performed to investigate the
sequence preference and binding strength of anchor and non-anchor CTCF
binding sites. Furthermore, a machine learning model based on the CTCF
binding intensity and DNA sequence is proposed to predict which CTCF sites
can form chromatin loop anchors.

Results: The accuracy of the machine learning model that we constructed for
predicting the anchor of the chromatin loop mediated by CTCF reached 0.8646.
And we find that the formation of loop anchor is mainly influenced by the CTCF
binding strength and binding pattern (which can be interpreted as the binding of
different zinc fingers).

Discussion: In conclusion, our results suggest that The CTCF core motif and it’s
flanking sequence may be responsible for the binding specificity. This work
contributes to understanding the mechanism of loop anchor selection and
provides a reference for the prediction of CTCF-mediated chromatin loops.

KEYWORDS

CTCF, Chromatin Loop, Machine Learning, DNA sequence, 3D Genome

1 Introduction

High-order chromatin structure influences a variety of biological processes in the
nucleus, including gene transcription, gene regulation and DNA replication. The
structure of interphase chromatin has been extensively researched with the development
of various chromatin conformation capture techniques (Fullwood et al., 2009a; Fullwood
et al., 2009b; Lieberman-Aiden et al., 2009; Hsieh et al., 2015), unveiling the functional units.
For example, extensive researches on chromosome compartments (Dixon et al., 2012),
topologically associated domains (TADs) (Rao et al., 2014) and loops (Narendra et al., 2015)
have been carried out. Chromatin loops usually form between the locus that separated by
hundreds of thousands base pairs. These long-range interactions usually form a local
chromatin structure. According to previous studies, the destruction of these loops leads
to a significant imbalance in nearby gene expression (Lupiáñez et al., 2015; Hnisz et al.,
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2016). The binding sites of CTCF (an 11 zinc finger DNA binding
protein) frequently occur on the boundaries of loops and
topologically associated domains, which highlights the
importance of CTCF binding for the loop formation.

In the process of gene expression, the gene regulatory elements
work in order. These regulatory elements can be classified as
promoters, enhancers, insulators, and other regulatory sequences
(West et al., 2002; Kellis et al., 2014). Insulators protect genes in cells
from inappropriate regulatory signals from adjacent chromatin
environments, and play an important role in cell type-specific
gene expression (Liu et al., 2019). CTCF was originally thought
to be an active chromatin-labeled insulator. As an evolutionarily
conserved zinc finger family transcription factor, CTCF was
discovered for the first time in the chicken gene promoter (Bell
and Felsenfeld, 2000). CTCF was found to be related to blocking the
activity of enhancers in the process of transcription (Liu et al., 2021).
Changes in the CTCF protein and its binding sites on insulators are
linked to a variety of human diseases. For example, deletion of CTCF
in the domain may result in an interaction between the enhancer
and a glioma oncogene (Katainen et al., 2015); the binding site of
CTCF is the main mutation hot spot of the non-coding cancer
genome (Ohlsson et al., 2001); zinc finger mutation or abnormal
target selective methylation destroy the spectrum of target specificity
and is related to cancer (Phillips and Corces, 2009).

CTCF was later found to play an important role in chromatin
organization. Paired CTCFs binding act as loop anchors to limit the
interaction between remote regulatory elements (de Wit et al., 2015;
Rowley and Corces, 2018). As a result, how to distinguish the
interacting CTCF pair and the non-interacting CTCF pair is a
critical issue. Many experiments have revealed that the
interaction between CTCF and cohesin is crucial for loop
formation (Wutz et al., 2017). This interaction establishes a
dynamic chromatin loop between remote CTCF binding sites to
drive the formation of TADs. The chromatin loops may form
through the process of loop extrusion (Alipour and Marko, 2012;
Barbieri et al., 2012; Fudenberg et al., 2016; Haarhuis et al., 2017; Rao
et al., 2017; Davidson et al., 2019; Kim et al., 2019). Cohesin can pass
through and extrude DNA to form chromatin loops until it is
blocked by CTCF. In addition, the formation of the loop can also
be realized through other mechanisms (Brackley et al., 2013; Bianco
et al., 2018; Conte et al., 2020). Although the formation mechanism
of the loop has been deeply studied, the ability of the model based on
polymer physics to predict a single CTCF loop has not been
systematically evaluated (Di Pierro et al., 2016; Kai et al., 2018).
The machine learning model named Lollipop uses 77 features of the
genome and epigenome to predict the interaction of CTCF pairs (Lv
et al., 2021). Deep-loop uses only DNA sequences to predict CTCF-
mediated chromatin loops (Xi and Beer, 2021). The loop extrusion
and competition model can predict the specificity of CTCF
interaction through four characteristics. These four characteristics
are chromatin loop competition, CTCF binding site distance, CTCF
motif and CTCF binding intensity. The aforementioned
experiments aim to predict the loops formed between pairs of
CTCF binding sites and require the CTCF ChIP-seq data as
input. In mammalian cells, there are approximately 50,000 CTCF
binding sites, corresponding to more than one million possible
CTCF pairs separated by less than 1 Mb. However, Hi-C or
ChIA-PET measurements revealed that only approximately 2%–

5% of CTCF pairs are directly interacting. This increases the
difficulty of de novo prediction task. We notice that only a
portion of CTCF binding sites are used as loop anchors. Can we
first distinguish the loop anchor and non-anchor to reduce the
search space for loop identification? Motivated by this idea, we
intend to determine if a single CTCF binding site may serve as the
anchor of loop by using sequence and binding intensity features. We
find the binding intensity of CTCF, the core motif and the flanking
sequence of the motif all have an important influence. Previous
models ignore the flanking sequence features of the CTCF motif. In
this paper, we developed support vector machine (SVM) (Guo et al.,
2008; Zhang and Liu, 2017), convolutional neural network (CNN)
(Li and Liu, 2020; Cui et al., 2021), random forest (RF) (Xu et al.,
2019; Dao et al., 2022), linear discriminant analysis (LDA), Naive
Bayes (NB), logistic regression (LR) (Yang et al., 2021) and
stochastic gradient descent (SGD) model to predict the potential
of CTCF binding to form chromatin loop anchors. We considered
the binding intensity of CTCF, the sequence characteristics of the
CTCF core motif and the flanking sequence as input features. These
features performed well in almost all the models, indicating that they
are important for the formation of loop anchors.

2 Materials and methods

2.1 Data source

We download the public ChIP-seq data of CTCF from the
ENCODE database (Ecker et al., 2012). The detection method is
ChIP-seq, the target set is transcription factors, the biological sample
term is GM12878, the reference genome is hg19, and the file type is
bed narrowPeak. We also downloaded ChIA-PET data of CTCF
from ENCODE. The detection method is ChIA-PET, the target set is
transcription factors, the biological sample term is GM12878, the
reference genome is hg19, and the file type is fastq.

2.2 Data processing

The positive and negative set was constructed as follows:
First, ChIA-PET data of CTCF were preprocessed by using ChIA-
PET2 (Li et al., 2017). ChIA-PET2 can significantly improve the
sensitivity and reproducibility of detecting chromatin loops while
maintaining the same false discovery rate. We can calculate the
false discovery rate of each ChIA-PET data by ChIA-PET2. The
false discovery rate refers to the expected value of the proportion
of the number of falsely rejected true assumptions compared to
the number of rejected original assumptions. The false discovery
rate offers several advantages, including flexible adjustment of its
value, clear meaning, and its ability to be used as an evaluation
metric for screened different variables. The ChIA-PET data of
CTCF will give a pair of DNA anchors that can form chromatin
loops. Here, the data with FDR < 0.05 are considered as the
CTCF-mediated chromatin loops. In addition, we focus on
whether single CTCF site can form loop anchor. ChIA-PET
data consists of a combination of two anchors, which can
result in a single anchor corresponding to multiple other
anchors. Therefore, when extracting location data of anchors,

Frontiers in Genetics frontiersin.org02

Zhang et al. 10.3389/fgene.2023.1181956

31

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1181956


repeated anchors may be generated. Thus, after removing
duplicate anchors in the data with the cutoff of FDR < 0.05,
we obtained the location data of all CTCF loop anchors in the
GM12878 cell line. Secondly, the ChIP-seq data of CTCF were
used to obtain the location of the core motif with a length of 19 bp
at the corresponding data by storm (Schones et al., 2007). Storm
scans the input sequences and find the fragment with the highest
motif score. Importantly, it also provides the information about
whether sequence fragment occurs on the sense chain or
antisense chain. This data will later be crucial for extracting
sequences of CTCFs in the same binding direction. Finally, The
motif location data were compared with the CTCF loop anchors.
If there is an overlap between them, it is considered that the
binding site of the CTCF can form loop. Then, the position data
of these motifs are taken as the positive set and add the label “1”.
The position data of non-overlapping motifs are taken as the
negative set that cannot form a loop, and the label “0”is added. In
the GM12878 cell line, the number of samples that cannot form
loops is 26,765, the number of samples that can form loops is
22,191, and the total number of samples is 48,956.

The context sequence of CTCF, in addition to its core motif,
is crucial for controlling gene expression. Huang et al. (2021)
used the SOX2 gene reporting system of mouse embryonic stem
cells to study how the context sequence of the CTCF binding site
regulates insulator function. They discovered the following: 1)
The 10–20 bp sequence upstream of the core motif of CTCF
rather than the core motif itself determines whether CTCF can
perform the insulator function 2) The insulating effect depends
on the number of CTCF tandem binding sites. These findings
provide new insights into the classification of CTCF binding
sites. The binding and dissociation of CTCF on the genome is a
dynamic process. The residence time of CTCF is determined by
the binding stability. CTCF has 11 zinc finger structures. The
zinc finger ZF3-ZF7 binds with the core motif, and ZF9-ZF11
binds 10–20 bp upstream of the core motif. The existence of
ZF8 as a linker also plays an important role in promoting the
overall binding stability (Soochit et al., 2021). In the above
experiment, when each flanking sequence of the motif gradually
decreases from 60 bp to 20 bp, the insulation effect does not
decrease significantly, and the strong insulation effect of CTCF
always exists. However, when the flanking sequence of the core
motif gradually decreases to 10 bp, the strong insulation effect
of CTCF is significantly reduced. This demonstrates that the
flanking sequences 10–20 bp from core motif has a significant
effect on the insulation effect. Furthermore, the bases upstream
and downstream of the motif will have a great impact on the
function of CTCF. Therefore, we added 20 bp upstream and
downstream to the CTCF motif and obtained the location data
of the 59 bp sequence. Because the binding of CTCF is
directional, the sequence direction should be taken into
account when extracting sequences. One-hot encoding is
used to make the 59 bp sequence fragment into a matrix
consisting of 0 and 1, where base A corresponds to (1,0,0,0),
base T corresponds to (0,1,0,0), and bases C and G correspond
to (0,0,1,0) and (0,0,0,1), respectively. Then, a 48,956 × 236 one-
hot matrix is obtained.

The binding intensity of CTCF can affect the movement of
cohesin, thereby affecting the formation of the loops. The

narrowPeak ChIP-seq data gives the CTCF binding intensity
at the corresponding position. There is a large variation among
the CTCF binding intensity values. It will greatly affect the
training of the model. Due to the unique characteristics of each
assessment index, a multi-index evaluation system typically has
different dimensions and orders of magnitude. If the original
indicator values are used for analysis when there is significant
variation between the indicators, the importance of the
indicators with higher values will be accentuated, while the
significance of the indicators with lower values will be
substantially diminished. Therefore, data normalization is
required for the CTCF binding intensity to reduce the impact
of the large variation in the training model. Here, we took the
logarithm base two of the CTCF binding intensity value
to narrow the gap between the value of CTCF binding
intensity with the sequence data. Finally, the normalized
value of the CTCF binding intensity and one-hot matrix were
merged to construct the feature matrix (Supplementary
Material).

2.3 Summary of the machine learning model

The basic motivation of the support vector machine (SVM) is to
find a decision hyper plane to maximize the interval between the two
types of data, construct an objective function according to the
maximum interval, and then transform it into its dual problem
for solution. For non-linear problems, first use a transformation z =
φ (x) to map x to a new feature space z, then transform it into the
dual problem of support vector machine, and we use radial basis
functions as kernel functions.

The random forest (RF) algorithm is an ensemble algorithm
composed of multiple decision tree classifiers, with each
subclassifier being a CART classification regression tree.
Therefore, random forest can perform both classification and
regression. The risk of overfitting can be reduced by averaging the
decision trees.

Convolutional Neural Network (CNN) is a specialized type of
artificial neural network commonly used in deep learning for
analyzing visual imagery. It is designed to automatically and
adaptively learn spatial hierarchies of features from input images
or other two-dimensional data, such as audio spectrograms. CNNs
are composed of multiple convolutional layers that apply
mathematical operations called convolution to the input data,
followed by pooling layers that reduce the dimensionality of the
output from the convolutional layers. The output of the pooling
layers is then fed into fully connected layers, which perform the final
classification or regression of the input data.

We also use other machine learning models to train on the same
dataset, including the linear discriminant analysis (LDA), Naive
Bayes (NB): The Naive Bayes method is a classification technique
that is based on Bayes’ theorem and the assumption of
independently occurring features, logistic regression (LR): logistic
regression is a generalized linear regression that utilizes logistic
functions, and stochastic gradient descent (SGD): stochastic
gradient descent is an iterative optimization algorithm used to
update a model’s parameters based on the steepest descent
direction of the loss function.
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2.4 Performance assessment

We have employed several machine learning models to train on
the same dataset, including linear discriminant analysis (LDA),
support vector machines, Random Forest (RF)), logistic
regression (LR), stochastic gradient descent (SGD), Naive Bayes

(NB) models, convolutional neural networks (CNN), support vector
machine models (SVM). We then compared the results of each
model.

To evaluate the prediction performance of the model,
Accuracy (Acc), Precision (Pre), F1-score (F1), Area Under
ROC Curve (AUROC), Area Under PRC Curve (AUPRC),

FIGURE 1
Flow chart for CTCF loop anchor prediction.
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Specificity (Sp), Sensitivity (Sn) and Matthews correlation
coefficient (MCC) are used as evaluation indicators (Zhang
Q. et al., 2022; Zhang Z. Y. et al., 2022; Han et al., 2022;
Yang et al., 2022). TP (True Positive): successful prediction
of positive samples as positive. FP (False-Positive): incorrectly
predicts negative samples to be positive. TN and FN correspond
to the value of the negative set.

The ratio of correctly classified positive samples in the total
number of positive samples:

Sn � TP

TP + FN
(1)

The ratio of correctly classified negative samples in the total
number of negative samples:

Sp � TN

TN + FP
(2)

MCC, which has a value range of [- 1,1], is simply a
correlation coefficient that describes the relationship between
actual classification and prediction classification. A score of
1 denotes the subject’s perfect prediction, a value of 0 denotes
that the prediction result is less accurate than a random
prediction, and a value of −1 denotes that there is no
consistency between the predicted classification and the
actual classification:

MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (3)

The ratio of the sample size of correctly classified positive
samples to the total number of samples predicted by the model
as positive samples:

Pr ecision � TP

TP + FP
(4)

The F1 score is the harmonic average of precision and recall:

F1 � 2 ×
Pr ecision × Recall
Pr ecision + Recall

(5)

3 Results

3.1 Overview of CTCF loop anchor
prediction

In order to predict the CTCF loop anchor, we propose a
computational framework (Figure 1). The framework includes
dataset construction, feature extraction, and machine learning
algorithm selection. We first establish the precise location of the
CTCF binding sites based on ChIP-seq data and motif scanning.
The positive and negative sets are then generated based on
ChIA-PET data. The feature matrix is constructed by extracting
sequence of the core motif, flanking sequence, and CTCF
binding strength. The machine learning methods are
implemented on the feature matrix to distinguish the loop
anchor and non-anchor. More details of the framework are
discussed in the Materials and methods section.

3.2 Comparison of prediction performance

We trained these machine learning models by using tenfold
cross-validation, and then tested the prediction performance on a
separated independent testing set. The training dataset is randomly
divided into K subgroups of the same size for the K-fold cross
validation test. The remaining K-1 folds are utilized as the training
dataset for the machine learning model, while one fold is used as the
validation dataset. Each fold serves as the validation dataset once this
procedure has been repeated K times. One-10th of the dataset is used
as an independent testing set, and the rest is considered as a training
set. The training set was used to perform ten-fold cross-validation
and train the model, and then the model’s performance is verified on
the test set. We compared the predictive performance of seven
machine learning models on independent test sets by evaluating Sn,
Sp, Pre, Acc, MCC, F1, AUROC, and AUPRC (Figure 2). Except for
the Naive Bayes model, the accuracy rates of the other models are
greater than 0.85, with the support vector machine model having the
highest accuracy rate of 0.8646. As shown in Figure 3, the AUROC
and AUPRC values of the other models (in addition to the naive
bayes model) are around 0.92, and they perform well in terms of the
remaining F1 score, precision, and other evaluation criteria. This
demonstrates that the three types of features we selected have a good
predictive effect across a variety of different machine learning
models. The good performance of the selected features indicates
they have an important influence on the process of CTCF binding to
form chromatin loops.

3.3 Importance of features

We found no significant difference in the prediction results
obtained from the SVM, SGD, RF, LR, LDA, and CNN models. So
we selected the SVM model, which had a slight advantage in results,
and used different features and feature combinations for prediction.
To assess the contribution of various features or feature
combinations to the prediction, we used the core motif, flanking
sequence, and their combination with CTCF binding intensity as the
features to perform prediction (Table 1). We have discovered that
CTCF binding intensity alone has good predictive performance,
indicating its important role in the loop formation process.
Although the flanking sequence has slightly lower prediction
accuracy compared to the core motif, the combinations of the
flanking sequence and CTCF binding intensity yields a
marginally better outcome than the combination of core motif
and binding intensity. This demonstrates that the CTCF binding
intensity and core motif features are somewhat redundant. Adding
the flanking sequence feature to the model can increase prediction
accuracy.

We next try to find the key sites that play an important role in
the classification. We calculated the information content of each
site by using weblogo (Crooks et al., 2004). From Figure 4, we can
see that in the flanking sequence of the core motif, there are
obvious differences between the positive set and negative set of
sequence data, which is consistent with previous views (Huang
et al., 2021; Soochit et al., 2021). The flanking sequence also plays
an important role in the process of CTCF binding, and it will
affect whether CTCF can be used as the loop anchor. Comparing
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the information content shows that positive sets prefer certain
flanking sequence sites: 7–9, 12, 14, and 42–48. This further
reveals that the flanking sequence feature can effectively
distinguish chromatin loop anchor.

In order to determine the importance of each feature more
precisely, we performed feature selection, sometimes referred to as
feature subset selection (FSS). It alludes to the process of choosing N
characteristics from the already-existing M features to optimize the

FIGURE 2
Comparison of evaluation criteria between support vector machine and other machine learning models (A–H) are as follows: Acc, AUROC, AUPRC,
F1, MCC, Pre, Sn, Sp.
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system’s particular indicators. To decrease the dimension of the dataset
and enhance the efficiency of the learning algorithm, it is necessary to
choose some of the most useful characteristics from the original
features. The generating process, evaluation function, stop criteria,
and verification procedure are the four main components of the
feature selection process. We selected the top 20 features in order of
importance, and the most important feature was the value of the CTCF
binding intensity corresponding to the sequence. We ranked the
significance of the features and find that the flanking sequence sites
12, 45, 46 and 47 significantly contribute to classification. The sites 45 to
47 correspond to CTCF zinc fingers 1 to 3. Based on the analysis

FIGURE 3
ROC and PRC curves of support vector machine model. (A). The PRC curve of support vector machine model. (B). The ROC curve of support vector
machine model.

TABLE 1 Prediction performance of different feature and combinations of
features by SVM model.

Acc AUROC AUPRC

Core motif 0.6945 0.7491 0.7184

Flanking sequence 0.6467 0.6855 0.6422

CTCF binding intensity 0.8375 0.8954 0.8916

Core motif and CTCF binding intensity 0.8458 0.9118 0.9061

Flanking sequence and CTCF binding intensity 0.8599 0.9225 0.9226

FIGURE 4
Sequence alignment of positive and negative sets. (A). The negative set. (B). The positive set.
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combined with Figure 4, there were significant sequence differences
observed between the positive and negative sets at the flanking sites
12–17. These sites corresponded to the binding region of zinc finger
8–11 of CTCF. There are 11 zinc fingers in CTCF, and not all of them
bind to DNA at the same time. According to the research of Soochit
et al. (2021), the removal of zinc finger 8 results in a decrease of
chromatin residence time. Our result also suggests that the flanking
sequence may influence the residence time of CTCF on DNA.
Additionally, we compared the CTCF binding intensity and motif
matching score for positive and negative sets The CTCF binding
intensity of the positive set was mostly greater than that of the
negative set (Figure 5A). The same is true for the CTCF motif
matching score calculated by storm (Figure 5B). The motif matching
score is a method used to measure the similarity between a query motif
and a target motif. The positive set had a higher matching score,
suggesting that the binding of CTCF would be more stable. The results
support that the stronger the binding intensity, the more it can prevent
the movement of cohesin and thus form loops. Therefore, the CTCF
binding intensity is indeed an important feature to reflect whether
CTCF can be used as the anchor for forming loops.

From the research results, it can be concluded that the most
important factor affecting the formation of loop anchor is the CTCF
binding intensity. The sequence preference of flanking sequence and
the motif matching score are consistent with the different
distributions of CTCF binding strength in the positive and
negative sets. A more suitable sequence context is favorable to
the stable binding of CTCF and makes it simpler to prevent the
sliding of cohesin and thus form a loop anchor. The statistical
analysis of these three characteristics revealed that CTCF binding
strength, core motif, and flanking sequence are the most important
factors in predicting loop anchor.

4 Discussion

As an important transcriptional regulation mechanism in
organisms, the process of chromatin looping has been widely
studied. Previous studies have shown that this process can be

interpreted by the loop extrusion model (Xi and Beer, 2021). The
details of mechanism are gradually dissected. For instance, the
recent study demonstrates that the flanking sequence of CTCF
motif have a major impact on the TAD border formation (Huang
et al., 2021). Motivated by the experimental results and our
statistical analysis, we try to answer which CTCF binding sites
may form loop anchors. Our analyses indicate that the CTCF
binding intensity, the core motif sequence and the flanking
sequence have a certain difference between CTCF loop anchors
and non-anchors. Using these features, we employed machine
learning models to predict CTCF loop anchors. We conducted
ten-fold cross-validation and independent testing, both of which
demonstrated the ability of these characteristics to produce
accurate prediction results, The statistical analysis showed a
significant difference in CTCF binding strength between the
positive and negative sets, as well as in the motif matching
score. These results indicate that CTCF binding strength can be
used as a classification feature. Moreover, this difference may be
influenced by the motif and flanker sequences, highlighting their
importance as features for predicting CTCF loop anchors.
Specifically, based on feature importance ranking, we have
identified the flanking sequence sites 12 and 45 to 47, which are
likely bound by CTCF ZF8 and ZF1-3, make a significant
contribution. This is consistent with other study (Soochit et al.,
2021) that the upstream and downstream motifs determine the
stability of CTCF binding to DNA. In conclusion, our results
suggest that a better sequence context is favorable to the stable
binding of CTCF and makes it easier to block loop extrusion by
cohesin. Our study provides new insights into the functional
classification of CTCF and might even be helpful for the
prediction of CTCF-mediated chromatin loops.
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FIGURE 5
(A). CTCF binding intensity of positive and negative sets. (B). CTCF motif matching score of positive and negative sets, where the p-value is given by
t-test.
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CLARITY: a Shiny app for
interactive visualisation of the
bovine physical-genetic map

Nina Melzer, Saber Qanbari, Xi Ding and Dörte Wittenburg*

Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany

The arrangement of markers on the genome can be defined in either physical or
linkage terms. While a physical map represents the inter-marker distances in base
pairs, a genetic (or linkage) map pictures the recombination rate between pairs of
markers. High-resolution genetic maps are key elements for genomic research,
such as fine-mapping of quantitative trait loci, but they are also needed for
creating and updating chromosome-level assemblies of whole-genome
sequences. Based on published results on a large pedigree of German Holstein
cattle and newly obtained results with German/Austrian Fleckvieh cattle, we aim at
providing a platform that allows users to interactively explore the bovine genetic
and physical map. We developed the R Shiny app CLARITY available online at
https://nmelzer.shinyapps.io/clarity and as R package at https://github.com/
nmelzer/CLARITY that provides access to the genetic maps built on the
Illumina Bovine SNP50 genotyping array with markers ordered according to
the physical coordinates of the most recent bovine genome assembly ARS-
UCD1.2. The user is able to interconnect the physical and genetic map for a
whole chromosome or a specific chromosomal region and can inspect a
landscape of recombination hotspots. Moreover, the user can investigate
which of the frequently used genetic-map functions locally fits best. We
further provide auxiliary information about markers being putatively misplaced
in the ARS-UCD1.2 release. The corresponding output tables and figures can be
downloaded in various formats. By ongoing data integration from different breeds,
the app also facilitates comparison of different genome features, providing a
valuable tool for education and research purposes.

KEYWORDS

single nucleotide polymorphism, linkage, recombination rate, education, mapping
function

1 Introduction

Genomic research involving gene mapping of economically important traits,
population-specific genetic structure and evolutionary history relies heavily on
genetic maps built on the extent of linkage disequilibrium (LD) between genomic
markers (e.g., Georges et al., 2019; Johnsson and Jungnickel, 2021). For example, to
what extent LD persists in a certain genomic region determines the number of markers
required to fine-map a quantitative trait loci with succinct power and precision (for
review see Qanbari, 2020). Moreover, genetic maps are valuable resources for
comparative genomic analyses among breeds or species (e.g., Everts-van der Wind
et al., 2005; Womack, 2005). Of utmost topical importance, however, is the contribution
of genetic maps (also known as linkage maps) to measuring haplotype similarity in the
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context of genomic selection (Musa, 2021) and to chromosome-
level assemblies of whole-genome sequences (e.g., De los Ríos-
Pérez et al., 2020; Rosen et al., 2020).

Given the value of cattle in sustaining the world food
security, the bovine genome is subject of vast amount of
ongoing research. We recently updated the genetic map of
German Holstein breed (Qanbari and Wittenburg, 2020) and
compared it with physical coordinates of the most recent bovine
reference genome assembly ARS-UCD1.2 (Rosen et al., 2020).
As an extension to this resource, here we introduce a Shiny app
CLARITY which facilitates interactive visualisation of the
bovine genetic and physical map. CLARITY illustrates the
details of male recombination across the bovine genome of
selected breeds and suggests suitable genetic-map functions.
In addition to published findings, results have been updated
by taking most recent knowledge about putatively misplaced
markers in the bovine genome assembly into account (Qanbari
et al., 2022). Moreover, a linkage map for German/Austrian
Fleckvieh cattle has been created. The CLARITY app can
therefore serve as a toolkit for both educational and research
purposes for the genome of bovine and related species.

2 Data preparation

The app provides access to linkage maps built based on the 50K
genotypes of a large pedigree of German Holstein cattle (1,053 half-
sib families which comprise 367,056 genotyped animals) as well as
German/Austrian Fleckvieh cattle (298,850 genotyped animals
pedigreed across 6,866 half-sib families) and based on estimates
of recombination rate between intra-chromosomal marker pairs. In
what follows, we briefly describe the workflow towards genetic
coordinates as depicted in Figure 1 according to Qanbari and

Wittenburg (2020). As some of the steps require several days of
computing or visual inspection, the workflow was executed once in
advance; the app itself dynamically processes physical and genetic
coordinates as well as pairwise recombination rates. If not stated
otherwise, data processing was executed in R v4.1.3 (R Core Team,
2022).

Step 1: Genotype data were filtered for minor allele frequency >1%
and for Mendelian inconsistencies both on marker and individual
level using PLINK v1.9 (Purcell et al., 2007) with recommended
settings. Genotypes with a Mendelian inheritance error were set to
“NA” and missing values were imputed using Eagle v2.4.1 program
(Loh et al., 2016). Putatively misplaced markers, which have recently
been reported (Qanbari et al., 2022), were discarded. Data passed on
to Step 2 comprised 876 half-sib families with 366,565 progeny
genotyped at 44,696 single nucleotide polymorphisms (SNPs) in
Holstein and 1,577 half-sib families with 270,636 progeny genotyped
at 40,003 SNPs in Fleckvieh.

Step 2: Paternal recombination rates to build the genetic map were
derived from two different methods, see Figure 1. First, the deterministic
approach developed by Ferdosi et al. (2014), which is implemented in the
R package hsphase v2.0.2, yielded estimates of recombination rate
between adjacent markers. These estimates were later used to form
the landscape of recombination hotspots. Genetic coordinates were
estimated as cumulative sum of recombination rates between
neighbouring markers. Second, the likelihood-based approach, as
implemented in the R package hsrecombi v0.3.4 (Wittenburg, 2020),
was applied to estimate recombination rates between all intra-
chromosomal marker pairs. These estimates of recombination rate
also enabled the identification of candidate misplaced markers in the
current assembly release ARS-UCD1.2 (Qanbari andWittenburg, 2020).
Genetic coordinates were obtained with a smoothing approach, in which

FIGURE 1
Data processing from raw genotypes to genetic-map functions. This workflow with grey coloured boxes excluded follows Qanbari and Wittenburg
(2020) RR, recombination rate.
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all recombination rates < 0.05 between any intra-chromosomal marker
pairs were taken into account.

Step 3: As a novel contribution, the relationship between
recombination rate and genetic distance between all intra-
chromosomal marker pairs was investigated for a set of
commonly used genetic-map functions (Haldane, 1919; Rao
et al., 1977; Felsenstein, 1979; Liberman and Karlin, 1984). Given
the estimates of recombination rate θ̂i,j between two markers i and j
and its genetic distances di,j derived in Step 2 (Qanbari and
Wittenburg, 2020), a genetic-map function f(di,j|a) � θi,j was
fitted to the data by solving the following minimisation problem
in terms of the model parameter a (where p is the total number of
markers per chromosome):

∑p
i,j�1
i< j

θ̂i,j − f di,j

∣∣∣∣a( )( )2 → min s.t. a ∈ R

We solved this optimisation problem using the R function optim
with “Brent” option allowing to specify restrictions on a. Rao’s
system of mapping function requires a ∈ (0, 1). Furthermore,

instead of Haldane’s original map function, we investigated a
scaled version thereof, i.e.

f di,j

∣∣∣∣a( ) � 1
2

1 − e−2adi,j( )with a> 0

For the Binomial map function of Liberman and Karlin (1984),
we employed a grid search over a ∈ 2, 3, 4, 5{ } seeking the minimum
squared deviation as described above. The fitted function leading to
the least squared deviation constituted the “best” genetic-map
function.

3 Implementation

The CLARITY app is an R Shiny web GUI for various operating
systems. It relies on several R packages to enable the outcome and
visualisation functionalities. CLARITY was implemented in R v4.1.3
(R Core Team, 2022) with help of the R packages shiny v1.7.1
(Chang et al., 2021) and shinydashboard v0.7.2 (Chang and Borges
Ribeiro, 2021) to create a dashboard. The graphical output was
produced using the R packages ggplot2 v3.3.5 (Wickham, 2016),
plotly v4.10.0 (Sievert, 2020) and ggVennDiagram v1.2.0 (Gao,

FIGURE 2
Screenshot of information about problematic regions and list of misplaced markers detected in Holstein cattle.
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2021). To provide additional helpful features for the app, such as
hiding or toogle of elements, the R packages shinyjs v2.1.0 (Attali,
2021) and shinycssloaders v1.0.0 (Sali and Attali, 2020) were
incorporated. Tables were generated using the R package DT
v0.22 (Xie et al., 2022). Further R packages were employed:
cachem v1.0.6 (Chang, 2021), config v0.3.1 (Allaire, 2020), dplyr
v1.0.10 (Wickham et al., 2022), gridExtra v2.3 (Auguie, 2017),
htmltools v0.5.2 (Cheng et al., 2021), magrittr v2.0.3 (Bache and
Wickham, 2022), metathis v1.1.2 (Aden-Buie, 2022), rlang v1.0.6
(Henry and Wickham, 2022a), sf v1.0.8 (Pebesma, 2018), RVenn
v1.1.0 (Akyol, 2019) and purrr v0.3.5 (Henry andWickham, 2022b).
Eventually, an R package was built from the CLARITY app with use
of the R package golem v0.3.2 (Fay et al., 2022), which offers default
R files for creating the package as well as for deploying the app. The
R package roxygen2 v7.1.2 (Wickham et al., 2021) was employed for
package documentation. The processed data (i.e., recombination
rates, genetic coordinates and parameters of genetic-map functions)
were included as Rdata files in the folder “extdata”.

We optimized the app following recommendations for best
practice with lighthouse (Google LLC, 2022). Figures were
compressed with the tool Squoosh (Google Chrome Team, 2022),
and caching of those figures requiring longer loading was enabled.

The structure of the app relies on modules, which eases a clear
and concise organisation. The use of modules and corresponding
interfaces to the main shiny ui and shiny server enables a
straightforward maintenance of the software. Furthermore, since
each module is an independent app with its own interface and server
(Di Filippo et al., 2019), future modification and extension of the app
are supported.

4 Realisation and features

The app has three sidebar menus: “Information”, “Breed
analysis” and “Breed comparison” which are described in the
following.

FIGURE 3
Screenshot of general information on selected chromosome 2. The graphic displays the relationship between genetic and physical map length of all
autosomes in Holstein cattle and highlights the selected chromosome.
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4.1 Information

The first sidebar menu comprises two subitems: (1) general
information about the project and contact options as well as (2)
details of resources used. More specifically, subitem (2) contains a
brief data description for each breed and outlines the methodology
used for data analysis and parameter estimation. This subitem also
provides auxiliary information about candidate markers identified
as being putatively misplaced and/or residing in problematic regions
of the ARS-UCD1.2 release (Qanbari et al., 2022, see also Figure 2).
These markers were recommended to be excluded from subsequent
genomic analyses, such as phasing, imputation or genome-wide
association studies.

4.2 Breed analysis

Under the second sidebar menu “Breed analysis”, all
tabulated and graphical outcomes are presented for the

available breeds. So far, options “Holstein” and “Fleckvieh” are
available. The user can select a single chromosome or all
chromosomes to interconnect the physical and linkage
map. The results are divided into different tabs (implemented
as separate modules) within the main panel: general information,
genetic map, hotspot detection and genetic-map functions.
Generally, outputs including tables and figures for a certain
interval or for the entire data can also be downloaded for
being locally stored. The properties of each tab are explained
in more detail below.

4.2.1 General information
For all chromosomes, summary statistics are provided about

the number of markers considered, total number of
recombination events, length of physical and both genetic
maps (from Step 2) in tabulated format. This table reduces if
a single chromosome is selected (Figure 3). An interactive
graphical output displays physical versus genetic length per
chromosome.

FIGURE 4
Screenshot of genetic map obtained with the likelihood-based and the deterministic approach on selected chromosome 2 in Holstein cattle. A table
below (not shown) contains detailed information on each marker.
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4.2.2 Genetic map
Physical and genetic map coordinates are listed for all

markers in table or graphical format. If a specific chromosome
is selected on the sidebar menu, the user can zoom into relevant
chromosomal regions (Figure 4). In each graphic, the genetic-
map coordinates of the deterministic and likelihood-based
approach appear. The graphical as well as the table output is
adaptable to a user specified chromosome window. Selecting the
option “all chromosomes” provides a static overview of 29 single
graphics.

4.2.3 Hotspot detection
The CLARITY app offers a landscape of putative recombination

hotspots, in which marker intervals with an elevated recombination
rate are colour-marked across the bovine genome or a selected
chromosome (Figure 5). The default threshold for the

recombination rate is adopted from Ma et al. (2015) who defined
a hotspot region with a recombination rate exceeding 2.5 standard
deviations from the genome-wide average. The threshold is
adjustable by the user. Changing the threshold accordingly affects
the interactive graphic as well as the corresponding table listing all
markers within the hotspot intervals.

4.2.4 Genetic-map functions
The user can investigate the suitability of frequently used

genetic-map functions and their overall and local fit to the
observed recombination activity (Figure 6). The parameter
specifying a genetic-map function was estimated in Step 3 which
took all intra-chromosomal marker pairs into account.

The fitted genetic-map functions are illustrated together with a
reduced scatterplot of recombination rate versus genetic distance
for computational reasons. Especially for chromosomes with

FIGURE 5
Screenshot of recombination rate between adjacent markers on selected chromosome 2 in Holstein cattle. The coloured points are indicative for
putative recombination hotspot intervals using the default threshold. The table below (not shown) provides detailed information on each marker in a
hotspot interval.
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p≥ 1,415 (i.e., >1,000,000 marker pairs), the computing time is
drastically increased retarding the visualisation. To ensure smooth
processing, data were thinned based on the Euclidian distance
among consecutive data points; a data point is a pair of
recombination rate and genetic coordinate ordered according to
a vectorised triangular matrix of SNP identifiers. In total,
200,000 data points with largest Euclidian distance were kept.
This reduction of data did not impair the visual appearance of the
scatter plot.

4.3 Breed comparison

The third sidebar menu “Breed comparison” contains
comparative analyses between breeds separated into the same
tabs as described above. In addition, a Venn diagram summarises
numbers of breed-specific and shared SNPs on a selected
chromosome or over the entire autosome as well as in hotspot
intervals. In the tabs “genetic map” and “hotspot detection”, the
Venn diagram is interactively linked with the corresponding
table—this allows the user to retrieve particular information of a

selected Venn set. The Venn diagram also dynamically adapts to a
user defined range and threshold, respectively. Furthermore, since
the fit of genetic-map functions might differ between breeds and
chromosomes, a barplot displays counts of “best” genetic-map
functions in each breed if the option “all chromosomes” is chosen.

Particularly, a comparison of Holstein and Fleckvieh cattle
suggested similar recombination activity genome-wide. As an
example, an inspection of hotspot intervals on chromosome 3
(Figure 7) underlined regions of increased recombination rates at
the chromosome ends that coincided well in both breeds.
Furthermore, for each chromosome, genetic-map functions were
almost overlapping. Small deviations of genetic-map functions were
observed on chromosomes 5, 6, 9, 15, 16, and 18 with a slightly steeper
curve in Fleckvieh.

5 Discussion and outlook

The CLARITY app provides an environment to interactively
explore the physical and genetic map in selected cattle breeds.
Importantly, processing of genotype data and presenting results via

FIGURE 6
Screenshot of genetic-map functions and its overall fit on two selected chromosomes in Holstein cattle. The table provides details on estimated
parameters of genetic-map functions and mean squared error of fitted curves.
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Shiny app rely on the current bovine genome assembly ARS-UCD1.2.
In case of new assembly releases, Steps 1–3 need to be re-run and an app
update becomes necessary. (Especially, both approaches in Step 2
depend on the ordering of markers for inferring phases of sire
genotypes and recombination events.) Though a pipeline for Steps
1–3 is available at github, and it could theoretically be part of the Shiny
app, we do not recommend its inclusion for computational matters as
mentioned in Section 2.

Further work on the integration of data from other breeds (beef,
dairy, dual-purpose) is underway and will facilitate complex
comparative analyses of map features (e.g., hotspot intervals and
assembly flaws) in different genomes. Our Shiny app will be
extended accordingly, certainly increasing its value for educational
and research purposes.

Data availability statement

CLARITY is a publicly available Shiny app that can be
accessed via web interface at https://nmelzer.shinyapps.io/

clarity. The corresponding R package CLARITY v1.0.1
including the source code and processed data can be
downloaded from https://github.com/nmelzer/CLARITY
under the terms of GPL (≥ 2.0). A pipeline for processing
genotype data and an R script for composing the app input
data are available at https://github.com/wittenburg/hsrecombi.
Restrictions apply to the availability of the original data
supporting the findings of this study due to thirdparty
ownership. Genotype data are available from the Association
for Bioeconomy Research (FBF, Bonn) and ZuchtData (Vienna)
upon agreement. Requests to access the original datasets should
be directed to www.fbf-forschung.de/kontakt.html; www.
rinderzucht.at/zuchtdata/team.html.
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FIGURE 7
Screenshot of recombination rate between adjacent markers on selected chromosome 3 in a comparison of Holstein and Fleckvieh cattle. The
yellow triangles and orange rectangles highlight markers in hotspot intervals of Holstein and Fleckvieh, respectively.

Frontiers in Genetics frontiersin.org08

Melzer et al. 10.3389/fgene.2023.1082782

47

https://nmelzer.shinyapps.io/clarity
https://nmelzer.shinyapps.io/clarity
https://github.com/nmelzer/CLARITY
https://github.com/wittenburg/hsrecombi
www.fbf-forschung.de/kontakt.html
www.rinderzucht.at/zuchtdata/team.html
www.rinderzucht.at/zuchtdata/team.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1082782


conceived the project. All authors contributed to the article and
approved the final version.

Funding

This study was supported by the grant from the German Federal
Ministry of Education and Research (BMBF, FKZ
031L0166 CompLS). The publication of this article was funded
by the Open Access Fund of the FBN.

Acknowledgments

We gratefully acknowledge the support of the Association for
Bioeconomy Research (FBF, Bonn, Germany) as representative of
German Holstein cattle breeders for participating in this project and
the German Evaluation Center (VIT, Verden, Germany) for

composing the Holstein data. We thank ZuchtData (Vienna,
Austria) for providing the German/Austrian Fleckvieh data.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Aden-Buie, G. (2022). Metathis: HTML metadata tags for ’R markdown’ and ’shiny’.
Available at: https://CRAN.R-project.org/package=metathis (Accessed October 20,
2022).

Akyol, T. Y. (2019). RVenn: Set operations for many sets. Available at: https://CRAN.
R-project.org/package=RVenn (Accessed October 20, 2022).

Allaire, J. J. (2020). config: Manage environment specific configuration values.
Available at: https://CRAN.R-project.org/package=config (Accessed October 20, 2022).

Attali, D. (2021). shinyjs: Easily improve the user experience of your shiny apps in
seconds. Available at: https://CRAN.R-project.org/package=shinyjs (Accessed October
20, 2022).

Auguie, B. (2017). gridExtra: Miscellaneous functions for "grid" graphics. Available at:
https://CRAN.R-project.org/package=gridExtra (Accessed October 20, 2022).

Bache, S. M., and Wickham, H. (2022). Magrittr: A forward-pipe operator for R.
Available at: https://CRAN.R-project.org/package=magrittr (Accessed October 20,
2022).

Chang, W., and Borges Ribeiro, B. (2021). shinydashboard: Create dashboards with
’shiny’. Available at: https://CRAN.R-project.org/package=shinydashboard (Accessed
October 20, 2022).

Chang, W. (2021). cachem: Cache R objects with automatic pruning. Available at:
https://CRAN.R-project.org/package=cachem (Accessed October 20, 2022).

Chang,W., Cheng, J., Allaire, J. J., Sievert, C., Schloerke, B., Xie, Y., et al. (2021). shiny:
Web application framework for R. Available at: https://CRAN.R-project.org/package=
shiny (Accessed October 20, 2022).

Cheng, J., Sievert, C., Schloerke, B., Chang, W., Xie, Y., and Allen, J. (2021). htmltools:
Tools for HTML. Available at: https://CRAN.R-project.org/package=htmltools
(Accessed October 20, 2022).

De los Ríos-Pérez, L., Verleih, M., Rebl, A., Brunner, R., Nguinkal, J. A., Klosa, J., et al.
(2020). An ultra-high density SNP-based linkage map for enhancing the pikeperch
(Sander lucioperca) genome assembly to chromosome-scale. Sci. Rep. 10, 22335. doi:10.
1038/s41598-020-79358-z

Di Filippo, L., Righelli, D., Gagliardi, M., Matarazzo, M. R., and Angelini, C. (2019).
HiCeekR: A novel shiny app for hi-C data analysis. Front. Genet. 10, 1079. doi:10.3389/
fgene.2019.01079

Everts-van der Wind, A., Larkin, D. M., Green, C. A., Elliott, J. S., Olmstead, C. A.,
Chiu, R., et al. (2005). A high-resolution whole-genome cattle–human comparative map
reveals details of mammalian chromosome evolution. PNAS 102, 18526–18531. doi:10.
1073/pnas.0509285102

Fay, C., Guyader, V., Rochette, S., and Girard, C. (2022). Golem: A framework for
robust shiny applications. Available at: https://CRAN.R-project.org/package=golem
(Accessed October 20, 2022).

Felsenstein, J. (1979). A mathematically tractable family of genetic mapping functions
with different amounts of interference. Genetics 91, 769–775. doi:10.1093/genetics/91.
4.769

Ferdosi,M.H., Kinghorn, B. P., van derWerf, J.H., Lee, S.H., andGondro,C. (2014). hsphase:
an R package for pedigree reconstruction, detection of recombination events, phasing and
imputation of half-sib family groups. BMC Bioinf 15, 172. doi:10.1186/1471-2105-15-172

Gao, C.-H. (2021). ggVenndiagram: A ’ggplot2’ implement of Venn diagram.
Available at: https://CRAN.R-project.org/package=ggVennDiagram (Accessed
October 20, 2022).

Georges, M., Charlier, C., and Hayes, B. (2019). Harnessing genomic
information for livestock improvement. Nat. Rev. Genet. 20, 135–156. doi:10.
1038/s41576-018-0082-2

Google Chrome Team (2022). Squoosh!. Available at: https://github.com/
GoogleChromeLabs/squoosh (Accessed June 21, 2022).

Google LLC (2022). Lighthouse. Available at: https://github.com/GoogleChrome/
lighthouse (Accessed June 21, 2022).

Haldane, J. B. S. (1919). The combination of linkage values and the calculation of
distances between the loci of linked factors. J. Genet. 8, 299–309.

Henry, L., andWickham, H. (2022b). purrr: Functional programming tools. Available
at: https://CRAN.R-project.org/package=purrr (Accessed October 20, 2022).

Henry, L., and Wickham, H. (2022a). rlang: Functions for base types and Core R and
’tidyverse’ features. Available at: https://CRAN.R-project.org/package=rlang (Accessed
October 20, 2022).

Johnsson, M., and Jungnickel, M. K. (2021). Evidence for and localization of proposed
causative variants in cattle and pig genomes. Genet. Sel. Evol. 53, 67. doi:10.1186/
s12711-021-00662-x

Liberman, U., and Karlin, S. (1984). Theoretical models of genetic map functions.
Theor. Popul. Biol. 25, 331–346. doi:10.1016/0040-5809(84)90013-3

Loh, P.-R., Danecek, P., Palamara, P. F., Fuchsberger, C., Reshef, Y. A., Finucane, H.
K., et al. (2016). Reference-based phasing using the haplotype reference consortium
panel. Nat. Genet. 48, 1443–1448.

Ma, L., O’Connell, J. R., VanRaden, P. M., Shen, B., Padhi, A., Sun, C., et al. (2015).
Cattle sex-specific recombination and genetic control from a large pedigree analysis.
PLoS Genet. 11, e1005387. doi:10.1371/journal.pgen.1005387

Musa, A. A. (2021). “A similarity matrix and its application in genomic selection for
hedging haplotype diversity (Dissertation)” (Germany: University Kiel).

Pebesma, E. (2018). Simple features for R: Standardized support for spatial vector
data. R J. 10 (1), 439–446. doi:10.32614/RJ-2018-009

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., et al.
(2007). PLINK: a tool set for whole-genome association and population-based linkage
analyses. Am. J. Hum. Genet. 81, 559–575.

Qanbari, S. (2020). On the extent of linkage disequilibrium in the genome of farm
animals. Front. Genet. 10, 1304. doi:10.3389/fgene.2019.01304

Qanbari, S., Schnabel, R. D., and Wittenburg, D. (2022). Evidence of rare
misassemblies in the bovine reference genome revealed by population genetic
metrics. Anim. Genet. 53, 498–505. doi:10.1111/age.13205

Qanbari, S., and Wittenburg, D. (2020). Male recombination map of the autosomal
genome in German Holstein. Genet. Sel. Evol. 52, 73. doi:10.1186/s12711-020-00593-z

R Core Team (2022). R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-
project.org.

Frontiers in Genetics frontiersin.org09

Melzer et al. 10.3389/fgene.2023.1082782

48

https://CRAN.R-project.org/package=metathis
https://CRAN.R-project.org/package=RVenn
https://CRAN.R-project.org/package=RVenn
https://CRAN.R-project.org/package=config
https://CRAN.R-project.org/package=shinyjs
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=cachem
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=htmltools
https://doi.org/10.1038/s41598-020-79358-z
https://doi.org/10.1038/s41598-020-79358-z
https://doi.org/10.3389/fgene.2019.01079
https://doi.org/10.3389/fgene.2019.01079
https://doi.org/10.1073/pnas.0509285102
https://doi.org/10.1073/pnas.0509285102
https://CRAN.R-project.org/package=golem
https://doi.org/10.1093/genetics/91.4.769
https://doi.org/10.1093/genetics/91.4.769
https://doi.org/10.1186/1471-2105-15-172
https://CRAN.R-project.org/package=ggVennDiagram
https://doi.org/10.1038/s41576-018-0082-2
https://doi.org/10.1038/s41576-018-0082-2
https://github.com/GoogleChromeLabs/squoosh
https://github.com/GoogleChromeLabs/squoosh
https://github.com/GoogleChrome/lighthouse
https://github.com/GoogleChrome/lighthouse
https://CRAN.R-project.org/package=purrr
https://CRAN.R-project.org/package=rlang
https://doi.org/10.1186/s12711-021-00662-x
https://doi.org/10.1186/s12711-021-00662-x
https://doi.org/10.1016/0040-5809(84)90013-3
https://doi.org/10.1371/journal.pgen.1005387
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.3389/fgene.2019.01304
https://doi.org/10.1111/age.13205
https://doi.org/10.1186/s12711-020-00593-z
https://www.R-project.org
https://www.R-project.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1082782


Rao, D. C., Morton, N. E., Lindsten, J., Hultén, M., and Yee, S. (1977). A mapping
function for man. Hum. Hered. 27, 99–104. doi:10.1159/000152856

Rosen, B. D., Bickhart, D. M., Schnabel, R. D., Koren, S., Elsik, C. G., Tseng, E.,
et al. (2020). De novo assembly of the cattle reference genome with single-molecule
sequencing. GigaScience 9, giaa021. doi:10.1093/gigascience/giaa021

Sali, A., and Attali, D. (2020). shinycssloaders: Add loading animations to a ’shiny’
output while it’s recalculating. Available at: https://CRAN.R-project.org/package=
shinycssloaders (Accessed October 20, 2022).

Sievert, C. (2020). Interactive web-based data visualisation with R, plotly, and shiny.
Boca Raton: Chapman and Hall/CRC. Available at: https://plotly-r.com.

Wickham, H., Danenberg, P., Csárdi, G., and Eugster, M. (2021). roxygen2: In-Line
Documentation for R. Available at: https://CRAN.R-project.org/package=roxygen2
(Accessed October 20, 2022).

Wickham, H., François, R., Henry, L., andMüller, K. (2022). dplyr: A grammar of data
manipulation. Available at: https://CRAN.R-project.org/package=dplyr (Accessed
October 20, 2022)

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York, NY:
Springer.

Wittenburg, D. (2020). hsrecombi: Estimation of recombination rate and maternal
LD in half-sibs. Available at: https://cran.r-project.org/package=hsrecombi (Accessed
October 20, 2022).

Womack, J. E. (2005). Advances in livestock genomics: Opening the barn door.
Genome Res. 15, 1699–1705. doi:10.1101/gr.3809105

Xie, Y., Cheng, J., and Tan, X. (2022). DT: A wrapper of the JavaScript library
’DataTables’. Available at: https://CRAN.R-project.org/package=DT (Accessed October
20, 2022).

Frontiers in Genetics frontiersin.org10

Melzer et al. 10.3389/fgene.2023.1082782

49

https://doi.org/10.1159/000152856
https://doi.org/10.1093/gigascience/giaa021
https://CRAN.R-project.org/package=shinycssloaders
https://CRAN.R-project.org/package=shinycssloaders
https://plotly-r.com
https://CRAN.R-project.org/package=roxygen2
https://CRAN.R-project.org/package=dplyr
https://cran.r-project.org/package=hsrecombi
https://doi.org/10.1101/gr.3809105
https://CRAN.R-project.org/package=DT
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1082782


Recognition of outer membrane
proteins using multiple feature
fusion

Wenxia Su1, Xiaojun Qian2, Keli Yang3, Hui Ding2,
Chengbing Huang4* and Zhaoyue Zhang2,5*
1College of Science, Inner Mongolia Agriculture University, Hohhot, China, 2School of Life Science and
Technology, Center for Information Biology, University of Electronic Science and Technology of China,
Chengdu, China, 3Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China, 4School
of Computer Science and Technology, Aba Teachers University, Aba, China, 5School of Healthcare
Technology, Chengdu Neusoft University, Chengdu, China

Introduction: Outer membrane proteins are crucial in maintaining the structural
stability and permeability of the outer membrane. Outer membrane proteins
exhibit several functions such as antigenicity and strong immunogenicity,
which have potential applications in clinical diagnosis and disease prevention.
However, wet experiments for studying OMPs are time and capital-intensive,
thereby necessitating the use of computational methods for their identification.

Methods: In this study, we developed a computational model to predict outer
membrane proteins. The non-redundant dataset consists of a positive set of 208
outer membrane proteins and a negative set of 876 non-outer membrane
proteins. In this study, we employed the pseudo amino acid composition
method to extract feature vectors and subsequently utilized the support vector
machine for prediction.

Results and Discussion: In the Jackknife cross-validation, the overall accuracy
and the area under receiver operating characteristic curve were observed to be
93.19% and 0.966, respectively. These results demonstrate that our model can
produce accurate predictions, and could serve as a valuable guide for
experimental research on outer membrane proteins.

KEYWORDS

outer membrane protein, pseudo amino acid composition, support vector machine,
jackknife test, prediction model

1 Introduction

Outer membrane proteins (OMPs) are a special type of proteins that are found in the
outermost membranes of Gram-negative bacteria, mitochondria, and chloroplasts (Rollauer
et al., 2015; Qi et al., 2022). OMPs serve a wide range of functions, including acting as
adhesion factors in virulence, channels for small hydrophilic molecules, enzymes in
biochemical reactions, and antigens in immune responses. They also work in concert
with other substances to enhance the bacteria pathogenicity. Recent research on OMPs has
revealed their potential for clinical diagnosis and disease prevention. Several published
studies have explored OMPs as potential vaccine candidates (Budiardjo et al., 2021; Fahie
et al., 2021; Cheng et al., 2022; Yu et al., 2022). The functions are determined by the OMP’s
structure and the way it interacts with other molecules. OMPs are typically composed of a
transmembrane β-barrel architecture, providing permeability to the outer membrane and
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maintaining structural stability. Among different types of OMPs, β-
buckets consist of varying even numbers of β-folding sheets, ranging
from 8 to 26 (Rollauer et al., 2015). The specific composition of the
β-barrel architecture is determined by the amino acid sequence of
the OMPs. Mutations in sequences can impact the stability and
function of the protein.

Distinguishing OMPs from non-OMPs can aid researchers in
identifying promising vaccine targets, developing new antibiotics and
therapeutics, and understanding the evolution of Gram-negative
bacteria. Despite their distinctive β-barrel structure, OMPs are
exposed to numerous charged and polar residues in the
membrane, making it challenging to distinguish them from non-
OMPs. This is a primary challenge and a significant obstacle in the
research process, given the considerable time and capital costs
associated with laboratory studies of OMPs. As a result, OMP
prediction has tremendous significance for the scientific
community. Currently, various machine learning methods have
been used for the identification of OMPs, such as support vector
machine (SVM) (Park et al., 2005; Gromiha et al., 2006; Hu et al.,
2017; Zhang et al., 2021), k-nearest neighbor (K-NN) method (Yan
et al., 2008), neural networks (NN) (Hu et al., 2017). These methods
utilize the amino acid composition, and physical and chemical
properties of the amino acid sequences to construct the prediction
models. Gromiha and Suwa (2003); Gromiha and Suwa (2005)
developed multiple OMP prediction methods based on amino acid
composition, residue pair preference, and motif sequence. However,
these methods only achieved prediction accuracies of 80%–90%.
Subsequently, a machine learning algorithm was proposed with a
higher accuracy ranging from 90% to 94% (Gromiha et al., 2005;
Gromiha et al., 2006). Lin (2008) further improved the OMP
prediction model by introducing the Incremental Diversity with
Quality Distinctness analysis, which combines the Markov
discriminant method and the pseudo amino acid composition
(Pse-AAC). Despite the progress made in OMP predictions, there
is still room for further improvement in prediction quality.

In this article, we proposed a novel method for predicting OMPs
that combines Pse-AAC and SVM. To extract the features for amino
acid composition and physical and chemical characteristics of amino
acids, we used the Pse-AAC feature extractionmethod. Additionally, we
introduced multi-level amino acid residue index correlation coefficients
such as hydrophobic value, average polarity, and solvation-free energy
to enhance the accuracy of our prediction model. To assess the
effectiveness and reliability of our approach, we also conducted a
comprehensive comparison and analysis of our proposed model
with existing methods for predicting OMPs. Our developed
approach will be useful for distinguishing OMPs from non-OMPs.

2 Materials and methods

2.1 Datasets

The construction of a reliable dataset is the basis for developing
an accurate outer membrane protein prediction model (Su et al.,
2021). A well-designed dataset is crucial for developing effective
algorithms and an objective evaluation and prediction system. In
this paper, membrane proteins were extracted from the PSORT-B
database (https://www.psort.org/) (Gardy et al., 2003), and globular

proteins were extracted from the PDB40D of SCOP_1.37 database
(http://scop.mrc-lmb.cam.ac.uk/scop/) (Andreeva et al., 2020). As a
result, a total of 208 OMPs were selected as the positive set, while
879 non-OMPs were chosen as the negative set. The negative set
included 206 inner membrane proteins and 673 globular proteins.
The globular protein dataset contained 154 complete α proteins,
156 complete β proteins, 184 α + β proteins, and 179 α/β proteins.
Since the sequence homology of each protein class was less than
40%, proteins in each database were not similar and were de-
redundant.

2.2 Feature encoding

To construct a prediction model, it is necessary to represent the
protein sequences as mathematical vectors. This conversion is
commonly known as feature extraction (Basith et al., 2020; Dao
et al., 2022b; Zhang Z.-Y. et al., 2022; Hunt et al., 2022; Karuna
Nidhi et al., 2022; Sun et al., 2022; Tran and Nguyen, 2022; Wang
et al., 2022; Yang et al., 2022). The amino acid composition (ACC) of
the protein has a great impact on protein classification research (Awais
et al., 2021; Shoombuatong et al., 2022b; Manavalan and Patra, 2022;
Rout et al., 2022; Zhu et al., 2022). By using the ACC, a protein sequence
can be represented as a 20-D (dimension) vector as follows:

VAAC S( ) � v1, v2, v3,/, v20( )T (1)
In Eq. 1, vi � fi/∑fi, fi represented the number of the

i (i � 1, 2,/, 20) amino acid in the protein sequence.
The type of amino acids is determined by their side chains, as the

20 types of amino acid side chains differ in shape, size, negativity,
hydrophobicity, and acid-base properties. The distinct characteristics
of the 20 amino acid side chains result in various combinations of
amino acid sequences that exhibit different structures and functions.
Therefore, algorithms based on the physicochemical properties of
amino acids are anothermajor category of feature extractionmethods.
Pse-AAC, originally proposed by Chou, is a feature extraction
algorithm, that is, based on the physical and chemical properties
of amino acids (Chou, 2005). By using Pse-AAC, a protein sample can
be represented as follows:

VPAAC � x1, . . . , x20, x20+1, . . . , x20+λ[ ]T (2)
where the first 20 numbers in Eq. 2 are the classic AAC features, and
the next λ discrete numbers represent the position information of
residues in amino acid sequences. For different problems, the optimal
value of λ may vary. In this study, we selected the optimal value of λ
that yielded the highest sensitivity through the jackknife test.

2.3 Support vector machine

SVM is a powerful supervised machine learning classification
method based on statistical learning theory (Manavalan et al., 2019).
It was originally designed based on the idea of the generalized linear
classifier. First, features were mapped to high-dimensional space. Next,
a separating hyperplane is constructed to separate the two categories in
the high-dimensional feature space (Vapnik and Control, 2019). To
avoid expensive computations, the mapping function only involves the
relatively low-dimensional vector in the input space and the dot product
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in the feature space. The global optimization approach and avoidance of
overfitting in SVM have made it a successful tool for addressing various
bioinformatics problems (Zhang H. et al., 2022). In this paper, the
support vector machine (SVM) was implemented using the widely used
software LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm) (Chang
and Lin, 2011). The radial basis function which is defined as
K(xi, xj) � exp(−γ‖xi − xj‖2) was chosen as the kernel function.
The regularization parameter C and the kernel width parameter γ

were optimized on the training set using a grid search strategy.

2.4 Evaluation methods

At present, k-fold cross-validation and jackknife cross-
validation are widely used for prediction evaluation (Tabaie et al.,
2021; Dao et al., 2022a; Xiao et al., 2022; Zhou et al., 2022). The
jackknife test is a type of cross-validation that involves leaving one
observation out of the dataset at a time and using the remaining
observations to train a model. This process is repeated for each
observation in the dataset, resulting in n different models, where n is
the number of observations in the dataset. In this article, we used the
Jackknife test to evaluate the prediction results. The sensitivity (Sn),
specificity (Sp), average accuracy (AA), overall prediction accuracy
(OA), and Matthew’s correlation coefficient (MCC), the area under
ROC curve (auROC) were used to evaluate the prediction
performance of the algorithm (Yang et al., 2021; Zhang Q. et al.,
2022). The evaluation metrics are defined as follows:

Sn � TP

TP + FN
(3)

Sp � TN

TN + FP
(4)

MCC � TP × TN − FP × FN�������������������������������������
TP + FN( ) TP + FP( ) TN + FP( ) TN + FN( )√ (5)

OA � TP + TN

TP + TN + FN + FP
(6)

AA � 1
2
×

TP

TP + FN
+ TN

TN + FP
( ) (7)

where TP represents the number of the positive sample correctly
identified, FN represents the positive sample wrongly identified as a
negative sample, FP represents the negative sample wrongly identified
as a positive sample, and TN represents the negative sample correctly
identified. AuROC is an indicator that relates to the receiver operating
characteristic (ROC) curve, which is a plot of a series of continuous (1-
Sp) values on the horizontal axis against their corresponding Sn values
on the vertical axis. The ROC curve is a useful tool for evaluating the
sensitivity and specificity of a model (Hasan et al., 2022; Jeon et al.,
2022). AuROC is calculated in this study as an indicator of classification
ability and performance. A larger auROC value indicates better
performance and classification ability of the model.

3 Results and discussion

3.1 Model performance

In this study, the proteins were first obtained in FASTA format
and then the PseAAC program (Shen and Chou, 2008) was used to

extract the feature vectors of pseudo amino acid components. To
achieve relatively optimal prediction results, different parameters
were selected to extract pseudo amino acid component feature
vectors of protein sequences. Specifically, feature vectors were
extracted using different values of ω (the weight factor) including
0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, and λ was taken as either 3 or 5. The
extracted feature vectors were then used for prediction using
different values of γ including 0.04, 0.05, 0.06, 0.07, 0.08, and
0.09. The SVM model was trained using svm-train in LIBSVM,
and the optimal parameter array and optimal feature subset were
searched from the prediction results. Only the γ value that achieved
the optimal prediction result was selected and listed in Table 1.

In this study, the benchmark dataset consisted of 208 OMPs and
879 non-OMPs. Due to this imbalanced dataset, using average
accuracy as the sole evaluation criterion may lead to skewed
results toward the negative sets. Thus, the paper used overall
accuracy as the main criterion for model evaluation. By analyzing
the data in Table 1, it was observed that high prediction sensitivity
was achieved using Jackknife cross-validation with different
parameters. And, with the best prediction result obtained with a
weight factor of 0.5, the parameter λ taking 5, γ taking 0.07, resulting
in an overall accuracy of 93.10%.

3.2 Model comparison

Various methods have been proposed by different researchers to
predict and distinguish OMPs from other types of membrane
proteins. Wu et al. (2007) proposed a prediction method that
uses information differences to compare the distribution of
subsequences and residual sequences, resulting in a prediction
accuracy of 99.20%. Yan et al. (2008) proposed a method based
on the K-nearest neighbor (KNN) method, which predicted the
weighted Euclidean distance calculated by residual synthesis and
achieved a recognition accuracy of 96.1%, sensitivity of 87.5%,

TABLE 1 The performance comparison of prediction models under different
parameter conditions.

ω, λ, γ Sn(%) Sp(%) MCC(%) OA
(%)

AA
(%)

AuROC

0.1,3,0.05 78.37 96.59 77.16 93.10 87.48 0.962

0.2,3,0.08 78.85 96.59 77.49 93.19 87.72 0.966

0.3,3,0.09 75.96 96.59 75.46 92.64 86.27 0.965

0.4,3,0.08 79.33 95.79 75.97 92.64 87.56 0.962

0.5,3,0.09 79.33 95.79 75.97 92.64 87.56 0.961

0.6,3,0.09 79.81 95.90 76.57 92.82 87.86 0.958

0.1,5,0.07 79.81 96.59 78.17 93.38 88.20 0.965

0.2,5,0.09 79.81 95.56 75.79 92.55 87.69 0.968

0.3,5,0.09 80.77 95.45 76.22 92.64 88.11 0.966

0.4,5,0.08 81.73 95.11 76.15 92.55 88.42 0.964

0.5,5,0.07 84.61 95.11 78.19 93.10 89.86 0.963

0.6,5,0.07 81.25 94.43 74.34 91.90 87.84 0.956
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specificity of 98.2% with 0.873 MCC. Gromiha et al. (2006)
discriminate of OMPs and non-OMPs using different machine
learning approaches, the best performance achieved sensitivity of
84.6%, specificity of 95.8% and accuracy of 93.7%. And the SVM-
based model achieved sensitivity of 72.6%, specificity of 98.2% and
accuracy of 93.3%. Park et al. (2005) proposed an SVMmethod that
considers both amino acid composition and residue pair
information, achieving sensitivity of 90.9 %, specificity of 94.7%,
MCC 0.816 of and accuracy of 93.9%. Gao et al. (2010) developed a
method that combined the structural and physicochemical
characteristics of sequence-derived proteins with amino acid
composition to distinguish OMPs and non-OMPs using SVM,
with an overall accuracy of 97.8%, sensitivity of 91.8 %,
specificity of 99.2% and MCC 0.928.

In this paper, the model constructed using the SVM algorithm
achieved an overall accuracy of 93.10% and auROC of 0.963 under
Jackknife cross-validation, respectively. Besides, the sensitivity,
specificity, MCC, and average accuracy were found to be 84.61%,
95.11%, 78.19%, and 89.86%, respectively. Compared to previous
SVM-based models, some progress has been made.

4 Conclusion

This article focused on the prediction and recognition of OMPs
using the method of combining Pse-AAC with SVM. The study
achieved good results with the Pse-AAC method, which not only
considers the content of 20 natural amino acids in each protein
sequence but also includes the correlation between various amino
acids, such as physical and chemical properties. This approach is
more advanced than traditional methods that only consider amino
acid composition, leading to more accurate prediction results. SVM
is a widely used algorithm in bioinformatics (Hasan et al., 2020;
Shoombuatong et al., 2022a; Bupi et al., 2023), and applying it to the
prediction of OMPs is an inevitable trend in current research. The
constructed model using the SVM algorithm achieved high
performance with an overall accuracy of 93.10% and auROC of
0.963 under Jackknife cross-validation. The sensitivity, specificity,
Matthew correlation coefficient, and average accuracy achieved
84.61%, 95.11%, 78.19%, and 89.86%, respectively. However,
while feature extraction algorithms have been widely used in
prediction methods and have achieved good performance, the
relationship between the extracted information and protein
structure and function needs to be further explored. This
challenge will undoubtedly be the focus of our future research
efforts aimed at identifying OMPs. The development of accurate
prediction models for OMPs has the potential to significantly impact

fields ranging from antibiotic discovery and vaccine development to
biotechnology and bacterial diagnostics.
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Antimicrobial peptides are present ubiquitously in intra- and extra-biological
environments and display considerable antibacterial and antifungal activities.
Clinically, it has shown good antibacterial effect in the treatment of diabetic
foot and its complications. However, the discovery and screening of antimicrobial
peptides primarily rely on wet lab experiments, which are inefficient. This study
endeavors to create a precise and efficient method of predicting antimicrobial
peptides by incorporating novel machine learning technologies. We proposed a
deep learning strategy named AMP-EBiLSTM to accurately predict them, and
compared its performance with ensemble learning and baseline models. We
utilized Binary Profile Feature (BPF) and Pseudo Amino Acid Composition
(PSEAAC) for effective local sequence capture and amino acid information
extraction, respectively, in deep learning and ensemble learning. Each model
was cross-validated and externally tested independently. The results demonstrate
that the Enhanced Bi-directional Long Short-Term Memory (EBiLSTM) deep
learning model outperformed others with an accuracy of 92.39% and AUC
value of 0.9771 on the test set. On the other hand, the ensemble learning
models demonstrated cost-effectiveness in terms of training time on a
T4 server equipped with 16 GB of GPU memory and 8 vCPUs, with training
durations varying from 0 to 30 s. Therefore, the strategy we propose is
expected to predict antimicrobial peptides more accurately in the future.

KEYWORDS

antimicrobial peptides, diabetic foot, deep learning, ensemble learning, accurate
screening

1 Introduction

Antimicrobial peptides are a class of small peptide molecules widely present both inside
and outside of organisms, possessing strong antibacterial and antifungal properties (Zasloff,
2002). Their mechanism of action primarily involves disrupting microbial cell membranes,
leading to cell death (Brogden, 2005). The biological structure of antimicrobial peptides
usually encompasses various amino acids, offering a broader antimicrobial spectrum and
lower resistance than traditional antibiotics (Hancock and Sahl, 2006; Mahlapuu et al., 2016).
This makes them promising candidates for applications in biomedical, food preservation,
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cosmetic antimicrobial, and environmental protection (Axel et al.,
2016; Kumar et al., 2018; Yoon et al., 2018) fields. For instance, in the
medical domain, antimicrobial peptides serve as topical anti-
infective drugs, treating skin and soft tissue infections and
preventing and treating hospital-acquired infections (Omardien
et al., 2016; Nakatsuji et al., 2017; Lázár et al., 2018). They are
also extensively employed in medical device applications, such as
coatings on pacemakers, artificial joints, and dental implants, to
prevent the formation of bacterial biofilms and reduce device-related
infection risks (Melo et al., 2009). In clinical therapy, antimicrobial
peptides have gradually attracted attention as potential alternative
antibiotic treatments, demonstrating promising potential in wound
healing, infectious disease treatment, and antitumor therapy (Costa
et al., 2011; Hilchie et al., 2013; Mansour et al., 2014). Additionally,
antimicrobial peptides have gradually attracted people’s attention as
a potential alternative to antibiotic therapy and to promote the
formation of new blood vessels. For example, in the clinical practice
of vascular surgery, some antimicrobial peptides have been
successfully used in the treatment of diabetic feet, such as LL
-37 and hBDs, both of which exhibit good anti-bacterial and
wound healing effects (Lázár et al., 2018; Da et al., 2021). At the
same time, some studies have found that antimicrobial peptides can
regulate the function of endothelial cells, pro-mote the formation of
new blood vessels, and improve blood flow in the feet, thereby
positively affecting the vascular lesions of diabetic feet (Xing et al.,
2023).

Traditional screening methods for antimicrobial peptides
include biochemical methods and molecular dynamics simulation
techniques. Biochemical methods typically involve extracting
peptide segments from biological samples and screening them
through antimicrobial activity tests, such as the agar diffusion
test and minimum inhibitory concentration determination
(Hancock and Diamond, 2000; Wimley, 2010). Molecular
dynamics simulations, as a bioinformatics approach, offer a new
perspective for antimicrobial peptide screening. By simulating the
interactions between antimicrobial peptides and bacterial target
molecules, researchers can gain deeper insights into the
mechanism of action of antimicrobial peptides, thereby
optimizing their design and screening. Molecular dynamics
simulation technology can assist researchers in screening peptide
segments with higher antimicrobial activity, thereby enhancing the
efficiency of antimicrobial peptide re-search and applications
(Haney et al., 2017; Ulmschneider and Ulmschneider, 2018).

However, the development and screening of antimicrobial
peptides currently face a series of challenges. Firstly, traditional
biochemical methods are costly and have lengthy development
cycles. These methods require laboratory screening of numerous
peptide segments, which can consume substantial time and
resources. Furthermore, due to experimental condition
constraints, false-positive or false-negative results may be
generated, thereby reducing the accuracy of the screening.
Although molecular dynamics simulations, as a bioinformatics
approach, have somewhat improved screening efficiency, they
still present shortcomings. The simulation process might be con-
strained by computational resources, resulting in less accurate
results. Moreover, the variety of antimicrobial peptides screened
might be limited, and their stability may not be sufficient to meet
practical application requirements. Consequently, the development

of an efficient, precise, and convenient screening strategy is crucial.
Such a strategy should overcome the limitations of current screening
methods, enhance screening efficiency and accuracy, and reduce
research and development costs.

With the rapid advancement of AI technology and
computational power, an in-creasing number of researchers have
begun to focus on the identification of small functional peptides.
These small peptides have shorter amino acid sequences, typically
containing between 5 and 50 amino acid residues (Al-Khdhairawi
et al., 2023). These short peptides play various crucial functions in
biological systems, including antimicrobial, antiviral,
immunoregulatory, and cellular signal transduction roles
(Hancock et al., 2016). Optimized machine learning algorithms
can enhance the accuracy and efficiency of identifying and
predicting functional peptides, deepening our understanding of
their roles in biological systems and providing robust support for
related field research. Over the past few years, significant progress
has been made in peptide recognition work. Meher et al. improved
the accuracy of antimicrobial peptide prediction by integrating
compositional, physicochemical, and structural features into the
Pseudo Amino Acid Composition (PSEAAC) (Chou, 2001; Meher
et al., 2017). Veltri et al. improved antimicrobial peptide
identification in their research using deep learning methods
(Veltri et al., 2018). Manavalan et al. enhanced prediction
accuracy by using ma-chine learning and ensemble learning
methods to predict cell-penetrating peptides and their
engulfment efficiency (Manavalan et al., 2018). Hasan et al.
proposed an improved and robust method for predicting
hemolytic peptides and their activity—HLPpred-Fuse. They
enhanced prediction performance by fusing various feature
representations, such as amino acid composition, dihedral angles,
amino acid sequence, and PSEAAC, and used a random forest (RF)
for model training (Hasan et al., 2020). Although existing research
has made some break-throughs in identifying antimicrobial
peptides, the precision of prediction and the efficiency of
screening still need improvement. These methods might
encounter low computational efficiency and high time costs when
handling large-scale datasets. While existing methods have
contributed significantly to the identification of these peptides,
there’s a need for more versatile approaches that can rapidly
adapt to diverse identification requirements. Furthermore, some
models’ generalization capability on new datasets needs to be
strengthened. Hence, our work presents a new approach that
addresses this gap, by developing a prediction model that offers
flexibility and efficiency in identifying antimicrobial peptides under
diverse conditions.

The aim of this study is to develop an accurate and efficient
antimicrobial peptide screening strategy using novel deep learning
models. We constructed two datasets: the first for training and five-
fold cross-validation, and the second for external independent
testing. We proposed the Enhanced Bi-directional Long Short-
Term Memory (EBiLSTM) deep learning model and compared it
with mainstream ensemble learning and baseline models. In
particular, our model incorporates feature fusion strategies to
combine different feature types and extract comprehensive
characteristics from the peptide sequences. Additionally, a multi-
scale convolutional layer is used to capture peptide sequence features
at various scales. These modifications aim to improve the model’s
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ability to recognize various features within peptide sequences,
thereby enhancing its predictive performance for identifying
antimicrobial peptides. For ensemble learning, we utilized

Adaptive Boosting (AdaBoost), Light Gradient Boosting Machine
(LightGBM), and Extreme Gradient Boosting (XGBoost). In terms
of deep learning, in addition to EBiLSTM, two classic deep learning

FIGURE 1
Schematic showing experimental workflow.
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models were also selected to participate in the work. Additionally, we
employed three baseline machine learning models for comparison
with the aforementioned six types. These models were tested on an
external dataset to evaluate their performance. The specific
workflow of this study is illustrated in Figure 1.

In summary, the main contributions of this study are as follows.

• This study is the first to propose EBiLSTM models for
antimicrobial peptides prediction. In detail, we made
suitable modifications based on the BiLSTM network
structure to enhance prediction performance.

• Regarding the dataset, we independently constructed two
antimicrobial peptide datasets: one for cross-validation and
another for independent verification. This provides a reliable
foundation for evaluating and comparing the performance of
different models.

• Considering the characteristics of different models, we
separately adopted two feature extraction methods:
PSEAAC and Binary Profile Feature of k-spaced Amino
Acid Pairs (BPF) (Chen et al., 2016). These methods are
designed to maximize the potential of each model in
antimicrobial peptide prediction tasks.

2 Materials and methods

2.1 Data collection

The antimicrobial peptide data used in this study are all sourced
from multiple public databases, including: APD3 (https://aps.unmc.
edu/about), PlantPepDB (http://14.139.61.8/PlantPepDB/index.
php), BaAMPs (https://www.baamps.it/), Bio-PepDB (https://bis.
zju.edu.cn/biopepdbr/), CAMP (https://webs.iiitd.edu.in/raghava/
satpdb/catalogs/camp/), DBAASP (https://dbaasp.org/home),
DRAMP (https://dramp.cpu-bioinfor.org/), LAMP (https://ngdc.
cncb.ac.cn/databasecommons/database/id/4562). After screening,
we obtained 5605 and 1119 antimicrobial peptide samples from
these databases, respectively. Simultaneously, to construct a
comparable proportion of negative samples to the antimicrobial
peptide samples, we referred to previous studies (Tyagi et al., 2013;
Kumar et al., 2015) and randomly selected the corresponding
number of peptide sequences from the UniProt database. These
negative samples primarily included peptides that are non-
antimicrobial. We aimed to ensure a balance with our positive
samples, and therefore, additional criteria were considered in
their selection. We ensured that these samples were similar to
our positive samples in terms of length, to prevent the length
from becoming a distinguishing feature. We also took into
account the amino acid composition, ensuring that the negative
samples did not exhibit any uncommon composition that could
introduce bias. Peptide sequences were added to two datasets, which
we named AMP-11053 and AMP-2211. The AMP-11053 dataset
was used for model training and internal validation (i.e., five-fold
cross-validation), while the AMP-2211 dataset was used for external
independent testing to evaluate the model’s generalization
performance. After the construction of the datasets, we ensured
that there were no duplicate peptide sequences within or between

the two datasets through careful verification. This procedure helps to
ensure the reliability of model training and evaluation.

2.2 Peptide sequence feature representation

To fully tap into the potential of different models for
antimicrobial peptide identification tasks, we adopted a variety of
model types in this study. Considering the characteristics of each
type of model, we chose different feature extraction methods to
match their respective applicability. Specifically, for ensemble
learning and traditional machine learning models, we utilized the
PSEAAC feature extraction method, which has demonstrated
commendable performance in many bioinformatics problems.
For deep learning models, we selected the BPF feature extraction
method. This method effectively captures the local features of
sequences, thereby enhancing the performance of the models.

2.2.1 Binary profile feature of k-spaced amino acid
pairs

BPF is a feature extraction method used to characterize
protein sequences. It con-siders the binary representation of
amino acid pairs with k intervals in the amino acid sequence,
thereby capturing the relationship between locally adjacent
amino acids. After determining the value of k, the BPF
algorithm constructs a binary matrix with 20 × 20 rows and
columns equivalent to the sequence length minus k. The matrix is
populated based on the occurrence of amino acid pairs in the
sequence. If a specific pair appears in the sequence, the
corresponding position in the matrix is filled with 1;
otherwise, it is filled with 0. The binary matrix is then
flattened into a feature vector for subsequent analysis.

To determine the appropriate value of k, we extracted 15% of the
data from the AMP-11053 dataset as a pre-experimental dataset and
conducted pre-experiments with k set to 0, 1, 2, 3, 4, and 5,
respectively. The average AUC value was calculated through five-
fold cross-validation, and the AUC curve was plotted. The results
showed that the AUC value was highest when k = 3, so we selected
k = 3 as the parameter for the BPF method in this study.
Subsequently, the AMP-11053 and AMP-2211 datasets processed
using the BPF method were used as inputs for the deep learning
models.

2.2.2 Pseudo amino acid composition
PSEAAC is a feature extraction method widely applied in the

field of bioinformatics, primarily used to represent protein
sequences. This method integrates both local and global
features of amino acid sequences to generate a feature vector
of fixed length. Any peptide sequence can be represented as
shown in Equation 1, with the specific calculation formula xμ

for different subscripts as given in Equation 2. Here, the integer λ
represents the highest order of sequence correlation, and ω is a
weight coefficient between 0 and 1. fi(i � 1, 2, ...20) represents
the frequency of occurrence of the 20 natural amino acids in the
peptide, and θj(j � 1, 2, ..., λ) denotes the correlation factor of
order j, which is defined as shown in Equation 3. The correlation
function is calculated according to Equation 4, where X1(Ri),
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X2(Ri), . . .Xn(Ri) represent the physicochemical properties of Ri

(Ge et al., 2020).

P � x1, x2, ...x20, x20+1, ...x20+λ[ ] (1)

xμ �

fμ

∑20
i�1
fi + ω∑λ

j�1
θj

1≤ μ≤ 20( )

ωθμ−20

∑20
i�1
fi + ω∑λ

j�1
θj

20 + 1≤ μ≤ 20 + λ( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

θj � 1
L − j

∑L−j
i�1

Θ Ri, Ri+j( ) 1≤ j≤ λ( ) (3)

Θ Ri, Rj( ) � 1
n
{ X1 Ri( ) −X1 Rj( )[ ]2 + X2 Ri( ) −X2 Rj( )[ ]2
+... + Xn Ri( ) −Xn Rj( )[ ]2} (4)

PSEAAC has two types: Type 1 and Type 2. In this study, we
employed the Type 2 PSEAAC approach and selected six
physicochemical properties, namely, ‘Hydrophobicity,’
‘Hydrophilicity,’ ‘Mass,’ ‘pK1’ (acid dissociation constant), ‘pK2’
(base dissociation constant), and ‘pI’ (isoelectric point). In the
experiment, the weight was set to 0.05, and the sequence interval
(lambda) was set to 2. The processed features were then in-putted
into ensemble learning models and baseline machine learning
models for further analysis.

2.3 Deep learning model construction

2.3.1 Enhancing bidirectional long short-term
memory

BiLSTM is a unique variant of LSTM networks designed to
consider both forward and backward information in an input
sequence (Schuster and Paliwal, 1997). Traditional LSTM
networks process sequence data in a forward manner, unable to
capture information from future elements. However, BiLSTM
enhances this by adding a parallel LSTM layer to the original,
which processes the input sequence in reverse order. This
bidirectional characteristic empowers the model to grasp the
context of both preceding and subsequent sequences at any given
point, furnishing a more comprehensive apprehension of the
sequence context. Such a feature makes BiLSTM superior to
traditional LSTM in tasks with bidirectional dependencies, such
as part-of-speech tagging, named entity recognition, semantic role
labeling, and more, offering significant advantages in the
identification of antimicrobial peptides.

In this study, we designed an EBiLSTM model composed of
three BiLSTM net-works, as illustrated in Figure 2. Our model
accepts input of size (100, 20), corresponding to sequence data with
a length of 100 and feature dimension of 20. Themodel begins with a
bidirectional LSTM layer containing 128 units and a dropout ratio of
0.5, followed by a dropout layer of 0.3. Subsequent bidirectional
LSTM layers with 64 and 32 units, each followed by dropout layers,

FIGURE 2
Structure of the EBiLSTM model.
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form a structure that reduces lay-er-by-layer and helps prevent
overfitting. Finally, the model ends with two fully connected layers.
The first layer contains 32 nodes and uses the ‘relu’ activation
function, while the latter has 2 nodes and uses the ‘sigmoid’
activation function to predict the probability for each category. A
dropout layer is also placed between these two layers. The model has
proven to perform exceptionally, boasting high classification
accuracy and robust performance.

2.3.2 Long short term memory
Long Short-Term Memory (LSTM) is a unique form of

recurrent neural network proposed by Hochreiter and
Schmidhuber. It exhibits a remarkable memory capacity and is
particularly adept at handling long sequence data, effectively
sidestepping is-sues of “gradient vanishing” or “gradient
explosion” (Hochreiter and Schmidhuber, 1997). In antimicrobial
peptide recognition, LSTM has been proven to be a potent tool. For
instance, Wang et al. utilized a parallel combination of
Convolutional Neural Networks (CNN) and LSTM to identify
anticancer peptides (Wang H. et al., 2021), and Christina Wang
and colleagues employed LSTM to design short novel AMP
sequences with potential antimicrobial activity (Wang C. et al.,
2021). In this study, our network comprises multiple LSTM
layers, which transmit outputs layer by layer to take full
advantage of the depth of the model. To prevent overfitting, we
introduced a dropout layer after each LSTM layer with a dropout
rate set at 0.3. The network finally employs a fully connected layer
with a sigmoid activation function to output the prediction results.
Adam was chosen as the optimizer, with a learning rate set at 0.01,
and a fixed random seed value of 50 was used to ensure consistency.

2.3.3 Gate recurrent unit
The Gated Recurrent Unit (GRU) is an improved variant of the

Recurrent Neural Network (RNN) proposed by Cho et al., in 2014 (Cho
et al., 2014). By introducing two novel gating mechanisms - the update
and reset gates, GRU effectively retains long-term dependency
information and enhances model performance. Compared to
LSTM’s four types of gates, the GRU’s structure is more concise,
with fewer parameters and higher computational efficiency, yet its
performance in various tasks is not inferior to LSTM’s. For instance, a
model developed by Choi et al., which is based on GRU, successfully
predicted patient diagnoses, drug prescriptions, and future disease risks
(Choi et al., 2016). In designing the GRU deep learning network for this
study, we followed design principles similar to those used with LSTM,
ensuring that the model maintains high computational efficiency and
robust performance when handling complex tasks. In our preliminary
trials, these three models, each showcasing distinct strengths in
managing sequence data, emerged as the superior performers in
predicting antimicrobial peptides. Consequently, we selected them
for our research.

2.4 Ensemble learning model construction

2.4.1 Adaptive boosting
AdaBoost is a powerful ensemble learning technique, central to

which is the concept of integrating multiple weak classifiers to
enhance model performance (Freund and Schapire, 1997). In

bioinformatics, as shown in research by Haoyi Fu et al.,
AdaBoost has been successfully applied to identify the structure
and physicochemical properties of antimicrobial pep-tides (Fu et al.,
2020). We chose Adaboost for its remarkable capability to
concentrate on challenging-to-classify instances by progressively
emphasizing the data misclassified by the preceding classifier. In
this study, we used a decision tree as the base classifier, set an
iteration limit of 200 to avoid overfitting, controlled the step size of
the training process with a learning rate of 0.05, and selected
‘SAMME.R’ as the algorithm scheme to achieve genuine boosting
effects. To ensure the consistency of the experimental results, we set
a fixed random seed value of 50. These settings allowed our
AdaBoost classifier to achieve a good balance in terms of
robustness and stability.

2.4.2 Light gradient boosting machine
LightGBM, developed by Microsoft Research (Ke et al., 2017),

is an efficient and accurate gradient boosting decision tree
algorithm characterized by its rapid training speed and low
memory usage. It employs a histogram-based gradient
boosting technique and a leaf-wise growth strategy, effectively
enhancing training speed and optimizing the handling of
imbalanced data, it is also recognized for its superior accuracy,
a critical attribute essential for our study. In our study, key
parameters were set as follows: ‘num_leaves’ was set to 20 to
control model complexity and prevent overfitting; ‘min_data_in_
leaf’ was also set to 20 to further guard against overfitting; the
depth of the decision tree was unrestricted; the learning rate was
set at 0.3 to ensure a balance between training speed and
performance; 100 trees were used for fitting; a binary loss
function was selected; the traditional gradient boosting
decision tree method was employed; and the random seed was
set to 40 to ensure the reproducibility of the experiment.

2.4.3 Extreme gradient boosting
XGBoost is an advanced algorithm centered around gradient

boosting decision trees, developed by Chen et al. (Chen and
Guestrin, 2016). It is highly acclaimed for its superior predictive
power and efficient computational speed. By using the second-order
derivative information of the objective function and a regularization
term, XGBoost optimizes predictive accuracy. Furthermore, by
introducing column block data storage and performing parallel
and distributed optimizations, it greatly enhances computational
efficiency. By utilizing a more regularized model formulation to curb
overfitting, it demonstrates superior performance over other models
across a range of datasets. XGBoost has also been applied in the
medical field; for instance, Junjie Huang et al. utilized it in their
machine learning pipeline to identify potent antimicrobial peptides
across the entire peptide sequence space (Huang et al., 2023). In our
study, the CART tree was chosen as the base learner, and the
maximum depth of weak learners and the maximum number of
trees were set to 6 and 10, respectively, to prevent overfitting. The
learning rate was set to 0.1 to control the step size of iterative
updates, and the subsample ratio was set to 0.2 to enhance the
model’s generalization ability. Additionally, the random seed value
was set to 50 to enhance model stability. These settings enabled the
XGBoost model to achieve excellent results in terms of predictive
performance and stability.
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2.5 Baseline model

To comprehensively evaluate the performance of our models, we
chose to com-pare them against traditional machine learning
models often used in small peptide screening, such as the
Support Vector Machine (SVM), Naive Bayes Classifier (NBC),
and K-Nearest Neighbors (KNN) (Manavalan et al., 2017;
Khabbaz et al., 2021; Wani et al., 2021; Jiang et al., 2022). For
SVM, we employed the Gaussian radial basis function kernel to
address non-linear classification problems, set the C parameter to
1.0 to balance misclassification penalties, enabled the probability
option to output prediction probabilities, and allowed the model to
optimize the gamma parameter automatically. We used Gaussian
Naive Bayes as it assumes that the continuous features follow a
Gaussian distribution. For KNN, we set the number of neighbors, k,
to 5 to balance bias and variance and used Euclidean distance as the
metric. By comparing these traditional models, we further validated
the performance and robustness of our deep learning and ensemble
learning models.

2.6 Experiment

In this study, we adopted the widely accepted method of five-
fold cross-validation for model training on the AMP-11053 dataset.
This approach divides the dataset into five portions, with four of
them being used for training and the remaining one for validation.
By alternating the training and validation sets, five rounds of
training and validation were conducted, with the final model
performance evaluation result being the average of the five
validation results. Throughout the model training process, we
performed parameter optimization on all models to achieve
optimal performance. On the AMP-2211 dataset, we carried out
independent testing to further validate the models’ generalization
capability. The experimental environment was configured as follows:
we used a T4 server with 16 GB of GPU memory and 8 vCPUs,
equipped with 32 GB of RAM, running on a Linux operating system.
We utilized the Python 3.8 programming language for model
writing and training, relying on machine learning libraries such
as Tensorflow 2.2.0 and Scikit-learn 1.2.2 for the construction of
deep learning models and implementation of traditional machine
learning models. This setup strikes a balance between abundant
computational resources and the use of common, easily accessible
hardware devices, aiming to ensure the replicability of our study’s
results.

2.7 Model evaluation

To comprehensively assess model performance, we adopted
metrics such as Ac-curacy, Recall, Specificity, Precision, F1-Score,
and AUC value, and also plotted ROC curves (Bradley, 1997;
Sokolova and Lapalme, 2009; Powers, 2020). TP, TN, FP, FN in
the confusion matrix are the primary evaluation parameters,
representing true positives, true negatives, false positives, and
false negatives. Accuracy calculates the proportion of samples
that the model correctly predicts, Precision measures the
proportion of true positive samples in those predicted as positive,

while Specificity reflects the proportion of true negative samples that
were correctly predicted. The F1-score is the harmonic mean of
precision and recall. Through the ROC curve, we can see the
classifier’s performance under all possible classification
thresholds, and the area under the curve (AUC) quantifies the
overall performance of the classifier. The closer the AUC value is
to 1, the better the model performance. In detail:

Accuracy � TP + TN

TP + TN + FP + FN
(5)

Precision � TP

TP + FP
(6)

Specificity � TN

TN + FP
(7)

Recall � TP

TP + FN
(8)

F1 − score � 2 × Precision × Recall

Precision + Recall
(9)

3 Results

3.1 Statistical results of amino acids in the
dataset

The two research datasets, AMP-11053 and AMP-2211,
encompass amino acid sequences of AMPs and non-
antimicrobial peptides, incorporating 20 common natural amino
acids. Figure 3A depicts the distribution of amino acid frequencies in
AMPs and non-AMPs across both datasets. Upon close inspection,
we can observe a degree of similarity in the distribution of amino
acid frequencies between AMPs and non-AMPs, which not only
reflects the complexity of the classification task but also underscores
the challenges and value of this research. Furthermore, the analysis
of sequence length distribution between AMPs and non-AMPs is
shown in Figure 3B, with most AMP sequence lengths falling
between 5 and 50 amino acids. Similarly, non-AMP sequences
also have a rich distribution within this length range.

3.2 Deep learning model results

In the experiments conducted on the AMP-11053 dataset, we
utilized LSTM, GRU, and EBiLSTM as models for training. During
the training process, each model was trained 500 times. We
employed multi-class logarithmic loss as the loss function, and
the accuracy served as the evaluation standard. The training
strategy involved five-fold cross-validation to ensure more stable
and reliable model evaluations. We implemented an early
termination criterion which stops the training process if there’s
no improvement in the validation set performance over a defined
number of epochs. This strategy not only conserves computational
resources, but also aids in preventing the model from assimilating
noise present in the training data. Simultaneously, we also computed
the evaluation metrics mentioned in Section 3.1. The training
results, which include the values of each evaluation metric, the
AUC curve, and the ROC values, are shown in Table 1 and
Figure 4A. Similarly, we tested the models’ generalization
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capabilities on an additional external dataset, AMP-2211. The
testing results are presented in Table 2 and Figure 4B. It is not
difficult to find that the proposed EBiLSTM has the most excellent
performance both in the training set and the external test set.

While our models achieved excellent performance on the AMP-
11053 dataset, as evidenced by the evaluation metrics, AUC curve,
and ROC values in Table 1 and Figure 4A, the performance on the
external dataset AMP-2211, depicted in Table 2 and Figure 4B, was
marginally lower. It is crucial to note that this dip in performance,
while important to acknowledge, is not entirely unexpected. When
applying a model trained on one dataset (AMP-11053) to a different
dataset (AMP-2211), it is common to see some decrease in
performance. This is due to the inherent differences between the
datasets, which might include variations in complexity, distribution
of data, or the amount and type of noise present. Essentially, the
AMP-2211 dataset presents previously unseen scenarios for the
model, and it is natural that the model will not perform as
effectively on this new data as on the data it was trained on.
However, this difference in performance can actually be seen as a
positive. If our model performed identically on both datasets, it
would raise concerns about overfitting. Overfitting occurs when a
model learns the training data too well, to the point where it is too
specialized to the training data and performs poorly on new, unseen
data. The fact that our model’s performance decreases slightly on the

external AMP-2211 dataset suggests that our model is not overfitted
and is capable of generalizing to new data.

3.3 Ensemble learning model results

In the case of the AMP-11053 dataset, we trained using Adaboost,
LightGBM, and XGBoost, employing a five-fold cross-validation
method. We calculated five main evaluation metrics: accuracy, recall,
specificity, precision, and F1-Score. During the process of evaluating
model performance, to accurately assess model capabilities, we also
calculated the 95% confidence interval for these metrics. Specific details
are shown in Table 3, while the AUC curves derived from the three
types of models are depicted in Figure 5A. To further validate the
models’ generalization capabilities, we employed an additional external
dataset, AMP-2211, to test the models. In the testing process, we
calculated the aforementioned five evaluation metrics and drew the
AUC curve. Test results are displayed in Table 4 and Figure 5B. These
results provide us with a comprehensive and in-depth understanding,
allowing us to assess and compare the performance of different models
on multiple levels. The results above indicate that while ensemble
learning demonstrates considerable accuracy in identifying
antimicrobial peptides, its performance is still not on par with that
of deep learning, especially EBiLSTM.

FIGURE 3
Features of peptide chains from two datasets.(A) Frequency distribution ratio of various amino acids in peptides.(B) Distribution of peptide lengths.

TABLE 1 Performance of the deep learning models on AMP-11053.

AMP-11053 Accuracy Recall Specificity Precision F1-score

EBILSTM 0.9685 ± 0.0408 0.9619 ± 0.0426 0.9654 ± 0.0388 0.9663 ± 0.0376 0.9699 ± 0.0401

LSTM 0.9383 ± 0.0329 0.9139 ± 0.0472 0.9558 ± 0.0207 0.95640 ± 0.0213 0.9375 ± 0.0334

GRU 0.927 ± 0.0512 0.9489 ± 0.0097 0.9043 ± 0.1004 0.912 ± 0.0768 0.9265 ± 0.0440
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3.4 Baseline model results

To comprehensively validate the performance of our models, we
used traditional machine learning models, SVM, NBC, and KNN, as

benchmarks for comparison with the two categories of models
mentioned earlier. On the AMP-11053 dataset, the results from
the five-fold cross-validation of the traditional models are shown in
Table 5, with the specific AUC curves and ROC values illustrated in

FIGURE 4
Performance of the deep learning models on datasets. (A) ROC curves and AUC values of EBiLSTM, LSTM, and GRU after 5-fold cross-validation on
the AMP-11053 dataset. (B) ROC curves and AUC values of EBiLSTM, LSTM, and GRU on the validation set AMP-2211.

TABLE 2 Results derived from the independent external validation set, AMP-2211.

AMP-2211 Accuracy Recall Specificity Precision F1-score

EBILSTM 0.9239 0.9186 0.9294 0.9303 0.9244

LSTM 0.9099 0.8971 0.9132 0.9217 0.9189

GRU 0.9018 0.9045 0.8846 0.8907 0.9044

TABLE 3 Performance of the ensemble learning models on AMP-11053.

AMP-11053 Accuracy Recall Specificity Precision F1-score

AdaBoost 0.8432 ± 0.0095 0.8493 ± 0.0118 0.8366 ± 0.0173 0.8425 ± 0.0145 0.8459 ± 0.0108

LightGBM 0.8912 ± 0.0062 0.9058 ± 0.0089 0.8759 ± 0.0153 0.8826 ± 0.0118 0.8940 ± 0.0061

Xgboost 0.8932 ± 0.0086 0.9033 ± 0.0081 0.8824 ± 0.0123 0.8879 ± 0.0064 0.8955 ± 0.0070

Notes: The above results show the average value of each indicator and the corresponding 95% confidence interval.
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Figure 6A. We also evaluated the generalization capabilities of each
model on an external dataset, AMP-2211. The results of these
external validations are listed in Table 6 and depicted in

Figure 6B. Among them, K-NN performs the best, but its
performance is still not as good as the prediction strategy
proposed above.

FIGURE 5
Performance of the ensemble learningmodels on datasets. (A) ROC curves and AUC values of Adaboost, LightGBM, and XGBoost after 5-fold cross-
validation on the AMP-11053 dataset. (B) ROC curves and AUC values of Adaboost, LightGBM, and XGBoost on the validation set AMP-2211.

TABLE 4 Performance of the ensemble learning models on AMP-11053.

AMP-2211 Accuracy Recall Specificity Precision F1-score

AdaBoost 0.8408 0.8365 0.8452 0.8471 0.8417

LightGBM 0.8996 0.9097 0.8892 0.8938 0.9017

Xgboost 0.9032 0.9133 0.8929 0.8973 0.9052

TABLE 5 Performance of the traditional machine learning models on AMP-11053.

AMP-11053 Accuracy Recall Specificity Precision F1-score

SVM 0.7663 ± 0.0071 0.7309 ± 0.0057 0.8030 ± 0.0139 0.7919 ± 0.0277 0.7601 ± 0.0140

NBC 0.7167 ± 0.0160 0.5617 ± 0.0173 0.8763 ± 0.0088 0.8234 ± 0.0211 0.6678 ± 0.0169

KNN 0.8749 ± 0.0066 0.8997 ± 0.0068 0.8494 ± 0.0066 0.8597 ± 0.0154 0.8792 ± 0.0097
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4 Discussion

In this study, we have focused on finding accurate strategies for
antimicrobial peptide screening. With an emphasis on ensemble
learning and deep learning methods, we constructed two datasets
which were applied for model training, cross-validation, and
independent external testing. This ensured rigorous and impartial
model evaluation. By comparing various evaluation metrics, we
analyzed the performance of the ensemble learning and deep
learning models in prediction tasks. The results revealed that our
custom-built EBiLSTM model had the highest accuracy, nearly 98%
on the test set, demonstrating its significant predictive power in this
prediction tasks. In further analyses, our EBiLSTM model was not

only effective in peptide screening, but also efficient, significantly
reducing the time and resources needed for conventional
experimental methods. These results illustrate the potential utility
of ensemble learning and deep learning methods in biomolecular
studies. The success of the EBiLSTM model underscores the power
of these algorithms in handling complex biological data and has
promising implications for accelerating antimicrobial peptide
discovery. Going forward, we plan to improve this model by
integrating additional features and refining hyperparameters to
further enhance its predictive capacity. Our ultimate aim is to
contribute to effective solutions against antibiotic resistance.

Deep learning outperforms both traditional machine learning
and ensemble learning models in terms of accuracy. To understand

FIGURE 6
Performance of traditional machine learning models on datasets. (A) ROC curves and AUC values of SVM, KNN, and NBC after 5-fold cross-
validation on the AMP-11053 dataset. (B) ROC curves and AUC values of SVM, KNN, and NBC on the validation set AMP-2211.

TABLE 6 Evaluation outcomes from the external standalone validation dataset, AMP-2211.

AMP-2211 Accuracy Recall Specificity Precision F1-score

SVM 0.7698 0.7623 0.7775 0.7783 0.7702

NBC 0.7092 0.5416 0.881 0.8234 0.6534

KNN 0.8806 0.9044 0.8562 0.8657 0.8846
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why the EBiLSTM model exhibits optimal performance, it is
necessary to analyze the network architecture. Firstly, from a
design perspective, the model incorporates three BiLSTM layers
and four dropout layers. The multi-layer network structure equips
the model with sufficient capacity to learn complex patterns in the
sequence. An appropriate dropout rate (the optimal value of 0.3,
chosen after numerous experiments) plays a key role in preventing
over-fitting and enhancing the model’s generalization capability. In
the final fully connect-ed layer, the network adopts a ReLU
activation function. ReLU alleviates the vanishing gradient
problem, thereby enhancing the model’s learning ability.
Concurrently, the number of neurons in each BiLSTM layer is
judiciously halved, maintaining sufficient model complexity while
avoiding the issue of low computational efficiency. Examining
model specifics, most operations in the EBiLSTM are point-wise,
such as the activation functions of various gates and the update of
cell states. The advantage of these point-wise operations is their high
degree of parallelism, enabling the model to effectively utilize the
parallel computational capabilities of modern hardware, thus
achieving high efficiency in practical applications.

Ensemble learning models and traditional machine learning
models have been used extensively in various applications due to
their simplicity and interpretability. However, when it comes to
predicting AMPs, these models have several limitations. Firstly, they
typically operate on a feature-engineering basis, where appropriate
features need to be manually extracted from the peptide sequences.
This can often be a time-consuming process and may overlook
complex patterns or dependencies in the data that could be critical to
accurate prediction. Secondly, these models usually treat sequences
as fixed-length inputs and lose valuable information when sequences
are of variable lengths. This is a significant challenge as peptides can
have different lengths, and disregarding this variation can lead to
sub-optimal predictions. Finally, these models lack the capacity to
automatically learn and improve from data in the same way that
deep learning models can. They do not adapt their structure and
parameters based on the complexity of the task at hand, which can
lead to lower prediction accuracy. In contrast, deep learning models,
like our proposed AMP-EBiLSTM, can automatically extract
features, accommodate variable-length sequences, and improve
over time by learning intricate data patterns. As such, they can
often outperform ensemble and traditional machine learningmodels
in complex predictive tasks such as AMP prediction.

Training cost is a key consideration in the application of
machine learning and deep learning. Compared to deep learning
models, baseline machine learning and ensemble learning models
have lower training costs. Ensemble learning and baseline models
exhibit low costs in terms of training time, with the training time
ranging from 0 to 30 s on our equipment. From the perspective of
the number of model parameters, baseline machine learning and
ensemble learning models usually have significantly fewer
parameters than deep learning models. Secondly, in terms of
the training process, baseline machine learning models are
typically more concise and efficient. Specifically, SVM is based
on the solution of convex optimization problems, NBC is
grounded in statistical theory of conditional probability, KNN
is based on distance measurement, while Adaboost, LightGBM,
and XGboost are implemented through the iterative optimization
of a series of weak learners. These processes are typically more

efficient than complex training procedures in deep learning, such
as backpropagation and gradient descent. Accurate prediction
ability and low training cost may provide strong support for the
early promotion of antimicrobial peptides to clinical practice. For
example, the challenges faced by the application of antimicrobial
peptides in clinical diseases such as diabetic foot are high
production cost, poor stability, and toxicity problems. Peptides
are widely used in clinical departments such as vascular surgery
to provide support.

While our study presents promising outcomes, certain
limitations need to be acknowledged, and potential avenues for
future research should be highlighted. Firstly, despite the
comprehensive dataset employed for model training and
validation in this study, future research would benefit from the
expansion of these datasets. To further ascertain the robustness and
generalizability of our approach, it would be beneficial to accumulate
more data pertaining to antimicrobial peptides and validate our
models on datasets of larger scale and diversity. Secondly, although
deep learning models demonstrated superior predictive
performance in our study, their substantial training costs pose a
challenge. Future efforts should be concentrated on refining these
models to lessen training costs whilst sustaining their high predictive
accuracy. This might necessitate intensive research and exploration
into model architecture, training strategies, and optimization
algorithms, among other aspects. Lastly, the current study has
primarily focused on the theoretical screening of antimicrobial
peptides. An exciting direction for future research would involve
integrating our approach with wet lab experiments to provide a
more precise validation of the screening results. Such empirical
validation could not only further substantiate the effectiveness of our
screening strategy but also assist us in comprehending and
enhancing our model’s predictive out-comes, thereby bolstering
the precision and efficiency of antimicrobial peptide screening. In
conclusion, these identified avenues for future research will facilitate
a deeper understanding and application of machine learning and
deep learning in antimicrobial peptide screening. These
advancements will undoubtedly contribute to bolstering the
research and development of antimicrobial peptides.

5 Conclusion

In this study, we explored the application of deep learning
techniques in con-structing models for the identification of
antimicrobial peptides, aiming to strike an effective balance
between wet lab experimental methods and computational
predictions. We proposed a novel deep learning model-
EBiLSTM, and conducted meticulous parameter tuning and
comprehensive performance evaluations. The results
demonstrated that although this model bore a relatively high
training cost, it achieved an ac-curacy of 92.39% on the test set,
with an AUC value nearing 0.98, showcasing its superior predictive
performance. Our study offers fresh perspectives and possibilities for
antimicrobial peptide prediction and screening. It showcases the
advantages of deep learning and ensemble learning in addressing
practical needs and resource conditions with flexibility, providing
new research directions and tools for future studies on antimicrobial
peptides.
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NeuroCNN_GNB: an ensemble
model to predict neuropeptides
based on a convolution neural
network and Gaussian naive Bayes

Di Liu1, Zhengkui Lin1* and Cangzhi Jia2*
1Information Science and Technology College, Dalian Maritime University, Dalian, China, 2School of
Science, Dalian Maritime University, Dalian, China

Neuropeptides contain more chemical information than other classical
neurotransmitters and have multiple receptor recognition sites. These
characteristics allow neuropeptides to have a correspondingly higher selectivity
for nerve receptors and fewer side effects. Traditional experimentalmethods, such
as mass spectrometry and liquid chromatography technology, still need the
support of a complete neuropeptide precursor database and the basic
characteristics of neuropeptides. Incomplete neuropeptide precursor and
information databases will lead to false-positives or reduce the sensitivity of
recognition. In recent years, studies have proven that machine learning
methods can rapidly and effectively predict neuropeptides. In this work, we
have made a systematic attempt to create an ensemble tool based on four
convolution neural network models. These baseline models were separately
trained on one-hot encoding, AAIndex, G-gap dipeptide encoding and
word2vec and integrated using Gaussian Naive Bayes (NB) to construct our
predictor designated NeuroCNN_GNB. Both 5-fold cross-validation tests using
benchmark datasets and independent tests showed that NeuroCNN_GNB
outperformed other state-of-the-art methods. Furthermore, this novel
framework provides essential interpretations that aid the understanding of
model success by leveraging the powerful Shapley Additive exPlanation (SHAP)
algorithm, thereby highlighting themost important features relevant for predicting
neuropeptides.

KEYWORDS

neuropeptides, word2vec, one-hot, stacking strategy, convolution neural network

Introduction

Neuropeptides are bioactive peptides that mainly exist in neurons and play a role in
information transmission (Svensson et al., 2003). They are ubiquitous not only in the
nervous system but also in various systems of the body, with a low content, high activity, and
extensive and complex functions (Hökfelt et al., 2000). According to the specific type, they
play role as transmitters, modulators, and hormones. Neuropeptides share the common
characteristic that they are produced from a longer neuropeptide precursor (NPP) (Kang
et al., 2019). Generally, an NPP contains a signal peptide sequence, one or more
neuropeptide sequences and some other sequences that are often homologous among
neuropeptides. After the NPP enters the rough endoplasmic reticulum (Rer), the signal
peptide is quickly cleaved by signal peptidase and converted into a prohormone, which is
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transferred to the Golgi complex for proteolysis and
posttranslational processing, which ultimately results in a mature
neuropeptide. The neuropeptides modified by various physiological
processes are transported to the terminal, stored in larger vesicles
and released, and their length ranges from 3 to 100 amino acid
residues (Salio et al., 2006; Wang et al., 2015). At present, there is
much evidence indicating that neuropeptides play a particularly
important role in the regulation of nervous system adaptation to
pressure, pain, injury and other stimuli. These characteristics
indicate that neuropeptides may represent a new direction in the
treatment of nervous system diseases. A popular experimental
method for the identification of neuropeptides is LC‒MS, whose
accuracy has been greatly reduced because it has certain
requirements for the quantity and quality of peptides to be
extracted (Van Eeckhaut et al., 2011; Van Wanseele et al., 2016).

With the development of high-throughput next-generation
sequencing technology and expressed sequence tag databases,
machine learning methods have been applied to rapidly and
effectively predict neuropeptide peptides. NeuroPID,
NeuroPred and NeuroPP are the earliest computational tools
for identifying neuropeptide precursors (Southey et al., 2006;
Ofer and Linial, 2014; Kang et al., 2019). NeuroPIpred was the
first predictor designed for identifying insect neuropeptides
based on amino acid composition, dipeptide composition, split
composition, binary profile feature extraction and the support
vector machine (SVM) classification algorithm (Agrawal et al.,
2019). PredNeuroP was designed by building a two-layer stacking
model that was trained on nine kinds of hybrid features for
animal phyla neuropeptide prediction (Bin et al., 2020). In
PredNeuroP, extremely randomized trees (ERT), artificial
neural network (ANN), k-nearest neighbor (KNN), logistic
regression (LR), and extreme gradient boosting (XGBoost)
were employed to develop ML-based models. In terms of
feature coding, PredNeuroP uses amino acid composition,
dipeptide composition, binary profile-based features, amino
acid index features, grouped amino acid composition, grouped
dipeptide composition, composition-transition-distribution, and
amino acid entropy. In 2021, Hasan et al. developed a meta-
predictor NeuroPred-FRL on the basis of 11 different encodings
and six different classifiers (Hasan et al., 2021). Although the
existing models have achieved relatively satisfactory prediction
performances, most of them are developed based on traditional
machine learning methods, and deep learning predictors have
not been fully explored.

In this work, we have made a systematic attempt to create a
tool that can predict neuropeptides using a stacking strategy
based on four convolution neural network models. These base
models were separately trained on one-hot encoding, AAIndex,
G-gap dipeptide encoding and word2vec. By comparing five
integration strategies, including LR (Perlman et al., 2011),
AdaBoost (Freund and Schapire, 1997), GBDT (Lei and Fang,
2019), Gaussian NB and XGBoost, on 5-fold cross-validation
tests, we finally selected Gaussian NB to construct our predictor
designated NeuroCNN_GNB, with an AUC of 0.963, Acc of
90.77%, Sn of 89.86% and Sp of 91.69% on 5-fold cross-
validation test. Moreover, to enhance the interpretability of
the ‘black-box’ machine learning approach used by
NeuroCNN_GNB, we employed the Shapley Additive

exPlanation (SHAP) method (Lundberg and Lee, 2017) to
highlight the most important and contributing features
allowing NeuroCNN_GNB to generate the prediction
outcomes. The analysis results showed that one-hot encoding
and word2vec play key roles in the identification of
neuropeptides.

Materials and methods

Overall framework

The construction process of NeuroCNN_GNB is shown in
Figure 1. First, we collected the training dataset and the
independent test dataset from original work (Bin et al., 2020).
Then, we extracted four types of sequence information from
different aspects and combined them with convolutional neural
networks to construct base classifiers. In the third step, we
considered different stacking strategies to build the final
optimal model. Next, we evaluated the performance of the
model on the training and independent test datasets and
compared it with that of other state-of-the art methods. In
the final step, the NeuroCNN_GNB webserver and the
corresponding source code were developed and publicly
released.

Data collection

Building the benchmark datasets is one of the most important
and critical steps in building a prediction algorithm. In this work,
we applied the dataset that was first constructed by (Bin et al.,
2020) and subsequently used by (Hasan et al., 2021; Jiang et al.,
2021). This dataset contains 2425 neuropeptides collected from
(Wang et al., 2015) and 2425 nonneuropeptides collected from
Swiss-Prot (UniProt Consortium, 2021). It should be noted that
the samples in this dataset were processed in two steps. The first
step was to remove those protein sequences that contained less
than 5 and more than 100 amino acids, as neuropeptides are
small peptides generally containing less than 100 amino acids
(Salio et al., 2006; Wang et al., 2015). The second step was to
remove the protein sequences with a high similarity. Using the
threshold of 0.9, CD-HIT was applied to delete redundant
samples inside positive and negative samples, and CD-HIT-2D
was applied to delete redundant samples between positive and
negative samples (Huang et al., 2010). To optimize and compare
the predictor, the dataset was further divided into training and
independent test datasets according to the proportion of 8:2.

Feature extraction

In this study, we use four different encoding schemes to
obtain information on neuropeptides and nonneuropeptides,
including one-hot encoding, physicochemical-based features,
amino-acid frequency-based features, and embedding methods.
These encoding schemes consider 20 types of natural amino acid
residues (‘A’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘K’, ‘L’, ‘M’, ‘N’, ‘p’, ‘Q’,
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‘R’, ‘S’, ‘T’, ‘V’, ‘W’,’Y’) and add a pseudo character (‘B’) to obtain
the characteristics with the same dimension. Specifically, we fixed
the sequence length to 100 and filled the gaps with ‘B’ if the
protein sequence length was less than 100. The details of the
feature encodings are described in the following sections.

One-hot encoding

One-hot encoding can reflect the specific amino acid position of
a given protein sequence. Each amino acid residue was transformed
into a binary vector as follows:

FIGURE 1
The developmental flowchart of NeuroCNN_GNB.
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A � 1, 0, 0, . . . , 0, 0( )
C � 0, 1, 0, . . . , 0, 0( )
. . .
. . .
W � 0, 0, 0, . . . , 1, 0( )
V � 0, 0, 0, . . . , 0, 1( )
B � 0.05, 0.05, 0.05, . . . , 0.05, 0.05( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

The reason that we set each element of B as 0.05 is that we
assumed the average frequency of each amino acid is uniformly
distributed as the work (Pan et al., 2018; Pan and Shen, 2018;
Yang et al., 2021). Thus, one-hot encoding generates a 100 × 20-
D feature matrix for a given peptide sequence with a length
of 100.

Amino acid index (AAIndex)

AAIndex is a database that includes 566 various
physicochemical and biochemical properties of amino acids
and amino acid pairs (Kawashima et al., 2007). In this section,
we chose 14 properties because they have been verified to be very
effective in improving the prediction performance of
neuropeptide recognition (Bin et al., 2020; Khatun et al.,
2020). Their accession numbers are HOPT810101,
EISD840101, MIYS990104, LIFS790101, MAXF760101,
CEDJ970104, GRAR740102, KYTJ820101, MITS020101,
DAWD720101, BIOV880101, CHAM810101, EISD860101, and
BIGC670101. For each physicochemical property, each amino
acid was assigned a numerical index, and their values are listed in
Supplementary Table S1.

G-gap dipeptide encoding

The G-gap dipeptide encoding scheme incorporates the amino
acid frequency information of the peptide sequence, where g’ is a
parameter that represents a dipeptide with a gap of ‘g’ amino acids
(A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, B) (Lin et al.,
2013; Lin et al., 2015; Xu et al., 2018). In this study, we tried 0, 1, 2,3,
and 4-gap dipeptides to encode each protein peptide. For the
21 amino acids (20 natural amino acids and a temporary amino
acid B′), there were 441 dipeptide combinations. We discarded the
combination BB’ and reserved 440 amino acid pairs to effectively
capture the component information in protein peptides. Based on
the statistical analysis, the highest number of amino acid pairs in the
existing training dataset was 10. Therefore, the number of amino
acid pairs was encoded into one-hot encoding of 10 dimensions.
Finally, we could generate a characteristic matrix of 440*10 for a
given peptide sequence.

Word embedding

Word embedding is a strategy to convert words in text into
digital vectors for analysis using standard machine learning
algorithms (Mikolov et al., 2013). This strategy has been
extensively applied in natural language processing and has
been introduced to the fields of proteomics and genomics
(Lilleberg et al., 2015; Ng, 2017; Jatnika et al., 2019; Wu et al.,
2019). Word2vec is an efficient method to create word
embedding that includes two algorithms, namely, skip Gram
and CBOW (continuous bag-of-words). The difference

FIGURE 2
Performance comparison of g-Gap Model on 5-fold cross-validation test.
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between them is that skip Gram predicts the words around the
head word through the central word, while CBOW predicts the
central word through the surrounding words. According to the
preliminary experimental performance, we selected skip Gram to
encode each protein peptide in the subsequent experiments.

Model framework

To capture the information contained in multiple feature
scenarios, we used a stacking strategy to develop our model to
efficiently identify neuropeptides. Stacking is an ensemble
learning method that combines predicted information from
multiple models to generate a more stable model (Ganaie
et al., 2022). The stacking method has two main steps, in
which we used the so-called base classifier and meta-classifier.
In our work, four base classifiers were constructed based on
convolutional neural networks (CNNs). For each type of feature,
the corresponding CNN model was trained using grid search to
optimize the hyperparameters. All training processes are
conducted through the Python package ‘pytorch’.

Performance evaluation

To objectively evaluate and compare the predictive performance
of the models, five frequently used performance metrics were used,
including sensitivity (Sn), specificity (Sp), accuracy (Acc), andMCC.
Their formulas are given as follows:

Sn � TP

TP + FN
(2)

Sp � TN

TN + FP
(3)

Acc � TP + TN

TP + TN + FP + FN
(4)

MCC � TP × TN − FP × FN��������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√ (5)

TABLE 1 The Performance of base classifiers on 5-fold cross validation.

Feature AUC Acc Sn Sp MCC

One-Hot 0.956 0.887 0.891 0.883 0.775

AAIndex 0.954 0.885 0.872 0.899 0.771

G-Gap 0.933 0.858 0.863 0.853 0.716

Word2vec 0.952 0.882 0.867 0.898 0.765

TABLE 2 Results of 5-fold and 10-fold cross-validation on base classifiers.

Cross-
validation

Encoding AUC Acc Sn Sp MCC

5-fold one-hot 0.956 0.887 0.891 0.883 0.775

10-fold one-hot 0.952 0.882 0.879 0.885 0.765

5-fold AAIndex 0.954 0.885 0.872 0.899 0.771

10-fold AAIndex 0.948 0.877 0.868 0.885 0.755

5-fold word2vec 0.952 0.882 0.867 0.898 0.765

10-fold word2vec 0.942 0.871 0.865 0.875 0.741

The bold values indicate the higher values of the 5-fold and the 10-fold cross validation

results.

FIGURE 3
Performance comparison of the different stacking algorithms on 5-fold cross-validation test.
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where TP, TN, FP and FN denote the numbers of true positives,
true negatives, false-positives and false-negatives, respectively.
Furthermore, we used the area under the ROC curve (AUC) as
one of the main metrics to evaluate model performance.

Results and discussion

Performance analysis of base classifiers

CNN contains a number of tunable hyperparameters, which can
affect the validity and robustness of the model. We used a grid search
to tune the hyperparameters and explore their optimal combination
using 5-fold cross-validation. The average AUCs were designed as the
criterion for selecting the parameter combinations. For the G-gap-
model (g = 0, 1, 2, 3, 4), we compared their performance on 5-fold
cross-validation and show their results in Figure 2. The model based

on g = 0 reached the best AUC of 0.933, Acc of 0.858, Sp of 0.853 and
MCC of 0.716, while the model based on g = 3 achieved the best Sn of
0.865. Upon comprehensive consideration, an appropriate selection of
g = 0 was adopted to build one of the base classifiers. The details of the
G-gap based model are summarized in Supplementary Table S3.

Supplementary Table S2 summarizes the optimal combination
of parameters for each base classifier, and Table 1 lists their 5-fold
cross-validation results. It was observed that the one-hot-based
model achieved the best AUC of 0.956, which was slightly
superior to the AAIndex and word2vec models. In total, the
AUC values of the four base classifiers were greater than 0.93,
showing satisfactory prediction results.

In addition, we also performed 10-fold cross-validation test to
evaluate the generalization ability of ourmodel. As shown in Table 2,
there is almost no difference in the prediction results between 5-fold
and 10-fold cross-validation results. Specifically, the AUC of 10-fold
cross-validation results based on one-hot is 0.004 lower, based on
AAIndex is 0.006 lower, based on word2vec is 0.01 lower than that of
5-fold, respectively.

Stacking models providing robust and
reliable prediction results

In this section, each base classifier was considered a weak classifier
and then integrated into a strong classifier. LR, AdaBoost, GBDT,
Gaussian NB and XGBoost were used as stacking algorithms to
construct the meta model. The specific process is that we concatenate

FIGURE 4
t-SNE plots of the positive and negative samples. (A) The initial features, (B) the features extracted by convolutional layer, (C) outputs of the four base
classifiers and (D) the final output of the model.

TABLE 3 Comparing with other exiting methods on the independent test
dataset.

Method AUC Acc Sn Sp MCC

NeuroPred-FRL 0.960 0.916 0.929 0.903 0.834

NeuroPpred-Fuse 0.958 0.906 0.882 0.930 0.813

PredNeuroP 0.954 0.897 0.886 0.907 0.794

Our model 0.962 0.918 0.919 0.917 0.836
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the prediction results of four base classifiers for the same sample as the
input to the stacking algorithm to obtain the final classification label
(Rokach, 2010; Lalmuanawma et al., 2020; Aishwarya and Ravi Kumar,
2021; Ganaie et al., 2022). It can be observed from Figure 3 that
Gaussian NB achieved the best performance with an AUC of 0.963,
Acc of 90.77%, Sn of 89.86% and Sp of 91.69% on the 5-fold cross-
validation test. Moreover, this set of results achieved by the stacking
strategy was better than those obtained by the four base classifiers.
However, not all integration results were superior to a single model. The
stacking results of AdaBoost were inferior to those of the four base
classifiers, whose AUC was only 0.928. Taken together, the results
showed that selection of a stacking strategy is necessary for different
biological sequences. How to find the relationship between the data
distribution and classification algorithm is a problem worth studying in
the future.

Performance comparison with existing
methods on the independent test datasets

We then used the independent test dataset to verify the robustness
of NeuroCNN_GNB and compared the prediction results with those of
NeuroPpred-Fuse, NeuroPred-FRL and PredNeuroP. These predictors
were developed based on the same training dataset as our model, which
guarantees the fairness and objectivity of the independent test. The
comparison results in Table 3 show that our model obtained the best
AUC of 0.962, Acc of 0.918 andMCC of 0.836, which implied a similar
effect of predicting positive and negative samples. NeuroPred-FRL
achieved the second best AUC of 0.960 and the best Sn of 0.929,
and NeuroPred-Fuse showed the best Sp of 0.930. Thus, each of the
three models has its own advantages in prediction performance based
on four types of features and four base classifiers, whose complexity was

FIGURE 5
The outputs from four base classifiers according to SHAP values for the neuropeptides, (A) SHAP value for each sample; (B) the average of the
absolute values of SHAP for all samples.
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lower than that of the other four models. In particular, this work not
only establishes an efficient prediction model but also provides a freely
convenient web server for researchers.

Visualization of features

To clearly show how the model performs at each stage, we used
t-SNE to visually observe the classification results of the two types of
data (Van derMaaten andHinton, 2008). In Figure 4A, the points were
mixed in disorder by using the initial features to concatenate all 4 kinds
of encodings, which were almost impossible to divide. However, after
the four base classifiers, the neuropeptides and nonneuropeptides
were almost separated except for the middle part, which occasionally
overlaps, as shown in Figures 4B, C. Finally, after the stacking strategy,
ourmodel clearly identified the neuropeptides and nonneuropeptides,
as shown in Figure 4D. This figure shows that our model can
effectively acquire the intrinsic information of the neuropeptides.

Model interpretation: the effect of feature
encoding on model prediction

In this study, four different feature-encoding schemes were used
to generate the feature vectors. The performance of each type of
feature is listed in Table 1. To display the influence of various
features on the model more intuitively, the SHAP (SHapley Additive
exPplanation) algorithm was applied to evaluate feature behavior in
our datasets (Lundberg and Lee, 2017).

In Figure 5A, the abscissa represents the SHAP value, the ordinate
represents each type of feature for the positive sample (abbreviated as 1)
and negative sample (abbreviated as 0), and each point is the SHAP
value of an instance. Redder sample points indicate that the value of the
feature is larger, and bluer sample points indicate that the value of the
feature is smaller. If the SHAP value is positive, this indicates that the
feature drives the predictions toward neuropeptides and has a positive
effect; if negative, the feature drives the predictions toward
nonneuropeptides and has a negative effect. For a more intuitive
display, the average absolute values for each type of feature are shown
in Figure 5B. It can be clearly observed that among the output of the
four base classifiers, the one-hot and word embedding-based models
were the primary contributors to the final output of the model.

Conclusion

In this study, we introduced a robust predictor based on a
stacking strategy to accurately predict neuropeptides. The predictor
extracted four types of protein sequence information, employed

CNN to train base classifiers, and then selected Gaussian NB to build
an ensemble model. The validity of our model was assessed using 5-
fold cross-validation and an independent test dataset. In addition,
t-SNE was used to visually observe the clustering of samples at each
stage, and SHAP was also used to interpret what role each type of
feature plays in the classification process. A user-friendly webserver
and the source code for our model are freely available at http://47.92.
65.100/neuropeptide/. Our model showed satisfactory results when
evaluated from different aspects, but there is still room for
optimization of the model as a predictor with the increase in
experimental neuropeptide data.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

DL and CJ designed the study. DL and ZL carried out all data
collection and drafted the manuscript. CJ and ZL revised the
manuscript. All authors contributed to the article and approved
the submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1226905/
full#supplementary-material

References

Agrawal, P., Kumar, S., Singh, A., Raghava, G. P. S., and Singh, I. K. (2019).
NeuroPIpred: A tool to predict, design and scan insect neuropeptides. Sci. Rep. 9,
5129. doi:10.1038/s41598-019-41538-x

Aishwarya, T., and Ravi Kumar, V. (2021). Machine learning and deep learning
approaches to analyze and detect COVID-19: A review. SN Comput. Sci. 2, 226. doi:10.
1007/s42979-021-00605-9

Bin, Y., Zhang, W., Tang, W., Dai, R., Li, M., Zhu, Q., et al. (2020). Prediction of
neuropeptides from sequence information using ensemble classifier and hybrid features.
J. proteome Res. 19, 3732–3740. doi:10.1021/acs.jproteome.0c00276

Freund, Y., and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139. doi:10.1006/
jcss.1997.1504

Frontiers in Genetics frontiersin.org08

Liu et al. 10.3389/fgene.2023.1226905

76

http://47.92.65.100/neuropeptide/
http://47.92.65.100/neuropeptide/
https://www.frontiersin.org/articles/10.3389/fgene.2023.1226905/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1226905/full#supplementary-material
https://doi.org/10.1038/s41598-019-41538-x
https://doi.org/10.1007/s42979-021-00605-9
https://doi.org/10.1007/s42979-021-00605-9
https://doi.org/10.1021/acs.jproteome.0c00276
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1226905


Ganaie, M. A., Hu, M., Malik, A., Tanveer, M., and Suganthan, P. (2022). Ensemble
deep learning: A review. Eng. Appl. Artif. Intell. 115, 105151. doi:10.1016/j.engappai.
2022.105151

Hasan, M. M., Alam, M. A., Shoombuatong, W., Deng, H. W., Manavalan, B., and
Kurata, H. (2021). NeuroPred-FRL: An interpretable prediction model for identifying
neuropeptide using feature representation learning. Briefings Bioinforma. 22, bbab167.
doi:10.1093/bib/bbab167

Hökfelt, T., Broberger, C., Xu, Z-Q. D., Sergeyev, V., Ubink, R., and Diez, M. (2000).
Neuropeptides—An overview. Neuropharmacology 39, 1337–1356. doi:10.1016/s0028-
3908(00)00010-1

Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W. (2010). CD-HIT suite: A web server for
clustering and comparing biological sequences. Bioinformatics 26, 680–682. doi:10.
1093/bioinformatics/btq003

Jatnika, D., Bijaksana, M. A., and Suryani, A. A. (2019). Word2vec model analysis for
semantic similarities in English words. Procedia Comput. Sci. 157, 160–167. doi:10.
1016/j.procs.2019.08.153

Jiang, M., Zhao, B., Luo, S., Wang, Q., Chu, Y., Chen, T., et al. (2021). NeuroPpred-
fuse: An interpretable stacking model for prediction of neuropeptides by fusing
sequence information and feature selection methods. Briefings Bioinforma. 22,
bbab310. doi:10.1093/bib/bbab310

Kang, J., Fang, Y., Yao, P., Tang, Q., and Huang, J. (2019). NeuroPP: A tool for the
prediction of neuropeptide precursors based on optimal sequence composition.
Interdiscip. Sci. Comput. Life Sci. 11, 108–114. doi:10.1007/s12539-018-0287-2

Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., and
Kanehisa, M. (2007). AAindex: Amino acid index database, progress report 2008.
Nucleic acids Res. 36, D202–D205. doi:10.1093/nar/gkm998

Khatun, M. S., Hasan, M. M., Shoombuatong, W., and Kurata, H. (2020). ProIn-fuse:
Improved and robust prediction of proinflammatory peptides by fusing of multiple
feature representations. J. Computer-Aided Mol. Des. 34, 1229–1236. doi:10.1007/
s10822-020-00343-9

Lalmuanawma, S., Hussain, J., and Chhakchhuak, L. (2020). Applications of machine
learning and artificial intelligence for covid-19 (SARS-CoV-2) pandemic: A review.
Solit. Fractals 139, 110059. doi:10.1016/j.chaos.2020.110059

Lei, X., and Fang, Z. (2019). Gbdtcda: Predicting circRNA-disease associations based
on gradient boosting decision tree with multiple biological data fusion. Int. J. Biol. Sci.
15, 2911–2924. doi:10.7150/ijbs.33806

Lilleberg, J., Zhu, Y., and Zhang, Y. (2015). “Support vector machines and word2vec
for text classification with semantic features,” in 2015 IEEE 14th International
Conference on Cognitive Informatics and Cognitive Computing (ICCI* CC),
Beijing, China, 06-08 July 2015 (IEEE), 136–140.

Lin, H., Chen, W., and Ding, H. (2013). AcalPred: A sequence-based tool for
discriminating between acidic and alkaline enzymes. PloS one 8, e75726. doi:10.
1371/journal.pone.0075726

Lin, H., Liu, W-X., He, J., Liu, X. H., Ding, H., and Chen, W. (2015). Predicting
cancerlectins by the optimal g-gap dipeptides. Sci. Rep. 5, 16964–16969. doi:10.1038/
srep16964

Lundberg, S. M., and Lee, S-I. (2017). A unified approach to interpreting model
predictions. Adv. neural Inf. Process. Syst. 30. doi:10.48550/arXiv.1705.07874

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Ng, P. (2017). dna2vec: Consistent vector representations of variable-length k-mers.
arXiv preprint arXiv:1701.06279.

Ofer, D., and Linial, M. (2014). NeuroPID: A predictor for identifying neuropeptide
precursors from metazoan proteomes. Bioinformatics 30, 931–940. doi:10.1093/
bioinformatics/btt725

Pan, X., Rijnbeek, P., Yan, J., and Shen, H. B. (2018). Prediction of RNA-protein
sequence and structure binding preferences using deep convolutional and
recurrent neural networks. BMC genomics 19, 511–11. doi:10.1186/s12864-018-
4889-1

Pan, X., and Shen, H-B. (2018). Predicting RNA–protein binding sites and motifs
through combining local and global deep convolutional neural networks. Bioinformatics
34, 3427–3436. doi:10.1093/bioinformatics/bty364

Perlman, L., Gottlieb, A., Atias, N., Ruppin, E., and Sharan, R. (2011). Combining
drug and gene similarity measures for drug-target elucidation. J. Comput. Biol. 18,
133–145. doi:10.1089/cmb.2010.0213

Rokach, L. (2010). Ensemble-based classifiers. Artif. Intell. Rev. 33, 1–39. doi:10.1007/
s10462-009-9124-7

Salio, C., Lossi, L., Ferrini, F., and Merighi, A. (2006). Neuropeptides as
synaptic transmitters. Cell tissue Res. 326, 583–598. doi:10.1007/s00441-006-
0268-3

Southey, B. R., Amare, A., Zimmerman, T. A., Rodriguez-Zas, S. L., and Sweedler, J. V.
(2006). NeuroPred: A tool to predict cleavage sites in neuropeptide precursors and
provide the masses of the resulting peptides. Nucleic acids Res. 34, W267–W272. doi:10.
1093/nar/gkl161

Svensson, M., Sköld, K., Svenningsson, P., and Andren, P. E. (2003). Peptidomics-
based discovery of novel neuropeptides. J. proteome Res. 2, 213–219. doi:10.1021/
pr020010u

UniProt Consortium (2021). UniProt: The universal protein knowledgeable in 2021.
Nucleic acids Res. 49, D480–D489. doi:10.1093/nar/gkaa1100

Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.
Learn. Res. 9. https://www.jmlr.org/papers/v9/vandermaaten08a.html

Van Eeckhaut, A., Maes, K., Aourz, N., Smolders, I., and Michotte, Y. (2011). The
absolute quantification of endogenous levels of brain neuropeptides in vivo using
LC–MS/MS. Bioanalysis 3, 1271–1285. doi:10.4155/bio.11.91

Van Wanseele, Y., De Prins, A., De Bundel, D., Smolders, I., and Van Eeckhaut, A.
(2016). Challenges for the in vivo quantification of brain neuropeptides using
microdialysis sampling and LC–MS. Bioanalysis 8, 1965–1985. doi:10.4155/bio-
2016-0119

Wang, Y., Wang, M., Yin, S., Jang, R., Wang, J., Xue, Z., et al. (2015). NeuroPep: A
comprehensive resource of neuropeptides. Database 2015, bav038. doi:10.1093/
database/bav038

Wu, C., Gao, R., Zhang, Y., and De Marinis, Y. (2019). Ptpd: Predicting therapeutic
peptides by deep learning and word2vec. BMC Bioinforma. 20, 456–458. doi:10.1186/
s12859-019-3006-z

Xu, L., Liang, G., Wang, L., and Liao, C. (2018). A novel hybrid sequence-based model
for identifying anticancer peptides. Genes 9, 158. doi:10.3390/genes9030158

Yang, H., Deng, Z., Pan, X., Shen, H. B., Choi, K. S., Wang, L., et al. (2021). RNA-
binding protein recognition based on multi-view deep feature and multi-label learning.
Briefings Bioinforma. 22, bbaa174. doi:10.1093/bib/bbaa174

Frontiers in Genetics frontiersin.org09

Liu et al. 10.3389/fgene.2023.1226905

77

https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1093/bib/bbab167
https://doi.org/10.1016/s0028-3908(00)00010-1
https://doi.org/10.1016/s0028-3908(00)00010-1
https://doi.org/10.1093/bioinformatics/btq003
https://doi.org/10.1093/bioinformatics/btq003
https://doi.org/10.1016/j.procs.2019.08.153
https://doi.org/10.1016/j.procs.2019.08.153
https://doi.org/10.1093/bib/bbab310
https://doi.org/10.1007/s12539-018-0287-2
https://doi.org/10.1093/nar/gkm998
https://doi.org/10.1007/s10822-020-00343-9
https://doi.org/10.1007/s10822-020-00343-9
https://doi.org/10.1016/j.chaos.2020.110059
https://doi.org/10.7150/ijbs.33806
https://doi.org/10.1371/journal.pone.0075726
https://doi.org/10.1371/journal.pone.0075726
https://doi.org/10.1038/srep16964
https://doi.org/10.1038/srep16964
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.1093/bioinformatics/btt725
https://doi.org/10.1093/bioinformatics/btt725
https://doi.org/10.1186/s12864-018-4889-1
https://doi.org/10.1186/s12864-018-4889-1
https://doi.org/10.1093/bioinformatics/bty364
https://doi.org/10.1089/cmb.2010.0213
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s00441-006-0268-3
https://doi.org/10.1007/s00441-006-0268-3
https://doi.org/10.1093/nar/gkl161
https://doi.org/10.1093/nar/gkl161
https://doi.org/10.1021/pr020010u
https://doi.org/10.1021/pr020010u
https://doi.org/10.1093/nar/gkaa1100
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.4155/bio.11.91
https://doi.org/10.4155/bio-2016-0119
https://doi.org/10.4155/bio-2016-0119
https://doi.org/10.1093/database/bav038
https://doi.org/10.1093/database/bav038
https://doi.org/10.1186/s12859-019-3006-z
https://doi.org/10.1186/s12859-019-3006-z
https://doi.org/10.3390/genes9030158
https://doi.org/10.1093/bib/bbaa174
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1226905


Immune-related gene IL17RA as a
diagnostic marker in osteoporosis

Ya-Jun Deng, Zhi Li, Bo Wang, Jie Li, Jun Ma, Xiong Xue, Xin Tian,
Quan-Cheng Liu, Ying Zhang and Bin Yuan*

Department of Spine Surgery, Xi’an Daxing Hospital, Yanan University, Xi’an, China

Objectives: Bone immune disorders are major contributors to osteoporosis
development. This study aims to identify potential diagnostic markers and
molecular targets for osteoporosis treatment from an immunological perspective.

Method: We downloaded dataset GSE56116 from the Gene Expression Omnibus
database, and identified differentially expressed genes (DEGs) between normal
and osteoporosis groups. Subsequently, differentially expressed immune-related
genes (DEIRGs) were identified, and a functional enrichment analysis was
performed. A protein-protein interaction network was also constructed based
on data from STRING database to identify hub genes. Following external validation
using an additional dataset (GSE35959), effective biomarkers were confirmed
using RT-qPCR and immunohistochemical (IHC) staining. ROC curves were
constructed to validate the diagnostic values of the identified biomarkers.
Finally, a ceRNA and a transcription factor network was constructed, and a
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment
analysis was performed to explore the biological functions of these diagnostic
markers.

Results: In total, 307 and 31 DEGs and DEIRGs were identified, respectively. The
enrichment analysis revealed that the DEIRGs are mainly associated with Gene
Ontology terms of positive regulation of MAPK cascade, granulocyte chemotaxis,
and cytokine receptor. protein–protein interaction network analysis revealed
10 hub genes: FGF8, KL, CCL3, FGF4, IL9, FGF9, BMP7, IL17RA, IL12RB2,
CD40LG. The expression level of IL17RA was also found to be significantly
high. RT-qPCR and immunohistochemical results showed that the expression
of IL17RAwas significantly higher in osteoporosis patients compared to the normal
group, as evidenced by the area under the curve Area Under Curve of 0.802. Then,
we constructed NEAT1-hsa-miR-128-3p-IL17RA, and SNHG1-hsa-miR-128-3p-
IL17RA ceRNA networks in addition to ERF-IL17RA, IRF8-IL17RA, POLR2A-IL17RA
and ERG-IL17RA transcriptional networks. Finally, functional enrichment analysis
revealed that IL17RA was involved in the development and progression of
osteoporosis by regulating local immune and inflammatory processes in bone
tissue.

Conclusion: This study identifies the immune-related gene IL17RA as a diagnostic
marker of osteoporosis from an immunological perspective, and provides insight
into its biological function.
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1 Introduction

Osteoporosis is the most common metabolic bone disease,
characterized by reduced bone density and deterioration of bone
tissue microarchitecture, increases bone fragility and the risk of
fractures, leading to significant mortality (Chandra and Rajawat,
2021). Osteoporosis primarily affects postmenopausal women and
men over the age of 50 (Borgström et al., 2020). The pathogenesis of
osteoporosis exhibits noteworthy disparities between genders. In women,
age-related bone loss and decreased estrogen secretion after menopause
are the primary contributors to this condition (Shih et al., 2019). Estrogen
plays a pivotal role in augmenting bone cell activity, inhibiting bone
resorption, and averting calcium loss from bones. Moreover, estrogen
restrains osteoclast formation and induces apoptosis in these cells, thereby
curtailing bone resorption. In the absence of sufficient estrogen levels,
osteoclast function heightens, leading to accelerated bone loss and the
eventual onset of osteoporosis (Zhou et al., 2001). In men, the principal
causes of osteoporosis include advancing age, prolonged glucocorticoid
use, and declining testosterone levels (Vilaca et al., 2022). With age,
inadequate testosterone levels impede the proliferation and differentiation
of osteoblasts while intensifying osteoclast activity. Consequently, bone
resorption escalates, resulting in subsequent loss of bone mass (Diab and
Watts, 2021). It is evident that testosterone plays a pivotal role in the
development of osteoporosis among elderly men.

Dual-energy x-ray absorptiometry (DXA) is considered the gold
standard for diagnosing osteoporosis (Carey et al., 2022). Nonetheless, it
has limitations when it comes to detecting early-stage bone loss. Early
diagnosis and timely intervention are beneficial for preventing the
development of osteoporosis (Sakka, 2022). In recent years, numerous
studies have demonstrated that CUL1, PTEN, STAT1, MAPKAPK2,
RARRES2, FLNA, STXBP2, miR-340-5p, and miR-506-3p could
potentially serve as biomarkers for osteoporosis (Wang et al., 2022;
Zhao Y. et al., 2022; Lu et al., 2023; Yuxuan et al., 2023). However, the
majority of these molecular markers have not yet been validated using
clinical samples. Thus, their potential for clinical applications remain
limited. Therefore, there is still a need to find effective biomarkers for
osteoporosis.

Osteoclasts, originating from hematopoietic cells of the myeloid
lineage, play a crucial role in bone resorption (Thiolat et al., 2014).
These cells undergo differentiation from osteoclast precursors when
stimulated by M-CSF and RANKL (Zheng et al., 2014). Osteoblasts
play a fundamental role in the synthesis of mineralized bone and are
derived from a mesenchymal progenitor cell (Debnath et al., 2018).
Multiple immune cells are involved in the regulation of osteoclast
and osteoblast homeostasis. Th17 cells induce osteoclastogenesis by
IL-17, Th1 cells activate osteoclast function through TNF-α
(Adamopoulos and Bowman, 2008; Liu et al., 2011). Conversely,
Sato et al. (2006) demonstrated that Th2 cells can impede osteoclast
formation via IL-4. DCs enhance osteoclast activity by interacting
with T cells through the RANK-RANKL signaling pathway
(Santiago-Schwarz et al., 2001). Rivollier et al. (2004) revealed
that DCs can transdifferentiate into osteoclasts in vitro in the
presence of M-CSF and RANKL. Furthermore, B cells secrete
RANKL, promoting osteoclast function (Kanematsu et al., 2000).
Conversely, ILC2 cells suppress osteoclast formation through the
release of IL-4 and IL-13 (Omata et al., 2020). Treg cells can inhibit
monocyte differentiation into osteoclasts (Luo et al., 2011).
Neutrophils hinder bone formation by affecting osteoblast

function (Brunetti et al., 2013). M2 macrophages promote
osteoblast differentiation (Vi et al., 2015). Conversely,
M1 macrophages leads to bone resorption by increasing
osteoclast activity and suppressing osteoblast-mediated bone
formation (Bastian et al., 2011). In vitro studies have
demonstrated the direct enhancement of osteoblast function by
Treg cells (Lei et al., 2015). Additionally, B cells activate NF-κB
signaling pathways to inhibit the differentiation of mesenchymal
precursor cells into osteoblasts (Sun et al., 2018). Therefore,
exploring the molecular mechanisms of osteoporosis from an
immune perspective and developing new targets for
immunotherapy is of great relevance for osteoporosis treatment.

Here, we performed a differential gene expression analysis on an
osteoporosis microarray dataset downloaded from the Gene
Expression Omnibus (GEO) database, and identified the
intersection of differentially expressed genes (DEGs) with
immune-related genes (IRGs) to determined differentially
expressed immune-related genes (DEIRGs). Then, we constructed
a protein–protein interaction (PPI) network to identify hub genes,
and finally determined the immune-related gene IL17RA as a
potential biomarker for osteoporosis after validating it in another
dataset (GSE35959). RT-qPCR and immunohistochemical (IHC)
staining were performed, and then ROC curves were constructed to
verify its diagnostic value. In addition, we also explored the
biological function of IL17RA by constructing ceRNA and
transcription factor (TF) networks in addition to a Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis to further elucidate the molecular
mechanisms of osteoporosis in which IL17RA is involved.

2 Materials and methods

2.1 Microarray data

mRNA [GSE56116, https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE56116, GSE35959 (Benisch et al., 2012)], and miRNA
microarray datasets [GSE201543 (Zhao S.-L. et al., 2022)] were
downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/) by
GEOquery package (Davis and Meltzer, 2007). GSE56116 was
obtained from a GPL4133 Agilent-014850 Whole Human Genome
Microarray 4 × 44 K G4112F. GSE35959 was obtained from a
GPL570 (HG-U133_Plus_2) Affymetrix Human Genome U133 Plus
2.0 Array and GSE201543 was obtained from a GPL20712 Agilent-
070156 HumanmiRNA (miRNA version). The probes were labeled with
gene symbols, thenmultiple probes corresponding to the same gene were
randomly selected to remove duplicates, and finally the gene expression
matrix was obtained. GSE56116 contained 3 normal (healthy control)
and 10 osteoporosis samples (4 kidney Yin deficiency, 3 kidney Yang
deficiency, 3 non-kidney deficiency). GSE35959 contained 14 normal and
5 osteoporosis samples. GSE201543 contained 4 normal and
6 osteoporosis samples. GSE56116 (3 non-kidney deficiency
osteoporosis samples and 3 normal samples), GSE35959, and
GSE201543 were used as the training, validation, and miRNA
validation datasets, respectively. Data of IRGs was downloaded from
ImmPort database (https://www.immport.org/shared/), and finally
2,499 immune-related genes were obtained (Supplementary Table S1).
The flow chart followed this study is shown in Figure 1.
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2.2 Identification of DEIRGs

The data set was normalized using the normalizeBetweenArrays
function of the limma package (Ritchie et al., 2015). The sample
correction is visualized by box plots, and the clustering between
sample groups was visualized using PCA plots. Screen for DEGs
between patients and controls using the limma package, and p value
of lower than 0.05 and [log2 fold change (FC)] equal to or higher
than 1 were set as the threshold values for DEG identification. After
that, the intersection of DEGs and IRGs was determined to obtain
list of DEIRGs. The results were visualized using the ggplot2
(Wickham, 2009) and the VennDiagram packages (Chen and
Boutros, 2011). The results of DEGs and DEIRGs were visualized
using the ggplot2 package for volcano plots and the Complex
Heatmap package (Gu et al., 2016) for heat maps.

2.3 GO and KEGG enrichment analyses of
DEIRGs

GO and KEGG functional enrichment analysis of DEIRGs were
conducted using the cluster Profiler package (Yu et al., 2012). The
results were visualized using the ggplot2 package. The human
genome was used as a background reference, and a p.adj of lower
than 0.05 was set as cut-off.

2.4 Construction of PPI network and
selection of hub genes

The PPI network of DEIRGs was constructed using the STRING
database (https://string-db.org/) (Szklarczyk et al., 2019). Interaction
scores higher than 0.4 were considered significant. The results were
visualized using Cytoscape software (Version: 3.9.1). Top 10 genes were
determined as hub genes using the cytoHubba plugin and on the
maximum correlation criterion algorithm.

2.5 External validation of hub genes

To identify effective biomarkers of osteoporosis, differences in
hub gene expression levels between the osteoporosis and the normal
groups were validated using another dataset (GSE35959).

2.6 Construction of ceRNA network

MiRNAs were predicted using four different databases [miRDB
(https://mirdb.org/mirdb/index.html), TargetScanHuman (https://www.
targetscan.org/vert_80/), TarBase (https://dianalab.e-ce.uth.gr/html/
diana/web/index.php?r=tarbasev8) and miRWalk (http://mirwalk.
umm.uni-heidelberg.de/)]. Furthermore, lncRNA-miRNA relationships

FIGURE 1
Flow chart of the study.
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of predicted hub genes-associatedmiRNAswere obtained by overlapping
results from starBase (http://starbase.sysu.edu.cn/) and DIANA-LncBase
v3 (https://diana.e-ce.uth.gr/lncbasev3). The overlap was visualized by
ggplot2 and VennDiagram packages. Finally, a competitive endogenous
RNA (ceRNA) network regulating hub genes was constructed by using
Cytoscape software (Version: 3.9.1).

2.7 Construction of TF network

Prediction of hub genes and their TFs were performed by TF-
Marker (http://bio.liclab.net/TF-Marker/) and GRNdb (http://www.
grndb.com/), the overlap was visualized by ggplot2 and
VennDiagram packages. A TF network regulating hub genes was
constructed by using igraph package (Csardi and Nepusz, 2006).

2.8 Study subjects

Peripheral blood samples were obtained from nine patients with
osteoporosis and nine healthy adults who were hospitalized in the
Department of Spine Surgery at Xi’an Daxing Hospital, affiliated with
Yan’an University, and underwent BMD testing between January
2023 and April 2023 (Table 1). Those with a history of long-term use
of drugs affecting bone metabolism, endocrine system disorders, spinal
tumors or spinal tuberculosis were not included in this study. Bone tissue
samples were obtained from twelve patients with osteoporotic
compression fractures who were hospitalized for vertebroplasty
surgery, with mild osteoporosis (−3. 5 < T-score ≤ −2. 5) and severe
osteoporosis (T-score ≤ −3. 5), six in each group (Table 2). All patients
underwent MRI and DXA of the spine, which confirmed the presence of
fresh fractures and osteoporosis. Inclusion criteria were as follows: 1)
age ≥50 years, BMD T-score ≤ −2.5; 2) vertebral fragility fracture, biopsy
routinely performed during vertebroplasty. Exclusion criteria were as
follows: previous long-term use of drugs affecting bone metabolism,
presence of endocrine system diseases, spinal tumors and spinal
tuberculosis. The diagnosis of osteoporosis was confirmed based on
the classifcation criteria of theWorld Health Organization (WHO) based
on T-score of BMD testing (Yoshimura et al., 2022): T-score ≥ −1.0 was
considered normal bone mass, −2.5 < T-score < −1.0 was considered
decreased bone mass, and T-score ≤ −2.5 was considered osteoporosis.
All included subjects were informed of the medical record review and

study design and signed consent documents before data collection. The
Ethics Committee of the Xi’an Daxing Hospital, affiliated with Yan’an
University approved and reviewed the study protocol.

2.9 Peripheral blood collection

Five milliliters peripheral blood samples were collected the
morning following an overnight fast. The serum was obtained
following centrifugation (3,000 r/min, 5 min) of blood samples
and submitted for bone metabolism marker detection. Cell
sediment was collected for RNA extraction. All samples were
frozen at −80°C until analysis.

2.10 Bone tissue sample acquisition

The patient was placed in the prone position, and a 0.5–1 cm piece
of cancellous bone tissue was drilled using a 14G bone biopsy ring
perched on the fracture area within the vertebral body under local
anesthesia via the arch root approach. The bone tissue was fixed in 10%
neutral-buffered formalin for 1 week, followed by routine decalcification,
dehydration, and paraffin embedding for subsequent studies.

2.11 BMD measurements

BMD measurements of the lumbar spine were performed using
DXA (QDR X-Ray Bone Densitometer, Hologic, United States). All
data were measured by the same group of imaging physicians in
strict accordance with the specifications for measuring BMD
by DXA.

2.12 RT-qPCR analysis

Total RNA was extracted using RNA Extraction Solution (G3013,
Servicebio, Wuhan, China), and RNA concentration and purity were
measured by Nanodrop 2000 spectrophotometer (Thermo Scientific,
Waltham,United States). TheRNA sampleswere reverse transcribed into
cDNA using a reverse transcription kit (G3337, Servicebio, Wuhan,
china), and the cDNA was used as a template to amplify the IL17RA
gene. The reaction was performed via 40 amplification cycles using the
following protocol: Denaturation at 95°C for 30 s, annealing at 60°C for
30 s, extension at 72°C for 60 s. Samples were analyzed in triplicate, the
mRNA expression levels of IL17RAwas calculated by the 2−ΔΔCTmethod,
andGAPDHwas used as internal reference. The sequences of the primers
are listed in Table3.

2.13 HE and IHC staining

The wax blocks were placed in a paraffin slicer for continuous
sectioning, with each section having 4 μm thickness. HE staining
was performed using HE staining solution (G1003, Servicebio,
Wuhan, China). For IHC, paraffin tissue sections were
deparaffinized with xylene and rehydrated with an alcohol
gradient and water. Sections were incubated with primary

TABLE 1 Study subject demographics of peripheral blood.

Characteristics Normal Osteoporosis p Value

n 9 9

Gender, n (%) 1.000

Female 5 (27.8%) 5 (27.8%)

Male 4 (22.2%) 4 (22.2%)

Age (year) 56.11 ± 9.35 63 ± 11.12 0.174

BMI (kg/m2) 24.63 ± 3.33 23.65 ± 2.37 0.482

BMD (g/cm2) 0.98 ± 0.13 0.73 ± 0.08 < 0.001

T-score −0.87 ± 1.13 −3.07 ± 0.58 < 0.001
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antibodies IL17RA (Catalogue number: DF3602, diluted 1:100,
Affinity), at room temperature for 1 h and biotin-labelled
secondary antibodies for 30 min, and then stained with DAB
peroxidase substrate kit (G1212, Servicebio, Wuhan, China).
Finally, washed with water and counterstained with
haematoxylin. The results were observed and photographed by
an microscope (Eclipse C1, Nikon, Japan).

2.14 Statistical analysis

All data processing and analysis were conducted using R
software (version 4.2.1). RT-qPCR were repeated three times, and
data were represented as the mean ± SD. Normality was tested using
the Shapiro-Wilk normality test and chi-squaredness was tested
using Levene’s test. Student’s t-test or Wilcoxon rank sum test was
used to determine the significance of difference between two groups.
Correlation coefficients were calculated using Spearman correlation
analysis. ROCs were used to evaluate AUCs and predictive abilities.
A p value lower than 0.05 was considered statistically significant.

3 Results

3.1 Identification of DEIRGs

The median, upper and lower quartiles, maximum and
minimum values of each sample gene were significantly close to
each other upon normalization of GSE56116 data (Supplementary
Figure S1A, B). However, PCA revealed that the centers of the
osteoporosis group were farther apart than those of the control
group, indicating significant differences in gene expression between
the two groups (Supplementary Figure S1C, D). Using a p value of
lower than 0.05 and a [log2 fold change (FC)] equal to or higher than
1 as the threshold levels, we identified 307 DEGs, including 94 and

213 significantly up- and down-regulated genes, respectively
(Supplementary Table S2). Figures 2A, B show results in the
form of volcano plots and heat maps (Figures 2A, B). The
intersection of DEGs and IRGs included 31 genes (DEIRGs)
(Figure 2C; Supplementary Table S3), including 11 and 20 up-
and down-regulated genes, respectively (Figure 2D).

3.2 Functional enrichment analyses of
DEIRGs

We performed GO and KEGG enrichment analysis to
investigate the functions of DEIRGs. In the GO analysis,
biological processes (BPs), cell components (CCs), and molecular
functions (MFs) were distinguished. The BPs included regulation of
chemotaxis, positive regulation of MAPK cascade, granulocyte
chemotaxis, cell chemotaxis and granulocyte migration. CCs
included clathrin−coated endocytic vesicle membrane,
clathrin−coated endocytic vesicle, clathrin−coated vesicle
membrane, serine−type peptidase complex and semaphorin
receptor complex. Finally, MFs included signaling receptor
activator activity, receptor ligand activity, growth factor activity,
fibroblast growth factor receptor binding and growth factor receptor
binding. KEGG analysis showed that DEIRGs were mainly
associated with Cytokine−cytokine receptor interaction, Viral
protein interaction with cytokine and cytokine receptor. Figures
3A–D show the top five enrichment items of BP, CC, MF in GO and
KEGG analyses.

3.3 Construction of the PPI network and
identification of hub genes

The STRING database was used to construct a PPI network of
31 DEIRGs in order to investigate protein-protein interactions. A

TABLE 2 Study subject demographics of bone tissue.

Characteristics Mild osteoporosis Severe osteoporosis p Value

n 6 6

Gender, n (%) 1.000

Female 3 (25%) 4 (33.3%)

Male 3 (25%) 2 (16.7%)

Age (year) 65.33 ± 10.03 66.83 ± 12.62 0.824

BMI (kg/m2) 22.39 ± 1.45 20.79 ± 1.28 0.070

BMD (g/cm2) 0.73 ± 0.05 0.58 ± 0.08 0.002

T-score −2.78 ± 0.15 −3.95 ± 0.53 0.002

TABLE 3 Primer sequences used for RT-qPCR.

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

IL17RA CCAACATCACCGTGGAGACC GTGGCGACAGCACCCTTTAA

GAPDH GGAAGCTTGTCATCAATGGAAATC TGATGACCCTTTTGGCTCCC
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total of 30 nodes and 31 edges were identified in the PPI network
(Figure 4A). The cytohubba plug-in of Cytoscape software was then
used to select the top 10 hub genes based on their degree of
connectivity (Figure 4B; Table 4).

3.4 Validation of diagnostic biomarkers

In the GSE35959 dataset, osteoporotic patients had
significantly higher IL17RA expression levels than those of
patients in the control group (p < 0.05) (Figure 5A;
Supplementary Figure S2). To confirm the higher expression
level of IL17RA in osteoporotic patients and its diagnostic
performance, we validated this finding using clinical peripheral
blood and bone tissue. RT-qPCR results showed that mRNA
expression levels of IL17RA were significantly higher in
peripheral blood of patients with osteoporosis compared to
those of patients in the control group (p < 0.05) (Figure 5B).
The IHC results showed that IL17RA expression was higher in the
severe osteoporosis group compared to the mild osteoporosis
group (Figure 5C). The horizontal and vertical coordinates of
the ROC curve indicate sensitivity and specificity, respectively. A
larger AUC indicates a more accurate diagnostic model.
Accordingly, the AUC was 0.802 (Figure 5D), indicating

significant differences between OP and control groups. Hence,
IL17RA expression level could serve as a good diagnostic
biomarker.

3.5 Construction of ceRNA network

We analyzed upstream regulation of IL17RA, and screened
for miRNAs or lncRNAs targeting IL17RA. We identified 142,
1,423, 13, and 2,113 miRNAs possibly targeting IL17RA from
miRDB, TargetScanHuman, TarBase, and miRWalk databases,
respectively (Figure 6A). Consequently, we determined hsa-
miR-128-3p to be the most important miRNA regulator by
comparing predictions based on each database.
Complementary sequences between IL17RA and hsa-miR-
128-3p are displayed in Figure 6B. We validated hsa-miR-
128-3p expression in the GSE201543 dataset, and found that
expression level of hsa-miR-128-3p was significantly low in
osteoporotic patients (Figure 6C). Next, 30 lncRNAs that
could bind to hsa-miR-128-3p were obtained from the
overlapping results of DIANA-LncBase v3 and starBase
databases (Figure 6D). A lncRNA-miRNA-mRNA network
regulating IL17RA was constructed, in which lncRNAs
competitively bind to miRNAs and attenuate the inhibition

FIGURE 2
Identification of DEIRGs. (A) Volcano plot, (B) heatmap of DEGs between the osteoporosis and normal samples. (C) Venn diagram of overlapping
genes between the DEGs and IRGs. (D) Heatmap of DEIRGs.
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of IL17RA by miRNAs (Figure 6E). A review of the literature was
used to determine these 30 lncRNAs. Our findings indicated
that expression levels of NEAT1 and SNHG1 were significantly
high in osteoporotic patients. Since a significantly high level of
IL17RA expression and a significantly low level of hsa-miR-128-

3p were found in osteoporotic patients, the interactions
predicted by the above database (Figure 6F) further led us to
hypothesize that NEAT1 and SNHG1 bind to hsa-miR-128-3p,
and impair the inhibitory effect of hsa-miR-128-3p on IL17RA
in osteoporosis (Figure 6G).

FIGURE 3
Bar plots of 31 DEIRGs-enriched GO terms and KEGG pathways. (A–D) represent BP, CC, MF, and KEGG, respectively.

FIGURE 4
PPI network and hub genes. (A) PPI network constructed with the DEIRGs; (B) Top 10 hub genes.
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3.6 Transcriptome analysis

To better understand gene expression upstream of IL17RA, we
performed a transcriptome analysis. First, we obtained 607 and

166 TFs regulating IL17RA from the TF-Marker and GRNdb
databases, respectively. A total of 75 TFs were found in both
databases (Figure 7A). Using these, an IL17RA transcriptional
regulatory network was constructed (Figure 7B). We selected

TABLE 4 Top 10 hub genes.

Gene symbol Entrez id Full name logFC p-value

FGF8 2253 Fibroblast growth factor 8 −2.4426 0.008896

KL 9365 Klotho 2.327417 0.036147

CCL3 6348 C-C motif chemokine ligand 3 2.064109 0.002997

FGF4 2249 Fibroblast growth factor 4 −1.60047 0.003061

IL9 3578 Interleukin 9 −1.49079 0.037584

FGF9 2254 Fibroblast growth factor 9 −1.23376 0.024612

BMP7 655 Bone morphogenetic protein 7 −1.23075 0.028784

IL17RA 23765 Interleukin 17 receptor A 1.162541 0.022572

IL12RB2 3595 Interleukin 12 receptor subunit beta 2 1.093632 0.042559

CD40LG 959 CD40 ligand −1.07323 0.015333

FIGURE 5
Verification of the diagnostic effectiveness of IL17RA. (A) IL17RA expression in the GSE35959 dataset. (B) IL17RA expression in peripheral blood
samples. (C) IL17RA expression in bone tissue samples. (D) ROC curve.
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nine TFs that showed significant differential expression between the
osteoporosis and normal groups (Figure 7C). Among these TFs, ERF
(R = 0.661, p = 0.044), IRF8 (R = 0.709, p = 0.028), POLR2A (R =
0.867, p = 0.003) and ERG (R = −0.867, p = 0.003) were found to be
correlated with IL17RA (Figure 7D; Supplementary Figure S3).
Based on this, we constructed the osteoporosis ERF-IL17RA,
IRF8-IL17RA, POLR2A-IL17RA and ERG-IL17RA transcriptional
networks (Figure 7E).

3.7 GO and KEGG pathway enrichment
analysis of diagnostic biomarkers

To investigate the downstream regulatory roles of IL17RA, we
used the STRING database to predict 10 IL17RA-interacting genes
(using a confidence score of equal to or higher than 0.4), and
constructed a PPI network using Cytoscape (Figure 8A). A total
of five KEGG pathways were highlighted by KEGG analysis of
IL17RA and IL17RA-interacting genes: IL−17 signaling pathway,
Cytokine−cytokine receptor interaction, alcoholic liver disease,
inflammatory bowel disease, and RIG−I−like receptor signaling

pathway (Figure 8B). The GO enrichment analysis results
indicated that cytokine receptor binding, cytokine activity,
immune receptor activity, cytokine receptor activity, and
thioesterase binding were the top 5 MF terms (Figure 8C).
Cytokine−mediated signaling pathway, interleukin−17−mediated
signaling pathway, cellular response to interleukin−17, and
response to interleukin−17, positive regulation of
interleukin−6 production were the top 5 BP terms (Figure 8D).
Finally, plasma membrane signaling receptor complex, cytoplasmic
side of membrane, cytoplasmic side of plasma membrane,
CD40 receptor complex, and lipid droplet were the top 5 CC
terms (Figure 8E).

3.8 Gene Set Enrichment Analysis (GSEA)

To investigate the functions of IL17RA in osteoporosis, we
conducted Gene Set Enrichment Analysis (GSEA) by stratifying
samples based on IL17RA expression. The results enriched several
important pathways, including “INTERFERON_ALPHA_
RESPONSE,” “INTERFERON_GAMMA_RESPONSE,” “IL6_

FIGURE 6
The ceRNA regulatory network of IL17RA. (A) Prediction ofmiRNAs targeting IL17RA using four different databases. (B) Predicted interaction between
hsa-miR-128-3p and IL17RA. (C) Expression of hsa-miR-128-3p in the GSE201543 dataset. (D) Prediction of lncRNAs targeting hsa-miR-128-3p using
two different databases. (E) lncRNA-miRNA-mRNA network of IL17RA. (F) Predicted interactions between NEAT1, SNHG1 and hsa-miR-128-3p. (G) A
ceRNA network consisting of IL17RA, hsa-miR-128-3p, NEAT1 and SNHG1 in osteoporosis.
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JAK_STAT3_SIGNALING”, “INFLAMMATORY_RESPONSE”,
“REACTIVE_OXYGEN_SPECIES_PATHWAY”, and “TNFA_
SIGNALING_VIA_NFKB” (Supplementary Figure S4). These
pathways play a critical role in immune response, pro-
inflammatory reactions, cytokine signaling, and other vital
biological processes. The identification and enrichment of these
pathways shed light on the intricate connections between IL17RA
and multiple molecular mechanisms involved in maintaining bone
health and homeostasis.

4 Discussion

Osteoporosis is characterized by reduced bone strength and
an increased risk of fracture. It is estimated that more than
200 million people worldwide suffer from osteoporosis, with
30%–50% of women experiencing fractures due to osteoporosis
during their lifetime (Rachner et al., 2011). Since osteoporosis
patients typically exhibit no obvious clinical symptoms before
their first fracture, early diagnosis is crucial for timely
intervention and pain relief. Hence, there is an urgent need
for effective molecular diagnostic markers. Previous studies
suggested that the immune system may play a significant role

in osteoporosis development (Sapra et al., 2022; Wang et al.,
2022), yet the specific immune targets and molecular
mechanisms of osteoporosis remain unknown. Microarray
technology has enabled the exploration of genetic alterations
in osteoporosis, and has proven effective in identifying novel
biomarkers for other diseases. In this study, we used
bioinformatics methods to identify diagnostic markers for
osteoporosis, and validated their diagnostic value using
peripheral blood from osteoporosis patients.

An analysis of transcriptome data from peripheral blood
samples of osteoporosis patients and healthy individuals yielded
a total of 307 DEGs, including 94 up- and 213 down-regulated
genes, respectively. The intersection of DEGs and IRGs yielded
a total of 31 DEIRGs, including 11 and 20 up- and down-
regulated genes, respectively. GO enrichment analysis of
DEIRGs showed that the GO terms were associated with
positive regulation of MAPK cascade, granulocyte
chemotaxis, growth factor activity, and semaphorin receptor
complex. KEGG analysis showed that DEIRGs were mainly
associated with Cytokine−cytokine receptor interaction, Viral
protein interaction with cytokine and cytokine receptor. These
findings suggest that immunomodulation plays a significantly
role in the development of osteoporosis. MAPK and innate

FIGURE 7
Transcriptional network of IL17RA. (A) Predicted TFs associated with IL17RA based on TF-Marker and GRNdb databases. (B) IL17RA transcriptional
regulatory network. (C)Heatmap of TFs expression between osteoporosis and normal groups. (D) Spearman correlation between ERF, IRF8, POLR2A and
ERG and IL17RA. (E) Transcriptional network between ERF, IRF8, POLR2A, ERG and IL17RA in osteoporosis.
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immune signaling pathways are closely-linked through
feedback regulation (Kitajima et al., 2018). Previous studies
have reported that the MAPK signaling pathway is involved in
the regulation of bone metabolism and osteoclast formation
(Meng et al., 2021; Wang et al., 2021). Neutrophil chemokines
stimulate the growth and development of osteoblasts and
chondrocytes (Mori et al., 1997). Cytokine-cytokine receptor
interaction, and viral protein interaction with cytokine suggests
significant involvement of the immune system and
inflammatory cytokines in the progression of osteoporosis.
Inflammatory factors inhibit bone formation in part by
suppressing osteoblast differentiation, which includes
inhibition of Wnt signaling. In addition, they also promote
bone resorption by inducing osteoclast differentiation and bone
resorption functions, which in turn disrupt bone homeostasis
and contribute to the progression of osteoporosis (Ivashkiv
et al., 2011). Hence, dysregulation of the immune system can
have a detrimental effect on bone integrity, leading to
osteoporosis. Our results are consistent with previous findings.

The PPI network analysis revealed 10 key genes associated
with osteoporosis: FGF8, KL, CCL3, FGF4, IL9, FGF9, BMP7,
IL17RA, IL12RB2, CD40LG. Expression level of IL17RA was
found to be significantly high in osteoporotic patients upon
external dataset validation, suggesting that IL17RA may be an
effective biomarker for osteoporosis. To further confirm the

diagnostic performance of IL17RA, we verified IL17RA
expression by RT-qPCR and IHC, and plotted ROC curves.
RT-qPCR results showed that the mRNA expression level of
IL17RA was significantly higher in peripheral blood of
osteoporotic patients compared to that of the control
group. IHC results were in line with RT-qPCR. The Area
Under Curve (AUC) was 0.802, suggesting a high diagnostic
value and potential of IL17RA as a diagnostic marker for
osteoporosis.

The IL-17 family of inflammatory cytokines has gained
attention as major contributors to bone formation and bone
resorption. Most IL-17 cytokines act by signaling through the
receptor complex of IL17RA. IL17RA signaling in osteoclast
precursors were previously demonstrated to contribute to
osteoclast formation and subsequent bone loss. Moreover,
IL17RA deficiency increases bone mass by decreasing the
abundance of osteoclast precursors (Roberts et al., 2022). In
addition, IL17RA in osteoblasts/osteoclasts mediates
parathyroid hormone-induced bone loss and enhances
osteoblast RANKL production (Li et al., 2019). These studies
are in line with our findings. However, Goswami et al. (2009)
used the ovariectomy-induced osteoporosis (OVX) model in
IL17RA (−/−) mice to assess the role of IL17A in estrogen
deficiency-induced bone loss. The authors showed that IL17RA
(−/−) mice were consistently more susceptible to OVX-induced

FIGURE 8
GO and KEGG pathway enrichment analysis. (A) An PPI network of IL17RA constructed with data from STRING. (B) KEGG enrichment analysis
network diagram. (C) MF (D) BP (E) CC enrichment analysis bubble diagram.
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bone loss than controls. IL17A inhibits bone resorption-related
protease expression and osteoclast differentiation in
RAW264.7 cells via IL17RA (Kitami et al., 2010). These
findings suggests that IL17RA signaling plays an
osteoprotective role in ovariectomy-induced bone loss. This
also shows that the role of IL17RA in osteoporosis is still
controversial, and an increased sample size is needed for an
in-depth analysis.

The concept of CeRNA was introduced in 2011 (Salmena
et al., 2011). In the ceRNA network, non-coding RNAs, such as
lncRNAs or circRNAs, can compete to bind to miRNAs, and
thereby weaken the repression of mRNAs by miRNAs. We
identified hsa-miR-128-3p as a key regulatory miRNA for
IL17RA in osteoporosis. Previous research has indicated that
hsa-miR-128-3p can inhibit osteoblast differentiation of bone
marrow mesenchymal stem cells by downregulating RUNX1,
YWHAB and NTRK2 (Zhang W. et al., 2020). In addition,
hsa-miR-128-3p promoted the proliferation, migration and
osteoclast differentiation of RAW 264.7 cells and upregulated
the osteoclastogenic markers c-Fos, NFATc1 and Ctsk (Zhang
et al., 2022a). These findings suggests that hsa-miR-128-3p
inhibits osteoblast differentiation and promotes osteoclast
formation, which is inconsistent with our findings here.
Further studies are needed to explain this paradox, and
identify other mechanisms involving has-miR-128-3p in
osteoporosis. We hypothesize that NEAT1 and SNHG1 target
hsa-miR-128-3p. Studies have shown that NEAT1 promotes the
proliferation and differentiation of osteoblasts and, regulates the
development and progression of osteoporosis (Zhang Y. et al.,
2020; Zhao X. et al., 2022). SNHG1 expression is up-regulated in
OVX mice, which inhibits osteoblast differentiation and
angiogenesis while promoting osteoclast formation, leading to
osteoporosis (Yu et al., 2021; Yu et al., 2022). NEAT1 and SNHG1
are thus promising targets for the treatment of osteoporosis. The
above-mentioned findings support the conclusions of our study.
We constructed the NEAT1-hsa-miR-128-3p-IL17RA and
SNHG1-hsa-miR-128-3p-IL17RA networks to provide a
theoretical basis for understanding the molecular mechanisms
of IL17RA involvement in osteoporosis.

We performed a transcriptional analysis as well. The ERF
(ETS2 repressor factor) is located on Chromosome 19q13.2, and
encodes a transcription factor bound directly by ERK1/2 to
regulate the RAS-MEK-ERK signal transduction cascade (von
Kriegsheim et al., 2009). A study found that reduced doses of
ERF lead to complex cranial suture closure in humans and mice,
and highlighted ERF as a novel regulator of osteogenic stimulation
of RAS-ERK signaling (Sr et al., 2013). IRF8 inhibits
osteoclastogenesis, and is involved in the development and
progression of osteoporosis (Zhao et al., 2009; Jin et al., 2023).
RNA polymerase II subunit A (POLR2A) encodes the largest
catalytic subunit of the RNA polymerase II complex. Liu et al.
(2021) showed that POLR2A blocks osteoclastic bone resorption
and prevented osteoporosis by interacting with CREB1. ERG is
closely associated with Ewing sarcoma (Dunn et al., 1994), cervical
cancer (Zhang Z. et al., 2020) and prostate cancer (Dawoud et al.,
2021). However, its role in bone metabolism remains unexplored.
The TF network constructed here provides a clear direction to
better understand the upstream transcriptional mechanism of

IL17RA. To further investigate the downstream regulatory role
of IL17RA, we also performed a functional enrichment analysis of
IL17RA and its interacting genes. Accordingly, IL17RA may be
involved in the development and progression of osteoporosis by
regulating local immune and inflammatory processes in bone
tissue.

There were also some limitations in this study. First, the sample
size in the dataset selected for this study was small. Although we
standardized the raw data, a larger sample size and a higher quality
dataset are still needed to verify the reliability of the results.
Secondly, although we validated the diagnostic value of IL17RA
using patients’ peripheral blood samples and bone tissues, the
sample size of this study was also limited, and the clinical
translational value of IL17RA needs to be validated in a larger
number of clinical osteoporosis samples. Finally, a more
comprehensive study on molecular biological mechanisms
involving IL17RA on both cellular and animal levels is needed.

In conclusion, we identified the immune-related gene IL17RA as
a diagnostic marker of osteoporosis by elucidating its biological
function within the immune system. Our findings may provide with
a potential immune molecular target for the early diagnosis and
treatment of osteoporosis.
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This perspective highlights the potential of individualized networks as a novel
strategy for studying complex diseases through patient stratification, enabling
advancements in precision medicine. We emphasize the impact of interpatient
heterogeneity resulting from genetic and environmental factors and discuss how
individualized networks improve our ability to develop treatments and enhance
diagnostics. Integrating system biology, combining multimodal information such
as genomic and clinical data has reached a tipping point, allowing the inference of
biological networks at a single-individual resolution. This approach generates a
specific biological network per sample, representing the individual fromwhich the
sample originated. The availability of individualized networks enables applications
in personalized medicine, such as identifying malfunctions and selecting tailored
treatments. In essence, reliable, individualized networks can expedite research
progress in understanding drug response variability by modeling heterogeneity
among individuals and enabling the personalized selection of pharmacological
targets for treatment. Therefore, developing diverse and cost-effective
approaches for generating these networks is crucial for widespread application
in clinical services.

KEYWORDS

personalized medicine, omics, transcriptomic, co-expression, networks, diseases

1 Introduction

Complex diseases arise from the intricate interplay of multiple genetic and
environmental risk factors. The phenomenon of simplexity, where simplicity at the
phenotypic level coexists with complexity at lower organizational and molecular levels
(Stewart and Cohen, 2000; Kauffman et al., 1993), suggests the existence of disease subtypes
(Wallstrom et al., 2013) and emphasizes the uniqueness of each patient despite shared
characteristics with others (Smith, 2011). Unfortunately, most approaches to studying
complex diseases rely on identifying differences between groups based on average
biomarker values, overlooking the intricate biological intricacies of these diseases. For
this reason, it is necessary to use a more holistic approach that considers the molecular
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complexity of diseases, which involves thousands of genes across
multiple cell types in different body parts (H. Zhang et al., 2019) and
poses challenges for developing personalized, targeted therapies
(Sierksma et al., 2020; Rouzier et al., 2005; Shipitsin et al,. 2007;
Charitou et al., 2016; Khurana et al., 2013; Chan and Loscalzo, 2012).

Network biology is a rapidly developing area of research that
recognizes that biological processes are not chiefly controlled by
individual proteins or by discrete, unconnected linear pathways but
rather by a complex system-level network of molecular interactions
(X.-M. Zhang et al., 2021; Khurana et al., 2013; Charitou et al., 2016).
Graph neural networks and deep-learning-based data integration
models can predict disease progression and identify disease subtypes
more accurately by integrating multimodal data from disparate
sources, such as genetic, clinical, and imaging data (X.-M. Zhang
et al., 2021; Zhou et al., 2022). Therefore, a more holistic approach
that considers the molecular complexity of diseases and integrates
multimodal data can provide a more comprehensive understanding
of complex diseases, leading to the development of personalized,
targeted therapies and improved patient outcomes in the era of
precision medicine.

Cancer is a prime example of disease heterogeneity, where
variability exists in various aspects, including driver mutations,
making it challenging to identify causal mutations from an
average view of the entire patient cohort (Lengerich et al., 2018).
Moreover, diseases such as Autism spectrum disorders and epilepsy
exhibit vast degrees of heterogeneity at multiple levels, including
genotypes and phenotypes, resulting in diverse clinical
differentiations and treatment responses (Lombardo et al., 2019).
The clinical variability observed in diseases like Parkinson’s and
Alzheimer’s further highlights the need to go beyond mean values
and explore other approaches that capture the heterogeneous nature
of complex diseases (Freudenberg-Hua et al., 2018; Ma et al., 2018).

Clinical studies of diseases often suffer from biases due to
demographic, social, genetic, and ethnic factors, leading to the
underrepresentation of specific population groups (Prosperi et al.,
2018). This underrepresentation hampers the generalizability of
conclusions to a larger population, hindering the development of
effective treatments (Kessler et al., 2016; Popejoy and Fullerton,
2016; Popejoy et al., 2018; Gurdasani et al., 2019). The failure of
numerous clinical trials and the lack of a cure for diseases like
Alzheimer’s emphasize the need to account for population
heterogeneity in trial design and consider the underlying
biological mechanisms for disease subtyping (Devi and Scheltens,
2018).

While challenges exist in identifying biomarkers for
heterogeneous diseases, scale-out learning approaches often need
more specificity and may not be applicable in clinical practice
(Khurana et al., 2013). Additionally, invasive and costly
procedures or limited access to relevant tissues hinder studying
central nervous system diseases (Koníčková et al., 2022). Therefore,
it is necessary to adopt new approaches that precisely consider the
underlying biological mechanisms in disease subtyping (Yin et al.,
2019), incorporating clinical and omics analyses to improve
treatment responses (Zhou et al., 2022; X.-M; Zhang et al., 2021).

The study of complex diseases is not only a scientific effort but
also a public health concern. The increasing availability of drugs that
can contribute to molecular-tailored treatments based on predictive
biomarkers underscores the importance of improving our

understanding of individual patients to enhance their quality of
life (Zhou et al., 2022). To address these challenges, we require new
approaches that exponentially scale up learning on complex
diseases, enabling a deeper understanding of each individual and
more effective interventions (X.-M. Zhang et al., 2021). By
embracing these novel approaches, we can advance our
knowledge of complex diseases, refine disease subtyping, and
guide the selection of personalized treatment strategies to
improve patient outcomes and enhance public health.

1.1 Individualized networks and personalized
medicine

Individualized networks and personalized medicine are essential
for accelerating the development of new therapies for complex
diseases. Unlike the current reductionist approach, we require a
system-level understanding of individuals, which can be achieved
through biological networks (Ahn et al., 2006; Younesi and
Hofmann-Apitius, 2013). Biological networks provide a systems-
level understanding of disease mechanisms, enabling the
identification of differential molecular mechanisms altered in
different subtypes of disease and the disease’s progression
trajectory. Networks integrate data from multiple patients to
predict disease subtypes and progression, facilitating the
identification of prognostic biomarkers (Furlong, 2013; Younesi
and Hofmann-Apitius, 2013; McGillivray et al., 2018).
Computational strategies for biological network inference have
been developed to improve our understanding of biological
systems (Browne et al., 2009; Liu et al., 2016; Lengerich et al.,
2018; Van Der Wijst et al., 2018; Zanin et al., 2018).

Developing new therapies requires a system-level understanding
of individuals with complex diseases. Biological networks are a
powerful tool for this approach, enabling the modeling of
complex systems (Ahn et al., 2006; Younesi and Hofmann-
Apitius, 2013). By integrating data from several patients,
biological networks can predict differential molecular
mechanisms altered in different disease subtypes and identify the
progression trajectory of the disease (Fröhlich et al., 2018). Network
analysis can lead to identifying prognostic sets of biomarkers and
constructing explanatory models proving their value for precision
medicine. Computational strategies through biological network
inference have been developed and widely validated to improve
our understanding of biological systems (Browne et al., 2009).
Networks can be analyzed based on graph theory tools, such as
determining node properties like degree, betweenness, and other
centralities (Mulder et al., 2014), and global or local graph-
theoretical features describing the network may constitute
potential prognostic biomarkers instead of or in addition to
traditional covariates. Machine learning and artificial intelligence
techniques have been employed to analyze networks (Zitnik and
Leskovec, 2017; Agrawal et al., 2018; Ma et al., 2018; Zitnik et al.,
2018), allowing for the identification of gene signatures that serve as
prognostic markers, as demonstrated in clear renal cell carcinoma
patients (Büttner et al., 2019). Several authors have developed
computational strategies through biological network inference
(Liu et al., 2016; Lengerich et al., 2018; Van Der Wijst et al.,
2018; Zanin et al., 2018), and network-based analytics plays an
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increasingly important role in precision medicine (W. Zhang et al.,
2017). These strategies provide a comprehensive approach to
modeling biological systems, enabling construction of explanatory
models that can inform precision medicine.

Furthermore, individual-specific network analysis is valuable for
prediction modeling in medicine and applied health research,
identifying potential prognostic biomarkers, and discovering
relationships between gene modules and disease traits.
Addressing these points would make the perspective more
informative and engaging for readers interested in personalized
medicine and the use of biological networks, machine learning,
and artificial intelligence in disease research. However, it is
important to carefully validate and interpret the results of the
network-based analysis to ensure that they are biologically
meaningful and clinically relevant (Sonawane et al., 2019;
Galindez et al., 2023). Therefore, the clinical application of
precision medicine will likely require a fusion of approaches
tailored to each clinical problem (Duffy, 2016).

Individualized networks provide a powerful data integration and
analysis paradigm, offering a systems-level understanding of disease
mechanisms and underlying causes (Furlong, 2013; McGillivray et al.,
2018). Combining biomedical data with appropriate network
modeling approaches makes it possible to derive disease-associated
information and outcomes, including biomarkers, therapeutic targets,
phenotype-specific genes, survival prediction, and interactions
between molecules and disease subtypes (Sonawane et al., 2019).
An emergent area known as Network Medicine (Loscalzo, 2019),
these approaches have allowed the stratification of cancer into
subtypes predictive of clinical outcomes, such as response to
therapy, patient survival, and tumor histology (Hofree et al., 2013).
However, there are limitations to network-based approaches for
precision medicine, such as accounting for patient heterogeneity
and variability and constructing appropriate network models that
depend on study design, molecular entities measured, and the type
and size of data (Sonawane et al., 2019). The field should strive to
integrate genomic and clinical data to build networks that detect
differences for each sample. This new avenue will allow us to classify
complex diseases into clinically and biologically homogeneous
subtypes, leading to a better understanding of disease
pathophysiology and developing more targeted interventions

(Sørlie et al., 2001). By employing computational and systems
biology applications to develop individualized protocols, it is
possible to minimize patient suffering while maximizing treatment
effectiveness, allowing for the progression of precision medicine and
exploring differences between individuals (Barh et al., 2020).

The advantage of individualized protocols seen from the network
paradigm over other strategies is that we can study one network per
sample, make identification of modules in each network, compare
patients by comparing their respective networks, cluster individuals
based on sample-specific networks, and associate networks (sub-)
structure to disease status (more detailed in Table 1).

1.2 Approaches for generating individualized
networks

Nonetheless, it is possible to identify pathways and further
elucidate the molecular mechanisms of disease for individual
patients using biological systems strategies. Evaluating
correlations or other quantitative measures between molecules for
each individual, which are usually unavailable in clinical practice, is
the goal of the individualized network approach. However, this
requirement for molecular data seriously limits the application of
this methodology in personalized medicine (Galindez et al., 2023).
Recently, several authors have developed new strategies to infer
networks at the individual level, which can facilitate the discovery of
differentiated disease modules or different candidate mechanisms.
Although the traditional aggregated or averaged networks have
allowed us to gain important insights across a wide range of
biological systems and diseases, they only capture processes
shared across a population of samples (Figure 1). Therefore,
individualized network approaches have the potential to advance
precision medicine by enabling the identification of molecular
pathways that underlie complex disease phenotypes (Van Der
Wijst et al., 2018; Galindez et al., 2023).

Each of the individualized networks is representative of the
wiring of a specific individual and can characterize the specific
disease state of an individual, as opposed to more traditional
methods in which the network represents a population or cohort
(Sonawane et al., 2019). Moreover, several approaches have been

TABLE 1 Summary of study design in biological networks.

Networks in a whole
population

Case versus control network
comparison

Personalized networks

Experimental
design

Generation of one network from a
population

Generation of two or more networks representing
cases and controls

Generation of one network per sample/individual

Analytical
protocol

To obtain network modules and
associate each of them with disease
status

To find condition-specific clusters of individuals
based on the comparison of networks

Network comparison to identify modules for each sample

To identify structural network differences
associated with modules in disease status

Association of network structure and the presence/absence
of modules to disease status

Pros Allow study correlation relation among
genes in samples

Allow finding in general sense differences and
making comparisons among control and case
samples.

Network for each individual allows representing of what
happens in each subject

cons The resultant network does not
represent the variation in the
population

Network of cases and control allows represent a
consensus of the group studied

Coexpression network methods have minimal samples to
consider in analysis (30 samples) to reach optimal
performance
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suggested for exploring sample-level network information (Zanin
et al., 2018; Liu et al., 2016; Kuijjer et al., 2019; Dai et al., 2019;
Campos-Laborie et al., 2019; X. et al., 2021) (summarized in
Table 2). Furthermore, several authors focus on single-cell
analysis due to the sparsity and heterogeneity of transcript
counts. Authors such as (Liu et al., 2016; Liu et al., 2016; Dai
et al., 2019; Dai et al., 2019) used individualized network strategies to
study scRNA-seq heterogeneity in different cell types present in the
same sample (R.-S. et al., 2023). These methods can also be applied
similarly to construct individual networks of each bulk RNA-seq
patient data sample. However, there are potential challenges and
limitations in multi-omics network medicine approaches, and the
clinical application of precisionmedicine will likely require a fusion of
approaches tailored to each clinical problem (Duffy, 2016; Sonawane
et al., 2019). To use knowledge of individualized biological co-
expression networks in clinical settings its necessary collect
individual-level data, construct and analyze co-expression networks
to detect disease-relevant gene clusters and identify personalized
biomarkers and therapeutic targets (Harikumar et al., 2021). This
analysis can guide the selection of personalized therapies, leading to
improved treatment outcomes and reduced side effects. Therefore, it is

important to carefully validate and interpret the results of
individualized network approaches to ensure that they are
biologically meaningful and clinically relevant (Galindez et al., 2023).

1.3 The potential of individualized gene
networks in personalized medicine

Individualized gene networks have emerged as valuable tools for
personalized medicine, allowing for identifying disease-associated
biomarkers with diagnostic and prognostic value (Emmert-Streib
et al., 2014). By unraveling molecular interactions, these networks
enhance the accuracy and timeliness of disease diagnosis and
facilitate the selection of more effective treatment options.
Furthermore, specific network-building strategies enable the
prediction of individual drug responses, minimizing exposure to
ineffective drugs and reducing side effects (Van Der Wijst et al.,
2018). Individualized networks also reveal novel therapeutic targets
specific to each patient’s genetic and molecular profile, paving the
way for precise and effective therapies (Yan et al., 2022). Integrating
genetic, environmental, and lifestyle factors into personalized gene

FIGURE 1
Strategies to generate a coexpression network using a conventional approach that implies a population network, a traditional (control/diseases)
network, and the new individualized coexpression approach. The network generation process to generate networkswith different approaches consists of
a series of steps: obtention of data from patients, clinics, and/or databases, normalizing data, and filtering features for ameliorating inconsistencies.
Strategies commonly employed in studies of diseases through networks, population, and traditional (case and control) networks consider mean
values of populations that limit known processes that can occur in unique patients; for this reason, individualized networks between genes in samples
could trigger give knowledge about changes at the level of pathways associated with diseases, with the potential to discover new drug targets and
biomarkers.
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regulatory networks empowers healthcare providers to predict
disease risk in susceptible individuals and implement early,
personalized preventive measures (Van Der Wijst et al., 2018).
Moreover, studying gene networks in individual cells enables the
identification of molecular markers that predict disease progression
and treatment response, enabling personalized treatment and real-
time therapy monitoring (Emmert-Streib et al., 2014). These
advancements in personalized medicine are crucial for
understanding the genetic basis of common diseases and
discovering new treatments and therapies (Ahmed et al., 2020).

Network individualization significantly impacts clinical
applications, treatments, medications, and omics exams,
contributing to more accurate and effective medical care in
personalized medicine (Infante et al., 2020). Here are some ways
individualization can improve patient care:

1.3.1 Personalized treatments
Understanding a patient’s genetic and molecular characteristics

enables doctors to design tailored treatments, including selecting
specific medications, dosage adjustments, and identifying the most
effective combination therapies (Suwinski et al., 2019).

1.3.2 Safer medications and therapies
Individualization helps identify patients more likely to

experience side effects or adverse reactions to certain
medications. By better understanding the molecular interaction
networks within individual patients, personalized therapeutic
targets can be identified, leading to more effective and safer
treatments (Goetz and Schork, 2018).

1.3.3 Personalized omics exams
Performing omics exams, such as whole genome sequencing,

gene expression profiling, and protein analysis, individually provides
accurate and relevant data for guiding diagnosis, prognosis, and
treatment (Mathur and Sutton, 2017; Ahmed et al., 2020; Williams
et al., 2022).

1.3.4 Early diagnosis of genetic diseases
Individualized medicine enables omics tests, such as genome

sequencing, to identify specific genetic mutations associated with
diseases, allowing for accurate and early diagnosis of genetic
disorders and a better understanding of genetic predisposition
(Aspinall and Hamermesh, 2007).

1.3.5 Facilitating drug approval
By considering patients’ genetic and molecular characteristics,

individualization can identify specific subgroups that may benefit
more from certain drugs, expediting the drug approval process and
providing access to more effective treatments for selected patients
(FDA, 2022).

2 Challenges and perspectives of using
individualized networks in precision
medicine

The challenges of using individualized networks in precision
medicine include the requirement for molecular data, which is
usually unavailable in clinical practice, and the need to develop

TABLE 2 Summary of sample-specific methods.

Method Type of network (nodes/edges) Context

Convergence/divergence network creation Zanin, Tuñas,
and Menasalvas. (2018)

Nodes correspond to the study subjects. Weight is
further associated with the link between two nodes
representing the distance between their features

Works assume that each disease is characterized by a
high internal coherence (or homogeneity), but they
explore the opposite possibility in this work

Sample specific network Zanin, Tuñas, and Menasalvas.
(2018); Liu et al. (2016); Kuijjer et al. (2019); Dai et al.
(2019); Campos-Laborie et al. (2019); Wang, Choi, and
Roeder. (2021)

Nodes correspond to genes. Edge represents the
distance between their genes

They developed a statistical method that allows
constructing of individual-specific networks based on
molecular expressions of a single sample to characterize
various human diseases at a network level

LIONESS (Linear Interpolation to Obtain Network
Estimates for Single Samples) Zanin, Tuñas, and
Menasalvas. (2018); Liu et al. (2016); Kuijjer et al. (2019);
Dai et al. (2019); Campos-Laborie et al. (2019); Wang,
Choi, and Roeder. (2021)

Model regulatory network in individual samples.
Network in which “nodes” represent genes and “edges”
represent a single estimate for the likelihood of
interaction between those genes

Aggregate or traditional network models fail to capture
population heterogeneity. They propose a method to
reverse engineer sample-specific networks from
aggregate networks. They used these networks to study
changes in network topology across time and to
characterize shifts in gene regulation using linear
interpolation to the predictions made by existing
aggregate network inference approaches

Cell-specific network Zanin, Tuñas, and Menasalvas.
(2018); Liu et al. (2016); Kuijjer et al. (2019); Dai et al.
(2019); Campos-Laborie et al. (2019); Wang, Choi, and
Roeder. (2021)

Nodes are genes and edges are gene–gene associations,
based on statistical dependency

This method transforms the data from ‘unstable’ gene
expression form to ‘stable’ gene association form on a
single-cell basis to obtain a network for one cell from
scRNA-seq data. This method can find differential gene
associations for every single cell. Traditional differential
gene expression analyses ignore even ‘dark’ genes that
play important roles at the network level. And can be
applied to construct an individual network of each
sample bulk RNA-seq data

locCSN Zanin, Tuñas, and Menasalvas. (2018); Liu et al.
(2016); Kuijjer et al. (2019); Dai et al. (2019);
Campos-Laborie et al. (2019); Wang, Choi, and Roeder.
(2021)

Nodes are genes, and edges are gene–gene associations They develop an approach that estimates cell-specific
networks for each cell, preserving information about
cellular heterogeneity that is lost with other approaches
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new strategies to infer networks at the individual level (Van DerWijst
et al., 2018; R.-S. et al., 2023). The clinical application of precision
medicine will likely require a fusion of approaches tailored to each
clinical problem, which can be complex and require significant
computational resources (Duffy, 2016). Furthermore, the statistical
rigor of network predictions comes from the study design and the size
of the datasets, which can be a limitation (Galindez et al., 2023).
Current approaches may need more samples to infer coexpression
networks that accurately capture the complexity of individualized
networks. The search space of possible coexpression networks is vast
and decreased uncertainty and reduced statistical power due to the
small sample size may limit the generalizability of the constructed
networks (Liesecke et al., 2019).

Obtaining many samples with comprehensive genomic data can
be challenging, especially for rare diseases or specific patient
populations. With limited sample sizes, the statistical power to
detect meaningful coexpression relationships may be reduced,
leading to false positives or missing important connections. One
approach to address these limitations is leveraging existing
knowledge from larger datasets or databases, incorporating prior
knowledge about gene-gene interactions, regulatory relationships, or
functional annotations. Integrating multi-omics data from different
modalities (e.g., genomics, transcriptomics, proteomics) could
provide a more comprehensive view of individual-specific
networks. Collaboration among researchers and data sharing can
help increase sample sizes and improve the statistical power of
coexpression network inference (Escorcia-Rodríguez et al., 2023).
The development of novel statistical methods specifically designed
for analyzing individualized coexpression networks can improve the
accuracy and reliability of the inferred networks (Yu et al., 2018).

Finally, developing more sophisticated algorithms and
computational methods can help extract meaningful information
from smaller sample sizes and incorporate prior knowledge,
improving the accuracy and robustness of individualized
coexpression networks (Colby et al., 2018). For example, Liesecke
et al. proposed the idea of conserved coexpression links between two
genes over several datasets, reinforcing the coexpression relationship
(Liesecke et al., 2019). However, there are still challenges to
overcome. When merging expression data, the size increase
should outweigh the noise inclusion, and graph structure should
be considered when integrating the inferences (Escorcia-Rodríguez
et al., 2023). The potential bias introduced by relying on external
datasets should also be considered, as they may only partially
represent the specific biological context of the individual sample.
Moreover, methods inferring coexpression networks should no
longer be assessed solely based on standard performance metrics
and graph structural properties.

Overall, while individualized networks have the potential to
advance precision medicine, they require careful validation and
interpretation of results to ensure they are biologically
meaningful and clinically relevant. For other hand, the cost of
using transcriptomic data has decreased over time, making it
more accessible for researchers and clinicians, and it is important
to consider the potential benefits of, and funding opportunities for
research in personalized medicine; for this reason, it is addressing
these challenges and limitations is crucial for their success and from
a perspective. Stratification makes possible the design of new clinical
trials to reevaluate previously tested drugs without such

stratification and determine possible new therapies or treatments
for each molecular subtype of patients (Rajewsky et al., 2020).

3 Conclusion

Personalized medicine, with its focus on individualized medical
treatment based on patient characteristics, has the potential to
revolutionize healthcare by improving patient outcomes and
enhancing the quality of care. Developing individualized therapy
protocols considering patient heterogeneity can minimize patient
suffering while maximizing treatment effectiveness; this necessitates
the refinement of disease categorization to understand the biological
differences among subtypes better and guide personalized treatment
strategies.

Novel individualized gene coexpression networks offer a
paradigm shift in studying complex diseases by revealing patient-
specific gene expression patterns and modules. By integrating
multimodal information and considering patient-specific
characteristics, these networks enhance our understanding of
disease pathogenesis, treatment response, and diagnostic
accuracy. They provide a more comprehensive understanding of
complex diseases, refine disease subtyping, and guide the selection of
personalized treatment strategies to improve patient outcomes.

Network medicine, which integrates diverse biological networks, is
emerging as a powerful approach to offer a systems-level understanding
of disease mechanisms and underlying causes. By analyzing gene-gene
interactions in individual samples and systematically comparing them,
we can identify pathways, subtypes of disease states, and key
components in the networks that can be targeted in clinical practice.
Multiscale mathematical and computational tools and integrating
genomic and clinical data enable the construction of individualized
networks with single-individual resolution.

While the potential impact of individualized coexpression networks
on clinical practice is significant, further research and interdisciplinary
collaboration are needed to realize their transformative powerfully.
Standardization and robustness of data-gathering approaches, including
imaging, multi-omic approaches, and clinical information, are critical
for scalability to larger patient cohorts. Deep-learning-based data
integration models hold promise in accurately predicting disease
progression and identifying disease subtypes by leveraging
multimodal data from various sources.

Addressing the limitations of current approaches to infer
coexpression networks requires leveraging existing knowledge,
integrating multi-omics data, collaborative efforts among
researchers, and developing novel statistical methods and
improved algorithms. These potential solutions represent
promising directions for overcoming current limitations and
advancing the inference of individualized coexpression networks.

In conclusion, individualized coexpression networks have the
potential to significantly advance our knowledge of complex
diseases, refine disease subtyping, and guide the selection of
personalized treatment strategies. By integrating diverse biological
networks and considering patient-specific characteristics, these
networks enhance our understanding of disease mechanisms and
improve patient outcomes in the era of precision medicine. As we
continue to explore the transformative potential of network medicine,
interdisciplinary collaboration, further research, and methodological
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advancements are vital to fully harness the power of individualized
coexpression networks and improve healthcare outcomes for patients.
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DNA N4-methylcytosine (4mC) is significantly involved in biological processes,
such as DNA expression, repair, and replication. Therefore, accurate prediction
methods are urgently needed. Deep learning methods have transformed
applications that previously require sequencing expertise into engineering
challenges that do not require expertise to solve. Here, we compare a variety
of state-of-the-art deep learning models on six benchmark datasets to evaluate
their performance in 4mC methylation site detection. We visualize the statistical
analysis of the datasets and the performance of different deep-learning models.
We conclude that deep learning can greatly expand the potential of methylation
site prediction.

KEYWORDS

4mC DNA methylation, deep learning, classification, feature, visualization, interpretable
ability

Introduction

The rapid progress in genome sequencing technologies has facilitated the investigation of
the functional effects of DNA chemical modifications with unprecedented precision
(Larranaga et al., 2006; Jiao and Du, 2016; Hamdy et al., 2022). DNA methylation, as a
vital epigenetic modification, plays a crucial role in normal organism development and
essential biological processes (Lv et al., 2021). In the genomes of both prokaryotic and
eukaryotic organisms, the most prevalent kinds of DNA methylation include N6-
methyladenine (6mA) (Huang et al., 2020; Li et al., 2021; Chen et al., 2022), C5-
methylcytosine (5mC) (Cao et al., 2022), and N4-methylcytosine (4mC) (Moore et al.,
2013; Plongthongkum et al., 2014; Ao et al., 2022a; Zulfiqar et al., 2022a; Zulfiqar et al.,
2022b). The distribution of 4mC sites in the genome is highly significant as they play a crucial
role in regulating gene expression and maintaining genome stability. Accurate identification
and analysis of 4mC sites allow for a deeper understanding of the role of DNAmethylation in
gene regulation and disease mechanisms. This has important implications for the study of
epigenetics, cancer etiology, biological evolution, and potential therapeutic strategies.
Therefore, the development of efficient and accurate methods for detecting and
identifying 4mC sites is of great importance for understanding biological processes and
disease research (Razin and Cedar, 1991; Kulis and Esteller, 2010).

Several experimental techniques have been utilized to identify epigenetic 4mC sites.
These methodologies include methylation-specific PCR, mass spectrometry, 4mC-Tet-
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assisted bisulfite-sequencing (4mCTABseq), whole-genome bisulfite
sequencing, nanopore sequencing, and single-molecule real-time
(SMRT) sequencing (Buryanov and Shevchuk, 2005; Laird, 2010;
Chen et al., 2016; Chen et al., 2017; Ni et al., 2019). These
experiment-based methods suffer from limitations such as low
throughput, high cost, and restricted detection sensitivity.
Nowadays, machine learning has been widely utilized and are
successful technology in bioinformatics for extracting knowledge
from huge data (Larranaga et al., 2006; Dwyer et al., 2018; Hu et al.,
2020; Hu et al., 2021; Hu et al., 2022a; Zeng et al., 2022a; Zeng et al.,
2022b; Li et al., 2023; Xu et al., 2023) and numerous computer
techniques have been created to anticipate DNA 4mC sites. Both
standard machine learning techniques and more current deep
learning algorithms have been used to provide a strong result. In
the field of 4mC site prediction, researchers have made significant
strides by leveraging machine learning algorithms. These
approaches utilize computational models to identify and classify
4mC sites within DNA sequences. Various machine learning
techniques have been explored, including support vector machine
(SVM) (Chen et al., 2017), random forest (RF), Markov model
(MM), and ensemble methods. Additionally, advanced techniques
such as extreme gradient boosting (XGBoost) and Laplacian
Regularized Sparse Representation have also been employed in
this context (Chen et al., 2017; Manavalan et al., 2019; He et al.,
2019; Hasan et al., 2020; Zhao et al., 2020; Ao et al., 2022b; Xiao et al.,
2022). However, traditional machine learning algorithms rely
significantly on data representations known as features for
appropriate performance, and it’s tough to figure out which
features are best for a certain task. Deep learning overcomes the
limitations of traditional methods by offering adaptivity, fault
tolerance, nonlinearity, and improved input-to-output mapping.
Deep learning methods, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), have been
developed for the detection of 4mC sites, leveraging their ability
to capture sequence patterns and dependencies, thereby
contributing to accurate identification of these sites and
enhancing our understanding of DNA methylation in gene
regulation and epigenetics (Xu et al., 2021; Liu et al., 2022). Yet
there are still many deep learning methods that have not been
applied, which have achieved great success in various application
scenarios, including computer vision, speech recognition, biomarker
identification (Zeng et al., 2020; Cai et al., 2021) and drug discovery
(Chen et al., 2021; Zhang et al., 2021; Hu et al., 2022b; Dong et al.,
2022; Pan et al., 2022; Song et al., 2022).

Choosing an appropriate deep learning model for
bioinformatics problems poses a significant challenge for
biologists. Understanding and comparing the performance of
different models on specific datasets is of paramount importance
for guiding practical applications. Therefore, our research focuses on
evaluating the performance of multiple deep learning models on the
4mC datasets, aiming to assist biologists in making informed
decisions when selecting suitable models.

We selected several common deep learning models, including
RNN (Recurrent Nerual Network) (Rumelhart et al., 1986), long
short-term memory (LSTM) (Graves, 2012), bi-directional long
short-term memory (Bi-LSTM) (Graves and Schmidhuber, 2005;
Sharma and Srivastava, 2021), text convolutional neural network
(Text-CNN) (Kim, 2014), and bidirectional encoder representations

from transformers (BERT) (Ji et al., 2021; Tran and Nguyen, 2022),
and compared their performances on the 4mC datasets through
optimization of model hyperparameters. Our research findings
provide strong evidence-based support for biologists, aiding them
in making informed choices when addressing bioinformatics
problems on the 4mC datasets. By comparing the performance of
multiple models, we can offer recommendations tailored to different
problems and datasets, enabling biologists to better understand and
leverage the advantages of deep learning models.

Materials and methods

The implementation of our experiments relies on the DeepBIO
(Wang et al., 2022) platform, which provides a wide selection of deep
learning models and a visual comparison of multiple models.
Figure 1 illustrates the overall framework of our works. We
selected four deep learning models (RNN, LSTM, Bi-LSTM,
Text-CNN) and pre-trained BERT models from the DeepBIO
platform, and BERT is used as our main method to compare
with other methods.

Datasets

The first step in creating a strong and trustworthy classification
model is creating high-quality benchmark datasets. In this study, six
benchmark datasets were utilized (Yu et al., 2021). Table 1 provides a
statistical summary of the datasets. The positive samples consisted of
sequences that were 41 base pairs (bp) in length and contained a
4mC (4-methylcytosine) site located in the middle. These datasets
have undergone rigorous preprocessing and quality control
measures to ensure data accuracy and consistency (Jin et al.,
2022). By training and evaluating the model on data from
multiple species, including humans, animals, and plants, we
ensure its broad applicability and provide valuable insights for
biologists in selecting deep learning models.

Input feature matrix

Deep learning algorithms possess the capability to
autonomously extract valuable features from data,
distinguishing them from conventional machine learning
methods that necessitate manual feature engineering.
Nonetheless, when dealing with a string of nucleotide letters
(A, C, G, and T), a conversion into a matrix format is required
prior to feeding it into a neural network layer. Unlike prior
methods that used several feature encodings schemes to represent
the sequence as the input to train the model, this method uses a
single feature encoding scheme. We took the dictionary encoding
approaches for representing DNA sequences. To represent DNA
sequences, we utilized a dictionary encoding method where each
nucleotide (A, C, G, and T) is assigned a numeric value.
Specifically, A is represented by 1, C by 2, G by 3, and T by 4.
This encoding scheme allows us to convert the sequence into an
N-dimensional vector, facilitating its input into the neural
network for further analysis.
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Model construction and parameters

We have selected deep-learning models that have received a lot
of attention in recent years as follows: RNN, LSTM, Bi-LSTM, Text-
CNN, and BERT. The first four deep learning models we used are the
models provided by the DeepBIO platform with parameters already
set and the BERT model we used is pre-trained DNABERT (Ji et al.,
2021; Ren et al., 2022), which achieves the best performance on
several DNA sequence classification tasks.

RNN is a type of neural network where the output of the
previous neuron is fed back as input to the current neuron,
creating temporal memory and enabling the processing of
dynamic input sequences. RNNs find wide applications in
various domains, including voice recognition, time series analysis,
DNA sequences, and sequential data processing. One notable
variant of RNNs that addresses the issue of capturing long-term
dependencies is Long Short-Term Memory (LSTM). LSTM
introduces a cell state that serves as a memory component,
allowing the network to retain relevant information over
extended periods. The forget gate in LSTM controls which
information should be discarded and retained by using a sigmoid
activation function. Additionally, Bidirectional LSTM (BiLSTM)

processes input data in both forward and backward directions,
effectively incorporating information from both past and future
states. This bidirectional approach enables BiLSTM to capture
intricate sequential relationships between words and sentences,
making it particularly advantageous for Natural Language
Processing (NLP) tasks that require contextual information from
both preceding and succeeding elements in the input sequence. The
RNN, LSTM, and Bi-LSTM architectures consist of stacked RNN
cells, LSTM cells, and bidirectional LSTM cells, respectively. All
these architectures share a similar structure, featuring 128 hidden
neurons and a single layer for optimal performance. To prevent
overfitting and promote generalization, a dropout rate of 0.2 was
applied, and the output layer utilized sigmoid activation with a single
neuron.

Text-CNN, a powerful deep learning approach for language
classification tasks, such as sentiment analysis and question
categorization, is a convolutional neural network tailored for text
processing. The core structure comprises four layers: an embedding
layer, a convolution layer, a pooling layer, and a fully connected
layer. In our implementation, we set four convolutional kernel sizes
(1, 2, 4, 8), and the number of convolutional kernels is uniformly set
to 128. The embeddings undergo convolutional operations with a
sliding kernel, producing convolutions that are subsequently
downsampled through a Max Pooling layer to manage
complexity and computational requirements. The scalar pooling
outputs are then concatenated to form a vector representation of the
input sequence. To mitigate overfitting, regularization methods,
including a dropout layer with a rate of 0.2 and ReLU activation,
are employed in the penultimate layer, preventing overfitting of the
hidden layer.

BERT, an abbreviation for Bidirectional Encoder
Representations from Transformers, originates from the
Transformer architecture. In the Transformer model, every
output element is intricately connected to every input element,
with dynamically calculated weightings based on their

FIGURE 1
The workflow of the main modules. The benchmark datasets are initially divided into training and test sets. Subsequently, the divided dataset is fed
into various deep learning models for prediction. The results of the predictions from different models are then evaluated. Finally, the data generated
throughout these steps are visualized and analyzed for further insights.

TABLE 1 Statistical summary of benchmark datasets.

Species Positive sample Negative sample Total

C. elegans 1,554 1,554 3,108

D. melanogaster 1,769 1,769 3,538

A. thaliana 1,978 1,978 3,956

E. coli 388 388 776

G. subterraneus 906 906 1,812

G. pickeringii 569 569 1,138
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connections. BERT is a pre-trained model that benefits from its
ability to learn rich contextualized representations by considering
the entire input sequence during training. Our study employs the
pre-trained DNABert model, which has demonstrated superior
performance in several DNA sequence classification tasks. We
specifically fine-tune the 6mer-BERT variant on the 4mC
methylation site benchmark dataset. Fine-tuning a pre-trained
model on a task-specific dataset allows us to transfer the
knowledge acquired during pre-training, enabling the model to
achieve state-of-the-art performance in predicting DNA 4mC
methylation sites. The incorporation of BERT’s pre-trained
knowledge provides significant advantages, as the model has
already learned from vast amounts of data and captures intricate
sequence patterns and dependencies. By leveraging pre-trained
models like BERT, we achieve robust and accurate predictions,
even in scenarios with limited training data.

Evaluation metrics

In order to compare with previous related work, we selected
the commonly used evaluation indicators comprised of accuracy
(ACC), sensitivity (SN), specificity (SP), Matthews’ coefficient
correlation (MCC), and area under the receiver operating
characteristic curve (AUC). These indicators are calculated by
the following formula:

ACC � TP + TN

TP + TN + FP + FN

Sensitivity � TP

TP + FN

Specificity � TN

TN + FP

MCC � TP × TN − FP × FN�������������������������������������
TP + FN( ) TP + FP( ) TN + FP( ) TN + FN( )√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where TP represents true positives, which is the number of correctly
predicted positive samples; TN represents true negatives, which is
the number of correctly predicted negative samples; FP represents
false positives, which is the number of negative samples wrongly
predicted as positive; and FN represents false negatives, which is the
number of positive samples wrongly predicted as negative.

Experimental setup

In our experimental design, we adopted the default settings of
DeepBIO for other hyperparameters. For instance, when performing
data set deduplication, we limited the duplication rate to 0.8 using
the CDHIT algorithm integrated in the DeepBIO platform.
Furthermore, we conducted a grid search on hyperparameters
such as learning rate and batch size for each model. Grid search
is a method for hyperparameter tuning, where different
combinations of hyperparameters are tried to determine the
optimal model configuration. Such experimental settings ensure
that the models achieve their maximum potential performance
while maintaining the reliability, fairness, and accuracy of the
experiments.

Result

In this section, we evaluate the performance of the different
models and analyze the features extracted by the different models. In
addition, we also compare the features learnt from deep-learning
models with the traditional manual feature extraction methods
applied in other studies to further demonstrate the superiority of
deep learning in solving the 4mC methylation site detection
problem. To ensure a balanced representation, the samples were
randomly divided into training and test datasets for each species.
The division was done in a ratio of 9:1, with 90% of the samples
allocated to the training dataset and the remaining 10% assigned to
the test dataset.

Performance evaluation of multiple models

We conducted a comprehensive performance evaluation of four
different models on six datasets to assess their performance in
various data environments. The evaluation process involved the
use of common binary classification metrics, such as accuracy
(ACC), sensitivity, specificity, area under the curve (AUC), and
Matthews correlation coefficient (MCC), to provide a
comprehensive understanding of the models’ classification
capabilities and highlight their performance differences. In
addition to these metrics, we also employed receiver operating
characteristic (ROC) curves and precision-recall curves (PRC) to
further analyze the models’ performance.

Throughout our evaluation, we observed variations in
performance across different datasets. While certain models
demonstrated superior predictive performance on most datasets,
their performance might vary on specific datasets. As shown in
Figures 2A, B, the RNN and TextCNN models exhibited promising
performance on the G. pickeringii dataset, while DNABERT
outperformed others on the G. subterraneus dataset. Overall,
DNABERT consistently showcased superior performance across
the evaluated datasets.

Furthermore, let’s consider the results obtained on the E. coli
dataset. The density distribution of prediction confidence by
different deep learning models (Figure 2C) provides insights
into the prediction preferences of each model. In the case of
LSTM and Text-CNN, their density distribution shows a
preference towards the center part of the X-axis, around 0.5.
This indicates their poor binary classification ability and
confusion in distinguishing between positive and negative
instances. On the other hand, the density distribution for
DNABERT is skewed towards the right side of the X-axis,
indicating a better classification performance. This suggests
that DNABERT exhibits a stronger ability to differentiate
between positive and negative instances. And this is consistent
with the conclusions drawn from the performance comparison in
Figure 2A.

We also performed statistics on the overlap of predictions
between different models for the same dataset. Take the results
obtained on the G. subterraneus dataset as an example, the
distribution of sets classified as negative classes by different
models in the test set is shown in Figure 2D. In the VN diagram
on the left, 41.4% of the test set is judged as negative by all models
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(negative classes account for 50% of the test set in total). The
difference in quantity is shown more clearly in the right figure,
and we can find that DNABERT may be one of the less effective
models for classification under this dataset, as it predicts more
negative cases individually. However, given that most of the model
predictions converge on the same, we can conclude that most of the
models are consistent in their classification results.

Deep learning model feature analysis

We conduct a comparative study on the features learned by deep
learning from biological information. This includes comparisons
between different deep learning models as well as comparisons

between deep learning features and manually designed features.
By conducting feature comparisons, we aim to further validate the
superiority of deep learning methods and enhance the
interpretability of deep learning models. We select ANF, binary,
CKSNAP, and DNC approaches to extracting features and using
SVM for unsupervised classification to compare with our deep
learning models. Figure 3A presents the ROC and PR curves for
all models on the G. pickeringii dataset. We only display the two
best-performing traditional manual feature methods for
comparison. It is evident that most of the deep learning methods
outperform the traditional approaches in terms of classification
performance.

To visualize the results of deep learning features, we utilized
UMAP (Uniform Manifold Approximation and Projection) and

FIGURE 2
Performance evaluation of multiple models. (A) The basic statistics of ACC, Sensitivity, Specificity, AUC, and MCC in different models. (B)
Performance comparison between DNABERT and other state-of-the-art methods on the benchmark datasets. (C) Density distribution of the prediction
confidence by different deep learning models. (D) VENN and Upset plots show the overlap of different models’ predictions.

Frontiers in Genetics frontiersin.org05

Ju et al. 10.3389/fgene.2023.1254827

106

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1254827


SHAP (Shapley Additive Explanations) plots for display (Figure 3B).
The UMAP plot reduces the dimensionality of the features while
preserving the underlying data structure. It enables data clustering
and categorization by mapping high-dimensional features into a
lower-dimensional space, allowing for an analysis of feature
similarity between positive and negative instances. The SHAP
plot facilitates the understanding of feature importance and
contribution to model predictions, providing interpretability to
the model and enabling comparison of feature impacts. It helps
to comprehend the significance of features in model predictions,

enhancing interpretability and facilitating comparison among
different features. In the feature visualization figure, each row
corresponds to a specific feature, and the x-axis represents the
snap value, providing a clearer understanding of the feature. The
color gradient indicates the feature value, with higher values
represented by redder colors and lower values represented by
bluer colors. Each line represents a feature, and the horizontal
position represents the SHAP value assigned to that feature in a
particular sample. Each point represents a sample. The intensity of
the color reflects the impact of the feature, with redder colors

FIGURE 3
Deep learning model feature analysis. (A) Feature performance comparison between hand-crafted features and the features learned by deep
learning models. (B) UMAP feature visualization and SHAP feature importance visualization.

Frontiers in Genetics frontiersin.org06

Ju et al. 10.3389/fgene.2023.1254827

107

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1254827


indicating a larger impact and bluer colors indicating a smaller
impact. The scattered distribution of points indicates a greater
influence of the feature.

Conclusion

In this study, we use several currently popular deep learning
models on the problem of 4mC methylation detection of DNA.
We first present the current status of DNA 4mC methylation site
detection, followed by the design of deep learning model
workflows on six benchmark datasets, and finally, we evaluate
the output of all models and conclude that deep learning has great
potential for methylation detection, leading the way to future
sequencing technologies along with newer bio-experimental
methods. In fact, deep learning methods consistently
outperformed traditional machine learning methods on all
datasets. Furthermore, it was observed that pre-trained deep
learning models with a higher number of parameters exhibited
even better performance. We believe this may be because deep
learning models with more parameters capture more features and
analyze the features acquired by each model. By attempting to
explain the model’s internal workings and shed light on its
internal representations, we aim to define its “black box”
behavior.
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EasySSR: a user-friendly web
application with full
command-line features for
large-scale batch microsatellite
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Microsatellites, also known as SSRs or STRs, are polymorphic DNA regions with
tandem repetitions of a nucleotide motif of size 1–6 base pairs with a broad range
of applications in many fields, such as comparative genomics, molecular biology,
and forensics. However, the majority of researchers do not have computational
training and struggle while running command-line tools or very limited web tools
for their SSR research, spending a considerable amount of time learning how to
execute the software and conducting the post-processing data tabulation in other
tools or manually—time that could be used directly in data analysis. We present
EasySSR, a user-friendly web tool with command-line full functionality, designed
for practical use in batch identifying and comparing SSRs in sequences, draft, or
complete genomes, not requiring previous bioinformatic skills to run. EasySSR
requires only a FASTA and an optional GENBANK file of one or more genomes to
identify and compare STRs. The tool can automatically analyze and compare SSRs
in whole genomes, convert GenBank to PTT files, identify perfect and imperfect
SSRs and coding and non-coding regions, compare their frequencies, abundancy,
motifs, flanking sequences, and iterations, producing many outputs ready for
download such as PTT files, interactive charts, and Excel tables, giving the user the
data ready for further analysis in minutes. EasySSR was implemented as a web
application, which can be executed from any browser and is available for free at
https://computationalbiology.ufpa.br/easyssr/. Tutorials, usage notes, and
download links to the source code can be found at https://github.com/
engbiopct/EasySSR.

KEYWORDS

batch, genome, microsatellites, motifs, large scale, web tool, comparison, bioinformatics

1 Introduction

Microsatellites, also known as Simple Sequence Repeats (SSRs) or Short Tandem Repeats
(STRs), are polymorphic DNA regions with tandem repetitions of a nucleotide motif ranging
1–6 bp, also called mononucleotide, di-, tri-, tetra-, penta-, and hexanucleotide repeats
(Pinheiro et al., 2022). They can be categorized into perfect, imperfect, and compound and
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are found in both coding and non-coding regions in eukaryotes,
prokaryotes, and viruses (Mudunuri and Nagarajaram, 2007; Beier
et al., 2017). The SSRs have various clinical implications and a broad
range of applications in many fields, such as conservation and
evolutionary studies, comparative genomics, molecular biology,
biotechnology, oncology, and forensics (Laskar et al., 2022;
Pinheiro et al., 2022).

With the application of computational approaches in biological
data along with the advance of Next-Generation Sequencing
technologies (NGS), many tools for SSR mining have been
developed over the years, with IMEx (Mudunuri and
Nagarajaram, 2007), MISA (Beier et al., 2017), TRF (Benson,
1999), and Repeat Masker (Tarailo-Graovac and Chen, 2009)
among the most popular and widely used tools, as reviewed by
Mudunuri et al. (2010a), Lim et al. (2013), Mathur et al. (2020).

However, many researchers need advanced computational
training and therefore have difficulty using these tools as most of
these tools: i) Need significant investment of time for the user to
comprehend, install, and run those pieces of software; ii) Are
command-line based without graphical interface; iii) Require
device storage and dependencies for installation; iv) Have many
parameters and dependencies that might confuse inexperienced
users; v) Require specific file formats as input, e.g., PTT files,
which are not easily obtainable for inexperienced users who
would rather use FASTA and GenBank files; and vi) Are not
available anymore, principally web servers. vii) Lastly, the few
web tools still available are very limited in many aspects, such as
the limited size of the input files, rare flexibilization of parameters,
and the lack of identification of flanking sequences, downloadable
outputs, post-processed graphical outputs, and features for online
sample comparison, or they do not focus solely on Microsatellites
motifs (1–6 bp) but also on other Tandem repeats such as
Minisatellites (10–30 bp) and Satellites (>100 pb); indeed, in
some cases, even if the web service does exist, the full
functionality is restricted to the command-line version, limiting
the online service to basic and small analysis (Lim et al., 2013).

In this way, many scientists end up choosing to use command-
line tools for full functionality and spend a considerable amount of
time learning how to install and execute the software, in addition to
performing post-processing data tabulation on other tools or
manually, instead of focusing more time on data analysis; thus,
there is a need for a web application that can be an easy tool for
online analysis that can do the same as command-line tools, filling in
the gaps of other software without sacrificing the full-fledged and
accurate results already obtained (Oliveira et al., 2008; Pinheiro
et al., 2022).

Given these lacunae, we present EasySSR, an intuitive web tool
that implements command-line IMEx versatile and accurate SSR
mining with novel settings by automatizing the analysis from data
input, converting individual files, and performing the post-
processing analysis of the individual outputs, fully summarizing
those data into statistics sheets and graphs available online for the
user. It was designed for practical and intuitive use in batch
identifying perfect and imperfect SSRs in large-scale data from
one or many individual FASTA sequences, draft, or complete
genomes, with full functionality and data visualization directly
from the web without the need for any software installation, their
dependencies, or complicated bioinformatic skills to run, giving the

user results that can be easily interpreted, enabling even traditional
non-bioinformatician scientists with limited computational
experience and resources to use SSRs in their research
(Mudunuri and Nagarajaram, 2007).

2 Methods

2.1 Workflow and implementation

EasySSR is a web tool hosted in a standard Linux server,
developed using the Django v4.1.7 framework (Django Software
Foundation, 2023), based on the Python language v3.11, with
information stored in a MariaDB database v10.10.2, and it
executes several helper scripts in Python and Perl to automate
the following summarized workflow in the back-end, as
summarized in Figure 1.

EasySSR receives the User Information—User Project name
(required), Email (optional); Input Files—FASTA files (required),
GENBANK files (optional); and Parameters—Default or Custom
when the user clicks the upload button. EasySSR uses secure
HTTPS (Hypertext Transfer Protocol Secure) connections to
transfer data between the client and the server. Step 1 starts
when the files are uploaded. If the user uploaded GenBank files,
the script verifies if every FASTA file has a corresponding
GenBank annotation file and if both have the same filename
with less than 35 characters. Then, it converts the GenBank files
to PTT format through a script in Perl. If no GenBank file was
uploaded, EasySSR considers everything as non-coding by
default. In the web interface, the process from upload to GBK-
PTT conversion is shown as Step 1 to the user. Step 2 starts with a
script in Python for batch execution of IMEX v2.1 for each
FASTA file. This step might be slower or faster depending on
the size of the input files and the complexity of the annotation and
the parameters. For Step 3, EasySSR scans the folders generated
by IMEX, reads the IMEX TXT outputs, and records each result in
the database created for that project. After extraction, the
interactive charts and tables from SQL queries in the database
are rendered for the web with a color-blind-friendly palette using
the Chart and jQuery v3.6 JavaScript libraries with the
DataTables plugin. The front-end of EasySSR was encoded
with Bootstrap v4.0 and jQuery v3.6 libraries, generating user-
appealing interfaces in the web interface and exhibiting the post-
processed outputs in HTML format, which are available for
download alongside the IMEX outputs. The project data are
stored through a project ID in the EasySSR database for a
month-long period.

2.2 Tool validation

In order to validate EasySSR, a web tool with full command-line
functionalities that is suitable for large-scale comparative analysis, it was
availed by three different perspectives: i) Firstly, to demonstrate the
functionality of EasySSR against other web tools, it was compared with
themost cited tools that have an active web service with a feature for the
identification of Microsatellites. However, as the online tools do not
support the analysis of SSRs in large datasets, and this is the main
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distinguished attribute of EasySSR, performance validation had to be
executed in comparison with command-line tools. In this way, for ii),
benchmark testing was used for two datasets previously validated by
Beier et al. (2017), Mudunuri and Nagarajaram (2007), in order to
measure the efficiency against the main similar software and their
specific datasets, for both prokaryotes and eukaryotes, and with FASTA

input only or both FASTA and GenBank. The first dataset had a
homogeneous set of small artificial prokaryotic chromosomes used for
benchmark EasySSR performance while running intraspecific analysis
for perfect SSRs, using only FASTA files as input. The second dataset
had a heterogeneous set of complete prokaryote genomes, eukaryotic
chromosomes, and a human gene and was used for benchmark

FIGURE 1
EasySSR workflow from user input to output. (A) In input, EasySSR receives user information, user, and parameters. (B) In Step 1, it receives the input,
verifies the data, and converts GENBANK to PTT files. (C) With each pair of FASTA files-PTT files ready, EasySSR starts Step 2 by analyzing every file with
IMEx, repeating the process until all files have been processed. (D) Then, in Step 3, EasySSR processes all IMEX outputs, stores the data in a new project at
the database, and processes the summarized data into sheets and charts. (E) The output is exhibited through a HTML page, and the data are made
available for download.
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EasySSR performance while running interspecific analysis for imperfect
SSRs, using both FASTA and GenBank files as input. ii) Lastly, to
demonstrate EasySSR capacity to process large datasets of complete
genomes, the program was executed with a dataset validated by
Pinheiro et al. (2022), for batch comparison of 54 whole genomes of
Corynebacterium pseudotuberculosis, running interspecific analysis for
perfect SSRs, using both FASTA and GenBank files as input.

2.2.1 Function comparison against web tools
Many web services offer features for microsatellite mining.

However, they are widely different in terms of functionality and
the analysis, input, output content, and output return style
(Mudunuri et al., 2010b). In this way, EasySSR was compared to
other web tools in order to demonstrate the main functionalities that
are common to them or exclusive to our tool. For this validation, six
review articles were screened to discover web tools that have a
feature for the identification of Microsatellites (Leclercq et al., 2007;
Sharma et al., 2007; Merkel and Gemmell, 2008; Mudunuri et al.,
2010b; Lim et al., 2013; Mathur et al., 2020). The publishing articles
for each tool were analyzed in April 2023, and the platforms were
tested through the links available in the articles to check if they were
still active. If the tool was functional, the article citation rates were
analyzed through Google Scholar, and these data alongside with the
search link were tabulated. The 10most cited web tools were used for
features comparison against EasySSR. The features used for
comparison were partially based on the ones analyzed by Merkel
and Gemmell (2008), Mudunuri et al. (2010b) in their articles.
Besides the Citations and Author/Publishing Year, the following
categories and features were used in this comparison: i) ANALYSIS:
Microsatellite only, Maximum motif length, Perfect SSRs, Imperfect
SSRs, Compound SSRs, Flexible Parameters, and Large-scale
analysis; ii) INPUT: Limits Max, File Size, Analyze web of many
whole genomes, Accepts multiple FASTA files, Integration with
NCBI, and Box for cut-and-paste small sequences; iii) OUTPUT
CONTENT: Text file, HTML file, PTT file, Coding/Non-coding,
Flanking Sequences, Sample comparison sheets, and Sample
comparison graphs; iv) OUTPUT RETURN: Web results, Email
results, and Download results.

2.2.2 Benchmark testing against web servers and
command-line tools
2.2.2.1 Intraspecific analysis for perfect SSRs in prokaryotes,
using only FASTA files as input with custom parameters

For this benchmark testing, the dataset employed by Beier et al.
(2017) was used to validate Misa-Web, a set of small barley bacterial
artificial chromosomes (BACs) available in the NCBI database
under the accession numbers: AC256511.1 (113 kb), AC257258.1
(124 kb), AC259365.1 (118 kb), AC261250.1 (91 kb), AC263353.1
(33 kb), AC264961.1 (126 kb), AC265197.1 (113 kb), AC266636.1
(167 kb), AC267178.1 (121 kb), and AC269605.1 (119 kb). For this
comparison, the sequence assemblies were obtained with the same
version used in their original article, through their NCBI accession
numbers, and analyzed for perfect SSRs. Only the FASTA files were
used as input in the analysis as the annotation available in NCBI
consists only of gaps and has no gene information. This dataset is
also available at EasySSR webpage and GitHub as “Dataset
1—Misa.”

The detected microsatellites and execution time of EasySSR were
compared against tools that also have settings for perfect SSR search
only, also known as Misa-mode, those being the web servers of
MISA-web (Beier et al., 2017) and TRF web (Benson, 1999) and
command-line tools ProGeRF (Lopes et al., 2015), GMATo (Wang
et al., 2013), mreps (Kolpakov, 2003), and SciRoKo (Kofler et al.,
2007). The analysis was executed with the same parameters as the
original benchmark test: minimum repeat copy number - Mono:5,
Di: 5, Tri: 5, Tetra: 5, Penta: 5, Hexa: 5); Imperfection and
Mismatches–0 (Perfect SSR only–Misa mode); dMAX compound
SSR–0 bp.

2.2.2.2 Interspecific analysis for imperfect SSR in
prokaryotes and eukaryotes, using both FASTA and
GenBank files as input, with custom parameters

For the second benchmark testing, the dataset validated by
Mudunuri and Nagarajaram (2007) was used to validate IMEX
1.0 through the analysis of an interspecific sequence set composed of
the human atrophin1 gene, 5 kb (BC051795); two eukaryote
chromosomes - Plasmodium falciparum chromosome IV,
1,193 kb (NC_004318.1) and yeast chromosome IV, 1,518 kb
(NC_001136.8); and two complete prokaryote genomes -
Mycobacterium tuberculosis H37Rv, 4,370 kb (NC_000962.2) and
Escherichia coli K12, 4,596 kb (NC_000913.2). The sequences were
obtained through their NCBI accession numbers, with the same
version as their original article, downloaded as FASTA and GenBank
annotation files, which were renamed to: (“Ecoli_K12.fasta,” “Ecoli_
K12.gb”); (“Human_Atrophin1.fasta,” “Human_Atrophin1.gb”);
(“MTB_H37Rv.fasta,” “MTB_H37Rv.gb”); (“Plasmodium_
Chr4.fasta,” “Plasmodium_Chr4.gb”); and (“Yeast_Chr4.fasta,”
“Yeast_Chr4.fasta”), in a way that both FASTA and GenBank
have the same filename besides the extensions, and the filename
has less than 35 characters. This dataset is also available at EasySSR
webpage and GitHub as “Dataset 2—IMEx.”

The detected microsatellites and execution time of EasySSR were
compared against tools that also have settings for imperfect SSR
search: TRF (Benson, 1999), IMEx 1.0 (Mudunuri and Nagarajaram,
2007 original article data), IMEx 2.1 (Mudunuri et al., 2010a), and
Sputnik (Morgante et al., 2002). The following parameters were
used, those being the same ones applied by Mudunuri and
Nagarajaram, 2007: minimum repeat copy number–Mono:5, Di:
3, Tri: 2, Tetra: 2, Penta: 2, Hexa: 2, Imperfection of all tracts to 10%,
mismatches - Mono: 1, Di: 1, Tri: 1, Tetra: 2, Penta: 2, Hexa: 3; with
the additional parameters of dMAX cSSR of 0 bp, 15 bp for flanking
sequences, and standardization level 3.

2.2.3 Large-scale interspecific analysis for
imperfect SSR, using both FASTA and GenBank files
as input with default parameters

Differently from the benchmark tests, this comparison aimed to
demonstrate the capacity of EasySSR to handle large datasets while
being a versatile shortcut for online data analysis. For this,
54 complete genomes of C. pseudotuberculosis (CP) were selected,
which have been previously studied by Pinheiro et al. (2022), who
also used IMEx 2.1 as the microsatellite mining tool. The sequences
were obtained at NCBI through the accession numbers stated in
Table 4, with the same version as the ones stated in the original
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article by Pinheiro et al. (2022), and downloaded as FASTA and
GenBank annotation files.

For this analysis, the dataset was processed in EasySSR with
slightly different parameters, in custom mode and default mode.
In general, the main parameters were the same for both analyses:
Minimum Repeat Number–Mono:12, Di: 6, Tri: 4, Tetra: 3,
Penta: 3, Hexa: 3, flanking sequences of size 15 bp, dMax
compound of 0, Standardization level 3, extracting all types of
SSR, and yes for identify coding/non-coding regions, generate
alignment, and text outputs. However, the first analysis was
conducted by searching for perfect SSRs only, with the same
parameters as Pinheiro et al. (2022), by using the custom
parameters mode and setting the imperfection and
mismatches as 0, expecting to have the same results as them.
Then, the second analysis was conducted by searching for perfect
and imperfect SSRs, using the EasySSR default parameters,
which were also based on and adapted from Pinheiro et al.

(2022), but with Imperfection % - Mono: 10%, Di: 10%, Tri: 10%,
Tetra: 10%, Penta: 10%, Hexa:10% and Mismatch in Pattern:
Mono: 1; Di:1; Tri:1; Tetra:2; Penta:2; Hexa:2. The results were
compared with Pinheiro et al. (2022) through the graphs and
charts generated as the output of EasySSR.

3 Results and discussion

3.1 Tool overview

EasySSR is an intuitive web server designed in order to facilitate
the SSR research, which does not require mandatory registration or
work in any browser and is freely available to non-commercial users
at https://computationalbiology.ufpa.br/easyssr/(Figure 2A), with
tutorials, usage note, and source code available at https://github.
com/engbiopct/EasySSR.

FIGURE 2
(A) EasySSR input screen. (B) EasySSR loading screen.
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It offers many automatized extra features for data visualization
and sample comparison, besides the IMEX sensitivity and its
advanced functions to identify microsatellites, such as searching
perfect microsatellites separately, getting the coding/non-coding
information of the microsatellite tracts, generating alignments
with consensus microsatellite tracts, restricting the imperfection
limit for the repeat unit of each size, setting the imperfection
percentage threshold of each repeat size, restricting the minimum
number of repeat units of a tract of each size, searching for repeats of
a particular size or all sizes, setting the flanking sequence size limit,
and standardizing the repeats.

As for the automatized features unique to EasySSR, it can
automatically convert GenBank to PTT files, it summarizes SSRs
frequencies, abundancy, flanking sequences, and iterations of motifs,
producing many outputs ready to download such as PTT files, IMEX
HTML/TXT discover-friendly outputs, interactive charts, and
summarized data/statistics Excel tables for comparison of the
samples, giving the user the data ready for further analysis in a
computationally feasible time. This reduces a significant amount of
time worth of data tabulation, minimizing tedious manual
operations and therefore decreasing the chance of errors.

As the information about compound SSRs is restricted to IMEX
HTML files, this version of EasySSR does not include compound
SSRs in the summary tables, including only their raw data of each file
analyzed in the downloadable folder IMEx outputs, focusing their
comparison on perfect and imperfect SSRs and their respective
positions in coding/non-coding regions.

3.1.1 Input files
EasySSR requires only a project name and one or more FASTA

files containing nucleotide sequences or genomes (draft/complete)
for the identification and comparison of STRs (Figure 2A). If the
user intends to identify coding/non-coding regions, a GENBANK
file should also be uploaded for each FASTA file. Only the FASTA

file is mandatory, whereas the GENBANK file is optional. When an
annotation file is not uploaded, the algorithm will automatically
assume that all sequences in the FASTA file are non-coding.
However, with an annotation file, the algorithm will leverage the
provided information to calculate the distribution of motifs in
coding and non-coding regions. In the case of a multi-FASTA
file input, EasySSR will identify SSRs, but the file will be treated
and analyzed as a single draft genome. The algorithm treats each
FASTA file as an independent genome, comparing them separately,
and utilizes the input FASTA files filename as the sequence name in
the EasySSR outputs. This web application uses secure HTTPS
(Hypertext Transfer Protocol Secure) connections to transfer data
between the client and the server, ensuring that the data are not
intercepted during transmission and not used for purposes other
than the intended analysis, with the project data being stored in the
EasySSR database for a month-long period.

3.1.2 Default parameters
The tool runs with intuitive default or custom flexible

parameters and has no limit size for input (Figure 2A). In this
way, users can load as many genomes as they want for their analysis,
depending only on the computational structure available. The user
does not need to input any parameter in the default parameters
mode but, rather, just select this option and execute EasySSR. The
preset default parameters are based on Pinheiro et al. (2022): Repeat
Number: 1–12, 2–6, 3–4, 4–3, 5-3, and 6–3; adapted to allow the
imperfection maximum of 10% with 1 or 2 mismatches:
Imperfection % (p%): 1%–10%, 2%–10%, 3%–10%, 4%–10%, 5%–
10%, 6%–10%; and Mismatch in Pattern: 1–1; 2–1; 3–1; 4–2; 5–2;
6–2. Maximum distance for compound SSR: 0 bp; Standardization
Level: Level 3; Flanking Sequences: 15 bp; Extract all SSR types,
Generate Alignment, and Text Output: “Yes.” In this way, the user
can easily write a project name, input the files to be analyzed, and
press the “Upload and Run” button, as shown in Figure 2A. The

FIGURE 3
Custom parameters interface.
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loading screen will be then exhibited, as demonstrated in Figure 2B,
until the analysis is complete.

3.1.3 Beyond the default parameters
EasySSR Custom mode (Figure 3) enables users to adjust

analysis parameters (A to J) based on preferences, with brief
descriptions conveniently accessible via the information icon i).
This user-friendly feature aids in selecting suitable values,
empowering customization to specific requirements. The only
mandatory fields for user input in Custom mode are from A to
D: (A) Mismatches; (B) Imperfection %. To restrict the analysis to
perfect SSR only, also known as Misa-mode, the user can define all
the settings in parameters (A) and (B) to 0; (C) Minimum Repeat
Number; and (D) Size of Flanking Sequences. The other parameters,
from (E) to (J), can be used as the preset: (E) Generate Alignment
and (F) Generate Text output are fixed in YES since EasySSR
processes those files to generate the summarized outputs, charts,
and tables; (G) Identify Coding Regions is preset as YES but can be
set as NO; (H) Maximum distance for Compound SSR is preset at
0 but can be set from −1 to 100; (I) Standardization level is preset at
3 but can be set as 0, 1, 2, 3, or F; (J) SSR types to extract is preset at

0 to extract all SSR types, but users can set from 1 to 6 to extract only
a type of SSR.

3.1.4 Outputs
After the analysis, the web page is updated automatically, and

the EasySSR reports page is exhibited (Figure 4). The user can see a
blue button to download the report folder in ZIP format, containing
both the files used for input (FASTA, GenBank, and the generated
PTT) and the complete IMEX output files for each genome
individually, in HTML and TEXT formats comprising summary,
align, results, and statistics about compound, perfect, and imperfect.

Back to the EasySSR Reports interface, the user has
07 interactive donut charts with the comparative analysis of total
motifs, perfect, and imperfect proportions, total of perfect SSR per
motif class, total of imperfect SSR per motif class, proportion of
perfect motifs in coding/non-coding regions, proportion of
imperfect motifs in coding/non-coding regions, and the general
comparison of SSR in coding/non-coding regions (Figure 4). It also
plots 02 interactive bar charts containing the top 10 SSR motifs
present in the genomes analyzed (Figure 5). The first stacked bar
chart (Figure 5A) depicts the frequency distribution of the motif

FIGURE 4
Easy SSR output screen part 1, with time of analysis, download report folder, and donut comparison charts. Demonstration of EasySSR Reports from
the batch comparison of perfect and imperfect SSR in 54 complete genomes of Corynebacterium pseudotuberculosis with gene annotation.
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iterations present in all the analyzed genomes. In contrast, the
second chart (Figure 5B) represents the frequency distribution of
the motifs across the genomes. The x-axis displays the frequency of

the motif (Figure 5B) and motif iteration (Figure 5A) in each
genome. At the same time, the stacked bars represent the
absolute frequency of the motif (Figure 5B) and motif iteration

FIGURE 5
Easy SSR output screen part 2, from the large-scale analysis and comparison of perfect and imperfect SSR in 54 complete genomes of
Corynebacterium pseudotuberculosis with gene annotation. (A) Interactive stacked bar chart summarizing the top 10 motifs with iteration present in
most genomes, with their frequency per genome. (B) Interactive stacked bar chart summarizing the top 10 motifs present in most genomes, with their
frequency per genome.
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(Figure 5A) across all genomes. The y-axis ranks the motif
(Figure 5B) and motif iterations (Figure 5A) from highest to
lowest based on their frequency and presence in the genomes.

The top of the y-axis corresponds to the motif (Figure 5B) and
motif iteration (Figure 5B) that is present in the highest number of
genomes and has the highest absolute frequency in the stacked bar.

FIGURE 6
Easy SSR output screen part 3, from the large-scale analysis and comparison of perfect and imperfect SSRs in 54 complete genomes of
Corynebacterium pseudotuberculosis, with gene annotation. (A)Data table, (B) Frequency of Motifs per Genome table, and (C) Statistics table ordered by
sequence name.
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TABLE 1 Web tool’s function comparison made with EasySSR and the most-cited top 10 web tools available in April 2023.

Name EasySSR TRF
web

Repeat
masker
web

Misa-
web

Batch
Primer3

Mreps Websat SSR
locator

STAR Imperfect
SSR finder

PolyMorph
predict*

Citations This article 7077 1860 927 909 459 348 262 137 11 10

Author/Year This article Benson
1999

Smit
1996 apud
Tarailo-
Graovac
2009

Beier
2017

You 2008 Kolpakov
2003

Martins
2009

Da Maia
2008

Delgrange
2004

Stieneke 2007 Das 2019

ANALYSIS

Microsatellites
only

Yes No No Yes Yes No Yes Yes No Yes Yes

Maximum
motif length

1–6 pb 1–2000 pb No limit 1–6 pb 2–6 pb No limit 1–6 pb 2–10 pb No limit 2–10 pb 1–6 pb

Perfect SSRs Yes No Yes Yes Yes Yes Yes Yes No Yes Yes

Imperfect SSRs Yes Yes Yes No No Yes No Yes Yes Yes No

Compound
SSRs

Yes No No Yes No No No No No Yes Yes

Flexible
Parameters

Yes Yes No No No Yes No No No Yes No

Large-scale
analysis

Yes No No No Yes Yes No No No No No

INPUT

Limits Max.
File Size

No 10 Mb 10 Mb 2 Mb No No 150 kb No 1 Mb No No

Analyze web of
many whole
genomes

Yes No No No No No No No No No No

Accepts
multiple
FASTA files

Yes No No No No No No No No No No

Integration
with NCBI

No No No Yes No No No No No No No

Box for cut and
paste small
sequences

No Yes Yes Yes Yes Yes Yes Yes No Yes No

OUTPUT CONTENT

Text file Yes No Yes Yes Yes No No No Yes Yes Yes

HTML file Yes Yes Yes No Yes Yes Yes Yes No Yes No

PTT file Yes No No No No No No No No No No

Coding/Non-
coding

Yes No No No No No No No No No No

Flanking
Sequences

Yes Yes No No Yes No No No No No No

Sample
comparison
sheets

Yes No No No No No No No No No No

Sample
comparison
graphs

Yes No No No No No No No No No Yes

(Continued on following page)

Frontiers in Genetics frontiersin.org10

Alves et al. 10.3389/fgene.2023.1228552

119

https://scholar.google.com/scholar?cites=2912855801419178739&amp;as_sdt=2005&amp;sciodt=0,5&amp;hl=pt-BR
https://scholar.google.com/scholar?cites=523366199556217498&amp;as_sdt=2005&amp;sciodt=0,5&amp;hl=pt-BR
https://scholar.google.com/scholar?cites=16992411000514526523&amp;as_sdt=2005&amp;sciodt=0,5&amp;hl=pt-BR
https://scholar.google.com/scholar?cites=7067527376692946995&amp;as_sdt=2005&amp;sciodt=0,5&amp;hl=pt-BR
https://scholar.google.com/scholar?cites=7808444266556719865&amp;as_sdt=2005&amp;sciodt=0,5&amp;hl=pt-BR
https://scholar.google.com/scholar?cites=16509104044085592718&amp;as_sdt=2005&amp;sciodt=0,5&amp;hl=pt-BR
https://scholar.google.com/scholar?cites=2029704038553916697&amp;as_sdt=2005&amp;sciodt=0,5&amp;hl=pt-BR
https://scholar.google.com/scholar?cites=6796575892001734157&amp;as_sdt=2005&amp;sciodt=0,5&amp;hl=pt-BR
https://scholar.google.com/scholar?cites=14208575714414624570&amp;as_sdt=2005&amp;sciodt=0,5&amp;hl=pt-BR
https://scholar.google.com/scholar?cites=17152688138726382804&amp;as_sdt=2005&amp;sciodt=0,5&amp;hl=pt-BR
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1228552


In addition to the charts, EasySSR analysis includes three
tables with filters and search options (Figure 6). The first table
(Figure 6A) provides data on each motif, including its iterations,
Genome, Left Flanking, Right Flanking, Start, and End positions.
The second table, Frequency of Motifs per Genome (Figure 6B),
has been created to enhance the representation of motif frequency
distribution across the different genomes. It offers a detailed count
of each motif’s occurrence in the genomes and a “total” column
indicating the number of genomes in which each motif is present.
This addition offers a more comprehensive and user-friendly view
of the data. The third table is the statistic table (Figure 6C). It
contains various summarized quantitative data about the perfect
and imperfect SSRs identified in each genome. These statistics
include the genome size, total SSR count, percentage proportion
of SSRs per base pair (calculated using the formula = [(SSR*100)/
genome_size)], total SSR in Coding/Non-coding regions, total
SSR per motif class, and subgroup analyses of perfect/imperfect
and coding/non-coding SSRs.

These data are available for individual download. The plotted
charts are in PNG/JPEG format and the tables in CSV, Excel
(.xlsx), and PDF formats, also with the copy/print options. The
user can save the EasySSR Reports HTML page using their browser
option or write down the project number to consult within a
month.

3.2 Tool validation

3.2.1 Function comparison against web tools
Web-tools for microsatellite mining are important as they simplify

the search and analysis of microsatellite data; they do not require an
investment of time for the user to install and run the software, neither
do they require device storage and dependencies for installation (Sousa
et al., 2018). Plenty of web tools have been released over time, butmany
accession links available in the articles are not functional totally or
partially anymore, as is the case with ATRhunter (Wexler et al., 2004),
Tandem Swan (Boeva et al., 2006), STRING (Parisi et al., 2003),
MICAS and IMEx web (Sreenu, 2003), MsatFinder (Thurston and
Field, 2005), RISA (Kim et al., 2012), and LSAT (Biswas et al., 2018).
The web tools still available have a variety of specific features but are
very limited in many aspects in comparison to command-line tools.
After analyzing the citation rates and checking their availability, we
defined the top 10 most-cited SSR web tools that were still operational
in April 2023: TRF web (Benson, 1999), Repeat Masker web (Tarailo-
Graovac and Chen, 2009), Misa-Web (Yang et al., 2018), Batch
Primer3 (You et al., 2008), Mreps (Kolpakov, 2003), Websat
(Martins et al., 2009), SSR Locator (da Maia et al., 2008), STAR
(Delgrange and Rivals, 2004), Imperfect SSR Finder (Stieneke and
Eujayl, 2007), and PolyMorph Predict (Das et al., 2019), Their features
were compared with EasySSR and summarized in Table 1.

TABLE 1 (Continued) Web tool’s function comparison made with EasySSR and the most-cited top 10 web tools available in April 2023.

Name EasySSR TRF
web

Repeat
masker
web

Misa-
web

Batch
Primer3

Mreps Websat SSR
locator

STAR Imperfect
SSR finder

PolyMorph
predict*

OUTPUT RETURN

Web results Yes Yes Yes No Yes Yes Yes Yes No Yes No

Email results No No Yes Yes No No No No Yes No Yes

Download
results

Yes Yes Yes Yes Yes No Yes No Yes Yes Yes

“Yes” to facilitate easier identification of tools that possess the specific feature.

TABLE 2 Comparison of detected perfect microsatellites and execution time (in seconds) of SSR tools analyzed by Beier 2017 and EasySSR.

Sequence GMATo TRF Mreps SciRoKo ProGeRF MISA-web EasySSR

AC256511.1 (113 kb) 549 580 56 549 560 549 588

AC257258.1 (124 kb) 938 943 85 938 901 938 984

AC259365.1 (118 kb) 641 666 76 641 628 641 666

AC261250.1 (91 kb) 498 457 60 498 456 498 529

AC263353.1 (33 kb) 153 173 – 153 142 153 167

AC264961.1 (126 kb) 654 620 – 654 605 654 728

AC265197.1 (113 kb) 505 496 44 505 503 505 549

AC266636.1 (167 kb) 839 865 79 839 811 839 861

AC267178.1 (121 kb) 517 530 46 516 496 517 540

AC269605.1 (119 kb) 728 676 76 728 700 728 762

Sum 6,022 6,006 522 6,021 5,802 6,022 6,374

Execute time per batch (seconds) 7.5 30.7 1.2 0.6 21 1.8 5
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The main limitations observed were the limited size of the input
files, rare flexibilization of parameters, and the lack of identification
of flanking sequences, downloadable outputs, summarized and post-

processed graphical outputs, and features for online sample
comparison, and that there is no exclusive focus on
Microsatellites motifs (1–6 bp) but also on other Tandem repeats

FIGURE 7
Demonstration of EasySSR Reports from the batch comparison of perfect SSRs in 10 BAC genomes without gene annotation. (A) EasySSR
comparison charts with graphs for imperfect SSRs are blank due to the parameters set formining perfect SSRs only, and coding/non-coding graphs are all
in one color because no annotation file was input (B) EasySSR statistics table reports in webmode, with all coding information as 0 because no annotation
file was input.
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such as Minisatellites (10–30 bp) and Satellites (>100 pb). In some
cases, even if the web service does exist, the full functionality is
restricted to the command-line version, limiting the online service to
basic and small analysis.

TRF (Benson, 1999) and Repeats Masker (Tarailo-Graovac and
Chen, 2009) are by far the most used tools, according to the
citation rate. Alongside Mreps (Kolpakov, 2003) and STAR
(Delgrange and Rivals, 2004), they are tools that are not limited
to microsatellites but aim to identify all tandem repeats, including
other types such as Minisatellites and Satellites. STAR is a tool
focused on locating a given motif in a DNA sequence, instead of
screening all motifs like the other Tandem Repeat tools (Delgrange
and Rivals, 2004). To individuals who need to focus just on
microsatellites, SSR-specific web applications such as EasySSR,
Misa-web (Beier et al., 2017), Websat (Martins et al., 2009), SSR
Locator (da Maia et al., 2008), and Imperfect SSR finder (Stieneke
and Eujayl, 2007) may be more appropriate due to their specific
range of motifs.

Batch Primer3 (You et al., 2008), Websat (Martins et al.,
2009), and Polymorph predict (Das et al., 2019), in contrast to
EasySSR, have integrated the primer design function.
Nevertheless, at the time this work was being produced,
Polymorph predict (Das et al., 2019) was malfunctioning by
running only their native sample data (“Chromosome 2”)
instead of the user input. Websat (Martins et al., 2009)
restricts accepting input files containing more than
150,000 characters. Furthermore, its primary focus lies in
designing primers for a limited number of manually selected
SSRs, making it unsuitable for users needing comprehensive,
automated online analysis on a large scale, a capability provided
by BatchPrimer3 and EasySSR. BatchPrimer3 (You et al., 2008)
functions well for large-scale primer analysis and SSR screening
because the output is a list containing the identified SSRs and
their respective flanking primers with details, statistics, and
outputs in HTML, Text file, and Excel, but it does not analyze
imperfect and compound SSRs, nor does it determine whether
they are in coding or non-coding regions, and it does not perform
online sample comparison like EasySSR.

The command-line version of Misa (Thiel et al., 2003; Beier
et al., 2017) is a versatile tool that provides analysis of perfect and
compound SSRs, being one of the gold standards in SSR mining.
Many tools, such as Polymorph predict (Das et al., 2019),
integrate Misa in their analysis, while others write additional

advanced scripts to process Misa outputs, such as Galasso and
Ponzoni (2015). However, many of the applications are limited to
computational experts who can develop scripts or at least
comprehend how to execute them in the command-line. For
non-experienced users, command-line tools are not as user-
friendly as online services. Misa also has a web-server, but it
does not provide the user all the features and capabilities of the
command line, accepting only a single file with a maximum size
of 2 Mb as input. Unfortunately, many users may find this to be a
significant impediment to their research because a single
prokaryote genome may be larger than 2 Mb. Misa-web
results are two files: raw SSR data and statistics, not shown on
a web interface but instead transmitted over email. On the other
hand, EasySSR is able to process many genomes in a single run,
with no maximum or minimum size limit, and summarize and
compare them. It analyzes not only perfect and compound SSRs
but also imperfect SSRs, offering the user the flexibility to include
or exclude imperfects from their SSR mining. By running IMEX
(Mudunuri and Nagarajaram, 2007) for SSR identification,
EasySSR has the same or greater accuracy than Misa, as
shown through the benchmark tests in Table 2. Furthermore,
EasySSR is a web-based service that offers more functionalities
with the same analysis as command-line tools, identifies coding/
non-coding regions, and performs the post-processing and data
comparison instead of giving the user only the raw data as
output.

Among the webtools, Imperfect SSR finder (Stieneke and Eujayl,
2007) and EasySSR are the only ones to be able to analyze perfect,
imperfect, and compound SSR. However, even though Imperfect
SSR finder has no cap for input size, it does not accept more than one
FASTA file, does not compare samples, has no information in the
output about flanking sequences or the SSR position in coding non-
coding regions, and does not generate user-friendly outputs as
charts.

An overall comparison of EasySSR and the most-cited 10 web
tools for SSR mining shows that EasySSR clearly distinguishes
itself by being a web tool that accepts for input both multi-FASTA
and multiple FASTA files, in the same run, without a maximum
size limit. Among all web tools, EasySSR is the only one to have the
same features as command-line tools, being able to identify
coding/non-coding information if an annotation file is
uploaded, compare large datasets, and return processed outputs
for online or local analyses.

TABLE 3 Comparison of detected microsatellites and execution time (in seconds) of SSR tools analyzed by Mudunuri and Nagarajaram (2007), IMEX 2.1, and
EasySSR.

Sequence TRF Sputnik IMEx 1.0 (2007) Imex 2.1 (2023) EasySSR

Yeast Chr4 (1,531 Kb) 7308 2,831 39,759 40,239 40,239

Plasmodium Chr4 (1,204 Kb) 25,601 10,810 54,232 55,693 55,693

MTB H37Rv (4,411 Kb) 16,439 9,412 111,113 111,583 111,583

Human Atrophin 1 (4,43 Kb) 50 19 146 146 146

E.coli K12 (4,639 Kb) 12,043 5,387 105,392 106,243 106,243

Sum 61,441 28,459 310,642 313,904 313,904

Execute time per batch (seconds) 108.5 402.5 30.8 51.7 72.0
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3.2.2 Benchmark testing against web servers and
command-line tools
3.2.2.1 Intraspecific analysis for perfect SSR in prokaryotes,
using only FASTA files as input

The benchmark results of this analysis are summarized in
Table 2. Beier et al. (2017) did not include IMEX results in their
comparison with Misa-Web because they reportedly could not
execute the tool command-line mode due to operating system
incompatibility. However, in the current analysis with EasySSR, a
web tool that is IMEX based, the number of SSRs identified was
greater than Misa-web, GMATo, Mreps, SciRoKo, ProGeRF, and
TRF, and the analysis was conducted within the average time

taken by the other programs, demonstrating that our algorithm
has equal or higher sensibility with the same parameters, giving
the user the outputs already processed in charts and tables in 5 s,
as demonstrated through Figure 7, with interactive and detailed
results.

Besides the raw amount of perfect SSR found, the EasySSR
statistics table (Figure 7B) also gives the user categorized
information about how many of the microsatellites found were
Mono, Di, Tri, Tetra, Penta, and Hexanucleotide motifs. This
information is also summarized visually into the graphs
(Figure 7A). In Figure 7A, it is possible to notice that the graphs
for imperfect SSRs are blank, due to the parameters set that searched

FIGURE 8
Demonstration of EasySSR Reports from the batch comparison of perfect and imperfect SSR in five sequences with gene annotation: human
atrophin1 gene, Plasmodium falciparum chromosome IV, yeast chromosome IV, Mycobacterium tuberculosis H37Rv, and Escherichia coli K12. (A)
Comparison charts and (B) statistics table reports in print mode.
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for perfect SSR only. Moreover, in Figure 7A, the charts to compare
the position of SSRs in coding/non-coding appear all in the same
color, indicating that all SSRs were found in non-coding regions.

This happens when no annotation file is uploaded by the user, in a
way that the algorithm is set to consider everything in the FASTA file
as non-coding by default.

FIGURE 9
Easy SSR output screen from the large-scale analysis and comparison of perfect SSR in 54 complete genomes of Corynebacterium
pseudotuberculosis with gene annotation. (A) Comparison charts and (B) statistics table reports ordered by total SSR.
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TABLE 4 Perfect microsatellite identified for 54 complete genomes of Corynebacterium pseudotuberculosis.

Sequence Accession Biovar Size
(Mb)

Total
PerfectSSR

Total
coding

Total non-
coding

Mono Di Tri Tetra Penta Hexa

CP_04MAT CP036469.1 Ovis 2.33801 53 49 4 1 0 24 22 3 3

CP_1002B CP012837.1 Ovis 2.33831 54 49 5 2 0 24 22 3 3

CP_106A CP003082.1 Equi 2.33835 54 48 6 0 0 24 21 6 3

CP_226 CP010889.1 Ovis 2.33783 53 50 3 0 0 25 21 3 4

CP_258 CP003540.3 Equi 2.33749 57 49 8 0 0 25 23 6 3

CP_262 CP012022.2 Equi 2.33757 48 44 4 0 0 22 23 1 2

CP_267 CP003407.1 Ovis 2.33790 54 50 4 1 0 25 21 3 4

CP_29156 CP010795.2 Ovis 2.33775 53 50 3 0 0 25 21 3 4

CP_31 CP003421.4 Equi 2.33727 53 47 6 0 0 24 23 4 2

CP_316 CP003077.2 Equi 2.33750 52 48 4 0 0 24 23 2 3

CP_32 CP015183.1 Equi 2.33730 55 47 8 0 0 24 23 6 2

CP_33 CP015184.1 Equi 2.33729 55 47 8 0 0 24 23 6 2

CP_34 CP015192.1 Equi 2.33733 55 47 8 0 0 24 23 6 2

CP_35 CP015185.1 Equi 2.33732 55 47 8 0 0 24 23 6 2

CP_36 CP015186.1 Equi 2.33734 54 46 8 0 0 23 23 6 2

CP_38 CP015187.1 Equi 2.33731 57 47 10 0 2 24 23 6 2

CP_38MAT CP036457.1 Ovis 2.33771 53 48 5 2 0 24 21 3 3

CP_39 CP015188.1 Equi 2.33728 56 47 9 0 1 24 23 6 2

CP_43 CP015189.1 Equi 2.33756 56 46 10 0 2 23 23 6 2

CP_46 CP015190.1 Equi 2.33755 56 46 10 0 2 23 23 6 2

CP_48 CP015191.1 Equi 2.33735 55 46 9 0 1 23 23 6 2

CP_Cap1W CP034411.1 Ovis 2.33817 53 49 4 1 0 24 22 3 3

CP_CAP3W CP026500.1 Ovis 2.33818 52 49 3 0 0 24 22 3 3

CP_CAPJ4 CP026499.1 Ovis 2.33808 53 49 4 1 0 24 22 3 3

CP_CAPMI03 CP035717.1 Ovis 2.33812 51 48 3 0 0 23 22 3 3

CP_CIP CP003061.3 Equi 2.33748 57 49 8 0 0 25 23 6 3

CP_Cp162 CP003652.3 Equi 2.33736 50 47 3 0 0 22 23 2 3

CP_E19 CP012136.1 Equi 2.33753 52 49 3 1 0 24 22 2 3

CP_E55 CP014341.1 Ovis 2.33829 55 51 4 2 0 25 23 2 3

CP_I19 CP002251.3 Ovis 2.33821 54 51 3 0 0 25 22 3 4

CP_I37 CP017384.1 Equi 2.33742 51 47 4 0 0 23 22 3 3

CP_MB11 CP013260.2 Equi 2.33741 52 48 4 0 0 24 23 2 3

CP_MB14 CP013261.1 Equi 2.33740 53 49 4 0 0 25 23 2 3

CP_MB20 CP016829.1 Equi 2.33739 54 50 4 1 0 24 24 2 3

CP_MB30 CP013262.2 Equi 2.33752 52 48 4 0 0 24 23 2 3

CP_MB66 CP013263.1 Equi 2.33737 53 49 4 0 0 24 24 2 3

CP_MEX1 CP017711.1 Ovis 2.33827 51 47 4 0 0 24 21 3 3

CP_MEX2 CP046644.1 Ovis 2.33809 51 47 4 0 0 24 21 3 3

(Continued on following page)
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TABLE 4 (Continued) Perfect microsatellite identified for 54 complete genomes of Corynebacterium pseudotuberculosis.

Sequence Accession Biovar Size
(Mb)

Total
PerfectSSR

Total
coding

Total non-
coding

Mono Di Tri Tetra Penta Hexa

CP_MEX25 CP013697.1 Ovis 2.33813 55 50 5 1 0 26 21 3 4

CP_MEX29 CP016826.1 Ovis 2.33780 55 51 4 1 0 25 22 3 4

CP_MEX30 CP017291.1 Equi 2.33751 57 50 7 3 1 24 24 2 3

CP_MEX31 CP017292.1 Equi 2.33754 54 48 6 0 2 24 23 2 3

CP_OVID04 CP035640.1 Ovis 2.33810 51 48 3 0 0 24 21 3 3

CP_OVIOS02 CP035679.1 Ovis 2.33793 53 49 4 1 0 24 22 3 3

CP_OVIZ01 CP035678.1 Ovis 2.33781 52 48 4 1 0 24 21 3 3

CP_PA01 CP013327.1 Ovis 2.33777 53 49 4 1 0 25 21 3 3

CP_PA02 CP015309.1 Ovis 2.33834 51 48 3 0 0 23 22 3 3

CP_PA04 CP019587.1 Ovis 2.33773 56 48 8 5 0 24 21 3 3

CP_PA07 CP024457.1 Ovis 2.33820 51 48 3 0 0 24 21 3 3

CP_PAT10 CP002924.1 Ovis 2.33830 56 51 5 2 0 25 22 3 4

CP_PAT14 CP047603.1 Ovis 2.33825 54 51 3 0 0 25 22 3 4

CP_PAT16 CP046641.1 Ovis 2.33815 54 51 3 0 0 25 22 3 4

CP_PO22241 CP013698.1 Ovis 2.33816 53 49 4 1 0 25 21 3 3

CP_PO2695 CP012695.1 Ovis 2.33826 54 49 5 2 0 24 22 3 3

Total 54 Ovis = 28;
Equi = 26

- 2,891 2,613 278 30 11 1,301 1,201 189 159

FIGURE 10
Demonstration of EasySSR Reports from the batch comparison of perfect and imperfect SSR in 54 sequences of Corynebacterium
pseudotuberculosiswith annotation. Statistics table reports in Excel mode optimized for visualization of the complete output with all columns and rows.
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3.2.2.2 Interspecific analysis for imperfect SSR in
prokaryotes and eukaryotes, using both FASTA and
GenBank files as input

The benchmark test was carried out by running the “Dataset
2—IMEx” through the software tools EasySSR, TRF (Benson, 1999),
Sputnik (Morgante et al., 2002), IMEx 1.0, and IMEx 2.1 (Mudunuri
and Nagarajaram, 2007; Mudunuri et al., 2010a). We ran both
versions of the IMEx program to compare the findings to version
1.0 tested in the article. Table 3 summarizes the findings, which were
consistent with Mudunuri’s original 2007 article.

IMEX 1.0 had already exceeded TRF and Sputnik in terms of
sensibility and time since the 2007 article (Mudunuri and Nagarajaram,
2007). Many features were added to IMEX 2.1, which increased the
analysis time slightly, although it is still less than the other tools
evaluated. EasySSR is an online application that uses IMEx 2.1 for
SSR mining; therefore, it has the same sensibility as this software and
performs additional data analysis and output processing with friendly
outputs on the web. Due to Internet speed and computational
availability, EasySSR online analysis may be slightly slower than the
standalone command-line IMEx 2.1; however, it still easily surpassed
command-line TRF and Sputnik in terms of sensitivity and time
benchmarks (Table 3). EasySSR compensates for any additional
processing time spent by the automated results with post-processed
information, saving the user time that would otherwise be spent during
data tabulation and analysis.

As this analysis was conducted including imperfect and perfect
SSRs and providing the GenBank annotation file as well, EasySSR
outputs provided all the information in the graphics and tables
regarding SSRs and their position in coding and non-coding regions,
as demonstrated in Figure 8. In this way, besides the raw IMEx
outputs, which are also available for download in the EasySSR
outputs page for further analysis, the user can easily know the
comparative proportion through the interactive charts for the whole
sample of SSRs by coding/non-coding regions or motif classes, as
perfect SSR, imperfect SSR, and in total (Figure 8A). The user can
also run EasySSR with a single file per time in order to obtain
individual charts for each genome.

Figure 8B depicts the “print” version of the statistics table, which
is also available through a button on the EasySSR reports page
alongside the “excel,” “csv,” “pdf,” and “copy” alternative buttons
that can be seen in Figure 7B. In this mode, the viewer can get a
panoramic view, which includes extra columns that were previously
hidden behind the scroll bar in the visualization. Because only
perfect SSR were studied in the previous analysis, there was no
need to split the total SSR into perfect and imperfect. However,
because imperfection is now considered, more columns must be
examined. The statistics table contains comprehensive information
encompassing the total number of SSRs, along with subtotals for
perfect and imperfect SSRs, coding and non-coding classifications,
and the proportions of the motifs (Figure 8B).

3.2.3 Large-scale interspecific analysis for
imperfect SSR, using both FASTA and GenBank files
as input with default parameters

EasySSR was run two times for the dataset containing
54 complete genomes of C. pseudotuberculosis (CP): i) With
custom parameters, mining perfect SSR only, and ii) With default
parameters, mining both perfect and imperfect SSR.

With EasySSR, which also runs IMEx as the microsatellite
mining tool, it was possible to locate all SSR in coding and non-
coding regions and to visualize the proportion through charts
(Figures 4, 5) or generate new charts from the data available in
the EasySSR statistic, motif frequency, and summary tables
(Figure 6). The analysis for perfect SSR only was completed
within 5 min and 38 s (Figure 9), while the analysis for perfect
and imperfect took 8 min and 41 s (Figure 4). The complete output
datasheets for perfect SSR and perfect/imperfect analysis of the
54 complete genomes of C. pseudotuberculosis are available in
Supplementary Table S1.

The EasySSR quantitative results for perfect SSR were in
concordance with those stated by Pinheiro et al. (2022), as
demonstrated in Table 4, and the current analysis included
further comparison of the motif classes proportions. In total,
2,891 perfect SSR, 2,613 in coding regions, and 278 in non-
coding regions were found, with 30 mono, 11 di, 1,301 tri,
1,201 tetra, 189 penta, and 159 hexanucleotides as proportions
demonstrated in Figure 9A and with data and accession numbers
available in Table 4 ordered by sequence name. The genomes had an
average incidence of 53,5 perfect SSRs. Most genomes have less than
57 SSRs, ranging from 48 (CP_262, equi biovar) to 57. CP_258, CP_
38, CP_CIP and CP_MEX30 (equi biovar), were the only ones to
have 57 perfect SSR, however the distribution of those
microsatellites is not the same in all four sequences. As shown in
Figure 9B, in CP_258 and CP_CIP, their distribution pattern
(Simple Sequence Repeats Signature) is 49 SSR in coding to
8 SSR in non-coding regions, with 0 mono, 0 di, 25 tri, 23 tetra,
6 penta, and 3 hexanucleotides in both strains. Meanwhile, the
distribution for CP_38 (2.33731 mb) is 47 coding/10 non-coding,
with 0 mono, 2 di, 24 tri, 23 tetra, 6 penta, and 2 hexanucleotides,
while the distribution for CP_MEX30 (2.33751 mb) was 50 coding/
7 non-coding, 3 mono, 1 di, 24 tri, 24 tetra, 6 penta, and
3 hexanucleotides.

In the analysis where imperfect microsatellites were allowed, the
Simple Sequence Repeats Signature changed. The total of the SSRs
identified was 68,942 SSR, 60,390 in coding regions, and 8,552 in
non-coding regions, with 50 mono, 4,268 di, 37,411 tri, 23,025 tetra,
2,524 penta, and 1,664 hexanucleotides, with a proportion of
2,146 perfect SSRs to 66,796 imperfect SSRs (Figure 4). The
genomes had an average incidence of 40 perfect SSRs and
1,237 imperfect SSRs per genome, as shown in the data
summarized in Figures 6, 10 through different visualization
modes, with Figure 6B representing the output as shown in the
EasySSR output page and Figure 10 showing the complete table
ordered by sequence name for better comparison with Table 4
(Perfect SSRs output). The perfect SSRs found ranges from 33
(CP_262, equi biovar) to 44 (CP_PAT10, ovis biovar). CP_258,
CP_CIP, CP_38, and CP_MEX30 had, respectively 40, 40, 38, and
43 perfect SSRs. The distribution of perfect SSRs was the same in
CP_258 and CP_CIP withMono: 0; Di: 0; Tri: 18; Tetra: 17; Penta: 2;
and Hexa: 3. It is possible to notice that when mismatches were
allowed in a tract, EasySSR through the IMEx algorithm could
extend tracts that were previously interrupted by an imperfection
and considered as perfect because it had passed the repetition cutoff
when they were actually part of longer imperfect tracts; thus, the
average amount of perfect SSRs per genome decreased from 53.5 to
40 in the analysis that included imperfections.
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Laskar et al. (2021), (2022), Jilani and Ali (2022) used similar
information about incidence, prevalence, composition, and localization
in their studies of Simple Sequence Repeats Signature in viruses using
IMEx. Those analyses might seem basic, but they require a lot of data
tabulation before the tables are ready for analysis, a feature that is
already automated by EasySSR. This is a small demonstration of the
versatility of EasySSR output, which made this analysis possible in
minutes due to the processed information given as a result, allowing the
researcher to invest their time in further analysis that otherwise would
be too time demanding.

EasySSR bar charts show the top 10 most-frequent motifs
present in all the strains (Figure 5). They are interactive graphs
that can be used to remove specific strains from visualization or
verify how many times that specific motif was found in different
loci in that genome. In this way, it is possible to verify that the
GCT, TGC, and GCA were present in all the 54 genomes used by
Pinheiro et al. (2022). The amount of GCT motifs present in a
genome varied from 26 to 37 different loci, for example,
(Figure 5A). It might present itself as a useful shortcut tool
to marker development. Pinheiro et al. (2022) identified CAC
and GGAA as putative markers based on their differential
localization in the biovars. EasySSR did not reach the same
results for those markers as it has a different approach, where
the bar charts demonstrate quantitatively how many times the
motif appears in each genome and ranks them based on how
many genomes of the dataset are present, aiming to find motifs
that are common to all sequences. However, EasySSR can also be
used for analysis, such as the one conducted by Pinheiro et al.
(2022), as their EasySSR summary table contains information
about the motif, iteration, and position (start and end), and it is
easily downloadable in friendly formats such as “xlsx” and “.csv”
that can be imported for further analysis using others
statistic tools present in the R programming language, for
example,. In this way, EasySSR outputs are versatile and can
be used as a guide for visual analysis through the interactive
graphs or processed by other tools with any approach the user
wants.

4 Conclusion

Despite the versatility of the existing web tools for
microsatellite analysis, EasySSR presents an innovative web
technology that implements the popular IMEx 2.1 algorithm
under novel settings, with a friendly interface suitable for
experts and non-experienced scientists to realize online
SSR analysis with the same accuracy and features as
command-line tools. Easy SSR automatizes the SSR mining in
batch analysis, for small or large datasets, from receiving
many FASTA input files, converting, generating raw SSR
outputs for each file, and processing those outputs in a
comparative approach, with additional comprehensible
results summarized into interactive charts and tables, giving

the user the results ready for further analysis in minutes
and reducing a significant amount of time worth of data
tabulation.
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Antibiotic resistance is of crucial interest to both human and animal medicine. It
has been recognized that increased environmental monitoring of antibiotic
resistance is needed. Metagenomic DNA sequencing is becoming an attractive
method to profile antibiotic resistance genes (ARGs), including a special focus on
pathogens. A number of computational pipelines are available and under
development to support environmental ARG monitoring; the pipeline we
present here is promising for general adoption for the purpose of harmonized
global monitoring. Specifically, ARGem is a user-friendly pipeline that provides
full-service analysis, from the initial DNA short reads to the final visualization of
results. The capture of extensive metadata is also facilitated to support
comparability across projects and broader monitoring goals. The ARGem
pipeline offers efficient analysis of a modest number of samples along with
affordable computational components, though the throughput could be
increased through cloud resources, based on the user’s configuration. The
pipeline components were carefully assessed and selected to satisfy tradeoffs,
balancing efficiency and flexibility. It was essential to provide a step to perform
short read assembly in a reasonable time frame to ensure accurate annotation of
identified ARGs. Comprehensive ARG and mobile genetic element databases are
included in ARGem for annotation support. ARGem further includes an
expandable set of analysis tools that include statistical and network analysis
and supports various useful visualization techniques, including Cytoscape
visualization of co-occurrence and correlation networks. The performance and
flexibility of the ARGem pipeline is demonstrated with analysis of aquatic
metagenomes. The pipeline is freely available at https://github.com/xlxlxlx/
ARGem.

KEYWORDS

antibiotic resistance genes, workflow, metagenomics, bioinformatics, genome
annotation

OPEN ACCESS

EDITED BY

Lei Chen,
Shanghai Maritime University, China

REVIEWED BY

Juan P. Cardenas,
Major university, Chile
Abasiofiok Ibekwe,
United States Department of Agriculture
(USDA), United States

*CORRESPONDENCE

Xiao Liang,
xliangvt@vt.edu

RECEIVED 08 May 2023
ACCEPTED 01 September 2023
PUBLISHED 15 September 2023

CITATION

Liang X, Zhang J, Kim Y, Ho J, Liu K,
Keenum I, Gupta S, Davis B, Hepp SL,
Zhang L, Xia K, Knowlton KF, Liao J,
Vikesland PJ, Pruden A and Heath LS
(2023), ARGem: a new metagenomics
pipeline for antibiotic resistance genes:
metadata, analysis, and visualization.
Front. Genet. 14:1219297.
doi: 10.3389/fgene.2023.1219297

COPYRIGHT

© 2023 Liang, Zhang, Kim, Ho, Liu,
Keenum, Gupta, Davis, Hepp, Zhang, Xia,
Knowlton, Liao, Vikesland, Pruden and
Heath. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Technology and Code
PUBLISHED 15 September 2023
DOI 10.3389/fgene.2023.1219297

130

https://www.frontiersin.org/articles/10.3389/fgene.2023.1219297/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1219297/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1219297/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1219297/full
https://github.com/xlxlxlx/ARGem
https://github.com/xlxlxlx/ARGem
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1219297&domain=pdf&date_stamp=2023-09-15
mailto:xliangvt@vt.edu
mailto:xliangvt@vt.edu
https://doi.org/10.3389/fgene.2023.1219297
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1219297


1 Introduction

Antibiotic resistance poses a significant risk to human health.
Antibiotic resistance genes (ARGs) encode resistance to antibiotics
and can be carried in the bacterial chromosome or on mobile genetic
elements (MGEs). ARGs are of greatest concern to human health,
especially when they are found in known or emerging pathogens
(Vikesland et al., 2019). The need for monitoring of ARGs in the
environment, including water resources and agricultural production
systems, is increasingly being recognized. Such environments play
an important ecological role in propagation of ARGs. The ARGs can
emanate from anthropogenic sources or from natural environments
themselves, serving as facilitators of horizontal gene transfer (HGT)
(Maiden, 1998; Barlow, 2009; Aminov, 2011; Lerminiaux and
Cameron, 2019). HGT can contribute to expansion of the general
reservoir of ARGs carried across environmental microbiomes,
influencing human and animal pathogens, inducing new
mechanisms of antimicrobial resistance. Metagenomics, the study
of DNA extracted across the microbial community representing the
environment of interest, has arisen as a promising approach to
profiling ARGs and other microbial entities of concern, such as
human pathogens (Koonin, 2018; Chiu and Miller, 2019).
Environmental metagenomics has shown promise for tracking
shifts in ARG and pathogen markers in the environment with
time and in response to various disturbances and inputs
(Berglund et al., 2019; de Abreu et al., 2021). Thus,
metagenomics is being proposed as an efficient means of
comprehensive surveillance of ARGs and pathogens across the
One Health spectrum (Shen et al., 2021).

Contemporary environmental metagenomic data sets typically
consist of a number of short read sequence files, typically generated
by Illumina sequencing producing files ranging in size up to 100 Gbp
(Gigabase pairs) (Davis et al., 2023), each representing either a
Processing such datasets requires significant computational analysis.
This typically needs to be organized in a bioinformatics pipeline that
consists of selected software tools, which are mutually connected
custom scripts. These scripts are usually written in programming
languages such as Python 3 (Siegwald et al., 2017; Breitwieser et al.,
2019), and composing such scripts to construct a bioinformatics
pipeline can be challenging for non-expert users.

Manymetagenomic analysis pipelines exist with much variation.
However, the goal of a typical pipeline is to identify microbial taxa
and genes of interest in a subset of samples, and to estimate their
abundances. Further analysis of the annotation is often left to
specific tools selected by the researcher. A pipeline may assemble
the reads into contigs to allow identification of complete or nearly
complete genes and to improve resolution for annotation. A classic
metagenomics pipeline is the MG-RAST server, which is designed to
process numerous samples on high-performance computing clusters
(Meyer et al., 2008). A number of more recent pipelines (which we
briefly review here) are available for a researcher to install and
execute on their own computational resources (Uritskiy et al., 2018;
Clarke et al., 2019; Dong and Strous, 2019; Tamames and Puente-
Sanchez, 2019; Eng et al., 2020; Grieb et al., 2020). MetaWRAP
employs binning and reassembly steps to obtain improved
annotation (Uritskiy et al., 2018). SqueezeMeta concentrates on
simultaneously assembling multiple metagenome data sets along
with binning to enhance the identification of low-abundance taxa

and genes (Tamames and Puente-Sanchez, 2019). MetaErg provides
graphical summaries of the annotated contigs to support visual
confirmation of contig quality (Dong and Strous, 2019). Sunbeam
emphasizes a flexible pipeline framework that, in typical use, does
not require the researcher to provide extensive run-time parameters
(Clarke et al., 2019). Grieb et al. (Grieb et al., 2020) developed a
pipeline explicitly tailored for research on marine plankton. Finally,
MetaLAFFA is a flexible metagenomic analysis pipeline targeted to
distributed computing environments (Eng et al., 2020).

A common limitation among the pipelines is a lack of integrated
tools for additional analysis and visualization beyond basic
annotation. Moreover, these pipelines do not provide flexible
input, which results in a disincentive to data sharing and greatly
detracts from the overall utility of the data. Metadata, which is the
data describing properties (e.g., DNA extraction method and sample
environment) of the sample, is nowadays commonly provided along
with the sample sequences. Lack of extensive provision and sharing
of metadata diminishes the ability to perform analyses that harness
the power of metadata to support predictive modeling of
environmental metagenomes. This deficiency in metadata sharing
also detracts from encouraging reporting of comparable data, which
is a critical need for the broader goal of large-scale environmental
ARG monitoring. While researchers might recognize the
importance of the extensive metadata that they collect for each
sample, the actual types of metadata captured can vary greatly across
research projects (Goncalves and Musen, 2019; Martinez-Romero
et al., 2019). As one effort to remedy the situation, the National
Center for Biotechnology Information (NCBI) (Sayers et al., 2019)
collects a set of required metadata for each sample uploaded to
resources, such as BioProject and BioSample (Federhen et al., 2014;
Martinez-Romero et al., 2019), while still allowing for flexible
column addition and following the minimum information about
any (x) sequence (MIxS) guidelines (Yilmaz et al., 2011). However,
comparing data across different projects remains a challenging task
when using NCBI metadata.

Another notable framework, not limited to metagenomics
analysis, is Galaxy (Jalili et al., 2020). Galaxy is a platform
developed for flexible workflows that can be customized for
bioinformatics tasks, with an open-source framework available
for customization. Several pipelines have been developed using
the Galaxy framework for various metagenomics tasks (Pilalis
et al., 2012; Yang et al., 2016; Batut et al., 2018). Among them,
only a few have aimed to develop an integrated pipeline that
performs tasks beyond annotation. Additionally, most of these
pipelines were not specifically designed for ARG detection tasks
or for addressing the issue of customizing metadata in different
environments.

Towards addressing the aforementioned issues, we present
ARGem pipeline. This locally deployable pipeline supports ARG
annotation as well as the capture of a flexible set of metadata, which
will encourage comprehensive data sharing and be ultimately
accessible to support more sophisticated future analysis after
annotation is complete. To achieve this purpose, users are
provided with a simple spreadsheet with required and
recommended metadata fields and standardized units. Users
complete the spreadsheet and submit it as input to create an
ARGem project, in which the data are stored in a relational
database that can be further cross-analyzed.
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Key analytical tools and capabilities that are commonly applied
for metagenomic-based ARG monitoring have been built into the
ARGem pipeline, extending data analysis beyond the annotation of
taxa and ARGs to include statistical analysis and ARG co-occurrence
and correlation networks. The resulting outputs can culminate in a
wide range of custom visualizations to support comparisons across
samples and projects, as well as tables summarizing the results in
tabulated format to support additional analysis. As detailed in
Section Assembly and Annotation, we have extensively examined
the bioinformatics components of the ARGem pipeline. In
particular, we prioritized comprehensive databases for ARGs and
MGEs annotation. One comparable pipeline is our own MetaStorm
server (Arango-Argoty et al., 2016), which is only available as a Web
service to execute on the computational resources of an individual
research lab, which allows extendability of ARGem with new
capabilities. PathoFact (de Nies et al., 2021) is a resource
specialized in the prediction of ARGs and pathogens and make
uses of our DeepARG resource (Arango-Argoty et al., 2018).
However, PathoFact does not have the flexibility to incorporate
or update reference databases other than the provided options,
which were released prior to 2021. Also, PathoFact does not
handle the assembly step and requires pre-assembled contigs as
the input, prioritizing post-assembly analysis rather than a full
sequence-to-analysis pipeline. PathoFact depends on Miniconda
to guaranteee compatibility with specific versions of Snakemake
and Python, making it convenient for users to install and use at the
time of release, but may later lead to obsolescence compared to
software with such dependency.

Overall, ARGem is a locally deployable pipeline which addresses
many of the needs identified above through a user-friendly, full-
service pipeline for ARG analysis of environmental metagenomic
data with enhanced metadata capture and normalization to facilitate
comparison within and across studies. In the Method section, we
describe in detail the tools and methods employed in the ARGem
pipeline. In Section Results, we describe the overall workflow of the
pipeline and the general mechanism for each step, as well as
demonstrate the value of our ARGem pipeline with a number of
example runs utilizing metagenomic samples relevant to aquatic
environments. Sections Discussion and Conclusion emphasize the
strengths of our current implementation and identify potential paths
for future extensions.

2 Methods

The ARGem pipeline integrates a number of tools implemented
as individual modules that can be used within the pipeline or
independently. Detailed descriptions are included for task
scheduling, the Luigi workflow builder (Luigi Development
Team, 2020), data retrieval, reference databases for annotations,
assembly and annotation, analysis, visualization and the relational
database.

2.1 Task scheduling

The ARGem pipeline consists of a sequence of tasks and
employs a task scheduling mechanism that handles the

distributed resources on multiple servers. This scheduling
strategy is adequate for the computational resources of a typical
lab. By maintaining a straightforward and concise task scheduling
system, we intend to keep the system at lab scale and make it
convenient for most researchers to use.

Specifically, we use the batch command in Linux. The batch
command implements internal queues to manage and execute tasks
in a manner that adapts execution demand to system capabilities,
maintaining a ceiling on system load. If the job exits with an error,
batch is used to catch the exception, and ARGem sends an email
notification to the user email address stored in the database
associated with the task. If the job completes successfully, the
system also sends out an email notifying the user of the
completion of the task.

2.2 Luigi workflow builder

Some of the tasks employed by ARGem are particularly time-
demanding, such as sequence assembly and annotation. Such tasks
can be especially demanding for analysis of environmental
metagenomes, which tend to be particularly complex. In such
cases, it is useful to incorporate a built-in workflow to handle the
execution of tasks and deal with computational issues typically
associated with long-running processes, such as error handling
and status visualization. For ARGem, the Luigi package for
Python (Luigi Development Team, 2020) is used by the back end
to define tasks and chain them together to construct a workflow for
the pipeline, as well as managing the scheduling of tasks, handling
errors, and visualizing the status of the pipeline.

Luigi manages multiple tasks in the workflow by assigning them
to different classes and drivers. Each class is designed to execute a
particular task, such as short reads annotation or co-occurrence
network analysis. Once the Luigi task classes are defined, they are
aligned with each other in a workflow by indicating the
dependencies between pairs of modules. Tasks without direct or
indirect dependency on each other can be run in parallel, depending
on how much resources the scheduler allocate for them. Figure 1A
shows a generic Luigi workflow. In ARGem, all the Luigi modules
are aligned linearly with a potential change on paralleling short read
annotation with contig assembly and annotation, if needed.

2.3 Data retrieval from public websites

ARGem provides automatic raw sequence data retrieval from
the public NCBI database (Sayers et al., 2022) through SRA toolkit
(SRA Toolkit Development Team, 2022). The ARGem input
spreadsheet contains an SRA number field in which the user can
indicate the SRA or SRR number of the sample. The sample numbers
then allow the SRA Toolkit to retrieve raw sequence data samples in
*.fasta or *.fastq format. For the uploaded SRA numbers via
the input spreadsheet, ARGem checks whether the SRA project
numbers are accessible a suitable format through a pre-download.
Invalid SRA numbers or those associated with incorrect formats are
logged to a designated log file. Upon completion or interruption of
the pipeline, these SRA numbers are then reported to the user in an
email notification.
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FIGURE 1
(A) A sample Luigi workflow. The workflow can consist of both linear and parallel tasks. A task that depends on a previous one will not be executed
until all the dependencies have been completed. Tasks without direct or indirect dependency on each other can be executed in parallel if resource
permits. (B) ARGem workflow. The ARGem pipeline automatically processes the raw sequences after a list of SRA accession numbers are submitted
through a metadata spreadsheet. After preprocessing, the raw sequences go through two different branches: 1) short reads matching to generate
normalized ARG counts, and 2) contig annotations against ARG andMGE reference databases. The results generated can then be passed to the integrated
analysis and visualization tools. The default normalization methods built in the pipeline are 16S rRNA, TPM, and FPKM. 1) Blue rectangles indicate data and
2) red rounded rectangles indicate processing steps.

TABLE 1 An evaluation of assemblers on our server. In total one reclaimed waste water sample (water sample 1), one final treated biosolids sample (water sample
2), and two raw sewage and treated wastewater samples (water sample 3 and 4), were used to evaluate the performance of assemblers on our server. Note that the
samples used here are different from those presented in Section Results. The size column shows the sizes of sample sequence files in gigabytes. Length indicates
the sequence length of each sample sequence data. Time shows the total hours required to assemble the metagenomic data generated from a given sample.
Percent of CPU, maximum resident set size and major page faults shows metrices reported by time command during the process.

Sample Size (GB) Length Assembler Time (hr) Percent of CPU (%) Maximum resident set size (KB) Major page faults

Water1 5.91 108 MetaSPAdes 4 : 05: 43 1,147 46328252 31

Water1 5.91 108 IDBA-UD 2 : 47: 37 3130 32219196 1

Water1 5.91 108 MegaHIT 0 : 33: 47 3118 5369920 4

Water2 1.52 92 IDBA-UD 0 : 21: 20 2999 8617580 1

Water2 1.52 92 MegaHIT 0 : 05: 37 3109 1399316 1

Water2 1.52 92 MetaSPAdes 0 : 37: 23 1090 11654044 1

Water3 4.57 202 MegaHIT 0 : 43: 20 3402 4125444 0

Water3 4.57 202 MetaSPAdes 2 : 25: 05 1114 37923596 1

Water4 5.91 202 MegaHIT 0 : 54: 59 3,398 5014884 3

Water4 5.91 202 MetaSPAdes 3 : 13: 46 1,116 42655912 25
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Once the accession and format verification is complete, ARGem
begins the SRA sample retrieval process where the raw sequence files
are downloaded individually for each SRA number. The retrieval of
each sample is initialized with a query to the accession-size of the
SRA project numbers through the SRA Toolkit to ensure that the
size of a single sample is lower than the hard limit, which is set by
default to be 70 gigabytes. In the case where the SRA sample is above
the size limit, an error can be raised and logged accordingly by
ARGem pipeline. Once the size verification is complete, the SRA
sample is prefetched via the SRA Toolkit in *.sra format and then
converted into *.fastq format. For paired end samples, the file
format conversion process is split to convert each SRA sample into a
paired files for assembly.

After all the raw sequence files are retrieved from NCBI website
(Sayers et al., 2022), ARGem will initiate a post-download validation
on the retrieved raw *.fastq sequence data files to validate their
data integrity. Upon completion, annotation and assembly tasks for
the valid samples will be scheduled according to the Luigi workflow.

2.4 ARG and MGE databases

The pipeline design of ARGem offers easy and flexible updates
and interchanges for databases. Once a new ARG or MGE database
is converted into a fasta file and a proper format for the annotation
tool, ARGem redirects assembly and annotation tasks into the new
databases. Default ARG and MGE databases were selected based on
how widely they are used for metagenomic analysis, with a
preference for databases that are frequently updated.

To annotate the raw sequences and assembly results into ARGs,
ARGem integrates the current Comprehensive Antibiotic Resistance
Database (CARD) (Alcock et al., 2020) as the default reference
database, while the users have the option to use other databases at
their choice.

ARGem utilizes three databases for MGEs: Mobile-OG (Brown
et al., 2022), NanoARG (Arango-Argoty et al., 2019), and Parnanen
et al. (Parnanen et al., 2018). The Mobile-OG database is a recently

published database aiming to mitigate the high positive rates
originated from accessory genes that are temporarily associated
with the MGEs. The goal of the database is to provide high-
quality annotations and annotations derived exclusively through
bioinformatic evidence. NanoARG is a database that has been
particularly insightful in identifyimg ARGs in sequences of
varying lengths and a range of sequencing error rates. NanoARG
is an integration of two data sets, NCBI and integron-integrase
(I-VIP) database (Zhang et al., 2018). In the NanoARG database,
MGE sequences have been extracted from NCBI using keywords
such as “transposase,” “transposon,” “integrase,” “integron,” and
“recombinase”, following the method described in (Forsberg et al.,
2014). The I-VIP database focuses on comprehensive information
on class 1 integrons. After extracting the MGE sequences from
NCBI, the integrases of class 1 integrons have then been extracted
from I-VIP database and added into the NanoARG database
(Arango-Argoty et al., 2019). The Parnanen et al. MGE database
(Parnanen et al., 2018) was created with a focus on mother-infant
MGE sharing, providing a unique perspective and addition to the
existing MGE research. This database was constructed by fetching
coding sequences for genes that were annotated as IS*, ISCR*, intI1,
int2, istA*, istB*, qacEdelta, tniA*, tniB*, tnpA* or
Tn916 transposon open reading frames (ORFs). The genes were
either sourced from the NCBI nucleotide database, or from the
PlasmidFinder database (Carattoli and Hasman, 2020).

2.5 Assembly and annotation

The sequence data used in this study are available from the
NCBI database (Sayers et al., 2022) and retrieved with the SRA
Toolkit (SRA Toolkit Development Team, 2022) using the SRA
accession numbers listed in the metadata table.

To select a suitable assembler for our short read metagenomic
data, we carefully evaluated the performance of a set of assemblers
on our server and on targeted data sets. The pre-selected set of
assemblers was chosen based on evaluations in previous studies

FIGURE 2
The database schema of ARGem. ARGem supports custom metadata attributes and various data processing parameters. Mandatory information
including the SRA number and user information are reflected in database tables as NOT NULL fields. Optional fields are not required and can be set to a
default value.
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(Vollmers et al., 2017; Ayling et al., 2020; Zhang et al., 2020). Table 1
and Supplementary Table S1 summarizes the results of different
analyses of these samples.

We evaluate the assemblers on the samples as follows: one
reclaimed waste water sample (water sample 1), one final treated
biosolids sample (water sample 2), and two raw sewage and treated
wastewater samples (water sample 3 and 4) for the results depicted
in Table 1. Note that the samples used here are different from those
presented in Section Results. The first two samples were produced by
our group, and the latter two samples were published in previous
work (Lekunberri et al., 2018). For the first two wastewater samples
we tested three assemblers: MetaSPAdes (Nurk et al., 2017), IDBA-

UD (Peng et al., 2012) and MegaHIT (Li et al., 2015). While the
annotation results of IDBA-UD and MegaHIT were similar,
MegaHit showed a better performance in terms of time and
memory usage in our test scenario. For the other two wastewater
samples, we compared MetaSPAdes and MegaHIT. Overall, we
found that on our data sets, MegaHIT generated reasonable
results in a relatively short amount of time. Therefore we provide
MegaHIT as the default assembler.

DIAMOND (Buchfink et al., 2015; 2021) was incorporated as
the primary annotation tool across ARGem, both for short reads
matching and contig annotation. DIAMOND is a open-source
sensitive protein aligner used widely in the bioinformatics field.

FIGURE 3
Co-occurrence graph generated using Cytoscape with threshold of 3 of samples SRR2088951, SRR2088982, SRR2088983, SRR2089011,
SRR5571001, SRR5997542, SRR5997549, SRR9141345, SRR9141349, SRR9141356, SRR9141357, SRR9141362, SRR9141365, SRR9141380, and
SRR9141383. MGEs are represented as square node and ARGs are shown as circle nodes. The colors of ARG nodes correspond to classification according
to the corresponding class of antibiotic resistance assigned in CARD database (Alcock et al., 2020). The width of the edge between ARGs and MGEs
in proportion to the number of common occurrences of each pair.
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DIAMOND performs double-index alignment with a reduced
alphabet and spaced seeds. DIAMOND has been reported to
consume less amount of time for high-throughout scenarios
compared to BLASTX (Camacho et al., 2009) and BLASTP in
similar settings. We also use BLAST for our optional MGE
Parnanen et al. (Parnanen et al., 2018) database for the
nucleotide annotation, which is not available in DIAMOND.

2.6 Gene Co-occurrence and correlation
analysis

Co-occurrence analysis is a widely applied technique in
bioinformatics, and can infer important relationships among
genes, such as their taxonomic host, their tendency to be co-
expressed, and their ability to be co-mobilized via HGT (Faust
and Raes, 2016). Sequencing depth is an important factor that
influences the coverage and accuracy of assembly and thus the
accuracy of co-occurrence analysis. This, in addition to inherent
differences in microbiomes (diversity, representation in databases,
etc.) creates difficulties for identifying a single method to accurately
calculate gene correlations.

For co-occurrence analysis of ARGs and MGEs, the ARGem
pipeline combines an ARG database and an MGE database to count

the number of co-occurrence of contigs for each pair of one ARG
and one MGE.

For correlation analysis, ARGem first imputes the missing values
with zeros for the abundance data and then renormalizes it to be
relative abundance data. This method is adapted from (Tao, 2014).
We assume that the expression of each pair of genes is generated by
an underlying bivariate normal distribution. Considering a gene pair
denoted as (x1, x2), we calculate the mean values (μ1, μ2), the
standard deviation (σ1, σ2), and the correlation ρ. To accomplish
this, we need at least three complete gene pairs. Let N be the total
number of experiments, and let f(·) represent the probability density
function (pdf) of the underlying bivariate normal distribution. F(·)
represents the combination of the pdf and the cumulative
distribution function (cdf) of the normal distribution. The
likelihood function L is defined as follows:

L θ̂ | x1, x2( ) �
∏N
i�1

f xi1, xi2( )δi1δi2 · ∂

∂x1
F xi1, c2( )δi1 1−δi2( )·

∂

∂x2
F c1, xi2( ) 1−δi1( )δi2 · F c1, c2( ) 1−δi1( ) 1−δi2( ),

where c1 and c2 are the detection cut-offs for x1 and x2, and δi1 and δi2 are
indicator variables indicating whether or not data is available for each xij.

FIGURE 4
A correlation graph for 16S rRNA normalized short read matching result of samples SRR2088951, SRR2088982, SRR2088983, SRR2089011,
SRR5571001, SRR5997542, SRR5997549, SRR9141345, SRR9141349, SRR9141356, SRR9141357, SRR9141362, SRR9141365, SRR9141380, and
SRR9141383. The color codes are the same as in Figure 3. The width of the edge between ARGs and MGEs is in proportion to the absolute correlation
value of each pair.
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In the above equation, we first calculate the regular likelihood
term f(·) when data are available for both pairs and then the second
term factorizes into the pdf of x1 and the cdf of x2 at the cutoff term
in a normal distribution that is shifted up by the distance of the
current x1 observation from its mean multiplied by the correlation
coefficient and scaled by the ratio of variances using F(·). If the
correlation between the genes is strong, we expect the cdf of x2 at the
cutoff to be directly related to the distance of x1 from its mean and
vice versa. Then we calculate the joint cdf of the bivariate normal
distribution at both cutoffs. The joint cdf term grows as the values of
the cut-offs rise relative to their corresponding means. As this term
increases, it tends to overshadow information from other terms.

Our approach involves maximizing the likelihood of observing a
given expression pair while adjusting for a known cut-off threshold.
In addition, we also capitalized on the data structure by introducing
correlation bounds. To obtain sharper correlation estimates, we

further utilize the partial correlation definition inequality to update
our correlation estimates based on the correlation between other
pairs. In this way, the proportional value of relative abundance can
directly reflect the degree of correlation of the potential related gene
pairs and we are able to produce correlation estimates even with
severe missing data issues.

In the next step, our user can apply the desired threshold within
the range [−1, 1] on the correlation matrix to filter out the relevant
gene pairs for further analysis or visualization.

2.7 Visualization

Network analysis provides an intuitive means to visualize
predicted relationships within bioinformatics fields, such as
protein-protein interaction networks (Bharadwaj et al., 2017),

FIGURE 5
NMDS (Kruskal, 1964) plot for the 3 groups of samples. The axes of a NMDS plot are arbitrary units. Different colors and symbols distinguish samples
in different groups. The stress value indicates the reliability of the ordination of the NMDS plot, while a stress value close to 0.05 indicates fair fit. In this
plot, there are two data points that overlap almost entirely, which means they are similar to each other in the multidimensional space, compared to other
data points.

Frontiers in Genetics frontiersin.org08

Liang et al. 10.3389/fgene.2023.1219297

137

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1219297


FIGURE 6
Bar plot of DirtyGenes (Shaw et al., 2019) test statistic result, divided into three sub-groups of the fifteen samples. This DirtyGenes statistic was
generated based on 16S rRNA normalized ARG annotation result output by the pipeline, with columns only preserved where there were non-zero values
for all three groups preserved.
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gene-gene networks (Franz et al., 2016), and gene co-expression
(Zhang and Horvath, 2005). ARGem approaches visualization from
two perspectives: correlations and co-occurrences. Correlation
graphs show relations among ARG annotation results without
MGE using the method described in Gene Co-occurrence and
Correlation Analysis. Co-occurrence graphs map ARGs and
MGEs based on a number of co-occurrence pairs annotated on
the same contigs assembled from raw sequences. For example, in
three contigs C1, C2, and C3 in one sample, all contain the ARG-
MGE pair ARG A1 and MGE M1, the occurrence of (A1, M1) is 3.
The width of the edge between A1 and M1 will reflect the co-
occurrence, in this case, which is 3. In correlation graphs, the width
of the edges is based on the correlation score between two genes
Gene Co-occurrence and Correlation Analysis and indicates the
relative strength of the relationship in Assembly and Annotation.
The size of each node is determined based on the sum of abundance
in the metagenomic library. Co-occurrence networks, on the other
hand, are an analysis of ARGs and MGE annotated on assembled
contigs (1,000+ bps). Each edge that connects an ARG node and an
MGE node represents the count of the given combination, where the
width of the edges indicates the frequency that the combination is
encountered (Arango-Argoty et al., 2019). Note that in co-
occurrence networks, ARG nodes are only connected toMGE nodes.

ARGem by default builds correlation graphs and co-occurrence
graphs using Cytoscape.js (Smoot et al., 2011; Franz et al., 2016), an
open-source JavaScript-based graph library (Franz et al., 2016).
Cytoscape provides interactive features so that users can select
the target genes or filter the abundance rank from the network.
Cytoscape library also enables changes in graphic scale, which can be
adjusted to end users’ preferable size of visualized images. Other
tools such as PythonNetworkX library (Hagberg et al., 2008) are also
included or can be made available for visualization.

2.8 Relational database

We employ the MySQL database for data management and
storage. The database schema is shown in Figure 2. Only general
information such as the SRA number and email address are required
for data retrieval and task status notification. As for optional fields,
we provide default data processing and visualization parameters,
such as the MGE database and the co-occurrence threshold. Users
can customize these parameters to meet their specific needs.

By allowing users to upload customizedmetadata spreadsheets, our
database design can expand to include arbitrary metadata attributes.
We record user custom metadata entries in the metadata_attribute
table, which are available for all projects. With custom metadata, users
can compare and visualize data across different projects. For an
example metadata spreadsheet, see Supplementary Material.

3 Results

3.1 Pipeline

The ARGem pipeline consists of multiple computational
components arranged primarily in a linear sequence, with built-in
detection of certain error cases that serve to halt the pipeline early and

send out an email notification of the error. We integrated the ARGem
pipeline as a key component in the web-based platform AgroSeek
(Liang et al., 2021). ARGem can also be deployed in other systems that
incorporates a relational database management system, as detailed in
Section Relational Database. The overall workflow is depicted in
Figure 1B. For a more detailed workflow diagram, see the
Supplementary Figure S1.

The typical pipeline steps are summarized in the following sub-
sections.

3.1.1 Input spreadsheet for a project
An ARGem Excel spreadsheet was designed through

collaboration with environmental scientists to identify required
versus recommended metadata for samples of various categories,
along with specified reporting units. As an example, for aquatic
environment samples, required metadata columns include the kind
of experiment type from which the sample was collected (e.g., lab,
field or pilot, selected from a drop-downmenu), the DNA extraction
method, the DNA sequencing platform, DNA sequencing output
(e.g., single or paired reads), and the SRA accession number for each
sample. The required columns are provided along with conditional
columns depending on the type of aquatic environment matrix
selected from the drop down menu.

Through an SRA number column, each sample is associated with
a unique SRA number (Sayers et al., 2022) in the input spreadsheet.
Therefore the raw data sequences can be conveniently retrieved from
the online repository, if they have not yet been added to local data
storage data. A complete, filled ARGem spreadsheet provides useful
information on both the metadata and the raw data sequence, which
can support richer analysis and visualization in later steps of the
pipeline. In addition, a relational database associated with the pipeline
is provided to store andmanage the uploaded data, as well as the status
of created projects.

Typically, the user selects one template from the ARGem library
of spreadsheet templates that best represents the environment under
study, customizes the template for their project, and enters the
metadata into the spreadsheet with one row for each metagenomic
sample.

There are in total six templates in the library, including five
templates for different environment sample types and one user
custom template. Through collaboration with environmental
scientists, we designed specific templates for water, soil, treated
or raw manure, pre- and post-harvest crop production system, and
air samples.

3.1.2 Retrieve DNA sequence data from NCBI
In this step, sequence data are retrieved based on the input SRA

numbers provided for each sample in the metadata spreadsheet.
These data subsequently serve as raw sequence files for the samples
required for subsequent analysis.

3.1.3 Assemble each DNA sample into contigs
In this step, the pipeline assembles the retrieved sequence files

using the integrated assembly tool, namely, MEGAHIT (Li et al.,
2015). This assembler was selected after evaluation on our server and
targeted data sets. For details of the assembler evaluation, see
Supplementary Table S1. The results of this step are a set of
contigs for each sample.
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3.1.4 Annotate known ARGs and MGEs in short
reads and contigs

This step performs annotation on both the assembled contigs
(long-contig annotation) and retrieved short reads (short reads
matching) using the integrated annotation tools (BLAST (Altschul
et al., 1990) and DIAMOND (Buchfink et al., 2015; 2021)). The
reference databases used for this step include an ARG reference
database CARD (Alcock et al., 2020) along with three optional
MGE reference databases: MobileOG (Brown et al., 2022),
NanoARG (Arango-Argoty et al., 2019) (which is the database also
used in our MetaCompare (Oh et al., 2018) service), and Parnanen
et al. (Parnanen et al., 2018). The annotated genes for each sample are
sent to output text files along with their relative abundances.

3.1.5 Analysis
After obtaining the assembly and annotation results of each

sample, the pipeline performs a set of analyses based on the results
and the metadata attributes. Because it is not possible to discern
ARGs imparted by mutations in housekeeping genes from true
housekeeping genes, due to limitations in the resolution of
sequencing technologies, ARGem excludes housekeeping genes
from ARG analysis. A list of excluded genes is provided in the
Supplementary Material. The results of the analysis are then made
available to the users, usually in the form of tabular files. After this
step, more optional analysis requiring user input parameters can be
performed according to the desires of the user.

3.1.6 Visualization
For the gene co-occurrence and correlation analysis results,

corresponding visualizations are generated and provided to the
users. Some of the visualizations can be customized by user-
selected parameter inputs.

3.1.7 Notification
After obtaining the results of each sample, or if the pipeline halts

early, an email notification is sent to a designated e-mail address
reporting the final status (success, partial success, or failure) of the
pipeline. When the pipeline does not execute successfully, the
notification will include specific information about the detected
errors to help guide the user in addressing the problem.

3.2 Verification

The ARGem pipeline was tested using publicly-available data
extracted from the NCBI database (Sayers et al., 2022). Results
shown in this section are based on 15 fresh water samples obtained
from BioProject PRJNA287840, collected monthly from 6 sites in
3 southwestern British Columbia streams over 14 months (Vlok
et al., 2019). In the analysis results presented later, these 15 samples
were arbitrarily divided into three groups to illustrate the
functionality of the tools, rather than to reflect the inherent
characteristics of the data. The results presented in this study
have been annotated with one of the pipeline’s default MGE
databases. However, users have the option to choose a different
database or integrate their preferred database into the pipeline.

The pipeline generated tables that summarize results for three
analyses: 1) short read matching to profile ARGs and estimate their

relative abundances, 2) assembly of contigs from short reads, and 3)
annotation of ARGs and MGEs in assembled contigs. Short read
matching results for these fifteen samples yielded 380 annotated
ARGs found in at least one sample out of the fifteen, with 16S rRNA,
TPM and FPKM normalization reported in three separate files.
Contig assembly generated assembled contigs for all fifteen samples.
The ARG and MGE annotation based on assembled contigs
generated one table of annotated ARGs and one table for
annotated MGEs, for each sample. A table was also generated to
report ARGs and MGEs that were found to co-occur in the samples.

Figure 3 shows the visualization result based on contig assembly
and annotation. This analysis and visualization is included in the
ARGem pipeline. This is a co-occurrence network based on ARG
and MGE annotation results on assembled contigs, using reference
database CARD (Alcock et al., 2020) and Parnanen et al. (Parnanen
et al., 2018), respectively. The co-occurrence graph is generated
based on the number of co-occurrences in the sample. Once each
combination of the MGE-ARG pair is counted, the pipeline filters
the number of occurrences based on user input. Filtered pairs
generate a co-occurrence graph, where nodes represent ARGs
and MGEs detected and edges represent their occurrence together.

Figure 4 shows the correlation result based on short read
matching. Given the 16S rRNA normalized ARG annotation
generated by the pipeline, a correlation matrix was generated by
the pipeline’s correlation analysis module and visualized as a
correlation graph. The correlation matrix calculated by our
proposed method reports a range from −1 to 1 and excludes
single paired combinations, where only two data points or less
were found. See also Supplementary Figure S2 for the correlation
visualization output using Python NetworkX library instead of the
default option Cytoscape.

Figure 5 and Figure 6 show the visualization results based on
short read matching. For the visualization on short read matching
results, the 15 samples were divided into 3 groups: 1) SRR2088951,
SRR2088982, SRR2088983, SRR2089011, 2) SRR5571001,
SRR5997542, SRR5997549, and 3) SRR9141345, SRR9141349,
SRR9141356, SRR9141357, SRR9141362, SRR9141365,
SRR9141380, SRR9141383. Results based on the three relative
abundance normalization methods are reported in the annotation
table, which can then be processed by external analysis tools. Based
on the 16S rRNA normalized ARG annotation generated by the
pipeline, an NMDS (Kruskal, 1964) plot was generated for the three
groups, as depicted in Figure 5. DirtyGenes (Shaw et al., 2019) was
also used to process the 16S rRNA normalized ARG annotation
result, where columns are preserved only if there were non-zero
values for all 3 groups. The average and standard deviation values of
DirtyGenes test statistic for each group depicted in Figure 6.

The visualizations shown here are examples of the analysis that
can be performed based on ARGem outputs, but do not have to be
limited to the tools and methods described above. Overall, the result
tables generated by the ARGempipeline are capable of further analysis
and can be processed by different analysis and visualization tools.

4 Discussion

Antibiotic resistance is a significant public health concern that
cannot be ignored (Vikesland et al., 2019). Metagenomics is a
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promising approach for comprehensively monitoring ARGs and
pathogens in healthcare settings, as demonstrated in recent studies
(Berglund et al., 2019; de Abreu et al., 2021; Shen et al., 2021). The
development of metagenomic data processing tools that can
effectively aid in this detection is a beneficial but also challenging
task. One of the challenges is that data from various studies can be
collected in different environments and have varying characteristics,
making it difficult to collate and organize the data. Additionally,
there are multiple versions of the MGE reference database, each
containing distinct lists of MGEs. This can be attributed to different
research fields having varying perspectives on important MGEs, but
also makes it challenging to develop an intergrated tool.

Here we integrated several essential aspects of metagenomic data
processing into the ARGem pipeline, including short read matching,
contig assembly, and annotation of ARGs and MGEs on assembled
contigs. These steps are aligned and automated to provide an all-
inclusive pipeline to support global ARG monitoring. The ARGem
pipeline allows flexible metadata table inputs, including user-
customizable metadata attributes, to be applied to data from
different environmental sources and allows possible customized
usage by users of this pipeline. A supporting SQL database
structure has been developed to manage the flexible input and
released along with the pipeline. In the ARG and MGE
annotation step, this pipeline provides several different MGE
databases for users to choose from. In the short read matching
step, the normalization results of three different methods (16S
rRNA, TPM, and FPKM) are provided to suit different research
purposes. The data generated from this pipeline are capable of being
further analyzed and visualized using various tools. Among those,
two analysis tools, namely, the correlation analysis and co-
occurrence network analysis tools, are included in the release of
the pipeline.

Our intention is to offer the community an available, flexible
and convenient pipeline designed specifically for metagenomics
data to accommodate tincreasing needs in related fields, primarily
focusing on the threats of ARGs posed to the agriculture chain
and human health. The ARGem pipeline is constructed based
on the discussion, suggestion, and testing by actual users who
have conducted metagenomics studies and performed agriculture
practices in related fields. By implementing flexible metadata
input and relational database storage, user customizable
reference databases, and an extendable analysis module, the
ARGem pipeline intends to introduce flexibility and variety for
data input and subsequent analysis, as well as automate the
handling of such data. With the release of this pipeline, it is
our intention for researchers to have a convenient pipeline to
deploy and run on lab scale resources.

5 Conclusion

In this study, we present the ARGem pipeline as a tool for
investigating features relevant to antibiotic resistance in
environmental metagenomic data sets. As a significant impact on
human health, antibiotic resistance has gained increasing attention
from researchers and policymakers. As metagnenomics studies

being an effective means of comprehensively monitoring ARGs
and pathogens in healthy environments, we aim for the ARGem
pipeline to contribute to this purpose as an integrated, flexible, and
deployable tool.

We describe in this paper the overall workflow andmechanics of
each step within the ARGem pipeline, including the methods and
tools integrated into the pipeline. We demonstrate its applicability
and flexibility through the analysis of metagenomic samples
collected from aquatic environments. The ARGem pipeline is
developed to be deployable on lab-scale resources, distinguished
from other large, general and online pipelines.

Our intention is to make this pipeline readily accessible to a
broad range of users, including governmental and academic
researchers and policymakers, for tracking key drivers of
antibiotic resistance in various environments using metagenomic
data. The ARGem pipeline is available in the public domain for free
use. In the future, more sequence process and analysis steps can be
incorporated into the ARGem pipeline to accommodate the rapid
pace of development in this field, which will be facilitated by the
adaptable nature of ARGem.
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Assessment of the progression of
kidney renal clear cell carcinoma
using transcriptional profiles
revealed new cancer subtypes
with variable prognosis

Michelle Livesey1, Nasr Eshibona1 and Hocine Bendou1,2*
1SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western
Cape, Cape Town, South Africa, 2Computational Biology Division, Department of Integrative Biomedical
Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

Background: Kidney renal clear cell carcinoma is the most prevalent subtype of
renal cell carcinoma encompassing a heterogeneous group of malignancies.
Accurate subtype identification and an understanding of the variables
influencing prognosis are critical for personalized treatment, but currently
limited. To facilitate the sub-classification of KIRC patients and improve
prognosis, this study implemented a normalization method to track cancer
progression by detecting the accumulation of genetic changes that occur
throughout the multi-stage of cancer development.

Objective: To reveal KIRC patients with different progression based on gene
expression profiles using a normalization method. The aim is to refine molecular
subtyping of KIRC patients associated with survival outcomes.

Methods: RNA-sequenced gene expression of eighty-two KIRC patients were
downloaded from UCSC Xena database. Advanced-stage samples were
normalized with early-stage to account for differences in the multi-stage
cancer progression’s heterogeneity. Hierarchical clustering was performed to
reveal clusters that progress differently. Two techniques were applied to
screen for significant genes within the clusters. First, differentially expressed
genes (DEGs) were discovered by Limma, thereafter, an optimal gene subset
was selected using Recursive Feature Elimination (RFE). The gene subset was
subjected to Random Forest Classifier to evaluate the cluster prediction
performance. Genes strongly associated with survival were identified utilizing
Cox regression analysis. The model’s accuracy was assessed with Kaplan-Meier
(K-M). Finally, a Gene ontology and Kyoto Encyclopedia of Genes and Genomes
enrichment analyses were performed.

Results: Three clusters were revealed and categorized based on patients’ overall
survival into short, intermediate, and long. A total of 231 DEGs were discovered of
which RFE selected 48 genes. Random Forest Classifier revealed a 100% cluster
prediction performance of the genes. Five genes were identified with significant
diagnostic capacity. The downregulation of genes SALL4 and KRT15 were
associated with favorable prognosis, while the upregulation of genes OSBPL11,
SPATA18, and TAL2 were associated with favorable prognosis.
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Conclusion: The normalizationmethod based on tumour progression from early to
late stages of cancer development revealed the heterogeneity of KIRC and
identified three potential new subtypes with different prognoses. This could be
of great importance for the development of new targeted therapies for each
subtype.

KEYWORDS

kidney renal clear cell carcinoma, normalization, cancer progression, subtypes, prognosis,
gene signature

1 Introduction

Multiple different forms of kidney tumors make up the complex
disease known as kidney cancer (Hu et al., 2019). Renal cell
carcinoma (RCC) is a heterogeneous group of kidney
parenchyma tumors that can be further divided into
histologically defined subtypes (Znaor et al., 2015; Casuscelli
et al., 2017; Xiong et al., 2022). The different subtypes have
undergone multiple revisions in the past two decades, due to
advancements in the morphological as well as molecular
characterization of renal tumors (Kovacs et al., 1997; Lopez-
Beltran et al., 2006; Srigley et al., 2013; Moch et al., 2016; Udager
and Mehra, 2016).

The recent discoveries in renal tumor transcriptome profiling studies
have had a substantial influence in the field of genomics as a category for
“molecularly defined renal carcinomas” has been introduced by the
World Health Organization 2022 classification of urinary and male
genital tumors (5th edition) (Trpkov et al., 2021a; 2021b; Mohanty et al.,
2023). These studies have significantly improved our understanding of
RCC, however, effective diagnostic and therapeutic approaches have yet
to be achieved (Caliskan et al., 2020). Additionally, these studies revealed
the high molecular heterogeneity of these tumors, necessitating further
sub-classification.

In this study, the most prevalent and aggressive subtype Kidney
renal clear cell carcinoma (KIRC) was investigated as it accounts for
80%–90% of the total number of RCC patients (Wang Q. et al., 2019).
Patients with KIRC are associated with a high mortality rate and poor
clinical outcomes (Gray and Harris, 2019; Puzanov, 2022). Also, there
are limited therapeutic options available; surgery is the primary option
since KIRC is resistant to radiotherapy and chemotherapy (Yin et al.,
2019). The resistance to treatment may be due to the heterogeneity of
these tumors. Therefore, an accurate assessment of the heterogeneity of
these tumors is crucial to identify subtypes of patients that can benefit
from targeted therapy. This can be achieved by investigating the
underlying molecular mechanisms and progression of KIRC, which
are currently not fully understood (You et al., 2021).

To track cancer progression we implemented a recently
established normalization method, which also has the potential to
facilitate the sub-classification of KIRC (Livesey et al., 2023). The
normalized gene expression reveals how cancer progresses by
detecting the accumulated genetic changes that emerge from
early-stages of cancer development to advanced-stages. The
application of the normalization method and hierarchical
clustering will allow for the identification of clusters (subtypes)
that progress differently.

This study aims to reveal KIRC patients with different
progression (subtypes) and establish a genotype-phenotype link

to the identified clusters. In this study, the genotype-phenotype
relationship to the distinct clusters was defined by the average
overall survival (OS) of the KIRC patient samples. Prognostic
gene signatures were identified that differentiate between the
different survival clusters and have the potential to function as
prognostic biomarkers that can facilitate the prognosis and
monitoring of KIRC. Therefore, the study advances knowledge of
the transcriptional landscape of KIRC patients with an emphasis on
cancer progression.

2 Materials and methods

2.1 Data acquisition and processing

The RNA-Sequencing (RNA-Seq) gene expression profiles of
KIRC were downloaded from the UCSC Xena database using
cancer-specific data from The Cancer Genome Atlas cohort, from
the Genomic Data Commons (GDC-TCGA) (Goldman et al., 2020).
A total of eighty-two advanced-stage cancer samples, along with a
matched number of randomly selected early-stage samples were
extracted. The accompanying metadata included the corresponding
patient phenotypic and survival profiles.

The gene expression profile of each patient was organized in a
gene-by-sample genomic matrix. The cancer datasets consisted of
60,483 unique Ensembl identifiers (ENSG) (Aken et al., 2016),
quantified as log2(x+1), where x represents the count of reads
mapped to a specific genomic location in the human reference
genome (GRCh38.p2, gencode release 22). Ensembl BioMart
(GRCh38.p13, Ensembl 104 May 2021) (Smedley et al., 2015)
was utilized to retrieve a total of 19,556 ENSG identifiers that
were annotated with a protein-coding biotype. Hence, 40,927 (67,
7%) non-coding entries were eliminated. For further analysis, the
19,556 protein-coding gene expressions were converted to counts.

2.2 Data normalization

The normalization method that tracked cancer progression and
corrected for multiple cancers (Livesey et al., 2023) was modified to
investigate a cancer type. The normalization method involves
calculating the quotient of advanced-stage gene expression and
early-stage gene expression.

2.2.1 Tracking cancer progression
A normalization method was implemented to capture the

heterogeneity between cancerous tumors by detecting their
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molecular differences in progression from early to late-stages of
tumor development using gene expression by RNA-Seq. As a result,
the method exposes the accumulated genetic changes that occur
throughout the multi-stage of cancer development. To track the
development of cancer, the gene expression profiles of both early-
stage and late-stage cancer samples were required. Thus, the gene-
by-sample matrix of KIRC was used to create two distinct matrices;
early-stage (E) and advanced-stage (A) gene expression as follows:

E, s x r matrix for early-stage gene expression and,
A, s x q matrix for advanced-stage gene expression.
The early-stage and advanced-stage gene expression matrices

are represented by E and A, respectively. Where r and q corresponds
to the number of cancer samples in early-stage and advanced-stage,
and s the number of protein-coding genes represented with raw
count gene expression value.

The early-stage patient profiles do not match the same
patient profiles in the late-stages. Thus, the initial approach
to calculating the normalized dataset involves generating a mean
normalized expression, or “mi”, for gene i in the early-stage
dataset. The sum of early-stage gene i for all early-stage cancer k
samples was calculated, as shown in Eq 1. The average early-
stage expression vector of gene i produced by this equation offers
a more accurate representation of the early-stage expression of a
particular gene.

mi � 1
r
∑r
k�1

Ei,k (eq 1)

Li � ln
A

mi
( ) (eq 2)

Finally, the gene expression matrix that represents cancer
progression, L was calculated as demonstrated in Eq 2. Matrix L
contains normalized counts of the quotients of advanced-stage
(dividend) and the mean gene expression of early-stage cancer
samples (divisor). Therefore, the normalized gene expression
represents the continuously changing cellular transcriptome,
allowing for an efficient and comprehensive description of gene
expression profiles.

2.3 Hierarchical clustering

The clustering of cancer samples is the most fundamental
strategy to identify groups of samples that progressed differently
in gene expression patterns. This approach may result in the
identification of novel cancer clusters (subtypes) within a cancer
type. Therefore, the normalized gene expression profiles of the
KIRC cancer samples were subjected to hierarchical clustering
analysis, to reveal the grouping of cancer samples.

The clusters of cancer samples were created by hierarchical
clustering, using the cosine distance between the gene expression
profiles and Ward’s method for agglomeration (Ward, 1963;
Jaskowiak et al., 2014). The optimal number of clusters was
determined using the find_k function as part of the dendextend
R package (version 1.17.1), which calculates k using maximal
average silhouette widths (Rousseeuw, 1987). Finally, the
dendrograms were split into k groups to assign samples to a
cluster.

2.4 Feature analysis

2.4.1 Differential gene expression
Limma package in R (version 3.54.2) (Ritchie et al., 2015) was

used to screen for differentially expressed genes (DEGs), by applying
an empirical Bayesian approach to evaluate for differences in gene
expression profiles between the identified clusters. The decideTests
(Law et al., 2016) function assigned binary values (0: not detected, 1:
upregulated, and −1: downregulated) to the genes, to identify and
extract genes that differentiate between the altered (up or down)
gene expression. Significant DEGs were defined as those with a
Benjamini–Hochberg (BH) adjusted p-value <0.05 and log2-fold
change (LFC) ≥ 0.5 or ≤ −0.5.

2.4.2 Marker gene selection using machine
learning

Recursive Feature Elimination (RFE) algorithmwas implemented to
identify key genes playing a role in the classification of the identified
KIRC clusters (subtypes), using the Scikit-learn python package
(Pedregosa et al., 2011). RFE with a linear kernel support vector
machine (SVM) was utilized to find optimal genes that predict the
cancer clusters. The k-fold cross-validation procedure, with a value of K
set to 10, was repeated 3 times.

The model was built with all identified DEGs and in several
iterations eliminates a single gene deemed least important for
segregating the identified clusters (Guyon et al., 2002). The
model is rebuilt, and the new gene subset are evaluated based on
their classification performance. Hence, the genes are ranked
according to their relevance. In this study, the final gene subset
was selected based on the highest classification accuracy by linear
SVM with C set to 5. The final gene subset was further subjected to
principal component analysis (PCA) using the R packages
FactoMineR (version 2.8) (Lê et al., 2008) and factoextra (version
1.0.7) (Kassambara and Mundt, 2020).

2.5 Predictive and validation ofmarker genes

The performance of the RFE selected gene subset was validated
using Random Forest (RF) classifier with a “test-train split ()” class
to split the data into train and test sets with a ratio of 75: 25. The
performance of the RF classifier was measured using accuracy,
precision, and recall score as the performance metrics. All
machine learning implementations were run in Anaconda
environment based on python programming language and Scikit-
learn package (Pedregosa et al., 2011).

2.6 Survival analysis

The gene subset selected by RFE was subjected to a Cox regression
model based on the Lasso algorithm of the glmnet R package (version
4.1-7), to further understand the relative importance of the gene subset
(Friedman et al., 2010; Simon et al., 2011; Tibshirani et al., 2012). The
model reduces the total number of the gene subset and identifies the
genes with the most significant impact on a patient’s survival. This step
assigned a regression coefficient value to the given gene that is multiplied
by the corresponding gene’s expression and results in a prognostic risk
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score for each patient. The patient scores were used to calculate amedian
risk score. Each patient was assigned a status value of 0 or 1 based on
whether the patient’s score was higher or lower than the median risk
score. The patient status information was used to generate Kaplan-Meier
(K-M) estimates for OS. The K–M curves were constructed using the
ggsurvplot function from the survminer R package (version 0.4.9).

2.7 One-way ANOVA

A one-way analysis of variance (ANOVA) was performed to
compare the mean gene expression of the prognostic genes
discovered by Cox regression analysis between the identified
clusters. Statistical analysis was conducted with the stats R

package (version 4.2.2). Following the application of ANOVA,
Tukey’s post hoc test for pairwise comparisons was applied
(Tukey, 1949). The null hypothesis (H0) of equal mean between
the clusters was rejected if the p-value < 0.05; H1: the cluster means
are significantly different from one another.

2.8 Enrichment

The list of DEGs were subjected to functional annotations of Gene
ontology (GO) (Ashburner et al., 2000), with an adjusted p-value <
0.05 determined as a cut-off criterion for significant enrichment.
Additionally, the 48 RFE gene subset were subjected to Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways enrichment,

FIGURE 1
Hierarchical clustering dendrogram of KIRC patient. The 19,556 normalized gene expression profiles of the eighty-two KIRC cancer samples were
subjected to clustering analysis, to reveal the grouping of cancer samples.
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with the threshold for significant enrichment established as
p-value <0.05. The enrichment analysis was performed utilizing the
clusterProfiler R package (version 4.6.2) (Yu et al., 2012).

3 Results

3.1 Cancer clusters detection with
normalized expression

The gene expression profiles of eighty-two advanced-stage KIRC
samples were normalized with early-stage cancer samples to
consider the heterogeneity differences that occur in the multi-
stage cancer progression.

In this study, all 19,556 normalized protein-coding genes were
subjected to clustering. The clusters are visually represented in a
hierarchical tree called a dendrogram. The clustering of all eighty-
two KIRC samples revealed three unique KIRC progression patterns
based on gene expression profiles (Figure 1).

Three unique cancer clusters (subtypes) as Clusters 1, 2, and
3 were identified and encompass a total of 42, 24, and 16 KIRC
patient samples, respectively. These three molecularly identified
clusters were further correlated with the patients’ average overall
survival to reflect its genotype-phenotype relationship. Cluster
1 showed the lowest average OS of 864.43 days, Cluster
2 displayed an average OS of 1076.38, and Cluster 3 had the
highest average OS of 1522.31 days. Therefore, these Clusters
were categorized as Short (SS), Intermediate (IS), and Long
Survival (LS) (Table 1).

3.2 Differential gene expression analysis

In the differential gene expression (DGE) analysis, a total of
19,556 protein-coding genes were evaluated for DEGs to distinguish
between SS, IS, and LS. A pairwise comparison approach between
the gene expression profiles of IS and SS, LS and SS, and LS and IS
were used, and only the genes with an adjusted p-value <0.05 and
LFC ≥0.5 or ≤ −0.5 between all three pairwise comparisons were
used for further analysis. Thus, a total of 231 DEGs were discovered.

Considering only the DEGs that were significant between all
three pairwise comparisons, a total of 47 genes were identified as
upregulated, when IS was compared to SS, whereas 184 genes were
found to be downregulated. While 159 genes were upregulated, and
72 genes were downregulated in the comparison of LS and SS.
Finally, the comparison of LS and IS, identified 221 and 10 genes as
upregulated and downregulated, respectively.

3.3 Selection of optimal gene subset

All 231 DEGs identified between SS, IS, and LS KIRC patients
were screened by the RFE algorithm. The optimal gene subset is
defined by the best combination of genes that has candidate
characteristics of classification and prognosis. This also refers to
the performance of the RFE and is quantified by the feature
importance score. In this study, the optimal gene subset of
48 genes (Supplementary Table S1) with the highest performance
score of 0.963 was selected for further analysis (Figure 2A).

3.3.1 Validation of optimal RFE gene subset
An RF classifier model was constructed to evaluate the

classification power of the 48 RFE gene subset for SS, IS, and LS.
A tenfold cross-validation on a forest model in the training phase
(75% of the samples) and testing phase (25% of the samples) was
computed. The Random Forest classification yielded an accuracy
score of 100%, a precision of 100%, and a recall of 100%.

A confusion matrix that defines the performance of the
classification algorithm is presented in Figure 2B. The
importance of each gene for risk subcategory prediction to the
RF classifier model is presented in Figure 2C.

A PCA model was built to determine the heterogeneity in gene
expression between the SS, IS, and LS risk subcategories. The PCA
assessed and identified the key sources of variance, allowing samples to
be grouped based on similar and different gene expression profiles.

Dim 1 represented 29.8% of the overall variance, whereas Dim
2 represented 23.6% (Figure 3). A clear segregation between KIRC
patient samples can be observed to distinguish between the three risk
subcategories.

To further compare the initial clustering analysis of protein-
coding genes to the clustering of the selected 48 RFE gene subset, a
hierarchical clustering was performed with the normalized gene
expression of the 48 RFE gene subset of the eighty-two KIRC cancer
samples. The correspondence between the two hierarchical clusters
is represented by a tanglegram (Figure 4). It can be observed that
only four samples were assigned to a different cluster (risk
subcategory) with the reduced gene subset (Figure 4).

3.4 Identification of prognostic genes

Five prognostic genes were identified and linked with KIRC
patient survival by univariate Cox regression analysis between the
48 RFE gene subset and patient survival data. The prognostic genes
were detected utilizing the LASSO algorithm, which assigns non-
zero, positive, or negative coefficients. Two of the five genes had

TABLE 1 The number of patient samples stratified by hierarchical clustering. The average overall survival of all patients within a cluster was calculated and further
categorized into Short (SS), Intermediate (IS), and Long Survival (LS).

Cluster Average survival (days) Survival time Risk subcategory Samples

1 864.43 Short SS 42

2 1076.38 Intermediate IS 24

3 1522.31 Long LS 16

Total 82
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positive coefficients, while three genes had negative coefficients
(Table 2).

Based on patient statuses, the K-M estimations for overall survival
were derived and presented below. The K-M curves illustrate low,
intermediated, and high gene expression in blue, green, and red
colors, respectively. The K-M curves of genes SALL4 and KRT15
with positive coefficient values are presented in Figure 5.

The K-M curves for the three genes OSBPL11, SPATA18, and
TAL2 with negative coefficient values are presented in Figure 6.

The five prognostic genes’ estimations and p-values in the Cox
regression model were all significant, which demonstrates that the
altered expression of these genes affects KIRC survival.

3.5 Gene expression patterns between risk
subcategories

One-way ANOVA was performed to assess for differences in the
mean normalized gene expression profiles of each of the prognostic
genes detected between the risk subcategories. This evaluation included
the differences between SS and IS, IS and LS, and SS and LS. Each
survival group consisted of a set of samples that make up that risk
subcategory, from which a boxplot was created using the normalized
gene expression profile of a specific prognostic gene (Figure 7).

All prognostic genes showed a statistically significant difference
between SS and LS (p-value ≤ 0.015). It is further noteworthy that

ANOVA resulted in a statistical difference in the normalized gene
expression between IS and LS (p-value ≤ 0.0032) as well as between
survival IS and SS (p-value ≤ 0.018) (Figure 7).

3.6 Enrichment analysis

The GO enrichment analysis illustrated that KIRC DEGs were
significantly enriched in biological processes (BP), including
extracellular matrix (ECM) organization, extracellular structure
organization, and external encapsulating structure organization
(Figure 8). In terms of cellular component (CC), collagen-
containing ECM, cell leading edge, and cell projection
membrane, among other terms were significantly enriched in
KIRC DEGs (Figure 8). Lastly, the molecular function (MF),
were significantly enriched in ECM structural constituent, growth
factor binding, and hormone binding (Figure 8). The KEGG analysis
revealed that the 48 gene subset significantly enriched for the
p53 signaling pathway, HIF-1 signaling pathway, and estrogen
signaling pathway (Figure 9).

4 Discussion

The high molecular heterogeneity of RCC necessitates further
sub-classification to establish a successful treatment strategy and

FIGURE 2
Supervisedmachine learning. (A) Recursive feature elimination selected 48 geneswith the highest performance score of 0.963. (B)Confusionmatrix
that defines the performance of RF classifier. Each row and columns represent the instances in an actual and predicted class, respectively. (C) The
importance of each gene for RF classifier prediction.
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medical care. Therefore, this study focussed on KIRC as it represents
the majority of RCC diagnoses. The study aims to identify subtypes
that reflect a genotype-phenotype relationship for KIRC patients
that provide a more accurate prognosis, with an emphasis on cancer
progression.

This study implemented a normalization method in which the
gene expression profiles of eighty-two advanced-stage KIRC samples
were normalized with early-stage cancer samples to consider
heterogeneity differences in the multi-stage cancer progression.
The normalization method corrects for genes that present with
high expression variability in early-stage samples but less expression
variability in advanced-stage cancer samples. This leads to the
availability of more meaningful information to track the cancer
progression from early-to advanced-stage, based on the differences
in the gene expression profiles.

The normalized gene expression was subjected to a hierarchical
clustering method, to detect cancer samples that progress differently
in gene expression patterns. The approach allows for the grouping,
alternatively, clustering of cancer samples to identify samples within
a group/cluster that are similar to each other and different from

samples in other groups. This popular method revealed three cancer
clusters (subtypes) for KIRC cancer. The three molecularly defined
clusters were correlated with the patients’ average OS. It can be
noted that patients in Cluster 3 lived on average 657.88 days longer
than patients in Cluster 1. Meanwhile patients in Cluster 2 and
Cluster 3 live on average 211.95 days and 445.93 days longer than
patients in Cluster 1 and Cluster 2, respectively. Thus, the obtained
three clusters by the use of our normalization method illustrate
different KIRC tumors that progressed differently from early-stage
to late-stage cancer development (Figure 3). Consequently, these
clusters have different prognoses and can be considered as different
subtypes. The results of the hierarchical clustering analysis were
subjected to a validation step using an independent GEO dataset
(Supplementary Material S1). This test dataset includes sixty-five
KIRC samples, and the normalization method also identified three
clusters in the GEO KIRC dataset (Supplementary Material S1).

The 48 genes identified through theMachine Learning analysis have
the capacity to accurately classify and predict the KIRC subtypes to an
extent similar to the use of the 19,556 protein-coding genes. This
demonstrates the existence of genetic heterogeneity within KIRC

FIGURE 3
Principal component analysis using the normalized gene expression profiles of the 48 RFE gene subset. KIRC samples were stratified according to
the initial hierarchical clustering analysis.
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tumors and the ability of our normalization method to recognize this
heterogeneity and associate it with prognosis and OS. The gene set
contains genes that were reported to play a critical role in the

aggressiveness of renal tumors, and our study revealed their
involvement in the heterogeneity of the most prevalent and
aggressive subtype in renal cancer, KIRC.

Analysis of GO enrichment illustrates the involvement of DEGs
in the biological processes that promote tumor aggressiveness. It has
been reported that ECM regulates fundamental properties of
tumors, such as growth and invasion. The most prevalent genetic
mutations in KIRC inactivate the VHL gene, which plays a direct
role in ECM organization. Therefore, therapeutic approaches to
control ECM are currently being investigated and an advanced
understanding of KIRC ECM will determine if ECM-modifying
drugs are appropriate for KIRC (Oxburgh, 2022). An additional BP
enrichment was macrophages that are highly enriched in RCC, and
the RCC survival rate is strongly correlated with the inflammatory
cytokines secreted by macrophages (Xie et al., 2022).

FIGURE 4
Tanglegram. The initial hierarchical clustering of 19,556 protein-coding genes (left) and clustering analysis of the 48 RFE gene subset (right).

TABLE 2 Five prognostic genes. The coefficient value obtained by LASSO
algorithm.

Gene name Coefficient value

SALL4 0.06613418699953

KRT15 0.0296694189909953

OSBPL11 −0.121246995833747

SPATA18 −0.0770127595245775

TAL2 −0.18919349247905
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In terms of the cellular component (CC), KIRC DEGs were
significantly enriched in functional elements such as basement
membrane (BM). According to a recent study, KIRC is associated
with unique basement membrane gene expression patterns, and the
characterization of the BM has the potential to guide clinical therapy
(Xiong et al., 2022). Cellular component, collagen trimer has been
similarly found in studies focused on renal cancer progression
(Wang A. et al., 2019), along with molecular function enriched
extracellular matrix structural constituent and platelet-derived
growth factor binding (Wang A. et al., 2019; van Roeyen et al.,
2019). Lastly, MF is significantly enriched for hormone binding, and
hormones plays a role in RCC etiology. Hormone receptor
expression in RCC cells has been demonstrated to be aberrant
(Czarnecka et al., 2016).

Analysis of KEGG pathways revealed signalling pathways that
promote cancer progression and resistance to therapies. The
SERPINE1 gene was enriched in the p53 signaling pathway, HIF-1
signaling pathway, and apelin signaling pathway. The interaction
between P53 and HIF signaling can promote cancer progression
(Zhang et al., 2021). While apelin signaling has also been linked to
the development of cancer and its progression (Liu et al., 2021). It is thus
noteworthy, that the survival analysis of SERPINE1 expression in
TCGA found a correlation between shorter survival, and the
increased tumor grade, lymph node metastasis, and tumor stage
(Guo et al., 2023). Therefore, SERPINE1 plays a crucial role in the
progression of KIRC. KIRC patients categorized as SS revealed high
levels of SERPINE1 gene expression, whereas LS displayed low levels of
gene expression. Hence, the method tracked the progression of KIRC

FIGURE 5
Kaplan-Meier survival curves. Analysis revealed the survival prediction associated with high and low gene expression profiles of SALL4 and KRT15
prognostic genes in KIRC patients.

FIGURE 6
Kaplan-Meier survival curves. Analysis revealed the survival prediction associated with high and low gene expression profiles of OSBPL11, SPATA18,
and TAL2 prognostic genes in KIRC patients.
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and further indicated the potential of SERPINE1 as a therapeutic target
for KIRC patients.

Together with SERPINE1, the PGK1 gene was also enriched for
HIF-1 signaling pathway. HIF-1 is known to modulate a number of
signaling pathways, having a significant impact on the cancer’s
response to radiotherapy (Huang and Zhou, 2020). Therefore, a
viable approach for sensitization of KIRC to radiotherapy is to target
SERPINE1 and PGK1. Also, PGK1 has been linked to several roles in
the development of cancer, tumor progression, and drug resistance.
The gene is known to promote sorafenib resistance, which is a first-
line treatment for KIRC patients as a tyrosine kinase inhibitor.
However, resistance to sorafenib significantly reduces the
effectiveness of therapy (He et al., 2022). Therefore, the large
patient group (n = 42), accounting for about half of the KIRC
patients investigated in this study encompassed in SS, may be
affected by this resistance to therapy.

Genes KRT15 and GPER1 enriched for estrogen signaling
pathways can also serve as treatment targets for KIRC patients.
Estrogen is known to inhibit the proliferation, migration, and
infiltration of RCC cells as well as increase RCC apoptosis (Yu
et al., 2013). This study illustrated that the downregulation of
KRT15 had favorable prognostic outcomes for KIRC patients for
Cluster 2 and 3 (Figures 5, 7), whereas the downregulation of
GPER1 was linked to unfavorable prognosis in Cluster 1.
Therefore, the two genes may serve as valuable prognostic

markers for KIRC and a novel developmental approach for
enhancing KIRC therapeutics.

This study further identified five prognostic genes as promising
prognostic biomarkers and treatment targets for KIRC patients
(Table 2). Cox regression together with Kaplan-Meier analyses
confirmed the prognostic biomarkers and showed that patients
with high levels of SALL4 and KRT15 gene expression have a
poor survival outcome than patients with low levels of gene
expression (Figure 5). While the high gene expression level of
OSBPL11, SPATA18, and TAL2 has a favorable survival outcome
than patients with a low level of gene expression (Figure 6).
Therefore, K-M confirmed that the five genes are effective at
diagnosing KIRC patients and predicting prognosis.

The results are supported by previous research, which indicated that
the high gene expression level of SALL4 has a poor survival outcome in
comparison to KIRCpatients with a low gene expression level (Che et al.,
2020). Also, data from Sun et al. (2020) showed that the downregulation
of SALL4 reduces KIRC tumor growth, metastasis, and angiogenesis.
Therefore, it is noteworthy that Cluster 2 with intermediate survival
followed a similar trend in cumulative survival probabilities as Cluster
1with short survival (Figure 5). Furthermore, the high gene expression of
KRT15 has also been reported to correlate with a poor prognosis for RCC
(Zhang et al., 2023). This study was able to detect KRT15 as a prognostic
gene in the KIRC subtype. The levels of gene expression correspondwith
the SS, IS, and LS (Figure 7). Previous studies have also reported higher

FIGURE 7
Boxplots based on risk subcategories of the five prognostic genes in KIRC patients. A boxplot was constructed with the normalized gene expression
profile of each prognostic gene in all the samples that were categorized into the SS, IS, and LS categories.
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levels of SPATA18 gene expression associated with favorable OS in the
KIRC subtype (Lingui et al., 2023) as well as in RCC (The human protein
atlas, 2023a). High expression of TAL2 has been reported with a
favorable OS in RCC (The human protein atlas, 2023b). This is the
first article to our knowledge to report OSBPL11 as a prognostic
biomarker. A similar observation as with the SALL4 K-M curve is
observed with theOSBPL11 gene. The K-M curve of Cluster 2 followed a
similar trend in cumulative survival probabilities as Cluster 1 (Figure 6).
Therefore, the upregulation ofOSBPL11 could reduceKIRCprogression.

ANOVA was used to assess the heterogeneity in the prognostic
genes’mean gene expression profiles, to establish whether SS, IS, and LS
samples’ gene expression profiles differ from one another. The
prognostic value of the five prognostic genes found was confirmed
by ANOVA, which also indicated a statistically significant difference in
gene expression between short- and long-term survival. A crucial
discovery was made between the gene expression profiles in the

intermediate- and long survival as well as intermediate- and short
survival. ANOVA showed statistically significant differences between
the gene expression profiles of both IS and LS, and IS and SS. This further
validates the finding of an intermediate-survival group. The unique gene
expression pattern of each of the five prognostic genes were further
subjected to a validation step using the independent GEO dataset
(Supplementary Material S1). This test dataset verified prognostic
genes OSBPL11 and TAL2 in the GEO dataset illustrated a similar
gene expression pattern for cluster 1 (short survival) and cluster 3 (long
survival). The remaining three prognostic genes, SALL4, KRT15, and
SPATA18 showed similar gene expression patterns for all three clusters
(Supplementary Material S1). The five prognostic genes are therefore
essential as they may enable an improved KIRC patient prognosis based
on the gene expression level of the five genes. Hence, this discovery is
important as it is directly correlated with survival and could aid in
predicting the outcome of KIRC patients.

FIGURE 8
Gene Ontology enrichment analysis. Top 10 functional items of KIRC DEGs based on clusterProfiler. *Functional databases: BP, Biological process;
CC, Cellular component; and MF, Molecular function.
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The investigation detected molecular mechanisms that allowed
for the segregation of three unique cancer clusters (subtypes) that
progress differently in gene expression profiles and correlate with
KIRC patient survival. Therefore, the normalization method was
successfully implemented in this study and hierarchical clustering
was able to provide an accurate assessment of the heterogeneity of
KIRC. The cellular functions detected by GO enrichment along with
the pathogenic genes detected by KEGG pathway analysis further
confirmed the contribution to the progression of the disease.
Additionally, the heterogeneity of KIRC served as a fuel for
therapy resistance and emphasized the urgent need to expand the
clinical subtypes for KIRC patients. As a result, this investigation
facilitated and contributed to the current KIRC cancer classification
with in-depth patient subtyping. The discovery of the five prognostic
genes, combined with the biomarkers detected in pathway analysis,
can provide a more accurate prognosis, and serve as targets to
provide a more effective therapeutic approach for KIRC patients.

5 Conclusion

The implemented normalization method has the potential to
reveal cancer patients that progress differently (subtypes) and
establish a genotype-phenotype relationship between the
identified subtypes and the patient’s OS. In this study,

correlations between the risk subcategories and gene signatures
differentiated short, intermediate, and long survival in KIRC
patients. The prognostic capacity of the prognostic genes can
successfully classify and predict the prognosis of KIRC patients.
Moreover, the prognostic genes were able to segregate patients into
additional survival subcategories and thus provide targets that can
enhance patient prognosis and aid in the development of
individualized treatment approaches.
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