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Editorial on the Research Topic

Mathematical modeling and optimization for real life phenomena

In today’s world, where complexity abounds and challenges are multifaceted,
mathematical modeling and optimization emerge as essential tools for addressing real-life
phenomena. These disciplines not only enhance our understanding of intricate systems but
also empower us to devise efficient solutions for a wide array of problems. By representing
real-world phenomena through equations and algorithms, mathematical modeling enables
us to simulate and predict the behavior of complex systems. When combined with
optimization techniques, we can seek the best solutions for challenges ranging from
logistical planning to natural resource management.

In the realm of mathematical modeling and optimization, statistical processes
like Markov Chain Monte Carlo methods play a crucial role in estimating posterior
distributions for Bayesian computations. However, these methods often face challenges
with slow run times when dealing with large datasets or complex parameter distributions.
To address this, Suchoski et al. introduce the Multiple-Try Metropolis variant, optimizing
the algorithm for faster convergence by running more parallel likelihood calculations to
approach a parameter estimation for a Susceptible-Exposed-Infectious-Removed (SEIR)
model and forecasting new cases of COVID-19. The recent pandemic situation highly
affected our world, then the study of epidemic spread, exemplified by COVID-19, has
attracted significant attention from scholars. By proposing the SEIRD (Susceptible-
Exposed-Infected-Recovered-Dead) model based on the SIR (Susceptible-Infected-
Recovered) propagation model, Chen et al. introduce specific parameters to simulate virus
spread through objects, providing valuable insights for epidemic analysis and prediction.

Amid the current emphasis on sustainability, efficiency, and innovation, mathematical
modeling and optimization are also indispensable in fields that include applications in
humans and animal health. Netshikweta and Garira present a nested multiscale model
that integrates within-host and between-host disease dynamics for Paratuberculosis in
ruminants. Their study explores the influence of the initial infective inoculum dose
on disease dynamics, revealing insights into pathogen replication and super-infection
effects. Also, results on mathematical modeling in the case of health risk, for animals
and humans in the agriculture exposed by pesticides result in an interesting topic. Aksüt
and Eren studied the significance of personal protective equipment using a multi-criteria
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decision-making approach to mitigate the risks of injuries and
illnesses stemming from pesticide use. Emphasizing the utilization
of personal protective equipment, particularly during pesticide
application, will enhance the adoption rate of protective measures.
Another real life phenomenon needing mathematical modeling
and optimization arise in the formation of hydroxyapatite in
biological tissues which is regulated by physicochemical factors
not fully understood. In that sense, Poorhemati and Komarova
utilize mathematical modeling to depict the intricate environment
conducive to hydroxyapatite precipitation, enabling in silico studies
of complex clinical scenarios.

The modeling of dynamical systems in the area of neural
behavior and new technological devices, as new logical gates,
has been growing in the last decade. Dynamical behavior in
neural burst patterns is characterized by temporal heterogeneity
across various domains. Lee et al. propose a Burst and Memory-
aware Transformer (BMT) model designed to address bursty
temporal patterns effectively, enhancing predictive performance.
In the field of communications systems, new devices and logical
gates are continually evolving to meet technological advancements.
Dynamical systems displaying chaotic behavior are utilized to
emulate logic gates for general-purpose computing. Rivera-Durón
et al. present a methodology based on unstable dissipative systems
capable of generating multi-scrolls and multi-stability, leading to
the development of dynamic logic gates.

In the area of controlling dynamical systems, some examples
about control and synchronization are mentioned, for which it
is well known that when the synchronization topic is studied,
it can develop emergent phenomena depending on the number
of elements of the system. Research on optimal control using
fractional calculus by Hailu and Teklu explores dynamics of rail
passengers’ negative attitudes, aiming to prevent and treat negative
attitudes through optimal control strategies. The synchronization
transition in the Shinomoto-Kuramotomodel on networks of fruit-
fly and human connectomes is investigated by Ódor et al. shedding
light on critical behavior in the presence of external excitation.
Their numerical solutions provide insights into non-universal
scaling tails and compare well with experimental results obtained
by fMRI. The Particle Swarm Optimization (PSO) algorithm
is an effective optimization method known for its impressive
performance in problem-solving. Research on the convergence
analysis of this method is still ongoing, in that sense, Nigatu
et al. introduce a method for regulating particle swarm velocity
by incorporating a constriction factor into the standard swarm

optimization algorithm, known as CSPSO. They also present a
mathematical model of CSPSO with the time step attractor to
analyze convergence conditions and stability. This adaptation of the
standard particle swarm optimization aims to enhance the balance
between exploration and exploitation, thus mitigating premature
convergence issues commonly seen in PSO algorithms.

Fostering research and development in mathematical modeling
and optimization is crucial for addressing current challenges
effectively across diverse fields. By integrating these disciplines into
our problem-solving approaches, we can advance toward a more
sustainable, efficient, and impactful future. This Research Topic
gathers important recent developments with promising future
perspectives on mathematical models for real life phenomena.
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GPU Accelerated Parallel Processing
for Large-Scale Monte Carlo
Analysis: COVID-19 Parameter
Estimation and New Case
Forecasting

Brad Suchoski 1, Steve Stage 2, Heidi Gurung 1 and Prasith Baccam 1*

1 IEM, Inc., Bel Air, MD, United States, 2 IEM, Inc., Baton Rouge, LA, United States

Markov Chain Monte Carlo methods have emerged as one of the premier approaches

to estimating posterior distributions for use in Bayesian computations. Unfortunately,

these methods often suffer from slow run times when the data become large or

when the parameter values come from complex distributions. This speed issue has

prevented MCMC analysis from being used to solve some of the most interesting

problems for which its technique is a good fit. We used the Multiple-Try Metropolis

variant of the basic Metropolis Hastings algorithm, which trades off running more parallel

likelihood calculations in favor of a higher acceptance rate and faster convergence

compared to traditional MCMC. We optimized our algorithm to parallelize it and to take

advantage of GPU processing. We applied our approach to parameter estimation for

a Susceptible-Exposed-Infectious-Removed (SEIR) model and forecasting new cases

of COVID-19. In comparison to a fully parallelized CPU implementation, using a single

GPU to execute the simulations resulted in more than a 13x speedup in wall clock time,

running on multiple GPUs resulted in a 36.3x speedup in wall clock time, and using a

cloud-based server consisting of 8 GPUs resulted in a 56.5x speedup in wall clock time.

Our approach shows that MCMC methods can be utilized to tackle problems that were

previously thought to be too computationally intensive and slow.

Keywords: COVID-19, GPU, mathematical modeling, compartment model, markov chain monte carlo, parameter

estimation

1. INTRODUCTION

This paper explores the use of computer algorithm optimization and parallelization to accelerate
large-scale Markov Chain Monte Carlo (MCMC) analyses which were applied to parameter
estimation for a Susceptible-Exposed-Infectious-Removed (SEIR) model and forecasting new cases
of COVID-19. A large quantity of simulations was run to estimate the parameter values in the
SEIR model and increase their accuracy through optimization via graphics processing unit (GPU)
processing and parallelization of both the likelihood function and multiple MCMC chains using a
multiple-try Metropolis (MTM) MCMC algorithm. The key accomplishment of this project was
the application of optimization and parallelization techniques to speed up the MCMC analysis
to the point that it could be used in a large, real-world situation, demonstrating that theoretical
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improvements are now achievable with existing computer
hardware, parallel programming, and GPU acceleration.

MCMC methods have emerged as one of the premier
approaches to estimating posterior distributions for use in
Bayesian computations, which have been useful in a number of
fields, including machine learning [1], physics [2], and systems
biology [3]. Unfortunately, these methods often suffer from slow
run times when the data become large or when the parameter
values come from complex distributions. This speed issue has
prevented MCMC analysis from being used to solve some of
the most interesting problems for which its technique is a good
fit. Finding methods to improve the speed while maintaining
accuracy without bias has been a topic many researchers have
investigated [4, 5]. Other methods have been proposed to
improve the convergence rate, resulting in more accurate results
for the same number of iterations of the MCMC algorithm [6, 7].
The Multiple-Try Metropolis algorithm is one technique that
has arisen that can improve computation speeds through parallel
processing because the algorithm itself is highly parallelizable
[8]. While parallelizing computations will inevitably reduce
computational time, we have sought to increase speed further
by optimizing the code to also leverage hardware advances to
decrease the time it takes for analysis by running on GPUs.

The idea for the MCMC method used in this example
comes from a source-reconstruction plume dispersion model
currently in development. This original work takes a time series
of chemical concentration signals recorded by field sensors at
known locations. It then works backwards from those signals
to estimate the most likely source of the chemical release. An
MCMC chain is used to run the plume model in a forward
direction, and the similarity of the real sensor data to the
estimates from the plumemodel is used as the likelihood function
to infer the most likely parameter values that describe the
chemical release.

In this paper we instead start with a time series of COVID-
19 cases. We then use MCMC to work backward to estimate
SEIR parameter values which works in a similar manner plume
model case. In both cases, the computation of the likelihood
function involves running a complex physics-based simulation
in the forward direction and then using the simulation’s results
to calculate a likelihood. The inclusion of the physics-based
simulation in the likelihood function makes it impractical to use
any MCMC variants, such as Hamiltonian Monte Carlo, which
require the gradient of the likelihood function. At the same
time, these particular physics simulations are simple enough that
running a single instance of them does not require enough work
to fully utilize the hardware of even a single modern GPU.

This creates a particularly challenging problem, because
MCMC methods are inherently sequential algorithms.
Calculating each step of the chain requires knowing the
state of the chain from the previous step as input. This can
make them computationally expensive when analyzing large
datasets and complex parameter sets, making them impractical
in those situations [9]. Many approaches to parallelizing and
accelerating MCMC algorithms have been proposed that mainly
fall into two categories. One approach is to divide the problem
into smaller pieces that can be run independently and in parallel.

The other approach is to use knowledge of the posterior, priors
or other information to accelerate the convergence rate and
reduce the number of iterations required [4, 5]. For example, the
simplest of these approaches is to just run several independent
chains in parallel and then average the results. Alternatively,
one can run multiple interacting chains that share information
at certain points in the step to reduce the number of iterations
required for convergence. Other methods such as Hamiltonian
Monte Carlo (HMC) and No U-Turn Sampling (NUTS) use
auxiliary parameters combined with Hamiltonian dynamics
and the ability to calculate the likelihood function’s gradients to
accelerate convergence [10, 11].

Our approach to accelerating the SEIR-based MCMC chains
was twofold. First, we used multiple parallel chains that
synchronize on each iteration before the next proposal point is
drawn. During the drawing of the proposal point, each chain
uses the other chain locations as samples to estimate the local
parameter covariances. This allows us to use a multivariate
Gaussian proposal distribution that more closely estimates the
target posterior at each step. Second, we used theMTM variant of
the basic Metropolis Hastings (MH) algorithm [8, 12]. The MTM
algorithm trades off runningmore parallel likelihood calculations
in favor of a higher acceptance rate, faster convergence, and
fewer total iterations compared to traditional MCMC. We then
optimized our algorithm to parallelize it from the top down
with a synchronization point in the likelihood function just
prior to starting the SEIR model simulations. This allowed us to
simultaneously launch an entire ensemble of SEIR simulations
that need to be run on GPU. The entire ensemble could then be
solved in parallel using the fine-grained data parallel execution
model of GPUs as opposed to the independent course-grained
task parallel model of central processing units (CPUs).

2. MATERIALS AND METHODS

2.1. Background
2.1.1. SEIR Applications
Prior to this research, IEM had developed a tool (BioSim) that
allows users to quickly and efficiently build epidemiological
compartment models with any number of compartments
and connections, and leverages the computational power of
Nvidia GPUs to significantly accelerate solving ensembles of
compartment model problems in parallel. The application of this
research was to explore methods for applying parallel solutions of
compartment models to estimating parameters and forecasting
new cases of the COVID-19 pandemic using recent confirmed
case counts.

The BioSim tool was built with three key unique components
over existing and traditional SEIR models. First, the model
itself has been parallelized and optimized to run ensembles of
simulations multi-threaded on CPU, or on GPU for additional
speedup, allowing large numbers of simulations to be run
quickly. This aspect is important for MCMC and other analyses
that require large volumes of data. Next, BioSim supports
aged transitions. That is, individuals move from compartments,
but also with reference to their time in the compartment.
This blends the standard compartment model concept with an
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agent-based approach, as transitions between compartments are
controlled at the agent level. A third addition to BioSim which
is not found in existing SEIR modeling tools is the ability to
allocate resources and have those resource allocations impact the
outbreak. Resources include things like vaccines, hospital beds,
and treatment availability.

A number of other SEIR tools and packages are currently
available. They include: for R, the plotSIRModel package [13] that
plots Markov chain SEIR models; for Python, the SEIR package
[14] for building SEIR models within Python, and the Cornell
multi-region SEIR model with mobility [15], a web page that
allows users to build and observe SEIR models online. Many
researchers also use ordinary differential equation (ODE) solvers
available as packages in several different languages (such as
Python, R, and C++) to build their own SEIR models.

2.1.2. GPU Accelerated MCMC Applications
In 2013, Hall et al. proposed a Metropolis Monte Carlo (MMC)
method for running molecular simulations [16]. Their approach
used CUDA to run their CPU-GPU algorithm, with special
manipulation of the GPU memory to decrease the use of system
memory and swapping across devices. The system is designed
with one GPU per CPU process. The GPU is tasked with
parallelizing parts of the likelihood function asynchronous to
the CPU, and the CPU is responsible for running the parts of
the likelihood function that cannot be efficiently parallelized
before synchronizing with the GPU and combining the results.
This approach parallelizes only portions of the inner likelihood
function running the molecular simulations while each step of
the MCMC algorithm is computed sequentially on the CPU.
This is feasible in their use case because the molecular dynamics
simulations run during the likelihood function calculation were
sufficiently complex to provide enough parallel work that the
GPU was fully utilized.

Our use case involves solving an SEIR model during the
likelihood function calculation. In our case, and many like it, the
amount of work required for a single simulation is not sufficient
to completely utilize even a single GPU. Running ensembles of
many independent simulations simultaneously and in parallel
can increase GPU utilization. Even so, it may still require several
hundreds to several thousands of independent simulations in an
ensemble before GPU acceleration becomes beneficial. In order
to efficiently use the GPUs in these cases, the parallelization
cannot be limited to just the likelihood function as in Hall et al
[16]. It must rather be moved up a level to include portions of the
MCMC algorithm itself.

2.2. Methods
In this section we introduce our method, which can be broken
into four separate tasks:

1. Choosing an epidemiological model for taking a set of input
parameter values and modeling data such as cumulative case
counts over time

2. Implementing a parallelized modified MCMC analysis to
estimate epidemiological model parameter values that best fit
historic reported data

3. Developing an epidemiological model ’restart’ method which
allows tracking changes in epidemiological model parameters
over time by using MTM-MCMC to fit parameters in a series
of overlapping windows of historical data

4. Applying these techniques to first estimate the best model
parameters to fit historic values and then using those
parameters to project future parameter values and case counts.

Optimizing the epidemiological model and MCMC analysis
algorithms to run on GPU hardware is also included in the
activities of the first two tasks.

2.2.1. Epidemiological Model
The IEM BioSim tool was used to build the standard SEIR model
defined by the system of ordinary differential (Equation 1) [17].

S′ = −
βIS

N
,

E′ =
βIS

N
− µE,

I′ = µE− γ I,

R′ = γ I

(1)

We begin each of the simulations with the entire population
susceptible, except for a single person in exposed. The simulation
start date that this occurs on is one of our inferred MCMC
parameters. We used an estimate of 5.2 days as both the latent
period 1/µ and infectious period 1/γ [18]. We then allow
the transmissibility β(t) to be a function of time instead of a
constant as is typical with SEIR models. The rationale behind
this is that while the biological factors affecting transmissibility
are unlikely to change much over time, there are a multitude
of social, behavioral and political factors that do. Mask wearing,
social distancing, school closings and vaccinations, to name a
few, can all dramatically change the transmissibility on very short
time scales. They tend to not stay constant over the course of an
outbreak. Rather than attempt to account for all of these factors,
we simply used a general parameterized function β(t; θβ ) for the
transmissibility and then used case data and MCMC to work
backward to infer the parameter θβ .

While the BioSim tool is capable of being generalized to any
number of compartments and supports resource constraints and
aged transitions between compartments, for this problem we
chose to use a simple SEIR model to minimize the assumptions
in the epidemiological model. All of the methods discussed
are applicable to arbitrarily complex epidemiological models.
We have successfully tested the methods using epidemiological
models that include factors such as hospitalization and ICU
admission, deaths, asymptomatic cases, and vaccinations, for
instance. For the context of the current discussion however, a
simple SEIR model illustrates all of the important issues.

2.2.2. Multiple-Try Metropolis Markov Chain Monte

Carlo Method
In order to find the most likely values of our epidemiological
model parameters that explain the observed data and to quantify
the uncertainty in those values, we employ the use of an MCMC
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method. MCMC provides several important benefits over other
optimization algorithms, including but not limited to

• MCMC can locate not only the optimal solution to some
likelihood function but also estimates the shape of the entire
posterior probability function π(θ |y) of some parameters θ

given some observed data y.
• There are versions of the algorithm that do not rely on the

ability to calculate or estimate any derivatives of the likelihood
function, allowing for more complicated functions to be used.
In our case, the likelihood function uses the solution to our
SEIR model.

• The MTM variant of the standard MCMCmethod that we use
provides a significant level of parallel computation well suited
for execution on GPUs.

We used a variation of the MTM algorithm [12] that is similar to
the methods described in Martino et al. [19], Calderhead et al.
[20], and Corander et al. [6]. The core idea of MTM is that
instead of evaluating a single proposal parameter set at each
iteration it evaluates multiple proposals in parallel. Once the
likelihood of each proposal is calculated, it can be shown that the
likelihood values can be used to choose a single proposal and an
acceptance rate in a way such that the stationary distribution of
the chain matches the target posterior. The reason we chose the
MTM variant over the traditional MH is that it trades parallelism
for total likelihood function evaluations. The MTM variant
will typically have to perform more total likelihood function
evaluations to achieve the same level of convergence as compared
to the standardMH. However, because the likelihood evaluations
at each iteration of MTM can be computed in parallel, and fewer
MTM iterations are required to reach convergence, the MTM
algorithm can more effectively utilize a multi-core CPU or GPU.

The variation of MTM-MCMC analysis listed in Algorithm 1

is used in this paper and can be generalized to any problem by
simply changing the likelihood function. Most of Algorithm 1 is
run on the CPU with no optimization, the exception being the
likelihood calculation L(y|θ). Even so, the CPU portion is still
responsible for less than 6% of the total runtime in all of our
GPU benchmark tests. However, the problem-specific likelihood
function is both optimized and parallelized to run on GPU and is
responsible for the remaining compute time in our benchmarks.

The likelihood function L(y|θ) and prior probability pdf
g(θ) are problem specific. The proposal pdf Q(θ |2) can be
chosen for the specific problem being solved, but there are
generalizable options available. In the tests for this paper, we
chose to use the simple and generalized form of a multivariate
normal distribution

Q(θ |2) = N (θ ,3) (2)

where 3 is the estimated sample covariance matrix of the Nc

chain samples 2 = [θ (1), . . . , θ (Nc)].

2.2.3. Time Varying SEIR Model Parameters
One of the main aspects of the COVID-19 outbreak we are trying
to capture is the time-varying nature of the model parameters.
In particular, we know that the effective reproductive number,

Algorithm 1: Variation of the Multiple-Try Metropolis
Algorithm with Nt tries and Nc chains. It is identical to
the traditional Metropolis Hastings MCMC algorithm in
the case where Nt = 1 and Nc = 1, and is identical to
the Multiple-Try Metropolis Algorithm in the case where
Nt > 1 and Nc = 1. Increasing either Nt or Nc will
also increase the amount of computational work required
per outer NMTM loop. However, increasing either should
result in faster convergence thus requiring fewer total NMTM

iterations. Also, the inner Nc and Nt loops can be computed
in parallel using a single barrier synchronization point.

Data:
Observed data y
Initial Parameters 2(0) = [θ (0,1), . . . , θ (0,Nc)], one for each
chain
Likelihood pdf L(y|θ)
Prior probability pdf g(θ)
Proposal pdf Q(θ |2)

Importance weight function w(θ |2) = L(y|θ)g(θ)
Q(θ |2)

Result: Parameter samples
2(i) = [θ (i,1), . . . , θ (i,Nc)], ∀i ∈ [1, . . . ,NMTM]

for i = 1, . . . ,NMTM do

parfor c = 1, . . . ,Nc do

parfor t = 1, . . . ,Nt do

Draw test sample θ
(t,c)
s ∼ Q(θ (t,c)s |2(i−1))

Calculate the test importance weight

I(t,c) = w(θ (t,c)s |2(i−1))
end

Select a single θ̄ (c) from [θ (1,c)s , . . . , θ (Nt ,c)
s ] with

probabilities proportional to [I(1,c), . . . , I(Nt ,c)]
Barrier
Let 2̄ = [θ̄ (1), . . . , θ̄ (Nc)]
parfor t = 1, . . . ,Nt do

if t < Nt then

Draw reference sample θ
(t,c)
s ∼ Q(θ (t,c)s |2̄)

else

Let reference sample θ
(t,c)
s = θ (i−1,c)

end

Calculate the reference importance weight

J(t,c) = w(θ (t,c)s |2̄)
end

Draw α ∼ U(0, 1)

if α < I(1,c)+...+I(Nt ,c)

J(1,c)+...+J(Nt ,c)
then

Accept: θ (i,c) = θ̄ (c)

else

Reject: θ (i,c) = θ (i−1,c)

end

end

Let 2(i) = [θ (i,1), . . . , θ (i,Nc)]
end

Re(t), (or equivalently the transmissibility β(t) = Re(t)/γ ) is not
constant but changes over the course of an outbreak due to many
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factors including physical distancing, vaccination, quarantining,
masking, sufficient and appropriate use of personal protective
equipment (PPE), and contact tracing. We want to capture the
dynamic nature of the changing reproductive number without
making toomany assumptions that would restrict the exact shape
of the change and instead allow data to dictate its shape.

To accomplish this, we model the outbreak over time using a
series of overlapping constant size windows Wi spanning time
tb,i ≤ t ≤ te,i, with the beginning of each window being the
center of the previous window tb,i+1 =

1
2 (tb,i + te,i). Within each

window we model the transmissibility as changing linearly over
time βi(t) = Ait + Bi, and use Algorithm 1 to find the best
estimate values for Ai and Bi that match the reported data for
windowWi. By allowingAi and Bi to change from one window to
the next we can capture the time varying nature of the outbreak.

One obvious problem with this method is that the likelihood
function for window Wi involves using the solution to our SEIR
model during the current window’s time range tb,i ≤ t ≤ te,i.
However, to step the SEIR model forward in time through that
time period we need to know the initial conditions at some point
prior to the beginning of the window tb,i. The only time that
we know the model state with any certainty is at the start of
the outbreak tb,0 where we assume that the entire population is
susceptible with the exception of a single person who has been
exposed. To calculate the likelihood we have to either run each
SEIR model instance from tb,0 up to te,i using samples of Aj and
Bj ∀j ≤ i, or come up with a method for initializing the SEIR
model at the beginning of the current window tb,i and solve it
only for the current window’s time range tb,i < t ≤ te,i. We chose
the latter approach.

The key insight needed to accomplish this is to realize that
the initial state of the SEIR model for window Wi at time tb,i
does not take on a single well-defined value. It is instead itself
a random variable. Samples of it can be drawn by capturing the
SEIR model state of the chains from the previous window Wi−1

at time tb,i in the middle of that window’s time range. Ideally, to
get a truly random sampling of the initial state, we would run the
chains for window Wi−1 and Wi simultaneously. Applying this
approach recursively though would then require us to run all of
the windows back to W0 simultaneously, which would increase
computational complexity. We instead decided to store a finite
set of samples of the model state in the middle of each window
when running those chains. Then we then can draw a random
sample from that finite set for window Wi−1 when running the
window Wi as an approximation to the truly randomly drawn
initial conditions.

2.2.4. Application of Optimization and Parallelization

to the SEIR Model for R(t) Value and New Case

Projections
The parameter search space used by ourMTM algorithm consists
of a set of three parameters when running the first window and
then as sets of two parameters for each subsequent window.
The two common parameters are the linear coefficients Ai

and Bi that describe β(t) = Ait + Bi, and for the first
window only the additional third parameter is the start date on
which the first person was exposed. The prior probability, g(θ)

from Algorithm 1, used for these parameters was a rectangular
distribution. That is, they are uniformly distributed if the
parameter lies within feasible bounds and have a zero probability
outside those bounds. In our particular case, the feasibility region
is where the parameters result in a transmissibility β(t) that is
positive for all times in the current window β(t) > 0, ∀t where
tb,i ≤ t ≤ te,i.

All of the likelihood function L(y|θ) evaluations in
Algorithm 1 are located inside parallel loops over the Nc

chains and Nt tries. All iterations of those loops are advance
forward to the likelihood function evaluation before any iteration
starts evaluating the likelihood. We can then setup an ensemble
of all the forward SEIR simulations needed and solve them in
parallel using BioSim. The simulated number of incident new
cases each day c(t) is recorded from the BioSim SEIR runs. Our
model assumes the historical reported number of new cases each
day C(k) provided by Johns Hopkins University [21] includes

a normally distributed reporting error ε(k) = C(k) − C
(k)
true

with mean 0 and variance σ 2
rep. The likelihood L(C|θ) is then

supposed to be calculating the probability of reported values
being C(k) under the assumption that our simulated values c(k)

are the true values C(k)
true. So that is simply

L(C|θ) =
∏

k

ϕ(Ck; ck, σrep) (3)

where ϕ(x;µ, σ ) is the normal distribution pdf with mean µ and
variance σ 2. The reporting error variance σrep is not known, but

because the likelihood function is assuming that c(k) = C
(k)
true we

can approximate it as the estimated sample variance of the set of
residuals ε(k) = C(k)−c(k). Then for each stored parameter output

θ (i,c) from Algorithm 1 we can also store σ
(i,c)
rep as the sample of

the reporting error posterior.
For the last window Wn, the projections (cn at times t > te,n)

are theoretically separate from the historical estimations (cn a
times tb,n ≤ t ≤ te,n). However, for computational efficiency,
both the historical and projected values are calculated and stored
while running the forward SEIR simulations for the likelihood
calculation in the final window. The historical case values are only
dependent on the time-varying value of βn(t) within windowWn

for which we have data. The accuracy of projected case values
though is dependent on how we extrapolate β(t) past time te,n,
for which we have no data. This is an active area of our research.
Currently we use the constant value β(t) = βn(te,n), which is
to say the value of β(t) today will continue to the end of our
projection window (1–4 weeks in the future).

3. RESULTS

Our data source to test the method was cumulative case
timeseries data collected at the county level across the US
provided by the Johns Hopkins University Systems Science &
Engineering [21]. We used a selection of 385 individual counties
as well as the aggregate cases for all 50 states, 3 US territories,
and the US as a whole for a total of 439 jurisdictions. We
started each jurisdiction on March 8th, 2020, and ran 21-day
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windows Wi through March 23rd, 2021. To test the speedup,
we measured and compared the wall clock time under different
hardware configurations for running NMTM = 250 iterations of
the modified MTM (Algorithm 1), with Nc = 32 chains and
Nt = 128 tries, for a single window on all 439 jurisdictions. With
2 likelihood function calls per iteration, that required running a
total of 899,072,000 complete SEIR simulations, covering a 20 day
window at 2.4 h timesteps.

3.1. Software Configuration
The IEM BioSim library used to execute the SEIR models
is written in C++/OpenMP/CUDA. It is fully capable of
running either optimized for single node multi-core CPU
execution or for optimized single GPU acceleration, with
that option being configurable through an argument on
a single API call. The MCMC code is written in Julia
with a few computationally intensive portions, such as the
likelihood calculation from Equation (3), being offloaded to
the GPUs using CUDA.jl when running in GPU mode [22,
23].

A majority of the MCMC algorithm, including drawing the
proposal, calculating acceptance rates, and sample recording,
is run on CPU in both the CPU and GPU configurations.
Some of it could be offloaded to the GPUs for acceleration, but
it currently accounts for less than 6% of the overall runtime
even in the 8xGPU HPC node configuration. Julia’s built-in
distributed processing was used to split the SEIR model runs
across multiple GPUs or CPUs, with each process responsible
for executing an ensemble of SEIR models on a single CPU or
GPU through the BioSim API, and then synchronizing with the
rest of the MCMC algorithm. In the CPU configuration tests,
each process’ CPU threads were locked to a single local NUMA
node. For these tests we scaled the solution up to multiple GPUs
on a single node, but Julia’s distributed processing interface is
capable of being scaled up to multi-node/multi-GPU without
code modifications.

3.2. Hardware Configuration
All tests were run in both CPU and GPU configurations on
one of three hardware configurations meant to be representative
of either a high-end developer’s workstation, a single-node
CPU optimized HPC server, or a single-node GPU optimized
HPC server. The CPU optimized HPC server tests were
run on the top tier Amazon EC2 x86 compute optimized
instance (c5.metal), and the GPU optimized HPC server tests
were run on the top tier EC2 accelerated computing instance
(p4d.24xlarge). The detailed specifications of each hardware
configuration are listed in Table 1, and the timing results of
running our test on each hardware configuration are listed
in Table 2.

3.3. Accuracy of the Results
The accuracy of the test results was assessed by using the
MCMC chain samples to calculate prediction intervals for the
number of reported daily incident cases. We then compared the
coverage of the actual reported data against those prediction
intervals. Doing this comparison for days in the projection

TABLE 1 | Benchmark test hardware configurations.

Configuration CPU Main

memory

GPUs

Workstation 1x Intel Core

i9-10920X

128 GiB 4x Nvidia RTX 2080 Ti

CPU HPC Node 2x Intel Xeon

Platinum 8275CL

192 GiB

GPU HPC Node 2x Intel Xeon

Platinum 8275CL

1024 GiB 8x Nvidia Tesla

A100-SXM4-40GB

TABLE 2 | Benchmark timing tests results.

Configuration Wall time

(seconds)

Speedup

(Rel to WS)

Speedup

(Rel to HPC)

Workstation 1xCPU 8,469 1.0x 0.67x

Workstation 1xGPU 624 13.6x 9.06x

Workstation 4xGPU 233 36.3x 24.30x

HPC Node 2xCPU 5,654 1.5x 1.00x

HPC Node 1xGPU 387 21.9x 14.60x

HPC Node 8xGPU 100 84.7x 56.50x

time range, that is at times t > te,n, would introduce errors
caused by the β(t) extrapolation method used in addition
to any errors in the MCMC analysis itself. In order to
isolate the MCMC analysis errors, we decided to calculate
this coverage for days within the final windows time range
tb,n ≤ t ≤ te,n.

The reported number of cases on any given day,Crep = Ctrue+

εrep, is assumed to be the sum of the true number of cases Ctrue

and some normally distributed reporting error εrep with 0 mean
and variance of σ 2

rep. The MCMC process produces samples of
the true number of cases Ctrue from the SEIR model output, and
samples of the reporting error variance σ 2

rep from the likelihood
Equation (3). Under these assumptions, if we knew the exact
value of σrep, then the probability density function fCrep (x) =
(

fCtrue ∗ 80,σrep

)

(x) could be calculated as the convolution of
fCtrue (x) with the normal probability density function 80,σrep (x).
However, because we do not know the exact value of σrep, we have
to integrate over all possible values of σrep

fCrep (x) =

∫ ∞

0

[

(fCtrue ∗ 80,σrep )(x)
]

fσrep (σrep) dσrep (4)

Due to the complexity of directly calculating (4), we chose instead
to estimate the distribution by generating samples of Crep from
the samples of Ctrue and σrep that were stored while running
Algorithm 1. To do so, we first randomly select a set {ci ∈ Ctrue}

from the set of true values and a set {σi ∈ σrep} from the set
of reporting error variances. We can then draw samples of the
reporting error {εi ∼ N (0, σ 2

i )}, let Crep be the set {ci + εi}, and
estimate frep directly from those samples.

Prediction intervals were estimated from the samples by
first applying a Box-Cox power transformation yλ(Crep) to the
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chain samples Crep so that yλ would be approximately normally
distributed in the transformed domain [24]. From the normally
distributed samples we could then calculate quantiles of interest
from the inverse normal CDF 8−1

yλ
(p), and apply a reverse

transform to get those points in the original domain. Those
points were then used to estimate the prediction intervals PI(p)
from the inverse CDF points as

PI(p) =
[

y−1
λ (8−1

yλ
(.5− p/2)), y−1

λ (8−1
yλ

(.5+ p/2))
]

(5)

Each point in Figure 1 shows the prediction interval vs. coverage
rate calculated on the set of 439 test jurisdictions. This value was
calculated on the 29 different time windows and 50 prediction
interval percentages for 1,450 points total.

FIGURE 1 | Prediction intervals of incident cases vs. coverage of reported data. Subfigures show this calculated on day 10 and day 20 of each 20-day window Wi .

We can see that while we have good agreement on day 10 near the middle of each window, day 20 at the end of each window predicts too large of an interval

resulting in a higher than expected coverage.

FIGURE 2 | Synthetically generated test case illustrating why calculated confidence near the beginning and end of a window may tend to overpredict their range.
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4. DISCUSSION

We can see that although there is good agreement between
the prediction interval and measured coverage for the middle
of each window, the final day tends to over-predict the range.
We hypothesize that the reason for this is at least in part that
the likelihood Equation (3) does not take into account the

autocorrelation of the residual ε(k) = C(k) − C
(k)
true from day to

day. The real world reported case data does contain some time-
dependent correlations in the reporting error. For instance, cases
reported over the weekend tend to be lower than on weekdays
when reporting staff are more likely to be working and processing
the data. Similarly, Mondays and Tuesdays tend to report higher
numbers as the backlog of cases not reported over the weekend is
processed. On long enough time scales we expect this error to be
nearly a stationary process, meaning that there should be almost
no correlation in the values for days i 6= j.

To illustrate the concept we ran the MCMC algorithm with
the same loss Equation (3), but using a set of synthetically
generated, time independent data, and also a simple linear model
instead of an SEIR model. Figure 2 shows the timeseries plots
of the samples selected from the MCMC algorithm along with
the true values and reported data provided as input to the
MCMC algorithm. The samples selected by the algorithm can be
categorized as follows

1. The model output ci begins much lower than the true value for
days near the beginning of the window, crosses over the true
value somewhere near the middle, and ends up much higher
than the true value for days near the end

2. The model output ci begins much higher than the true value
for days near the beginning of the window, crosses over the
true value somewhere near the middle, and ends up much
lower than the true value for days near the end

3. Everything else

Because the samples from categories 1 and 2 overlap and both
cross the true value near the middle of the window, the sample
density closer to the middle of the window tends to be slightly
higher than it is near the ends. Some preliminary testing of
adding a Box Pierce Q test [25] term into the loss Equation
(3) to test for the independence of the residual timeseries has
shown to effectively reduce the severity of this over estimation
in some synthetic test cases. At this time however, more research
and testing would need to be done before any conclusions
could be made about the correctness, general applicability, and
effectiveness of such a method.

We presented a Multiple-Try Metropolis MCMC algorithm
that can be parallelized and optimized to run on GPU and
accelerate solving problems where the likelihood function
involves running complex physics-based simulations. Examples
of such problems include the original inspiration for our model,
the plume reconstruction problem, the epidemiological model
presented in this paper, problems from computational chemistry,
and many more.

We presented as an example a simple SEIRmodel solved using
IEM’s BioSim simulator. The BioSim simulator itself features
the capability to add additional compartments, aged transitions,
and resource constraints to build a model that more closely
matches real-world scenarios providing more accurate estimates
of resource needs, such as hospital beds, ventilators, medication
requirements, etc. Any of these features could be added to
the underlying epidemiological model while maintaining the
parallelization and acceleration provided by the GPUs.

In our testing, using a single GPU to execute the simulations
resulted in more than a 13x speedup in wall clock time compared
to a fully parallelized CPU implementation. The algorithm is also
able to scale up to run on multiple GPUs. Using 4 Nvidia RTX
2080 Ti GPUs in a high-end developer’s workstation resulted
in a 36.3x speedup in wall clock time compared to running
fully parallelized on the single Intel Core-i9-10920X CPU with
12 physical cores using 24 hyperthreads. The same tests on an
AWSHPC server consisting of 8 Nvidia Tesla A100-SMX4-40GB
GPUs resulted in a 56.5x speedup in wall clock time compared to
running on the dual socket Intel Xeon Platinum 8275CL CPUs
with a combined 48 physical cores and 96 hyperthreads.
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The obtainment of a dynamical logic gate (DLG), which is a device capable of

implementing several logic functions using the same model, has been one of the goals

of the scientific community. Dynamical systems, specifically those that display chaotic

behavior, have been widely used to emulate different logic gates which are the basis of

general-purpose computing. In this study, we present a methodology based on unstable

dissipative systems of type 1 (UDS-1), a kind of dynamical system capable of generating

multi-scrolls and multi-stability. Using these two features, we codify inputs, subsequently,

we get the adequate output, developing in this way a dynamical (reconfigurable) logic

gate that performs any of the sixteen possible logic functions of two inputs. A highlight of

the proposed methodology is that the selection of the desired logic gate is realized just

by varying a couple of parameters.

Keywords: unstable dissipative systems, multi-stability, reconfigurable computing, reconfigurable logic gate,

dynamical logic gate

1. INTRODUCTION

In the last decades, a vast quantity of budget and effort has been invested to design and construct a
unique device capable of implementing several logic gates into the same structure. In 1998, Sinha
and Ditto showed the capacity of lattices of coupled logistic maps to emulate NOR gates, resulting
in chaos computing [1]. From this pioneering study, several schemes have been exploited, these
include chaotic continuous and discrete dynamical systems [2–7]; piece-wise linear (PWL) systems
[8, 9]; resonators controlled by noise intensity [10]; cellular neuronal networks [11]; memristive
devices [12, 13], and doping-free bipolar junction transistors controlled by polarity [14]. In chaos
computing, chaotic elements are exploited to act as different logic functions by changing parameters
so that these devices are more flexible than the silicon-based architectures.

On the other hand, multi-stability is intrinsically present in physics, chemistry, biology, among
other fields [15]. It is defined as the coexistence of multiple possible final stable states. The final state
to which the system will converge depends on the initial conditions [16]. In the dynamical systems
field, multi-stability is an important feature related to dissipative systems. Unstable dissipative
systems are those that have a focus-saddle equilibrium point responsible for stable and unstable
manifolds, but also, the sum of their eigenvalues is negative [17].

In most of the previously presented approaches related to chaos computing, the sensitivity
to the initial conditions of chaotic elements is exploited to obtain logic gates; however, it could
be a disadvantage when an experimental implementation is realized due to small variations in
the voltages or a little differences in the tolerance of components. In this study, we present a

15
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methodology based on the capacity of displaying multi-stability
of unstable dissipative systems of type 1 (UDS-1) to implement
a dynamical logic gate (DLG), also known as a reconfigurable
logic gate. In our proposed method, logic zeros and logic ones
are codified through one of the clearly distinguishable possible
final states of the multi-stable USD-1. Although we obtain logic
gates using multi-stability, which is closely related to the initial
conditions, we take advantage of the concept of the basin of
attraction, so that a vast set of initial conditions will produce
the same response in our system. This gives the advantage to
our model of being easily reliable and repeatable. An important
aspect of our methodology is that by just varying two parameters,
we can get the complete spectrum of two-input logic functions
(16 logic gates), which represents an advantage in terms of
time and resources for the future electronic implementation
of the model.

The remaining of this article is structured as follows: In
Section 2, we provide the fundamental theory of UDS-1. Our
proposed methodology is explained in Section 3. Results for the
DLG are shown and discussed in Section 4. Finally, in Section 5,
some conclusions about this article are given.

2. UNSTABLE DISSIPATIVE SYSTEMS
FUNDAMENTALS

In the same spirit of Campos-Cantón et al. [18], let us consider
the following dynamical system:

ẋ = Ax, (1)

where x = [x1, x2, x3]T ∈ R
3 is the state vector, A = [aij] ∈ R

3×3

denotes a linear operator and it is a non-singular matrix. Also, let
3 = {λ1, λ2, λ3} be the set of eigenvalues of matrix A.

The system given by Equation (1) is called an UDS-1, if the
following two statements are satisfied:

1. Focus-saddle equilibrium condition. The matrix A must
possess one negative pure real eigenvalue λ1, whereas λ2,3 are
complex conjugate with a positive real part.

2. Dissipativity condition. The system is dissipative, if
∑3

i=1 Re(λi) < 0.

Moreover, a UDS-1 is capable of displaying multi-scrolls if an
adequate commutation control law is applied to it. A simple way
to generate multi-scrolls consists of applying a PWL function
to modify the system dynamics by changing the position of
equilibrium points. Thus, if an additive term B is applied to
Equation (1), it can be rewritten as:

ẋ = Ax+ B, (2)

where B = [b1, b2, b3]T ∈ R
3 is a real vector, and it works as

a discrete commutation function dependent on the state x. B
changes depending on which domain Di ⊂ R

3 the trajectory
is located. The main idea is dividing the full phase space into
domains, in other words,R3 = ∪k

i=1Di. With this last regard, and
supposing B = [0, 0, b3]T , then the switching function is given by:

b3 =























β1, if x ∈ D1;

β2, if x ∈ D2;

...
...

βk, if x ∈ Dk.

(3)

Because A is a non-singular matrix, the equilibrium point of
the system given by Equation (2) is located at x∗ = −A

−1B.
Specifically, equilibrium points are x∗i = −A

−1βi with i =

1, 2, . . . , k. In this way, the system will have as equilibrium points
as domains Di are defined.

3. METHODS

In order to design a DLG, we start considering the following
system in its canonical form:

ẋ = Ax =





0 1 0
0 0 1

−0.5 −0.7 −0.5









x1
x2
x3



 , (4)

whose eigenvalues are 3 = {λ1 = −0.6358, λ2 = 0.0679 +

0.8842i, λ3 = 0.0679 + 0.8842i}; and
∑3

i=1 Re(λi) = −0.5 <

0. Thus, system of Equation (4) satisfies the two conditions
mentioned in Section 2 to classify it as a USD-1.

The next step in our methodology consists of forcing the
system in Equation (4) to generate n scrolls. It is important to
mention that the number of scrolls n to be generated can be
arbitrarily chosen and increased, the only requirement is that
n ≥ 2. In our case, we decide to generate three scrolls. Therefore,
we add the commutation vector B to Equation (4) and we can
rewrite it as:

ẋ = Ax+ B =





0 1 0
0 0 1

−0.5 −0.7 −0.5









x1
x2
x3



 +





0
0
b3



 , (5)

as we desire to generate three scrolls, then the same quantity of
equilibrium points are necessary and we want them arbitrarily
located at x∗e1 = (−3, 0, 0), x∗e2 = (0, 0, 0), x∗e3 = (3, 0, 0), which
are equispaced only along the x1 plane. Also, let us remember that
each equilibrium point is located in x∗i = −A

−1βi, this leads to
x∗i = −2βi. Hence, we need to define the switching function b3
and each βi, which are described as:

b3 =







1.5 if x1 < −1.5,
0 if −1.5 ≤ x1 ≤ 1.5,

−1.5 if x1 > 1.5
(6)

where the commutation surfaces among domains are located at
-1.5 and 1.5 to preserve the shape and symmetry of the scrolls.

Up to now, we have constructed a UDS-1 with the capability
of generating three scrolls. In Figure 1 are plotted projections
of the states of the system given by Equations (5) and
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(6) for several planes. The plot in Figure 1A corresponds
to the x1x2 plane, where it is possible to distinguish the
three scrolls clearly. Figure 1B is the projection onto the
x1x3 plane; whereas Figure 1C shows the projection in
the x2x3 plane.

The following step is controlling the system described by
Equations (5) and (6) with the aim of transforming it into amulti-
stable system. To achieve this goal, first, let us define the negative
reciprocal of element a33 as µ = −1/a33, and second, let us
multiply the last row of matrix A and the switching function b3
times µ.

ẋ = Ax+ B =





0 1 0
0 0 1

− 0.5
0.5 − 0.7

0.5 − 0.5
0.5









x1
x2
x3



+





0
0

− 1
0.5b3



 , (7)

The parameter µ induces multi-stability to the system
but leaves the dissipativity unchanged. Now, each scroll we
previously generated with the system described by Equations (5)
and (6) have become a possible final stable state to which the
systemwill converge depending on the initial conditions. In other
words, the system will converge to one of these three scrolls
depending on whether its initial condition belongs to the basin
of attraction of the scroll. Figure 2 shows these possible final
states to which the system can converge. Figure 2A corresponds
to the initial condition x(0) = (−2.5,−1, 0); Figure 2B to x(0) =
(1.1,−1, 0); and finally, Figure 2C to x(0) = (2.5,−1, 0).

To develop a system capable of emulating all possible two-
input logic functions, we have built a simple three-node network
in which each node is a multi-stable UDS-1 governed by
Equation (7). The topology of this network is shown in Figure 3.
Node 1 and node 2 act as inputs, whereas node 3 works as the
output of the DLG. In the example, we are using to explain our
methodology, the number of scrolls matches with the number of
nodes in the network, but there is no relationship between these
two quantities.

As it was previously explained, the multi-stable UDS-1 of
Equation (7) can converge to three final attractors depending on
the initial conditions, in such a way that we can choose two of
these attractors to codify logical zeros and ones. Arbitrarily, we
decide that if the multi-stable UDS-1 is converging to the left
attractor (Figure 2A), then it will represent a logical zero. On the
other hand, if the multi-stable UDS-1 is converging to the right
attractor (Figure 2C), then this will be coded as a logical one. The
initial condition (x0, y0, z0) = (−3, 0, 0) and (x0, y0, z0) = (3, 0, 0)
belong to the basin of attraction of the left and right attractor,
respectively. Thus, we can define the target point (x, y, z) =

(I1,2 ∈ {−3, 3}, 0.001, 0) to be reached through feedback control.
Taking these assumptions into consideration, the dynamics of
node 1 acting as the first input is described by:

ẋ1 = y1 − k(x1 − I1), (8)

ẏ1 = z1 − k(y1 − 0.001), (9)

ż1 = −0.5µx1 − 0.7µy1 − 0.5µz1 + µbn1, (10)

where the switching function bn1 is:

bn1 =







1.5 if x1 < −1.5,
0 if −1.5 ≤ x1 ≤ 1.5,

−1.5 if x1 > 1.5
(11)

The dynamics of node 2 which works as the second input is
given by:

ẋ2 = y2 − k(x2 − I2), (12)

ẏ2 = z2 − k(y2 − 0.001), (13)

ż2 = −0.5µx2 − 0.7µy2 − 0.5µz2 + µbn2, (14)

whose commutation function is:

bn2 =







1.5 if x2 < −1.5,
0 if −1.5 ≤ x2 ≤ 1.5,

−1.5 if x2 > 1.5
(15)

How input node 1 and node 2 interconnect with the output
node 3 considers the following linear affined system:

h(I1, I2) = α · i+ γ , (16)

where i = (I1, I2)T is a column vector whose elements I1,2 ∈

{−3, 3}; α = (α1,α2) ∈ R
2 and γ ∈ R are system parameters

to be adjusted to obtain the desired logic gate. Function h results
from summing the scalar product α · i plus an offset given by γ .
The output of the system is ruled by:

I3(h) =

{

3, if |h| < κ;

−3, otherwise .
(17)

where κ ∈ R is defined as a threshold.
Therefore, the dynamics of node 3 behaving as output is

governed by:

ẋ3 = y3 − k(x3 − I3),

ẏ3 = z3 − k(y3 − 0.001),

ż3 = −0.5µx3 − 0.7µy3 − 0.5µz3 + µbn3,

(18)

with the function bn3 governed by:

bn3 =







1.5 if x3 < −1.5,
0 if −1.5 ≤ x3 ≤ 1.5,

−1.5 if x3 > 1.5
(19)

The networked system described by Equations (10)–(19)
emulates any of the possible sixteen two-input logic functions
whose truth tables appear in Table 1. ⊥ represents the
contradiction or null; I1I2, AND; I1I

′
2, inhibition of I2; I1,

transfer of I1; I′1I2, inhibition of I1; I2, transfer of I2; I1⊕I2, XOR;
I1 + I2, OR; (I1 + I2)′, NOR; (I1 ⊕ I2)′, XNOR; I′2, complement
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FIGURE 1 | Projections of the system given by equations. axplusbmethod and b3method onto the planes of R3. The plot (A) corresponds to x1x2 plane; (B) is the

projection onto x1x3 plane; and (C) is the projection in x2x3 plane.

FIGURE 2 | Projections onto the x1x2 plane of the three final possible attractors of the multi-stable system of equation (7). axplusbmultimethod. Plot (A) corresponds

to the initial condition x(0) = (−2.5,−1, 0); Plot (B) to x(0) = (1.1,−1, 0); and Plot (C) to x(0) = (2.5,−1, 0).

of I2; I1 + I′2, implication (I2 implies I1); I′1, complement of I1;
I′1 + I2, implication (I1 implies I2); (I1I2)′, NAND; ⊤, tautology
or identity.

The selection of logic gate functionality is realized by adjusting
system parameters α1, α2, γ , and κ so that Equations (16) and
(17) are satisfied simultaneously. Depending on the values of I1
and I2, Equation (16) will have one of the results shown in the
third column ofTable 2. These results will fall or will not be inside

the interval (−κ , κ) according to the truth table of the desired
logic function we desire to obtain. If h of Equation (16) falls in the
open interval (−κ , κ) defined in Equation (17), then I3 = 3 which
represents a logical one and the output node 3 will converge to the
left attractor; otherwise, I3 = −3 what is defined as a logical zero
and the output node 3 will converge to the right attractor.

In the following lines, we briefly explain the selection of
parameters for the case of the AND (I1I2) gate, but an analog
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FIGURE 3 | Topology of the three-node network used to develop a dynamical

logic gate (DLG).

TABLE 1 | Truth tables for all the sixteen possible two-input logic functions

expressed in Boolean variables (0 and 1).

I1 I2 ⊥ I1I2 I1I
′

2 I1 I′1I2 I2 I1 ⊕ I2 I1 + I2

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

I1 I2 (I1 + I2)
′ (I1 ⊕ I2)

′ I′2 I1 + I′2 I′1 I′1 + I2 (I1I2)
′ ⊤

0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

TABLE 2 | Values of h(I1, I2) in Equation 16.

I1 I2 h(I1, I2)

-3 -3 −3α1 − 3α2 + γ

-3 3 −3α1 + 3α2 + γ

3 -3 3α1 − 3α2 + γ

3 3 3α1 + 3α2 + γ

TABLE 3 | List of the system parameters α2 and γ used to emulate each

logic function.

Logic function ⊥ I1I2 I1I
′

2 I1 I′1I2 I2 I1 ⊕ I2 I1 + I2

α2 0.0 0.5 -0.5 0.0 -0.5 0.5 0.8 0.5

γ 4.5 -4.0 -4.0 -3.0 4.0 -3.0 0.0 -2.0

Logic function (I1 + I2)
′ (I1 ⊕ I2)

′ I′2 I1 + I′2 I′1 I′1 + I2 (I1I2)
′ ⊤

α2 0.5 -0.8 0.5 -0.5 0.0 -0.5 0.5 0

γ 4.0 0.0 3.0 -2.0 3.0 1.0 2.0 0

procedure is necessary for the rest of the logic gates. First, we
fix the threshold κ = 3. According to the truth table of AND
gate shown in the fourth upper column of Table 1, only when
I1 = 3 and I2 = 3, the sum hmust fall inside the interval (−3, 3);
the remaining combinations of I1 and I2 will fall outside (−3, 3).
In such a way, the following inequalities must be accomplished
simultaneously:

−3α1 − 3α2 + γ < −3 ∨ 3 < −3α1 − 3α2 + γ ,

−3α1 + 3α2 + γ < −3 ∨ 3 < −3α1 + 3α2 + γ ,

3α1 − 3α2 + γ < −3 ∨ 3 < 3α1 − 3α2 + γ ,

3α1 + 3α2 + γ > −3 ∧ 3 > 3α1 + 3α2 + γ .

(20)

FIGURE 4 | Map of regions for parameters α2 and γ of DLG.

TABLE 4 | Comparative frame among several approaches already presented and

our proposal of DLG.

Reference Number of

obtained logic

gates

Number of

parameters to

configure

Li et al. [7] 11 1

Peng et al. [8] 7 3

Peng et al. [9] 16 2

Guerra et al. [10] 2 1

Rivera-Durón et al. 16 2

After algebraic calculations, it is possible to determine that
α1 = 0.3, α2 = 0.5, and γ = −4.0 are one of the several
combinations that satisfy the corresponding inequalities in the
system Equation (20).

4. RESULTS

The parameter selection is not unique, there are several
combinations of α1,α2, γ , and κ that can satisfy Equations (16)
and (17). For this reason, we utilized a computer code to
determine the set of system parameters to obtain each of the
sixteen two-input logic functions for a constant value of κ = 3.
After inspecting the results, we noticed that the value of α1 =

0.3 appeared in all the cases, therefore, we can assume that α1

is constant too. This last represents an advantage because the
functionality of the DLG only depends on the values of α2 and
γ , which can result in the optimization of time and resources
in the future experimental realization of the DLG. A map for
parameters α2 and γ to select functionality of DLG is shown in
Figure 4. The complete list of the system parameters that we used
to emulate each logic function is shown in Table 3, it is important
to remark that in all the cases κ = 3 and α1 = 0.3.
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FIGURE 5 | Temporal evolution of the input nodes and for the output node emulating the logic functions shown in the upper part of Table Truth Tables. The plot in (A)

corresponds to the input node 1. Plot (B) corresponds to the temporal evolution of input node 2. bot is represented in plot (C); I1 I2 in plot (D); I1 I2’ in plot (E); I1 in plot

(F); I1’I2 in plot (G); I2 in plot (H); I1 plus I2 in plot (I); I1+I2 in plot (J).
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FIGURE 6 | Temporal evolution of the input nodes and for the output node emulating the logic functions shown in the lower part of Table TruthTables. The plot in (A)

corresponds to the input node 1. Plot (B) corresponds to the temporal evolution of input node 2. (I1+I2)’ in plot (C); (I1 ⊕ I2)’ in plot (D); I2’ in plot (E); I1 + I2’ in plot (F);

I1’ in plot (G); I1’ + I2 in plot (H); (I1 I2)’ in plot (I); top in plot (J).
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TABLE 5 | The truth table for the full adder.

Cin I1 I2 Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The three first columns correspond to the inputs, whereas the remaining ones, to the

outputs.

FIGURE 7 | Logic diagram of the full adder whose truth table is shown in

Table 5.

We can compare our proposal with respect to other
approaches to measure the benefits between the achieved logic
gates and the number of parameters to be configured. In this
sense, Table 4 shows a comparative frame among previously
presented studies and our proposal of DLG. From this table, it
is possible to observe that [10] achieves only a pair of logic gates
(AND, OR) by varying the resonator’s operation parameters. The
study in Peng et al. [8] obtains seven logic gates (⊥, AND, OR,
NAND, NOR, XOR,⊤) by tuning three parameters. Eleven logic
gates (⊥, AND,OR, NAND,NOR, XNOR, I2, I′2, I

′
1+I2, I1+I′2,⊤)

were achieved in Li et al. [7] by varying a single parameter. Special
mention deserves the work done in Peng et al. [9], in which
authors got all the possible two-input logic gates as well as we
did in our approach through the tuning of a pair of parameters.

Numerical simulations were realized to prove the correct
performance of the developed DLG. We started simulations
letting the three nodes behave freely so that µ = 1 and they are
not in a multi-stable regime for time 0 ≤ t ≤ 500. Then, we
set µ = −1/0.5 to get multi-stability in all the nodes, and we
configured I1 of node 1 to be I1 = −3 for 500 < t ≤ 1500 and
I1 = 3 for 1500 < t ≤ 2500; in analogous way, I2 of the node 2
was configured to be I2 = −3 for t ∈ {(500, 1000]∪(1500, 2000]},
and I2 = 3 for t ∈ {(1000, 1500] ∪ (2000, 2500]}. In this way,
the four possible combinations of I1 and I2 shown in the first two
columns of Table 2were accomplished. The plots of the temporal
evolution of the input node 1 are shown in Figures 5A, 6A,
whereas the plots in Figures 5B, 6B correspond to the temporal
evolution of input node 2. The behavior of the output node 3

is plotted in Figures 5, 6. ⊥ is represented in Figure 5C; I1I2 in
Figure 5D; I1I′2 in Figure 5E; I1 in Figure 5F; I′1I2 in Figure 5G;
I2 in Figure 5H; I1⊕I2 in Figure 5I; I1+I2 in Figure 5J; (I1+I2)′

in Figure 6C; (I1 ⊕ I2)′ in Figure 6D; I′2 in Figure 6E; I1 + I′2
in Figure 6F; I′1 in Figure 6G; I′1 + I2 in Figure 6H; (I1I2)′ in
Figure 6I; ⊤ in Figure 6J. From Figures 5, 6 is possible to note
the fast response time of the output node, this is because of
the control law we added which yields the system to an initial
condition into the basin of attraction of the desired attractor but
also, this control law avoids falling in any of the equilibrium
points of the system.

Now, let us implement a full adder to prove the performance
of the DLG when it is executing compound functions. The full
adder is a combinational circuit that realizes the arithmetical sum
of three bits. I1 and I2 are the bits to be added, whereas Cin

is the input carry bit coming from a previous sum. Due to the
sum of three bits varies from 0 to 3, the circuit needs two bits to
correctly represent the addition; these bits are S and Cout , which
are the sum and the output carry, respectively. The truth table
for the full adder is shown in Table 5. From the truth table is
possible to determine the logic functions S = Cin ⊕ I1 ⊕ I2 and
Cout = CinI1+CinI2+I1I2. The logic diagram to configure the full
adder consists of seven logic gates (G1 to G7), and it is displayed
in Figure 7. Again, we launched the numerical simulations with
all the nodes behaving freely so that µ = 1 and they are not in
a multi-stable regime for time 0 ≤ t ≤ 250, after this time, we
set µ = −1/0.5 to get multi-stability in all the nodes. To achieve
the eight possible combinations in the inputs of the full adder,
we proceeded as follows: first, we configured Cin at node 1 to be
Cin = −3 for 250 < t ≤ 1250 and Cin = 3 for 1250 < t ≤ 2250;
second, I1 at the node 2 was configured to be I1 = −3 for
t ∈ {(250, 750] ∪ (1250, 1750]}, and I1 = 3 for t ∈ {(750, 1250] ∪
(1750, 2250]}; finally, I2 at node 3 was fixed to be I2 = −3 for
t ∈ {(250, 500] ∪ (750, 1000] ∪ (1250, 1500] ∪ (1750, 2000]},
and I2 = 3 for t ∈ {(500, 750] ∪ (1000, 1250] ∪ (1500, 1750] ∪
(2000, 2250]}. The temporal evolution of the full adder is plotted
in Figure 8. The plots in Figures 8A–C correspond to Cin, I1, and
I2, respectively. Figure 8D displays the behavior of G1 which is
configured as XOR gate (I1 ⊕ I2). Figure 8E shows the evolution
of the AND gate G2 (I1I2). In Figure 8F is plotted the AND
gate G3 (I1Cin). Figure 8G is showing the evolution of the AND
gate G4 (I2Cin). Figure 8H shows the temporal evolution of G5

configured as OR gate and which receives in its inputs the signals
coming from G2 and G3. The signal coming from G4 and G5

are received by G6 and whose output corresponds to Cout , this
is shown in Figure 8I. Finally, G7 processes the signal coming
from G1 and Cin and its output results in the sum S, which is
plotted in Figure 8J.

Our proposal of DLG can be taken into an electronic
realization through currently available electronic components.
Since the core of DLG is composed of three ordinary differential
equations, they can be implemented using operational amplifiers
(OP-AMP) in the basic configurations (integrator, inverted adder,
and inverted), resistors, and capacitors. From an engineering
viewpoint, the computational complexity and hardware cost
to implement a DLG through a three-node network could be
elevated compared with the current logic devices. For this reason,
we have as future work to achieve the same results here reported
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FIGURE 8 | Temporal evolution of the nodes in the full adder. The plot (A) corresponds to Cin; (B) to I1; (C) to I2; (D) to G1; (E) to G2; (F) to G3; (G) to G4; (H) to G5;

(I) to G6 which is Cout; and (J) to G7 which is the sum S.
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but just using a single UDS-1 for each DLG, which will decrease
the prices and the design tasks. However, our approach has the
advantage that the programming to implement several functions
can be quite quick and it can be done on the fly. Also, another
advantage we can elucidate is related to a research issue; whereas
in the traditional digital logic devices, as the FPGAs, the states
updating is governed by a master clock so that the updating
occurs in a synchronous way; in our device, we can add a delay
element to investigate autonomous Boolean networks, a kind of
dynamical system where the state updating happens when there
exists a transition in any input. In this way, we can study the effect
of delays in autonomous Boolean networks.

5. CONCLUSION

We presented a methodology to design a DLG using a multi-
stable UDS-1. We constructed a three-node network of multi-
stable UDS-1. In this topology, a couple of nodes act as inputs
of the logic gate, whereas the remaining node is the output or
response. Using a pair of the different final states (attractors)
of the multi-stable system, we were able to codify Boolean ones
and zeros, and subsequently, we obtain the adequate response to
emulate all the possible two-input logic functions (16 logic gates).
We are sure that our results are relevant because we just need to
adjust a pair of parameters to select the functionality of the DLG,

this could be important in terms of time and cost in the future
experimental realization of this DLG.
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A nested multiscale model to
study paratuberculosis in
ruminants

Rendani Netshikweta and Winston Garira*

Modelling Health and Environmental Linkages Research Group, Department of Mathematics and

Applied Mathematics, University of Venda, Thohoyandou, South Africa

In this study, we present a nested multiscale model that integrates

the within-host scale and the between-host scale disease dynamics for

Paratuberculosis in ruminants (e.g., cattle, goats, and sheep), with the aim of

ascertaining the influence of initial infective inoculum dose on its dynamics.

Ruminant paratuberculosis is often characterized as an environmentally-

transmitted disease and it is caused by bacteria called Mycobacterium avium

subspecies paratuberculosis that can survive in the physical environment for

a considerable period of time. In the context of nested multiscale models

developed at host level, a key feature is that the within-host scale and the

between-host scale disease dynamics influence each other in a reciprocal

way, with the between-host scale influencing the within-host scale through

initial infective inoculum dose which susceptible ruminants may consume

from the environment. The numerical results of the nested multiscale model

presented in this study demonstrate that once the minimum infectious dose

is consumed, then the infection at the within-host scale is sustained more by

pathogen replication than by super-infection. From these results we conclude

that super-infection might have an insignificant e�ect on the dynamics of

PTB in ruminants. However, at this stage we cannot precisely conclude if

super-infection does not e�ect on the dynamics of the disease. This would

be investigated further using an embedded multiscale model, which is more

appropriate in giving us conclusive results. We further demonstrate the need

to use nested multiscale models over single-scale modeling approach by

estimating a key parameter for pathogen replication that cannot be estimated

using single-scale models.

KEYWORDS

multiscale modeling of disease, nested multiscale models, environmentally-

transmitted diseases, multiscale modeling of paratuberculosis, infectious disease

systems

1. Introduction

Paratuberculosis (PTB) infection, also known as Johne’s disease, is an important

disease in ruminants such as cattle, goats, and sheep [see [1–3] and references

therein] that cannot be easily ignored as its cases continue to be reported

throughout the world, more especially in countries with temperate climates. Ruminant

Paratuberculosis is often characterized as an environmentally-transmitted disease.
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PTB is caused by bacteria called Mycobacterium avium

subspecies paratuberculosis (MAP) which infects the intestine of

ruminants [4]. This organism is most commonly widespread

in dairy cattle and can lead to serious economic burdens in

livestock industries due to the reduction of milk production

and the productive life of cattle as well [5]. The main clinical

outcomes of PTB infection in cattle are failure of growth,

increase in weight loss, and chronic diarrhea. Although PTB

has not been classified as a zoonotic disease, clinical studies

show that most human patients with Crohn’s disease are found

with MAP [6]. Crohn’s disease is an inflammatory bowel

disease characterized by a persisting, painful, and diarrheal

inflammatory disease of the intestinal tract in humans [6].

Ruminants usually acquire PTB infection through ingestion

of the infective bacteria in colostrum, and from the faeces of

infected ruminants contaminating food and surface water/water

troughs. The disease can also be transmitted vertically from an

infected pregnant ruminant to its foetus. However, following

the ingestion of MAP bacteria contained in faecal material, and

reaching the gut of an infected ruminant, MAP are engulfed

by macrophages in the submucosal of the ruminant, and the

submucosal macrophages become infected [2]. In general, the

dynamics of MAP among submucosal macrophages within

an infected ruminant can be controlled by the ruminant

immune response (such as T-helper immune response cells).

Yet, currently there is no meaningful treatment that has been

made available for PTB in ruminants, and control programs

implemented in many countries have had limited success [7].

It is important to note that at the ruminant host level both the

two PTB disease processes: (i) the infection of a ruminant by

free-living MAP in the environment and (ii) the shedding of

MAP into the environment by an infected ruminant interlink

the transmission process of MAP among the ruminants which

often happens at a slow time scale and the replication process

of MAP within an infected ruminant which often occur at a

fast time scale to close the complete multiscale cycle (i.e., the

replication-transmission cycle) dynamics of PTB [25].

Multiscale models that characterize infectious disease

processes across different scales at different levels of organization

of an infectious disease have been developed recently to study

disease dynamics [3, 8–14, 21–24]. Some of these multiscale

models have further been used to evaluate the comparative

effectiveness of different preventive and treatment health

interventions that operate at different scales against infections

[13, 14]. Based on the categorization in [15, 16], there are

five main different categories of multiscale models of infectious

disease systems that can be developed at different levels of

organization of an infectious disease system (the cell level,

the tissue level, the host level, etc.) which are: (i) individual-

based multiscale models (IMSMs), (ii) nested multiscale models

(NMSMs), (iii) embedded multiscale models (EMSMs), (iv)

hybrid multiscale models (HMSMs), and (v) coupled multiscale

models (CMSMs). In multiscale modeling of infectious disease

systems, knowledge of the different categories of multiscale

models is important to understand which multiscale model is

most suitable for characterizing disease dynamics at particular

levels of organization of an infectious disease system. It is

also important for the description of the structure of the

multiscale model. It enables authors to describe the structure

of the multiscale model in brief by referring to the generic

description of the structure of the category of the multiscale

model concerned without the need to repeatedly discuss its

structure whenever a multiscale model of an infectious disease

system is being developed and focus instead on issues peculiar

to that multiscale model [16]. In this study we develop a

nested multiscale model to study the multiscale dynamics of

PTB in ruminants and further use it to enhance a single-

scale model that can be developed at host/population/herd

level. Nested multiscale models of infectious diseases are

mathematical models in which the macroscale sub-model

influences the microscale sub-model through the initial value

of the inoculum of the infective pathogen. In these nested

multiscale models, the microscale also influences the macroscale

through pathogen excretion. Further, the macroscale sub-model

and the microscale sub-model must be described by the same

formalism or mathematical representation for this category of

multiscale models. We can identify three main classes in the

category of nested multiscale models which are [15, 16]:

(a) Class 1 - Transformation based nested multiscale models

(TRAN-NMSMs): Here the microscale scale submodel

is formally transformed into a macroscale model.

They are formulated through developing microscale

structured macroscale submodels. At host level this task

is accomplished by subdividing the entire host population

into various sub-classes corresponding to the different

levels of microscale traits: naive or completely susceptible,

completely or partially immune, vaccinated, immune

compromised or protected from infection due to certain

genetic factors.

(b) Class 2 - Unidirectional coupling based nested multiscale

models (UNID-NMSMs): The nature of themultiscale model

in this class is such that there is strictly one-way inter-

scale information flow among the two submodels (from the

microscale submodel to the macroscale submodel).

(c) Class 3 - Simplification based nested multiscale models

(SIMP-NMSMs): These are multiscale models of infectious

disease systems which are formulated by simplifying or

reducing the order/dimensions of UNID-MSMs in class 2

of this category. The simplification or reduction of order is

sometimes achieved by using methods such as slow and fast

time scale analysis [12] or dynamical systems basedmethods

such as centre manifold theory [17].

In this article, we first develop a class 2 nested multiscale

model of PTB disease dynamics in ruminants at host level,

and then derive a class 3 nested multiscale model through
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fast-and-slow time scale analysis of the class 2 nested multiscale

model. For the host level of organization of an infectious

disease system, the within-host scale (the microscale) sub-

model and the between-host scale (the macroscale) sub-model

serve as building blocks in the development of the complete

nested multiscale model [16]. For PTB infection in ruminants,

the within-host scale on one hand is associated with the

interaction of MAP with ruminant macrophages (target cells)

and other immune response cells that happens inside an infected

ruminant. It is at this scale where the outcomes of infection

within a single infected ruminant determine if, when and how

much the ruminant will further transmit the bacteria into the

environment, and in turn affecting the spread of the disease

for the ruminant at between-host scale. The processes of PTB

infection at the within-ruminant-host can be modified by the

within-host conditions andmedical interventions. The between-

host scale disease processes on the other hand, however, are

associated with the transmission dynamics of MAP bacteria that

typically occurs between ruminants and their environment. This

takes place when ruminants feed from contaminated pasture

with fecal material containing infective MAP, or drink from

contaminated surface water/water troughs with the bacteria. The

processes of disease transmission at the between-ruminant-host

scale can be modified by control measures such as reducing

fecal contamination of food, water and pasture (which can be

achieved by raising feed and water troughs, strip grazing, or

use of mains/piped water rather than surface/pond water); avoid

spreading yardmanure on pasture; andmaintain proper hygiene

practices particularly in buildings/yards and calving boxes [18].

To date, most of PTB disease dynamics models in the

literature have been devoted to study the dynamics of PTB

infection in ruminants and evaluating the effect of control

measures aimed at controlling, eliminating, and even eradicating

this disease using a single-scale modeling approach [1, 19, 20].

This is despite the fact that PTB infection is a complex and

multiscale disease system. However, we have to date, witnessed

the development of fewmodels in the literature that consider the

complexity andmultiscale nature of PTB infection in attempting

to study its dynamics [3, 21–23]. Themultiscale models in [3, 21]

use the time-since-infection approach to link the within-host

sub-model with the between-host sub-model for PTB infection

as well as the dependence of some epidemiological parameters

on the within-host MAP bacteria load. This coupling principle

employed in [3, 21] was suggested for the first time by Gilchrist

and Sasaki [24]. In addition, it is also worthy to note that the

multiscale models in [3, 21] are categorized as hybrid multiscale

models [15, 16]. Although the multiscale models in [3, 21] and

the multiscale model developed in this study all characterize

the reciprocal influence between the within-host scale and

the between-host scale disease dynamics, there are important

differences between these multiscale models. Specifically, in the

current nested multiscale model, both the within-host scale

and the between-host scale sub-models are all described by the

same formalism or mathematical representation (i.e., a system

of ODEs). However, the multiscale models in [3, 21] are hybrid

multiscale models, where only the within-host scale sub-models

are represented by ODEs, while their between-host sub-models

are represented by partial differential equations (PDEs). The

hybrid multiscale models in [3, 21] are more difficult to analyze

than nested multiscale models because apart from the fact

they incorporate different time scales for the within-host scale

and the between-host scale, they also do not use a common

metric of disease transmission across scales. At within-host scale,

pathogen load is used as the metric for disease transmission

while at between-host scale, disease class (i.e., infected class) is

used as the metric for disease transmission.

The rest of this paper is organized as follows. In Section

2, we derive and analyze the nested multiscale model for

PTB multiscale dynamics. It is in this section where we

evaluate the influence of initial infective inoculum on the

dynamics of PTB. In Section 3, we estimate a parameter

of pathogen replication that cannot be estimated using

single-scale models. In Section 4, we analyze the simplified

multiscale model of PTB and show that the model is

mathematically and epidemiologically well-posed. We also

perform a sensitivity analysis of the two ruminant population

health measures derived from the simplified multiscale model.

The paper ends up with discussion and conclusions in

Section 5.

2. Derivation of nested multiscale
model for the dynamics of ruminant
paratuberculosis (PTB)

For infectious disease systems at host level, the between-

host scale sub-model and the within-host scale sub-model

are the building blocks upon which multiscale models are

developed. In this case, we derive a nested multiscale model

that integrates the between-host sub-model associated with

the transmission dynamics of PTB disease and the within-

host sub-model associated with the replication dynamics of

MAP bacteria within an infected ruminant at the site of

infection. In the following sections, we begin by presenting

two independent sub-models for PTB disease dynamics at two

distinct scales, one at the between-host scale and other at

the within-host scale and then integrate them into a single

multiscale model.

2.1. The between-host scale submodel
for the PTB multiscale model dynamics

The between-host scale submodel for the multiscale

dynamics of PTB in ruminants is described by a susceptible-

infected-susceptible-infected, SIS, model coupled with the
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TABLE 1 A summary of the variables associated with the transmission

cycle of PTB at the between-host scale.

No. Variable Description

1. SC(t) Population of susceptible ruminant hosts at time t

2. IC(t) Population of infected ruminant hosts at time t

3. BC(t) Population of MAP bacteria in the environment at time t

compartment of the MAP environmental dynamics, BC , that

depicts the evolution of bacteria in the environment. The

description of model variables associated with the transmission

cycle of PTB at the between-host scale are tabulated in

Table 1. We make the following assumptions for this sub-

model:

(a) The transmission of the infection is only through

contact with MAP bacterial load (BC) in the physical

environment. However, if there is any direct transmission,

it can be estimated by indirect transmission in terms of

environmental MAP bacterial load (BC).

(b) The dynamics of SC , IC , and BC are assumed to occur

at slow time scale, t, compared to the within-host scale

PTB transmission dynamics variables that occur at fast time

scale, τ , so that SC = SC(t), IC = IC(t), and BC = BC(t).

(c) The different classes that the infected ruminant progresses

through (e.g., the exposed class, the chronically infected

class, etc.) are accounted for by the within-host scale sub-

model.

(d) The average extracellular MAP bacteria in each infected

ruminant is modeled phenomenologically by ̂Nc, which is

a proxy for individual ruminant infectiousness.

(e) The environmental MAP bacterial (BC) do not replicate in

the environment (outside-host environment).

(f) ruminant with MAP can recover from PTB infection.

Based on these assumptions the sub-model for the PTB

transmission dynamics at the between-host scale becomes:











































(i)
dSC(t)

dt
= 3C −

βCBC(t)

B0 + BC(t)
SC(t)− µCSC(t)+ γ̂C(Bc)IC(t),

(ii)
dIC(t)

dt
=

βCBC(t)

B0 + BC(t)
SC(t)− [µC + ̂δC(Bc)+ γ̂C(Bc)]IC(t),

(iii)
dBC(t)

dt
= ̂NcαcIC(t)− αCBC(t),

(2.1)

The between-host scale submodel given by Equation (2.1) is

based on monitoring the dynamics of three populations which

are susceptible ruminants (SC), infected ruminants (IC), and

MAP bacterial load (BC) in the physical environment. The first

equation of the model system (2.1) describes the dynamics of

susceptible ruminants. At any time t, new recruits of susceptible

ruminants enter the ruminant population through birth and

incoming ruminants from different farms/geographical regions

at a constant rate 3C and is also increased through recovery

of infected individuals at a rate γ̂C(Bc), with Bc being the

population of the within-ruminant-host MAP bacteria at time

τ . This population losses individuals due to natural death at

a constant rate µC . The susceptible population also decreases

through infection at a rate βCBC(t)/(B0 + BC(t)) with βC

being the exposure rate to infective MAP bacterial load (BC)

in the environment and B0 is the saturation parameter of

the bacteria that yield 50 percent chance of a ruminant

getting infected with PTB infection after ingesting the bacteria.

The infection happens when susceptible ruminants feed from

contaminated pasture with faecal material containing infective

MAP, or drink from contaminated surface water/water troughs

with the bacteria. The second equation in the model system

(2.1) describes the dynamics of PTB infected ruminants. This

population increases through infection of susceptible ruminants

and decreases through natural death at a constant rate µC as

well as through recovery at a rate γ̂C(Bc). There is additional

death at a rate ̂δC(Bc) in the population of infected ruminants

due to disease, so that an average lifespan of PTB infected

ruminant in the population is 1/(µC + ̂δC(Bc) + γ̂C(Bc)). We

assume that infected ruminants spread the disease through

contaminating the environment at a rate ̂NcαcIC , where ̂Nc

models phenomenologically the average number of the within-

host scale MAP bacterial load available for excretion into

the environment by each infected ruminants at a rate αc.

Therefore, the population dynamics of MAP bacilli in the

environment, described by the last equation of the model

system (2.1), increases following excretion of MAP bacteria by

infected ruminant hosts in faecal material into the environment

at a rate ̂NcαcIC . This population of MAP bacilli in the

environment is assumed to decrease due to natural death

at a rate αC . However, from the single model system (2.1),

we note that ̂Nc is treated as a single value parameter. But

in reality ̂Nc is a composite parameter that summaries the

bacterial dynamics within an infected individual ruminant,

and this makes the single-scale model system (2.1) to be

unrealistic. We also note that it is not easy to estimate ̂Nc

using a single-scale models. However, an alternative approach

for estimating ̂Nc is to use a nested multiscale model. In the next

section, we derive a within-host scale submodel for estimating
̂Nc. The description of model variables associated with the

transmission cycle of PTB at the between-host scale are tabulated

in Table 1.

2.2. The within-host scale submodel for
the PTB multiscale model dynamics

For the derivation of the current nested multiscale

model for PTB in ruminants considered in this study,
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the within-host submodel dynamics is adopted from a

more elaborative single-scale model framework from the

work by Magombedze et al. [2] with minor modifications

which are based on multiscale considerations. However,

the main multiscale consideration incorporated into the

model in [2] is the excretion/shedding rate αc, which is

an important multiscle consideration since in general the

within-host scale sub-model is linked to the between-host

scale sub-model through pathogen shedding/excretion [15].

The resulting within-host model describes the interactions

of six populations: susceptible macrophages (Mφ) which are

target cells, infected macrophages (Im) which are macrophages

which have internalized extracellular MAP bacteria cells, MAP

bacterial load (Bc) at the extracellular environment, naive

CD4+ T cells (T0), Th1 immune response cells (T1), and

Th2 phenotype immune response cells (T2) [see the work

in [2]]. We also modify the model in [2] by making the

following assumptions:

(a) Transmission of the infection between cells is only

through contact with the extracellular MAP bacterial

load Bc in the extracellular environment at the site

of infection.

(b) The within-host scale disease processes happen at fast time

scale, τ , compared to the between-host scale PTB submodel

variables so that Mφ = Mφ(τ ), Im = Im(τ ), Bc = Bc(τ ),

T0 = T0(τ ), T1 = T1(τ ), and T2 = T2(τ ).

(c) The extracellular MAP bacterial load modeled

mechanistically by Bc = Bc(τ ) is a proxy for individual

ruminant infectiousness.

(d) The extracellular MAP bacteria does not replicate outside

the macrophage cells of an individual ruminant.

(e) The depletion of MAP bacteria in the extracellular

environment through engulfment by macrophages is

negligible.

These assumptions lead to the following submodel of
ordinary differential equations for the within-host scale PTB
transmission dynamics:
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i.
dMφ (τ )

dτ
= 3φ − βφMφ (τ )Bc(τ )− µφMφ (τ ),

ii.
dIm(τ )

dτ
= βφMφ (τ )Bc(τ )− γmT1(τ )Im(τ )− (km + µφ )Im(τ ),

iii.
dBc(τ )

dτ
= NmkmIm(τ )− (µc + αc)Bc(τ ),

iv.
dT0(τ )

dτ
= 30 − (δmIm(τ )+ δbBc(τ ))T0(τ )− µ0T0(τ ),

v.
dT1(τ )

dτ
= θ1δmIm(τ )T0(τ )− µ1T1(τ ),

vi.
dT2(τ )

dτ
= θ2δbBc(τ )T0(τ )− µ2T2(τ ).

(2.2)

In the within-host scale sub-model (2.2), the first two

equations describe the dynamics of the within-ruminant-host

macrophage population which is divided into two groups. The

first group is of susceptible macrophage cells Mφ(τ ) (these

are macrophages which are healthy and are susceptible to the

Paratuberculosis at the site of infection). The second group

is of infected macrophage cells Im(t) (these are macrophages

which are infected by the MAP bacteria). We assume that,

at any time τ , new macrophage recruits enter the population

of susceptible macrophages through the supply of macrophage

cells from progenitor monocytes that are recruited from the

blood to the site of infection at a constant rate 3φ and

this population loses individuals due to natural death at a

constant rate µφ . Susceptible macrophages acquire infection

through engulfing extracellular MAP bacilli bacteria at a

rate βφ . We assume that in the population of infected

macrophages experiences additional death due to bursting of

infected cells at a rate km and due to cell removal by T1

immune response at a rate γm. In addition, when infected

macrophages burst at constant rate km, they are assumed to

release an average number of intracellular MAP bacilli Nm

into the extracellular environment, so that the total number of

intracellular bacteria released into the extracellular environment

is NmkmIm. The third equation of the model system (2.2)

describes the changes in time of the population size of MAP

bacteria in the extracellular environment which is generated

following the release of the intracellular MAP bacilli into

the extracellular environment when each infected macrophage

bursts. We assume that the population of MAP bacteria in

the extracellular environment decays naturally at a constant

rate µc and are excreted out of the body of infected ruminant

into the physical environment through feces at a constant

rate αc. The last three equations of the model system (2.2)

describe the evolution in time of the population of ruminant

immune response cells at the site of infection in the gut

which are naive CD4+ T cells (T0), and the two subsets

of the MAP specific immune response, Th1 (T1) and Th2

(T2) cells [see [2] and reference therein]. The population of

naive CD4+ T cells (T0) for MAP bacilli are produced at

a constant rate 30 from the thymus. We assume that these

naive CD4+ T cells decay naturally at a rate µ0. Following

the work in [2], we assume that T0 cells become T1 or

T2 immune response cells at per capita rates δm and δb,

respectively. Thus, the population of T1 and T2 immune

response cells are proliferated at a rate θ1δmImT0 and θ1δbBmT0,

respectively. We assume that both the population of T1 and

T2 immune response cells decay naturally at rates µ1 and µ2,

respectively. The description of model variables associated with

the replication cycle of PTB at the within-host scale are tabulated

in Table 2.
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2.3. Integration of the between-host and
within-host submodels of PTB dynamics
into a nested multiscale model

In the previous two subsections we presented the two

submodels for the dynamics of PTB infection [between-host

submodel (2.1) and within-host submodel (2.2)] that separately

describe the two key processes of PTB disease dynamics

(transmission and replication of MAP bacteria processes) which

occur at two distinct scales (within-host scale and between-

host scale). We now integrate them into a single multiscale

model as shown in flow diagram in Figure 1. We achieve this by

replacing the parameter ̂Nc which phenomenologically models

within-host scale pathogen replication by a variable Bc(τ )

which mechanistically models the within-host scale pathogen

replication to get:
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i.
dSC(t)

dt
= 3C −

βCBC(t)

B0 + BC(t)
SC(t)− µCSC(t)+ γ̂C(Bc)IC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 + BC(t)
SC(t)− [µC + ̂δC(Bc)+ γ̂C(Bc)]IC(t),

iii.
dBC(t)

dt
= αcBc(τ )IC(t)− αCBC(t),

iv.
dMφ (τ )

dτ
= 3φ − βφMφ (τ )Bc(τ )− µφMφ (τ ),

v.
dIm(τ )

dτ
= βφMφ (τ )Bc(τ )− γmT1(τ )Im(τ )− (km + µφ )Im(τ ),

vi.
dBc(τ )

dτ
= NmkmIm(τ )− (µc + αc)Bc(τ ),

vii.
dT0(τ )

dτ
= 30 − (δmIm(τ )+ δbBc(τ ))T0(τ )− µ0T0(τ ),

viii.
dT1(τ )

dτ
= θ1δmIm(τ )T0(τ )− µ1T1(τ ),

ix.
dT2(τ )

dτ
= θ2δbBc(τ )T0(τ )− µ2T2(τ ).

(2.3)

Based on the categorization of multiscale models of

infectious disease systems presented in [15, 16], the

multiscale model for PTB disease dynamics given by

(2.3) falls in the category of nested multiscale models of

class 2.

2.4. Analysis of the multiscale model
using fast-low time-scale analysis

We note from the full nested multiscale model system given

by (2.3) has two different time scales involved which are the

between-host time scale (t) associated with the transmission

dynamics of PTB at the population level and the within-

host time scale (τ ) associated with the replication dynamics

TABLE 2 A summary of the variables associated with the replication

cycle of PTB at the within-host scale.

No. Variable Description

1. Mφ (τ ) Population of susceptible macrophages within an infected

ruminant host at time τ

2. Im(τ ) Population of infected macrophages within an infected

ruminant host at time τ

3. T0(τ ) Population of naive CD4 T cells within an infected ruminant

host at time τ

4. T1(τ ) Population of specific immune response, Th1 within an

infected ruminant host at time τ

5. T2(τ ) Population of specific immune response, Th2 within an

infected ruminant at time τ

6. Bc(τ ) Population of extracellular MAP bacteria within an infected

ruminant host at time τ

of PTB infectious agent at an individual ruminant level. This

makes the analysis of the full nested multiscale model system

(2.3) more difficult to perform. However, the analysis of the

multiscale model system (2.3) can be simplified by expressing

the slow time-scale and the fast time-scale in terms of each

other by using the relationship t = ǫτ , where 0 < ǫ ≪

1 and ǫ being a constant highlighting the fast time-scale

dynamics of the within-host model compared to the slow time-

scale of the between-host scale dynamics. We further assume

the constant rate of recovery and constant disease-induced

death rate of infected ruminants so that γ̂C(Bc) = γC and
̂δC(Bc) = δC , so that the full nested multiscale model system

(2.3) becomes:
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i.
dSC(t)

dt
= 3C −

βCBC(t)

B0 + BC(t)
SC(t)− µCSC(t)+ γCIC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 + BC(t)
SC(t)− (µC + δC + γC)IC(t),

iii.
dBC(t)

dt
= αcBc(t)IC(t)− αCBC(t),

iv. ǫ
dMφ(t)

dt
= 3φ − βφMφ(t)Bc(t)− µφMφ(t)

v.ǫ
dIm(t)

dt
= βφMφ(t)Bc(t)− γmT1(t)Im(t)− (km + µφ)Im(t)

vi. ǫ
dBc(t)

dt
= NmkmIm(t)− (µc + αc)Bc(t)

vii. ǫ
dT0(t)

dt
= 30 − (δmIm(t)+ δbBc(t))T0(t)− µ0T0(t)

viii. ǫ
dT1(t)

dt
= θ1δmIm(t)T0(t)− µ1T1(t)

ix. ǫ
dT2(t)

dt
= θ2δbBc(t)T0(t)− µ2T2(t).

(2.4)
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FIGURE 1

A schematic representation of the nested multiscale model of paratuberculosis disease in ruminants, with λC = βCBC/(B0 + BC).

In the next two sub-sections, we assess through numerical

simulations the full nested multiscale model system given by

equation (2.4) to ascertain the reciprocal influence between

the between-host scale and the within-host scale dynamics

of PTB infection. We achieve this by demonstrating (i)

the influence of the between-host scale on the within-host

scale through the initial infective inoculum that susceptible

ruminants may acquire by interacting with MAP bacteria in

contaminated environment, and (ii) the influence of the within-

host scale parameters on the between-host disease dynamics.

The parameter values used for simulations are tabulated in

Table 3. In addition, initial values used for simulations for

the full nested multiscale model system (2.4) are as follows:

SC(0) = 2, 000, IC(0) = 5, Bc(0) = 10, Mφ(0) =

500, Im(0) = 0, T0(0) = 0, T1(0) = 0, T2(0) = 0,

BC(0) = 1, 000.

2.4.1. The influence of initial inoculum on the
within-host scale of PTB infection dynamics

In this subsection, we demonstrate through numerical

simulations of the full nested multiscale model system (2.4)

the influence of between-host scale dynamics on within-host

scale variables for PTB infection dynamics. This is achieved by

varying the initial value condition of the infective inoculum

Bc(0) that susceptible ruminants may acquire by interacting

with MAP bacteria in contaminated environment for different

values and assess its impact on the dynamics of four selected

key within-host variables, Im, Bc, T1, and T2. Figure 2 shows

the effect of varying Bc(0) for different values on the within-

host variables (Im, Bc, T1, T2). Bc(0): Bc(0) = 10, Bc(0) =

1, 000, and Bc(0) = 1, 000, 000. The used values are plausible

largely because of the scarcity of multiscale empirical data

for PTB. We used the multiscale model as an experimental
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TABLE 3 Model parameter values used for simulations.

Parameter Description Unit Value References

(Range explored)

3C Ruminants birth rate day−1 0.27 [0.14–0.27] [1, 3]

βC Ruminants infection rate day−1 0.00027 [0.0–0.008] Assumed

µC Natural death rate of Ruminants day−1 0.0001 [0.001–0.0001] [1]

δC Cattle removal rate due day−1 0.0008 [0.005–0.0008] [1]

to PTB infection

γC Ruminant recovery rate day−1 0.0014 [0.014–0.0008] Assumed

αC Environmentally bacteria day−1 0.0018 [0.01–0.0008] [1]

death rate

B0 Saturation rate of bacteria day−1 1,000 [0 - 1,000] [3]

3φ Macrophages supply rate day−1 10 [8.0–10.0] [2]

βφ Macrophages infection rate day−1 0.002 [0.0–0.01] [2]

µφ Macrophages natural day−1 0.02 [0.11–0.025] [2]

death rate

Nm Burst size day−1 100 [80–100] [2]

km Burst rate day−1 0.00075 [0.00–0.0001] [2]

γm T1 lytic effect day−1 0.01 [0.0–0.2] [2]

µc Bacteria’s death rate day−1 0.03 [0.0–1.0] [2]

αc Excretion rate day−1 0.01 [0.0–1.0] [3]

30 T0 supply rate day−1 0.001 [0.00001–0.001] [2]

µ0 T0 death rate day−1 0.01 [0.1–0.01] [2]

µ1 T1 death rate day−1 0.03 [0.1–0.01] [2]

µ2 T2 death rate day−1 0.02 [0.1–0.01] [2]

δm T0 differentiation into T1 cells day−1 0.01 [0.0–0.1] [2]

δb T0 differentiation into T2 cells day−1 0.01 [0.0–0.1] [2]

θ1 T1 cells clonal expansion day−1 9,000 [1.0–10,000] [2]

θ2 T2 cells clonal expansion day−1 9,000 [1.0–10,000] [2]

tool to investigate a range of model variables initial inoculum.

From the numerical results in Figure 2, we notice that as the

initial infective inoculum Bc(0) increases beyond the minimum

infectious dose (MID), there is a noticeable but minimal changes

in the dynamics of the within-host scale variables Im, Bc, T1,

T2. This is because, once the host is infected, the replication of

the MAP bacteria at the within-host scale sustains the disease

dynamics at this scale.

Figure 2 shows the solution profiles of the population of

(Figure 2A) infected macrophage population (Im), (Figure 2B)

within-host MAP bacteria population (Bc), (Figure 2C) MAP-

Specific Th1 response cells (T1), and (Figure 2D) MAP-Specific

Th2 response cells for different values of initial inoculum of

MAP bacterial load Bc(0): Bc(0) = 10, Bc(0) = 1, 000,

and Bc(0) = 1, 000, 000 at within-host scale. The results in

Figure 2 illustrate that the variation in the initial inoculum

influence the dynamics of the disease at the within-host

scale only within a period of 50 days. But, after that the

dynamics of the disease reach an endemic level. Therefore,

this implies that different initial inoculum values converge

to the same endemic state after a period of about 50 days.

Overall, this confirms that once the minimum infectious dose

is consumed, the long term disease dynamics is independent

of the initial inoculum. And also confirms that as the initial

inoculum increases, the time to reach the endemic state

also increases.

2.4.2. The influence of within-host scale
parameters on the between-host scale PTB
infection dynamics

In this subsection, we illustrate through numerical

simulations of the full nested multiscale model system (2.4) the

influence of within-host scale parameters on between-host scale

variables for PTB infection dynamics. We vary the within-host
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FIGURE 2

Graphs of numerical solutions of the multiscale model system (2.4) showing changes of (A) infected macrophage population (Im), (B)

within-host MAP bacteria population (Bc), (C) MAP-Specific Th1 response cells (T1), and (D) MAP-Specific Th2 response cells (T2) for di�erent

values of initial value condition of the within-host MAP bacterial load Bc(0): Bc(0) = 10, Bc(0) = 1, 000, and Bc(0) = 1, 000, 000.

scale parameters, αc, µc, and Nm and assess their impact

on the dynamics of the between-host scale variables SC , IC ,

and BC .

Figure 3 shows graphs of numerical solutions of the model

system (2.4) showing dynamics of (Figure 3A) population of

susceptible ruminants (SC), (Figure 3B) population of infected

ruminants (IC), and (Figure 3C) environmental MAP bacteria

load (BC) for different values of excretion rate of the within-

host scale MAP bacilli into the environment αc: αc = 0.1,

αc = 0.01, and αc = 0.001. The results show that an

increase in the excretion rate of the within-host scale bacterial

load into the physical environment by each infected ruminant

individual has important ruminant population health effects

at the between-host scale dynamics of PTB infection as there

is a noticeable increase in the population of environmental

MAP bacteria BC and the population of infected ruminants

IC as well as a decrease in the population of susceptible

ruminants SC .

Figure 4 shows changes in (Figure 4A) population of

susceptible ruminants (SC), (Figure 4B) population of infected

ruminants (IC), and (Figure 4C) population of environmental

MAP bacteria load (BC) for different values of natural decay rate

of the within-host scale MAP bacteria cells: µc: µc = 0.3, µc =

0.03, and µc = 0.003. The results in Figure 4 show that as the
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FIGURE 3

Graphs of numerical solutions of the multiscale model system (2.4) showing the evolution in time of (A) population of susceptible ruminants

(SC), (B) population of infected ruminants (IC), and (C) between-host MAP bacterial load (BC) for di�erent values of excretion rate of the

within-host MAP bacterial load into the environment αc: αc = 0.1, αc = 0.01, and αc = 0.001.

death rate of the within-host scale bacterial load increases, there

is also a noticeable reduction in the population of environmental

MAP bacteria BC and the population of infected ruminants

IC as well as an increase in the population of susceptible

ruminants SC at between-host scale. Therefore, development

of any treatment measures that target MAP bacteria at within-

host scale such as antibiotics [28] are equally good for both

the individual ruminant and the population because a single

infected ruminant will no longer pose a threat for transmitting

infection in the population/herd which consequently reduces the

transmission risk of the disease among the ruminants in the

population/herd.

Figure 5 shows the dynamics in the (Figure 5A) population

of susceptible ruminants (SC), (Figure 5B) population of

infected ruminants (IC), and (Figure 5C) population of

environmental MAP bacterial load (BC) for different values of

within-host scale bursting size of each infected macrophage cell

Nm: Nm = 100, Nm = 1, 000, Nm = 10, 000. The numerical

results in Figure 5 show that as the average replication rate

of the within-host MAP bacteria within infected macrophage

cells at the site of infection increases, transmission of PTB

infection at the population/herd level of ruminants also

increases. Therefore, these results demonstrate the benefit of

treatment that can restrict the replication of MAP bacteria at
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FIGURE 4

Graphs of numerical solutions of the multiscale model system(2.4) showing changes in (A) population of susceptible ruminants (SC), (B)

population of infected ruminants (IC), and (C) population of environmental MAP bacterial load (BC) for di�erent values of death rate of the

within-host MAP bacterial load µc: µc = 0.3, µc = 0.03, and µc = 0.003.

individual ruminant level on the transmission of the disease at

the population/herd level of ruminants. Collectively, we note

from the results in Figures 3–5, that the between-host scale

variables (SC , IC , BC) are significantly sensitive to the variation

of the three selected within-host scale parameters (αc, µc, and

Nm), particularly the decay rate µc of the within-host scale

MAP bacteria.

Overall, the results in Figures 2–5 show that:

(a) The between-host scale influences the within-host scale

through the initial inoculum of the infectious agent.

(b) Once the initial inoculum has been introduced from the

between-host scale, then the infection at within-host scale

is sustained by pathogen replication.

(c) As the initial inoculum acquired from the between-host

scale increases beyond the MID, the time taken for the

infection at within-host scale to reach equilibrium increases.

(d) The between-host scale variables (SC , IC , BC) are
significantly sensitive to the variation of the three
selected within-host scale parameters (αc, µc, and Nm),
particularly the decay rate µc of the within-host scale MAP
bacteria.
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FIGURE 5

Graphs of numerical solutions of the multiscale model system (2.4) showing dynamics in (A) population of susceptible ruminants (SC), (B)

population of infected ruminants (IC), and (C) population of environmental MAP bacterial load (BC) for di�erent values of within-host scale MAP

bacteria produced per bursting infected macrophage cell Nm: Nm = 100, Nm = 1, 000, Nm = 10, 000.

This indeed indicates that during the dynamics for PTB

infection in ruminants once the infection has successfully

established at the within-host scale, the contribution of initial

infective inoculum to the total pathogen load becomes negligible

compared to the contribution of the replication of the pathogen.

Further, the results in Figures 3–5 seem to have a threshold

effect. This is because there no significant differences between SC
and IC for low values of α, µ, and Nm and yet these quantities

are significantly different for higher values of these parameters.

It may be just the values of parameters used, but further work to

be reported elsewhere will investigate this as it could be utilized

for control measures.

3. Estimation of ̂Nc from the full
nested multiscale model

In this section, we estimate ̂Nc parameter in the single

scale model for the dynamics of PTB infection using the nested

multiscale model system (2.4). This is achieved by assuming

that 0 < ǫ ≪ 1, so that to reasonable approximation we

can set ǫ = 0 in the full nested multiscale model system

(2.4). Thus, we consider the last six equations of the PTB

full nested multiscale model system (2.4) re-written here as a

quick reference
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i. ǫ
dMφ(t)

dt
= 3φ − βφMφ(t)Bc(t)− µφMφ(t),

ii. ǫ
dIm(t)

dt
= βφMφ(t)Bc(t)− γmT1(t)Im(t)− (km + µφ)Im(t),

ii. ǫ
dBc(t)

dt
= NmkmIm(t)− (µc + αc)Bc(t),

iv. ǫ
dT0(t)

dt
= 30 − (δmIm(t)+ δbBc(t))T0(t)− µ0T0(t),

v. ǫ
dT1(t)

dt
= θ1δmIm(τ )T0(τ )− µ1T1(t),

vi. ǫ
dT2(t)

dt
= θ2δbBc(t)T0(t)− µ2T2(t).

(3.5)

Since 0 < ǫ << 1, we can set ǫ to zero so that the

within-host scale PTB replication dynamics submodel becomes

independent of time and we obtain:
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i. 3φ − βφM
∗
φB

∗
c − µφM

∗
φ = 0,

ii. βφM
∗
φB

∗
c − γmT

∗
1 I

∗
m − (km + µφ)I

∗
m = 0,

iii. NmkmI
∗
m − (µc + αc)B

∗
c = 0,

iv. 30 − (δmI
∗
m + δbB

∗
c )T

∗
0 − µ0T

∗
0 = 0,

v. θ1δmI
∗
mT

∗
0 − µ1T

∗
1 = 0,

vi. θ2δbB
∗
cT

∗
0 − µ2T

∗
2 = 0.

(3.6)

From (3.6) we get
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i. M∗
φ =

23φ(µc + αc)

βφNmkmM + 2µφ(µc + αc)
,

ii. I∗m =
M

2
,

iii. B∗c =
NmkmM

2(µc + αc)
,

iv. T∗
0 =

230(µc + αc)

2µ0(µc + αc)+ [δm(µc + αc)+ δbNmkm]M
,

v. T∗
1 =

θ1δm30(µc + αc)M

2µ0µ1(µc + αc)+ µ1[δm(µc + αc)+ δbNmkm]M
,

vi. T∗
1 =

θ2δb30NmkmM

2µ2µ0(µc + αc)+ µ2[δm(µc + αc)+ δbNmkm]M
.

(3.7)

In the expression (3.7),
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M = −φ1 +

√

φ2
1 + 4φ2

φ1 =
k3 + µ1µ0k2 − k1Q

k2k1
,

φ2 =
µ1µ0Q

k2k1
,

(3.8)
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Q = µφ(µφ + δφ)(R0W − 1),

k1 =
µ1δm(µc + αc)+ µ1δbNmkm

(µc + αc)
,

k2 =
βφNmkm(µφ + km)

(µc + αc)
,

k3 = k0 + µφγmθ1δm30,

k0 =
βφNmkmγmθ1δm30

(µc + αc)
,

R0W =
βφ3φNmkm

µφ(µφ + km)(µc + αc)
.

(3.9)

Further, in the expression (3.9) the quantity

R0W =
βφ3φNmkm

µφ(µφ + δφ)(µc + αc)
,

is the within-host scale basic reproductive number. Therefore,

the fast-slow analysis reduces the within-host scale submodel

system (2.2) to the algebraic equations given in (3.7) which can

be fed into the parameters of the between-host scale submodel

and become
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i.
dSC(t)

dt
= 3C −

βCBC(t)

B0 + BC(t)
SC(t)− µCSC(t)+ γCIC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 + BC(t)
SC(t)− (µC + δC + γC)IC(t),

iii.
dBC(t)

dt
= αcB

∗
c IC(t)− αCBC(t).

(3.10)

We note that from the model system given by (3.10) that

the total number of extracellular MAP bacilli excreted by each

infected ruminant into the physical environment BcIC is now

approximated by B∗c IC . Using the notation that ̂Nc = B∗c , a

composite parameter which can be interpreted as the average

number of the within-host scale MAP bacterial load (Bc) at

the endemic equilibrium that is available for excretion into

the environment by each infected ruminant, the full multiscale

model (2.4) of PTB transmission dynamics is simplified to

become
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i.
dSC(t)

dt
= 3C −

βCBC(t)

B0 + BC(t)
SC(t)− µCSC(t)+ γCIC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 + BC(t)
SC(t)− (µC + δC + γC)IC(t),

iii.
dBC(t)

dt
= NcαcIC(t)− αCBC(t)

(3.11)
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where the composite parameter Nc which estimates ̂Nc is given

by

Nc =
Nmkm

2(µc + αc)

[

−φ1 +

√

φ2
1 + 4φ2

]

. (3.12)

In the expression forNc given by equation (3.12), the expressions

φ1 and φ2 are defined by (3.8) and (3.9). Based on the

categorization of the multiscale models of infectious disease

systems in [15, 16], the multiscale model system given by (3.11)

is a nested multiscale model of class 3. After estimating Nc

as well as establishing the simplified nested multiscale model

system given by (3.11), we now analyze the behavior of this

nested multiscale model system (3.11). In the next section, we

present some results from mathematical analysis and numerical

simulations of the behavior of the simplified nested multiscale

model (3.11).

4. Mathematical analysis of the
simplified nested multiscale model
for PTB infection in ruminants

The PTB dynamics multiscale model system (3.11) can be

analyzed in a region Ŵ ⊂ R
3
+ of biological interest, which is

given by

Ŵ = {(SC; IC;BC) ∈ R
3
+ :

0 ≤ SC + IC ≤ S1, 0 ≤ BC ≤ S2}
(4.13)

where the constant S1 and S2 are such that
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S1 =
3C

µC
,

S2 =
Ncαc3C

αCµC
.

(4.14)

It can be easily shown that all solutions for the simplified

multiscale model system (3.11) with positive initial conditions

remain bounded within the invariant region Ŵ given by

(4.13). Therefore, it is sufficient to consider the dynamics

of the flow generated by the simplified nested model system

(3.11) in Ŵ.

In the following three subsections, we evaluate global

stability of both the disease-free and endemic equilibrium

states for the PTB dynamics multiscale model system (3.11)

as well as evaluating sensitivity of the two main between-host

transmission metrics which are the basic reproductive number

(R0) and the endemic value of the nestedmultiscale model (3.11)

MAP bacteria (B∗C).

4.1. Disease-free equilibrium and
reproductive number of the simplified
nested multiscale model

The disease-free equilibrium of the nested multiscale model

system (3.11) was obtained by setting the left-hand side of the

model to zero and further assume that IC = BC = 0 to get

̂E0 = (X∗, 0) =

(

3C

µC
, 0, 0

)

, (4.15)

wherêE0 denotes the disease-free equilibrium of the simplified

nested multiscale model system (3.11).

4.1.1. Derivation of the reproductive number of
the simplified multiscale model

The basic reproduction number denoted by R0, is a

threshold value that is often used as a public health measure to

determine whether a disease will persist or die out. In this study,

we computed the basic reproductive number of the simplified

multiscale model system (3.11) by using the next generation

operator approach in [26] to obtain

R0 =
βC3CNcαc

µC(µC + δC + γC)B0αC
. (4.16)

Details of the derivation of the basic reproductive number given

by expression (4.16) are given in Appendix A. This expression of

the basic reproductive number can be re-written as

R0 = R0aR0b (4.17)

where the quantity R0a is explained as follows:

a. Consider a single newly infected ruminant entering a

contaminated-free environment at an equilibrium point.

The expected number of bacteria cells produced by

this ruminant and contaminate the environment is

approximately

R0a =
Ncαc

µC(µC + δC + γC)
. (4.18)

From the expression (4.18) we deduce that the quantity

R0a depends on the average MAP bacterial load within an

infected ruminant Nc which is excreted into the physical

environment at a rate αc, where it becomes infectious

to other ruminants during feeding from contaminated

food or water with MAP bacterial load. In this study,

we consider Nc as a composite parameter which is

interpreted as the endemic value of the within-host

scale MAP bacterial load B∗c which we have already

determined from the within-host PTB disease dynamics

sub-model as given in equation (3.12). Therefore, the
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quantity R0a quantifies how much an infected ruminant

can contribute to the spread of the disease in the herd

during its entire period of infectiousness, with 1/(µC +

δC + γC) describes the average life span of an infected

ruminant.

b. Similarly, consider a newly bacterial infectious

dose of MAP bacilli cells entering a disease-

free population of a ruminant population at

an equilibrium point. The expected number of

ruminants infected by this dose of bacteria cells is

approximately

R0b =
βC3C

αCB0
. (4.19)

We can also deduce that the quantity R0b in (4.19)

depends on the supply rate of susceptible ruminants 3C ,

the rate at which susceptible ruminants contract MAP

bacteria in the physical environment domains during

feeding βC , the average life span of each susceptible

ruminant host 1/µC , the average life span of MAP

bacteria load in the physical environment domains and

the susceptibility coefficient to PTB infection in the

ruminant community/herd, where B0 is the bacterial

load that results in 50% chance of ruminants being

infected.

Collectively, based on the two expressions R0a and R0b ,

we conclude that the epidemiological (between-host scale)

transmission parameters and the immunological (within-host

scale) parameters all contribute to the transmission of ruminant

paratuberculosis disease.

4.1.2. Global stability of the disease-free
equilibrium

In this subsection, we determine the global stability of DFE

of the simplified multiscale model system (3.11) by further using

a next generation operator [26]. Thus the model system (3.11)

can be re-written in the form



















dX

dt
= F(X,Z),

dZ

dt
= G(X,Z),

(4.20)

where

• X = SC represents a compartment of uninfected

ruminants, and

• Z = (IC ,BC) represents compartments of infected

ruminants and Infective MAP bacteria in the physical

environment.

We let

E0 = (X∗, 0) =

(

3C

µC
, 0, 0

)

, (4.21)

denote the disease-free equilibrium (DFE) of the model

system (3.11). For X∗ to be globally asymptotically stable, the

following conditions (H1) and (H2) must be satisfied.

H1.
dX

dt
= F(X, 0) is globally asymptotically stable (GAS),

H2. G(X,Z) = AZ − Ĝ(X,Z), Ĝ((X,Z) ≥ 0 for (X,Z) ∈ R
3
+

whereA = DZG(X
∗, 0) is anM-matrix andR3

+is the region

where the model makes biological sense.

In this case,

F(X, 0) =
[

3C − µCSC

]

, (4.22)

and the matrix A is given by

A =









−(µC + δC + γC)
βC3C

µCB0

Ncαc −αC









(4.23)

and

Ĝ(X,Z) =









(

3C

µCB0
−

SC

B0 + BC

)

βCBC

0









. (4.24)

Since S0C =
3C

µCB0
≥

SC

B0 + BC
, it is clear that Ĝ(X,Z) ≥ 0 for

all (X,Z) ∈ R
3
+. It is also clear that A is a M-matrix, since the off

diagonal elements of A are non-negative.

We state a theorem which summarizes the above results:

Theorem 1. The fixed point

E0 = (X∗, 0) =

(

3C

µC
, 0, 0

)

of the multiscale model system (3.11) is globally asymptotically

stable (GAS) if R0 ≤ 1 and the assumptions (H1) and (H2) are

satisfied.

4.2. Endemic equilibrium and its global
stability

In the subsection, we determine the endemic equilibrium

state of the simplified nested multiscale model system (3.11)
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by setting the left-hand side of the simplified nested multiscale

model system (3.11) to zero but assuming that IC and BC are

non-zero, so that

E∗ =
(

S∗C , I
∗
C ,B

∗
C

)

(4.25)

where






































































S∗C =
3C[(µC + δC + γC)R0 + βC(δC + µC)]

µC[(βC + µC)(µC + δC)+ µCγC]R0
,

I∗C =
βC3C[R0 − 1]

(µC + δC + γC)(βC + µC)R0
,

B∗C =
µC(µC + δC + γC)[R0 − 1]

(βC + µC)(µC + δC)+ µCγC
,

R0 =
βC3CNcαc

µC(µC + δC + γC)B0αC
.

(4.26)

We deduce that only a single positive endemic equilibrium point

exists whenever R0 > 1. To this effect, we conclude that there

exists only one unique endemic equilibrium point for model

system (3.11) whenever R0 > 1. We can then further determine

the global stability of the endemic equilibrium for the simplified

multiscale model system (3.11) since we have established the

existence of E∗ without providing any information about its

stability. The global stability of the endemic equilibrium E∗

of the multiscale model system (3.11) is summarized in the

following theorem:

Theorem 2. The Endemic Equilibrium E∗ of the model system

(3.11) is global asymptotically stable (GAS) whenever R0 > 1.

Proof : Let’s consider a Volterra-type Lyapunov function given by

L1 = L(SC , IC ,BC),

= S∗Cg

(

SC

S∗C

)

+ I∗Cg

(

IC

I∗C

)

+
λ∗CS

∗
C

NcαcI
∗
C

B∗Cg

(

BC

B∗C

)

,

(4.27)

and further taking advantage of the properties of the function

g(x) = x− 1− ln(x) (4.28)

which is positive in (0, ∞) except at x = 1 where it vanishes.

We note that L1 is non-negative in the interior of Ŵ and attain

zero at E∗. We now need to show that L̇1 is negative definite.

Differentiating L1 along the trajectories of the model system

(2.1), we obtain

L̇1 =
dSC

dt

[

1−
S∗C
SC

]

+
dIC

dt

[

1−
I∗C
IC

]

+
λ∗CS

∗
C

NcαcI
∗
C

dBC

dt

[

1−
B∗C
BC

]

,

=

[

1−
S∗C
SC

]

[3C − λCSC − µCSC + γCIC]

+

[

1−
I∗C
IC

]

[λCSC − (µC + δC + γC)IC]

+
λ∗CS

∗
C

NcαcI
∗
C

[

1−
B∗C
BC

]

[NcαcIC − αCBC].

(4.29)

Since E∗ is an equilibrium point, the following relations hold



























3C = λ∗CS
∗
C + µCS

∗
C , (µC + δC + γC) =

λ∗CS
∗
C

I∗C
,

αC =
NcαcI

∗
C

B∗C
.

(4.30)

Using the relations in (4.30), L̇1 becomes

L̇1 =

[

1−
S∗C
SC

]

[λ∗CS
∗
C + µCS

∗
C − λCSC − µCSC + γCIC

−γCI
∗
C]+

[

1−
I∗C
IC

] [

λCSC −
λ∗CS

∗
CIC

I∗C

]

+
λ∗CS

∗
C

NcαcI
∗
C

[

1−
B∗C
BC

] [

NcαcIC −
NcαcI

∗
CBC

B∗C

]

.

(4.31)

By direct calculations from equation (4.31), we have that the first

term at the right hand side of Equation (4.31) is as follows

[

1−
S∗C
SC

]

[

λ∗CS
∗
C + µCS

∗
C − λCSC − µCSC + γCIC − γCI

∗
C

]

=

[

1−
S∗C
SC

]

(

λ∗CS
∗
C − λCSC

)

+

[

1−
S∗C
SC

]

(

µCS
∗
C − µCSC

)

+

[

1−
S∗C
SC

]

(

γCIC − γCI
∗
C

)

= −µC

[

1−
S∗C
SC

]2

− γC

[

1−
S∗C
SC

] [

1−
IC

I∗C

]

+ λ∗CS
∗
C

[

1−
S∗C
SC

] [

1−
λCSC

λ∗CS
∗
C

]

≤ λ∗CS
∗
C

[

1−
S∗C
SC

] [

1−
λCSC

λ∗CS
∗
C

]

.

(4.32)

The second term at the right hand side of Equation (4.31) is

[

1−
I∗C
IC

] [

λCSC −
λ∗CS

∗
CIC

I∗C

]

= λ∗CS
∗
C

[

1−
I∗C
IC

] [

λCSC

λ∗CS
∗
C

−
IC

I∗C

]

,
(4.33)

and the third term at the right hand side of Equation (4.31) is as

follows

λ∗CS
∗
C

NcαcI
∗
C

[

1−
B∗C
BC

] [

NcαcIC −
NcαcI

∗
CBC

B∗C

]

= λ∗CS
∗
C

[

1−
B∗C
BC

] [

IC

I∗C
−

BC

B∗C

]

.
(4.34)

Frontiers in AppliedMathematics and Statistics 16 frontiersin.org

40

https://doi.org/10.3389/fams.2022.817060
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Netshikweta and Garira 10.3389/fams.2022.817060

Therefore,

L̇1 ≤ λ∗CS
∗
C

[

1−
S∗C
SC

] [

1−
λCSC

λ∗CS
∗
C

]

+λ∗CS
∗
C

[

1−
I∗C
IC

] [

λCSC

λ∗CS
∗
C

−
IC

I∗C

]

+ λ∗CS
∗
C

[

1−
B∗C
BC

] [

IC

I∗C
−

BC

B∗C

]

,

≤ λ∗CS
∗
C

[

2−
λCSCI

∗
C

λ∗CS
∗
CIC

+
λC

λ∗C
−

S∗C
SC

−
IC

I∗C

]

+λ∗CS
∗
C

[

1−
ICB

∗
C

I∗CBC
+

IC

I∗C
−

BC

B∗C

]

(4.35)

By using the function g(x) defined in (4.28), we get

L̇1 ≤ λ∗CS
∗
C

[

−g

(

S∗C
SC

)

− g

(

λCSCI
∗
C

λ∗CS
∗
CIC

)

+
λC

λ∗C
− ln

(

BC

B∗C

)

−
IC

I∗C
+ ln

(

IC

I∗C

)

+ ln

(

B0 + BC

B0 + B∗C

)]

+ λ∗CS
∗
C

[

−g

(

ICB
∗
C

I∗CBC

)

− ln

(

IC

I∗C

)

+
IC

I∗C
+ ln

(

BC

B∗C

)

−
BC

B∗C

]

,

≤ λ∗CS
∗
C

[

−g

(

S∗C
SC

)

− g

(

λCSCI
∗
C

λ∗CS
∗
CIC

)

+
BC

B∗C
− ln

(

BC

B∗C

)

−
IC

I∗C

+ ln

(

IC

I∗C

)]

+ λ∗CS
∗
C

[

BC(B0 + B∗C)

B∗C(B0 + BC)
−

B0 + BC

B0 + B∗C
− g

(

B0 + BC

B0 + B∗C

)

−
BC

B∗C
− 1

]

+ λ∗CS
∗
C

[

−g

(

ICB
∗
C

I∗CBC

)

− ln

(

IC

I∗C

)

+
IC

I∗C
+ ln

(

BC

B∗C

)

−
BC

B∗C

]

,

≤ λ∗CS
∗
C

[

BC

B∗C
− ln

(

BC

B∗C

)

−
IC

I∗C
+ ln

(

IC

I∗C

)]

+ λ∗CS
∗
C

[

IC

I∗C
− ln

(

IC

I∗C

)

+ ln

(

BC

B∗C

)

−
BC

B∗C

]

= 0

(4.36)

From (4.36), we have that the largest invariant subset, where

L̇1 = 0, is E∗. Therefore, we conclude from the LaSelle’s

Invariance Principle that E∗ is globally asymptotically stable

(GAS) when R0 > 1.

4.3. Sensitivity analysis

In this sub-section, we conduct a sensitivity analysis of

the two PTB transmission metrics derived from the simplified

nested multiscale model given by (3.11) to the parameters

of the model variation. As mentioned previously, the two

PTB transmission metrics derived from the baseline PTB

multiscale model system (3.11) are: the reproductive number,

R0, which generally describes the dynamics of a disease at

the beginning of an infection and the endemic value of the

environmental bacteria load, B∗C , which generally describes

the dynamics of a disease at the endemic level. For any

epidemic model that describes the dynamics of any diseases

in a population, a sensitivity analysis study is an essential

to perform as it helps to identify model’s parameters which

can be targeted for disease control, elimination, or even

eradication, and also be monitored and controlled during an

outbreak of the disease. In this case, sensitivity analysis of

both the PTB multiscale transmission metrics (R0 and B∗C),

with respect to the variation of the baseline PTB multiscale

model system (3.11)’s parameters is conducted using Latin

Hypercube Sampling and partial rank correlation coefficients

(PRCCs). We used 1,000 simulations per run to investigate the

impact of each model parameter on both the basic reproduction

numbers (R0) and the endemic value of the environmental

bacteria load (B∗C). The sensitivity results of R0 and B∗C to the

model parameters are given in the Tornado plots, Figures 6, 7,

respectively.

Figures 6, 7 show the results of the evaluation of the

sensitivity of the two PTB transmission metrics derived

from the PTB simplified multiscale model (3.11) which are

the basic reproductive number R0 and the value of MAP

environmental bacteria at the endemic level B∗C . From the

sensitivity analysis results of both R0 and B∗C to baseline

PTB multiscale model (3.11)’s parameters in Figures 6, 7, we

deduce that some of the baseline PTB multiscale model (3.11)’s

parameters have positive PRCCs and some have negative

PRCCs. This indicates that, parameters with positive PRCCs

will increase the value of both R0 and B∗C when they are

increased, while parameters with negative PRCCs will decrease

the value of R0 and B∗C when they are increased. For instance,

increasing a parameter like bacteria transmission rate βC at

the between-host scale eventually increases the value of R0

and B∗C , and also increasing parameters like µc will lead

to a reduction in the value of both R0 and B∗C . Therefore,

since R0 characterizes transmission of PTB infection at the

start of the epidemic while B∗C characterizes transmission of

PTB when the disease is now endemic in a herd, we make

the following conclusions regarding the sensitivity of both R0

and B∗C :

(a) On one hand, the PTB transmission metric R0 is highly

sensitive to the variation of the within-host scale parameters

of the multiscale model system (3.11), in particular to the

three within-host scale parameters (µc, Nm, βφ). From the

results of the sensitivity analysis of R0, we can easily notice

that the influence of the between-host scale parameters on

the changes of R0 is negligible.

(b) On the other hand, the PTB transmission metric B∗C is

highly sensitive to the variation of two of the between-host

scale parameters (βC , γC) and only one within-host scale

parameter (µc) of the multiscale model system (3.11).

Overall, since R0 describes the dynamics of the disease at

the start of the infection, this means that at the start of PTB,

pharmaceutical interventions such as drugs that target the killing

of the within-host bacteria as well as restricting the replication of

bacteria within an infected macrophage cells are required to be

highly considered as they are likely to have the highest benefits in

reducing the transmission of PTB among ruminants in the herd.

Moreover, since B∗C describes the dynamics of the disease when it
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FIGURE 6

Tornado plot of partial rank correlation coe�cients (PRCCs) of the model parameters that influence the PTB transmission metric R0.

has already reached an endemic level when PTB is at the endemic

level, this means that the combination of non-pharmaceutical

interventions such as environmental hygiene management that

reduces the risk of a ruminant to interact with environmental

MAP bacterial cells in the environment and the pharmaceutical

interventions such as drugs that target the killing of the within-

host bacteria need to be highly considered as they are likely to

have the highest benefits in reducing the transmission of PTB

among ruminants in the herd.

5. Discussion and conclusions

Paratuberculosis disease in ruminants, like other

environmentally transmitted diseases which threaten our

food security urgently needs renewed attention and sustainable

interventions. Paratuberculosis infection has been and continues

to be a public health concern in ruminants, impacting on the

development of many ruminant industries, especially those

that are in the developing world. More efforts have been put

in place in order to completely eradicate this disease, yet few

countries in the developing world are on track to eliminate

PTB. However, some countries in the developing world,

particularly EU countries have nearly eliminated PTB [27].

To date, many mathematical models have been developed

and used as an important tool for studying the dynamics of

a number of infectious diseases. Some of these mathematical

models have further been used to evaluate the effectiveness of

various intervention strategies intended to control, eliminate,

or even eradicate most of these infectious diseases including

environmental transmitted diseases. However, the major

innovation in this paper to scientific knowledge is the use of

a nested multiscale model to investigate if the initial infective

inoculum increases beyond the minimum infectious dose

(MID) has an impact on the dynamics of an infectious disease

system in which the pathogen replication-cycle occurs only at

the microscale. The numerical results in this study demonstrate

that once the minimum infectious dose is consumed, then

the infection at the within-host scale is sustained by pathogen

replication. These results also show that as the initial inoculum

increases, the time to reach the endemic state also increases

at this scale domain. From these results it seems likely super-

infection (i.e., repeated infection of the host before it recovers

from the initial infectious episode) might have an insignificant

effect on the dynamics of PTB in ruminants. However, at

this stage we cannot precisely conclude if super-infection

does not effect on the dynamics of the disease. This could

only be investigated using an embedded multiscale model.

Furthermore, the reduction of the dimensions of full nested

multiscale model enabled us to estimate a composite parameter,
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FIGURE 7

Tornado plot of partial rank correlation coe�cients (PRCCs) of the model parameters that influence the PTB transmission metric B∗
C.

Nc, that is difficult to estimate using single-scale models. The

estimation of Nc facilitate in enhancing single-scale model

framework that can be developed at host level to predict the

dynamics of paratuberculosis in ruminants at within-host scale.

This is largely because single-scale models consider pathogen

transmission as the only major disease process, while multiscale

models consider both pathogen transmission and pathogen

replication as the two major disease processes [25]. We also

perform a sensitivity analysis to the two main disease dynamics

metrics of the simplified nested multiscale model, namely

the basic reproductive number and the endemic value of the

MAP bacteria in the environment to determine important

parameters of paratuberculosis disease dynamics. The sensitive

analysis results show that at the start of PTB infection and

when it has reach at the endemic level, the key within-host

parameters µc is relatively sensitive to PTB disease dynamics.

This would be hard to obtain from a single-scale modeling

approach, which would only provide a general indication

about the influential of the within-host dynamics on spread

of the PTB disease at the population level, but not specifically

indicating parameters that have potential influence on the

disease dynamics.
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Appendix A

6. Derivation of the reproductive
number of the PTB simplified
multiscale model

To determine the reproduction number of the equations

(3.11), we use the next generation operator approach

in [26]. Thus the equations (3.11) can be written in

this form











































dX

dt
= f (X,Y ,Z),

dY

dt
= g(X,Y ,Z),

dZ

dt
= h(X,Y ,Z).

(6.37)

• X = SC represents the population of uninfected cattle.

• Y = IC represents the population of infected cattle.

• Z = BC represents the population of infected MAP bacilli

in the environment.

Let

U0 =

(

3C

µC
, 0, 0

)

(6.38)

denote the disease free-equilibrium state and further assume

g̃(X∗,Z) =
βC3CBC

µC(µC + δC + γC)(B0 + BC)
. (6.39)

A matrix

A = DZh(X
∗, g̃(X∗, 0), 0) =

βC3CNcαc

µC(µC + δC + γC)B0
− αC

(6.40)

can be presented in the form A = M − D, where

M =
βC3CNcαc

µC(µC + δC + γC)B0
, D = αC (6.41)

Therefore, the basic reproduction number of the model

system (3.11) is expressed by the following quantity,

R0 =
βC3CNcαc

µC(µC + δC + γC)B0αC
(6.42)
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We investigate the synchronization transition of the Shinomoto-Kuramoto model
on networks of the fruit-fly and two large human connectomes. This model
contains a force term, thus is capable of describing critical behavior in the
presence of external excitation. By numerical solution we determine the
crackling noise durations with and without thermal noise and show extended
non-universal scaling tails characterized by the exponent 2 < τt < 2.8, in contrast
with the Hopf transition of the Kuramoto model, without the force τt = 3.1(1).
Comparing the phase and frequency order parameters we find different
synchronization transition points and fluctuation peaks as in case of the
Kuramoto model, related to a crossover at Widom lines. Using the local order
parameter values we also determine the Hurst (phase) and β (frequency)
exponents and compare them with recent experimental results obtained by
fMRI. We show that these exponents, characterizing the auto-correlations are
smaller in the excited system than in the resting state and exhibit module
dependence.

KEYWORDS

Shinomoto-Kuramoto model, synchronisation, human connectome, fruit-fly, network

1 Introduction

The critical brain hypothesis has been confirmed experimentally many times since the
pioneering electrode experiments in [1]. Power law (PL) distributed neuronal avalanches
were shown in neuronal recordings (spiking activity and local field potentials, LFPs) of
neural cultures in vitro [2–4], LFP signals in vivo [5], field potentials and functional magnetic
resonance imaging (fMRI) blood-oxygen-level-dependent (BOLD) signals in vivo [6, 7],
voltage imaging in vivo [8], 10–100 and single-unit or multi-unit spiking and calcium-
imaging activity in vivo [9–12]. Furthermore, source reconstructed magneto- and
electroencephalographic recordings (MEG and EEG), characterizing the dynamics of
ongoing cortical activity, have also shown non-universal PL scaling in neuronal long-
range temporal correlations [13, 14]. Optical methods, like light-sheet microscopy with
GCaMP zebrafish larvae [15] or calcium imaging recordings of dissociated neuronal cultures
[16] also show PL scaling.

From a theoretical point of view the hypothesis is also very attractive as critical systems
possess optimal computational capabilities as well as provide efficient long range
communications, memory and sensitivity [17–28].
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Homogeneous critical systems exhibit universal scaling behavior
and many experiments claim indeed a mean-field class behavior of
the branching process [29, 30] generated by self-organized criticality
[31]. However, neural systems are very non-homogeneous, thus it is
natural to expect non-universal behavior, known in statistical
physics within the field of quenched disordered models [32, 33].
Indeed some experiments [13, 14, 16] show that the measured
exponents are not universal, significantly different from the
mean-field class ones of the branching process.

Furthermore, external sources can move the system away from
criticality [34, 35] or tune it to other classes, like the isotropic
percolation [16, 36] or to tricritical points [37]. More complex
models than the two-state branching process, can also exhibit hybrid
type of phase transitions, like threshold models [38], models with
inhibitory nodes [39] or models with oscillatory units [40].
Subsystems can also show different scaling behavior and may be
within different distances from criticality [41].

For quenched disordered models it has recently been shown [42,
43], that even for weak time dependence the semi-critical, dynamical
scaling, which occurs in an extended control parameter region of
criticality, in the so called Griffihts Phases [44] (GP), remains stable.
Furthermore, even when the network dimension is high, one does not
find the usual mean-field behavior, but in the presence of modules a GP
[36, 38, 45–48] or Griffihts effects [49] and a different, sometimes
logarithmically slow scaling at the critical point [32].

The big advantage of critical universality is that more realistic
models for the brain, like the integrate and fire models [50], can also
show the same criticality as simpler ones like in a recent work [51],
which derives Hopf bifurcation criticality or in a more experimental
study [52] of neural cultures agreement with isotropic percolation
avalanche size distributions is obtained. But of course the directed
percolation criticality [53, 54], which occurs in branching processes
[1] is the main example for the universality principle [55]. Therefore,
the study of simpler models, for which numerical analysis can be
done are very useful for the brain science [28, 33].

Recently thresholdmodels and Kuramoto type ofmodels have been
analyzed on different, available connectome networks and GP behavior
was reported [33, 43, 56–59]. This behavior is also called as frustrated
synchronization [60–62] and has been analyzed within the framework
of a Kuramoto like models, albeit lacking quenched self-frequencies.

From the experimental directions the different behavior in
modules of brains of the mouse [41], by phenomenological
renormalization-group analysis of the spectrum of electrode
spikes, and humans [63], via Hurst and β exponents analysis of
fMRI; quasi-critical (off-critical) scaling like behavior has been
shown. Here we attempt to model this using the
Shinomoto–Kuramoto (SK) model on connectomes of the fruit-
fly (FF) and humans. This is an extension of the Kuramoto model
[64], which itself does not have an external source, that can describe
the resting state critical behavior at the Hopf transition towards a
model with a periodic external driving force, thus may be
appropriate to characterize criticality with an excitation [40].

2 Models and methods

In this Section we introduce the synchronization model,
followed by an overview of different connectome graphs, on

which we run the numerical analysis. Finally we discuss the
method of local synchronization to dig into the details of the
spatio-temporal simulations of these brain systems.

2.1 The Shinomoto–Kuramoto (SK) model

We consider an extension of the Kuramoto model [64] of
interacting oscillators sitting at the nodes of a network, whose
phases θj(t), j = 1, 2, . . . N evolve according to the following set
of dynamical equations

_θj t( ) � ω0
j + K∑

k

Wjk sin θk t( ) − θj t( )[ ]
+ F sin θj t( )( ) + ϵηj t( ).

(1)

Here, ω0
j is the so-called self-frequency of the jth oscillator, which is

drawn from a Gaussian distribution with zero mean and unit
variance. The summation is performed over adjacent nodes,
coupled by the Wjk matrix. Up to this point we have the classical
Kuramoto model [64]. In the Shinomoto extension [65], we have a
Gaussian annealed noise term ηj(t), with an amplitude ϵ, and to
describe excitation, a site dependent periodic force term,
proportional to a coupling F.

Sakaguchi [66] was the first to study the periodically forced
Kuramoto model. In numerical simulations, however, he found that
the state of forced entrainment was not always attained: macroscopic
fractions of the system self-synchronized at a different frequency
from that of the drive, indicating that this sub-population had
broken away and established its own collective rhythm.
Analytically improvements were provided in [67–69] and found a
rich phase space of the SK model.

Recently, in [40] the avalanche behavior of the SK equation was
investigated, albeit with site independent self-frequencies ω0

j � ω.
The authors explored the phase diagram, besides the forceless Hopf
transition a so-called saddle node invariant cycle (SNIC) and a
hybrid type of bifurcation were compared. In a very recent
publication [48], this numerical analysis has been continued on
Erdős–Rényi (ER) and hierarchical modular networks, motivated by
brain research. Considering quenched ω0

j-s with bi-modal frequency
distributions the authors claim the emergence of Griffiths effects by
the broadening of the synchronization transition region.

Here we study the SK model using quenched ω0
j-s with and

without annealed noise ηj(t) on real connectomes. In particular we
test if the chaoticity, generated by the quenched ω0

j-s generates the
same phase transition behavior and avalanches as with the presence
of the stochastic noise. We measured the Kuramoto phase order
parameter:

z t( ) � r t( )exp iθ t( ) � 1/N∑
j

exp iθj t( )[ ], (2)

by increasing the sampling time steps δt = 0.01. Here 0 ≤ r(t) ≤ 1
gauges the overall coherence and θ(t) is the average phase. The set of
Eq. 1 was solved by the steppers Runge–Kutta-4 (RK4), for the noisy,
or by the Bulrisch–Stoer [70, 71] (BS) for the noiseless cases, because
in the presence of noise the adaptive BS fails to work. Here and in
earlier studies [58] we found that stronger stochastic noise makes the
results non-reliable, while application of other steppers slows down
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the numerical solution. For the noisy cases we also tried the
Euler–Maruyama solver [72], which has a stronger mathematical
foundation for stochastic differential equations. This had to be
restricted to testing purposes only, as this first-order solver is
orders of magnitude slower than the RK4 for the same precision.

We integrated the set of equations numerically for 103–104

independent initial conditions, by different ω0
j-s and sample

averages of the phases

R t( ) � 〈r t( )〉 (3)
and of the variance of the frequencies

Ω(t) � 〈 1
N

∑N
j�1

(�ω(t) − ωj(t))2〉 (4)

were calculated, where N denotes the number of nodes.
In the steady state, which we determined by visual inspection of

R(t) and Ω(t), we measured their half values and the standard
deviations: σ(R(t)), σ(Ω(t)) in order to locate the transition points. In
the paper we plotted the σ(R), σ(Ω) values, obtained by sample and
time averaging in the steady state. Note, that σ(R) is just a the so-
called SK order parameter employed by [73] for discrete version of
oscillatory models and is also used in [40] for the SK model. In case
of the Kuramoto equation the fluctuations of both order parameters
show a peak, albeit at different Kc′ (for phases) and Kc (for
frequency) values in the case of the KKI-18 connectome [56].
For graph dimensions 3 < d < 4, found for the human
connectomes [78], a crossover transition is expected for R and
phase transition forΩ. In the case of the FF, d > 5 [59], thusKc ≃ Kc′,
which is expected for real phase transitions at large sizes, where both
order parameters converge to a finite value in the infinite size
limit [59].

2.2 Connectome graphs

The connectome is defined as the structural network of neural
connections in the brain [74]. For the fruit-fly connectome, we used the
hemibrain data-set (v1.0.1) from [75], which has NFF = 21,662 nodes
and LFF = 3,413,160 edges, out of which the largest single connected
component contains N = 21,615 and L = 3,410,247 directed and
weighted edges. The number of incoming edges varies between
1 and 2,708. The weights are integer numbers, varying between
1 and 4,299. The average node degree is 〈k〉 = 315.129 (for the in-
degrees it is: 157.6), while the average weighted degree is 〈w〉 = 628. The
adjacency matrix, visualized in [59] where one can see a rather
homogeneous, almost structureless network, however it is not
random. For example, the degree distribution is much wider than
that of a random ER graph and exhibits a fat tail. The analysis in [59]
found a weight distribution p(w) with a heavy tail and assuming a PL
form, an exponent −2.9 (2) could be fitted for the w > 100 region.

The human brain has ≈ 1011 neurons, which current imaging
techniques cannot comprehensively resolve at the scale of single
neurons. We used graphs on the coarse-grained, level with ≈ 106

nodes obtained by diffusion tensor imaging [76]. This method has
generally been found to be in good agreement with ground-truth
data from histological tract tracing [77]. Inferred networks of
structural connections were made available by the Open

Connectome Project and previously analyzed by [78]. These
graphs are symmetric, weighted networks, where the weights
measure the number of fiber tracts between nodes. The network
topology study found a certain level of universality in the topological
features of the ten large human connectomes investigated: degree
distributions, graph dimensions, clustering and small world
coefficients. These can be observed in Tables 3 and 4 of [78].
Therefore, two networks, called KKI-18, and KKI-113 were
selected to be the representatives in further studies. The graphs,
downloaded in 2015 from the Open Connectome project repository
[79], were generated via the MIGRAINE pipeline [80], publicly
available from [81]. KKI-18 comprises a large component with N =
804,092 nodes connected via 41,523,908 undirected edges and
several small disconnected sub-components, which were ignored
in the modeling. Similarly, the extracted largest connected
component of KKI-113 contains 799,133 nodes connected by
48,096,500 undirected and weighted edges. The large number of
nodes is because of other parcellations closer to voxel resolution
being used. For instance, there are approximately 1.8 million voxels
in the brain mask of a 1 mm resolution standard-aligned MRI. The
graphs exhibit a hierarchical modular structure, because they are
constructed from cerebral regions of the Desikan–Killany–Tourville
parcellations, which is standard in neuroimaging [82, 83] providing
(at least) two different scales.

The modularity quotient of a network is defined by [84].

Q � 1
N〈k〉 ∑

ij

Aij − kikj
N〈k〉( )δ gi, gj( ), (5)

the maximum of this value characterizes how modular a network
is, where Aij is the adjacency matrix, ki, kj are the node degrees of i
and j and δ(gi, gj) is 1 when nodes i and j are in the same
community, or 0 otherwise. However, this value is not
independent of the community detection method. If our
detection method produces lower modularity than the
maximum achieved by others, it means our algorithm needs to
be improved. Community detection algorithms based on
modularity optimization will get the closest to the actual
modular properties of the network. We calculated the
modularity using community structures detected by the
Louvain method [85], the results for each network were: QFF

≈ 0.631, QKKI−18 ≈ 0.913, QKKI−113 ≈ 0.915. The FF is a small-
world network, according to the definition of the coefficient [86]:

σW � CW/Cr

L/Lr
, (6)

because σFF = 9.5 is much larger than unity. Here CW denotes the
Watts clustering coefficient, and L the average path length. Cr and Lr
are the reference values of random networks with the same sizes and
average degrees. The same is true for the human connectomes, as
their σW is in the range between 400 and 1,000 [78].

The effective graph (topological) dimension of the FF, obtained
by the breadth-first search algorithm is d = 5.4 (5). This is defined by
N(r) ~ rd, where the number of nodes N(r) with chemical distance r
or less from the origin are counted and averages are calculated over
many trials. For the Open Connectome data, power-law fits in the
range 1 ≤ r ≤ 5 suggest topological dimensions between d = 3 and
d = 4 [78].
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As these structural connectome graphs exhibit heavy-tailed
weight distributions, probably as a result of learning, there exist
hubs, which could fully determine the behavior of neighboring
nodes and suppress the occurrence of critical behavior in the
models [56]. In reality, on top of the structural weights, there
exist inhibition/excitation mechanisms, which control the
dynamics of the neural system and provide a local homeostasis.
As we do not know the details of these mechanisms, in earlier studies
[33, 43, 56–59], the weight normalization scheme

Wjk′ � Wjk/∑
k

Wjk (7)

was applied to achieve this artificially. This way we equalize the
sensitivity of nodes of the incoming excitations. We do the same in
the simulations presented here.

2.3 Analysis of the local synchronization

As the connectomes are very heterogeneous, built up from
modules we also measured the local Kuramoto order parameter
Ri(t), defined as the partial sum of phases for the neighbors of node i

Ri t( ) � 1
Ni.neigh

∑
Ni.neigh

j

Aije
iθj t( )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣, (8)

and the local Ωi(t) defined as

Ωi t( ) � 1
Ni.neigh

∑
Ni.neigh

j

�ω t( ) − ωj t( )( )2
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣. (9)

The local Kuramoto order parameter was initially suggested by [87,
88] to quantify the local synchronization of nodes, which allows us
to follow the synchronization process by mapping the solutions on
the connectome graphs.

The necessity of storing the states of the system at each time
step requires large amount of hard drive storage. Thus we
analyzed the local order parameters in a time period of
50 time-steps as stop time with time increment of dt’ = 0.1, in
the steady state. To study it in more detail we also separated the
networks into communities. Although, these communities
should be separated according to anatomical and/or functional
properties [89], we chose as a first approximation a community
detection method based on global optimization of the modularity
[85]. This method yielded 9 modules in FF network,
130 communities in KKI-113 and 134 modules in the giant
component of KKI-18. For detecting community structure that
is closer to the real anatomical functional communities just by
using the network topology, one might require other algorithms,
which analyze the network with more depth, or even using fuzzy
clustering methods [90, 91].

We studied the long-term persistence of the local order
parameters with the Hurst and β exponents. The Hurst exponent
measures the degree of self-similarity of a time series, based on the
assumption of an Ornstein–Ulenbeck process, that the measured
values will go back to its average in just a few time-steps. The Hurst
exponent is defined as follows:

E
Z n( )
S n( )[ ] � CnH, (10)

whereE is the expectation value of the rescaled range Z/S and Z(n) is
the cumulative deviate of the series until the first number of n data
points (n = (tmax − t0)/dt’), while S(n) is the sum of the standard
deviations until that point. We averaged the first local parameter
values within the communities and calculated the Hurst exponent
over the n points in the time period t, where Sj(n) � ∑Mj,comm

i Ri(t)
are community averages and Mj,comm is the number of nodes in the
community. We calculated the Hurst exponents for all communities.

Similarly, the power spectral scaling exponent, β, is used for
quantifying long range correlations in time series. The power
spectral density is the modulus of the Fourier transform, if the
spectrum of the process satisfies a power-law scaling relation:

S f( ) � ∑N
j�0

Ωj t( )e−2πifj/N

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2

≈ 1/fβ, (11)

wherefj � ∑Mi,comm
j Ωi(t) and βmust be obtained by using a linear fit

to the logarithmic axes of the Fourier transform periodigram [63].

3 Force driven synchronization
transition

First we determined the synchronization transition behavior of
the Shinomoto–Kuramoto model on different connectomes by
calculating the global order parameters R and Ω as well as their
fluctuations as the function of the force control parameter, which
mimics the external excitation of the system. After that we measured

FIGURE 1
Order parameter dependence on F for the fruit-fly connectome
for the noisy (black bullet) and the noiseless (red boxes) cases at K =
1.3. The blue diamonds show the steady-state Ω values with noise.
Lower inset: Variances of R andΩ for the noisy case. Upper inset:
Time dependence of the noisy R(t), for F=0, 0.02, 0.03, 0.04, 0.07, 0.1,
0.2, 0.3, 0.4 (bottom to top curves).
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the crackling noise distributions within the neighborhood of these
transitions.

3.1 Global order parameters

We started the numerical analysis of SK on the fruit-fly
connectome at the global coupling value K = 1.3, which was
found to be asynchronous without a force in [59]. For each F
value we determined the steady state by following the evolution
of the control parameters starting from random initial θ-s via
visual inspection. Averaging was done over many independent
samples, corresponding to different initial ωj self-frequencies.
The transient regimes were short, in the range of 10–100 time
steps and we could not see PL growth as in case of the Hopf
transition of the Kuramoto model. But the Kuramoto order
parameter curves exhibit R(t) ∝ ln(t)x(K) type of growth (see
upper inset of Figure 1), as in case of activated scaling in
disordered systems [32].

To locate the transition we plotted the steady state values of
R and Ω and their fluctuations on Figure 1. The half values
provide estimates: Fc ≃ 0.22, for R and Fc′ ≃ 0.35 for Ω. One can
see smooth fluctuation peaks of σ(R) at F ≃ 0.05 and of σ(Ω) at F′
≃ 0.2. Thus, the two different order parameters seem to exhibit
different synchronization points. The frequency fluctuation
peak agrees roughly with Fc ≃ 0.22, but the phase fluctuation
peak occurs at a much lower value. This, in contrast with the
Hopf transition of FF and the random network, where
fluctuation peaks were roughly at the same position, where
we knew that the dimension is d > 4. Plotting the results on
log.-log. scale it turns out that the fluctuation growth can be
fitted by σ(R) ∝ F0.16(1) for F ≤ 0.05, while following the peak, for
F > 0.1, it decays as σ(R) ∝ F−1.3(2). Thus, we have susceptibility
like exponents γ′ = 0.16(1) ≠ γ = 1.3(2). Note, that in case of K =

2, when we started from a synchronous state by the addition of
the force we obtained a very narrow growth region of the
fluctuations, the decay is characterized by γ = 1.34(1) (see
Appendix).

As σ(R) is also called SK order parameter, which characterizes
the transition in excitable systems, its approach to zero as F increases
agrees with the SNIC transition result of [40], albeit that was
obtained in the synchronous phase. We have also run SK in the
synchronous phase of FF, using K = 2, where we found similar
results as in the asynchronous phase.

Results with and without a small noise with amplitude ϵ = 0.01
did not show observable differences, so the chaotic noise from the
quenched disorder is capable to compete with the ordering effect of
the force. We have also determined the σ(Ω(K, F)) for other K and F
values, as they are close to the half values estimates of the transitions.
As one can see on the inset of Figure 4 by increasing F the Kuramoto
transition fluctuation peak becomes smoother and moves to smaller
K values, similarly to the Widom line obtained in discrete brain
models [34, 35].

As the next step we performed the same analysis of the human
connectomes at K = 1, which is in the asynchronous phase without a
force [57]. Figure 2 shows the steady state values both for R andΩ in
case of K = 1 for KKI-113. Again the annealed noise does not modify
the results and seems to be unnecessary to produce a
synchronization transition. We estimated: Fc′ ≃ 0.4 and Fc ≃ 0.55
by the half values or R and Ω respectively. The fluctuation peaks of
the two order parameters are again far away from each other: F ≃
0.05 versus F′ ≃ 0.4. Again the fluctuation peak of Ω is close to
Fc′ ≃ 0.4.

For the connectome KKI-18 we enlarged the fluctuation peak
results on Figure 3, by comparing the noiseless and the noisy R
results. The smeared synchronization ‘peaks’ happen at similar
values as for KKI-113: F′ ≃ 0.05 and F ≃ 0.5 within numerical
precision. The transition points, estimated by the half values of R is

FIGURE 2
Order parameter dependence on F for the KKI-113 for the noisy
and the noiseless cases at K = 1. Inset: Variances of R and Ω for the
noisy case.

FIGURE 3
Fluctuations of R andΩ as the function of F for the KKI-18, for the
noisy and the noiseless cases at K = 1. Inset: Order parameter R for the
noisy and noiseless cases as well as Ω, denoted by the same symbols
as in the main figure.
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Fc ≃ 0.4 and of Ω is Fc′ ≃ 0.55. As before, the σ(R) peaks occur at
much lower force values, than the other transition point estimates
and the susceptibility exponents estimates have been estimated to be
γ′ = 0.15(3) and γ = 1.12(2).

3.2 Avalanche durations

We investigated avalanches similarly to the local field potential
experiments and as it was done in simulations of spike-like events
[40]. In critical systems avalanche sizes and durations exhibit PL
tails, characterized by the exponents p(S) ∝ S−τ and
p(Δ(t))∝Δ(t)−τt . However, we did not apply thresholds for the
individual variables θi(t), but for the global order parameter R(t).
This has the advantage of a much faster algorithm, allowing us to
consider larger statistics and the lack of ambiguity in the avalanche
definitions [95–97]. The disadvantage is that spatially independent
avalanches overlapping in time accidentally may be unified, thus
the duration times can be larger and we do not have information
on the spatio-temporal sizes, thus on the exponent τ. Still, we think
that investigating this coarse-grained description of avalanches,
which has also been measured in experiments, as a kind of
crackling noise [98] in the case of zebrafish larvae [15],
describes a possible critical behavior. Results of local
characterization of the synchronization will be shown in
Sections 3.3, 3.4, 4.2.

As in [40] here we also found that the choice of threshold T(F)
value did not change the scaling behavior of the duration
distributions if it was chosen within the fluctuation range Rmin <
T(F) < Rmax corresponding to F, that was determined numerically
after several runs on different initial conditions. For thresholds we
used the mean value of R(t), obtained in the steady state by sample
and time averaging up to tmax = 104. By the integration we used

uniform random distributions θi(0) ∈ (0, 2π) and the initial
frequencies were set to be _θi(0) � ω0

i . Following measurements of
the avalanche duration Δ(t) = ti − ti’, defined between subsequent
crossing of an up event: R(ti) > T and a down one: R(ti′)<T, we
applied a histogramming to determine the probability
distributions p(Δ(t)).

Figure 4 shows the PDF p (Δ(t)) results for the fruit-fly, in case of
K = 1.3, ϵ = 0.01 and different forces. We can see F dependent

FIGURE 4
Avalanche duration distributions on the fruit-fly connectome for
different forces, shown by the legends and at K = 1.3, ϵ = 0.01. Dashed
lines are PL fits for Δt > 100. The inset shows the steady state σ(Ω) as the
function of K, for excitation values F = 0.001, 0.0667, 0.1, 0.2, 0.3
(top to bottom).

FIGURE 5
Avalanche duration distributions on the KKI-113 connectome for
different forces, shown by the legends and at K = 1, ϵ = 0.01. Dashed
lines are PL fits for Δt > 20. The F=0.1 case veers down on the log.-log.
scale, but for F = 0.35 a more extended PL tail with exponent τt =
2.40(9) can be obtained. For F = 0.4, and F = 0.5 the slopes stabilize to
τt = 2.14(5).

FIGURE 6
Avalanche duration distributions on the KKI-18 connectome for
different forces, shown by the legends and at K = 1, ϵ = 0.01. Dashed
lines are PL fits for Δt > 20.
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extended PL tails, with continuously changing exponents: 2.1 < τt <
2.8, which are somewhat smaller, but close to the experimental value
reported for the zebrafish: τt = 3.0 (1) [15] and to the random field
Ising model duration values [99].

Similar results are obtained in case of the two human
connectomes as shown on Figures 5, 6. Furthermore, the results
do not change without the additive noise, or in case of a force in the
synchronized phase (see graphs in the Appendix).

3.3 Local order parameters snapshots

We have plotted with Wolfram Mathematica [100]
snapshots of the local order parameters of the FF at different
force values in increasing order for the average local parameters
(see Figure 7). The giant component of the graph was plotted
with 21,615 nodes, however with a very few 75,657 edges for
better visualization, where we sorted the links of each node by
their weights in a decreasing manner and then randomly chose

the first nr links, where nr is a random integer between 1 and
nm = 6. Since the graph is a modular small-world graph, this kind
of representation can be a close visual representation of the
actual network. The color coding on the figure is a logarithmic
(log3) binned scale between 0 and 1 (0.01, 0.03, 0.09, 0.27, 0.81,
1.) representing the Ri values of each node at time step, indicated
on the top left of each figure.

Top row plots are results without force, second row at F = 0.04,
third row at F = 0.1 and last row is at F = 1.0. Similarly to the β

exponent’s case, we notice that the average local parameter R is not
increasing linearly with the force at the same time-step. There is a
maximum around 0.1, thus it does not have a linear correlation with
the force. Without force the steady state has more fluctuations and
the communities are more observable through visualization. By
increasing the force every node comes into the same local state.

3.4 Hurst and β exponent results

The H and β exponents measure the self-similarity of a time series,
when power-law behavior (10), (11) can be observed. H and β values
lower than 0.5 describe anti-correlated signals. On the other hand, values
between 0.5 and 1 mean signals with long range correlations in time.

First, we separated the communities in all FF, KK-18, KKI-113
connectomes with the Louvain modularity optimizing algorithm.
Then, we calculated the H and β exponents for each community for
the local parameters. In case of the FF the results (see Figure 8) with
force could similarly be differentiated from the results without force
as in the [63] experiments with rest and task driven measures.
Simulation results without force seem to have longer correlations in
time, resembling to the fMRI measurements at the rest phase.

The same conclusion however cannot be found in the case of
the human connectomes (see Figure 9). It appears that even with

FIGURE 7
Here we see the evolution of the local order parameters Ri(t) of a
sub-graph of the fruit-fly connectome at different time steps: t = 12.6,
36.6. The upper row shows Ri map without a force, the lowest one
with F= 1.0. Color-coding at the bottom provides Ri(t) for all sub-
figures.

FIGURE 8
Hurst and β exponents of all fruit-fly connectome communities.
In the forceless case at the critical Hopf transition coupling, the H
exponent is the largest for every community. With forces these values
drop for each community. This shows a resemblance with the
rest and non-rest studies of different brain areas in [63], showing 〈H〉 ≈
1.0 at resting state and 〈H〉 ≈ 0.7 at task driven states.
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a relatively high force the exponents remain close to each other
and close to those of the “rest” phase. In the case of FF higher
force led to less “rest” in the system resembling more like task
driven behaviour.

Another very important result arose from the study of the two
different human connectomes, whereH exceeds the maximum value
of 1. It is due to the fact that the brain at criticality is characterized by
“crucial events.” Crucial events are defined as abrupt changes in the
signal amplitude, for example in electroencefalogramm (EEG)
signals [92]. The waiting time (τ) distribution between events
follows an inverse-power law ψ(τ) ≈ 1

τμ for τ → ∞. The
intermittency index μ is an important measure in the interval
1 < μ < 3, with H = (4 − μ)/2 and β = 3 − μ. The condition μ <
2 generates H > 1 with a possible maximum value H = 1.5. This is
due to the fact that some non-stationary correlation could emerge in

crucial events, leading to μ < 2, so that H exceeds the maximum
value of 1 [93, 94]. As we can see on Figure 9, H > 1 and β > 1 occur
in case of the human connectome results at certain communities, but
we did not find it in the case of the FF (see Figure 8).

4 Hopf synchronization transition
without force

We have rerun this analysis for the fruit-fly connectome using
the standard Kuramoto equation for different couplings, i.e., near
the Hopf synchronization transition discussed in [59].

4.1 Crackling noise analysis

Earlier mean-field type of phase transition was found at Kc

1.7(2). As we can see on Figure 10 the crackling noise duration
analysis results in faster than PL decays of p(Δt) for K < 1.4 and
an inflection point with up veering decays for K ≥ 1.65 couplings.
At K = 1.5 we can observe a PDF, with PL decay for 30 < t < 300,
which can be fitted by the exponent τt = 3.1(1). Note, that in [59]
an estimate for the synchronization transition Kc = 1.70(2) was
given, but in that work the RK4 solver was used mainly. Here the
more precise Bulrisch-Stoer stepper was applied, which moves
the p(Δ) tails slightly and provides a somewhat greater transition
point estimate.

As in [59] we do not find an extended scaling region with
non-universal exponents suggesting a GP. So, the crackling noise
exponent, presumably the mean-field class exponent of the Hopf
transition, describing the resting state, should be this value. This
is a rather large exponent and is difficult to reproduce by
simulations, because large systems are needed to see the
scaling region before an exponential cutoff. We assume that
this was not seen in [40], where N = 500 nodes were used.
Another reason might be that in [40] an annealed Kuramoto
model was simulated, lacking the quenched self-frequencies. Or
perhaps because [40] used thresholds of the θi(t) variables and

FIGURE 9
Hurst and β exponents of all human connectomes’ communities. KKI-113 is presented with and without force terms and KK-18 without the force
terms.

FIGURE 10
Avalanche duration distributions on the fruit-fly connectome
without force for K different couplings. The line shows a PL fit for the
K = 1.5 results, for Δt > 30.
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identified avalanches by estimating the spatio-temporal size of
the activity avalanches.

But indeed the scaling region we observe is rather narrow, even
though we know that the Kuramoto model exhibits a critical
synchronization transition here.

4.2 Hurst and β analysis of local variables

We cannot exclude the possibility that doing the avalanche analysis
on the local angles θi(t), would lead to a lack of PL-s as it was claimed in
[40]. Since identification of avalanches of local variables is a rather
difficult and ambiguous task, requiring careful binning, to check the
scaling of local phase and frequency data we performed auto-correlation
measurements and estimated the Hurst and β exponents as before.

The “no-force” result on Figures 8, 9 show strong auto-
correlations, indications of criticality as in the brain experiments
[63]. In fact the exponents are larger (close to 1), than in case of the
Shinomoto–Kuramoto model calculations. This suggests that the
external excitation results in a less correlated scaling behavior of the
neural systems than in the resting state. These results are in
agreement with the experimental findings of [63].

5 Conclusion

In conclusion our numerical analysis of synchronization models
on different connectome graphs show that in the case of excitation
we can find PL scaling of duration of the crackling noise of the
activity, defined by thresholds of R. By solving the Shinomoto-
Kuramoto model numerically we concluded that even without the
additive noise we can find similar synchronization transition as with
the full Langevin equation.

The observed PL tails exhibit some dependence on the amplitude of
the force, whichmay be related to GP heterogeneity effects, but can also
arise as the consequence of quasi-critical, scaling like behavior reported
in the discrete models of Ref. [35]. We estimated the extension of the
synchronization transition region by the fluctuations of R and Ω and
found an extended, smeared transition region. This makes it difficult to
define the transition points. We attempted it in two different ways: half
values and fluctuation peaks of the order parameters in the steady state.
In general, theFc′-s, obtained by the half values ofΩ are greater than the
Fc-s by the R-s and agree with the frequency fluctuation peaks. While
the phase fluctuations peaks were found to bemuch smaller both for the
FF and the human connectomes. This is very different from the
Kuramoto Hopf transition results [59]. The susceptibilty exponents
are γ′ = 0.16(2) and γ′ = 1.3(1), but for the K = 2 case we could not
measure γ′, because Fc � Fc′ ≃ 0 was found. The σ(Ω) results also show
accordance with the Widom line, the peaks are flattened and shift by
increasing the external force.

However, σ(R) also describes the transition of the SK order
parameter, introduced for excitable systems. Its decay seems to be
faster than the one obtained by the SNIC bifurcation at ω0

i � 1, ϵ =
0.275 [40]. We have not reached a region, showing hybrid phase
transition reported in [40], possibly by the lack of strong noise. We
avoided to apply strong noise, because that makes the numerical

solution less precise or very slow. A systematic finite-size scaling
study of this transition would be necessary to settle this issue.

In case of initial conditions with random phase variables the R(t)
curves at the transition point do not show PL growth as in case of the
Kuramoto model, but a logarithmic growth, similar to strong
random fixed points of models of statistical physics.

We also investigated the local order parameters and found
frustrated synchronization with Chimera like states, coexistence
of synchronized and asynchronous domains. Performing auto-
correlation analysis on the local order parameters we found
strong auto-correlation in the resting (Kuramoto) state at
criticality and somewhat weaker ones in presence of an external
force. In the latter case the H and β exponents take their maximal
values, where the fluctuations of R(t) are maximal, i. e., at the
transition.

We also investigated the module dependence of H and β by
decomposing the connectomes via community detection
algorithms. We observed variations amongst the communities
suggesting different levels of criticality, but the identification of
communities with real brain regions is a further task to be
completed. Our simulated H and β exponents are in agreement
with recent experimental findings [63].
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APPENDIX

Here we show avalanche duration PDF-s without noise in case of
the KKI-113 connectome on Appendix figure A1. One see only a
slight variation of the PL tail exponents around −2.2, but they are
close to the noisy case results.

Similarly, in case of the FF with the application of force in the
synchronized phase, i.e., K = 2 the PL tails fitted for t > 20 do not

differ to much, they can be characterized by an exponent −2.21(1) as
one can see on Appendix figure A2. The inset shows the rapid drop
of the SK order parameter as the function of the force and the
maximum both of σ(R), σ(Ω) are at F ≃ 0. Plotting the F dependence
of σ(R) on log.-log. scale a PL tail arises, characterized by the
exponent −1.34(1), which can be regarded a susceptibilty
exponent of the Kuramoto equations. However, σ(Ω) falls
exponentially fast as the function of F.

FIGURE A1
Avalanche duration distributions on the KKI-113 connectome for different forces, shown by the legends and at K = 1, without noise. Dashed lines are
PL fits for Δt > 20.

FIGURE A2
Avalanche duration distributions on the fruit-fly connectome for different forces, shown by the legends and at K = 2, ϵ= 0.01. Dashed lines are PL fits
for Δt > 100. The inset shows σ(R) by increasing F on log. log. scale. The line corresponds to a PL fit.
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Prediction of an epidemic spread
based on the adaptive genetic
algorithm

Bolun Chen1,2, Shuai Han1*, Xiaoluan Liu1, Zhe Li1, Ting Chen1 and
Min Ji1
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In recent years, coronavirus disease 2019 (COVID-19) has plagued the world, causing
huge losses to the lives andproperty of peopleworldwide.How to simulate the spread
of an epidemic with a reasonable mathematical model and then use it to analyze and
to predict its development trend has attracted the attention of scholars from different
fields. Based on the susceptible–infected–recovered (SIR) propagation model, this
work proposes the susceptible–exposed–infected–recovered–dead (SEIRD) model
by introducing a specificmedium havingmany changes such as the self-healing rate,
lethality rate, and re-positive rate, considering the possibility of virus propagation
through objects. Finally, this work simulates and analyzes the propagation process of
nodes in different stateswithin thismodel, and compares themodel prediction results
optimized by the adaptive genetic algorithm with the real data. The experimental
results show that the susceptible–exposed–infected–recovered–dead model can
effectively reflect the real epidemic spreading process andprovide theoretical support
for the relevant prevention and control departments.

KEYWORDS

epidemic transmission, self-healing rate, lethality, repositive rate, adaptive genetic
algorithm

1 Introduction

Epidemic transmission is the spread of various infectious diseases between different
individuals and in most cases endangers human health and safety. For example, the recent
emergence of COVID-19 was caused by an epidemic virus that spread rapidly worldwide due
to its high transmission capacity and difficulty in prevention, resulting in a large number of
infected people and deaths, causing significant negative impacts and economic losses in
countries worldwide. If trends in the number of infected people are predicted in advance by
transmission models and methods, it will make a great contribution to the control of
epidemics and the safety of people in all the countries worldwide [1]. Infectious disease
models have always been an important basis for studying epidemics, and most scholars from
different fields have used infectious disease models to study epidemics. Since the outbreak of
COVID-19, the study of epidemic and infectious disease prediction models has once again
become a hot topic of research. Due to the existence of certain unknowns and variability of
viruses, the factors considered in prediction are gradually increasing, and it is difficult to
obtain the complete details of virus infection by model prediction [2]. This paper introduces
some other factors to the traditional epidemic model SIR so that the new model can be more
applicable to the changes of the actual situation. The addition of latents and deaths to the
original model makes the model more accurate in terms of prediction. Infectious disease
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models focus on the state model and connectivity between
individuals; the state model describes the impact of an infected
person within a susceptible population in time, while connectivity
determines the movement and contact between populations [3]. The
variability of the virus can lead to changes in the mode of
transmission and make outbreak protection more difficult.
Through in-depth understanding of the virus, asymptomatic
infections have also been identified in epidemic prevention and
control. Such infections carry the transmitted virus but have no
significant symptoms and are highly concealed, causing great
inconvenience to the protection efforts [4]. With the
advancement of medical treatment, self-healing patients have
emerged during the treatment process, which also shows that the
treatment greatly differs from patient to patient. This work proposes
a new prediction model to predict the spread and trend of the
epidemic, considering many factor changes, for example, mortality
rate, self-healing rate, and repositive rate.

The choice of parameters in the model prediction has a large
impact on the prediction results, and the parameter variables will
continuously be adjusted using parameter optimization methods
so that the prediction results are constantly close to the target
values. Genetic algorithms are algorithms that provide optimal or
near-optimal solutions to complex problems by simulating
natural evolutionary processes. The algorithm uses computer
simulation in a mathematical way to convert the process of
problem solving into a process similar to the crossover and
mutation of chromosomal genes in biological evolution.
Adaptive genetic algorithms work better than conventional
optimization algorithms in solving complex optimization
problems. Therefore, this article uses the adaptive genetic
algorithm to optimize the model parameters so that the
predicted values of the model are closer to and match with the
true values.

2 Current status of domestic and
international research

2.1 Traditional epidemiological models

Traditional epidemic models are mainly based on the
susceptible–infected–recovered (SIR) model for outbreak
transmission studies. The traditional model can predict the trend
of the number of infections in the short term and provide some
theoretical support for subsequent outbreak prediction. The SIR
model was proposed in 1927 by two epidemiologists, McKendric
and Kenmack, and this model is one of the classical infectious
disease models, specifically used to predict the change in the number
of populations at different moments after an outbreak [5].

As a classical epidemiological model, many scholars have
used the SIR model to predict the trend of infection changes in
regional epidemics. [6] used kinetic differential equations for SIR
to predict future trends in the development of the epidemic; first,
deriving parameter data based on the number of previous
infections and recoveries and obtaining the predictions by
aggregating the parameters. To verify the validity of the
pandemic modeling approach, [7] improved on the traditional
SIR model by maintaining consistency in the total population size

to ensure that the number of susceptible individuals did not
decline monotonically. A final comparative analysis of the
modeling data demonstrates that disease transmission can be
controlled with appropriate restrictions and strong policies, and
likewise, COVID-19 transmission can be controlled in the
communities under consideration. One of the most difficult
problems in traditional infectious disease models is the
presence of a large number of asymptomatic infected
individuals. For this reason, [8] improved the SIR model,
taking into account asymptomatic or undetected infected
individuals in the new model. Furthermore, considering that
the previous model took longer time in infectivity and non-
isolation, it was somewhat shortened and finally agreed well with
the epidemiological data. To study epidemics transmitted within
different regions, [9] introduced a new control variable in the SIR
model, namely, the effectiveness of the travel blocking operation.
The authors also considered an epidemic model based on the
vaccination control, using an asymptotic-regressive discrete
scheme for numerical analysis, allowing this model to be
applied to epidemics that spread within different regions. The
exact solution of the classical SIR model is difficult to obtain in
most cases, [10] and in order to obtain the exact solution more
simply, the authors obtained the exact analytical solution of the
model in a parametric form. The main proposals are the display
model corresponding to the fixed values of parameters and the
proof that numerical solutions can represent analytical solutions,
showing that the general solutions of kinetic models can be
represented in the exact parametric form. To better account
for the dynamic behavior of epidemiology, [11] developed an
SIR model with standardized incidence rates and non-linear
recovery rates that takes into account the effect of resources
available to the public health system. A three-dimensional model
for the co-regulation of total population and disease incidence is
also presented, explaining the epidemiological causes of endemic
complex dynamic behaviors and concluding that adequate public
health resources available are essential for epidemic prevention
and control. To make the model more stable, [12] developed an
epidemiological model of SIR with a latent period and saturation
incidence. On the basis of ensuring that the susceptible
population satisfies the logistic equation, the incidence rate is
set with the susceptible population in a saturated form to find the
threshold of whether the disease will die out automatically.
According to the experimental results, if the threshold is less
than 1, the disease-free equilibrium is globally progressively
stable and the disease gradually disappears, whereas if the
threshold exceeds 1, the disease does not gradually disappear.

2.2 Improved epidemiological model

The improved infectious disease model is mainly based on the
susceptible–latent–infected–recovered (SEIR) model. The basic model
is not applicable for complex epidemic studies in many aspects, and
some scholars have improved the SIRmodel in order to be closer to the
real spread of the epidemic, and the new improved SEIR adds latent to
the original one, which is infected and carry the epidemic virus but do
not have any evident symptoms themselves, and this stage is also known
as the latent period.
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Against the backdrop of the global outbreak COVID-19,
countries worldwide are looking for better ways to curb the
spread of the epidemic. [13] treated the functions in the model
as fuzzy parameters, constructed the infection rate, recovery rate,
etc., then applied the model parameters to the model, and finally
used thematrix method to verify the stability of the model. Epidemic
models are simplified methods used for describing the transmission
of infectious diseases through individuals. To better investigate the
predictive effect of models on epidemics and the conditions under
which epidemics can spread, [14] applied the basics of models to real
diseases, derived steady-state conditions, and showed that viruses
spread only when the threshold parameter R exceeds 1.
Furthermore, the transmission conditions of viruses were
demonstrated by numerical simulations. Epidemic diseases can
easily constitute a public safety problem, and in order to
investigate whether pandemics will disappear automatically
without human control, [15] modified the model by adding
pathogen movements and human interventions to the model and
using the next-generation matrix approach to determine the basic
reproduction number, while solving the values yielded from the final
result without strong control measures and social distance control.
Since pandemics do not disappear automatically, [16] proposed a
new improved model based on real data. This model applied the
particle swarm optimization algorithm to estimate system
parameters and finally concluded that the parameters of the SEIR
model were different in different scenarios. By introducing seasonal
and random infection, non-linear dynamics were discovered, and
good results were obtained by using the model to demonstrate the
real evolution situation. To numerically visualize the results, [17]
studied a new stochastic epidemic model and quantified the
behavior during an outbreak, then modeled the epidemic using
Markov chains, and provided an effective computational program
for the development of the distribution of outbreak duration. The
expected ratio distribution of the number of individuals in each
category of the model is used to study the evolution of the epidemic
before it disappears, and the resulting results are visually presented
in numbers. As the spread of the epidemic brings serious
consequences and to better estimate the current spread of the
epidemic and predict the change of the epidemic, [18] proposed
a new conceptual mathematical model and took into account the
impact of isolation, hospitalization, panic, and anxiety; established
the boundary and balance; analyzed its stability; and verified the
relevant predictions of the important models through research and
comparison. [19] mainly studied the SEIR model with vaccination
strategies, which determined the different morbidities of exposed
and infected population, and proved the global asymptotically stable
result of disease-free equilibrium using the Lyapunov function and
LaSalle’s invariant set theorem. Finally, the sufficient conditions for
the global stability of local equilibrium are obtained using composite
matrix theory. In addition, the direct numerical simulation of the
system shows that there is a periodic solution when the system has
three equilibrium points. In order to better judge whether the model
is in a stable state theoretically, the new Lyapunov function
constructed by [20] shows that the disease-free equilibrium of the
model is globally asymptotically stable when the basic reproduction
ratio is less than or equal to 1, and the local equilibrium of the model
is also globally asymptotically stable when the basic reproduction
ratio is greater than 1.

3 Model definition and stability analysis

3.1 Definition of the model

This article is based on the infectious disease model and helps
improve the original model by adding some key elements to make it
more consistent with the data changes in real life and taking into
account not only the transmission of objects and self-healing but
also the mortality rate. For real infectious diseases, there are often
some death cases. The introduction of the mortality rate will bring
the prediction result more in line with the actual situation. The new
and improved model (SEIRD) divides the population into five
categories, namely, susceptible (S), exposed(E), infected (I),
recovered (R), and dead (D) [21], with the following meanings:

Susceptible(S) represents those who do not have the disease but
have low immunity and are vulnerable to infection after contact with
an infected person.

Exposed (E) represents a person who has been in contact with an
infected person and has not yet developed significant symptoms but
carries the virus in his or her body.

Infected (I) represents a person who has been infected and can
be transmitted to a susceptible person to cause the disease.

Recovered (R) includes those who have been isolated or are now
immune due to recovery from the illness.

Dead (D) represents a person who has been infected and cannot
be cured in time, and hence, dies.

The SEIRD model contagion mechanism is shown in Figure 1,
and the parameter definitions and explanations in the model are
shown in Table 1.

According to the systemmodeling idea, the relationship between
different populations in the SEIRD model can be described by a
system of differential equations. The total number of users is set to N
and satisfies N(t) = S(t) + E(t) + I(t) + R(t) + D(t), and the system of
equations for susceptible, exposed, infected, recovered, and dead
people over time is as follows [22]:

ds

dt
� −ηS − λSI − λ1SE + θR, (1)

dE

dt
� ηS + λSI + λ1SE − αE − βE, (2)

dI

dt
� αE − γI − ωI, (3)

dR

dt
� γI + βE − θR, (4)
dD

dt
� ωI. (5)

The initial conditions are S(0) > 0, E(0) ≥ 0, I(0) > 0, R(0) ≥
0, D(0) ≥ 0.

3.2 Equilibrium point solving and analysis

According to the actual background of the model, in order to
analyze the stability of the model, the equilibrium point of the model
should be considered in the bounded region. The equilibrium point
is mainly the point with or without disease transmission and the
local equilibrium point. When variables E and I are both 0 (there is
no infected person or sleeper), we call such a point as the disease-free
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equilibrium point. To determine the disease-free equilibrium point,
we can make the set of equations as 0, dS/dt = 0, dE/dt = 0, dI/dt = 0,
and dR/dt = 0, in which we obtain the system of equation non-zero
solutions, from which it follows that

−ηS − λSI − λ1SE + θR � 0, (6)
ηS + λSI + λ1SE − αE − βE � 0, (7)

αE − γI − ωI � 0, (8)
γI + βE − θR � 0. (9)

Then, by calculation, the solution of the system of equations is the
equilibrium point of S, E, I, and R. For the case of the disease-free
equilibrium point E = I = 0, according to Equations 6–9, we can obtain

S � θ

θ + η
, (10)

S � η

θ + η
. (11)

Then, the disease-free equilibrium point of the model is

K0 � S, E, I, R( ) � θ

θ + η
, 0, 0

η

θ + η
( ). (12)

However, the disease-free equilibrium is a disease-free state, which is
not the case we are interested in the real world, so the internal
equilibrium is not focused on in this article. When neither E nor I is
0 (i.e., there are infected persons and exposed persons), we use the
local equilibrium point to represent the possibility of disease
transmission, a relatively stable equilibrium point in the epidemic
transmission. When S ≠ 0, E ≠ 0, I ≠ 0, R ≠ 0, we can obtain the
solution of the internal equilibrium point through programming
calculation, according to (6)–(9).

The Jacobi matrix is obtained according to Equations 1–4 [23]:

J �
−η − λI − λ1E −λ1S −λS θ
η + λI + λ1E λ1S − α − β λS 0

0 α −γ − ω 0
0 β γ −θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

In turn, the eigenvalues of the Jacobi matrix in the equation can
be found from the aforementioned equation as

def μI − J( ) �
μ + η + λI + λ1E λ1S λS −θ
−η − λI − λ1E μ − λ1S + α + β −λS 0

0 −α μ + γ + ω 0
0 −β −γ μ + θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

(14)
Then, we substitute (10) and E = 0 and I = 0 into Eq. 14 to obtain

μ + η λ1
θ

θ + η
λ

θ

θ + η
−θ

−η μ − λ1
θ

θ + η
+ α + β −λ θ

θ + η
0

0 −α μ + γ + ω 0

0 −β −γ μ + θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0 (15)

After simplifying, we can turn this equation into a polynomial.
The polynomial on μ can be obtained after collation (see the
appendix for details), with A denoting the coefficient of μ3, B
denoting the coefficient of μ2, C denoting the coefficient of μ,
and D denoting the algebraic equation without μ. Then, the
equation can be transformed as follows:

FIGURE 1
Diagram of the SEIRD model transmission mechanism.

TABLE 1 Definition and interpretation of model parameters.

Model parameter Parameter interpretation

η Infection rate of object transmission

λ Infection rate of infected people

λ1 Infection rate of latent people

α Infection rate of the latent person to the infected person

γ Recovery rate of infected individuals

θ Recurrence rate in recovered individuals

β Self-healing rate of latent individuals

ω Mortality rate of infected individuals
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μ4 + Aμ3 + Bμ2 + Cμ +D � 0. (16)
Since the Cartesian sign rule can be used to determine the

number of positive or negative roots of a polynomial, it follows from
the Cartesian sign rule [24] that the number of negative roots of the
characteristic equation is equal to the number of changes in the sign
of the coefficients such that the equation satisfies the condition of
Eq. 16 to have four negative values, i.e., μ1 < 0, μ2 < 0, μ3 < 0, μ4 < 0,
and satisfy the conditions A > 0, B > 0, C > 0, andD > 0. The roots of
the characteristic equations of the resulting model are all negative, so
the model is globally convergent.

3.3 Basic regeneration number and
equilibrium steady state

According to the research related to the infectious disease model,
there exists a threshold value R0 in the transmission of infectious
diseases, and this threshold is also called the basic regeneration
number; when R0 ≤ 1, the transmission of infectious diseases will die
out naturally with time; while R0 > 1, the infectious disease will break
out within a certain period of time. Since the next-generation matrix
method [25] is widely used in epidemiology and the calculation of
the basic regeneration number, in dynamic populations, this paper
mainly uses the next-generation matrix method to calculate R0.
There are two compartments in the model proposed in this paper,
namely, E(t) and I(t). According to Eqs 1–5, the vector of X can be
obtained by applying the next-generation matrix method, and then,
the expressions on F, V are written based on the obtained vectors as
follows:

X � E t( )
I t( )[ ] � F1,2 E, I( ) − V1,2 E, I( ), (17)

� ηS + λSI
0

[ ] − λ1SE − αE − βE
αE − γI − ωI

[ ]. (18)

Finding the Jacobi matrix for F, V, we obtain

F � Jacobian F1,2 E, I( )( ) � 0 λS
0 0

[ ], (19)

V � Jacobian V1,2 E, I( )( ) � λ1S − α − β 0
α −γ − ω

[ ]. (20)

The SEIRD model corresponding to R0 is the maximum
eigenvalue of FV−1:

ρ FV−1( ) � αλS

λ1S − α − β( ) γ + ω( ). (21)

Furthermore, according to the next-generation matrix method,
we can obtain

R0 � λαθ

λ1θ − α + β( ) θ + η( ) γ + ω( ). (22)

Theorem 1: The system model in the system of Equations 1–4 is
globally asymptotically stable if R0 ≤ 1. Theorem 2: If R0 > 1, then the
system model in the system of Equations 1–4 is not globally
asymptotically stable. Proof: First, we assume that δ is an
eigenvector of the matrix F and that

R0 � ρ FV−1( ) � ρ V−1F( ). (23)
Under the condition of V-1F = R0, we obtain

δR0 � δV−1F. (24)
Let Lyapunov function [26] be

_L � δV−1X. (25)
So,

d _L

dt
� δV−1dX

dt
� δV−1 F − V( )X. (26)

Organize

d _L

dt
� δR0 − δ( )X � δ R0 − 1( )X. (27)

Here, if R0 ≤ 1, then d _L
dt � 0, that is, δX = 0. The result is E = I = 0,

which is simply dE
dt � dI

dt � 0. From this equation, we obtain

ηS + λSI + λ1SE − αE − βE − αE − γI − ωI � 0. (28)
If we substitute E = 0, then we can obtain

ηS + λSI − γI − ωI � 0, (29)
ηS + R0

λ1θ − α + β( ) θ + η( ) γ + ω( )
αθ

SI − γI − ωI � 0, (30)

ηS + I γ + ω( ) R0
λ1θ − α + β( )

α
− 1( ) � 0, (31)

namely,

R0 − 1 ≈ 0. (32)
Then, it can further be obtained that when R0 ≤ 1, then d _L

dt � 0.
This proves the global asymptotic stability of the model system.
Conversely, if R0 > 1, then within the defined neighborhood, d _L

dt > 0.
According to Lyapunov stability theory, the system is not
asymptotically stable under this condition.

4 Experimental results and analysis

4.1 Simulation

In order to get the experimental results closer to the real situation in
the real world, at the same time, we can better observe the change trend
and change quantity of each stage of the infection model. The
simulation experiment [27] considers the number of people in a big
city as the standard and sets the initial total population asN= 107. At the
same time, considering the initial approximate number of each
population, we set the initial population density as follows:

S(0) = 107 − 1, E(0) = 0, I(0) = 1, R(0) = 0, and D(0) = 0.

At the same time, through observation, we found that when E(t) =
I(t) = 0, there is no infection case in the model, and we can assume that
the model has reached a stable state at this time. Figure 2 is a simulation
diagram of the SEIRD model, through which we can witness the
relationship between the density of five types of individuals and time
in the propagation process. It can be seen from the following figure that
at the beginning of the epidemic spread, the number of each population
has hardly changed, which is quite consistent with the difficulty in
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finding the epidemic at the beginning. In the middle period of the
epidemic spread, that is, the sudden period of epidemic, the number of
people began to change significantly. In a short period of time, the
number of susceptible people rapidly decreased, while the number of the
infiltrator and infected people increased sharply. Mapped to reality, the
epidemic situation has attracted the attention of government
departments and the general public at this time, and began to carry
out epidemic prevention and control in a strategic and organized way.
The outbreak period was ushered in a short time after the outbreak
period, the number of infected people reached its peak, and then, death
cases began to appear. Because effective treatment and safety measures
have been considered this time, the number of infected people begins to
decrease after reaching the peak, and the number of recovered people is
gradually increasing. Because themodel also considers that the recovered
patients may be re-infected after a period of recovery, the number of
recovered patients will decrease and the number of susceptible people
will increase in the later period. At the same time, the number of infected
people will approach 0, the number of dead people will no longer
increase, and the model will reach a stable state.

In the real process of spreading the epidemic, each factor is very
important for the final result. Therefore, in simulation training, some
important parameters should be simulated with different values, such as
cold chain transmission probability, infected person transmission
probability, rehabilitation rate, and recovery rate, and the results of
numerical simulation should be compared and analyzed to achieve
better prediction results. In the spread of the epidemic, the number of
the lurker and infected people is very important for the prevention and
control of the epidemic, so in the simulation experiment, we focus on
observing the changing trend of the lurker and infected persons so as to
obtain an ideal prediction result of the epidemic.

4.2 Influence of object propagation
probability η on the epidemic spread

Object transmission [28] mainly means that viruses can also
spread to various people along with external media. At the beginning
of the epidemic, people did not realize that the virus could spread in

FIGURE 2
Simulation diagram of the SEIRD model simulation experiment.
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the cold chain. Later, after the local epidemic spread was blocked,
many clustered epidemics occurred in various places. Finally,
through investigation and study, novel coronavirus has strong
viability on the surface of frozen products, and the continuous
low temperature and humid cold chain environment also provide
necessary conditions for the survival of novel coronavirus. Then,
people began to pay attention to the prevention and control of object
transmission. Figure 3 shows a simulation chart of the influence of
object transmission probability η on epidemic transmission.

From the information observed in the figure, it can be found that
different object transmission probability values will also have
different impacts on the experiment. The greater the object
transmission probability value, the faster the epidemic spread,
and then the infiltrator and infected people will peak earlier, that
is, enter the outbreak period faster. At the same time, we find that the
increase in object propagation probability will lead to the peak
appearing ahead of time, but it will not change the peak basically. It
can be seen that reducing the spread of objects can help us slow
down the spread of the epidemic. Usually, we strictly control
overseas food and disinfect public places in order to reduce the
spread probability of objects, thus slowing down the spread speed.

4.3 Influence of contact probability λ of
infected persons on the epidemic spread

The virus infection rate is mainly divided into the infection rate
of the infiltrator to the susceptible person and the infection rate of

the infected person to the susceptible person. Figure 4 shows a
simulation chart of the influence of the virus infection probability λ
on the spread of the epidemic situation.

It can be seen from the aforementioned figure that the infection rate
has a significant impact on the epidemic situation. The probability of
virus infection can not only affect the peak time of the lurker and
infected people but also affect their peak value. It can also be observed
from the figure that the number of infected people increases rapidly
when the number of the infiltrator reaches its peak, so the growth trend
of infected people can be judged by the number of the infiltrator. We
found that the greater the value of infection probability, the earlier the
change of each population, and the infection rate has different degrees
of influence on each population, including the number of recovered
patients and susceptible people in the later stage of infection. On one
hand, this also explains the importance of wearing a mask because
wearing a mask can effectively reduce the probability of infection as it
not only reduces the number of infected people but also delays the onset
time of infected people and reduces the probability of infection, which is
more conducive to our prevention and control of the epidemic.

4.4 Influence of contact probability λ1 of
lurkers on the epidemic spread

In addition to the great influence of infection probability on the
spread of the epidemic, the probability of contact with susceptible
people in the infiltrator is also very important for the spread of the
epidemic. Because the infected person is an individual who has been

FIGURE 3
Simulation diagram of the influence of object propagation probability on the epidemic. (A)General map of simulated trends in different populations
for different values of the parameters of object propagation; (B) trends in the number of susceptible persons for different parameter values of object
propagation; (C) trends in the number of latent persons for different values of the parameters of object transmission; (D) trends in the number of infected
persons for different values of the parameters of object transmission; and (E) trends in the number of recovered persons for the different values of
the parameters of object transmission. (F) Trends in the number of fatalities for different values of object propagation parameters.
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diagnosed and has taken relevant isolation measures, this person
does not have the ability of contact and transmission for the time
being, and the contact probability is mainly for the infiltrator.
Figure 5 shows a simulation chart of the influence of contact
probability in the infiltrator on the epidemic spread.

From the aforementioned figure, it can be found that the greater the
contact probability, the greater the probability of infection to susceptible
persons. This also explains why once more infected people are found,
measures such as reducing travel and isolating at home are adopted
because some symptoms of the infiltrator have not been found yet, but it
may spread to other people, so it is necessary to reduce the contact
probability at this time. The greater the contact probability, the higher the
possibility that the susceptible person will be infected. At the same time,
the faster and shorter the time required for the susceptible person to
become the infiltrator, which will eventually lead to a higher peak value in
the infiltrator, that is, the number of the infiltrator will greatly increase.
The sharp increase in the number of infected people will bring great
challenges to the prevention and control of the epidemic, so when the
outbreak is serious, travel is generally restricted and contact is reduced.

4.5 Influence of recovery probability γ on the
epidemic spread

Recovery probability is one of the most important factors in
epidemic prevention and control. As long as the recovery probability
is relatively high in the process of epidemic spread, the epidemic can end

quicker, and the losses caused are relatively small. It can be seen that
recovery probability is very important for us to study the spread of an
epidemic. The recovery probability in this work means that the virus
carrier does not carry the virus after treatment or autoimmunity and
can no longer spread to others. The self-healing probability of the
incubation period and the successful treatment probability of infectious
patients belong to recovery probability. Figure 6 shows a simulation
chart of the impact of recovery probability γ on the epidemic spread.

As can be seen from the aforementioned figure, the higher the
probability of recovery, the quicker the epidemic will end; the peak
value of the infiltrator and infected people will decrease tremendously,
and the time to reach the peak value will be delayed, and the number
of dead people will also decrease significantly. Therefore, it can be
concluded that under the condition of a relatively high recovery rate,
all groups in the spread of the epidemic are developing toward a more
ideal situation. From this figure, it can be concluded that constantly
studyingmore effective therapeutic drugs and encouraging the general
public to vaccinate are all aiming at improving the self-healing and
healing abilities so that we can take more initiative in epidemic
prevention and control.

4.6 Influence of re-positive probability θ on
the epidemic spread

The repositive rate [29] refers to the probability that patients
are re-infected with viruses and become virus carriers after a

FIGURE 4
Simulation diagram of the influence of object propagation probability on the epidemic. (A) General graph of simulated trends in the probability of
viral infection for different populations at different parameter values; (B) trends in the number of susceptible persons at different parameter values of the
probability of viral infection; (C) trends in the number of latent persons at different parameter values of the probability of viral infection; (D) trends in the
number of infected persons at different parameter values of the probability of viral infection; and (E) trends in the number of convalescent persons at
different parameter values of the probability of viral infection. (F) Trends in the number of deaths for different values of the probability of viral infection
parameter.
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period of recovery. In the early stage of the epidemic, the rate of
recovery did not attract great attention. With the deepening of
research and strict control, it was gradually found that the
recovered patients still had the probability of becoming
infected after a period of time. Figure 7 is a simulation chart
of the influence of repositive probability θ on the epidemic
spread.

From the aforementioned figure, it can be concluded that in the
early stage of the epidemic, the reactivation rate will not affect the
number change of each population, but in the middle stage of the
epidemic, with the increase in the number of recovered patients, the
reactivation rate begins to affect the number change of the
population. The higher the recovery rate, the number of
recovered patients will gradually decrease, and the peak value of
recovered patients will be advanced and reduced. For susceptible
people, the number of this population will increase in the later
period, but it can be seen that the repositive rate has little impact on
the lurker and infected people and will only slightly increase the
number of infected people in the later period, which also shows from
the side that the repositive and the first-time infected people have
almost the same impact in epidemic prevention and control.
Therefore, mapped to the actual epidemic prevention, even if
there are some antibodies in the recovered patients, they still
carry out the same management as ordinary susceptible people in
the epidemic control.

5 Parametric optimization method
based on the genetic algorithm

5.1 Adaptive genetic algorithm

The genetic algorithm (GA) was first proposed by John Holland. It
is an algorithm that helps find the optimal solution or approximate
optimal solution to complex problems by simulating the process of
natural evolution. The algorithm is designed according to the evolution
of organisms in nature. Through mathematical methods and computer
simulation operations, the algorithm converts the problem solving
process into processes similar to the crossover and variation of
chromosome genes in biological evolution. When solving more
complex combinatorial optimization problems, compared with some
conventional optimization algorithms, better optimization results can
usually be obtained relatively quickly. At present, genetic algorithms
have been widely used in various fields.

Compared with traditional optimization algorithms, the genetic
algorithm uses probability rules instead of certain rules. Therefore,
the genetic algorithm has the characteristics of global optimization
and simple operation, which is suitable for solving complex
optimization problems. In this work, the genetic algorithm is
used to analyze the impact of different types of population on
disease dynamics, optimize model parameters, and consider the
changes of objective factors such as the gradual improvement of

FIGURE 5
Simulation of the impact of sleeper contact probability on the epidemic. (A)General plot of simulated trends in the probability of latent exposure for
different populations for different parameter values; (B) trends in the number of susceptible persons for different parameter values of the probability of
latent exposure; (C) trends in the number of latent persons for different parameter values of the probability of latent exposure; (D) trends in the number of
infected persons for different parameter values of the probability of latent exposure; and (E) trends in the number of convalescent persons for
different parameter values of the probability of latent exposure. (F) trends in the number of deaths for different parameter values of the probability of
latent exposure.
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isolation measures in the early and late stages of the epidemic. Using
the simulation software application MATLAB, an improved SEIRD
epidemic prediction model was built. First, we consider that the
incubation period is contagious and rehabilitative, and second, we
consider that the recovered person is repositive and the infected
person is fatal. Finally, the epidemiological transmission trends with
different probability in different periods are simulated so that the
prediction results are obtained.

In the face of complex non-linear optimization problems, the
traditional genetic algorithm is prone to insufficient optimization
ability, causing the algorithm to fall into a local optimal solution. In
this article, an improved adaptive genetic algorithm (AGA) is used
to change the heterogeneity and crossover rate through the adaptive
adjustment of genetic parameters to achieve the retention of
excellent individuals of offspring, which not only improves the
convergence accuracy of genetic algorithms but also accelerates
the convergence speed. In AGA, the cross probability Px and the
variation probability Pm are adaptively adjusted according to the
following:

Px �
k1

fmax − f′
fmax − favg

, f′≫favg

k3, f′<favg,

⎧⎪⎪⎨⎪⎪⎩ (33)

Pm � k2
fmax − f

fmax − favg
, f≫favg

k4, f<favg.

⎧⎪⎪⎨⎪⎪⎩ (34)

In the formula, fmax represents the maximum adaptation
value in the population, favg represents the average adaptation
value of each generation of population, f′ represents the larger
of the adaptation values of two individuals to cross, f
represents the adaptation value of the individual to be
mutated, and k1, k2, k3, and k4 consider the value of the
(0,1) interval.

It can be seen from the formula that as the population evolves,
the solution may be aggregated to the optimal solution, and favg
gradually approaches fmax so that the cross-probability Px and the
variation probability Pm gradually decrease, which helps
maintain the excellent structure that the population has
formed. In the same generation of populations, the probability
of crossover and mutation of different individuals changes
linearly with their own adaptation values. The lower the
probability of crossover and variation in individuals with
higher adaptability, the greater the probability of crossover
and variation in individuals with lower adaptability. When the
adaptive value of an individual is equal to the optimal adaptation
value fmax in the contemporary population, its crossover and
variation probabilities are calculated to be 0 by a formula, which
allows these excellent individuals to be preserved, but it is likely
that these excellent individuals will grow exponentially in the
evolutionary process, resulting in an excessive convergence. In
order to solve this problem, we choose to search for the global
optimal solution by individuals with less than average adaptive
values in the population.

FIGURE 6
Simulation diagram of the influence of recovery probability on an epidemic situation. (A) General graph of simulated trends in the probability of
recovery for different populations at different parameter values; (B) trends in the number of susceptible persons at different parameter values of the
probability of recovery; (C) trends in the number of latent persons at different parameter values of the probability of recovery; (D) trends in the number of
infected persons at different parameter values of the probability of recovery; and (E) trends in the number of recovered persons at different
parameter values of the probability of recovery. (F) trends in the number of deaths at different parameter values of the probability of recovery.
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5.2 Algorithm steps

1) Algorithm steps. Randomly select an initial group and represent
each individual in the population with a string, and then evaluate the
adaptation value of the randomly generated initial group, according to
the adaptability function. If the optimal individual in the group does not
improve for several consecutive generations, let the individual’s
adaptability be the optimal adaptation value, and if the optimal
adaptation value is not reached, it will enter the next round of
evolution. When selecting the operation, select individuals from the
population to inherit according to the optimal preservation strategy and
the rules of roulette wheel selection, and pass on excellent individuals
directly to the next generation or cross-generate new individuals
through pairing and then to the next generation. In the crossover
operation, choose two as parents in the population and randomly set an
intersection point. The structure behind the point is interchangeable to
generate two new individuals until the crossover stops after reaching the
best. During the mutation operation, an individual in the population is
randomly selected and the gene values on some locus in the individual
chromosome coding string are replaced with other alleles of the locus
until the mutation process stops after reaching the best value, forming a
new individual. Calculate the adaptability function value of individuals
in the new generation of population and replace the individuals with the
worst adaptive individuals. If the best adaptation value is not reached,
the improvement strategy will return to continue to evolve, and if the
best adaptation value is reached, the best results will be output.

Themain steps and flowchart of the genetic algorithm are shown
in Figure 8 below:

Input: M individuals, number of iterations t, and initial
group P(t).

Output: New group P*(t).

1) Express the individual as a string, randomly generate the initial
biological group P(t) comprising M individuals, and set the
number of iterations t.

2) Assess the adaptability of each individual in the initial group.
3) Choose the best solution for improvement (selection, crossover,

and variation).
4) Perform selection operations to inherit optimized individuals

directly to the next generation or generate new individuals to the
next generation by pairing intersections.

5) Perform cross-operations and act on the cross-operations on the
group.

6) Carry out mutation operations and act on the mutation operator
on the group. After selection, crossover, and mutation operations,
group P(t) obtains the next-generation group P(t + 1).

7) Set the termination condition. If t = T, then use the individuals
with maximum adaptability obtained during the evolutionary
process as the optimal solution output to form a new group P*(t),
and terminate the calculation.

2) Determination of adaptability function. In the evaluation of
the adaptability function, in order to reflect the individual’s
adaptability, it is necessary to introduce an adaptability function
that can measure the individual’s adaptability. In the genetic
algorithm for solving the parameters of the infectious disease

FIGURE 7
Simulation diagram of the influence of the probability of relapse on the epidemic. (A)General graphs of simulated trends in different populations for
the different parameter values of the repositive probability; (B) trends in the number of susceptible persons for different parameter values of the repositive
probability; (C) trends in the number of latent persons for different parameter values of the repositive probability; (D) trends in the number of infected
persons for different parameter values of the repositive probability; and (E) trends in the number of recovered persons for different parameter values
of the repositive probability. (F) Trends in the number of deaths for different values of the repositive probability parameter.
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model, the sum of the error square of the predicted and real values of
the number of infected people infected in the infectious disease
model is F � ∑r

i�1∑ni
j�1(Xij −Xi)2 is the adaptation objective

function, and the least square method is used to ensure that the
feasible solution and actual solution errors of the number of infected
people are minimal.

3) Select the determination of the operator. The purpose of the
selection is to inherit optimized individuals directly to the next
generation or cross-generate new individuals through pairing and
cross-generation so as to improve the global computing efficiency
and adaptability. In this paper, a wide range of optimal storage
strategies and roulette wheel selection are selected. The roulette
gambling method selects a new population based on the probability
proportional to the adaptability value (that is, the probability of each
individual being selected is directly proportional to the value of its
adaptability function). Each individual has the opportunity to be
selected, which can improve the average adaptability value of the
whole population without destroying the diversity of the population.
However, this method is based on probability selection, with
statistical errors. Sometimes even individuals with high

adaptability are eliminated, and it is easy to converge to a local
maximum. Another choice is the optimal preservation strategy,
which sorts the individuals in the population according to the
adaptability size, and then selects the most adaptive individuals
to maintain them. This behavior can ensure that the optimal
individual is not eliminated by random operations. However,
because the selection of individuals is determined according to
the sorting value, the optimization efficiency depends on the
optimal individual.

The specific implementation step of the selection operator is a
combination of roulette and optimal selection. Let the initial group
size be n (even), and the adaptability function value of individual i is
F(i). In the process of selecting individuals to inherit to the next
generation, the idea of the optimal preservation strategy is adopted
to sort individuals from high to low according to F(i), and the first n/
2 individuals in the ranking are directly copied to the next-
generation population. At the same time, the roulette selection
method is used to select n/2 individuals from all individuals to
inherit to the next generation so that the probability of individual
i being selected to be inherited to the next-generation group is

FIGURE 8
Algorithm step flowchart.
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Pi = Fi/∑(i � 1)nFi, and then, a random number between 0 and 1 is
generated and matches the probability of each individual inherited
to the next generation and finally determines whether the individual
is inherited to the next-generation group until n/2 individuals are
selected. This method uses the scientific probability method to
maintain a good diversity of individuals in the population in
iteration and also ensures that the best individuals can evolve to
the next generation without being eliminated by the randomness of
genetic operations, that is, by adding the optimal retention operation
to randomness to ensure the convergence of the algorithm.
Compared with the simple roulette selection method, this
combination strategy runs slightly faster and shows better
performance.

4) The selection of crossover and variability. When applying the
genetic algorithm, the reasonable selection of the crossover rate and
variability is an important factor affecting the efficiency of the
algorithm. However, most genetic algorithms give an interval
range when setting the crossover and mutation rates, of which
the crossover rate is generally greater than 0.9 and between
0.9 and 0.99, and the mutation rate is relatively low, generally
below 0.1, between 0.0001 and 0.1, but there is a lot of
uncertainty and blindness in determining the approximate range
of the cross rate and variability based on the empirical method.

5.3 Evaluation indicators

In order to compare the influence of the application of the
parameter optimization method of the adaptive genetic algorithm
on the prediction accuracy of the propagation model, it is necessary
to evaluate the prediction accuracy of the propagation model. In this
paper, three indicators, namely, root mean square error (RMSE),
average absolute error (MAE), and decision coefficient (R2), are used
to evaluate the predictive accuracy of the model.

RMSE is another commonly used evaluation indicator,
indicating that in the process of model fitting, it reflects the gap
between the model prediction results and the actual results. The
lower the RMSE, the more accurate the model is. However, it reflects
an objective standard deviation. RMSE can be calculated according
to the following formula:

RMSE �
�������������
1
m

∑m
i�1

yi − ŷi( )2
√

. (35)

MAE is another indicator used to evaluate the accuracy of model
prediction results, which represents the gap between model
prediction results and the actual results. MAE can be calculated
by the following formula:

RMSE � 1
m

∑m
i�1

| yi − ŷi( )|. (36)

Among them, the value range of MAE is (0, +), which is equal to
0 when the predicted value exactly matches the real value, which is
the perfect model; the greater the error, the greater the value.

The deciding coefficient (R2) indicates the fitting optimization of
the regression model coefficient evaluated after linear regression. R2

reflects the proportion of all variations of model-dependent
variables being interpreted by independent variables through the

regression model. The larger the value of R2, the greater the variation
in linear return model interpretation. R2 can be calculated according
to the following formula:

R2 � ∑n
i�1 yi

e − ye( ) yi
0 − y0( )( )������������∑n

i�1 yi
e − ye( )2√ ������������∑n

i�1 yi
e − y0( )2√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦

2

. (37)

When R2 is 1, it shows that there is no error between the prediction
and the real observation values of the model, indicating that the
interpretation of the independent variable to the dependent variable
in the regression analysis is better; when R2 is 0, each prediction value of
the sample in the model is equal to the mean; when R2 is close to 0, it
indicates that the prediction ability of the model is poor, and the
prediction effect is close to using the average of the observed value as the
model prediction value. This means that the wrong model may have
been used or the assumptions of the model are unreasonable.

5.4 Results and analysis

By consulting the parameters of relevant case data inWuhan, we
set the number of people in close contact with normal people every
day at p = 20. Because the infected person will have some symptoms,
only half of the number of people are seen to be in close contact with
normal people. In the process of simulation of the model by the
adaptive genetic algorithm, the values of each parameter are set
within a certain dynamic range, and then, the value of the model
parameters is continuously optimized and improved through the
algorithm to achieve the best prediction effect. The value of the
model parameters is finally determined as follows:

η = 0.01, λ = 0.03, λ1 = 0.02, α = 0.14,
γ = 0.1, θ = 0.02, β = 0.005, and ω = 0.02.

At the same time, in order to verify the effectiveness of the
method on the model, the text compares the actual data on the
2020 Wuhan epidemic [30] officially released by the China Health
Commission with the trend based on the status of SEIRD nodes to
further analyze the difference between the predicted and real values.
Figure 9 shows a trend chart that shows the state of each node under
real data based on the SEIRD model.

From the figure, it can be seen that the data changes of the
number of confirmed cases, and the number of recovered people and
deaths in real situations are very similar to the trend of our
prediction trend, so it can be shown that after the optimization
of adaptive genetic algorithms, the SEIRD model can be applied to
the spread of the real epidemic.

At the same time, it can be seen from the figure that the number
of confirmed cases increased rapidly in the early stage, and the
change trend was evident. However, with a series of measures, such
as isolation and wearing masks, the number of confirmed cases
gradually decreased, and the number of recovered cases gradually
increased, and finally, the number of confirmed cases gradually
returned to 0. The trend curve of the recovered patients is also in line
with our prediction, and the number of recovered patients is
gradually increasing, but in the end, due to the existence of the
recovered patients, there will be a slight decline in the end. The trend
of death tolls is basically consistent with our predicted results, which
first increases slowly and finally tends to be stable. By comparing the
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actual data with the predicted data, it can be found that the SEIRD
model can effectively simulate the spread trend of the actual
epidemic situation and provide theoretical support for relevant
departments.

5.5 Comparative analysis of models

The different types of infectious diseases each have different
characteristics in transmission, and this paper is to establish a model
to analyze from the perspective of the transmission mechanism. In
order to verify the effect of this model in the transmission of new
coronavirus causing pneumonia, this paper optimizes different
models on the adaptive genetic algorithm and analyzes the data
on the optimized classical model and this model, such as the SIR
model, SEIR model, and the basic SEIRD model.

The SIR model is one of the most basic of infectious disease
models, where S denotes susceptible, I denotes infected, and R
denotes recovered. Transmission mechanism: at first, all nodes
are in their susceptible state, some nodes reach the infected state
after contacting the information, and the infected nodes infect other
nodes or reach the recovered state. According to the system
modeling idea, the relationship between different populations in
the SIR model can be described by a system of differential equations.
The total number of users is set as N and satisfies N(t) = S(t) + I(t) +
R(t), and the system of equations of susceptible, infected, and
recovered people over time is as follows:

ds

dt
� −λSI, (38)

dI

dt
� λSI − γI, (39)
dR

dt
� γI. (40)

The initial conditions are S(0) ≥ 0, I(0) > 0, R(0) ≥ 0.
The SEIR model is an improvement on the SIR model with the

addition of the incubator E. Healthy people who have been in
contact with a patient do not get sick immediately but become

carriers of the pathogen. According to the system modeling idea, the
relationship between different populations in the SEIR model can be
described by a system of differential equations. The total number of
users is set as N and satisfies N(t) = S(t) + E(t) + I(t) + R(t), and the
system of equations for susceptible, exposed, infected, and recovered
people over time is as follows:

ds

dt
� −λSI, (41)

dE

dt
� λSI − αE, (42)

dI

dt
� αE − γI, (43)
dR

dt
� γI. (44)

The initial conditions are S(0) ≥ 0, E(0) ≥ 0, I(0) > 0, R(0) ≥ 0.
The basic SEIRD model is also improved on the basis of the SEIR

model by adding the number of dead people, i.e., the number of people
who died from the infection of the epidemic, and this model is more in
line with the spread of the real epidemic. According to the system
modeling idea, the relationship between different populations in the
SEIRD model can be described by a system of differential equations.
The total number of users is set asN and satisfiesN(t) = S(t) + E(t) + I(t)
+ R(t) + D(t), and the system of equations for susceptible, exposed,
infected, recovered, and dead people over time is as follows:

ds

dt
� −λSI, (45)

dE

dt
� λSI − αE, (46)

dI

dt
� αE − γI − ωI, (47)
dR

dt
� γI, (48)

dD

dt
� ωI. (49)

The initial conditions are S(0) ≥ 0, E(0) ≥ 0, I(0) > 0, R(0) ≥
0, D(0) ≥ 0.

FIGURE 9
Change trend of nodes with different states over time. (A) Trend diagram of state nodes based on the SEIRD model. (B) Chart of epidemic trends in
the real dataset.
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This model not only increases the number of dead people but
also takes into account the object transmission, the re-positive rate
of the recovered people, and the self-healing rate of the latent people,
which is very close to the real transmission process of the new
coronavirus causing pneumonia.

After the optimization of the adaptive genetic algorithm, the
simulation trend of multiple models is shown in Figure 10.

As can be seen in Figure 10A, the trend of infected persons
predicted by each model is basically similar, the SIR model does not
have an incubation period, and healthy people become infected
immediately after contacting infected persons, so it causes the
number of infected persons predicted by the SIR model to reach
the peak in a relatively short period of time, which leads to the
prediction results being very different from the actual infection data.
The number of infected persons predicted by the SEIR model is very
close to that of the real data, but the number of infected persons has a
large gap compared with the real data, which is very close to the real
data, but the number of infected people has a large gap compared
with the real data, particularly because the SEIR model does not take
into account the object transmission and repositive positivity rate,
which leads to the actual number of infected people being more than
predicted by the model. The underlying SEIRD model also does not
take into account object transmission and the repositive positivity
rate, and due to the death of some of the infected people, resulting in
a lower number of predicted infected people compared to the real
infected people. As can be seen from Figure 10B, there is a large
difference in the number of recovered persons predicted by each
model because the SIR and SEIR models do not take into account
those who die, so the number of recovered persons predicted by the
model is much higher than the actual number of recovered persons.
The underlying SEIRD model also results in a lower number of
recovered people than the real data due to the lower number of
infected persons predicted by the model. Figure 10C shows that both
the base SEIRD model and this model predict the number of deaths
which are close to the real number of deaths but both are slightly
higher in trend than the real death data; this is because the real data
comprise the number of deaths after medical and drug interventions,
which results in the predicted data to be higher than the real data. As

can be seen in Figure 10, the improved model in this paper is more
accurate in predicting the number of infections, recoveries, and
deaths than other models, and is also more in line with the real data
compared to the real data.

6 Conclusion

The mechanism of virus transmission is relatively complex in
epidemic prevention and control, which requires a more accurate
model. In this paper, a SEIRD epidemic transmission model is
proposed, which includes factors such as object transmission, self-
healing ability, recovery rate, and mortality. Based on this model, this
work conducted simulation experiments on each influencing factor to
analyze the impact of different factors on the spread of the epidemic. The
experimental results show that although the cold chain input probability
does not affect thefinal number of infected people, it will affect the time to
reach the peak; the ability to heal is critical in determining the impact of
infection, not only affecting the number of infected people but also
accelerating the cycle of infection; although the recovery rate will not
cause an increase in the number of infected people, it will affect the
number of different groups in the later stage of the epidemic; mortality in
epidemic prevention and control is closely related to the number of
infected people. When the number of infected people is large and
treatment is not timely, more deaths will occur. Finally, this work also
improves and optimizes the model parameters through the adaptive
genetic algorithm, simulates and analyzes the trend of the epidemic from
many aspects, and compares and analyzes the real data. The results show
that the model optimized by the algorithm can effectively predict the
spread of the epidemic, and at the same time, it can bring certain
theoretical reference values to epidemic prevention and control.
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FIGURE 10
Comparative effect graphs of model simulations. (A) Trend graph of the number of infections predicted by the model simulation; (B) trend graph of
the number of recoveries predicted by the model simulation; and (C) trend graph of the number of deaths predicted by the model simulation.
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Transformer: capturing temporal
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Burst patterns, characterized by their temporal heterogeneity, have been observed

across a wide range of domains, encompassing event sequences from neuronal

firing to various facets of human activities. Recent research on predicting event

sequences leveraged a Transformer based on the Hawkes process, incorporating

a self-attention mechanism to capture long-term temporal dependencies. To

e�ectively handle bursty temporal patterns, we propose a Burst and Memory-

aware Transformer (BMT) model, designed to explicitly address temporal

heterogeneity. The BMT model embeds the burstiness and memory coe�cient

into the self-attention module, enhancing the learning process with insights

derived from the bursty patterns. Furthermore, we employed a novel loss function

designed to optimize the burstiness and memory coe�cient values, as well as

their corresponding discretized one-hot vectors, both individually and jointly.

Numerical experiments conducted on diverse synthetic and real-world datasets

demonstrated the outstanding performance of the BMT model in terms of

accurately predicting event times and intensity functions compared to existing

models and control groups. In particular, the BMT model exhibits remarkable

performance for temporally heterogeneous data, such as those with power-law

inter-event time distributions. Our findings suggest that the incorporation of burst-

related parameters assists the Transformer in comprehending heterogeneous

event sequences, leading to an enhanced predictive performance.

KEYWORDS

burst, temporal heterogeneity, event sequence, timestamp, inter-event time, temporal

point process, self-attention, Transformer

1 Introduction

Temporal heterogeneity is frequently referred to as burst within the context of complex
systems. Numerous natural and social phenomena exhibit bursty temporal patterns such
as single-neuron firing (Kemuriyama et al., 2010; Chan et al., 2016; Metzen et al., 2016;
Zeldenrust et al., 2018), earthquakes (Corral, 2004; de Arcangelis et al., 2006), solar flares
(Wheatland et al., 1998), and human activity (Barabasi, 2005; Karsai et al., 2018). The term
temporal heterogeneity rigorously implies that the distribution of inter-event times, which
is the time intervals between two consecutive events, exhibits a heavy-tailed distribution
such as a power-law distribution. Moreover, when the system is generally temporally
heterogeneous, it implies the presence of temporal correlations among inter-event times.
For example, the inter-spike interval distribution display temporally heterogeneous patterns,
which cannot be simply interpreted as a random or regular process. Numerous studies
have addressed temporal correlations between bursty spikes using approaches such as the
non-renewal process (Shahi et al., 2016), intensity functions with voltage-dependent terms
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(Yamauchi et al., 2011), and transitions between burst and non-
burst states (Dashevskiy and Cymbalyuk, 2018). To quantify
temporal heterogeneity, two commonly employed single-value
metrics are burstiness and memory coefficient.

Figure 1 illustrates the distinction between temporally
heterogeneous inter-event times and those that tend toward
homogeneity. The event sequences in Figures 1A, D, F serve as
examples of temporal heterogeneity with a power-law inter-event
time distribution. The event sequences in Figures 1B, C, E, G
present instances that exhibit a more homogeneous random
characteristic with an exponential inter-event time distribution.
Evidently, the bursty event sequence exhibits clustered events
within burst trains, in contrast to the non-burst sequence. Such
uneven event occurrences can affect the prediction of event
sequences. Without properly accounting for the complicated
correlation structure and heterogeneity therein, naive models may
struggle to effectively discern hidden patterns.

Event sequence data encompass the temporal occurrences
of events spanning various domains, ranging from natural
phenomena to social activities. Unlike time series data, event
sequence data are defined by sequentially ordered timestamps
that signify the timing of individual event occurrences. Numerous
studies have focused on predicting the timing of subsequent events
have been conducted using temporal point processes (TPPs) (Daley
and Vere-Jones, 2008). One of the most widely employed TPP
is the Hawkes process (Hawkes, 1971). This process embodies
a self-exciting mechanism, wherein preceding events stimulate
the occurrence of subsequent events. In contrast to the Hawkes
process, the self-correcting process provides a feasible method for
establishing regular point patterns (Isham and Westcott, 1979).

The Poisson point process can be employed to generate
entirely random and memory-less events (Kingman, 1992). In the

FIGURE 1

(A, D, F) Heterogeneous event sequences with a power-law inter-event time distribution. These event sequences exhibit a high burstiness parameter

with significant temporal heterogeneity. (B, C, E, G) Event sequences with an exponential inter-event time distribution. These event sequences have

burstiness parameters close to 0 and memory coe�cients clustered around 0.

Poisson process, the inter-event time (IET) follows an exponential
distribution. The Cox process is a generalized Poisson process in
which the intensity function varies with the stochastic process (Cox,
1955); thus, it is also referred to as a doubly stochastic Poisson
process. Cox processes are frequently employed to model and
predict the arrival of insurance claims, enabling insurers to assess
risk and manage resources effectively (Rolski et al., 2009). If the
intensity function is not entirely random, as in the Cox process, but
given as a deterministic time-varying function, it is referred to as an
inhomogeneous Poisson process.

Leveraging advancements in deep neural networks, recent
studies have introduced Hawkes process models based on neural
network frameworks. Specifically, the models of Marked Temporal
Point Processes (RMTPP) (Du et al., 2016) and Continuous Time
LSTM (CTLSTM) (Mei and Eisner, 2017), utilizing Recurrent
Neural Networks (RNN) and Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), exhibited better performance
than Hawkes processes. More recently, the Transformer Hawkes
Process (THP) (Zuo et al., 2020) and the Self-Attentive Hawkes
Process (SAHP) (Zhang et al., 2020), both grounded in self-
attention mechanisms, have demonstrated improved performance.

Our research was primarily motivated by the idea that
incorporating temporal heterogeneous characteristics into
event sequence predictions yields a superior performance in
forecasting events. We propose a Burst and Memory-aware

Transformer (BMT) model, signifying its capability to train the
Transformer by leveraging insights derived from burstiness and
memory coefficient, both of which are associated with temporal
heterogeneity. Notably, these two metrics were incorporated as
embedding inputs for the Transformer architecture. Moreover,
a loss function related to these metrics was formulated and
employed, thereby enabling the model to naturally capture
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FIGURE 2

Schematic diagram of the Burst and Memory-aware Transformer model. Leveraging information from the preceding events, including burstiness B

and memory coe�cient M, the model predicts the timing of the next event through B & M embedding and the corresponding B & M loss.

temporal heterogeneity. The overall schematic diagram of the BMT
model is depicted in Figure 2.

The main contributions of this paper is summarized as
follows:

• The BMT model was developed to integrate insights from the
complex systems theory into the Transformer-based temporal
point process model, enhancing the capability to incorporate
temporal heterogeneity. This study offers a preliminary
approach to connect these two distinct disciplines.

• The BMT model surpasses state-of-the-art models by
effectively integrating burstiness and memory coefficient into
both the embedding procedure and associated loss functions.
This is confirmed through extensive numerical experiments
across a range of scenarios, including those with and without
burstiness and memory coefficient embedding and related loss
functions, using real-world datasets and synthetic datasets
generated via a copula-based algorithm.

• Our investigation revealed that the BMT model offers
particular advantages when dealing with temporally
heterogeneous data, such as datasets characterized by a
power-law inter-event time distribution, commonly observed
in bursty event sequences.

• Our research indicates that excluding either burstiness and
memory coefficient embedding or their corresponding loss
functions leads to a noticeable reduction in performance. This
emphasizes the imperative nature of integrating both elements
to achieve optimal performance.

In cases where the inter-event time distribution of the target
event sequence exhibits a heavy-tailed distribution, such as a
power-law distribution, or where the values of burstiness and
memory coefficient significantly deviate from zero, the BMTmodel
ensures superior performance compared to basic Transformer-
based models.

The structure of the paper is outlined as follows: Section 2
introduces the background pertaining to the temporal point
process, temporal heterogeneity, and generating method

for synthetic datasets; Section 3 introduces our Burst and
Memory-aware Transformer model; Section 4 presents numerical
experiments on synthetic and real-world datasets; Section 5
presents the performance evaluation results; and Section 6 presents
the conclusion.

2 Background

2.1 Temporal point process

A temporal point process (TPP) is a stochastic process
involving the occurrence of multiple events as time progresses. The
foundational data employed to construct the TPP model consists
of event sequence data, encompassing event times {ti}

n
i=1 along

with optional marks {κi}ni=1. For example, spike train sequences of
neurons are composed of timings of occurrences, along with action
potential as associated marks.

In this study, we examine the unmarked case to specifically
investigate the effects of burst and memory phenomena, while
excluding the influence of correlations with marks that do not align
with the research direction. For the prediction of the marked TPP
model, one approach involves the independent modeling of the
target’s marks by thresholding. Alternatively, based on contextual
analysis (Jo et al., 2013), interactions with multiple neighbors
within an egocentric network can be considered as marks and
subsequently modeled.

TPP encompasses the modeling of the conditional intensity
function λ(t|Ht) given the history of event times Ht ≡

(t1, ...tn). The notation for the history of event times, Ht will be
omitted for convenience. The intensity function characterizes the
instantaneous event rate at any given time by considering past event
occurrences. The probability density function P(t) and cumulative
distribution function F(t) can be derived based on the intensity
function, as follows (Rasmussen, 2018):

P(t) = λ(t) exp

(

−

∫ t

ti−1

λ(t′)dt′
)

, (1)
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F(t) = 1− exp

(

−

∫ t

ti−1

λ(t′)dt′
)

. (2)

2.1.1 Hawkes process
The Hawkes process, also known as the self-exciting point

process, is for a situation where a preceding event excites the
occurrence of a subsequent event (Hawkes, 1971). The intensity
function λ(t) of the Hawkes process is defined as

λ(t) = ζ + η
∑

ti<t

exp
(

−(t − ti)
)

, (3)

where the base intensity ζ and η are positive parameters. When a
new event occurs during this process, the intensity increases with η

and immediately decays exponentially. The probability of the next
event occurring is highest immediately following the incidence of
the previous event, and it gradually decreases as time elapses. As a
result, this process causes events to cluster together. This includes
events that happen quickly in a short time and then long times
when nothing happens. The generalized Hawkes process is defined
as follows:

λ(t) = ζ + η
∑

ti<t

γ (t − ti), (4)

where ζ ≥ 0, η > 0, and γ (t) is a density on (0,∞).

2.1.2 Self-correcting process
In contrast to the Hawkes process, the self-correcting process

generates regular inter-event time sequences with randomness
(Isham and Westcott, 1979). The intensity function λ(t) for the
self-correcting process is defined as follows:

λ(t) = exp
(

ζ t −
∑

ti<t

η

)

, (5)

where ζ and η are positive parameters.

2.1.3 Neural Hawkes process
A limitation of the Hawkes process is that the preceding event

cannot inhibit the occurrence of a subsequent event. To overcome
these limitations, the neural Hawkes process, which considers the
nonlinear relationship with past events using recurrent neural
networks, was introduced (Mei and Eisner, 2017). The intensity
function λ(t) for the neural Hawkes process is defined as follows:

λ(t) = f
(

w⊤h(t)
)

, (6)

where f (x) = β log
(

1 + exp(x/β)
)

is the softplus function
with parameter β which guarantees a positive intensity, and
h(t)s are hidden representations of the event sequence from a
continuous-time LSTM model. Here, the intensity we refer to is
not the marked intensity λk; Instead, our focus is on the inherent
temporal heterogeneity structure, excluding any interference from
correlations between event types and times.

2.1.4 Transformer-based Hawkes process
The Transformer is a deep learning architecture for sequence

processing such as natural language processing, with a multi-
head self-attention module that captures long-range dependencies
within sequences (Vaswani et al., 2017). The Transformer is used
not only in language models but also in computer vision, audio
processing, and time series forecasting (Lim et al., 2021; Wen
et al., 2022; Ma et al., 2023). Recently, the Transformer architecture
has also been applied to modeling temporal point processes. The
Transformer Hawkes Process (Zuo et al., 2020) and the Self-
Attentive Hawkes Process (Zhang et al., 2020) were introduced
to model the Hawkes process with a self-attention mechanism to
capture the long-range correlations underlying both event times
and types.

THP and SAHP differ in two aspects: their use of positional
encoding and the form of the intensity function. SAHP employs
time-shifted positional encoding to address the limitations of
conventional methods, which solely account for the sequence
order and neglect inter-event times. The intensity function of
the THP model is the softplus function of the weighted sum of
three terms: ratio of elapsed time from the previous event, hidden
representation vector from the encoder, and base. Conversely, the
intensity function of the SAHP model is formulated as a softplus
of the Hawkes process terms, each of which is derived from the
scalar transformation and nonlinear activation function applied to
the hidden representation vector from the encoder.

For both the THP and SAHP models, across synthetic and
real-world datasets, their performances in event type prediction
and event time prediction surpassed that of the baseline model:
Hawkes Process as described in Equation (3), Fully Neural Network
model (Omi et al., 2019), Log-normal Mixture model (Shchur et al.,
2019), Time Series Event Sequence (TSES) (Xiao et al., 2017),
Recurrent Marked Temporal Point Processes (Du et al., 2016), and
Continuous Time LSTM (Mei and Eisner, 2017). Given the superior
performance of THP over the remaining baselinemodels, this study
refrains from direct performance comparison with the SAHP and
baseline models (Zuo et al., 2020), opting to concentrate exclusively
on performance comparison with the THP model.

2.2 Temporal heterogeneity

Temporal heterogeneity or burst is characterized by various
metrics. The most fundamental quantity is the probability density
function of the inter-event times. The inter-event time is defined
as the time interval between two consecutive events, that is, τi ≡
ti+1 − ti, where ti is i-th event time of the event sequence.

When the inter-event time distribution is heavy-tailed, the
corresponding event sequence exhibits temporal heterogeneity.
Specifically, the power-law inter-event distribution found in diverse
natural and social phenomena is as follows:

P(τ ) ∼ τ−α , (7)

where a is a constant and α is a power-law exponent.
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2.2.1 Burstiness parameter
Several metrics characterize the properties of temporal

heterogeneity. Burstiness B measures the burst phenomenon (Goh
and Barabási, 2008), and is defined as follows:

B ≡
r − 1

r + 1
=

σ − 〈τ 〉

σ + 〈τ 〉
, (8)

where r ≡ σ/〈τ 〉 is the coefficient of variation (CV) of the inter-
event time and σ and 〈τ 〉 is the standard deviation and average of
τ s, respectively. Here, B = −1 for regular event sequences, B = 0
for Poissonian random cases, and B = 1 for extremely bursty cases.

When the number of events is sufficiently small, the
burstiness parameter causes errors. The fixed burstiness parameter
considering the finite-size effect is as follows (Kim and Jo, 2016):

Bn ≡

√
n+ 1r −

√
n− 1

(
√
n+ 1− 2)r +

√
n− 1

. (9)

We employed the fixed burstiness parameter (9) to handle
short-length event sequences throughout this study.

2.2.2 Memory coe�cient
The memory coefficient M quantifies the correlations between

consecutive inter-event times within a sequence consisting of n
inter-event times, that is, {τi}i=1,...,n, as follows (Goh and Barabási,
2008):

M ≡
1

n− 1

n−1
∑

i=1

(

τi − 〈τ 〉1
)(

τi+1 − 〈τ 〉2
)

σ1σ2
, (10)

where 〈τ 〉1 (〈τ 〉2) and σ1 (σ2) are the average and standard
deviation of the inter-event times τ1, τ2, ..., τn−1 (τ2, τ3, ..., τn),
respectively. This is the Pearson correlation coefficient between
consecutive inter-event times. Here, M = 0 indicates no
correlation, and M > 0 indicates a positive correlation, which
means that a large inter-event time follows after a large inter-event
time and vice versa for small inter-event time. M < 0 indicates
a negative correlation, which means small inter-event time follows
after the large inter-event time and vice versa for a large inter-event
time.

2.2.3 Applications of B and M to BMT model
When plottingM on the x-axis and B on the y-axis for datasets

with various inter-event time distributions, it can be observed that
event sequences with similar inter-event time distributions tend to
cluster at similar positions (Goh and Barabási, 2008). Essentially, if
the ranges of B and M values are known, a rough estimate of the
inter-event time distribution can be anticipated. Building on this
insight, we devised a BMTmodel to facilitate learning by designing
a method in which the values of B and M were combined and fed
into the encoder as inputs. Specifically, when the values of B andM
exhibit temporal heterogeneity in their ranges, the encoder of the
Transformer can produce inter-event time prediction values with a
heavy-tailed inter-event time distribution.

Moreover, B and M are not independent: they are intertwined
and move in conjunction. For instance, even when attempting to

alter only M by shuffling the inter-event times, B can also change.
This serves as evidence that embedding both B andM concurrently
yields superior performance compared with embedding either one
of them individually.

2.3 Copula-based algorithm for generating
sequence of inter-event times

To comprehend the impact of burstiness and memory
coefficient on the model, we generated synthetic datasets using
a copula-based algorithm (Jo et al., 2019). The content of the
copula-based algorithm in this study was obtained from Jo et al.
(2019). For convenience, we provide a brief overview of the
relevant content. The copula-based algorithm models the joint
probability distribution of two consecutive inter-event times, that
is, P(τi, τi+1), by adopting the Farlie-Gumbel-Morgenstern (FGM)
copula (Nelsen, 2006). The joint probability distribution according
to the FGM copula is formulated as follows:

P(τi, τi+1) = P(τi)P(τi+1)[1+ rf (τi)f (τi+1)], (11)

where

f (τ ) ≡ 2F(τ )− 1, F(τ ) ≡

∫ τ

0
dτ ′P(τ ′). (12)

Parameter r is used to control the correlation between τi

and τi+1 and is in the range of −1 ≤ r ≤ 1. F(τ ) is the
cumulative distribution function (CDF) of P(τ ). After applying
the transformation method (Clauset and Shalizi, 2009), the next
inter-event time τi+1 can be obtained as Jo et al. (2019)

τi+1 = F−1

[

ci − 1+
√

(ci + 1)2 − 4cix

2ci

]

, (13)

where F−1 is the inverse of F(τ ), ci ≡ rf (τi), and x is a random
number sampled from a uniform distribution within interval 0 ≤

x < 1. The copula-based algorithm has the advantage of generating
event sequences with independent control of the inter-event time
distribution and memory coefficient.

3 Burst and Memory-aware
Transformer

3.1 Discretization of B and M

Given that the burstiness parameter and memory coefficient
are real numbers within the range of [−1, 1], it is necessary
to discretize them for embedding within the Transformer. We
adopt the uniform discretization transform; the range [−1, 1] is
divided into segments of fixed length by the number of bins b,
respectively, and subsequently mapped to a single natural number.
The continuous values of the burstiness parameter B and memory
coefficient M are discretized into natural numbers dB and dM ,
respectively. For example, when the number of bins is b = 4, then
dB = 3 if M = 0.2, and it dB = 1 if M = −0.7. Then, one can
obtain the discretized pairs of B and M as (dB, dM), where dB and
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dM are ranging from 1 to b. To map the pair into a unique natural
number, the Cantor pairing function was employed. The Cantor
pairing function maps discretized dB and dM into a unique natural
number dB,M as

dB,M ≡
1

2
(dB + dM)(dB + dM + 1)+ dM . (14)

When the number of discretization bins is b, the number of
dB,M is b2, corresponding to the vocabulary size of the Transformer.
Then, we can obtain the one-hot vector of the discretized B &M as
dB,M ∈ R

b2 .

3.2 Embedding event times, and B and M

The event sequence S = {ti}
n
i=1 of n events and discretized

and one-hot B & M, dB,M are fed into the self-attention module
after proper encoding. First, the event times are transformed using
the positional encoding method (Vaswani et al., 2017) to embed
the temporal order information into an event sequence. The j-th
element of sinusoidal positional encoding for the i-th event time ti
is calculated as:

[zt(ti)]j =

{

sin(ωkti), if j = 2k

cos(ωkti), if j = 2k+ 1,
(15)

where ωk = 1/10, 0002k/d, the embedding index k is the quotient
when dividing j by 2, and zt(ti) ∈ R

d, where d is the encoding
dimension. By multiplying ωk with the event time ti, it is converted
into an angle, which is then mapped to sine and cosine functions,
providing different positional information for each event time.

For the given event times {ti}
n
i=1, the inter-event times are

τi ≡ ti+1 − ti for i = 1, ..., n − 1. The burstiness parameter
(9) and memory coefficient (10) were calculated for all partial
sequences. This essentially implies that the input to the encoder is
fed sequentially from t1, ..., ti,..., tn, and for each of these instances,
the B & M embedding incorporates the calculated B and M values
up to t1 (i.e., B1 and M1), ..., up to ti (i.e., Bi and Mi), ..., and up
to tn (Bn = B and Mn = M for the entire sequence). Note that,
during the actual operation of the Transformer, computations are
performed in parallel; thus, the sliding B & M embedding vectors
form a lower triangular matrix.

The B &M embedding vector ze(Bi,Mi) for the one-hot vector
of the discretized Bi and Mi, dBi ,Mi , is calculated using a linear
embedding layer as follows:

ze(Bi,Mi) = WEdBi ,Mi , (16)

whereWE ∈ R
d×b2 denotes an embeddingmatrix. Then for the i-th

event, the event time embedding vector zt(ti) ∈ R
d and the B &M

embedding vector ze(Bi,Mi) ∈ R
d are summed together to acquire

the hidden representation of the i-th event zi ∈ R
d as:

zi = zt(ti)+ ze(Bi,Mi). (17)

Then the embedding matrix for a whole single event sequence
is given by:

Z = [zi]i=1,...,n, (18)

where Z ∈ R
n×d and n is the length of the event sequence, that is,

the number of events in a single sequence.

3.3 Self-attention module

After acquiring the embedding matrix Z for each event
sequence according to Equation (18), we propagated Z into the
input of the self-attention module. The resulting attention output
S is defined as follows:

S = Softmax

(

QK⊤

√
dK

)

V, (19)

where Q = ZWQ, K = ZWK, V = ZWV, and S ∈ R
n×dV .

Here, Q, K, and V represent the query, key, and value matrices,
respectively, obtained by applying distinct transformations to Z.
The transformation parameters are WQ ∈ R

d×dK ,WK ∈ R
d×dK ,

and WV ∈ R
d×dV , respectively. In contrast to conventional

RNN models, the self-attention mechanism enables an equitable
comparison of not only recent values but also the significance of
distant past values of the sequence. Consequently, this facilitates
the learning of long-term dependencies.

The BMTmodel employs multi-head attention, similar to other
Transformers. Multi-head attention enables the model to manage
diverse patterns and contexts of the input sequence. The multi-
head attention output S is given by S = [S1, ..., Si, ..., Sm]WO, where
Si ∈ R

n×dV/m is the attention output for the i-th multi-head and
WO ∈ R

m·dV×d is aggregation parameters.
After the multi-head attention, the resulting attention output S

is subsequently passed into a position-wise feed-forward network,
yielding hidden representations h(t) for the event sequence as:

H = ReLU(SWFC1 + b1)WFC2 + b2, (20)

whereWFC1 ∈ R
d×dH ,WFC2 ∈ R

dH×d, b1 ∈ R
dH , and b2 ∈ R

d are
the parameters of each neural network. The i-th event of the event
sequence corresponds to the i-th row of the hidden representation
matrixH, that is, h(ti) = H(i, :). Furthermore, masks are employed
to prevent the model from learning about the future in advance.
The hidden representation H ∈ R

n×d encapsulates insights
regarding burstiness and memory coefficient for each event within
the sequence, acquired through the self-attention mechanism. We
further enhanced the incorporation of sequential information by
applying LSTM to the hidden representation.

3.4 Training and loss function

The BMT model employs five types of loss functions: (1)
squared error of the event time, (2) event log-likelihood loss as
described in Equation (22), (3) cross entropy of discretized B &M,
(4) squared error of B, and (5) squared error ofM.

3.4.1 Event time loss
The most crucial loss function within the model is how

accurately it predicts the next event times. The next event time
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prediction is t̂i+1 = Wth(ti), where Wt ∈ R
1×d is the parameter

of the event time predictor. To address this, the squared error loss
function of the event times for the event sequence is defined as:

Lt =

n
∑

i=2

(ti − t̂i)
2, (21)

where t̂i is the predicted event time.

3.4.2 Event log-likelihood
The typical approach for optimizing the parameters of the

Hawkes process involves utilizingMaximumLikelihood Estimation
(MLE). There are two constraints: (1) no events before time 0,
and (2) unobserved event time must appear after the observed
time interval. When the observed event sequences are t1, ..., tn ∈

[0,T), then likelihood of an event sequence is given by L′ =

P(t1) · · ·P(tn−1)(1−F(T)), where F(·) is the cumulative distribution
function, and the last term is for the second constraint. Using
(1) and (2), and applying the logarithm function, we obtain the
following log-likelihood:

Lλ =

n
∑

i=1

log λ(ti)−

∫ T

0
λ(t′)dt′. (22)

The first term denotes the sum of the log-intensity functions
for the past n events, and the second term represents the non-event
log-likelihood.

Here, the intensity function λ(t) is defined in the interval t ∈

[ti, ti+1] according to the following expression:

λ(t) = β log
(

1+ exp(w⊤
λ h(ti)β

−1)
)

, (23)

where β is the softness parameter, wλ ∈ R
d×1 is a parameter that

converts the term inside the exponential function into a scalar,
and h is the hidden representation derived from the encoder. The
essence of this intensity function aligns with that of the Neural
Hawkes Process, as shown in Equation (6). The softplus function
formulation was employed to guarantee non-negativity of the
intensity.

3.4.3 Discretized B and M loss
The model predicts the discretized B̂i & M̂i, d̂Bi ,Mi , based on the

hidden representations h(ti−1) as:

p̂i = Softmax(WB,Mh(ti−1)), (24)

d̂Bi ,Mi = argmax
d′

p̂i(d
′), (25)

where WB,M ∈ R
b2×d is the parameter of the discretized Bi &

Mi predictor, and p̂i(d′) is the d′-th element of p̂i. To measure
the accuracy of Bi & Mi embedding, the following cross-entropy
between the ground truth discretized Bi & Mi, dBi ,Mi , and the
predicted discretized B̂i & M̂i, d̂Bi ,Mi , is calculated:

LB,M = −

n
∑

i=2

d⊤Bi ,Mi
log (p̂i), (26)

where dBi ,Mi ∈ R
b2 is the ground truth one-hot encoding vector.

3.4.4 B loss and M loss
Additionally, the model utilizes the squared errors of the

burstiness parameter directly as:

LB =

n
∑

i=2

(Bi − B̂i)
2, (27)

where Bi and B̂i are the ground truth and predicted burstiness
parameters, respectively. The squared errors of the memory
coefficient value can be defined in a similar manner.

LM =

n
∑

i=2

(Mi − M̂i)
2, (28)

whereMi and M̂i is ground truth and predictedmemory coefficient,
respectively.

3.4.5 Overall loss
By aggregating the aforementioned loss functions (21), (22),

and (26)–(28), the overall loss function of the model is defined as
follows:

L = Lt + α1Lλ + α2LB,M + α3LB + α4LM , (29)

where α1 to α4 are the hyperparameters that balance each loss
function determined using the validation datasets. The overall
framework of the BMT model is illustrated in Figure 3.

4 Experiments

4.1 Synthetic datasets

We generated synthetic data using the copula-based algorithm
for two different inter-event time distributions. The model
was tested for the exponential and power-law inter-event time
distribution, which also have a different range of memory
coefficient and burstiness, to directly understand the impact of
temporal heterogeneity on the BMT model and other models.
Along with the two synthetic datasets below, we tested the regular
event sequences generated by the self-correcting process, as in
Equation (5). The statistics of the datasets are displayed in Table 1.

4.1.1 Power-law inter-event time distribution
The power-law inter-event time distribution with a power-law

exponent α is defined as P(τ ) = (α − 1)τ−αθ(τ − 1) and the
corresponding cumulative distribution function is F(τ ) = (1 −

τ 1−α)θ(τ − 1), where θ(·) represents the Heaviside step function
with a lower bound of 1. After substituting the inter-event time
distribution into Equation (13), we obtain the next inter-event time
τi+1 from a given previous inter-event time τi and random number
x in 0 ≤ x < 1 as

τi+1 =

[

2ci

ci + 1−
√

(ci + 1)2 − 4cix

]1/(α−1)

, (30)

where ci =
(2α−3)2

(α−1)(α−3)M(1− 2τ 1−α
i ) (Jo et al., 2019).
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A total of 1,000 sequences with a power-law inter-event time
distribution were generated with different parameters according to
Equation (30). The power-law exponent α, memory coefficient M,
and the number of events for each event sequence are randomly
and independently drawn from 2.1 ≤ α ≤ 2.9, −1/3 ≤ M ≤ 1/3,
and 50 ≤ n ≤ 500, respectively. The initial inter-event time
was randomly drawn from 1 to 2. Depending on the power-law
exponent andmemory coefficient, the burstiness ranged from 0.297
to 0.962.

As depicted in Figure 4, the power-law inter-event time
datasets exhibit pronounced dispersion toward the region of

FIGURE 3

Architecture of the Burst and Memory-aware Transformer model.

IET; inter-event time; FF, feed-forward neural network; B, burstiness;

M, memory coe�cient.

larger burstiness and memory coefficients (B and M scatter
plots). Moreover, these datasets show a power-law inter-event time
distribution with exponent values α = 2.4 close to the average
within the range of exponents 2.1 < α < 2.9.

4.1.2 Exponential inter-event time distribution
The exponential inter-event time distribution with mean µ is

defined as P(τ ) = µ−1e−τ/µ and the corresponding cumulative
distribution function is F(τ ) = 1 − e−τ/µ and the relationship
between the parameter and memory coefficient is r = 4M. After
substituting the inter-event time distribution into Equation (13),
we obtain the next inter-event time τi+1 from a given previous
inter-event time τi and random number x in 0 ≤ x < 1 as follows:

τi+1 = µ ln

[

2ci

ci + 1−
√

(ci + 1)2 − 4cix

]

, (31)

where ci = 4M(1− 2e−τi/µ) (Jo et al., 2019).
A total of 1,000 sequences with an exponential inter-event time

distribution were generated using different parameters, according
to Equation (31). The mean inter-event time µ, memory coefficient
M, and the number of events n for each event sequence were
randomly and independently drawn from 1 ≤ µ ≤ 100, −1/3 ≤

M ≤ 1/3, and 50 ≤ n ≤ 500, respectively. The initial inter-event
time was set to µ for each event sequence.

As illustrated in Figure 4, the B and M scatter plots of
the exponential inter-event time datasets show that B values
are concentrated in the lower range, whereas M values exhibit
a broader distribution spread both above and below. This
contrasts with the self-correcting process datasets, where the B

and M scatter plots show that both B and M clustered at ∼0.
Although both datasets have an exponential inter-event time
distribution, their heterogeneity differs owing to variations in the
relationship between B and M. Even with an exponential inter-
event time distribution, appropriately shuffling inter-event times
can generate event sequences with temporal heterogeneity (i.e.,
burst) characteristics. We examine this difference further later, as
it plays a role in generating variations in performance.

4.2 Real-world datasets

We adopted four real-world datasets to evaluate the models:
the Retweets, StackOverflow, Financial Transaction, and 911 Calls

TABLE 1 Datasets statistics.

Datasets Power-law Exponential Self-correcting Retweets StackOverflow Financial 911 Calls

IET Mean 3.4645 57.495 0.20015 2,840.8 0.58677 1.5853 338.14

S.D. 2.9372 32.938 0.00193 2,157.8 0.16667 5.6152 249.20

B Mean 0.176 −0.008 −0.048 0.754 0.052 0.522 0.100

S.D. 0.335 0.068 0.028 0.137 0.083 0.069 0.100

M Mean −0.021 −0.059 −0.084 0.442 0.031 0.155 0.009

S.D. 0.195 0.200 0.058 0.274 0.119 0.078 0.158

IET, inter-event time; B, burstiness; M, memory coefficient; S.D., standard deviation.
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FIGURE 4

Relationship between burstiness and memory coe�cient (left) and inter-event time distribution (right) across three synthetic datasets: (A, B)

power-law inter-event time, (C, D) exponential inter-event time, and (E, F) self-correcting process. For calculating the inter-event time distribution,

logarithmic binning was employed.

datasets. The Retweets dataset (Zhao et al., 2015) contains
sequences of tweets and follow-up tweets. The original datasets
contained three categories, based on the number of followers. The
StackOverflow dataset (Leskovec and Krevl, 2014) contains each
user’s reward history, that is, the timestamp of users receiving
the badge and the type of the badge. The Financial Transaction
dataset (Du et al., 2016) includes raw order book records from
the New York Stock Exchange (NYSE) for a stock in one day,
with a millisecond-level time granularity. The events correspond
to two types of actions: buy and sell orders. The 911 Calls

datasets1 contains emergency phone call records for Montgomery
County, PA. This dataset contains information such as calling times
and location, and we conducted aggregation based on location,
utilizing zip codes as identifiers. The dataset covers a five-year
period, which is a relatively extensive time frame for prediction
purposes. Therefore, we partitioned the data intomonthly intervals.
Additionally, to ensure statistical significance, we included only

1 The dataset is available on https://www.kaggle.com/datasets/mchirico/

montcoalert/.
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those locations where the number of events exceeded 50 in the
data.

Although there are other commonly used datasets, the
burst and memory-aware characteristics assumed by the BMT
model are applicable when the sequence length is sufficiently
long. Furthermore, we sampled event sequences in quantities
comparable to synthetic data while concurrently excluding
sequences with short lengths. The time units for each dataset are as
follows: Retweet and StackOverflow datasets are in days, Financial
Transaction datasets are in milliseconds, and 911 Calls datasets are
in minutes. The statistics of the datasets are displayed in Table 1.

As shown in Figure 5, when comparing the Retweets datasets
(or Financial Transaction datasets) to the StackOverflow datasets
(or 911 Calls datasets), it is evident that the Retweets datasets and
Financial Transaction datasets are more temporally heterogeneous.
In the B and M scatter plots, the Retweets datasets (or
Financial Transaction datasets) are concentrated in regions with
larger values for both B and M, whereas the StackOverflow
datasets (or 911 Calls datasets) are centered around values
near 0 for both B and M. However, when compared to
the self-correcting process datasets, the StackOverflow (or 911
Calls datasets) datasets exhibit greater dispersion. Additionally,
the inter-event time distribution reveals that the Retweets
datasets and Financial Transaction datasets follow a power-law
distribution (exponent of 1.36 and 1.70, respectively), whereas
the StackOverflow datasets and 911 Calls datasets follow an
exponential distribution.

4.3 Impact of B and M embedding and
losses

While altering the combination of loss functions during the
experimental process, there were five control groups.

1. BMT-NoE&NoL (BMT without B &M embedding and without
corresponding losses). The simplest scenario occurs when α2 =

α3 = α4 = 0, utilizing only time and event losses. In this case,
only event time and intensity were considered.

2. BMT-NoE&L (BMT without embedding for B & M, but with
losses for either B orM). To incorporate the effects of the B&M

losses, we also consider the case of α2 = 0,α3 > 0, and α4 > 0
with time and event losses. Note that the case for α2 > 0 relates
to predicting the discretized on-hot B & M, and hence it is not
applicable in this scenario.

3. BMT-E&NoL (BMT without losses related to B & M, but with
embedding for B &M). The control group examines the impact
of loss for B & M; the representation vector remains consistent
with the BMT model, as shown in Equation (18), but without
LB,M , LB, and LM , that is, α2 = α3 = α4 = 0.

4. BMT-B (BMT with B embedding only and the corresponding
loss). In the case where only B is embedded and the model
is trained, the loss is also computed exclusively based on B as
α2 = 0,α3 > 0, and α4 = 0 with time and event losses.

5. BMT-M (BMT with M embedding only and corresponding
loss). In the case where only M is embedded and the model
is trained, the loss is also computed exclusively based on M as
α2 = α3 = 0, and α4 > 0 with time and event losses.

5 Results and discussion

We tested several hyperparameters for both the BMT and THP
models and chose the configuration that yielded the best validation
performance. The hyperparameters are as follows: the number of
bins for discretization (b) is set to 40, mini-batch size is 16, dropout
rate is 0.1, embedding dimensions (d and dH) are both 128, self-
attention dimensions (dK and dV ) are 32, with eight layers in
the encoder and 8 heads. For the loss function, hyperparameters
were fine-tuned, mainly as follows: α1 = 1e3,α2 = 4e3,α3 =

α4 = 1e4. We employed the ADAM (adaptive moment estimation)
optimizer with hyperparameters β set to (0.9, 0.999). Regarding
the learning rate, we utilized PyTorch StepLR, initializing it at
1e-4 and reducing the learning rate by a factor of 0.9 every
15 steps.

The performance evaluation results for different models across
diverse datasets are presented in Table 2. The results indicate that
BMT achieves superior performance compared to THP and other
control models in terms of the root mean squared error (RMSE)
of the event times and log-likelihood. The main metric, RMSE,
is a unit-adjusted value obtained by taking the square root of
Equation (21). It measures how much predicted event times of
the model differ from the actual event times. However, RMSE has
a drawback, especially in the case of heterogeneous data, where
it can perform well by accurately predicting large values while
potentially struggling with smaller ones. To address this limitation,
we introduce the event log-likelihood, defined in Equation (22),
as a second metric. This metric arises when probabilistically
modeling event sequences using the intensity function λ derived
from Equation (1). A higher likelihood of the intensity function
calculated with predicted event times of the model indicates that
the model better probabilistically mimics the actual event sequence.
Consequently, larger values of this metric correspond to better
performance. Additionally, when considering the B and M losses
in Equation (26), they represent how well the model captures
discretized burstiness and discretized memory coefficients. Smaller
values of these losses indicate better performance in replicating
these aspects.

In particular, as the data became more heterogeneous,
performance improvement became more pronounced. In synthetic
datasets, the performance enhancement of the BMT model was
greater for power-law inter-event time data than for self-correcting
data, which is a less heterogeneous exponential inter-event time
distribution (see Figure 4). Similarly, in real-world datasets, the
overall performance of the BMT model was superior in the
Retweets dataset, which exhibited a more power-law inter-event
time distribution, compared to the StackOverflow datasets with a
less heterogeneous exponential inter-event time distribution (see
Figure 5).

When compared to the BMT-NoE&L model with respect to
the RMSE of the event times, the BMT model shows that superior
performance across all datasets except StackOverflow. This suggests
that the inclusion of B & M embedding processes aids in
augmenting the performance of the model by enabling the encoder
to grasp the burst structure of event sequences. Compared with
the BMT-E&NoL model, the BMT model demonstrates enhanced
performance across all datasets, indicating that the integration of
B & M losses into the overall loss function contributes to the
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FIGURE 5

Relationship between burstiness and memory coe�cient (left) and inter-event time distribution (right) for four real-world datasets: (A, B) Retweets,

(C, D) StackOverflow, (E, F) Financial Transaction, and (G, H) 911 Calls. For calculating the inter-event time distribution, logarithmic binning was

employed.
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TABLE 2 Performance evaluation results across diverse datasets for

di�erent models.

Dataset Model RMSEof
time

LL CE of
BM

Power- law THP 238.0 −2.303 N/A

BMT-NoE&NoL 66.6 −2.451 N/A

BMT-NoE&L 68.2 −2.493 N/A

BMT-E&NoL 82.0 −2.348 12.46

BMT-B 107.6 −2.712 N/A

BMT-M 52.3 −2.730 N/A

BMT 40.5 −2.302 8.05

Exponential THP 1,973.7 −19.910 N/A

BMT-NoE&NoL 158.7 −6.486 N/A

BMT-NoE&L 208.8 −15.640 N/A

BMT-E&NoL 102.2 −5.633 12.70

BMT-B 106.1 −7.201 N/A

BMT-M 140.8 −9.912 N/A

BMT 80.1 −5.171 5.77

Self-correcting THP 0.184 0.200 N/A

BMT-NoE&NoL 0.192 −0.281 N/A

BMT-NoE&L 0.185 0.329 N/A

BMT-E&NoL 0.183 0.592 7.30

BMT-B 0.198 −0.425 N/A

BMT-M 0.209 −0.456 N/A

BMT 0.181 0.605 5.43

Retweets THP 36,080.8 −9.01 N/A

BMT-NoE&NoL 16,360.8 −111.13 N/A

BMT-NoE&L 16,362.9 −110.95 N/A

BMT-E&NoL 16,257.7 −8.14 28.92

BMT-B 16,090.8 −16.21 N/A

BMT-M 16,266.5 −11.19 N/A

BMT 15,825.8 −11.28 2.70

Stack Overflow THP 127.0 −0.373 N/A

BMT-NoE&NoL 0.658 −0.266 N/A

BMT-NoE&L 0.643 −0.277 N/A

BMT-E&NoL 0.726 −0.339 17.81

BMT-B 0.858 −0.718 N/A

BMT-M 3.969 −0.505 N/A

BMT 0.663 −0.358 6.38

Financial THP 38.13 −1.826 N/A

BMT-NoE&NoL 44.26 −11.843 N/A

BMT-NoE&L 62.72 −11.759 N/A

BMT-E&NoL 38.39 −2.104 7.39

BMT-B 37.93 −1.848 N/A

BMT-M 77.58 −1.796 N/A

(Continued)

TABLE 2 (Continued)

Dataset Model RMSEof
time

LL CE of
BM

BMT 37.92 −1.775 4.41

911 Calls THP 6,183.4 −7.190 N/A

BMT-NoE&NoL 358.3 −17.662 N/A

BMT-NoE&L 469.3 −41.818 N/A

BMT-E&NoL 342.4 −6.608 28.49

BMT-B 353.4 −6.832 N/A

BMT-M 364.8 −6.835 N/A

BMT 339.6 −6.883 8.56

RMSE, root mean squared error; LL, log-likelihood; CE, cross entropy; B, burstiness;

M, memory coefficient. The bold value indicates the metric of the model with the best

performance for each individual dataset.

improved performance of the model. Even in the prediction of
one-hot discretized B & M, it can be observed that including
B & M losses contributes to a reduction in cross entropy. No
significant differences in performance were observed between the
BMT-NoE&NoL and BMT-NoE&L models. This suggests that the
incorporation of B &M losses is less significant in the absence of B
&M embedding.

Summarizing the aforementioned findings, it is evident that
both B & M embedding and B & M losses contribute to
performance enhancement. Excluding either of these components
would likely impede the attainment of a substantial performance
improvement, comparable to that observed with the BMTmodel. If
either of the B embedding orM embedding is omitted, a significant
performance improvement comparable to that of the BMT model
cannot be expected. This was substantiated by comparing the
BMT model with the BMT-B and BMT-M models, which revealed
the superior performance of the BMT model across all datasets.
These results can also be observed in the training curves shown in
Figure 6.

We also conducted experiments on mixed synthetic datasets,
the results of which are presented in Table 3. The mixed synthetic
datasets comprised a combination of three individual datasets:
power-law, exponential, and self-correcting datasets. However,
when separately examining the RMSE of event time and log-
likelihood, the performance of the original BMT model appeared
slightly inferior compared to some of the control BMT models,
demonstrating an overall superior performance when considering
both metrics together.

In summary, the BMT model demonstrates improved
performance on heterogeneous data owing to its capability to
capture heterogeneous characteristics through the embedding of B
&M, combined with the inclusion of corresponding loss functions.

The BMT model has two limitations. First, in cases where
the event sequence length is short, the incorporation of B and
M into the BMT model may result in reduced effectiveness.
This aspect originates from the statistical characteristics of B

and M, because their meaningful representation is hindered by
fluctuations and noise, particularly when the number of events
is small. In the BMT model, during the calculation of sliding
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FIGURE 6

Training curves of RMSE for event times fitted on Financial Transaction datasets are presented for various BMT model scenarios: BMT-NoE&NoL,

BMT-NoE&L, BMT-E&NoL, BMT-B, BMT-M, and the standard BMT model.

TABLE 3 Performance evaluation results for the mixed synthetic datasets:

power-law, exponential, and self-correcting datasets.

Model RMSEof time LL CE of BM

THP 1,338.65 −14.190 N/A

BMT-NoE&NoL 261.20 −9.015 N/A

BMT-NoE&L 64.19 −8.228 N/A

BMT-E&NoL 77.14 −4.414 12.593

BMT-B 64.74 −7.439 N/A

BMT-M 71.31 −10.476 N/A

BMT 66.98 −4.748 6.269

The bold value indicates themetric of themodel with the best performance for each individual

dataset.

B and M values, masking was applied to exclude the first
three events. However, considering that temporal heterogeneity
becomes a meaningful characteristic only when the length of the
event sequence is sufficiently long, this limitation can be viewed
as unavoidable.

The second limitation is the inability to consider event
types, which will be addressed in future studies. To account for
event types, it is necessary to reflect the correlation structure
between inter-event times and event types to generate synthetic
data and subsequently test the model using these data. In
the context of performance enhancement, the improvement of
the BMT model over the THP model can also be attributed
to the fact that the BMT model does not embed event
types. This allows the model to focus more on predicting the
event times. Because the BMT-NoE&NoL model is analogous
to a version of the THP model that does not consider
event types, comparing the performance of the BMT-NoE&NoL
model with the BMT model would provide a more equitable
assessment. However, upon comparing the BMT-NoE&NoL model
with the BMT model, it becomes evident that the BMT
model exhibits superior performance across all datasets, except
for StackOverflow.

6 Conclusion

Our study addresses the challenges presented by bursty
temporal patterns in event sequences across various domains.
By leveraging recent advancements in predicting event sequences
using Transformer models based on the Hawkes process with self-
attention mechanisms, we introduced a Burst and Memory-aware
Transformer (BMT) model. This model effectively captures the
nuances of burst patterns by embedding burstiness and memory
coefficient within its self-attention module. The incorporation of
a specialized loss function tailored for burstiness and memory
coefficient further refines the model’s predictive capabilities.

Through comprehensive numerical experiments conducted on
a diverse array of synthetic and real-world datasets encompassing
various scenarios, we validated the outstanding performance
of the BMT model by comparing it with the existing models
and control groups. This is particularly evident in scenarios
involving heterogeneous data, such as power-law inter-event
time distributions. Hence, the explicit consideration of burst-
related parameters within the Transformer contributes to a deeper
comprehension of complex event sequences, ultimately leading to
an enhanced predictive performance. In future work, we will focus
on integrating a multitude of insights from complex systems into
the development of deep neural network models for temporal data.
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Introduction:Formation of hydroxyapatite in bone, dentin, and enamel occurs at

restricted molecular sites of specific extracellular matrix proteins and is controlled

by multiple mineralization inhibitors. However, the role of physicochemical

factors, such as the availability of required ions and the saturation status of the

aqueous environment in biological mineralization, is not fully understood. The

goal of this study was to use mathematical modeling to describe the complex

physicochemical environment permissive to the precipitation of biological

hydroxyapatite.

Methods: We simulated the processes occurring in the bone interstitial fluid

(ISF) defined as an aqueous environment containing seven chemical components

(calcium, phosphate, carbonate, sodium, potassium, magnesium, and chloride)

that form 30 chemical species. We simulated reversible equilibrium reactions

among these chemical species, and calculated supersaturation for hydroxyapatite

and its precipitation rate using kinetic theory.

Results and Discussion: The simulated ISF was of correct ionic strength and

predicted the equilibrium component concentrations that were consistent with

the experimental findings. Supersaturation of physiological ISF was ∼15, which is

consistent with prior findings that mineralization inhibitors are required to prevent

spontaneous mineral precipitation. Only total calcium, total phosphate and to

a lesser degree total carbonate a�ected ion availability, solution supersaturation

and hydroxyapatite precipitation rate. Both calcium and phosphate levels directly

a�ected hydroxyapatite precipitation, and phosphate was a�ected by pH, which

additionally influenced hydroxyapatite precipitation. Integrating mathematical

models capturing the physiochemical and biological factors regulating bone

mineralization will allow in silico studies of complex clinical scenarios associated

with alterations in ISF ion composition, such as rickets, hypophosphatemia, and

chronic kidney disease.

KEYWORDS

bone, mineralization, mathematical modeling, physiochemistry, hydroxyapatite

1 Introduction

Bone is a biological composite material including three different phases, a mineral
phase, an organic phase, and water [1]. The mature bone mineral phase is made up of
nanosized crystalline hydroxyapatite (HAP) with chemical formula of Ca10(PO4)6(OH)2
[1]. The mineral phase of bone provides a strong structure for the mechanical resistance
for the tissue [2], and an abundant number of ions (particularly calcium and phosphate)
for whole body homeostasis [3]. The organic phase of the bone consists of almost 90% type
I collagen, 5% non-collagenous proteins (NCPs), and 2% lipids by weight [1]. Finally, the
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aqueous phase is responsible for cell and matrix nutrition,
mediating interactions between collagen fibrils and minerals, and
controlling ion flux [3]. Bone formation starts with deposition
of organic matrix by osteoblasts, which happens at a much
faster rate than bone mineralization [4]. The unmineralized bone
matrix, osteoid, is mineralized through physicochemical processes
regulated by the presence of nucleation centers that can be provided
by matrix vesicles [5] and can arise with the maturation of
extracellular matrix [6], and the concentrations of mineralization
inhibitors produced by osteoblasts or present in the circulation.
Thus, complex biological and physicochemical phenomena are
involved in regulating hydroxyapatite mineralization.

Mathematical models provide a deeper understanding of
how different components interact and influence each other in
complex environments [7]. We have previously modeled the role
of biological factors in bone mineralization [8], and have examined
a simplified model of pH regulation in bone microenvironment
[9]. Building on the concept of simulated interstitial fluid (ISF)
introduced in the previous work [9], in the current study, we
aimed to develop a mathematical model describing the complex
physicochemical environment permissive to the precipitation of
biological hydroxyapatite. The aqueous environment of ISF was
defined to contain seven commonly reported chemical components
(calcium, phosphate, carbonate, sodium, potassium, magnesium,
and chloride) that form 30 chemical species. Computing the
outcomes of reversible equilibrium reactions among these chemical
species allowed us to calculate solution supersaturation for HAP
and assess HAP precipitation rate using kinetic theory.

2 Model development and simulations

2.1 Model assumptions

In this study, we have simulated the processes occurring in
the interstitial fluid (ISF) in the bone vicinity. It is assumed
that the environment is homogenous, and ions are immediately
distributed evenly in the environment. The following assumptions
regarding the biological components of the system were made: [1]
the effects of biological factors on equilibrium reactions in ISF are
minimal; [2] the presence of biological inhibitors of mineralization
increases the precipitation threshold [10]; [3] the nucleation of
biological mineral is controlled by biological processes [11], and
physicochemical aspects are involved in crystal growth. Efforts have
been made to keep the model working with the minimum number
of components and complexity while ensuring the predictions are
reliable and close enough to the actual processes happening in
the body.

Figure 1 provides a map of the model, its different
compartments, and the flow of data in the model. A detailed
description of how the model is constructed is provided in the
following sections.

2.2 Simulated ISF

Previously, we developed the model of the ISF reactions
that focused on four components involved in pH regulation,

calcium (Ca2+), phosphate (PO3−
4 ), carbonate (CO2−

3 ), and
hydrogen(H+) [9]. However, the ionic strength of the solution
containing four components is 0.017, which is notably lower
than 0.15–0.16 reported experimentally [12]. Since ionic strength
directly affects the calculation of activity coefficients and thus
the equilibrium concentrations, to improve model precision, we
included the additional chemical components and examined how
their inclusion affected the ionic strength of the ISF (Table 1).
The resulting ISF was defined as a solution containing seven
major components: calcium (Ca2+), phosphate (PO3−

4 ), carbonate
(CO2−

3 ), sodium (Na+), chloride (Cl−), magnesium (Mg2+), and
potassium (K+) (Table 1). These components interact through
reversible reactions forming 22 different chemical species listed
here: H3PO4, H2PO

−
4 , HPO2−

4 , H2CO3(aq), HCO−
3 , CaHCO+

3 ,
CaCO3(aq), CaOH+, CaH2PO

+
4 , CaHPO4(aq), CaPO

−
4 , NaHPO

−
4 ,

NaH2PO4(aq), MgHCO+
3 , MgCO3(aq), MgOH+, MgH2PO

+
4 ,

MgHPO4(aq), MgPO−
4 , NaCl, KHPO−

4 , OH−. The equilibrium
constants for the 22 reactions were obtained from experimental
studies; where reported, we used the value at the body temperature
of 37 ◦C (Table 2). Seven equations for the principle of mass
conservation for total amounts of calcium (TCa), phosphate
(TPO4), carbonate (TCO3), magnesium (TMg), sodium (TNa),
potassium (TK), and chloride (TCl) in addition to pH value
completed the description of ISF (Table 2). The total amounts
of these components were matched to those reported in human
plasma [12](Table 1). The ISF is an ionic solution which requires
the inclusion of activity coefficients in calculating its equilibrium
concentrations. Ionic strength of a solution is defined as:

I =
1

2

n
∑

i=1

ci.zi
2 (1)

where ci is the molar concentration of ion i, zi is its valence, and n is
the number of different ions in the solution. The activity coefficients
were calculated as follows:

log γi = −Az2i





√
I

(

1+
√
I
) − 0.3I



 (2)

γi is the activity coefficient of ion i, which depends on ionic
strength I of the solution, ion valence zi, and temperature and the
dielectric constant of the solvent expressed in parameter A. This
parameter was previously approximated [23] for a solution with
water as the solvent as:

A = 0.486 + 6.07× 10−4TC + 6.43× 10−6T2
C (3)

where TC is temperature in Celsius (37 ◦C in this study). Equation
2 is only valid for I ≤ 0.5M [18], which is applicable in this case
(Table 1). Finally, equilibrium concentrations are calculated as:

Qi = ci.γi (4)

where Qi, the corrected concentration is a product of nominal
concentration ci of each ion and its activity coefficient γi.

For the calculation of the equilibrium concentrations a system
of non-linear equation had to be formed and solved. Using
the reaction rate law and equilibrium constants for the 22
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FIGURE 1

Schematic representation of the model and its di�erent compartments and their functions. Arrows show the flow of data between compartments.

reactions (Table 2), one equation from pH definition, in addition
of 7 equations derived from mass conservation law for total
concentration of calcium (TCa), phosphate (TPO4), carbonate
(TCO3), magnesium (TMg), sodium (TNa), potassium (TK),
and chloride (TCl), a system of 30 equations was formed.
Using the definition of equilibrium constants, the system was
later simplified to a system of 7 non-linear equations with 7
variables (the components in Table 1). The system of equation
was solved for these 7 variables and the rest of chemical species
were later calculated by reversing the simplifying step using
equilibrium constants.

2.3 Saturation

The simulated ISF includes the possibility of mineral formation.
Physicochemically speaking, mineral formation requires the
solution to be at a supersaturated state, meaning that there must
be more solute available than the amount that can be dissolved
in the solvent at a defined physical condition (temperature and
pressure). To investigate the state of saturation, the minerals of
interest must be known. Although there have been many studies
on the formation of intermediate calcium phosphate precipitates
prior to or simultaneous with the formation of hydroxyapatite

TABLE 1 Model components and their e�ect on the ionic strength of the

solution.

Solution
components

Total
concentration

Physiological
concentration

(mM)

Solution
ionic

strength

CO2−
3 TCO3 27 0.017

PO3−
4 TPO4 1.0

Ca2+ TCa 1.6

Na+ TNa 142 0.089

Cl− TCl 103 0.140

K+ TK 5 0.143

Mg2+ TMg 1 0.145

Reported are solution components in their ionic forms, nomenclature for their total

concentrations, physiological total plasma concentrations and ionic strength of the solution

following the inclusion of the specific component from top to down of the list. The reported

ionic strength of human plasma is 0.15–0.16 [12]. Systemic pH was set to 7.4.

[24], in the current model we did not take into account the
intermediate precipitates and their gradual transition into the stable
hydroxyapatite form. In this study we assumed that hydroxyapatite
with the chemical formula of Ca10 (PO4)6 (OH)2 is the only
form of mineral that could be formed. With that, to investigate
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TABLE 2 ISF Reactions and their equilibrium constants.

Reaction Equilibrium
constants

References

H2CO3(aq) ⇄2H++CO2−
3 10−6.31 [13]

HCO−
3 ⇄H++CO2−

3 10−10.25 [13]

H3PO4⇄H++H2PO
−
4 10−2.196 [13]

H2PO
−
4 ⇄H++HPO2−

4 10−7.185 [13]

HPO2−
4 ⇄H++PO3−

4 10−12.19 [13]

Ca2++HCO−
3 ⇄ CaHCO+

3 101.16 [13]

Ca2++CO2−
3 ⇄ CaCO3(aq) 103.38 [13]

Ca2++OH−
⇄ CaOH+ 25.12 [14]

Ca2++H2PO
−
4 ⇄CaH2PO

+
4 31.9 [15]

Ca2++HPO2−
4 ⇄ CaHPO4(aq) 6.81 × 102 [15]

Ca2++PO3−
4 ⇄CaPO−

4 3.46 × 106 [15]

Mg2++HCO−
3 ⇄ MgHCO+

3 100.62 [16]

Mg2++CO2−
3 ⇄ MgCO3(aq) 101.87 [16]

Mg2++OH−
⇄ MgOH+ 102.19 [16]

Mg2++H2PO
−
4 ⇄MgH2PO

+
4 100.4 [17]

Mg2++HPO2−
4 ⇄ MgHPO4(aq) 101.8 [17]

Mg2++PO3−
4 ⇄MgPO−

4 103.3 [17]

Na++HPO2−
4 ⇄ NaHPO−

4 0.21 [18]

Na++H2PO
−
4 ⇄NaH2PO4(aq) 10−6.82 [19]

Na++Cl−⇄ NaCl(aq) 3.41 × 10−2 [20]

K++HPO2−
4 ⇄ KHPO−

4 2.5 [21]

H2O⇄H++OH− 10−14 [22]

the state of saturation we calculated supersaturation using the
following equation:

S =(
IP

KSP
)
1/9

(5)

S in Equation 5 is the solution supersaturation which depends
on the ionic product and the solubility product of hydroxyapatite.
Ionic product is calculated as:

IP = (CCa×γCa)
5 (

CPO4×γPO4

)3
(COH×γOH)1 (6)

where C and γ stand for the equilibrium concentration and the
activity coefficient for each ion in the mineral structure. Solubility
product, KSP, is the equilibrium constant for a chemical reaction
in which a solid ionic compound dissolves to yield its ions and
is measured experimentally. KSP for hydroxyapatite at 37◦C is
reported 2.03 ×10−59 mol9

L9
[12]. For other precipitates, we used the

following KSP: brushite (DCPD) 10−7 [25], octacalcium phosphate
(OCP) 1.05 × 10−47 [26], β-tricalcium phosphate (TCP) 2.83 ×

10−30 [27], and calcium carbonate (CaCO3) 3.36 × 10−9 [28].
Supersaturation, S, >1 in a solution indicates a supersaturated
state where mineral precipitation occurs until S = 1 (or IP =

KSP) and the system rests at equilibrium. In a biological system

like the human body, availability of mineralization inhibitors
can affect this behavior. For example, this threshold at human
urine is estimated at ∼10 [29], while for human plasma it is
calculated in the range of 1.5 to 13 [12, 18]. The difference
in the reported values comes also from the fact that different
studies considered different values for plasma concentrations and
did the calculations with different levels of simplification. In the
current study, supersaturation S was calculated at 14.9 for the
concentrations introduced at Table 1.

It is worth noting here that different studies report the
saturation state of the solution using slightly different methods,
although they are all addressing the same phenomenon. Some

studies use solution supersaturation defined as ( IP
KSP

)
1
ϑ , where ϑ is

the sum of stochiometric coefficients of cations and anions involved
in the mineral, some other use the saturation index defined as
log ( IP

KSP
), and in some cases, they just looked at the saturation ratio

defined by IP
KSP

. It is obvious that the interpretation of the values
calculated differs depending on the method used, for example while
solution supersaturation of 1 means the solution is in equilibrium,
the saturation index of value of 0means the same state. In this study
we used the solution supersaturation method.

2.4 Mineral precipitation

A supersaturated solution proceeds with mineral precipitation.
Calcium phosphates and among them biologically important
ones like hydroxyapatite have been studied over the years and
different theoretical and experimental studies tried to address their
rate of precipitation [30, 31]. In the current study, we relied
on experimental study of hydroxyapatite precipitation rate at a
solution with pH 7.4 to 8.4 [30] considering human physiology. The
precipitation rate equation was reported as:

R = kf sγ2γ3
[

Ca2+
]

[PO3−
4 ] (7)

where R is rate of hydroxyapatite precipitation (mol HAP L−1s−1),
kf is the rate constant (L

2mol1m−2s−1), s is surface area (m2L−1),
γ2 and γ3 are the divalent and trivalent activity coefficients, and
brackets are the concentrations of Ca2+ and PO3−

4 (mol L− 1).

2.5 Model simulation and analysis
(numerical solution)

Due to the high level of non-linearity and large number of
variables, the Newton-Raphson (NR) method was used to solve the
system of equations.

To avoid divergence in the NR solver, as proposed byMorel and
Morgan [32], in cases that [Xj]

n + 1Xj
n < 0, the next iteration

would be calculated using [Xj]
n+1 =

[Xj]n

10 . The initial guess
of equal concentrations and equal activity coefficients of 0.5 was
made to initiate solving the system. During an iterative process,
the calculated concentrations and coefficients of each iteration were
used to initiate the next iteration of calculations. This iterative
process was repeated to the point where the maximum difference
between the last two iterative values of activity coefficients were
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TABLE 3 Physiological and pathophysiological levels of total calcium, total phosphate, total carbonate.

Normal (mM) References Hypo (mM) References Hyper (mM) References

Ionized calcium 1–1.4 [33] Mild: > 0.8
Sever: <0.62

[34] Mild: 1.4 – 2 -
Mod: 2–2.5
Severe: 2.5–3

[33]

Inorganic phosphorous 0.8 – 1.45 [35] Mild: 0.65– 0.8
Mod: 0.32–0.65
Severe: <0.32

[35] Mild to mod: >1.45
Severe: >2

[35]

Carbonate 22–28 [36] Mild: 18–21
Mod: 10–17
Severe: <10

[36] Mild: 28–32
Mod: 32–36
Severe: > 36

[36]

FIGURE 2

E�ect of physiological and pathophysiological total concentration of calcium (A, B), phosphate (B, D), and carbonate (E, F) on the equilibrium

concentration of ionized calcium (A, C, E), and ionized phosphate (B, D, E) at physiological pH7.4 (solid line), low pH 7.3 (dashed line) and high pH

7.55 (dished-dotted line). The vertical lines are the mild and severe levels for low and high total concentrations (Table 3).

smaller than an arbitrary value of εact = 10−8. At this point, the
equilibrium concentrations of all chemical species in the solution
were calculated.

3 Results

We investigated how the changes in total concentrations
of 7 model components, TCa, TPO4, TCO3, TMg, TNa, TK,
TCl (Table 1), affect ISF composition, hydroxyapatite saturation
and hydroxyapatite precipitation. We explored the range of
changes corresponding to physiologically reported mild and severe
decreases and increases in individual components (Table 3). In

addition, we studied the effect of physiological variation in systemic
pH from pH7.3 to pH7.55 [37] on ions distribution.

3.1 Distribution of ions

We focused on the effect of total concentrations of
individual components on the concentrations of ions relevant
to hydroxyapatite precipitation, i.e., Ca2+ and PO3−

4 (Figure 2).
Changes in TCa positively correlated with ionized calcium
concentration (Figure 2A) and negatively correlated with ionized
phosphate level (Figure 2B), although the effect of TCa on
PO3−

4 was less prominent than on Ca2+. The TPO4 positively
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FIGURE 3

E�ect of physiological and pathophysiological total concentration of calcium (A, D), phosphate (B, E), and carbonate (C, F) on the solution

supersaturation (Equation 5) of hydroxyapatite (A–C) in the ISF at physiological pH 7.4 (solid line), low pH 7.3 (dashed line) and high pH 7.55

(dash-dotted line), and brushite (D–F, solid line), octacalcium phosphate (D–F, dashed line), tricalcium phosphate (D–F, dotted line), and calcium

carbonate (D–F, dash-dotted line) in the ISF at physiological pH 7.4. The vertical lines are the mild and severe levels for low and high total

concentrations (Table 3).

correlated with ionized phosphate concentration and negatively
correlated with ionized calcium and had a stronger effect on ionized
phosphate (Figures 2C, D). Changes in total concentrations of
other components in the model had minimal effect on ionized
calcium and phosphate with the exception of carbonate that
demonstrated negative association with ionized calcium and no
association with ionized phosphate (Figures 2E, F). The effect of
systemic pH was negligible for the ionized calcium, while ionized
phosphate level was considerably influenced by pH level (Figure 2).

3.2 Saturation

We next examined how total concentrations of individual
components affect hydroxyapatite solution supersaturation
(Equation 5). Solution supersaturation for HAP at the physiological
levels of ions was 14.9, which is consistent with previously reported
values [12, 38] and demonstrates that the action of mineralization
inhibitors is critical for preventing precipitation in biological fluids
[6]. The HAP solution supersaturation was positively associated
with the levels of total calcium (Figure 3A) and total phosphate

(Figure 3B). It was also mildly affected by total carbonate (negative
association) (Figure 3C), but not by any other model components.
Mild and severe hypercalcemia and hyperphosphatemia showed a
similar effect in increasing the HAP solution supersaturation. Mild
and severe hypocalcemia and hypophosphatemia lead to a decrease
in HAP solution supersaturation, with total calcium having a
more prominent effect (Table 4). We also considered the solution
supersaturation for other mineral species, including DCPD, OCP,
TCP and CaCO3 (Figures 3D–F). For all these components the
level of solution supersaturation was lower than that of HAP, and
for DCPD specifically, it was below 1 in the physiological ranges of
total calcium, phosphate, and carbonate.

3.3 Precipitation

Precipitation starts with nucleation and proceeds with crystal
growth [39]. In the biological context of bone mineralization, the
nucleation step is mostly controlled biologically by the extracellular
matrix proteins including collagens [11], while the physicochemical
processes are involved in the growth phase. Thus, we assumed that

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org
94

https://doi.org/10.3389/fams.2023.1294540
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Poorhemati and Komarova 10.3389/fams.2023.1294540

TABLE 4 Percentage of saturation ratio changes in hypo/hyper levels of blood calcium, phosphate, and carbonate compared to normal concentrations

at physiological pH (7.4).

Severe hypo (%) Mild hypo (%) Mild hyper (%) Severe hyper (%)

TCa −39.88 −22.14 12.40 26.14

TPO4 −30.31 −6.63 11.71 22.39

TCO3 5.61 1.88 −1.50 −2.65

FIGURE 4

E�ect of physiological and pathophysiological total concentration of calcium (A), phosphate (B), and carbonate (C) on the precipitation rate of

hydroxyapatite in the ISF, at physiological pH7.4 (solid line), low pH 7.3 (dashed line) and high pH 7.55 (dished-dotted line). The vertical lines are the

mild and severe levels for low and high total concentrations (Table 3).

TABLE 5 Percentage of hydroxyapatite precipitation rate change in hypo/hyper levels of blood calcium, phosphate, and carbonate compared to normal

concentrations at physiological pH (7.4).

Severe hypo (%) Mild hypo (%) Mild hyper (%) Severe hyper (%)

TCa −59.07 −35.39 22.33 48.94

TPO4 −67.02 −19.20 41.74 90.17

TCO3 10.45 3.46 −2.72 −4.80

the number of nucleators were not limiting and examined how
hydroxyapatite precipitation rate was affected by change in the ISF
total concentrations of different components (Figure 4). Increase
in total calcium (Figure 4A) and total phosphate (Figure 4B)
concentrations led to higher hydroxyapatite precipitation rate
and this increase was considerably influenced by the pH of the
ISF. A more basic environment favored higher precipitation rate,
while an acidic environment decreased the precipitation rate,
although the lower physiological pH limit caused less change in
the rate compared to the higher physiological limit. While both
hypercalcemia and hyperphosphatemia caused the precipitation
rate to increase, hyperphosphatemia (both mild and severe) led
to an almost two-fold higher increase in the rate compared to
hypercalcemia (Table 5). Hypocalcemia and hypophosphatemia
led to decrease of the precipitation rate (Table 5). Changes in
total concentrations of other model components did not affect
the hydroxyapatite precipitation rate, except for total carbonate
(Figure 4C, Table 5) which showed a mild negative association with
the precipitation rate.

Since from seven model components, only two, total calcium
and total phosphate, considerably influenced the hydroxyapatite
precipitation in ISF, we examined how simultaneous changes
in these two components affect hydroxyapatite supersaturation
and precipitation rate. The simultaneous changes of TCa and
TPO4 had non-linear effect on both hydroxyapatite supersaturation
and especially on the hydroxyapatite precipitation rate, which
increased synergistically when both TCa and TPO4 increased, but
was only mildly affected when both TCa and TPO4 decreased
(Figure 5).

3.4 The case of isolated ISF

So far in this study, we investigated the behavior of the
system under the assumption that ISF is in constant contact
with the blood circulation, and the ions involved in the mineral
formation will be immediately replenished. This assumption is
supported by the fact that the rate of precipitation is much
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FIGURE 5

Solution supersaturation (A) and precipitation rate (B) influenced by simultaneous changes in total calcium and total phosphate concentration in

physiologically relevant cncentrations at normal 7.4 pH.

slower than the rate of ion delivery to the ISF. Nonetheless, many
experimental studies are performed in a closed environment, where
there is no continuous delivery of ions consumed in mineral
formation. Thus, we adapted the model to simulate such scenarios
by employing the following modifications. We assumed that an
ISF unit has the volume of 1 µm3 and the smallest time step
to measure changes in the ISF was equal to 1 s. Given the
initial total concentrations of model components, we calculated
the equilibrium concentrations, supersaturation, and precipitation
rate (Equations 4, 5, and 7). Then, the amounts of ions that
would have been removed by precipitation in the defined time
step (1 s) were calculated and subtracted from the initial total
concentrations of model components to produce the updated
total concentrations of model components for the next iteration.
This process was repeated to investigate the model behavior for
a desired time length. This modified model was used to examine
the temporal dynamics of hydroxyapatite precipitation in the
closed system under different pH levels and initial component
concentrations (Figure 6). Initial precipitation rate in closed system
strongly depended on pH, resulting in more hydroxyapatite
precipitation at alkaline pH, which is similar to experimental
observations [40].

Next, we compared our model predictions to previously

published experimental data. First, we modeled the dependence
of ionized calcium on pH reported by Miyajima et al. [41].
We used in the model the reported values of component
concentrations and pH for the experimental study and calculated
the concentration of Ca2+ as a function of pH (Figure 7A).
Our model agreed well with the experimental values at pH 7.4–
7.8 but deviated at higher pH levels. Next, we modeled the
pH dependence of ion distributions reported by Boistelle et al.
[42]. We have similarly used the experimental values reported
in the paper and calculated the resulting ionic concentrations
of model species (Figure 7B), and the solution supersaturation
for hydroxyapatite (Figure 7C). Our findings were consistent
with reported experimentally for pH 5–8 and deviated from
reported values at higher pH. Thus, our model predictions
were consistent with experimental findings for pH values in the
physiological range.

4 Discussion

The goal of this study was to investigate the role of
physicochemical factors in the precipitation of bone hydroxyapatite
in an environment that resembles bone interstitial fluid. We
demonstrate that of the 7 components taken into consideration,
only total calcium, total phosphate and to a lesser degree total
carbonate affected ion availability, solution supersaturation and
hydroxyapatite precipitation rate. Strong effect of systemic pH
on solution supersaturation and hydroxyapatite precipitation
was due to its effect on ionized phosphate level since ionized
calcium was not affected by pH. Hydroxyapatite precipitation
was more strongly affected by availability of phosphate than
availability of calcium within physiological range of changes in
these components. Simultaneous change in total calcium and
phosphate had synergetic effect on hydroxyapatite precipitation
rate. Thus, while both calcium and phosphate levels affected
hydroxyapatite precipitation directly, phosphate also demonstrated
susceptibility to changes in pH, which additionally influenced
hydroxyapatite precipitation.

Building a chemically sound model of interactions among
different chemical species present in the ISF allowed us to
investigate their effect on ionized calcium and phosphate, which are
critical for hydroxyapatite formation. While it was challenging to
find experimental or computational works that had the exact same
solution parameters as the ones implemented in the model, using
values from similar experimental studies, we were able to reproduce
experimentally observed ion distribution for physiological levels
of pH [41, 42]. The negative association between total phosphate
and pH with ionized calcium observed previously [43], was also
confirmed by the model. Our study suggests that only levels
of total calcium and phosphate and to a lesser degree total
carbonate affect availability of ionized calcium and phosphate
relevant for hydroxyapatite precipitation. However, the chemical
complexity of ISF should still be taken into account to obtain
correct predictions of the ionic strength and interactions in
the solution.

The distribution of ions matters not only because they define
the properties of the ISF, but also as they can affect the precipitation
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FIGURE 6

Hydroxyapatite precipitation rate in a 24-h precipitation period of

the isolated ISF (A) and the accumulated mass of hydroxyapatite in a

cube of 1 µm3 volume (B) at physiological pH7.4 (solid line), low pH

7.3 (dashed line) and high pH 7.55 (dished-dotted line).

behavior by modifying the solution saturation status. Building
on previous findings that total calcium, phosphate and carbonate
influence the ionized calcium and phosphate availability, we
investigated their consequent effect on saturation state of the
ISF. At physiological levels of model components, the model
predicted the solution supersaturation of 14.9, which is close to
reported experimental values [12]. While the model confirmed
the state of supersaturation normally observed in human plasma
[44], it also provided a broader understanding of how this
supersaturation state could be influenced when total concentration
of model components (i.e., their plasma or ISF levels) change.
Moreover, the model predicts and explains the previously reported
[40, 45] relationship of increased supersaturation values when
pH increases at constant calcium and phosphate levels. In the
future, the model predictions can be improved by a more precise
incorporation of different parameters, such as accounting for
the variability in KSP due to pH, temperature, and solution
composition [46]. Investigating the effect of ion distribution
and saturation status on hydroxyapatite precipitation behavior
demonstrated that precipitation rate is driven by the values of
ionized calcium and phosphate, which in turn depend on pH.
Model predictions were consistent with previous findings that
an increase in ionized phosphate at high pH levels increases the
deposition rate of hydroxyapatite and that decrease in phosphate
availability interferes with hydroxyapatite precipitation [47]. Thus,
our findings are consistent with the well-recognized role of
phosphate in regulating bone mineralization in physiological
condition and in hypophosphatemic osteomalacia.

While many simplifications are implemented in constructing
this model, the fact that its findings are in line with experimental
works and current understanding of human physiology reassure
us that the findings are reliable and that the model is suitable
further developed. Combining this model with models of bone
mineralization that account for biological factors such as collagen
maturation [48] and bone cells-derived regulators [49] will provide
a powerful tool in studying the formation of bone hydroxyapatite
or other biological mineralized tissues. Another field of modeling
that could potentially benefit from the combined physicochemical
and biological model is the whole-body calcium and phosphate

FIGURE 7

Model validation with prior experimental data. Simulations were performed with experimental data reported by (A) Miyajima et al. [41] or (B) Boistelle

et al. [42]. Model predictions are plotted as solid line and published data (circles with experimental errors for A and dashed lines for B, C) were

extracted from the published papers and replotted with permission.
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homeostasis models. Bone is a major component of calcium and
phosphate homeostasis, and its behavior is regulated by hormonal
regulation by PTH, vitamin D, FGF23, calcitonin which directly
or indirectly affect calcium and phosphate concentration in the
body [50].

Taken together, we developed a mathematical model that
captures the physiochemical factors involved in hydroxyapatite
precipitation. We demonstrated how factors such as availability
of ions in the environment and their distribution of these ions, as
well as pH levels affect hydroxyapatite precipitation. Integrating
this model with biological models of bone mineralization will
allow in silico studies of complex clinical scenarios associated with
alterations in ISF ion composition, such as osteomalacia,
osteogenesis imperfecta, rickets, hypophosphatemia, and
chronic kidney disease. Moreover, with minor adaptations,
it could be used to understand mineralization in other
physiological tissues, such as dentin and enamel, and in
pathological conditions such as kidney stones and atherosclerotic
plaques [51].

5 Additional resources

Implementation of current bone physicochemical model
in MATLAB is available on GitHub: https://github.com/
Hosseinpoorhemati/bone_physicochemical_regulation.git.
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Evaluation of personal protective 
equipment to protect health and 
safety in pesticide use
Güler Aksüt 1 and Tamer Eren 2*
1 Ministry of Education, TOKI Mevlana Primary School, Yozgat, Türkiye, 2 Departmant of Industrial 
Engineering, Kırıkkale University, Kırıkkale, Türkiye

Introduction: Agriculture emerges as one of the most dangerous industries in 
the world, considering injury and illness rates. After the service sector in Turkey, 
the next large-scale sector is the agricultural sector, which constitutes 20% 
of the general employment. The exposure of farmers to pesticides, used to 
increase the quality and productivity of agricultural products, causes health risks 
via the mouth, respiration, skin, and eyes. Pesticide use in Turkey is increasing; 
the annual average increase is estimated at 1.2%. Exposure to pesticides can 
be reduced by wearing personal protective equipment to protect against health 
and safety hazards.

Objective: This study aimed to determine the importance of personal protective 
equipment using the multi-criteria decision-making method to prevent the risk 
of injury and disease resulting from pesticide use.

Materials and methods: The Analytical Hierarchy Process (AHP) method was 
used to find the weights of the criteria determined by expert opinion and a 
literature review. The Preference Ranking Organization Method for Enrichment 
Evaluation (PROMETHEE) was used to rank personal protective equipment.

Results: Personal protective equipment includes masks, gloves, overalls, safety 
shoes, glasses, and hats. The use of multi-criteria decision-making methods in 
health and safety in the agricultural sector will contribute to the literature.

Conclusion: Emphasizing the use of personal protective equipment, especially 
when using pesticides, will increase the rate of use of protective measures.

KEYWORDS

agriculture, analytical hierarchy process and the preference ranking organization 
method for enrichment evaluation, occupational health and safety, personal 
protective equipment, pesticide

1 Introduction

Compared to other sectors, the injury and illness rates of agricultural workers in the 
agricultural sector emerge as one of the most dangerous sectors worldwide. Its full extent is 
unknown due to inconsistencies in data collection and reporting (1). The agricultural sector 
constitutes 20% of the general employment in Turkey. It is the largest sector after the service 
sector (2).

There are significant risks of disease and injury in public health and agriculture associated 
with pesticide use (3). Most pesticides are very harmful to both human and animal health. It 
can cause serious, irreversible effects on the environment. This situation causes significant 
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contamination in all ecosystems (4). Exposure to pesticides occurs 
mainly via the skin and inhalation. It can also occur by consuming 
contaminated food, oral contact with contaminated hands, or 
ingestion. Another important source of exposure is contaminated 
clothing (5). According to the World Health Organization’s (WHO) 
estimation, 25 million agricultural workers are exposed to acute 
pesticide poisoning cases each year (3). Risk perception variables of 
pesticide use that threaten the environment and human health can 
play an essential role in farmers’ taking safety measures (6). WHO 
classifies pesticides as moderately hazardous toxicity class II, which 
can lead to health risks if unsafe equipment is used by farmers (7). 
WHO and the International Labor Organization (ILO) recommend 
that farmers use personal protective equipment (PPE) to protect their 
health by reducing their exposure to pesticides (8).

Employee-specific clothing or equipment worn by employees to 
avoid exposure to health and safety hazards is called PPE. Various 
PPEs have been designed to protect many body parts, such as the eyes, 
hands, feet, head, ears, and face (9). Although its use is the least 
preferred solution, it should be considered in solving professional 
problems within a systematic and integrated vision. For this reason, 
the effectiveness of the entire occupational health and safety system 
and the balanced selection of alternatives for prevention, protection, 
and control are closely related (10). There are chemical, biological, and 
physical hazards in working environments. It is a known fact that the 
quality of workplaces increases with environmental management 
measures and engineering approaches that protect their employees by 
reducing or eliminating the danger factors. However, it is not disputed 
that many fields of study also need to implement such decisive, 
practical measures. In such cases, a business management approach 
using PPE is considered an alternative and essential tool to protect the 
health and safety of employees (11).

In this study, the importance of ranking PPE using Multi-Criteria 
Decision-Making (MCDM) methods was discussed to prevent the risk 
of injury and disease caused by pesticide use. The criterion weights of 
PPE were determined using the AHP method and ranked using the 
PROMETHEE method.

There are studies on pesticides in the literature. Clark et al. (12) 
investigated the attitudes, knowledge, and practices of 123 agricultural 
workers regarding the safe use of pesticides at three irrigation project 
sites in the Accra Plains, Ghana. Gomes et al. (13) investigated the use 
of PPE and the application of hygiene and safety procedures to process 
pesticides in agriculture. Nordin et  al. (14) studied the effects of 
pesticide use-related safety behaviors on the onset of acute organ 
symptoms in 101 female and 395 male tobacco-growing Malaysian 
farmers. Mekonnen and Agonafir (15) presented data on pesticide use, 
PPE use, attitudes, applications, and knowledge of pesticide sprayers 
on large Ethiopian farms. Reed (16) conducted studies to determine 
the self-protective work behaviors, risk exposures, and use of personal 
protective equipment of children on farms. Reed emphasized the need 
to be  informed about personal protective equipment. Atreya (17) 
studied how pesticide use affects the health of farmers in Nepal. The 
study aimed to understand acute health symptoms and estimate health 
costs in rural Nepal concerning pesticide exposure. The study revealed 
that pesticide use had acute effects on health. Weerasinghe et al. (18) 
aimed to receive detailed user notifications regarding the differences 
in pesticide storage, evaluate the use of pesticide-safe storage devices, 
and identify problems related to crucial protection. Fenske (19) 
provided field demonstrations and discussions on traumatic and 

musculoskeletal injuries in orchards, mobile work platforms, and new 
pest control technologies. Levesque and Shen (20) aimed to investigate 
the relationship between the housing conditions of agricultural 
workers, pesticide safety practices, and PPE use. Meirelles et al. (21) 
examined the efficiency of using PPE in agriculture through a 
theoretical framework. They developed an analysis of PPE design by 
controlling the unhealthy conditions of rural workers. Almeida et al. 
(22) examined the inadequacy of PPE used in tomato crops, especially 
thermal comfort. Their study showed that insufficient use of PPE may 
pose a risk of thermoregulation for rural workers. Basilicata et al. (23) 
investigated agricultural workers’ general working conditions and 
pesticide exposure in tomato-growing farms in southern Italy during 
the mixing/loading and applying of pesticides to the fields. Lekei et al. 
(24) aimed to explain farmers’ knowledge of pesticide hazards, 
pesticide exposure profiles, unsafe practices that cause acute 
poisoning, the extent to which acute poisoning was reported, and 
previous poisoning experiences. Al Zadjali et al. (25) conducted their 
studies to investigate the differences between farm types in PPE use, 
identify the key people responsible for pesticide applications, and store 
pesticides safely. In their study, Andrade-Rivas and Andrea Rother 
(26) aimed to analyze the risk perceptions related to the socio-cultural 
context, working conditions, and herbicide use to understand the 
employees’ low PPE compliance. The study results revealed that 
although workers were informed about herbicide exposure risks, PPE 
use continued at a low rate due to workers being affected by working 
conditions, herbicide risk perceptions, and workers’ social status and 
gender dynamics. Rudolphi (27) aimed to determine agricultural 
educators’ attitudes, needs, and practices about agricultural safety and 
health. Ngowi et  al. (28) aimed to reveal that national pesticide 
regulations need to be revised to solve the health and safety problems 
encountered by agricultural workers in Tanzania in the use of 
pesticides on a small scale. Sawada et al. (11) aimed to present the 
latest information on the development and evaluation. Akter et al. (29) 
aimed to examine the behavioral activities of farmers regarding their 
pesticide use and determine the relevant factors affecting the use. 
Yarpuz-Bozdogan (30) emphasized the importance of using PPE in 
pesticide applications in agriculture. Reynolds et al. (31) obtained 
descriptive findings regarding pesticide use from 1,191 participants 
who completed occupational surveys in the study, which included an 
in-depth evaluation of injuries, respiratory diseases, and other health 
consequences related to environmental and occupational exposures. 
Rezaei et al. (32) aimed to fill the gap with healthy spread theory and 
planned behavior theory, which include perceived sensitivity and 
severity structures for the factors affecting Iranian farmers’ PPE use. 
Sapbamrer and Thammachai (33) reviewed the existing literature on 
PPE use by pesticide processors in different regions of the world. Joko 
et al. (34) investigated the symptoms of poisoning caused by farmers’ 
pesticide exposure. Jakob et al. (35) defined and classified the national 
occupational health and safety mechanisms in Europe for agricultural 
workers and aimed to exemplify the scope of implementation of the 
safety regulation by evaluating the responsible institution for health 
and safety initiatives. Zhang et al. (36) investigated the work-related 
risk factors and prevalence level of acute pesticide poisoning among 
farmers in southern China. Those who experienced work-related 
acute pesticide poisoning constituted 8.8% of the total pesticide 
applicators. Paschoalin et  al. (37) reported on a non-enzymatic 
wearable electrochemical sensor that can detect bipyridinium and 
carbamate pesticides on the surface of food and agricultural samples. 
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This sensor can detect diquat and carbendazim in apple and cabbage 
skins without the interference of other pesticides and determine in 
what proportion they are present. They stated that this type of 
wearable sensor, including active bio(sensing) layers, could 
be extended to other agrochemicals and monitor all agri-foods and 
products online.

To the best of our knowledge, no study was found to determine 
the importance of PPE for preventing diseases and injuries associated 
with pesticide use using the MCDM method as a result of the literature 
research. Its contribution to the literature will be  applying these 
methods to the agricultural sector. Emphasizing the use of PPE in the 
processing of pesticides in agriculture will increase the tendency of 
agricultural workers to use protective measures.

2 Materials and methods

Criteria were determined based on a literature review and expert 
opinion. The criteria weights were calculated with the AHP method, 
which is one of the MCDM methods, and the importance of the 
alternatives was ranked using the PROMETHEE method.

2.1 AHP method

When applied to decision-making, the AHP method, one of the 
most well-known MCDM methods, helps define the general decision 
process by decomposing a complex problem into a hierarchical 
structure as the target, criterion, subcriteria, and alternative (38). 
Pairwise comparisons are made to obtain priority scales based on 
experts’ judgments. Comparisons are made using an absolute 
judgment scale relative to a particular attribute, representing how 
much one element dominates another (38). In AHP, the relative 
importance of decision criteria is evaluated through pairwise 
comparisons. The decision-maker examines the two alternatives to 
create a priority value (aij) for each criterion and expresses a 
preference. In AHP, the standard numerical scale is 1–9, which ranges 
from “extremely important” to “equally important.” A value of “1” 
indicates that one factor is equally important as another, while a “9” 
indicates that one factor is highly less critical than the other. An n*n 
square matrix is obtained at each level of the criterion hierarchy, where 
n is the number of elements of the level (39).

The method steps are listed in Table 1 (38, 40).

2.2 PROMETHEE method

The PROMETHEE method is one of the MCDM methods and has 
a significant place. PROMETHEE I, developed by Jean Pierre Brans in 
1982, offers partial prioritization. PROMETHEE II, on the other hand, 
offers clear prioritization (41). The PROMETHEE method, developed 
based on the difficulties of the prioritization methods applied in the 
existing literature, has become a frequently used method today (42).

With the PROMETHEE methodology, successful applications in 
many areas, such as investments, workforce planning, industrial 
location, banking, water resources, chemistry, medicine, health 
services, dynamic management, tourism, and ethics in the operating 
room, have been discussed. The methodology can be applied in many 
fields due to its ease of use and mathematical properties (41).

Method steps are listed in Table 2 (43).

3 Results

Figure 1 shows the problem flow chart.

3.1 Problem definition

Occupational death, injury, and disease are high among agricultural 
workers. Agricultural workers risk work-related injuries and illnesses 
more than most other occupations. The three most dangerous sectors are 
agriculture, construction, and mining (44). Eurostat statistics reported 
that in 2013, in EU agriculture, 1.5 non-fatal injuries occurred per 100 
workers, while 4.1 fatal injuries occurred per 100,000 workers. However, 
these rates are represented at a lower level than the actual rates. Because 
people outside the family do 25% of the work, reporting occupational 
injuries is optional for the self-employed (1). Pesticide use in agriculture 
is significant as it adversely affects the health of farmers (14, 17, 28, 34). A 
significant risk of disease and injury in public health and agriculture is 
associated with pesticide use. According to WHO estimates, 25 million 
agricultural workers in developing countries are exposed to acute 
pesticide poisoning every year (3).

Statistical results revealed that 25 million farmers are poisoned every 
year, with a mild degree of poisoning. In addition, nearly three million 

TABLE 1 AHP method steps.

Method steps Description of method steps

Step 1 Defining the problem clearly and determining its 

purpose.

Step 2 Establishing a hierarchical structure by determining 

relative priorities for the main criteria and their sub-

criteria.

Step 3 Creation of pairwise comparisons/matrices of defined 

criteria.

Step 4 Normalization of pairwise comparison matrices and 

calculation of relative importance weights.

Step 5 Measuring the consistency of comparisons between 

criteria.

TABLE 2 PROMETHEE method steps.

Method steps Description of method steps

Step 1 By defining alternatives and criteria, the importance 

weights of the criteria are determined, and a data matrix 

is created for the alternatives.

Step 2 Depending on the structure and interrelationship of the 

determined criteria, preference functions are defined.

Step 3 For pairs of alternatives, common preference functions 

are determined based on the preference functions.

Step 4 Preference indices are determined for each pair of 

alternatives using common preference functions.

Step 5 Negative and positive advantages are determined for 

alternatives.

Step 6 Partial priorities are set with PROMETHEE I.

Step 7 With PROMETHEE II, exact priorities are calculated.
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farmers, especially those living in rural areas of developing countries, are 
exposed to severe pesticide poisoning (29). As a result, 180,000 people, 
including various agricultural workers, experience fatal events every year 
(36). In particular, the lack of use of PPE and the lack of appropriate safety 
behaviors by farmers before, during, and after pesticide application are the 
most important reasons for the high incidence rate (15, 20, 29, 33). 
Wearing PPE can reduce the possibility of poisoning by approximately 
44% (45). Although it is the least preferred solution, PPE for professional 
problems should be  considered within an integrated and systematic 
vision. Therefore, the effectiveness of the entire occupational health and 
safety system for prevention, protection, and control is closely related to 
the balanced selection of alternatives (10).

This study discusses the problem of sequencing the use of PPEs 
with the MCDM method to prevent the risk of injury and disease 
related to pesticide use. Personal protective equipment is worn or 
used to protect people from various hazards, eliminating and 
reducing the risk of fatal and non-fatal unintentional work 
injuries (46).

3.2 Determination of criteria

Pesticides are biologically active chemicals widely used by many 
agricultural workers and those involved in vector control. Occupational 
exposure occurs during the mixing, dilution, transport, application, and 
disposal of pesticides, as well as during the processing of crops and the 
cleaning of containers (5). Pesticides can enter the body through skin 
absorption, ingestion, and inhalation. To reduce exposure to pesticides 
and maintain health, the ILO and WHO recommend that farmers use 
PPE during pesticide application (8). This study addressed the importance 
of employees using PPE as a risk reduction measure. The criteria 
determined by considering the literature and expert opinion were 
respiratory, skin, swallowing, and eye (5, 8, 47).

3.3 Identifying alternatives

There are various hazards in the workplace, such as chemical, 
physical, and biological. It is indisputable that protecting employees 
from these existing dangers, reducing or eliminating harmful factors, 
improving the quality of workplaces with an engineering approach, 
and taking environmental management measures are priority 
solutions. However, it is a fact that such decisive and effective measures 

cannot be implemented in many fields of study. In such cases, a work 
management approach using PPE is considered an alternative and 
essential tool to protect the safety and health of employees (11). 
Among pesticide handlers, the most basic PPE coveralls are safety 
shoes, respirators, gloves, masks, boots, aprons, hats, long-sleeved 
pants, long-sleeved shirts, face shields, and goggles. In this study, 
alternatives were determined as masks (face visors), overalls (long-
sleeved trousers and shirts), safety shoes (boots), gloves, glasses, and 
hats. Alternatives were determined based on expert opinions and 
literature (15, 20, 25, 33, 34, 48).

3.4 Finding criterion weights with the AHP 
method

The visual PROMETHEE Academic Version Program was used 
to perform AHP calculations. Figure 2 shows the hierarchical structure.

The group comprising eight experts included two academicians 
who are industrial engineers, a doctor in the field of occupational 
health and safety, a class A occupational health and safety specialist, 
a class B occupational health and safety specialist, a class C 
occupational health and safety specialist, an occupational health and 
safety technician, and a medical doctor. The experts were selected 
based on their experience in the health and safety field. Pairwise 
comparisons were made based on expert opinions. Saaty’s 1–9 scale 
was used in pairwise comparisons as shown in Table 3 (40). The 
consistency ratio, which is less than 0.1, was met. Figure 3 shows the 
pairwise comparison.

Criterion weights were found using the Super Decision Program. 
The obtained criterion weights are given in Table 4.

3.5 Ranking of alternatives using the 
PROMETHEE method

Alternatively, the mask, overalls, safety shoes, gloves, glasses, 
and hat will be  ordered using the PROMETHEE method. The 
criterion weights obtained by the AHP method were entered into the 
Visual PROMETHEE Academic Version Program. The preference 
functions to be used in problem-solving are listed in Table 5 (41). In 
our study, the Fourth Type (Level) Function was used. While the 
login screen is shown in Figure 4, the ranking of the alternatives is 
given in Table 6.

Ranking of Alternatives Using the 
PROMETHEE Method

Calculation of Criterion Weights with AHP 
Method

Identifying Alternatives

Determination of Criteria

Identifying the Pesticide-related Problem

FIGURE 1

Flowchart of the problem.
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Table 6 shows the results of ranking the alternatives using the 
PROMETHEE method. When obtaining the Phi net priority value, 
the difference between the positive superiority Phi+ value and the 

negative superiority Phi-values is taken. Alternatives are ranked 
according to their net priority values. According to the results of the 
PROMETHEE flow table, the order of PPE is listed as masks, gloves, 
overalls, safety shoes, glasses, and hats.

4 Discussion

The order of the PPE used to prevent the risk of injury and disease 
related to pesticide use using AHP and PROMETHEE methods is 
listed as a mask, gloves, coveralls, safety shoes, glasses, and hat.

Respiratory protective masks should be  used in spraying 
operations and should be  comfortable and breathing resistance 

“

A
im Grading the Effect of Pesticides on the Entry Routes to the Body

Respiratory Skin Mouth Eye

C
rit

er
ia

FIGURE 2

Hierarchical structure of the decision problem.

TABLE 3 Significance scale values and definitions.

Value Definition Explanation

1 Equally important Equally important in both options.

3 A little important Experience and judgment make one criterion slightly superior to the other.

5 Too important Experience and judgment make one criterion highly superior to the other.

7 Too much important One criterion is considered superior to the other.

9 Extremely important Evidence demonstrating that one criterion is superior to the others has great credibility.

2, 4, 6, 8 Intermediate values Values between two consecutive judgments to be used when reconciliation is needed.

FIGURE 3

Pairwise comparison.

TABLE 4 Criterion weights.

Criteria Criterion 
weights

Consistency rate

Respiratory 0.32 0.03475

Skin 0.51

Mouth 0.07

Eye 0.10
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TABLE 5 Preference functions (41).

Generalized criterion Definition Parameters to 
fix

Type 1: Usual criterion

P d
d
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1 0
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1 q
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Type 4: Level criterion
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Type 6: Gaussian criterion
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appropriate when worn on the face. Goggles should prevent the 
chemicals used during spraying from getting into the eyes and the 
chemical vapors from entering the eyes. Various accidents are 
encountered with chemicals in liquid form after splashing and spilling 
on the feet or legs. Work boots and shoes should be used to prevent 
accidents. Hygiene rules should be observed in shoes and boots, and 
necessary ventilation rules should be applied. Appropriate gloves must 

be  used, as chemicals will damage the skin in manual spraying 
applications. Contact with and absorption of chemicals on the skin 
should be  prevented. Gloves should be  decontaminated before 
removal, whenever possible. Overalls (work clothes) are the clothes 
that employees wear while working. It is essential to use it so that 
employees can protect themselves against chemical risks. The work 
clothes used should be removed in a separate section at the end of the 
work. Removed clothes should be appropriately disinfected (49). The 
hat used by farmers while spraying effectively prevented the symptoms 
significantly (14).

Pesticides are biologically active chemicals commonly used by 
agricultural workers and those involved in vector control. The most 
commonly used pesticides are organophosphate, carbamate, and 
pyrethroid insecticides (34). Occupational exposure also occurs 
during mixing, transporting, diluting, applying, and disposing of 
pesticides while processing crops and cleaning containers. Exposure 
occurs mainly through dermal and inhalation routes. Ingestion can 
occur through oral contact with contaminated hands or consuming 

FIGURE 4

PROMETHEE data entry.

TABLE 6 PROMETHEE flowchart of PPE in pesticide use.

Rank Alternatives Phi Phi+ Phi-

1 Mask 0.3571 0.3764 0.0193

2 Gloves 0.1739 0.2580 0.0841

3 Overalls 0.0953 0.2056 0.1103

4 Safety shoes −0.1103 0.0000 0.1103

5 Glasses −0.2000 0.0966 0.2966

6 Hat −0.3159 0.0000 0.3159
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contaminated food. A significant source of exposure is contaminated 
clothing (5). In the study, the criterion weights were skin 0.51, 
respiration 0.32, eye listed 0.10, and mouth 0.07. Since pesticide 
exposure mainly occurs through the dermal route during the 
preparation of sprays and through dermal and inhalation during 
application (50), dermal intake has the highest weight in the ranking, 
followed by breathing, eyes, and mouth intake. PPE use during 
spraying can reduce pesticide inhalation and contact with pesticides, 
potentially reducing the chronic and acute health hazards of pesticides 
for sprayers (15). Recently, smart devices such as Internet of Things 
(IoT)-based drones, wireless sensors, and robots have been able to 
identify the crop enemies of the growers precisely, reducing the use of 
pesticides significantly (51, 52).

5 Conclusion

The agricultural sector constitutes 20% of the general 
employment in Turkey (2). Pesticide use negatively affects the 
health of farmers in this significant sector (14, 17, 28, 34). PPE 
provides additional protection against exposure to hazardous 
conditions in agricultural production when workers’ safety is not 
addressed by controlling the risk at the source, eliminating the 
hazard, or minimizing the risk (53). This study discusses the 
problem of ranking the PPEs with the MCDM method to prevent 
the risk of injury and disease related to pesticide use. The weights 
of the criteria determined according to the literature review and 
expert opinion were calculated with the AHP method, and the PPE 
determined as an alternative was ranked using the PROMETHEE 
method. In the ranking, the order of PPE was included as a mask, 
gloves, overalls, safety shoes, glasses, and hat.

In future, studies can be carried out on using products based on 
Internet of Things (IoT) technology to prevent pesticide exposure and 
protect the health and safety of workers.
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for di�erent constriction factors
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Particle swarm optimization (PSO) algorithm is an optimization technique with

remarkable performance for problem solving. The convergence analysis of the

method is still in research. This article proposes a mechanism for controlling the

velocity by applying a method involving constriction factor in standard swarm

optimization algorithm, that is called CSPSO. In addition, the mathematical

CSPSOmodel with the time step attractor is presented to study the convergence

condition and the corresponding stability. As a result, constriction standard

particle swarm optimization that we consider has a higher potential to balance

exploration and exploitation. To avoid the PSO premature convergence, CSPSO

modifies all terms of the PSO velocity equation. We test the e�ectiveness of

the CSPSO algorithm based on constriction coe�cient with some benchmark

functions and compare it with other basic PSO variant algorithms. The theoretical

convergence and experimental analyses results are also demonstrated in tables

and graphically.

KEYWORDS

PSO algorithms, convergence and stability, constriction factor, Markov chain, Monte

Carlo

1 Introduction

The optimization techniques are fundamentally important in engineering and scientific
computing. The PSO algorithm was first introduced by Kennedy and Eberhart [1] as a
stochastic optimization technique of swarm particles (population). The motivation was
primarily to model the social behavior of birds flocking. The meta-heuristic optimization
algorithms (PSO) work effectively in many areas such as robotics, wireless networks,
power systems, job-shop schedules, human healthcare, and classifying or training of ANN
(artificial neural network) [2]. In PSO, the potential solutions, called particles, fly through
the problem space (domain) by applying their intelligent collective behaviors.

The PSO algorithm is competitive in performance with the well-known huge numbers
of variants such as SPSO and CPSO algorithms and is also an efficient optimization
framework [3, 4].

Lately, researches on PSO mainly intended on algorithmic implementations,
enhancements, and engineering applications with interesting findings derived under the
system that assumes a fixed attractor [5]. Nevertheless, a comprehensive mathematical
explanation for the general PSO is still quite limited. For instance, the works on stability
and convergence analyses are two key problems of great significance that need to be
investigated in depth because many of the works have given attention for standard PSO.
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The PSO algorithm depends on three parameters (factors): the
inertia, cognitive and social weight to guarantee the stability of PSO.

Stability analysis of PSO is mainly motivated by
determining which combination of these parameters encourages
convergence [6].

The working rule of PSO method is closely tied with the
stability analysis, which investigates how the essential factors affect
the swarms dynamics, and under what conditions particle swarm
converges to some fixed value. For the first time, stability analysis
of the particle dynamics was carried out by Clerc and Kennedy [7].
The study indicates that [8] particle trajectories could converge to
a stable point. A more generalized stability analysis of the particle
dynamics was conducted using the Lyapunov stability theorem [9].
Recently, based on a weak stagnation assumption, Liu [10] studied
the order-2 stability of PSO, and a new definition of stability was
proposed with an order-2 stable region. Dong and Zhang [11]
analyzed order-3 recurrence relation of PSO kinematic equations
based on two strategies to obtain the necessary and sufficient
conditions of its convergence.

The convergence analysis determines whether a global
optimum solution can be achieved when a particle swarm
converges. Using stochastic process theory, Jiang et al. [12]
presented a stochastic convergence analysis on the standard PSO.
Combining with the finite element grid technique, Poli and
Langdon [13] set up a discrete model of Markov chain of the
bare-bones PSO. An absorbing Markov process model of PSO was
developed in Cai et al. [14]. Cai et al. [14] suggested the main factor
of convergence analysis is the attaining-state set and proposed an
improved method of convergence in terms of the attaining-state
set theorem of expansion. The basic PSO is neither a global nor a
local search algorithm, based on the convergence criterion of the
pure random search algorithm [15, 16]. To yield a lower bound
for the time required to optimize any pseudo-Boolean functions
with a unique optimum and to justify upper bounds, Dirk et al.
[17] assigned an optimum-level argument that is deep-rooted for
evolutionary algorithms of particle swarm optimization. The study
in Sun et al. [18] discussed the convergence of the quantum-
behaved particle swarm optimization (QBPSO) and proved that it
is a global convergent algorithm.

As discussed in Per and Carsten [19], stagnation of the
convergence properties for basic PSO may be disadvantageous to
finding a sufficiently good solution within a logical time, and it may
have infinite expected first hitting time on some functions.

Recently, the existing work on the convergence analyses of PSO
including documents from 2013 was surveyed by Tarekegn et al.
[6]. The stochastic approximation technique on the PSO algorithm
was use to prove convergence of swarm in Yuan and Yin [20]. The
global convergence of PSO [21] was investigated by introducing the
transition probability of particles. Several properties related to the
Markov chain were investigated, and it was found that the particle
state space is not repeated and PSO is not globally convergent
from the viewpoint of the transition probability [22]. Based on the
different models of PSO examined [23], the Markov properties of
the state sequences of a single particle and swarm one determine
the transition probability of a particle. The transition probability of
the optimal set is deduced by combining the law of total probability
with the Markov properties [24], which proves that SPSO can reach

the global optimum in probability. Although many methods in
Poli and Langdon [13] have proposed PSO convergence analysis,
most analyses are based on the assignment of stochastic systems
of the Markov process, which strongly depends on the transition
matrix and their eigenvalues. Therefore, when the population size
is large, current PSO convergence analyses are very refined and
investigate different PSO variants algorithms to obtain a solution
that converges to global minimum.

Motivated by our recent study in Tarekegn et al. [6], this
article proposes a PSO variant known as CSPSO, an algorithm for
optimization problem solving.

A constriction factor integrated with an inertia weight are used
for the construction. Fast convergentmethod to an optimal solution
within the search space in a small time of iterations was obtained.

The rest of this study is organized as follows: Section 2 presents
related works that include the basic PSO algorithm and its existing
variants. In Section 3, the proposed CSPSO algorithm analysis is
described in detail, while Section 4 presents comparison results
on some variants of PSO such as SPSO and CPSO (implementing
with test functions) and provides an in-depth discussion, with a
conclusion in Section 5.

2 The PSO algorithm and some
related studies

In the PSO with K particles in which each particle is treated as
an individual in the D-dimensional space, the position and velocity
vectors of the i-th particle at the t-th iteration are

Xt
i = (Xt

i1,X
t
i2, . . . ,X

t
iD) and

V t
i = (V t

i1,V
t
i2, . . . ,V

t
iD), respectively.

In SPSO algorithm [25], at iteration t, the d th dimension of
particle i’s velocity and position Pti is local best position, xti is
current position, and gt is global best position. Both are updated as

V t+1
i = ωV t

i + c1r
t
1(P

t
i − Xt

i )+ c2r
t
2(g

t − Xt
i ),

Xt+1
i = Xt

i + V t+1
i ,

(1)

for 1 ≤ i ≤ K; ω is an inertia weight; and c1 and c2 are called
acceleration coefficients in real-space, R.

Vector Pti = (Pti1, P
t
i2, . . . , P

t
iD) is the best previous position

of particle i called personal best (Pbest) position and vector gt =

(gt1, g
t
2, . . . , g

t
D) is the position of the best particle among all the

particles in the population and called global best (gbest) position.
The parameters rt1 and rt2 are sequences of two different random
positive numbers in the uniform random distribution in (0, 1) i.e.,
U(0, 1).

Generally, the value of V t
id

is restricted within the interval
[−Vmax, Vmax], for each d ∈ {1, 2, . . . ,D}. Without loss of
generality, we consider the minimization problem:

Minimize f (X), such that

X ∈ S ⊂ R
D, (2)

where f (X) is an objective function continuous almost
everywhere and S is a feasible solution space. From (1),
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the non-homogeneous recurrence relation (NHRR) is obtained
as follows: [8]

Xt+1
i = − ωxt−1

i + (1+ ω)xti+

ϕt
1(P

t
i − xti )+ ϕt

2(g
t − xti ),

(3)

where ϕt
1 = c1r

t
1, ϕt

2 = c2r
t
2.

From NHRR, Pt and gt , for 1 ≤ i ≤ K, are updated,
respectively, as follows:

Pt+1
i =

{

xt+1
i : for f (xt+1

i ) < f (Pti )

Pti : otherwise;
(4)

g0 = arg min
1≤i≤k

{f (xoi )},

gt+1 = arg min
1≤i≤k

{f (xt+1
i ), f (gt)}.

From (2), (3), the process of the particle’s velocity and position
change can be obtained, respectively, as follows. They are a second-
order difference equations

V t+2
i + (ϕt − ω − 1)V t+1

i + ωV t
i = 0 (5)

Xt+1
i + (ϕt − ω − 1)xti+ωxt−1

i = ϕt
1P

t
i + ϕt

2g
t

= ϕtOt
i (6)

where, ϕt = ϕt
1 + ϕt

2

Ot
i =

ϕt
1p

t
i + ϕt

2g
t

ϕt
. (7)

The terms (ϕt − ω − 1)xti and ωxt−1
i on the left side of (6),

both memorize the past values of position (i.e, the memory item
of position). The value of the item ϕtOt

i on the right side of (6) is
obtained from the previous experience of particles (i.e, the learning
item of position) and, in particular, Ot

i is the attractor at the t th
iteration in (7).

Now, let

Qx = max
xt∈Sx⊂R

| x(t) | . (8)

For pt , gt ∈ Sx, |pt| ≤ Qx, and |gt| ≤ Qx. From (8), Ot ∈ So
means |Ot| ≤ Qo for all t.

Introducing a constriction coefficient in SPSO controls the
balance between the cognitive component (pti − xti ) and social
component (gt − xti ) in the velocity equation. The coefficient
restricts the particle velocities within a certain range to prevent
excessive exploration or exploitation.

V t+1
i = χ ∗

(

ωV t
i + ϕt

1(P
t
i − xti )+ ϕt

2(g
t − xti )

)

2.1 Convergence of some PSO variants

The importance of a hybrid method is to combine different
optimizationmethods to take advantage of the virtues of each of the
methods. In addition to standard PSO, several variants of the PSO
in Kumar et al. [5] were constructed to improve the performance
of PSO.

The SPSO

Xt+1
i = Xt

i + V t+1
i ,

has a scalar function of position if xti = pti = gti for a particle,
that is particle’s update depends only on its previous velocity. This
can make the algorithm to stop to flow on the swarm’s global best
position, even if that position is not a local optimum. For instance,
based on (4), the guaranteed convergence PSO, GCPSO, overcomes
this problem by using a modified position and velocity update
equation for the global best particle, which forces that particle to
search for a better position in a confined region around the global
best position.

The GCPSO can be used with neighborhood topologies such
as star, ring, and Von Neumann. Neighborhoods have a similar
effect in the GCPSO [16, 19] as they do in the SPSO. Shi
and Eberhart [25] introduced the concept of linearly decreasing
inertia weight with generation number into PSO to improve the
algorithmic performance.

Particles converge to a weighted average (Ot
i ) between their

personal and local best positions [8], referred to as a so-called
theoretical attractor point (ATP). Kennedy [26] has proposed that
the entire velocity update equation is replaced by a random number
sampled from a Gaussian distribution (Gd) around the ATP, with a
deviation of the magnitude of the distance between the personal
and global best. The resultant algorithm is called the bare bones
PSO (BBPSO). Kennedy also proposed an alternative bare bones
PSO (aBBPSO) [26], where the particle sampled from the previous
Gd is reunited with the particle’s personal best position. The
performance of PSO with a small and a larger nearby region might
be better on multimodal and unimodal problems, respectively
[27]. Changing dynamically the neighborhood structures has been
proposed to avoid insufficiencies in fixed nearby regions [28].

The quantum-behaved particle swarm optimization was
proposed to show many advantages to the traditional PSO. Fang et
al. [24] proposed a quantum-behaved particle swarm optimization
(QBPSO) algorithm and discuss the convergence of QBPSO within
the framework of random algorithm’s global convergence theorem.
Inspired by natural speciation, some researchers have introduced
evolution methods into PSO [29, 30]. The problem of premature
convergence was studied on a perturbed particle swarm algorithm
presented based on the new particle updating strategy [31].
To solve optimization problems, Tang et al. [32] developed a
feedback-learning PSO algorithm with quadratic inertia weight,
ω. Hybridized PSO with a local search technique for locating
optimal solutions for multiple global and local solution in physical
fitness of more than one global optimal solution for optimization
problem using a memetic algorithm can be referred in Wang
et al. [33]. An example-based learning PSO was proposed in
Huang et al. [34] to overcome the failures of PSO by retaining
a balance between swarm diversity and convergence speed. A
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variation of the global best PSO where the velocity update
equation does not hold a cognitive component is called social PSO,
expressed as

V t+1
i = ωV t

i + ϕ2(g
t
i − xti ), (9)

The individuals are only supported by the global best position
and their previous velocity. The particles are attracted toward
the global best position, instead of a weighted average between
global best and their personal best positions, leading to very
fast convergence [19].

3 Relations of CSPSO and Markov
chain

In this section, the global convergence of CSPSO is analyzed
based on properties of Markov Chain and the transition
probabilities of particle velocity and position are also computed.

V t+1
i =



















χ ∗ (V t
i+ ϕt

1(P
t
i − xti )+

ϕt
2(g

t − xti )), for ω = 1
χ ∗ (ωV t

i+ ϕt
1(P

t
i − xti )+

ϕt
2(g

t − xti )), otherwise

(10)

In (10), the velocities of particles are updated using two main
components: the cognitive component and the social component.
The cognitive component guides a particle toward its personal-best
position, while the social component directs a particle toward the
best position found by the entire swarm.

We introduce some useful definitions, variables and
propositions (based on single particle model) which may be
important in this article [22, 23, 35, 36].

The following definitions provide a formal description of this
property based on single particle model [22, 23, 35, 36].

Definition 1. (Stochastic process and Markov property).
Assume all the variables are defined within the context of a
common probability space or probability measure.

1. The random variables Y = (Y0,Y1, . . . ,Y t) in a sequence are
called a stochastic processes.

2. Let Y t be a value in state space S, and the sequence {Y t}t≥0 is a
discrete stochastic process.
For every t ≥ 0 and il ∈ S(l− 1 ≤ t).

3. The discrete stochastic process is a Markov Chain.
If the probability Pr{Y t+1 = it+1 | Y0 = i0, Y1 = i1, . . . ,Y t =

it} = Pr{Y t+1 = it+1 | Y t = it} > 0. and Pr{Y0 = i0, Y1 =

i1, . . . ,Y t = it} > 0

Definition 2. ( State of particle). The state of particle κ t
i =

(xt−1
i , xti , p

t
i , g

t) at the t-th iteration for particle i in (3).
The state of particle space is a set of all possible states of

particle, denoted as S. κ t
i , the update probability of the state of the

particle can be calculated based on proposition-1.

Proposition 1. If the accelerating factors ϕt
1 and ϕt

2 in CSPSO
satisfy ϕt

1, ϕt
2 ∈ U(0, c), then the probability for particle i changes

from the position xti to the spherical region centered at xt+1
i with

radius ̺t > 0. The event Ai = {κ t+1
i | κ t

i }, defining the state of

particle i at the t-th iteration is updated to the state at the (t+ 1)-th
iteration, for each i ∈ {1, 2, . . . ,K} can be computed as

Pr(Ai) =
̺3
t

χω || xti − Xt−1
i || cχ || pti − Xt

i || cχ || gt − Xt
i ||

,

(11)
c is a constant within U(0, c) and δ → 0, where

̺ = cχ ∗

{

|| pti − Xt
i ||, for f (x

t
i )− δ ≤ f (Pti ) ≤ f (xti )+ δ

|| gt − Xt
i ||, for f (x

t
i )− δ ≤ f (gt) ≤ f (xti )+ δ

(12)

Proof. The 1-step transition probability of the i th state of particles,
Pt+1
i and gt+1, are determined by xt+1

i for transferring κ t
i to κ t+t

i

based on the following SPM-Single Particle Model [36]

xt+1
i = xti+ χ ∗ (ω(xt − xt−1

i )+

ϕt
1(P

t
i − xti )+ ϕt

2(g
t − xti )),

(13)

xt+1
i determined by χω, χϕ1, and χϕ2.

Three conditions in 1-step transition probability are:

1. f (xti ) − δ ≤ f (Pti ), f (g
t) ≤ f (xti ) + δ. xt+1

i = xti + χω(xti −
xt−1
i ) is determined uniquely by χω, where χω is unknown
constant, having

P(xt+1
i | κ t

i ) =

∫ xt+1
i + 1

2 ̺

xt+1
i − 1

2 ̺
dy

∫ xti−χω(xti−xt−1
i )

xti
dy

=
̺

χω || xti − xt−1
i ||

(14)

2. f (xti )− δ ≤ f (Pti ), f (g
t) ≤ f (xti )+ δ.

Ordering implies gt ∈ {pti , g
t}

xt+1
i = xti + χω(xt − xt−1

i )+

χϕt
2(g

t − xti )
(15)

Here, ϕt
2 is random variable because xt+1

i is determined
by χω(xt − xt−1

i ) and χϕt
2(g

t − xti )

P(xt+1
i | κ t

i ) =

∫ xt+1
i + 1

2 ̺

xt+1
i − 1

2 ̺
dy

∫ xti+χω(xti−xt−1
i )

xti
dy

∗

∫ ϕt
i+

1
2 ̺

ϕt
1−

1
2 ̺

dy

∫ xti+χc(gt−xt−1
i )

xti
dy

=
̺

χω || xti − xti ||
∗

̺

χc || gt − xti ||

(16)

3. f (xti )+ δ < f (Pti ), f (g
t) < f (xti )− δ.

xt+1
i = xti + χω(xt − xt−1

i )+ χϕt
1(P

t
i − xti )

+ χϕt
2(g

t − xti ))
(17)
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when xt+1
i ∈ R, xt+1

i is determined by χ ∗ (ω,ϕ1,ϕ2)

P(xt+1
i | κ t

i ) =

∫ xt+1
i + 1

2 ̺

xt+1
i − 1

2 ̺
dy

∫ xti+χω(xti−xt−1
i )

xti
dy

∗

∫ ϕt
1+

1
2 ̺

ϕt
1−

1
2 ̺

dy

∫ xti+χc(gt−xt−1
i )

xti
dy

∗

∫ ϕt
2+

1
2 ̺

ϕt
2−

1
2 ̺

dy

∫ xti+χc(gt−xt−1
i )

xti
dy

=
̺

χω || xti − xt−1
i ||

∗

̺

χc || Pti − xti ||
∗

̺

χc || gt − xti ||

(18)

From conditions in 1− 3,

lim
Pti→xti

̺

χω || Pti − xti ||
= 1

lim
gt→Xt

i

̺

χc || gti − xti ||
= 1.

P(Ai) =
̺3

χ(ω || xti − xt−1
i || c || Pti − xti || c || g

t − xti ||
(19)

δ is a vector approaching to zero. When

I. ̺ is the radius of xt+1
i

II. f (xti )− δ ≤ f (Pti ) ≤ f (xti )+ δ,
̺ = cχ || Pti − xti ||

III. f (xti )− δ ≤ f (gt) ≤ f (xti )+ δ,
̺ = cχ || gt − xti ||

Definition 3. (State of swarm). The state of swarm in (3), at
iteration t, denoted as ηt , is defined as ηt = (κ t

1, κ t
2, . . . , κ

t
K).

The state of swarm space is a set of all possible states of swarm,
denoted as ̟ [22].
Proposition 2. (Markov chain). The set of collection of swarm state
{ηt}t≥1 is a Markov chain[23].
Proof. The proof follows by referring to equation of position that
the state of swarm ηt+1 = (κ t+1

1 , κ t+1
2 , . . . , κ t+1

m ) at iteration t + 1
depends on only the state of swarm ηt = (κ t

1, κ t
2, . . . , κ

t
K). at

iteration t. Therefore, {ηt}t≥1 is a Markov chain.
Definition 4. Let Ŵn

1 denote the σ -field generated by particles state
κ t
1, κ t

2, . . . , κ
t
n, (K ≥ n) and define

φ((Ŵn
1 , κ t

n+1) = sup{| Pr(B\A)− Pr(B) | :

A ∈ Ŵn
1 , B ∈ σ (κ t

n+1)},
(20)

φ = sup
1≤n≤K−1

φ(Ŵn
1 , κ t

n+1) (21)

Due to the weak interdependent relationship among the
particles, φ is approximately small.
Proposition 3. The transition probability from ηt to ηt+1 satisfies

| Pr(ηt+1 | ηt)−
K
∏

i=1

Pr(κ t+1
i | κ t

i ) |≤ µ (22)

whereµ can bemade small enough, therefore,µ = (2K−1−1)φ.
Proof. Based on the Definition 4, one has | Pr(B\A) − Pr(B)
|≤ φ.

The event {κ t+1
i | κ t

i } denoted as Ai means that the state of
particle i at the t-th iteration is changed to the state at the (t+ 1)-th
iteration, for each i ∈ {1, 2, . . . ,K}.

Pr(
K
∏

i=1

Ai) = Pr(ηt+1 | ηt) (23)

is the transition probability from ηt to ηt+1.
Because gt+1 depends on xti and Pti for all 1 ≤ i ≤

K, A1, A2, . . . ,AK are not independent random events.
According to (6) and the conditional probability, one has the
following cases:

Case 1:Pr(A1A2) = Pr(A1)Pr(A2 | A1) ≤ Pr(A1)[P(A2)+ φ]

≤ Pr(A1)Pr(A2)+ φ,

Case 2:Pr(A1)Pr(A2)− φ ≤ Pr(A1)[Pr(A2)− φ]

≤ Pr(A1)Pr(A2 | A1) = Pr(A1A2).

This implies

Pr(A1)Pr(A2)− φ ≤ Pr(A1A2) ≤ Pr(A1)Pr(A2)+ φ (24)

Case 3:Pr(A1A2A3) = Pr(A1)Pr(A2 | A1)Pr(A3 | A1A2)

≤ Pr(A1)[Pr(A2)+ φ][Pr(A3)+ φ]

≤ Pr(A1)Pr(A2)Pr(A3)+ 3φ,

Case 4:Pr(A1)Pr(A2)Pr(A3)− 3φ ≤

Pr(A1)[Pr(A2)− φ][Pr(A3)− φ]

≤ Pr(A1)Pr(A2 | A1)Pr(A3 | A1A2)

= Pr(A1A2A3)

Similarly, we can get

Pr(A1)Pr(A2)P(A3)− 3φ ≤ Pr(A1A2A3) ≤

Pr(A1)Pr(A2)Pr(A3)+ 3φ
(25)

Then,

K
∏

i=1

Pr(Ai)− (2K−1 − 1)φ ≤ Pr(
K
∏

i=1

Ai) ≤

K
∏

i=1

Pr(Ai)− (2K−1 − 1)φ

(26)

is the transition probability from ηt to ηt+1. Let µ = (2K−1 −

1)φ. We have
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| Pr(ηt+1 | ηt)−
K
∏

i=1

P(κ t+1
i | κ t

i ) |≤ µ (27)

From (1), the interdependent relationship among the particles
is weak, φ in (11) is sufficiently small so that the fact
that K is finite implies that µ is a small enough positive
number.

3.1 Probabilistic convergence analysis of
CSPSO

In this subsection, we present the convergence analysis for
the version of the standard PSO with constriction coefficient
(CSPSO), by analogy of the method of analyzing convergence
of the PSO convergence of the PSO in Kennedy and Mendes
[27]. We also based on concepts of definitions and results in
Section 3 above. Our analysis has the advantage of providing
a much easier method to realize the convergence of the PSO
with constriction coefficient (χ) in comparison to the original
analysis [12]. To conduct the convergence analysis of the SPSO
with constriction coefficient (CSPSO), we consider the time
step value △ τ to describe the dynamics of the PSO, and
rewrite the velocity and position update formulas in (1) as
follows:

V t+1
i =χ ∗ {ωV t

i + ϕ1
(Pti − xti )

△ τ
+

ϕ2
(gti − xti )

△ τ
},

(28)

Xt+1
i = Xt

i + V t+1
i △ τ , (29)

By replacing (28) into (29), we obtain the following
probabilistic CSPSO:

X1
i = Xi + χ ∗ {ωVi + ϕ1

(Pi − xi)

△ τ
+

ϕ2
(gi − xi)

△ τ
} △ τ ,

(30)

X1
i = Xi + χωVi △ τ+

χϕ

(

χϕ1Pi + χϕ2gi

χϕ
− xi

) (31)

By rearranging the terms in (31), we obtain

X1
i = (1− χϕ)Xi + χω △ τVi+

χϕ1Pi + χϕ2gi.
(32)

In addition, by rearranging the terms in (29), we obtain

V1
i = −

χϕ

△ τ
Xi + χωVi+

χϕ1
Pi

△ τ
+ χϕ2

gi

△ τ
.

(33)

We combine the above two (32), (33) to have the following
matrix form:

(

X1
i

V1
i

)

=

(

1− χϕ χω△τ

−
χϕ
△τ

χω

)(

Xi

Vi

)

+

(

χϕ1 χϕ2
χϕ1
△τ

χϕ2
△τ

)(

Pi
gi

) (34)

which can be thought of as a discrete dynamic system
representation for the PSO in which (X V)T is the state subject
to an external input (Pi gi)T , and the two terms on the right side
of the equation correspond to the dynamic and input matrices,
respectively [37].

Supposing that no external excitation exists in the dynamic
system, [Pi, gi]T is constant, i.e., other particles cannot find better
positions. Then, a convergent behavior could be maintained. If it
converges as τ → ∞, (X1

i V1
i )

T → (Xi Vi)T . That is, the dynamic
system becomes:

(

0
0

)

=

(

1− χϕ χω△τ

−
χϕ
△τ

χω

)(

Xi

Vi

)

+

(

χϕ1 χϕ2
χϕ1
△τ

χϕ2
△τ

)(

Pi
gi

)

which holds only when Vi = 0 and Xi = Pi = gi, where
the convergent point is an equilibrium point if there is no external
excitation, but better points are found by the optimization process
with external excitation. For (34), Tarekegn et al. [6] has mentioned
a sufficient strategies of improved convergence via theoretical
analysis to get the relationship among χ , ω, and ϕ at the condition
of convergence.

The derived probabilistic CSPSO can utilize any probabilistic
form of prior information in the optimization process and,
therefore, the benefits from prior information can lead probabilistic
CSPSO to more probable search region and help optimize more
quickly with hierarchical use of parameters [40].

By substituting (28) into (29), is transformed into (35)

V1
i = χωVi +

χϕ

△τ

[

P(i)− xi
]

(35)

where P(i) = ϕ1Pi+ϕ2gi
ϕ

.

Let yi = P(i)− xi, then (32), (35) can be transformed into (37),
(38)

V1
i = χωVi +

χϕ

△τ
yi (36)

Y1
i = χωVi +

(

1+
χϕ

△τ

)

yi (37)

Combining (36) an iterative equation in the form of vector is
obtained as (38)

(

V1
i

Y1
i

)

=

(

χω
χϕ
△τ

χω 1+ χϕ
△τ

)(

Vi

yi

)

(38)
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which can be viewed as a general forecasting model of Markov
chain as follows: ηt = PKt

i , where, K
t
i is a vector as presented below

(ηt)T =
[

V1
i Y1

i

]

PT =

[

χω χω
χϕ
△τ

1+ χϕ
△τ

]

,

(Kt
i )
T =

[

Vi yi

]

(38) is the model with no external excitation, which is useful in
studying the evolution of certain systems over repeated trials as a
probabilistic (stochastic) model [37].

Using theMarkov chain method, the position (ηt)T(t+1) of the
d th element of the i th particle at the (t + 1) th iteration in CSPSO
can be computed using the following formula:

(ηt)T(t + 1) = [(kti )
T(t)]XPT (39)

superscript T denotes the transposition.
Based on [20, 41] the CSPSO algorithm analysis in Markov

chain theory, the algorithm satisfies the context of almost sure
convergence as follows:

1. As the algorithm progresses and more iterations are
performed, it will converge to an optimal solution with a
probability of 1 and

2. Given sufficient time and iterations, it will find the globally
optimal solution.

3.2 Stability analysis of CSPSO

We further get insight into the dynamic system in (39). First, we
solve the characteristic equation of the dynamic system as follows:

λ2 − (1+ χω +
χϕ

△ τ
)λ + χω = 0.

The eigenvalues are obtained as follows:

λ1,2 =
(1+ χω +

χϕ
△τ

± γ )

2
,

γ =

√

(1+ χω +
χϕ

△ τ
)2 − 4χω

with λ1 ≥ λ2. The explicit form of the recurrence relation (29)
is then given by

Y1
i (t) = r1 + r2λ

t
1 + r3λ

t
2

where r1, r2, and r3 are constants determined by the initial
conditions of the system. From updated velocity

V1
i (t + 1) =

Y1
i (t + 1)− Yi(t)

△ τ
(40)

result in

V1
i (t + 1) =

r2(λ
t+1
1 − λt1)+ r3(λ

t+1
2 − λt2)

△ τ

V1
i (t + 1) = (r2

λ1 − 1

△ τ
)λt1 + (r3

λ2 − 1

△ τ
)λt2

k1 =
r1(λ1−1)

△τ
and k2 =

r2(λ2−1)
△τ

lim
t→∞

V1
i (t + 1) = lim

t→∞
k1λ

t
1 + lim

t→∞
k2λ

t
2

lim
t→∞

X1
i (t + 1) =



















lim
t→∞

x1i (t) if max(||λ1||, ||λ2||) < 1,

(k1 or k2 or k1 + k2)+ lim
t→∞

x1i (t) if

max(||λ1||, ||λ2||) = 1

(41)

(41) implies that if the CSPSO algorithm is convergent, then
velocity of the particles will decrease to zero or stay unchanged until
the end of the iteration.

3.3 Constriction factor and its impact

When the PSO algorithm is run without controlling the
velocity, the system explodes after a few iterations. To control the
convergence properties of a particle swarm system, an important
model having constriction factor and ω together is shown below:

V t+1
i = χ ∗ {ωV t

i + ϕ1(P
t
i − xti )+

ϕ2(g
t
i − xti )},

(42)

2κ = χ | 2− ϕ −
√

ϕ2 − 4ϕ |,

ϕ1 + ϕ2 = ϕ ≥ 4, 0 ≤ κ ≤ 1.

Under these assumption conditions, the particle’s trajectory in
the CSPSO system is stable [6].

ωt+1 = ωmax −

(

ωmax − ωmin

tmax

)

t,

ωmax > ωmin

(43)

where, ωmax and ωmin are the predefined initial and final
values of the inertia weight, respectively, tmax is the maximum
iteration number, and t is the current iteration number for a linearly
decreasing inertia weight scheme.

3.4 Global convergence analysis of
QBCSPSO

A sequence generated by the iterative PSO algorithm converges
to a solution point. Several PSO variants were proposed to enhance
convergence performance of PSO [5, 24], which combines quantum
results with CSPSO, denoted as QBCSPSO. In this subsection, the
global convergence of QBCSPSO is investigated.
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From the Monte Carlo method, the current velocity for the
position xt+1

i of the d th element of the i th particle at the (t+ 1) th
iteration in QBCSPSO can be obtained using the following formula:

V t+1
i = Y t

i ± Lti ln(u
−(t+1)
i ),

ut+1
i ∼ U(0, 1)

(44)

where Ut
i ∈ (0, 1). Referring to Sun et al. [18, 24], where δ the

(wave) function

δ(Y t+1
i ) =

1
√

Lti

exp(−Y t+1
i /Lti )

with Y t+1
i =| xt+1

i − Pti |, and

the characteristic length Lti is obtained by

Lti = γ |xti − Ct| (45)

the term Ct used in (45) is Ct = 1
K

∑K
i=1 P

t
i . [24].

The contraction-expansion coefficient γ can be adjusted to balance
the trade-off between global and local exploration ability of the
particles during the optimization process for two main purposes
[38]:

• a larger γ value enables particles to have a stronger exploration
ability but a less exploitation ability.

• a smaller γ allows particles a more precise exploitation ability.

Notice that in this article, most of the (1)-(45) represent
velocities or positions or both of them.

4 Results and discussions

To demonstrate the working of the CSPSO algorithm, two well-
known test functions in a global optimization were widely used
in evaluating performance of evolutionary methods, and have the
global minimum at the origin or very close to the origin. We
compare the performance of PSO, SPSO, CPSO, and CSPSO.
Example 1. Unimodal function

min f (xi) =
K
∑

i=1

x2i

Subject to− 10 ≤ xi ≤ 10.

(46)

Example 2. Multi modal function

min f (x) =
K
∑

i=1

−xisin(
√

| xi |)

Subject to− 10 ≤ xi ≤ 10.

(47)

In the experiments, inertia weight decreases from 0.9 to 0.4 and
the generation stops when Ei =| Fgt(xi) − Fpt(xi) |≤ tolerance

satisfied. Here, Fp is the function value of the best personal in
current iteration and Fg denotes the global optimum and c1 =

c2 = 1.49 and c1 = c2 = 2 are used in PSO and CSPSO,
respectively.

For all algorithms, results are averaged over 100 independent
runs and iterations while the population size is 50.

Following the recommendations of the original references, the
best function value settings of some compared algorithms are
summarized in Table 1.

The mean velocity vt+1 of (46) is shown using Table 1 and
graphically (Figures 1–3) for the algorithms in Table 1. Figure 1
shows the convergence of PSO without controlling factor inertia
weight exploded. One of the main limitations of PSO is that
particles prematurely converge toward a local solution.

The evaluation results of the compared algorithms are shown
in Figures 2, 3 for decreasing and increasing inertia weight,
respectively. Figure 2 shows the evolution of inertial weight of
the compared algorithms over the running time. The main
disadvantage is that once the inertia weight is decreased, the

FIGURE 1

Basic PSO with no inertia weight for (46) on example 1.

TABLE 1 Comparison of algorithms on optimization test functions.

No Best fun Algorithm Best run Best variables ω ∈ range

1. 10.2213 Basic PSO 35 [0.3809, 1.4531, 3.1164]

2. 9.3944 SPSO 4 [0.4381, 1.4566, 3.1052] [0.9, 0.4]

3. 9.3945 SPSO 27 [0.4384, 1.4564, 3.1051] [0.4, 0.9]

4. 9.3941 CSPSO 29 [0.4379, 1.4568, 3.1053] [0.9, 0.4]

5. 9.3941 CSPSO 28 [0.4381, 1.4567, 3.1052] [0.4, 0.9]
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swarm loses its ability to search new areas [39]. Figure 3 shows the
evolution of convergence characteristic for CSPSO based on inertial
weight during the run. CSPSO can avoid premature convergence
by performing efficient exploration that can help to find better
solutions as the number of iterations increases and can avoid
premature convergence by balancing exploration and exploitation.
The algorithm CSPSO has shown fast convergence speed on
unimodal functions.

In order to confirm the performance onmulti-modal functions,
we carry out a similar simulation by using (47).

The same set of parameters is assigned for all algorithms of
Table 2 as in (46). Where in this function the number of local
minima increases exponentially with the problem dimension. Its

FIGURE 2

Evaluation of SPSO for (46) on example 1.

FIGURE 3

Evaluation of CSPSO for (46) on example 1.

global optimum value is approximately −5.74, as we see from
Table 2.

FIGURE 4

CPSO when ω = 1 for (47) on example 2.

FIGURE 5

Evaluation of SPSO for (47) on example 2.

TABLE 2 Comparison of algorithms on optimization test functions of multi-modal.

No Algorithm Best fun Best run Best variables ω ∈ range

1. CPSO –6.12 01 [ 1.79, 0, 3.20] ω = 1

2. SPSO –6.73 32 [ 1.79, 0, 3.21] [0.4, 0.9]

3. SPSO –8.133 89 [ 1.79, 0, 3.21] [0.9, 0.4]

4. CSPSO –11.83 69 [5.23, 5.23, 5.23 ] [0.9, 0.4]

5. CSPSO –5.74 39 [ 1.79, 0, 3.21] [0.4, 0.9]
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FIGURE 6

Evaluation of CSPSO for (47) on example 2.

Figures 4, 5 are simulations obtained from Table 2 results,
and all the figures meet the objective of the CSPSO algorithm
for the optimization problem given in (47) and its evaluation
in Figure 6.

5 Conclusion

This article mainly concerns the convergence and stability
analysis of the CSPSO algorithm and its performance improvement
for different constriction coefficients. We first investigated the
convergence of the SPSO algorithm by relating it to the Markov
chain in which the stochastic process and Markov properties
employ quantum behaviors to improve the global convergence and
proveMarkov chain transition probability, showing that the CSPSO
algorithm converges to the global optimum in probability. We
also compared the proposed algorithm with basic PSO, SPSO, and
CPSO algorithms evaluating the optimal value (fitness value) based
on the range of ω. The proposed algorithm is fast and efficient, and
the run plans of CSPSO for ω linearly decreasing from 0.9 to 0.4 are
easy to implement. The CSPSO algorithm performs better because
it regenerated those results to minimize the test functions. On the
other hand, the proposed heuristic algorithm did not seek solutions
that minimized the delay time or cost function, and the adjustment
process would be stopped if no ω was identified as regular. The
CSPSO algorithm is verified to be a global convergent algorithm.

These promising results motivate other researchers to apply CSPSO
to solve optimization problems. And in the future we will make
further investigations on convergence and stability of PSO variants.
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Appendix

Matlab codes

tic
clc
clear all
close all
rng default
LB=[0 0 0]; UB=[10 10 10];
m=3; n=50;
wmin=0.9; wmax=0.4; c1=2; c2=2;
maxite=100; maxrun=100;
for run=1:maxrun
run
for i=1:n
for j=1:m
x0(i,j)=round(LB(j)+(UB(j)-LB(j))*rand());
end
end
x=x0; v=0.1*x0;
for i=1:n
f0(i,1)=ofun(x0(i,:));
end
pbest=x0;
[fmin0,index0]=min(f0);
gbest=x0(index0,:);
ite=1;
tolerance=1;
rho=0.9;
while ite <=maxite && tolerance > 10−12

w =wmax-(wmax-wmin)*ite/maxite;
kappa=1; phi1=2.05; phi2=2.05;
phi=phi1+phi2;
chi = 2 ∗ kappa/abs(2− phi− sqrt(phi2 − 4 ∗ phi));
a=1/w;
for i=1:n
for j=1:m
v(i,j)=chi*[w*v(i,j)+c1*rand()*(pbest(i,j)-
x(i,j))+c2*rand()*(gbest(1,j)-x(i,j))];
end
end
for i=1:n
for j=1:m
x(i,j)=x(i,j)+v(i,j);
end
end
for i=1:n
for j=1:m

if x(i,j)<LB(j)
x(i,j)=LB(j);
elseif x(i,j)>UB(j)
x(i,j)=UB(j);
end
end
end
for i=1:n
f(i,1)=ofun(x(i,:));
end
for i=1:n
if f(i,1)<f0(i,1)
pbest(i,:)=x(i,:);
f0(i,1)=f(i,1);
end
end
[fmin,index]=min(f0);
ffmin(ite,run)=fmin;
ffite(run)=ite;
if fmin<fmin0
gbest=pbest(index,:);
fmin0=fmin;
end
if ite>100;
tolerance=abs(ffmin(ite-100,run)-fmin0);
end
if ite==1;
disp(sprintf(’Iteration Best particle objective fun’));
end
disp(sprintf(’
ite=ite+1;
end
gbest;
fvalue=-x(1)*sin(sqrt(abs(x(1))))-x(2)*sin(sqrt(abs(x(2))))-
x(3)*sin(sqrt(abs(x(3))));
fff(run)=fvalue;
rgbest(run,:)=gbest;
disp(sprintf(’——–’));
end
disp(sprintf(”));
disp(sprintf(’************’));
disp(sprintf(’Final Results——’));
[bestfun, bestrun] = min(fff )
bestvariables = rgbest(bestrun, :)
disp(sprintf(’**********’));
toc
plot(ffmin(1:ffite(bestrun),bestrun),’–b’,’linewidth’,2);
xlabel(’Iteration ’);
ylabel(’fitness function value’);
title(’CSPSO convergence characteristic’)
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In this study, we  aimed to explore the dynamics of rail passengers’ negative 
attitudes that can be  influenced by safety concerns and unreliable train 
operations. We  mainly formulated and analyzed a mathematical model of 
fractional order and derived an optimal control problem considering the Caputo 
fractional order derivative. In the analysis part of the model, we  proved that 
the solutions of the model for the dynamical system are non-negative and 
bounded, and determined the passengers’ negative attitude-free and negative 
attitude persistence equilibrium points of the model. Both the local and global 
stabilities of these equilibrium points were examined. Furthermore, we verified 
the conditions necessary for the existence of optimal control strategies. We then 
proceeded to analyze the proposed control strategies, which aim to prevent 
negative attitudes and improve the attitudes of passengers who have already 
developed negative attitudes. Finally, we  conducted numerical simulations 
to examine the effects of these control strategies. The results revealed that 
protecting passengers from developing negative attitudes and improving the 
attitudes of those who have already developed such attitudes are crucial for 
improving the overall attitude of railway passengers. These measures can 
effectively address any negative experiences caused by safety concerns and 
unreliable train operations.

KEYWORDS

passengers, negative attitude, protection, improvement, fractional order derivative

1 Introduction

Railway transportation plays a significant role in enhancing market accessibility and 
facilitating efficient travel for both passengers and goods. The progress of railway development 
in developed countries has been remarkable, with advanced infrastructure, efficient operations, 
and continuous technological advancements. However, the progress of railway transportation 
in developing nations encounters notable difficulties due to inadequate operation and 
maintenance of railway infrastructure (1). These difficulties contribute to a growing concern 
regarding the escalation in passengers’ negative attitudes toward railway services (2). 
Understanding the control strategies behind these negative attitudes is crucial for improving 
service quality and addressing passengers’ concerns.

The quality of service offered by public transit can be  understood by measuring its 
performance according to the experiences of its riders (3). Several factors influence passengers’ 
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attitudes toward railway transportation, including service quality, 
safety concerns, a lack of effective communication, frequent 
breakdowns, overcrowding, and reliability of operation (4). Insufficient 
communication during disruptions or emergencies can lead to 
frustration and further dissatisfaction among passengers. Passengers 
often feel helpless and uninformed, which escalates their dissatisfaction 
and contributes to negative attitudes toward train services (5).

A decline in passenger satisfaction and an increase in negative 
attitudes can lead to a decrease in ridership, ultimately affecting the 
revenue and viability of railway operations (6). Lower customer 
satisfaction can also lead to a decline in public trust and support, 
hindering the growth and development of the train industry (7). It is, 
therefore, crucial to thoroughly examine the dynamics behind 
passengers’ negative attitudes to gain valuable insights for 
policymakers and railway operators, enabling them to make well-
informed decisions and implement effective measures to improve the 
overall passenger experience.

To better describe and analyze various aspects of a real-world 
problem in various disciplines, including science and engineering, 
mathematical modeling can serve as a powerful tool for representing 
the problem by using mathematical equations, formulas, and 
algorithms. This can be  observed, for instance, by examining its 
application in various contexts (8–10).

The authors discussed how mathematical modeling can help 
identify the key factors that contribute to the dynamics of real-life 
situations by analyzing the stability of equilibrium points. The classic 
autonomous ordinary differential equations representing evolutionary 
systems have no memory, as their solution is independent of the 
previous instant (11). However, the fractional order differential 
equations, in contrast, incorporate the memory effect of an 
evolutionary system, such as passengers’ attitudes. In the context of 
rail passengers, memory effects can play a significant role in shaping 
their attitudes. These effects refer to the influence of past experiences 
and interactions on the present attitude of individuals. Furthermore, 
memory effects that impact the dynamics include the persistence of 
negative experiences, recency bias, confirmation bias, social influence, 
and expectation formation.

A fractional order model means a representation of a system 
described by a fractional differential equation or a system of such 
Equation (12). Mathematicians have developed several approaches for 
fractional derivatives, such as Grunwald-Letnikov, Riemann-Liouville, 
and Caputo’s fractional derivatives. The Riemann-Liouville method 
results in initial conditions that include the limiting values of the 
Riemann-Liouville fractional derivatives at the lower bound t a= , 
and these types of initial conditions lack a recognized physical 
interpretation. Applied engineering problems require the formulation 
of a fractional order model with the use of physically interpretable 
initial conditions, such as X a X a X a( ) ( ) ( )′ ′′, , , and so on. Caputo’s 
approach enables the formulation of initial conditions for fractional 
order differential equations at the lower terminal t a=  (12).

The Caputo fractional derivative approach is another 
mathematical technique that can be employed for evolutionary 
systems with memory effect. The application of this approach has 
been dealt with in various contexts (13–17). Bhalekar et al. (18) 
considered the dynamics of the fractional order systems involving 
non-local derivative operators on singular points in the solution 
trajectories of the systems. The study investigated the behavior of 
the trajectories when the eigenvalues λ  are at a specified stable 

region and examined the existence of singular points in the 
trajectories of such systems in a given region. Echenausía-Monroy 
et al. (19) investigated a physical interpretation of fractional-order 
derivatives in a jerk system using an electronic approach based on 
unstable dissipative systems (UDSs) and a saturated non-linear 
function (SNLF). The results of the analysis revealed that, when the 
orders of the fractional integration are considered, the areas of the 
generated attractor are modified with respect to the integer-order 
dynamic. Zhou et  al. (20) clarified the physical process for 
fractional dynamical systems. The dynamics in fractional order 
systems have been discussed extensively for presenting possible 
guidance in the field of applied mathematics and 
interdisciplinary science.

Motivated by the concepts discussed above, in this study, 
we  constructed a Caputo fractional derivative compartmental 
modeling approach to analyze the dynamics of passengers’ negative 
attitudes toward railway transportation. These advanced analytical 
techniques enable us to gain insights into the underlying factors 
contributing to negative attitudes and explore strategies for improving 
passengers’ attitudes.

The remainder of this article is structured as follows: in section 2, 
we present some basic terminologies necessary for the formulation of 
mathematical models of fractional order. The formulation of integer 
and fractional order models is given in section 3. Section 4 presents 
the optimal control problem, followed by the numerical simulation in 
section 5. Finally, in section 6, we conclude the article with a summary 
and discuss future work.

2 Basic terminology of fractional order 
calculus

The following concepts of fractional order calculus will serve as a 
foundation for constructing the fractional order model in this study:

Definition 1: The Caputo fractional order derivative of order ϑ  
for a function f Cn∈  is defined by Vargas-De-León (17) and 
Petrás (21).
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 ( ) ( )ϑ ϑ→

C
tends to 1tD f t f t as  

(2)

Definition 2: The Caputo fractional order integral of order ϑ > 0  
for a function f Cn∈  is defined by Vargas-De-León (17) and 
Petrás (21).

 
( ) ( ) ( )( )ϑϑ ζ

ζ ζ ϑ
ϑ ζ

−
= <
Γ −∫0

C 1 ,0 1, 0t
t

t
I f t f d t

t  

(3)

Definition 3: Let γ γ1 20 0> >,  be positive parameters, then the 
Mittag–Leffler function is defined by Mainardi (22), Fernandez and 
Husain (23), and Özarslan and Fernandez (24).
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( ) ( )γ γ γ γ

∞

=
=

Γ +∑1, 2
1 21 m

m

m

tE t
 

(4)

Definition 4: Suppose γ2 1=  is the constant parameter. Then, the 
Mittag–Leffler function is defined by Mainardi (22) and Özarslan and 
Fernandez (24).

 
( ) ( ) ( )γ γγ

∞

=
= =

Γ +∑1 1,1
11 m 1

m

m

tE t E t
 

(5)

Definition 5: A constant number θ∗  is identified as an 
equilibrium point of the Caputo-fractional order model when

 
C , , if and only if ,D t f t t f tt

ϑθ θ ϑ θ( )= ( )( ) ∈[ ] ( )=∗, 0 1 0
 

(6)

Proposition 1: The Laplace transform of the Caputo fractional 
order derivative with order ϑ,  n n n N− < ≤ ∈1 ϑ ,  is given by 

L D h s s H s s ht
k

n
k kϑ ϑ ϑ( )( ) = ( ) − ( )

=

−
− −∑

1

1
1 0 , where H s( )  is the Laplace 

transform of the function h t( ) .
Proposition 2: The Laplace transformation of the two-parameter 

functions of the Mittag–Leffler case is given by Balatif et al. (25).

 
L t E t s s

s
γ

γ γ
γ

γ γ

γ
γ

γ
2

1 2
1

1 2

1

1− ±( )( )( ) = −

,


Proposition 3 (Generalized Mean Value theorem): Suppose 

h t Tf( )∈   0,  and C D h t Tt f
ϑ ( )∈   0,  for ϑ∈( 0 1, . Then, the 

theorem states that ( ) ( ) ( )ϑ
= +

Γ
10h t h  C D h tt

ϑ ϑζ( ) ,  where 

ζ ∈ 0,t  for each t  such that 0 < ≤t Tf .

Note: These statements follow from Proposition 3.

 a. The function h  is non-decreasing for all 
t Tf∈ 0, , if C D h tt

ϑ ( ) ≥ 0.
 b. The function h  is non-increasing for all 

t Tf∈ 0, , if C D h tt
ϑ ( ) ≤ 0.

Proposition 4: Suppose g t L( )∈ ( )∩ ( )∞    and ∈,  
n n n N− < ≤ ∈1 ϑ , . Then, the following conditions hold

a.  ( ) ( )ϑ ϑ =( ) .C
tD I g t g t

 b. (Iϑ  ( ) ( ) ( )ϑ
−

=
= − ∑

1

0
) 0 .

!

n k
C k

t
k

tD g t g t g
k

 c. Specifically, if 0 1< <ϑ , then (Iϑ C D g t g t gt
ϑ ) .( ) = ( ) − ( )0

 d. For a constant function g t b( ) =  then ( )ϑ = 0.C
tD b

3 Models’ formulation

3.1 Description and assumptions of the 
models

To analyze the dynamics of the passengers’ negative attitudes 
toward railway transportation, we  divided the total number of 
passengers, denoted by M(t) at a given time t, into five distinct 
mutually exclusive classes: susceptible passengers who can develop 
negative attitudes whenever they are exposed, which is denoted by 
S(t), passengers who are exposed to negative attitudes due to perceived 
safety concerns and unreliable operation of train services, which is 
denoted by E(t), passengers who developed negative attitude due to 
safety concerns, which is denoted by ( ) ,SI t  passengers who 
developed negative attitudes due to unreliable train operation, which 
is denoted by ( ) ,UI t  and passengers whose negative attitudes 
changed, which is denoted by R(t). The passengers who developed 
negative attitudes due to unreliable train operation may have 
encountered trains running late or not adhering to the schedule, 
leading to frustration and dissatisfaction.

 ( ) ( ) ( ) ( ) ( ) ( )= + + + + + .S UM t S t E t I t I t R t
 

(7)

Acquiring a negative attitude from another passenger is not 
influenced by the number of passengers around, and susceptible 
individuals within the population acquire negative attitudes from 
other passengers at a standard incidence rate given by

 
( ) ( ) ( )( )β

λ = ρ +ρSC 1 2t t .S UI t I
M  

(8)

where

ρ1  is the relative effect of passengers with negative attitudes due to 
safety concerns;

ρ2  is the relative effect of passengers with negative attitudes due to 
unreliable train operation; and

β  is the transmission rate of negative attitude.

To construct the Caputo fractional order model for the 
transmission dynamics of negative attitudes among passengers in a 
population, certain key assumptions need to be considered.

A portion q  of susceptible passengers who were exposed to 
negative attitude, i.e., S(t) transfers to the I tS ( ) , a portion of 
passengers who developed negative attitudes due to safety concerns at 
a rate ϖ , while the remaining portion 1−q  joins ( ) ,UI t  a portion 
of passengers who developed negative attitudes due to unreliable train 
operation at the same rate.

Passengers with negative attitude due to safety concerns I tS ( )  
and those with negative attitude due to unreliable train operation 
I tU ( ) progress to the portion of passengers whose negative attitudes 
R t( )  at the rates α1  and α2 , respectively. The rate η  is the 
progression of individuals from the IS  portion to IU . Other 
parameters and state variables are stated in Tables 1, 2.

The population flow diagram, which is based on the model 
descriptions and assumptions given above, illustrates how the negative 
attitude of passengers disseminates among the population.
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3.2 Integer order model

The integer order model, a system of non-linear first-order 
ordinary differential equations, is based on the population flow 
diagram given in Figure 1 and represents the evolution of passengers’ 
negative attitudes, which is given by

 
( )λ= Κ − +SC

dS d S
dt

 

dE
dt

d ESC= − +( )λ ϖS

 
( ) ( )ϖ= − − +α +η1

d 1 q d
dt
S

S
I E I

 
( )ϖ= +η − +α2

d d
dt
U

S U
I q E I I

 

dR
dt

I I dRS U= + −α α1 2
 

(9)

subject to  
S 0 0( ) > ,

 
E IS0 0 0 0( ) ≥ ( ) ≥,

 
IU 0 0( ) ≥ , and 

R 0 0( ) ≥   
(10)

3.3 Fractional order model

In this subsection, we reformulated the transmission dynamics of 
passengers’ negative attitude model (Equation 9). This is done by using 
Caputo derivatives, which allows us to incorporate memory effects 

and gain a deeper understanding of the evolution of passengers’ 
negative attitudes. The mathematical representation of this fractional 
order model can be observed in Equation 11.

 ( )ϑ ϑ ϑλ= − +
C

Kt SCD S d S

 ( )ϑ ϑ ϑλ ϖ= − +
C

St SCD E d E

 ( )ϑ ϑ ϑ ϑ ϑ ϑϖ α η= − + +1

C
t S SD I q E d I

 
C

dD I q E I It U S U
ϑ ϑ ϑ ϑ ϑ ϑϖ α= + − +( )η 2

 
C

D R I I d Rt S U
ϑ ϑ ϑ ϑα α= + −1 2  

(11)

The initial data for the proposed fractional order model  
(Equation 11) is demonstrated by

 
S E I I RS U0 0 0 0 0 0 0 0 0 0( ) ≥ ( ) ≥ ( ) ≥ ( ) ≥ ( ) ≥, , , ,

 
(12)

The analysis of the fractional order model given in Equation 11 is 
presented in the Supplementary material, where theorem 1 shows the 
non-negativity and boundedness of the model, and theorem 2 
demonstrates the existence and uniqueness of solution of the model. 
The equilibrium points and basic reproduction bombers are calculated 

TABLE 1 Description of parameters.

Parameter description

d Natural mortality rate.

K Population recruitment rate.

ϖ Rate at which passengers exposed to negative attitudes develop negative attitudes either due to safety concerns or unreliable train operation.

1α Rate of progression from passengers who developed negative attitudes due to safety concerns to the group whose negative attitudes have changed.

η The progression rate of passengers who developed negative attitudes due to safety concerns to the portion of passengers with negative attitudes due to unreliable train operation.

2α Rate of progression from passengers who developed negative attitudes due to unreliable train operation to the group whose negative attitudes changed.

q Portion of passengers who were exposed to negative attitudes and transferred to passengers’ group who developed negative attitudes due to unreliable train operation ( )I tU .

TABLE 2 Definitions of state variables.

Variable definition

S Passengers who are susceptible to passengers’ negative attitude.

E Passengers who are exposed to negative attitudes.

IS Passengers who developed negative attitudes due to safety concerns.

IU Passengers who developed negative attitudes due to unreliable train operation.

R Passengers whose negative attitudes have changed.
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in section 3. The local stability of the negative attitude free equilibrium 
point is addressed in theorem 3, while the global stability of 
equilibrium points is illustrated in theorems 5 and 6.

4 Optimal control problem

The negative attitude of rail passengers is a complex behavior that 
can be influenced by various factors. In the context of unreliable train 
operations and safety concerns, it is important to address this negative 
attitude to improve the overall passenger experience.

The prevention control strategy aims to reduce the number of 
susceptible passengers by addressing the factors contributing to 
negative attitudes. For example, improving train operations and 
implementing safety measures can help create a positive passenger 
experience and reduce the likelihood of developing negative attitudes. 
By focusing on prevention, the goal is to minimize the number of 
passengers who become exposed to negative attitudes and 
subsequently develop negative attitudes.

On the other hand, the improvement control strategy focuses on 
addressing the negative attitudes of passengers who developed negative 
attitudes and helping them to change their attitudes. Assisting in the 
process of changing their negative attitudes can be done through various 
measures, such as providing information, assistance, and support to 
passengers who have developed negative attitudes. By actively addressing 
and improving these negative attitudes, the goal is to facilitate the process 
of changing their negative attitudes and ultimately reducing the overall 
number of passengers who develop negative attitudes.

By combining both prevention and improvement control 
strategies, the researchers proposed a comprehensive approach to 
managing rail passengers’ negative attitudes. This approach 
acknowledges the importance of addressing the root causes of negative 
attitudes through prevention while recognizing the need to support 
and improve the attitudes of those who have already developed 
negative attitudes. Through this control design, the researchers aimed 
to create a positive rail travel experience for passengers, which in turn 
can enhance customer satisfaction and loyalty.

We presented three control strategies that depend on time and are 
designed to modify the fractional order model (Equation 11). These 
strategies are represented by the Lebesgue controlling functions 
u t1 ( ) , u t2 ( ) , and u t3 ( ) , with 0 ≤ ( ) ( ) ( ) ≤u t u t u t1 2 3 1, , .

These functions serve as measures of control and are defined 
as follows:

 1. The measure to prevent passengers’ negative attitudes is aimed 
at minimizing the effective contact rate, and it is represented by 
the control measure u t1 ( ) . This measure involves taking 
actions to enhance the management of congestion during train 
operations and improve the daily operation of trains by 
ensuring punctuality and regularity.

 2. The time-dependent control measures represented by u t2 ( )  
and u t3 ( )  are improvement strategies for passengers who 
developed negative attitudes as a result of safety concerns and 
unreliable train operations, respectively.

The new reformulation of the Caputo fractional order model’s 
optimal control problem (Equation 11) is based on the control 
variables mentioned earlier.

 
( )( ) ( )ϑ ϑ ϑ

ϑ ϑ ϑ
ρ ρ β +

 = − − +
 
 

1 2
1

C
K 1 S U

t

I I
D S u t d S

M

 
C

D E u t
I I
M

d Et
S Uϑ

ϑ ϑ ϑ
ϑ ϑ

ρ ρ
ϖ= − ( )( ) +( )

− +( )1 1
1 2β

 
C

D I q E d u t It S S
ϑ ϑ ϑ ϑ ϑ ϑϖ η α= −( ) − + + ( )( )1 2 1

 
C

D I q E N d u t It U S U
ϑ ϑ ϑ ϑ ϑ ϑϖ η α= + − + ( )( )3 2

 
C

D R u t I u t I d Rt S U
ϑ ϑ ϑ ϑα α= ( ) + ( ) −2 1 3 2  

(13)

with initial data S 0 0( ) > , E IS0 0 0 0( ) ≥ ( ) ≥, , IU 0 0( ) ≥ , 
and R 0 0( ) ≥ , and the controlling set is 

( ) ( ) ( )( ) ( ) ( ) ( ){ } ∆ = ≤ ≤ ∈ 1 2 3 1 2 3, , : 0 , , 1, 0,C fu t u t u t u t u t u t t T , 
where Tf is the final time of implementing control measures.

The aim of the control problem is to minimize the number of 
people who are exposed to and develop negative attitudes while 
increasing the number of individuals whose negative attitudes change, 
taking into account the cost of implementing control strategies. To 
achieve this, we formulated an objective function that represents the 
goal of reducing the number of individuals who have already 
developed negative attitudes in the population.

 
( ) χ χ χ Γ Γ Γ = + + + + + 

 ∫ 2 2 21 2 3
1 2 3 1 2 3 1 2 30
, , I I

2 2 2
fT

S UJ u u u E u u u dt
 (14)

To manage the number of individuals who developed negative 
attitudes and the associated costs of implementing prevention and 
improvement control strategies, we strived to minimize u t u t1 2( ) ( ), , 
and u t3 ( )  while considering the system (Equation 14) as a constraint.

In this section, the value Tf  represents the final time, while the 
coefficients χ χ1 2, , and χ3 are positive weight constants. The 

measures Γ Γ1 2,
2 2

, and Γ3
2

 represent the relative costs of prevention 

FIGURE 1

The passengers’ flow diagram.
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and improvement corresponding to the controls u u1 2, , and u3 , 
respectively. Additionally, these measures help to balance the units of 
the integrand.

The objective is to locate the optimal values for the controls 
U u u u= ( )1 2 3, , , denoted as U u u u∗ ∗ ∗ ∗= ( )1 2 3, , ,  to achieve the desired 
state trajectories S E I IS U

∗ ∗ ∗ ∗, , , , and R∗  that are solutions of 
(Equation 14) over a given time interval 0,Tf  . These state 
trajectories should also satisfy the initial data and minimize the 
objective function.

In the cost functional, the term χ1E represents the cost related to 
individuals exposed to negative attitudes, the term χ2IS  refers to the 
cost related to individuals who developed negative attitudes due to safety 
concerns, and the term χ3IU  represents the cost related to individuals 
who developed negative attitudes due to unreliable train operation.

Additionally, χi  (where i =1 2 3, , ) are positive constants that 
represent the cost of implementing the three strategies to control, 
and Γi  (where i =1 2 3, , ) is the corresponding effort made to 
minimize the dissemination of negative attitudes toward these 
strategies. Tf  represents the duration for which the control 
measures are applied.

The aim is to determine the optimal control variable u t( )  that 
minimizes the objective function min

u U
J u

∈
( ) , which is subject to the 

new optimal control dynamical system given in  Equation 13 with the 
initial data.

The vector u u u u= { , , )1 2 3  is the vector that controls the system, 
and the set

 
( )( )∞  = ∈ ≤ ≤ =   

3
0, , 0 1, 1,2,3,f iU u L T u i

 
(15)

is a closed and bounded set of controls that are admissible.

4.1 Existence and optimality of the control 
strategies

The fractional order dynamical system (Equation 11) with  
(Equation 12) can be rewritten as follows:

 
C , ,D Y G t Y t H t Y t u t Tt f

ϑ = ( )( )+ ( )( ) ≤ ≤, ,0

( ) = 0,Y t Y  where Y t S t E t I t I t R tS U( ) = ( ) ( ) ( ) ( ) ( )( ), , , ,  
represents the state variables of the dynamical system, and 
u t u t u t u t( ) = ( ) ( ) ( )( , ,1 2 3  represents the control functions or 
variables in the control problem mentioned in  Equation 13. The 
functions G and H are given as follows:
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To establish the existence of the three optimal control strategies, 
we need to verify the following conditions:

 • The control trajectories have at least one feasible solution.
 • The set of admissible controls is convex, bounded, and closed.
 • The function represented by G t Y t H t Y t, ,( )( ) + ( )( )  is bounded 

with respect to both the state variables and the 
controlling variables.

 • The expression χ χ χ Γ Γ Γ
+ + + + +2 2 21 2 3

1 2 3 1 2 3I I
2 2 2S UE u u u  is 

convex on the set of admissible controls U .

According to the definitions mentioned in the manuscript, the 
conditions can be expressed as follows:

If we consider control functions with values u1 1= ,  u2 0= , and 
u3 0=  within the admissible control set U  defined in  Equation 15 and 

the solution Y S E I RU= ( ), ,I , ,S  of the fractional order model 
(Equation 11) with given initial data, then the set of all feasible solutions 
for the control problem is not empty. Furthermore, based on the 
definition of the admissible control set U ,  this control set is bounded, 
closed, and convex. Additionally, according to the existence and 
uniqueness criteria for model (Equation 11), the solutions of model 
(Equation 13) are unique and bounded because 0 1,iu≤ ≤  for i =1 2 3, , .

Theorem 7: The function defined by G t Y t H t Y t u, ,( )( ) + ( )( )  
satisfies the solution.

Y S E RA C= ( ), ,I ,I ,  such that

 ( ) ( ) ( )( )+ ≤ +1 2|| , , || max , || || || ||G t Y H t Y k k Y u
 

(16)

where 
( )ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

β ρ ρ ϖ

η α α

 + + + + =
 + + + + + 

1 2
1

1 1 2 2

1 , ,
max ,

, ,

d d d
k

d d d d            

and   k2 1 2 1= +( )( )max β ρ ρ ηϑ ϑ ϑ ϑ, , .

Proof: Let us consider the matrix G t Y t, ( )( )  in a rewritten form.
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where 
( )ϑ ϑ ϑϑ ρ ρβ +

= −
1 2K S UI I

D
S M

.

Given the definition of the matrix G t Y t, ( )( ) , we can see that 
ϑ ≤K S . Additionally, considering the bounded nature of the solution, 

we demonstrate that

 

( ) ( )ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

β ρ ρ ϖ

η α α

 + + + + ≤
 + + + + + 

1 2

1 1 2 2

1 , ,
|| , || max || ||

, ,

d d d
G t Y Y

d d d d

By employing a similar procedure, we  can demonstrate 
the following:

 
( ) ( )( )ϑ ϑ ϑ ϑβ ρ ρ η≤ +1 2|| , || max , ,1 || ||.G t Y u

Theorem 8: The function expressed as 

( ) χ χ χ Γ Γ Γ
= + + + + +2 2 21 2 3

1 2 3 1 2 3, , I I
2 2 2S Ut Y u E u u u  is convex 

within the admissible control region U , and there exists a 
non-negative constant k  such  
that  t Y u ku, ,( ) ≥ .

Proof: For the function  t Y u, ,( ) , we derived the corresponding 
Hessian matrix given by

 

 
 =  
  

1

2

3

2 0 0
0 2 0 .
0 0 2

u
u

u


Therefore, the matrix   is a positive definite matrix in the 
admissible control region U  and hence  t Y u, ,( ) is strictly convex 

in U .  Let Γ Γ Γ =  
 

1 2 3min , , ,
2 2 2

k  then 

( ) χ χ χ Γ Γ Γ
= + + + + +

Γ Γ Γ Γ Γ Γ ≥ + + ≥ + + 
 

2 2 21 2 3
1 2 S 3 1 2 3

2 2 2 2 2 21 2 3 1 2 3
1 2 3 1 2 3

, , I
2 2 2

2 2 2 2 2 2

Ut Y u E I u u u

u u u k u u u



. Thus, 

we established the proof.
Theorem 9: There is an optimal control point u u u u∗ ∗ ∗ ∗= ( )1 2 3, ,  

and the model-associated solutions

Y S E N N RS R
∗ ∗ ∗ ∗ ∗ ∗= ( ), , , ,  that minimize the objective function 

J u( )  on the admissible control set U , such that min
u U

J u J u
∈

∗( ) = ( ) .

The optimality necessary condition: The optimality necessary 
condition, as stated in Teklu and Terefe (26), is required to be fulfilled 
by the optimal control problem (Equation 13), and  Equation 14 is 
adapted from Pontryagin’s maximum principle stated in Mandal et al. 
(13), Ahmed et  al. (16), and Teklu and Terefe (27), and it is also 
fulfilled by changing into a minimizing Hamiltonian function with 
respect to the control variables u u u1 2 3, ,( ) . The Hamiltonian function 
corresponding to  Equations 13 and  14 is derived as follows:

 

( )

( )( )

( )( )

( )
( )

( )

1 2 S 3

2 2 231 2
1 2 3 1

1

1

2

1

1
2

2

3 1

2 1

, ,  K

 I  

2 2 2
1  

K

 

1  

 

1

U

S

U

S

U

H Y u

E I

u u u

u t

I S
I

d
M

u t

I
I

d E
M

q E

d d
u t

ϑ

ϑ
ϑ ϑ

ϑ
ϑ

ϑ
ϑ

ϑ
ϑ ϑ

ϑ ϑ

ϑ ϑ

ϑ ϑ

χ χ χ

λ

ρ

ρ

ρλ
ρ

ϖ

ϖ

λ

η α

=

+ + +
ΓΓ Γ

+ + +

  −
  
   − β    +    +    

 −
 
  + β    +   − + 
 

− −

+  + +
  + 

( )
( )
( )

4 2

3 2

2 1
5

3 2

S

S

U

S

U

I

q E I

d d
I

u t

u t I

u t I d R

ϑ ϑ ϑ

ϑ ϑ

ϑ

ϑ

ϑ ϑ

ϖ η

λ

α

α
λ

α

 
 
 
 
 
 
 + −
 
 + + 
    +  
 +

+   −   
(17)

where λ λ λ λ1 2 3 4t t t t( ) ( ) ( ) ( ), , , ,  and λ5 t( )  are the co-state 
variables or adjoint variables.

Theorem 10: Let us give the optimal control solutions ui
∗  for 

i =1 2 3, ,  and the solutions of the optimal control problem 
(Equation 13) that minimize the objective function (Equation 15) in 
the admissible control region U , then there are functions 
λ λ λ λ1 2 3 4, , , , and λ5  such that
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where B d= +( )ϑ ϑα1 .
The conditions for the transversality of the system (Equation 18) 

can be expressed as λi fT∗ ( ) = 0 , i = …1 2 5, , , . These conditions are 
based on the Hamiltonian function H  defined mentioned in  
Equation 17. Additionally, the optimal control strategy can 
be determined by
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where λ λ λ λ λ1 2 3 4 5t t t t t( ) ( ) ( ) ( ) ( ), , , , , and λ6 t( )  are the 
co-state variables or adjoint variables and the conditions for 
transversality that are mentioned earlier.

Proof: The existence of the co-state variables 
λ λ λ λ λ1 2 3 4 5t t t t t( ) ( ) ( ) ( ) ( ), , , ,  is demonstrated by applying 
Pontryagin’s maximal principle, as shown in reference (15, 28). 
Furthermore, the characterization of each optimal control strategy 
outlined in Equation 13 is achieved by solving the following set of 
partial differential equations within the interior of the admissible 
control set U  as follows:

 

∂
∂
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∂
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=
∂
∂
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H
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H
u

H
u1 2 3

0.
 

(19)

5 Numerical simulation

In this section, we conducted numerical simulations of model 
(Equation 11) and control problem (Equation 13) to gain a deeper 
understanding of the system’s behavior and pinpoint the most efficient 
optimal control strategies that influence the evolution of passengers’ 
attitudes. These simulations yield visualizations, enhancing our 
intuitive grasp of how different factors affect the transmission 
dynamics and serving as valuable tools for scenario evaluation. 
We  utilized the ODE45 solver in MATLAB 2023a for numerical 
simulations to capture the dynamics of the passengers’ attitude model. 

This solver, belonging to the second-order Runge–Kutta family of 
methods and utilizing either the Euler forward or backward finite 
difference method, is chosen for its ability to generate accurate and 
reliable results (29).

5.1 Numerical simulations to show the 
effect of changing fractional order

Some values of the fractional order ϑ  are taken to check the 
performance of the proposed model. The simulation curve illustrated in 
Figures 2A-D indicates how changes in fractional order affect the negative 
attitudes of passengers toward railway transportation. Based on the results 
of Figure 2, it can be observed that, when the fractional order decreases, 
there is a decrease in the numbers of exposed passengers and passengers 
with negative attitudes due to safety concerns and unreliable train 
operations. These changes are attributed to the memory effect.

Moreover, decreasing fractional order leads to an increase in the 
number of passengers whose negative attitudes toward railway 
transportation have changed. This indicates that the fractional order 
model yields better model accuracy than the integer order model.

5.2 Numerical simulation of the optimal 
control problem

To assess the effects of controlling strategies and validate the 
analytical findings of the fractional order optimal control problem, 
we conducted a numerical simulation (Equation 13) using MATLAB 
2023a programming codes.

We employed the Euler forward or/and backward finite difference 
method for the simulation, using different initial conditions and 
assuming specific baseline parameter values to be  χ χ χ1 2 3 32= = = , 
Γ =1 40 , Γ =2 43 , Γ =3 48,  q = 0 5. , β = 0 38. , η= 0 34. , d2 0 2= . , 
d = 0 23. ,  =K 100 , ϖ = 0 4. , α1 0 45= . , and α2 0 38= . . In this 
subsection, we conducted a numerical simulation using the Euler 
forward method to investigate the impact of controlling strategies on 
the state variables in the optimal control problem (Equation 13). 
We assumed that the order of the derivative is ϑ = 0 96. .

Figures  3–5 in the numerical simulations demonstrated the 
importance of control strategies in addressing the dissemination of 
negative attitudes among passengers in the community. We considered 
optimal controlling strategies to showcase the impact of protection 
and improvement measures on reducing transmission rates. The first 
strategy involves implementing only the protection strategy ( u1 ). The 
second strategy focuses solely on the improvement of the attitudes 
individuals ( u2 ) who developed negative attitudes due to safety 
concerns. The third strategy targets the improvement of the attitudes 
of individuals ( u3)  who developed negative attitudes due to unreliable 
train operation. The fourth strategy combines both improvement 
strategies ( u2  and u3 ) simultaneously, and finally, the fifth strategy 
involves implementing all of the controlling strategies ( u1 , u2 , and 
u3 ) together.

5.2.1 Effect of protection ( 1 0u ≠ )
In this sub-section, we conducted a numerical simulation under 

two conditions: one without applying improvement-controlling 
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strategies and the other with the implementation of a preventive 
strategy (Strategy 1), that is, by setting 1 0u ≠ , u2 0= ,  and u3 0=  
while also considering the value ϑ = 0 96. . The graphical 
representation in Figure  3 that illustrates the influence of the 
prevention strategy on the dynamics of passengers’ transmission of 
negative attitudes shows that implementing the controlling strategy 
u1  significantly decreases the exposed passengers, the passengers who 
developed negative attitudes due to safety concerns, and the passengers 
who developed negative attitudes due to unreliable train operation, 
while there was an increase in the number of susceptible passengers 
and in the number of passengers whose negative attitudes changed.

5.2.2 Effect of improvement strategies ( 2 0u ≠
and 3 0u ≠ )

In this subsection, we performed numerical simulations without 
applying a protection control strategy (u1 ) and applying the 
improvement strategies 2( 0u ≠ and 3 0)u ≠ . From the simulation 
illustrated by Figure 4B shows that individuals in the exposed class are 
reduced slightly as compared to Figure  3B, but passengers who 
developed negative attitudes due to safety concerns and the passengers 
who developed negative attitudes due to unreliable train operation are 
reduced rapidly compared to the first similar classes.

5.2.3 Effect of protection and improvement 
strategies ( 1 20, 0,u u≠ ≠ and 3 0)u ≠

In this subsection, we performed numerical simulations without 
applying all controlling strategies in place and by applying all possible 
controlling strategies 1 2( 0, 0,u u≠ ≠ and 3 0)u ≠  simultaneously.

Here, we can compare the impact of implementing the different 
control strategies on the emergence of negative attitudes. Figure 5A 
demonstrates that implementing all proposed control strategies 
significantly increases the number of susceptible individuals 
compared to the numbers shown in Figures 3A, 4A. Additionally, 
Figure 5B illustrates that all proposed controlling strategies greatly 
decrease the number of exposed individuals compared to the 
number of exposed individuals illustrated in Figures  3B, 
4B. Furthermore, Figure 5C reveals that all proposed controlling 
strategies have a considerable impact on reducing the number of 
passengers who developed negative attitudes compared to the 
numbers in Figures 3C,D, 4C. Finally, in Figure 5D, implementing 
all proposed strategies notably increases the number of individuals 
whose negative attitudes changed compared to the number of 
individuals whose negative attitudes changed as illustrated in 
Figures 3E, 4D. Ultimately, it is observed from Figure 5 that applying 
all possible controlling strategies 1 2( 0, 0,u u≠ ≠  and 3 0)u ≠  

A B

C
D

FIGURE 2

Effect of fractional order on the status of the state variables.
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simultaneously leads to a significant reduction in the number of 
passengers who develop negative attitudes in the community after 
10 years. When compared to other strategies, implementing 
protection alone or improvement strategies alone, both protection 
and improvement strategies together is the most effective strategy 
in addressing the evolution of negative attitudes due to unreliable 
train operations or safety concerns among passengers in 
the community.

6 Conclusion

In this study, the dynamics of passengers who developed negative 
attitudes by applying the Caputo fractional order derivative approach 
whenever the fractional order ϑ = 0 96.  is presented. Some 
fundamental proprieties of the solutions of the proposed fractional 
order model, such as existence, uniqueness, positivity, and 
boundedness, are analyzed. We derived the formula for the model’s 

A B

C

E

D

FIGURE 3

Effect of the prevention strategy (𝑢1) on the negative attitude status of different population groups with 𝜗=0.96.
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basic reproduction number using the next-generation operator 
approach. Using the stability criteria for the fractional order model, 
we analyzed the results of the stability of the proposed model with 
respect to the basic reproduction number. We examined the local and 
global asymptotical stability of the negative attitude-free equilibrium 
points whenever the corresponding basic reproduction number is less 
than unity.

Moreover, we carried out the local and global stability of the 
negative attitude endemic equilibrium point of the model. 
We formulated and analyzed the corresponding optimal control 
problem for the fractional order model by incorporating three 
time-dependent control strategies: prevention measures, 
improvement measures for negative attitudes due to safety 
concerns, and improvement measures for negative attitudes due to 
unreliable train operation by applying the Pontryagin’s maximum 
principle. Moreover, using the well-known Euler’s forward or/and 
backward finite difference numerical methods, we established the 
results of the numerical simulation of the proposed optimal control 
problem. From the results of the numerical simulation given in 
Figure  5, we  concluded that applying all possible controlling 
strategies 1 2( 0, 0,u u≠ ≠ and 3 0)u ≠  simultaneously greatly 
decreases the number of passengers who developed negative 
attitudes in the community after a decade. Strategy 4 is the most 

effective strategy to tackle the disseminating rate of passengers’ 
negative attitudes throughout the community compared to 
other strategies.

Finally, as this study is not comprehensive, other researchers in 
the field have the opportunity to enhance the proposed model by 
including additional factors such as a stochastic approach, considering 
the age structure of passengers and refining the model with relevant 
real-world data.
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