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Functional connectomics enables researchers to monitor interactions among 
thousands of units within the whole brain simultaneously by using various vivo 
imaging technologies. For example, resting-state functional magnetic resonance 
imaging can image low-frequency fluctuations in the spontaneous brain activities, 
representing a popular tool for macro-scale functional connectomics to characterize 
individual differences in normal brain function, mind-brain associations, and the 
various disorders. Reliability and reproducibility represents the most fundamental and 
critical aspect for the human brain functional connectomics to both research and 
clinical practice. Unfortunately, lacking a data platform for researchers to rigorously 
explore the reliability and reproducibility of the functional connectome indices has 
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been a bottleneck of further development of clinically oriented imaging markers in 
the field. Recent efforts on open neuroscience, such as Consortium for Reliability and 
Reproducibility, Human Connectome Project and OpenFMRI, provide the data for the 
field to refine and evaluate reliability and reproducibility of novel methods as well as 
those with widespread usage but without sufficient consideration of reliability. This 
Frontiers Research Topic aims at bringing together contributions from researchers in 
brain imaging, neuroscience, computer sciences, applied mathematics, psychology 
and related fields from an interdisciplinary perspective. By focusing on cutting-
edge research across these fields, this topic will create new agenda on quantifying 
the reliability and reproducibility of the myriad connectomics-based measures and 
informing expectations regarding the potential of biomarker discovery.
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Editorial on the Research Topic

Reliability and Reproducibility in Functional Connectomics

Research on functional connectomics of the human brain is exploding (Kelly et al., 2012; Smith
et al., 2013), especially for clinical and neurodevelopmental as well as aging studies. However,
advances in the reliability and validity of functional connectomics have so far lagged the application
of these methods in practice (Zuo and Xing, 2014). In statistical theory, reliability serves as an
upper limit of validity and is measurable in practice while validity is more difficult to measure
directly (e.g., specific trait and disease) thus often approximated by predictive validity (Kraemer,
2014). Therefore, high reliability is a required standard for both research and clinical use. Of
note, excellent reliability (>0.8) serves the clinical standard on measurement scales (Streiner et al.,
2015). This reflects clinical call of tools with high inter-individual differences (easily differentiating
individuals) and low intra-individual differences (high individual stability) (Fleiss et al., 2003;
Zuo and Xing, 2014). This has been recently demonstrated in the anatomy of reliability (Xing
and Zuo, 2018). In reliability studies, statistical quantification of reliability is often implemented
with intracclass correlation (ICC) regarding its well-developed theory in the field of probability
and statistics while the types of ICC are determined by the repeated-measure experimental
design (Shrout and Fleiss, 1979; Koo and Li, 2016). Failure of reliability can be an important
cause of small statistical power (Button et al., 2013), low reproducibility (Poldrack et al., 2017),
puzzlingly high correlations (Vul et al., 2009), and overwhelming need of big data or large
sample sizes (Streiner et al., 2015; Hedge et al., 2018). In the field of human brain mapping
with magnetic resonance imaging (MRI), structural MRI has clinically-acceptable reliability of
mapping brain morphology (Madan and Kensinger, 2017) while most functional MRI measures
are challenged by the clinical standard on the reliability (Bennett and Miller, 2010; Zuo and Xing,
2014). This research topic takes action on further steps of improving the reliability of fMRI-based
connectomics by publishing 12 papers across experimental design, computational algorithm, and
brain dynamics theory.
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Given the sensitivity of resting-state fMRI (rfMRI)
connectivity measurements to physiological variables,
the development of improved strategies for correction
of physiological artifacts is imperative. Golestani et al.
demonstrated significant improvements of reproducibility
of common rfMRI metrics by the low-frequency physiological
correction with end-tidal CO2. Related to human arousal, as
demonstrated in Wang et al., test-retest reliability of human
functional connectomics can be significantly improved by
removing the impact of sleep using measures of heart rate
variability derived from simultaneous electrocardiogram
recording. These findings highlight the need of recordings of
physiological variables for reproducible functional connectomics.
In addition, the use of eyes-open versus eyes-closed resting is
an important aspect of rfMRI experimental design and has
been of great research interest due to its relationships with
visual function (Yang et al., 2007) and arousal (Yan et al.,
2009; Tagliazucchi and Laufs, 2014). The study by Yuan et al.
provides a novel multivariate method to examine the amplitude
differences of brain oscillations between eyes open and eyes close
conditions during resting state as well as their scanner-related
reliability. Head motion during scanning is another potential
source of variability and has been relatively well investigated
regarding its impacts on reliability of rfMRI derivatives by using
various preprocessing strategies (Yan et al., 2013; Ciric et al.,
2017; Parkes et al., 2018). Furthermore, how these variables are
modeled and the order in the preprocessing pipelines they are
modeled can have significant impacts on results (Chen et al.,
2017; Lindquist et al., 2019). These advances have implications
on the way of further optimizing the reliability observed
(Golestani et al.; Wang et al.).

Many computational algorithms exist for characterizing
features of the organization in the functional connectomes
across different spatial and temporal scales (Zuo and Xing,
2014). Reliability can guide both methodological choices between
these algorithms as well as the validation of new algorithms.
Common algorithms have been recently given a state of
art review in terms of their test-retest reliability (Zuo and
Xing, 2014), indicating that network metrics derived from
graph theory applied to rfMRI signal are less reliable (Zuo
et al., 2012) than usually required while both local functional
homogeneity measure (Zuo et al., 2013) and global network
measure with dual regression of independent component analysis
(drICA) (Zuo et al., 2010a) almost reach the clinical standard
of reliability. This topic offers five studies to illustrate more
sophisticated developments of reliability of these algorithms. This
topic proposed a novel algorithm for network generation at
individual level, using topological filtering based on orthogonal
minimal spanning trees to show both functional and structural
networks with highly reliable graph theoretical measures using
magnetoencephalography (Dimitriadis et al.) and diffusion MRI
(Dimitriadis et al.). Reliability evaluations are comprehensively
investigated for group information guided ICA, independent
vector analysis (IVA) (Du et al.). and other high-order functional
connectivity (Zhang et al.). The single-subject spatially-
constrained ICA performs favorably compared to IVA (Du
et al.) and improves detection of clinical differences compared

to drICA (Salman et al., 2018). Additionally, Di and Biswal
warned the field by demonstrating the poor reliability of using
psychophysiological interaction analyses in the context of inter-
individual correlation or group comparisons.

As commented by Sato et al., open science with sharing of
large datasets has paved the way for delineating the fingerprints
of human brain function. This is reflected by the fact that most
studies in the topic employed the data from Consortium for
Reliability and Reproducibility (Zuo et al., 2014), representing
a means of accelerating science by facilitating collaboration,
transparency, and reproducibility (Milham et al., 2018). To
address the reproducibility issue in the field of human brain
mapping, the Organization for Human Brain Mapping (OHBM)
have created a Committee on Best Practices in Data Analysis
and Sharing (COBIDAS) and published its report (Nichols et al.,
2017). Beyond the advances, two studies also raised challenges
of big-data applications to clinical population, particularly in
understanding the high heterogeneity of spontaneous brain
activity in ADHD and autism (Wang et al.; Syed et al.). As noted
in Button et al. (2013), large samples may produce statistically
significant results even for extremely small effects which have
little add to diagnostic or clinical utility. These observable but
small effects are likely caused by weighing the low measurement
reliability with the true effect (Streiner et al., 2015), which could
bemoderate to large. It is thus very fundamental to estimate effect
size in neuroimaging and its relationship with statistical power
although most existing studies have not factored the reliability
in doing so (Reddan et al., 2017; Geuter et al., 2018). This
is particularly valuable for some widely used but less reliable
measures (e.g., seed-based functional connectivity) (Shou et al.,
2013; Zuo and Xing, 2014; Siegel et al., 2017) to be improved
with acceptable reliability ahead of its clinical use (Fox, 2018).
Meanwhile, data harmonization techniques such as ComBat (Yu
et al., 2018) should be developed to reduce inter-scan or inter-
site differences in multi-center big-data studies. One possibility
of filling these gaps between empirical computation and clinical
application is theoretical development of brain dynamics (Woo
et al., 2017). The work by Tomasi et al. demonstrated a power
law of the brain network dynamics, which has been framed
into a theory of neural oscillations (Buzsáki and Draguhn,
2004). Combination of theory and data via structure-function
fusion (Zuo et al., 2010b; Jiang and Zuo, 2016) will remove the
reliability barriers of developing clinically useful human brain
mapping, which is the final call of the current research topic.
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A commentary on

A test-retest dataset for assessing long-term reliability of brain morphology and resting-state

brain activity

by Huang, L., Huang, T., Zhen, Z., and Liu, J. (2016). Sci. Data 3:160016. doi: 10.1038/sdata.2016.16

A transformation toward open neuroscience is ongoing (Milham, 2012), and increases the
availability of high-quality, open-access neuroimaging datasets (Poline et al., 2012; Mennes et al.,
2013). Consequently, a new set of analytical approaches, including discovery science (Biswal
et al., 2010) and focus on individual rather than group-level effects (Finn et al., 2015; Miranda-
Dominguez et al., 2014), are increasingly accessible. However, moving to single-subject statistics
raises specific concerns that must be addressed. Notable amongst these is the test-retest reliability
of fMRI-based metrics (Dubois and Adolphs, 2016). Recently, Huang et al. (2016) provided a
test-retest neuroimaging dataset (BNU2), with an inter-scan interval in the order of months,
allowing investigation of the temporal reliability of features extracted from rs-fMRI. In the spirit
of the data-sharing initiatives, the “Consortium for Reliability and Reproducibility in Functional
Connectomics” (CoRR) publicly released this data (Zuo et al., 2014).

Recently, Finn et al. (2015) investigated the existence of functional “connectome fingerprints.”
The authors hypothesized that, despite overall similarity in connectivity patterns across subjects,
portions of brain connectome variability would be fairly singular to each individual (Mueller et al.,
2013; Gordon et al., 2015; Laumann et al., 2015; Xu et al., 2016). This notable study demonstrated
that, using only the functional connectivity profile extracted from an fMRI scanning session, it
was possible to identify the same subjects from their profiles from a second session a few days
later. Interestingly, this hypothesis of a functional connectivity fingerprint was also supported by
previous work (Miranda-Dominguez et al., 2014), which additionally showed that such individual
signatures exist not only in humans but also in non-human primates.

However, the extent to which connectome profile stability can be generalized to more extended
timescales remains largely untested. Furthermore, the vast majority of the functional connectome
studies to date focus on timescales of seconds to minutes or years to decades (Poldrack et al., 2015;
Huang et al., 2016, but see Xu et al., 2016). We thought that the BNU2 dataset is quite suitable
to assess the reliability and stability of connectome fingerprints on an intermediate timescale of
months. In fact, the released BNU2 dataset consists of anatomical and functional data from 61
healthy adults (19–23 years old) scanned under a resting-state protocol (eyes closed) in two sessions
at an interval of 103–189 days. Further information about scanning parameters, demographical and
quality metrics data can be found in Huang et al. (2016).
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We preprocessed the data and extracted individual functional
connectivity estimates using CONN toolbox version 15.g
(Whitfield-Gabrieli and Nieto-Castanon, 2012) with standard
MNI152 pipeline and parameters. Conservative options
(discarding volumes with displacement >0.5 mm and global-
signal z-value >3) for scan motion censoring were applied,
since motion artifacts are a well-recognized source of error

FIGURE 1 | Functional networks—Box-plots of intra (red) an inter-subject (green) correlations between the first and second resting state fMRI

sessions. The analyses are carried out separated by networks and the connectome fingerprinting accuracy is highlighted as percentage. Cing. Oper.,

Cingulo-opercular; Cing. Par., Cingulo-parietal; DMN, Default-mode network; Dorsal Attn, Dorsal attention; Fronto-par, Fronto-parietal; Retr. Temp.,

Retrosplenial-temporal; SMh, somatomotor-hand; SMm, somatomotor-mouth; Ventral Attn, Ventral attention.

in functional connectivity studies using fMRI. The pairwise
bivariate correlations (functional connectivity) among 333
cortical regions-of-interest (ROIs) were obtained using the
Gordon et al. (2016) parcellation. Considering the upper
triangular values of the individual correlation matrices as
the subject connectivity profile, a functional connectome
fingerprinting analyses was then carried out. The similarity
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between the two profiles was then measured with Spearman’s
correlation coefficient. The within-subject correlation between
the two sessions determines the accuracy as it reflects the
proportion of subjects correctly identified. Note that the
expected accuracy by chance is 1/61= 1.6%.

We expected to reproduce the original results from
connectome fingerprint studies (Miranda-Dominguez et al.,
2014; Finn et al., 2015) if the individual profiles are stable
over months. In order to do so, we attempted to identify the
subjects in the second session based on the profiles similarity
to the first session. As a second step, we calculated the intra-
and inter-subject similarities between the two sessions for each
subject. The inter-subject similarity was calculated by random
sampling an individual at the second session. We also sought to
investigate how large-scale networks connectivity varies within
and between subjects in the timescale of months. Each brain
parcel was labeled for the conventional resting-state networks,
as provided by the Gordon atlas. Thus, we conducted the
two previously described analyses’ steps considering all ROIs
and each network separately. Based on previous findings of
within and between subject variability of network connectivity
(Mueller et al., 2013; Miranda-Dominguez et al., 2014; Zuo and
Xing, 2014; Chen et al., 2015; Finn et al., 2015; Poldrack et al.,
2015), we expected increased discriminability of individuals for
heteromodal associative networks.

The results are shown in Figure 1. A high accuracy of 85%
for the whole-brain connectivity profile was found. Moreover,
accuracies were above 90% for the default mode and the fronto-
parietal networks. Interestingly, accuracies for primary sensory
and motor networks were lower. It is likely that the ability
to uniquely discriminate individuals relies on features with
both low within and high between-subject variability over time.
For all the networks investigated, we noticed a tendency for
higher similarity within subjects than between them. Overall,
these results suggest stable connectome fingerprints exist over
months and are in agreement with the previously reported inter-
individual variability of networks including heteromodal areas.
However, caution should be taken when interpreting differences
in accuracy between networks as the number and extent of
ROIs varies. Since each ROI signal is based on average across

voxels, networks with larger parcels may have superior signal-to-
noise ratios. Moreover, the number of ROIs may be related to
redundancy of information in the connectivity matrices, which
would also affect accuracies. Remarkably, the networks which
presented the lowest subjects identification accuracies have <8
ROIs.

Results from individual-based fMRI metrics can be framed
by the usual concepts of validity and reliability (Dubois and
Adolphs, 2016). However, an inherent issue of the approaches
like those proposed here is the extent to which validity and
reliability can be disentangled. In other words, it is possible
to state that connectome fingerprints are stable over the
months, which would constitute a claim for the validity of the
underlying neural phenomena. Alternatively, but not mutually
exclusively, it is also possible that test-retest reliability varies
between subjects and networks. We argue that continuous
effort for data-sharing, in the spirit of the CoRR and other

initiatives, is of paramount importance as disentangling these
factors will ultimately depend on accumulating evidence for the
stability of connectome fingerprints across different timescales
and with large datasets. Establishing the stability of these
measures, in turn, will be essential to investigate true effects
of development on the connectomes. Furthermore, adopting
comparable acquisition parameters and open and reliable data
processing will be necessary to further assure the validity of
remarkable findings such as individually unique connectivity
profiles.
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The resting-state fMRI (rs-fMRI) signal is affected by a variety of low-frequency

physiological phenomena, including variations in cardiac-rate (CRV), respiratory-volume

(RVT), and end-tidal CO2 (PETCO2). While these effects have become better understood

in recent years, the impact that their correction has on the quality of rs-fMRI

measurements has yet to be clarified. The objective of this paper is to investigate

the effect of correcting for CRV, RVT and PETCO2 on the rs-fMRI measurements.

Nine healthy subjects underwent a test-retest rs-fMRI acquisition using repetition times

(TRs) of 2 s (long-TR) and 0.323 s (short-TR), and the data were processed using

eight different physiological correction strategies. Subsequently, regional homogeneity

(ReHo), amplitude of low-frequency fluctuation (ALFF), and resting-state connectivity of

the motor and default-mode networks are calculated for each strategy. Reproducibility

is calculated using intra-class correlation and the Dice Coefficient, while the accuracy

of functional-connectivity measures is assessed through network separability, sensitivity

and specificity. We found that: (1) the reproducibility of the rs-fMRI measures improved

significantly after correction for PETCO2; (2) separability of functional networks increased

after PETCO2 correction but was not affected by RVT and CRV correction; (3) the effect

of physiological correction does not depend on the data sampling-rate; (4) the effect

of physiological processes and correction strategies is network-specific. Our findings

highlight limitations in our understanding of rs-fMRI quality measures, and underscore

the importance of using multiple quality measures to determine the optimal physiological

correction strategy.

Keywords: resting-state fMRI, physiological noise, test-retest reproducibility, sensitivity, specificity, end-tidal

CO2, respiratory volume, heart rate variability
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INTRODUCTION

Resting-state fMRI is typically measured through blood
oxygenation level dependent (BOLD) contrast, which indirectly
measures brain function through blood oxygenation changes
following neuronal activity. The typical BOLD-measurement
technique is gradient-echo echo-planar-imaging (GE-EPI).
However, the BOLD signal contains not only neuronal
contributions, but also several physiological contributions,
which can either generate BOLD-related hemodynamics or
introduce artifacts through interactions with the magnetic field.
For instance, respiration and heartbeat generate bulk motion
as well as local movement that is most pronounced in the
cerebrospinal fluid (CSF), brain stem, and in the vicinity of large
blood vessels (Dagli et al., 1999). In addition, respiration causes
susceptibility changes in the lungs that interfere with the static
magnetic field and induce shifts in the MR image, mainly in
the phase-encoding direction (Hu et al., 1995; Raj et al., 2001;
Pfeuffer et al., 2002; Murphy et al., 2013)—a major concern for
GE-EPI.

Typically, the rs-fMRI sampling rate is ∼0.5Hz, which is
only appropriate for representing signal changes up to 0.25Hz.
This is much lower than the Nyquist sampling rate required for
the fundamental cardiac and respiratory frequencies (∼1 and
∼0.3Hz, respectively), raising the possibility that physiological
contributions to rs-fMRI measures depend on signal sampling
rate. Moreover, neuronally-relevant information in rs-fMRI data
is commonly identified with the low-frequency range (below
0.1Hz; Cordes et al., 2001), which is shared with low-frequency
physiological fluctuations. The most common examples of these
include cardiac rate variation (CRV), respiratory volume per
unit time (RVT) and pressure of end-tidal CO2 fluctuations
(PETCO2). RVT ismainly localized in the graymatter, specifically
in regions with high vascular density, including the occipital
region and the default mode network (DMN; Birn et al., 2006).
On the other hand, the effect of CRV is strongest in brain regions
close to arteries and CSF (Chang et al., 2009). Finally, fluctuations
in arterial pressure of CO2, which can be indirectly measured
through PETCO2, alter the BOLD signal through vasodilatory
and constrictive action. Like the RVT effect, the PETCO2 effect is
dominant in the graymatter (Wise et al., 2004; Chang andGlover,
2009; Golestani et al., 2015).

In the context of rs-fMRI, these physiological effects have
generally been considered as artifacts from non-neuronal sources
that can mimic BOLD signal fluctuations and connectivity,
potentially reducing the reliability and neuronal-specificity of rs-
fMRI measures. Some excellent works in recent years established
the theoretical foundation for investigating and removing these
physiological effects from the rs-fMRI signal (Birn et al., 2006;
Chang et al., 2009). Specifically, the typical procedure is to record
the corresponding physiological signals during the rs-fMRI
data acquisition, model their effects on the BOLD signal and
eliminate them using regression (Birn et al., 2006; Chang et al.,
2009; Golestani et al., 2015). However, little is known about
the effect of the correction on the quality of rs-fMRI measures,
and indeed, the consequences of different physiological
corrections.

In the rs-fMRI literature, the accuracy of rs-fMRI measures
is typically assessed based on their test-retest reproducibility,
commonly quantified through the intra-class correlation
coefficient (ICC; Anderson et al., 2011b; Chou et al., 2012; Faria
et al., 2012; Zuo and Xing, 2014). ICC is defined as the ratio of
inter-subject variance to total variance (inter-subject + inter-
session variance). If within-subject inter-session variance were
considerably smaller than inter-subject variance, ICC would be
close to one, which is inferred as high reproducibility. Previous
studies of various rs-fMRI measures have shown moderate to
high reproducibility, depending on the measure (Zuo and Xing,
2014). That is, measures such as amplitude of low frequency
fluctuations (ALFF; Zuo et al., 2010a) and regional homogeneity
(ReHo; Zuo et al., 2013) are highly reproducible across sessions,
whereas connectivity metrics derived from graph-theoretical
network analysis are considered not very reproducible (Wang
et al., 2011). Moreover, the reproducibility of connectivity maps
is sensitive to acquisition length, the number of time points
included (Birn et al., 2013; Liao et al., 2013), the sampling rate
(Liao et al., 2013) and of course the processing steps (Franco
et al., 2013; Zuo et al., 2013). The ICC, however, only assesses the
reproducibility of the connectivity values but not that of network
extent. The latter has previously been assessed using the Dice
Similarity Coefficient (Amemiya et al., 2014; Ganger et al., 2015;
Jann et al., 2015). The Dice Coefficient compares the spatial
extent of different connectivity maps, and a Dice Coefficient
close to unity reflects high overlap between two maps, hence
high spatial reproducibility.

Notwithstanding the current emphasis on reproducibility as
the chief quality measure, high reproducibility does not equal to
high measurement quality. For instance, we should also like to be
able to distinguish between the areas that are part of a network
from those outside of it (i.e., high sensitivity and specificity).
Yet, sensitivity and specificity has been largely overlooked in
the literature, as they are more difficult to assess. In that
respect, while the true individual resting-state connectivity map
is unknown, a number of resting-state functional networks have
been consistently found in various populations (Damoiseaux
et al., 2006; Yeo et al., 2011). The resulting group-based network
atlases, which are arguably less affected by physiological artifacts
compared to the individual subject-level maps, are presumably
more robust and representative of true functional networks.
Thus, we may now have a means to quantify the sensitivity and
specificity of rs-fMRI connectivity maps.

To the authors’ best knowledge, there exists only one prior
study addressing the effect of various physiological corrections
on rs-fMRI measurement quality, despite the importance
of the topic (Birn et al., 2014). Interestingly, the findings
suggest that physiological correction may have little or even a
negative effect on the reproducibility of the fMRI connectivity
patterns. To explain this surprising finding, the authors skilfully
demonstrated that physiological correction reduces both within-
and between-subject variance, resulting in an overall ICC
reduction. Despite this observation, the authors recommend
removing the physiological effects from the BOLD signal, as the
physiological correction would potentially increase the validity
of the rs-fMRI connectivity studies. Moreover, the authors
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correctly admitted in the paper that the accuracy of using
a global physiological regressor for physiological correction
is questionable, given the evident inter-subject and regional
variability in the BOLD physiological response (Falahpour et al.,
2013; Cordes et al., 2014; Golestani et al., 2015). Nevertheless,
this work leaves unanswered a number of important questions.
First, it only addressed the effects of CRV and RVT. Given
recent evidence of the unique effects of PETCO2 fluctuations
on rs-fMRI (Golestani et al., 2015), the effect of PETCO2

correction should also be addressed. Second, the study relied
solely on reproducibility as a metric of merit, and used ICC
as the only measure of reproducibility, neglecting other aspects
of rs-fMRI data quality. In addition, the study focused on
functional connectivitymeasurements and did not consider other
commonly used rs-fMRI measures such as ReHo and ALFF.

In this paper, we investigate the effect of a number of
correction strategies involving three low-frequency physiological
signal sources (CRV, RVT, and PETCO2) on the rs-fMRI
measurements. The novelties of this study are: (1) we study
the effect of PETCO2 correction in addition to CRV and
RVT correction; (2) we estimate and eliminate the effect of
physiological modulations using a voxel-wise instead of a global
approach, accounting for potential inter-subject and inter-
regional variability; (3) in assessing reproducibility, we use not
only the ICC, but also the Dice Coefficient; (4) in addition
to reproducibility, we measure the sensitivity and specificity of
the resting-state connectivity maps with the help of a resting-
state connectivity template (Yeo et al., 2011); (5) we also assess
the separability of the connectivity maps by calculating relative-
connectivity of within-network connectivity to between-network
connectivity; (6) we include ReHo and ALFF in addition to
resting-state connectivity in our assessments; (7) we investigate
the effect of fMRI acquisition sampling rate on the efficacy of
physiological corrections.

METHODS

Participants and Data Acquisition
Nine healthy subjects participated in this study (3 male; mean age
= 26± 5.8 years). Participants were recruited from Baycrest and
local communities through the Baycrest Participants Database.
The study was approved by the research ethics board (REB) of
Baycrest, and the consent obtained from all participants was both
written and informed, in accordance with the Declaration of
Helsinki.

All images were acquired using a Siemens TIM Trio 3
Tesla System (Siemens, Erlangen, Germany), with a 32-channel
phased-array head coil for reception and body-coil transmission.
We acquired rs-fMRI data using multiple repetition times (TR)
to investigate the effect of sampling rate. Each TR was used in
two sessions to allow assessment of test-retest reproducibility.
Specifically, the “long-TR” protocol involved conventional single-
shot gradient-echo echo-planar imaging (GRE-EPI; TR = 2,000
ms, TE = 30 ms, flip angle = 90◦, 26 slices, 0.6mm between-
slice gap, 3.44 × 3.44 × 4.6 mm3 voxels, matrix size: 64 ×

64 × 26, 240 frames), while the “short-TR” protocol involved
slice-accelerated (Feinberg et al., 2010; Setsompop et al., 2012)

single-shot GRE-EPI [TR= 323ms, TE= 30ms, flip angle= 40◦,
15 slices, 1mm between-slice gap, 3.44 × 3.44 × 6 mm3, matrix
size= 64× 64× 15, 1,850 frames, acceleration factor= 3, phase
encoding shift factor = 2, with “leak block” (Cauley et al., 2014)
and a GRAPPA reconstruction kernel of 3 × 3]. Participants
were instructed to close their eyes but remain awake during the
functional scans. Furthermore, T1-weighted anatomical images
were collected for cross-subject registration (MPRAGE, TR =

2,400 ms, TE= 2.43 ms, FOV= 256mm, TI= 1,000 ms, readout
bandwidth= 180 Hz/px, voxel size= 1× 1× 1 mm3).

Image Processing
To achieve consistency in data lengths, the initial 2min of the
short-TR data is discarded, yielding 8min per run for both
long- and short-TR datasets. Furthermore, as short-TR and long-
TR data acquisitions differed in more than TR, we created
a downsampled version of the short-TR data to specifically
target the effect of sampling rate. This was done by temporally
decimating the original short-TR data to (2,000 ms/323 ms)
times the original sample rate, so as to match the sampling
interval of the “long-TR” data. Resting-state fMRI processing was
carried out using FMRIB software library (FSL, publicly available
at www.fmrib.ox.ac.uk/fsl). The preprocessing pipeline included
motion correction (Jenkinson et al., 2002), brain extraction
(Smith, 2002), spatial smoothing (10mm FWHM), frequency
filtering (see section Resting-State fMRI Measures for details)
and regression of six motion parameters. Time-locked cardiac
and respiratory effects were also removed using RETROICOR
(Glover et al., 2000) implemented in AFNI (AFNI: http://afni.
nimh.nih.gov/afni).

Physiological Monitoring and Correction
The details on measuring, modeling, and correcting for the
physiological signals are explained in our previous paper
(Golestani et al., 2015). In short, we accounted for the effects of
the following three physiological signals:

• Cardiac-rate variation (CRV): The cardiac signal was recorded
using the scanner’s built-in pulse oximeter, connected to the
subject’s index finger. CRV is defined as the time interval
between consecutive R peaks, averaged in a 4-s window
(Chang et al., 2009).

• Respiration volume per unit time (RVT): The respiratory-depth
correlated signal was recorded using an elastic belt connected
to a BioPac system (BioPac, Goleta, USA), placed just below
the subject’s ribcage (Birn et al., 2006; Chang and Glover,
2009; Golestani et al., 2015). A piezoelectric sensor within
the belt measured the extent of extension and contraction
in the belt caused by exhales and inhales. It is assumed that
the respiration volume is linearly related to the amplitude of
the belt signal. RVT was calculated as the ratio of breathing
depth (estimated from the local maxima and minima of the
respiratory waveform) over a given time period (Birn et al.,
2006).

• End-tidal CO2 (PETCO2): CO2 level in the subject’s breathing
was measured using a BioPac system. A mask covering the
mouth and nose of the subject was connected via plastic tubing
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to the BioPac’s CO2 sensor. PETCO2 signal was computed as
the breath-by-breath maxima of the CO2 tracing.

At each TR, these three physiological signals were re-
sampled to correspond to the sampling rate of the rs-fMRI
data. Subsequently, BOLD response functions to the three
physiological signals were estimated for each voxel in the brain
volume, as explained in our previous work (Golestani et al.,
2015). In short, the voxel-wise BOLD responses to the three
physiological signals were simultaneously estimated using a
Gaussian model. The estimated responses were then used to
correct the effect of these physiological signals. The physiological
correction involved the convolution of the physiological signals
with the corresponding estimated responses, the inclusion of
the convolved response into a voxel-wise linear regression and
regressing out a given physiological effect of interest from the
BOLD signal. In total, eight different physiological correction
combinations were applied:

• “Base”: no correction;
• “PETCO2,” “CRV,” and “RVT”: each of these three settings

involved correcting for only one of the three physiological
effects;

• “PETCO2+CRV,” “PETCO2+RVT,” and “CRV+RVT”: each
of these three settings involved correcting for a set of two
physiological effects;

• “All”: whereby all of the three physiological signals were
corrected for.

We did not orthogonalize the physiological signals with respect
to one another as we did in our previous work (Golestani et al.,
2015), as the goal is to maximally remove noise instead of
estimate their response functions.

Resting-State fMRI Measures
Amplitude of Low-frequency Fluctuation (ALFF)
ALFF is defined as the sum of amplitudes of each voxel’s signal
frequency spectrum within the low-frequency range (Zang et al.,
2007) and reflects the amplitude of spontaneous low-frequency
fluctuations in the BOLD signal. To eliminate possible effects of
low-pass filtering on the rs-fMRI frequency spectrum, datasets
with no temporal filtering were used to estimate ALFF. The
unfiltered rs-fMRI signal is transformed into the frequency
domain using the Fourier transform, and the spectrum in the
frequency range of 0.01–0.1Hz is averaged to calculate ALFF. The
Resting-state fMRI Data Analysis Toolkit (REST V1.8, publicly
available at http://restfmri.net; Song et al., 2011) was used to
calculate the ALFF maps. To allow direct comparison of ALFF
values generated using long- and short-TR data, each ALFF map
was normalized (subtracting the global mean then dividing by
the global standard deviation; Xi et al., 2012). This normalization
eliminates biases from inter-subject ALFF variability caused by
differences in imaging parameters (such as sampling-rate and flip
angle) between long- and short-TR acquisitions.

Regional Homogeneity (ReHo)
ReHo is defined as the Kendall’s coefficient of concordance
between a given voxel and its 27 neighboring voxels (Zang

et al., 2004) and represents the synchronization between the time
series of a given voxel and its neighbors. This measure was also
calculated using the REST toolkit. The long-TR data is spatially
resampled to the same resolution as the short-TR data prior
to ReHo calculations. The rs-fMRI time series was high-pass
filtered (to>0.01Hz) and low-pass filtered (<0.1Hz) prior to the
computations.

Functional Connectivity: Motor Network
The motor network was the first to be demonstrated using rs-
fMRI, as found in the seminal work by Biswal et al. (1995).
It can easily be validated based on anatomical landmarks, and
the BOLD signal in this region has been shown more affected
by respiratory modulations (Birn et al., 2008) than in many
other brain regions, including the default-mode network. To
simplify the delineation of the motor network, we used seed-
based analysis. That is, an ROI with radius of 4mmwas generated
over the left motor cortex based on documented coordinates (Van
Dijk et al., 2010). The average signal from this motor seed was
used to generate correlation-based motor network connectivity
maps. These connectivity scores were then corrected using the
mixture-model method (Woolrich et al., 2005) as implemented in
FSL. Themixturemodel estimates the distribution of the statistics
as a mixture of a null distribution (with zero mean and unity
standard deviation) and an alternative distribution. Mixture
modeling is typically used when some assumptions in the
statistical analysis might not be valid. Specifically, conventional
assumptions about the temporal autocorrelation and noise level
of the BOLD signal may not be valid in short TR images,
leading to inflated z-values. Thus, we used mixture model to
overcome this problem and effectively compare long- and short-
TR results.

Functional Connectivity: Default-Mode Network

(DMN)
To investigate whether the effect of physiological correction
is network-dependent, we also assessed the effect of the
physiological correction on the connectivity of the DMN. The
DMN is amongst the most widely studied networks in healthy
controls (Raichle and Snyder, 2007; Buckner, 2012), and DMN
connectivity has been found disrupted in several brain diseases
(Buckner et al., 2008; Broyd et al., 2009; Anticevic et al., 2012;
Whitfield-Gabrieli and Ford, 2012). Of particular interest to this
study is the fact that the spatial pattern of the DMN overlaps
with brain regions most affected by low-frequency physiological
modulations, particularly RVT and PETCO2 (Birn et al., 2006;
Golestani et al., 2015). Therefore, we used the DMN as a test case
to study the effect of the correction for physiological modulations
on rs-fMRI functional connectivity (rs-fcMRI). Again, an ROI
with a 4mm radius was generated over the posterior cingulate
cortex (PCC) using well-documented coordinates (Van Dijk
et al., 2010). The regional average signal from this seed was
correlated with all other voxels to generate connectivity maps,
as described earlier. As before, each statistical connectivity map
was then corrected using FSL’s mixture modeling (Woolrich et al.,
2005).
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Test-Retest Reproducibility
The maps of all rs-fMRI measures were transformed into the
MNI standard space (MNI152, Montreal Neurological Institute).
For ALFF and ReHo, ICC was calculated using the maps
generated from the two runs of each subject. We assessed the
ICC in seven distinct brain networks as defined in the work of
Yeo et al. (2011). One realization of the atlas is loosely organized
into the visual, somato-motor, dorsal attention, ventral attention,
limbic, frontoparietal, and default-mode networks. As this rs-
fcMRI atlas was generated from 1,000 subjects based on the most
consistent functional connectivity patterns observed across all
subjects, it is henceforth referred to as the “1,000-brain atlas.” For
rs-fMRI functional connectivity, we chose the motor and default-
mode networks only. The following two indices were computed
to provide complementary reproducibility quantification.

Intra-class Correlation Coefficient (ICC)
The ICC is the most common reliability index in fMRI studies
(Shehzad et al., 2009; Zuo et al., 2010a,b, 2012, 2013; Anderson
et al., 2011b; Wang et al., 2011; Braun et al., 2012; Chou et al.,
2012; Faria et al., 2012; Guo et al., 2012; Song et al., 2012; Birn
et al., 2013, 2014; Bright and Murphy, 2013; Franco et al., 2013;
Liao et al., 2013; Patriat et al., 2013; Wisner et al., 2013; Zhu et al.,
2014). It is given by:

ICC =
MSb −MSw

MSb + (k− 1)MSw
(1)

where MSb is the inter-subject mean-squared variability, MSw is
the within-subject inter-session mean-squared variability and k
is the number of runs (k = 2 in our case). As the ICC is sensitive
to both inter-subject and within-subject inter-session variability,
changes in either of the two would alter the ICC value, which
is generally categorized into five reproducibility levels: poor (0–
0.2), fair (0.2–0.4), moderate (0.4–0.6), substantial (0.6–0.8), and
excellent (0.8–1; Guo et al., 2012; Zuo and Xing, 2014).

Dice Coefficient
As shown earlier, the ICC reflects the consistency of connectivity
values between runs, not necessarily that of the network spatial
extent, which is also an important consideration. Thus, we
include the Dice Coefficient, which has been commonly used
in fMRI studies to evaluate the similarity of two spatial maps
(Gorgolewski et al., 2013; Wisner et al., 2013; Zhu et al., 2013;
Gross and Binder, 2014). It is defined as:

Dice =
2× |A ∩ B|

|A| + |B|
(2)

where A and B are the two spatial maps, A∩B is the intersection
of the two maps, and |A| is the size (i.e., the number of voxels) of
map A. We computed the Dice Coefficient between two runs of
each subject, with each connectivity map defined as being above
a mixture model-corrected z scores of 0.5.

Separability Index
Regarding rs-fMRI functional connectivity, maps can be
evaluated based on not only reproducibility, but also on

separability. That is, if the rs-fMRI connectivity map were
predominantly sensitive to brain function instead of global
physiological processes, we would expect it to demonstrate strong
distinction between within-network connectivity and global
(between-network) connectivity. To embody these two attributes
in a single metric, using the “1,000-brain” functional-network
atlas framework, the separability index is defined as:

SI =
WNC − BNC

WNC + BNC
(3)

where WNC is the within-network connectivity (average
connectivity, e.g., z-scores, inside the network of interest) and
BNC is between-network connectivity (average connectivity
between the network of interest and the remaining six networks).
Separability indices for the motor network and DMN were
calculated for each physiological-correction strategy and then
averaged across the two runs of each subject.

Sensitivity and Specificity
Using the 1,000-brain connectivity atlas as the pseudo ground-
truth, sensitivity and specificity of the connectivity maps for
each physiological correction strategy was calculated. Each
connectivity map was defined with a mixture-model corrected
threshold of 0.5. Sensitivity was calculated as the ratio of the
number of voxels inside the network of interest that is correctly
identified (true positives) over the total number of voxels in
the network (true positives + false negatives). Specificity was
calculated as the ratio of the number of gray-matter voxels
outside the network of interest that correctly identified as non-
connected (true negatives) over the total number of gray-matter
voxels outside of the network (true negatives+ false positives).

Statistical Analysis
No statistical test was carried out on the ICC values, as the entire
subject group would yield a single ICC value. Thus, the ICC
values were simply compared among physiological correction
methods and sampling rates. For functional connectivity, other
measures (Dice Coefficient, separability index, sensitivity, and
specificity) were compared within DMN and MN separately
using two-factor within-subject ANOVA with physiological
correction strategy (“Method”) and sampling-rate (TR) as
factors. In case a significant effect was observed, we also assessed
the observed effect by performing follow-up t-tests.

RESULTS

One of the subjects exhibited considerable head motion during
one of the rs-fMRI scans, and was thus excluded from the study,
yielding total group size of 8 subjects (3 male, age 26± 6.2 years).

Resting-State fMRI Measures
Group-averaged maps (averaged across all subjects and both
sessions) of the rs-fMRI measures are shown in Figures 1–3.
In Figure 1, group-averaged normalized ALFF and ReHo are
shown for long-TR, short-TR, and short-TR-down-sampled
datasets. Consistent with previous studies (Zang et al., 2007; Zou
et al., 2008; Zuo et al., 2010a), ALFF values are higher in the
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FIGURE 1 | Group-averaged maps of normalized amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo). Physiological correction does not

have noticeable effect on the ALFF and ReHo maps, as shown by the small difference between maps generated with no physiological correction (“Base”) and with all

three physiological corrections (“All”). This was the case for long-TR (TR = 2 s), short-TR (TR = 0.323 s), and down-sampled short-TR data. Gray matter is associated

with considerably higher ALFF and ReHo values, specifically in the default-mode network as well as frontal and occipital regions. Sampling-rate (TR) does not

considerably alters the ALFF and ReHo maps.

gray matter, specifically in the DMN as well as occipital and
frontal regions. Likewise, ReHo is considerably stronger in the
gray matter than in the white matter and CSF, compatible with
the previous study by Long et al. (2008). For the purposes of rs-
fMRI, we found ALFF and ReHo maps to be insensitive to the
choice of physiological correction method, as ALFF and ReHo
maps for different physiological corrections are nearly identical.
To demonstrate this point, we contrast the maps derived using
no physiological correction (“Base”) with those resulting from
correcting for all three physiological signals (“All”). The only
noticeable effect of physiological correction is a reduction in
white-matter ReHo.

Group-average motor network and DMN connectivity maps
corresponding to different physiological correction strategies are
shown in Figures 2, 3, respectively. Correcting for PETCO2

and RVT do not appear to have a considerable effect on
the connectivity maps. In contrast, for both networks, the
involvement of CRV correction was found to have a stronger
effect, substantially reducing the size of the connected clusters,
specifically outside the network of interest. The effect of

CRV correction on rs-connectivity is more evident in short-
TR images. Regardless of the physiological correction method,
functional networks are consistently revealed, indicating that our
physiological corrections do not significantly compromise the
functional information in the BOLD signal. Lastly, sampling-rate
does not have considerable effect on the connectivity maps.

Test-Retest Reproducibility
ALFF
ICC values associated with the ALFF are shown in Figure 4A,
generated from long-TR, short-TR, and down-sampled short-TR
datasets. Results show ALFF values to be highly reproducible in
all cases, with ICC values consistently in the range of 0.65–0.85.
For the most part, physiological correction does not considerably
alter the reproducibility of ALFF values. Nonetheless, ICC values
are higher for the short-TR data. However, the fact that ICC
values for down-sampled short-TR data is also higher than the
long-TR, shows that the sampling-rate is not the main reason for
the higher ALFF reproducibility associated with short-TR data.
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FIGURE 2 | Group-averaged motor network (MN) connectivity maps generated with different physiological correction strategies, using long-TR, short-TR, and

down-sampled short-TR data. A motor network template from the atlas generated by Yeo et al. (2011) is shown at the bottom for reference. CRV correction alters

connectivity maps more than correction for PETCO2 (labeled as CO2) and RVT by reducing the extent of connected clusters outside the motor cortex. Sampling-rate

does not seem to have a considerable effect on the connectivity maps.

ReHo
ICC values associated with ReHo are shown in Figure 4B. The
ICC values (0.5–0.8) demonstrate relatively high reproducibility
across different physiological correction methods and sampling-
rates. Nonetheless, different trends were observed, specifically in
that PETCO2 and RVT correction increases the ICC whereas
CRV correction decreases the ICC. Short-TR down-sampled data
are consistently associated with the highest ICC values.

Functional Connectivity: Reproducibility
Reproducibility measures for motor network (MN) and
default-mode network (DMN) connectivity are shown in

Figure 5. ICC values are between 0.25 and 0.75 for the DMN,
which is substantially higher than the ICC values for the MN
(0.10–0.50). Further, short-TR data is associated with lower ICC
values, specifically in the DMN, suggesting that data with lower
sampling-rates tend to generate connectivity values with higher
reproducibility. Broadly speaking, physiological correction does
not appear to alter the reproducibility of the connectivity values,
except in the DMN, where correction for PETCO2 and CRV
increase the ICC.

Spatial reproducibility of the connectivity maps is shown
as Dice Coefficient plots in Figure 5. The Dice Coefficient is
relatively high (0.7–0.8) showing that the DMN and MN are
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FIGURE 3 | Group-averaged default mode network (DMN) connectivity maps generated with different physiological correction strategies, using long-TR, short-TR,

and down-sampled short-TR data. A default mode network template from the atlas generated by Yeo et al. (2011) is shown at the bottom for reference. Physiological

correction does not noticeably alter connectivity maps. As in the motor network case, connectivity maps generated from data with different sampling rates are

comparable.

highly reproducible spatially. The spatial pattern of the MN is
slightly more reproducible than that of the DMN. However,
statistical analysis (Table 1) demonstrated no difference between
physiological correction strategies, as well as different sampling-
rates.

Separability Index
Separability indices are summarized in Figure 6 for the MN
and the DMN, generated from long-TR, short-TR, and down-
sampled short-TR datasets. The MN exhibited significantly
higher separability indices than the DMN, for both long-
and short-TR cases (0.37 ± 0.043 for the MN vs. 0.31 ±

0.038 for the DMN, p = 0.037). The ANOVA (Table 2)
showed that the sampling-rate does not significantly influence
the separability index in the two networks. With respect
to the choice of physiological-correction method, two-way
ANOVA within the MN does not reveal any significant effects,
but this is not the case for the DMN. Follow-up t-tests
reveal that correcting for PETCO2 significantly increases the
separability index of the DMN. As indicated by high ICC values
(ICC > 0.6), the separability indices are highly reproducible.
Also, higher sampling rate (short TR) is associated with
higher reproducibility of the separability indices, specifically in
the MN.
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FIGURE 4 | Reproducibility measures (ICC) for the normalized amplitude of low-frequency fluctuations (ALFF) (A) and regional homogeneity (ReHo) (B) for different

physiological correction strategies, based on long-TR (black), short-TR (dark gray), and down-sampled short-TR (light gray) data. Both ALFF and ReHo values are

highly reproducible. Physiological correction does not have a consistent effect on the reproducibility of ALFF values. PETCO2 (labeled as CO2) and RVT correction

increased, and CRV correction decreased the ICC values for ReHo. Short-TR data is associated with higher reproducibility for ALFF.

Sensitivity and Specificity
Sensitivity and specificity of the DMN and MN are shown
in Figure 7. The MN is associated with significantly higher
detection sensitivity than the DMN (0.89± 0.054 for MN vs. 0.59
± 0.082 for DMN, p < 0.001). Specificity of the DMN is higher
than for the MN, although the difference is not significant (0.66
± 0.035 for DMN and 0.63± 0.047 for MN, p= 0.23).

In Table 3 we summarize the statistical test results showing
that the MN maps generated from long-TR data are associated
with significantly higher sensitivity than those generated from
short-TR or down-sampled short-TR data. In contrast, sampling-
rate does not affect sensitivity or specificity of mapping the
DMN. With respect to the choice of physiological correction
method, CRV correction significantly improves the sensitivity of
the DMN connectivity maps, but the sensitivity of the MN is not
significantly associated with any form of physiological correction.

Statistical results on the specificity of the connectivity maps
are shown in Table 4. Sampling-rate does not affect on the
specificity of the DMN and MN connectivity maps. However,
CRV correction tends to reduce the specificity of the connectivity
maps in both the DMN and MN, although the effect is not
consistently significant.

DISCUSSION

Low-frequency physiological effects can contribute significantly
to the BOLD fMRI signal and undermine the accuracy and
reliability of fMRI measures, especially in the resting state.
However, as mentioned earlier, despite considerable research
devoted to studying the reliability of resting-state fMRI measures

(Shehzad et al., 2009; Zuo et al., 2010a,b, 2012, 2013; Anderson
et al., 2011b; Wang et al., 2011; Braun et al., 2012; Chou et al.,
2012; Faria et al., 2012; Guo et al., 2012; Song et al., 2012;
Birn et al., 2013; Bright and Murphy, 2013; Franco et al., 2013;
Liao et al., 2013; Patriat et al., 2013; Wisner et al., 2013; Zhu
et al., 2014), studies that investigate the effect of physiological
correction on the accuracy and reproducibility of rs-fMRI
measures are extremely limited.

In this study, we determine the effect of various low-frequency
physiological correction strategies on the reproducibility,
sensitivity and specificity of rs-fMRI measures. The main
findings are: (1) PETCO2 correction has the most consistent
positive effect on the reproducibility of rs-fMRI metrics; (2)
PETCO2 correction has the most significant positive effect
on the separability of functional connectivity maps; (3) the
effect of physiological correction is not influenced by fMRI
data sampling rate; (4) there is substantial variability between
different brain regions and networks in terms of the impact
of physiological correction. Specifically: (1) Physiological
correction has a stronger effect on the DMN compare to the MN;
(2) CRV correction increases the reproducibility but decreases
the specificity of the DMN connectivity maps; moreover, it
decreases the reproducibility of the ReHo values. These findings
are summarized in Table 5. Our findings highlight limitations in
our understanding of rs-fMRI quality measures, and underscore
the importance of using multiple quality measures to determine
the optimal physiological correction strategy. In particular, we
argue against the simplification of rs-fMRI data quality based
on reproducibility alone. We discuss these findings in detail as
follows.
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FIGURE 5 | Reproducibility measures [ICC represents reproducibility of values (top) and Dice coefficient represents reproducibility of spatial maps (bottom)] for the

default-mode network (DMN) (left) and motor network (MN) (right). DMN had higher reproducibility of the connectivity values in lower reproducibility of the connectivity

maps compared to MN. PETCO2 and CRV correction increased ICC values in DMN, whereas RVT correction had no considerable effect. Physiological correction did

not have a consistent effect on the ICC values in the MN. No significant difference was observed between physiological correction strategies for the reproducibility of

the spatial maps. In MN, reproducibility values tended to be higher in the long-TR case. This pattern was not extensible to the DMN reproducibility.

TABLE 1 | Results of the statistical analysis on between-run Dice coefficient of the

connectivity maps for DMN and MN.

Factor DMN MN

F p F p

TR F (2, 14) = 0.23 0.802 F (2, 14) = 0.34 0.718

Method F (7, 49) = 1.44 0.211 F (7, 49) = 0.78 0.601

Two-factor, within-subject ANOVA test showed no significant effect of sampling rate (TR)

or physiological correction strategy (Method).

Data Analysis Quality without Physiological
Correction
Reproducibility
We found the reproducibility of rs-fMRI measures to be highly
dependent on the type of rs-fMRImeasure in question. The ALFF

shows substantial reproducibility in the gray matter independent
of physiological correction method and sampling rate, supported
by other studies (Zuo et al., 2010a; Li et al., 2012). As the ALFF
measures the power of low-frequency BOLD signal fluctuations,
which presumably reflects the magnitude of neural activity (Yang
et al., 2007; Zou et al., 2008; Yan and Zang, 2010), we expect
to observe higher ALFF values and reproducibility in the gray
matter. Likewise, as expected, ReHo values are higher in the gray
matter compared to in the white matter and CSF, as ReHo is a
measure of local homogeneity in brain activity, which is most
meaningfully measured in the gray matter (Li et al., 2012). ReHo
is also the most reproducible when based on the down-sampled
short-TR data, judging from the ICC values. In fact, this could
be related to the fact that the down-sampled data was associated
with fewer time points and hence higher ReHo values.

Unlike for ALFF and ReHo, the reproducibility indices of
which were measured in all of the seven functional networks,
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FIGURE 6 | Separability index values for default-mode network (DMN) (left) and motor network (MN) (right) as a result of various physiological correction strategies.

Separability index was higher in the MN compared to the DMN. Physiological corrections had a small effect on the separability index in the MN. PETCO2 correction

increased the separability index in the DMN. Sampling rate did not significantly change the separability index in neither DMN nor MN. The ICC of the separability on

the other hand, was considerably higher for separability indices generated from short-TR images.

the reproducibility of rs-fMRI functional connectivity was
considered within two networks of interest, namely the motor
and default-mode networks, which differ vastly in terms of
their cytoarchitectonic and functional traits. These networks
were chosen to present a snapshot of the network-dependence
of functional connectivity measures in our investigation. The
moderate ICC values echo findings from previous studies (Braun
et al., 2012; Franco et al., 2013; Wisner et al., 2013). Our
finding of higher ICC values for the DMN compared to the
MN also supports previous findings (Shehzad et al., 2009; Zuo
et al., 2010b). Moreover, reproducibility of the connectivity maps
measured by the Dice Coefficient is higher for the MN than for
the DMN, in agreement with previous studies (Zhu et al., 2013).
This suggests that although overall the connectivity values in the
DMN are relatively stable, the spatial pattern changes is not as
stable. Indeed, it has been reported that DMN connectivity map
is more sensitive to the level of vigilance and to uncontrolled
brain activations (Kucyi and Davis, 2014; Zalesky et al., 2014).
As a case in point, it has been shown that (Demertzi et al.,

2011) hypnosis increases connectivity between middle frontal
and angular gyri and decreases connectivity between posterior
and parahippocampal structures, which are encompassed in the
DMN. Moreover, sleep deprivation may cause disconnection
between posterior cingulate and other nodes of the DMN (Wang
et al., 2015). MN connectivity maps on the other hand are not
known to be affected by factors of this nature.

Network Separability
The motor network is more spatially separable than the DMN,
as represented in Figures 2, 3. This point is supported by our
quantitative comparison of the separability indices between the
motor network and the DMN (Figure 6). This may be due
to the simpler nature of the motor network, which makes
it a good test case for methodological development. Thus,
the motor-network results allowed us to establish the effect
of physiological correction on the spatial pattern of rs-fcMRI
measurements. Nonetheless, with regards to more complex
networks such as the DMN, the interpretation of separability
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TABLE 2 | Results of the statistical analysis on the separability index for DMN

and MN.

(A)

DMN MN

Factor F p F p

TR F (2, 14) = 0.36 0.706 F (2, 14) = 0.99 0.398

Method F (7, 49) = 4.02 <0.001 F (7, 49) = 0.07 0.999

(B)

Method CO2 CRV RVT CO2CRV CO2RVT CRVRVT All

Base 0.011 0.149 0.245 0.012 0.015 0.113 0.043

CO2 0.778 0.275 0.071 0.337 0.661 0.165

CRV 0.324 0.001 0.635 0.753 0.109

RVT 0.025 0.025 0.175 0.052

CO2CRV 0.117 0.014 0.824

CO2RVT 0.667 0.118

CRVRVT 0.042

(A) Two-factor, within-subject ANOVA test showed the physiological correction method

had significant effect on the separability index in the DMN. (B) Follow-up t-test revealed

that PETCO2 correction significantly increased the separability index in the DMN (green

shows the cases in which the method in the column gives significantly higher values

compared to the method in the row, red shows the cases in which the method in the

column gives significantly smaller values compared to the method in the row).

index is less straightforward, and higher separability may not
be related to higher accuracy. In fact, there exists episodic
connectivity between the DMN and other networks (Smith et al.,
2012; Bray et al., 2015), which may increase the correlation-
based, overall global connectivity with the DMN. In such
cases, the interpretation of functional connectivitymeasurements
themselves becomes less well-defined, prompting us to refer to
findings in the motor network for methodological clarifications.
The separability index is highly reproducible in both the MN
and DMN (Figure 6). This could be due to the normalization
factor in the definition of the separability index. That is, relative
connectivity is less sensitive to the parameters that might vary
between different data acquisition sessions, including signal-to-
noise ration (SNR) and contrast-to-noise ration (CNR; Golestani
and Goodyear, 2011).

Sensitivity and Specificity
The motor network (MN) is associated with high detection
sensitivity but only moderate specificity (moderate false
positives). In comparison, the detection sensitivity of the DMN
is considerably lower (more false negatives). DMN connectivity
maps in Figure 3 also confirm presence of false negatives in the
DMN connectivity maps. This finding mirrors the DMN’s low
separability index and is consistent with more variable nature
of the DMN (Damoiseaux et al., 2006; Kucyi and Davis, 2014;
Zalesky et al., 2014). As mentioned before, the spatial pattern of
the DMN maps is dynamic, and some nodes of the DMN might
lose their connection to the network sporadically (Demertzi et al.,
2011; Kucyi and Davis, 2014; Zalesky et al., 2014; Wang et al.,

2015). In such cases the disconnected nodes would represent as
false-negatives, resulting in reduced sensitivity.

The Effect of PETCO2 Correction
Notwithstanding inter-subject and regional differences, up
to 15% of the resting-state BOLD signal is explained by
PETCO2 variations (Golestani et al., 2015). While this is a
sizeable contribution, we do not expect that correcting for
PETCO2 fluctuations would dramatically change the fMRI signal.
Indeed, ALFF and ReHo (Figure 1) as well as connectivity
maps (Figures 2, 3) show that PETCO2 correction does not
qualitatively alter the spatial pattern associated with these
metrics. On other hand, the fact that connectivity maps can
be consistently generated using data corrected for PETCO2

demonstrates that correction for PETCO2 does not jeopardize the
bulk of the neuronal information contained in the BOLD signal.

Quantitatively, we found PETCO2 correction to slightly
improve the quality of the rs-fMRI measures, although in
a manner that depends on the metric and the network in
question. Specifically, PETCO2 correction distinctly improved
the reproducibility of ReHo and DMN functional connectivity
values, as well as improving the separability of the DMN. This
could be taken as evidence for the successful suppression of
reproducible but spurious correlation between non-connected
brain regions. On the other hand, the sensitivity and specificity of
the resting-state connectivity maps was relatively independent of
PETCO2 correction (Figure 7, Tables 3, 4). We only considered
the gray-matter regions in our sensitivity and specificity
calculations, as the PETCO2 effect on the BOLD signal is
dominant in the graymatter (Wise et al., 2004; Chang andGlover,
2009; Golestani et al., 2015). Our finding indicates that PETCO2

correctionmay have amore global affect that does not distinguish
between networks.

We note that in this study, we assume that resting-state
PETCO2 fluctuations are independent of neuronal activity.
Indeed, elimination of the PETCO2 effect did not change
resting-state connectivity maps in any major way, but such an
assumption may not always hold. In fact, previous studies have
shown that the level of arousal is associated with both neural
activity level and PETCO2 level (Dahan and Teppema, 2003;
Kotajima et al., 2005). Even a subtle difference in the resting state,
such as between eyes-open and eyes-closed states, can alter the
vascular reactivity to PETCO2 (Peng et al., 2013). Nevertheless,
the fact that PETCO2 correction does not considerably alter the
rs-fMRI maps shows the possible interaction between PETCO2

signal and brain activation is not considerable, at least in our
experiment. On the other hand, while the improvements in
reproducibility brought about by PETCO2 correction are fairly
consistent, one must bear in mind that reproducibility may not
always be the best aim, given the natural neural variabilities that
were discussed earlier.

Effects of CRV and RVT Correction
CRV correction appears to improve the quality of resting-
state connectivity maps, specifically in the DMN. Many of the
brain regions affected by CRV located in the realm of the
DMN (Chang et al., 2009; Golestani et al., 2015), e.g., the
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FIGURE 7 | Sensitivity (top) and specificity (bottom) measures of the default-mode network (DMN) (left) and motor network (MN) (right) for different physiological

correction strategies, based on long-TR (black), short-TR (dark gray), and down-sampled short-TR (light gray) data. DMN demonstrated lower sensitivity and higher

specificity compared to MN. CRV correction increased sensitivity and decrease specificity of DMN connectivity maps. Physiological correction did not considerably

alter the sensitivity of MN connectivity maps and tended to reduce their specificity. For the MN, long-TR data was associated with higher sensitivity and lower

specificity.

PCC, medial frontal cortex, and the angular gyrus. The effect
of CRV correction on the resting-state connectivity is more
pronounced for the short-TR images. Other studies (Faraji-Dana
et al., accepted) have also reported stronger CRV contribution
to multiband EPI data, as compared to conventional EPI data,
the mechanism however is not clear. The reproducibility of
the ReHo decreased after CRV correction. On the other hand,
the reproducibility of DMN connectivity improved after CRV
correction, which is apparently contrary to previous findings by
Birn et al. (2014). Themost likely explanation for this discrepancy
is the fact that we performed voxel-wise estimation of the CRV
and RVT response and correction for its effect, whereas Birn
et al. (2014) used either no convolution with a response function
or in some cases a single global response function averaged
across several subjects. As shown in a number of recent works
(Falahpour et al., 2013; Cordes et al., 2014; Golestani et al., 2015),
inter-subject and inter-regional variance in the CRV and RVT
response function is significant, and should be accounted for in
physiological corrections. Accurately estimating and eliminating

CRV effect removes a source of signal modulation irrelevant to
brain connectivity and generates more reproducible connectivity
values.

Despite its positive effect on the reproducibility of DMN
connectivity values, CRV correction reduces the specificity of the
DMN connectivity maps (Figure 7, Table 4). A potential reason
is that the CRV effects may have been over-corrected in regions
exhibiting lower CRV dependence, resulting in additional
artificial correlations. Therefore, we posit that although
correcting for CRV improves measurement reproducibility,
it can lead to lower specificity, potentially compromising the
accuracy of DMN maps. On the other hand, the 1,000-brain
atlas, which served as reference, was generated without CRV
correction, and therefore potentially contains CRV-related
biases. Nonetheless, CRV correction does not significantly affect
motor network connectivity.

In the case of RVT correction, no consistent or significant
effect on the rs-fMRI reproducibility is found in our study. This
is also in contrast to what has been reported by Birn et al. (2014),
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TABLE 3 | Results of the statistical analysis on the sensitivity of DMN and MN

connectivity maps.

(A)

DMN MN

Factor F p F p

TR F (2, 14) = 0.22 0.802 F (2, 14) = 5.38 0.018

Method F (7, 49) = 6.13 <0.001 F (7, 49) = 1.77 0.114

(B)

Method CO2 CRV RVT CO2CRV CO2RVT CRVRVT All

Base 0.785 0.010 0.505 0.009 0.212 0.040 0.050

CO2 0.434 0.045 0.023 0.181 0.606 0.081

CRV 0.006 0.042 0.272 0.509 0.381

RVT 0.005 0.104 0.013 0.027

CO2CRV 0.015 0.010 0.315

CO2RVT 0.384 0.037

CRVRVT 0.216

(C)

TR Short TR Resampled

Long TR 0.038 0.048

Short TR 0.519

(A) Two-factor, within-subject ANOVA test showed the physiological correction method

had significant effect on the sensitivity of the DMN. In addition, sampling rate had

significant effect on the sensitivity of the MN. (B) Follow-up t-test on the effect of

physiological correction method showed that CRV correction significantly increased the

sensitivity of DMN connectivity maps, (C) t-tests on the effect of the sampling-rate

demonstrated that long-TR data generated MN connectivity maps with higher sensitivity

compared to short-TR and down-sampled short-TR data. (Green shows the cases in

which the method in the column gives significantly higher values compared to the method

in the row, red shows the cases in which the method in the column gives significantly

smaller values compared to the method in the row).

whereby RVT correction decreased ICC values. Apart from
potential between-subject and between-region differences in the
RVT responses that explained before, differences in the resting-
state paradigm may also be the cause of this discrepancy.
We used eyes-closed resting-state, whereas Birn et al. (2014)
used an eyes-open resting-state paradigm. Indeed, recent studies
have demonstrated that the RVT signal and hence its effect
on the BOLD signal differ between eyes-open and eyes-closed
conditions (Yuan et al., 2013). On the other hand, RVT correction
does not have a considerable impact on the separability,
sensitivity, or specificity of connectivity maps. This is likely due
to the rather global nature of RVT effects on the BOLD signal.
RVT correction likely eliminates a synchronously oscillating
part of the BOLD signal not only from voxels inside DMN
but also from elsewhere in the gray matter. Consequently,
RVT correction reduces both within- and between-network
correlations.

The Effect of rs-fMRI Sampling Rate
We also targeted the effect of sampling rate using long- and
short-TR data. To achieve higher temporal signal to noise ration

TABLE 4 | Results of the statistical analysis on the specificity of the DMN and MN

connectivity maps.

(A)

DMN MN

Factor F p F p

TR F (2, 14) = 0.24 0.794 F (2, 14) = 1.13 0.349

Method F (7, 49) = 2.61 0.022 F (7, 49) = 2.99 0.011

(B)

Method CO2 CRV RVT CO2CRV CO2RVT CRVRVT All

Base 0.431 0.088 0.490 0.090 0.359 0.153 0.099

CO2 0.248 0.886 0.090 0.666 0.238 0.135

CRV 0.157 0.279 0.346 0.633 0.351

RVT 0.059 0.462 0.096 0.040

CO2CRV 0.095 0.349 0.902

CO2RVT 0.240 0.078

CRVRVT 0.251

(C)

Method CO2 CRV RVT CO2CRV CO2RVT CRVRVT All

Base 0.182 0.268 0.447 0.068 0.126 0.037 0.048

CO2 0.537 0.351 0.024 0.251 0.741 0.022

CRV 0.727 0.152 0.341 0.244 0.110

RVT 0.106 0.165 0.027 0.057

CO2CRV 0.096 0.405 0.274

CO2RVT 0.858 0.011

CRVRVT 0.193

(A) Two-factor, within-subject ANOVA test showed the physiological correction method

had significant effect on the specificity of DMN andMN. (B) Follow-up t-test on the effect of

physiological correction on the DMN specificity. Although not significant, CRV correction

tends to deteriorate the DMN specificity. The only observed significant difference was

between correction for all three physiological signals and correction for RVT, where

correction for all of the physiological signals decreased the specificity of the DMN.

(C) Follow-up t-test on the effect of physiological correction on the MN specificity

demonstrated that in general, correction for the CRV effect decreased the specificity of the

MN. (Red shows the cases in which the method in the column gives significantly smaller

values compared to the method in the row).

(tSNR), we used lower flip angle (FA) for short-TR data. A lower
FA however not only increases tSNR, but also reduces the effect of
physiological noise on the BOLD signal (Gonzalez-Castillo et al.,
2011). Moreover, to achieve whole-brain coverage with short-TR
acquisitions, we used slightly thicker slice thickness, which might
change the through-plane smoothness of images. Furthermore,
SMS has also been known to introduce “leakage effects” that
may introduce false correlations across slices (Todd et al., 2016),
which may bias our findings and are unrelated to sampling rate
per-se, as we have shown in our previous work (Faraji-Dana et al.,
accepted). Thus, to determine if any observed difference between
the results from short- and long-TR is due to sampling rate and
not to other imaging parameters, we created downsampled short-
TR data and investigated the effect of sampling rate by comparing
the results between the short-TR and downsampled short-TR
data.
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TABLE 5 | Summary of the effects of different physiological corrections on rs-fMRI

measures: (A) Reproducibility of ALFF and ReHo, (B) rs-connectivity measures in

the default mode network, (C) rs-connectivity measures in the motor network.

(A)

ICC ALFF ReHo

CO2 ↔

CRV ↔

RVT ↔

(B)

DMN ICC Dice Separability Sensitivity Specificity

CO2 ↔ ↔ ↔

CRV ↔ ↔

RVT ↔ ↔ ↔ ↔ ↔

(C)

MN ICC Dice Separability Sensitivity Specificity

CO2 ↔ ↔ ↔ ↔ ↔

CRV ↔ ↔ ↔ ↔

RVT ↔ ↔ ↔ ↔ ↔

(Green arrow shows the cases in which the rs-fMRI measure is increased due to the

correction method, red arrow shows cases in which the rs-fMRI measure is decreased

due to the correction method).

While RETROICOR correction, which targets the time-locked
high-frequency noise components, has demonstrated little effect
on the ICC values of functional connectivity measures (Birn
et al., 2014), we hypothesized that the effect of correction for
time-locked respiration and cardiac effects may be different
for long- and for short-TR data. That is, the fundamental
frequency peaks of the time-locked effects are captured in
the short-TR data and can be directly filtered out, whereas
in the long-TR data the effects alias into lower frequencies
and become irremovable. Moreover, RETROICOR does not
completely remove the time-locked physiological effects even in
the absence of aliasing (Golestani et al., 2015). Therefore, it is
plausible that long-TR data are more affected by time-locked
cardiac and respiratory signals than short-TR data. Alternatively,
one may argue that the short-TR data contains more time points,
resulting in statistically stronger rs-fMRI maps and potentially
higher reproducibility. To our surprise, the effect of sampling
rate on rs-fMRI measures and the effectiveness of physiological
correction was not as strong as hypothesized. A higher sampling-
rate however, appears to improve the reproducibility of some
fMRI measures. More specifically, images with higher sampling-
rate have more reproducible separability index, specifically in the
motor network. Moreover, consistent with the previous study
by Zuo et al. (2013), ReHo maps generated from short-TR data
is substantially more reproducible than those generated from
long-TR data.

Interestingly, the sensitivity of the MN connectivity maps
generated from long-TR data is significantly higher than that

associated with short-TR data (Table 3). However, this cannot be
directly attributed to sampling-rate, as the sensitivity of the MN
connectivity map generated from down-sampled short-TR data
is comparable to that of the maps generated from short-TR data
(Figure 7). Therefore, other imaging parameter differencesmight
have contributed to the observed phenomenon. For instance, the
short-TR data (and by extension in the down-sampled short-
TR data) were acquired using a lower flip angle, which is likely
to have reduced the fMRI signal to noise ratio (SNR; Gonzalez-
Castillo et al., 2011), reducing BOLD signal sensitivity.

We note that existing reproducibility studies assume that the
true resting-state connectivity should be stable within subjects
and therefore reproducible, whereas noise and artifacts should
be more random in nature and hence their elimination would
improve reproducibility. However, recent studies have shown
that resting-state connectivity is dynamic and variable with time
(Chang and Glover, 2010; Schaefer et al., 2014). Moreover, as
physiological components in the fMRI data are in fact associated
with moderate within-session ICC (Zuo et al., 2010b; Birn et al.,
2014), their elimination from the fMRI signal may reduce both
intra- and inter-subject variance and hence will affect the ICC
in an unpredictable manner. For instance, an ICC reduction
could be interpret as either increased within-subject variance or
decreased between-subject variance (Birn et al., 2014). Moreover,
the ICC is known to be sensitive to the data range (Muller and
Buttner, 1994; Lee et al., 2012), and a larger dynamic range is
associated with a higher ICC value. This is in fact a limitation of
the general practice of using ICC alone to assess reproducibility,
and supports our argument that higher reproducibility of rs-
fMRI measures does not necessarily translate to higher rs-fMRI
measurement accuracy.

In our analyses, we excluded one participant with excessive
head motion. The fMRI images from the remaining participants
underwent typical motion correction steps (affine motion
correction and regression of 6 motion parameters). Recent
studies have shown that even a small head motion can create
spurious local correlation in resting-state fMRI data (Power et al.,
2012). Even-though we did not explicitly correct for such minute
motion, we believe our findings are not influenced by head
motion or the choice of motion-correction strategy, as the study
design uses each data set as its own reference. That is, we assess
the impact of physiological corrections only, and do not compare
across data sets that may have had different motion contributions
or motion correction.

Limitations
We recognize a number of limitations of this study, many of
which are limitations in the field in general.

In the effort to better characterize fcMRI data quality, we
additionally measured the sensitivity, specificity and separability
of the connectivity maps using the 1,000-brain functional-
connectivity atlas as pseudo-ground-truth. In doing so, however,
we assumed negligible between-subject variability in the spatial
pattern of the rs-fMRI connectivity maps. Moreover, we assumed
that physiological effects that are more global in nature do not
closely reflect neuronal signaling. However, this assumption may
only be appropriate in specific networks, such as those related
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to lower-level brain function (Anderson et al., 2011a; Manoliu
et al., 2013), such as the motor network. Another concern
is that when estimating network spatial extent, the necessary
z-score thresholdingmay have affected the outcome (Bennett and
Miller, 2010), particularly for the Dice Coefficient, sensitivity, and
specificity measures. Here too, we hope that by interpreting our
findings based on multiple quality-assessment metrics, we are
providing amore complete and less biased picture. To further this
line of research, we feel that experimental designs that involve
alternative measures of neuronal communication are the most
promising avenue.

Under the heading “The Effect of PETCO2,” we discussed
possible interaction between the neuronal activity and PETCO2

fluctuations. Similar interactions may apply to CRV and RVT,
as suggested by a number of previous studies (Shea, 1996;
Birn et al., 2009; Macefield, 2009). While these studies and our
own have recommended the removal of global physiological
signals to improve the reliability of rs-fMRI measures, the
relationship between these signals and rs-fMRI signal is still
actively investigated.

Moreover, in this study, we used eyes-closed resting-state
paradigm. Resting-state connectivity is shown to be more reliable
during eyes-open condition (Patriat et al., 2013). Further studies
are required to investigate if physiological correction would
have different effects on eyes-open vs. eyes-closed fMRI data.
As we were not able to gauge the participants’ wakefulness,
we are unable to comment on the effect of the vigilance
variability in our findings. Notwithstanding, investigating the
influence of resting-state condition and arousal level on
the physiological artifact correction is part of our future
work.

While we used a relatively small sample size (N = 8), such
sizes are not uncommon amongst fMRI reproducibility studies.
For instance, relevant previous studies have used sample sizes of
8 (Chou et al., 2012), 10 (Caceres et al., 2009), 18 (Meindl et al.,
2010), 20 (Faria et al., 2012), 22 (Li et al., 2012), and 25 (Birn et al.,
2014), respectively, for assessing reproducibility.

Finally, in this work we only investigated functional
connectivity within the motor network and the DMN. We chose
the DMN because it is strongly affected by physiological signals,
specifically by RVT (Birn et al., 2006), and we chose the motor
network in part due to its robustness and simplicity (Biswal et al.,
1995; Yousry et al., 1995). As stated earlier, these two networks
have been better studied and arguably better understood than
most of the others in our 7-network template, and our choice is

meant to provide a snapshot of the network-dependence in our
measures. However, we recognize that further work is required

to thoroughly investigate the effect of physiological correction on
resting-state networks in general. This goal would require a better
understand of the neuronal significance of the physiological
processes.

CONCLUSION

In this paper, we investigated the influence of correction for
three low-frequency physiological modulations (i.e., PETCO2,
CRV, RVT) on resting-state fMRI measurements, namely
the amplitude of low-frequency fluctuations (ALFF), regional
homogeneity (ReHo), and functional connectivity. To that end,
we assessed metrics of test-retest reliability, network separability,
measurement sensitivity, and specificity. We found that the effect
of physiological correction on rs-fMRI measures is network-
dependent. First, PETCO2 correction improved reproducibility
and separability of DMN connectivity, with negligible effect on
the motor network. Secondly, CRV correction improved the
reproducibility but reduced the specificity of DMN connectivity
maps. Overall, the motor networks appears to be less sensitive to
the choice of physiological correction that the DMN. Based on
these general findings, we conclude that the interaction between
the rs-fMRI signal and physiological signals is complex and
not easily demonstrated. Furthermore, to evaluate the extent of
improvement resulting from physiological measures, multiple
and complementary metrics should be employed. While further
research is necessary to clarify the mechanisms of interactions
between BOLD and physiological signals, we suggest correcting
for the physiological effects in rs-fMRI studies when possible.
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Resting state functional magnetic resonance imaging (rs-fMRI) provides a powerful tool

to examine large-scale neural networks in the human brain and their disturbances

in neuropsychiatric disorders. Thanks to its low demand and high tolerance, resting

state paradigms can be easily acquired from clinical population. However, due to

the unconstrained nature, resting state paradigm is associated with excessive head

movement and proneness to sleep. Consequently, the test-retest reliability of rs-fMRI

measures is moderate at best, falling short of widespread use in the clinic. Here, we

characterized the effect of sleep on the test-retest reliability of rs-fMRI. Using measures of

heart rate variability (HRV) derived from simultaneous electrocardiogram (ECG) recording,

we identified portions of fMRI data when subjects were more alert or sleepy, and

examined their effects on the test-retest reliability of functional connectivity measures.

When volumes of sleep were excluded, the reliability of rs-fMRI is significantly improved,

and the improvement appears to be general across brain networks. The amount of

improvement is robust with the removal of as much as 60% volumes of sleepiness.

Therefore, test-retest reliability of rs-fMRI is affected by sleep and could be improved

by excluding volumes of sleepiness as indexed by HRV. Our results suggest a novel and

practical method to improve test-retest reliability of rs-fMRI measures.

Keywords: test-retest reliability, resting state, naturalistic paradigm, heart rate variability, sleep

INTRODUCTION

Resting state functional magnetic resonance imaging (rs-fMRI) paradigm is a widely used tool to
explore functional connectivity network in both healthy and clinical population (Biswal et al., 1995;
Greicius et al., 2003; Fox et al., 2005; Greicius, 2008; Jafri et al., 2008; Fox and Greicius, 2010; van
den Heuvel and Pol, 2010; Friston, 2011; Buckner et al., 2013; Tailby et al., 2015). The task-free
nature of rs-fMRI paradigm, with low demand and high tolerance, makes it easy to standardize
across study centers and conduct with subjects challenged by task performance (Greicius, 2008).
Rs-fMRI has thus become a common tool in clinical studies on brain disorders, and holds great
promise as imagingmakers for diagnostic and prognostic uses. In addition to connectivitymeasures
between individual brain regions, graph theory has been applied to rs-fMRI connectivity networks
to measure higher order characteristics of brain networks, such as degree centrality, clustering
coefficient, and modularity (van den Heuvel et al., 2008; Bullmore and Sporns, 2009; Guye et al.,
2010; Hayasaka and Laurienti, 2010; He and Evans, 2010; Bullmore and Bassett, 2011; Zuo et al.,
2012a).
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Rs-fMRI measures, however, have not achieved the level
of test-retest reliability as required by clinical imaging. The
reliability of functional connectivity and graph measures derived
from rs-fMRI ranges from poor to moderate (Telesford et al.,
2010; Wang et al., 2011; Braun et al., 2012; Guo et al., 2012;
Li et al., 2012; Patriat et al., 2013; Cao et al., 2014), where
the unconstrained nature of resting state condition could have
a negative impact. Without external stimulation, one problem
with resting state paradigm is the excessive head motion and
associated scan artifacts (Van Dijk et al., 2012; Yan et al., 2013;
Vanderwal et al., 2015). It has been showed that excessive head
motion reduces the reliability of fMRI measures and excluding
high motion subject or volumes, or regressing out motion
related artifacts could improve the reliability of rs-fMRImeasures
(Schwarz and McGonigle, 2011; Guo et al., 2012; Zuo et al.,
2012b; Gorgolewski et al., 2013; Yan et al., 2013; Du et al., 2015).

Sleep was found to affect rs-fMRI measures in previous
studies. It was reported that most subjects become drowsy and
even fall asleep during resting state paradigms (Tagliazucchi and
Laufs, 2014). These sleep episodes during resting state scanning
are thought to be mostly non-rapid eye movement (non-REM)
sleep, as more than 60 min are required to get into REM
sleep (McCarley, 2007). The presence of sleep was found to
affect functional connectivity and graph theoretical measures.
For example, thalamocortical connectivity was found to reduce
at the onset of non-REM sleep, and corticocortical connectivity
increase during light sleep before getting disrupted during deep
sleep (Massimini et al., 2005; Horovitz et al., 2009; Larson-
Prior et al., 2009; Spoormaker et al., 2010; Koike et al., 2011;
Tagliazucchi et al., 2012; Picchioni et al., 2014; Tagliazucchi
and Laufs, 2014; Hale et al., 2016). Therefore, it seems possible
that sleep could also affect the test-retest reliability of rs-fMRI
measures, and excluding volumes of high sleepiness might
improve the reliability of connectivity measures.

We here investigated this hypothesis using a test-retest fMRI
dataset, where 17 participants underwent two identical fMRI
sessions 3 months apart. To detect sleep during the scan, we used
an established method based on simultaneous ECG recordings
during the fMRI acquisition. It is well established that cardiac
autonomic regulation alters between wake and different sleep
stages (Burgess et al., 1997; Trinder et al., 2012; Tobaldini
et al., 2013). Compared with wake condition, non-REM sleep
often incurs a marked decrease in heart rate and increase in
HRV. The changes start from sleep onset, or when subjects
feel drowsy, and continue throughout the non-REM sleep stage.
This suggests a general cardiovascular output reduction and
a transfer from predominant sympathetic to parasympathetic
cardiac modulation during non-REM sleep (Toscani et al., 1996;
Elsenbruch et al., 1999; Trinder et al., 2001; Busek et al., 2005;
Carrington et al., 2005; de Zambotti et al., 2011, 2014; Cabiddu
et al., 2012; Boudreau et al., 2013; Chouchou and Desseilles, 2014;
Cellini et al., 2016). HRV could thus be used to detect sleep or
drowsiness.

In sleep studies, electroencephalogram (EEG) is recognized as
gold standard to identify sleep stages (Rechtschaffen and Kales,
1968; Iber et al., 2007). Nevertheless, it is hard for subjects
to fall asleep with EEG scalp on. Lv et al. identified sleep

state using HRV derived from peripheral pulse signals, and
observed consistent brain network properties compared to those
derived from EEG based studies (Lv et al., 2015). Moreover,
HRV measures are widely used, solely or combined with other
physiological signal measures, as features in machine learning
models to predict and detect the fatigue and sleepiness of drivers.
The classification accuracy could reach over 90% (Lal and Craig,
2001; Borghini et al., 2012; Sahayadhas et al., 2012; Abbood et al.,
2014). Furthermore, compared to other biosignals used for sleep
detection, such as EEG and pupillometry (Abbood et al., 2014),
simultaneous recording of cardiac signals, using either ECG or
pulse oximetry, is more easily and routinely implemented in
fMRI experiments.

Here, we used HRV derived from the ECG to index the level
of alertness and sleepiness continuously for each fMRI volume.
We then examined the effect on the test-retest reliability of
connectivity measures when the volumes of the most extreme
HRV values were excluded. To derive a more general conclusion,
we used two different HRV measurements—the root mean
square of successive difference of normal-to-normal intervals
(RMSSD) (Neumann et al., 1941; Malik, 1996) and cardiac
vagal index (CVI) (Toichi et al., 1997) to index the level of
sleep, independently, and assessed test-retest reliability at both
individual unit- and scan-wise levels (Guo et al., 2012).

MATERIALS AND METHODS

Participants
Twenty right-handed participants (11 females, 9 males; aged
between 21 and 31 years; mean age 27± 2.7 years) participated in
the study. The participants were recruited from the University of
Queensland and provided written informed consent. Participants
received a small monetary compensation ($50) for their
participation in the study. The study was approved by the human
ethics research committee of the University of Queensland
and was conducted according to National Health and Medical
Research Council guidelines.

Experimental Paradigm
The experiment comprised two scanning sessions. For each
session, participants underwent an 8-min resting state fMRI
exam with eyes closed, and then freely viewed a 20-min
short movie “The Butterfly Circus.” Resting state condition was
always acquired first to avoid potential effect of movie viewing
experience on resting state brain activity, and also to reduce
the likelihood of fatigue and sleep during resting state. The
Butterfly Circus is a short film that depicts an intense, emotionally
evocative story of a man born without limbs who is encouraged
by the showman of a renowned circus to reach his own potential.
The movie is live action, color, and shot in high definition.
Additional details of the experiment were previously reported
(Nguyen et al., 2016b; Wang et al., 2017).

Three months after the first scan session (Session A),
participants returned for the second imaging session (Session
B) involving an identical protocol of resting state and movie
viewing paradigms. Three participants were excluded from the
reliability analysis: one was due to technical problems during
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data recordings and the other two did not return for the second
session. Hence, test-retest reliability analyses were performed on
data from the 17 participants who finished both scan sessions.

Functional Image Acquisition and
Preprocessing
Functional and structural images were acquired from a whole-
body 3-Tesla Siemens Trio MRI scanner equipped with a
12-channel head coil (Siemens Medical System, Germany).
Functional images were acquired using a single-shot gradient-
echo Echo Planar-Imaging (EPI) sequence with the following
parameters: repetition time (TR) 2,200 ms, echo time (TE) 30ms,
flip angle (FA) 79◦, Field of View (FOV) 192 × 192 mm, pixel
bandwidth 2,003 Hz, a 64 × 64 acquisition matrix, 44 axial
slices, and 3 × 3 × 3 mm3 voxel resolution. A high-resolution
T1-weighted MPRAGE structural image covering the entire
brain was also collected for each participant with the following
parameters: TE = 2.89 ms, TR = 4,000 ms, FA = 9◦, FOV = 240
× 256 mm, and voxel size 1× 1× 1 mm3.

Functional images were preprocessed using Statistical
Parametric Mapping toolbox (SPM12, Welcome Department
of Imaging Neuroscience, Institute of Neurology, London) and
a toolbox for Data Processing & Analysis for Brain Imaging
(DPABI) (Yan et al., 2016) implemented in Matlab (Mathworks,
USA). The first five volumes of each EPI sequence were discarded
to allow scanner equilibrium to be achieved. The remaining
functional images were slice-time corrected, realigned, co-
registered to the T1 structural image of each individual subject,
and normalized to the Montreal Neurological Institute (MNI)
space without additional smoothing. The images were further
regressed out of nuisance signals, bandpass filtered (0.0083–
0.15 Hz) and detrended. Nuisance signals include principle
components of WM and CSF signals derived using the CompCor
method (Behzadi et al., 2007) and Friston-24 motion parameters
(Friston et al., 1996; Yan et al., 2013). Additional preprocessing
details were previously reported (Wang et al., 2017). After
preprocessing, there are total 215 and 530 volumes for resting
state and natural viewing conditions, respectively.

Heart Rate Variability
ECG signals were recorded using Brain Products system (http://
www.brainproducts.com/). The leads were placed on the back,
and the signals were recorded at the sampling rate of 5,000 Hz.
Heart beats were first detected automatically using the detection
algorithm implemented in QRSTool software (Allen et al., 2007).
The detected heart beats were then visually checked and the
misidentified ones were manually corrected. Inter-beat intervals
(IBI) were then calculated as the time intervals between two
successive individual beats. Using HRVAS toolbox (Ramshur,
2010), the resultant IBIs were further cleaned and processed
(ectopic values removed, interpolated, and detrended). Finally,
the IBIs were used to derive HRVmeasures: the root mean square
of successive difference of IBIs (RMSSD) and Tochi cardiac vagal
index (CVI). These two measures are believed to primarily reflect
parasympathetic function (Neumann et al., 1941; Malik, 1996;
Toichi et al., 1997).

Next we used sliding windows to derive continuous HRV
(Guo et al., 2016). Sliding windows were centered in themiddle of
each TR, moving forward in steps of 1 TR. HRV measures were
calculated using the IBIs within each window. We examined a
series of window lengths: 4, 8, 12, ..., 50 s, and the proper window
length was chosen based on the following criteria: (1) the time-
varying HRV is highly consistent with the overall HRV, measured
as the ratio of time-varying HRV averaged across all windows and
subjects to the overall HRV averaged across all subjects (Thong
et al., 2003); (2) the test-retest reliability of the time-varying
HRV measures is good. We finally chose RMSSD and CVI with
the window length of 16 s for the following analyses, because
they are highly consistent with the whole scan HRV (>0.95),
relatively reliable (RMSSD: scan-wise ICC: 0.8, unit-wise ICC:
0.672; CVI: scan-wise ICC: 0.693, unit-wise ICC: 0.53. Method
of calculating unit- and scan-wise ICC is described below in
Test-retest reliability), and could still provide satisfactory time
resolution.

This continuous HRV was then used as an estimate of the
level of sleepiness during each TR. We used a relative threshold
of 50% to select the top 50 percentile sleepiest (highest HRV
values, sleepy-0.5) or most alert (lowest HRV values, alert-0.5)
volumes from each session in the reliability analyses. To exclude
any non-specific effect due to volume selection, we created a
control condition by randomly selecting 50% volumes and taking
the average from 5,000 randomizations (random-0.5). To ensure
the robustness of our results to the selection threshold of certain
state and the window lengths of time varying HRV, we performed
additional reliability analyses: (1) using a serial of additional
thresholds of data inclusion (0.9, 0.8, 0.7, 0.6, 0.4, 0.3) when
HRV was derived using 16 s sliding window; (2) using a serial
of window lengths (4, 8, 12, ..., 50 s) to derive the time-varying
HRV, then performed reliability analyses for sleepy-0.5 and alert-
0.5 conditions. We then used RMSSD derived from 16 s sliding
window to derive continuous HRV for movie viewing data, and
examined the effects of sleepiness on test-retest reliability in
natural viewing conditions. To make the analyses on resting state
and natural viewing conditions more comparable, we performed
additional analyses on an 8-min segment of the natural viewing
data, which matched the duration of the resting state sessions.

ROI-Based Functional Connectivity
Analysis
We first performed functional connectivity analysis using a
previous established atlas: the 200 ROI atlas based on Craddock
2012 parcellation (Craddock et al., 2012), as it provides good
cortical and subcortical coverage with fine divisions.

ROIs’ time series were extracted as the mean signal across
all voxels within each ROI from preprocessed fMRI data.
Pearson correlation was then computed between each pair of
ROIs’ time series using the sleepy-0.5, alert-0.5, random-0.5 and
whole data separately, resulting in four 200 × 200 connectivity
matrices for each subject for each session. For each matrix,
the correlation coefficients were transformed to z-scores using
Fisher’s transformation, averaged across all subjects for each
condition, and then reverted to Pearson’s r values to derive

Frontiers in Neuroscience | www.frontiersin.org May 2017 | Volume 11 | Article 24935

http://www.brainproducts.com/
http://www.brainproducts.com/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Wang et al. Sleep Reduces rs-fMRI’s Test-Retest Reliability

group-level connectivity matrices (Zuo et al., 2012a; Vanderwal
et al., 2015). To quantitatively evaluate the differences between
connectivity matrices at different alertness levels, we performed
paired t-test across subjects on the connectivity matrices between
sleepy-0.5 and alert-0.5 conditions. The results were thresholded
using FDR-corrected p < 0.05.

Graph Theoretical Analysis
We further derived graph theoretical measures from the
ROI connectivity matrices. We produced weighted adjacent
matrices by thresholding the fully connected ROI matrices:
suprathreshold connections (edge) retained their correlation
coefficients denoting edge weights, whereas subthreshold edges
were assigned values of 0. To ensure robustness of the threshold
chosen, we repeated our analyses using a serial of thresholds
(Tr = 0.1, 0.3, and 0.5).

We focused on two graph metrics that have been shown to
be reliable: degree centrality and clustering coefficient (Braun
et al., 2012; Guo et al., 2012; Andellini et al., 2015; Du et al.,
2015; Wang et al., 2017). These graph metrics were derived
from the weighted adjacency matrices using Brain Connectivity
Toolbox (Rubinov et al., 2009). Degree centrality measures the
connectedness of each node, computed as the weighted sum of all
the edges connected to the node. Clustering coefficient measures
the likelihood of the nodes tending to cluster together, calculated
as the fraction that the number of edges actually exist to the
number of all edges possibly exist. To examine the differences
between graph measures with different sleepiness levels, we
performed paired t-test across subjects on the graph measures
between sleepy-0.5 and alert-0.5. The results were thresholded
using an FDR-corrected p < 0.05.

Test-Retest Reliability
In this paper, we assessed test-retest reliability using intraclass
correlation coefficient (ICC) (Shrout and Fleiss, 1979; McGraw
and Wong, 1996; Caceres et al., 2009). A one-way ANOVA was
applied to the measures of the two scan sessions across subjects,
to calculate between-subject mean square (MSb) and within-
subject mean square (MSw). ICC values were then calculated as:

ICC =
MSb −MSw

MSb +
(

d − 1
)

MSw

where d = the number of observations per subject. For every
functional connectivity measure, we assessed reliability at both
individual unit-wise and scan-wise levels. Unit-wise reliability is
commonly reported in the literature (Shehzad et al., 2009; Wang
et al., 2011; Braun et al., 2012; Guo et al., 2012; Zuo et al., 2012a;
Birn et al., 2013; Liao et al., 2013). Here, one ICC value was
calculated for each measurement unit, such as the HRV value
of each window, the connectivity score of each ROI pair (edge),
or graph metric of each ROI (node). Unit-wise ICC was then
produced by averaging the ICC values for all measurement units
across the windows or the network to represent reliability at
individual level. Additionally, we reported scan-wise reliability,
which estimates the reliability of the mean measurement derived
from the entire scan session or the whole graph (Guo et al., 2012).

Here, a single ICC value was calculated for the mean HRV values,
mean connectivity scores or graph metric averaged across all
windows of the whole scan, or edges or nodes of the network.

The reliability results are referred as excellent (ICC > 0.8),
good (0.79 > ICC > 0.6), moderate (0.59 > ICC > 0.4), fair
(0.39 > ICC > 0.2), and poor (ICC < 0.2) (Guo et al., 2012).

Statistical Test
We tested whether ICC values of sleepy and alert conditions were
significantly different from corresponding random condition,
at both unit- and scan-wise levels. We performed one-tailed
permutation test by comparing the true ICC value against the
distribution of ICCs from the permuted random conditions
(details see Heart Rate Variability). A 95% CI for each
permutation test was calculated as the highest value (right-
tailed test) or lowest (left-tailed test) with an alpha level of 0.05
(Lamotte and Volaufova, 1999; Ernst, 2004).

Head Motion
We also examined the amount of head motion during different
levels of sleepiness, using framewise displacement proposed by
Power et al. (2012). Framewise displacement is a scalar quantity
defined as: FDi = |1dix| + |1diy + |1diz| + |1αi| + |1βi| +

|1γi|, where dix, diy and diz are translational displacements
along X, Y and Z axes, respectively; αi, βi and γi are rotational
angles of pitch, yaw and roll, respectively; 1dix = d(i− 1)x +

dix,1diy = d(i− 1)y + diy,1diz = d(i− 1)z + 1γi = α(i− 1) +

1βi,1βi = 1γi− 1 + βi,1γi = γ(i− 1) + γi. Rotation
displacements were converted from degrees to millimeters of
distance on a sphere surface (radius: 50 mm, assumed to be
the radius of a head). One spike was counted when FDi was
greater than 0.3 mm (Yan et al., 2013; Vanderwal et al., 2015).
We calculated the frequency of spikes as the number of spikes
per volume and compared it between the different alert levels
using paired t-test across subjects. We didn’t find any significant
influence of sleep on head motion.

RESULTS

Heart Rate Variability during Resting State
fMRI
HRV is modulated by both sympathetic and parasympathetic
nervous systems (Acharya et al., 2006), while the parasympathetic
modulation is predominant at rest. We here used two common
HRV metrics reflecting mainly parasympathetic modulation—
RMSSD (Malik, 1996) and CVI (Toichi et al., 1997) to measure
the overall and time-varying HRV during rs-fMRI. The overall
HRV measures showed good test-retest reliability (RMSSD:
0.799; CVI: 0.681). Then we used a sliding window method to
derive time-varying HRV metrics based on RMSSD and CVI
(Guo et al., 2016). With proper window length, time-varying
HRV measures were highly consistent (>0.95) with overall HRV
metrics [Figure 1A; SFigure 1A; results based on RMSSD are
presented in main text (Figures), and those based on CVI are
in Supplementary Materials (SFigure)], and showed moderate
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FIGURE 1 | Heart rate variability analysis based on RMSSD. (A) Normalized RMSSD (RMSSD (n.u.), n.u. stands for “normalized units”) averaged across

windows and subjects using different window length in both sessions. (B) ICCs of time-varying HRV (tv-HRV) using different window length at both unit- and

scan-wise levels. The ICC of overall HRV is indicated by the dashed line. The window chosen to derive the main results (16 s) is signified by crosses. (C) The number

of subjects who successively stayed alert with scanning progression using a serial of selection threshold of sleepiness (signified by different colors). The appearance of

consecutive 5 sleepy volumes was used as dropout criterion.

to good test-retest reliability (RMSSD: scan-wise ICC: 0.8, unit-
wise ICC: 0.672; CVI: scan-wise ICC: 0.693, unit-wise ICC: 0.53;
Figure 1B; SFigure 1B).

It is well established that HRV increases as one gets drowsier,
which has been used to detect driver alertness (Lal and Craig,
2001; Borghini et al., 2012; Abbood et al., 2014). Here, we used
the time-varying HRV measures as a way to index sleepiness
during resting state fMRI scans. Consistent with previous work
using EEG for sleep detection (Tagliazucchi and Laufs, 2014), the
number of subjects who stayed alert decreased as the scan time
increased (Figure 1C; SFigure 1C).

Reliability of Functional Connectivity
Measures Affected by Sleep
To examine the effect of sleep on functional connectivity
measures and their test-retest reliability, we performed
connectivity and reliability analyses using either the 50% of
data when subjects were most alert (alert-0.5) or the 50% when
subjects were sleepiest (sleepy-0.5). We chose a parcellation
scheme of 200 ROIs (Craddock et al., 2012), which covers the
entire cortical and subcortical regions, and organized the ROIs
into seven networks (Yeo et al., 2011). The seven networks
are: visual, somatomotor, dorsal attention, ventral attention,
limbic, frontoparietal, default, and other areas (including parts of
cerebellums, thalamus, brainstems, and caudate). Overall, group
averaged functional connectivity matrices derived from alert-0.5,
sleepy-0.5, and whole data conditions showed similar patterns
(Figure 2A; SFigure 2A). Direct comparison between sleepy-0.5
and alert-0.5 conditions did not detect significant differences
(paired t-test, FDR-corrected p < 0.05).

We then assessed whether the sleepiness affected the reliability
of functional connectivity measures. Following previous studies
(Guo et al., 2012), unit- and scan-wise ICC measures were used
to quantify the test-retest reliability of functional connectivity
measures during sleepy-0.5 and alert-0.5 conditions, respectively.
Unit-wise ICC refers to that ICC was calculated for each pair of
ROI connection, and scan-wise ICC derived from connectivity
strengths averaged across the whole connectivity matrix. As
reliability decreases with less data volumes (Birn et al., 2013),

we created a control condition of 50% randomly selected
volumes (random-0.5) to compare with the alert-0.5 and sleepy-
0.5 conditions. Compared to the random-0.5 condition, the
sleepy-0.5 condition resulted in significantly lower ICC and
the altert-0.5 condition produced significantly higher ICC for
both unit- and scan-wise measures (permutation test, p < 0.05;
Figures 2B,C; SFigure 2B; Table 1; Stable 1), suggesting that
sleepiness during resting state scans reduced the reliability
of functional connectivity measures. Even directly compared
to the whole data condition, the alert-0.5 condition yielded
higher reliability. The ICC values increased by 3.7 and 33.4%
at individual unit- and scan-wise levels, respectively (Figure 2B;
SFigure 2B), further confirming that the volumes with high
sleepiness were associated with low reliability.

Reliability of Graph Theoretical Measures
Affected by Sleep
We then assessed the effect of sleep on graph theoretical
measures. We focused on the graph metrics known to be reliable:
clustering coefficient and degree centrality (Braun et al., 2012;
Guo et al., 2012; Wang et al., 2017). To ensure the robustness
of our results, graph theoretical measures were derived using a
broad range of thresholds: Tr = 0.1, 0.3, 0.5. Overall, the level of
sleepiness did not affect graph theoretical measures (SFigure 3).
There was a slight decrease with alert-0.5 condition, but this
decrease was not statistically significant (SFigure 3; paired t-test,
FDR-corrected p < 0.05).

We then assessed the test-retest reliability of each graph
measure. Similar to functional connectivity, ICCs derived from
the sleepy-0.5 condition were significantly lower than those
from the random-0.5 condition, while those from the alert-0.5
condition were significantly higher, irrespective of the threshold
used (permutation test, p< 0.05; Figure 3A; SFigure 4A; Table 1;
STable 1). Furthermore, ICC values derived from the alert-0.5
conditions were also improved when compared to those from the
whole data condition, which increased by 29.8% at unit-wise and
37.7% at scan-wise levels averaged across both graph measures
and all three thresholds applied (Figure 3A; SFigure 4A).
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FIGURE 2 | ROI connectivity matrix analysis of alert and sleepy conditions based on RMSSD. (A) Group-level connectivity matrices derived from the

sleepy-0.5, whole-scan and alert-0.5 conditions during session A. ROIs were organized according to the 7-network system (Yeo et al.), as labeled on the left of each

panel. The mean connectivity strength of each condition is indicated on the bottom of each matrix. The connectivity matrices in session B are very similar to those in

session A, and thus not presented. (B) Functional connectivity ICCs during resting state at both scan- (left panel) and unit-wise (right panel) levels. Unit-wise ICC was

averaged across ROI pairs. Orange dashed lines indicate the average ICC values of the random-0.5 conditions, and the shaded boxes indicate their

distributions—upper and lower bounds marking the 95 and 5 percentiles, respectively. Values outside the boxes are significantly different from the random conditions

(one-tailed permutation test, p < 0.05). (C) Unit-wise ICC differences between alert-0.5 and sleepy-0.5 conditions (warm color: alert-0.5 > sleepy-0.5; cool color:

alert-0.5 < sleepy-0.5). Differences greater than 0.2 are displayed.

TABLE 1 | One-tailed permutation tests of the differences in resting state reliability between the sleepy-0.5 or alert-0.5 and the random-0.5 conditions,

based on RMSSD.

Unit-wise Scan-wise

Random Sleepy Alert Random Sleepy Alert

Functional connectivity ICC [0.321, 0.397] 0.273 0.418 [0.349, 0.624] 0.26 0.7

p – 0.0004 0.0038 – 0.0048 0.003

Clustering coefficient ICC [0.314, 0.550] 0.216 0.636 [0.341, 0.628] 0.228 0.707

p – 0.0024 0.001 – 0.0034 0.0042

Degree centrality ICC [0.338, 0.519] 0.257 0.584 [0.351, 0.625] 0.252 0.699

p – 0.002 0.0014 – 0.0044 0.0032

Graph theoretical metrics were derived with Tr = 0.1. ICC and p values are listed for each condition. ICCs of random condition are indicated using upper and lower bounds marking

the 95 and 5 percentiles of the random distribution, respectively.

To examine whether these changes in reliability was specific to
certain brain networks, we compared unit-wise ICCs across each
brain network (Figure 3B; SFigure 4B). The average reliability
was calculated as the arithmetic mean across ROIs included in
each network. Under alert-0.5 condition, the ICCs increased
by more than 30% in most networks for clustering coefficient,
and over 25% for degree centrality (Figure 3C; SFigure 4C). To
ensure the robustness of the improvement, we also used the
median ICCs to represent the average reliability within each
network, and observed consistent results (SFigure 7).

Test-Retest Reliability with Different Data
Selection Thresholds
So far, our results show that the test-retest reliability is
improved when excluding the top 50 percentile data of high
sleepiness. We then asked what percentage of volumes selection
is optimal for improving test-retest reliability. We tested a range
of percentiles to select volumes (Figure 4; SFigure 5). When
volumes were randomly selected (random conditions), ICC
value decreased with less volumes included (Birn et al., 2013).
However, when specifically selecting volumes based on HRV,
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FIGURE 3 | Test-retest reliability analysis using graph theoretical measures, based on RMSSD. (A) Average unit-wise (upper panel) and scan-wise (lower

panel) ICCs during resting state across three thresholds (Tr = 0.1, 0.3, 0.5). Orange dashed lines indicate the average ICC values of the random-0.5 conditions, and

the shaded boxes indicate their distributions—upper and lower bounds marking the 95 and 5 percentiles, respectively. Values outside the boxes are significantly

different from the random conditions (one-tailed permutation test, p < 0.05). (B) Unit-wise ICC differences between sleepy-0.5 and alert-0.5 conditions (warm color:

alert-0.5 > sleepy-0.5; cool color: alert-0.5 < sleepy-0.5). Differences greater than 0.3 are displayed. (C) Unit-wise ICC difference between sleepy-0.5 or alert-0.5 and

the whole data at network level, which is represented using mean across ROIs within each network. Solid bars indicate significant differences compared to the

random-0.5 condition (one-tailed permutation test, FDR-corrected p < 0.05). Asterisks indicate ICC changes over 30% relative to the whole data condition. Results in

(B,C) were generated using Tr = 0.1.
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ICCs increased significantly and continuously with less volumes
of high sleepiness included in the calculation, till as much as 60%
sleepy volumes were excluded (Figure 4; SFigure 5), suggesting
that the detrimental effect of sleepiness on reliability outweighed
the effect of reduced volumes. In practice, however, it might be
desirable to remove the minimal amount of data volume and we
found 20% was the least amount of sleepy volumes required to
significantly improve test-retest reliability for all three measures
(Figure 4; SFigure 5).

Reliability of Natural Viewing Paradigm Not
Affected by Sleep
As we showed previously that the reliability of connectivity
measures were higher during natural viewing than resting state
condition (Wang et al., 2017), we then asked whether it could be
further improved by this approach.

We first examined the measures of HRV during natural
viewing. On average, HRV during natural viewing reduced
slightly, but this reduction was not significant (paired t-test,
p < 0.05; Figure 5A). We further derived HRV from the most
engaging movie segment based on our previous study (Wang

et al., 2017), and found that HRV during this segment was
significantly lower than resting state in session A (paired t-test,
p < 0.05; Figure 5A). Furthermore, HRV measures were more
reliable during natural viewing (0.928) than resting state (0.799),
similar to our findings with functional connectivity measures
(Wang et al., 2017).

We then compared the unit- and scan-wise ICCs of functional
connectivity measures. The results derived from the 8-min
segment were similar to the results using the entire natural
viewing data (Figure 5B; SFigure 8; Table 2). While the reliability
of conditions with higher HRV level decreased, these changes
were much smaller than the ones during resting state conditions.
And we did not find consistent and significant increases in
reliability with the low HRV conditions (Figure 5B; SFigure 8).

DISCUSSION

In this study, we examined the effect of sleep on test-retest
reliability of rs-fMRI connectivity measures. By excluding
volumes acquired when participants were sleepy, we could
improve the reliability of network connectivity measures during

FIGURE 4 | Test-retest reliability analysis using a serial of volume selection percentiles (Ps), based on RMSSD. The shades indicate the distribution of the

ICCs derived from random condition—upper and lower bounds marking the 95 and 5 percentiles, respectively. Values outside the shades are significantly different

from the random conditions, and represented using solid markers (one-tailed permutation test, p < 0.05). Results of clustering coefficient and degree centrality were

obtained from Tr = 0.1.

FIGURE 5 | Analysis for natural viewing conditions based on RMSSD. (A) RMSSD values derived from resting state (RS), natural viewing (NV), and the 24th

segment of natural viewing data (NV24). Data from each subject is signified by the gray dots. Error bars indicate the standard error of the mean. (B) Test-retest

reliability analysis using a serial of Ps. The shades indicate the distribution of the ICCs derived from random condition—upper and lower bounds marking the 95 and 5

percentiles, respectively. Values outside the shades are significantly different from the random conditions, and represented using solid markers (one-tailed permutation

test, p < 0.05). Results of clustering coefficient and degree centrality were obtained from Tr = 0.1.
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TABLE 2 | One-tailed permutation tests of the difference in movie viewing reliability between the sleepy-0.5 or alert-0.5 and the random-0.5 conditions,

based on RMSSD.

Unit-wise Scan-wise

Random Sleepy Alert Random Sleepy Alert

Functional connectivity ICC [0.617, 0.658] 0.602 0.622 [0.841, 0.922] 0.854 0.907

p – 0.0024 0.1038 – 0.1178 0.1774

Clustering coefficient ICC [0.824, 0.889] 0.801 0.874 [0.873, 0.941] 0.863 0.924

p – 0.006 0.2194 – 0.022 0.2575

Degree centrality ICC [0.750, 0.814] 0.743 0.802 [0.846, 0.922] 0.853 0.909

p – 0.0264 0.176 – 0.0894 0.1572

Graph theoretical metrics were derived with Tr = 0.1. ICC and p values are listed for each condition. ICCs of random condition are indicated using upper and lower bounds marking

the 95 and 5 percentiles of the random distribution, respectively. Non-significant results are in italic.

rs-fMRI paradigm. The improvement of test-retest reliability is
robust with removal of as little as 20% of volumes. Noticeably,
this improvement on ICC outweighs the opposing effect from
reduced volume (Birn et al., 2013). Overall, our results provide
a novel and practical way to improve test-retest reliability of
rs-fMRI paradigm.

The test-retest reliability of rs-fMRI measures ranges between
poor to moderate (Telesford et al., 2010; Wang et al., 2011;
Braun et al., 2012; Guo et al., 2012; Li et al., 2012; Patriat
et al., 2013; Cao et al., 2014). Many factors contribute to the
moderate reliability, including poor signal-to-noise ratio of the
blood oxygenation level-dependent (BOLD) signal, excessive
head motion, physiological noise, and so on. Previous work has
found that test-retest reliability can be improved by removing
volumes or subjects with excessive motion, and regressing out
motion related artifacts (Schwarz and McGonigle, 2011; Guo
et al., 2012; Zuo et al., 2012b; Gorgolewski et al., 2013; Yan et al.,
2013; Du et al., 2015). Now we showed that the presence of
drowsiness and sleep during scanning is another factor affecting
rs-fMRI measures and their reliability. Due to acoustic noise,
fatigue, and the lack of stimulation, it is common that subjects fall
asleep during rs-fMRI scans (Tagliazucchi and Laufs, 2014). Sleep
was found to be associated with changes in brain network, urging
caution when interpreting functional connectivity measures
during resting state (Massimini et al., 2005; Larson-Prior et al.,
2009; Spoormaker et al., 2010; Koike et al., 2011; Picchioni et al.,
2014; Tagliazucchi and Laufs, 2014; Hale et al., 2016). Some
methods were proved to be effective to prevent subjects from
falling asleep, such as requiring subjects to keep eyes open or
fixed on a cross (Patriat et al., 2013; Zou et al., 2015), and their
test-retest reliability are higher than resting state with eyes closed.
However, this impact on connectivity measures and their test-
retest reliability appears to differ across brain networks (Patriat
et al., 2013; Zou et al., 2015).

Previous studies report decreases in heart rate and increases
in HRV at the transition from wake to non-REM sleep. These
changes have thus been widely used to detect sleepiness in real
life situations (Lal and Craig, 2001; Borghini et al., 2012; Abbood
et al., 2014). While previous studies used long ECG data to
derive HRV (5 min to 24 h), recent studies have used shorter
duration (10–250 s) to improve the temporal resolution (Thong

et al., 2003; Salahuddin et al., 2007; Udi et al., 2011; Chang et al.,
2013; Valenza et al., 2014; Guo et al., 2016; Massaro and Pecchia,
2016; Nguyen et al., 2016a). In this study, we examined the
robustness and reliability of HRV metrics derived using different
window lengths. For both RMSSD and CVImeasures, themetrics
derived using short data durations are highly consistent (>0.95)
with the ones derived using the whole 8-min data, and RMSSD
achieves good test-retest reliability with the window length of
as short as 6 s. These analyses support the use of short-term
HRV as time-varying measures. It is increasingly recognized
that physiological fluctuations could introduce noise in fMRI
signals. It is possible that higher HRV might contribute to
greater fMRI noise. Removal of noisy volumes could thus lead
to an improvement in reliability. In our current experimental
design, it is not possible to discern between the contributions
of physiological noise and sleepiness. Irrespective of the source,
excluding volumes of high HRV could still provide a valid
strategy to improve test-retest reliability of rs-fMRI connectivity.

We excluded volumes of high or low HRV for connectivity
and test-retest reliability analyses. This approach is similar to
the motion scrubbing method proposed to reduce the impact
of motion artifacts (Power et al., 2012). In some study, an
average of 58% data were scrubbed for a cohort of children
where motion is problematic. In our dataset, after excluding
50% sleepiest volumes, we found ICC values increased by 24.9%
(0.108) at the unit-wise level and 36.4% (0.187) at the scan-wise
level averaged across the three measures we examined (functional
connectivity, clustering coefficient and degree centrality), and
across all three thresholds for graph measures. The test-retest
reliability also improved in higher order brain networks, such as
dorsolateral prefrontal cortex, angular gyrus, and cingulate cortex
(Figure 3; SFigure 4), reflecting the impact of sleep on these
brain regions. In our main analyses, the volume-wise sleepiness
level was identified using the time-varying HRV derived from
16 s sliding window, which was chosen based on a tradeoff
between time resolution and the robustness of HRV measure
itself. We additionally tested the effects of the HRV window
length on the reliability of functional connectivity and graph
measures (SFigure 6). Our major conclusion, that reliability
improved when sleepy volumes were excluded, was consistent
across different window lengths. This improvement diminishes,
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however, if using a too short or too long window length. ICC
of sleepy-0.5 condition decreased in general with longer window
length, possibly due to the reduced volume number (Birn et al.,
2013). Overall, the method proposed in this work is effective and
efficient at improving test-retest reliability of rs-fMRI paradigm.

We additionally examined the effect of sleep on test-retest
reliability during natural viewing paradigm. Unlike the effect on
resting state measures, excluding volumes with higher HRV had
very limited effect on the reliability of natural viewing data with
as much as 50% volumes excluded regardless of the data length
used (Figure 5B; SFigure 8). During movie viewing, cardiac
autonomic activities are likely to be influenced by sustained
attention and emotional saliency (Thayer and Lane, 2001) where
high HRV does not necessarily reflect sleepiness. The ability
of RMSSD to detect sleep is thus diminished. The test-retest
reliability of connectivity measures is higher for natural viewing
than resting state paradigm (Wang et al., 2017), which might be
partially contributed by the high alertness during natural viewing.

There are several limitations to our study. Sleep is a complex
physiological condition, and the use of single HRV measure
for sleep detection might be oversimplified. In particular, HRV
during movie viewing conditions is likely to be influenced
by emotional responses rather than sleepiness. Therefore, the
method we proposed here is a simple scheme to assess sleep
and improve test-retest reliability for rs-fMRI paradigm, and
our results on natural viewing should be considered with
caution. Various methods have been previously used for sleep
detection, such as subjective questionnaires, other physiological
signals including EEG (Rechtschaffen and Kales, 1968; Iber
et al., 2007), electrooculogram, electromyogram (Abbood et al.,
2014), fMRI (Tagliazucchi et al., 2012; Tagliazucchi and Laufs,
2014), and more HRV measures (Sahayadhas et al., 2013).
Advanced methods like machine learning have also been applied
(Sahayadhas et al., 2012). With more advanced algorithm and/or

additional physiological signals combined, it might be possible
to further improve the accuracy of sleep detection, or expand
such analysis to more complex conditions. In addition, it would
be useful to examine whether HRV derived from pulse oximetry
recording could provide similar results as ECG recording. Pulse
oximetry is easier to implement and less affected by MR gradient
artifact than ECG. While the smooth pulse waveform might
offer less precision for peak detection, it has been shown to
produce comparable HRV values as ECG (Iyriboz et al., 1991)
and used to derive HRV values during rs-fMRI (Lv et al., 2015;
Guo et al., 2016). Therefore, pulse oximetry might be used for
sleep detection instead of ECG, which could be formally tested in
the future studies.

AUTHOR CONTRIBUTIONS

JW, conducted data analysis, wrote themanuscript; VN, collected
the data, provided practical advice for data analysis; CG,
initiatiated the study, designed the experiment, interpreated
the results, edited the manuscript; LG and JH, provided
administrative and material support.

FUNDING

This work is supported by QIMR international fellowship, and
NHMRC Project (Grant #1098407) and an NHMRC Career
Development Fellowship (#1123674) to C.C.G., and the National
Science Foundation of China (Grant #61522207) to JH.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2017.00249/full#supplementary-material

REFERENCES

Abbood, H., Al-Nuaimy, W., Al-Ataby, A., Salem, S. A., and Alzubi, H. S.

(2014). “Prediction of driver fatigue: approaches and open challenges,” in

Computational Intelligence (UKCI) (Bradford: 14th UK Workshop on: IEEE),

1–6.

Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., and Suri, J. S. (2006).

Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051.

doi: 10.1007/s11517-006-0119-0

Allen, J. J., Chambers, A. S., and Towers, D. N. (2007). The many metrics of

cardiac chronotropy: a pragmatic primer and a brief comparison of metrics.

Biol. Psychol. 74, 243–262. doi: 10.1016/j.biopsycho.2006.08.005

Andellini, M., Cannatà, V., Gazzellini, S., Bernardi, B., and Napolitano,

A. (2015). Test-retest reliability of graph metrics of resting state MRI

functional brain networks: a review. J. Neurosci. Methods 253, 183–192.

doi: 10.1016/j.jneumeth.2015.05.020

Behzadi, Y., Restom, K., Liau, J., and Liu, T. T. (2007). A component based

noise correction method (CompCor) for BOLD and perfusion based fMRI.

Neuroimage 37, 90–101. doi: 10.1016/j.neuroimage.2007.04.042

Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R.,

et al. (2013). The effect of scan length on the reliability of resting-state fMRI

connectivity estimates. Neuroimage 83, 550–558. doi: 10.1016/j.neuroimage.

2013.05.099

Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S. (1995). Functional

connectivity in the motor cortex of resting human brain using echo-planar

MRI.Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., and Babiloni, F. (2012).

Measuring neurophysiological signals in aircraft pilots and car drivers for the

assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav.

Rev. 44, 58–75. doi: 10.1016/j.neubiorev.2012.10.003

Boudreau, P., Yeh, W. H., Dumont, G. A., and Boivin, D. B. (2013). Circadian

variation of heart rate variability across sleep stages. Sleep 36, 1919–1928.

doi: 10.5665/sleep.3230

Braun, U., Plichta, M. M., Esslinger, C., Sauer, C., Haddad, L., Grimm, O.,

et al. (2012). Test–retest reliability of resting-state connectivity network

characteristics using fMRI and graph theoretical measures. Neuroimage 59,

1404–1412. doi: 10.1016/j.neuroimage.2011.08.044

Buckner, R. L., Krienen, F. M., and Yeo, B. T. (2013). Opportunities and

limitations of intrinsic functional connectivityMRI.Nat. Neurosci. 16, 832–837.

doi: 10.1038/nn.3423

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Bullmore, E. T., and Bassett, D. S. (2011). Brain graphs: graphical models

of the human brain connectome. Annu. Rev. Clin. Psychol. 7, 113–140.

doi: 10.1146/annurev-clinpsy-040510-143934

Frontiers in Neuroscience | www.frontiersin.org May 2017 | Volume 11 | Article 24942

http://journal.frontiersin.org/article/10.3389/fnins.2017.00249/full#supplementary-material
https://doi.org/10.1007/s11517-006-0119-0
https://doi.org/10.1016/j.biopsycho.2006.08.005
https://doi.org/10.1016/j.jneumeth.2015.05.020
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2013.05.099
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1016/j.neubiorev.2012.10.003
https://doi.org/10.5665/sleep.3230
https://doi.org/10.1016/j.neuroimage.2011.08.044
https://doi.org/10.1038/nn.3423
https://doi.org/10.1038/nrn2575
https://doi.org/10.1146/annurev-clinpsy-040510-143934
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Wang et al. Sleep Reduces rs-fMRI’s Test-Retest Reliability

Burgess, H. J., Trinder, J., Kim, Y., and Luke, D. (1997). Sleep and circadian

influences on cardiac autonomic nervous system activity. Am. J. Physiol. 273,

1761–1768.

Busek, P., Vanková, J., Opavský, J., Salinger, J., and Nevsímalová, S. (2005). Spectral

analysis of the heart rate variability in sleep. Physiol. Res. 54, 369–376.

Cabiddu, R., Cerutti, S., Viardot, G., Werner, S., and Bianchi, A. M.

(2012). Modulation of the sympatho-vagal balance during sleep: frequency

domain study of heart rate variability and respiration. Front. Physiol. 3:45.

doi: 10.3389/fphys.2012.00045

Caceres, A., Hall, D. L., Zelaya, F. O., Williams, S. C., and Mehta, M. A.

(2009). Measuring fMRI reliability with the intra-class correlation coefficient.

Neuroimage 45, 758–768. doi: 10.1016/j.neuroimage.2008.12.035

Cao, H., Plichta, M. M., Schäfer, A., Haddad, L., Grimm, O., Schneider, M.,

et al. (2014). Test–retest reliability of fMRI-based graph theoretical properties

during working memory, emotion processing, and resting state. Neuroimage

84, 888–900. doi: 10.1016/j.neuroimage.2013.09.013

Carrington, M. J., Barbieri, R., Colrain, I. M., Crowley, K. E., Kim, Y., and

Trinder, J. (2005). Changes in cardiovascular function during the sleep onset

period in young adults. J. Appl. Physiol. 98, 468–476. doi: 10.1152/japplphysiol.

00702.2004

Cellini, N., Whitehurst, L. N., McDevitt, E. A., and Mednick, S. C. (2016). Heart

rate variability during daytime naps in healthy adults: autonomic profile and

short-term reliability. Psychophysiology 53, 473–481. doi: 10.1111/psyp.12595

Chang, C., Metzger, C. D., Glover, G. H., Duyn, J. H., Heinze, H. J.,

and Walter, M. (2013). Association between heart rate variability and

fluctuations in resting-state functional connectivity. Neuroimage 68, 93–104.

doi: 10.1016/j.neuroimage.2012.11.038

Chouchou, F., and Desseilles, M. (2014). Heart rate variability: a tool to explore the

sleeping brain? Front. Neurosci. 8:402. doi: 10.3389/fnins.2014.00402

Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., and Mayberg, H. S.

(2012). A whole brain fMRI atlas generated via spatially constrained spectral

clustering. Hum. Brain Mapp. 33, 1914–1928. doi: 10.1002/hbm.21333

de Zambotti, M., Cellini, N., Baker, F. C., Colrain, I. M., Sarlo, M.,

and Stegagno, L. (2014). Nocturnal cardiac autonomic profile in young

primary insomniacs and good sleepers. Int. J. Psychophysiol. 93, 332–339.

doi: 10.1016/j.ijpsycho.2014.06.014

de Zambotti, M., Covassin, N., Tona, G. D. M., Sarlo, M., and Stegagno, L. (2011).

Sleep onset and cardiovascular activity in primary insomnia. J. Sleep Res. 20,

318–325. doi: 10.1111/j.1365-2869.2010.00871.x

Du, H. X., Liao, X. H., Lin, Q. X., Li, G. S., Chi, Y. Z., Liu, X., et al. (2015). Test–

retest reliability of graph metrics in high-resolution functional connectomics:

a resting-state functional MRI study. CNS Neurosci. Ther. 21, 802–816.

doi: 10.1111/cns.12431

Elsenbruch, S., Harnish, M. J., and Orr, W. C. (1999). Heart rate variability during

waking and sleep in healthy males and females. Sleep 22, 1067–1071.

Ernst, M. D. (2004). Permutation methods: a basis for exact inference. Stat. Sci. 19,

676–685. doi: 10.1214/088342304000000396

Fox,M. D., and Greicius, M. (2010). Clinical applications of resting state functional

connectivity. Front. Syst. Neurosci. 4:19. doi: 10.3389/fnsys.2010.00019

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C.,

and Raichle, M. E. (2005). The human brain is intrinsically organized into

dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102,

9673–9678. doi: 10.1073/pnas.0504136102

Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connect.

1, 13–36. doi: 10.1089/brain.2011.0008

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., and Turner, R. (1996).

Movement-related effects in fMRI time-series.Magn. Reson. Med. 35, 346–355.

doi: 10.1002/mrm.1910350312

Gorgolewski, K. J., Storkey, A. J., Bastin, M. E., Whittle, I., and Pernet, C. (2013).

Single subject fMRI test–retest reliability metrics and confounding factors.

Neuroimage 69, 231–243. doi: 10.1016/j.neuroimage.2012.10.085

Greicius, M. (2008). Resting-state functional connectivity in

neuropsychiatric disorders. Curr. Opin. Neurol. 21, 424–430.

doi: 10.1097/WCO.0b013e328306f2c5

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003).

Functional connectivity in the resting brain: a network analysis of the

default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258.

doi: 10.1073/pnas.0135058100

Guo, C. C., Kurth, F., Zhou, J., Mayer, E. A., Eickhoff, S. B., Kramer,

J. H., et al. (2012). One-year test–retest reliability of intrinsic

connectivity network fMRI in older adults. Neuroimage 61, 1471–1483.

doi: 10.1016/j.neuroimage.2012.03.027

Guo, C. C., Sturm, V. E., Zhou, J., Gennatas, E. D., Trujillo, A. J., Hua, A. Y.,

et al. (2016). Dominant hemisphere lateralization of cortical parasympathetic

control as revealed by frontotemporal dementia. Proc. Natl. Acad. Sci. U.S.A.

113, E2430–E2439. doi: 10.1073/pnas.1509184113

Guye, M., Bettus, G., Bartolomei, F., and Cozzone, P. J. (2010). Graph theoretical

analysis of structural and functional connectivity MRI in normal and

pathological brain networks.Magn. Reson. Mater. Phys. Biol. Med. 23, 409–421.

doi: 10.1007/s10334-010-0205-z

Hale, J. R., White, T. P., Mayhew, S. D., Wilson, R. S., Rollings, D. T.,

Khalsa, S., et al. (2016). Altered thalamocortical and intra-thalamic functional

connectivity during light sleep compared with wake.Neuroimage 125, 657–667.

doi: 10.1016/j.neuroimage.2015.10.041

Hayasaka, S., and Laurienti, P. J. (2010). Comparison of characteristics

between region-and voxel-based network analyses in resting-state fMRI data.

Neuroimage 50, 499–508. doi: 10.1016/j.neuroimage.2009.12.051

He, Y., and Evans, A. (2010). Graph theoretical modeling of brain connectivity.

Curr. Opin. Neurol. 23, 341–350. doi: 10.1097/wco.0b013e32833aa567

Horovitz, S. G., Braun, A. R., Carr, W. S., Picchioni, D., Balkin, T. J., Fukunaga, M.,

et al. (2009). Decoupling of the brain’s default mode network during deep sleep.

Proc. Natl. Acad. Sci. U.S.A. 106:11376. doi: 10.1073/pnas.0901435106

Iber, C., Ancoli-Israel, S., Chesson, A., and Quan, S. F. (2007). The AASM Manual

for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical

Specifications. American Academy of Sleep Medicine Westchester, IL.

Iyriboz, Y., Powers, S., Morrow, J., Ayers, D., and Landry, G. (1991). Accuracy of

pulse oximeters in estimating heart rate at rest and during exercise. Br. J. Sports

Med. 25, 162–164. doi: 10.1136/bjsm.25.3.162

Jafri, M. J., Pearlson, G. D., Stevens, M., and Calhoun, V. D. (2008). A

method for functional network connectivity among spatially independent

resting-state components in schizophrenia. Neuroimage 39, 1666–1681.

doi: 10.1016/j.neuroimage.2007.11.001

Koike, T., Kan, S., Misaki, M., and Miyauchi, S. (2011). Connectivity pattern

changes in default-mode network with deep non-REM and REM sleep.

Neurosci. Res. 69, 322–330. doi: 10.1016/j.neures.2010.12.018

Lal, S. K., and Craig, A. (2001). A critical review of the psychophysiology of driver

fatigue. Biol. Psychol. 55, 173–194. doi: 10.1016/S0301-0511(00)00085-5

Lamotte, L. R., and Volaufova, J. (1999). Prediction intervals via consonance

intervals. J. R. Stat. Soc. 48, 419–424. doi: 10.1111/1467-9884.00200

Larson-Prior, L. J., Zempel, J. M., Nolan, T. S., Prior, F. W., Snyder, A. Z., and

Raichle, M. E. (2009). Cortical network functional connectivity in the descent

to sleep. Proc. Natl. Acad. Sci. U.S.A. 106, 4489. doi: 10.1073/pnas.0900924106

Li, Z., Kadivar, A., Pluta, J., Dunlop, J., and Wang, Z. (2012). Test–retest stability

analysis of resting brain activity revealed by blood oxygen level-dependent

functional MRI. J. Magn. Reson. Imaging 36, 344–354. doi: 10.1002/jmri.23670

Liao, X.-H., Xia, M.-R., Xu, T., Dai, Z.-J., Cao, X.-Y., Niu, H.-J., et al.

(2013). Functional brain hubs and their test–retest reliability: a

multiband resting-state functional MRI study. Neuroimage 83, 969–982.

doi: 10.1016/j.neuroimage.2013.07.058

Lv, J., Liu, D., Ma, J., Wang, X., and Zhang, J. (2015). Graph theoretical analysis of

BOLD functional connectivity during human sleep without EEG monitoring.

PLoS ONE 10:e0137297. doi: 10.1371/journal.pone.0137297

Malik, M. (1996). Heart rate variability: standards of measurement, physiological

interpretation, and clinical use: task force of the european society of cardiology

and the north american society for pacing and electrophysiology. Genes

Chromosomes Cancer 17:354. doi: 10.1111/j.1542-474x.1996.tb00275.x

Massaro, S., and Pecchia, L. (2016). Heart rate variability (HRV) analysis

a methodology for organizational neuroscience. Organ. Res. Methods.

doi: 10.1177/1094428116681072

Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., and Tononi, G.

(2005). Breakdown of cortical effective connectivity during sleep. Science 309,

2228–2232. doi: 10.1126/science.1117256

McCarley, R. W. (2007). Neurobiology of REM and NREM sleep. Sleep Med. 8:302.

doi: 10.1016/j.sleep.2007.03.005

McGraw, K. O., and Wong, S. P. (1996). Forming inferences about some intraclass

correlation coefficients. Psychol. Methods 1:30. doi: 10.1037/1082-989x.1.1.30

Frontiers in Neuroscience | www.frontiersin.org May 2017 | Volume 11 | Article 24943

https://doi.org/10.3389/fphys.2012.00045
https://doi.org/10.1016/j.neuroimage.2008.12.035
https://doi.org/10.1016/j.neuroimage.2013.09.013
https://doi.org/10.1152/japplphysiol.00702.2004
https://doi.org/10.1111/psyp.12595
https://doi.org/10.1016/j.neuroimage.2012.11.038
https://doi.org/10.3389/fnins.2014.00402
https://doi.org/10.1002/hbm.21333
https://doi.org/10.1016/j.ijpsycho.2014.06.014
https://doi.org/10.1111/j.1365-2869.2010.00871.x
https://doi.org/10.1111/cns.12431
https://doi.org/10.1214/088342304000000396
https://doi.org/10.3389/fnsys.2010.00019
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1016/j.neuroimage.2012.10.085
https://doi.org/10.1097/WCO.0b013e328306f2c5
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.1016/j.neuroimage.2012.03.027
https://doi.org/10.1073/pnas.1509184113
https://doi.org/10.1007/s10334-010-0205-z
https://doi.org/10.1016/j.neuroimage.2015.10.041
https://doi.org/10.1016/j.neuroimage.2009.12.051
https://doi.org/10.1097/wco.0b013e32833aa567
https://doi.org/10.1073/pnas.0901435106
https://doi.org/10.1136/bjsm.25.3.162
https://doi.org/10.1016/j.neuroimage.2007.11.001
https://doi.org/10.1016/j.neures.2010.12.018
https://doi.org/10.1016/S0301-0511(00)00085-5
https://doi.org/10.1111/1467-9884.00200
https://doi.org/10.1073/pnas.0900924106
https://doi.org/10.1002/jmri.23670
https://doi.org/10.1016/j.neuroimage.2013.07.058
https://doi.org/10.1371/journal.pone.0137297
https://doi.org/10.1111/j.1542-474x.1996.tb00275.x
https://doi.org/10.1177/1094428116681072
https://doi.org/10.1126/science.1117256
https://doi.org/10.1016/j.sleep.2007.03.005
https://doi.org/10.1037/1082-989x.1.1.30
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Wang et al. Sleep Reduces rs-fMRI’s Test-Retest Reliability

Neumann, J. V., Kent, R. H., Bellinson, H. R., and Hart, B. I. (1941).

The mean square successive difference. Ann. Math. Stat. 12, 153–162.

doi: 10.1214/aoms/1177731746

Nguyen, V. T., Breakspear, M., Hu, X., and Guo, C. C. (2016a). The integration

of the internal and external milieu in the insula during dynamic emotional

experiences. Neuroimage 124, 455–463. doi: 10.1016/j.neuroimage.2015.

08.078

Nguyen, V. T., Sonkusare, S., Jane, S., Hu, X., Breakspear, M., and Guo,

C. C. (2016b). Distinct cerebellar contributions to cognitive-perceptual

dynamics during natural viewing. Cereb. Cortex 1–11. doi: 10.1093/cercor/

bhw334

Patriat, R., Molloy, E. K., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand,

M. E., et al. (2013). The effect of resting condition on resting-state fMRI

reliability and consistency: a comparison between resting with eyes open,

closed, and fixated. Neuroimage 78, 463–473. doi: 10.1016/j.neuroimage.2013.

04.013

Picchioni, D., Pixa, M. L., Fukunaga, M., Carr, W. S., Horovitz, S. G., Braun,

A. R., et al. (2014). Decreased connectivity between the thalamus and

the neocortex during human nonrapid eye movement sleep. Sleep 37:387.

doi: 10.5665/sleep.3422

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., and Petersen, S.

E. (2012). Spurious but systematic correlations in functional connectivity

MRI networks arise from subject motion. Neuroimage 59, 2142–2154.

doi: 10.1016/j.neuroimage.2011.10.018

Ramshur, J. T. (2010).HRVAS: Heart Rate Variability Analysis Software. University

of Memphis; Department of Biomedical Engineering.

Rechtschaffen, A., and Kales, A. (1968). A manual of standardized terminology,

techniques and scoring system for sleep stages of human subjects. Clin.

Neurophysiol. 26:644. doi: 10.1016/0013-4694(69)90021-2

Rubinov, M., Kötter, R., Hagmann, P., and Sporns, O. (2009). Brain connectivity

toolbox: a collection of complex network measurements and brain connectivity

datasets. Neuroimage 47:S169. doi: 10.1016/S1053-8119(09)71822-1

Sahayadhas, A., Sundaraj, K., and Murugappan, M. (2012). Detecting

driver drowsiness based on sensors: a review. Sensors 12:16937.

doi: 10.3390/s121216937

Sahayadhas, A., Sundaraj, K., and Murugappan, M. (2013). Drowsiness detection

during different times of day using multiple features. Australas. Phys. Eng. Sci.

Med. 36, 243–250. doi: 10.1007/s13246-013-0200-6

Salahuddin, L., Cho, J., Jeong, M. G., and Kim, D. (2007). Ultra short

term analysis of heart rate variability for monitoring mental stress in

mobile settings. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 4656–4659.

doi: 10.1109/IEMBS.2007.4353378

Schwarz, A. J., and McGonigle, J. (2011). Negative edges and soft thresholding

in complex network analysis of resting state functional connectivity data.

Neuroimage 55, 1132–1146. doi: 10.1016/j.neuroimage.2010.12.047

Shehzad, Z., Kelly, A. C., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q.,

et al. (2009). The resting brain: unconstrained yet reliable. Cereb. Cortex 19,

2209–2229. doi: 10.1093/cercor/bhn256

Shrout, P. E., and Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater

reliability. Psychol. Bull. 86:420. doi: 10.1037/0033-2909.86.2.420

Spoormaker, V. I., Schröter, M. S., Gleiser, P. M., Andrade, K. C., Dresler, M.,

Wehrle, R., et al. (2010). Development of a large-scale functional brain network

during human non-rapid eye movement sleep. J. Neurosci. 30, 11379–11387.

doi: 10.1523/JNEUROSCI.2015-10.2010

Tagliazucchi, E., and Laufs, H. (2014). Decoding wakefulness levels from typical

fMRI resting-state data reveals reliable drifts between wakefulness and sleep.

Neuron 82, 695–708. doi: 10.1016/j.neuron.2014.03.020

Tagliazucchi, E., Von Wegner, F., Morzelewski, A., Borisov, S., Jahnke, K., and

Laufs, H. (2012). Automatic sleep staging using fMRI functional connectivity

data. Neuroimage 63, 63–72. doi: 10.1016/j.neuroimage.2012.06.036

Tailby, C., Masterton, R. A., Huang, J. Y., Jackson, G. D., and Abbott,

D. F. (2015). Resting state functional connectivity changes induced by

prior brain state are not network specific. Neuroimage 106, 428–440.

doi: 10.1016/j.neuroimage.2014.11.037

Telesford, Q. K., Morgan, A. R., Hayasaka, S., Simpson, S. L., Barret, W., Kraft,

R. A., et al. (2010). Reproducibility of graph metrics in fMRI networks. Front.

Neuroinform. 4:117. doi: 10.3389/fninf.2010.00117

Thayer, J. F., and Lane, R. D. (2001). A model of neurovisceral integration

in emotion regulation and dysregulation. J. Affect. Disord. 61, 201–216.

doi: 10.1016/S0165-0327(00)00338-4

Thong, T., Li, K., McNames, J., Aboy, M., and Goldstein, B. (2003). “Accuracy

of ultra-short heart rate variability measures,” in Engineering in Medicine and

Biology Society, Proceedings of the 25th Annual International Conference of the

IEEE: IEEE (Cancun), 2424–2427.

Tobaldini, E., Nobili, L., Strada, S., Casali, K. R., Braghiroli, A., and Montano, N.

(2013). Heart rate variability in normal and pathological sleep. Front. Physiol.

4:294. doi: 10.3389/fphys.2013.00294

Toichi, M., Sugiura, T., Murai, T., and Sengoku, A. (1997). A new method of

assessing cardiac autonomic function and its comparison with spectral analysis

and coefficient of variation of R–R interval. J. Auton. Nerv. Syst. 62, 79–84.

doi: 10.1016/S0165-1838(96)00112-9

Toscani, L., Gangemi, P. F., Parigi, A., Silipo, R., Ragghianti, P., Sirabella, E., et al.

(1996). Human heart rate variability and sleep stages. Neurol. Sci. 17, 437–439.

doi: 10.1007/BF01997720

Trinder, J., Kleiman, J., Carrington, M., Smith, S. S., Breen, S., Tan, N., et al.

(2001). Autonomic activity during human sleep as a function of time

and sleep stage. J. Sleep Res. 10, 253–264. doi: 10.1046/j.1365-2869.2001.

00263.x

Trinder, J., Waloszek, J., Woods, M. J., and Jordan, A. S. (2012).

Sleep and cardiovascular regulation. Pflügers Arch. 463, 161–168.

doi: 10.1007/s00424-011-1041-3

Udi, N, Keren, P. E., Keren, K. M. D., Moshe, N. M. D., Shlomo, S.

M. D., Volovitz, B., et al. (2011). Reliability of Ultra-Short ECG Indices

for heart rate variability. Ann. Noninvasive Electrocardiol. 16, 117–122.

doi: 10.1111/j.1542-474X.2011.00417.x

Valenza, G., Citi, L., Lanatá, A., Scilingo, E. P., and Barbieri, R. (2014). Revealing

real-time emotional responses: a personalized assessment based on heartbeat

dynamics. Sci. Rep. 4:4998. doi: 10.1038/srep04998

van den Heuvel, M. P., and Pol, H. E. H. (2010). Exploring the brain

network: a review on resting-state fMRI functional connectivity. Eur.

Neuropsychopharmacol. 20, 519–534. doi: 10.1016/j.euroneuro.2010.

03.008

van den Heuvel, M. P., Stam, C. J., Boersma, M., and Pol, H. H.

(2008). Small-world and scale-free organization of voxel-based resting-

state functional connectivity in the human brain. Neuroimage 43, 528–539.

doi: 10.1016/j.neuroimage.2008.08.010

Vanderwal, T., Kelly, C., Eilbott, J., Mayes, L. C., and Castellanos, F.

X. (2015). Inscapes: a movie paradigm to improve compliance in

functional magnetic resonance imaging. Neuroimage 122, 222–232.

doi: 10.1016/j.neuroimage.2015.07.069

Van Dijk, K. R., Sabuncu, M. R., and Buckner, R. L. (2012). The influence of head

motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438.

doi: 10.1016/j.neuroimage.2011.07.044

Wang, J., Ren, Y., Hu, X., Nguyen, V. T., Guo, L., Han, J., et al. (2017).

Test-retest reliability of functional connectivity networks during naturalistic

fMRI paradigms. Hum. Brain Mapp. 38, 2226–2241. doi: 10.1002/hbm.

23517

Wang, J., Zuo, X.-N., Gohel, S., Milham, M. P., Biswal, B. B., and He, Y. (2011).

Graph theoretical analysis of functional brain networks: test-retest evaluation

on short-and long-term resting-state functional MRI data. PLoS ONE 6:e21976.

doi: 10.1371/journal.pone.0021976

Yan, C.-G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A.,

et al. (2013). A comprehensive assessment of regional variation in the impact of

head micromovements on functional connectomics. Neuroimage 76, 183–201.

doi: 10.1016/j.neuroimage.2013.03.004

Yan, C. G.,Wang, X. D., Zuo, X. N., and Zang, Y. F. (2016). DPABI: data processing

& analysis for (Resting-State) brain imaging. Neuroinformatics 14, 339–351.

doi: 10.1007/s12021-016-9299-4

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,

Hollinshead, M., et al. (2011). The organization of the human cerebral cortex

estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165.

doi: 10.1152/jn.00338.2011

Zou, Q., Miao, X., Liu, D., Wang, D. J., Zhuo, Y., and Gao, J. H. (2015).

Reliability comparison of spontaneous brain activities between BOLD and CBF

Frontiers in Neuroscience | www.frontiersin.org May 2017 | Volume 11 | Article 24944

https://doi.org/10.1214/aoms/1177731746
https://doi.org/10.1016/j.neuroimage.2015.08.078
https://doi.org/10.1093/cercor/bhw334
https://doi.org/10.1016/j.neuroimage.2013.04.013
https://doi.org/10.5665/sleep.3422
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/0013-4694(69)90021-2
https://doi.org/10.1016/S1053-8119(09)71822-1
https://doi.org/10.3390/s121216937
https://doi.org/10.1007/s13246-013-0200-6
https://doi.org/10.1109/IEMBS.2007.4353378
https://doi.org/10.1016/j.neuroimage.2010.12.047
https://doi.org/10.1093/cercor/bhn256
https://doi.org/10.1037/0033-2909.86.2.420
https://doi.org/10.1523/JNEUROSCI.2015-10.2010
https://doi.org/10.1016/j.neuron.2014.03.020
https://doi.org/10.1016/j.neuroimage.2012.06.036
https://doi.org/10.1016/j.neuroimage.2014.11.037
https://doi.org/10.3389/fninf.2010.00117
https://doi.org/10.1016/S0165-0327(00)00338-4
https://doi.org/10.3389/fphys.2013.00294
https://doi.org/10.1016/S0165-1838(96)00112-9
https://doi.org/10.1007/BF01997720
https://doi.org/10.1046/j.1365-2869.2001.00263.x
https://doi.org/10.1007/s00424-011-1041-3
https://doi.org/10.1111/j.1542-474X.2011.00417.x
https://doi.org/10.1038/srep04998
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.neuroimage.2008.08.010
https://doi.org/10.1016/j.neuroimage.2015.07.069
https://doi.org/10.1016/j.neuroimage.2011.07.044
https://doi.org/10.1002/hbm.23517
https://doi.org/10.1371/journal.pone.0021976
https://doi.org/10.1016/j.neuroimage.2013.03.004
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.1152/jn.00338.2011
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Wang et al. Sleep Reduces rs-fMRI’s Test-Retest Reliability

contrasts in eyes-open and eyes-closed resting states. Neuroimage 121, 91–105.

doi: 10.1016/j.neuroimage.2015.07.044

Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O.,

et al. (2012a). Network centrality in the human functional connectome. Cereb.

Cortex 22, 1862–1875. doi: 10.1093/cercor/bhr269

Zuo, X. N., Xu, T., Jiang, L., Yang, Z., Cao, X. Y., He, Y., et al. (2012b). Toward

reliable characterization of functional homogeneity in the human brain:

preprocessing, scan duration, imaging resolution and computational

space. Neuroimage 65, 374–386. doi: 10.1016/j.neuroimage.2012.

10.017

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Wang, Han, Nguyen, Guo and Guo. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org May 2017 | Volume 11 | Article 24945

https://doi.org/10.1016/j.neuroimage.2015.07.044
https://doi.org/10.1093/cercor/bhr269
https://doi.org/10.1016/j.neuroimage.2012.10.017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


ORIGINAL RESEARCH
published: 25 May 2018

doi: 10.3389/fnins.2018.00311

Frontiers in Neuroscience | www.frontiersin.org May 2018 | Volume 12 | Article 311

Edited by:

Bharat B. Biswal,

University of Medicine and Dentistry of

New Jersey, United States

Reviewed by:

Pierre Bellec,

Université de Montréal, Canada

Tess Li,

University of Electronic Science and

Technology of China, China

*Correspondence:

Yilong Ma

yma@northwell.edu

Hong-Jian He

hhezju@zju.edu.cn

Yu-Feng Zang

zangyf@gmail.com

†These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 01 September 2017

Accepted: 23 April 2018

Published: 25 May 2018

Citation:

Yuan L-X, Wang J-B, Zhao N, Li Y-Y,

Ma Y, Liu D-Q, He H-J, Zhong J-H

and Zang Y-F (2018) Intra- and

Inter-scanner Reliability of Scaled

Subprofile Model of Principal

Component Analysis on ALFF in

Resting-State fMRI Under Eyes Open

and Closed Conditions.

Front. Neurosci. 12:311.

doi: 10.3389/fnins.2018.00311

Intra- and Inter-scanner Reliability of
Scaled Subprofile Model of Principal
Component Analysis on ALFF in
Resting-State fMRI Under Eyes Open
and Closed Conditions
Li-Xia Yuan 1†, Jian-Bao Wang 2,3,4†, Na Zhao 2,3,4, Yuan-Yuan Li 2,3,4, Yilong Ma 5*,

Dong-Qiang Liu 6, Hong-Jian He 1*, Jian-Hui Zhong 1 and Yu-Feng Zang 2,3,4*

1 Key Laboratory for Biomedical Engineering of Ministry of Education, Center for Brain Imaging Science and Technology,

College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China, 2Center for Cognition

and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China, 3 Zhejiang Key Laboratory for

Research in Assessment of Cognitive Impairments, Hangzhou, China, 4 Institutes of Psychological Sciences, College of
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Scaled Subprofile Model of Principal Component Analysis (SSM-PCA) is a multivariate

statistical method and has been widely used in Positron Emission Tomography

(PET). Recently, SSM-PCA has been applied to discriminate patients with Parkinson’s

disease and healthy controls with Amplitude of Low Frequency Fluctuation (ALFF) from

Resting-State Functional Magnetic Resonance Imaging (RS-fMRI). As RS-fMRI scans

are more readily available than PET scans, it is important to investigate the intra- and

inter-scanner reliability of SSM-PCA in RS-fMRI. A RS-fMRI dataset with Eyes Open

(EO) and Eyes Closed (EC) conditions was obtained in 21 healthy subjects (21.8 ± 1.8

years old, 11 females) on 3 visits (V1, V2, and V3), with V1 and V2 (mean interval of 14

days apart) on one scanner and V3 (about 8 months from V2) on a different scanner. To

simulate between-group analysis in conventional SSM-PCA studies, 21 subjects were

randomly divided into two groups, i.e., EC-EO group (EC ALFF map minus EO ALFF

map, n = 11) and EO-EC group (n = 10). A series of covariance patterns and their

expressions were derived for each visit. Only the expression of the first pattern showed

significant differences between the two groups for all the visits (p = 0.012, 0.0044, and

0.00062 for V1, V2, and V3, respectively). This pattern, referred to as EOEC-pattern,

mainly involved the sensorimotor cortex, superior temporal gyrus, frontal pole, and visual

cortex. EOEC-pattern’s expression showed fair intra-scanner reliability (ICC = 0.49) and

good inter-scanner reliability (ICC = 0.65 for V1 vs. V2 and ICC = 0.66 for V2 vs. V3).

While the EOEC-pattern was similar with the pattern of conventional unpaired T-test

map, the two patterns also showed method-specific regions, indicating that SSM-PCA

and conventional T-test are complementary for neuroimaging studies.

Keywords: principal component analysis, scaled subprofile model, intra-scanner reliability, inter-scanner

reliability, resting-state fMRI
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INTRODUCTION

Identification of reproducible and region-specific effects that
characterize normal or diseased brain state is one of the most
important goals of brain functional imaging studies. The Scaled
Subprofile Model of Principal Component Analysis (SSM-PCA)
is one of the earliest multivariate data analytic techniques that are
available to recognize significant group-dependent and region-
specific effects (Moeller et al., 1987; Moeller and Strother,
1991; Alexander and Moeller, 1994; Eidelberg, 2009). The SSM-
PCA is one form of regional covariance analysis, identifying
functional interaction patterns among brain regions that are
spatially distributed throughout the brain (Moeller et al., 1987).
Commonly, the SSM-PCA has been applied to differentiate two
groups of subjects (e.g., patients vs. healthy controls) (Alexander
and Moeller, 1994; Spetsieris and Eidelberg, 2011; Wu et al.,
2013; Tomše et al., 2017). The brain images of the two groups
are decomposed to be a linear combination of a series of spatial
patterns (i.e., images) by SSM-PCA. Each pattern is expressed
in each subject with a Subject Scaling Factor (SSF), which can
be prospectively assessed and compared between groups and
validated with disease severity and neuropsychological test scores
(Alexander and Moeller, 1994; Eidelberg, 2009).

SSM-PCA was first proposed to analyze data from Positron
Emission Tomography (PET) (Moeller et al., 1987), and had
been widely applied to investigate the effects of neurological
and psychiatric illness on brain function, such as Alzheimer’s
disease (Alexander and Moeller, 1994), Parkinson’s disease
(Eidelberg et al., 1995), major depressive disorder (Sackeim et al.,
1993), acquired immune deficiency syndrome dementia complex
(Rottenberg et al., 1987), neoplastic disease (Anderson et al.,
1988), and normal aging (Pagani et al., 2016). SSM-PCA was
then utilized to deal with structural, perfusion, and diffusion
Magnetic Resonance Imaging (MRI)metrics, including white and
gray matter density (Brickman et al., 2007, 2008; Bergfield et al.,
2010), graymatter volume (Guo et al., 2014; Steffener et al., 2016),
cerebral blood flow (CBF) (Asllani et al., 2008; Teune et al., 2014),
and fractional anisotropy (Gazes et al., 2016). More recently,
SSM-PCA was applied to investigate Parkinson’s disease-related
covariance brain pattern with a Resting-State Functional MRI
(RS-fMRI) metric (Wu et al., 2015), namely Amplitude of Low
Frequency Fluctuation (ALFF) (Zang et al., 2007), revealing that
the subject’s expression of this pattern is capable of discriminating
patients from healthy volunteers. RS-fMRI has many metrics
and thousands of papers have been published on various brain
disorders, however to our best knowledge, only one has utilized
SSM-PCA (Wu et al., 2015).

Reliability is the cornerstone of any scientific measurement
(Bennett and Miller, 2010). The intra- and inter-scanner
reliability is an important metric for quantification of fMRI
measurement reliability, given increasing research interest
relying on the ability to combine the data from multiple
scanners into larger, integrative data sets. For SSM-PCA,
we found that only one study measured the test-retest (i.e.,
intra-scanner) reliability with PET images from two groups
of subjects (Ma et al., 2007). That study demonstrated the
very high test-retest reliability of the SSF analysis. No study

has investigated inter-scanner reliability. The current studies
investigated both intra- and inter-scanner reliability with the
following 3 considerations.

First, we simulated a between-group design, i.e., comparison
between two groups. SSM-PCA has been widely used to compare
two groups of subjects, e.g., patient group vs. healthy group.
The reliability of SSM-PCA is different from the reliability of
other metrics. For example, the test-retest reliability of ALFF in
RS-fMRI is usually tested in a single group of healthy subjects
(Zou et al., 2015b), and it is relatively easy to scan a group of
healthy subjects twice. But SSM-PCA should be performed on the
between-group design to gain the reliability of the pattern as well
as its expression for each subject, i.e., SSF. It is rather difficult to
scan both the patient group and healthy group twice, especially
in two different scanners. Moreover, the brain activity in the
patients usually changes more than that in the healthy group
over time, which affects the intra- and inter-scanner reliability.
Therefore, the current study simulated two groups of subjects
with a single group of healthy subjects to investigate both the
intra-scanner (i.e., test-retest) reliability and the inter-scanner
reliability.

Second, we used a RS-fMRI dataset under Eyes Open (EO) and
Eyes Closed (EC) conditions. In RS-fMRI, EO and EC states are
two resting physiological states with distinct differences in a few
brain regions, and more importantly, these differences are highly
reproducible across studies (Yang et al., 2007; Yan et al., 2009;
Liu et al., 2013; Yuan et al., 2014; Zou et al., 2015a). EO and EC
are usually for within-group designs. By randomly dividing one
group into two subgroups and performing subtraction between
conditions, e.g., EC-EO group and EO-EC group, between-group
designs can be imitated with within-group data.

Third, we compared the spatial patterns generated by the
multivariate method of SSM-PCA with that by the univariate
statistical method of voxel-wise T-test. With a proper threshold,
the surviving brain voxels of a T map implies the existence of
significant difference between two groups (or conditions). By
contrast, the surviving brain voxels of a SSM-PCAmapmean that
these voxels contribute more than other voxels to the difference
between groups. We therefore were interested in studying the
similarities and differences between the T map and SSM-PCA
pattern with a certain threshold.

MATERIALS AND METHODS

Subjects
The experiment was approved by the ethics committee at the
Center for Cognition and Brain Disorders, Hangzhou Normal
University (HZNU). Signed informed consent was obtained
from all subjects prior to data acquisition. Twenty-one healthy
subjects (21.8 ± 1.8 years old, 11 females) participated in all
3 visits of MRI scans. All subjects were prescreened with a
telephone questionnaire to exclude history of neurological illness
or psychiatric disorders.

Data Acquisition
RS-fMRI dataset was obtained on 3 visits (V1, V2, and V3), with
V1 andV2 (separated by 14± 1 days) on a scanner andV3 (230±
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8 days fromV2) on a different scanner. For each visit, participants
underwent two RS-fMRI scans, during which they were asked to
relax with either EC or EO. The order of the two acquisitions was
counter-balanced across subjects.

MR images of V1 and V2 were obtained on a GE 3T
scanner (MR-750, GE Medical Systems, Milwaukee, WI) with an
eight-channel head coil at the Center for Cognition and Brain
Disorders of HZNU. To minimize the head movement, subjects
laid supine with their heads snugly fixed by straps and foam
pads. The Blood-Oxygenation-Level-Dependent (BOLD) images
were acquired using a gradient echo Echo-Planar Imaging (EPI)
pulse sequence with the following parameters: Repetition Time
(TR)/Echo Time (TE) = 2,000/30ms, Flip Angle (FA) = 60◦,
43 slices with interleaved acquisition, thickness/gap = 3.4/0mm,
Field Of View (FOV) = 220 × 220 mm2 with an in-plane
resolution of 3.44 × 3.44 mm2. The duration of each resting-
state scan was 8min. A high-resolution 3D volume imaging was
performed with a spoiled gradient-recalled pulse sequence (176
sagittal slices, thickness = 1mm, TR/TE = 8.1/3.1ms, FA = 9◦,
FOV= 250× 250 mm2).

Data of V3 were acquired on a Siemens 3T scanner (Prisma,
Siemens Healthineers, Erlangen, Germany) at the Center for
Brain Imaging Science and Technology of Zhejiang University
(ZJU). The BOLD EPI sequence parameters were the same
as those on the GE scanner except FA = 90◦. The 3D T1-
weighted images were acquired with a Magnetization-Prepared
Rapid-Acquisition Gradient Echo (MPRAGE) sequence (176
sagittal slices, thickness = 1mm, TR/TE = 1,800/2.28ms,
inversion time = 755ms, FA = 8◦, echo spacing = 7.1ms, turbo
factor= 208, FOV= 250× 250 mm2).

Data Preprocessing
Functional MRI data were preprocessed with Resting-
State fMRI Data Analysis Toolkit plus V1.2 (RESTplus
V1.2, http://restfmri.net/forum/index.php). Preprocessing
procedures included removal of the first 10 frames, slice-timing
correction, realignment to the first image for motion correction,
coregistration of individual averaged functional images to T1
images, and spatially normalization into the standard Montreal
Neurological Institute (MNI) brain space using the deformation
field from segmentation of T1 images. All images were then
resampled into 3 × 3 × 3 mm3 voxels, and smoothed using an
isotropic Gaussian filter with a Full Width at Half Maximum
(FWHM) of 6mm. For all the subjects, the maximum translation
and rotation were less than 1.5mm and 1.5◦, respectively. After
removing the linear drift, ALFF was calculated based on the
same procedures reported previously (Zang et al., 2007) with
RESTplus. Briefly, the time courses of RS-fMRI signal were first
converted to frequency domain with the Fast Fourier Transform
(FFT). Then, the averaged amplitude across a frequency band
of 0.01–0.08Hz yielded ALFF. For each subject, the ALFF map
was divided by the global mean ALFF value within a whole brain
mask in RESTplus.

SSM-PCA Analysis
Inmost previous applications of SSM-PCA, image data from both
patients and healthy controls were put together for analysis, and

then a disease-related spatial covariance pattern was identified
if significant difference in a pattern’s expression was found
between the patients and healthy controls by two-sample T-
test (Alexander and Moeller, 1994; Spetsieris and Eidelberg,
2011; Tomše et al., 2017). The current study was a within-
group design, i.e., comparison between two conditions within
the same group of subjects, which is also useful for longitudinal
follow-up or intervention studies in clinical research. To imitate
the analytic procedure in most existing SSM-PCA studies, 21
subjects in this study were randomly divided into two groups
with matched age and gender, i.e., EC-EO group (n = 11) and
EO-EC group (n = 10). In detail, for the EO-EC group, we
subtracted ALFF map of EC from ALFF map of EO for each
subject to generate the difference map, and vice versa for the
EC-EO group.

Based on a modified PCA, SSM-PCA decomposes the metric
(ALFF in the current study) maps from all the subjects (EC-
EO group and EO-EC group here) into a linear combination
of orthogonal components. Each component is a whole-brain
image, usually named as a “pattern.” Each voxel’s value of any
component is a weight representing the contribution of that
voxel to the corresponding pattern. Voxels with a relatively large
weight in the pattern was called “network” in Spetsieris and
colleagues’ paper on metabolic PET (Spetsieris et al., 2015). The
pattern was also termed as Group Invariant Subprofile (GIS)
(Moeller and Strother, 1991; Alexander and Moeller, 1994). The
projection of each individual’s ALFF map onto a pattern is
regarded as the pattern’s expression in the subject, which is also
called Subject Scaling Factor (SSF). The SSFs are then used in
further group-level statistical analysis, e.g., T-test between two
groups or correlation with behavioral variables.

The mathematical basis for SSM-PCA has been previously
described in detail (Moeller and Strother, 1991; Alexander
and Moeller, 1994; Spetsieris and Eidelberg, 2011). Briefly, the
difference ALFF maps were arranged first into an M × N
dimensional data matrix, where each column represents all
the voxels from each subject. M is the number of voxels
and N is the number of subjects. Secondly, we centered
each column to zero, and then acquired the Group Mean
Profile (GMP) as the mean value of each row. Thirdly, the
data matrix of each row was centered to zero with GMP
to obtain the Subject Residual Profile (SRP). As in regular
PCA, the reduced Singular Value Decomposition (SVD) was
utilized to factorize SRP (Jolliffe, 2002; Spetsieris and Eidelberg,
2011):

UΣV
T = SVD (SRP) , (1)

whereU is aM ×N matrix composed of the left unit-normalized
orthogonal singular vectors as columns, Σ is a N × N diagonal
matrix composed of singular values σk, where k is the component
number, and V is a N × N matrix composed of the right unit-
normalized orthogonal singular vectors as columns. Then, the
GISs (namely patterns) and SSFs (namely patterns’ expressions
in each subject) can be computed as follows:

GISik = U ik, (2)

SSFjk =
∑M

i = 1
(SRPij × GISik) (3)
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in which i is the voxel number and j is the subject number.
Variance Accounting For (VAF) represents the ratio of variance
corresponding to every GIS to the total variance, calculated by:

VAFk = σ 2
k /

∑N

k=1
σ 2
k . (4)

Two-sample T-test was then performed on SSFs to assess their
difference between the EC-EO group and EO-EC group. GIS,
whose SSF with p < 0.05, was considered to be the EC and EO
difference-related spatial covariance pattern (hereafter named as
EOEC-pattern). The GISs and SSFs were derived based on the
SSMPCA toolbox (http://www.feinsteinneuroscience.org).

Intra-scanner and Inter-scanner Reliability
Analysis
The intra-scanner and inter-scanner reliability of SSF from SSM-
PCA was measured with Intra-Class Correlation (ICC). ICC for
each pair of metrics from two visits was calculated as below
(Shrout and Fleiss, 1979):

ICC = (BMS−WMS)/(BMS+WMS), (5)

where BMS and WMS are the mean squares values of between-
target and within-target SSFs. To illustrate the similarity between
EOEC-patterns and their SSFs between each pair of MRI scans,
Pearson correlation coefficient (r) was also calculated (Zang et al.,
2017). The effect of group division on the ICC of SSF was
investigated by repeating the SSM-PCA with random division of
subjects for 1,000 times with bootstrapping.

EOEC-Pattern Generalization Across Visits
To investigate the generalization of EOEC-pattern across serial
MRI datasets, we used Topographic Profile Rating (TPR)
algorithm (Eidelberg et al., 1995; Ma et al., 2007). TPR quantifies
the expression of a given pattern in an individual subject by
the inner product of the pattern and the individual subject’s
SRP. The individual subject’s SRP is acquired by using the GMP
image associated with the derivation of the original pattern. For
example, an EOEC-pattern was obtained from V1 data and then
projected onto V2 and V3 data to compute SSFs. Two-sample T-
test was performed to compare between the EC-EO group and
EO-EC group for V2 and V3, respectively. ICC of V2 against V3
was also calculated as an additional way for measuring reliability,
as was done by Ma and colleagues (Ma et al., 2007). Similarly,
the EOEC-pattern from V2 or V3 was projected onto the data
in the other two visits, and intra- or inter-scanner reliability
was measured, in addition to the other indicators of reliability
described in section Intra-Scanner and Inter-Scanner Reliability
Analysis above.

Comparison Between EOEC-Pattern and
Univariate Statistical T Map
In order to compare the EOEC-patterns from SSM-PCA and
the T maps from univariate statistics, Dice Similarity Coefficient
(DSC) was utilized. Univariate two-sample T-test was performed
between EC-EO group and EO-EC group. A corrected p < 0.05
was used with AlphaSim in software RESTplus V1.2. This

corrected p value corresponded to a combined threshold of
single voxel p < 0.05 and cluster sizes larger than a certain
number of voxels, which was determined on an estimated
smoothing kernel size (Full Width at Half Maximum (FWHM)
listed in Table 1) according to their T maps. It should be
noted that there is currently no widely accepted method to
determine the threshold for SSM-PCA pattern maps. To render
it more comparable with the T map, we used the same cluster
size threshold (Table 1) for the z-transformed EOEC-pattern
map, sorted the absolute z value, and then determined the
|z| threshold (Table 1), by which the total number of voxels
of EOEC-patterns were kept almost the same as that of T
maps (Table 1). DSC was computed as below (Rombouts et al.,
1997):

DSC = 2|A∩B|/(|A| + |B|), (6)

where|A|, |B|, and |A∩ B| are the total voxel numbers
of the EOEC-pattern, T map, and their overlap,
respectively.

RESULTS

EOEC-Pattern Identification
As shown in Figure 1 and Supplementary Table 1, the VAF
of GIS1 for V1, V2, and V3 was remarkably larger than that
of GIS2. Only the SSF of GIS1 showed significant difference
(p < 0.05) between the EC-EO group and EO-EC group
for each visit. Thus, GIS1 was named as the EOEC-pattern
map for V1–3. As the VAF for GIS21 was zero, GIS21
and its SSF were ignored in T-test and reliability analysis.
Figures 2A–C displayed the topography of z-transformed EOEC-
patterns with a threshold of |z| > 1 and their SSFs in V1–
3. Combining the SSF distribution and EOEC-pattern, positive
z represented higher ALFF in EC than EO, mainly including
the visual cortex, temporal cortex, and sensorimotor cortex.
Inversely, negative z represented lower ALFF in EC than EO,
mainly involving frontal pole and posterior parietal cortex.
For each of these patterns, SSF values were significantly
elevated in the EC-EO group compared to the EO-EC group
(Figures 2D–F).

TABLE 1 | Parameters used in calculating DSC for comparison between

EOEC-pattern and univariate statistical T map.

V1 V2 V3

FWHM (mm) for T map [12.1 12.9 11.3] [11.9 12.6 11.2] [13.0 13.7 13.6]

Cluster size threshold

(voxel)

915 952 1137

Voxel number in T map 7669 10246 14913

|z| threshold for

EOEC-pattern

1.40 1.27 1.01

Voxel number in

EOEC-pattern

7668 10246 14911

DSC, Dice Similarity Coefficient; FWHM, Full Width at Half Maximum.
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FIGURE 1 | The percentage of VAF (%VAF) for each GIS in V1, V2, and V3. (VAF, Variance Accounting For; GIS, Group Invariant Subprofile).

FIGURE 2 | The z-transformed EOEC-patterns (with |z| > 1) (A–C) and their SSFs (D–F) of datasets V1–3. Positive and negative z values represented higher and

lower ALFF in EC than EO, respectively. The z coordinates of each slice were from −25 to 70mm with slice spacing of 5mm (SSF, Subject Scaling Factor).
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Intra- and Inter-scanner Reliability of
EOEC-Pattern and its Expression
Reliability by ICC
As shown in Figure 3, the PCC between both intra- and
inter-scanner EOEC-patterns was high (above 0.8, p < 0.001)
(Figures 3A–C). The intra-scanner reliability of EOEC-patterns’
expressions, i.e., SSFs, was fair (0.4∼0.59) (Cicchetti, 1994).
Interestingly, the inter-scanner reliability of SSF was good
(0.6∼0.74) (Figures 3D–F; Cicchetti, 1994). The PCC between
each pair of visits was very similar with ICC. Supplementary
Table 2 listed the intra- and inter-scanner ICCs of all the SSFs
corresponding to GIS1-20. Except for ICC of SSF1, all ICCs
of SSF2-20 were smaller than 0.4. The mean value, standard
deviation, and 95% confidence interval of ICC of EOEC-patterns’
expressions from bootstrapping were listed in Table 2. The table
demonstrated that the ICC variation is very small compared with
the mean value.

EOEC-Pattern Generalization Across Visits
We calculated the expression (i.e., SSF) of each EOEC-pattern
(V1, V2, and V3) on the other two datasets. As shown in
Table 3, the ICCs between expressions of a given EOEC-pattern
in the other two datasets was approximate to those between
each pair of SSFs obtained from the EOEC-patterns of their
own visits (Figures 3D–F). Two-sample T-test showed excellent
cross-validation results (Table 3).

Comparison Between EOEC-Pattern and
Univariate Statistical T Map
Figures 4A–C showed the univariate statistical T maps between
the EC-EO group and EO-EC group with a combined p threshold
and cluster size threshold described in Table 1. As shown in
Figures 4G–I, the DSCs for V1, V2, and V3 were 0.27, 0.31,
and 0.37, respectively, suggesting that the EOEC-pattern was
quite different from the T maps. By visual inspection on
Figures 4G–I, T-test detected larger, but not exclusively, areas
in the primary sensorimotor area and superior temporal gyrus,
whereas EOEC-pattern detected exclusively large area in the
occipital lobe.

DISCUSSION

EOEC-Pattern Identification
The first pattern, namely EOEC-pattern, accounted substantially
more variance than that of the second GIS (GIS2) in each
visit (Figure 1 and Supplementary Table 1). The EOEC-pattern
included the primary sensorimotor cortex, visual cortex, and
frontal cortex (Figures 2A–C). Similar brain areas were also
reported in previous EO and EC studies by using paired T-
tests (Yang et al., 2007; Yan et al., 2009; Liu et al., 2013;
Yuan et al., 2014; Zou et al., 2015a). The SSF showed
significant differences between the EC-EO group and EO-
EC group (Figures 2D–F). Many previous PET studies have
consistently found that the first pattern was the disease-related
pattern (Ma et al., 2007; Pagani et al., 2016; Tomše et al.,
2017). After centralization, the voxel-wise similarity between
groups was reduced, while the difference between groups was

highlighted (Moeller and Strother, 1991). The current study
randomly assigned one group of subjects into EC-EO and EO-
EC subgroups, and applied SSM-PCA in the same way as in
previous studies. Thus, it is not surprising why the first pattern
accounted for the largest portion of total variance, and hence,
is the “between-group” difference-related pattern, i.e., EOEC-
pattern.

Intra- and Inter-scanner Reliability of
SSM-PCA
We firstly found high similarity among the EOEC-patterns of
the 3 visits. We then calculated the reliability of SSF (i.e.,
the expression) corresponding to EOEC-patterns. Both the
intra- and inter-scanner reliability of SSF was fair to good
(ICC = 0.49–0.66) (Figure 3). Furthermore, we calculated the
SSF of an EOEC-pattern of one visit onto the other two visits.
For example, the EOEC-pattern of V1 was expressed onto V2
and V3, respectively. We found that each EOEC-pattern of
one visit could be successfully applied to other two visits to
differentiate the EC-EO group and EO-EC group (p < 0.01)
(Table 3). The ICC value was similar as before (Table 3 vs.
Figure 3).

To the best of our knowledge, only one previous study
investigated the test-retest reliability of SSM-PCA in two groups
of subjects (Ma et al., 2007). Ma and colleagues obtained a
Parkinson’s disease (PD)-related pattern (PDRP) from a dataset
of PD patients and healthy controls. Then this PDRP was
expressed onto other datasets to measure the ICC of PDRP’
expression (i.e., SSF). They found excellent test-retest reliability
over different intervals including 1 h apart (ICC = 0.94 for
healthy subjects, and ICC = 0.96 for unmediated PD patients), 1
day apart (ICC = 0.99 for unmedicated early state patients), and
2 months apart (ICC = 0.96 for medicated moderate stage PD
patients). These results suggest that the test-retest reliability of
FDGPETwas higher than that with RS-fMRI ALFF in the present
study. This discrepancy might be attributed to differences in the
experimental design, imaging modality, as well as computing
algorithm of imaging metrics. Simultaneous resting-state PET-
fMRI studies have shown that only a small part of brain regions
demonstrated significant voxel-level correlation between glucose
metabolism and RS-fMRI metrics including ALFF (Aiello et al.,
2015; Bernier et al., 2017). Generally speaking, PET and fMRI
measure different physiological features. However, the different
computation for the two techniques may also account for their
discrepancies. The metric for PET glucose metabolism is usually
the averaged or integrated value over a period of time, while
ALFF of RS-fMRI is the amplitude of fluctuation over time (Zang
et al., 2007). A non-invasive perfusion-weighted MRI technique,
arterial spin labeling (ASL) is widely used to measure CBF.
Some ASL sequences allow calculating both mean CBF over a
period of time and CBF-ALFF. A study used ASL and BOLD RS-
fMRI to compare between EO and EC states (Zou et al., 2015b).
ASL-ALFF and BOLD-ALFF detected similar regions, but CBF-
ALFF and CBF-mean detected very different regions. Zou and
colleagues also found that CBF-mean showed better test-retest
reliability than BOLD-ALFF (Zou et al., 2015a).
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FIGURE 3 | Pearson correlation of EOEC-patterns (A–C) and reliability of their expressions (D–F), i.e., SSF1, of each pair of visits. The Pearson correlation coefficients

for EOEC-patterns of V1 vs. V2 (intra-scanner), V1 vs. V3 (inter-scanner), and V2 vs. V3 (inter-scanner) were 0.86, 0.83, and 0.81, respectively, and the ICCs for

EOEC-pattern expressions of V1 vs. V2, V1 vs. V3, and V2 vs. V3 were 0.49, 0.65, and 0.66, respectively (SSF1, Subject Scaling Factor of GIS1, namely

EOEC-pattern here; ICC, Intra-Class Correlation; r, Pearson Correlation Coefficient).

TABLE 2 | ICC results of EOEC-pattern’s expression from the random group

selection for 1,000 times with bootstrapping.

V1 vs. V2 V1 vs. V3 V2 vs. V3

EOEC-pattern’s

expression

Mean± std 0.48± 0.04 0.61± 0.03 0.66± 0.03

95% confidence

interval

[0.43 0.55] [0.57 0.66] [0.62 0.67]

ICC, Intra-Class Correlation.

TABLE 3 | EOEC-pattern generalization results across visits.

Expression of

EOEC-pattern of

V1

Expression of

EOEC-pattern of

V2

Expression of

EOEC-pattern of

V3

V2 V3 V1 V3 V1 V2

p-value 0.0082 0.00099 0.0072 0.00038 0.0084 0.0054

T-value 2.95 3.89 3.01 4.31 2.94 3.14

Cohen d 1.09 1.30 1.11 1.37 1.09 1.14

ICC 0.64 0.71 0.46

ICC, Intra-Class Correlation. For example, the p value of 0.0084 meant the T-test result

for the expression of V3’s EOEC-pattern in V1 comparing the EC-EO and EO-EC groups.

ICC of 0.46 is the ICC between the expressions of V3’s EOEC-pattern in V1 and V2 across

all subjects.

Comparison Between EOEC-Pattern and
Univariate Statistical T Map
Both SSM-PCA and univariate T-test are statistical methods,
however, they are quite different in their mathematical

foundations. As a multivariate statistical approach, SSM-PCA
obtains patterns and the patterns’ expression of each subject
based on the covariance matrix of all the voxels from all the
subjects, which is a kind of pattern analysis (Alexander and
Moeller, 1994; Eidelberg, 2009). The patterns are whole-brain
images. Then two-sample T-test is applied to the patterns’
expression (i.e., SSF) to assess whether the SSF is different
between two groups of subjects. If the difference is significant,
the corresponding pattern is then named as difference-related
pattern, e.g., EOEC-related pattern in the current study or PD-
related pattern (PDRP) in previous studies (Ma et al., 2007;
Wu et al., 2013, 2015; Tomše et al., 2017). For a voxel in the
difference-related pattern, larger value means more contribution
or weight to the difference. On the other hand, for univariate
statistical method such as voxel-wise T-test, comparison is made
between the values of each single voxel from two groups of
subjects (two-sample T-test) or two conditions within a group of
subjects (one-sample T-test). The total number of comparisons
is very different for the SSM-PCA and T-test. For SSM-PCA,
the total number of comparisons is up to the total number of
patterns (up to 21 in the current study), but usually only a few
principle patterns are taken into account. And in practice like in
the current study and previous studies (Ma et al., 2007; Pagani
et al., 2016; Tomše et al., 2017), only the first one component
was used because the first component accounts much more
variance than the second one. For voxel-wise T-test, the total
number of comparisons is the total number of voxels (70,831
voxels in the current study). Therefore, false discovery problem
due to multiple comparisons is much more severe for univariate
statistical method in neuroimaging studies (Poldrack et al., 2011).

Frontiers in Neuroscience | www.frontiersin.org May 2018 | Volume 12 | Article 31152

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Yuan et al. Reliability of SSM-PCA in RS-fMRI

FIGURE 4 | The upper, middle, and bottom rows represented the univariate T maps (A–C) (with |T | > 2.09 and cluster size >915 voxels for V1, 952 for V2, and 1137

for V3), z-transformed EOEC-patterns (D–F) (with total number of voxels the same as that of corresponding T maps), and overlap maps between T maps and

EOEC-patterns (G–I) of dataset V1, V2, and V3, respectively. The Dice Similarity Coefficient (DSC) for V1, V2, and V3 were 0.27, 0.31, and 0.37, respectively. The z

coordinates of slices were from −25 to 70mm with slice spacing of 5mm.

The aforementioned points reflected merely a theoretical
issue frommethodological perspective. From neurophysiological
perspectives, SSM-PCA is operating on the notion that localized
changes engage multiple, interacting brain regions that are
widely distributed over the whole brain owe to intrinsic

connectivity in neural substrates. A primary example to support
this view is the modulation of SSM-PCA pattern and clinical
correlation by neurosurgical interventions delivered locally on
any key nodes in the pattern (Peng et al., 2014). On the
other hand, T-test is relying on mean signal in image data to
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localize regionally- independent group differences over the whole
brain. This method does not explicitly account for important
functional interactions between different brain regions except
neighborhood autocorrelations on a small scale inherent in image
data.

We compared the EOEC-pattern with T-test pattern. While
the results showed overlapped brain regions, they also showed
method-specific brain regions. The T-test detected larger brain
regions in the primary sensorimotor area and superior temporal
gyrus, but SSM-PCA detected exclusively large visual area.
In a previous research study with voxel-wise paired T-test
analysis, it was also found that the mean CBF from ASL
technique was significantly lower under EC than EO conditions
in the primary visual cortex, which was not detected with
ALFF T-test (Zou et al., 2015a). Moreover, it is well known
that the visual cortex can be activated by visual input, so
it is reasonable to detect visual area in the EOEC-pattern.
Differences that are not significant enough in T-test may show
up in pattern from SSM-PCA as reported in PET literatures
(Habeck et al., 2008; Ma et al., 2009) and ASL literature (Asllani
et al., 2008). Consequently, SSM-PCA and univariate T-test are
two complementary data analytic approaches for application
studies.

Limitations
One limitation is the experimental design for inter-scanner
reliability. The current study aimed to investigate both intra-
and inter-scanner reliability. When we kept the interval of the
two visits of intra-scanner scanning to be similar across subjects,
it is impossible to keep the order of inter-scanner scanning
count-balanced. Therefore, the second visit was always before the
third visit. It means that the reliability between the second and
third scanning is a mixed effect of inter-scanner and test-retest

reliability. Another limitation is using within-group designs to
simulate between-group designs for SSM-PCA.

CONCLUSIONS

Both the intra- and inter-scanner reliability of SSM-PCA of RS-
fMRI ALFF was fair to good. The difference-related pattern of
SSM-PCA and T maps was similar but also showed method-
specific brain regions, indicating that the SSM-PCA and T-test
are two complementary statistical methods.
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Structural brain networks estimated from diffusion MRI (dMRI) via tractography have

been widely studied in healthy controls and patients with neurological and psychiatric

diseases. However, few studies have addressed the reliability of derived network metrics

both node-specific and network-wide. Different network weighting strategies (NWS)

can be adopted to weight the strength of connection between two nodes yielding

structural brain networks that are almost fully-weighted. Here, we scanned five healthy

participants five times each, using a diffusion-weighted MRI protocol and computed

edges between 90 regions of interest (ROI) from the Automated Anatomical Labeling

(AAL) template. The edges were weighted according to nine different methods. We

propose a linear combination of these nine NWS into a single graph using an appropriate

diffusion distance metric. We refer to the resulting weighted graph as an Integrated

Weighted Structural Brain Network (ISWBN). Additionally, we consider a topological

filtering scheme that maximizes the information flow in the brain network under the

constraint of the overall cost of the surviving connections. We compared each of the nine

NWS and the ISWBN based on the improvement of: (a) intra-class correlation coefficient

(ICC) of well-known network metrics, both node-wise and per network level; and (b) the

recognition accuracy of each subject compared to the remainder of the cohort, as an

attempt to access the uniqueness of the structural brain network for each subject, after

first applying our proposed topological filtering scheme. Based on a threshold where

the network level ICC should be >0.90, our findings revealed that six out of nine NWS

lead to unreliable results at the network level, while all nine NWS were unreliable at

the node level. In comparison, our proposed ISWBN performed as well as the best

performing individual NWS at the network level, and the ICC was higher compared

to all individual NWS at the node level. Importantly, both network and node-wise

ICCs of network metrics derived from the topologically filtered ISBWN (ISWBNTF),
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were further improved compared to the non-filtered ISWBN. Finally, in the recognition

accuracy tests, we assigned each single ISWBNTF to the correct subject. We also

applied our methodology to a second dataset of diffusion-weighted MRI in healthy

controls and individuals with psychotic experience. Following a binary classification

scheme, the classification performance based on ISWBNTF outperformed the nine

different weighting strategies and the ISWBN. Overall, these findings suggest that

the proposed methodology results in improved characterization of genuine between-

subject differences in connectivity leading to the possibility of network-based structural

phenotyping.

Keywords: connectome, diffusion MRI, structural brain network, tractography, reliability

INTRODUCTION

Tractography is a popular method for extracting white matter
connectivity from diffusion MRI (dMRI) and plays a key role
in structural brain connectomics (Fornito et al., 2015). A
variety of algorithms have been proposed, with the majority
of them using voxel-based assessment of water diffusion to
reveal paths/tracts of the white matter bundles. A fundamental
problem with tractography is that there is no “ground truth” so
it is impossible to separate “true” from spurious false positive
and false negative connections (Smith et al., 2012; de Reus
and van den Heuvel, 2013; Girard et al., 2014). Any noise in
the system can lead to noisy connection matrices, particularly
at the single-subject level, leading to numerous false positives
(Thomas et al., 2014). It has recently been estimated that false
positives are twice as detrimental as false negatives for any
network metric derived from binary networks (Zalesky et al.,
2016).

Two recent studies have attempted to solve this issue, which is
a main obstacle for the application of graph theory to structural
brain networks. Drakesmith et al. (2015b), proposed the multi-
threshold permutation correction to overcome the effects of false
positives and threshold bias. Roberts et al. proposed a consistent
thresholding of structural brain networks that attempted to
identify highly consistent and highly inconsistent subnetworks
across subjects in a targeted cohort (Roberts et al., 2016).

One solution to this bias in structural brain connectivity
metrics is to aggregate data over large samples of subjects as a
way of increasing the signal to noise ratio, for example, through
averaging of brain networks across subjects (Hagmann et al.,
2008; Perry et al., 2015). An alternative to this group-averaging
approach is to construct a consensus brain network by pooling
edges that are derived from a predefined fraction of subjects
across the whole cohort (van den Heuvel and Sporns, 2011;
de Reus and van den Heuvel, 2013). Consensus brain network
is a term derived from consensus clustering where different
clusterings that have been obtained from the same dataset, after
applying different clustering algorithms, are aggregated to fit a
more robust/consistent clustering. Similarly, a consensus brain
network maintains the edges that are highly representative across
the cohort as a “majority vote” rule.

These aforementioned approaches are problematic because
densely seeded tractography leads to dense structural brain

networks and thus, a high level of inherent (but potentially
spurious) overlap across subjects. The most common approach
to tackling this issue is to adopt a “topological filtering” approach
or a “threshold” in order to uncover the backbone of the
network topology. Apart from reducing spurious connections,
topological filtering of brain connectivity matrices plays a
significant role in extracting connection topology (Bullmore and
Bassett, 2011). The most common method in this setting is
to “threshold” networks to some desired density by keeping
only the “strongest” links (Dimitriadis et al., 2010). We recently
proposed a data-driven topological filtering scheme based on
orthogonal minimal spanning trees (OMST) (Dimitriadis et al.,
2017b). It is extremely important that any data-driven filtering
approach considers the topology of the brain network and treats
both weak and strong connections equally (Gigandet et al.,
2008).

Thresholding is widely used in both structural and functional
brain network analysis as a step for binarizing the weighted
networks (i.e., transforming them into unweighted networks
(Dimitriadis et al., 2010, 2015a, 2016a,b,c,d; Rubinov and
Sporns, 2010; Antonakakis et al., 2016). While such binarization
procedures are recommended for separating strong from weak
connections, they are not ideally suited to extracting network
metrics. The relative weights on different edges are informative
and can give a better characterization of the underlying
structural and/or functional topology, potentially leading to
better separation of groups or conditions.

Previous studies have attempted to reveal the reliability of
network and node-wise network metrics for structural brain
networks, using a few edge-weighting strategies. Cheng et al.
(2012) assessed test-retest reliability using diffusion tensor MRI
(DT-MRI) data from 44 subjects with a focus on the differences
between binary and weighted networks. Buchanan et al. (2014),
with repeated scans from nine subjects, explored the reliability of
network metrics on a network and node-wise level using dMRI
and two alternative tractography algorithms, two alternative
seeding strategies, a white matter way point constraint and
three alternative network weightings (Buchanan et al., 2014).
Specifically, Cheng et al. (2012) explored variability of network
metrics using DTI and two different weighting network strategies
(WS). In the first approach, the weights were computed as the
ratio between the sum of the inverse of the fiber length and
the mean volume of two Regions of Interests (ROIs) (WS1),
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while in the second (WS2), they eliminated the fiber length,
counting only the number of fibers normalized by the sum of
the voxels in both ROIs. The Intra-Class Correlation Coefficients
(ICCs) for six network metrics varies from 0.54 to 0.67 for
WS1 but varies from 0.3 to 0.64 for WS2. Buchanan et al.
(2014) reported global within-subject differences between 3.2
and 11.9%, with ICCs between 0.62 and 0.76. The mean nodal
within-subject differences were between 5.2 and 24.2%, with
mean ICCs between 0.46 and 0.62. For 83.3% (70/84) of nodes,
the within-subject differences were smaller than between-subject
differences.

Both studies demonstrated (ICCs) for network-wise network
metrics using a few edge-weighting strategies. However, they
did not assess the reliability of network metrics at a node
level and more importantly, did not propose a solution for
further improving the reliability of the existing methodology in
constructing structural brain networks.

In this study, we constructed structural brain networks
from five repeat scans of five healthy volunteers by adopting
nine different network weighting strategies (NWS) affecting
the construction of networks. In each of the nine alternative
network weighting scenarios DT-MRI-based weights (Fractional
Anisotropy-FA/Radial Diffusivity-RD/Mean Diffusivity-MD),
average tract length (ATL), Euclidean distance between the
coordinates of the ROIs (ED), the volume of the tract (TV),
the number of streamlines (NSTR) and the proportion of
streamlines (PSTR) [see section Network Weighting Strategies
(NWS) for the definition], we quantified the reliability of
six graph-theoretic measures network-wise (characteristic path
length, global/local efficiency, radius, diameter, and eccentricity)
and two node-wise (global and local efficiency) using (ICC).
Since these measures are essential prerequisites for characterizing
complex networks, their reliability is crucial to the ultimate
interpretation of structural brain networks. Additionally, we
propose a methodology for combining the alternative network
weighted brain networks into a single integrated weighted
structural brain network (IWSBN).We compared the ICCs of the
same networkmetrics both network and node-wise, derived from
the IWSBN, with those derived using the nine individual NWS.
We also present a data-driven thresholding scheme that can
extract the backbone of structural brain networks by optimizing
the information flow under the constraint of the overall cost
of the selected weighted connections. This topological filtering
scheme was applied to the IWSBN, and the ICCs of the network
metrics were again estimated. Finally, we tested the NWS-
based weighted brain networks, the proposed IWSBN and its
topologically filtered version IWSBNTF in terms of the ability
to match each network to the correct subject out of the whole
cohort (i.e., identify which networks are derived from repeat
scans of the same subject, which we refer to as “recognition
accuracy”). This is important, as it captures the ability to
separate intra-individual differences in derived networks (where
variance derives from measurement noise), from interindividual
differences in networks (reflecting true underlying biological
differences). As such, this facilitates the study of individualized
structural brain networks without having to resort to group-
averaging approaches.

MATERIALS

Participants
In total, five healthy subjects participated in this pilot study
(mean 37.1± 4.9 years std age, five males). The whole procedure
involved five repeat scans for each participant 1 week apart
from each other. All participants were recruited through the
School of Psychology, Cardiff, Wales, UK. All participants were
undergoing or had previously completed a university degree
course, were right handed as assessed with the Edinburgh
Handedness Inventory3 and of Caucasian origin. Exclusion
criteria included a current episode or a history of neurological
and psychiatric disorders, drug or alcohol abuse and medication
that may have an impact on the structure of the brain. For
assessment, the general health questionnaire was used (Goldberg
and Huxley, 1980). All subjects provided a written informed
consent.

Structural MRI Scanning
T1-weighted structural scans were acquired using an oblique
axial, 3D fast-spoiled gradient recalled sequence (FSPGR) with
the following parameters: TR = 7.9ms, TE = 3.0ms, inversion
time = 450ms, flip angle = 20◦, 1mm isotropic resolution, with
a total acquisition time of∼7min.

Diffusion MRI Scanning
High angular resolution diffusion-weighted imaging (HARDI)
data were acquired in the Cardiff University Brain Research
Imaging Centre (CUBRIC) on a 3 T GE Signa HDx system
(General Electric, Milwaukee, USA) using a cardiac-gated,
peripherally gated twice-refocused spin-echo Echo Planar
Imaging (EPI) sequence, with effective TR/TE of 15R-R
intervals/87ms. Sets of 60 contiguous 2.4mm thick axial slices
were obtained, with diffusion-sensitizing gradients applied along
30 isotropically distributed (Jones et al., 1999) gradient directions
(b = 1,200 s/mm2). For further details of the MRI protocol see
(Bracht et al., 2016).

Diffusion MRI Data Preprocessing
Data were analyzed using Explore DTI 4.8.3 (Leemans et al.,
2009). Eddy-current induced distortion and motion correction
was performed using an affine registration to the non-
diffusion-weighted B0-images, with appropriate re-orienting
of the encoding vectors (Leemans and Jones, 2009). Field
inhomogeneities were corrected for using the approach of Wu
et al. (2008). The diffusion-weighted images (DWIs) were non-
linearly warped to the T1-weighted image using the FA map,
calculated from the DWIs, as a reference. Warps were computed
using Elastix (Klein et al., 2010) normalized mutual information
as the cost function and constraining deformations to the
phase-encoding direction. The corrected DWIs were therefore
transformed to the same (undistorted) space as the T1-weighted
structural images. A single diffusion tensor model was fitted to
the diffusion data in order to compute quantitative parameters
such as FA (Basser et al., 1994). Following the method of
Pasternak et al. (2009), a correction for free water contamination
of the diffusion tensor based estimates was applied (Pasternak
et al., 2009; Metzler-Baddeley et al., 2012). Data quality was
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checked by careful visual inspection and by looking at the average
residuals per DWI for each participant.

Tractography
DT-MRI analysis was performed using ExploreDTI (Leemans
et al., 2009) following peaks in the fiber orientation density
function (fODF) reconstructed from the damped Richardson
Lucy algorithm (dRL) (Dell’acqua et al., 2010; Jeurissen et al.,
2013). The dRL algorithm estimates multiple fiber orientations
in a single voxel and therefore provides a more accurate diffusion
profile than DT-MRI-based methods estimating only one fiber
orientation per voxel. For each voxel in the dataset, streamlines
were initiated along any peak in the (fODF) that exceeded an
amplitude of 0.05. A streamline, uniform step-size, algorithm
based on that of Basser et al. (2000), but extended to multiple
fiber orientations within each voxel (Jeurissen et al., 2011), was
used for tractography. Each streamline continued in 0.5mm steps
following the peak in the fODF that subtended the smallest angle
to the incoming trajectory. Termination criteria were an angle
threshold >45◦ and fODF amplitude <0.05.

Network Construction
The automated atlas labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002) was registered to the HARDI data using a nonlinear
transformation (Klein et al., 2010). The streamline termination
points were coregistered to each AAL region. The numbers of
streamlines connecting each pair of AAL regions were aggregated
into a 90× 90 connectivity matrix.

Connections between regions were computed by identifying
the streamlines connecting each pair of gray matter ROIs. The
endpoint of a streamline was considered to be the first graymatter
ROI encountered when tracking from the seed location

Streamlines that did not connect to an ROI were discarded.
Networks were computed for 13 different thresholds of
streamline filtering by minimum contiguous length in white
matter, from 0 to 6.0mm in increments of 0.5mm (Buchanan
et al., 2014). For instance, a threshold of l mm discards any
streamline that does not pass through at least l mm in white
matter between gray matter ROIs.

Network Weighting Strategies (NWS)
In this section, we describe the nine adopted NWS derived from
tractography.

Fractional anisotropy (FA) is calculated from the eigenvalues
(λ1,λ2,λ3) of the diffusion tensor. The eigenvectors (ǫ) give
the orientations in which the ellipsoid has major axes and the
corresponding eigenvalues give the magnitude of the peak along
each axis (Basser and Pierpaoli, 1996). Themean diffusivity (MD)
is the average of the three eigenvalues, while the axial and radial
diffusivity are given by the largest and average of the two smallest
eigenvalues, respectively (Basser et al., 1994).

The fourth NWS was based on average streamline tract
length (ATL) leading to ATL-weighted networks. The fifth NWS
estimated the Euclidean distance (ED) between the centroids
of the two ROIs leading to the ED-weighed network. The
Euclidean distance is computed in native space, so will vary
across individuals.

The sixth NWS, termed streamline density (SD-weighted),
records the interconnecting streamline density corrected for ROI
size:

wij =
2

gi + gj

∣

∣Sij
∣

∣ (1)

where Sij is the set of all streamlines found between node i and
node j (and Sij = Sji), and gi and gj are the number of gray matter
voxels in nodes i and j. This approach leads to the construction of
a SD-weighed network.

The seventh NWS is based on the volume of the tract (TV)
leading to TV-weighted networks. The tract volume is computed
by counting the number of voxels the streamlines of a bundle
occupy and multiplying by the voxel size.

Two further NWSs were based on the number and the
percentage of streamlines that connected a pair of ROIs. The
number of streamlines (NSTR) is the absolute NSTR connecting
two regions. The proportion of streamlines (PSTR) is the NSTR
between each pair of regions, normalized to the total NSTR across
the whole brain.

The adopted NWSs are called the NSTR and PSTR.
Figure 1 illustrates the nine alternative NWS and the

corresponding weights from a scan of the first subject.

Integrating NWS into a Single Graph
We integrated the different NWS via a linear integration based
on the best matching of each pair of NWS-based brain networks
in terms of their maximum information flow using the graph
diffusion distance metric (gDDM) as described in the next
section.

Graph Diffusion Distance Metric
We computed the dissimilarity distance between every pair
of structural brain networks (SBNs) with a novel gDDM
Graph Diffusion Distance (GDD), based on a graph Laplacian
exponential kernel (Fouss et al., 2012), served as a distance
metric.

The graph Laplacian operator of the SBN was defined as
L= D – SBN, where D is a diagonal degree matrix estimated
from the SBN. This method entails modeling hypothetical
patterns of information flow among sensors based on each
observed (static) SBN. The GDD metric reflects the result of
the comparison of such patterns between groups. The diffusion
process on the person-specific SBN was allowed for a set time
t; the quantity that underwent diffusion at each time point is
represented by the time-varying vectoru(t) ∈ ℜN . Thus, for a
pair of sensors i and j, the quantity SBNij (ui(t) – uj(t)) represents
the hypothetical flow of information from i to j via the edges
that connect them (both directly and indirectly). Summing all
these hypothetical interactions for each sensor leads to uj

′(t) =
∑

i
FCGij(ui(t)− uj(t)), which can be written as:

ui(t) = −Lu(t) (2)

where L is the graph Laplacian of SBN. At time t= 0, Equation (2)
has the analytic solution: u(t) = exp(−tL)u(0). Here exp(-tL) is a
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FIGURE 1 | (Top) 90 × 90 connectivity matrices of inter-region connections adopted from a subject for the nine network weighting strategies (NWS). (Bottom) The

corresponding histograms of the connection weights for each of the nine NWS.

N × N matrix function of t, known as a Laplacian exponential
diffusion kernel (Fouss et al., 2012), and u(0) = ej, where ej ∈

ℜN is the unit vector with all zeros except in the jth component.
Running the diffusion process through time t produced the
diffusion pattern exp(–tL)ej which corresponds to the jth column
of exp(–tL).

Next, a metric of dissimilarity between every possible pair of
person-specific diffusion kernelised SBNs (SBN1, SBN2) in the
form of the graph diffusion distance dgdd(t) was computed. The
higher the value of dgdd(t) between the two graphs, the greater the
difference in their network topology as well as the corresponding
hypothetical information flow. The columns of the Laplacian
exponential kernels, exp(–tL1) and exp(-tL2), describe distinct
diffusion patterns, centered at two corresponding sensors within
each SBN. The dgdd(t) function is searching for a diffusion time
t that maximizes the Frobenius norm of the sum of squared
differences between these patterns, summed over all sensors, and
is computed as:

dgdd(t) =
∥

∥exp(−tL1)− exp(−tL2)
∥

∥

2

F
(3)

where ‖.‖F is the Frobenius norm.
Given the spectral decomposition L = V3V, the Laplacian

exponential can be estimated via:

exp(−tL) = Vexp(−t3)V ′ (4)

where for3, exp(–t3) is diagonal to the ith entry given by e−t3i ,i .
We computed dgdd(SBN1, SBN2) by first diagonalizing L1 and

L2 and then applying Equations (3) and (4) to estimate dgdd(t)
for each time point t of the diffusion process. In this manner,
a single dissimilarity value was computed for each pair of SBNs
(Hammond et al., 2013).

Linear Integration of the Different NWS-Based SBN

into IWSBN
Specifically, adopting a gDDM (see previous section Graph
Diffusion Distance Metric), we estimated a dissimilarity matrix
dgDDM between every pair of NWS-based brain networks
independently for each scan and subject (Figure 2A). Afterward,
we estimated the sum of the rows of dgDDM and then we
normalized this derived vector (such as to have a total sum
equal to one), to extract weights, lw, for the linear integration
of the NWS-based networks into a single graph. Then, we
summed across all of these networks weighting each network by
lw (Figure 2B). The result is an IWSBN that is fully-weighted
(Figure 2C). Figure 3 illustrates the topologies of the nine NWS
from a single subject from their first scan. We plotted the upper
decile 10% of the strongest connections according to the related
weight.

Topological Filtering of Structural Brain
Network
We topologically filtered the IWSBN using a data-driven
thresholding scheme that optimizes the information flow over the
cost of the surviving/selecting connections. Below, we describe
the proposed data-driven topological filtering scheme.

Frontiers in Neuroscience | www.frontiersin.org December 2017 | Volume 11 | Article 69460

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Dimitriadis et al. Improving Reliability on Structural Brain Networks

FIGURE 2 | Integrated different network weighting strategies into a single weighted structural brain network (IWSBN). (A) From the dissimilarity matrix between every

pair of NWS-networks to the related linear weights linked to their interrelationship. We first summed the rows from the dissimilarity matrix dgDDM and then we

normalized these weights lw such as to have a total sum equal to one. (B) Linear integration of the NWS-networks by multiplying (x) each NWS-based SBN with the

related weight lw derived from (A). (C) The suggested IWSBN derived from (C). (D) The topological filtered version of IWSBN called IWSBNTF.

FIGURE 3 | Subject 1—First scan: Topographical layouts of (A) nine brain networks derived from the related NWS and the (B) IWSBN and its topological filtering

version IWSBNTF. We plotted the 10% of the strongest connections at each structural brain network to enhance the visualization of the network topology.

Topological Filtering Based on Orthogonal Minimal

Spanning Trees (OMST)
In graph theory, a tree is defined as an acyclic connected graph
(Estrada, 2011). Acyclic implies that there are no loops (of any
length) in the graph. Minimal Spanning Tree (MST) has been
shown to be an unbiased, assumption-free method to derive

unique functional brain networks (Meier et al., 2015). However,
MST is a tree with only V-1 links, which for large graphs is too
sparse to allow reliable discrimination between two (Antonakakis
et al., 2016; Dimitriadis et al., 2017a,b) or more groups (Khazaeea
et al., 2017). Two main algorithms have been described to
construct the MST of a weighted graph by Kruskal (1956) and
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FIGURE 4 | OMST: The optimization of GE-Cost over cost function based on

OMSTs from a typical reader. The red circle denotes the peak of the computed

curve, while the resulting topologically filtered SBN is shown in Figures 2B,C.

Prim (1957). In a recent study, we demonstrated a data-driven
topological filtering scheme for brain networks using a large
number of EEG and fMRI functional connectivity graphs. Our
algorithm samples connections from a fully-weighted graph via
OMST (Dimitriadis et al., 2017a,b). The objective criterion was
the optimization of the Global Cost Efficiency (GCE) = GE-
Cost over each round of the OMST. Cost denotes the ratio of

the total weight of the selected edges, over multiple iterations

of OMST, divided by the total strength of the original fully-

weighted graph. The values of GCE range within the limits of an

economical small-world network for healthy control participants
(Bassett and Bullmore, 2009). The quality formula is described by
the following equation:

JOMSTs
GCE = GE− Cost (5)

The curve in Figure 4 plots Equation (5) over cost after
running exhaustive OMSTs until all observed weights were tested,
based on data from a typical reader. The maximum of this
(always) positive curve reflects the optimization of the proposed
OMST algorithm. In the example of Figure 4, we applied the
algorithm in the IWSBN in Figure 2C and the GE-Cost vs.
cost function was optimized after four OMSTs leading to a
selection of 4∗89 = 356 connections—a mere 8.9% of the total
number of connections that survived the topological filtering
approach.

The outcome of this procedure is the IWSBNTF presented
in Figures 2D, 3B which is sparser compared to the IWSBN in
Figures 2C, 3B. The topological filtering scheme revealed a dense
subgraph between frontal areas and calcarine, cuneus, lingual,
occipital, and fusiform bilaterally.

Network Measures
For each of the nine weighted SBNs, we estimated six network
metrics at the network level and two at the node level. Specifically,
for the network level, we estimated global efficiency, local
efficiency, characteristic path length, radius, eccentricity and
mean weight. For the node level, we estimated global and local
efficiency.

Test-Retest Statistics
For each metric, an agreement between sessions was computed,
via ICC (Shrout and Fleiss, 1979). ICC values were extracted for
both network and node level and for every NWS-based brain
network, for the IWSBN and also its topological filtering version
IWSBNTF.

High test-retest reliability is a prerequisite for a connectomic
metric to allow for the distinguishing of different individuals
(Zuo and Xing, 2014) and also for developing a biomarker of
the application of functional connectomics, such as mapping
growth charts of human brain function (Dosenbach et al.,
2010; Castellanos et al., 2013). Therefore, beyond developing a
biomarker, estimations of the test-retest reliability of functional
connectomics are valuable for providing a reference regarding
how strongly the estimated variables affect the observed results
and guiding the significant value of the findings of both normal
and abnormal brains (Zuo et al., 2014).

Classification of Structural Brain Networks
Recognition accuracy was assessed for each individual scan
compared to the rest based on a k-nearest neighbor (k-NN)
classifier with k = 4 and adopting a leave-one-out cross-
validation scheme (LOOCV). Instead of the Euclidean Distance
(ED) most commonly used in k-NN classifiers, here we used the
proposed gDDM (see section Graph Diffusion Distance Metric).
gDDM is a more appropriate metric compared to ED to quantify
the distance between two SBNs regarding their distance in terms
of information flow based on their topology. The proposed
gDDM metric is based on the eigenanalysis of the Laplacian
matrices with known attributes in terms of graph theory and
diffusion processes (Fouss et al., 2012).

Discrimination of Healthy Controls from
Individuals with Psychotic Experiences via
Structural Connectome
To demonstrate the effectiveness of the proposed method in
a binary classification problem, we analyzed a large dataset
consisting of 123 individuals with psychotic experience and 125
age and gender-matched controls. The details of the cohort
and the MRI scanning protocol can be found in the original
publication (Drakesmith et al., 2015a).

We followed a binary classification procedure with a 10-
fold cross-validation, employing as an input, each weighted
SBN separately but also the IWSBN and the topologically
filtered version (IWSBNTF). As a classifier, we used a tensor
subspace analysis to reduce the initial high-dimensionality of the
original functional connectivity network to a space of condensed
descriptive power (Dimitriadis et al., 2015b,c; Antonakakis et al.,
2016). The input on TSA is a 3D tensor-matrix of dimensions
(subjects × ROIs × ROIs). As a classifier, we used a support
vector machine with RBF kernel.

Exploring the Effect of Each Node to the
Integrated Graph
The proposed IWSBNTF was derived after first linearly
combining the nine NWS and after that, topologically filtering
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the outcome IWSBN. Our second thought was to weight each
node independently within each of the nine NWS first and
secondly to weight the whole NWS-network with the proposed
methodology. To get the linear weights lw for each node within
each NWS-network, we followed five strategic network lesion
schemes, three based node-wise and two cluster-wise.

The first three node-wise strategies were: (1) zeroing half of
the connections of each node; (2) diminishing the weights of
the connections of each node by 50%; and (3) combining both
where half of the connections of each node were zeroed while
the weights of the second half were diminished by 50%. The
three node-wise attack strategies were followed for one by one
node at every NWS and then we estimated the gDDM distance
between the original network and the attacked network. Finally,
the derived vector with the 90 gDDM values was normalized
such as its sum was equal to one. Then, we multiplied each
NWS-network node-wise with this vector and afterward with the
network-wise approaches based on the present methodology.

The two cluster-wise lesions were: (1) the distinction of the
whole set of hubs into rich-club hubs and non-rich-club hubs
(van den Heuvel and Sporns, 2011); and (2) the functional
clustering of the NWS-network into distinct clusters using
the modularity algorithm (Newman, 2006). The two cluster-
wise attack strategies were followed for each cluster at every
NWS, based on the three node-wise attack strategies targeting
either connections within rc-hub subgraphs and/or non-rc-hub
subgraph connections and/or the connections between the non-
rc and rc-hubs. Then, we estimated the gDDM distance between
the original network and the attacked network. Finally, the
derived vector with ncluster gDDM values was normalized such
as its sum was equal to one.

The whole procedure was added as a first step before the
proposed network-wise linear combination of the NWS-network
into a single IWSBN All the NWS-networks were pre-filtered
with the proposed data-drive thresholding scheme. The node-
wise linear weighting step prior to the proposed network-
wise was evaluated based on the ICC values of the adopted
network metrics both network and node-wise. Additionally, the
recognition accuracy of each subject scan over the rest of cohort
was compared to the proposed method.

RESULTS

Graph Embedding of the Dissimilarity
Matrices Based on dgDDM

Dissimilarity matrices (DM) based on each NWS across scans
and subjects were estimated based on the gDDM. Figure 5

QCI =
scans x (scans− 1) /2

scans x scans
×

subjects
∑

su1=1

subjects
∑

su2=su1+1

scans
∑

l=1

scans
∑

m=1
gDDM

(

D_IWSBNTF(su1 ,l),D_IWSBNTF(su2 ,m)
)

subjects∗(subjects −1)/2

subjects
∑

su=1

scans
∑

l=1

scans
∑

m=l+1

gDDM(D_IWSBNTF(su,l),D_IWSBNTF(su,m))

subjects

(6)

demonstrates the DM for each of the NWS across repeat scans
and the related graph embedding based on multidimensional

scaling (MDS). The NSTR proved to better discriminate the five
subjects compared to the rest of the methods.

Reliability of Network Level Metrics for
NWS and ISWBN
The ICC scores were excellent—ranging from 0.75 to 1—for six
out of nine network metrics for the entire set of network metrics.
These NWS include the ATL, BIN, SD, ED, NSTR, PSTR, and
TV (Figure 6). The related group-averaged values of the network
metrics for each NWS are shown in Figure 7. The proposed
IWSBN yielded good ICC values but these were lower than those
obtained for each of the six NWS (Figure 8A). Significantly, we
observed an improvement of the ICC on the IWSBNTF which
reached the level of the six best NWS in terms of ICC scoring
(Figure 8B). Figure 9 demonstrates the group-averaged values of
network metrics on the network level.

Reliability of Network Metrics on a Node
Level
The analysis of ICCs on global and local efficiency node-wise
on the nine NWS and in both IWSBN and IWSBNTF revealed
important trends. Firstly, the ICC values for each of the NWS
failed to reach a fair value (ICC < 0.1). Secondly, the ICC values
derived from the IWSBN showed a large variability but reached
on average ICC= 0.68± 0.10 for global efficiency and ICC= 0.68
± 0.17 for local efficiency (Figure 10A). Third, the ICC values
for both network metrics were improved in IWSBNTF, reaching
a mean ICC = 0.75 ± 0.02 for global efficiency and a mean
ICC = 0.84 ± 0.02 for local efficiency (Figure 10B). Applying
a Wilcoxon Rank Sum Test between the two distributions for
each network metrics, we observed significant improvement of
ICC values for IWSBNTF (global efficiency: p = 0.0035 × 10−7,
local efficiency: p= 0.0067× 10−10). Figure 11 demonstrates the
group-averaged values of network metrics on the node level.

Recognition Accuracy of Structural Brain
Networks
Dissimilarity matrices (DM) based on both IWSBN and
IWSBNTF across scans and subjects were estimated based on the
gDDM. Figure 12 demonstrates the DM for both IWSBN and
IWSBNTF across repeat scans and the related graph embedding
based on multidimensional scaling (MDS). The proposed
topological filtering scheme improved the discrimination of the
five subjects compared to the original IWSBN.

Applying a k-NN classifier with k = 4 and gDDM as
the appropriate distance metric under a LOOCV scheme, we
succeeded to accurately classify each scan to the right person

based on IWSBNTF. Similar results were also obtained withNSTR
(Figure 5).
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FIGURE 5 | Dissimilarity matrices (DM) based on each NWS across scans and subjects based on the gDDM and graph embedding of DM. First and third rows

illustrate the DM between every pair of scans across the cohort based on the gDDM metric for each of the nine NWS, while the second and fourth rows demonstrate

the embedded DM via the MDS process in a common 3D space. Each color corresponds to a single subject, while lines with the same color interconnect the NWS

derived from repeat scans from the same subject (MDS, multidimensional scaling).

FIGURE 6 | ICC values for basic network metrics on the network level for each of the nine NWS. CPL, Characteristic Path Length; ECC, Eccentricity; R, Radius; GE,

Global Efficiency; LE, Local Efficiency; STR, mean strength.

For a better estimation of the discrimination of proposed
IWSBNTF with NSTR, we defined the following quality of
clustering index (QCI) (Dimitriadis et al., 2012):

The QCI quantifies the average similarity of the IWSBNTF

across scans within each subject (cluster) expressed in the
denominator of Equation (6) and the average dissimilarity
between every pair of subjects (clusters) across their scans
expressed in the numerator. Both similarity and dissimilarity
were estimated based on the gDDM. The higher the dissimilarity
between the clusters (numerator) and/or the lower the
dissimilarity within the clusters (denominator), the higher
the QCI. The numerator is averaged across all possible
combinations of subjects (clusters) while the denominator across
subjects (clusters). The first term was used to equalize the effect

of between-subject (clusters) comparisons vs. within-subject
comparisons (clusters). This inversed coefficient guarantees that
in the case of all the weights in the DM being equal then it
will take a value of one. Therefore, the higher the value of the
QCI above one, the higher the separability between the network
topologies of the subjects.

We first tabulated all the IWSBNTF across scans and subjects
into a 4D graph with dimensions equal to [subjects × scans ×
Rois × Rois] called D_ IWSBNTF. Afterward, we estimated the
QCI for each NWS and for both IWSBN and IWSBNTF.

The QCI was 1.45 for IWSBN and 6.45 for IWSBNTF while for
NSTR the QCI was 4.57. This result can be interpreted as a higher
separation of network topologies with our approach compared to
the best of NWS.
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FIGURE 7 | Group-averaged values of the adopted network metrics at each NWS. CPL, Characteristic Path Length; ECC, Eccentricity; R, Radius; GE, Global

Efficiency; LE, Local Efficiency; STR, mean strength.

FIGURE 8 | ICC values for basic network metrics on the network level for both (A) IWSBN and (B) IWSBNTF. CPL, Characteristic Path Length; ECC, Eccentricity; R,

Radius; GE, Global Efficiency; LE, Local Efficiency; STR, mean strength.

FIGURE 9 | Group-averaged values of the adopted network metrics for both (A) IWSBN and (B) IWSBNTF. CPL, Characteristic Path Length; ECC, Eccentricity; R,

Radius; GE, Global Efficiency; LE, Local Efficiency; STR, mean strength.

To further enhance the integration of the nine alternative
WNS for the construction of an integrated SBN, we repeated
the whole procedure splitting the nine weighted versions of
SBN into three triads (the first three, the second three and
the last three). Figures 13–15 illustrate the DM and their
embedding into a 3D-space. The highest separability between
the network topologies of the subjects have been demonstrated
for ATL, SD, and ED, while the worst for NSTR, PSTR, and
TV, where three subjects overlapped on the same embedding
space (Figure 15B). The QCI score was lower compared to the

original approach where we combined the nine weighted SBN
(Figure 12).

Structural Connectomic Classification of
Healthy Controls (HC) from Individuals with
Psychotic Experiences (PE)
Our classification results demonstrated a higher classification
accuracy (65.3%) between the two groups for the proposed
IWSBNTF. The classification performance of the nine
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FIGURE 10 | ICC values for global and local efficiency on the node level for both IWSBN and IWSBNTF. (A) ICC node-wise score for global efficiency on IWSBN and

IWSBNTF. (B) ICC node-wise score for local efficiency on IWSBN and IWSBNTF. Blue/red bars refer to Automated Anatomical Labeling (AAL) ROIs for left/right

hemisphere correspondingly.

FIGURE 11 | Mean/std values for global and local efficiency on the node level for both IWSBN and IWSBNTF. (A) Mean/Std node-wise GE for global efficiency on

IWSBN and IWSBNTF. (B) Mean/Std node-wise LE for local efficiency on IWSBN and IWSBNTF. Blue/red bars refer to AAL ROIs for left/right hemisphere

correspondingly.

weighted strategies was lower than by chance (<50%; see
Table 1). Additionally, the data-driven topological filtering
via the OMST algorithm (Dimitriadis et al., 2017a,b) further
improved the classification accuracy (from 57.23 to 65.34%; see
Table 1).

DISCUSSION

We present, for the first time, the reliability of basic network
metrics at both whole-network and node level for nine
different NWS. We recruited five subjects who were scanned
five times at weekly intervals. The range of age was (mean
37.1 ± 4.9 years of age, five males) to minimize the effect
of the age on inter-subject variability. Additionally, for the
first time, we propose a completely data-driven algorithm
for the linear interpolation of the different NWS-based SBNs

into a single IWSBN. The whole approach is based on a
diffusion distance metric that quantifies the maximum distance
between two network topologies in terms of their information
flow. Complementarily, we propose a completely data-driven
topological filtering scheme for extracting the backbone of a
SBN on an individual level (scan-based) without attempting
to find any consistency among control subjects of a specific
age (Roberts et al., 2016). To reveal any gender, age or even
individualized differences in terms of dMRI-based SBNs, we
should adopt data-driven techniques applied to individual SBNs
without any a priori knowledge of the label of a subject’s scan
(age, gender, HC). Any adopted group or scan consistency
as a constraint to the main methodology will diminish
individual differences and across scan variability, respectively.
Our results can be summarized into the following key
points:
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FIGURE 12 | Dissimilarity matrices (DM) based on both IWSBN and IWSBNTF across scans and subjects using gDDM and graph embedding of DM. (A) The first row

illustrates the DM based on the IWSBN and its embedding in a 3D space, while the (B) second row demonstrates the DM based on the IWSBNTF and its embedding

in a 3D space. Each color corresponds to a single subject, while lines with the same color interconnect the NWS derived from repeat scans (MDS, multidimensional

scaling).

FIGURE 13 | Dissimilarity matrices (DM) based on both IWSBN and IWSBNTF across scans and subjects using gDDM and graph embedding of DM (as in Figure 12).

Both (A) IWSBN and (B) IWSBNTF were constructed based on FA, MD, and RD weighted structural brain networks.

• ICC values of network metrics derived from network levels
were high for six out of nine NWS

• ICC values of network metrics derived node-wise were
unreliable for all nine NWS

• ICC values for all the network metrics on the network level
for IWSBNTF were excellent and on the same level as the best
NWS

• We observed high ICCs of networkmetrics node-wise for both
IWSBN and IWSBNTF compared to each NWS with higher
values succeeding based on IWSBNTF

• We succeeded in achieving a higher discrimination of each
subject compared to the rest of the cohort based on the
IWSBNTF derived from each scan compared to IWSBN and
the best NWS which was the NSTR

• The construction of subject-specific IWSBNTF for two large
populations (HC and individuals with PE) further improved
the classification performance compared to each of the nine
weighted versions of their structural connectome.

Previous studies explored different aspects of network reliability
using repeat dMRI scans of healthy human volunteers. Hagmann
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FIGURE 14 | Dissimilarity matrices (DM) based on both IWSBN and IWSBNTF across scans and subjects using gDDM and graph embedding of DM (as in Figure 12).

Both (A) IWSBN and (B) IWSBNTF were constructed based on ATL, SD, and ED weighted structural brain networks.

FIGURE 15 | Dissimilarity matrices (DM) based on both IWSBN and IWSBNTF across scans and subjects using gDDM and graph embedding of DM (as in Figure 12).

Both (A) IWSBN and (B) IWSBNTF were constructed based on NSTR, PSTR, and TV-weighted structural brain networks.

et al. (2008) assessed structural networks obtained from
diffusion spectrum imaging (DSI), while Vaessen et al. (2010)
assessed reproducibility over different sets of diffusion gradient
directions using DT-MRI. Bassett et al. (2011) compared
reliability in both DT-MRI and DSI, and Cammoun et al.
(2012) investigated the effect of network resolution using DSI.
Finally, Cheng et al. (2012) assessed test-retest reliability using
DT-MRI, with a focus on the differences between binary and

weighted networks. A recent study explored the reliability of
network metrics on a network and node-wise level using dMRI
and two alternative tractography algorithms, two alternative
seeding strategies, a white matter way point constraint and
three alternative network weightings (Buchanan et al., 2014).
Their best performing configuration, the global within-subject
differences, showed ICCs between 0.62 and 0.76, while the mean
nodal within-subject differences demonstrated ICCs between
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TABLE 1 | Accuracy, sensitivity, and specificity of the nine weighted strategies, the

IWSBN and the IWSBNTF following a binary classification of HC vs. individuals

with PE via a 10-fold cross-validation strategy.

LOOCV Accuracy Sensitivity Specificity

FA 43.44 ± 5.43 42.12 ± 4.99 42.19 ± 5.08

MD 42.81 ± 4.82 42.72 ± 5.12 43.06 ± 4.91

RD 44.17 ± 5.67 43.65 ± 4.92 43.57 ± 5.24

ATL 45.78 ± 5.61 44.73 ± 5.32 44.82 ± 5.39

SD 45.81 ± 6.71 44.89 ± 5.21 44.71 ± 5.96

ED 46.07 ± 5.92 45.39 ± 5.66 45.87 ± 5.23

NSTR 45.91 ± 5.11 45.44 ± 5.43 45.21 ± 4.89

PSTR 46.17 ± 5.42 46.79 ± 6.13 45.94 ± 5.69

TV 46.38 ± 5.76 46.45 ± 6.32 45.82 ± 5.73

IWSBN 57.23 ± 6.89 56.79 ± 6.20 55.89 ± 5.81

IWSBNTF 65.34 ± 6.71 64.36 ± 5.87 65.04 ± 6.05

We underlined with bold font the best classification accuracy succeeded with the

proposed IWSBNTF .

0.46 and 0.62. In the present study, we revealed higher ICC
values, both node and network-wise, based on the IWSBNTF.
Furthermore, applying our network analysis on IWSBNTF,
we observed higher between-subject differences compared to
within-subject variation (see Figure 9B).

Buchanan et al. (2014), concluded that regional reliability
of dMRI networks is low suggesting that connections between
specific pairs of nodes are unreliable across sessions. Here,
we showed the same issue for each of the nine NWS leading
to very small ICCs (<0.1). Applying the proposed topological
filtering scheme to each of the NWS, we failed to further
improve the nodal ICC, which can be interpreted as technical
issues derived from tractography (data not shown). Errors in
tractography in estimating axonal tracts may reflect both the
segmentation of each ROI affecting the streamline construction.
Tractography is strongly affected bymeasurement noise resulting
in both false negative and positive connections (Zalesky and
Fornito, 2009). Yo et al. (2009) compared different tractography
algorithms focusing on the uncertainty of fiber directions in a
noisy environment which could be a factor for poor ICC values
for node-wise estimated network metrics.

Common poor ICC values for node-wise network metrics
for each of the nine NWS and simultaneously excellent ICC
values for network-wise network metrics for six out of nine NWS
could be interpreted as a common error of the tractography for
the former and as a denoising procedure from the latter after
integrating across all nodes. It seems that the proposed dual-step
scheme for combining NWS into a single IWSBNTFdiminished
any bias of probabilistic tractography and led to a reliable nodal
ICC which was higher than that demonstrated in previous
work (Buchanan et al., 2014). Both steps proved crucial to
simultaneously elevating the ICC values of network metrics
network-wise to excellent levels—comparable to the best NWS—
and the ICC node-wise values linked to network metrics to fair to
good levels (see Figure 8).

It is important to mention here that Buchanan et al. (2014)
preferred not to threshold the derived weighted SBNs in

order to avoid biasing their results. We completely agree with
this approach since, until now, none of the non-data-driven
thresholding schemes can work without any bias selection of any
criterion. With the present study, we proposed a solution for
uncovering the backbone of a SBN by increasing the information
flow within the network constrained by the overall cost of the
selected connections.

The majority of studies focusing on SBNs have worked on
region-to-region connectivity using an anatomical map while
they ignored the rich information in the local white matter
architecture (Yeh et al., 2016). In this study, the authors
analyzed local connectomes, termed connectometry, which
tracks the local connectivity patterns along the fiber pathways
to further extract the subcomponents of the pathways that are
associated with the parameters of study. They demonstrated
that connectometry complements global brain networks while
they are more sensitive and less affected by fiber tracking
issues.

The proposed IWSBNTF was derived after first linearly
combining the nine NWS and then topologically filtering the
derived IWSBN. Our second thought was to independently
weight each node within each of the nine NWS first and
secondly to weight the whole NWS-network with the proposed
methodology. The whole procedure was added as a first
preliminary step before the proposed network-wise linear
combination of the NWS-network into a single IWSBN. The
topological filtering of each NWS-network prior to the node
and cluster-wise attacking strategies did not improve the ICC
values of network metrics, neither network or node-wise.
Additionally, the recognition accuracy was worse compared
to the proposed method. One possible interpretation of these
results could be that specific connections cause a major
effect on the reliability of the whole-network topology. Future
strategic artificial lesion approaches on a connection level could
reveal where (anatomically) and when (protocols, scanners,
other factors) a tractography algorithm produces errors. This
methodology could be useful to improve the algorithm between
specific tracts.

Future study will shed light on how the proposed dual-step
methodology can affect the reliability of connectomic biomarkers
in conditions such as Alzheimer’s Disease, schizophrenia with
a genetic background and dyslexia. Here, we demonstrated the
effectiveness of the proposed methodology in discriminating HC
from individuals with PE. Additionally, we will compare
IWSBNTF between different dMRI protocols and also
between different scanners with the same or different field
strengths (3T and 7T). Finally, large publicly-available dMRI
cohorts can be analyzed with this method in order to reveal
developmental trends. For all these research questions—looking
at individual differences, longitudinal trajectories and case-
control difference—a high degree of reliability of the underlying
metrics is crucial, and thus our approach could be widely
adopted. This data-driven topological filtering algorithm can
be a baseline across different studies and big datasets e.g., the
Human Connectome Project, UK BIOBANK in order to share
metadata in a common feature space across institutes, research
centers, universities and research groups.
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Motivations Derived from the Current
Study
Analysis of reliability is challenging for neuroimaging as the
main results presented in a study depend on both the adopted
network metrics and the metrics used to characterize the weight
of a connection. Additionally, many neuroimaging studies based
on SBNs attempt to shed light on developmental differences,
differences between clinical populations and also between a
control group and a disease group. A basic reason why all these
proposed connectomic biomarkers are not used in daily practice
in hospitals is their reliability (Dimitriadis et al., 2015a). A second
reason is that there are many studies on the same topic (e.g.,
brain disease) based on small datasets that adopted different
NWS and arbitrary topological filtering schemes. Meaningful
aggregation of these, even in the case that their metadata are
free available, is impossible. A third reason is that until now, it is
not standard practice to assess the reliability of network metrics
derived from SBNs across repeat scans on the same population
but with different dMRI protocols and scanners (3T vs. 3T or 3T
vs. 7T). This is an issue that we would like to investigate in future
studies with the proposed scheme.

A basic issue with the ICC is that it needs large samples
in order to estimate scores to acceptable precision. A study
estimated that for two repeated measures, in order get an
acceptable ICC score of 0.8 with a 95% confidence interval of 0.2
width, then at least 52 subjects are needed (see Table 3 in Shoukri
et al., 2004). In a similar vein, for an ICC score of 0.6 with
95% confidence intervals of 0.2 width, repeated measures from
158 subjects would be required. Clearly for most MRI-based
studies, this scenario of repeated scans for hundreds of scans
is unrealistic. However, our analysis provided a methodology
of how to combine different NWSs into a single integrated
graph based on a gDDM that counts the network topology
as a whole and quantifies the distance between two SBNs in
terms of their information flow. The results of the proposed
methodology presented here, even in a small dataset, are of
paramount importance since they are completely data-driven
in any preprocessing step. Simultaneously, they provided novel
directions of how to untangle hidden information within
dMRI-based brain networks by working on an individualized
manner and without any averaging approach (group or scan-
wise). Additionally, we proposed a data-driven thresholding
scheme applied to the IWSBN that improved the ICCs of basic
network metrics at both node and network levels compared
to the original IWSBN and each of the adopted NWS. Our
data-driven method can be seen as a methodology for improving
network reliability on SBNs (Zalesky et al., 2010; Drakesmith
et al., 2015b). Complementarily, our approach provided excellent
discrimination of the network patterns of the five subjects based
on the recognition of each scan to the targeted subject. Finally,
our method better separated the five groups of scans based on
the topological filtering version of IWSBN compared to the best
NWS.

Limitations of the Study
It is important to mention here the limitations of the current
study due to the small dataset for exploring the test-retest
reliability statistics. In the era of open science resource where

multisite worldwide neuroimaging labs share neuroimaging
datasets, it is important to demonstrate novel techniques
that improve the reliability of connectomics in common
neuroimaging data (Zuo et al., 2014). A recent Consortium for
Reliability and Reproducibility (CoRR) is working to address this
gap and establish test-retest reliability as a minimum standard
for methods development in functional connectomics (Zuo and
Xing, 2014; Zuo et al., 2014) and morphological measurements
(MacLaren et al., 2014). Reliability is important to build reliable
connectomic biomarkers across multi-site (Nielsen et al., 2013;
Abraham et al., 2017) and also longitudinal trajectories of
structural and functional brain networks across the life-span
(Zuo et al., 2017).

Our future goal is to test the proposed methodology in a larger
sample for validating the test-retest reliability of our scheme and
also on multi-site diffusion-based structural brain networks for
building reliable connectomic biomarkers.

CONCLUSION

Reliability analysis of both node and network-wise network
metrics in IWSBN and its topological filtering version revealed:
(1) similar ICC values for all the network metrics on the network
level for IWSBNTF compared to the best NWS; (2) higher ICC
of network metrics node-wise for both IWSBN and IWSBNTF

compared to each NWS with higher values succeeding based
on IWSBNTF; and (3) higher discrimination of each subject
compared to the rest of the cohort based on the IWSBNTF

derived from each scan compared to IWSBN and the best NWS
which was the NSTR. We thus provided a new approach to
identifying highly reliable and discriminative network metrics
that can be the basis for studies of interindividual differences,
longitudinal trajectories, and pathological changes in structural
brain connectivity.
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The resting activity of the brain can be described by so-called intrinsic connectivity

networks (ICNs), which consist of spatially and temporally distributed, but functionally

connected, nodes. The coordinated activity of the resting state can be explored via

magnetoencephalography (MEG) by studying frequency-dependent functional brain

networks at the source level. Although many algorithms for the analysis of brain

connectivity have been proposed, the reliability of network metrics derived from both

static and dynamic functional connectivity is still unknown. This is a particular problem

for studies of associations between ICN metrics and personality variables or other traits,

and for studies of differences between patient and control groups, which both depend

critically on the reliability of the metrics used. A detailed investigation of the reliability

of metrics derived from resting-state MEG repeat scans is therefore a prerequisite for

the development of connectomic biomarkers. Here, we first estimated both static (SFC)

and dynamic functional connectivity (DFC) after beamforming source reconstruction

using the imaginary part of the phase locking index (iPLV) and the correlation of

the amplitude envelope (CorEnv). Using our approach, functional network microstates

(FCµstates) were derived from the DFC and chronnectomics were computed from the

evolution of FCµstates across experimental time. In both temporal scales, the reliability

of network metrics (SFC), the FCµstates and the related chronnectomics were evaluated

for every frequency band. Chronnectomic statistics and FCµstates were generally

more reliable than node-wise static network metrics. CorEnv-based network metrics

were more reproducible at the static approach. The reliability of chronnectomics have

been evaluated also in a second dataset. This study encourages the analysis of MEG

resting-state via DFC.

Keywords: MEG, resting-state, time-varying network analysis, chronnectomics, functional connectivity

microstates, symbolic analysis, reproducibility
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INTRODUCTION

The coordination of spontaneous activity can be characterized
with functional connectivity (FC), which refers to statistical
dependencies between the activity of distinct brain areas (Pereda
et al., 2005) and has been linked to the efficiency of an individual’s
brain functioning (Baldassarre et al., 2012; Yamashita et al., 2015).

A functional connectivity graph (FCG) can be constructed
by estimating the statistical dependencies between the brain
activity of all the areas in a pair-wise fashion. An FCG represents
statistical or causal relationships measured as cross-correlations,
coherence, or information flow (Dimitriadis et al., 2009, 2015d).

Neuroscientists first examined resting-state FC with
functional magnetic resonance imaging (fMRI) by correlating
blood oxygenation level-dependent (BOLD) signals (Biswal
et al., 1995; van den Heuvel et al, 2009; Biswal, 2011, 2012).
After 20 years of using fMRI as a dominant neuroimaging
tool, the community has succeeded in mapping brain areas to
specific brain functions, creating an anatomical-functional atlas
(Bandettini, 2012). Although fMRI is of high interest and a key
modality to explore human brain function, ultra-slow activity
described via BOLD signals is only an indirect measure of brain
activity (Logothetis, 2008).

In the last few years, greater attention has been given to
explore FC via electro-magneto-encephalography. Even though
the spatial resolution of magnetoencephalography (MEG)
is lower when compared to fMRI, MEG can capture the
multiplexity of human brain activity by providing insight
into the spectro-temporo-spatial dynamics of human brain
activity. MEG-based FC provides us with a direct measure of
neuromagnetic activity with a high temporal resolution (Deco
et al., 2011).

Resting-state networks (RSNs) have been successfully
extracted with MEG over the past few years using source-space
FC (de Pasquale et al., 2010; Brookes et al., 2011a,b; Hipp et al.,
2012; Luckhoo et al., 2012; Hall et al., 2013; Wens et al., 2015).
Moreover, resting-state MEG FC has been proven to detect
abnormal brain functioning in a variety of diseases, including
Alzheimer’s disease (López et al., 2014, 2017; Engels et al.,
2015), multiple sclerosis (Tewarie et al., 2015), in schizophrenia
(Bowyer et al., 2015), in dyslexia (Dimitriadis et al., 2013b,
2015c), in mild cognitive impairment (Dimitriadis et al., 2015b)
and in mild traumatic brain injury (Dimitriadis et al., 2015c;
Dunkley et al., 2015; Antonakakis et al., 2016, 2017).

Several studies have thus captured alterations of MEG

parameters in the resting state in order to estimate FC in disease

groups compared to controls. However, FC estimates at resting-
state could be affected by subject’s cognitive, emotional state and

other scanning-related systematic differences. For that reason,

it is unclear up to which level FC estimates are repeatable
for an individual. Moreover, in large studies of hundreds of

participants, there is a significant cost, both in financial resources
and time, to scan all the subjects two or more times. To
establish MEG as a clinically reliable neuroimaging tool that
can distinguish disease from healthy populations, the reliability
of FC patterns should be explored from repeat scans. Up
to date, only a few studies accessed the test-retest reliability

of MEG/electroencephalography (EEG) FC (Jin et al., 2011;
Hardmeier et al., 2014; Garcés et al., 2016) while only one
study has quantified the test-retest reliability of FC estimates
in the source-space MEG (Garcés et al., 2016). Colclough et al.
(2016) attempted to report the reliability of every edge-weighted
connections with a high number of connectivity estimators
but using a split-half strategy from a large pool of subjects.
Practically, the results cannot be adopted as reliability of static
network metrics since the analysis involved single MEG scan
recordings. However, no study has ever explored the reliability
of both static and dynamic networks at the source space in
MEG.

In the present study, we investigated the test-retest reliability
of both static and dynamic FC measures derived from MEG
resting-state data. For that purpose, we computed whole-brain
FC for 40 subjects who were scanned twice with a 1-week test-
retest interval. For each subject and session, MEG-beamformed
source activity was estimated and FC was computed between 90
brain areas. FC was estimated with the imaginary part of the
phase locking index (iPLV) and the correlation of the amplitude
envelope (CorEnv) in both static (SFC) and dynamic models
(DFC) by adopting a sliding window approach (de Pasquale
et al., 2010; Dimitriadis et al., 2010a, 2012a, 2013a, 2015a, 2016a,
2017a; Dimitriadis and Salis, 2017c). Afterwards, statistical and
topological filtering schemes were applied to both SFC and DFC
to reveal the true topology (Dimitriadis et al., 2017a,b). For the
SFC approach, we estimated well-known network metrics in a
node-wise fashion and the reliability was accessed via correlation
values between the two measurements and across the cohort.
Graph-based reliability was assessed with a novel graph diffusion
distance metric.

For the DFC approach, node-wise network metrics were
estimated across experimental time. To explore spatio-
temporally the derived network activity, we first designed
a codebook of prototypical network microstates and then
assigned each of the instantaneous connectivity patterns to
the most similar code symbol (e.g., functional connectivity
graph—FCG) (Dimitriadis et al., 2010a, 2012a, 2013a,b, 2015a,
2016a,b; Dimitriadis and Salis, 2017c). A codebook is a set of
prototypical functional connectivity graphs (FCGs). In this way,
we derive a unique symbolic time series from each individual
where each symbol corresponds to one of the predefined
prototypical functional connectivity microstates (FCµstates).
The evolution of these symbol-patterns encapsulates significant
state transitions. Furthermore, the evolution of these FCµstates
can be seen as a first order Markovian Chain (MC) that can be
modeled representing an individualized state transition model of
resting-state FCµstates. Fractional occupancy of each FCµstate,
transition rates of FCµstates and MCmodels are the key features
to explore the reliability of chronnectome in MEG source space.
The group-consistency of subject-specific FCµstates was further
explored. The whole analysis of dynamic functional connectivity
graphs and the definition of FCµstates have been described in
previous paper (Dimitriadis et al., 2013a).

Many techniques have already been proposed to summarize
brain activity into short-lived transient brain states using
the spectrum of neuromagnetic recordings (Vidaurre et al.,
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2016) and also the band-limited amplitude envelopes of source
reconstructed MEG data (Baker et al., 2014; O’Neill et al.,
2015). In detail, Vidaurre et al. (2016) proposed a combination
of multivariate autoregressive model with hidden markovian
modeling (MAR-HMM) in order to model the temporal, spectral
and spatial properties of MEG reconstructed activity into very
short-lived brain states. Similarly, (Baker et al., 2014) modeled
resting-state source-reconstructed MEG activity with HMM into
distinct spatio-temporal activation profiles called brain states.
These brain states were linked to well-known anatomical brain
areas. O’Neill et al. (2015) mined MEG source activity from two
tasks, a self-paced motor and a Sternberg working memory task.
He used a sliding window canonical correlation analysis (CCA)
to estimate the functional connectivity at each time-window
and a k-means clustering to detect repeatable spatial patterns of
connectivity that form transiently synchronizing sub-networks
(TSNs) or functional connectivity microstates. Here, we must
underline the distinction of summarizing brain activity using the
raw time series (ROIs × sliding windows; Baker et al., 2014;
Vidaurre et al., 2016) which is a 2D matrix and the dynamic
functional brain networks (ROIs × ROIs × sliding windows)
which is a 3Dmatrix (O’Neill et al., 2015). Currently the mapping
and the relationship between raw activity and brain connectivity
and also the relationship of microstates (raw activity) with
functional connectivity microstates (dynamic graphs; Allen et al.,
2012; Dimitriadis et al., 2013a,b, 2015a, 2016a,b; Dimitriadis and
Salis, 2017c) is still unknown. Further research is needed to
explore their mapping at resting-state and during tasks.

The proposed methodological scheme entails two distinct
ways of analyzing dynamic functional connectivity patterns.
These patterns are representative brain network topologies
across subjects and brain rhythms and are directly linked
to a brain state (Buzsáki and Draguhn, 2004). The very
first approaches in fMRI constitutes novel contributions
to an emerging neuroimaging field called chronnectomics
(Allen et al., 2012; Calhoun et al., 2014). Previously, we
reported the notion of FCµstates (Dimitriadis et al., 2013a)
and the developmental trends in cognition (Dimitriadis
et al., 2015a) using electroencephalographic recordings.
The concept of chronnectome is the incorporation of a
dynamic view of functional brain connectivity networks and
the evolution of revisiting distinct spatio-temporal brain
states (functional connectivity microstates—FCµstates).
To the best of our knowledge, this study constitutes
the first attempt to assess the test-retest reliability of
Dynamic Functional Connectivity at the MEG source
level.

Despite growing enthusiasm in the neuroscience community
about the potential contribution of neuroimaging and especially
brain networks in the designing of connectomic biomarkers
for various brain diseases/disorders, many challenges remain
open (Stam, 2014). At first level, it is more than significant
to explore how reliable are network metrics at both temporal
scales (static and dynamic) by analyzing a group of control
subjects with repeat scans (e.g., diffusion MRI: Dimitriadis
et al., 2017d). Here, we assess evidence of the reliability of
neuromagnetic (MEG) based functional connectomics to lead to
potential clinically meaningful biomarker identification in target

populations through the lens of the criteria used to evaluate
clinical tests.

MATERIALS AND METHODS

Subjects
40 healthy subjects (age 22.85 ± 3.74 years, 15 women and 25
men) underwent two resting-state MEG sessions (eyes open)
with a 1-week test-retest interval. For each participant, scans
were scheduled at the same day of the week and same time of
the day. The duration of MEG resting-state was 5min for every
participant. The study was approved by the Ethics Committee of
the School of Psychology at Cardiff University, and participants
provided informed and written consent.

MEG-MRI Recordings
Whole-head MEG recordings were made using a 275-channel
CTF radial gradiometer system. An additional 29 reference
channels were recorded for noise cancelation purposes and
the primary sensors were analyzed as synthetic third-order
gradiometers (Vrba and Robinson, 2001). Two or three of the
275 channels were turned off due to excessive sensor noise
(depending on time of acquisition). Subjects were seated upright
in the magnetically shielded room. To achieve MRI/MEG co-
registration, fiduciary markers were placed at fixed distances
from three anatomical landmarks identifiable in the subject’s
anatomical MRI, and their locations were verified afterwards
using high-resolution digital photographs. Head localization was
performed before and after each recording, and a trigger was sent
to the acquisition computer at relevant stimulus events.

All datasets were either acquired at or down-sampled to
600Hz, and filtered with a 1-Hz high-pass and a 200-Hz lowpass
filter. The data were first whitened and reduced in dimensionality
using principal component analysis with a threshold set to
95% of the total variance (Delorme and Makeig, 2004). The
statistical values of kurtosis, Rényi entropy and skewness of
each independent component were used to eliminate ocular
and cardiac artifacts. Specifically, a component was deemed
artifactual if more than 20% of its values after normalization to
zero-mean and unit-variance were outside the range of [−2,+2]
(Delorme and Makeig, 2004; Escudero et al., 2011; Antonakakis
et al., 2016). The artifact-free multichannel MEG resting-state
recordings were then entered in the beamforming analysis (see
next section).

Subjects further underwent an MRI session in which a 3T
GE scanner with an eight-channel receive-only head RF coil T1-
weighted 1-mm anatomical scan was acquired, using an inversion
recovery spoiled gradient echo acquisition.

Beamforming
An atlas-based beamformer approach was adopted to project
MEG data from the sensor level to source space independently
for each brain rhythm. The frequency bands studied were: δ

(0.5–4Hz), θ (4–8Hz), α1 (8–10Hz), α2 (10–13Hz), β1 (13–
20Hz), β2 (20–30Hz), γ1 (30–45Hz), γ2 (55–90Hz). First, the
coregistered MRI was spatially normalized to a template MRI
using SPM8 (Weiskopf et al., 2011). The AAL atlas was used to
anatomically label the voxels, for each participant and session,
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TABLE 1 | Optimization of the width of temporal window and the stepping criterion per frequency band and for both connectivity estimators.

δ Θ α1 α2 β1 β2 γ1 γ2

iPLV {time window, step} {2, 0.5} {3, 0.4} {4, 0.4} {4, 0.4} {6, 0.3} {6.5, 0.3} {8, 0.2} {8.5, 0.2}

CorEnv {time window, step} {2, 0.5} {3, 0.4} {5, 0.4} {5, 0.4} {7, 0.3} {7, 0.3} {8, 0.3} {9, 0.2}

in this template space (Tzourio-Mazoyer et al., 2002). The 90
cortical regions of interest (ROIs) were used for further analysis,
as is common in recent studies (Hillebrand and Barnes, 2002;
Hillebrand et al., 2016; Hunt et al., 2016). Next, neuronal
activity in the atlas-labeled voxels was reconstructed using the
LCMV source localization algorithm as implemented in Fieldtrip
(Oostenveld et al., 2011).

The beamformer sequentially reconstructs the activity for each
voxel in a predefined grid covering the entire brain (spacing
6mm) by weighting the contribution of each MEG sensor to a
voxel’s time series—a procedure that creates the spatial filters
that can then project sensor activity to the cortical activity.
Each ROI in the atlas contains many voxels, and the number
of voxels per ROI differs. To obtain a single representative
time series for every ROI, we defined a functional-centroid
ROI representative by functionally interpolating activity from
the voxel time series, within each ROI, in a weighted fashion.
Specifically, we estimated a functional connectivity map between
every pair of source time series within each of the AALs ROIs
(Equation 1) using correlation (Equation 2). We then estimated
the connectivity strength of each voxel within the ROI by
summing its connectivity values to other voxels within the same
ROI (Equation 3) and finally we normalized each strength by the
sum of strengths (Equation 4) to estimate a set of weights within
the ROI that sum to a value of 1. Finally, we multiplied each voxel
time series with their respective weights and we summed across
them in order to get a representative time series for each ROI
(Equation 5). The whole procedure was applied independently
to every quasi-stable temporal segment derived by the settings of
temporal window and stepping criterion.

The following Equations 1–5 demonstrated the steps for this
functional interpolation.

ROImap ∈ ℜvoxelsxvoxels ,Voxels ∈ no of voxel timeseries within

each ROI (1)

SVoxels =

Voxels
∑

k = 1

Voxels
∑

l = k+1

corr(ROI
map

k
(t),ROI

map

l
(t)),

SVoxels ∈ ROI x ROI (2)

SS =

Voxels
∑

k = 1

corr(k, :) , Svoxels ∈ 1xROI (3)

Wk =
SS

Voxels
∑

k = 1

SS

(4)

ROIactivity =

Voxels
∑

k = 1

ROItime series∗Wk (5)

The outline of the methodology is described in Figure 1. An
exemplar of the representative bandpass filtered ROI based time
series is given in Figure 1. Figure 2 illustrates the preprocessing
steps described in Equations (1–5).

Functional Connectivity
Here, functional connectivity was examined among the following
8 brain rhythms of the typical sub-bands of electrophysiological
neural signals {δ, θ, α1, α2, β1, β2, γ1, γ2}, defined respectively
within the ranges {0.5–4Hz; 4–8Hz; 8–10Hz; 10–13Hz; 13–
20Hz; 20–30Hz; 30–45Hz; 55–90 Hz}. For both static and
dynamic approach, we used two estimators: the correlation of the
amplitude envelope (CorEnv) and the imaginary part of the phase
locking value (iPLV).

Intra-Frequency Connectivity Estimators
Among the available connectivity estimators, we adopted one
based on the imaginary part of phase-locking value (iPLV)
(Lachaux et al., 1999) and adjusted properly so as to extract
time-resolved profiles of intra-frequency coupling from MEG
multichannel recordings at resting state. The original PLV is
defined as follows:

PLV =
1

T

T
∑

t = 1

ei(ϕ
(t)
k
,ϕ

(t)
l
) (6)

where k, l denote a pair of MEG sources and the imaginary part
of PLV is equal to:

Im{PLV} =
1

T

∣

∣

∣

∣

∣

Im

{

T
∑

t = 1

ei(ϕ
(t)
k
,ϕ

(t)
l
)

}∣

∣

∣

∣

∣

(7)

The imaginary part of PLV (iPLV) investigates intra-frequency
interactions without putative contributions from volume
conductance. In general, the iPLV is mainly sensitive to non-
zero-phase lags and for that reason is resistant to instantaneous
self-interactions from volume conductance (Nolte et al., 2004).
In contrast, it could be sensitive to phase changes that not
necessarily imply a PLV oriented coupling.

Correlation of the Envelope coupling (CorEnv) is based upon
correlation between the oscillatory envelopes of two frequency
band limited sources (Brookes et al., 2012). See Figure 1 for a
schematic diagram of phase and envelope based connectivity
analyses based upon neural oscillations. Correlation of the
Envelope coupling (CorEnv) is based upon correlation between
the oscillatory envelopes of two band limited sources (A) while
phase coupling searches for a constant phase lag between signals,
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FIGURE 1 | Outline of the methodology for accessing the reliability of network metrics derived from functional connectivity graphs (FCGs). (SF-Statistical Filtering,

TF-Topological Filtering, FCE-Functional Connectivity Estimator). Statistical and topologically filtering of the FCGs will be described in sections Surrogate Data Analysis

of iPLV/CorEnv Estimates—Statistical Filtering of Brain Networks and A data-driven Topological Filtering Scheme based on Orthogonal Minimal Spanning Trees

(OMSTs), correspondingly. One can understand how from a full-weighted FCG, a more sparse version is derived via the statistical and topological filtering approaches.

FIGURE 2 | Step-by-step construction of the representative virtual sensor time series for each ROI. (A) Plot of 108 voxel time series from left precentral gyrus. (B)

Distance correlation matrix SVoxels derived by the pair-wise estimation of the 108 voxel time series. (C) Summation of the columns of SVoxels produced the vector SS.

(D) Normalization of vector SS that further produces Wk where its sum equals to 1. (E) Multiplying every voxel time series with the related weight from the Wk. In this

example, we demonstrated this multiplication for the first and last voxel time series. (F) The reproduced voxel time series for left precentral gyrus (ROI activity). after

summing the weighted versions of every voxel time series from (E).

in the example a difference of π (B). The time series for the
estimation of CorEnv were orthogonalized between each other
using the bivariate version of this correction for signal leakage
effects (Colclough et al., 2015).

Static Functional Connectivity Analysis
Using both connectivity estimators, we estimated the fully-
weighted (90 × 90) anatomical oriented FCG, one for each
subject, recording session and frequency band. To construct the

static FCG (SFCG), we incorporated in the analysis the whole
5min of the recording session.

Dynamic iPLV Estimates: The Time-Varying

Integrated iPLV Graph (TVIiPLV Graph)
The goal of the analytic procedures described in this section was
to understand the repertoire of phase-to-phase interactions and
their temporal evolution, while taking into account the quasi-
instantaneous spatiotemporal distribution of iPLV estimates.
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This was achieved by computing one set of iPLV estimates
within each of a series of sliding overlapping windows spanning
the entire 5-min continuous MEG recording for eyes-open
condition. The width of the temporal window and the stepping
criterion were optimized for each frequency band separately
using as objective criterion the reliability of transition dynamics
between scan session 1 and 2 for each brain rhythm (Dimitriadis
et al., 2013a; see sections State Transition Rate and Optimizing
theWidth of the Time-Window and the Stepping Criterion). The
center of the stepping window moved forwards every frequency-
dependent time-window (see sections Optimizing the Width
of the Time-Window and the Stepping Criterion and Tuning
Parameters for Dynamic Functional Connectivity Analysis) for
the optimization of the parameters) for every intra-frequency
interactions and a new functional brain network is re-estimated
between every pair of “swifting” temporal segments of MEG
activity, from two sources, leading to a “quasi-stable in time”
static iPLV graph. In this manner, a series of 598 (for δ) to 2,140
(for γ2) iPLV graph estimates were computed for each frequency
(8 within frequency), for each participant and for both repeat
scans.

For each subject, a 4D tensor (frequencies bands (8) ×

slides (598–2,140) × sources (90) × sources (90); see sections
Optimizing the Width of the Time-Window and the Stepping
Criterion and Tuning Parameters for Dynamic Functional
Connectivity Analysis) was created for each condition integrating
subject-specific spatio-temporal phase interactions (Figure 3A).

Surrogate Data Analysis of iPLV/CorEnv

Estimates—Statistical Filtering of Brain

Networks
To identify significant iPLV/CorEnv-interactions which were
estimated for every pair of frequencies within and between all
90 sources, and at each successive sliding window (i.e., temporal
segment), we employed a surrogate data analysis. Accordingly,
we could determine (a) if a given iPLV/CorEnv value differed
from what would be expected by chance alone, and (b) if a
non-zero iPLV/CorEnv corresponded to non-spurious coupling.

For every temporal segment, sensor-pair and frequency, we
tested the null hypothesis H0: “the observed iPLV/CorEnv value
comes from the same distribution as the distribution of surrogate
iPLV/CorEnv-values”. One thousand surrogate time-series were
generated by cutting at a single point at a random location the
original time series and exchanging the two resulting time courses
(Aru et al., 2015). We restricted the range of the selected cutting
point in a temporal window of width up to 10 s in apart from
the middle of the recording session (between 140 and 160 s).
This surrogate scheme was applied to the original whole time
series and not to the signal-segment at every slide. Repeating this
procedure leads to a set of surrogates with a minimal distortion
of the original phase dynamics, while the non-stationarity of the
brain activity is less destroyed compared to shuffling the time
series or cutting and rebuilding it in more than one time points.

This procedure ensures that the real and surrogate indices
both have the same statistical properties. For each data set, the
surrogate iPLV/CorEnv (siPLV/sCorEnv) was then computed.

We then determined a one-sided p-value for each iPLV/CorEnv

value that corresponded to the likelihood that the observed value
could belong to the surrogate distribution. This was done by
directly estimating the proportion of “surrogate” siPLV/sCorEnv

that was higher than the observed iPLV/CorEnv. The p-value
reflected the statistical significance of the observed iPLV/CorEnv-
level (a very low value revealed that it could not have appeared
from processes with no iPLV coupling).

At a second level, we applied the FDR method (Benjamini
and Hochberg, 1995) to control for multiple comparisons within
each snapshot of the dynamic graph (FCG—a 90 × 90 matrix
with tabulated p-values) with the expected fraction of false
positives set to q ≤ 0.01. Finally, for each subject the resulting
TViPLV/TVCorEnv profiles constituted of two 3D arrays of size
[598 to 2,140 for δ to γ2 (time windows) × 90 (sources) ×

90 (sources)] with a value of 0 indicated a non-significant
iPLV/CorEnv value.

The aforementioned statistical filtering approach was applied
independently for each frequency band, session, subject, and
connectivity estimator for both static and dynamic functional
connectivity graphs.

A Data-Driven Topological Filtering

Scheme Based on Orthogonal Minimal

Spanning Trees (OMSTs)
As well as the statistical filtering approach, it is important to
adopt a data-driven topological filtering approach in order to
reveal the backbone of the network topology over the increment
of information flow.

Recently, it was proved that MST is an unbiased method that
yields reliable network metrics (Tewarie et al., 2015). In this
study, we adopt a variant of this topological filtering scheme
called orthogonal minimal spanning trees (OMST), which leads
to a better sampling of brain networks, preserving the advantage
of MST, that connects the whole network with minimum cost
without introducing cycles and without differentiated strong
from weak connections compared to the absolute threshold or
the density threshold (Dimitriadis et al., 2017a,b). MST is too
sparse to capture the “true” network and for that reason leading
to the selection of N-1 connections where N denotes the number
of nodes. We introduced OMST which samples the weights of a
brain network via the notion of MST and under the optimization
of the global information flow under the constraint of the total
Cost of preserving the functional connections (Dimitriadis et al.,
2017b,d).

Our criterion for topologically filtering a given brain network
is based on the maximum value of the following quality formula:

JOMSTs
GCE = GE− Cost (8)

We applied the data-driven topological filtering scheme based
on OMST at every static and quasi-instantaneous FCG from
the dynamic DFCG. After statistical and topological filtering
approaches applied to both SFCG and the DFCG, we estimated
network metrics at the node/source level.
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FIGURE 3 | From dynamic functional connectivity graphs (DFCG) to FCµstates. (A) A characteristic bandpass filtered time series for each of the studying frequency

band is given from a ROI. (B) Topologies of snapshots of DFCG from the three first temporal segments from δ band of subject 1 in order to make clear the estimation

of FCG in a dynamic fashion. The first three brain networks refer to the first three temporal segments demonstrated in (A). These functional brain networks were

statistically and topologically filtered as described in sections Surrogate Data Analysis of iPLV/CorEnv Estimates—Statistical Filtering of Brain Networks and A

data-driven Topological Filtering Scheme based on Orthogonal Minimal Spanning Trees (OMSTs). The tN refers to the last temporal segment of the DFCG. (C)

Laplacian matrices for a few snapshots of DFCG. (D) The dynamic evolution of the eigenvalues of the laplacian matrices for each frequency band. An example for δ

frequency band. (E) Euclidean Distance matrix of the laplacian eigenvalues between every pair of temporal segments. (F) Reordering the correlation matrix in (E) to

enhance the visualization of the two clusters—Fcµstates illustrated in (G). (G) The prototypical Fcµstates in a circular visualization. (H) The outcome of this procedure

is a symbolic time series that can be seen as a first order Markovian Chain that expresses the evolution of FCµstates across experimental time. The transition

probabilities (TP) of this Markovian Chain based is illustrated in the 2 × 2 colored figure. One can understand that human brain demonstrates a preferred transition

from FCµstates2 to FCµstates1 compared to the opposite direction (see 2D colormap). The chronnectomics were derived from this symbolic time series. ED,

Euclidean distance; LEG, Laplacian EiGenvalues; ED, Euclide and distance; AAL, automated anatomical labeling; LEG, Laplacian EiGenvalues.
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Figure 1 demonstrates an example of a full-weighted FCG
after applying both statistical and topological filtering approach.
Our algorithm was validated over all the existing thresholding
schemes with a large EEG dataset over brain fingerprinting
and with a multi-scan fMRI dataset over reliability of nodal
network metrics (Dimitriadis et al., 2017a). Additionally, we
demonstrated the importance of a data-driven topological
filtering technique in functional neuroimaging by using OMST
in a multi-group study with MEG resting-state recordings
(Dimitriadis et al., 2017b). The MATLAB code of the OMST
method and also of the majority of existing filtering methods
can be downloaded from the: https://github.com/stdimitr/
topological_filtering_networks & researchgate https://www.
researchgate.net/profile/Stavros_Dimitriadis.

Graph Diffusion Distance Metric for Brain

Networks
In order to assess group and scan sessions differences in the
topologically filtered FCG at the single-case level, we computed
the Graph Diffusion Distance as a distance metric (Fouss et al.,
2012; Hammond et al., 2013) from the OMST-derived final
Functional Connectivity Graphs (FCG). The graph laplacian
operator of each subject-specific FCG was defined as L = D −

FCG, where D is a diagonal degree matrix related to FCG. This
method entails modeling hypothetical patterns of information
flow among sources based on each observed (static) SFCG. The
diffusion process on the person-specific FCG was allowed for a
set time t; the quantity that underwent diffusion at each time
point is represented by the time-varying vectoru(t) ∈ ℜN . Thus,
for a pair of sources i and j, the quantity FCGij (ui(t) − uj(t))
represents the hypothetical flow of information from i to j via the
edges that connect them (both directly and indirectly). Summing

all these hypothetical interactions for each sensor leads to u
′

j(t) =
∑

i
FCGij(ui(t)− uj(t)), which can be written as:

ui(t) = −Lu(t) (9)

where L is the graph laplacian of FCG. At time t = 0 Equation
9 has the analytic solution: u(t) = exp(−tL)u(0). Here exp(–tL)
is a N × N matrix function of t, known as Laplacian exponential
diffusion kernel (Fouss et al., 2012), and u(0) = ej, where ej ∈ ℜN

is the unit vector with all zeros except in the jth component.
Running the diffusion process through time t produced the
diffusion pattern exp(–tL)ej which corresponds to the jth column
of exp(–tL).

Next, a metric of dissimilarity between every possible pair
of person-specific diffusion-kernelized FCGs (FCG1, FCG2) was
computed in the form of the graph diffusion distance dgdd(t).
The higher the value of dgdd(t) between two graphs, the more
distinct is their network topology as well as the corresponding,
hypothetical information flow. The columns of the Laplacian
exponential kernels, exp(–tL1) and exp(–tL2), describe distinct
diffusion patterns, centered at two corresponding sources within
each FCG. The dgdd(t) function is searching for a diffusion time
t that maximizes the Frobenius norm of the sum of squared

differences between these patterns, summed over all sources, and
is computed as:

dgdd(t) =
∥

∥exp(−tL1)− exp(−tL2)
∥

∥

2

F
(10)

where ‖.‖Fis the Frobenius norm.
Given the spectral decomposition L = V3V, the laplacian

exponential can be estimated via

exp(−tL) = Vexp(−t3)V′ (11)

where for3, exp(–t3) is diagonal to the ith entry given by e−t3i ,i .
We computed dgdd(FCG1,FCG2) by first diagonalizing L1 and L2
and then applying Equations (9, 10) to estimate dgdd(t) for each
time point t of the diffusion process. In this manner, a single
dissimilarity value was computed for each pair of participants
based on their individual characteristic FCGs. For further details
see (Hammond et al., 2013). The GDDmetric can be downloaded
from:

https://github.com/stdimitr/multi-group-analysis-OMST-
GDD.

Static Network Metrics
After applying the statistical and topological filtering approach,
we estimated the global efficiency for each node in static
approach. The static approach leads to 90 (sources) values for
each network,metric, frequency band and session per subject.We
adopted complementary features that measure the importance of
each node in segregation, integration and the information flow
within a weighted functional brain network (Dimitriadis et al.,
2010a,b, 2013a,b, 2015a). In this study, we estimated four basic
network metrics, the global and local efficiency, the strength of
each node and the mean first passage time based on random
walks (Goñi et al., 2013).

Network global efficiency (GE) reflects the overall efficiency
of parallel information transfer within the entire set of 90 sources
and was estimated as the average source specific GE value over
all sources using the following formula (Latora and Marchiori,
2001):

GE =
1

N

∑

i∈N

∑

j∈N,j6=i

(

dij
)−1

N − 1
(12)

where d denotes the shortest path length from i to j.
Local efficiency (LE) indicates how well the subgraphs

exchange information when a particular node is eliminated
(Achard and Bullmore, 2007). Specifically, each node is assigned
the shortest path length within its subgraph GiGi

LE =
1

N

∑

i∈N

nodalLEi =
1

N

∑

i∈N

∑

j,h∈Gi ,j,h6=i

(

djh
)−1

ki
(

ki − 1
) (13)

where ki corresponds to the total number of spatial (first level
neighbors) neighbors of the ii-th node, while d denotes shortest
path length.
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The strength is equal to the total sum of the weights of the
connections of each node.

As a fourth candidate network metric, we adopted the mean
first passage time (MFPT). Starting a random walk process on
a brain network, an analytic expression can give the probability
that a single particle departing from a node i arrives at node j
for the first time within exactly L steps (Wang and Pei, 2008).
This criterion can be applied for each MEG source pair by setting
L to their shortest-path-length. We denote with 5G =

[

πij
]

the
n × n symmetric matrix containing, for each pair of nodes, the
probability of a single particle going from node i to node j via the
shortest path. Each entry πij can be computed as

πij = 1−

n
∑

v= 1

[

B
ϕij
j

]

iv

, i 6= j (14)

where matrix Bj is the transition matrix P introduced above,
but with all zeros in the j-th column, i.e., with j acting as an
absorbing state (Wang and Pei, 2008). Evaluating shortest-path-
lengths ensures that ∀i, j πij > 0. By considering one particle

here, the average shortest-path probability of a graph is defined
as

5spl =

∑

i

∑

j πij

n (n− 1)
, i 6= j (15)

The derived 2D matrix based on nodal NMTS of GE, LE, MFPT
and strength will be modeled with the proposed method that is
described in the following section.

Modeling of Dynamic Functional

Connectivity Graphs (DFCG) as a 3D Tensor
This subsection serves as a brief introduction to our
symbolization scheme, presented in greater details elsewhere
(Dimitriadis et al., 2012a,b, 2013a,b). The dynamic functional
connectivity patterns can be modeled as prototypical functional
connectivity microstates (FCµstates). In a recent study,
we demonstrated a better modeling of dynamic functional
connectivity graphs (DFCG) based on a vector quantization
approach (Dimitriadis et al., 2013a). In our previous work
(Dimitriadis et al., 2013a,b, 2015a), we used the neural-gas

FIGURE 4 | Muldimensional Scaling Projection of Frequency-Dependent Static Functional Connectivity Graphs (FCGiPLV ) in a Common Feature Space. (A–H: δ-γ2)

Each subplot illustrates the (dis)similarities of static FCGs across scanning sessions and subjects. The 2D matrix demonstrates the (dis)similarities of the static FCGs

across the subjects and both repeat scans. Scanning sessions were coded with blue and red circles correspondingly and a black line connects the FCG of each

subject between the two scanning sessions. With this representation one can read out the similarity of a static FCG between two scanning sessions and participants.

Stress expresses the loss of information expressed in the projected Frequency-Dependent Static Functional Connectivity Graphs in 2D feature space from an original

80D space. The low stress values mean that the relationship of the 80 FCGs in the original 80 × 80 matrix is preserved in the projected 2D space. R1,2 refer to the 2D

projected space of the 80 FCGs. FCG, functional connectivity graph; gDD, graph diffusion distance.
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algorithm (Martinetz et al., 1993) to learn the 2D matrix
(vectorized version of 2D matrix × time) leading to a codebook
of k prototypical functional connectivity states (i.e., FCµstates).
This algorithm is an artificial neural network model, which
converges efficiently to a small number k of codebook vectors,
using a stochastic gradient descent procedure with a soft-
max adaptation rule that minimizes the average distortion
error (Martinetz et al., 1993). In a recent study, we adopted
non-negative matrix factorization (NNMF) as an appropriate
learning algorithm of the 2D vectorized version of a dynamic
functional brain network (Marimpis et al., 2016).

In our previous study where we first demonstrated how
to model dynamic functional connectivity graph (dFCG)
(Dimitriadis et al., 2013a), we vectorised the upper triangular
of each of the quasi-static FCGs building a 2D matrix where
the 1st dimension is the number of temporal segments and the
2nd the vectorised version of a static FCG. The final outcome of
this approach is to define the so-called functional connectivity
microstates (FCµstates). In a next study, we moved one step
further by estimating node-wise global efficiency as the best
descriptor to characterize the brain activity. The final outcome
of the modeling using the same methodology of neural-gas
algorithm was task-based network microstates (Dimitriadis et al.,
2015a). Here, the vectorized version of a 90 × 90 FCG produces

a long vector of 4,005 values while the number of temporal
segments ranged from 598 to 2,140 which caused the so-called
curse of dimensionality where the number of number of the
temporal segment over which the modeling will learn the brain
states is much smaller compared to the vectorized snapshot of
FCG. Simultaneously, the vectorized notion of a brain network
didn’t maintain the inherent format of a functional brain network
which is a 2D matrix, a tensor.

The outline of this procedure is illustrated in Figure 3. In
Figure 3A, a characteristic bandpass filtered time series for each
of the studying frequency band is estimated from each ROI.
Here, instead of vectorising the upper triangular of an undirected
FCG, we used the statistical and topological filtering FCG on its
inherent format which is a 2D tensor. In the case of dynamic
networks, the dimension is a 3D tensor where the 3rd dimension
is the time. Figure 3B illustrates a few snapshots of the dFCG for
δ frequency of the first subject. At the next level, we estimated
the laplacian matrix of each quasi-static FCG. Given a FCG, the
laplacian matrix is given by:

L = D− A, (16)

where D is the degree matrix and A is the FCG.

FIGURE 5 | Muldimensional Scaling Projection of Frequency-Dependent Static Functional Connectivity Graphs (FCGCorEnv) in a Common Feature Space. (A–H: δ –

γ2) Each subplot illustrates the (dis)similarities of static FCGs across scanning sessions and subjects. The 2D matrix demonstrates the (dis)similarities of the static

FCGs across the subjects and both repeat scans. Scanning sessions were coded with blue and red circles correspondingly and a black line connects the FCG of

each subject between the two scanning sessions. With this representation one can read out the similarity of a static FCG between two scanning sessions and

participants. Stress expresses the loss of information expressed in the projected Frequency-Dependent Static Functional Connectivity Graphs in 2D feature space

from an original 80D space. The low stress values mean that the relationship of the 80 FCGs in the original 80 × 80 matrix is preserved in the projected 2D space.

R1,2 refer to the 2D projected space of the 80 FCGs. FCG, functional connectivity graph; gDD, graph diffusion distance.
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Figure 3C demonstrates the laplacian matrix of the FCG in
Figure 3B. In the main diagonal, the degree of each node is
tabulated. Afterward, we applied an eigenanalysis for each of
these laplacian matrixes and the eigenvalues of this procedure
describes the synchronizability of the original FCG. Figure 3D
illustrates for the 1st min the eigenvalues for each quasi-static
FCG. One can easily detect the abrupt transition between the
brain states. Here, neural-gas algorithm was applied on the 2D
matrix presented in Figure 3D after first concatenated across
subjects independently for each frequency band and scan session.
The main scope of this codebook learning algorithm is to define
FCµstates.

By estimating the reconstruction error E between the original
2D matrices (90× [slides× subjects]) and the one reconstructed
via the k FCµstates assigned to each snapshot of the DFCG for
each predefined threshold, we can detect the optimal threshold
T for each case. In this work, the criterion of the reconstruction
error E was set less than 4%. Practically for all the frequency
bands and in both connectivity estimators, the reconstruction
error E was less than 2%. The selected threshold was detected
based on the plateau by plotting of reconstruction error E vs. the
threshold T.

In this way, the richness of information contained in the
dynamic connectivity patterns is represented, by a partition
matrix U, with elements uij indicating the assignment of
input connectivity patterns to code vectors. Following the

inverse procedure, we can rebuild a given time series from
the k FCµstates, with a small reconstruction error E. The
selection of parameter k reflects the trade-off between fidelity
and compression level. As a consequence, the symbolic time
series closely follows the underlying functional connectivity
dynamics. The derived symbolic times series that keep the
information of network FCµstates (nFCµstates) are called
hereafter as STSL−EIGEN (L:Laplacian − Eigen:Eigenalysis).
Figure 3E tabulates the correlation of the eigenvalues between
every pair of temporal segments while in Figure 3F, the matrix in
Figure 3E was reordered such as the FCµstates to be revealed via
the neural-gas algorithm. The network topology of the extracted
FCµstates is illustrated in Figure 3G. From, Figure 3F, one can
understand that the two FCµstates describe the DCFG of this
subject.

An exemplar of prototypical FCµstates is illustrated in
Figure 3G. The outcome of this clustering procedure is also
to extract a symbolic time series per subject, repeat scan and
frequency that describes the transition of brain activity between
the extracted brain states (FCµstates; Figure 3D). The transition
probability P for this example and for the two FCµstates is
illustrated with a classical figure for first order Markovian Chain.
The self-arrows refer to the percentage of sliding windows where
the brain stays stable in a FCµstate without any transition while
the directed arrow gives the percentage of transition from one
FCµstate to the other.This symbolic time series can be seen as

FIGURE 6 | Reliability of node-wise network metrics derived from static brain networks with iPLV connectivity estimator. Each subplot demonstrates the correlation

coefficient (CC) of each network metric at every studying frequency band of each brain area between the two scanning sessions. CC, the correlation coefficient; AAL,

automated anatomical labeling.
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a first order Markovian chain where these switching between
“quasi-static” FCµstates can be modeled as a finite Markov
chain (Dimitriadis et al., 2013a,b, 2015a; O’Neill et al., 2015;
Vidaurre et al., 2016). One can clearly understand that human
brain demonstrates a preferred transition from FCµstates2 to
FCµstates1 (off-diagonal lines of the TP) compared to the
opposite direction (Figure 3H). The sketch of the markovian
chain and the colored TP matrix can reveal the aforementioned
trend of preferred direction FCµstates2 to FCµstates1.

From the symbolic timeseries, specific metrics tailored to
the dynamic evolution of FCµstates were estimated (see next
section) and their reliability was assessed via the correlation
coefficient between scan session 1 and scan session 2. The whole
approach was repeated independently for each frequency band
and connectivity estimator by integrating subject and scan-based
DFCG.

Characterization of Time-Varying

Connectivity
Once the integrated DFCG is formed and it is modeled via the
combination of neural-gas and laplacian eigenanalysis scheme
[N-GASL−EIGEN (L:Laplacian - Eigen:Eigenalysis)], relevant
features can be extracted from the data based on the state-
transition states. There features are called chronnectomics
(chronos—Greek word for time and connectomics for network
metrics) which are described in the following section.

Chronnectomics
The following chronnectomics (dynamic network metrics) will
be estimated on the STSL−EIGEN which expresses the fluctuation
of the FCµstates.

State Transition Rate
Based on the state transition vectors STSL−EIGEN as
demonstrated in Figure 3A, we estimated the transition
rate (TR) for every pair of states as followed:

TR =
no of transitions

slides− 1
(17)

where slides denote the number of temporal segments using the
sliding window approach.

TR yields higher values for increased numbers of “jumps” of
the brain between the derived brain states over consecutive time
windows. This approach leads to one feature per participant.

Occupancy Times of the nFCµstates
Complementary to the aforementioned chronnectomics, we
estimated also the occupancy time (OC) of each FCµstates as the
percentage of its occurrence across the experimental time. OC
was estimated from STSL−EIGEN as follows:

OC(k) =
Frequency of Occurance

slides
(18)

where k denotes the FCµstates.

FIGURE 7 | Reliability of node-wise network metrics derived from static brain networks with CorEnv connectivity estimator. Each subplot demonstrates the correlation

coefficient (CC) of each network metric at every studying frequency band of each brain area between the two scanning sessions. CC, the correlation coefficient; AAL,

automated anatomical labeling.
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Reliability of Static Network Metrics and

Chronnectomics
The reliability of static node-wise network metrics and the
chronnectomics was assessed with the correlation coefficient
between forty values derived from scan session 1 and forty values
from scan session 2 for each frequency band, condition and
connectivity estimator (see Figures 1–3).

Optimizing the Width of the Time-Window

and the Stepping Criterion
We optimized both the width of the time-window and the
step criteria for the sliding-window approach based on the
maximization of the reliability of TR. The reliability was
estimated based on the correlation coefficient of the TR across
the whole group between scan session 1 and 2. The whole
procedure was followed independently for each brain rhythm.
The settings for the width of temporal window and the step
were defined as a percentage of the cycles of the studying
frequencies: {from 1 up to 10 cycles with step equals to 0.5

cycle} for the width of the temporal window and {from 0.1
cycles to 2 cycles with step equals to 0.1 cycle} for the step
(see Table 1).

To avoid overfitting of both TR and OT since, we used TR
for both the optimization of the width of the temporal window
and the stepping criterion, we used the optimized parameters in
an external second repeat scan dataset for further evaluation (see
Supplementary Material).

RESULTS

Tuning Parameters for Dynamic Functional

Connectivity Analysis
The optimization of the temporal window and the stepping
criterion for each brain rhythm reveals a nice trend for
dynamic functional connectivity analysis. The width of
the temporal window increased from δ to γ2 while the
stepping criterion decreased in both connectivity estimators
(see Table 1).

FIGURE 8 | Frequency-dependent FCGµstatesiPLV. Network topologies of the FCGµstatesiPLV for each of the studying frequency band. To enhance the visualization

and contrast of FCGµstates across frequency bands, we adopted a network-wise representation instead of plotting the brain network in a 90 nodes layout. The 90

ROIs of the AAL template were assigned to each of the five networks: default-mode (DMN), fronto-parietal (FPN), occipital (O), sensorimotor (SM), and

cingulo-opercular (CO). The color of each node denotes total strength of within network connections while the color of each line the total strength of between network

connections. Both strength values were normalized across both frequencies and FCGµstates.
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Common Projection Space of

Frequency-Dependent Static FCG
To demonstrate the (dis)similarities between sessions and
subjects of the frequency-dependent static FCG, we constructed
a distance matrix of dimensions 80 × 80 (subjects × sessions)
using the graph diffusion distance metric. Then, we applied
multidimensional scaling (MDS) to project the distance matrix
into a common 2D feature space. Using a different colored circle
for each scanning session (blue for session 1 and red for session
2) and connecting both of them with a black line for each
subject, we further enhanced the (dis)similarities of the static
FCGs. Figures 4, 5 illustrate these FCG-based projections for
static FCGIplv and FCGCorEnv correspondingly. In Figure 4G one
can detect a few subjects with high reliable static FCG between
the two scan sessions and also subject-specific network topologies
that occupied an isolated subarea in the common projection FCG
space. The stress index estimated via the MDS approach was low
and the relationship of the 80 FCGs in the original 80× 80matrix
is preserved in the projected 2D space.

Reliability of Static Network Metrics
Figures 6, 7 demonstrate the correlation coefficients for each
node-wise network metric between the two scanning sessions
for every frequency-dependent static FCG. From the visual
comparison of both figures one can clearly reveal that the
correlation values are higher for CorEnv compared to iPLV.

Applying Wilcoxon Rank-Sum Test for every frequency and
network metric between the 90 correlation values, we detected
statistical significant differences in every case (p< 0.01, p

′

< p/32,
Bonferroni Corrected). However, the averaged correlation values
did not reach high reliability (e.g., >0.9) even for the CorEnv. It
is obvious from the correlation plots that the reliability of node-
wise static network metrics has high spatial variability in both
connectivity estimators.

Frequency-Dependent FCGµstates and

Reliability Chronnectomics for iPLV
Our analysis of DFCG based on iPLV revealed two
FCGµstatesiPLV for each frequency band. The topology of
these frequency-dependent FCGµstatesiPLV is illustrated
in Figure 8. We integrated the nodes into five well-known
brain networks: default-mode (DMN), fronto-parietal (FPN),
occipital (O), sensorimotor (SM), and cingulo-opercular
(CO). The mapping between the 90 ROIs of AAL and the
five brain networks can be retrieved from section Results
in Supplementary Material. One can clearly detect that the
functional coupling between the default mode network and the
cingulo-opercular dominates the coupling strength across the
frequency bands and FCGµstates with less pronounced effect in
both γ bands. Complementary, the coupling strength between
and within the networks is diminished after α2 frequency. This
behavior can be interpreted as a reduction of the connections

FIGURE 9 | Reliability of Transition Rates (TR) based on FCµstatesiPLV across frequency bands. (A). Mean and median values of TR across subjects and scan

sessions for each frequency band. (B). Scatter-plot of subject-specific TR for both sessions with the corresponding fitted line for each frequency band. All the

correlations were Corr. > 0.9 (p < 10−7). Each blue circle corresponds to a participant.
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up to the defined threshold following the increment of the
frequency. The two FCGµstatesiPLV showed also a different
distribution of strength globally and locally.

Both types of chronnectomics, transition rates (TR) (Figure 9)
and occupancy times (OC) (Figure 10) demonstrated high
reliability (Corr.> 0.9, p< 10−7) across frequency bands. Similar
results, we obtained also for the second external dataset (see
section 2 in Suplementary Material).

Frequency-Dependent FCGµstates and

Reliability Chronnectomics for CorEnv
Our analysis of DFCG based on the correlation of the envelope
connectivity estimators revealed two FCGµstatesCorEnv for each
frequency band. The topology of these frequency-dependent
FCGµstatesCorEnv is illustrated in Figure 11. The mapping
between the 90 ROIs of AAL and the five brain networks can
be retrieved from section 2 in Supplementary Material. One
can clearly detect that the functional coupling between the
default mode network and the cingulo-opercular dominates
the coupling strength across the frequency bands and
FCµstates. Complementary, the coupling strength between
and within the networks is diminished after α2 frequency as
it was observed for FCGµstatesiPLV. Complementarily, the
network topologies of FCGµstatesCorEnv between low and high
frequencies based on the strength coupling are more common

than the FCGµstatesiPLV.This common substrate across the
FCGµstatesCorEnv is consistent with the general notion that
correlation of the envelope is more stacked to the structural
connectome compared to the phase-based connectivity patterns
which demonstrate higher degrees of freedom (Engel et al., 2013;
compare Figure 8 with Figure 11).

Only transition rates (TR) showed high reliability for CorEnv
(Corr. > 0.8, p < 10−4) in all the frequency bands with the only
exception of β1 (Figure 12). Occupancy times (OT) showed low
reliability across the frequency bands (p > 0.4) (Figure 13). TR
of FCGµstatesCorEnv increased with the increment of frequency
reaching a plateau in γ1. In contrast, TR of FCGµstatesiPLV did
not show such a frequency-dependent behavior. Similar results,
we obtained also for the second external dataset (see section 2 in
Supplementary Material).

DISCUSSION

In the present study, we assessed the reliability of both
static and dynamic functional connectivity network descriptors
using resting-state MEG data from 40 subjects with repeat
scan sessions. This is the first time that the reliability of
chronnectomics, at least for the MEG modality, has been
taken into account. Source time series were first beamformed

FIGURE 10 | Reliability of Occupancy Time (OT) based on on FCµstatesiPLV across frequency bands. (A) Mean and median values of OT across subjects and scan

sessions for FCµstates1 and for each frequency band. (B) Mean and median values of OT across subjects and scan sessions for FCµstates2 and for each frequency

band. (C) Scatter-plot of subject-specific OT for both sessions with the corresponding fitted line for each frequency band. All the correlations were Corr. > 0.9

(p < 10−7). Each blue circle corresponds to a participant.
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FIGURE 11 | Frequency-dependent FCGµstatesCorEnv. Network topologies of the FCGµstatesCorEnv for each of the studying frequency band. To enhance the

visualization and contrast of FCGµstates across frequency bands, we adopted a network-wise representation instead of plotting the brain network in a 90 nodes

layout. The 90 ROIs of the AAL template were assigned to each of the five networks: default-mode (DMN), fronto-parietal (FPN), occipital (O), sensorimotor (SM) and

cingulo-opercular (CO). The color of each node denotes total strength of within network connections while the color of each line the total strength of between network

connections. 7 Both strength values were normalized across both frequencies and FCGµstates.

independently for each frequency band (Hillebrand et al.,
2005; Schoffelen and Gross, 2009; Brookes et al., 2011b), and
then representative voxel time series based on the AAL atlas
were extracted using a novel linear interpolation analysis. This
procedure produces informative timeseries with a characteristic
carrier frequency compared to the noisy time series derived
by PCA or by selecting the voxel time series within a ROI
that encapsulates the maximum power. Then, both static and
dynamic frequency-dependent functional connectivity graphs
were computed for each subject and scan session using the
imaginary part of phase locking value (iPLV) and the correlation
of the amplitude envelope (CorEnv). Both static and dynamic
FCG (SFCG-DFCG) were filtered both statistically (surrogates)
and topologically (OMST; Dimitriadis et al., 2017a,b).

Here, we adopted a data-driven pipeline of how to
estimate both static and dynamic FCG statistically and
topologically filtered using an algorithm previously applied to
EEG recordings. We explored the reliability of both static
networkmetrics and chronnectomics (dynamic networkmetrics)
by employing two representative connectivity estimators for

the construction of static and dynamic brain networks. Using
this pipeline, prototypical FCµstates were derived which were
highly reproducible across subjects and scan sessions in both
connectivity estimators and in all frequencies. The reliability
of node-wise static network metrics based on four network
metrics was low and spatially variable with both connectivity
estimators while the CorEnv demonstrates higher ICC values
compared to iPLV. The reliability of chronnectomics (TR, OT)
for iPLV was high while for CorEnv the reliability of only the TR
reaches high acceptable levels. Our results were reproduced also
in a second external dataset (see Supplementary Material). Our
study strongly encouraging the use of DFCGwith neuromagnetic
recordings that takes the advantage of the nature of MEG
modality, its high temporal resolution.

To our knowledge, this is the very first study that explored
the reliability of both static and dynamic FCG and the
related network metrics and chronnectomics, respectively in
neuromagnetic source space at. In static FCG, node-wise network
metrics demonstrated poor reliability for iPLV and poor to
medium for CorEnv. The node-wise reliability was highly spatial
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FIGURE 12 | Reliability of Transition Rates (TR) based on FCGµstatesCorEnv across frequency bands. (A) Mean and median values of TR across subjects and scan

sessions for each frequency band. (B) Scatter-plot of subject-specific TR for both sessions with the corresponding fitted line for each frequency band. All the

Corr. > 0.8 (p < 10−4 with the exception of β1). (C) Each blue circle corresponds to a participant.

variable and static FCG have also demonstrated low repeatability
in both connectivity estimators and especially in CorEnv. In
contrast, prototypical FCµstates were high reproducible across
subjects and scan sessions in both connectivity estimators and in
all frequencies supporting by the low reconstruction error (<2%)
of our brain network learning algorithm. Complementary, the
reliability of chronnectomics (TR,OT) for iPLV was high while
for CorEnv the reliability of only the TR reaches high acceptable
levels. These results strongly encourages the neuroscientists to
adopt the notion of DFCG with neuromagnetic recordings that
takes the advantage of its high temporal resolution.

Two main studies explored the reliability of static FCG on the
source level using MEG-beamformed resting-state connectivity
analysis. Garcés et al. (2016) studied the reliability of resting-
state networks using four connectivity estimators: phase-locking
value (PLV), phase lag index (PLI), direct envelope correlation
(d-ecor), and envelope correlation with leakage correction (lc-
ecor). They adopted intra-class correlation coefficient (ICC) and
Kendall’s W for assessing within and between-subjects agreement
respectively. Higher test-retest reliability was found for PLV
from θ to γ, and for lc-ecor and d-ecor in β. They commented
that high ICC in PLV and d-ecor could be artifactual due to
volume conduction effects. Colclough et al. (2016) investigated
the reliability of static FCG at resting-state using beamformed
source static connectivity analysis. They reported high reliability
mostly for the partial correlation analysis and the correlation
of the envelope among 12 connectivity estimators. Two more

studies, Deuker et al. (2009) estimated the reliability of resting-
state network metrics derived from MEG in sensor space using
mutual information. They obtained high ICC for clustering,
global efficiency and strength at a network level. Jin et al. (2011)
found medium ICC for nodal global efficiency, nodal degree and
betweenness centrality in α and β bands.

Our results revealed that nodal network metrics derived from
static FCG are less reproducible then their dynamic counterparts.
In contrast, chronnectomics are highly reproducible with both
adopted connectivity estimators. These results complemented
with the results presented in (Colclough et al., 2016) where they
adopted multiple connectivity estimators for the construction
of static brain networks on the source level using MEG-
beamformed resting-state activity. Colclough et al. (2016)
showed that the static full-weighted FCG are high repeatable
within the group-level mostly for the correlation of the envelope
adopting a split-half strategy on a dataset with single scans. Here,
we accessed the reliability of any network metric using a two scan
session design per subject.We should state here that edge-weights
are significant for the construction of network topology and the
reliability of connectomic biomarkers (Dimitriadis et al., 2018).

One of the key findings of our analysis are the frequency-
dependent FCµstates for each connectivity estimator.
Figures 8, 11 illustrate the strength of the coupling within
and between brain networks for the prototypical FCµstates
at every frequency band. It is obvious that the highest
strength within a network is observed within the DMN in
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FIGURE 13 | Reliability of Occupancy Time (OT) based on on FCGµstatesCorEnv across frequency bands. (A) Mean and median values of OT across subjects and

scan sessions for FCµstates1 and for each frequency band. (B) Mean and median values of OT across subjects and scan sessions for FCµstates2 and for each

frequency band. (C) Scatter-plot of subject-specific OT for both sessions with the corresponding fitted line for each frequency band. All the correlations were weak

and non-significant (p > 0.4). Each blue circle corresponds to a participant.

both connectivity estimators. The strength between the brain
networks is mainly distributed between DMN and the rest of the
networks demonstrating the highest value till α2 and dropped
from β1 to γ2 (Figures 8, 11). DMN reignited a high interest
the last years for the description of intrinsic ongoing activity
in studies of the human brain in health and disease (Raichle,
2015). Disruptions of functional connections within the DMN
and between DMN and the rest of brain networks have been
linked to various neurological and neuropsychiatric disorders
(Mohan et al., 2016). Studies in healthy aging and Alzheimer’s
disease have revealed the significant role of DMN (Mevel et al.,
2011).

Flexible hub theory based on clustering analysis of functional
networks gave an explanation of how temporal functional
modes exist where one neural region may be switched from
a certain network at one time to a different network at
another time (Smith et al., 2012). It remains still unclear how
the different brain networks are connected together during
spontaneous and task-related activity. Dosenbach et al. (2008)
proposed that the FPN may serve to initiate and adjust
cognitive control, whereas another control-type network, the
CO network (CON), provides stable set-maintenance. Cole
and colleagues (Cole et al., 2013) helped to untangle the
flexible role of the FPN, many questions remain regarding
the interaction between the FPN and the CON and also with

other networks such as the DMN,SM and O. In the present
study, we characterized the dynamic relationships of the brain
networks across time at resting-state in various frequency bands
and using representative connectivity estimators. We found
that these functional patterns are high reproducible which will
help multi groups worldwide to explore these interactions and
build reproducible connectomic biomarkers in various diseases
and disorders. Understanding the neural basis of intrinsic
activity, cognition and structure–function relationships, will
further enhance the prognostic/diagnostic abilities in clinical
populations.

The interactions of large-scale brain networks at resting-state
and during tasks is characterized by the studying frequency.
Frequency-specific functional interactions between large-scale
brain networks may be individual fingerprints of the idle activity
and cognition (Siegel et al., 2012). It will be interesting in the
future to explore how the FCµstates from a dynamic integrated
functional connectivity graph (Dimitriadis and Salis, 2017c) that
incorporates different intrinsic coupling modes both intra and
cross-frequency coupling can be used for brain fingerprinting
(Engel et al., 2013).

It is critically important to take advantage of new imaging
modalities to untangle the mechanisms that produce circuit
dysfunctions in many brain diseases and disorders. The
development of biomarkers is very important and for that reason
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the proposed experimental paradigm and analytics of the meta-
data derived from the analysis of human brain activity must
be highly reliable and reproducible. Magnetoencephalography
(MEG) allows us to measure neuronal events noninvasively with
millisecond resolution and recent advanced methods opens new
avenues of exploring and answering fundamental key research
questions tailored to each brain disease/disorder. MEG can
become a pioneering clinical research tool for mental disorders
(Bowyer et al., 2015; Grent-’T-Jong et al., 2016; Uhlhaas et al,
2017), Alzheimer’s disease (López et al., 2014, 2017; Koelewijn
et al., 2017), dyslexia (Dimitriadis et al., 2010b, 2013b), traumatic
brain injury (Dimitriadis et al., 2015c; Antonakakis et al.,
2016, 2017), multiple sclerosis (Tewarie et al., 2015), and other
brain diseases. To establish MEG-based biomarkers that can
be used for daily clinical practice and clinical evaluation, their
reproducibility should be further explored. Complementary,
the transition rate and also the occupancy times could be
personalized biomarkers of a subject’s resting-state condition
where more task-related FCµstates and the related markers
derived from them could build a subject specific database for
longitudinal studies. Transition rates could be also correlated
with IQ scores and also with behavioral performance during
execution of cognitive tasks.

In the present study, we proposed a data-driven analytic
pathway to assess the reliability of connectomics using MEG-
beamformed connectivity analysis. Our results clearly support
the notion of dynamic functional connectivity on the source
level, the derived prototypical FCµstates and the related
chronnectomics. Last years, many studies explored the
dynamic functional connectivity graphs in many modalities
(EEG/MEG/fMRI) and in both resting-state and during tasks
(Dimitriadis et al., 2010a, 2012a,c, 2013a,b, 2015a,b,c,d, 2016a,b;
Bassett et al., 2011; Rosazza and Minati, 2011; Allen et al., 2012;
Handwerker et al., 2012; Ioannides et al., 2012; Hutchison et al.,
2013; Liu and Duyn, 2013; Braun et al., 2015b; Mylonas et al.,
2015; Toppi et al., 2015; Yang and Lin, 2015; Calhoun and Adali,
2016, for reviews see Calhoun et al., 2014). This is the very
first study according to authors’ knowledge that the reliability
of chronnectomics was explored. The outcome of this study
opens new avenues in the exploration of human brain dynamics
with MEG-beamformed source activity and under the notion of
dynamic functional connectivity.

We addressed the key question of the readiness of
neuromagnetic-based based functional connectomics to
lead to clinically meaningful biomarker identification through
the reliability approach that offers a repeat scan study in
healthy controls. It is more than significant to customize stable
approaches for analyzing neuromagnetic recordings and present
reproducible brain connectomics across scans in healthy control
populations without sacrificing the individual characteristics
that can be used for personalized intervention neuroscience
(Gratton et al., 2018). It is highly recommend to access the
reliability of any metric derived from any neuroimaging

modality in a repeat scan protocol in healthy control population
before applying it to a larger disease group where the cost of
scanning is too high (diffusion MRI: Dimitriadis et al., 2017d).
Additionally, we will expand this analysis in future efforts to

identify disease status alone including clinical variables related to
genetic risk (Lancaster et al., 2018), expected treatment response
and prognosis.

CONCLUSIONS

In conclusion, we provided the first source-space test-retest
reliability of dynamic functional connectivity of neuromagnetic
recordings at resting-state. We computed both static and
dynamic functional connectivity based on 90 ROIs according to
AAL templated and using two connectivity estimators, the iPLV
and the CorEnv. Nodal network metrics were unreliable in both
connectivity estimators but with higher reliability demonstrated
for CorEnv. Moreover, their reliability demonstrates highly
spatial variability. Static FCG were also unreliable and especially
for CorEnv. In contrast, prototypical FCµstates were reliable in
both connectivity estimators and across frequency bands. The
derived chronnectomics (TR, OT) were highly reproducible for
iPLV while only TR was reliable for CorEnv within acceptable
levels. Our results strongly encourages future studies with
main scope to explore resting-state networks in both healthy
control and disease populations to apply a data-driven dynamic
functional connectivity analysis using MEG-beamformed source
reconstructed brain activity.
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Functional connectivity (FC) has become a leading method for resting-state functional

magnetic resonance imaging (rs-fMRI) analysis. However, the majority of the previous

studies utilized pairwise, temporal synchronization-based FC. Recently, high-order FC

(HOFC) methods were proposed with the idea of computing “correlation of correlations”

to capture high-level, more complex associations among the brain regions. There are two

types of HOFC. The first type is topographical profile similarity-based HOFC (tHOFC) and

its variant, associated HOFC (aHOFC), for capturing different levels of HOFC. Instead of

measuring the similarity of the original rs-fMRI signals with the traditional FC (low-order

FC, or LOFC), tHOFC measures the similarity of LOFC profiles (i.e., a set of LOFC values

between a region and all other regions) between each pair of brain regions. The second

type is dynamics-based HOFC (dHOFC) which defines the quadruple relationship among

every four brain regions by first calculating two pairwise dynamic LOFC “time series” and

then measuring their temporal synchronization (i.e., temporal correlation of the LOFC

fluctuations, not the BOLD fluctuations). Applications have shown the superiority of

HOFC in both disease biomarker detection and individualized diagnosis than LOFC.

However, no study has been carried out for the assessment of test-retest reliability of

different HOFC metrics. In this paper, we systematically evaluate the reliability of the two

types of HOFC methods using test-retest rs-fMRI data from 25 (12 females, age 24.48

± 2.55 years) young healthy adults with seven repeated scans (with interval= 3–8 days).

We found that all HOFC metrics have satisfactory reliability, specifically (1) fair-to-good

for tHOFC and aHOFC, and (2) fair-to-moderate for dHOFC with relatively strong

connectivity strength. We further give an in-depth analysis of the biological meanings

of each HOFC metric and highlight their differences compared to the LOFC from the

aspects of cross-level information exchanges, within-/between-network connectivity,

and modulatory connectivity. In addition, how the dynamic analysis parameter (i.e.,

sliding window length) affects dHOFC reliability is also investigated. Our study reveals

unique functional associations characterized by the HOFC metrics. Guidance and

recommendations for future applications and clinical research using HOFC are provided.

This study has made a further step toward unveiling more complex human brain

connectome.

Keywords: test-retest, reliability, functional connectivity, high-order connectivity, resting-state fMRI, dynamic

connectivity
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INTRODUCTION

Functional connectivity (FC), as originally proposed as the
temporal dependence between different spatially-distant brain
regions (Friston et al., 1993), has become the major method
to analyze resting-state functional magnetic resonance imaging
(rs-fMRI) data (Biswal et al., 2010; Fox and Greicius, 2010;
Van Dijk et al., 2010; Friston, 2011; Yeo et al., 2011; Fox
et al., 2012). Except for the seed-based correlation that mainly
focuses on voxel-wise massive one-to-one FC, the mostly
adopted FC analysis strategy is pairwise correlation of region-
averaged rs-fMRI signals for each pair of N brain regions, often
resulting in an N × N FC matrix that represents whole-brain
functional connectome. Various post-processing methods can be
applied to these matrices to detect the potential connectivity
biomarkers for brain diseases, includingmass-univariate analyses
that reveal group-level FC differences, or pattern cognition

FIGURE 1 | The diagram for illustrating the hierarchical definitions of LOFC (A), tHOFC (B), and aHOFC (C). The original version of tHOFC is illustrated in the subplot

(B), and its variant measuring inter-level interactions, namely the associated HOFC (aHOFC), is illustrated in the subplot (C). For simplicity, only three regions of interest

(regions a, b, and c) are used to demonstrate the LOFC and the HOFC. For an illustration of the LOFC profiles of each region in (B), only five other brain regions are

used (regions 1–5) to calculate the LOFC strength with regions a–c. For each region’s tHOFC profile, five of the regions 1–5’s LOFC profiles are used for illustration,

each of which has 4–6 regions connected. Different line widths indicate different connectivity strengths. For each type of connectivity metrics, we show both strong

and weak connectivity strengths. The black curves indicate the LOFC, the blue curves represent the tHOFC, and the red curves depict the aHOFC.

and individualized classification based on the features of all
the FCs.

However, such a one-to-one pairwise FC calculation has a
well-known limitation since it reveals only simple temporal
synchronization between two brain regions (Figure 1A). With
simple FC, the high-level relationship among the brain regions
may not be fully captured. To address this issue, we have
proposed several metrics to capture high-level relationship based
on “correlation’s correlation,” namely high-order FC (HOFC),
among the brain regions. There are two major types of HOFC.
The first is calculated based on the topological architecture of
the complex brain FC networks. As shown in Figure 1B, by
extracting a regional one-to-all FC profile that constitutes a set
of the FC strengths between one region to all other regions, we
can characterize the FC topographical similarity for each pair of
the brain regions by calculating a second round of correlation
on these regional FC profiles (Zhang H. et al., 2016). This
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metric captures the high-level functional similarities between two
brain regions beyond the traditional temporal synchronization
based merely on the raw rs-fMRI signals. We have shown that,
with such a “correlation of correlations” strategy, this HOFC
metric reveals complementary information to the traditional
FC for biomarker detection for brain disease (Zhang H. et al.,
2016). From then on, we call the traditional FC as low-order
FC (LOFC), and use topographical profile similarity-based HOFC
(tHOFC) to name this topographical similarity-based HOFC
method. If two regions have strong tHOFC, they have quite
similar LOFC patterns to all the brain regions but they may have
quite distinct rs-fMRI signals. Further comparison of tHOFC
between the mild cognitive impairment (MCI) and the healthy
elderly groups has unveiled novel potential biomarkers for early
Alzheimer’s diseases (AD) detection (Zhang H. et al., 2016).
Later on, a variant of tHOFC, named as “associated HOFC
(aHOFC),” was also proposed for further assessment of the
resemblance between the topographical profile of LOFC and that
of the tHOFC (Figure 1C), which indicates a modulation and
inter-level functional association between the low- and high-
level functional organizations. aHOFC has demonstrated its
better performance than LOFC and even the tHOFC in MCI
classification (Zhang et al., 2017). Of note, although both tHOFC
and aHOFC measure high-level functional association, it is still
the pairwise relationship characterized, similar to pairwise LOFC.

The second type of HOFC is based on a different interpretation
of the “correlations’ correlation” and can measure more complex
relationship than a pairwise one. Rather than using the whole
length of the rs-fMRI signals to obtain static LOFC, we use

a brief segment of the data to conduct LOFC analysis for
generating an instantaneous whole-brain LOFC network. By
moving the window segment forward, a set of “dynamic” whole-
brain LOFC is generated. For each pair of the brain regions,
there is a dynamic LOFC time series reflecting the time-
varying LOFC; it can be further correlated with the dynamic
LOFC time series from another pair of brain regions, thus
measuring high-level, quadruple interactions among four brain
regions or two brain region pairs (Chen et al., 2016a). We
call this as dynamics-based HOFC (dHOFC), which can be
regarded as a “hyperlink” connecting two “hypernodes,” and
each of the hypernodes represent a regular link between two
brain regions (Figure 2). Since the dynamic LOFC may reflect
adaptive and state-related temporary functional architecture, the
dHOFC can measure the coherence of such processes, thus
can reveal what LOFC cannot find. In addition, as shown in
Figure 2, by calculating dHOFC on every quadruplet, we get
a larger connectivity matrix of dHOFC compared with the
small LOFC matrix. This indicates that we can use dHOFC
to further construct more complex brain functional networks
with more information introduced. This HOFC method has
been successfully applied to early MCI detection (Chen et al.,
2016a) and early AD detection (Chen et al., 2016b), as well as
prediction of overall survival time of patients with brain gliomas
(Liu et al., 2016), all with significantly better accuracy than
LOFC.

Despite success in the abovementioned series of studies and
the promising future of the HOFC applications, an essential
question of how reliable and reproducible of such high-level

FIGURE 2 | The calculation of dHOFC. This schematic plot shows how dHOFC is calculated and how the amount of information is increased from LOFC network to

dHOFC network. Pairwise static LOFC only generates a 264 × 264 matrix, representing the static low-order brain functional network. By performing the

sliding-window based dynamic LOFC (dLOFC) calculation for each pair of brain regions (i.e., i and l, and j and k, respectively), two dLOFC time series are generated.

A further correlation of these two time series produces dHOFC among the four regions: i, l, j, and k. The information is geometrically increased in its amount, when

using dHOFC matrix rather than LOFC to represent a brain network.
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FC metrics is still unanswered. Compared to the traditional
LOFC with its test-retest reliability systematically assessed,
which is fair-to-good when examined in both region- (Wang
et al., 2011) and voxel-wise manners (Shehzad et al., 2009;
Somandepalli et al., 2015), the state-of-the-art HOFC algorithms
still lack comprehensive reliability assessment. Timely evaluation
of HOFC reliability is crucial for their broader applications.
Only with adequate reliability, we can then expect the detected
HOFC biomarkers, or the HOFC-based disease detection, to be
reproducible. Notably, the recent revisits of previously famous
biomarker detection studies have found that those biomarkers
could not be properly reproduced (Horrigan et al., 2017),
which has been ringing a warning bell to the field and further
increases the urgency of HOFC reliability study. In this paper,
we will systematically evaluate the test-retest reliability of both
topographical similarity-based HOFC (tHOFC and aHOFC)
and dynamics-based HOFC (dHOFC) at the single connection
level using repeated rs-fMRI scans. Note that good test-retest
reliability of HOFC will indicate that the estimated HOFC
from a subject based on one rs-fMRI session can be largely
replicated based on the data of the same subject but from
another rs-fMRI session. In addition, if a method or metric
is proven to be test-retest reliable, its result could be more
robust to noise, thus can be more easily to be reproduced
by other researchers. Another aim of this HOFC test-retest
reliability study is to investigate the underlying neurobiological
meaning of the HOFC metrics according to the reliability
evaluation. Test-retest reliability and its difference for different
connections are informative to let us draw conclusions, especially
on differentiating the noise from the signal. For example,
previous studies found that the noise-related component derived
from independent component analysis (ICA) on the rs-fMRI
have lower test-retest reliability than that of the biologically
meaningful components representing brain functional networks
(Zuo et al., 2010). Finally, as the HOFC is still a new concept to
the field, a timely test-retest reliability assessment will provide
guidelines to further studies to prevent from unreliable results
being misinterpreted.

We hypothesize that all the HOFC metrics (tHOFC, aHOFC,
and dHOFC) have at least fair test-retest reliability, which means
the major pattern of the HOFC can be largely reproduced
based on a repeated rs-fMRI scan, because these metrics
were proposed to reflect stable and biologically meaningful
brain functional organizations that could thus be consistent.
Different from tHOFC and aHOFC, dHOFC is based on
dynamic LOFC which captures transient brain states. Although
such dynamic LOFC could be different at a different time
(such as different rs-fMRI scans), we think that the second
round of correlations based on the dynamic LOFC time series
could produce stable dHOFC that may reflect higher-level
brain functional organization (i.e., synchronized brain state
transition). Therefore, we also proposed that the dHOFC is
considerably test-retest reliable. As an important influencing
factor, whether different parameter settings such as different
sliding window lengths could affect the dHOFC reliability
will be also investigated. Based on the reliability results,
practical guidelines and recommendations are provided for
future studies.

MATERIALS AND METHODS

Data
We adopted a publicly available test-retest data (http://dx.doi.
org/10.15387/fcp_indi.corr.hnu1) as part of the Consortium for
Reliability and Reproducibility (CoRR) (Zuo et al., 2014). This
dataset includes 30 healthy adults (aged 20–30 years old, 15
females) with 10 repeated rs-fMRI scans (sessions) within 1
month. The 10-session rs-fMRI scans are essential for more
accurate reliability estimation because it constitutes adequate
samples at both the group (# of repeated scans) and individual (#
of subjects) levels; however, many previous test-retest reliability
studies only used two sessions (Zhang et al., 2011a,b). Based on
this dataset, intra-class correlation (ICC) for test-retest reliability
evaluation can be more accurately estimated based on multiple
repeated scans. Another advantage of this dataset is that the
whole period of data collection was completed within 1 month,
with each rs-fMRI session separated by 3–4 days. This reduces the
potential inference of other longitudinal factors to the reliability
estimation, such as development, plasticity, etc. This study was
carried out in accordance with the recommendations of the ethics
committee of the Center for Cognition and Brain Disorders at
Hangzhou Normal University. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the ethics committee of the Center for
Cognition and Brain Disorders at Hangzhou Normal University.

The data was acquired by a GE MR750 3.0 Tesla MRI
scanner, including both a T1-weighted image (used for rs-fMRI
registration) and an rs-fMRI (echo-planar imaging, TR/TE =

2,000/30 ms, voxel size = 3.4 × 3.4 × 3.4 mm3, slice number =
43, matrix size= 64× 64× 64, 10 min, 300 time points). During
rs-fMRI, all subjects stared at a fixation point on the screen
without falling asleep. For detailed data information, please refer
to the data release and CoRR websites.

Data Preprocessing
The rs-fMRI preprocessing was carried out based on DPARSF
v2.3 (Yan and Zang, 2010) with routine procedures following the
previous studies (Mao et al., 2015; Yu et al., 2017). It includes:
(1) removing the first 5 time points, (2) slice timing correction,
(3) head motion correction, (4) unified segmentation of the
T1-weighted image after it was aligned to the rs-fMRI data,
(5) warping the rs-fMRI data based on the deformation field
produced by the previous step to the Montreal Neurological
Institute (MNI) standard space, (6) spatially smoothing with a 6-
mm Full Width at Half Maximum (FWHM) isotropic Gaussian
kernel, (7) band-pass filtering (0.01–0.1 Hz), and 8) regressing
out covariate signals including the first- and second-order
polynomial functions, averaged signals from the white matter
and cerebrospinal fluid (CSF), as well as the Friston 24-parameter
head motion curves. Similar to our previous works (Chen et al.,
2016a), we did not conduct data scrubbing to remove the data
with larger frame-wise head motion. Although this step could
further reduce head motion effect to LOFC analysis (Power et al.,
2014), scrubbing itself will interrupt the temporal structure of
the data and probably introduce artifacts into the dynamic LOFC
analysis (Hutchison et al., 2013) before the dHOFC calculation.
Instead, we used a stringent head motion exclusion criterion.
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That is, the subject with head motion larger than 1.5 mm or
1.5◦ in any rs-fMRI session was discarded. The rs-fMRI sessions
with too many (>3) subjects discarded were not used for the
test-retest reliability estimation. Therefore, sessions #2, #6, and
#10 were discarded. Only 7 rs-fMRI sessions and 25 subjects (13
males, 12 females, age 24.48 ± 2.55 years old, ranging from 20
to 30 years old) were finally chosen for the following analysis.
We also calculated the percentage of the rs-fMRI frames with
excessive (>0.5) frame-wise displacement based on Power et al.’s
method (Power et al., 2014) for each subject and each session; all
the remained subjects have < 5% (i.e., 14) frames with excessive
micro-head motion. In addition, we further test whether data
scrubbing will affect the LOFC, tHOFC, and aHOFC estimation
by conducting the similar analysis based on the scrubbed data; as
we anticipated, the reliability did not change significantly.

LOFC: Temporal Synchronization of
rs-fMRI Signals
We first calculate the traditional FC (i.e., LOFC) based on
the pair-wise temporal correlation of the preprocessed rs-fMRI
signals for each of two brain regions using Pearson’s correlation.
Letting xi (t) and xj (t) represent the rs-fMRI signals for two brain
regions i and j at time point t (t = 1, ..., T), the LOFCij can be
defined as

LOFCij =

∑T
t=1 (xi (t) − xi)

(

xj (t) − xj
)

√

∑T
t=1 (xi (t) − xi)

2
√

∑T
t=1

(

xj (t) − xj
)2

where xi is the mean of the rs-fMRI signals at region i. A 264-
region brain atlas (Power et al., 2013) was used to parcellate the
brain; each region of interest (ROI) was represented by a sphere
with 5-mm radius. The mean rs-fMRI signals from each ROI
were extracted. LOFC matrix with the size of 264 × 264 was
calculated for each subject for each session, which served as a
baseline for comparison with the topographical similarity-based
HOFC methods (tHOFC/aHOFC).

tHOFC/aHOFC: Similarity of Topographical
Connectivity Profiles
tHOFC and aHOFC calculations are straightforward without
free parameters to be estimated, both of which characterize
the relationship between two brain regions. However, they
characterize different pairwise relationship from that of the
LOFC due to the difference in the input “signals” (for LOFC
calculation, the input signals are the rs-fMRI time series; but, for
tHOFC, they are regional LOFC profile). Different input signals
may cause prominent difference between LOFC and tHOFC (or
aHOFC) between the same two brain regions. In fact, we have
found that two brain regions with little temporal synchronization
(indicating weak LOFC) have highly similar topographical LOFC
profiles (suggesting strong tHOFC).

Specifically, tHOFC was calculated by column-wise
correlation for each pair of the columns (with each column
representing the LOFC profile of each brain region) from the 264
× 264 LOFC matrix. Letting LOFCi represents the LOFC profile
for region i, and LOFCi. =

{

LOFCik|k ∈ R,k 6= i

}

(where R is the

set of all brain regions), the tHOFCij can be defined as,

tHOFCij=

∑

k

(

LOFCik − LOFCi.
)

(

LOFCjk − LOFCj.
)

√

∑

k

(

LOFCik − LOFCi.
)2

√

∑

k

(

LOFCjk − LOFCi.
)2

where k ∈ R, k 6= i, j. Before such correlation, all the LOFC values
were transformed to z-scores using Fisher’s r-to-z transformation
to satisfy the hypothesis of the second round of Pearson’s
correlation. Of note, self-connections of the two regions were
excluded, i.e., the LOFC profile of each region is a 262-length
vector (262= 264–2).

The aHOFC is defined further based on the topographical
profiles of the tHOFC. It measures the similarity between
the LOFC topographical profiles and the tHOFC topographical
profiles. Each brain region, when viewed from different levels,
could interact with all other regions in both low-level (i.e., LOFC)
and high-level (i.e., HOFC) manners. The aHOFC focuses on
such a modulatory association between the two levels. During the
aHOFC calculation, both LOFC and tHOFC profiles were first
transformed into z-scores; the self-connections were ignored,
similar to the calculation of tHOFC. Similarly, we use tHOFCi.
to represent the tHOFC profile for region i, where HOFCi. =
{

HOFCik|k ∈ R,k 6= i

}

. The Pearson’s correlation between any
tHOFCi and any LOFCj defines aHOFCij:

aHOFCij =
∑

k

(

tHOFCik − tHOFCi.

) (

LOFCjk − LOFCj.
)

√

∑

k

(

tHOFCik − tHOFCi

)2
√

∑

k

(

LOFCjk − LOFCj.

)2

where k ∈ R, k 6= i, j. The motivation of aHOFC is that,
we think there are not only low-level and high-level FCs
in the brain, but also inter-level interactions between LOFC
and tHOFC connecting the two levels of FCs, similar to the
common observations in many other biological networks, e.g.,
hierarchical organization and self-resemblance across multiple
spatial scales (Guimera et al., 2003). Supposing that, in the
human brain, the LOFC may collect and process information
and the tHOFC may abstract information via the hierarchy
(i.e., correlation’s correlation), the possible functions of such
inter-level connections could be (1) to facilitate the two
levels of information talking to each other, (2) to let the
low-level information guide high-level abstraction, and (3)
to change the way of low-level information collection for a
better high-level information integration. In addition, from
robust system point of view, a network or complex biological
system could be less fragile and more resilient to the targeted
pathological attacks if it has inter-level connections. Taking brain
psychophysiological interaction modeling as an example, high-
level preset of a psychological status (e.g., attention level) may
change sensory information collection, processing, and synthesis.
All the evidence together suggests the existence of such an inter-
level connection. We have applied the aHOFC to early detection
of AD; compared with LOFC, using aHOFC as features not only
improved the classification accuracy (Zhang et al., 2017) but
also identified different discriminative features as potential AD
biomarkers.

Frontiers in Neuroscience | www.frontiersin.org August 2017 | Volume 11 | Article 43999

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Zhang et al. High-Order FC Reliability

Of note, by definition, tHOFCi and LOFCi could be different,
and thus it is also possible to calculate “self-associated HOFC”
or aHOFCii. Similarly, aHOFCij is not necessary to equal to
aHOFCji. Different from the previous study (Zhang et al., 2017),
where the finally obtained aHOFC matrices were converted to
be symmetric by adding each subject’s dHOFC matrix with its
transpose and dividing the result by two, we did not force

the aHOFC matrices derived in this study to be symmetric

as our purpose was to assess the aHOFC’s reliability rather
than to construct undirected aHOFC networks and make

certain neurobiological conclusions. However, to make the mean
connectivity matrices comparable among LOFC, tHOFC and

aHOFC, we changed the diagonal values in the finally obtained
aHOFC matrix to be zeros, i.e., in this study we did not

count for the self-associated HOFC. In the future, we should
further use the directed aHOFC network with non-zero self-

associated HOFC as defined by an asymmetric aHOFC matrix
and apply directed network analysis methods on the aHOFC

network to reveal more information. Figure 1 summarize all the

three pairwise FC metrics. See the first three columns of the

Table 1 for the summarized differences among these three FC

metrics.

dHOFC: Correlation between Pairwise
LOFC Dynamics
The calculation of dHOFC is quite different from that of the
topographical similarity-basedHOFCmetrics (tHOFC/dHOFC),
as the tHOFC/aHOFC measures static connectivity but dHOFC
is calculated based on dynamic, time-varying LOFC profiles.
As for the network topology, dHOFC also differs from tHOFC
and aHOFC. As shown in Figure 2 and summarized in the first
three columns ofTable 1, for dHOFC calculation, dynamic LOFC

for each pair of the brain regions was first calculated using
a widely adopted sliding-window strategy (i.e., with window
length ω = 30 time points or 60 s, step size = 1 time point
or 2 s); then two dynamic LOFC time series (involving four
regions) were correlated using Pearson’s correlation to produce
dHOFC between one region pair to another region pair. Letting
dLOFC (τ ) represent the dynamic LOFC strength within a brief
time window from τ to τ + ω − 1, and the dLOFC time series
between region i and l can be characterized based on

dLOFCil (τ ) =

∑τ+ω−1
t=τ

(

xi (t) − xτ
i

) (

xl (t) − xτ
l

)

√

∑τ+ω−1
t=τ

(

xi (t) − xτ
i

)2
√

∑τ+ω−1
t=τ

(

xl (t) − xτ
l

)2

(

τ = 1, . . . ,T − ω + 1; i, l ∈ R, i 6= l
)

where xτ
i represents the mean value of such a brief segment

of the rs-fMRI signal starting from τ . Similarly, we can
define the dLOFC time series between regions j and k
as dLOFCjk (τ )

(

τ = 1, . . . ,T − ω + 1; j, k ∈ R, j 6= k
)

. The
further Pearson’s correlation between the two dLOFC time series
defines dHOFC between region pairs i – l and j – k based on,

dHOFCil,jk =

∑T−ω+1
τ=1

(

dLOFCil (τ ) − dLOFCil

) (

dLOFCjk (τ ) − dLOFCjk

)

√

∑T−ω+1
τ=1

(

dLOFCil (τ ) − dLOFCil

)2
√

∑T−ω+1
τ=1

(

dLOFCjk (τ ) − dLOFCjk

)2

where dLOFCil indicates the mean value of the dLOFCil time
series along the whole time. Based on the combination theory,
a 264 × 264 LOFC matrix has 264 × (264–1)/2 = 34716
unique region pairs; thus a complete dHOFC network will have
34716 × 34716 in size and over 600 million unique four-region
combinations. This will increase the amount of connectomic
information and may reveal novel information that cannot be
discovered by LOFC/tHOFC/dHOFC. For more details, please
see the previous paper (Chen et al., 2016a).

TABLE 1 | Differences among LOFC and various HOFC metrics.

Input Output Test-retest reliability

LOFC BOLD signals Temporal synchronization, functional

coherence

Fair-to-good; nearly all connections have fair or better reliability. Within-network

connections have better reliability; high-level cognitive function-related

connections have better reliability.

tHOFC Regional LOFC topographical

profiles

To what extent two regions share

similar LOFC topographical profiles

Fair-to-good; similar to LOFC reliability, but with reduced reliability at

within-network connections. Better reliability at inter-network connections (esp.

between high-level cognition and primary regions).

aHOFC Both regional LOFC and

regional tHOFC topographical

profiles

To what extent topographical LOFC

modulates topographical tHOFC

Fair-to-good; similar to LOFC reliability, but with further reduced reliability at

within-network connections. Better reliability at inter-network connections.

dHOFC Dynamic, time varying LOFC

time series between two brain

regions

Temporal synchronization of two

time-varying LOFC time series among

four brain regions

Fewer connections have fair or better reliability. Strong (within-network and

modulatory) connections have fair-to-moderate reliability. Between-network

connections have poor reliability. Shorter window length produces better

reliability.

BOLD, Blood-oxygen-level dependent; LOFC, low-order functional connectivity; tHOFC, topographical similarity-based high-order functional connectivity; aHOFC, associated HOFC;

dHOFC, dynamics-based HOFC.
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In the previous classification-orientated studies, to avoid
the curse of dimensionality, dHOFC matrix dimension was
further reduced based on hierarchical clustering, which generates
relatively fewer clusters by grouping similarly co-varied dynamic
LOFC time series together. By doing so, we can detect a
few hundreds of the clusters and calculate dHOFC based on
the clusters’ centroids (Chen et al., 2016a). In the current
reliability study, it is not necessary to conduct such a clustering
analysis because we are focusing only on the reliability of the
dHOFC links, while clustering itself is irrelevant to such a
goal and will unnecessarily introduce an additional parameter
(i.e., the total number of clusters) which could complicate
the current study. Therefore, in this paper, we chose a few
ROIs from the total 264 of them to generate a relatively
smaller and more interpretable dHOFC network. Specifically,
we chose 26 ROIs from the hand-associated sensorimotor areas

for investigation of the dHOFC in the primary functional
system; we also chose 17 ROIs from the fronto-parietal task
control network (FPN) and 15 from the salience network (SN)
to investigate dHOFC in the high-level cognitive function-
related brain systems. See Figure 3 and Table 2 for the details
the ROI definitions. Therefore, we separately generated a
dHOFC matrix for the primary areas (with the size of 325
× 325, where 325 = 26 × 25/2) and another dHOFC matrix
for two high-level functional areas (with the size of 496 ×

496, where 496 = 32 × 31/2, since there are totally 32
high-level function-related ROIs, 32 = 17 + 15). Of note,
this is the first paper to systemically investigate the possible
neurobiological correlation of the dHOFC in the specific
functional systems.

Different window length could affect the
accuracy of dynamic LOFC (Hutchison et al., 2013);

TABLE 2 | ROI definitions for dHOFC calculation.

# Orig # x y z Suggested system # Orig # x y z Suggested system

1 16 10 −2 45 Sensorimotor Hand 1 186 47 10 33 Fronto-parietal Control

2 17 −7 −21 65 Sensorimotor Hand 2 187 −41 6 33 Fronto-parietal Control

3 18 −7 −33 72 Sensorimotor Hand 3 188 −42 38 21 Fronto-parietal Control

4 19 13 −33 75 Sensorimotor Hand 4 189 38 43 15 Fronto-parietal Control

5 20 −54 −23 43 Sensorimotor Hand 5 190 49 −42 45 Fronto-parietal Control

6 21 29 −17 71 Sensorimotor Hand 6 191 −28 −58 48 Fronto-parietal Control

7 22 10 −46 73 Sensorimotor Hand 7 192 44 −53 47 Fronto-parietal Control

8 23 −23 −30 72 Sensorimotor Hand 8 193 32 14 56 Fronto-parietal Control

9 24 −40 −19 54 Sensorimotor Hand 9 194 37 −65 40 Fronto-parietal Control

10 25 29 −39 59 Sensorimotor Hand 10 195 −42 −55 45 Fronto-parietal Control

11 26 50 −20 42 Sensorimotor Hand 11 196 40 18 40 Fronto-parietal Control

12 27 −38 −27 69 Sensorimotor Hand 12 197 −34 55 4 Fronto-parietal Control

13 28 20 −29 60 Sensorimotor Hand 13 198 −42 45 −2 Fronto-parietal Control

14 29 44 −8 57 Sensorimotor Hand 14 199 33 −53 44 Fronto-parietal Control

15 30 −29 −43 61 Sensorimotor Hand 15 200 43 49 −2 Fronto-parietal Control

16 31 10 −17 74 Sensorimotor Hand 16 201 −42 25 30 Fronto-parietal Control

17 32 22 −42 69 Sensorimotor Hand 17 202 −3 26 44 Fronto-parietal Control

18 33 −45 −32 47 Sensorimotor Hand 18 206 31 33 26 Salience Network

19 34 −21 −31 61 Sensorimotor Hand 19 207 48 22 10 Salience Network

20 35 −13 −17 75 Sensorimotor Hand 20 208 −35 20 0 Salience Network

21 36 42 −20 55 Sensorimotor Hand 21 209 36 22 3 Salience Network

22 37 −38 −15 69 Sensorimotor Hand 22 210 37 32 −2 Salience Network

23 38 −16 −46 73 Sensorimotor Hand 23 211 34 16 −8 Salience Network

24 39 2 −28 60 Sensorimotor Hand 24 212 −11 26 25 Salience Network

25 40 3 −17 58 Sensorimotor Hand 25 213 −1 15 44 Salience Network

26 41 38 −17 45 Sensorimotor Hand 26 214 −28 52 21 Salience Network

27 215 0 30 27 Salience Network

28 216 5 23 37 Salience Network

29 217 10 22 27 Salience Network

30 218 31 56 14 Salience Network

31 219 26 50 27 Salience Network

32 220 −39 51 17 Salience Network

Orig #, Original ROI index in the 264 brain region atlas. x, y, z, coordinates of each ROI’s center in the MNI space. Suggested system: the functional system suggested by the atlas. We

deleted 3 ROIs in the salience network, 8 ROIs in the fronto-parietal control network, and 3 hand sensorimotor ROIs since their belongingness to the suggested functional systems is

less replicable across different data sets as suggested by Power et al. (2013).
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FIGURE 3 | ROI locations for three functional networks used for dHOFC calculation. The underlying brain image is the ICBM152 template. Left is right and right is left.

(Leonardi and Van De Ville, 2015; Zalesky and Breakspear, 2015),
thus may further affect dHOFC and its reliability. Therefore,
we further examined the relationship between the window
length and the test-retest reliability of the dHOFC within the
hand sensorimotor areas. The above calculation was repeated
with different window length settings (i.e., 20, 40, and 50 time
points, corresponding to 40, 80, and 100 s, as TR = 2 s). Of
note, the window length of 20 and 30 time points are within the
recommended range (30–60 s) from previous studies (Zalesky
and Breakspear, 2015), while the larger values (i.e., 80–100 s) are
also used in previous dynamic LOFC studies (Leonardi and Van
De Ville, 2015).

In addition, according to the previous studies on dynamic
LOFC, small correlation values from the dynamic analysis could
probably be caused by random noise (Leonardi and Van De Ville,
2015), we think that the reliability of the dHOFC which has weak
connectivity strength could also be mainly contributed by noise.
To this end, we also used a dHOFC threshold of 0.36 as suggested
by Leonardi and Van De Ville (2015) to further filter the
dHOFC matrix. If there is a significant modular structure after
thresholding, we may be able to draw a conclusion that, although
weak dHOFC may be driven by noise, the relatively stronger
dHOFC could be biologically meaningful. This is because that, if
all dHOFC connections are dominated by noise, the thresholded
dHOFC matrix will have a somewhat random spatial pattern
rather than a structured one. Similar to the tHOFC and aHOFC,
test-retest reliability was also calculated for the relatively strong
dHOFC connectivities.

Intra-Class Correlation for Test-Retest
Reliability Evaluation
To investigate test-retest reliability of all types of HOFC
connections, we utilized a commonly adopted index called ICC
(Shrout and Fleiss, 1979). ICC is a method based on the one-
way analysis of variance (ANOVA) which divides the total sum
of variance across subjects and repeated rs-fMRI scans into two

parts: between-subject (σ 2
b
) and within-subject (or inter-session

variance, σ 2
w) sum of variance. The theoretical definition of

ICC is:

ICC =
σ 2
w

σ 2
b
+ σ 2

w

;

but the estimation of the ICC based on real samples can be
written by:

ICC =
MSb −MSw

MSb +
(

k− 1
)

×MSw
,

where MSb is the mean square of between-subject sum of
variance, MSw is the mean square of within-subject sum of
variance, and k is the number of repeated rs-fMRI scans (here
k= 7). ICC is conceptually positive between 0 (not reliable at all)
and 1 (perfectly consistent between repeated measurements), but
its estimation can be negative in a few cases. We put the negative
ICC values to be zeros as always done by previous studies (Zhang
et al., 2011a). Based on the value of ICC, reliability is usually
categorized as poor (ICC= 0–0.2), fair (0.2–0.4), moderate (0.4–
0.6), substantially good (0.6–0.8), and excellent (>0.8) (Landis
and Koch, 1977; Chen et al., 2015).

We first calculated ICC for LOFC, tHOFC and aHOFC, as
they are convenient to compare. We then calculate ICC for
dHOFC in both primary functional systems (hand sensorimotor
areas) and high-level cognition-related functional networks (FPN
and SN), to compare the dHOFC in these primary and high-level
functional systems.

RESULTS

tHOFC and aHOFC Have
Moderate-To-Good Test-Retest Reliability
As shown in Figure 4, the test-retest reliability of the tHOFC
is generally fair-to-moderate, although slightly lower than that
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FIGURE 4 | ICC value for each connection of LOFC, tHOFC, and aHOFC. The three rows show test-retest reliability, as assessed by ICC at each connection, for

LOFC, tHOFC, and aHOFC, respectively. From left to right are the ICC matrix without thresholding, ICC matrix showing the connectivities with moderate or better

reliability (thresholded by ICC > 0.4), and the ICC distribution for all connections. In the right of each row, the vertical red line indicates ICC = 0.2, above which are the

connectivities with acceptable (fair or better) reliability; the percentage of the connection with fair, moderate, good and excellent reliability are also shown.

of the LOFC. The test-retest reliability of the aHOFC is similar
to that of the tHOFC, with slightly fewer connections having
fair-to-moderate ICC. These results indicate that the tHOFC
and aHOFC are still reliable metrics. An interesting finding is
that the overall pattern of the reliable connections are quite
consistent among the LOFC, tHOFC and dHOFC, all of which
show prominently better reliability for the connections within
default mode network (DMN), as well as those within the FPN
and SN, respectively (see those major blocks in the main diagonal
and off-diagonal of the Figure 4). In addition, we also notice
that the off-diagonal connections among the DMN, FPN, and SN
have also high reliability. All these high-reliability connections,
although a little bit weakened, still exist for tHOFC and dHOFC.

Links with Increased Reliability for tHOFC
and aHOFC, Compared with LOFC
In addition to the overall reduction of reliability for
tHOFC/aHOFC compared with LOFC, we further found
interesting increased reliability for several tHOFC (Figure 5) and
aHOFC (Figure 6) links. Different from the reduced reliability
for mainly intra-network strong connections (see Figures 5A,B
for the block pattern), the links with increased reliability in

tHOFC compared with LOFC are mainly located at the weak
links that connect different systems. Specifically, we found
that such links connect high-level cognition-related network
(DMN, FPN, or SN) and primary function-related network
(sensorimotor or visual network). For example, as indicated by
white arrows in Figure 5C, the tHOFC links between the DMN
and the hand sensorimotor regions, as well as those between
the SN and visual areas, show great (by 0.2) increase in their
ICC values. Notably, the group-averaged aHOFC matrix is quite
similar to that for LOFC and tHOFC, with the strong aHOFC
links mainly located within modules, and the weak aHOFC links
between modules (result not shown). Similarily, aHOFC shows
the similar result as the tHOFC for the links with increased ICC
values, where such increase and reduction in the ICC values are
even more prominent (Figure 6A).

We further show the specific brain regions with prominent
reliability increment by comparing aHOFC with LOFC. To do
this, for each brain region, we summarized the extent of ICC
increment across all the aHOFC connections to this region with
increased ICC. Different regions have various extent of reliability
increment (see the bar plot under the matrix of Figure 6A). Such
differences are further drawn in Figure 6B with different sizes
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FIGURE 5 | The test-retest reliability difference between tHOFC and LOFC. For better understanding which functional system contributes to such ICC increment, we

also show the group-averaged LOFC in (A) and the group-averaged tHOFC in (B) across all subjects and all rs-fMRI sessions. Nine functional systems are shown,

with higher intra-system connectivity and sparse inter-system connectivity. The tHOFC with increased reliability (C) are located mostly at inter-system links (as also

highlighted by white arrows). The functional systems with many increased reliability are marked in (C) above the matrix and under the names of the functional systems.

The abbreviations of the functional systems are: mot (sensorimotor), cing-oper (cingulo-opercular), aud (auditory), vis (visual), fpn (fronto-parietal task control network),

sn (salience network), sub (subcortical regions), att (attention-related networks including the dorsal and ventral attentional systems).

FIGURE 6 | The test-retest reliability differences between aHOFC and LOFC. Subplot (A) shows the difference in ICC values between aHOFC and LOFC for all

connections, with the quantitative measurement of ICC gain for each brain region (i.e., the sum of ICC increment across all the connections to each region) shown as

a bar graph under the matrix. Such ICC increment is further visualized as the size of the node for all the brain regions in a brain surface (B). Different colors indicate

different functional systems.

of the nodes (with a bigger node indicating greater reliability
increment for its aHOFC links). The brain regions with the
greatest reliability increment are mainly distributed at the high-

level cognitive function-related areas, such as the medial and

lateral prefrontal cortices.

Taken together, our results show that both tHOFC and

aHOFC have general moderate or better reliability, and that

the tHOFC and aHOFC indeed capture novel (mostly high-
level cognition-related) information as indirectly reflected by the
higher reliability than LOFC.

Strong dHOFC in the Primary Functional
System Has Fair-To-Moderate Reliability
The group-averaged dHOFC within 26 hand sensorimotor ROIs
(one of the primary functional system) across all subjects and
all sessions is represented by a larger matrix, which shows a
significant structure with spatial sparsity (Figure 7A). For all the
325 × 324/2 = 52650 dHOFC hyperconnections (by treating
the 325 region pairs as hypernodes), their test-retest reliability
is shown as an ICC matrix with the same dimension (325 ×

325) in Figure 7B, with its thresholded (ICC > 0.2) version
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FIGURE 7 | Test-retest reliability of dynamics-based HOFC (dHOFC) in the primary functional system. (A) Averaged dHOFC matrix across all subjects and all imaging

sessions, showing the dHOFC strength for every possible high-order links; (B) ICC matrix, indicating test-retest reliability for all dHOFC links; (C) dHOFC links with fair

or better (ICC > 0.2) test-retest reliability.

(highlighting only the fairly or better reliable dHOFC) shown
in Figure 7C. Although many dHOFC links have acceptable
reliability as indicated by Figure 7C, specific amount of the
dHOFC links with ICC > 0.2 is only 11.63% of all possible
dHOFC links (Figure 8A). We have noted that the dHOFC links
with higher reliability tend to be those with greater connectivity
strength. If only counting for strong dHOFC (i.e., group mean
dHOFC > 0.36), a half (49.5%) of such connections will have
acceptable reliability (Figure 8B). Figure 9 shows the dHOFC
matrix from a randomly selected subject from each of the seven
rs-fMRI sessions. We can see that the overall individual dHOFC
spatial patterns are consistent across different rs-fMRI sessions.
However, there are significant block structures in the group
averaged dHOFC matrix (Figure 7A) but it is less prominent at
the individual-level (Figure 9). This difference could be due to
the relatively high individual variability in many dHOFC links.
While the group average could retain individually consistent
dHOFC links, it also suppressed those with relatively high inter-
subject variability, thus creating such prominent block structure
in the mean dHOFC matrix.

Strong dHOFC in the High-Level Functional
Systems Has Better Reliability
In addition to assessing the reliability for within-primary
functional system dHOFC, we also investigated the reliability of
high-level cognition-related dHOFC by calculating the dHOFC
in the two typical high-order functional systems, i.e., the FPN and
SN. Figure 10A shows the group-averaged dHOFC in these high-
level systems, while Figure 10B shows their reliability. Since there
are two functional systems involved, the dHOFC can be divided
into three main types (see Figure 10C and also the summary in
Figure 11) based on the functional system belongingness of the
four brain regions that constitute a dHOFC hyperlink:

• Within-network dHOFC. For each dHOFC consisting of four
ROIs, all ROIs belong to the same functional system. For
example, a link between two intra-FPN ROIs (regarded as
intra-FPN hypernode) has dHOFC with another link between

two intra-FPN ROIs. In this case, both hypernodes are intra-
FPN, thus we call this type of dHOFC links within-FPN
dHOFC. Similarly, we can define within-SN dHOFC between
two hypernodes that both constitute intra-SN ROIs. This
type of the dHOFC characterizes within-network high-order
relationship, which has moderate connectivity strength and
acceptable reliability (see the first two big blocks in the main
diagonal of the matrices in Figure 10).

• Between-network dHOFC. This type of dHOFC characterizes
the high-order relationship between two intra-network
links (or hypernodes) which belong to different functional
networks. For example, a hypernode that connects two FPN
ROIs has dHOFC with another hypernode that connects two
SN ROIs (i.e., an “intraFPN-to-intraSN” hyperlink). This type
of the dHOFC measures high-order functional association
between two functional systems. Interestingly, such dHOFC
are mostly weak in the connectivity strength and have overall
poor reliability (Figures 10B,C).

• Modulatory dHOFC. This is a new type of connectivity that
has not been defined in the previous studies. It contains
two hypernodes, at least one of which contains an inter-
network link. This type of the dHOFC constitutes the most
part of the dHOFC matrix. There are two subtypes for
the modulatory dHOFC. The first subtype consists of the
dHOFC between one inter-network hypernode and one intra-
network hypernode, e.g., the dHOFC between an intra-FPN
hypernode and an FPN–SN link. The second subtype is that
both of the hypernodes are the inter-network links. Both of
these two cases are able to characterize high-order functional
relationships manifesting as “one functional systemmodulates
another.” Compared with the first two types of the dHOFC,
the modulatory dHOFC show extensive connections (see the
third main block in the main diagonal of Figure 10A) and
acceptable reliability (Figure 10C).

As shown in Figure 10, the mean dHOFC strength matrix and
the dHOFC reliability matrices have highly similar structured
and blocked patterns. Please note that we did not re-arrange
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FIGURE 8 | Distribution of test-retest reliability (ICC values) for the dHOFC links. (A,B) Results for the primary functional system; (C,D) results for the high-level

functional systems. (A,C) show the distribution of the ICC values for all dHOFC links, while (B,D) show the distribution of the ICC values for the relatively strong (i.e.,

mean dHOFC > 0.36) dHOFC links. We selected the hand sensorimotor areas as an example of the primary functional system, and selected both fronto-parietal task

control network and salience network as examples of the high-level cognition-related functional systems. Again, the red line indicates the same ICC threshold of 0.2;

the bars on the right side of the red line are the numbers of dHOFC links with fair or better reliability.

FIGURE 9 | Individual dHOFC matrices for all 7 sessions. The dHOFC matrices for the hand sensorimotor network of a randomly selected subject (#9) are plotted.

the columns and the rows of these matrices in a post hoc way
(e.g., based on module detection using the dHOFC strength);
instead, we just grouped the same type of the hypernodes
(three types: intra-FPN, intra-SN, and FPN-to-SN) together

before calculating dHOFC and re-arranging the columns and
the rows of these matrices in an order of firstly intra-FPN, then
intra-SN, and finally FPN-to-SN. Merely through this a priori
grouping and rearranging could we reveal such an interesting
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FIGURE 10 | Test-retest reliability of dHOFC in the two high-level cognition-related functional systems. We selected the fronto-parietal task control network and

salience network as examples of the high-level functional system. (A) Averaged dHOFC matrix; (B) ICC matrix for all dHOFC links; (C) ICC matrix for the dHOFC links

with fair or better reliability (ICC > 0.2). The order of dHOFC links in the matrices is rearranged according to the types of the “hypernodes” (where a hypernode

represents a dynamic link between two brain regions). If the hypernode consists of two brain regions that are both from the fronto-parietal task control network, we

call it “intraFPN” hypernode and re-order them into the first 136 (136 = 17 × 16/2) columns of the dHOFC matrix. We further re-group the 105 (105 = 15 × 14/2)

hypernodes which consist of two brain regions both from the salience network (intraSN) and put them after the intraFPN hypernodes. At last, we put all the remaining

255 (255 = 17 × 15) hypernodes (consisting of one region from FPN and the other from SN, thus called inter-network “FPN-SN” hypernodes) after the intraSN

hypernodes. In this way, the dHOFC matrix is rearranged. According to different types of hypernodes, there are also three different types of (dHOFC) hyperlinks.

Among them, the “within-FPN” (with both hypernodes being intraFPN nodes) and “within-SN” (with both hypernodes being intraSN nodes) are both indicated by black

arrows; the between-network dHOFC hyperlinks (named here as “intraFPN-intraSN,” with one hypernode from intraFPN and another from intraSN) are indicated by

the red arrows; and all the remaining dHOFC hyperlinks are named as “modulatory” dHOFC (with at least one hypernode belonging to the “FPN-SN” type) as

indicated by the green arrows.

FIGURE 11 | Three types of dHOFC and their overall connectivity strength and

reliability. dHOFCwithin-net is the within-network dHOFC, including within-FPN

and within-SN hyperlinks (A); dHOFCbetween-net is the between-network

dHOFC (including “intraFPN-intraSN” hyperlinks) (B); dHOFCmodulate is the

modulatory dHOFC links (C) which can be further categorized into two cases

(case 1: both of the two hypernodes belong to the “FPN-SN” type; case 2:

one of the two hypernodes belongs to the “FPN-SN” type while the other

belonging to either intraFPN or intraSN type).

structured and block-like pattern for both dHOFC strength and
reliability.

Different from the dHOFC in the primary functional
system (Figure 7), the dHOFC of the two high-level functional

systems show meaningful and visually detectable and systematic
differences in the test-retest reliability, which becomes more
prominent when only looking at the connections with fair
or better reliability (Figure 10C). That is, for between-
network dHOFC, their connectivity strength is weak, and
their connectivity reliability is also poor, while the other two
types of the dHOFC have both greater strength and better
reliability. At the subject level, Figure 12 shows the dHOFC
matrices derived from all the seven rs-fMRI sessions of the same
subject (subject #9), with a roughly stable pattern.

Compare with the dHOFC in the primary functional system,
those in the high-level functional systems have better reliability
for several (mainly the between-network and the modulatory)
connections while lower reliability for several other (mainly
within-network) connections (Figure 8C). When only looking
at the strong and putative connections, dHOFCs in the high-
level system are more reliable (Figure 8D), with more (66.4%)
connections characterized as fairly reliable or better.

Sliding Window Length Significantly
Affects dHOFC Reliability
We further show how the length of sliding window (or the
window width), an important parameter for both dynamic LOFC
and dHOFC analyses, will affect dHOFC reliability. The ICC
matrices based on different window lengths of 40, 80, and 100 s
are shown in Figure 13. Together with the main dHOFC ICC
result using a window length of 60 s (Figure 7C), we, for the
first time, revealed that the setting of sliding-window length
significantly affected the dHOFC test-retest reliability. Shorter
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FIGURE 12 | Individual dHOFC matrices of the same subject for all 7 sessions. The dHOFC matrices for the high-level cognition-related networks (fronto-parietal task

control and salience networks) from a randomly selected subject (#9) are plotted. Note this is the same subject for demonstration the reliability of dHOFC within the

primary functional system in Figure 9. The parcellation of the dHOFC matrix is based on the different types of the hypernodes (see Figure 10).

FIGURE 13 | ICC of the dHOFC calculated based on different window length settings (40s, 80s, and 100s in panels A–C, respectively). The dHOFCs in the hand

sensorimotor areas (the primary functional system) are shown. The dHOFC links with ICC > 0.2 (fair reliability or better) are indicated in orange-to-red colors.

window length generated better reliable dHOFC. Based on the
ICC values, the window length of 40, 60, 80, and 100 produces
77.3, 49.5, 30.3, and 18.9% fairly reliable (ICC > 0.2) dHOFC
links among all the strong dHOFC links (Figure 14).

We still chose the window length setting of 60 s as the main
dHOFC result, because the previous comprehensive simulated
experiments have shown that a too short window length setting
may cause limited sample size in the calculation of dynamic
LOFC within each window and could overestimate the dynamic
FC. In other words, with small window length, we may inflate
the window-based LOFC estimations and increase the possibility
of type-I error in finding the significant dynamic FC. This will,
in turn, compromise the dHOFC calculation because dHOFC
is based on the second round of the correlation analysis on the

dynamic LOFC time series, and the overestimated LOFC changes
may cause bias in the following dHOFC calculation.

DISCUSSION

General Discussion
In this paper, we assessed the test-retest reliability of all
existing HOFC (high-order FC) metrics extracted from young
healthy adults. Table 1 summarized all definitions and potential
biological meanings for all the HOFC metrics involved. We
found that, in general, all the methods have acceptable test-
retest reliability. Please also see Table 1 for a summary of
all reliability assessment results, and Figure 11 for specially
summarized connectivity strength and reliability characteristics
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FIGURE 14 | ICC distributions for all strong dHOFC links with different window

length settings (40s, 80s and 100s in panels A–C, respectively). The dHOFCs

in the hand sensorimotor areas (the primary functional system) are used. The

strong dHOFC links are defined as those having group-averaged dHOFC >

0.36. The red line indicates an ICC threshold of 0.2 (thus, the right side of this

red line indicates fair or better reliability).

for different types of the dHOFC links. The goal of presenting
such reliability analysis results is to obtain new knowledge based
on the reliability analysis for better understanding the biological
meaning of different types of HOFC, deriving guidance for future
HOFC studies, and accelerating wider clinical applications using
HOFC.

To our best knowledge, there is no such reliability study before
on the HOFC metrics. We note that there is a recent study
investigating the reproducibility of dynamics LOFC-based brain
transient status detection across different data sets (Abrol et al.,
2016), which suggested that a few transient LOFC patterns are
reproducible; but this study didn’t go further to analyze the high-
order FC and its reproducibility. Here, we use a dedicated dataset
with amply repeated scans and sample size to produce an accurate

estimation of the HOFC’s test-retest reliability. We believe that
this novel test-retest reliability studies on such state-of-the-art
connectomic metrics could have instructive meanings toward
understanding how the human brain is functionally organized.

Why Focusing on HOFC’s Test-Retest
Reliability?
Besides characterizing pair-wise temporal synchronization of
rs-fMRI BOLD signals and building such traditional LOFC brain
networks, researchers are also eager to look for the methods
that can capture more complex functional organization of the
human brain, i.e., HOFC. The HOFCmay have more generalized
definition, as long as it captures more complex functional
organization, e.g., hierarchical FC architectures (Cordes et al.,
2002), modularity/rich-club from deep analysis to the LOFC
networks (van den Heuvel and Sporns, 2011), hypergraph
consisting of hypernodes and hyperlinks (Jie et al., 2016), cross-
modality association (Honey et al., 2009) and context-sensitive
divergence (Hermundstad et al., 2013), but here we only focus
on the narrowly defined HOFC metrics, which are the metrics
that have been explicitly proposed to be “high order” based
on “correlation’s correlation.” Of note, a previous study first
calculated dynamic local LOFC and then calculated regional
covariance of the regional dynamic local LOFC time series
(Deng et al., 2016), which is somewhat also based on the
correlation of correlations. We think that this method is more
like the dHOFC, but still characterizing the pairwise relationship
since the first round of correlations are collapse into regional
time series. Although this paper did not provide reliability or
reproducibility results, it did show a highly structured high-level
functional organization. Another recent work also calculated
topographical LOFC profiles (Zhang J. et al., 2016) and their
dynamics, but they further calculated the similarity among each
brain region’s topographical LOFC profiles across time to define
a variation-based metric for each brain region. Therefore, they
did not use inter-regional topographical similarity to define
HOFC but rather using intra-regional time varying topographical
information to capture brain function. All these state-of-the-
art studies have indicated that characterizing high-order brain
functional organization is the common research interest and
also a hot topic. Therefore, test-retest reliability on these HOFC
metrics is highly necessary.

Of all the studies which explicitly defined or adopted HOFC,
the tHOFC characterizes similarity of the topographical LOFC
profile between any two brain regions; the aHOFC defines a
different pair-wise topographic profile similarity which is actually
a cross-level (i.e., the modulation between the low-level and
the high-level FC organizations among brain regions) HOFC
measurement; and the dHOFC defines an even more complex,
i.e., four region-based functional relationships by adopting
dynamic LOFC profiles, where the covariance of two LOFC
dynamic time series naturally reflect a modulatory interaction.
Based on the network belongingness of every four brain regions,
we have the opportunity to explicitly define different types of
high-level modulation rather than just inherently considering
such high-level functional coherence like most of the existing
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LOFC dynamics studies on brain “status.” In summary, all the
HOFCmetrics are methodologically innovative and state-of-the-
art. Most importantly, these metrics may characterize different
aspects of biologically meaningful functional organization
architecture, which is systematically different from LOFC. In
order to further validate this argument, we need to assess their
reliability to add further support to this hypothesis.

Reasons and Factors That May Cause
Variation in HOFC Reliability
There are several factors that could cause the difference in
reliability among the HOFC metrics. Next, we will discuss the
possible contributing factors that may lead to such differences in
HOFC reliability, which include:

• Various types of noise and artifacts (e.g., cardiac pulsation
and head motion) in the rs-fMRI data may interfere LOFC
estimation (Chang andGlover, 2009; Power et al., 2014), which
often leads to overestimated LOFC due to the structured and
spatially overspread noise. Since HOFC is calculated based on
LOFC, the noise and artifacts can interfere HOFC as well,
although the effect will be different for HOFC compared to
LOFC.

• The complexity of the algorithm. First, noise problem can be
exaggerated when there are more operations (“correlation’s
correlation”) applied on the data. In other words, the noise-
induced error may propagate and increase by further steps
of correlation analysis. Similar substantial reliability reduction
has been witnessed in the previous reliability studies on the
graph-theoretic analysis-derived network properties from the
LOFC network (Wang et al., 2011). Moreover, dHOFC has
several freely estimable parameters, one of which is the sliding
window length. From the Figure 7C and Figures 13–14, we
can see that window length indeed affects dHOFC reliability
(with the shorter window length leading to more reliable
dHOFC). Therefore, if using dHOFC to detect potential
disease biomarkers, we may not only have a risk in the
reliability reduction due to the computational complexity, but
also have to decide the optimal parameter setting. On the other
hand, tHOFC and aHOFC do not have free parameters as long
as the region-averaged rs-fMRI signals are obtained.

• The HOFC strength itself. An interesting finding for all types
of HOFC (and the LOFC previously) is that, generally,
connections with greater strength may be more reliable, and
vice versa. Such a phenomenon is more prominent for the
dHOFC. This may be because weaker connectivities are more
likely to be affected by the noise and artifacts. Of note, it is
difficult to determine the threshold for weak/strong dHOFC as
the parametric testing, such as the t-tests tends to overestimate
the “significant” dHOFC, i.e., even a small dHOFC could be
significantly large due to a large number of sliding windows
and the statistical dependence among nearby windows. Based
on the suggestion of previous dynamic FC study (Leonardi
and Van De Ville, 2015), even a large dynamic FC could
be purely induced by noise. Thus, we use a relatively large
threshold to determine strong dHOFC (>0.36). In future, non-
parametric analysis, such as permutation test can also be used

to generate the “null model” of dHOFC and determine which
is significantly strong. Here, to make fair comparison among
different window lengths, we use the predefined threshold of
dHOFC> 0.36 to identify strong dHOFC links. However, such
a rule does not apply to several LOFC, tHOFC and aHOFC
links, such as the connections among the DMN, FPN, and SN;
interestingly, their weak connectivities are astonishingly stable
across repeated scans (see Figures 4–6).

• The subject’s varying status. Recently, studies on brain LOFC
dynamics have revealed that the brain functional network is
not a static but a continuously changing system (Hutchison
et al., 2013; Calhoun et al., 2014; Preti et al., in press).
Decompositions to the LOFC spatiotemporal dynamics have
revealed a few instantaneous LOFC network patterns that
occur from time to time and switch to each other with certain
transformation probability, which may represent different
brain “statuses” (Allen et al., 2014). The occurrence frequency
and the dwelling time of the status may be substantially
different in different rs-fMRI sessions; moreover, several
statuses may not occur at all during a particular scanning
session (Abrol et al., 2016). Such a variation could be larger
if the interval of the repeated scans is longer. Although
our test-retest data were acquired within a month, such
a period will still allow unneglectable changes in subject’s
physical and mental conditions (e.g., drowsiness) to happen
and lead to differences in status switching and their occurrence
frequency. Since HOFC is proposed to measure high-level
brain functional architecture, a small variation may still affect
its reliability. We think that dHOFC could be affected more
because this metric per se is directly estimated on the basis of
dynamic analysis.

• Head motion. Although we had stringently controlled head
motion effect according to the strict data inclusion criteria,
head motion can still be a source of the reduced reliability.
We believe that the head motion will have more effect on
dHOFC estimation because sliding window-based analysis
uses fewer samples to conduct temporal correlation, such that
the robustness to the head motion-related artifacts could drop.
This argument has been supported by both previous studies
(Laumann et al., 2016) and the leftward shift of the ICC
histogram from Figure 4 to Figures 8A,C.

• Other unavoidable factors, such as the changing condition and
status of the MRI scanner, will likely to affect the test-retest
reliability.

Biological Meaning of HOFC Indicated by
Reliability Assessment Result
Based on reliability analysis, we may have a chance to revisit the
underlying biological meaning of the HOFC. Our result has four
major implications. First, we examined which HOFC links have
reliability gain when comparing tHOFC (and aHOFC, with the
similar result) and LOFC. We found that the links with better
reliability than those of the LOFC are highly structured with
highly specified anatomical location. Most of them are the inter-
network connectivities between the high-level and the primary
functional systems (Figure 5C). The primary systems are the
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sensorimotor and visual areas, while the high-level functional
systems include the DMN, FPN and SN, which have a perfect
agreement with so-called “triple networks” (Menon, 2011). The
triple networks have been proposed to be responsible for high-
order cognitive functions, such as task control, attention, self-
awareness, etc. Meanwhile, many neurological and psychiatric
diseases (such as AD and schizophrenia) have abnormalities
commonly located at such three networks. The increment of test-
retest reliability for the tHOFC and aHOFC indicates that the
tHOFC can more reliably estimate the connections between the
high-level and low-level brain networks. These results support
the previous finding using the tHOFC, that is, the topographical
LOFC profile can suppress noise in several links (Zhang H.
et al., 2016). Because these “reliability enhanced” links are
mostly the weak connections, if the noise level is not favorable,
these connectivities cannot be used for biomarker detection
and disease classification due to the noise-induced reliability
reduction. Our result suggests that tHOFC and aHOFC could
be more suitable for such studies if these particular (although
weak) connections are of interest. From another viewpoint, this
result indicates that tHOFC and aHOFC are able to model the
feedforward and feedback functional relationships, which may
reflect information exchange between the high-level and the
primary areas.

Second, after visualizing the extent of the reliability gain for
each brain region, we found that the mostly benefiting nodes
are the medial frontal regions in the DMN and the lateral
frontal regions in the FPN and SN (Figure 6B), indicating the
importance of these areas in such a cross-level information
exchange. Moreover, we, for the first time, show that these
medial and lateral frontal regions could be functionally important
based on the reliability gain against LOFC. In the future,
more efforts should be made on these putative but weak high-
order cross-level interactions between the triple networks to
the primary functional areas. The importance of such a type
of HOFC links could be diminished if only traditional LOFC
is used. Based on this finding, we have a further tentative
assumption that, for the neurodegenerative diseases, such as
AD and the neurodevelopmental disorders, such as autism
spectrum disorder, at the very beginning, the pathological
attack (such as neurofibrillary tangles and amyloid beta-peptide
deposition in AD) could first occur at these frontal areas
(Braak and Braak, 1991). At this early stage, there is usually
no significant cognitive abnormalities for the patients. We
hypothesize that it is such high-order cross-level feedback and
feedforward connections that could be affected at this period,
and the high-level to primary information exchanges are likely to
be already changed. Traditional LOFC is less reliable for such
connections, thus early detection is difficult and less sensitive. If
tHOFC, especially aHOFC, is used as connectivity-based metrics,
we could have much larger chances to detect such early but subtle
changes.

Third, as shown in Figure 7A, the group-level dHOFC
matrix in the hand sensorimotor system shows the prominent
modular structure (i.e., small blocks along the main diagonal of
the dHOFC matrix). The dHOFC strength within modules is
higher than that betweenmodules. Further investigation revealed
that the higher dHOFC in each of the block or module had

a brain region acting as a common driving source, so that
any dLOFC links sharing the same driving region had quite
similar dynamic patterns along time. For example, the dHOFC
among dLOFC12, dLOFC13, ..., dLOFC1R (which all share the
region #1) are stronger than the dHOFC between dLOFC12 and
dLOFC34 (because they share no region). This could indicate
the organization architecture of the dHOFC in the sensorimotor
system; that is, many strong dHOFC hypernodes (dLOFC links)
share a common driving source from a single brain region and
this can form a “star-shaped” local topological structure. This
star-shaped cluster could be the basic unit for high-level brain
functional organization. Traditionally, it is impossible to reveal
such a high-level spatiotemporal organization architecture.

Fourth, in this study, we have included two high-level
functional systems (FPN and SN) for dHOFC analysis. The
reliability matrix has shown a structured and inherently
well-organized pattern (Figures 10B,C), consistent with the
pattern of the dHOFC strength (Figure 10A). Based on the
complexity of the dHOFC’s definition (involving four regions for
characterizing a hyperlink of dHOFC), we have further separated
dHOFC hyperlinks into the within-network, between-network
and, completely new,modulatory types (containing hybrid inter-
network connection(s) as hypernode(s); see Figure 11C). Note
that, previously, there is no study on the third type of the
connections. We found that the between-network dHOFC,
which consists of two intra-network hypernodes for each of the
two networks, respectively, are nearly zero (weak connections).
This result indicates that the two high-level functional systems,
as shown by their respective nearly uncorrelated dynamic
connectivity profiles, may work quite independently. The
reliability of such type of dHOFC is also poor, meaning that
such weak high-order connectivities are prone to be affected by
noise. However, the within-network dHOFC, similar to previous
findings for the within-network LOFC, is relatively strong
and much more reliable than the between-network dHOFC
or LOFC. The most interesting finding is that the modulatory
dHOFC, especially when both hypernodes are inter-network
connections (with the two ROIs of each hypernode belonging to
two different functional systems), are also relatively strong with
better reliability. This result indicates that the brain functional
organization is not in a one-by-one or pairwise manner. The
two high-level functional networks may not only interact with
each other via pairwise LOFCs, but also have extensive and
deep modulatory relationship in a high-order way. Such a high-
order relationship can be further divided into two subtypes
(Figure 11C), reflecting different modulatory interactions. In
this sense, the dHOFC may be able to model more complex
interactions among the brain networks that cannot be easily
modeled using the traditional inter-network LOFC.

Finally, as shown by Figure 10A, there are strong off-
diagonal connections for the case 1 of the modulatory dHOFC,
indicating that the two high-level cognitive function-related
networks indeed communicate with each other more in a more
complex manner than any LOFC can capture. However, when
compared the connectivity strength of the similar off-diagonal
LOFC (i.e., the mean inter-network LOFC between the FPN
and SN), for the strongest 50 connections, we found that
the dHOFC values are significantly (p < 0.0001) larger than
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LOFC (Figure 15). Moreover, such a type of the dHOFCs has
acceptable reliability. Therefore, we propose that the modulatory
dHOFC with each of the two hypernodes connecting with
both networks (see Figure 11C, case 1) can better characterize
inter-network functional association via complex high-order
modulatory interactions. In the future, this type of dHOFC
could be specifically selected as features to search for potential
biomarkers of brain disease if inter-network connectivity is the
main target.

Suggestions and Guideline to Future HOFC
Study
Based on the findings on HOFC reliability, we give several
suggestions to future studies that focus on high-order
brain functional organization or its modulation by different
experimental states or diseases:

• The tHOFC and aHOFC may have less reliability for within-
network connections than LOFC, but are still moderately
reliable. If interested in the within-network connectivity, it’s
better to use LOFC.

• The tHOFC and aHOFC have higher reliability for the weak
between-network connections. If interested in such type of
connections, it’s better to use tHOFC or aHOFC. The tHOFC
seems to have both acceptable reliability for within-network
connectivity andmore reliable between-network connectivity.
Due to such a trade-off, the tHOFC may be more suitable for
the exploratory whole-brain network analysis, including both
within- and between-network connectivities.

• The aHOFC is especially reliable for modeling high-level
feedback and feedforward relationship between the high-level
cognition-related and the primary functional systems, which is
suitable for studies on top-down or bottom-up connectivities.

FIGURE 15 | Comparison between inter-network LOFC and modulatory

dHOFC. The inter-network LOFC shown in the first bar are the largest 50

LOFC links between fronto-parietal task control and salience network. The

modulatory dHOFC shown in the second bar are the largest 50 dHOFC links

for the third category of three different types of dHOFC (i.e., with both

hyper-nodes being the inter-network connections). Error bar shows the

standard deviation. The p-value is derived from non-parametric group

difference test (Mann-Whitney test, two-tailed).

• dHOFC implementation should be careful due to its
lower reliability compared with that for static LOFC or
HOFC. However, within-network and modulatory dHOFC
or relatively strong dHOFC are still sufficiently reliable.
Future dHOFC studies should focus on these dHOFC
links.

• Data processing parameters, such as sliding-window length
should be carefully determined for dHOFC calculation. Too
small window length may be less robust to noise and may
lead to spuriously high “reliability.” A window length of 60 s
is a recommended choice for robust dHOFC estimation with
adequate reliability.

• For early diagnosis studies, in order to increase detection
sensitivity, it’s better to choose a certain type of HOFC
to characterize the subtle connectivity abnormalities. For
example, weak connections might be more likely to be
affected by the pathological attacks than strong connections;
all the HOFC metrics have satisfactory reliability for the weak
connections.

• While static LOFC does not have adequate sensitivity for
biomarker detection, modulatory dHOFC, especially the case
1, could be an alternative approach to estimate those deeply
inherent inter-network interactions.

LIMITATIONS AND FUTURE WORKS

First, in this paper, we only focused on the reliability assessment
of the connectivity strength without going further to assess the
reliability of graph-theoretical analysis-based network properties,
which we think deserves a dedicated research after more
suitable complex network construction approach for the HOFC
is proposed. Second, this paper is dedicated to investigating
HOFC reliability, the further study on the biological relationship
(validity) between the HOFC strength and neurocognitive
measurements or disease states are not our main goal and will
be investigated in the future. Third, the test-retest reliability with
varied inter-scan interval (especially the intra-session reliability)
will better disentangle the mixed effect of influencing factors on
the HOFC reliability. This is especially important for the dHOFC,
because it is based on the dynamic LOFC which is theoretically
expected to be fluctuating. Although the dHOFC calculates the
coordination of the dynamic LOFC, making this HOFC metric
more like a measurement of “trait” than “state,” a dedicated
study on how the changing brain “state” may affect the trait
characterization is highly required. Finally, due to the increased
dimensionality, we only calculate dHOFC for a few functional
systems. In the future, the better algorithm needs to be proposed
to overcome such a limitation and extend our understanding of
the neurobiological meaning of the dHOFC in the whole-brain
level.
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Spatial group independent component analysis (GICA) methods decompose

multiple-subject functional magnetic resonance imaging (fMRI) data into a linear

mixture of spatially independent components (ICs), some of which are subsequently

characterized as brain functional networks. Group information guided independent

component analysis (GIG-ICA) as a variant of GICA has been proposed to improve

the accuracy of the subject-specific ICs estimation by optimizing their independence.

Independent vector analysis (IVA) is another method which optimizes the independence

among each subject’s components and the dependence among corresponding

components of different subjects. Both methods are promising in neuroimaging study

and showed a better performance than the traditional GICA. However, the difference

between IVA and GIG-ICA has not been well studied. A detailed comparison between

them is demanded to provide guidance for functional network analyses. In this work,

we employed multiple simulations to evaluate the performances of the two approaches

in estimating subject-specific components and time courses under conditions of

different data quality and quantity, varied number of sources generated and inaccurate

number of components used in computation, as well as the presence of spatially

subject-unique sources. We also compared the two methods using healthy subjects’

test-retest resting-state fMRI data in terms of spatial functional networks and functional

network connectivity (FNC). Results from simulations support that GIG-ICA showed

better recovery accuracy of both components and time courses than IVA for those

subject-common sources, and IVA outperformed GIG-ICA in component and time

course estimation for the subject-unique sources. Results from real fMRI data suggest

that GIG-ICA resulted in more reliable spatial functional networks and yielded higher and

more robust modularity property of FNC, compared to IVA. Taken together, GIG-ICA is

appropriate for estimating networks which are consistent across subjects, while IVA is

able to estimate networks with great inter-subject variability or subject-unique property.

Keywords: functional magnetic resonance imaging (fMRI), brain functional networks, independent component

analysis (ICA), group information guided ICA (GIG-ICA), independent vector analysis (IVA)
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INTRODUCTION

There is a rapidly increasing interest in using functional magnetic
resonance imaging (fMRI) data to characterize brain functional
networks. Independent component analysis (ICA), a data-driven
method, has been widely used to analyze fMRI data without
requiring the definition of brain regions (or nodes). Spatial
ICA (sICA) (McKeown et al., 1998), a popular method for
analyzing fMRI data, decomposes fMRI data into a linearmixture
of spatially independent components (ICs) some of which are
subsequently identified as brain functional networks. Despite
success of ICA in fMRI data analyses, ICA faces some challenges.
The order of resulting ICs from individual-subject ICA is
arbitrary, increasing the difficult to establish correspondence
among ICs estimated from different subjects. Another issue is
that the estimated ICs include not only meaningful functional
networks, but also various artifact-related ICs resulting from
imaging and non-neural physiological activity. In addition, the
number of sources is unknown, so the number of ICs always
needs to be estimated (Li et al., 2007); however the numbers
estimated using different criteria are varied (Zuo et al., 2010).
These shortcomings of ICA bring difficulties to multiple-subject
fMRI data analyses, especially when shared networks across
subjects are expected for subsequent group analyses. To address
the problems, group independent component analysis (GICA)
and independent vector analysis (IVA) have been proposed.

Several GICA frameworks have been proposed for fMRI data
analyses, including using the spatial concatenation (Svensén
et al., 2002), temporal concatenation (Calhoun et al., 2001, 2009;
Beckmann et al., 2009) and tensor organization (Beckmann and
Smith, 2005) strategies. Relative to ICA on each individual-
subject’s data, one advantage of GICA is that it can build
direct correspondence of ICs across subjects. Among the GICA
approaches, the temporal concatenation based method is most
widely used. This approach first estimates the group-level ICs
by performing ICA on the time points-concatenated fMRI data
of all subjects, and then back-reconstructs the subject-specific
ICs mainly using principal component analysis (PCA) based
(Calhoun et al., 2001; Erhardt et al., 2011) or regression based
(Beckmann et al., 2009; Erhardt et al., 2011) algorithms. More
recently, in order to improve the accuracy of the subject-
specific ICs estimation, group information guided independent
component analysis (GIG-ICA) (Du and Fan, 2013; Du et al.,
2015c, 2016a) as a variant of GICA has been proposed. GIG-
ICA estimates the subject-specific ICs under the guidance of the
group-level ICs by using a multi-objective function optimization
framework, which simultaneously optimizes the independence
among multiple ICs of each subject and the correspondence
between each group-level IC and the associated subject-specific
IC. The optimization of independence of multiple components
for each subject’s data benefits yielding accurate subject-specific
functional networks. The optimization of correspondences
between one group-level IC and the associated subject-specific
ICs guarantees that the obtained individual networks have the
same physiological meanings and then are comparable across
subjects. Therefore, compared to the traditional PCA-based
and regression-based back-reconstruction techniques that ignore

independence of individual ICs to some extent, GIG-ICA can
yield more accurate individual networks and the associated time
courses (Du and Fan, 2013; Du et al., 2016a) while still preserving
correspondence and comparability of shared networks across
different subjects. Notably, GIG-ICA can estimate individual
networks for new data by utilizing a prior spatial network maps
as guidance. Our previous work (Du et al., 2015c) has shown
the promise of GIG-ICA to estimate spatial functional networks
from fMRI data. By applying GIG-ICA to resting-state fMRI
data (Du et al., 2014, 2015c), we found potential biomarkers
in several functional networks for distinguishing schizophrenia,
bipolar disorder and schizoaffective disorder. In addition, GIG-
ICA (Du et al., 2015b, 2017) has the ability to extract functional
connectivity states from time-varying functional connectivity
(Calhoun et al., 2014; Du et al., 2015a, 2016b). Our work
(Du et al., 2015b, 2017) revealed interesting biomarkers of
schizophrenia, bipolar disorder and schizoaffective disorder in
multiple connectivity states. In this paper, we only focus on the
application of GIG-ICA in estimating functional networks from
fMRI data.

Independent vector analysis (IVA), an alternative method to
achieve an independent decomposition (Adali et al., 2014), has
been applied to analyzing fMRI data of schizophrenia patients
(Gopal et al., 2016) as well as patients with stroke (Laney
et al., 2015a,b). The approach models both the independence
of individual components and the dependence of similar
components across subjects. Several advancements of IVA have
been made for achieving reliable source separation for linearly
dependent Gaussian and non-Gaussian sources (Anderson et al.,
2010, 2014; Dea et al., 2011; Li et al., 2011; Adali et al.,
2014; Boukouvalas et al., 2015). Among those, IVA-GL (IVA
with multivariate Gaussian source component vectors plus
IVA with Laplace source component vectors), which is a
combination of two IVA algorithms, IVA with multivariate
Gaussian component vectors (IVA-G) (Anderson et al., 2012) and
IVA with multivariate Laplace component vectors (IVA-L) (Lee
et al., 2008), provides an attractive tradeoff in terms of complexity
and performance and has been the algorithm used in previous
applications of IVA to fMRI data (Laney et al., 2015a,b; Gopal
et al., 2016). Previous studies (Dea et al., 2011; Ma et al., 2013;
Michael et al., 2014; Laney et al., 2015a,b) compared IVA and
traditional GICA under different levels of subject variability and
parameters, and showed outperformance of IVA over GICA in
terms of capturing subject-specific variability.

Both IVA and GIG-ICA are able to optimize the independence
among intra-subject components and dependence among inter-
subject components, and showed advantages over traditional
GICA in several comparison studies (Dea et al., 2011; Du and
Fan, 2013; Ma et al., 2013; Michael et al., 2014; Du et al.,
2016a). However, a full comparison between IVA and GIG-
ICA has not been well studied, especially in neuroimaging
application. In this paper, we compare their performance using
both simulations and real fMRI data. We evaluate the two
methods with respect to the estimation accuracy of components
and time courses by using simulated data with different quality
and quantity, data with varied number of sources generated,
inaccurate number of components for computation, as well as
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data with subject-unique sources. In addition, test-retest resting-
state fMRI datasets are also utilized to compare the two methods
in terms of estimated functional networks and interaction among
networks. We assess if IVA and GIG-ICA can yield reliable
network maps and functional network connectivity (FNC) using
the test-retest data. With these detailed comparisons, we expect
to gain more knowledge of both methods in analzying fMRI
data under different scenarios and thus provide guidance for
researchers in the field.

MATERIALS AND METHODS

IVA and GIG-ICA
As for IVA, IVA-GL algorithm was adopted to estimate
components for comparisons in this work. It can be accessed
in Group ICA for fMRI toolbox (GIFT) (http://mialab.mrn.
org/software/gift/index.html). There are mainly two steps: (1)
performing subject-level PCA on each subject’s data; (2) applying
IVA-GL to estimate the subject-specific components and time
courses (TCs). The estimated components are then Z-scored.
A free parameter is the number of components used for the
subject-level PCAs, denoted as I1.

GIG-ICA (Du and Fan, 2013; Du et al., 2016a), also included
in GIFT, involves the following steps: (1) performing subject-
level PCA reduction on each subject’s data and group-level
PCA on the temporal concatenation of subject-level PCAs
reduced data; (2) applying group-level ICA to the reduced
data using Infomax algorithm (Bell and Sejnowski, 1995); (3)
identifying and removing artifact-related group-level ICs; (4)
computing each subject-specific IC via a multi-objective function
optimization based on the individual-subject data and each
remaining non-artifact group-level IC (Du and Fan, 2013) using
a deflation manner; and finally (5) estimating the subject-
specific TCs. In step (4), GIG-ICA simultaneously optimizes
the independence of each subject-specific IC, measured by
negentropy, as well as the correspondence between each subject-
specific IC and each group-level IC,measured by their correlation
(Du and Fan, 2013), automatically resulting in Z-scored subject-
specific ICs. Relevant parameters include the number of principal
components (PCs) used for the subject-level PCAs, denoted
as G1, and the number of PCs/ICs used for the group-level
PCA/ICA, denoted as G2.

It is worth noting that in order to decrease computation
load, GIG-ICA can remove artifact-related group-level ICs
before estimating individual components (Du et al., 2016a),
only yielding subject-specific meaningful networks. However,
IVA has to compute all components and remove artifact-
related components in a subsequent postprocessing stage.
To facilitate comparison between GIG-ICA and IVA, we
computed all components in GIG-ICA without performing
artifact removal after the group-level ICA step. In experiments
using real fMRI data, we matched components between
the two methods after obtaining the individual results and
then removed the corresponding artifact-related components
for both methods. For comparison, we also set G1 =

G2 = I1, resulting in equivalent numbers of components
for the two methods. In this work, Infomax algorithm

employed in the first step (i.e., the group-level ICA) of
GIG-ICA and IVA-GL algorithm are comparable, since both
methods use fixed nonlinearity matched to super-Gaussian
sources.

Experiments Using Simulations
Due to that there is no ground truth in practical applications,
simulation-based tests are necessary for evaluating different
methods. In order to comprehensively compare IVA and
GIG-ICA, we performed several experiments to assess the
accuracy of the estimated individual components and TCs
under different conditions, including various data quality
and quantity (Experiment 1), varied number of sources and
inaccurate number of components for computation (Experiment
2), and spatially subject-unique sources (Experiment 3). In each
experiment, we simulated fMRI-like data of multiple subjects
using the SimTB toolbox (Allen et al., 2012; Erhardt et al.,
2012). The number of subjects M was simulated to be 10.
For each subject, C source images (148 × 148 pixels) and
their corresponding TCs (150 or less time points in length)
were simulated and then used to generate data by a linear
mixture model. In our experiments, we set C to be 7 or
8. Rician noise was then added to data with a specified
contrast-to-noise ratio (CNR). Repetition time (TR) was 2
s/sample. Among C sources, some sources were similar across
all subjects with slight variance (i.e., subject-common), while
the other sources were unique and only present on specific
subject (i.e., subject-unique). These subject-unique sources
were generated to simulate significant source variability across
subjects. The parameters of our experiments are summarized in
Table 1.

Experiment 1: Comparing IVA and GIG-ICA Using

Data with Different Quality and Quantity
As shown in Figure 1A, 8 sources and their associated TCs
were simulated for each subject. Similar to previous work, each
of the 8 sources was generated from a common map with
added spatial variability across subjects by random translations
[mean = 0 pixel; standard deviation (SD) = 5 pixels], rotations
(mean of 0 degree; SD = 3◦), and spatial extents (i.e., spreads)
of the common spatial map (mean = 3 magnification; SD =

0.03 magnification). Thereby, sources were spatially consistent
across subjects but showing moderate subject-specific variability,
as shown in Figure 1B. Additionally, temporal variation was
applied in simulation of TCs. In order to evaluate the effect
of data quality, for each subject, we simulated 16 datasets with
different CNRs (ranging from 0.5 to 2 with the step of 0.1) and
a fixed number of time points (i.e., 150). Subsequently, regarding
each specific CNR (e.g., the CNR = 1), we performed IVA and
GIG-ICA on the associated data of all subjects, respectively.
To investigate the effect of data quantity, for each subject, we
simulated 5 datasets by varying the time points from 40 to 120
in steps of 20 while the CNR was fixed at 2. Afterwards, in
terms of each given number (e.g., the number of time points =
100), each method (IVA or GIG-ICA) was applied to the relevant
data of all subjects. For these experiments, we set the number of

Frontiers in Neuroscience | www.frontiersin.org May 2017 | Volume 11 | Article 267117

http://mialab.mrn.org/software/gift/index.html
http://mialab.mrn.org/software/gift/index.html
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Du et al. Comparison of IVA and GIG-ICA

TABLE 1 | Parameters of simulations and methods in the following simulation-based experiments.

Experiment 1 Experiment 2 Experiment 3

Different

data quality

Different data

quantity

Varied number of sources

generated

Inaccurate number

of components used

in computation

Spatially

subject-unique source

Number of subjects 10 10 10 10 10

Number of sources in each

subject’s data

8 8 8 (i = 1, · · · , 5),

7 (i = 6, · · · , 10),

i denotes the subject index

8 8

CNR in each subject’s data 0.5–2 with the

step of 0.1

2 2 2 2

Number of time points in

each subject’s data

150 40–120 with the

step of 20

150 150 150

Source type similar across

subjects

similar across

subjects

similar across subjects similar across subjects one subject-unique source

Number of components

used in computation

8 8 7 and 8 6, 8, and 10 8

FIGURE 1 | (A) The simulated sources and their associated time courses (TCs) of two subjects in Experiment 1. (B) The spatial variability of sources across subjects.

Each color denotes the source contours of a different subject.

components (i.e., G1, G2, I1) used in the analyses to be the same
as the number of true sources (i.e., 8).

Experiment 2: Comparing IVA and GIG-ICA under

Conditions of Varied Number of Sources and

Inaccurate Number of Components
In this section, we first assessed the performance of the two
methods using data with varied number of sources across
different subjects (see Table 1 for the detailed parameters). Five
subjects’ datasets were simulated with 8 sources, while the other
five subjects’ datasets were simulated with 7 sources. Among

the sources, each of 7 sources had a similar spatial pattern
across all subjects with slight inter-subject variability, while the
other source was only present in five subjects with small spatial
variation. Considering the difference in the simulated number of
sources across different subjects, we performed two comparisons
by setting the same number of components in IVA and GIG-ICA
to 7 and 8 separately.

It is known that prior to ICA, the number of components
is a free parameter, typically either selected by the user
or estimated by some information-based criteria (Li et al.,
2007; Fu et al., 2014). This parameter may influence the
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source decomposition since the measure of total component
independence may change and thus converge to different
solution. In order to evaluate the effect of an inaccurate
component number in both methods, based on the data
generated with 8 sources (i.e., the data from Experiment 1
with the CNR = 2) we examined each method by setting
the number of estimated components to 6, 8, and 10,
respectively.

Experiment 3: Comparing IVA and GIG-ICA Using

Data with Spatially Subject-Unique Sources
In this experiment, we aimed to evaluate the ability of the two
methods in recovering both subject-common and subject-unique
sources. Each subject’s data was simulated by using 7 sources
each of which was similar across subjects and one additional
source unique for each individual subject. The 7 sources had
similar patterns with the first 7 sources generated in Experiment
1. Figure 2 shows the simulated subject-unique sources (i.e.,
the 8th sources) and related TCs of all subjects. The number
of components used in computation was specified as the real
number of sources (i.e., 8).

Evaluation Metrics in Simulation-Based Experiments
To compare the performance of IVA and GIG-ICA on
simulations, we evaluated accuracy of the estimated subject-
specific components and TCs using correlation between
estimation and ground truth, consistent to many prior studies
(Schmithorst and Holland, 2004; Allen et al., 2012; Du and
Fan, 2013; Michael et al., 2014; Du et al., 2016a). We
firstly matched the estimated subject-specific components with
the simulated subject-specific ground-truth (GT) sources as
follows. Regarding each source in Experiment 1 and 2, the
corresponding GT sources of all subjects were averaged, and

then the mean GT sources were used as source templates.
Next, for GIG-ICA method, we matched the group-level
ICs with the source templates using a greedy rule (see
the Supplementary Material for details). Similarly, for IVA
method, we averaged the corresponding components from
all subjects to represent the group-level components, which
were then matched with the sources templates. For each
method, based on the matched results between the group-level
components and the source templates, the estimated subject-
specific components/TCs were then accordingly matched to
the subject-specific GT sources/TCs. For Experiment 3 which
involved a subject-unique source in data, we first averaged
each of 7 subject-common GT sources across subjects to
get its source template, and then matched the 8 group-level
component maps obtained from each method with the 7 source
templates, consequently constructing correspondence between
7 components and 7 GT sources for those subject-common
sources of each subject. Thus, one additional subject-unique
component can be matched to the subject-unique GT source
for each subject. After matching, we computed the absolute
value of Pearson correlation coefficient between each estimated
component/TC and its matched GT source/TC to measure the
component/TC accuracy. In Experiment 1 and 2, we further
calculated the mean of all components/TCs accuracy measures
of each subject to reflect its overall component/TC accuracy.
In Experiments 1 and 2, for each setting, a two-tailed paired
t-test was performed to compare the overall component (or
TC) accuracy metrics of all subjects from IVA with that
from GIG-ICA. In Experiment 3, for each component, we
compared the spatial (or temporal) accuracy of all subjects
between IVA and GIG-ICA using one two-tailed paired t-test.
The results were corrected using p < 0.05 with Bonferroni
correction.

FIGURE 2 | The simulated subject-unique sources (the 8th sources) and related TCs of all subjects in Experiment 3.
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Experiments Using Test-Retest
Resting-State fMRI Data
Seventy five resting-state fMRI datasets (Zuo et al., 2010)
comprising 25 healthy participants with three scans were adopted
in the experiment. Each dataset consisted of 197 contiguous EPI
functional volumes (TR = 2,000 ms; TE = 25ms; flip angle =

90◦, 39 slices, matrix = 64 × 64; FOV = 192mm; acquisition
voxel size = 3 × 3 × 3 mm). The first scan (scan 1) is in a scan
session. Five to Sixteen months (mean 11 ± 4) after scan 1, scan
2 and scan 3 were conducted with short interval (about 45min).
The fMRI images were preprocessed using SPM8 (http://www.fil.
ion.ucl.ac.uk/spm). The first 10 images were discarded, and the
remaining 187 images were slice-time corrected and realigned to
the first volume for head-motion correction. Subsequently, the
images were spatially normalized to the Montreal Neurological
Institute (MNI) EPI template and spatially smoothed with a 6
mm FWHMGaussian kernel.

IVA and GIG-ICA were applied to all 75 preprocessed
datasets, respectively, to estimate brain functional networks
and their associated TCs of each dataset. For a comprehensive
evaluation of these two methods, we used both low and high
numbers of components for analyses. When a low number
is used, it makes more sense to think of each meaningful
component itself as a brain functional network. Many studies
(Meda et al., 2014; Du et al., 2015c) have conducted analyses
on spatial maps of networks revealed by ICA with low model
order, aiming to explore disease biomarkers. In contrast, if a high
number is used, the meaningful networks were then usually used
as nodes for computing consequent FNC (Allen et al., 2011).
Each FNC matrix, which is computed based on the individual-
subject’s TCs of networks, reflects interaction among different
networks. To be consistent with previous studies (Allen et al.,
2011; Du and Fan, 2013; Du et al., 2015c, 2016a), we specified
20, 25, and 30 as low model order settings, and 75 and 100 as
high model order settings. For simplification, we assessed the
results from both low and high model orders using the same
manner by considering properties of both networks’ spatial maps
and interaction among networks (i.e., FNC). Regarding results
from each model order setting, we first matched the obtained
components from the two methods based on their group-level
component maps using a greedy rule (see the Supplementary
Materials). Then, based on the matched components with high
similarity (correlation > 0.5) between the two methods, we only
selected the meaningful networks by manually inspecting spatial
and temporal information of the matched components (Allen
et al., 2014; Du et al., 2016a) for further investigation. Next, the
following evaluations in terms of network maps and FNC were
performed on the selected networks for each method. Finally, the
performances of the two methods under different model orders
were compared.

For each selected network, we evaluated its reliability based
on the estimated individual networks from 75 datasets as follows,
which is consistent to previous studies (Zuo et al., 2010; Du et al.,
2016a). First, voxel-wise right-tailed one-sample t-tests (p < 0.01
with false discovery rate (FDR) correction) were performed on
the corresponding networks of all 75 datasets. Next, since the data

from scan 2 and scan 3 were collected with short intervals, voxel-
wise intra class coefficients (ICCs) (Zuo et al., 2010) between the
corresponding 25 networks from scan 2 and the corresponding
25 networks from scan 3 were calculated to assess the short-term
reliability of the network, resulting one 3D ICC map reflecting
short-term reliability of the network. In our work, ICC of each
voxel was computed using a model (Zuo et al., 2010; Guo et al.,
2012) based on one-way analysis of variance (ANOVA), due
to that those subjects were scanned using the same scanner.

The used equation was: ICC =
σ 2
p

σ 2
p + σ 2

e
, where σ 2

p denotes the

variance of inter-subject effect and σ 2
e denotes the variance of

measurement error. As mentioned above, the data of scan 2 and
scan 3 were collected after several months of scan 1. So, we
computed ICCs between the corresponding 25 networks from
scan 1 and the averaged 25 networks from scan 2 and scan 3
to assess the long-term reliability of the network, resulting in
one 3D ICC map reflecting long-term reliability. Based on each
ICC map reflecting short-term or long-term reliability of the
network, the ICC values were then averaged across voxels within
a specific mask which included statistically significant voxels for
both methods based on the one-sample t-tests results after FDR
correction, to summarize the short-term or long-term reliability
of the network.

To investigate network interaction, we calculated FNC for
each of the 75 datasets, and then evaluated graph-theory based
measures using the brain connectivity toolbox (https://sites.
google.com/site/bctnet/) as well as reliability in both connectivity
and modularity. First, for each dataset, we obtained one FNC
matrix by computing Pearson correlation coefficients between
the associated TCs of any paired networks. Next, we averaged
the FNC matrix across all 75 datasets. Based on the mean FNC
matrix, we detected its modules (i.e., network communities)
using the most applied eigenvector-based method (Newman M.
E., 2006; Newman M. E. J., 2006), where the modularity Q-value
reflects the accuracy or quality of a community structure. Greater
Q-value represents stronger modular structure. Subsequently,
modularity analysis was also performed on each individual
FNC matrix, resulting in a module segmentation and related
Q-value for each dataset. Since different datasets may have
greatly varied modular brain networks, we measured modularity
similarity between any pair of datasets using the adjusted mutual
information (AMI), consistent to a recent study (Liao et al.,
2017). The mean of AMI values computed between datasets in
scan 2 and datasets in scan 3 was used to measure the short-
term modularity reliability. The mean of AMI values obtained
between datasets in scan 1 and datasets in scan 2 or 3 was
used to reflect the long-term modularity reliability. Additionally,
each connectivity’s short-term and long-term reliability in FNC
was examined using ICC. Specifically, for each connectivity (i.e.,
one element in FNC matrix), ICC between the corresponding
25 connectivity strengths from scan 2 and the corresponding
25 connectivity strengths from scan 3 was calculated to assess
the short-term reliability of the connectivity; ICC between the
corresponding 25 connectivity strengths from scan 1 and the
corresponding 25 connectivity strengths averaged between scan
2 and 3 was calculated to assess the long-term reliability of the
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connectivity. Finally, we calculated the averaged node strength,
clustering coefficient, global efficiency, and local efficiency
(Rubinov and Sporns, 2010) based on each individual FNC
matrix, the elements of which were first changed to their absolute
values and thresholded to preserve half elements with higher
values (sparsity= 0.5) (Du et al., 2016b).

RESULTS

Results from Simulation-Based
Experiments
Component and Time Course Accuracy Estimated

from IVA and GIG-ICA in Experiment 1
Figure 3 shows the components/TCs of one subject estimated by
IVA and GIG-ICA from the simulated data with the CNR = 1.
For this case, we can see that both methods can generally
recover all of spatial components and TCs. For some components
(e.g., component 3, 6, and 7), GIG-ICA had slightly higher
component/TC accuracy than IVA. Figure 4A summarizes the
comparison results across 10 subjects under the condition of
different CNRs. It can be observed that the recovery accuracy
of components by both methods was improved along with the
increasing of CNR while TCs recovery was relatively insensitive
to different CNRs. Measured by the mean accuracy, GIG-ICA
outperformed IVA across most of CNR settings in terms of
component/TC accuracy. Figure 4B demonstrates results from
evaluating the influence of different numbers of time points. Both
methods showed increasing recovery accuracy of components
with more time points used. Paired t-test results (Table 2) show
that for most of the CNR and time point settings tested, GIG-ICA
showed significantly increased accuracy (especially the spatial
accuracy) than IVA. Our results indicate the advantage of GIG-
ICA in recovering subject-common sources than IVA, and GIG-
ICA can yield components with higher accuracy even under the
case of low quality and quantity of data.

Component and Time Course Accuracy Estimated

from IVA and GIG-ICA in Experiment 2
Figure 5A shows the accuracy results obtained from data with
varied numbers of sources across different subjects. We can
see that under all model orders (i.e., different numbers of
components), GIG-ICA showed significantly better performance
(seeTable 3) than IVA, indicating that GIG-ICA is able to tolerate
source number variation and is also not very sensitive to the
number of components used.

The results demonstrated in Figure 5B were obtained using
data generated with 8 sources and different numbers of
components for computation (i.e., 6, 8, and 10). It can be
observed that GIG-ICA significantly outperformed IVA under
all model orders in terms of the spatial accuracy (see Table 3).
Regarding the temporal accuracy, GIG-ICA had significantly
greater accuracy using the model order 6, but slightly decreased
accuracy using the model order 10, compared to IVA. For the
model order 8, the TC results of the two methods are statically
close. When the used number of components was the same as
the real source number (i.e., 8), both methods achieved the best
estimation. When the number of components was 10, there was a

slight decrease in recovering components/TCs for both methods,
compared to the results of the model order as 8. However, when
the number of sources was underestimated (i.e., 6), there was a
significant drop of accuracy for the IVA but a slight decrease for
GIG-ICA. Because the accurate number of components is very
difficult to estimate correctly in practice, the relative insensitivity
of GIG-ICA to the model order may provide an important
benefit.

Component and Time Course Accuracy Estimated

from IVA and GIG-ICA in Experiment 3
In this experiment, we tested the two methods using datasets
where each subject had a spatially unique source. Accuracy of
each estimated individual component/TC is shown in Figure 6.
It is seen that for the estimated spatial components, measured
by the mean accuracy across subjects, GIG-ICA had a better
performance for the subject-common sources (i.e., the first 7
sources), but showed a worse estimation for the subject-unique
source (i.e., the 8th source) than IVA. Regarding the estimated
eight TCs, measured by the mean accuracy across subjects, GIG-
ICA had higher TC accuracy in four TCs and decreased TC
accuracy in terms of the subject-unique source compared to IVA.
Using paired t-tests (see Table 4), among the 7 subject-common
sources, four components and three TCs were significantly more
accurate using GIG-ICA than using IVA. IVA outperformed
GIG-ICA in estimating the subject-unique sources (passing p
< 0.05 with correction). Our results suggest that for the data
generated with subject-unique sources, in general GIG-ICA still
performed well for the similar sources but did not work well
for the unique source. In contrast, IVA can estimate the subject-
unique source and its associated TC with high accuracy.

Results from Test-Retest Resting-State
fMRI Data
Using the test-retest resting-state fMRI datasets, we assessed the
individual-level spatial networks in terms of their short-term
and long-term reliability. Figure 7 shows the one-sample t-tests
results of the 12matched networks for the twomethods under the
condition of the model order as 30. We found that compared to
IVA, GIG-ICA in general showed higher t-values for all networks.
For the case of the model order as 30, the short-term and long-
term reliability measures of each network are demonstrated in
Figures 8A,B, respectively. Results indicate that for most of the
networks, greater reliability measures were obtained using GIG-
ICA compared to IVA, although there were also four networks
(including Network 1, Network 5, Network 7, and Network 11)
showing slightly higher short-term or long-term reliability in
IVA than GIG-ICA. Furthermore, some networks including the
sensorimotor and cerebellum-related networks from IVA had
very low reliability. To summarize, we show the short-term and
long-term reliability of all networks estimated with different
model orders in Figures 8C,D. It can be seen that measured by
the mean values of reliability measures across all networks, the
higher network reliability was achieved by GIG-ICA than IVA for
all model order settings.

We also compared the twomethods in constructing functional
interaction among networks. Under a model order of 100,
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FIGURE 3 | The estimated components/TCs of one subject obtained from IVA and GIG-ICA when the CNR = 1. The value in parenthesis close to each

estimated component/TC is the relevant correlation coefficient between the component/TC and the simulated ground truth (GT) source/TC. The GT sources/TCs are

also shown for comparisons.

22 networks were highly matched between the two methods.
For each dataset, one FNC matrix was generated based
on the associated TCs of the 22 networks. Figures 9A,B

show the mean FNC matrix across all 75 datasets for IVA
and GIG-ICA, respectively. It is observed that the two
FNC matrices generally showed a similar pattern. However,
the contrast in FNC appeared higher in GIG-ICA than
IVA. According to the modularity segmentation of networks,
we reorganized the mean FNC matrix’s structure for IVA
(Figure 9C) and GIG-ICA (Figure 9D). The identified modules
for the two methods were demonstrated in Figures 9E,F,
respectively. Three modules mainly relating to the default
mode network (module 1), the cognitive control, sensorimotor
and auditory functions (module 2), and the vision function
(module 3) were found using GIG-ICA. Module 1 and 2
showed anti-correlations in their connectivities. Regarding

IVA, two modules were detected, while the vision-associated
networks were separated into two modules. Furthermore,
the modularity quality was greater in GIG-ICA (Q = 1.33)
compared to IVA (Q = 0.51) when the number of components
was 100.

Furthermore, GIG-ICA showed an equivalent or higher
modularity Q-value of the mean FNC than IVA for the model
order settings tested (see Figure 10A). Regarding individual
FNC’s modularity, Figure 10B demonstrates that excepting
the low model order 20, GIG-ICA with a greater mean Q-
value outperformed IVA for most of the cases. Moreover,
measured by the AMI, both the short-term and the long-
term modularity reliability metrics were greater in GIG-ICA
than IVA for all tests, as shown in Figures 10C,D. Both the
short-term and long-term ICC measures (Figures 10E,F)
support that the connectivity strengths in FNC were
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FIGURE 4 | (A) Spatial and temporal accuracy measure obtained from IVA and GIG-ICA under different CNRs ranging from 0.5 to 2. (B) Spatial and temporal

accuracy measure obtained from IVA and GIG-ICA under different numbers of time points. The x-axis in each boxplot denotes CNR in (A) or number of time points in

(B). The y-axis denotes the mean of spatial/temporal correlation coefficients between one subject’s estimated components/TCs and the corresponding ground truth

sources/TCs, which was used to measure the overall spatial/temporal accuracy of one subject’s result. Each point in a given boxplot corresponds to the overall

spatial/temporal accuracy of one subject. For each boxplot, the central line is the median, and the edges of the box are the 25 and 75th percentiles. The whiskers

extend to 1 inter-quartile range, and each outlier is displayed with a “*” sign. The mean value is indicated by a square. Subsequent boxplots are formatted similarly.

TABLE 2 | Results of the estimation accuracy using paired t-tests for Experiment 1.

Data with different quality CNR = 0.5 CNR = 0.6 CNR = 0.7 CNR = 0.8 CNR = 0.9 CNR = 1.0 CNR = 2

p-value in spatial accuracy 5.43e-05 1.16e-06 3.05e-06 7.96e-03 1.42e-07 2.79e-06 1.77e-07

t-value in spatial accuracy −7.14 −11.44 −10.19 −3.39 −14.61 −10.30 −14.24

p-value in temporal accuracy 0.61 0.002 4.34e-05 0.98 3.12e-05 6.20e-06 7.14e-06

t-value in temporal accuracy 0.52 −4.12 −7.35 0.014 −7.66 −9.36 −9.20

Data with different quantity Number of time

points = 40

Number of time

points = 60

Number of time

points = 80

Number of time

points = 100

Number of time

points = 120

p-value in spatial accuracy 2.21e-05 2.01e-06 9.17e-07 4.71e-07 2.98e-07

t-value in spatial accuracy −8.00 −10.71 −11.76 −12.71 −13.41

p-value in temporal accuracy 3.74e-03 2.0e-3 1.58e-3 8.52e-05 5.64e-05

t-value in temporal accuracy −3.88 −6.01 −6.21 −6.73 −7.10

generally more robust using GIG-ICA method, compared
to IVA.

As mentioned in the method section, we also examined other
graph-theory based metrics for individual FNC. The summarized

results for the averaged node strength, clustering coefficient,
global efficiency, and local efficiency are shown in (Figures 11),
suggesting that GIG-ICA resulted in higher mean values in all
these graph metrics than IVA under all model order settings.
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FIGURE 5 | (A) Spatial and temporal accuracy obtained from IVA and GIG-ICA under different model orders for datasets with varied numbers of sources across

subjects. (B) Spatial and temporal accuracy obtained from IVA and GIG-ICA under the model order as 6, 8, and 10 for datasets generated with 8 sources. The x-axis

in each boxplot denotes the number of components used in computation. The y-axis denotes the mean of spatial/temporal correlation coefficients between one

subject’s estimated components/TCs and the corresponding ground truth sources/TCs, which was used to measure the overall spatial/temporal accuracy of one

subject’s components/TCs.

TABLE 3 | Results of the estimation accuracy using paired t-tests for Experiment 2.

Data with varied source number Inaccurate number of component

IC number = 7 IC number = 8 IC number = 6 IC number = 8 IC number = 10

p-value in spatial accuracy 1.32e-09 2.47e-09 2.24e-05 1.76e-07 1.33e-07

t-value in spatial accuracy −24.86 −23.18 −7.99 −14.25 −14.72

p-value in temporal accuracy 8.10e-06 7.25e-05 4.10e-04 0.10 0.77

t-value in temporal accuracy −9.06 −6.88 −5.44 −1.85 0.30

TABLE 4 | Results of the estimation accuracy using paired t-tests for Experiment 3.

Component

1

Component

2

Component

3

Component4 Component

5

Component

6

Component

7

Component

8

p-value in spatial accuracy 0.70 0.02 4.34e-08 1.04e-04 2.01e-07 1.01e-03 0.21 8.95e-04

t-value in spatial accuracy 0.39 −2.66 −16.74 −6.56 −14.04 −4.78 −1.33 4.86

p-value in temporal accuracy 0.03 0.03 3.81e-04 0.20 0.78 5.53e-03 3.29e-05 1.96e-04

t-value in temporal accuracy 2.53 2.43 −5.50 1.38 −0.29 −3.62 −7.61 6.03

DISCUSSION

In this work, we compared two promising approaches (i.e.,
IVA and GIG-ICA) for analyzing multi-subject fMRI data.

Both methods can estimate subject-specific brain functional
networks with correspondence across different subjects. IVA
considers both the independence of individual components and
the dependence of similar components across subjects. GIG-ICA
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FIGURE 6 | Spatial and temporal accuracy of each estimated component and TC obtained from IVA and GIG-ICA for datasets with subject-unique

sources. The 8th component is subject-unique. The y-axis denotes the spatial/temporal correlation between one subject-specific component/TC and the

corresponding ground truth source/TC. The accuracy metrics of each component/TC from all subjects are shown using one boxplot. Each point in one boxplot

corresponds to the spatial/temporal accuracy of one component/TC for one subject.

first estimates the group-level ICs from all data and then
computes the subject-specific ICs with the group-level ICs as
guidance. Using simulations, we investigated if the two methods
can yield accurate individual-level components and time courses
under different conditions, including different data quality (i.e.,
CNR) and data quantity (i.e., number of time points), varied
number of sources and inaccurate number of components, as
well as presence of spatially subject-unique sources. Furthermore,
we assessed their performance using test-retest resting-state
fMRI data with respect to spatial networks’ reliability and
graph-theory based metrics of FNC under different model
orders.

In Experiment 1 using simulations, we evaluated the two
methods using data with various quality and quantity. Our
results suggest that both IVA and GIG-ICA showed improved
performance along with the increased CNR and time points of
data. For the sources with slight inter-subject spatial variability,
GIG-ICA obtained components with higher accuracy than IVA,
and performed very well under the case of low CNR and less
time points. It is known that both IVA and GIG-ICA require
a fixed number of components for computation, generating the
same number of components for all subjects. When datasets
of different subjects are simulated using different numbers
of sources, the resulting components of some subjects have
different numbers with the real number of sources. So, in
Experiment 2, we simulated varied number of sources between
different groups and also investigated the influence of inaccurate
number of components. Our results suggest that GIG-ICA
showed a relatively better performance and was stable to the
various numbers of sources under this case. We also tested
the two methods in terms of the effect of the number of
components, indicating that IVA gave rise to a significant
reduced accuracy when the model order was underestimated
while GIG-ICA was not very sensitive to the inaccurate model
order.

All the above mentioned experiments were applied to the
datasets generated using sources that were similar across subjects.
In Experiment 3, using datasets where all subjects had a subject-
unique source with large inter-subject spatial variability, we
found that IVA significantly showed a better performance in the
component/TC accuracy of the unique source than GIG-ICA,
although GIG-ICA in general still performed better for other
subject-common sources compared to IVA. This is likely due to
that the two methods are different in algorithm level. GIG-ICA
first extracts the group-level components, and then estimates the
corresponding individual-level components for each individual-
subject’s data. In contrast, IVA simultaneously estimates the
individual-subject’s components and optimizes the dependence
of components across different subjects. Therefore, we suggest
using GIG-ICA to estimate networks that are consistent across
subjects, while IVA is more appropriate for networks with
significant inter-subject variability. IVA’s superiority in estimating
subject-unique sources possibly enables it to be more suitable
to data from patients with particular brain structure damage,
such as patients suffering from brain tumor that could result in
greatly different functional networks. Our previous work (Du
et al., 2014, 2015c, 2017) showed that GIG-ICA performed well
for fMRI data from healthy controls and patients with mental
disorders, which are supposed to have similar network patterns
but subtle differences. In fact, all GICA approaches (Calhoun
et al., 2001, 2009; Beckmann et al., 2009; Erhardt et al., 2011)
have the same limitation with GIG-ICA, since all of them back-
reconstruct individual-subject’s ICs based on the group-level ICs.
However, as our previous work (Du et al., 2016a) suggested, GIG-
ICA is a powerful approach for main fMRI researches, due to
the fact that the subject-common networks can be estimated and
denoised without having to accurately estimate the artifacts. In
future, a general framework that leverages the strengths of IVA
and GIG-ICA is expected for achieving high accuracy of both
subject-common and subject-unique networks.
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FIGURE 7 | One-sample t-test t-value maps (p < 0.01 with FDR correction) of the 12 matched networks, obtained by (A) IVA and (B) GIG-ICA under the

case of the model order as 30. The 12 matched networks shown are sorted according to the similarity (i.e., correlation) between networks from the two methods.

Our experiments using healthy participants’ test-retest
resting-state fMRI data revealed that regardless of low model
order and high model order, GIG-ICA in general obtained
functional networks with relatively greater short-term and long-
term reliability compared to IVA, although a few networks
showed slightly higher reliability in IVA than GIG-ICA. In terms
of the interaction among networks represented by FNC, we found

that the mean FNC matrix from the two methods showed a
similar pattern to some extent. However, both the mean FNC
and the individual-level FNC showed stronger modularity (i.e.,
Q-value) using GIG-ICA compared to IVA for most of the model
order settings examined. Measured by the AMI, the modular
structure was more reliable during short-term and long-term
rescanning using GIG-ICA for all tests, compared to using IVA.
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FIGURE 8 | (A,B) Reliability measures of the 12 selected networks for IVA and GIG-ICA under the case of the model order as 30. The x-axis denotes the network ID

which corresponds to that in Figure 7. (A) Mean ICC value in each network reflecting the short-term reliability of the network. The value was obtained by first

computing ICCs between the corresponding networks of scan 2 and that of scan 3, and then averaging ICCs in the significant voxels. (B) Mean ICC value in each

network reflecting the long-term reliability of the network. The value was obtained by first computing ICCs between the corresponding networks from scan 1 and the

mean networks of scan 2 and 3, and then averaging ICCs in the significant voxels. (C,D) The summarized network reliability measures for IVA and GIG-ICA under

different model orders (i.e., different numbers of components). (C) Short-term reliability of networks. (D) Long-term reliability of networks. Each boxplot shows the

reliability measures of different networks using IVA or GIG-ICA with one given model order. For the model order 20, 25, 30, 75, and 100, the number of matched

networks between the two methods were 9, 10, 12, 19, and 22, respectively.

Despite short-term and long-term, ICC measures demonstrate
that connectivity strengths were generally more robust using
GIG-ICA method, compared to IVA. Moreover, FNC obtained
from GIG-ICA showed relatively higher values in the averaged
node strength, clustering coefficient, global efficiency, and local
efficiency, indicating stronger interaction among brain functional
networks.

There are some limitations in our work. (1) The simulations
are quite simple. Only eight sources and ten subjects were
simulated, while the proportion in fMRI data is certainly
greater. In practical applications, there exist more complex
situations that could involve many subject-unique sources, high
diversity in source number, and great bias in model order
estimation. Therefore, it’s possible that conclusions we draw
from simulations are over-simplified and of limited applicability.
However, we also evaluated the two methods using data with

more subject-common and subject-unique sources. The results
are included in the Supplementary Materials (Figures S2, S4).
Our results suggest that the performances of both methods were
affected by greater spatial overlapping among sources, and the
presence of more subject-unique sources may slightly influence
the estimations of the subject-common sources in GIG-ICA to
some extent. (2) The number of sources in real data is difficult
to estimate accurately. Therefore, we don’t know the appropriate
model orders at which to compare these two methods in real
data. We compared the two methods using different numbers
of components and found similar results, but these methods
may yield different performances with other model orders.
(3) Since IVA involves a more complicated optimization task,
performance might improve if a best run selection mechanism
as in previous work (Ma et al., 2011) is used to select the most
reliable run across multiple runs. However, we did not perform
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FIGURE 9 | The mean FNC matrix and its modularity result with the model order as 100. (A,B) The mean FNC matrix across subjects derived from IVA and

GIG-ICA. There were 22 matched networks between the two methods. (C,D) Modular organization of the mean FNC matrix from IVA and GIG-ICA. (E,F) The

connectogram representation of the modularity of the mean FNC obtained from IVA and GIG-ICA. In (E,F), the intrinsic networks (INs) belonging to the same modular

are shown using the same color, and only top 20% of the connectivities with higher absolute connectivity strengths among networks are shown using lines.
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FIGURE 10 | The summarized modularity and reliability measures of FNC for IVA and GIG-ICA under different model orders (i.e., different numbers of

components). (A) The modularity Q-value of the mean FNC. (B) Individual FNC’s modularity Q-value. The Q-values of FNC matrices from all datasets are shown

using one boxplot, each point of which corresponds to a Q-value of one individual FNC matrix. (C) The short-term modularity reliability. (D) The long-term modularity

reliability. (E) The short-term reliability of connectivity strengths in FNC. (F) The long-term reliability of connectivity strengths in FNC. In (E,F), each boxplot includes ICC

values of all connectivities.

estimation of multiple runs due to the computation load that
would significantly increase the computation time. Similarly use
of a more powerful IVA algorithm such as the one proposed

in Boukouvalas et al. (2015) might improve the estimation
performance at the expense of computation cost. (4) Using
healthy participants’ test-retest resting-state fMRI data, GIG-ICA
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FIGURE 11 | Comparison of graph theory based metrics of FNC under different model orders. In the left-top subfigure, the averaged node strength values

computed based on all 75 datasets’ FNC matrices from IVA/GIG-ICA with one specific model order are shown in one boxplot. Other boxplots are formatted similarly.

obtained higher network reliability as well as stronger and more
reliable modularity than IVA. Network reliability is regarded as
a desirable property since the fMRI data in our experiments
were from healthy subjects’ test-retest scans (Shehzad et al., 2009;
Zuo and Xing, 2014). Previous researches (Wang et al., 2010;
Bullmore and Bassett, 2011) have supported that healthy brain’s
intrinsic activity is organized as a small-world, highly efficient
network with highly connected brain regions. Nevertheless, the
truths regarding both network reliability and integration are
unknown for real data. In the future, we will employ fMRI data
from both healthy controls and patients with mental disorders to
examine the ability of the two methods in identifying potential
biomarkers.
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Psychophysiological interaction (PPI) is a regression based method to study task

modulated brain connectivity. Despite its popularity in functional MRI (fMRI) studies, its

reliability and reproducibility have not been evaluated. We investigated reproducibility

and reliability of PPI effects during a simple visual task, and examined the effect of

deconvolution on the PPI results. A large open-access dataset was analyzed (n = 138),

where a visual task was scanned twice with repetition times (TRs) of 645 and 1,400ms,

respectively. We first replicated our previous results by using the left and right middle

occipital gyrus as seeds. Then regions of interest (ROI)-wise analysis was performed

among 20 visual-related thalamic and cortical regions, and negative PPI effects were

found between many ROIs with the posterior fusiform gyrus as a hub region. Both the

seed-based and ROI-wise results were similar between the two runs and between the

two PPI methods with and without deconvolution. The non-deconvolution method and

the short TR run in general had larger effect sizes and greater extents. However, the

deconvolution method performed worse in the 645ms TR run than the 1,400ms TR run

in the voxel-wise analysis. Given the general similar results between the twomethods and

the uncertainty of deconvolution, we suggest that deconvolution may be not necessary

for PPI analysis on block-designed data. Lastly, intraclass correlations (ICC) between the

two runs were much lower for the PPI effects than the activation main effects, which raise

cautions on performing inter-subject correlations and group comparisons on PPI effects.

Keywords: reproducibility, reliability, test–retest, psychophysiological interaction, deconvolution

INTRODUCTION

Psychophysiological interaction (PPI) is a widely usedmethod to study task related brain functional
connectivity changes (Friston et al., 1997). It employed simple regression-based method to model
taskmodulated connectivity effects, thus enabling whole brain exploratory analysis. Therefore, even
though there are more sophisticated methods available, e.g., dynamic causal modeling (Friston
et al., 2003), PPI is still a valuable method for functionalMRI (fMRI) data, given that our knowledge
on large-scale task related connectivity is still quite limited. Several modifications of the PPImethod
have been made after it was proposed, including adding a deconvolution step to deal with the
asynchrony between task design and fMRI hemodynamic response (Gitelman et al., 2003) and
introducing a generalized framework to model more than two experimental conditions (McLaren
et al., 2012).
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A PPI effect is defined as an interaction between the time
series of a brain region (physiological variable) and a (or more)
task design variable (psychological variable). Noises of both the
physiological and psychological variables go into the interaction
term, so that the interaction effect is much noisier than the
main effects of task free connectivity (physiological main effect)
and task activation (psychological main effect). This makes PPI
analysis having lower statistical power than simple connectivity
and conventional activation analysis. Since PPI analysis has been
increasingly used to study group differences and inter-subjects
variability, it is important to evaluate the reproducibility and
reliability of the PPI methods (Vul et al., 2009; Dubois and
Adolphs, 2016). Voxel-based meta-analysis has been used to
examine consistency of PPI results across studies (Di et al.,
2017a). However, because the tasks used in different studies
varied greatly, the motivation of a meta-analysis on PPI was
rather to identify different connectivity that were modulated by
different tasks, than to simply identify consistent connectivity
cross studies with different tasks (Di et al., 2017a). Nevertheless,
the reliability of PPI effect has not been directly examined.

One critical step for the PPI method is to properly deal
with the asynchrony between task design and observed blood-
oxygen-level dependent (BOLD) signals. An earlier solution is to
convolve the psychological variable with hemodynamic response
function (HRF). Then the PPI term x1PPI could be expressed as:

x1PPI = xPhysio · (zPsych ∗ hrf ) (1)

where xPhysio represents the physiological variable, zPsych
represents the psychological design variable, and ∗ represents
convolution operator. However, this calculation is not
appropriate if the interaction happened faster than the slow
hemodynamic response. Therefore, a deconvolution procedure
is required (Gitelman et al., 2003) to find a variable zPhysio that:

xPhysio = zPhysioi ∗ hrf (2)

If this could be achieved, then the interaction could be calculated
at the neuronal level and then convolve with HRF:

x2PPI = (zPsych · zPhysio) ∗ hrf (3)

We can also put Equation (2) to Equation (1), so that:

x1PPI = (zPsych ∗ hrf ) · (zPhysio ∗ hrf ) (4)

Mathematically, x1PPI and x2PPI are not equivalent. Therefore,
deconvolution seems necessary. However, effective
deconvolution depends on assumptions such as, known
HRF and noise characteristics in the BOLD signals (Roebroeck
et al., 2011; O’Reilly et al., 2012). Unfortunately, there are
substantial amount of variability in HRF both across brain
regions and across subjects (Handwerker et al., 2004). On the
other hand, if a task design is slower than the hemodynamic
response, e.g., a blocked design, the PPI terms calculated from the
above mentioned two methods could be very similar. We have
demonstrated that the PPI results of a block-designed visual task

are spatially corresponding very well between the deconvolution
and non-deconvolution PPI methods (Di et al., 2017b). Whether
to perform deconvolution then needs to compromise between
the deviation between the PPI terms calculated in different
ways and the uncertainty of deconvolution (Di et al., 2017b).
Therefore, it might be better to not perform deconvolution for
a block-designed task, which is actually recommended by FSL
(FMRIB Software Library; Jenkinson et al., 2012; O’Reilly et al.,
2012). For event-related designed task, however, deconvolution
may be still necessary, because the PPI terms calculated from
the deconvolution and non-deconvolution methods may be
dramatically different.

We recently demonstrated negative PPI effects (reduced
connectivity) between the middle occipital gyrus to the fusiform
gyrus and supplementary motor areas in a simple block-
designed checkerboard task compared with a fixation baseline
(Di et al., 2017b). Here, we further analyzed a larger sample
of checkerboard data (n = 138) of two separate runs with two
repetition times (TR: 645 and 1,400ms; Nooner et al., 2012). The
aims of the current study are to first evaluate reproducibility and
reliability of PPI effects in the checkerboard task. Additionally,
we investigated the impact of PPI calculation methods on the PPI
results and their reproducibility and reliability. We operationally
defined reproducibility as whether previously reported clusters
could be observed in the current analysis, and whether the
clusters reported in one run could be observed in the other run.
Quantitatively, we utilized Dice coefficient to quantify overlaps of
voxels on thresholded maps (Rombouts et al., 1998; Taylor et al.,
2012). Next, we used intraclass correlation (ICC) to quantify
test–retest reliability. Because the short TR run has about twice
the number of time points as the long TR one, we predict that
statistical results would be better for the short TR run compared
with the long TR run. In addition, shorter sampling rate may
provide more accurate estimate of hemodynamic response,
therefore deconvolution PPI method should work better for the
short TR than the long TR runs.

METHODS

Simulations on the Correlations between

PPI Terms
The hemodynamic response is a slow response compared with
neuronal events, which can be understood as a low-pass filter.
Intuitively, if a task design is slow enough, e.g., a blocked
design, the convolution with the HRF may not affect PPI
calculations much. To directly demonstrate this relationship
between design alternating length and the effect of convolution
on PPI calculation, we firstly performed a simulation. In this
simulation, we defined a simple block-designed task with equal
on and off periods with different cycle lengths (from 8 to
80 s), and a simple event-related design with fixed inter trial
interval of 12 s (Figure 1A). We used a typical sampling rate
of 2 s, so that the event-related design could be expressed as
alterations of one time bin (2 s) of a trial and five time bins
(10 s) of the baseline condition (The first column in Figure 1A).
The remaining columns in Figure 1A show block designs with
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FIGURE 1 | Simulations of the correlations between PPI terms calculated from deconvolution and non-deconvolution methods. (A) Illustrates different task designs

that were used for the simulation. Each column represents a task design. E in the x axis represents the event-related design, with 1 time bin (2 s) of the trial condition

and 5 time bins (10 s) of the baseline condition. The remaining columns show block designs with different frequencies of repetition. For example, 80 s cycle means

40-s on and 40-s off of the task condition related to the baseline. Physiological variables at the neuronal level were generated using Gaussian random variables for

1,000 times. (B) Shows boxplots of correlations across the 1,000 simulations between PPI terms calculated from two methods: (1) the two simulated variables were

convolved with the HRF and then multiplied to form the PPI term; (2) the two simulated variables were multiplied and then convolved with the HRF.

FIGURE 2 | Examples of PPI terms calculated by the deconvolution and non-deconvolution methods for the two TR runs.

different frequencies of repetition. For example, 80 s cycle means
40-s on and 40-s off of the task condition related to the baseline.
We then simulated the physiological variable of neuronal
activities as a Gaussian variable for 1,000 times. For each design
and simulated “neuronal” physiological variable, we calculated
PPI terms using two ways: (1) each variable convolved with
the canonical HRF and then the two convolved variables were
multiplied to form a PPI term (corresponding to x1PPI in Equation
4); (2) the two variables were multiplied and then convolved with
the canonical HRF (corresponding to x2PPI in Equation 3). We
then calculated the correlations of the PPI terms calculated from
the two methods. The code for this simulation can be found at:
https://github.com/dixy0/PPI_correlation_demo.

fMRI Data and Task Design
We used the checkerboard fMRI data with TRs of 645 and
1,400ms from the release 1 of Enhanced Nathan Kline
Institute—Rockland Sample (http://fcon_1000.projects.nitrc.
org/indi/enhanced/). One hundred and forty-six subjects’

data with age equal or larger than 20 years old were included
for analysis. Six subjects’ data were discarded due to large head
motion during fMRI scanning in any of the two scans (maximum
frame-wise displacement (FD) (Di and Biswal, 2015)>1.5mm or
1.5◦). One subject’s data were deleted because of poor coverage
of the lower occipital lobe, and another subject’s data were
deleted because of failure of coregistration and normalization.
The effective number of subjects was 138 (89 females, 45 males, 1
unidentified). The mean age of the sample was 47.8 years (20–83
years).

The checkerboard task consisted of 20 s fixation block and
20 s flickering checkerboard block repeated three times. A blank
screen was presented after the third checkerboard block until
fMRI scan was complete. The task was scanned for two separate
runs with two TRs: 645 and 1,400ms, respectively. For the 645ms
run, 239 or 240 fMRI images were scanned for each subject. The
following parameters were used: TR = 645ms; TE = 30ms; flip
angle = 60◦; voxel size = 3 × 3 × 3mm3 isotropic; number
of slices = 40. For the 1,400ms run, 98 fMRI images were
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FIGURE 3 | (A) Activations (t maps) of visual checkerboard presentation for the 645ms TR run (upper) and 1,400ms TR run (lower). The threshold t-value

corresponds to one-tailed significance at p < 0.001. (B) Overlaps (Dice coefficients) between the two TR runs using t threshold (left) and percentile threshold (right).

(C) Test–retest reliability map (intraclass correlations, ICC) of activations between the two runs is shown on the left, which were thresholded at ICC > 0.2. The

histograms of ICC of activations between the two TR runs in significant voxels and whole brain are shown on the right. The significant voxels were determined using

intersection of the two runs each thresholded at p < 0.001.

scanned for each subject. The following parameters were used:
TR = 1,400ms; TE = 30ms; flip angle = 65◦; voxel size = 2
× 2 × 2mm3 isotropic; number of slices = 64. Anatomical T1
images were scanned using MPRAGE (magnetization-prepared
rapid acquisition with gradient echo) sequence with the following
parameters: TR = 1,900ms; TE = 2.52ms; flip angle = 9◦; voxel
size = 1 × 1 × 1mm3 isotropic. More information of the data
can be found in Nooner et al. (2012).

fMRI Data Analysis
fMRI Data Preprocessing
Functional MRI (fMRI) data preprocessing and analysis were
performed using SPM12 software (http://www.fil.ion.ucl.ac.uk/
spm/) under MATLAB environment (http://www.mathworks.
com/). For the 645ms run, the first 14 images (9 s) were discarded
from analysis, resulting in 225 images for each subject. For the
1,400 TR run, the first five images (7 s) were discarded from
analysis, resulting in 93 images for each subject. The functional
images were motion corrected, and corregistered to subject’s
anatomical images. The anatomical images were segmented,
and the deformation field images were used to normalize the
functional images intoMNI space. The data from the two TR runs
were both resliced and resampled at a spatial resolution of 3 × 3
× 3 mm3. Lastly, the functional images were smoothed using a
6mm full width at half maximum (FWHM) Gaussian kernel.

Activation Analysis
We first defined functional ROIs of the visual thalamus and lower
visual area by performing general linear model (GLM) analysis

on the checkerboard task. The checkerboard task was modeled
as a box-car function, with 1 representing the checkerboard
condition and 0 representing the fixation or blank screen. The
box-car function was convolved with the canonical HRF to
form a predictor of BOLD responses. Two regressors of the first
eigenvariate of BOLD signals in white matter and cerebrospinal
fluid (CSF), and 24 regressors of Friston’s autoregressive head
motion model (Friston et al., 1996) were also added in the
model as covariates. An implicit high-pass filter of 1/128Hz
was also implemented in the model. The high-pass filtering
is accomplished in SPM by using discrete cosine transform
functions. The effective high-pass filtering cutoffs were then
0.0069Hz (1/145.125 s) for the 645ms TR run and 0.0077Hz
(1/130.2 s) for the 1,400ms TR run. The GLM model was
estimated for each voxel in the brain to identify regions that
showed similar patterns of activations as the task design. The
beta maps of task activation were used for group level analysis
using a one sample t-test model. Statistical significant clusters
were identified by using cluster level statistics based on random
field theory. Clusters were first identified using a one-tailed
t-test at p < 0.001, and cluster extent was determined using false
discovery rate (FDR) at p < 0.05.

Definition of Regions of Interest
We performed two types of PPI analyses, voxel-wise analysis
using seed regions that were activated by the checkerboard task
and ROI-based analysis among visual thalamus and cortical
visual areas independently defined from other toolbox. In the
activation analysis of the current data, the posterior visual cortex
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FIGURE 4 | Psychophysiological interaction (PPI) results for the left middle occipital gyrus (LMOG) seed during checkerboard presentation in the two runs of TR

(repetition time) 645ms and TR 1,400ms. The resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), with DF (degree of freedom) of 137. The last

row illustrates the number of overlapped negative PPI results in the four scenarios. Numbers on the bottom represent z coordinates in MNI (Montreal Neurology

Institute) space.

and the posterior portion of the thalamus were robustly activated
by the visual checkerboard stimulation in both TR runs. We
therefore defined the left and rightmiddle occipital gyrus (LMOG
and RMOG) and the thalamus as regions of interest (ROIs)
based on the activations. To define the ROIs with proper size,
we increase the threshold to t > 16 to define the LMOG and
RMOG, and made an intersection between the two runs. The
size of LMOG was 222 voxels, and the size of RMOG was
259 voxels. Thalamus was defined using a threshold of p <

0.001, with an intersection between the two runs. Because the
visual thalamus is small, left, and right ROIs were combined to
form a single thalamus ROI (171 voxels). Different thresholds
were chosen to ensure that these ROIs are similar in size. The
eigenvariate of a ROI was extracted with adjustment of effects of
no interests (headmotion,WM/CSF variables, and low frequency
drifts).

For the ROI-based analysis, we defined the visual thalamus
as the regions that show functional associations with the lateral
visual network in resting-state (Yuan et al., 2016). Cortical visual
areas were defined by using probabilistic cytoarchitectonic maps.
These areas include the OC1/OC2 (occipital cortex; Amunts
et al., 2000), ventral and dorsal OC3 and OC4 (Rottschy
et al., 2007; Kujovic et al., 2013), OC5 (Malikovic et al.,
2006), and FG1/FG2 (fusiform gyrus; Caspers et al., 2013). For
the probabilistic maps of these regions, we first performed a
winner-takes-all algorithm to define unique regions of each area,
and then split them into left and right regions. As a result,
there are 20 ROIs (left and right thalamus, OC1, OC3, OC3d,
OC3v, OC4d, OC4v, OC5, FG1, and FG2). The eigenvariate
of a ROI was extracted with adjustment of effects of no
interests (head motion, WM/CSF variables, and low frequency
drifts).

Frontiers in Neuroscience | www.frontiersin.org October 2017 | Volume 11 | Article 573137

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Di and Biswal Reproducibility and Reliability of PPI

FIGURE 5 | Psychophysiological interaction (PPI) results for the right middle occipital gyrus (RMOG) seed during checkerboard presentation in the two runs of TR

(repetition time) 645ms and TR 1,400ms. The resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), with DF (degree of freedom) of 137. The last

row illustrates the number of overlapped negative PPI results in the four scenarios. Numbers on the bottom represent z coordinates in MNI (Montreal Neurology

Institute) space.

Psychophysiological Interaction Analysis
PPI analysis was performed using SPM12 with updates 6685.
PPI terms were calculated by using both deconvolution method
and non-deconvolution method. For the deconvolution method,
the time series of a seed region was deconvolved with the
canonical HRF, multiplied with the centered psychological box-
car function, and convolved back with the HRF to form
a predicted PPI time series at hemodynamic response level.
For the non-deconvolution method, the box-car function of
psychological design was convolved with the HRF to form a
psychological variable, and it was centered and multiplied with
the raw seed time series. Figure 2 shows examples of PPI terms
calculated from the two methods in the two TR runs.

For voxel-wise PPI analysis, separate GLMs were built for
the LMOG, RMOG, and thalamus seeds, and for the two TR

runs. The models included one regressor representing the task
activation, one regressor representing the seed time series, one
regressor representing the PPI term, and the covariates the
same as the activation GLMs descripted above. Group-level one
sample t-test was used on the corresponding PPI effects, to
test where in the brain showed consistent PPI effects with a
seed region. For both positive and negative contrasts, a one-
tailed t-test of p < 0.001 was first used to define clusters, and
then a FDR cluster threshold of p < 0.05 was used to identify
statistical significant clusters. For the ROI-wise analysis, PPI
GLM models were built for each of the 20 ROIs, and applied to
all other ROIs as a dependent variable. The GLMmodel included
one psychological variable, one physiological variable, one PPI
variable, and one constant term. The covariates were not included
because they have already been regressed out from all ROI time
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FIGURE 6 | Psychophysiological interaction (PPI) results for the thalamus seed during checkerboard presentation in the TR (repetition time) run of 645ms. There is no

significant PPI effects of the thalamus seed in TR run of 1,400ms. The resulting clusters were thresholded at p < 0.001 (approximated t = 3.15), with DF (degree of

freedom) of 137. Numbers on the bottom represent z coordinates in MNI (Montreal Neurology Institute) space.

series. PPI effects were calculated between each pair of ROIs,
resulting in a 20 × 20 matrix of beta values for each subject. The
matrices were symmetrized by averaging corresponding upper
and lower diagonal elements (Di et al., 2017b), with a total of
190 (20 × 19/2) unique effects. Group-level one-sample t-test
was performed on each element of the matrix. For both positive
and negative contrasts, a one-tailed t-test of p < 0.001 was used
to identify significant PPI effects. This threshold was chosen to
match with voxel-wise analysis. We also used FDR correction on
the total of 190 effects. And the results are similar to what using a
p < 0.001 threshold. However, FDR depends on the distribution
of all tested p-values, making it difficult to compare between two
runs. Therefore, we adopted p < 0.001 to report ROI-based PPI
results.

Reproducibility and Reliability
We operationally define reproducibility as overlaps of supra-
threshold clusters. Dice coefficient was used to quantify
reproducibility (Rombouts et al., 1998). Two strategies were
used to threshold the maps or matrix from the two TR runs.
First, statistical t maps or t matrices from the two TR runs
were thresholded using a common t-value, ranging from 1.7
(approximately corresponds to p < 0.05) to 7. However, it is
possible that the effect sizes in the two TR runs are systematically
different, so that using a same t-value could generate very
different numbers of supra-threshold voxels or elements in the
two runs. Therefore, we also thresholded t maps or t matrices
based on the percentile of t-values within a map or matrix.
This could ensure that the numbers of supra-threshold voxels or
elements are the same between the two TR runs.

We operationally define reliability as test–retest reliability
between the two TR runs, as quantified as ICC (Zuo et al.,

2010a). Voxel-wise ICC maps or each ROI and ICC matrices
across 20 ROIs were calculated between two TR runs for
each PPI method. At each voxel or matrix element, ICC was
calculated from a 138 (subject) by 2 (run) matrix by using
a MATLAB function written by Zuo et al. (2010a). Because
only voxels that have significant effects might show meaningful
reliability, we displayed histograms of ICCs within significant
voxels or elements with reference to those in the whole brain.
For task activations, the significant voxels were determined using
intersection of the two TR runs each thresholded at p< 0.001. For
PPI effects of each ROI, the significant voxels were determined
using intersection of the two TR runs and two methods each
thresholded at p< 0.01. This slightly liberal threshold was chosen
to ensure enough number of voxels survived in the conjunction
of the four scenarios. The whole brain mask was determined as
all voxels in the brain, including WM and CSF.

Coefficient of Variation
We calculated coefficient of variation to estimate measurement
error of task activations and PPI effects. Coefficient of variation
was calculated in ROIs that showed significant activation effects.
Specifically, the LMOG, RMOG, and thalamus ROIs that were
used as seed in the PPI analysis were used to represent activation
effects. For the PPI results, we performed a conjunction analysis
of the voxel-wise negative PPI effects across all the eight contrasts
(2 PPI methods × 2 TR runs × 2 seeds) using a threshold of
p < 0.01, and identified 27 ROIs that showed common negative
PPI effects. Beta values of activations or PPI effects of these ROIs
were extracted. Coefficient of variation was calculated based on
the method assuming the variation is proportional to the mean
(Bland and Altman, 1996). It measures within subject variations
(across the two TR runs in the current case) relative to the
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FIGURE 7 | Matrices of psychophysiological interaction (PPI) results among the 20 regions of interest of visual thalamus and visual cortex for the two TR (repetition

time) runs and two methods. (A) PPI results using the deconvolution method in the TR 645 ms run. (B) PPI results using the non-deconvolution method in the TR

645ms run. (C) PPI results using the deconvolution method in the TR 1,400ms run. (D) PPI results using the non-deconvolution method in the TR 1,400ms run. The

resulting clusters were thresholded at p < 0.001.

mean effects of the two runs. Specifically, coefficient of variation
was calculated based on a 138 (subject) × 2 (run) matrix. The
beta values were first logarithmic transformed. Variation was
then calculated for each subject, and a square root of mean
variations across subjects was calculated. The resulting value
was then transformed back using an exponential function, and
subtracted by 1. The script for calculating coefficient of variation
is available at: https://github.com/dixy0/PPI_correlation_demo.
The resulting value represents the percentage of variation of
a measure relative to the mean. Coefficients of variation were
calculated on the LMOG, RMOG, and thalamus ROIs to reflect
measurement errors of the task activations, and were calculated
on the 27 ROIs from the analyses of the LMOG and RMOG seeds
to reflect measurement errors of the PPI effects.

RESULTS

Simulations on the Correlations between

PPI Terms
The distributions of PPI correlations for each task design are
shown in Figure 1B. For the block designs, the PPI correlations

are a function of block cycle length.With longer design cycle, e.g.,
>40 s (20-s on and 20-s off), the correlations of PPI terms could
be higher than 0.9. Practically, most of the block-designed fMRI
experiments have longer block cycles than 20-s on and 20-s off.
If the block alterations become faster, the correlation between
PPI terms decreased. And for the event-related design, the
mean PPI correlations were below 0.5 and with large variations.
This simulation demonstrates that if a neuronal activity time
series is known, using convolved time series to calculate PPI
term (i.e., x1PPI) could be very similar to what calculated by
first multiplying the two variables and then convolving (i.e.,
x2PPI) for typical block designed experiments. In real fMRI
data, the “neuronal” physiological variable is not known, and
has to be estimated by using deconvolution. Considering the
similarities of the PPI terms and the caveats of deconvolution,
PPI calculations without deconvolution may be a better choice
for block designed experiments. On the other hand, the PPI
correlations in the event-related design are much smaller (r <

0.5, meaning <25% of shared variance). So that deconvolution
is still a necessary step for PPI analysis in event-related designed
experiments.
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FIGURE 8 | Illustration of consistently reduced connectivity during

checkerboard presentation compared with fixation in the ROI-based (region of

interest) psychophysiological interaction (PPI) analysis in the two TR (repetition

time) runs and two methods. Numbers on the bottom represent z coordinates

in MNI (Montreal Neurology Institute) space.

Activations of the Checkerboard Task
Both TR runs showed highly significant activations in the visual
cortex, as well as in the posterior portion of the thalamus
(Figure 3A). The overlaps (Dice coefficients) of thresholded t
maps between the two TR runs were as high as 0.7 (Figure 3B)
at most of the shown t range or percentile range. And
Dice coefficients went down when only extremely activated
voxels were thresholded. The visual cortex regions also showed
high test–retest reliability (ICC > 0.7; Figure 3C). However,
the activations of the thalamus only showed small test–retest
reliability around 0.2. The histograms of ICCs in the significant
voxels and in the whole brain are shown on the right
of Figure 3C.

Psychophysiological Interactions
The voxel-wise PPI analysis of the LMOG and RMOG seeds
conveyed very similar patterns. The PPI effects of the LMOG seed
for the two TRs and two methods are shown in Figure 4. We first
observed that even though spatial extents of PPI effects varied
across the two TR runs and two PPI methods, the negative PPI
effects in previously reported regions, i.e., supplementary motor
area and higher visual cortex, could be observed from all four
scenarios. The deconvolution method in 645ms TR run had the
smallest spatial extent and statistical significance, while the non-
deconvolution method in 645ms TR run had the largest spatial
extent and strongest statistical significance. Both methods in TR
of 1,400ms showed similar spatial extent and significance levels.
The last row in Figure 4 demonstrates the overlaps of negative
effects in the four scenarios. Similar results were found in the
analysis of the RMOG seed (Figure 5).

The voxel-wise PPI analysis of the thalamus seed only showed
significant effects in the 645 TR run, but with different brain
regions with opposite effects in the two PPI methods (Figure 6
and Table S1). With deconvolution method, the thalamus seed
showed significant positive PPI effects with the middle cingulate
gyrus, anterior portion of the thalamus, bilateral anterior insula,

basal ganglia, and right fusiform gyrus. Whereas, with non-
deconvolution method, the thalamus seed showed significant
negative PPI effects with the bilateral occipital pole regions.
There were no consistent results between two TR runs and two
methods. Therefore, subsequent analysis was only performed on
the LMOG and RMOG seeds.

We next performed ROI-based PPI analysis among the 20
regions of visual thalamus and cortical visual areas (Figure 7).
The 645ms TR run showed more significant PPI effects than
the 1,400ms TR run. And non-deconvolution method showed
more significant PPI effects than the deconvolution method.
A prominent number of connectivity changes are between the
bilateral FG1 regions and other lower level visual areas ranging
from OC1, OC2, to OC4. We performed a conjunction analysis
of PPI results across the four scenarios, and identified five
connections with reduced connectivity in checkerboard than
in fixation. The regions and connections are highlighted in
Figure 8.

Reproducibility of PPI Effects
Since we observed similarities of spatial clusters and connectivity
between the two TR runs, we next examined reproducibility
of PPI effects by calculating Dice coefficients of thresholded
statistical maps or PPI matrices between the two TR runs
(Figure 9). For the voxel-wise analysis of both LMOG and
RMOG seeds, when varying t threshold, the non-deconvolution
method showed higher level overlap compared with the
deconvolution method (Figure 9A). When thresholding
statistical maps with matched number of surviving voxels,
a similar pattern could still be observed that the non-
deconvolution method produced larger overlaps than the
deconvolution method (Figure 9B). For the ROI-wise analysis,
however, Dice coefficients were at similar level between two PPI
methods at most t and percentile thresholds. But at very high t
threshold or percentile thresholds, the deconvolution method
seemed to produce larger overlaps (higher Dice coefficients;
Figures 9C,D).

Reliability of PPI Effects
We calculated ICC between the two TR runs to reflect reliability
of PPI effects. The voxel-wise maps of ICC showed that there
were typically low reliability in both methods and ROIs, even in
the regions that showed consistent negative PPI effects (Figure
S1). We then plotted the histograms of ICCs in voxels from
the whole brain (gray lines) and within regions that showed
significant PPI effects (red lines; Figures 10A–D). It turns out
that the distributions of ICCs within significant regions are
only slightly different from the distributions of correlations in
the whole brain, with means around 0.07. The distributions
of ICCs were not different between deconvolution and non-
deconvolution methods. Similar distributions of ICCs were also
found for the ROI-wise analysis (Figures 10E,F, and Figure S2).
We found five PPI effects that were consistently significant in
both TR runs and methods. And the ICCs for the five effects were
also small and close to zero.
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FIGURE 9 | Dice coefficients of thresholded negative PPI effects between the two TR runs as functions of t threshold and percentile threshold for the voxel-wise

analysis (upper panels) and ROI-wise analysis (lower panels). (A) Dice coefficients of negative PPI effects from the voxel-wise analysis between the two TR runs using

the t threshold. (B) Dice coefficients of negative PPI effects from the voxel-wise analysis between the two TR runs using the percentile threshold. (C) Dice coefficients

of negative PPI effects from the ROI-wise analysis between the two TR runs using the t threshold. (D) Dice coefficients of negative PPI effects from the ROI-wise

analysis between the two TR runs using the percentile threshold. The lowest t used for calculating overlap is 1.7, which approximately corresponds to p < 0.05. The

lowest percentile is 80, which is approximately corresponds to the largest proportions of voxels at p < 0.05.

Measurement Error
We calculated coefficients of variation (Bland and Altman, 1996)
on task activations and PPI effects to reflect measurement
error (Figure 11). The variations of activation in the LMOG
and RMOG were about 70% of the mean activation, while the
variation of activation in the thalamus was about 270% of the
mean activation (Figure 11A). In contrast, the variations of PPI
effects through the 27 ROIs were about 500% of the mean effects
for both the LMOG and RMOG seeds (Figures 11B,C), which
indicated much larger variation of PPI effects compared with
activations. The deconvolution and non-deconvolution methods
had similar level of coefficients of variations. But when directly
comparing the two methods, there was a trend that the non-
deconvolution method had smaller coefficients of variation than
the deconvolution method in most of the ROIs (Figures 11D,E).

Miscellaneous Analysis
To gain further insight to the cases of deconvolution failure, we
calculated correlations of PPI terms between deconvolution and

non-deconvolution methods for the LMOG and RMOG seeds
(Figure 12A). In both TR runs, the distributions of correlations
centered approximately on 0.7, and there were outliers whose
correlations were only 0.2 or 0.3. This is in contrast with the
simulation results (Figure 1B, 40 s cycle), where the correlations
were around 0.9.

We identified the worst case in Figure 12A (black arrow
indicated), and deconvolved and reconvovled it with the HRF
using SPM’s method (Figure 12B). The raw and reconvovled
signals look dramatically different, with the reconvolved signal
resembling a smoothed version of the original signal. Smoothness
is indeed the case for the SPM version of deconvolution
(Gitelman et al., 2003), because it utilizes regularization to
suppress high frequency components of cosine basis functions
those were used to approximate the neuronal level physiological
variable. To directly illustrate this point, we performed fast
Fourier transformation on the time series of the RMOG for
all the subjects on the raw, deconvolved, and reconvolved time
series for the two TR runs (Figure 13). It could be seen that
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FIGURE 10 | Histograms (normalized) of intraclass correlations of PPI effects between the two TR runs across the whole brain (gray lines) and in statistically significant

voxels or effects (red lines). (A–C) Show the results of the left middle occipital (LMOG) seed, right middle occipital (RMOG) seed, and ROI-based analysis using the

deconvolution method, respectively. (D–F) Show the results of the LMOG seed, RMOG seed, and ROI-based analysis using the non-deconvolution method,

respectively. The significant voxels or effects were determined using intersection of the two runs and two methods each thresholded at p < 0.01.

after deconvolution, high frequency components have been
suppressed in both TR runs. Particularly, there is a black line
that shows higher power between frequencies of 0.2 to 0.4Hz in
the raw data plot of 645ms TR run, which coincides to be the
outlier observed in Figure 12. The high frequency component
was suppressed, so that the reconvolved signal looks smooth.

DISCUSSION

By analyzing two separate runs of visual checkerboard task from
a large sample (n = 138), the current study first replicated
previously reported negative PPI effects between visual cortex
and widespread brain regions, and then showed negative PPI
effects among visual areas centered in the bilateral fusiform
gyrus. By comparing results from two separate runs, we showed
that group averaged effects were largely reproducible; however,
the inter-subject reliabilities of the PPI effects were typically
low. By comparing the deconvolution and non-deconvolution
PPI methods, we demonstrated that the results by the two
methods were in general very similar, but the non-deconvolution
produced larger statistical effects and spatial extents. The non-
deconvolution method may reduce inter-subject variations and
increase overlaps of results between the two runs in some
circumstances compared with the deconvolution method.

Functional Connectivity during

Checkerboard Stimulation
The voxel-wise analysis of the LMOG and RMOG seeds
replicated our previous results which only analyzed a sub-set of
26 subjects (Di et al., 2015, 2017b). In our previous work (Di et al.,

2017b) we could only identify significant PPI effects using the
RMOG seed, while the current study demonstrated similar PPI
effects from both the LMOG and RMOG seeds. Furthermore, we
illustrated that the spatial extent of regions that showed reduced
connectivity with the MOG seed could be much larger and
extended to other brain regions such as the insula and bilateral
sensorimotor cortex. This further suggests a higher extent of
functional segregation between the visual cortex and other brain
systems during such a simple visual stimulation task compared
with the fixation. The current study also extended previous
study by analyzing task modulated connectivity effects among
cytoarchitectonically defined visual areas. Reduced functional
connectivity was observed among many visual areas, with the
bilateral FG1 as hub regions. FG1 is the most posterior portion of
the fusiform gyrus, which just laid anterior to the occipital cortex
(Caspers et al., 2013). It is thought a transition zone between
lower retinotopic visual areas and higher category specific brain
areas, and integrates information from different retinotopic
visual areas to higher category specific brain areas (Caspers et al.,
2014). Therefore, it is reasonable to see that the FG1 showed
reduced functional connectivity with many lower visual areas in
the checkerboard condition, because the simple stimuli cannot
form a meaningful percept of a specific category.

The thalamus is a critical subcortical structure in the brain,
which not only relay sensory information to the cortex, but also
thought to mediate corticocortical communications (Guillery
and Sherman, 2002; Saalmann and Kastner, 2011). The PPI
analysis of the thalamus, however, did not show consistent effects
in different TR runs or different methods. It may because that
the visual thalamus is small in size compared with cortical visual
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areas, and the signals in the thalamus are not reliable enough. The
current results do suggest some reduced connectivity between
the visual thalamus to the primary visual cortex, and increased
connectivity between the visual thalamus to the anterior portion
of the thalamus, basal ganglia, and insula. However, the results
are weak and unreliable, especially considering that the current
analysis had included 138 subjects.

Reproducibility and Reliability of PPI

Effects
To our knowledge, the current study is the first one to evaluate
reproducibility and reliability on PPI effects. The current analysis
did not only reproduce the results reported previously (Di et al.,
2017b), but also examined the reproducibility between two runs.
Although the two runs were scanned using different parameters,
most importantly the temporal and spatial resolutions, the
patterns of PPI effects turned out to be quite similar between
the two runs. The run with 645ms TR seemed to generate larger
spatial extent in the voxel-wise analysis and more statistically
significant results in the ROI-wise analysis. This is consistent with
our prediction, because there are more time points in the 645ms
TR run than in the 1,400ms TR run, which could yield higher
statistical power. We do notice that in some scenarios, i.e., voxel-
wise analysis with deconvolution, the PPI results in 645ms TR
run had smaller effect size and spatial extent, which might be due
to failure of deconvolution.

On the other hand, the results indicated that inter-subject
reliabilities are typically low (around 0.07) no matter which PPI
method was used. The low reliability should be compared with
those of simple task activations, which showed reasonably high
reliability regardless of the scan length. The reliability of PPI
effects in the current analysis are also much lower than previous
reported test–retest reliabilities on task activations (Raemaekers
et al., 2007; Plichta et al., 2012) and resting-state functional
connectivity (Zuo et al., 2010b; Guo et al., 2012). Of course the
short scan lengths could be one factor that explains the low
reliability of PPI effects. But it should be also emphasized that the
reliability of higher order interaction effects (i.e., the PPI) should
be much lower than the main effects of task activations and
task-free functional connectivity. A scan length that is sufficient
for obtaining reliable task activations may not be necessarily
enough to yield reliable task modulated connectivity estimates.
This factor should be taken into account when designing studies
on task based connectivity.

Deconvolution and PPI
The PPI results using both the deconvolution and non-
deconvolution methods are in general very similar. This is
consistent with the simulation showing that the PPI term
calculated from the convolution then multiplication method
is very similar to the hypothetical PPI term with a known
neural activity in a block-designed task. When comparing the
differences of PPI results with these two methods, the non-
deconvolution method seems to be able to generate larger
statistical effects and greater spatial extents or number of
significant effects. The non-deconvolution method also increased
the Dice coefficients of thresholded PPImaps between the two TR

runs. However, the Dice coefficients of thresholded PPI matrices
between the two TR runs are quite similar between the two PPI
methods, and the deconvolution method may be even benefiting
at higher thresholds. These results highlighted the uncertainty of
deconvolution method in PPI analysis.

We have shown that the correlations of PPI terms between
deconvolution and non-deconvolution methods may have
outliers whose correlations were only 0.2 or 0.3 (Figure 12),
which is in contrast with the simulation results (Figure 1B). The
lower correlations of PPI terms from empirical data compared
with the simulations imply that there might be some uncountable
variations introduced during the deconvolution/convolution of
real fMRI data. Indeed, deconvolution is rather a practical
problem to recover underlying signals from some recorded
measures, than a simple mathematical problem as depicted
in Equation (2). In the practical context, measurement noises
need to be taken into account in the deconvolution model. For
fMRI, the goal of deconvolution is to recover neuronal activities
from observed BOLD signals, where there are plenty of noises
during MRI recording. The deconvolution should be expressed
as follows with an additional error term:

xPhysio = zPhysio ∗ hrf + ε (5)

In this circumstance, some noises would be removed during
deconvolution so that a signal deconvolved and convolved back
with a HRF will no longer be the same as the original signal. The
noise characteristics and regularization methods for recovering
zPhysio become critical to the success of deconvolution.

As have been shown in Figure 13, SPM’s deconvolution
method explicitly suppresses high frequency components with
the intention that the hemodynamic response is slow therefore
high frequency components may represent noises. But this may
overly smooth the data and remove useful information in higher
frequency bands, thus making PPI results with the deconvolution
method less sensitive than those with the direct PPI method. This
problem may be more severe for short TR data, because there
are more high frequency components in the data. On the other
hand, high frequency signals in BOLD have been increasingly
recognized as functionally meaningful (Chen and Glover, 2015;
Gohel and Biswal, 2015; Lewis et al., 2016), and high frequency
components may be critical for connectivity dynamics. Given
that multiband imaging technique has made fMRI sampling rate
much faster, proper treatment of high frequency signals may
be critical in deconvolution of fMRI signals and connectivity
analysis in general.

Given the facts that the two PPI methods can generate
similar results for the current block-designed task and the non-
deconvolution method may increase statistical power, we lean
toward a conclusion that the non-deconvolution PPI method
may be a better choice for a block-designed task. This is
in line with the recommendation by FSL (O’Reilly et al.,
2012). Of course, deconvolution is still necessary for an event-
related task design, because the PPI terms calculated from
the convolution then multiplication method are dramatically
different from those calculated from the multiplication then
convolution method (Figure 1). It’s also worth mentioning that
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FIGURE 11 | Measurement errors as revealed by coefficients of variations (CV) (Bland and Altman, 1996) for the activation (A) and psychophysiological interaction

(PPI) results (B,C). Please notice the different scales in y axes. (D,E) Demonstrate the differences of CV on PPI effects between the deconvolution and

non-deconvolution methods. LMOG, left middle occipital gyrus; RMOG, right middle occipital gyrus; Tha, thalamus.

FIGURE 12 | (A) Histograms of correlations between PPI terms with and without deconvolution across all subjects from both the LMOG and RMOG ROIs for the two

TR runs. (B) For the worst case as spotted by the black arrow in (A), we show the raw time series and the time series with deconvolution and re-convolution with

hemodynamic response function.

it has been suggested that the beta series method (Rissman
et al., 2004) might be an alternative method for event-related
designed data (Cisler et al., 2014). Lastly, there are indeed many
variety of deconvolution methods (Makni et al., 2008; Havlicek
et al., 2011; Wu et al., 2013), and some of the methods may
be more suitable for fMRI signals and PPI analysis. Systematic
comparisons between these different methods are needed in the
future.

The current analyses are mostly based on empirical fMRI
data. One limitation of empirical analysis is that there is no
known ground truth to compare with. Simulation may be an
alternative way to approach the question. However, development
of biological realistic models for task modulated connectivity is
still challenging, so that the deconvolution problem is difficult
to study using simulations at the current stage. In addition,
the similarities and differences between PPI results of the
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FIGURE 13 | Power spectrums of time series from the right middle occipital gyrus seed for each of the 138 subjects for the 645ms run (upper panels) and 1,400ms

run (lower panels). Each line in a plot represents one subject. Left, middle, and right panels show the power spectrum of the raw, deconvolved, and re-convolved

time series, respectively.

deconvolution and non-deconvolution methods depend on the
variability of hemodynamic response in real fMRI data, which
cannot be simply derived from simulations. Therefore, we believe
that the current empirical analysis is suitable for the question of
deconvolution.

Practical Implications on PPI Analysis
The current study analyzed data from a simple task design
with one task condition and one baseline condition. In real
fMRI experiments, however, there are usually more than
two conditions. To deal with multiple conditions, it was
recommended that each task condition is modeled separately
with respect to all other conditions (McLaren et al., 2012). In
such “generalized PPI” framework, each experimental condition
is modeled as the same way as the checkerboard condition in the
current study. It is reasonable to conclude that the similarities of
PPI results with and without deconvolution could be generalized
to experiments with more than two conditions.

Task related functional connectivity as measured by PPI
analysis is typically much smaller, in terms of effect size,
reproducibility, and reliability, than simple task activations, and
has much larger measurement error. To ensure enough statistical
power and reliability, a larger sample size than typical activation
studies and enough scan length for each subject are necessary.
The design for an fMRI task needs to consider scan length
as a critical factor, if the goal of the study is to examine
task related connectivity. To date, it is still largely unknown
how long a scan is needed for reliability capture task related
connectivity. We can only get some insights from resting-state
connectivity research, where large scale test–retest datasets are
available (Biswal et al., 2010; Zuo et al., 2014). In resting-state
literature, it has been suggested that at least 5min of scan is

needed for reliability estimate functional connectivity (Van Dijk
et al., 2010; Birn et al., 2013). Then at least 5min of scan length
for a single task condition is needed for task based fMRI. If the
PPI effects are going to be compared between two experimental
conditions, which is usually the case for a well-designed cognitive
neuroimaging study, the required scan length would be much
longer. Of course, direct examinations of the effect of scan length
on task related connectivity estimates are still needed in future
research.

The PPI method takes advantages of the dynamic aspect of the
BOLD signals. Therefore, it’s preferable to adopt faster sampling
rate to capture temporal dynamics, which may in turn lead to
sacrifice of other aspects of the signals, e.g., spatial resolution. The
current results support the idea that shorter TR may be beneficial
for PPI analysis. Of course, faster sampling rate could be
accomplished by new developments of MRI techniques such as,
multi-band acquisition (Feinberg and Yacoub, 2012). However,
the current results also suggested some pitfalls of using short
TR data. The currently used HRF models and deconvolution
method may be not quite suitable for fast TR data, so that the PPI
method with deconvolution may fail in some cases in short TR
data. More work is still needed to validate and optimize models
on high speed fMRI data. Of course, high spatial resolution has
its own advantage on mapping small brain structures such as
the thalamus. So that the considerations of temporal and spatial
resolutions may also need to take into account the spatial scales
of the regions that are studied.

CONCLUSION

We demonstrated that the deconvolution and non-
deconvolution PPI methods generated similar results on a
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simple block-designed task. The deconvolution method may
be beneficial in terms of statistical power and reproducibility.
Taken together, deconvolution may be not necessary for PPI
analysis for block-designed fMRI data. When using a large
sample, group mean PPI effects are reproducible; however, inter-
subject reliabilities of the PPI effects are quite limited. Systematic
evaluations on scan length and reliability may be necessary before
studying inter-subject differences or group differences of PPI
effects.
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The temporal dynamics of complex networks such as the Internet are characterized by

a power scaling between the temporal mean and dispersion of signals at each network

node. Here we tested the hypothesis that the temporal dynamics of the brain networks

are characterized by a similar power law. This realization could be useful to assess

the effects of randomness and external modulators on the brain network dynamics.

Simulated data using a well-stablished random diffusion model allowed us to predict

that the temporal dispersion of the amplitude of low frequency fluctuations (ALFF) and

that of the local functional connectivity density (lFCD) scale with their temporal means.

We tested this hypothesis in open-access resting-state functional magnetic resonance

imaging datasets from 66 healthy subjects. A robust power law emerged from the

temporal dynamics of ALFF and lFCDmetrics, which was insensitive to themethods used

for the computation of the metrics. The scaling exponents (ALFF: 0.8 ± 0.1; lFCD: 1.1

± 0.1; mean ± SD) decreased with age and varied significantly across brain regions;

multimodal cortical areas exhibited lower scaling exponents, consistent with a stronger

influence of external inputs, than limbic and subcortical regions, which exhibited higher

scaling exponents, consistent with a stronger influence of internal randomness. Findings

are consistent with the notion that external inputs govern neuronal communication in the

brain and that their relative influence differs between brain regions. Further studies will

assess the potential of this metric as biomarker to characterize neuropathology.

Keywords: FCDM, ALFF, lFCD, functional connectivity (FC), graph theory analysis, brain networks, Taylor’s law,

numerical simulations

INTRODUCTION

During resting-state functional magnetic resonance imaging (rfMRI) (Biswal et al., 1995) the
human brain sequentially engages in a series of diverse free-streaming subject-driven mental states
supported by different brain networks (Mason et al., 2007; Doucet et al., 2012; Shirer et al., 2012; Liu
and Duyn, 2013; Yang et al., 2014). These complex and time-varying functional operations require
a dynamic brain network topology to support the context-dependent coordination of neuronal
populations (Allen et al., 2014; Zalesky et al., 2014) and its characterization and measurement
could facilitate development of clinical biomarkers in neurology and psychiatry (Hutchison et al.,
2013). Thus, the temporal dynamics of the human brain connectome (Chang and Glover, 2010;
Sakoğlu et al., 2010) provides a new metric of brain function to assess healthy and disease
conditions (Calhoun et al., 2014). However, our lack of understanding of the principles governing
network dynamics may preclude the interpretation of the observed dynamics, which increases
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the within-subjects variability of the functional connectivity
metrics (Tomasi et al., 2016a,b). A better understanding of how
the collective behavior of neuronal communities contributes to
the observable dynamics is crucial for the interpretation of the
dynamics of functional connectivity.

Previous studies have shown that temporal mean 〈Si〉, and
dispersion, σi, of the activity at a given node are related through
a power law across network nodes (Argollo de Menezes and
Barabasi, 2004)

σi = a〈Si〉
b, (1)

where the scaling exponent, b, is a property of the network.
Based on theoretical grounds and independent from the topology
of the network, b equals either ½ or 1, which reflect a
competition between the system’s internal collective dynamics
and temporal changes in the external environment (Argollo de
Menezes and Barabasi, 2004). Specifically, in the absence of
external modulation, b = ½, but when external driving forces
become dominant, b = 1. For instance, whereas the network
of internet routers is characterized by b = ½, the network of
highways and the World Wide Web are characterized by b = 1.
However, empirical evidence from ecology, where (1) describes
the spatiotemporal variability of natural populations, supports
the existence of intermediate b-values (Taylor, 1961) suggesting
that meaningful temporal dynamic require ½ < b < 1.

Inasmuch as brain networks have scale-free (Barabasi and
Albert, 1999; Eguíluz et al., 2005) and small-world (Watts and
Strogatz, 1998) properties exhibited by complex networks we
hypothesized that the mean and σ of FC properties such as
ALFF, the amplitude of the low frequency fluctuations (Yang
et al., 2007) or lFCD, the local degree of connectivity (Tomasi
and Volkow, 2010) would reveal the characteristic power scaling
properties exhibited by other complex networks. Specifically, we
hypothesized that the mean and σ would be related by the power
law (1) and that different brain networks would exhibit different
scaling exponents reflecting differential balance between internal
randomness (random firing) and external inputs (non-random
firing). We selected functional connectivity (ALFF and lFCD)
metrics rather than raw signals because the mean and dispersion
values of the BOLD-fMRI signals are not expected to be in
agreement with Equation (1).

METHODS

To interpret the observed power scaling law (1), we study a
simple dynamical model based on random diffusion. Using this
model and functional connectivity information extracted from
rfMRI datasets, we assessed the validity of Equation (1) in the
context of brain functional connectivity. However, since direct
application of Equation (1) to the mean and dispersion values of
the raw fMRI time series is meaningless (the MRI signal mainly
reflects tissue properties such as water density and T1 and T2
relaxation rates, which do not change as a function of time;
the BOLD signal is zero-mean by definition), we simulated the
temporal dynamics of ALFF and lFCD.

Model
Similar to previous studies (Argollo de Menezes and Barabasi,
2004), to model the signal S(t) we simulated the random diffusion
of W walkers (messages) on a network of N nodes described by
its adjacency matrix, Aij. Each walker was placed at a randomly
chosen network node from which it departed randomly along
one of the edges of that node in the next time step. This diffusion
process was independently repeated 1,200 times and we recorded
the number of incoming visits by various walkers at each network
node to compute the time-varying signal at each node, Si(t).
Temporal fluctuations in W were used to simulate externally
induced modulations in Si(t), which for random networks and
scale-free networks results in b = 1 exponent in (1) (Argollo
de Menezes and Barabasi, 2004). Thus we varied the number of
walkers as a function of time as: W(t)=W+ ξ(t), where ξ(t) was
a uniformly distributed random variable in the interval [−1W,
1W], with 1W= k∗103 and k= 0,1,2,..., 9, and W= 104.

Simulations
The FreeSurfer gray matter parcellations (wmparc.2.nii) for
7 randomly selected MRI datasets were used to determine
imaging voxels in the occipital, cingulate and insular networks
(Figure 1A). The occipital network comprised bilateral cuneus,
lateral occipital, lingual, and pericalcarine cortices (number
of nodes/voxels, N = 8,200 ± 600). The cingulate network
comprised bilateral rostral anterior, caudal anterior, isthmus, and
posterior cingulate (N = 3,100 ± 400). The insular network
comprised the bilateral insula (N = 2,300 ± 100). The Pearson
correlation was used to compute correlation matrices reflecting
the functional connectivity between voxels within each network
for each subject. A correlation threshold R = 0.2 (p < 0.05)
was used to compute the corresponding binary adjacency
matrices. We implemented the diffusion model described above
(Argollo de Menezes and Barabasi, 2004). We assumed the
signal is proportional to the rate of incoming messages at
each node as a function of time, which was simulated using
1,200 steps.

To simulate the dynamics in the amplitude of the signal
fluctuations, δi, at each node we segmented the Si(t) data (1,200
time points) into 23 epochs (window length: 100 time points;
window shift: 50 time points) using a popular rectangular sliding
window approach (Chang and Glover, 2010). The temporal
standard deviation of Si(t) during each epoch was used to
estimate δi. Degree, Di, the number of links connected to
a network node (Rubinov and Sporns, 2010), was computed
for each of the 23 epochs of the synthetic Si(t) data using
a correlation threshold, R > 0.5 (p < 10−7). The linear
model log(σX) = log(a) + b log 〈X〉 with 2 freely adjustable
parameters: log(a) and b, was used to fit the power law (1) to
the temporal mean and dispersion values of the dynamic δ and
Dmetrics (X).

Datasets
To test the predictions of the random diffusion model we
analyzed rfMRI datasets drawn from the Human Connectome
Project (HCP; http://www.humanconnectome.org/). No
experimental activity with any involvement of human subjects
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FIGURE 1 | (A) Exemplary single-subject structural data showing occipital (green) cingulate (red) and insular (blue) gray matter networks used to compute the

adjacency matrix from the corresponding rfMRI datasets. The adjacency matrices of these networks and a random diffusion model were used to produce simulated

signal fluctuations, Si , with variable relative external modulation (1W/W) at each network node. The scaling exponent, b, was obtained by linear fitting the temporal

mean and dispersion values of 〈Si〉 in a log-log plot. (B) Average b across network nodes and 7 subjects as a function of 1W/W for the 3 different networks. Scaling

exponent as a function of 1W/W for the 3 different networks for: (C) the amplitude of the signal fluctuations, bδ; and (D) the degree of the functional connectivity, bD
(see Methods).

took place at the author’s institutions. The 66 participants (age:
30 ± 3 years; 32 females; Subject IDs: 100408, 103515, 103818,
105115, 105216, 106319, 110411, 118730, 118932, 119833,
120212, 122317, 123117, 125525, 127933, 128632, 129028,
130013, 131924, 133625, 133827, 133928, 134324, 136833,
137128, 138231, 138534, 140824, 142828, 143325, 144226,
149337, 149539, 150423, 151526, 153429, 156637, 158540,
159239, 159340, 160123, 161731, 162329, 163129, 165840,
167743, 172332, 178950, 182739, 191437, 192439, 192540,
194140, 197550, 199150, 199251, 200614, 201111, 210617,
217429, 249947, 250427, 255639, 304020, 307127, 329440) of the
WU-Minn HCP Q1 data release included in this study provided
written informed consent according to procedures approved by
the IRB at Washington University in St. Louis.

Resting-state (eyes open) functional images were acquired
using a gradient-echo-planar (EPI) sequence with multiband
factor 8, TR 720 ms, TE 33.1 ms, flip angle 52◦, 104 × 90 matrix
size, 72 slices, 2 mm isotropic voxels, and 1200 timepoints (Smith
et al., 2013; Uğurbil et al., 2013). Scans were repeated twice
using different phase encoding directions (LR and RL) on each of
two imaging sessions (REST1 and REST2) collected on different
days. The “minimal preprocessing” datasets, which include
gradient distortion correction, rigid-body realignment, field-map
processing, spatial normalization to the stereotactic space of
the Montreal Neurological Institute (MNI), high pass filtering
(1/2,000 Hz frequency cutoff) (Glasser et al., 2013), independent

component analysis-based denoising (Salimi-Khorshidi et al.,
2014), and brain masking were used in this study.

Preprocessing
Framewise displacements, FD, computed for every time point
from head translations and rotations using a radius of r = 50
mm (Power et al., 2012) did not differ between MRI sessions
or phase encoding directions across subjects (p > 0.2, paired t-
test; 〈FD〉 = 0.176 ± 0.05 mm). Scrubbing was not implemented
to preserve the frequency spectra used for the computation of
ALFF. Multilinear regression of head translations and rotations
were used to minimize motion related fluctuations in the MRI
signals (Tomasi andVolkow, 2010). Standard 0.01–0.08Hz band-
pass filtering was used to minimize physiologic noise of high
frequency components.

Dynamic ALFF and lFCD
The average of the power spectrum’s square root in the
0.01–0.08 Hz low frequency bandwidth was used to compute
the ALFF (Yang et al., 2007). Functional connectivity density
mapping was used to compute the lFCD (Tomasi and Volkow,
2010) at three different thresholds R > 0.3, 0.4 and 0.5. A
sliding window approach (Chang and Glover, 2010) with two
different window lengths (72s and 144s) and two different
window shapes (rectangular and Hamming) was used to
compute dynamic ALFF and lFCD maps with 2-mm isotropic

Frontiers in Neuroscience | www.frontiersin.org February 2017 | Volume 11 | Article 72151

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Tomasi et al. Brain Network Dynamics

resolution at two different temporal resolutions (36s and
72s). The window shift was set as half of the window
length.

Region-of-Interest (ROI) Analysis
To test the power law (1) we contrasted scaling factors for
the simulated signal fluctuations (δ) and degree (D) against
those for ALFF and lFCD. Since lFCD has high sensitivity
and specificity for gray matter (Tomasi et al., 2016c), the FC
metrics were averaged within the anatomical graymatter regions-
of-interest for each individual to minimize confounds arising
from the variability of the folding patterns of cortical gray
matter. Specifically, the FreeSurfer gray matter parcellations
(wmparc.2.nii) were used as ROIs to compute the averages of the
temporal mean and dispersion values of ALFF(t) and lFCD(t)
within 34 cortical and 9 subcortical gray matter regions in each
brain hemisphere. A probabilistic atlas for each of the gray matter
parcellations was developed by averaging each of the gray matter
parcellations across subjects independently, and used to display

ROI results (i.e., bALFF or blFCD) in the MNI stereotactic space
(Figures 2A, 3A).

Statistical Methods
The linear model log(σ ) = log(a) + b log 〈X〉 with 2 free
adjustable parameters: log(a) and b, was used to fit the power law
(1) to the temporal mean and dispersion values of the dynamic
ALFF and lFCD metrics (X). Paired t-test was used to assess
within subjects differences in bALFF and blFCD as a function
of session, phase encoding direction, correlation threshold, and
window length and shape. Two samples t-test and Pearson
correlation were used to assess gender and aging effects on bALFF
and blFCD.

RESULTS

Simulations
The power law (1) fitted well (R2 > 0.8) the temporal mean and
standard deviation values of Si(t) across nodes. The b exponents

FIGURE 2 | (A) Average scaling exponent (bALFF) for the temporal dynamics of the amplitude of low frequency fluctuations (ALFF) computed across nodes

independently for each of the individual anatomical ROIs, superimposed on left (L), right (R), dorsal (D), medial (M), ventral (V) anterior (A), and posterior (P) views of the

cerebral surface of the PALS_B12 template. (B) Scatter plots showing the good agreement across 66 subjects (dots) between the power law (1) (red line) and the

dynamics of ALFF which is characterized by its temporal mean, 〈ALFF〉, and dispersion, σALFF. Dashed lines are the upper (bδ = 1; pure randomness) and lower

(bδ = ½; pure external modulation) limits for the scaling exponent. (C) Frequency count histogram reflecting the probability distribution of bALFF across cortical and

subcortical gray matter ROIs. (D) Scatter plot demonstrating the variability of bALFF across 66 young adults.
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FIGURE 3 | (A) Average scaling exponent (blFCD) for the temporal dynamics of the local functional connectivity density (lFCD) computed across nodes independently

for each of the individual anatomical ROIs superimposed on left (L), right (R), dorsal (D), medial (M), ventral (V) anterior (A), and posterior (P) views of the cerebral

surface of the PALS_B12 template. (B) Scatter plots across 66 subjects showing the robustness of the power law (1) that reflects the dynamics of lFCD to changes in

correlation thresholds, sliding window lengths and shapes. (C) Frequency count histogram reflecting the probability distribution of blFCD across cortical and

subcortical gray matter ROIs. (D) Scatter plot demonstrating the moderate differences power law (computed across 86 ROIs) in four typical subjects.

increased monotonically with 1W, which is consistent with
the notion that internal randomness (diffusion) and external
modulation (1W) proportionally alter Si(t) in the network
(Argollo de Menezes and Barabasi, 2004). Thus, 1Wcontributed
to the temporal variability of the signal at each network node,
gradually increasing b from ½ to 1 in all three brain networks
(Figure 1B) as it occurs in other complex networks. Thus, if its
magnitude is significant (1W∼½ 〈W〉), the external modulation
can dominate the dynamics of Si(t).

The mean and dispersion values of δi computed across epochs
were also in good agreement with the power law (1). Our
simulations suggest that, bδ ∼ 1, when internal randomness
dominates over the external modulations (Figure 1C). However,
bδ decreased with the amplitude of the external modulation
and was constrained in the interval [0.5, 1]. Similarly, the
mean and dispersion values of Di computed across epochs
were in good agreement with the power law (1). Our
simulations suggest that bD ∼ 1 when the external modulation
dominates over the internal randomness, but bD increases
significantly above 1 when the relative weight of the external
modulation decreases (Figure 1D). The power law failed

to fit the data when internal randomness dominated over
the external modulation (1W/W > ½) suggesting lack of
association between the mean and dispersion values of D in this
regime.

Amplitude of Fluctuations
A linear fit of whole-brain average and dispersion values of ALFF
on a log-log plot computed across nodes demonstrated good
agreement between Equation (1) and the dynamic amplitude
of the signal fluctuations in each of the individual ROI
(bALFF = 0.66 ± 0.16, mean ± standard deviation; 28 < t-
score<294; P < 1E-37; Figure 2A). Consistent findings emerged
from average and dispersion values within anatomical regions,
independently for each of the 86 gray matter ROIs (R2 > 0.8;
Figures 2B,C). The average scaling exponent was not different for
subcortical (cerebellum, thalamus, caudate, putamen, pallidum,
hippocampus, amygdala, accumbens and ventral diencephalon;
bALFF = 0.78 ± 0.04, mean ± standard error) than for cortical
(bALFF = 0.81 ± 0.07) regions (p > 0.4), independent of session,
phase encoding direction (LR vs. RL), sliding window length (72s
vs. 144s) and shape (rectangular vs. Hamming).
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There were no significant differences in bALFF across
subcortical regions. However, bALFF varied significantly across
cortical regions. Specifically, the scaling exponent was higher
for limbic (cingulum, orbitofrontal, parahippocampal and
entorhinal) and visual (lingual, fusiform and pericalcarine)
areas, the temporal and insular cortices and pars orbitalis (bALFF
= 0.89 ± 0.02) than for occipital (cuneus, lateral occipital),
parietal (inferior, superior, precuneus, postcentral), language
(opercularis, triangularis, supramarginal) and prefrontal
(paracentral, precentral, rostral, middle and superior frontal)
areas (bALFF = 0.72 ± 0.03; p < 10−9; Figure 2B). The scaling
exponent had normal distribution (center bALFF = 0.80; width=

0.16) across the 86 gray matter ROIs (R2 = 0.999, Gaussian fit;
Figure 2C).

Significant between-subjects variability in the scaling
exponent emerged from the data when we fitted Equation
(1) to the mean and dispersion values of ALFF across the 43
ROIs, independently for each individual (bALFF = 0.66 ± 0.05;
Figure 2D) and with similar robustness (R2 > 0.96). The scaling
exponent slightly decreased with age (slope = −0.03/decade;
R=−0.234; p = 0.03, one-tailed). However, there were no
significant gender differences (p > 0.77; two-tailed two-sample
t-test) in bALFF.

Local Degree
Similar to ALFF, a linear fit of whole-brain average and
dispersion values of lFCD on a log-log plot computed across
nodes demonstrated good agreement between Equation (1) and
the local degree of brain functional connectivity in each of
the individual ROI (blFCD = 1.05 ± 0.17, mean ± standard
deviation; 43< t-score<179; P< 3E-49; Figure 3A). Average and
dispersion values within anatomical regions showed consistent
findings with those from the whole-brain analysis (R2 >

0.8; Figure 3B). The average scaling exponent was higher for
subcortical (blFCD = 1.23 ± 0.09, mean ± standard error) than
for cortical (blFCD = 1.06 ± 0.10) regions (p < 10−3, two-tailed
two-sample t-test), independent of the correlation threshold used
in the computation of the lFCD (R > 0.3, 0.4, or 0.5), session,
phase encoding direction, window length (72s vs. 144s) and
shape.

For lFCD, the scaling exponent was higher for limbic
(cingulum, orbitofrontal, parahippocampal, and entorhinal),
language (opercularis, orbitalis, triangularis), temporal (inferior,
middle superior), and frontal (paracentral, superior and pole),
insula and fusiform gyrus (blFCD = 1.13± 0.07) than for occipital
(cuneus, lateral occipital, lingual and pericalcarine), parietal
(inferior, superior, precuneus, supramarginal, paracentral,
postcentral), prefrontal (precentral, rostral, middle, and
superior) and temporal (entorhinal temporal pole, transverse)
areas (blFCD = 0.98 ± 0.06; p < 10−6; Figure 3B). Across the
86 gray matter ROIs the scaling exponent had a right-skewed
distribution with peak at blFCD = 1.03 and width = 0.17 (R2

= 0.95, Gaussian fit; Figure 3C). Fitting mean and dispersion
values of lFCD across the 43 gray matter ROIs, independently for
each subject, revealed modest between-subjects variability in the
scaling exponent (blFCD = 1.09 ± 0.06; Figure 3D), and blFCD
did not show significant age or gender differences (p > 0.23).

In visual areas (pericalcarine, lateral occipital, and cuneus) the
standardized scaling factors bz were lower than average and were
significantly lower for lFCD than for ALFF (p < 0.0005, t-test;
Figure 4, left). In prefrontal regions (middle Frontal, superior
frontal, precentral, paracentral, pars opercularis, and caudal
anterior cingulate), the lower than average bz was lower for
ALFF than for lFCD (p < 0.001). In frontal and temporal poles,
entorhinal and lingual cortex showed the higher than average
bz was higher for ALFF than for lFCD (p < 0.0001; Figure 4
right). In anterior (rostral) and posterior (isthmus) cingulate,
fusiform gyrus and subcortical regions (hippocampus, thalamus
and cerebellum) the higher than average bz was higher for lFCD
than for ALFF (p < 0.0006).

Effect of Bandpass Filtering
Given that frequency information may be of interest and that the
ICA-FIX denoising procedure can remove a significant fraction
of the physiological noise of respiratory origin (Salimi-Khorshidi
et al., 2014), we also computed dynamic lFCD measures without
0.01–0.08 Hz bandpass filtering to assess the effect of higher
frequencies on the power scaling law (Equation 1). Without
bandpass filtering the scaling exponent b of the dynamic lFCD
metrics was significantly larger than with bandpass filtering
(p < 0.0001; Figure 5), and the agreement between the data and
Equation (1) was significantly reduced [R2 = 0.82 (without) and
0.96 (with bandpass filtering)].

DISCUSSION

Here we show for the first time that the mean and the dispersion
values of dynamic FC metrics such as ALFF or lFCD are
linked by a power law (1). This characteristic of complex
networks such as rivers and highways networks, the Internet
and the World Wide Web (Argollo de Menezes and Barabasi,
2004), and many biological systems (Taylor, 1961), reflects the
competition between the system’s internal collective dynamics
and changes in the external environment. This strongly suggests
that the dynamics of the FCmetrics embeds important functional
information, a possibility previously highlighted (Hutchison
et al., 2013; Calhoun et al., 2014; Rashid et al., 2014; Hutchison
and Morton, 2015), which could help in the development of
biomarkers of brain function.

Our simulations were based on a random diffusion model
previously proposed by Argollo de Menezes and Barabasi to
explain the power scaling between the mean and the dispersion
of the signals observed in natural and technological networks
(Argollo de Menezes and Barabasi, 2004). Whereas the approach
by Argollo de Menezes and Barabasi was based on random and
scale-free networks (Barabasi and Albert, 1999; Barabási, 2009),
the present approach was based on real FC networks directly
extracted from in vivo resting fMRI data. The scaling exponents
for the brain in the present work are consistent with those
obtained previously in random and scale-free networks (Argollo
de Menezes and Barabasi, 2004).

Here we extended the random diffusion model in order
simulate the amplitude of spontaneous signal fluctuation and
the degree of connectivity. Our simulations suggest that under
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FIGURE 4 | Brain regions showing statistically significant differences in standardized scaling exponents, bz, for ALFF and lFCD at p < 0.001. ACC,

anterior cingulate cortex.

FIGURE 5 | Scatter plot demonstrating the effect of bandpass filtering

on the power scaling (Equation 1) of lFCD across ROIs. The fitted slope,

b, the scaling factor in Equation (1), is significantly steeper without bandpass

filtering (standard errors in parenthesis) suggesting increased level of

randomness (see Figure 1D).

pure randomness (i.e., without external driving forces, 1W = 0)
the mean and the dispersion values of the amplitude of signal
fluctuations and degree are associated by power laws with scaling
exponents bδ = 1 and bD > 1, respectively. However, under the
influence of dynamic external modulations (1W/W ∼ 1), bδ <

1 and bD = 1 characterize the dynamic behavior of the signal
fluctuations and degree. The analysis of variability of resting-
state fMRI datasets from the HCP database shows a range of
scaling exponents for ALFF (0.5 < bALFF < 1) and for lFCD
(1 < blFCD), which is consistent with the presence of dynamic
external modulations of brain activity (0.5 < bδ < 1) and the
corresponding degree (1 < bD). Overall, our findings are also

consistent with the existence of dynamic modulations of brain
activity that may reflect orchestrated dynamic neural processing
(Yu et al., 2012; Allen et al., 2014; Gonzalez-Castillo et al.,
2015).

This is the first study to document differences in scaling
exponents between brain regions. Multimodal association areas
(opercularis, triangularis, rostral, middle and superior frontal,
precentral and paracentral, inferior and superior parietal and
precuneus), somatosensory (supramarginal, postcentral) and
visual (cuneus, lateral occipital) unimodal association areas
showed low scaling exponent both for ALFF (bALFF ∼ 0.7)
and for lFCD (blFCD ∼ 1). These findings suggest that the
dynamics of the FC metrics was driven by external inputs
(1W/W>½) rather than by internal random processes (1W/W
< 0.5; Figures 1C,D), which is also consistent with the existence
of dynamic modulations of resting brain activity (Yu et al.,
2012; Allen et al., 2014; Gonzalez-Castillo et al., 2015). The
multimodal cortex is highly interconnected with higher-order
association areas involved in cognition and motor planning
(Goldman-Rakic, 1988). Thus dynamic engagement of functional
connectivity hubs in multimodal and unimodal association
cortices may explain the low scaling exponent in these regions.
On the other hand, limbic and subcortical regions exhibited
relatively higher scaling exponents (bALFF ∼ 0.8 and blFCD ∼ 1.2)
suggesting a stronger influence of internal randomness in the
resting dynamics of the FC metrics in these regions.

We identify regional differences in the influence of internal
randomness for different FC metrics. The direct comparison
of standardized measures suggests a weaker influence of
randomness in visual areas for lFCD than for ALFF and in
prefrontal areas for ALFF than for lFCD, and a stronger influence
of randomness in subcortical and limbic regions for lFCD than
for ALFF. ALFF and lFCD reflect different network properties.
Whereas ALFF is proportional to the BOLD signal fluctuations
that reflect neuronal communication (Logothetis et al., 2001),
the synchronous fluctuations of local communities measured
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by lFCD reflects the local degree of connectivity (Tomasi and
Volkow, 2010).

The scaling exponent for ALFF, and to a lesser extent for lFCD,
showed significant variability (1bALFF = 12%; 1blFCD = 9%)
across subjects suggesting that the dynamics of the b has potential
as a biomarker for psychiatry and neurology. To illustrate the
potential of this metric here we show that even in a relatively
small sample (66 subjects) with narrow age range (22–35 years),
bALFF is sensitive to aging effects, consistent with previous studies
in large samples (∼1000 subjects) with wide age range (17–82
years) that documented age-related decreases in FC (Biswal et al.,
2010; Tomasi and Volkow, 2012).

The scaling exponent for lFCD increased significantly above
1 when frequencies other than those in the 0.01–0.08 Hz band
were not removed from the data. At the same time, the agreement
with a power scaling was reduced when Equation (1) was fitted
to the data without bandpass filtering. This likely reflects the
introduction of additional randomness and is consistent with
increased noise level and lack of additional information at higher
frequencies than those in the 0.01–0.08Hz band.

The brain normally operates under certain level of
randomness that is important for multiple operation including
perception and decision-making. The relevance of internal
neuronal noise has been most extensively studied for visual
perception (Brascamp et al., 2006; Kim et al., 2006). Theoretical
studies have also shown that randomness may influence
behavioral responses when there are multiple routes to action
and suggested that noise generated by random firing rates of
neurons can be used to predict a decision (Rolls, 2012). Since
limbic and subcortical regions support automatic, implicit
decision making (Floresco et al., 2008; Mitchell, 2015) the higher
scaling exponents in these regions suggests an important role
of randomness in implicit decision making processes. The
sensitivity to randomness of b could be useful for studying
psychiatric disorders such as autism, which is associated with
increased randomness of endogenous brain oscillations (Lai
et al., 2010).

Study Limitations
Note that b = ½ emerges either from diffusion or from flow
models, independently of the number of steps in the diffusion
model, and from random networks as well as from scale-
free networks. This indicates that b = ½ is not a particular
property of the random diffusion model, but it is shared by
several dynamic processes (Argollo de Menezes and Barabasi,
2004). Our computational resources did not allow demanding
whole brain network simulations at 2-mm isotropic resolution

(∼105 nodes/voxels). Thus, our simulations suggesting that when
internal randomness dominates over the external modulations
(1W/W∼ 0) bδ ∼ 1 and bD > 1, but when external modulations
dominate over internal randomness (1W/W ∼ 1) bδ ∼ 0.5
and bD ∼ 1 are limited to the 3 exemplary networks in this
work. However, it is likely that they apply also to the whole
brain. Instrumental noise likely resulted in overestimations of
intrinsic randomness in subcortical regions for which the 32
channel RF coil used by the HCP has low sensitivity. Since
the theoretical model was developed across network nodes, the
interpretation of the power law across ROIs and subjects could
be considered controversial. Our empirical evidence, however,
suggests that the temporal mean and standard deviation values of
dynamic functional connectivity metrics also adhere to a power
law computed across ROIs or subjects, which are consistent with
the power law computed across nodes (i.e., across nodes of each
individual ROI, blFCD = 1.05± 0.17 mean± standard deviation;
across the 86 gray matter, ROIs blFCD = 1.03 ± 0.17; across 66
subjects, blFCD = 0.98 ± 0.16). This suggests similar effects of
randomness and external modulators on power scaling factors
computed across network nodes, ROIs or subjects.

Dynamic lFCD is restricted to the local functional
connectivity cluster. We did not assess the dynamics of
global functional connectivity density (gFCD) because at high
spatiotemporal resolution gFCD is extremely demanding and
beyond our computational resources. However, this is not a
strong limitation because previous studies have shown that
the lFCD and gFCD metrics are proportional to one another
(Tomasi and Volkow, 2011).
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Uğurbil, K., Xu, J., Auerbach, E., Moeller, S., Vu, A., Duarte-Carvajalino, J.,

et al. (2013). Pushing spatial and temporal resolution for functional and

diffusion MRI in the human connectome project. Neuroimage 80, 80–104.

doi: 10.1016/j.neuroimage.2013.05.012

Watts, D., and Strogatz, S. (1998). Collective dynamics of ’small-world’ networks.

Nature 393, 440–442. doi: 10.1038/30918

Yang, H., Long, X., Yang, Y., Yan, H., Zhu, C., Zhou, X., et al.

(2007). Amplitude of low frequency fluctuation within visual areas

revealed by resting-state functional MRI. Neuroimage 36, 144–152.

doi: 10.1016/j.neuroimage.2007.01.054

Yang, Z., Craddock, R. C., Margulies, D. S., Yan, C. G., and Milham, M. P.

(2014). Common intrinsic connectivity states among posteromedial cortex

subdivisions: insights from analysis of temporal dynamics. Neuroimage 93(Pt

1), 124–137. doi: 10.1016/j.neuroimage.2014.02.014

Yu, Q., Allen, E., Sui, J., Arbabshirani, M., Pearlson, G., and Calhoun, V.

(2012). Brain connectivity networks in schizophrenia underlying resting state

functional magnetic resonance imaging. Curr. Top. Med. Chem. 12, 2415–2425.

doi: 10.2174/156802612805289890

Zalesky, A., Fornito, A., Cocchi, L., Gollo, L., and Breakspear, M. (2014).

Time-resolved resting-state brain networks. Proc. Natl. Acad. Sci. U.S.A. 111,

10341–10346. doi: 10.1073/pnas.1400181111

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Tomasi, Shokri-Kojori and Volkow. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org February 2017 | Volume 11 | Article 72157

https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1167/6.11.8
https://doi.org/10.1016/j.neuron.2014.10.015
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1016/j.neuroimage.2011.11.059
https://doi.org/10.1103/PhysRevLett.94.018102
https://doi.org/10.3758/CABN.8.4.375
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1146/annurev.ne.11.030188.001033
https://doi.org/10.1073/pnas.1501242112
https://doi.org/10.1523/JNEUROSCI.4638-14.2015
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1016/j.visres.2005.08.009
https://doi.org/10.1016/j.biopsych.2010.06.027
https://doi.org/10.1073/pnas.1216856110
https://doi.org/10.1038/35084005
https://doi.org/10.1126/science.1131295
https://doi.org/10.1016/j.neubiorev.2015.03.001
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.3389/fnhum.2014.00897
https://doi.org/10.3389/fnint.2012.00068
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1007/s10334-010-0197-8
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1093/cercor/bhr099
https://doi.org/10.1016/j.neuroimage.2013.05.039
https://doi.org/10.1038/189732a0
https://doi.org/10.1371/journal.pone.0154407
https://doi.org/10.1093/cercor/bhw1227
https://doi.org/10.1093/cercor/bhv171
https://doi.org/10.1073/pnas.1001414107
https://doi.org/10.1016/j.neuroimage.2011.05.024
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1016/j.neuroimage.2013.05.012
https://doi.org/10.1038/30918
https://doi.org/10.1016/j.neuroimage.2007.01.054
https://doi.org/10.1016/j.neuroimage.2014.02.014
https://doi.org/10.2174/156802612805289890
https://doi.org/10.1073/pnas.1400181111
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


ORIGINAL RESEARCH
published: 06 June 2017

doi: 10.3389/fnins.2017.00320

Frontiers in Neuroscience | www.frontiersin.org June 2017 | Volume 11 | Article 320

Edited by:

Bharat B. Biswal,

University of Medicine and Dentistry of

New Jersey, United States

Reviewed by:

Mitul Ashok Mehta,

King’s College London, United

Kingdom

Mingrui Xia,

Beijing Normal University, China

*Correspondence:

Yu-Feng Zang

zangyf@gmail.com

Hang Zhang

kevinhangbnu@foxmail.com

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 11 January 2017

Accepted: 19 May 2017

Published: 06 June 2017

Citation:

Wang J-B, Zheng L-J, Cao Q-J,

Wang Y-F, Sun L, Zang Y-F and

Zhang H (2017) Inconsistency in

Abnormal Brain Activity across

Cohorts of ADHD-200 in Children with

Attention Deficit Hyperactivity

Disorder. Front. Neurosci. 11:320.

doi: 10.3389/fnins.2017.00320

Inconsistency in Abnormal Brain
Activity across Cohorts of ADHD-200
in Children with Attention Deficit
Hyperactivity Disorder
Jian-Bao Wang 1, 2, 3, Li-Jun Zheng 1, 2, 3, Qing-Jiu Cao 4, Yu-Feng Wang 4, Li Sun 4,

Yu-Feng Zang 1, 2, 3* and Hang Zhang 5*

1Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China,
2 Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China, 3 Institutes of

Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China, 4 Institute of Mental Health,

The Sixth Hospital, Peking University, Beijing, China, 5 Paul C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen

Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Many papers have shown results from the multi-site dataset of resting-state fMRI

(rs-fMRI) in attention deficit hyperactivity disorder (ADHD), a data-sharing project named

ADHD-200. However, few studies have illustrated that to what extent the pooled findings

were consistent across cohorts. The present study analyzed three voxel-wise whole-brain

metrics, i.e., amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo),

and degree centrality (DC) based on the pooled dataset as well as individual cohort

of ADHD-200. In addition to the conventional frequency band of 0.01–0.08 Hz,

sub-frequency bands of 0–0.01, 0.01–0.027, 0.027–0.073, 0.073–0.198, and 0.198–

0.25 Hz, were assessed. While the pooled dataset showed abnormal activity in some

brain regions, e.g., the bilateral sensorimotor cortices, bilateral cerebellum, and the

bilateral lingual gyrus, these results were highly inconsistent across cohorts, even across

the three cohorts from the same research center. The standardized effect size was rather

small. These findings suggested a high heterogeneity of spontaneous brain activity in

ADHD. Future studies based on multi-site large-sample dataset should be performed on

pooled data and single cohort data, respectively and the effect size must be shown.

Keywords: attention deficit hyperactivity disorder, resting state fMRI, multi-site dataset, ADHD-200, voxel-wise

whole-brain analysis

INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental
disorders in children (Polanczyk et al., 2015). It is a highly heterogeneous disease, involving
multiple deficits and multiple neural pathways (Castellanos et al., 2006; Bush, 2010). The
complicated pathophysiology of ADHD has been widely investigated through task and resting-
state functional magnetic resonance imaging (fMRI) studies. Task-state fMRI studies commonly
employed various task paradigms, e.g., Go/NoGo (Schulz et al., 2004; Newman et al., 2015), Eriksen
Flanker Task (Vaidya et al., 2005; Vasic et al., 2014). These tasks are complicated, and various
paradigms did not exhibit consistent results (Cortese et al., 2012). In contrast, resting-state fMRI
(rs-fMRI) is easy to be implemented and provides a consistent approach for clinical investigations.
Thus, more and more researchers perform rs-fMRI studies on brain disorders, including ADHD.
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ADHD-200, as one of the most widely used multi-site MRI
dataset of brain disorders, has attracted considerable attention
from the ADHD research community. This dataset released
by ADHD-200 consortium contains ten independent cohorts
from eight different sites (ADHD-200-Consortium, 2012). These
cohorts provide rs-fMRI and anatomical MRI data of both
ADHD and typically developing children (TDC), about 776
participants in total. ADHD-200 facilitated the investigation
of the neural basis of ADHD, and about 30 studies based on
this dataset have been published according to PubMed (e.g.,
Tomasi and Volkow, 2012; Elton et al., 2014; Sripada et al., 2014;
Carmona et al., 2015).

Most studies on ADHD-200 pooled data of cohorts and
explored the abnormal brain activity for ADHD. Increasing
number of these studies were reported in recent years. For
example, Mills et al. (2012) pooled data of Brown University
(BU), Peking University (PKU), Kennedy Krieger Institute
(KKI), and New York University (NYU) together and observed
increased connection between the medial and anterior dorsal
thalamus and the basal ganglia in ADHD (Mills et al., 2012).
Pooling data of PKU, NYU together, Zhang et al. (2014) found
affected brain regions in ADHD mainly located in the orbito-
frontal cortex, inferior/superior frontal gyrus, anterior cingulate
gyrus, and calcarine cortex (Zhang et al., 2014). Pooling cohorts
together facilitated the establishment of a large sample size
and tended to provide very positive results. However, to what
extent the pooled results are consistent across individual cohorts
remains unknown. To the best of our knowledge, only one study
on ADHD-200 dataset answered this question (Cai et al., 2015).
They found that ADHD group of cohorts NYU, PKU, and OHSU
consistently showed decreased network-interaction among the
salience network (SN), central executive network (CEN), and
default mode network (DMN). Notably, the network analysis
could not indicate the exact aberrant brain regions for ADHD,
and it remains unclear whether findings of the local brain regions
for ADHD are consistent across cohorts or not.

The present study aimed to examine the consistency of
abnormal local brain regions across cohorts of ADHD-200.
Specifically, we analyzed three voxel-wise whole-brain metrics,
i.e., amplitude of low-frequency fluctuation (ALFF) (Zang et al.,
2007), regional homogeneity (ReHo) (Zang et al., 2004), and
degree centrality (DC) (Buckner et al., 2009). Importantly, the
analytic processes of these kinds of methods are very similar
across studies, and hence facilitate the coordinate-based meta-
analysis (CB-meta) which helps to find regions of consistent
activity across fMRI studies (Bartra et al., 2013; Herz et al.,
2014; Iwabuchi et al., 2015). Analysis of these metrics is often
performed at the frequency band of 0.01–0.08 Hz which has been
widely used in rs-fMRI studies. In addition to this conventional
band, rs-fMRI signals at some sub-frequency bands can also be
modulated by different resting state (e.g., eyes closed and eyes
open; Yuan et al., 2014) as well as by disease (e.g., chronic pain;
Malinen et al., 2010; Otti et al., 2013). These sub-frequency bands,
i.e., Slow-6 (<0.01 Hz; Lv et al., 2013; Zhang et al., 2015a), Slow-5
(0.01–0.027 Hz), Slow-4 (0.027–0.073 Hz; Zuo et al., 2010; Han
et al., 2011; Zhang et al., 2013), Slow-3 (0.073–0.198 Hz), and
Slow-2 (0.198–0.25 Hz; Wang et al., 2015), were also investigated

in the present study in order to obtain more information through
the frequency-dependent characteristic.

METHODS AND MATERIALS

Subjects and Data Acquisition
The data we used in this study is publicly available from
the ADHD-200 Consortium (http://fcon_1000.projects.nitrc.
org/indi/adhd200/). The ADHD-200 dataset contains both
functional and anatomical MRI data contributed by eight
institutions. Each cohort was approved by the research ethics
review boards of each institution. Signed informed consent was
obtained from all participants or their legal guardian before
participation.

We first selected the data cohorts according to the following
criteria: (1) Including both ADHD and TDC groups. So the
data from the BU, University of Pittsburgh and, Washington
University were excluded; (2) Employing the same TR with
<2,000 ms across the cohort. According to this criterions, data
from NeuroImage (TR = 1,960 ms), KKI (TR = 2,500 ms), and
OHSU (TR = 2,500 ms) were excluded. Then, the NYU, PKU1,
PKU2, and PKU3 cohorts were included in our research. The
PKU2 and PKU3 cohorts only had male subjects, so the female
subjects in NYU and PKU1 cohorts were excluded to remove
potential confounding effect of gender to the consistency across
cohort. Left-handedness subjects were also excluded for each
cohort. After case-by-case matching age between ADHD and
TDC, 58 subjects from NYU, 30 from PKU1, 56 from PKU2, and
38 from PKU3 were included in the current study. Demographic
information was summarized in Table 1. Flow-chart of data
exclusion was shown in Figure 1.

Psychostimulant medications were withheld at least 24 h prior
to scanning. The inclusion and exclusion criteria and more
detailed demographic characteristics of the participants of the
four cohorts can be seen in the http://fcon_1000.projects.nitrc.
org/indi/adhd200/. The rs-fMRI data of the four cohorts were
from three scanners, with TR of 2 s for all. PKU1 and PKU2 used
the same scanner but scanning parameters were slightly different.
The detailed parameters were listed in the Supplementary Table 1.

Data Preprocessing
Functional images of each subject were preprocessed by using
Data Processing Assistant for Resting-State fMRI (DPARSF)
(Chao-Gan and Yu-Feng, 2010) which is based on Statistical
Parametric Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm)
and Resting-State fMRI Data Analysis Toolkit (Song et al., 2011).
Preprocessing was performed as follows: removal of the first ten
volumes to avoid signal instability and to get subjects adapted to
the scanning noise. Then, the number of time point is 170 at least
(NYU), so the first 170 volumes were included for individuals in
PKU1, PKU2, and PKU3 considering the comparability across
cohorts (Molloy et al., 2014; Carmona et al., 2015). Slice timing
correction, image realignment to correct head motion were
followed. After individual structural images were segmented after
co-registered to functional images, functional images were spatial
normalized to Montreal Neurological Institute (MNI) space at 3
mm isotropic voxel resolution applying the unified segmentation
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TABLE 1 | Demographic information of each cohort in the current study.

NYU PKU1 PKU2 PKU3

ADHD TDC ADHD TDC ADHD TDC ADHD TDC

N 29 29 15 15 28 28 19 19

Gender (male) 29 29 15 15 28 28 19 19

Age (years) 12.1 ± 2.9 12.2 ± 2.8 11.2 ± 2.3 11.6 ± 1.5 12.7 ± 1.7 11.7 ± 1.8 13.2 ± 1.3 13.3 ± 1.0

IQ 106.1 ± 16.0 115.3 ± 14.3 101.7 ± 12.4 123.0 ± 14.2 111.5 ± 12.7 121.6 ± 12.2 102.7 ± 10.4 111.7 ± 12.7

Subtype (C/I/H) 19/10/0 – 9/6/0 – 16/12/0 – 12/7/0 –

Data are presented as mean ± SD. C, ADHD –Combined; I, ADHD –Inattentive; H, ADHD -Hyperactive/Impulsive.

FIGURE 1 | Flow-chart of data exclusion.

parameters. The linear trend, head motion parameter measured
by Friston-24model, white matter (WM), and cerebrospinal fluid
(CSF) signals were further regressed out as nuisance covariates.
Then, three voxel-wise whole-brain analytic methods, i.e., ALFF,
ReHo, and DC, were further used to analyze these preprocessed
data.

ALFF Calculation
ALFF is the amplitude of low frequency fluctuations of the blood
oxygen level dependent (BOLD) signal of every single voxel (Zuo
et al., 2010). ALFF calculation was the same as the procedure in
Zang et al. (2007). After preprocessing, the 4D rs-fMRI data of
each participant was spatially smoothed with a 6 mm FWHM
Gaussian kernel and then, the linear trend was removed from
the time course of each voxel. Then, ALFF was calculated for
the conventional low frequency band (0.01–0.08 Hz) as well as
five sub-bands, i.e., Slow-6 (0–0.01 Hz), Slow-5 (0.01–0.027 Hz),
Slow-4 (0.027–0.073 Hz), Slow-3 (0.073–0.198 Hz), and Slow-2
(0.198–0.25 Hz).

ReHo Calculation
ReHo is a voxel-wise measure of the local synchronization of the
time courses of nearest neighboring voxels (usually 27 voxels).
It was calculated by using Kendall’s coefficient of concordance
(KCC) as follows:

W =

∑

(Ri)
2 − n

(

R̄
)2

1
12K

2
(

n2 − n
) (1)

where W is the KCC among given voxels, ranged from 0 to 1;
Ri is the sum rank of the ith time point; R̄ = ((n+ 1)K/2)
is the mean of Ri’s; K is the number of time courses within a
measured cluster (27 in the current study); and n is the number of
ranks. After the removing of linear trend, the time course of each
voxel, band-pass filtering was performed for six sub-bands as in
ALFF analysis. ReHo was then calculated for each sub-band. The
spatial smoothing (FWHM = 6 mm) was performed after ReHo
calculation as did in previous studies (Zang et al., 2004).

DC Calculation
Degree centrality (DC) represents the node characteristic of
large-scale brain intrinsic connectivity networks by capturing
the relationship with the entire brain network in the voxel level
(Zuo et al., 2012). We used weighted DC since it provides
a more precise centrality characterization of functional brain
networks than binary version (Cole et al., 2010). Specifically,
after preprocessing, the linear trend of the time course of each
voxel was removed, and then band-pass filtering was performed
for six sub-bands as in ALFF analysis. The Pearson correlation
was performed between the time course of each voxel with that
of every other voxel in the entire brain (Buckner et al., 2009).
The correlation coefficients with r > 0.2 were summed up for
each voxel and then a weighted DC was obtained for each
voxel. 0.2 was used as threshold to eliminate counting voxels
that had low temporal correlation and it has been proved that
different threshold selections did not qualitatively change the
results (Buckner et al., 2009). As did in ReHo calculation, spatial
smoothing may introduce possible artificial local correlations,
we performed spatial smoothing (FWHM = 6 mm) after DC
calculation as did elsewhere as follows (Zuo et al., 2012):

D =
∑

aij

Where j = 1...N, i 6= j, aij =

{

0, aij < 0.2
aij, aij > 0.2

(2)

Negative correlation was removed according to previous fMRI
studies (Liao et al., 2013; Li et al., 2015). It was not calculated
separately because the physiological basis of the negative
correlations was ambiguous (Fox et al., 2009; Murphy et al.,
2009).

ALFF measures the amplitude of time series fluctuation
at each voxel (Zang et al., 2007), ReHo depicts the local
synchronization of the time series of neighboring voxels (Zang
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et al., 2004), and DC represents the large-scale brain intrinsic
connectivity in the voxel level (Buckner et al., 2009). Thus,
the three measures of fMRI probe into the brain activity from
different aspects.

Statistical Analysis
ALFF, ReHo, and DC maps of each frequency band were
compared between the groups of children with ADHD and
TDC. Two-sample t-tests were performed on the pooled
data and each cohort, respectively. The full scale IQ and
mean framewise displacement (FD) were included as nuisance
covariates (Jenkinson et al., 2002; Yan et al., 2013), and
cohort was further taken as a covariate for the t-tests on
the pooled data. For each cohort, the statistical analyses were
performed in study-specific functional volume masks including
only voxels (in MNI152 standard space) present in at least 80%
of the participants and then intersect with gray-matter mask to
reduce non-cortical noise. The mask of the pooled data is the
intersection of cohorts’ masks. The results were corrected for
multiple comparisons with a combined threshold of single voxel’s
p < 0.05 and cluster size > 139, 144, 136, 129, and 129 voxels
for the cohorts and pooled data, corresponding to corrected p <

0.05 determined byMonte Carlo simulation and themask of each
cohort. The AlphaSim estimation was performed by DPABI V2.3
(http://rfmri.org/dpabi; Yan et al., 2016). At the same time, to
reduce the possibility of false negative results and, hence, a more
lenient threshold (p< 0.05, cluster size> 10 voxels) was also used
for each cohort.

We also performed the analyses of standardized effect size
(SES) of each measurement based on Cohen’s d which is
calculated as the equation as follows (Cohen, 2013):

Cohen’s d =
X̄ADHD − X̄TDC

SALL
,

SALL =

√

(nADHD − 1) S2ADHD + (nTDC − 1) S2TDC
nADHD + nTDC − 2

(3)

According to equation of independent two-sample t-test as
follows:

t =
X̄ADHD − X̄TDC

√

(nADHD−1)S2ADHD + (nTDC−1)S2TDC
nADHD + nTDC−2 ( 1

nADHD
+ 1

nTDC
)

(4)

The relationship of Cohen’s d- and t-value can be obtained as
follows:

Cohen’s d = t

√

nADHD + nTDC

nADHD.nTDC
(5)

According to Equation (5), we transformed t maps into SES map
for each cohort and pooled data. Then a combined threshold
SES > 0.30 and cluster size > 129 voxels was used which
corresponded to a combination threshold of t > 1.974 (p < 0.05)
of the pooled data. The same threshold was applied to the SES
maps of each cohort. SES of 0.30 corresponded to t = 1.141,

0.822, 1.124, and 0.926 (p = 0.26, 0.43, 0.27, and 0.36) for NYU,
PKU1, PKU2, and PKU3, respectively.

To view the consistency of results, the thresholded t-maps
and SES-maps were binarized and overlapped among the four
cohorts. Further, in order to view how consistent the results of
individual cohorts are with the pooled results, the overlapped
map of cohorts was further overlapped with the binary map of
the pooled data. The number of overlapped voxels across 4 and 3
cohorts was quantified using Dice overlap coefficient (Dice, 1944;
Burunat et al., 2016) where the voxel number of intersection was
divided by the total voxel number of all the cohorts.

RESULTS

Results of Pooled Data in Conventional
Frequency Band
The abnormal brain regions in the conventional low frequency
band (0.01–0.08 Hz) for children with ADHD of the pooled
data were shown in Figure 2 and Table 2. Children with ADHD
had increased ALFF and DC in the bilateral lingual gyrus
(Figures 2A,C). ReHo and DC were decreased in the bilateral
cerebellum. In addition, the three methods detected some
method-specific abnormality such as the bilateral paracentral
lobule (Figure 2B) and the left insula (Figure 2C).

Consistency across Cohorts in
Conventional Frequency Band
The abnormal brain activity in the conventional frequency band
(0.01–0.08 Hz) was identified for each cohort, and the overlapped
results across the four cohorts were shown in Figure 3 (See
details of each cohort in Supplementary Figures 1–6). Only a
few voxels showed overlapped abnormality from three or four
cohorts by any method (ALFF, ReHo, or DC). Using DC, we
observed 6 voxels overlapped from NYU, PKU2, and PKU3 in
the left inferior occipital gyrus and fusiform gyrus. Even if taking
the overlapped abnormality from 2 cohorts into consideration,
only a few clusters were overlapped, e.g., the cerebellum by ReHo
as well by DC (Figures 3B,C), the bilateral cuneus (Figure 3C)
by DC.

The overlapped results of the pooled data and individual
cohorts were shown in Figure 4. Some clusters detected in
individual cohorts could not be observed in the results of pooled
data, e.g., in the cuneus for ReHo (purple marked in Figure 4B)
and thalamus for DC (purple marked in Figure 4C). Although,
some clusters could be identified as the overlapped regions
from two cohorts, they were not be observed in the pooled
data, such as the right cerebellum for ReHo (yellow marked in
Figure 4B).

The overlapped SES maps of each cohort and pooled data for
ALFF, ReHo, and DC were shown in Figure 5 (with a combined
threshold of SES > 0.3). Some clusters showing overlaps from
more than 3 cohorts could be also shown in the pooled data
(red marked). These clusters included the bilateral cerebellum
for ReHo and DC (Figures 5B,C), right calcarine for ALFF and
DC (Figures 5A,C) and the bilateral paracentral lobule for ReHo
(Figure 5B). However, if the SES threshold was set at 0.5, these
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FIGURE 2 | Differences of brain activity between TDC and children with ADHD on the pooled data. (A–C) indicate the results detected by ALFF (amplitude of

low-frequency fluctuation), ReHo (regional homogeneity), and DC (degree centrality). The statistical threshold was set at p < 0.05, cluster size > 129 voxels,

corresponding to corrected p < 0.05 determined by Monte Carlo simulation. Left in the figure indicates the right side of the brain.

TABLE 2 | Differences between TDC and ADHD on pooled data.

Method Region L/R BA Peak MNI coordinates t Number of voxels

x y z

ALFF Lingual gyrus/Cuneus L/R 18 0 −75 24 3.59 236

ReHo Cerebellum L/R – 33 −69 −36 −3.70 537

Paracentral lobule/Postcentral gyrus L/R 3/4/6 −3 −33 69 4.15 187

Mid. temporal gyrus L 19 −6 51 −6 3.34 332

DC Cerebellum L/R – −18 −75 −24 −3.96 744

Mid. occipital/Lingual gyrus R 18 21 −72 −9 4.28 1,054

Mid. occipital/Lingual gyrus L 18 −39 −63 −12 4.30 635

Insula L 13 −30 30 9 −3.15 202

ALFF, amplitude of low-frequency fluctuation; ReHo, regional homogeneity; DC, degree centrality; Mid., middle; L, left; R, right; BA, Brodmann’s area.

clusters showed no overlap (Figure 6). The overlapped SES maps
across the 4 cohorts and the SES maps of the pooled data were
shown in Supplementary Figure 7.

Consistency across Cohorts in
Sub-Frequency Bands
After investigation in conventional low frequency band (0.01–
0.08 Hz) as shown above, overlapped results across cohort were
further examined in several sub-frequency bands including Slow-
6/5/4/3/2. Furthermore, to reduce the possibility of false negative
results and, a more lenient threshold (p < 0.05, cluster size >

10 voxels) was also applied for each cohort. There is no voxel
overlapped by all the cohorts. The number of the overlapped
voxels was not more than 12 across three cohorts, and the highest
Dice overlap coefficient is only 0.0131 (Table 3). In each sub-
frequency band, most overlapped clusters were also observed
from 2 cohorts (see details in Supplementary Figures 8–10).

DISCUSSION

The present study examined the consistency of abnormal local
brain activity across cohorts of ADHD-200. We applied three
voxel-wise whole brain analytic methods (ALFF, ReHo, and
DC), strict and lenient statistical thresholds, and conventional
frequency band (0.01–0.08 Hz) and sub-frequency bands
(Slow/2/3/4/5/6) in the analysis process. Results from these
analyses indicated that the abnormal local brain activity across
cohorts of ADHD-200 was inconsistent.

The data of all four cohorts were first pooled together in the
present study, as the general process way of the studies using
ADHD-200 (Sato et al., 2013; Zhang et al., 2014). The abnormal
brain activity for ADHD was identified in the clusters, such as
the bilateral sensorimotor cortices and the bilateral lingual gyrus.
Our further analysis showed that these results from pooled data
were not consistent across cohorts. Most of the clusters identified
for pooled data could not be observed in the results for individual
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FIGURE 3 | The overlapped results across the 4 cohorts. (A–C) indicate the results detected by ALFF, ReHo, and DC, respectively. Purple indicates the regions

detected in only one of the 4 cohorts. Mint, red, and yellow indicate the regions detected in 2, 3, and 4 cohorts, respectively.

FIGURE 4 | Overlapped results of the pooled data and individual cohorts. (A–C) indicate the results detected by ALFF, ReHo, and DC, respectively. Blue indicates the

regions detected only in pooled data. Purple indicates the regions detected only in one of the 4 cohorts. Yellow indicates the regions detected by only 2 of the 4

cohorts but not in the pooled data. Brown indicates the regions detected in the pooled data and in only one of the 4 cohorts. Green indicates the regions detected in

the pooled data and 2 of the 4 cohorts. Left in the figure indicates the right side of the brain.

cohort. This finding was further supported by the analyses of
SES. The overlapped regions did not reach a medium (0.5) level.
Thus, the results of directly pooled data from different cohorts
do not mean consistent results among the cohorts included, and
the SES of the results should be examined in the future studies of
large sample dataset. Future studies derived frommulti-site large-
sample dataset should not only present the statistical result of a
pooled data, but also present the results of each cohort of both
t-map and SES.

Moreover, all examined cohorts did not exhibit overlapped
clusters, suggesting a high heterogeneity of ADHD. We noticed

a recent finding that detected the consistent abnormality across
cohorts of ADHD-200 (Cai et al., 2015). Using the resource
allocation index (RAI) (a measure of network interactions across
the SN, CEN, and DMN), Cai et al. found RAI was significantly
lower in children with ADHD than in control subjects and
the results were reproducible across three independent cohorts.
While abnormality of network interaction may reveal the
complexity of spontaneous brain activity in ADHD, it could
not illustrate which brain region is abnormal. From the
perspective of clinical practice, analytic methods for precise
localization of the abnormality in a whole-brain voxel-based
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FIGURE 5 | Overlapped effect size results of the pooled data and individual cohorts. The threshold of effect size was set at 0.3 for the pooled data and each cohort.

(A–C) indicate the results detected by ALFF, ReHo, and DC, respectively. Blue indicates the regions detected only in pooled data. Purple indicates the regions

detected only in one of the 4 cohorts. Mint indicates the regions detected in 2 cohorts. Yellow indicates the regions detected by only 3 or 4 cohorts but not in the

pooled data. Brown indicates the regions detected in the pooled data and in only one cohort. Green indicates the regions detected in the pooled data and 2 cohorts.

Red indicates the regions detected in the pooled data and 3 or 4 cohorts. Left in the figure indicates the right side of the brain.

FIGURE 6 | Overlapped effect size results of the pooled data and individual cohorts. The threshold of effect size was set at 0.5 for the pooled data and each cohort.

(A–C) indicate the results detected by ALFF, ReHo, and DC, respectively. Blue indicates the regions detected only in pooled data. Purple indicates the regions

detected only in one of the 4 cohorts. Mint indicates the regions detected in 2 cohorts. Yellow indicates the regions detected by only 3 or 4 cohorts but not in the

pooled data. Brown indicates the regions detected in the pooled data and in only one cohort. Green indicates the regions detected in the pooled data and 2 cohorts.

Red indicates the regions detected in the pooled data and 3 or 4 cohorts. Left in the figure indicates the right side of the brain.

way should be emphasized. Whole-brain voxel-based analysis
facilities coordinate-based meta-analysis (CB-meta) which can
help to define precise localization of abnormal spontaneous
brain activity by quantitatively aggregating independent results
reported in a standard coordinate space (Eickhoff et al., 2009)

and further help to guide intervention therapies, such as deep
brain stimulation and transcranial magnetic stimulation (Zang
et al., 2015). Thus, the present study used three whole-brain
voxel-based measurements, i.e., ALFF, ReHo, and DC. These
measurements are widely employed in rs-fMRI studies to access
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TABLE 3 | Clusters which were the overlap for three/four cohorts and contained

maximal number of voxels.

Method Number of

overlapped

cohorts

Region L/R BA Number of

overlapped

voxels

Dice

CONVENTIONAL BAND (0.01–0.08Hz)

ALFF 4 None

3 None

ReHo 4 None

3 Paracentral

lobule

R 4 12 0.0041

DC 4 None

3 Cerebellum R – 12 0.0096

SLOW-6 (0–0.01Hz)

ALFF 4 None

3 None

ReHo 4 None

3 Med. frontal

cortex

L 11 1 0.0004

DC 4 None

3 None

SLOW-5 (0.01–0.027Hz)

ALFF 4 None

3 None

ReHo 4 None

3 Paracentral

lobule

L/R 4 3 0.0016

DC 4 None

3 Paracentral

lobule

L/R 4 7 0.0025

SLOW-4 (0.027–0.073Hz)

ALFF 4 None

3 None

ReHo 4 None

3 Cerebellum R – 6 0.0026

DC 4 None

3 Mid. occipital

gyrus

L 19 11 0.0131

SLOW-3 (0.073–0.198Hz)

ALFF 4 None

3 Paracentral

lobule

L 4 1 0.0005

ReHo 4 None

3 Mid. frontal

gyrus

L 8 2 0.0013

DC 4 None

3 Supplementary

motor area

R 6 1 0.0004

SLOW-2 (0.198–0.25Hz)

ALFF 4 None

3 None

ReHo 4 None

3 Sup. frontal

gyrus

R 6 2 0.001

DC 4 None

3 None

Sup., superior; Mid., Middle; Med., Medial; L, left; R, right. The threshold was p < 0.05

and cluster size > 10 voxels for each cohort.

local brain activity from different aspects. Here we applied these
three measurements to explore the consistent local abnormality
of children with ADHD across cohorts. Nevertheless, consistent
results across cohorts were not identified through any one of the
three measurements.

The present study not only focused on the conventional
frequency band but also stressed several sub-frequency bands.
Frequency-dependent investigation provides us a new prospect
to investigate the physiological mechanism of the brain activity.
A recent rs-fMRI study reported some frequency-dependent
abnormalities for children with ADHD (Yu et al., 2015). For
example, in the orbital frontal cortex (OFC), the frequency bands
of slow-3 and slow-2 contributed more to the differences than
did the slow-5 and slow-4 bands. We found that the detected
differences between ADHD and TDC are different according to
different frequency bands. For example, compared with TDC,
children with ADHD had decreased DC in the left inferior
parietal gyrus only in slow-3 but others frequency bands and
decreased DC in the bilateral putamen/thalamus only in slow-4
but others frequency bands (Supplementary Figure 11). Previous
studies often consider the Slow-6 (<0.01 Hz) as signal drift,
and it was usually discarded from further analysis. However, our
recent publications on finger force feedback task have challenged
this issue. ReHo and ALFF of basal ganglia in Slow-6 showed
difference between real and sham feedback conditions, and the
ALFF in Slow-6 was related to finger force (Zhang et al., 2015a,b).
Moreover, ReHo difference between ADHD and TDC in Slow-6
was detected in previous study (Yu et al., 2015). Thus, the Slow-
6 was involved in our analysis and differences can be detected.
However, the results couldn’t be detected in any other cohorts.

Several limitations exist in the present study. First, we
could not explore the contribution of different subtype to the
inconsistency in ADHD neuroimaging findings because of the
small sample size for statistical analysis. For example, PKU1
only included 6 inattention and 9 combined subjects. Their
contribution should be explored on a large sample dataset in
the future. Second, we only used three whole brain voxel-
based measurements to evaluate the consistency across cohorts.
Thus, our observations were restricted to these measurements.
Investigations withmore whole-brain voxel-basedmeasurements
will be helpful.

CONCLUSIONS

Data-sharing projects like ADHD-200 provide large sample
analysis. But pooled data itself is not enough. The current
study used three whole-brain voxel-based analytic methods,
i.e., ALFF, ReHo, and DC not only on the pooled data but
also on each individual cohort. We found that the findings
based on the pooled data of ADHD-200 were inconsistent
across the individual cohorts. Even in a more lenient threshold,
this inconsistency could be observed. Such inconsistency could
be found not only in the conventional low frequency-band
(0.01–0.08 Hz) but also in a few sub-frequency band of Slow-
2/3/4/5/6. These results support the view that ADHD is a highly
heterogeneous disorder. Future studies should try more efforts
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on exploring more consistent findings of rs-fMRI data of ADHD.
Data sharing could benefit improving the reproducibility of
neuroimage studies, and we suggest that analysis based on multi-
site large-sample dataset should be performed on pooled data and
single cohort, respectively.
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Significance: Autism is a developmental disorder that is currently diagnosed using

behavioral tests which can be subjective. Consequently, objective non-invasive imaging

biomarkers of Autism are being actively researched. The common theme emerging

from previous functional magnetic resonance imaging (fMRI) studies is that Autism

is characterized by alterations of fMRI-derived functional connections in certain brain

networks which may provide a biomarker for objective diagnosis. However, identification

of individuals with Autism solely based on these measures has not been reliable,

especially when larger sample sizes are taken into consideration.

Objective: We surmise that metrics derived from Autism subjects may not be highly

reproducible within this group leading to poor generalizability. We hypothesize that

functional brain networks that are most reproducible within Autism and healthy Control

groups separately, but not when the two groups are merged, may possess the ability to

distinguish effectively between the groups.

Methods: In this study, we propose a “discover-confirm” scheme based upon the

assessment of reproducibility of independent components obtained from resting state

fMRI (discover) followed by a clustering analysis of these components to evaluate their

ability to discriminate between groups in an unsupervised way (confirm).

Results: We obtained cluster purity ranging from 0.695 to 0.971 in a data set of 799

subjects acquired frommultiple sites, depending on how reproducible the corresponding

components were in each group.

Conclusion: The proposed method was able to characterize reproducibility of brain

networks in Autism and could potentially be deployed in other mental disorders as well.

Keywords: autism, fMRI, independent components, reproducibility, clustering
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INTRODUCTION

Autism Spectrum Disorder (ASD) is characterized as a
developmental disability leading to significant social,
communication and behavioral challenges (American Psychiatric
Association, 2013). In 2010, an estimate from the Autism and
Developmental Disabilities Monitoring (ADDM) Network
involving 11 sites revealed that 14.7 per 1,000 or 1 in 68 children
aged 8 years were affected by this disorder (Wingate et al., 2012;
Baio, 2014). In addition, this study discovered that one in 54
males and one in 252 females in the ADDM communities had
Autism. These disorders have been found to be very heritable
(Muhle et al., 2004). In addition, approximately 18.7% of infants
with at least one older sibling with Autism developed this
disorder (Ozonoff et al., 2011). Given the societal implications of
Autism, early diagnosis and intervention has become paramount.
However, Autism is currently diagnosed using behavioral tests
which can be subjective. Consequently, objective non-invasive
biomarkers of Autism are being actively researched.

In order to find objective biomarkers of Autism, studies
have used information from brain imaging techniques such
as structural Magnetic Resonance Imaging (MRI). Ecker et al.
(2010) used a multiparameter classification approach involving
a support vector machine (SVM) to characterize the structural
pattern of gray matter anatomy in adults with ASD and
examined a set of five morphological parameters such as
volumetric and geometric features at each spatial location on
the cortical surface to discriminate between people with ASD
and controls. Jiao et al. (2010) built diagnostic models for
ASD based upon regional thickness measurements extracted
from surface-based morphometry (SBM) and compared these
models to diagnostic models based on volumetric morphometry
using fourmachine learning techniques: support vectormachines
(SVM), multilayer perceptrons (MLPs), functional trees (FTs),
and logistic model trees (LMTs). Voxel-based morphometry
along with a multivariate pattern analysis approach was used
by Uddin et al. (2011) to determine multiple brain regions
showing atypical structural organization in children with Autism.
Calderoni et al. (2012) examined whole brain volumes of
female subjects with ASD using mass-univariate and pattern
classification approaches. Sato et al. (2013) extracted individual
subject features from inter-regional thickness correlations based
on structural MRI which were later used in a machine learning
framework to obtain subject level prediction of severity scores
based upon neurobiological criteria rather than behavioral
information. Libero et al. (2015) examined multiple brain
imaging modalities to investigate the neural architecture in the
same set of subjects using techniques such as decision tree
classification analysis. Functional (as opposed to structural)
MRI has been used in several studies on Autism as well. The
feasibility of a functional MRI connectivity diagnostic assay for
Autism was investigated by Anderson et al. (2011) after obtaining
pairwise functional connectivity measurements from a lattice
of 7,266 regions of interest covering the entire gray matter

and using a single resting state blood oxygen level-dependent

scan of 8min for classification in each subject. Coutanche

et al. (2011) used data from an fMRI study of the neural

basis for face processing in subjects with ASD to illustrate that
multi-voxel pattern analysis (MVPA) may provide a sensitive
functional biomarker of clinical symptom severity. Wang et al.
(2012) used a multi-scale clustering methodology known as
"data cloud geometry" to extract functional connectivity patterns
from fMRI for the recognition of ASD subjects by applying
it to correlation matrices of 106 regions of interest (ROIs) in
subjects with ASD and controls. Deshpande et al. (2013) used
supervised machine learning and fMRI to show alterations in
causal connectivity in the brain could serve as a potential non-
invasive neuroimaging signature for Autism. Nielsen et al. (2013)
also used pairwise functional connectivity measurements from
a lattice of 7,266 regions of interest covering the gray matter
for 964 subjects to conclude that multisite classification based
on functional connectivity derived from resting state fMRI of
Autism performed better than chance using a simple leave-one-
out classifier. Maximo et al. (2013) used regional homogeneity
and local density approaches at different spatial scales and
examined local connectivity in ASD, while Supekar et al. (2013)
showed hyper-connectivity in a sample of relatively younger
Autistic kids using resting state fMRI. The common theme
emerging from the studies mentioned above is that Autism is
characterized by altered functional connectivity in certain brain
networks and that characterizing this appropriately using MRI-
based methods may provide a biomarker for objective diagnosis.

Independent Component Analysis (ICA) is a blind source
separation technique which is commonly employed for
extracting brain networks involving spatially distributed regions
with similar/correlated temporal activity (Bell and Sejnowski,
1995), especially in the baseline resting state. Consequently,
it has been applied to investigate altered brain networks in
Autism using fMRI. Specifically, Von von dem et al. (2013)
employed ICA to demonstrate that individuals with Autism
had reduced functional connectivity within the Default Mode
Network (DMN), an important resting state brain network
(Greicius et al., 2003). Assaf et al. (2010) studied the role of
altered functional connectivity of the default mode sub-networks
in ASDs using short resting fMRI scans and ICA. In spite of
these studies showing reduced connectivity in certain brain
networks in Autism, identification of individuals with Autism
solely based on these measures has not been reliable, especially
in samples of large sizes (Nielsen et al., 2013). We surmise that
one major factor contributing to this state of affairs may be that
metrics derived from Autism and/or Control subjects may not be
highly reproducible within their respective group. Consequently,
such metrics have poor generalizability, leading to lower cluster
purities. Therefore, in this paper, we hypothesize that functional
brain networks which are most reproducible separately within
Autism and healthy Control groups, but not reproducible when
both groups are merged, may possess the ability to effectively
discriminate between the groups. The basis for this hypothesis
is illustrated in Figure 1 which shows an imagined feature space
where we want to discriminate between the two groups (Autism
and healthy Control). Please note that Figure 1 has not been
drawn to scale and is an illustrative schematic.

Scenario-1 corresponds to the situation wherein the two
groups have significantly different means (say, x) in the feature
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FIGURE 1 | Imaginary feature space showing three different scenarios while discriminating between two groups (indicated by two colors orange and blue): Autism

and Healthy Control. Scenario 1: Significant group difference in means, say, x. Scenario 2: Non-significant difference in group means. Scenario 3: Significant mean

difference comparable to x in scenario 1.

space. However, within each group, the features have poor
reproducibility (i.e., they are more scattered in the feature space),
likely due to the heterogeneity of the disorder. Therefore, even
if the group means are statistically separated, such features will
give poor cluster purity. Scenario-2 is a situation where there
is no significant difference between means, but the features are
reproducible in the combined group (i.e., Autism + Control
group), i.e., they are less scattered in the feature space even
when both groups are combined. These two scenarios indicate
that features which are highly reproducible separately in each
group but are not reproducible in the combined (Autism
+ Control) group are likely to provide purer clusters while
discriminating between the Autism and Control groups.
In the third scenario, the features are not only statistically
separated between the groups (with the difference between
the group means comparable to “x” in Scenario-1), but also
reproducible within each group, i.e., less scattered in feature
space within each group. In order to test our hypothesis,
traditional ICA-based characterization of the functional brain
needs to be modified such that reproducibility information
is considered while choosing independent components.
Therefore, we propose a methodology involving assessment
of reproducibility of independent components, followed by
clustering analysis of such components for evaluating their
discriminability between groups in an unsupervised way.
Accordingly, we applied a recently introduced algorithm,
“generalized Ranking and Averaging Independent Component
Analysis by Reproducibility” (gRAICAR, https://github.com/
yangzhi-psy/gRAICAR) (Yang et al., 2012), which can provide
independent components that are highly reproducible within
a given group of subjects. This technique is an extension of
a framework previously developed for single subject analysis
called Ranking and averaging independent component analysis
by reproducibility—RAICAR (Yang et al., 2008) and has been
successfully used in a number of applications (Yang et al.,
2014a,b). In this work, gRAICAR was applied to Autism Brain
Imaging Data Exchange (ABIDE) data (Di Martino et al.,
2014) to estimate the independent components which are most

reproducible, in Autism and Control groups, respectively, but
not reproducible in the combined group. We input the spatial
maps of such independent components into a k-means clustering
algorithm and determined the purity of each cluster with respect
to the a priori clinical diagnosis received by subjects.

MATERIALS AND METHODS

Composition of the Subject Sample
We utilized resting-state functional magnetic resonance imaging
(R-fMRI) data from 799 individuals provided by Autism Brain
Imaging Data Exchange (ABIDE). The data we used had 392
individuals with Autism spectrum disorders and 407 age- and
sex-matched typical controls (TCs). These data came from 13
different imaging sites and included 700 male and 99 female
subjects (Table 1) between 7 and 64 years of age. Data were
fully anonymized wherein all 18 HIPAA (Health Insurance
Portability and Accountability)-protected health information
identifiers were removed. Data contributions were based on
studies approved by the local Institutional Review Boards.
Detailed information regarding the imaging data sets and
associated phenotypic protocols can be found at http://fcon_
1000.projects.nitrc.org/indi/abide. Data acquisition parameters
and individual site details are also available on this web site.

Pre-processing
We first converted the data downloaded from ABIDE database,
which was in DICOM format, to Neuroimaging Informatics
Technology Initiative (NIfTI) format. In order to complete the
first step, we used dcm2nii software which is freely available at
http://www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.
html.

In the next step, we used a combination of Data Processing
Assistant for Resting-State fMRI (Yan and Zang, 2010; DPARSF,
http://www.restfmri.net), which is a plug-in software based on
Statistical ParametricMapping or SPM (http://www.fil.ion.ucl.ac.
uk/spm), and uses functionality from Resting-State fMRI Data
Analysis Toolkit (REST 1.7) (Song et al., 2011), both of which
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TABLE 1 | Institute names used in our study from ABIDE data and subject

distribution by diagnosis code, Autism and Control.

ID Institute name Autism Control

1 California Institute of Technology 19 19

2 Kennedy Krieger Institute 22 33

3 University of Leuven 29 35

4 Ludwig Maximilians University Munich 24 33

5 Oregon Health and Science University 12 14

6 University of Pittsburgh 30 27

7 Social Brain Lab UMC Groningen NIN 15 15

8 San Diego State University 14 21

9 Stanford University 17 18

10 Trinity College Dublin 24 25

11 University of California Los Angeles 62 47

12 University of Michigan 68 77

13 University of Utah 56 43

run on MATLAB. DPARSF was used to perform realignment of
3D brain volumes at each instant relative to the initial volume
using 6-parameter rigid body registration, normalization to
MNI (Montreal Neurological Institute) template using nonlinear
warping, spatial smoothing using a Gaussian kernel with full
width at half maximum of 4mm × 4mm × 4mm, de-trending
using linear polynomial and temporal band-pass filtering using
the frequency range of 0.01–0.1Hz.

Four Dimensional NIfTI-1 format images (http://nifti.nimh.
nih.gov/nifti-1) from the pre-processing described above were
then used in FMRIB Software Library v5.0 (Woolrich et al.,
2009; Jenkinson et al., 2012) (FSL by Analysis Group, FMRIB,
Oxford, UK) to obtain a set of independent components for
each subject using Multivariate Exploratory Linear Optimized
Decomposition into Independent Components (MELODIC)
algorithm (Beckman and Smith, 2004; Beckman et al., 2005).
FSL provides analysis tools for fMRI, MRI and DTI brain
imaging data, including ICA for decomposing single or multiple
4D data sets into linearly independent spatial components.
More information on MELODIC is available at http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/MELODIC. We used the MELODIC
analysis tool to perform standard 2D spatial ICA on each
subject resulting in time courses (one per component) in the
mixing matrix and spatial maps (one per component). The
number of components for each subject was determined by
MELODIC through automatic dimensionality estimation. We
saved MELODIC results for each subject and used them in
the algorithm we describe in the following section, for finding
reproducible independent components.

gRAICAR Algorithm
The dataset from subject s (s=1,2,. . . ,n) can be represented as
a ts × vs matrix, Mt , where ts represents the number of time
points and vs the number of voxels. The data matrix, Ms, can
be decomposed into cS independent components (ICs) in spatial
domain ss(cs × vs matrix, Mc) and their corresponding mixing
time courses as(ts × cs matrix,Ma).

Here, we provide a brief overview of gRAICAR and the readers
are referred to the original paper by Yang et al. (2012) for a
more comprehensive description. The algorithm contains four

FIGURE 2 | (A) Steps used in our pre-processing methodology have been

summarized. Step 1 involved obtaining raw multi-site data for each subject in

.nii.gz format. Step 2 involved converting raw data to NIfTI format which

resulted in pairs of header and image files (hdr/.img) for each subject, using

dcm2nii software. Step 3 involved processing data for each subject using a

combination of MATLAB, DPARSF, SPM and REST to obtain a 4D .nii file for

each subject based upon the input .hdr/.img files. Step 4 included the

processing of 4D files obtained from step 3 in FSL—MELODIC using group

ICA for each site leading to independent components or ICs to be used in our

algorithm. Step 4 was the last step in our pre-processing methodology.

(B) Schematic illustrating the 4 steps (5–8) of the gRAICAR algorithm once the

pre-processing is complete. (C) Workflow of our analysis.

stages of processing as summarized in Figure 2. (1) The first step
involved performing ICA decomposition d times for each subject
using random initial values leading to d × n realizations where
n is the number of subjects. We refer to these realizations as
REs. In our study, REij refers to the ICs from jth realization of
subject i. (2) In its second step, a full similarity matrix (FSM)
that had relational measures between all REs was constructed.
Similarity between two REs in this algorithm was quantified
by using normalized mutual information or NMI. (3) In the
third step, REs that were found to be highly reproducible across
subjects and ICA realizations were extracted and aligned. Two
related REs were considered as individual-level components
with the same underlying group-level component or an aligned
component (AC). For each AC, the algorithm generated a dn ×

dn reproducibility matrix, MR, within which NMIs between all
pairs of REs pertaining to the AC were collected. (4) In the fourth
step, we aligned ACs to obtain group-level component maps
and examined the inter-subject consistency. While Figure 2B

illustrates the algorithm in general terms, we demonstrate the
specific implementation of this algorithm for an example of three
subjects in Figure 3.
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FIGURE 3 | This illustrates the implementation of gRAICAR algorithm using 3 subjects with 3 subject-level components each as an example. Step 1 involves multiple

ICA realizations for each subject. Step 2 is used to create a full similarity matrix (FSM). In step 3, ICs are aligned based upon similarity metrics. In step 4, ICs are

averaged based upon reproducibility matrices.

We applied the gRAICAR algorithm separately to Autism,
Control and Combined groups. The first step involved
performing ICA decomposition d (∼5,000 for this study)
times for each subject using random initial values leading to d
× n realizations where n is the number of subjects. Specifically,
d × n or d × 392 realizations of ICs for Autism group, d ×

407 realizations in the TC group and d × 799 realizations in
the combined group were obtained. These ICA realizations are
named REs and REij is used to denote the set of ICs from the jth
realization of the ith subject.

In the second stage of gRAICAR, we constructed a full
similarity matrix (FSM). This matrix has relational measures
between all REs. Block structure of the FSM represents subject
blocks (SBs) that in turn represent subject-wise relationships.
Elements within these blocks can determine similarity between
REs from the same subject or pairs of REs from different subjects
depending on the location of the block. In these SBs, there are d×
d realization blocks (RBs) providing pair-wise similarity between
REs from different ICA realizations. This similarity between two
RBs was quantified by using normalized mutual information or
NMI (Pluim et al., 2003).NMI is one if two variables are identical
and zero if they are statistically independent, revealing higher
order statistical similarity as opposed to second order similarity
expressed by correlation or covariance (Maes et al., 1997). NMI
between each IC pair were computed using mutual information
using the algorithm proposed by Kraskov et al. (2004).NMIswere
further standardized within an RB, resulting in standardizedNMI
(SNMI). In order to demonstrate the technical underpinnings
and rationale for this stage, Figure 4 presents the block structure
of FSM with 3 artificial subjects and two ICA realizations each
(i.e., d= 2, n= 3).

Blocks marked with solid lines are called Subject blocks or SBs.
Off diagonal SBs indicate the similarity between pairs of REs from
different subjects while the ones on the diagonal reflect that from
the same subject. The RB is represented as a ci × cm matrix,MRB,

with Rij−mk reflecting the similarity between REij and REmk (i, m:
1,2,... n, j,k: 1,2,... d). NMI as mentioned above for two REs can
now be calculated as:

Rij−mk

[

y, z
]

= NMI
(

REy ∈ REij , REz ∈ REmk

)

=
H

(

REy
)

+H(REz)

H(REy, REz)
− 1 (1)

where H
(

REy
)

, H (REz) ,H(REy, REz) represent entropies of
random variables, REy, and REz , and the mutual entropy between
them (1≤ y≤Ci, 1≤ z≤Cm). TheNMIswere further normalized
in the alignment procedure using,

Rij−mk[y, z]

=
Rij−mk

[

y, z
]

−mean (Rij−mk

[

y, ∗
]

∪ Rij−mk [∗, z])

std (Rij−mk

[

y, .
]

∪ Rij−mk [., z])
,

(2)

In Equation (2), ∗ represents all NMI values in row y or column
z of the RB. This standardized NMI or SNMI can be used to
calculate the specificity of individual similarity values associated
with a given RE within the RB. The diagonal RBs are normally set
to zero since they represent identity matrices and are therefore
not of interest.

We then extracted highly reproducible REs across subjects
and ICA realizations and aligned them in the third stage of the
gRAICAR algorithm. In order to do so, the algorithm searched
all SNMI entries within SBs reflecting the similarity between pairs
of REs from different subjects to determine a global maximum.
Two REs that were found to be related were seen as individual-
level components but with the same underlying group-level
component, also known as an aligned component (AC). These
RBs were then searched to locate the local maxima within them
as they indicate possible locations of the aligned component
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FIGURE 4 | Block structure of full similarity matrix (FSM) based upon our example with 3 subjects and 2 sets of subject-level components (RE, a set of ICs produced

after two ICA decompositions). In this example, each block shows similarity between 2 pairs of REs from the same subject or two different subjects. Also, RE 11-31

indicates inter-subject similarity between RE 1 of subject 1 and RE 1 of subject 3. The first digit in 11 is an index to the subject whereas the second is an index to the

RE. Solid colored, on the diagonal blocks indicate similarity within the components of a subject or intra-subject similarity whereas off diagonal ones indicate that

between the components of two different subjects.

in different ICA realizations and subjects. Rows and columns
containing these maxima were eliminated from the FSM when
all RCs associated with the aligned component were located. This
procedure was repeated until cmax = max(c 1 ≤ f ≤ n) ACs had
been discovered, where c is the number of ICs and f (≤ n) is the
number of subjects.

A dn× dn reproducibility matrix,Mrep, for each AC was then
generated by collecting NMIs between all pairs of REs related
to the AC. NMIs were used to provide a more straightforward
interpretation of similarity. A maximum of one RC was selected
per AC in each ICA realization to form its reproducibility matrix.
Information contained within the reproducibility matrix was
then divided into two metrics: inter-subject consistency and
intra-subject reliability. Inter-subject consistency in this case was
defined as the mean of all NMIs within inter-subject blocks. For
a given AC, its consistency between subjects i and m can be
calculated as:

∝im = mean(Ri′−m′ )

=

∑D
j=1

∑D
k=1 Rij−mk[y

(

i, j
)

, z
(

m, k
)

]

K2
,

1 ≤ i,m ≤ N, i 6= m (3)

Equation (3) is representative of the mean NMI within the inter-
subject block “i–m” in the reproducibility matrix, as it averages
all the NMI values located at the intersection between realization
j of subject i and realization k of subjectm.

Figure 5, which is a continuation of Figure 4, provides a
demonstration of the third stage summarizing higher level stage

description earlier using the same scenario as in the previous
figure. The large circle mark represents a global maximum
which is calculated by searching all SNMIs within the off-
diagonal SBs. This enables compatibility with larger variations
across subjects than within subjects. In this case, the global
maximum was located at Rij−mk

[

y, z
]

which represents the
yth row and the zth column of the RB. The two related REs,
REy(i,j) and REz(m,k), are treated as individual-level components
with the same underlying group-level component or AC. REy(i,j)
represents the yth component of the jth realization of the ith
subject.

Figure 6 demonstrates the next step which is to locate local
maxima within these RBs by searching the yth rows of RBs Rij−..

or all RBs containing REy(i,j), and the zth columns of RBs R..−mk

or all RBs containing REz(m,k)· This leads to the identification of
the aligned component in different ICA realizations and subjects,
[y, v1] or RE 21–11 in this example and [u1, z] or RE 11–31
where u1 and v1 are the relevant RE positions in individual
RBs reflecting the largest similarity with REy(i,j) and REz(m,k)

respectively. In this case, u1 = v1 means [y, v1] and [u1, z] pick
up the same RE and the resulting component is thought of as
pertaining to the aligned component determined by REy(i,j) and
REz(m,k). If u1 and v1 are not equal, either u1 or v1 is picked based
upon a voting procedure to determine the proximity of one or the
other to more of those REs probed as the u1 = v1 case.

In the fourth and final stage of gRAICAR, we estimated
AC maps and corresponding mixing time courses by using
weighted averages of their related REs. To compute the weighted
average of the REs, the first step is to define a subject load
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FIGURE 5 | Determine global maximum. In this figure, the global maximum has a circle around it with highlighting.

FIGURE 6 | Determine block-wise maxima with highlighting in each block. Global maximum in this figure has a circle around it in addition and has been shown in an

earlier figure as well.

on inter-subject consistency representing the contribution or
inter-subject centrality of a given subject to a given AC as follows:

τi =
1

N − 1

∑N

m=1, m6=i
∝im , 1 ≤ i ≤ N (4)

In (4), ∝im refers to inter-subject consistency metric between
subjects i and m. This equation can also be phrased as the inter-
subject centrality of a subject in a given AC is the mean of the
inter-subject consistency metrics between this subject and all
others. The spatial maps and mixing time courses of an AC can

be computed by combining this subject load on inter-subject
consistency and the intra-subject reliability, as follows:

gICn =

∑N
i=1[βi τi

∑D
j=1 REp(i,j,n)]

K
∑N

i=1 βi τi
, 1 ≤ n ≤ cmax (5)

REp(i,j,n) represents the RE or the spatial map of the IC as
identified in the jth realization of the ith subject. p indexes the
location of the REs and can vary with different realizations and
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subjects. The weights are different for each AC, computed by the
AC specific reproducibility matrix.

ACs that were consistent across subjects were then statistically

detected. The significance of cross-subject consistency of the
resulting AC was explored using a two-step methodology. A

non-parametric test was applied to select the AC consistent

across all subjects. One RE from each ICA realization in
the FSM was randomly sampled with replacement and the

mean of inter-subject consistency metrics was computed after
a non-participating subject was artificially generated. The
aforementioned approach was very similar to the enhancement
to the original RAICAR algorithm proposed by Yang et al. (2008).
The aforementioned procedure was repeated 500 times. Resultant
means of the inter-subject consistency metrics were combined
to produce a null-distribution of inter-subject consistency. The
95th percentile, corresponding to a significance of p = 0.05,
of the null distribution provided a threshold at this point.
ACs with mean inter-subject consistency metrics greater than
the aforementioned threshold value were regarded as common
ACs across subjects. Null distributions of the subject loads on
inter-subject consistency and intra-subject reliability for each
one of the aforementioned ACs were generated by randomly
assigning REs with replacement in the reproducibility matrix to
artificially generated subjects. Corresponding to a significance
value of p = 0.05, thresholds for the aforementioned metrics
were then determined at 95th percentile of the corresponding
null distributions. At this point, subjects above both of these
threshold levels were considered to be representative of the
AC under consideration. The main tasks pertaining to the
fourth stage of gRAICAR algorithm were to estimate AC
maps and corresponding time courses after weighted averaging
their related REs, statistically detect ACs that were consistent
across all subjects, and construct a graph for each AC for the
characterization of relationships among subjects from an inter-
subject consistency perspective.

Clustering Analysis
K-means algorithm has been previously used in fMRI analysis
in several studies (Liu et al., 2012; Zhang and Li, 2012; Allen
et al., 2014). We used this algorithm to examine the level of
separation between Autism and TC groups for the ICs which
were reproducible within each group, but not reproducible in the
combined group. Clustering was unsupervised without using a
priori subject groupings.We determined cluster purity per cluster
as shown below:

Purity =
1

N

∑k

i=1
maxj | ci ∩ tj | (6)

In (6), N represents the number of data points or subjects, k
the number of clusters, ci the cluster in our analysis, and tj the
classification with maximum count for cluster ci .

Equation (7) shows our approach to determine sensitivity
values where SEN represents sensitivity, TP true positive, and FN
true negative.

SEN =
TP

TP + FN
(7)

Equation (8) shows our approach to determine specificity values
where SPC represents specificity, TN true negative, and FP false
positive.

SPC =
TN

TN + FP
(8)

Analysis Workflow
This section presents our implementation and workflow. For
technical details and the rationale behind every step, we have
included a technical discussion in earlier sections of this paper.
We applied the gRAICAR algorithm thrice: first on the Autism
group, second on the Control group, and then on the combined
group. For the Autism and Control groups, we had 54 and 49
group-level components, respectively. For the combined (Autism
+ Control) group, we had 54 group-level components. We then
examined these group-level components using criteria presented
above describing the steps of gRAICAR algorithm and inter-
subject consistency in (3). These criteria gave us 11 group-level
components in the Autism group and 3 in the Control group.
For all subjects, we accessed post-MELODIC analysis results and
retrieved spatial maps associated with the ICs corresponding to
each selected group-level component. MELODIC analysis was a
part of data pre-processing and described earlier in this paper.
We then processed these spatial maps in MATLAB wherein the
spatial map associated with the IC index of the current subject
was retrieved and singleton dimensions were removed. The
resulting array was reshaped using MATLAB’s reshape function
(http://wwwmathworks.com/help/matlab/ref/reshape.html).
thus giving us an m × n matrix where m is 1 for the current
subject and n is 61 × 73 × 61 (=271,633) which was the size of
each spatial map associated with the current IC index. After all
subjects were processed, we had a 392 × 271,633 matrix for the
Autism group and 407 × 271,633 matrix for the Control group.
Suppose the resulting matrix for Autism is A while that for TC is
C. We then combined A and C giving us a 799× 271,633 matrix.
We applied the k-means algorithm using this matrix to examine
how subjects were clustered based on their spatial maps without
a priori groupings. The aforementioned process was repeated
for all permutations of group-level components selected based
on pairing a component from the Autism group with one from
the Control group resulting in 33 k-means clustering analysis
(Autism Group: 11 × Control Group: 3). We had set up the
algorithm to partition the data set into two clusters since we
had two subject groups, Autism and Control. For each of these
clustering permutations, the purity of clusters was identified
based on how many subjects were correctly (or wrongly)
clustered along with other subjects with the same diagnosis.

From the above analysis, the pair with maximum cluster
purity was identified. Let the corresponding components be
Ax and Cx in Autism and Control groups, respectively. The
component in Controls with maximum spatial correlation with
Ax (say, Cx

a) and the component in Autism with the maximum
spatial correlation with Cx (say, Ax

c ), were identified using the
following approach:

λ = max
∑k

i=1
cov(ω,ωi) (9)

Frontiers in Neuroscience | www.frontiersin.org September 2017 | Volume 11 | Article 459175

http://wwwmathworks.com/help/matlab/ref/reshape.html
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Syed et al. Brain Connectomic Alterations in Autism

FIGURE 7 | (A) Step I: gRAICAR Analysis on Combined (Autism + Control) Group producing group level components x, y, and z. (B) Step II: gRAICAR Analysis on

Autism Group Only, producing group-level components, x and x1. x is discarded since it was produced in step I. (C) Step III: gRAICAR Analysis on Control Group

Only, producing group-level components, y and y1. y is discarded since it was produced in step I. (D) Step IV: Group level components from Steps II and III were

combined by retrieving spatial maps corresponding to ICs these group-level components represented for each subject within each group as shown in the figure.

Group level components reproducible in the combined group also found in individual analysis (steps II and III) were excluded.
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λ represents maximum covariance in (9), between group level
component, ω, from the group being analyzed and ωi, that from
the opposite group with k being the total number of group level
components in the opposite group.

Two more k-means clustering analysis were performed by
pairing Ax with Cx

a, and Cx with Ax
c . This analysis was carried

out to ascertain whether the reproducible components in each
group, when paired with the corresponding component with
similar spatial distribution in the other group, can effectively
discriminate between the groups. The entire analysis pipeline is
illustrated in Figures 7A–D.

Steps I-IV presented in Figure 7 illustrate the concepts and
summarize the processing by gRAICAR algorithm and k-means
clustering analysis. For demonstration purposes, 6 artificial
subjects, 3 from the Autism group (denoted by A) and the other
3 from Control group (denoted by C) are shown. Each example
subject is assigned 4 ICs as shown. This is an arbitrary number
illustrating the concept and the number of ICs was not constant
in actual processing. In actual processing, 799 subjects were used
with a variable number of ICs. (I) This step shows gRAICAR
processing on all subjects in the combined group (Autism +

Control groups) and the resulting list of group-level components,
3 in this case: x, y, and z. (II) This step shows gRAICAR analysis
on Autism group only from the example and the list of group-
level components obtained as in step I. Component x was found
in step I as well and is discarded after visual examination. (II)
This step shows gRAICAR analysis on Control group only and
the list of group-level components obtained as in steps I and
II. Component y was found in step I hence discarded. (IV) In
this step, we completed multiple tasks. We combined the group-
level components x1 and y1 by mapping these to individual ICs
for each subject. We then retrieved spatial maps for each IC
representing a subject under the group-level component and
linearly combined them using MATLAB creating a matrix we
called “M.” Finally, we used k-means clustering algorithm in
MATLAB using M to investigate the separation of components
between groups.

Once the clustering was complete, we constructed an inter-
subject Euclidean distance matrix within both Autism and
Control groups using spatial maps associated with each subject
for component pairings (Cx, Ax), (Ax

c , C
x), and (Cx

a, A
x). A self-

organizing map or SOM analyzes input vectors in the input
space and learns, in an unsupervised manner, to classify them
accordingly (Kohonen, 1988, 2001). The result includes a low-
dimensional (one- or two-) discretized representation of the
input space of the training samples referred to as a map.

Neighboring neurons in SOMs learn recognizing neighboring
sections of the input space which leads them to not only learn the
distribution but the topology of the training vectors used as input.
These neurons are arranged in physical positions based upon
a topology function and distances between them are calculated
using a distance function.

Adjacent neurons in the topology generally are close in the
input space as well. In our study, we used SOMs to visualize the
reproducibility and separation of the subjects in feature-space
in additional to the numerical values given by k-means. High
dimensionality in k-means was scaled using SOMs for optimal
visualization. We obtained individual spatial maps for Ax and Cx

and stacked them into amatrix.We then used this matrix as input
to a 5× 5 SOM for visualization as described earlier. This process
was repeated for (Ax, Cx

a) and (Ax
c , C

x).

RESULTS

Let us first examine the most reproducible group-level
components within each group. We found 54 group-level
components within the Autism group and 49 such components
within the Control group. By combining selected components as
described earlier, the range of cluster purity was 0.69–0.97 using
unsupervised k-means clustering over all permutations of 11
group-level components from Autism and 3 from Controls. The
average purity value was 0.89 with a standard deviation of 0.06.

Figures 8, 9 show the spatial maps of Ax and Cx, respectively.
The highest cluster purity value was 0.97 obtained by combining
these two group-level components. Figure 10 presents a map of
pie charts based on a 5 × 5 SOM to visualize the reproducibility
and separation of the two groups using Ax and Cx as described
earlier. Each pie chart represents the number of subjects from a
given group, Autism or Control. As an example, a solid red chart
represents all subjects from the Autism group whereas a solid
blue all from the Control group.

In the next step, we ascertained which group-level
components in the opposite group had the highest spatial
correlation to Ax and Cx, using all 54 components from Autism
and 49 from Control groups depending upon the comparison
being carried out. Ax was found to have the highest spatial
correlation value of 0.29 (p < 0.001) with Cx

a in the Control
group while Cx had the highest spatial correlation value of 0.63
(p < 0.001) with Ax

c in the Autism group. We then combined
Cx with Ax

c and subjected them to k-means clustering analysis.
This produced cluster purity of 0.895 with a sensitivity of 0.893
and a specificity of 0.897. Similarly, we combined Ax with Cx

a

as described earlier and completed k–means clustering analysis.
This resulted in a cluster purity of 0.607 with a sensitivity of 0.43
and specificity of 0.77. Figures 11, 12 show the spatial profiles of
Ax
c and Cx

a, respectively.
We also used pie charts to visualize the reproducibility and

separation of subjects using 5 × 5 SOMs for these combinations:
Ax + Cx

a and Cx + Ax
c . These visualizations are presented

in Figures 13, 14. In both cases, a dotted line represents
the approximate separation observed between the two groups.
Numbers on each pie chart represent the neuron in the SOM.
It can be observed that the purity of individual pie charts drops
when using spatial equivalents (Figures 13, 14) as compared to
the most reproducible components in each group (Figure 10).
This is a reflection of higher purity and separation in Figure 10

(97.1%) to lower purity values and hence lower separation in
Figures 13, 14 (0.607 and 0.895 respectively).

DISCUSSION

We used a discover-confirm scheme wherein during the
“discover” phase, we used gRAICAR to retrieve reproducible
components in each group and during the “confirm” phase,
we used unsupervised clustering to determine the separation
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FIGURE 8 | The group-level component, Ax , from Autism group that produced the highest cluster purity value of 0.971 when combined with another group-level

component from the Control group, Cx .

FIGURE 9 | The group-level component, Cx , from Control group that produced the highest cluster purity value of 0.971 when combined with another group-level

component, Ax , from the Autism group. These regions represent the default mode network (DMN).

between groups based on the reproducible components in
each group. Further, the separation was visualized using self-
organizing maps or SOMs. This is a novel methodological
framework for investigating discriminative features between
diagnostic groups as opposed to performing group-wise
statistical tests or supervised classification.

Even though multiple studies have shown altered fMRI-based
connectivity in certain brain networks in Autism using machine
learning techniques, identifying individuals with Autism based

on these measures has not been reliable especially in larger
sized samples (Anderson et al., 2011; Plitt et al., 2015). We
hypothesized that functional brain networks which are most
reproducible separately within Autism and Control groups,
but not reproducible when analyzing both groups as merged,
may lead to effective discrimination between the groups. We
tested the above hypothesis by finding the most reproducible
ICA components (which represent brain networks) first in the
merged and then in separate Autism and Control groups. Our
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FIGURE 10 | Pie chart visualizations based on a 5 × 5 SOM for Ax and Cx showing Autism and Control groups by neuron. Each pie chart corresponds to a neuron,

represented by the number on each chart, in the SOM map for these components. This map indicates group separation approximately in the middle with Autism

group populating the upper while Control the lower half of the SOM, represented by the dotted blue line.

FIGURE 11 | This figure represents the spatial map for Axc, the group-level component in the Autism group with the highest spatial correlation with Cx . These regions

represent the default mode network (DMN).

results, shown in the previous section, indeed support the
above hypothesis. SOM visualizations provided along with spatial
maps of the group-level components give further insight into
the reproducibility of certain brain networks as well as their
differences between groups based on our proposition.

The overall cluster purity we obtained from our multisite
fMRI data set, obtained by averaging the results obtained from
the three scenarios was 0.824 with a sensitivity of 0.77 and
specificity of 0.87. Previous studies using the same data set,
but supervised classification methods instead of unsupervised
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FIGURE 12 | This figure represents the spatial map for Cxa, the group-level component in the Control group with the highest spatial correlation with Ax .

FIGURE 13 | Pie chart visualizations based on a 5 × 5 SOM for Ax and Cxa showing Autism and Control groups by neuron where the number on each chart

corresponds to a neuron in the SOM. The dotted line represents approximate separation between the two groups.

clustering methods, have reported classification accuracies
between 0.6 and 0.8 depending on whether they used a larger or
smaller sub-sample of the ABIDE database (Anderson et al., 2011;
Nielsen et al., 2013). Given the fact that themethods used here are

different from the previous studies mentioned above, it would
not be fair to directly compare our cluster purity with theirs.
Instead, we would like to make the point that characterizing
reproducibility of brain networks in different groups as well as the
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FIGURE 14 | Pie chart visualizations based on a 5 × 5 SOM for Axc and Cx showing Autism and Control groups by neuron where the number on each chart

corresponds to a neuron in the SOM. The dotted line represents approximate separation between the two groups.

merged sample is a novel idea whichmay hold promise, especially
in the context of disorders such as Autism. This is because the
most discriminative features identified via the proposed method
are more likely to be generalizable to a larger sample given the
reproducibility constraint.

Cx and Ax
c , which provided highest discriminability between

the groups, represent the default mode network (DMN) in
Control and Autism groups, respectively. The DMN in Autism
appears less prominent and incohesive. Decreased functional
connectivity in default mode subnetworks contributes to core
deficits observed in ASD patients (Assaf et al., 2010) whereas
activity was reduced in the autism group in the ventral medial
prefrontal cortex/ventral anterior cingulate cortex (Kennedy and
Courchesne, 2008). Visuospatial working memory deficiency
within the DMN was discovered in adolescents with ASD (Chien
et al., 2016) and the regions of DMN functional connectivity
in the bilateral inferior parietal lobule and posterior cingulate
cortex were found to be smaller in ASD patients (Yasuhiro
et al., 2016). On the other hand, Ax and Cx

a represent regions of
the motor network, mid cingulate cortex and temporal-parietal
junction. Even though these regions have been implicated in
autism (Chiu et al., 2008; Chantiluke et al., 2014; Kestemont et al.,
2014; Nebel et al., 2014), it was not as discriminatory as the
DMN. To summarize, our methodology first discovered highly
reproducible components separately in Autism and Control
groups pointing to functional networks described in this section.
These components or functional networks they pointed to

from both groups, when combined and analyzed in clustering
analysis as described, provided high cluster purities, hence
the ability to distinguish between the two groups. Functional
networks discovered by applying our methodology separately in
groups confirm earlier findings on alterations involving these
networks in Autism. Results obtained from analyzing these
networks support our hypothesis that functional networks highly
reproducible separately in groups lead to higher cluster purities
and discriminability.

Limitations and Future Directions
Despite the fact that the ABIDE database provides invaluable
means to analyze multisite resting state fMRI data sets
with significant statistical power, there are certain inherent
limitations to this data set. Site to site variability in acquisition
parameters, subject populations, scanner performance, and
research protocols may all be cofounding factors when it comes
to the sensitivity for detecting abnormalities (Nielsen et al., 2013).
It could be argued that the analysis of individual site data sets
separately may provide a higher cluster purity. However, such
results may be less easily translatable to the clinic because inter-
site variability is something any potential clinical method will
have to cope with. Both groups in ABIDE, Autism and healthy
Control, appeared to have subjects with average to above-average
range of IQ in addition to variation in diagnostic subtypes
(Asperger’s and PDD-NOS) across sites. A broader range of IQ
levels need to be included in further studies since R-fMRI studies
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allow the inclusion of individuals with lower IQ than task based
studies. In addition, not all sites spanned childhood to middle
adulthood but further studies can include a deeper examination
of the development of brain providing insight into developmental
dynamics of Autism (Di Martino et al., 2014).

We used a novel analysis framework involving gRAICAR
as described earlier (Yang et al., 2012). Despite its robustness,
there are several limitations including computational and
physical memory costs. We were able to mitigate computational
and physical memory concerns by using parallel processing
and cloud computing. gRAICAR further provides the ability
to parallelize one of the processing stages hence reducing
the computational time and increasing efficiency. We had
used gRAICAR code in a UNIX/MATLAB environment. Also
in the absence of a threshold in gRAICAR to determine
the existence of a relationship, the RCs are forced to
align with a group-level component even if there is low
similarity with other RCs. In future studies, it would be
interesting to investigate how gRAICAR performs in site-
level analytics within Autism and ABIDE data sets. Our
methodology can also be expanded to other neurological
disorders to determine the utility of this algorithm in future
studies.
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