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Editorial on the Research Topic

Intervention e�ects of food-derived polyphenols and bioactive peptides

on chronic inflammation

Introduction

Chronic inflammation is a pivotal factor in the development of numerous chronic

diseases (1), including cardiovascular diseases, neurodegenerative disorders, anemia of

inflammation, metabolic syndromes and even cancer (2, 3). Chronic inflammation is

even considered the underlying cause of diseases throughout the lifespan (4). The critical

link between nutrition and immunity, particularly in the context of chronic illnesses,

highlights the importance of diet in controlling chronic inflammation. Micronutrient

deficiencies are key drivers of inflammation and are closely associated with increased

morbidity and mortality, emphasizing the need for proper nutrient intake to manage

inflammatory responses (5). Proper nutritional support, including the intake of anti-

inflammatory nutrients, plays a pivotal role in mitigating the effects of chronic

inflammation and reducing disease progression. This underscores the importance of

exploring dietary interventions that can actively modulate inflammatory pathways and

improve health outcomes.

Hence, the growing interest in food-derived polyphenols and bioactive peptides as

potential therapeutic agents (Figure 1) for managing chronic inflammation has inspired

extensive research into their molecular mechanisms and practical applications (6–8).

However, the therapeutic use of polyphenols is often hampered by their poor stability and

bioavailability. Nanotechnology-based delivery systems have shown promise in addressing

these limitations by improving the stability, bioactivity, bioavailability, and cellular uptake

of these compounds (9).

The complex interplay among diet, inflammation, and chronic diseases has emerged

as a key focus in nutritional research. This Research Topic, shared across Frontiers

in Nutrition, Frontiers in Immunology, and Frontiers in Chemistry—particularly within

the Nutritional Immunology and Food Chemistry sections—addresses the “Intervention
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FIGURE 1

The figure illustrates the synergistic potential of food-derived polyphenols and bioactive peptides in mitigating chronic inflammation. The collective

manuscripts suggest that incorporating these compounds into the diet could provide a therapeutic strategy for managing chronic

inflammatory conditions.

Effects of Food-derived Polyphenols and Bioactive Peptides on

Chronic Inflammation.” It compiles various studies that investigate

how these bioactive compounds can modulate inflammation and

enhance health outcomes. The collected manuscripts featured in

this Research Topic cover a broad spectrum of topics, ranging from

the molecular pathways influenced by specific polyphenols to the

therapeutic applications of bioactive peptides in various disease

contexts. One of the primary focuses is the modulation of oxidative

stress and inflammatory pathways, which are key contributors to

chronic inflammation.

Intervention e�ects of food-derived
polyphenols

For instance, one of the notable contributions is the study (Liu

M. et al.) on dietary supplementation with mulberry leaf flavonoids

and carnosic acid complex. This research delves into the synergistic

effects of mulberry leaf flavonoids and carnosic acid in improving

growth performance and antioxidant capacity in broilers. The

findings reveal that the combination of these bioactive compounds

enhances growth performance and antioxidant capacity in broilers

by regulating the p38 MAPK/Nrf2 pathway. This research

highlights the potential of these compounds as alternatives to

antibiotics (particularly at a dosage of 150 mg/kg), promoting

intestinal health and systemic antioxidant defenses.

In the context of neurodegenerative diseases, the review

(Li S. et al.) titled Neurodegenerative Diseases and Catechins:

(–)-Epigallocatechin-3-gallate as a Modulator of Chronic

Neuroinflammation and Oxidative Stress delves into the

neuroprotective effects of catechins, particularly the most

abundant polyphenol in green tea, (-)-Epigallocatechin-3-

gallate (EGCG). The discussion on how EGCG attenuates

neuroinflammatory processes and oxidative stress mechanisms like

scavenging free radicals, reducing oxidative stress and attenuating

neuroinflammatory processes. Meanwhile, they underscore its

potential as a therapeutic agent for conditions like Alzheimer’s and

Parkinson’s diseases.
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In a related review (Qi et al.) on Zanthoxylum bungeanum

Maxim. (Chinese prickly ash) delves into the polyphenolic

components of this traditional spice and their promising anti-

inflammatory effects. The review synthesizes data from preclinical

studies, suggesting that these polyphenols may offer therapeutic

benefits for a range of inflammatory diseases, including ulcerative

colitis, arthritis, and cardiovascular diseases. This comprehensive

analysis not only highlights the potential of Z. bungeanum

polyphenols as natural anti-inflammatory agents but also calls

for further research to elucidate their mechanisms of action and

therapeutic efficacy in humans.

While in the context of antimicrobial therapies, another

review (Wang et al.) in this Research Topic addresses the use of

polyphenolic natural products as photosensitizers in antimicrobial

photodynamic therapy (aPDT). Given the rising concern of

antibiotic resistance, this review is timely, offering a comprehensive

overview of the potential for polyphenols like curcumin, quercetin,

and resveratrol to serve as effective photosensitizers in aPDT.

The review not only details the antimicrobial properties of

these compounds but also explores their mechanisms of action,

providing a solid foundation for future research aimed at

developing novel, natural antimicrobial therapies.

Expanding on the topic of polyphenols, a significant

contribution to this Research Topic is the study (Fu et al.)

exploring the J-shaped association of dietary catechin intake with

the prevalence of osteoarthritis (OA) in a large American cohort.

This study presents intriguing evidence that moderate intake of

specific catechins, such as epigallocatechin and EGCG, is associated

with a reduced prevalence of OA, particularly when combined

with physical activity. However, excessive intake of these catechins

was identified as a risk factor, suggesting a nuanced relationship

between catechin consumption and OA. This research emphasizes

the importance of balanced dietary intake and highlights the

potential for dietary interventions to mitigate OA risk.

Continuing the theme of anti-inflammatory properties, the

review (Cozmin et al.) titled Turmeric: From Spice to Cure. A

review of the anti-cancer, radioprotective and anti-inflammatory

effects of turmeric sourced compounds. This review delves into the

multifaceted pharmacological properties of turmeric, particularly

curcumin, which has shown promise in cancer prevention and

treatment, as well as in mitigating radiation-induced damage. The

authors provide a thorough analysis of the molecular mechanisms

by which curcumin exerts its effects, reinforcing the spice’s potential

as a cornerstone in integrative oncology and radiation therapy.

Moreover, the clinical trial (Karegar et al.) on ellagic acid

supplementation in multiple sclerosis (MS) patients adds to the

growing body of evidence supporting the anti-inflammatory and

neuroprotective effects of polyphenols. The trial demonstrates that

ellagic acid can significantly reduce inflammatory cytokines and

modulate gene expression related to immune response, leading to

improved clinical outcomes in MS patients. These results highlight

the therapeutic potential of ellagic acid in managing chronic

autoimmune diseases and call for further exploration in larger,

more diverse patient populations.

In a similar context, the study (Janilkarn-Urena et al.) on

dihydromyricetin (DHM) supplementation and its effects on

ethanol-induced lipid accumulation and inflammation in a murine

model of alcohol-associated liver disease (ALD) provides promising

results. DHM, a bioactive polyphenol, was shown to reduce

liver inflammation and improve lipid metabolism, suggesting its

potential as a therapeutic agent for ALD. This study contributes

valuable preclinical data supporting the use of DHM as a cost-

effective and safe dietary supplement for managing ALD and other

inflammatory liver conditions.

Intervention e�ects of bioactive
peptides

A review (Liu H. et al.) examines the application and

mechanism of bioactive peptides (BAPs), focusing on their

immunomodulatory properties. The review provides a

comprehensive overview of how BAPs can regulate key signaling

pathways such as MAPK and NF-κB, offering a natural alternative

to non-steroidal anti-inflammatory drugs (NSAIDs) that avoids

their associated adverse effects. This work emphasizes the potential

of BAPs in managing chronic inflammation across various

medical conditions.

In addition to BAPs, the review (Boboua et al.) titled

Valorization of Animal Waste Proteins for Agricultural Food

Production and Medicinal Applications addresses the sustainable

utilization of animal waste proteins, transforming what is often

considered a liability into a valuable resource. The review examines

the potential of hydrolysates and peptides derived from animal

waste proteins in various industries, including agriculture, food

production, and medicine. The authors advocate for further

research into the bioavailability and structure-activity relationships

of these peptides to fully realize their therapeutic potential.

Intervention e�ects of lifestyle

On the dietary front, a case study (Zhang et al) from

Kashi Xinjiang investigated the relationship between the Dietary

Inflammatory Index (DII) and metabolic syndrome (MS) among

Uygur adults. This case study provides compelling evidence that

dietary patterns can significantly influence the risk of developing

MS and its components. The findings emphasize that a diet rich

in anti-inflammatory foods, such as fruits and milk, correlates with

a reduced prevalence of MS and hypertension, while a diet heavy

in meat and eggs is associated with increased risks of high fasting

glucose and obesity. These insights underscore the importance of

dietary interventions in managing metabolic health, particularly in

populations with distinct dietary habits.

Besides dietary habits, lifestyle choices can also increase

oxidative stress, enhance mitogenic signaling pathways, and lead

to genomic and epigenomic disturbances (4). Turning to lifestyle

factors, a novel risk factor for knee osteoarthritis (KOA) is

presented in a study (Huang et al.) examining the association

between alcohol consumption, particularly pea-based alcoholic

drinks, and the incidence of knee surgery in KOA patients. This

study identifies a clear correlation between high alcohol intake

and the increased risk of knee surgery, with pea-based alcoholic

beverages emerging as a particularly potent risk factor. These
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findings offer new perspectives on dietary and lifestyle factors

contributing to KOA progression and suggest potential avenues for

patient education and prevention strategies.

Antioxidant e�ect in modulating ROS
homeostasis on plants

Finally, the research (Li N. et al.) on the crosstalk between

melatonin and reactive oxygen species (ROS) in fruits and

vegetables post-harvest preservation provides an important update

on the role of melatonin in modulating ROS homeostasis. This

review highlights the dual role of melatonin as both an antioxidant

and a signaling molecule, suggesting new strategies for enhancing

the post-harvest quality of fruits and vegetables through the

application of melatonin.

Conclusions

In conclusion, the studies presented in this Research Topic

provide a comprehensive overview of the intervention effects

of food-derived polyphenols and bioactive peptides on chronic

inflammation. They not only advance our understanding of

the molecular mechanisms involved but also pave the way

for developing innovative dietary strategies and therapeutic

interventions. We anticipate that this Research Topic will serve

as a valuable resource for researchers and clinicians alike, driving

further exploration and application of these bioactive compounds

in promoting human health.

We extend our deepest appreciation to all the authors,

reviewers, and editorial team members for their contributions

to this Research Topic. Their efforts have been instrumental

in advancing the field of nutritional immunology and

expanding our knowledge of the health benefits of food-derived

bioactive compounds.
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Fruits and vegetables contain numerous nutrients, such as vitamins, minerals, 
phenolic compounds, and dietary fibers. They reduce the incidence of 
cardiovascular diseases and the risk of certain chronic diseases, and improve 
the antioxidant and anti-inflammatory capacity. Moreover, melatonin was found 
in various fruits and vegetables species. Melatonin acts as a multifunctional 
compound to participate in various physiological processes. In recent years, many 
advances have been found that melatonin is also appraised as a key modulator on 
the fruits and vegetables post-harvest preservation. Fruits and vegetables post-
harvest usually elicit reactive oxygen species (ROS) generation and accumulation. 
Excess ROS stimulate cell damage, protein structure destruction, and tissue 
aging, and thereby reducing their quality. Numerous studies find that exogenous 
application of melatonin modulates ROS homeostasis by regulating the antioxidant 
enzymes and non-enzymatic antioxidants systems. Further evidences reveal that 
melatonin often interacts with hormones and other signaling molecules, such 
as ROS, nitric oxide (NO), hydrogen sulfide (H2S), and etc. Among these ‘new’ 
molecules, crosstalks of melatonin and ROS, especially the H2O2 produced by 
RBOHs, are provided in fruits and vegetables post-harvest preservation in this 
review. It will provide reference for complicated integration of both melatonin 
and ROS as signal molecules in future study.

KEYWORDS

fruit, melatonin, post-harvest preservation, reactive oxygen species, signaling networks, 
vegetable

Introduction

Fruits and vegetables contain numerous nutrients, such as vitamins, minerals, phenolic 
compounds, and dietary fibers (1–4). They play an essential part of a well-balanced daily food. 
It is generally recommended to eat more fruits and vegetables to reduce the incidence of 
cardiovascular diseases and the risk of certain chronic diseases, and improve the antioxidant 
and anti-inflammatory capacity (3, 5). For example, polyphenols inhibit chronic inflammation 
through regulating multiple inflammation-associated cell signaling pathways (6). However, 
fruits and vegetables often generate significant post-harvest losses after harvest (3). They are 
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vulnerable to mechanical damages, water and phytochemicals loss, 
microbial infections, thus resulting in a considerable concern during 
long-term storage (7, 8). To reduce post-harvest losses, several 
appropriate storage technologies are used, including cold chain 
management, hypobaric storage, modified atmosphere package 
(MAP), and ultraviolet treatment (9–13). To some extent, natural/
synthetic preservative agent can also preserve fruits and vegetables 
storage, whereas there are some residues of chemical compounds (14). 
To date, previous studies also indicate that plant natural hormones 
(melatonin, ethylene (ET), salicylic acid (SA), and methyl jasmonate 
(MeJA), etc) and signaling molecules (nitric oxide (NO), hydrogen 
sulfide (H2S), and reactive oxygen species (ROS), etc) can play key 
roles in regulating the maturation and senescence of fruits and 
vegetables, delaying postharvest senescence and extending shelf life 
(15–21).

Acting as a pleiotropic compound, melatonin (N-acetyl-5-
methoxytryptamine) has a wide range of cellular and physiological 
functions in living organisms (22–24). For example, melatonin 
modulates sleep and circadian rhythms, enhances immunity and anti-
inflammatory activities (23, 24). Melatonin improves the anti-
inflammatory activity, particularly against the chronic inflammation 
which induced by many chronic diseases (25). In plants, melatonin 
was firstly detected in 1995 (26, 27). Since then, it was found in various 
plant species and their different tissue parts, such as rice, wheat, 
tomato, apple, strawberry, grape, pepper, cucumber, and solanaceous, 
etc (28–36). Melatonin acts a key molecule to mediate multiple 
physiological processes, such as the alleviation of abiotic and biotic 
stresses, and plant growth and development (37–42). For example, 
melatonin obviously promoted the lateral root formation in 
Arabidopsis thaliana (37). Recently, many studies have reported that 
melatonin plays an vital role in the fruit and vegetable post-harvest 
preservation (43–46). In general, endogenous melatonin was increased 
by exogenous application of melatonin in broccoli, pear, and Zizyphus 
jujuba fruit (43, 44, 46). Then, melatonin observably decreased the 
accumulation of ROS by enhancing antioxidant capacity and total 
phenolic and ascorbic acid (AsA) content, and improved the quality 
of fruits and vegetables (43, 44, 46). Besides, melatonin improved the 
polyphenol accumulation and antioxidant capacity via ethylene 
signaling in grape berries (47).

ROS contain a group of molecules, mainly including hydrogen 
peroxide (H2O2), hydroxyl radical (OH), superoxide anion (O2

•–), and 
singlet oxygen (1O2) (48). ROS can cause the oxidation of lipids, and 
damages of proteins and many other small molecules structures (48). 
Accordingly, plants have evolved sophisticated antioxidant strategies 
to regulate the ROS homeostasis, such as antioxidant enzymes 
[catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase 
(SOD), and glutathione peroxidase (GPX)] and non-enzymatic 
antioxidants (glutathione (GSH), AsA, flavonoids, carotenoids, and 
alkaloids, etc) (40, 41). Moreover, numerous studies revealed that ROS 
play key dual roles in the signaling networks in plant stress responses 
and developmental processes (49, 50). Interestingly, several studies 
have revealed that the signaling crosstalk between melatonin and ROS 
was also suggested in red pear and strawberry fruits during post-
harvest period (51, 52).

In this review, we  mainly discuss exogenous application of 
melatonin in fruits and vegetable preservation, synthesis of 
endogenous melatonin, effects of melatonin on the quality of 
postharvest fruits and vegetable, and the mechanism of 

melatonin-modulated postharvest protection of fruits and vegetables. 
We further highlight and discuss the vital role of ROS signaling during 
the processes, so as to provide reference for future complicated 
integration of both melatonin and ROS as signal molecules.

The changes of phenomenon and 
quality of fruits and vegetables during 
the postharvest period

Fruits and vegetables contain diverse nutrients, such as phenolic 
compounds, AsA, carotenoids, and mineral content, which 
beneficial for the anti-nflammation, antioxidation, anti-diabetes, 
cancer prevention, and cardio-protection in human (1, 2). Many 
popular kinds of fruits and vegetables, such as tomato, apple, 
banana, papaya, etc., are consumed worldwide with the rapidly 
increasing demand and production. However, most of these are 
highly susceptible to soften rapidly and over-ripen, and often 
accompanying by the chlorophyll degradation and pathogens (53–
59). For example, papaya ripened and softened rapidly, and the fruit 
peel color gradually turned from green to yellow after harvest (53). 
Meanwhile, the lightness value declined slightly, the chroma value 
increased, and the hue angle value gradually dropped during late 
storage. The most serious damage was disease incidence, and thus 
decreasing the papaya commodity rate. Similar changes of fruit 
firmness, hue angle, brightness, and color saturation values were 
also found in guava during the postharvest period (54). After 
harvest for 11 days, the anthracnose disease index and disease 
incidence increased rapidly. In cherry tomato and litchi fruits, the 
weight loss and fruit firmness were declined, accompanied by fruit 
decay during storage (57, 59). Furthermore, other fruits and 
vegetables usually encountered the same cases as well (56, 57, 60). 
Hence, low-temperature preservation for fruits and vegetables has 
received increasing research attention (61). Nevertheless, storage 
for long times may cause chilling injury, such as surface pitting and 
browning, inability to ripen, watersoaking lesions, and rapid decay 
(62, 63).

The changes of melatonin content in 
fruits and vegetables during the 
postharvest period

Our previous reviews systematically summarized the 
melatonin biosynthesis and catabolism in plant tolerance to 
abiotic stresses (38, 40–42). In general, various abiotic stresses, 
such as salinity, heat, cold, drought, and cadmium metal stresses 
induce melatonin accumulation by the upregulation of genes 
which encoding tryptamine 5-hydroxylase (T5H), tryptophan 
decarboxylase (TDC), N-acetylserotonin methyltransferase 
(ASMT), serotonin N-acetyltransferase (SNAT), and caffeic acid 
O-methyltransferase (COMT) (40). Interestingly, the changes of 
melatonin content have different trends among different kinds of 
fruits and vegetables, and some findings were listed in Table 1 and 
(19, 44, 58, 64–71, 73). Wang et al. (19) found that endogenous 
melatonin was increased at 0 d to 14 d, and decreased at 14 d to 
63 d throughout storage period in cherry fruit. Interestingly, it was 
decreased dramatically from anthesis to maturity period (45). 
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These results suggested that endogenous melatonin accumulation 
was regulated by growing and picking storage periods in fruits. 
Similarly, melatonin content of table grape, mango, cassava, and 
strawberry was in parallel with the change trend of cherry fruit, 
and manifested a trend of rising first and then falling (64–66, 69). 
Nevertheless, in “Summer black” grape, the change of melatonin 
accumulation showed an contrary tendency (67). Besides, it 
showed an decreasing trend in angeleno plum, pakchoi, and 
cherry tomato (70, 71, 73). Moreover, expression of the genes 
TDCs, T5Hs, SNATs, and ASMTs related to melatonin biosynthesis 
were also differently regulated in table grape, mulberry fruits, 
cassava, strawberry, and cherry tomato (64–66, 68, 73). Therefore, 
melatonin accumulation and its biosynthesis genes transcripts are 
dynamic and highly regulated in various fruits and vegetables 
during the post-harvest period.

Protective effects of exogenous 
melatonin on qualities of fruits and 
vegetables during the postharvest 
period

Previous studies have shown that hormones, such as ET, SA, 
gibberellins [GAs, including gibberellin 1 (GA1), gibberellin 3 (GA3), 
gibberellin 4 (GA4), and gibberellin 7 (GA7)], MeJA, and abscisic acid 
(ABA), modulate the postharvest preservation of fruits and vegetables 
(70, 74–77). Over the past several years, numerous reports have 
proposed that melatonin acts as an important role on qualities of fruits 
and vegetables during the postharvest period (53, 54, 56–60, 67, 76). 
For example, exogenous melatonin treatments delayed fruit firmness 
decrease, maintained higher hue of the peel fruit, and retained greater 
lightness of papayas than the control group during the later storage 
period (53, 54). Similarly, it observably alleviated the decrease of 
fifirmness and the weight loss in cherry tomato (59). Fruit colour 
index (a*/b*) was also obviously increased by melatonin treatment in 
both sweet cherry and guava fruits (78). In pepper, broccoli, and 
Chinese flowering cabbage vegetables, exogenous melatonin 
application inhibited the degradation of chlorophyll during the 
postharvest period (43, 56, 79). In addition to the above phenotypic 
changes, melatonin also reduced the decay and disease index in fruits 
(41, 53, 54, 80). Moreover, exogenous melatonin also bought about 
significant increases in total soluble solids, sugar, protein, AsA, 
carotenoids, and total flavonoid and phenols contents, which were 
important substances of fruits and vegetables (43, 56, 81–83). Besides, 
melatonin mediated the aroma volatiles (propyl acetate and hexyl 
acetate) of postharvest pear fruit (84, 85).

Effects of exogenous melatonin on 
the redox homeostasis of fruits and 
vegetables during the postharvest 
period

In general, ROS (mainly MDA, H2O2, and O2
•–) are largely caused 

during fruit ripening period, and induce oxidizing proteins and 
membrane lipids formation (53). For example, O2

•– produce by the 
oxygen reduction by the electron transport chain (ETC) (53, 54). They 
also generate by photorespiration pathway and fatty acid-oxidation 
reaction (59). Then, H2O2 produces from O2

•– by the activity of SOD 
and/or glycolate oxidases. Moreover, NADPH oxidases, polyamine 
oxidases (PAO), and cell wall bound peroxidases (POX) induce the 
ROS generation in cell membrane, cell wall, and apoplast, respectively 
(7, 57, 58). As toxic byproducts, ROS could cause serious damages to 
proteins and quality of fruits and vegetables. Combined with the 
antioxidant capacity of melatonin, these led to study the role of 
melatonin in the postharvest preservation of fruits and vegetables, 
especially in recent years (86–110). In this review, the protective 
impacts of melatonin on the antioxidant capacity of fruits and 
vegetables during the postharvest period have been summarized in 
Table 2. In fact, ROS were largely stimulated in fruits and vegetables, 
including papaya, cherry tomato, pepper, wax apple, Chinese 
flowering cabbage, pear, peach, litch, pomegranate, sweet cherry, 
sapota, apple, blueberry, longan, zucchini, guava, rambutan, water 
bamboo shoot, mango, tomato, eggplant, rosa roxburghii fruit, 
cucumber, jujube, sweetpotato, avocado, persimmons, and table grape 

TABLE 1 Summary table explaining the changes of melatonin content, 
and genes related to melatonin metabolic pathway in fruits and 
vegetables during the postharvest period.

Fruit Species Impact on 
melatonin content, 
or/and genes and 
enzyme activities 
related to 
melatonin 
metabolic pathway

References

Cassava Melatonin (0–2 h ↑; 2–72 ↓); 

TCD1, TCD2, T5H, ASMT1, 

ASMT2, ASMT3, SNAT

(64)

Strawberry Melatonin (0–3 d ↑; 3–12 ↓); 

TCD, T5H, ASMT, SNAT

(65)

Sweet cherry Melatonin (0–14 d ↑; 14–63 

d↓)

(19)

Jujube Melatonin (0, 14, 28 d no 

significant changes)

(44)

“Feizixiao” litchi Melatonin (0–12 d ↑) (58)

Table grape Melatonin (0–15 d ↑; 15–25 

d↓), 5-methoxytryptamine 

(5-MT) (0–15 d ↑; 15–25 d↓); 

TDC1, TDC2, TDC3, TDC4, 

T5H1, T5H2, T5H3, T5H4, 

T5H5, SNAT1, SNAT2, 

SNAT3, ASMT1, ASMT2, 

ASMT3, ASMT4

(66)

“Summer black” 

grape

Melatonin (0–40 d ↓; 40–50 d 

↑)

(67)

Mulberry ASMT4, ASMT20 genes (68)

Mango Melatonin (0–14 d ↑; 14–28 

d↓)

(69)

Angeleno plum Melatonin (0–8 d↓) (70)

Pakchoi Melatonin (0–8 d↓) (71)

Cherry tomato Melatonin (0–72 h↓); TCD, 

T5H, ASMT, SNAT

(72)

TDC, tryptophan decarboxylase; T5H, tryptamine 5-hydroxylase; SNAT, serotonin 
N-acetyltransferase; ASMT, N-acetylserotonin methyltransferase.
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during the postharvest period (stored at room temperature and/or low 
temperature; Table 2). Then, the ROS accumulation were significantly 
decreased by exogenous application of melatonin. Two main pathways 
might be  involved in melatonin-inhibited ROS acumulation. 
Exogenous application of melatonin improved the antioxidant 
contents, such as GSH, AsA, proline, flavonoids, carotenoids, 
anthocyanins, and dehydroascorbate (DHA) through inducing the 
expression of GSH, GR1, GR2, GMDH, GME, GGGT, GPP, GDH, and 
GLDH genes (Table 2) and (88, 92, 95, 101). In most of the above fruits 
and vegetables, the antioxidant enzymes act as key roles in melatonin-
downregulated ROS overproduction, such as CAT, SOD, APX, GR, 
GPX, DHAR, and MDHAR (Table 2). Besides, exogenous application 
of melatonin enhanced the total antioxidant capacity (T-AOC), 
cupric-reducing antioxidant power (CUPRAC), ferric-reducing 
antioxidant power (FRAP), trolox equivalent antioxidant capacity 
(TEAC), ferric reducing antioxidant power (FRAP), and 1,1-diphenyl-
2-trinitrophenylhydrazine (DPPH) and 2,2′-azino-bis 
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging 
capacity. For example, exogenously melatonin obviously induced the 
expression of PpAPXs, PpSODs, and PpCATs, and thereby activating 
the antioxidant system in peach fruit during storage for 14 d (88). 
Furthermore, the expression of AsA biosynthetic genes (including 
GMDH, GME, GGGT, GPP, GDH, and GLDH) were also stimulated, 
which increase the content of AsA to inhibit the ROS accumulation 
(88). In addition, exogenous melatonin interacted with ROS by 
regulating the expression of genes involved in AsA-GSH cycle, such 
as DHA, DHAR, MDHAR, GSH, GSSG, and GR in sweet cherry (101). 
Among the above fruits, blueberry contains high level of bioactive 
compounds, flavonoids and anthocyanins. These were also increased 
by exogenous melatonin to improve the nutraceutical traits of 
blueberry fruit during storage time (98).

The roles of hormones in 
melatonin-modulated postharvest 
protection of fruits and vegetables 
during storage period

In recent years, hormones have been described to regulate fruits 
and vegetables postharvest performance (112). For example, ET and 
ABA played central roles in modulating senescence that strongly 
influence fruits and vegetables shelf-life (21, 113, 114). Ethylene is 
synthesized from S-adenosylmethionine to 1-aminocyclopropane-1-
carboxylate (ACC) by ACC synthase (ACS), and then ACC is oxidazed 
by ACC oxidase (ACO) (21). Thus, ACS and ACO are the rate-limiting 
enzymes involved in this biosynthetic pathway. To reduce the ethylene 
accumulation through regulating the expression of genes encoding 
ACS and ACO enzymes might contribute to delay fruits and vegetables 
senescence (21, 114). Exogenous application of ABA induced flavanols 
and anthocyanin accumulation to promote the fruit coloration in 
fruits, including apple, grape, tomato, and litchi (115–118). 
Meanwhile, JA and SA have been suggested to be  involved in the 
disease resistance during postharvest period (15, 16, 119, 120). MeJA 
induced the expression of JA synthesis genes, increased the allene 
oxide cyclase (AOC) activity, and thereby resulting in high 
endogenous JA generation (119). Nevertheless, DIECA treatment 
reduced the endogenous levels of JA, and AOC and 
12-oxo-phytodienoic acid reductase activities. Then, a significant 

correlation between JA and chlorophyll content was observed in 
broccoli flowers, and that was the important reason for broccoli 
postharvest yellowing (119). Besides, SA-mediated defense response 
was involved in litchi downy blight possibly via modulating fruit 
senescence (120). Other hormones, such as auxins, cytokinins (CK) 
or GAs, are usually at very low contents and attributed to the anti-
senescence properties as well (74, 121, 122).

Many studies have confirmed the role of melatonin in 
modulating hormone levels during fruits and vegetables 
postharvest period (Figure  1) and (123). Melatonin can 
significantly delay fruit and vegetables senescence through 
inhibiting ET and ABA accumulation. For example, exogenous 
application of melatonin inhibited the expression of ACSs and 
ACOs genes, and reduced ethylene production to delay the banana 
and tomato fruits color through (124, 125). It significantly down-
regulated the expression of ET synthetase genes (PcACS and 
PcACO), reduced ethylene production and rates of respiration, 
then thereby delaying senescence in pear fruit (126). 
Correspondingly, melatonin also down-regulated the expression 
of ET transcription factors (AdERF4, AdERF74, and AdERF75), 
and inhibited the ET release in kiwifruit during the storage period 
(127). Interestingly, research studies have showed that exogenous 
application of melatonin repressed the expression of BrABF1, 
BrABF4, BrABI5 (128). They binded to the promoters of ABA 
biosynthetic genes (BrNCED, BrABA2, and BrAAO) and 
chlorophyll catabolic genes, and regulated the expression levels of 
above genes, thus resulting in a low endogenous ABA level (128). 
Therefore, melatonin regulated the inhibition of Chinese 
flowering cabbage senescence by the suppression of ABFs-
modulated ABA synthesis and chlorophyll degradation (128). 
Furthermore, exogenous application of melatonin reduced both 
ET and ABA contents to modulate the softening through 
inhibiting the activities of ACS, ACO, and 9-cis-epoxycarotenoid 
dioxygenase (NCED) in “Guifei” mango fruit (73). Additionally, 
exogenous application of melatonin induced the expression of JA 
synthesis genes (VaLOX, VaAOS, and VaAOC), and promoted JA 
accumulation (129). Hence, melatonin modulated the jasmonic 
acid signaling pathway to enhance the postharvest disease 
resistance of blueberries fruit (129). Similarly, generation of SA 
was also promoted by exogenous application of melatonin in 
tomato. Afterwards, the increase of activities of chitinase (CHI) 
and β-1,3-glucanase (GLU) inhibited tomato gray mold 
development, which caused by B. cinerea (130). Besides, after 
melatonin treatment for 4 days, GA1 had a sharp increase, and no 
differences were observed in the content of GA3, GA4, and 
GA7  in Angeleno plums during postharvest decay (70). 
Furthermore, it was also suggested that WRKY, MYB, ERF, ARF 
and bHLH3 transcription factors were mainly involved in auxin 
and ethylene signalings in postharvest banana fruit peel (131, 
132). These transcription factors were also beneficial to maintain 
redox homeostasis (133). Some others, such as auxin and mitogen-
activated protein kinase (MAPK) signaling pathway, might 
be  involved in melatonin-regulated fruits and vegetables 
postharvest preservation and/or disease resistance during the 
storage period. In summary, an appropriate amount of melatonin 
can prolong fruits and vegetables senescence shelf life by 
regulating the release of ET, ABA, SA, and etc. Additionally, more 
genetic evidence needs to be explored in future study.
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TABLE 2 Summary table explaining the impacts of exogenous melatonin on the antioxidative defense systems of fruits and vegetables during the 
postharvest period.

Fruit and vegetable 
names

Treatments Impact on oxidative markers and 
antioxidative defense systems

References

Papaya 0, 100, 400, and 800 μM melatonin H2O2, MDA, O2
·−; SOD, CAT, POD, APX, GR, NOX, T-AOC, 

AsA, flavonoids

(53)

Cherry tomato 0 and 100 μM melatonin MDA; GSH, AsA, GPX, APX, GR, T-AOC (59)

Pepper 0 and 100 μM melatonin H2O2, MDA, O2
·−; AsA, DHA, GSH, GSSG, APX, SOD, CAT, 

POD, GR, MDHAR, DHAR

(56)

Wax apple 0, 800 μM melatonin MDA, H2O2, O2
·−; SOD, CAT, APX, GR; CAT1, SOD2 (60)

Chinese flowering cabbage 0 and 100 μM melatonin H2O2, MDA, O2
·−; POD, SOD, CAT, APX, GR, DHAR, 

MDHAR, AsA, DHA, GSH, GSSG; RBOHB, RBOHC, 

RBOHD, RBOHD2, RBOHE, POD, SOD, CAT, APX, GR, 

DHAR, MDHAR

(79)

Pear 0, 50, 100, 150, 200, and/or 500 μM 

melatonin

H2O2, MDA; SOD, POD, AsA, DPPH and ABTS scavenging 

capacity; POD

(46, 85)

Peach 0 and 100 μM melatonin MDA, H2O2, O2
·−; AsA, GSH, POD; SOD1, SOD2, SOD3, 

SOD4, SOD5, SOD6, SOD7, SOD8, CAT1, CAT2, APX1, APX3, 

APX6, MDHAR1, MDHAR2, DHAR2, DHAR3, GR1, GR2, 

GMDH, GME, GGGT, GPP, GDH, GLDH

(88, 92)

Litch 0, 50, 100, 200, and/or 600 μM melatonin MDA, H2O2, O2
·−; flavonoids, anthocyanin, proline, P5CS, 

PDH, POD, SOD, CAT, APX, GR; Fe-SOD

(58, 95)

Pomegranate 0 and 100 μM melatonin AsA, AOX, AAO, APX, GR, GSH, anthocyanins (86)

Sweet cherry 0, 50, 100, 150, 200, 300, and/or 500 μM 

melatonin

MDA, H2O2, O2
·−; SOD, CAT, APX, POD, DHAR, GR, 

MDHAR, AsA, DHA, GSH, GSSG, flavonoids, anthocyanins; 

Cu/Zn-SOD, Mn-SOD, CAT, APX, MDHA, MDHAR, DHA, 

DHAR, GSH, GSSG, GR

(19, 45, 78, 101)

Sapota 0, 30, 60, and 90 μM melatonin MDA, O2
·−, H2O2; proline, SOD, CAT (102)

Apple 0 and 1 mM melatonin MDA; CAT, SOD, POD (104)

Blueberry 0 and 1 mM melatonin H2O2, MDA; polyphenols, flavonoids, anthocyanins, AsA, 

SOD, CAT, APX, POD

(98)

Longan 0 and 400 μM melatonin H2O2, MDA, O2
·−; POD, PPO, flavonoids, SOD, CAT, APX, 

AsA, GSH

(97)

Zucchini 0 and 1 mM melatonin MDA (100)

Guava 0, 50, 100, 150, 200, 400, and/or 600 μM 

melatonin

H2O2, MDA, O2
·−; SOD, APX, CAT, T-AOC, AsA, flavonoids, 

total soluble sugar

(54, 89)

Rambutan 0 and 125 μM melatonin H2O2, MDA, O2
·−; AsA, DHA, GSH, GSSG, POD, PPO, SOD, 

CAT, flavonoids, anthocyanins, APX, GR, MDHAR, DHAR

(107)

Water bamboo shoot 0 and 500 μM melatonin AsA, POD; POD1, POD2, POD3, POD4, POD5 (108)

Mango 0, 100, or 200 μM melatonin H2O2, MDA, O2
·−; carotenoid, SOD, CAT, POD, APX, 

CUPRAC, TEAC, DPPH, TEAC, FRAP

(69, 87, 91)

Tomato 0 and 10 μM melatonin SOD, CAT, POD, APX, GSH (109)

Eggplant 0, 50, 100, 150, and 200 μM melatonin H2O2, MDA; SOD, CAT, anthocyanins; SOD, CAT1, CAT2 (111)

Rosa roxburghii fruit 0, 20, 50, 100, 200, and 400 μM melatonin H2O2; SOD, CAT, POD, APX, GR, MDHAR, DHAR, AsA, 

GSH; APX, GR, MDHAR, DHAR

(90)

Cucumber 0, 50, 100, and 500 μM melatonin H2O2, MDA, O2
·−; AsA, proline (96)

Jujube 0, 20, 50, 100, 200, and 400 μM melatonin H2O2, MDA, O2
·−; AsA, GSH, APX, SOD, CAT, POD, (106, 110)

Sweetpotato 0, 200, and 500 μM melatonin H2O2, MDA, O2
·−; SOD, CAT, POD, APX, GR, AsA, vitamin 

C, SOD1, SOD2, CAT1, APX1, APX3, GR1, GR2, DHAR

(94)

Avocado 0 and 1 mM melatonin H2O2, MDA, O2
·−; SOD, CAT, APX, POD, flavonoids, AsA (99)

(Continued)
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The crosstalk between melatonin and 
signal molecules (NO, H2S, and ROS) 
in the postharvest protection of fruits 
and vegetables during storage period

Numerous studies showed that signal molecules, such as ROS, 
NO, and H2S, play key roles in resistances to biotic and abiotic 

damages in plants (134–139). Recent studies have shown that there are 
interactions between melatonin (applied exogenously) and the signalig 
molecules (37, 40–42, 126, 130, 140). For example, our previous 
studies revealed that H2O2 signaling was required for melatonin-
promoted root growth and melatonin-improved salinity tolerance in 
alfalfa and Arabidopsis, respectively (37, 38). NO signaling was also 
involved in melatonin-regulated salinity tolerance in Brassica napus 

FIGURE 1

The crosstalk between melatonin and hormones of fruits and vegetables during the postharvest period. Exogenous application of melatonin reduced 
the ABA and ET content, and increased IAA content through regulating the related transcription factors and synthetic genes. Then, the significant 
antioxidants and antioxidant enzymes activities were induced to reduce the ROS accumulation, and chlorophyll degradation and pericarp browning 
were also inhibited. Besides, exogenous application of melatonin induced the JA and SA signaling pathways, and activated the proteins in the defense 
system to enhance the disease resistance in fruits and vegetables during storage. Jasmonic acid (JA), gibberellin 1 (GA1), 12-oxo-phytodienoic acid 
(OPDA), jasmonate ZIM-domain (JAZ), phenylalanine ammonia lyase (PAL), benzoic acid 2-hydroxylase (BA2H), lipoxygenase (LOX), allene oxide 
synthase (AOS), allene oxide cyclase (AOC), isochorismate synthase (ICS), salicylate (SA), non-expresser of pathogenesis-related genes 1 (NPR1), basic/
leucine zipper-type transcription factor (TAG5), β − 1,3-glucanase (GLU), chitinase (CHT), abscisic acid (ABA), ABRE-binding factor (ABF), ABA-insensitive 
(ABI); 9-cis-epoxycarotenoid dioxygenase (NCED), aldehyde oxidase (AAO), ethylene-response factor (ERF), adipocyte protein (AP), v-myb avian 
myeloblastosis viral oncogene homolog (MYB), zinc finger protein (ZAT), NAM/ATAF/CUC (NAC), basic/helix–loop–helix (bHLH), 
1-aminocyclopropane-1-carboxylic acid (ACC), ACC oxidase (ACO), ACC synthase (ACS), ethylene (ET), auxin response factor (ARF), indole-3-acetic 
acid-amido synthetase (GH3), indole-3-acetic acid (IAA).

TABLE 2 (Continued)

Fruit and vegetable 
names

Treatments Impact on oxidative markers and 
antioxidative defense systems

References

Persimmons 0 and 100 μM melatonin H2O2, MDA; flavonoids, AsA, DPPH and ABTS radical 

scavenging activity, FRAP

(93)

Table grape 0, 50, and 100 μM melatonin H2O2, O2
·−; CAT, POD (103)

H2O2, hydrogen peroxide; MDA, malondialdehyde; O2
•–, superoxide anion; Cu/Zn-SOD, copper/zinc-superoxide dismutase; Mn-SOD, manganese-superoxide dismutase; POD, guaiacol 

peroxidase; APX, ascorbate peroxidase; GR, glutathione reductase; T-AOC, total antioxidant capacity; AsA, ascorbic acid; GSH, reduced glutathione; GPX, glutathione peroxidase; DHA, 
dehydroascorbate; GSSG, oxidized glutathione; CAT, catalase; MDHA; monodehydroascorbate reductase; MDHAR, monodehydroascorbate; DHAR, dehydroascorbate reductase; RBOH, 
respiratory burst oxidase homologue; DPPH, 1,1-diphenyl-2-trinitrophenylhydrazine; ABTS, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid); NOX, NADH oxidase; GMPH, mannose-
1-phosphate guanylyltransferase; GME, GDP-D-mannose-3′,5′-epimerase; GGGT, GDP-L-galactose guanylyltransferase; GPP, L-galactose-1-phosphate phosphatase; GDH, L-galactose-1-
dehydrogenase; GLDH, L-galactono-1,4-lactone dehydrogenase; P5CS, Δ1-pyrroline-5-carboxylate synthetase; PDH, pyruvate dehydrogenase; CUPRAC, Cupric-reducing antioxidant power; 
FRAP, Ferric-reducing antioxidant power; TEAC, Trolox equivalent antioxidant capacity; FRA, ferric reducing antioxidant power.
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L. and sunflower seedlings (140, 141). Furtherly, melatonin induced 
H2S generation through increasing L-/D-cysteine desulfhydrase 
(LCD/DCD) activity. Similarly, it also stimulated NO generation. 
However, the H2S and NO induced by melatonin were inhibited by 
H2S scavenger (hypotaurine, HT) and NO scavenger 
(2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, 
cPTIO), respectively. Therefore, the H2S and NO jointly were 
participated in the melatonin-enhanced salinity tolerance in cucumber 
(34). In fact, the complex regulatory function of melatonin and its 
crosstalk with H2O2, NO and H2S is existed in many cases.

Interestingly, these signal molecules were also involved in 
exogenous melatonin-modulated fruits and vegetables postharvest 
protection, and thus improving their quality and yield (Figure 2) and 
(72, 142, 143). For instance, exogenous melatonin treatment rapidly 
elicited ROS burst. These ROS acted as signaling molecules to enhance 
SA accumulation and improve the expression of related defense genes 
in cherry tomato fruit during the storage (94). In litchi fruit, exogenous 
application of melatonin activated the NR and NOS activities and 
triggered NO accumulation (142). Endogenous NO mediated the 
melatonin-enhanced cold tolerance via regulation of redox status 
(142). Similarly, exogenous melatonin increased NOS activity, and 
induced endogenous NO production to maintain normal 
mitochondrial function in lotus seeds (144). Besides, it also induced 
NOS gene expression and enzyme activity to keep safe membrane 
integrity in tomato fruit (145). Furthermore, H2S has been reported to 
regulate the process by delaying senescence (146). However, more 
studies should be investigated on the crosstalks among melatonin, 
NO, and H2S in the postharvest preservation of fruits and vegetables 
using pharmacological, genetic, and proteomic approaches.

Crosstalk between the 
RBOH-regulated ROS signaling and 
melatonin in the postharvest 
protection of fruits and vegetables 
during storage period

Previous studies suggested that melatonin is a potent free radical 
scavenger, and reacts with ROS via the addition of a hydroxyl group 
(-OH) in position 2, 4, or 6 to form a family of molecules (147). 
Among the hydroxymelatonin metabolites, 2-hydroxymelatonin 
(2-OHMel) and 4-hydroxymelatonin (4-OHMel) were found in 24 
plant species and predicted to have the antioxidant protection (147–
149). For example, 4-OHMel reacted with ROO• about 200 times 
faster than trolox. Furthermore, ROS act as key signaling molecules at 
low concentrations in regulating plant biotic and abiotic stress (150, 
151). Recent studies have shed new light on the interactions of 
melatonin and ROS in higher plants development and growth (37, 38, 
41). For example, Bian et al. (111) identified that melatonin acted as 
upstream signaling of ROS to facilitate lateral root development. 
Besides, the phytomelatonin receptor (PMTR) sensed and binded 
with melatonin to release G-protein α (Gα), and activated Ca2+ 
signaling. Afterwards, the Ca2+ signaling activated H2O2 production, 
while H2O2 worked with Ca2+ signaling to induce the expression of cell 
cycle regulatory genes, and thereby promoting the lateral 
root development.

Previous reviews summarized the pathways of ROS generation in 
plant organs, including cell membrane, peroxisome, mitochondria, 

chloroplast, apoplast, and etc (150, 151). Among these, respiratory burst 
oxidase homolog (RBOH) proteins localize on plasma membrane, and 
encode the NADPH oxidases, which associate with the signal 
transduction (152). There are several RBOHs genes encoding NADPH 
oxidase in various plants (150, 151). Recently, many studies have revealed 
the vital roles of RBOH-regulated ROS signaling in melatonin-enhanced 
plant abiotic stress tolerance (41). Furthermore, it is necessary to balance 
intracellular ROS homeostasis to maintain to the quality of postharvest 
fruits and vegetables. Recently, the functions of H2O2 signaling in 
melatonin-mediated fruits and vegetables postharvest protection were 
also preliminarily studied (Figure 2) and (72, 130, 132, 153, 154). For 
example, O2

·− and H2O2 generation of cherry tomato fruit increased to a 
maximum by exogenous melatonin treatment at 12 h and 36 h, 
respectively, and then decreased during the storage period (130). 
Exogenous melatonin treatment significantly up-regulated the expression 
of respiratory burst oxidase homolog protein B (RbohB) gene, which 
accelerated the response signaling in banana peel in banana during 
postharvest storage period (132). Similarly, melatonin treatment also 
up-regulated the RBOH1 expression in tomato, however, it was 
significantly attenuated by treatments of diphenyleneiodonium (DPI, an 
NADPH oxidase inhibitor) and dimethylthiourea (DMTU, a ROS 
scavenger) (153). Exogenous melatonin elevated O2

·− and H2O2 
accumulation by upregulating the SlNOX expression and NOX activity 
for the first 36 h in cherry tomato fruit during storage (94). These results 
were further confirmed by the transcriptome analysis in cherry tomato 

FIGURE 2

Probable integrative model of melatonin and signaling molecules 
(H2O2, NO, and H2S) in postharvest protection of fruits and vegetables 
during storage period. Increasing evidences showed that melatonin 
enhanced the expression of RBOHs, NR, NOS, NOR, DES, and LCD 
genes, and induced H2O2, NO, and H2S generation, thereby activating 
the signaling pathways in fruits and vegetables. Besides, hormones 
were also involved in these pathways to regulate fruits and 
vegetables quality. Interaction between NO and H2S was also 
suggested. The relationships between the H2O2 signaling and NO/
H2S in postharvest protection of fruits and vegetables are still largely 
unknown (green arrow, yet largely unknown). Red arrow, induced; 
blue arrow, inhibited. Respiratory burst oxidase homologs (RBOHs), 
nitrate reductase (NR), nitric oxide synthase (NOS), desulfhydrase, 
(DES), L-cysteine desulfhydrase (LCD), nitric oxide (NO;), hydrogen 
peroxide (H2O2), hydrogen sulfide (H2S), ethylene (ET), salicylic acid 
(SA), γ-aminobutyric acid (GABA).
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fruit (155). Besides, the positive crosstalks between melatonin and H2O2 
have also been observed in apple and strawberry fruits against 
Diplocarpon mali infection and decay, respectively (51, 156). Moreover, 
SA signaling acted as the downstream pathway of the crosstalk between 
melatonin and H2O2 signaling to modulate the postharvest protection of 
fruits and vegetables during storage period (94, 156). Therefore, ROS 
generation-induced transiently by melatonin serve as the key signal in 
fruits and vegetables, especially in resistance to various diseases. 
However, it is important to further clarify the roles of this crosstalk on 
the quality and extending storage times in diverse fruits and 
vegetables species.

Conclusion and perspectives

Melatonin is ubiquitous in fruits and vegetables. This reviews 
describes the changes of melatonin content and synthesis sites in fruits 
and vegetables during the postharvest period. Exogenous melatonin 
can increase endogenous melatonin accumulation, alleviate the weight 
loss, fruit firmness decrease and discoloration, reduce the decay 
incidence, decay and disease index, and improve the quality of fruits 
and vegetables. In addition, it increases GSH, AsA, DHA, anthocyanins, 
carotenoids, and total flavonoid and phenols contents, and decreases 
MDA, H2O2, and O2

•– contents. It has also been noted that melatonin 
enhances the CAT, SOD, APX, GR, GPX, DHAR, and MDHAR 
activities to improve the antioxidant capacity. Application of exogenous 
melatonin increases proline content and decreases the membrane lipid 
peroxidation to protect cell membrane integrity in fruits and vegetables 
during the cold storage. Furtherly, exogenous melatonin regulates 
hormones, such as ethylene, salicylic acid, and abscisic acid, to delay 
postharvest senescence and protect fruits and vegetables aganist 
bacterial invasion. However, the effective concentrations of melatonin 
are different for postharvest protection of different fruits and vegetables 
species. Therefore, it is important to use the appropriate melatonin 
concentrations to prolong fruits and vegetables postharvest shelf life.

ROS signaling during fruit and vegetable ripening has been 
extensively studied (147). Recently, several studies revealled that ROS 
signaling is involved in melatonin-modulated fruits and vegetables 
post-harvest preservation. In particular, the vital role of RBOHs-
regulated H2O2 generation during these processes are shown. 
However, there are still many questions that should be characterized 
to understand the crosstalk of melatonin and ROS. For example, it is 
necessary to focus more attention on the signaling role of ROS 
produced by PAO in melatonin-modulated fruits and vegetables 

post-harvest preservation in future studies. Since the transmembrane 
receptor of melatonin (PMTR1/CAND2) were found in plants, 
researches focus on the mechanisms that the interaction between 
PMTR1/CAND2 and Gα subunits acts on the expression of the RBOHs 
in plant responses to abiotic stress (56, 71, 157). In this review, it is 
urgent to deeply study whether or how Gα directly regulates the 
crosstalk between melatonin and reactive oxygen species in fruits and 
vegetables post-harvest preservation.
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Introduction: Excessive alcohol consumption leads to a myriad of detrimental

health effects, including alcohol-associated liver disease (ALD). Unfortunately,

no available treatments exist to combat the progression of ALD beyond

corticosteroid administration and/or liver transplants. Dihydromyricetin (DHM) is

a bioactive polyphenol and flavonoid that has traditionally been used in Chinese

herbal medicine for its robust antioxidant and anti-inflammatory properties. It is

derived from many plants, including Hovenia dulcis and is found as the active

ingredient in a variety of popular hangover remedies. Investigations utilizing

DHM have demonstrated its ability to alleviate ethanol-induced disruptions

in mitochondrial and lipid metabolism, while demonstrating hepatoprotective

activity.

Methods: Female c57BL/6J mice (n = 12/group) were treated using the Lieber

DeCarli forced-drinking and ethanol (EtOH) containing liquid diet, for 5 weeks.

Mice were randomly divided into three groups: (1) No-EtOH, (2) EtOH [5% (v/v)],

and (3) EtOH [5% (v/v)] + DHM (6 mg/mL). Mice were exposed to ethanol

for 2 weeks to ensure the development of ALD pathology prior to receiving

dihydromyricetin supplementation. Statistical analysis included one-way ANOVA

along with Bonferroni multiple comparison tests, where p ≤ 0.05 was considered

statistically significant.

Results: Dihydromyricetin administration significantly improved aminotransferase

levels (AST/ALT) and reduced levels of circulating lipids including LDL/VLDL, total

cholesterol (free cholesterol), and triglycerides. DHM demonstrated enhanced

lipid clearance by way of increased lipophagy activity, shown as the increased

interaction and colocalization of p62/SQSTM-1, LC3B, and PLIN-1 proteins.

DHM-fed mice had increased hepatocyte-to-hepatocyte lipid droplet (LD)

heterogeneity, suggesting increased neutralization and sequestration of free

lipids into LDs. DHM administration significantly reduced prominent pro-

inflammatory cytokines commonly associated with ALD pathology such as TNF-α,

IL-6, and IL-17.
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Discussion: Dihydromyricetin is commercially available as a dietary supplement.

The results of this proof-of-concept study demonstrate its potential utility and

functionality as a cost-effective and safe candidate to combat inflammation and

the progression of ALD pathology.
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1. Introduction

Alcohol use disorder (AUD) affects over 280 million people
worldwide, and in the United States alone, it affects over 18 million
people, leading to approximately 140,000 deaths annually (1, 2).
This ranks AUD third on the list of preventable causes of death
and morbidity. Unfortunately, the rates of alcohol misuse are
on the rise, with unhealthy drinking patterns contributing to a
higher incidence of mortality, particularly due to alcohol-associated
liver disease (ALD) (3–5). The liver is the primary site of alcohol
metabolism, and when ALD manifests, it is in a progressive order.
This progression includes alcohol-associated fatty-liver disease
(AFLD), alcohol-associated steatohepatitis (ASH) and fibrosis,
to ultimately cirrhosis. The stages of ALD are characterized
by disruptions in lipid metabolism and transport, altering the
levels of free fatty acids, triglycerides, total cholesterol, and
lipoproteins that result in injury due to lipotoxicity, oxidative
stress, and inflammation (6). Available FDA-approved medications
have limited success in treating patients for AUD, and there
are no approved pharmaceutical or nutritional therapies for
ameliorating ALD beyond the administration of corticosteroids as
anti-inflammatory agents or in the worst-case scenarios, a liver
transplant (7). The lack of effective therapies for ALD is due, in
part, to the multifactorial systemic responses that are associated
with heavy ethanol (EtOH) intake and the multi-organ damage that
can result from excessive EtOH consumption.

Plant-derived products, including members of the polyphenol
families, are traditionally used worldwide for the treatment of liver
disorders that include hepatic-driven metabolic imbalances (8–
10). Polyphenols can regulate homeostasis by acting on nuclear
receptors in response to the cellular environment and metabolic
sensors. Emerging studies have demonstrated the effects of
dietary polyphenols on dyslipidemia by reducing circulating levels
of low-density lipoprotein (LDL), very low-density lipoprotein
(VLDL), and promoting high density lipoprotein (HDL) levels,

Abbreviations: AFLD, alcohol-associated fatty-liver disease; ALD, alcohol-
associated liver disease; ALT, Alanine aminotransferase; AMPK, AMP-
activated protein kinase; ASH, alcohol-associated steatohepatitis; AST,
Aspartate aminotransferase; Atg, autophagy-related genes; AUD, alcohol use
disorder; CE, cholesteryl ester; DHM, Dihydromyricetin; EtOH, ethanol; FFA,
free fatty acid; HDL, high density lipoprotein; LC3B, microtubule-associated
protein 1 light chain 3 beta; LD, lipid droplet; LDC, Lieber DeCarli; LDL,
low-density lipoprotein; mTOR, mammalian target of rapamycin; OXPHOS,
oxidative phosphorylation; PCC, Pearson’s Correlation Coefficient; PGC-
1α, PPARG coactivator-1α; PKA, protein kinase A; PLIN-1, perilipin-1;
p62/SQSTM-1, sequestosome-1; ROS, reactive oxygen species; SDS-PAGE,
sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SIRT1, sirtuin-1;
TG, triglyceride; VLDL, very low-density lipoprotein.

while improving liver function as noted by improved aspartate
and alanine aminotransferase (AST and ALT) levels (10–13).
Dihydromyricetin (DHM), a polyphenol and bioactive flavonoid
found in many plants such as Hovenia dulcis, has been used for
centuries in Traditional Chinese Medicine and is still used today
(14), namely, as the active ingredient of popular hangover remedies.

In 2021, the global natural product (i.e., herbal medicine)
market was valued at nearly $152 billion, highlighting the growing
consumer preference for natural remedies over synthetic products
(15, 16). In fact, the market for hangover cures was valued at
$1.8 billion in 2021, and is expected to grow over 14.6% by
2028 (17), led by plant-based herbal products. Building evidence
suggests that DHM improves steatosis (18–20) while providing
hepatoprotective effects and restoring metabolic processes (19, 21).
Regarding alcohol, commercially available DHM is used for its anti-
veisalgia effect and is instructed to be administered before, during,
and after consuming large amounts of ethanol.

To expand on this further, our group has begun to investigate
the effects of DHM on ethanol-induced disturbances in lipid
metabolism, steatosis, and inflammation. We recently reported
that administration of 5 and 10 mg/kg of DHM delivered via
intraperitoneal (i.p.) injection significantly protected the livers of
mice from ethanol-induced steatosis and improved mitochondrial
health via the AMP-activated protein kinase (AMPK), sirtuin-
1 (SIRT1), PPARG coactivator-1α (PGC-1α) signaling pathway
(18, 21). The AMPK-SIRT1-PGC-1α pathway is a key regulator
of energy homeostasis through its effects on metabolic and
mitochondrial activity, namely, lipid oxidation, mitochondrial
biogenesis, and autophagy (22–26). Autophagy is an evolutionarily
conserved process that plays an important role in liver physiology,
and is induced through AMPK pathway activation (27). Typically,
autophagy promotes the proteolytic degradation and recycling
of damaged proteins and organelles, including lipid droplets
(LDs), in response to environmental cues, such as starvation and
energy requirements. LD catabolism is mediated by lipolysis and
lipophagy, a form of selective macro-autophagy that targets lipid
droplets (28).

Along with steatosis, inflammation plays a critical role in
the development and progression of ALD. Chronic alcohol
consumption leads to the activation of several inflammatory
pathways including NF-κB and toll-like receptor 4 (TLR4) signaling
pathways, and inflammasome activation (29). These pathways are
responsible for elevation of pro-inflammatory cytokines which
promote liver inflammation and injury via increased oxidative
stress and mitochondrial dysfunction (30). Furthermore, chronic
alcohol consumption leads to disruption of the gut barrier, leading
to bacterial translocation and release of endotoxins into the
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liver. These endotoxins activate Kupffer cells, which leads to
further increases in production of pro-inflammatory cytokines
and oxidative stress resulting in exacerbated liver inflammation
and injury (31). Overall, the inflammatory response in ALD is a
complex process which involves multiple cell types, mediators, and
pathways. Targeting inflammatory responses early could prove to
be an important therapeutic strategy for ALD.

Alcohol-associated fatty-liver disease and ASH are
characterized by the accumulation of fat primarily found in
the form of lipid droplets and increased inflammatory signaling
through TNF-α, IL-1β, IFN-γ, IL-17, and IL-6 (32, 33). In the
current investigation, we tested the hypothesis that oral DHM
improves ethanol-induced disruptions in lipid homeostasis by
reducing levels of harmful lipids, leading to decreased levels of
circulating pro-inflammatory cytokines.

2. Materials and methods

2.1. Lieber DeCarli Diet (LDC)

Female wild-type c57BL/6J mice (Jackson Laboratories, Bar
Harbor, ME) weighing ≥ 19 g and ≥ 10 weeks of age at the
beginning of the study were individually housed in cages with
shredded filter paper and wooden blocks for enrichment and
to prevent malocclusion from receiving a liquid-only diet. Mice
were acclimated for 2 weeks in temperature (22◦C), light, and
humidity-controlled (40–60%) conditions with a 12 h light/dark
cycle. During acclimation weeks, mice were given free access to the
liquid Lieber DeCarli diet with no ethanol (Bio-Serv, Flemington,
NJ, USA) following the model described by Bertola et al. (34), with
modifications. After the acclimation period, mice were randomly
assigned to groups (where feed was given ad libitum): (1) No-EtOH
(n = 12); (2) EtOH [(n = 12) 5.5% (v/v)]-containing LDC diet;
and (3) DHM (n = 12; 6 mg/mL) + EtOH-containing LDC diet,
for a total of 5 weeks. Every morning, fluid intake was recorded
by measuring the meniscus on the graduated feed tube. Mice
in the DHM group were exposed to ethanol-only for 2 weeks
prior to DHM supplementation, which lasted for the remainder
of the study; the feeding paradigm was isocaloric between groups.
DHM, [(2R, 3R)-3, 5, 7-trihydroxy-2-(3, 4, 5-trihydroxyphenyl)-
2,3-dihydrochromen-4-one], HPLC grade, >98%, MW 320.25 was
purchased from Master Herbs Inc., Pomona, CA. The LDC diet is
a robust forced-drinking model that induces severe liver disease
with a potential for a high mortality rate. Therefore, for this
proof-of-concept study, a single dose of 6 mg/mL was used as
a comparison to the 10 mg/kg dose delivered via i.p. in our
previous publications. After the study period ended, mice were
euthanized via CO2 exposure followed by cardiac puncture. Blood
was collected and kept at room temperature for 45 min and
serum was separated by centrifugation for 10 min at 10,000 × g
in 4◦C and stored at −80◦C until use; livers were harvested
and frozen in nitrogen-isopentane and stored at −80◦C until use
or fixed in 10% formalin and embedded in paraffin. Animals
used in the study were considered and handled in adherence to
the University of Southern California’s Department of Animal
Resources Institutional Animal Care and Use Committee (IACUC)
policies and guidelines.

2.2. Immunohistochemistry

Lipid droplets were stained using Oil Red O Staining
Kit (Lifeline Cell Technology, San Diego, CA, USA) on
frozen liver sections (10 µm thick). Liver sections were also
stained with Hematoxylin and Eosin (H&E) staining kit
(Abcam, Boston, MA, USA). Antibodies against p62/SQSTM-
1 (1:400, Cell Signaling Technology, Danvers, MA, USA); LC3B
(1:1,000, Cell Signaling Technology, Danvers, MA, USA); PLIN-1
(1:200, Cell Signaling Technology, Danvers, MA, USA); anti-
CD68 (1:250, Cell Signaling Technology, Danvers, MA, USA);
and Alexa Fluor 405, 488, and 647 secondary antibodies (1:250,
Cell Signaling Technology, Danvers, MA, USA) were used for
visualization. Images were acquired using Cytation 5 Cell Imaging
Multi-Mode Reader (BioTek, Winooski, VT, USA) and Zeiss
LSM880 w/Airyscan Confocal Laser Scanning Microscope (Carl
Zeiss Microscopy, White Plains, NY, USA), and were analyzed
using ImageJ software (ImageJ; Coloc2 Fiji software) and Zen
(Black and Blue versions) imaging analysis software (Carl Zeiss
Microscopy, White Plains, NY, USA). Lipid droplet density and
size were analyzed using whole image analysis on the ImageJ Color
Threshold software.

2.3. Immunoblotting

Protein expression (Atg7, PLIN-1, p62, CETP, and
LCAT) was analyzed using protein extracts (60–125 mg for
immunoprecipitation) from liver homogenates that were isolated
using Dynabeads Magnetic Beads (Thermo-Fisher Scientific, MA,
USA), and visualized via sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE), where bands were detected by
chemiluminescent reaction. Signal density was quantified by
densitometry using ImageJ software: Atg7, PLIN-1, p62/SQSTM-1,
CETP, and LCAT were analyzed using immunoprecipitation, while
LC3B and Beta-actin antibodies purchased from Cell Signaling
Technology, CA were analyzed from Western blots (diluted
1:1,000, while 10 µg of antibody was used for IP).

2.4. Biochemical assays

The following assays were measured from serum: aspartate and
alanine aminotransferase (AST and ALT) levels were measured
using AST and ALT activity assays (Sigma Aldrich, St. Louis,
MO, USA). Free cholesterol and cholesteryl esters were measured
using the Cholesterol Fluorometric Assay Kit (Cayman Chemical,
Ann Arbor, MI, USA). LDL/VLDL levels were measured using
the Cholesterol Assay Kit (Abcam, Boston, MA). Circulating
triglyceride levels were measured from liver homogenates
(∼100 mg) and serum using Triglyceride Colorimetric Assay Kit
(Cayman Chemical, Ann Arbor, MI, USA).

Mitochondrial oxidative phosphorylation system (OXPHOS)
in complexes I, II, and IV were analyzed using Complex I Enzyme
Activity Colorimetric Assay Kit, Complex II Enzyme Activity
Microplate Assay Kit, and the Complex IV Rodent Enzyme Activity
Microplate Assay Kit (Abcam, Boston, MA, USA) using isolated
mitochondria that were purified from the liver tissues using
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FIGURE 1

DHM administration results in heterogeneous lipid droplet size and distribution. Histology images (scale bars: 200 µm) shown are (A) Hematoxylin
and Eosin and (B) Oil Red-O-stained liver sections demonstrating heterogeneity in LD size and distribution between groups (white circles); (C) Lipid
droplet size in each group (#0.0063, ##< 0.0001).

the Mitochondria Isolation Kit for Tissue (Abcam, Boston, MA,
USA).

Cytokine levels were measured using Proteome Profiler Array
Mouse Cytokine Array Kit Panel A (R&D Systems, Minneapolis,
MN, USA) and signal density was quantified by densitometry using
ImageJ software.

2.5. Statistical analysis

Immunohistochemistry images were analyzed using n = 3–
4 from each group and 4 different sections were analyzed per
sample. Biochemical assays were conducted using 3–4 samples
from each group. Data are presented as means ± standard
deviation. Statistical analysis included one-way ANOVA along with
Bonferroni multiple comparison tests using Prism 9.3 (GraphPad
Software, Inc., San Diego, CA, USA), where p ≤ 0.05 was
considered statistically significant.

3. Results

3.1. DHM administration ameliorates
ethanol-induced changes in hepatic and
circulating lipid content while improving
aminotransferase levels

To investigate the utility of oral DHM, mice in the DHM
group received ethanol-only treatment for 2 weeks prior to DHM
supplementation to assure the initiation and development of
ALD pathology. A hallmark of early ALD is hepatic steatosis,
characterized by the accumulation of LDs throughout the liver
and disruptions in lipid homeostatic conditions (35–37). H&E
and Oil Red O-staining of liver tissue sections demonstrated
increased steatosis in the EtOH group which was alleviated by
DHM treatment (Figures 1A, B; scale bars 200 µm). LDs are
synthesized by nearly all cells, and size varies considerably among
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FIGURE 2

DHM administration ameliorates ethanol-induced changes in circulating and hepatic lipid content and improves aminotransferase levels. DHM
effect on levels of circulating: (A) Aspartate aminotransferase (AST) levels (90.029, 990.0006, and 9990.024), (B) Alanine aminotransferase (ALT)
levels (∗0.027, ∗∗0.0014, and ∗∗∗0.0046), (C) Circulating levels of free cholesterol (#0.0097 and ##0.0227), (D) Levels of LDL/VLDL are reduced in the
DHM group, (E) Levels of cholesteryl esters are increased in the DHM group, (F) Levels of hepatic triglycerides are increased in the DHM group,
(G) Levels of circulating triglycerides are reduced in the DHM group (∗0.022), and (H) immunoprecipitation of CETP expression is reduced with DHM
and levels of LCAT are increased in the group fed DHM.

different cell types in response to environmental cues, particularly
in the liver. Chronic ethanol consumption alters hepatocyte LD
properties, including increased size and cellular distribution (38).
Interestingly, mice in the DHM group exhibited a wide range of
lipid accumulation and distribution in addition to significantly
larger LDs, compared to all groups. In a previous study, it was
shown that heterogeneous lipid distribution within the hepatocyte
population, similar to what is observed in the DHM group,
is a potential hepatoprotective social organization that reduces
lipotoxicity within the overall region, compartmentalizing lipids
within a cell population (39). The authors also reported that
LD heterogeneity is not only reversible and variable (depending
on intracellular-environmental factors) but also allows for the
reduction of lipotoxicity between cells by exchanging LD content
over time. We found a wide range of noticeable hepatocyte-to-
hepatocyte LD heterogeneity, which was more prominent in the
group receiving DHM. LD size was also found to be varied across
groups, with the mean LD sizes in the No-EtOH group measuring
at 3.64 µm2, EtOH-only at 7.37 µm2, and DHM measuring at
9.88 µm2. Mice receiving EtOH had larger LDs than the No-EtOH
group (#0.0063; Figure 1C), and the difference was even greater in
the mice fed DHM (##< 0.0001; Figure 1C).

As a measure of overall hepatic health and function following
DHM administration, we next analyzed the levels of circulating

aspartate and alanine aminotransferases (AST and ALT). As shown
in Figure 2A, there was a significant decrease in AST levels in mice
receiving oral DHM compared to mice in the EtOH-only group
(90.029, 990.0006, 9990.024); Figure 2B shows significantly
lowered levels of ALT in mice receiving oral DHM when compared
to the EtOH-only fed mice (∗0.027, ∗∗0.0014, and ∗∗∗0.0046). The
levels of circulating lipids were measured and show that DHM
administration significantly lowers total free cholesterol levels,
(#0.0097, ##0.0227; Figure 2C). Although not significant, the levels
of LDL/VLDL were reduced with DHM administration, like those
measured in the No-EtOH group (Figure 2D). When interpreting
the results obtained from this study, it is important to note that
the LDC diet is considered as a high fat diet, where 35% of calories
are derived from FFAs: 23.5 g/L of monounsaturated and 5.2 g/L
unsaturated fats. The No-EtOH group is isocaloric to the other
groups and therefore is also receiving the high fat diet, which may
influence the amount and types of lipids in circulation compared to
the EtOH-receiving groups.

Lipid droplets are primarily composed of triglycerides (TGs)
and cholesteryl esters (CE) (37). Although TGs are not considered
determinants of lipotoxicity (6), conversion of free fatty acids
(FFAs) into TGs, as well as FFA utilization in CEs via esterification
(40), essentially acts to neutralize the reactivity of and damage
caused by excessive FFAs (41, 42). Accordingly, cholesteryl esters
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FIGURE 3

DHM increases ethanol-induced colocalization events between p62/SQSTM-1 and perilipin 1 (PLIN-1). Confocal images (scale bars 5 µm) from the
livers of mice receiving the LDC diet confirm the presence and interaction between p62/SQSTM-1 and perilipin 1 (PLIN-1). As shown: p62/SQSTM-1
(green), perilipin 1 (red), and nuclei (blue). Colocalization events are circled between p62/SQSTM-1 + PLIN-1 (yellow/brown). The magnified image
from the DHM group highlights the nuclei (blue), p62/SQSTM-1 (green), and PLIN-1 (red) and the magnitude and distribution of colocalization events
on lipid droplets.

and hepatic TG levels were found to be increased in the group
receiving DHM (Figures 2E, F), while circulating TG levels
were normalized by DHM to levels similar to those measured
in the No-EtOH group (∗0.022; Figure 2G). Two facilitators of
cholesterol exchange and transport are cholesteryl ester transfer
protein (CETP) and lecithin-cholesterol acyltransferase (LCAT).
CETP is a known mediator in the transfer of cholesteryl esters
from HDL to LDL/VLDL (43). LCAT is a key enzyme involved
in the esterification of free cholesterol into cholesteryl esters and
facilitates the metabolism of cholesterol (44). As demonstrated in
Figure 2H, we found that CETP expression was increased in the
EtOH-only group compared to the DHM group, and found that
LCAT expression was highest in the DHM fed group.

3.2. DHM fed mice demonstrate
increased colocalization of lipophagy
proteins, p62/SQSTM-1, perilipin 1
(PLIN-1) and LC3B

Lipid droplet membranes are coated with various components,
including lipid droplet-associated proteins belonging to the
perilipin family (PLIN-1-5) that assist in the regulation of LD
synthesis and cytosolic lipase activity. Lipophagy involves the
recruitment of selective autophagy proteins such as sequestosome-
1 (p62/SQSTM-1), microtubule-associated protein 1 light chain 3

beta (LC3B), and PLIN-1, which when combined are recognized
as defense mechanisms against oxidative stress (45–48). Ethanol is
known to trigger the selective interactions of p62/SQSTM-1, LC3B,
and PLIN-1 using in vitro models during LD clearance (45). To
assess the effect of DHM on ethanol-induced interactions between
selective autophagy-associated proteins, we analyzed the presence
and interactions between p62/SQSTM-1; LC3B; and PLIN-1. We
began by confirming the interaction between p62/SQSTM-1 and
PLIN-1 using liver sections that were stained for p62/SQSTM-
1 (green), PLIN-1 (red), and nuclei (blue). As illustrated in
Figure 3 (scale bars 5 µm), we confirmed the presence of and
interactions between p62/SQSTM-1 and PLIN-1 in all three groups
as shown from their colocalization. Mice receiving ethanol had
noticeably higher levels of p62/SQSTM-1 + PLIN-1 interactions
than the No-EtOH group (Figure 4B). DHM-fed mice had even
greater colocalization events between PLIN-1 and p62/SQSTM-1,
where the interactions were widely distributed across LD surfaces,
compared to the EtOH-only group (Figure 3 inset).

Autophagy is a diverse mechanism that follows several
pathways based on cellular demands. There are over 32 different
autophagy-related genes (Atg) that activate the formation of
double-membrane structures that deliver cytoplasmic components
to lysosomes for degradation. Atg7 is a ligase that has ubiquitin
E1-like activity which facilitates interactions and complexations
between other autophagy-related genes. These subsequently
interact with other Atg proteins, forming a much larger complex
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FIGURE 4

DHM enhances the colocalization and expression of lipophagy-associated proteins in mice exposed to chronic ethanol. DHM administration
increases the colocalization and interaction between p62/SQSTM-1 + PLIN-1 + LC3B. (A) Confocal images (upper and lower (magnified) scale bars
on images are 10 and 5 µm, respectively) show the expression and colocalization of p62/SQSTM-1 (green), PLIN-1 (red), and LC3B (blue) between
groups. (B) Colocalization of p62/SQSTM-1 + LC3B + PLIN-1 as quantified by Pearson’s Correlation Coefficient (PCC) shows a significant increase in
colocalization between PLIN-1 + p62/SQSTM-1 (∗0.04; brown puncta). (C) Colocalization of p62/SQSTM-1 + LC3B is increased in mice fed EtOH
(##0.008; cyan puncta) and highest in EtOH + DHM fed mice (#< 0.0001). (D) Differences in (immunoprecipitated) protein expression levels of Atg7,
PLIN-1, and p62/SQSTM-1; (E) LC3B protein expression.

that binds to LC3B, a molecule that is essential for autophagosome
structure, formation, and cargo recognition (47, 49). LC3B
interacts with cargo adaptor protein (p62/SQSTM-1) that binds
to poly-ubiquitinated cargo, and is a classical selective autophagy
receptor (48).

Selective autophagy occurs when p62/SQSTM-1 and LC3B
interact (50), resulting in the formation of an autolysosome
that is directed to ubiquitinated PLIN-1 proteins found on LDs,
resulting in lipophagy activity. The colocalization of p62/SQSTM-
1 + PLIN-1 + LC3B is illustrated in Figure 4A (upper and
lower magnified images scale bars are 10 and 5 µm, respectively).
Additionally, we quantified levels of interactions by measuring
the correlation between two proteins using Pearson’s Correlation
Coefficient (PCC) analysis, where values closer to 1.0 confirm the
strength of correlation. As shown, interactions between PLIN-
1 + p62/SQSTM-1 were significantly higher in mice receiving DHM
with a mean PCC of 0.344 (∗0.04; brown puncta), compared to
the EtOH-only group with a mean PCC of 0.154 (Figure 4B).
Our results also show that mice in the group receiving EtOH-only
demonstrated an increased colocalization of p62/SQSTM-1 + LC3B

(## 0.008; cyan puncta) when compared to the No-EtOH group; the
increase was more apparent when comparing the No-EtOH group
to mice fed DHM (#< 0.0001) (Figure 4C). Our data show that
DHM-fed mice had a greater and wider range of colocalization
events and activity. Quantification (via immunoprecipitation) of
the expression levels of Atg7, PLIN-1, p62/SQSTM-1 were analyzed
(Figure 4D), and LC3B: β-Actin (via Western blots) are shown in
Figure 4E, supporting the findings from histological colocalization
analyses.

3.3. DHM reverses ethanol-induced
reductions in mitochondrial oxidative
phosphorylation activity

Chronic ethanol consumption leads to loss of mitochondrial
function and increased production of reactive oxygen
species (ROS), promoting oxidative stress, particularly in the
mitochondria. Damage, brought on by increases in ROS to
mitochondrial proteins and DNA, decreases mitochondrial
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FIGURE 5

DHM reverses ethanol-induced reductions in mitochondrial function. DHM-fed mice demonstrate improvement in mitochondrial oxidative
phosphorylation systems as shown by restored activity in (A) complex I, (B) complex II (∗0.03), and (C) complex IV.

function due to the breakdown of these complexes (51). Lipid
metabolism takes place in the mitochondria, where fatty acids
undergo β-oxidation. We measured mitochondrial health by
analyzing the activity of complexes I, II, and IV from isolated
mitochondria. Our results show that DHM had a significant effect
on restoring complex II activity (∗0.03; Figure 5B). Although the
changes were not significant, DHM led to increases in complex I
activity (Figure 5A), while normalizing the activity of complex IV
(Figure 5C).

3.4. DHM supplementation reduces
pro-inflammatory and hematopoietic
cytokines

Next, we investigated the effects of DHM on ethanol-induced
inflammation. The livers of mice were stained with CD68, a
biomarker for immune cells of the monocyte lineage, such as
monocytes and macrophages. As illustrated in Figure 6, mice in
the EtOH-only group had larger bursts of monocyte/macrophage
infiltration clouds (green puncta) when compared to the No-
EtOH and DHM-fed mice. These observations were further
confirmed by conducting a cytokine panel assay that measured
several different circulating pro-inflammatory cytokines from
serum (Supplementary Figure 1). We found that oral DHM
administration reduced circulating levels of pro-inflammatory
cytokines and immune cell chemokines that are traditionally
associated with ethanol-induced inflammation. TNF-α promotes
acute inflammation and is one of the critical inflammatory
cytokines in ALD progression and liver injury, as it contributes to
the production of other pro-inflammatory cytokines (33). DHM
supplementation reversed the significant elevations in TNF- α

levels in mice receiving ethanol-only as demonstrated in Figure 7A
(∗, ∗∗, and ∗∗∗< 0.0001), while also normalizing levels of IFN-γ
(#< 0.0001, ##0.0018, and ##0.001) closer to those of the No-
EtOH group (Figure 7B). DHM receiving mice had reduced levels
of IL-1β (9< 0.0001, 990.027, and 9990.0007) compared to
the EtOH-only mice, with levels close to the No-EtOH group
(Figure 7C). Although IL-1β is not produced in a healthy liver, it

is secreted by activated inflammasomes during excessive alcohol
consumption and is an essential cytokine in giving rise to Th17 cells
that subsequently secrete IL-17 (52, 53).

Mice receiving EtOH-only had significantly higher levels
of circulating IL-17 overall, which was ameliorated with DHM
supplementation (Figure 7D; -1< 0.0001, -1-10.003, and -1-1-1< 0.0001).
IL-17 is a potent pro-inflammatory cytokine that has received
much attention for its synergistic effects with other inflammation
promoting cytokines during ALD pathogenesis that were also
reduced in the DHM-fed group, such as IL-6 (Figure 7E; ∗0.007),
IL-1β, and IL-1α (Figure 7F; -1< 0.0001, -1-10.047, and -1-1-1< 0.0001)
(52–54). IL-17 induces the expression of hematopoietic cytokines
and chemokines such as granulocyte-macrophage-colony
stimulating factor (Figure 8A: GM-CSF; #< 0.0001, ## 0.003,
and ###0.0001), macrophage-colony stimulating factor (Figure 8B:
M-CSF; -1,-1-1, -1-1-1< 0.0001), granulocyte-colony stimulating factor
(Figure 8C: G-CSF; ∗< 0.0001, ∗∗0.005, and ∗∗∗0.0004), neutrophil
activating and chemotactic chemokine, CXCL1 (Figure 8D;
#< 0.0001, ##0.0001, and ###< 0.0001), and B-cell recruiting
CXCL13 (Figure 8E; ∗0.023, and ∗∗0.002) (53, 55–58). DHM-fed
mice had lower levels of IL-3 (Figure 8F; #0.035), a cytokine that
amplifies acute inflammation (59) and works in coordination
with GM-CSF to promote pathogenic clearance during chronic
inflammation (60). Additionally, CXCL2/MIP-2 (macrophage
inflammatory protein-2), is synthesized by a variety of immune
cells to recruit neutrophils in response to damage and acute
liver injury (61). CXCL2 was significantly increased in mice
receiving EtOH-only, and that increase was reversed with DHM
supplementation (Figure 8G; #,##< 0.0001).

3.5. DHM supplementation increased
production of protective
anti-inflammatory cytokines in mice
treated with ethanol

Mice receiving DHM supplementation had increased anti-
inflammatory cytokine levels compared to mice fed EtOH-only.
IL-1ra is a receptor antagonist to members of the IL-1 family of
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FIGURE 6

DHM reduces the increase in monocyte infiltration seen in mice
exposed to chronic EtOH. Images (scale bars: 100 µm)
demonstrating smaller bursts of monocyte infiltration clouds (green
puncta) when compared to mice in the EtOH-only group.

pro-inflammatory cytokines, and has neutralizing and protective
effects against IL-1 activity (62). Mice in the DHM group had
levels of IL-1ra that were nearly identical to the No-EtOH group
and significantly lower than the EtOH-only group (Figure 9A; ∗,
∗∗< 0.0001). Following excessive ethanol intake and burn injury,
IL-27 has been shown to promote liver regeneration by enhancing
liver progenitor cell expansion and differentiation as well as
intestinal barrier repair following ethanol intoxication (63, 64). In
our study, as shown, DHM-fed mice had significantly higher levels
of IL-27 in circulation than that of the No-EtOH group (Figure 9B;
∗0.034) and nearly twice as much as those in the EtOH-only group.

4. Discussion

Despite the detrimental health effects associated with high
ethanol intake, individuals continue to partake in excessive
drinking behavior, as evidenced by the increasing rates of alcohol
sales and alcohol-related mortality and morbidity. ALD is the
leading cause of liver disease in the United States, where
alcohol accounts for up to 50% of cirrhosis-related mortality
(65) and 20% of mortality worldwide (66). Therefore, targeting
ethanol-induced steatosis and the mechanisms that lead to
the dysregulation of lipid homeostasis are key for preventing
lipotoxicity and the systemic metabolic dysfunction that eventually
affects multiple organ systems (6). Considering the growing interest
and consumer preference for herbal therapies (i.e., polyphenols
and flavonoids), the present study tested the hypothesis that
the bioactive polyphenolic-flavonoid DHM, improves ethanol-
induced lipid imbalance and steatosis in part by restoring lipophagy
activity and reducing pro-inflammatory cytokines. The data
presented here supports the hypothesis that DHM can counteract
the progression of ALD pathology caused by damage due to
inflammation and the dysregulation in lipid homeostasis due to
chronic ethanol consumption.

The liver is the primary site for the breakdown of ethanol
and is one of the major organs for lipid metabolism and is,
therefore, highly susceptible to damage and lipotoxicity. Elevated
levels of lipids is a major factor that leads to hepatic injury
caused by lipotoxicity and oxidative stress. Cellular defense
mechanisms neutralize FFAs via their conversion into TGs through
esterification. Lipid droplets are primarily composed of TGs
and CEs, acting as energy stores, subsequently minimizing the
lipotoxicity of FFAs that would otherwise occur in the cell (37,
42). Cholesteryl esters are reverse transported to the liver from
circulation and peripheral tissues via high-density lipoproteins,
where they are stored in LDs or metabolized for bile acid synthesis
(67). The increased levels of CEs, hepatic TGs, and LD size
in our study, combined with the reduction in circulating TGs,
suggest increased synthesis and hepatic sequestration of TGs and
CEs in the DHM-fed mice. Taken together, the results from our
study indicate the possibility of increased FFA neutralization and
containment in LDs as a protective measure against lipotoxicity
by FFAs. Chronic ethanol consumption disturbs metabolic flux
through various pathways. As mentioned earlier, the LDC diet is
regarded as a high fat diet, providing excess dietary free fatty acids
to all groups. Future studies will also consider the effect of a high
fat diet when measuring circulating lipid content in the No-EtOH
group(s) and comparing them to EtOH-fed group(s).

Chronic ethanol consumption alters metabolic processes,
including hepatocyte LD properties that include LD membrane
protein composition, resulting in increased size and differential
tissue distribution (38). Lipophagy, a subtype of macroautophagy,
is associated with the degradation of LDs via engulfment
by autophagosomes and subsequent fusion with lysosomes.
Ethanol can stimulate autophagy through multiple mechanisms,
including the modulation of mammalian target of rapamycin
(mTOR) through AMPK signaling pathways. Excessive ethanol
consumption is associated with decreased AMPK activation, which
in turn activates mTOR in the liver and inhibits autophagy (21,
68). Previous work found that DHM can improve autophagy
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FIGURE 7

DHM supplementation ameliorates elevations in pro-inflammatory cytokines seen in mice given chronic EtOH. (A) DHM-fed mice show significant
decreases in levels of TNF-α compared to EtOH-only mice (∗, ∗∗, and ∗∗∗< 0.0001). Normalization of levels of (B) IFN- γ (#< 0.0001, ##0.0018, and
##0.001) and (C) IL-1β (9< 0.0001, 990.027, and 9990.0007) to those similar to those in the No-EtOH group is shown. DHM-fed mice show
significant decreases in (D) IL-17 (-1< 0.0001, -1-10.003, and -1-1-1< 0.0001) compared to EtOH-only mice. EtOH-only mice show a significant increase
in (E) IL-6 (*0.007) expression compared to No-EtOH mice. (F) IL-1α (-1< 0.0001, -1-10.047, and -1-1-1< 0.0001) levels are significantly reduced in
DHM-fed mice compared to EtOH-only mice.

activity by activating AMPK, inhibiting mTOR, and reversing
ethanol-induced AMPK-deficiency (21, 69, 70). Results from the
current study demonstrate the downstream activity of AMPK-
autophagy related activity and offer a glimpse into the possible
downstream effects on lipophagy, as demonstrated by the enhanced
expression and interactions between lipophagy protein complexes
p62, LC3B, and PLIN-1.

Members of the PLIN family of LD-associated proteins are
essential for regulating triglyceride synthesis, packaging TGs into
LDs, and lipolysis. PLIN-1 positively contributes to the formation
of larger LDs and is expressed on the membranes of larger,
more mature LDs (36, 38, 71, 72). Studies have also shown that
lipolysis is enhanced and regulated via proteasomal degradation of
PLIN1 (73–75). Activation of protein kinase A (PKA) via AMPK
signaling leads to the phosphorylation of PLINs (76), which are
then subjected to ubiquitination and are tagged for proteasomal
degradation. This results in effective priming of LD surfaces for

recognition and recruitment of autolysosomal bodies through
the activities of selective mechanisms such as those directed
by p62/SQSTM-1 (46, 77). Lipolysis and lipophagy are tandem
pathways in hepatocytes. Lipolysis is the process in which FFAs
are released from TGs, which takes place during lipophagy (in
lysosomes), and preferentially targets the degradation of large
LDs. The increased presence of PLIN-1 and interactions with p62
and LC3B in the DHM-fed mice demonstrates the possibility of
enhanced lipophagic activity, which potentially results in greater
lipid clearance over time.

Released FFAs are then further broken down in the
mitochondria, where they undergo β-oxidation. This system works
in tandem with the oxidative phosphorylation system (OXPHOS),
which is located in the mitochondrial inner membrane, composed
of four respiratory chain complexes (I-IV), and is key for
driving ATP production (51). As such, mitochondrial health and
function is determined by the analysis of OXPHOS-complex
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FIGURE 8

DHM administration reduces levels of hematopoietic cytokines and chemokines which are increased during chronic alcohol consumption.
Expression of (A) granulocyte-macrophage-colony stimulating factor (GM-CSF; #< 0.0001, ## 0.003, and ###0.0001), (B) macrophage-colony
stimulating factor (M-CSF; -1,-1-1, -1-1-1< 0.0001), and (C) granulocyte-colony stimulating factor (G-CSF; ∗< 0.0001, ∗∗0.005, and ∗∗∗0.0004) significantly
decreases with DHM administration. Expression of chemokines (D) CXCL1 (#< 0.0001, ##0.0001, and ###< 0.0001) and (E) CXCL13 (∗0.023 and
∗∗0.002) is also reduced in DHM-fed mice. Expression of pro-inflammatory cytokine (F) IL-3 (#0.035) and pro-inflammatory chemokine (G) CXCL2
(#,##< 0.0001) is reduced following DHM administration.

activity (78). Previous studies have demonstrated the effect of
DHM on mitochondrial health, effectively reversing stress-induced
deficiencies in mitochondrial function (19, 21, 79, 80). Our
data demonstrates a positive effect of DHM on mitochondrial
function restoration, particularly in Complex II. The increase
in lipophagy activity is possible when mitochondrial function
is efficient, as measured by complexes I, II, and IV. This data
further supports the potential benefit of DHM on reversing
ethanol-induced OXPHOS deficiencies and in turn, improving
overall function.

In addition to direct induction of oxidative stress-induced
inflammation, alcohol disrupts gut permeability, causing
endotoxin/lipopolysaccharide (LPS) translocation to interact
with TLR4 which results in the generation of inflammatory
cytokines via NF-κB signaling pathway activation (31, 81). The
increased oxidative stress and increased TLR4/NF-κB transcription
upregulates and activates inflammasome, an intracellular protein
complex that leads to the cleavage of pro-inflammatory cytokines

like IL-1β (82). In ALD, pro-inflammatory cytokines such as TNF-
α, IL-1β, and IL-17 are produced by alcohol-induced activation of
liver innate immunity (30). In addition, leukocyte chemoattractants
and hematopoietic cytokines can recruit and proliferate immune
cells in the liver, exacerbating the inflammatory response. IL-3
is a hematopoietic cytokine that regulates the differentiation,
proliferation, and survival of various immune cells. DHM has been
shown to suppress the production of hematopoietic cytokines that
regulate the differentiation, proliferation, and survival of various
immune cells such as IL-3, M-CSF, and G-CSF in LPS-stimulated
macrophages (83). Furthermore, our study shows that DHM
decreases the expression of CXCL1 and CXCL13, chemokines that
are involved in the recruitment and activation of neutrophils and
B cells, respectively, in hepatic inflammatory processes (84, 85).
Evidence shows that inflammation plays an essential role in the
initiation and progression of ALD (86). Results from our study
support the published reports on the immuno-modulatory activity
of DHM, and offer a glimpse on the protective effects of DHM
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FIGURE 9

DHM increases production of anti-inflammatory cytokines
compared to mice fed EtOH-only. Expression of (A) IL-1ra (∗,
∗∗< 0.0001) is significantly reduced in mice receiving DHM
compared to those fed EtOH-only. In addition, levels of circulating
(B) IL-27 (∗0.034) in the DHM-fed group are significantly higher than
that in the No-EtOH group.

against the damaging effects of ethanol-induced inflammation
and injury (87, 88). The mechanism of action of DHM in
reducing inflammation in ALD is believed to be multifactorial.
As demonstrated in this study, DHM supplementation led to
significant decreases in inflammatory signaling through reductions
in the prominent pro-inflammatory cytokines associated with ALD
pathology. Interestingly, DHM supplementation led to a significant
increase in IL-27, a cytokine that has demonstrated protective
action on the gut barrier by promoting anti-inflammatory
functions, regenerative activity in the liver and intestines, and
promoting intestinal barrier repair following ethanol intoxication
and burn injury (63, 64).

The results from our study align with various animal and
human studies investigating DHM for its robust antioxidant
activity (79, 89), ability to reverse dyslipidemia (18, 21, 90, 91),
having anti-alcohol intoxication effects (92), and amelioration of
non-alcohol-associated fatty liver disease (19).

With the rates of ethanol-related health effects continuing to
rise, particularly ALD, the need for therapeutic intervention is
imperative. DHM is a natural compound that is widely available as a
dietary supplement and has demonstrated the potential to mitigate
the progression of ALD development caused by disruptions in lipid
metabolism and transport in mice. As a natural product that is
readily and commercially available, our findings help set the stage
for the rapid advancement of DHM to improve liver health against
the damaging effects of excessive ethanol consumption.
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Ellagic acid effects on disease 
severity, levels of cytokines and 
T-bet, RORγt, and GATA3 genes 
expression in multiple sclerosis 
patients: a multicentral-triple blind 
randomized clinical trial
Sahar Jafari Karegar 1, Naheed Aryaeian 1*, Ghazaleh Hajiluian 1, 
Katsuhiko Suzuki 2, Farzad Shidfar 1, Masoud Salehi 3, 
Bahram Haghi Ashtiani 4, Pooya Farhangnia 5 and 
Ali-Akbar Delbandi 5,6*
1 Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran, 
2 Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan, 3 Department of Statistics, School of 
Public Health, Iran University of Medical Sciences, Tehran, Iran, 4 Firouzgar Hospital, Iran University of 
Medical Sciences, Tehran, Iran, 5 Department of Immunology, School of Medicine, Iran University of 
Medical Sciences, Tehran, Iran, 6 Immunology Research Center, Institute of Immunology and Infectious 
Disease, Iran University of Medical Sciences, Tehran, Iran

Background: Multiple sclerosis (MS) is a chronic autoimmune disease. Ellagic 
acid is a natural polyphenol and affects the fate of neurons through its anti-
inflammatory and antioxidant properties. The present study aimed to investigate 
ellagic acid effects on disease severity, the expression of involved genes in the 
pathogenesis of MS, and the levels of related cytokines.

Methods: The present study was a triple-blind clinical trial. Eligible patients were 
randomly assigned to two groups: Ellagic acid (25 subjects) for 12  weeks, receiving 
180  mg of Ellagic acid (Axenic, Australia) and the control group (25 subjects) 
receiving a placebo, before the main meals. Before and after the study, the data 
including general information, foods intake, physical activity, anthropometric 
data, expanded disability status scale (EDSS), general health questionnaire (GHQ) 
and pain rating index (PRI), fatigue severity scale (FSS) were assessed, as well as 
serum levels of interferon-gamma (IFNγ), interleukin-17 (IL-17), interleukin-4 (IL-
4) and transforming growth factor-beta (TGF-β), nitric-oxide (NO) using enzyme-
linked immunoassay (ELISA) method and expression of T-box transcription factor 
(Tbet), GATA Binding Protein 3 (GATA3), retinoic acid-related orphan receptor-γt 
(RORγt) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were 
determined using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR) 
method.

Findings: Ellagic acid supplementation led to a reduction in IFNγ, IL-17, NO and 
increased IL-4 in the ellagic acid group, however in the placebo group no such 
changes were observed (−24.52  ±  3.79 vs. -0.05  ±  0.02, p  <  0.01; −5.37  ±  0.92 
vs. 2.03  ±  1.03, p <  0.01; −18.03  ±  1.02 vs. -0.06  ±  0.05, p <  0.01, 14.69  ±  0.47 vs. 
-0.09  ±  0.14, p <  0.01, respectively). Ellagic acid supplementation had no effect 
on TGF-β in any of the study groups (p >  0.05). Also, the Tbet and RORγt genes 
expression decreased, and the GATA3 gene expression in the group receiving 
ellagic acid compared to control group significantly increased (0.52  ±  0.29 vs. 
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1.51  ±  0.18, p <  0.01, 0.49  ±  0.18 vs. 1.38  ±  0.14, p <  0.01, 1.71  ±  0.39 vs. 0.27  ±  0.10, 
p <  0.01). Also, ellagic acid supplementation led to significant decrease in EDSS, 
FSS and GHQ scores (p <  0.05), and no significant changes observed in PRI score 
(p >  0.05).

Conclusion: Ellagic acid supplementation can improve the health status of MS 
patients by reduction of the inflammatory cytokines and Tbet and RORγt gene 
expression, and increment of anti-inflammatory cytokines and GATA3 gene 
expression.

Clinical trial registration: (https://en.irct.ir/trial/53020), IRCT20120415009472N22.

KEYWORDS

multiple sclerosis, ellagic acid, pathogenesis, inflammation, disease severity

1. Introduction

Multiple sclerosis (MS) is an autoimmune disease that leads to a 
gradual damage and loss of the myelin sheath of neurons in the spinal 
cord, brain and optic nerve (1). These injuries then lead to atrophy of 
the affected nerves over time. The atrophy that occurs at the onset of 
the disease is mild but progresses over time, eventually leading to 
numerous disabilities in these patients (1). Among the Middle Eastern 
countries, Iran has the highest prevalence rate of MS (2). The onset of 
the disease usually occurs in early to middle adulthood, between 20 
and 40 years old, and the prevalence is higher in women (3).

MS disease has different forms with varying severity. The five 
main types of MS are relapsing–remitting (RR), progressive-remitting 
(PR), progressive-remitting (RP), primary progressive (PP), and 
secondary progressive (SP) MS. In approximately 85% of MS patients, 
the RR phase occurs first and then the SP phase (4). The RR type is the 
most common form of MS, in which inflammatory attacks on myelin 
and nerve fibers lead to deterioration of nerve function. In the RR 
type, symptoms vary from one patient to another, sometimes 
intensifying unexpectedly (this is called relapse and exacerbation) and 
then subsiding. The RR phase involves T-helper 1 (Th1) and Th17 cells 
that invade the central nervous system (CNS), and the SP phase results 
from inflammation caused by activation of innate immunity (5).

Th1 and Th17 cells play the main role in the pathophysiology of 
MS, and the inflammatory cytokines they produce lead to an increase 
in the permeability of the blood–brain barrier (BBB) to monocytes 
and macrophages (6). Th1 cells are actively present in the bloodstream 
of MS patients. These cells are also present in the damaged parts of the 
CNS and cause the production of inflammatory cytokines, including 
interferon-gamma (IFNγ) (7). The differentiation of immature T cells 
is under the influence of transcription factors that affect the expression 
of cytokine genes in these cells. T-bet is a transcription factor of the 
T-box transcription factor family that causes differentiation of 
immature T cells into Th1 cells and prevents differentiation of 
immature T cells into Th2 cells. The activation of T-bet is also the 
result of the action of IFNγ and IL-12, and after this activation, the 
number of Th1 cells and cytokines increases (8, 9). The conversion of 
immature T cells into Th17 cells is influenced by signal transducer and 
activator of transcription-3 (STAT3), and retinoic acid-related orphan 
receptor-γt (RORγt). Th17 cells adhere to the BBB (10), and their 
major cytokine, IL-17, increases BBB permeability and induces 

neutrophil transfer to the CNS. As a result, antigen (Ag)-specific 
CD4+ and CD8+ T cells are secreted into the CNS. The produced T 
cells pass through the BBB via the immune pathway and form the 
basis for the passage of monocytes into the CNS. Following this 
process, remnant microglia and astrocytes are activated, antigen-
specific Th cells are differentiated, and the release of inflammatory 
cytokines leads to axon damage and loss (11, 12).

Th2 and Treg cells, which produce anti-inflammatory cytokines, 
play a modulatory and protective role against MS progression. To 
differentiate immature T cells into Th2 cells, IL-4 affects and activates 
the Th2 transcription factor (GATA3). As a result, the concentration 
of Th2 cytokines, including IL-4, increases (12, 13). Many drugs, 
including glatiramer acetate, reduce relapse in MS patients by altering 
the differentiation of immature T cells toward Th2 production and 
increasing IL-4 levels and inhibiting IFNγ secretion. This shows that 
increasing anti-inflammatory cytokines has a positive effect on the 
healing process of MS patients (13–15). Treg cells include a subset of 
CD4+ T lymphocytes that have immunoregulatory effects due to their 
ability to inhibit Th1 and Th17 cells. Treg cells can protect a person 
from autoimmune diseases. This is because CD4+ Treg cells inhibit 
inflammatory processes, and their cytokines, such as TGF-β, are 
considered a therapeutic target in MS patients (16). IL-10 and TGF-β 
are regulatory cytokines whose function affects Treg cell 
differentiation. IL-10 inhibits the secretion of Th1 cytokines and the 
progression of MS (17). Thus, the mice whose IL-10 gene was knocked 
out had a higher susceptibility to the development of MS, and in 
contrast, the mice whose expression of the IL-10 gene was 
overexpressed showed resistance to the development of MS (18).

Therapeutic strategies that shift immune system responses from 
Th1 to Th2 and Th17 to regulatory T cells may be effective in treating 
MS. Drugs approved by the Food and Drug Administration (FDA) for 
MS patients include beta-interferon, glatiramer acetate (GA), 
mitoxantrone, and natalizumab. All of these drugs can only affect MS 
disease to some degree, suggesting that more effective ways need to 
be found to affect disease progression as soon as possible (19, 20). 
Inflammation and apoptosis have been shown to have detrimental 
effects on brain cell function, and natural antioxidants play an 
important protective role in controlling this process (21).

Ellagic acid is a polyphenolic lactone found in a variety of 
vegetables and fruits, including pomegranates, strawberries, eucalyptus 
leaves, green tea, raspberries, and blackberries (22). The most 

36

https://doi.org/10.3389/fnut.2023.1238846
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://en.irct.ir/trial/53020


Jafari Karegar et al. 10.3389/fnut.2023.1238846

Frontiers in Nutrition 03 frontiersin.org

important polyphenol in pomegranate is punicalagin, which is not 
absorbed in its healthy and intact form in the intestine but can 
be hydrolyzed and converted to ellagic acid. When ellagic acid is orally 
ingested, it is converted by the intestinal microbiota under the influence 
of a specific metabolism into urolithins, which are much better 
absorbed in the digestive tract (22–24). Ellagic acid is a natural tannic 
acid derivative and influences the fate of neurons through its anti-
inflammatory (25), antioxidant (26), and antidepressant effects (27). 
The limited pharmacological data on ellagic acid indicate that its serum 
elimination half-life in humans is 8.4 ± 1.4 h (200 ng/mL, oral). Serum 
elimination was also rapid when taken orally in animal studies (28). 
Previous studies have shown that ellagic acid reduces the inflammatory 
response in animal models of colitis (29), acute lung injury (30), and 
acute inflammation (31). Thus, treatment with ellagic acid leads to a 
reduction in the level of IL-17, IFNγ, and suppression of inflammatory 
cytokines (32, 33). in animal studies, ellagic acid has been shown to 
lead to an increase in some anti-inflammatory cytokines, including 
IL-4 (33, 34). Some experimental studies have also shown that ellagic 
acid decreases BBB permeability and TNF-α levels in the CNS (35). In 
clinical trials, the highest dose studied was 180 mg per day, and no side 
effects were reported (36). In addition, some studies have shown the 
neuroprotective effects of ellagic acid (37). Therefore, the aim of the 
present study was to investigate the effect of ellagic acid on disease 
severity, MS patienst disability status, the expression of genes involved 
in the pathogenesis of MS, the levels of associated inflammatory 
cytokines and oxidative stress in these patients.

2. Methods

2.1. Type of the study and participants

The present study was a triple-blind, multicentral, placebo-
controlled clinical trial conducted in patients with MS. The population 
study is patients with MS, who were referred to Firouzgar and Hazrate 
Rasoule Akram hospitals (Tehran, Iran). Patients with MS of either 
sex who met the criteria for participation in the study and agreed to 
cooperate were enrolled in the study under the supervision of a 
neurologist after confirming the disease.

The inclusion criteria for participation in the present study were 
as follows: MS confirmation getting based on McDonald criteria (38) 
and magnetic resonance imaging (MRI) by neurologist, clinical status 
of relapse-remittance based on the criteria proposed by Lublin and 
Reingold (39), age between 18 and 55 years and EDSS score of less 
than 5.5.

The exclusion criteria were: refusal to continue participation in 
present study, change in the severity of the disease during the study, 
relapse occurrence during the intervention period, changes in dosage 
and type of medication consumed during the study, changes in the 
physical activity of the patients, no use of less than 90% ellagic acid 
supplements, ellagic acid or other supplements usage within1 month 
before the start of the study and within the study, estrogen, 
progesterone, diuretics, and corticosteroids within 1 month prior to 
the study, suffering from autoimmune disease, and pregnancy or 
breastfeeding. Also, patients with history of allergy and smokers 
excluded. The study flow diagram including different stages of study 
are presented in Figure 1.

The study protocol was approved by Ethics Committee of Iran 
University of Medical Sciences (Ethics code: IR.IUMS.

REC.1399.1000). The study protocol was registered on website of the 
Iranian Registry of Clinical Trials (identifier: 
IRCT20120415009472N22, at the date of 19/12/2020). Written 
informed consent was provided from the participants.

2.2. Sample size calculation and

In this study, in order to determine the number of required 
patients, according to type I error equal to 5%, a power of 90% and 
EDSS as one the primary outcomes, the standard deviation for the 
EDSS was considered for calculation (40). Considering the 20% 
possibility for sample dropout, the volume of studied patients is 
estimated to be 29 people in each group and 58 people in total.

2.3. Sampling, blinding and randomization

Sampling was done by convenience sampling method. The 
selected patients based on the inclusion criteria were randomly 
assigned to two groups receiving ellagic acid and placebo. The method 
of random allocation was done by the balanced block method. None 
of the patients and the interviewer and analysis consultant knew the 
sample in which the group were placed (triple-blind randomized 
trial). The manufacturer was responsible for blinding the supplements 
by coding.

Then, a total of 58 MS patients were randomly assigned to ellagic 
acid (n = 29) and placebo (n = 29) groups. Each ellagic acid capsules 
(90 mg) and placebo capsules (maltodextrin) were taken twice a day 
by MS patients in intervention and control groups, respectively. Ellagic 
acid and placebo capsules were similar in shape, weight, taste, size, 
odor and color and produced by Axenic Company, Australia. Ellagic 
acid purity was 99.9% and the dosage of ellagic acid was chosen based 
on previous studies (37).

Patients were given packets of ellagic acid or placebo sufficient for 
4 weeks of consumption in the order they entered the study, and at the 
fourth and eighth weeks they were again given supplements or 
placebo. They were told to take two capsules of ellagic acid or placebo 
daily after lunch, and this process continued for 12 weeks. At each 
visit, patients were asked to bring the packet of supplements or 
placebo. If patients did not consume less than 90% of the supplements 
or placebo at each of the four-, eight-, or 12-week visits, they were 
excluded from the study.

During the study, patients were reminded to take the supplements 
by phone call and text message. During the intervention period, 
patients were asked not to change their diet or physical activity and 
not to take any dietary supplements without the advice of their 
treating physician. They were also asked to inform us of any change in 
the dosage of their medications during the study period.

2.4. Questionnaires

In the phase before the start of the intervention, general 
characteristics including age, sex, duration of disease, and dosage 
of medication taken by participants were recorded. To assessment 
of the patients’ food intake, three 24-h food intake questionnaire 
was completed on the first, sixth and twelfth weeks of the study 
(two normal days and one day off) and analyzed by Nutritionist 4 
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software (USA). In addition, the International Physical Activity 
Questionnaire (IPAQ) was completed to check the level of physical 
activity as a confounding factor before and after the intervention. 
The anthropometrical questionnaire is included height and 
weight. Height measurement was performed using a strip meter 
with a precision of 0.1 cm and weight measurement, using a digital 
scale of 100 grams (Seca, Germany) under standard conditions. 
Also, the body mass index was calculated through the formula. 
GHQ questionnaire consisting of 28 questions were used to assess 
the general health status (41). The McGill Pain Questionnaire was 
also used to calculate the pain rating index (PRI) score, which has 
78 items and 20 groups that examine the different dimensions of 
pain (42). Fatigue severity scale (FSS) questionnaire was used to 
assess the fatigue severity in MS patients (43). All questionnaires 
validity and reliability were approved in Iranian population in 
recent studies (41–43).

2.5. Immunological assessments

Blood samples were drawn from the patients at the pre- and post-
intervention and centrifuged at a speed of 2000 rpm for 10 min until 

the serum was separated. Then, the serum of the samples for measuring 
the indices of interleukin 4, interleukin 17, TGF-β, and IFNγ were kept 
in a freezer at-80°C until assay. The levels of IL-4 (Zellbio, Germany), 
IL-17 (Zellbio, Germany), TGF-β (Zellbio, Germany), IFNγ (R&D 
Systems, USA), and nitric oxide (NO) (Zellbio, Germany) were 
measured using enzyme-linked immunoassay (ELISA) kits based on 
the instructions in the kit guidelines. The protocol of the measurement 
method was as follows: First, the reagents, samples, and standards were 
prepared according to the instructions. Then, 100 microliters of the 
standard solution and sample were added to each well of the 96-well 
plate and incubated at 37°C for 2 h, and the liquid in each well was 
drained. Then, 100 microliters of biotin antibody (x1) were added to 
each well and incubated at 37°C for 1 h. Then, the wells were emptied 
and washed three times with PBS solution (phosphate-buffered saline). 
Then, 100 microliters of HRP-avidin (x1) were added to each well and 
incubated at 37°C for 1 h. Again, the wells were emptied and washed 
5 times with PBS solution. Then, 90 microliters of TMB 
(tetramethylbenzidine) substrate were added to each well and 
incubated at 37°C (in the dark) for 30 min. Finally, 50 microliters of 
the stop solution were added to each well and the light absorbance 
(OD) of the samples was evaluated within 5 min using an ELISA 
reader (Hyperion, MPR4++, USA) at a wavelength of 450 nm.

Assessed to eligibility (n=192)

Excluded (n=134)
• Not selected (n=29)
• Not meeting inclusion criteria(n=105)

Ellagic acid group (n=29) Placebo group (n=29)

Lost to follow up (n=4) Lost to follow up (n=4)

Analyzed (n=25) Analyzed (n=25)
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FIGURE 1

Summary of participants recruitment based on the consolidated standards of reporting trials (CONSORT) flow diagram.
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2.6. Gene expression assessment

The expression of Tbet, RORγ, GATA3, and GAPDH genes was 
also measured using the real-time Quantitative Reverse Transcription 
(RT-qPCR) method. Peripheral blood mononuclear cells (PBMCs) 
were first isolated to assess gene expression. Ficoll and concentration 
gradients were used to isolate PBMCs. To isolate PBMCs, 10 mL of 
peripheral blood was first poured into a heparin-containing tube and 
the same volume of PBS was added at a temperature of 4°C. Mixing 
was performed with slow and circular movements. In a separate tube, 
3 mL of Ficoll was added and half of the diluted blood was added to 
the Ficoll in the tube. After the addition of blood, the tube was placed 
in a refrigerated centrifuge (temperature 4°C) and centrifuged at 800 g 
for 40 min. After centrifugation, four different layers, including 
plasma, PBMC, Ficoll, and red blood cells, were observed from top to 
bottom. The PBMC layer was separated from each tube and poured 
into a 50 mL tube. Then, up to 40 mL of PBS solution was added and 
placed in a refrigerated centrifuge (temperature 4°C) and centrifuged 
at a speed of 600× g for 10 min. After centrifugation, the supernatant 
was discarded. Then, 2 mL of PBS solution was added to the cells 
located at the bottom of the tube. After adding the PBS solution, the 
cell layer was dissolved and homogenized by pipetting in the solution. 
Finally, the homogenized solution was transferred to a 1.5 mL 
microtube and centrifuged again (4°C at 600× g speed, 10 min). After 
centrifugation, the supernatant was discarded, and the PBMCs were 
simultaneously used for RNA extraction. RNA extraction was 
performed using the Rneasy plus mini kit (Qiagen, Germany) 
according to the kit instructions. This step was performed with 
nuclease-free equipment under a hood disinfected with alcohol and 
sterilized with UV light. A Nano Drop device (Thermo Scientific, 
USA) was used to determine the purity of RNA, and the absorbance 
ratio of 260/280, 1.8–2.2 was considered high purity based on the kit 
protocol. RNA concentration was also determined using nanodrops. 
The extracted RNA was stored in a freezer at-80°C until cDNA 
synthesis. For cDNA synthesis, 500 ng of RNA was used with the 
Quantitect reverse transcriptase commercial kit from Qiagen (Qiagen, 
Germany). Then, the prepared cDNA was stored in the freezer at-20°C 
until gene expression was measured. Subsequently, the synthesised 
cDNAs were stored in a freezer at-20°C until the time of gene 
expression measurement. To select the appropriate primer, the 
sequence of the primers was taken from reliable articles that similarly 
investigated the expression of the genes in this study in PBMC, and 

the properties of the primers were checked using Gene Runner 
software. The website www.ensembl.org was used to check the 
sequence of the desired genes and also whether the forward and 
reverse primers were located in two exons. The site http://www.ncbi.
nlm.nih.gov/tools/primer-blast was also used to control the specificity 
of the primers. For the GAPDH gene (housekeeping gene), primers 
were selected from the studies in the same way (Table 1). After primer 
preparation, gene expression was measured using the Rotor-Gene Q 
(Qiagen, Hilden, Germany) instrument and the SYBR Green method. 
All experiments were performed with nuclease-free devices under a 
hood disinfected with alcohol and sterilized with ultraviolet (UV) 
light. Real-time PCR analysis was done by fold change calculation 
based on 2–∆∆Ct.

2.7. Data analysis

Data analysis was performed using SPSS version 24 software. 
Descriptive statistics methods including frequency distribution tables 
and central and dispersion indices were used to describe the samples. 
The Kolomogorov-Smirnov test was performed to determine 
distribution of variables. Levene’s test was used to determine equality 
of variances.

In this study, to compare the quantitative variables at baseline and 
to compare the average changes in these variables during the study 
between groups, the independent t test was used. In addition, to 
compare the quantitative variables within each group before and after 
the intervention, the paired t test was used. If there was a confounder 
variable, covariance analysis was used. Quantitative variables were 
reported as mean (standard deviation) and 5% was considered as a 
significant level.

3. Results

3.1. Baseline characteristics of study 
participants

Among the 192 people with MS referred to the neurology clinics 
of Rasool Akram Hospital and the MS Clinic of Firozgar Hospital 
(Tehran, Iran) from January 2019 to the end of September 1,400, 58 
patients with MS were eligible to enter the study, in order to perform 
Intervention were invited. Based on the Stratified Permuted Block 
Randomization method, patients were assigned into two groups: (1) 
group receiving ellagic acid supplement (180 mg per day), (2) control 
group receiving placebo containing maltodextrin. In the second visit 
of the patients in the middle of the intervention, 3 patients in the 
group receiving ellagic acid (3 women) and 4 patients in the group 
receiving placebo (4 women) were excluded from the study due to 
changes in the course of the disease and the drugs received. In the last 
visit, one patient in the group receiving ellagic acid was excluded from 
the study due to a change in the medications received. Thus, in both 
groups, 25 patients entered the final stage and data analysis (Figure 1).

The rate of patient compliance with the intervention was 92.23 
and 92.42% in the ellagic acid and placebo groups, respectively.

The baseline characteristics of the subjects in the present study are 
provided in Table 2. In both groups, 12% of the participants were male 
and 88% were female. The average age of people in the ellagic acid 

TABLE 1 Primers used for quantitative real-time PCR analysis.

Gene Type Sequence

GATA3 Forward 5′- ACCACAACCACACTCTGGAGG A-3′

Reverse 5′- TCGGTTTCTGGTCTGGATGCC T-3′

RORγt Forward 5′- GCCAAGGCCGGCAGAGCCAA-3′

Reverse 5′- AAGAAGCCCTTGCACCCCTCACA-3′

Tbet Forward 5′- CCACCTGTTGTGGTCCAAGT −3′

Reverse 5′- AACATCCTGTAGTGGCTGGTG-3′

GAPDH Forward 5′-GCACCGTCAAGGCTGAGAAC-3′

Reverse 5′-TGGTGAAGACGCCAGTGGA-3′
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group was 42.89 ± 9.48 and in the control group it was 37.98 ± 9.02, 
which were statistically significantly different from each other. Also, 
there were significant difference between two study groups regarding 
the disease duration (p < 0.05). The patients in the present study were 
not significantly different in terms of the EDSS score, and the drugs 
used (Table 2).

3.2. Effect of ellagic acid supplementation 
on dietary intake

In Table 3, the findings related to energy, carbohydrate, fat, protein, 
fiber, and micronutrients has been shown. There were no significant 
differences between the two groups regarding any of the findings of 
energy, macronutrients, fiber and micronutrients at baseline and end 
of the intervention (p > 0.05). Also, there were no significant differences 
regarding dietary intake within ellagic acid and control groups at the 
end of the study compared to their respective baselines (p > 0.05).

3.3. Effect of ellagic acid supplementation 
on anthropometric measurements and 
physical activity

The findings of anthropometric measurements showed no 
significant differences between two groups regarding weight, BMI, 
WC and physical activity at baseline and end of the intervention 
(p > 0.05). Also, there were no significant differences regarding weight, 
BMI, WC and physical activity within ellagic acid and control groups 
at the end of the study compared to their respective baselines (p > 0.05; 
Table 4).

3.4. Effect of ellagic acid supplementation 
on EDSS and general health

Based on the findings of the present study, the average changes of 
the EDSS index in the ellagic acid group had a significant decrease, the 
changes of the ellagic acid and control groups were significantly 
different from each other (−1.06 ± 0.09 vs. 0.04 ± 0.02, p < 0.01). The 
average changes of GHQ and FSS indices in the ellagic acid group had 
a significant decrease compared to the control group (−5.35 ± 1.94 vs. 
0.08 ± 0.04, p  = 0.032, −1.51 ± 0.42 vs. −0.20 ± 0.08, p  = 0.028, 
respectively). The mean changes of PRI index in both ellagic acid and 
control groups were not significantly different, and the changes of 
both groups were also insignificant (p  > 0.05). Also, there were 
significant differences regarding EDSS, GHQ, and FSS within ellagic 
acid group (p < 0.05) and there were no significant changes in control 
group at the end of the study compared to their respective baselines 
(p > 0.05; Table 5).

3.5. Effect of ellagic acid supplementation 
on IFNγ, IL-17, IL-4 and TGF-β cytokines 
and NO

The results indicated that supplementation with ellagic acid 
caused a significant decrease in the level of IFNγ (−24.52 ± 3.79 vs. 
−0.05 ± 0.02, p  < 0.01) and interleukin-17 (−5.37 ± 0.92 vs. 
2.04 ± 1.03, p < 0.01) in the ellagic acid group and it has caused 
significant changes between the ellagic acid and control groups. 
Also, Ellagic acid supplementation led to significant increase in IL-4 
levels and there was significant difference between two groups 
(14.69 ± 0.47 vs. −0.09 ± 0.14, p < 0.01). Ellagic acid supplementation 
led to no significant changes in TGF-β levels in both groups 
(p  > 0.05). Besides, our results indicated significant decreasing 
changes in serum NO (−18.03 ± 1.02 vs. −0.06 ± 0.05, p  < 0.01) 
levels after intervention in ellagic acid and control groups. 
Moreover, there were significant differences regarding IFNγ, IL-17, 
IL-4 and NO within ellagic acid group (p < 0.05) and there were no 
significant changes in control group at the end of the study 
compared to their respective baselines (p > 0.05). However, there 
were no significant changes in TGF-β within both ellagic acid and 
control groups (p > 0.05) (Table 6).

3.6. Effect of ellagic acid supplementation 
on Tbet, RORγt, and GATA3 gene 
expression

The findings of the present study showed that supplementing with 
ellagic acid caused a significant decrease in the expression level of tbet 
and RORγt genes in the group receiving ellagic acid compared to the 
control group, so that the fold change in the expression of tbet genes 
in the ellagic acid and control groups was 0.52 ± 0.29 and 1.51 ± 0.18 
(p < 0.01), respectively. The fold change in the expression of RORγt 
genes in the ellagic acid and control groups was 0.49 ± 0.18 and 
1.38 ± 0.14 (p < 0.01), respectively. The Fold change in the expression 
of GATA3 gene increased significant in ellagic acid group compared 
to control group (1.71 ± 0.39 vs. 0.27 ± 0.10, p < 0.01; Figures 2–4).

TABLE 2 Baseline characteristics of participants in ellagic acid and 
control groups.

Variable Total 
(n =  50)

Ellagic 
acid 

(n =  25)

Control 
(n =  25)

p-
valuea

Age (years) 39.51 ± 9.15 42.89 ± 9.48 37.98 ± 9.02 0.047

Height (cm) 164.88 ± 8.22 164.29 ± 7.93 165.02 ± 8.44 0.539

Gender

Number 

(%)

Male 6(12) 3(12) 3(12) –

Female 44(88) 22(88) 22(88) –

Weight (kg) 68.51 ± 12.37 69.10 ± 12.52 67.93 ± 12.58 0.482

BMI (kg/m2) 25.51 ± 3.37 25.42 ± 3.52 25.38 ± 3.29 0.891

MS duration (years) 5.27 ± 0.54 4.42 ± 0.61 6.18 ± 0.49 0.013

Physical activity 

(MET-h/week)

33.48 ± 5.12 32.99 ± 5.26 33.89 ± 5.02 0.274

EDSS score 2.59 ± 0.35 2.60 ± 0.38 2.58 ± 0.31 0.750

MS 

drugs

Number 

(%)

Resigen 6(12) 3(12) 3(12) –

CinnoVex 38(76) 19(76) 19(76) –

Betaferon 6(12) 3(12) 3(12) –

Data are presented as mean ± SD for quantitative and frequency (%) for qualitative variables.
BMI, body mass index; EDSS, Expanded Disability Status Scale.
aIndependent Sample t-test.
p value < 0.05 considered significant.
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TABLE 3 Dietary intake of participants in ellagic acid and control groups at weeks 0, 6 and 12 of the intervention.

Variable Time Ellagic acid group 
(n =  25)

Control (n =  25) Mean differences 
(95% CI)

p-valuea

Energy (Kcal) Week 0 2214.00 ± 426.61 2134.50 ± 293.73 80.92 (−10, 177) 0.18

Week 6 2202.00 ± 389.31 2109.50 ± 269.41 93.55 (−9, 158) 0.28

Week 12 2182.00 ± 408.01 2124.31 ± 124.58 58.04 (−21,92) 0.13

p-valueb 0.06 0.09

Carbohydrate (g/d) Week 0 317.15 ± 46.33 320.00 ± 41.31 −3.12 (−4.18, 5.27) 0.82

Week 6 303.40 ± 37.80 309.60 ± 40.95 −6.2 (−10.63, 9.82) 0.74

Week 12 323.00 ± 29.70 325.18 ± 57.69 −1.81 (−3.46, 5.39) 0.19

p-valueb 0.86 0.74

Protein (g/d) Week 0 70.30 ± 34.76 70.85 ± 18.64 −0.55 (−1.77, 1.42) 0.91

Week 6 71.65 ± 28.98 69.40 ± 18.27 2.25 (−0.67, 3.09) 0.82

Week 12 69.95 ± 27.12 71.25 ± 17.20 −1.31 (−2.55, 1.40) 0.06

p-valueb 0.38 0.06

Total fat (g/d) Week 0 84.60 ± 17.99 83.85 ± 9.10 0.75 (−0.08, 1.17) 0.76

Week 6 80.25 ± 14.25 81.30 ± 14.25 −1.15 (−2.45, 1.32) 0.49

Week 12 84.81 ± 18.17 84.00 ± 10.81 0.81 (−0.94, 1.42) 0.09

p-valueb 0.45 0.14

SAFA (g/d) Week 0 22.98 ± 6.34 20.00 ± 4.12 2.98 (−1.57, 3.93) 0.18

Week 6 19.34 ± 3.91 22.29 ± 5.44 −2.95 (−5.48, 3.28) 0.28

Week 12 21.47 ± 2.11 21.94 ± 4.85 −0.47 (−1.55, 0.39) 0.13

p-valueb 0.34 0.17

MUFA (g/d) Week 0 19.75 ± 4.33 16.08 ± 2.38 3.67 (−2.75, 5.21) 0.82

Week 6 18.33 ± 4.57 18.72 ± 4.29 −0.39 (−1.15, 1.44) 0.74

Week 12 19.81 ± 5.15 18.66 ± 4.62 1.15 (−0.28, 2.19) 0.19

p-valueb 0.98 0.25

PUFA (g/d) Week 0 11.10 ± 2.42 11.39 ± 1.67 −0.19 (−0.78, 0.83) 0.91

Week 6 11.11 ± 1.34 11.57 ± 2.23 −0.46 (−0.99, 1.12) 0.82

Week 12 11.08 ± 2.07 11.44 ± 2.17 −0.36 (−1.02, 0.82) 0.06

p-valueb 0.27 0.09

Vitamin A (mg) Week 0 415.25 ± 66.74 390.85 ± 48.69 24.47 (−11, 39) 0.76

Week 6 386.15 ± 51.46 397.85 ± 62.35 −11.7 (−17, 23) 0.49

Week 12 367.27 ± 45.34 400.21 ± 51.47 −32.94 (−52, 101) 0.09

p-valueb 0.07 0.09

Vitamin E (mg) Week 0 4.41 ± 0.89 4.89 ± 0.80 −0.48 (−1.26, 1.73) 0.17

Week 6 4.89 ± 0.80 4.67 ± 0.93 0.22 (−0.18, 0.67) 0.29

Week 12 4.47 ± 0.99 4.80 ± 0.12 −0.33 (−0.92, 1.15) 0.10

p-valueb 0.63 0.08

Vitamin D (μg) Week 0 5.15 ± 0.51 4.81 ± 0.70 0.34 (−0.16, 0.91) 0.81

Week 6 5.00 ± 0.62 4.82 ± 0.67 0.18 (−0.27, 0.59) 0.58

Week 12 5.08 ± 0.81 4.20 ± 0.90 0.88 (−0.08, 1.12) 0.92

p-valueb 0.58 0.25

Vitamin C (mg) Week 0 17.75 ± 3.70 16.84 ± 3.03 0.91 (−0.22, 1.70) 0.77

Week 6 16.72 ± 3.17 16.19 ± 2.76 0.53 (−0.11, 0.92) 0.93

Week 12 17.28 ± 1.18 16.96 ± 2.55 0.32 (−0.62, 1.39) 0.07

p-valueb 0.45 0.07

(Continued)
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4. Discussion

The results showed that daily supplementation with 180 milligrams 
of pure ellagic acid in MS patients decreased the level of inflammatory 
cytokines, including IL-17 and IFNγ, and increased the serum level of 
anti-inflammatory cytokines, including IL-4. In addition, ellagic acid 
supplementation in the present study decreased the tbet and RORγt 
genes expression and increased the GATA3 gene expression.

MS is an autoimmune disease of the CNS, and the protein 
components of myelin are the target of the immune system attacks. 
The role of various immune system factors in the onset of MS has been 
investigated in several studies (44).

The present study showed that daily intake of 180 mg ellagic acid 
led to a significant reduction in the serum levels of IFNγ and the tbet 
gene expression. Noh et al. (45) also reported a decrease in the level of 
proinflammatory cytokines, including IFNγ, in their study on the 
ellagic acid effects on dendritic cell maturation. Allam et al. (34), in a 
study on the potential effect of ellagic acid in the schistosomiasis 
mansoni treatment in mice, reported a significant decrease in IFNγ 
with the addition of 600 mg of ellagic acid. In one study, ellagic acid 
effects at doses of 5, 10, and 20 μg/mL on the immunologic balance of 
mononuclear cells and colon carcinoma cells were investigated, which 
at high doses the production of IL-6, TNF-α, IL-1, and IL-10 cytokines 
suppressed, while showing no effect on IFNγ (46). Some studies found 
significant increase in IFNγ levels following ellagic acid 

supplementation. In 2016, Allam et al. conducted a study to investigate 
the ellagic acid potential effect on the adjuvant induced arthritis (AIA) 
model in mice and found that supplemenation of 700 mg/kg body 
weight of ellagic acid let to an increase in IFNγ levels, while TGF-β 
levels did not change (47). Similarly, Kang et  al. (48) reported an 
increase in IFNγ levels when investigating the effects of ellagic acid on 
immunologic resistance in transgenic rats carrying hepatitis B virus 
antigen (48). The reason for this discrepancy with our results is likely 
due to differences between studies, including differences in the samples 
studied, the disease studied, the dose of ellagic acid, and the study 
design. Differentiation of Th1 cells from immature T cells depends on 
IFNγ and IL-12, which cause expression of T-bet factor via activation 
of the signal transducers STAT1 and STAT4, respectively (49). T-bet 
causes the production of Th1 cytokines, particularly IFNγ, and in this 
way enhances the differentiation of Th1 cells. At the same time, T-bet 
suppresses the differentiation of other subsets of Th cells (50).

The results of studies in the animal model of experimental 
autoimmune encephalomyelitis (EAE) show that transfer of myelin-
specific activated Th1 cells to healthy mice induces EAE in them, and 
the infiltrated T cells in the CNS mainly produce Th1 cytokines (51). 
An increase in Th1 cytokines has also been observed in MS patients 
(52). In studies, an increase in serum levels of the main cytokine of Th1 
cells, i.e., IFNγ, was observed in mice with EAE, confirming the 
pathogenicity of these cells (52). The results of some studies have also 
shown that disruption of the T-bet gene renders the animals resistant 

TABLE 3 (Continued)

Variable Time Ellagic acid group 
(n =  25)

Control (n =  25) Mean differences 
(95% CI)

p-valuea

Calcium (mg) Week 0 1056.30 ± 167.68 892.20 ± 168.80 164 (−83, 226) 0.08

Week 6 1019.00 ± 127.36 917.50 ± 174.85 102 (−107, 261) 0.59

Week 12 1087.01 ± 133.36 908.63 ± 185.25 179 (−114, 293) 0.32

p-valueb 0.08 0.59

Iron (mg) Week 0 13.56 ± 2.69 10.85 ± 2.38 2.71 (−1.43, 3.82) 0.12

Week 6 10.90 ± 2.10 12.60 ± 2.49 −1.70 (−3.71, 2.99) 0.92

Week 12 10.74 ± 10.54 11.91 ± 1.24 −1.17 (−4.12, 2.31) 0.06

p-valueb 0.06 0.25

Selenium (μg) Week 0 0.05 ± 0.01 0.04 ± 0.00 0.01 (−0.02, 0.04) 0.77

Week 6 0.04 ± 0.01 0.04 ± 0.00 0 (−0.01, 0.03) 0.73

Week 12 0.04 ± 0.18 0.04 ± 0.01 0 (−0.01, 0.03) 0.09

p-valueb 0.09 0.39

Zinc (μg) Week 0 7.78 ± 1.15 6.01 ± 1.00 1.77 (−0.23, 2.18) 0.37

Week 6 7.31 ± 1.09 6.06 ± 1.09 1.25 (−1.15, 2.19) 0.45

Week 12 7.97 ± 1.85 6.04 ± 1.02 1.93 (−1.81, 3.32) 0.06

p-valueb 0.12 0.81

Fiber (g/d) Week 0 15.70 ± 2.60 15.19 ± 2.80 0.51 (−0.77, 1.42) 0.52

Week 6 14.37 ± 2.50 15.17 ± 3.18 −0.80 (−1.83, 2.49) 0.88

Week 12 15.98 ± 1.84 15.22 ± 3.84 0.76 (−0.75. 1.88) 0.15

p-valueb 0.74 0.89

Data are presented as mean ± SD.
aIndependent sample t-test.
bValue of p for repeated measures ANOVA performed to assess variations in dietary intakes across periods.
p value < 0.05 considered significant.
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to the induction of EAE (53). Clinical studies have shown that the 
exacerbation of MS is often associated with the proliferation of myelin-
specific Th1 cells in the CSF, and based on pathological observations, 
the accumulation of Th1 cells and the production of IFNγ in sclerotic 
plaques are directly related to the demyelination process (54). 
Moreover, treatment of MS patients with IFNγ increases disease 
severity, whereas treatment with IFN- neutralising antibodies improves 
disease progression (17). However, in the present study, ellagic acid was 
found to decrease Th1 cell activity, as evidenced by a decrease in Tbet 
gene expression and IFNγ cytokine. Ellagic acid through decreasing the 
IFNγ, reduces the expression of the death receptor (FAS) on the surface 
of oligodenocytes and prevents their apoptosis (37, 55). Accordingly, 
ellagic acid seems to affect Th1 cells, which are responsible for a large 
proportion of the immunopathologic responses in MS, and to reduce 
the immunopathologic lesions in MS by preventing the differentiation 
of naive T cells into Th1 cells, preventing the activation of Th1 cells, and 
targeting cytokines secreted by Th1 cells or their receptors (56).

Our study showed that daily consumption of 180 mg ellagic acid 
has immunomodulatory effects on Th17 cells, as evidenced by a 
significant decrease in Th17 cytokine production. Many studies have 
investigated the immune system modulating effects of polyphenols, 
but there are few studies that have investigated the effect of ellagic acid 
on the immune system. Sanadgol et al. investigated the neuroprotective 
effect of ellagic acid on acute demyelination by cuprizone with daily 
supplementation of 40 or 80 mg/kg body weight ellagic acid and 
observed a significant reduction in IL-17 gene expression (32). Lu et al. 
showed that pomegranate peel extract exhibited preventive and 
therapeutic effects in EAE animal models, and this effect is achieved 
by modulating the gut microbiota, and furthermore, these effects were 

achieved by inhibiting the filtration of peripheral inflammatory cells 
into the CNS by reducing the amount of CD4+ IL-17+ and 
CD4 + IFNγ+ cells (57). In another study, Petrou et al. (58) showed that 
6 months of pomegranate seed oil intake in 30 MS patients improved 
the cognitive characteristics of them. Kiasalari et al. (59) obtained a 
significant decrease in IL-17 levels following supplementation with 10 
or 50 mg/kg body weight ellagic acid in an EAE animal model. Parisi 
et al. (60) showed in a study that propolis, pomegranate, and grape 
marc improved RA symptoms and disease severity by lowering the 
levels of IL-17, IL-1b, and IL-17 stimulating cytokines. Also, in the 
study on the effect of peel extract of pomegranate on the animal model 
of EAE and type 1 diabetes, improvement of the symptoms of the 
disease obtained, and these changes were caused by the inhibition of 
the filtration of immune cells into the pancreatic islet cells and the 
reduction of the production of IL-17 and IFNγ (61).

Studies have shown that polyphenols from the tannin family, such 
as elagitanin, can prevent the production of cytokines by T cells. In 
addition, these polyphenols can bind to inflammatory cytokines, 
including IL-17 and IFNγ, or their receptors and prevent their signal 
transduction, which should be further investigated in future studies. 
IL-17 is the specific cytokine of Th17 cells. IL-17A induces the 
production of pro-inflammatory mediators in various cells, all of which 
demonstrate the pro-inflammatory nature of Th17 cells (62). Th17 
differentiation depends on the expression of the RORγt gene. It has 
been shown that genetic defect of RORγt in mice leads to disruption of 
Th17 differentiation and protects the mice from induction of EAE 
disease (63). The results showed that daily supplementation with 
180 mg ellagic acid resulted in a significant decrease in levels of IL-17 
and RORγt gene expression. In humans, the effects of IL-17 on the 

TABLE 4 Anthropometric measurements and physical activity status in ellagic acid and control groups in the beginning and at the end of the study.

Variable Time Ellagic acid group 
(n =  25)

Control (n =  25) Mean differences 
(95% CI)

p-valuea

Weight (Kg) Before 69.10 ± 12.52 67.93 ± 12.58 1.17 (−0.52, 1.93) 0.482

After 69.54 ± 11.32 68.41 ± 12.62 1.12 (−0.88, 1.79) 0.065

Mean change 0.43 ± 0.09 0.46 ± 0.02 −0.03 (−0.08, 0.05) 0.931

p-valueb 0.778 0.591

BMI (Kg/m2) Before 25.42 ± 3.52 25.38 ± 3.29 0.13 (−0.01, 0.28) 0.891

After 25.41 ± 3.53 25.40 ± 3.27 0.11 (−0.01, 0.32) 0.938

Mean change 0.01 ± 0.02 0.02 ± 0.01 −0.01 (−0.09, 0.07) 0.289

p-valueb 0.089 0.142

Waist circumference (cm) Before 89.44 ± 6.86 90.16 ± 6.85 −0.75 (−1.21, 1.77) 0.184

After 89.09 ± 6.83 90.24 ± 6.92 −1.15 (−2.33, 2.91) 0.059

Mean change −0.35 ± 0.04 0.08 ± 0.04 −0.44 (−1.04, 1.25) 0.184

p-valueb 0.312 0.571

Physical activity (MET-

min/week)

Before 32.99 ± 5.26 33.89 ± 5.02 0.10 (−0.01, 0.23) 0.274

After 32.82 ± 5.35 33.93 ± 5.12 −0.11 (−0.23, 0.01) 0.063

Mean change −0.17 ± 0.08 0.04 ± 0.09 −0.21 (−0.42, 0.29) 0.081

p-valueb 0.584 0.617

Data are presented as mean ± SD.
BMI, body mass index.
aIndependent Sample t-test.
bPaired t-test.
p value < 0.05 considered significant.
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process of demyelination of neurons in MS patients are well known, 
and furthermore, the exacerbation of the disease is related to the 
increase in the number of Th17 cells in the serum of patients (12). Th17 
cells are the first cells to encounter myelin antigens presented by 
antigen-presenting cells (APC) in the subcranial space. After 
recognizing the antigen, Th17 cells release several proinflammatory 
mediators such as IL-17A and create an inflammatory environment 
that can cause tissue damage in the CNS (64). By stimulating the 
production of matrix metalloproteinase (MMP) enzymes, IL-17A also 
causes the destruction of cell junction proteins. IL-17 and ROS also 
lead to increased expression of endothelial adhesion molecules, 
resulting in large numbers of inflammatory cells migrating into the 
CNS (65). Myelin-specific Th17 cells can interact directly with neurons. 
It seems that ellagic acid by reducing Th17 cells prevents the change of 
calcium level in the neuron and thus the destruction of neurons. It is 
also possible that ellagic acid reduces oxidative stress and apoptosis by 
reducing Th17 cells and IL-17 cytokine levels in oligodendrocytes. By 
decreasing IL-17 levels, ellagic acid also facilitates the regeneration 
process of myelin and removes obstacles to the maturation of 
oligodendrocytes and increases their survival (66, 67).

In the present study, ellagic acid supplementation increased IL-4 
levels and GATA3 gene expression. Kang et al. (48) also showed an 
increase in IL-4 level (48). Rogerio et al. (68), found that a dose of 
10 mg/kg ellagic acid inhibited the production of IL-4 in a model of 
athma. Tanner et  al. (69), examined the response of systemic 
inflammation to ellagic acid in marathon runners and found a 
significant increase in IL-4 and GATA3 gene expression within 24 h of 
supplementation. Anderson et al. (70) showed that pure ellagic acid 
and walnut kernel polyphenols decreased the synthesis of the cytokines 

IL-13, TNF-a, and increased the production of IL-2, with no effect on 
IL-4. However, in our study, Th2 cells differentiation increased, as 
determined by increase in GATA3 expression and IL-4 levels. The 
increase in the response of Th2 cells to ellagic acid supplementation, 
which was characterized by the increase in the level of IL-4, is a new 
phenomenon, and it is likely that it is due to the effect of ellagic acid on 
the inhibition of Th1 and Th17 responses, because Th1 and Th17 
responses are antagonistic with Th2 cells (71, 72). Th2 lymphocytes 
produce IL-4, IL-5, IL-13, IL-9, and IL-10. GATA-3 inhibits the 
expression of IFNγ, thereby reducing the Th1 cells response (73). The 
protective role of Th2 cells dependent on Th1 and Th17 cells has been 
established; therefore, when the brain is damaged, the immune 
response tends to favor Th2 cells, which suppress Th1 and Th17 
dependent responses and prevent further autoimmune damage in the 
CNS. Th2 cytokines play a role in reducing the destructive effect of Th1 
cells in the EAE (74). A decrease in CNS inflammation and minimal 
clinical symptoms were also observed in transgenic mice with high 
expression of GATA3 (leading to a deviation of their immune response 
toward Th2) after EAE induction. By releasing IL-4, Th2 cells can 
directly inhibit autoimmune diseases. In the EAE model, the protective 
effect of Th2 cells has been demonstrated, making it possible to cure 
EAE by increasing the expression of Th2 cytokines in the brain (75). It 
appears that ellagic acid, through its effect on naive T cells, induces 
them to differentiate into Th2 cells, which was observed in the present 
study by increasing IL-4 levels and GATA3 gene expression. Through 
the secretion of IL-4, Th2 cells are involved in preventing the free 
radicals and their propagation through microglial cells (76). Increasing 
the expression of the GATA3 gene is very important for improving 
inflammation and disease severity in MS patients. In MS patients, the 

TABLE 5 EDSS, PRI and GHQ status in ellagic acid and control groups in the beginning and at the end of the study.

Variable Time Ellagic acid 
group (n =  25)

Control 
(n =  25)

Mean differences 
(95% CI)

p-valuea P2b

EDSS Before 2.60 ± 0.38 2.58 ± 0.31 0.02 (−0.17, 0.21) 0.750

After 1.54 ± 0.32 2.62 ± 0.29 −1.08 (−1.25, −0.90) 0.001 0.001

Mean change −1.06 ± 0.09 0.04 ± 0.02 −1.10 (−1.28, −0.08) 0.001

p-valuec 0.001 0.157

PRI Before 36.92 ± 5.29 35.83 ± 5.48 1.09 (−1.18, 1.65) 0.882

After 36.01 ± 5.32 36.14 ± 5.20 −0.13 (−0.55, 0.29) 0.938 0.927

Mean change −0.91 ± 0.94 0.31 ± 1.02 −1.22 (−1.83, 0.54) 0.289

p-valuec 0.061 0.096

GHQ Before 35.44 ± 6.72 36.16 ± 6.95 −0.72 (−0.94, 0.35) 0.184

After 30.09 ± 5.73 36.24 ± 6.83 −6.15 (−8.27, −4.12) 0.027 0.032

Mean change −5.35 ± 1.94 0.08 ± 0.04 −5.43 (−7.43, −3.52) 0.032

p-valuec 0.018 0.571

FSS Before 5.52 ± 0.73 5.82 ± 0.48 −0.30 (−0.67, 0.02) 0.572

After 4.01 ± 0.29 5.62 ± 0.55 −1.61 (−2.22, −0.79) 0.041 0.045

Mean change −1.51 ± 0.42 −0.20 ± 0.08 −1.71 (−2.39, −0.83) 0.028

p-valuec 0.001 0.353

Data are presented as mean ± SD.
EDSS, Expanded Disability Status Scale; PRI, Pain Rating Index; GHQ, general health questionnaire; FSS, Fatigue Severity Scale.
aIndependent Sample t-test.
bGeneral linear model adjusted for baseline differences between groups, age, MS duration.
cPaired t-test.
p value < 0.05 considered significant.
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TABLE 6 Cytokines and NO status in ellagic acid and control groups in the beginning and at the end of the study.

Variable Ellagic acid 
group (n =  25)

Control (n =  25) Mean difference 
(95% CI)

p-valuea P2b

IFNγ (pg/ml) Before 54.24 ± 3.83 53.14 ± 5.06 1.09 (−1.46, 3.64) 0.394

After 29.72 ± 5.89 53.09 ± 5.14 −23.37 (−26.51, −20.22) 0.001 0.001

Mean change −24.52 ± 3.79 −0.05 ± 0.02 −24.47 (−28.29, −19.71) 0.001

p-valuec 0.001 0.830

IL-17 (pg/ml) Before 25.59 ± 5.92 24.48 ± 5.22 1.10 (−2.07, 4.28) 0.489

After 19.95 ± 5.99 26.52 ± 8.59 −6.56 (−10.78, −2.34) 0.003 0.003

Mean change −5.37 ± 0.92 2.04 ± 1.03 −7.41 (−11.33, −3.47) 0.001

p-valuec 0.001 0.065

IL-4 (pg/ml) Before 29.32 ± 5.96 29.93 ± 6.80 −0.61 (−4.25, 3.02) 0.735

After 44.01 ± 7.87 29.84 ± 6.58 14.16 (9.98, 18.35) 0.001 0.001

Mean change 14.69 ± 0.47 −0.09 ± 0.14 14.78 (10.04, 18.62) 0.001

p-valuec 0.001 0.095

TGF-β (pg/ml) Before 1.42 ± 0.05 1.43 ± 0.05 −0.01 (−0.04, 0.01) 0.508

After 1.42 ± 0.05 1.43 ± 0.06 −0.01 (−0.04, 0.02) 0.394 0.399

Mean change 0.00 ± 0.004 −0.02 ± 0.003 0.02 (−0.01, 0.04) 0.639

p-valuec 0.285 0.387

NO (μm) Before 53.91 ± 1.22 54.05 ± 1.12 −0.14 (−0.09, 0.24) 0.411

After 35.88 ± 2.29 53.99 ± 1.18 −18.11 (−22.37, −16.82) 0.001 0.001

Mean change −18.03 ± 1.02 −0.06 ± 0.05 −17.97 (−19.21, −15.09) 0.001

p-valuec 0.001 0.308

Data are presented as mean ± SD.
IFNγ, Interferon-gamma; IL-17, Interleukin-17; IL-4, Interleukin-4; TGF-β, Transforming Growth Factor-beta; NO, Nitric Oxide.
aIndependent Sample t-test.
bGeneral linear model adjusted for baseline differences between groups, age, MS duration.
cPaired t-test.
p value < 0.05 considered significant.

FIGURE 2

Gene expression of Tbet in ellagic acid and control groups.
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decrease of Th2 cells and the decrease of the corresponding 
transcription factor (GATA3) leads to an increase of Th1 cells and their 
inflammatory cytokines, IFNγ. On this basis, effective treatments also 
trigger anti-inflammatory responses induced by Th2 cytokines that 
increase the differentiation of naïve T cells into Th2, for which the 
transcription factor GATA3 is required. Increasing the expression of 
the GATA3 gene increases the differentiation of naïve T cells to Th2 
and the amount of IL-4, whereupon the number of Th1 cells and 
inflammatory cytokines and the severity of MS disease decrease. 
Considering that the absence of phagocytosis of dead and damaged 
cells leads to disruption of inflammatory processes and remyelination, 
ellagic acid promotes phagocytosis by M2-type microglia by 
influencing this process, thus exerting its protective effect (77). 
Therefore, more attention can be paid to strengthening the activity of 
Th2 cells in the treatment of MS.

Jha et al. achieved neuroprotective and cognitive improvements 
in rats suffering from Alzheimer’s disease when they investigated the 

neuroprotective and cognitive effects of ellagic acid (50 mg/kg), which 
were confirmed in their study (78).

Another finding in the present study concerned Treg cells activity, 
which did not change under the influence of ellagic acid and showed 
no effect on TGF-β levels. Align with our results, Čolić et al. (79), who 
investigated the immunomodulatory effects of pomegranate peel 
extract, showed that the Treg cells activity and the levels of TGF-β and 
IL-10 cytokines decreased in the supernatant of the culture medium. 
The reason for this finding is probably the increased use of Treg 
cytokines to downregulate Th1 and Th17 cytokines (79).

4.1. Strengths and weaknesses

To our knowledge, our study was the first study to assessed the 
effect of pure ellagic acid on immunologic parameters, pathogenic 
genes expression and disease severity in MS. The strength of our study 

FIGURE 3

Gene expression of RORγt in ellagic acid and control groups.

FIGURE 4

Gene expression of GATA3 in ellagic acid and control groups.
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is the ellagic acid purity level (99.9%). In addition, this study discussed 
the immunological aspects of MS influenced by ellagic acid. However, 
this study has some limitations. Among them, it was not possible to 
check the all indicators of oxidative stress in patients in this study. 
Also, it was not possible to study different doses of ellagic acid. It is 
suggested that these limitations be addressed in further studies. It 
would be  better if gene expression results were confirmed by 
measuring protein content, however, in our study, this was not 
possible due to equipment and budget constraints. It is suggested that 
in the next studies, a protein measurement method, including Western 
blotting, should be performed to confirm the gene expression results.

5. Conclusion

The present study has shown that supplementation with pure 
ellagic acid at a dose of 180 mg per day for 12 weeks lowers the levels 
of the cytokines IFNγ, IL-17, and increases IL-4 so decrease the TH1/
Th2 ratio in the group receiving ellagic acid, whereas no significant 
changes were seen in the placebo group. Supplementation with ellagic 
acid did not affect TGF-β in any of the study groups. In addition, 
supplementation with ellagic acid led to the Tbet and RORγt genes 
expression reduction and GATA3 gene expression increment.
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Alcoholic drink produced by pea
is a risk factor for incident knee
surgery in patients with knee
osteoarthritis
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Xiaofeng Liu, Yongquan Xu, Yangzhen Fang, Zhenyu Lin,

Liang Lin, Hongpeng Zhang and Zefeng Wang

Orthopedics Department, Jinjiang Municipal Hospital, Fujian, China

Objective: The objective of this study is to investigate whether alcohol exposure

and specific alcoholic drinks are independent risk factors for incident knee surgery

in knee osteoarthritis (KOA) patients.

Methods: We identified all patients whowere clinically diagnosed as KOA between

January 2010 and January 2018 in our outpatient department. Demographic,

clinical, and radiographic data were collected from the database of our hospital.

Next, we analyzed the association between alcohol consumption and incident

knee surgery.

Results: A total of 4,341 KOA patients completed the current study and were

included in the final analysis. Incident knee surgery for the purpose of treating

osteoarthritis was observed in 242 patients. Incident knee surgery was significantly

associated with age (OR [95%CI], 1.023 [1.009–1.039], P = 0.002), BMI (OR

[95%CI], 1.086 [1.049–1.123], P < 0.001), baseline K-L grade 3 (OR [95%CI], 1.960

[1.331–2.886], P = 0.001), baseline K-L grade 4 (OR [95%CI], 1.966 [1.230–3.143],

P = 0.005), 7.1–14 drinks per week (OR [95%CI], 2.013 [1.282–3.159], P = 0.002),

>14 standard drinks perweek (OR [95%CI], 2.556 [1.504–4.344], P= 0.001), and the

most common alcoholic drink produced by pea (OR [95%CI], 3.133 [1.715–5.723],

P < 0.001).

Conclusion: KOA patients who consumed more than seven standard drinks per

week were at substantial risk of incident knee surgery. In addition, alcoholic drink

produced by pea is also an independent risk factor.

KEYWORDS

knee osteoarthritis, alcoholic drink, Kellgren-Lawrence (K-L) grades, total knee

arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), high tibial osteotomy

1. Introduction

Knee osteoarthritis (KOA) is characterized by three core symptoms (pain, stiffness, and

limited function) and accompanied by many structural alterations including degradation

of cartilage subchondral bone remodeling, meniscal degeneration, and Hoffa’s and effusion

synovitis, affecting more than 10% of the overall population globally as estimated (1–3). The

disease burden of KOA had been projected to double in the following decades because of

the increasing aging of the population (4). Many risk factors for KOA development and

progression including female sex, aging, and overweight/obesity have been well-established

by previous studies (5, 6). Lifestyle intervention is the cornerstone of KOA management.
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According to a previous study, weight loss could be beneficial

for KOA patients in the long term (7). In addition, increasing

physical activities appropriately is also important for KOA patients

by increasing lower-limb muscle strength (8–10).

KOA could also be treated with surgical procedures.

The efficacy and safety of total knee arthroplasty (TKA),

unicompartmental knee arthroplasty (UKA), and high tibial

osteotomy (HTO) have been well-established and generally

recommended for KOA management (11, 12). In contrast,

many high-quality, multicenter, randomized clinical trials have

consistently and repeatedly demonstrated that arthroscopic

procedures, including lavage, debridement, and arthroscopic

partial meniscectomy, are ineffective and even harmful in

the long term for KOA patients (13–16). However, this high-

quality evidence failed to curb the increase in arthroscopic

procedures in KOA patients (13–16). Nevertheless, incident

arthroscopic procedures at least reflected poor symptom control

and were reasonably considered clinically important events for

disease progression.

Excessive alcohol consumption and alcoholism are major

global risk factors for increased all-cause mortality and

incident morbidities but not limited to cardiovascular diseases,

malignancies, neurological diseases, and accidental injuries

(17–20). For KOA, a previous study revealed that excessive

FIGURE 1

Study screening and enrollment.

alcohol drinking was associated with an increased risk of KOA

(21). Furthermore, the mechanistic link between alcohol intake

and KOA development has been elucidated by a preclinical

study (22). A population-based study concluded that alcohol

consumption contributed to radiographic change in KOA

in Korea (23). Notably, previous studies in KOA patients

only focused on the amount of alcohol consumption rather

than specific types of alcoholic drinks. This study aimed to

investigate whether alcohol exposure and specific alcoholic

drinks are independent risk factors for incident knee surgery in

KOA patients.

2. Patients and methods

2.1. Study population

This study followed the Declaration of Helsinki and all

local laws and regulations during design and conducted data

analysis. We obtained ethics approval for collecting all related

data from patients and medical records. We identified all

patients who were clinically diagnosed as KOA at a visit

to our outpatient department between January 2010 and

January 2018 via the hospital information system (HIS). The
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TABLE 1 Univariable analysis on characteristics grouped by incident knee surgery.

No incident knee surgery
(n = 4,099)

Incident knee surgery
(n = 242)

P-value

Age, years 61.02± 8.83 62.93± 8.46 <0.001

Sex, No. (%)

Male 1,068 (26.1%) 70 (28.9%) 0.324

Female 3,031 (73.9%) 170 (71.1%)

Baseline BMI, kg/m2 25.07± 3.59 26.26± 4.39 <0.001

Alcohol consumption, No. (%)

None 775 (18.9%) 29 (12.0%) <0.001

≤1 standard drink/week 784 (19.1%) 29 (12.0%)

1.1–7 standard drinks/week 1,146 (28.0%) 68 (28.1%)

7.1–14 standard drinks/week 1,008 (24.6%) 79 (32.6%)

>14 standard drinks/week 386 (9.4%) 37 (15.3%)

Most common type of alcoholic beverage∗, No. (%)

Beer 1,003 (30.2%) 59 (27.7%) 0.204

Chinese rice wine 318 (9.6%) 16 (7.5%)

Wine 675 (20.3%) 37 (17.4%)

Chinese distilled spirit 981 (29.5%) 81 (38.0%)

Others 180 (5.4%) 10 (4.7%)

Multiple 167 (5.0%) 10 (4.7%)

Most common type of alcoholic beverage produced by kaoliang, No. (%)

Yes 1,012 (24.7%) 86 (35.5%) 0.233

No 3,087 (75.3%) 156 (64.5%)

Most common type of alcoholic beverage produced by rice, No. (%)

Yes 1,068 (26.1%) 70 (28.9%) 0.324

No 3,031 (73.9%) 172 (71.1%)

Most common type of alcoholic beverage produced by barley, No. (%)

Yes 1,300 (31.7%) 81 (33.8%) 0.569

No 2,799 (68.3%) 161 (66.2%)

Most common type of alcoholic beverage produced by wheat, No. (%)

Yes 551 (13.4%) 39 (16.1%) 0.238

No 3,548 (86.6%) 203 (83.9%)

Most common type of alcoholic beverage produced by pea, No. (%)

Yes 79 (1.9%) 14 (5.8%) <0.001

No 4,020 (98.1%) 228 (94.2%)

Most common type of alcoholic beverage produced by grape, No. (%)

Yes 406 (9.9%) 22 (9.1%) 0.680

No 3,693 (90.1%) 220 (90.9%)

Most common type of alcoholic beverage produced by corn, No. (%)

Yes 205 (5.0%) 16 (6.6%) 0.268

No 3,894 (95.0%) 226 (93.4%)

Hypertension, No. (%)

Yes 1,335 (32.6%) 86 (35.5%) 0.339

No 2,764 (67.4%) 156 (64.5%)

(Continued)
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TABLE 1 (Continued)

No incident knee surgery (n =
4,099)

Incident knee surgery (n =
242)

P-value

K-L grades, No. (%)

0 or 1 1,134 (27.7%) 48 (19.8%) 0.001

2 1,766 (43.1%) 96 (39.7%)

3 833 (20.3%) 66 (27.3%)

4 366 (8.9%) 32 (13.2%)

Diabetes, No. (%)

Yes 505 (12.3%) 32 (13.2%) 0.678

No 3,594 (87.7%) 210 (86.8%)

Smoking, No. (%)

Yes 357 (8.7%) 24 (9.9%) 0.519

No 3,742 (91.3%) 218 (90.1%)

Education, No. (%)

More than 9 years 1,036 (25.3%) 66 (27.3%) 0.488

Not more than 9 years 3,063 (74.7%) 176 (72.7%)

Data are shown as means (±SD) unless otherwise indicated.

BMI, body mass index; K-L, Kellgren–Lawrence.
∗For drinkers only.

clinical diagnosis of KOA in the current study was defined

as those made by clinical specialists in orthopedic and/or

sports medicine. It was generally determined based on patient

history, physical examination, and laboratory and radiographic

findings (24). As shown in Figure 1, patients were excluded

from this study if they had any knee surgery histories (n =

125), concomitant structural knee injuries (fractures, ligament

ruptures, meniscal tears, and dislocations; n = 345), missing

values for essential baseline variables (n = 567), and declining to

participate (n= 1,152).

2.2. Baseline patient data

We defined the baseline as the time of performing the first

knee plain radiograph during the study period. All baseline

demographic and clinical data were retrieved from HIS,

and the information was further confirmed by contacting

patients through on-site interview, telephone, email, and

instant message software. The baseline demographic data

consisted of demographic information (sex, age, and body mass

index [BMI]) calculated by weight, height, and education.

The Kellgren–Lawrence (K-L) grades (25) were rated by

a radiographic evaluation committee consisting of three

radiologists specialized in musculoskeletal radiology. The

rating process was conducted without grouping information.

The consensus on grading was achieved by the majority

of people. When the two knees had different K-L grades,

the final K-L grade was recorded according to the more

severe side.

2.3. Alcohol consumption and details of
alcoholic drinks

The alcohol consumption was self-reported by patients based

on their recalling for the last 12 months. Show cards were used

to prompt recalling of the number of standard drinks usually

consumed per week. Each show card, respectively, illustrated

the typical volume of Chinese distilled spirit (25ml of 50%

alcohol/volume), Chinese rice wine (90ml of 15% alcohol/volume),

wine (120ml of 11% alcohol/volume), and beer (285ml of 4.5%

alcohol/volume) equivalent to 10 g of ethanol, defined as a standard

drink (26). For those who reported frequent consumption of

other types of alcoholic beverages during the previous year,

researchers calculated the weekly consumption after collecting

the label information of these alcoholic beverages. The weekly

number of standard drinks was recorded in a categorical manner

as none,≤1, 1.1–7, 7.1–14, and >14 standard drinks per week. The

researchers also asked the patients for his or her most common

alcoholic beverage type (beer, Chinese distilled spirit, Chinese rice

wine, wine, and others). We collected label information of the most

commonly consumed alcoholic beverages and recorded the raw

materials (barley, wheat, grape, rice, kaoliang, pea, and corn) of

these alcoholic beverages.

2.4. Definition of incident knee surgery

In this study, incident knee surgery was defined as any surgical

procedure performed for the purpose of treating KOA no matter

whether this type of surgical procedure was recommended or not.

The incident knee surgery and types of surgery were reported by
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patients. In the current study, incident knee surgery included TKA,

arthroscopic procedures (ineffective and not recommended), UKA,

and HTO.

2.5. Statistical analysis

All statistical analyses were performed using SPSS software

(IBM Corp. Released 2019. IBM SPSS Statistics for Windows,

version 26.0. Armonk, NY: IBM Corp). The statistical significance

was set at a two-sided 0.05. We first tabulated descriptive

statistics to summarize the characteristics of the subjects.

Continuous and categorical variables were, respectively, presented

as means ± standard deviations and counts (percentage), unless

otherwise indicated. When the P-value was <0.2 in univariable

analysis, the variables along with demographic variables (age,

sex, and BMI) were further included in logistic regression for

multivariable analysis.

3. Results

A total of 4,341 KOA patients were included in the final

analysis. Incident knee surgery for the purpose of treating

osteoarthritis was observed in 242 patients out of 4,341 patients

during the study period. Specifically, 65 patients had TKA, 5

had UKA, 162 had arthroscopic procedures, and 10 had high

tibial osteotomy. For univariable analyses, incident knee surgery

was significantly associated with age, BMI, baseline K-L grades,

alcohol consumption, and the most common type of alcoholic

beverage produced by pea (Table 1). The logistic regression model

included sex, baseline BMI, baseline age, alcohol consumption,

most common type of alcoholic beverage produced by pea, and

baseline K-L grades.

After adjustment with the multivariable logistic regression,

incident knee surgery was significantly associated age (OR [95%CI],

1.023 [1.009–1.039], P = 0.002), BMI (OR [95%CI], 1.086 [1.049–

1.123], P< 0.001), baseline K-L grade 3 (OR [95%CI], 1.960 [1.331–

2.886], P= 0.001), baseline K-L grade 4 (OR [95%CI], 1.966 [1.230–

3.143], P = 0.005), 7.1–14 drinks per week (OR [95%CI], 2.013

[1.282–3.159], P = 0.002), >14 standard drinks per week (OR

[95%CI], 2.556 [1.504–4.344], P = 0.001), and the most common

alcoholic drink produced by pea (OR [95%CI], 3.133 [1.715–5.723],

P < 0.001; Table 2).

4. Discussion

A previous study using data from the Osteoarthritis Initiative

study revealed that excessive alcohol drinking was associated

with an increased risk of both radiographic and symptomatic

KOA (21). Similarly, a population-based and longitudinal study

conducted in Korea found that alcohol consumption contributed

to the radiographic progression of KOA (23). For osteoarthritis in

other anatomic sites, researchers reported that alcohol exposure is

associated with structural destruction and inflammatory features of

hand osteoarthritis (27). Notably, previous studies in KOA patients

TABLE 2 Multivariable analysis on characteristics grouped by incident

knee surgery.

Odds ratio (95%
confidence interval)

P-value

Baseline BMI 1.086 (1.049–1.123) <0.001

Male Sex (Reference:

female)

0.918 (0.676–1.247) 0.585

Age 1.023 (1.009–1.039) 0.002

Most common type of

alcoholic beverage

produced by pea

3.133 (1.715–5.723) <0.001

Alcohol consumption

≤1 standard drink/week

(Reference: none)

0.939 (0.551–1.603) 0.819

Alcohol consumption

1.1–7 standard

drinks/week (Reference:

none)

1.536 (0.976–2.417) 0.064

Alcohol consumption

7.1–14 standard

drinks/week (Reference:

none)

2.013 (1.282–3.159) 0.002

Alcohol consumption

>14 standard

drinks/week (Reference:

none)

2.556 (1.504–4.344) 0.001

K-L grade 2 (Reference:

K-L grade 0 or 1)

1.339 (0.935–1.919) 0.111

K-L grade 3 (Reference:

K-L grade 0 or 1)

1.960 (1.331–2.886) 0.001

K-L grade 4 (Reference:

K-L grade 0 or 1)

1.966 (1.230–3.143) 0.005

The logistic regression model included baseline sex, baseline BMI, age, alcohol consumption,

most common type of alcoholic beverage produced by pea, and K-L grades.

only focused on the amount of alcohol consumption rather than

specific types of alcoholic drinks.

The underlying mechanism between alcohol drinking and

osteoarthritis remains greatly unclear, while many plausible

hypotheses and theories have been proposed. As revealed by many

preclinical investigations, alcohol intake is capable of inducing

pro-inflammatory states in joints and is thus believed to be

a contributing factor to the development and progression of

KOA (22). In a mouse model, chronic alcohol consumption also

increases cartilage loss in large joints by impairing extracellular

matrix production and accelerating the degradation (28). In

addition, alcohol could increase the level of inflammatory mediator

interleukin-6 (IL-6), an important cytokine in KOA development

and progression (29).

The most important and novel finding of the current study

is the unexpected association between incident knee surgery and

exposure to pea-derived alcoholic beverages in KOA patients. To

the best of our knowledge, only some types of Chinese distilled

spirit (most of them are made by a fermentation technique called

“Daqu”) use pea as a major raw material worldwide. Daqu is one

of the oldest and most widely used fermentation technique for

spirit-making (30). In addition to alcohol, fermentation with the

Daqu technique often produces substantial amount and various
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types of chemicals with unknown effects on humans (30–32).

Clearly, microbiota (molds, yeasts, and bacteria) are responsible

for the final chemicals. However, in the current study, we are

unable to further determine whether certain microorganisms

are involved in this phenomenon. Nevertheless, our finding

provides a unique and exciting insight into the pathogenesis

of osteoarthritis.

The current study had several limitations. First, future

confirmation of our observation by prospective and larger cohort

studies should be performed. If so, mechanistic studies are

urgently needed to explore why pea-derived alcoholic beverages

are associated with osteoarthritis progression. Notably, this is

the first study reporting this phenomenon, and thus, we are

currently unable to propose a reasonable hypothesis without future

mechanistic studies. Second, because of the observational nature,

the decision on whether to receive surgical treatment in this

study lacked transparency for us and readers. Finally, because the

drinking pattern and specific types of alcoholic beverages may

largely vary by age, sex, and socioeconomic status in a general

population (33, 34), future studies on alcohol consumption and

KOA should further explore these factors. Extrapolation of our

conclusion to a different setting should be cautious.
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Antimicrobial photodynamic therapy (aPDT) has become a potent contender in

the fight against microbial infections, especially in the context of the rising

antibiotic resistance crisis. Recently, there has been significant interest in

polyphenolic natural products as potential photosensitizers (PSs) in aPDT,

given their unique chemical structures and inherent antimicrobial properties.

Polyphenolic natural products, abundant and readily obtainable from natural

sources, are generally regarded as safe and highly compatible with the human

body. This comprehensive review focuses on the latest developments and future

implications of using natural polyphenols as PSs in aPDT. Paramount

polyphenolic compounds, including curcumin, hypericin, quercetin,

hypocrellin, celastrol, riboflavin, resveratrol, gallic acid, and aloe emodin, are

elaborated upon with respect to their structural characteristics, absorption

properties, and antimicrobial effects. Furthermore, the aPDT mechanism,

specifically its targeted action on microbial cells and biofilms, is also discussed.

Polyphenolic natural products demonstrate immense potential as PSs in aPDT,

representing a promising alternate approach to counteract antibiotic-resistant

bacteria and biofilm-related infections.
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1 Introduction

The pervasive phenomenon of antimicrobial resistance (AMR)

in a broad array of pathogenic microorganisms presents a grave and

pressing concern for global health and developmental progress (1).

Multidrug resistance (MDR) in bacteria culminates in hundreds of

thousands of deaths annually (2), underscoring AMR’s role as a

profound international health concern (3). Concurrently, the

limited availability of effective drugs for fungal infections and the

rising resistance to these drugs have led to a distressingly high

mortality rate (4–6). Additionally, the unprecedented emergence of

SARS-CoV-2 has introduced a global threat to human life and

health. The severe implications of antimicrobial resistance on

human health and economic systems necessitate the accelerated

development of innovative strategies to counteract this formidable

issue effectively (7, 8). As shown in Figure 1, in response to this,

there has been a surge of research interest dedicated to developing

alternative solutions to combat antimicrobial resistance, such as

cationic polymers, peptidoglycans, metal nanoparticles,

nanocarriers, photodynamic therapy (PDT), and photothermal

therapy (PTT) (9, 10).

PDT is a therapeutic modality that employs low-energy light to

activate photosensitizers (PSs) for both diagnostic and therapeutic

purposes. Antimicrobial photodynamic therapy (aPDT), a specific

application of PDT, serves as a chemical treatment method to

control infections caused by bacteria, fungi, and viruses. As a potent

and promising alternative, aPDT strives to mitigate the proliferation

of pathogenic microorganisms, encompassing both gram-positive

and gram-negative bacteria, fungi, viruses, and parasites. This is

achieved by curtailing microbial growth, preventing biofilm

formation, and potentially resolving antibiotic resistance issues

(11, 12). One notable advantage of aPDT is its noninvasive or
Frontiers in Immunology 0258
minimally invasive nature, which enables a targeted approach

primarily against the microorganisms, sparing animal tissue cells

from unnecessary damage. This relatively simple and selective

approach ensures effective pathogen elimination while minimizing

harm to the host (13). The fundamental components of aPDT

include the light, PSs, and ambient oxygen. Independently, these

elements are benign, but their amalgamation can render a potent

antimicrobial effect. This process entails the use of a PS, which,

when activated by a particular wavelength of light in the presence of

oxygen, generates a copious amount of reactive oxygen species

(ROS). These ROS, in turn, interact with multiple targets within

microbial cells, inducing the oxidation of biomolecules and

ultimately causing cell death.

PSs play an instrumental role in aPDT because they are

responsible for absorbing light energy. Various synthetic

compounds such as tetrapyrrole macrocycles (porphyrins,

phthalocyanines), heterocyclic compounds (methylene blue,

toluidine blue O), indocyanine green, and psoralens have been

extensively studied for their antibacterial potency in aPDT (14–16).

In contrast to synthetic compounds, natural products are generally

imbued with more complex chemical structures, granting them

unique capabilities in moderating physiological processes and

contending with external threats. Derived from natural sources

such as plants, animals, and microorganisms, these products

acquire unique chemical structures through prolonged

evolutionary processes. These structures can engage with

molecular entities within organisms, thus intervening in and

regulating numerous physiological processes. Among these

natural products, polyphenols represent a noteworthy class of

compounds found abundantly in various plant-based products,

such as vegetables, fruits, seeds, and legumes. Characterized by a

series of molecules bearing one or more phenolic rings (17, 18),
FIGURE 1

The representative polyphenolic natural products as photosensitizers for antimicrobial photodynamic therapy.
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polyphenols frequently exhibit a diverse array of biological

activities, including antioxidant, anticancer, antibacterial,

antiviral, and anti-inflammatory properties, which render them

potent candidates for the treatment of infections and other

diseases (19–21). The significance of polyphenolic natural

products in aPDT is underscored by their traditional role as a

source for modern drug discovery, offering potential drug leads due

to their unique structures, diverse chemical and biological

propert ies , and antimicrobia l and anti- inflammatory

characteristics (22, 23). Consequently, polyphenolic natural

products as PSs have gained considerable attention in the field.

This review focuses on recent advances and future prospects of

aPDT for treating microbial infections, with a specific emphasis on

the application of polyphenolic natural product PSs (Scheme 1).

The unique properties and promising potential of these compounds

in combating infections warrant further exploration and

development to identify effective therapeutic interventions.
2 Polyphenolic natural PSs

2.1 Curcumin

Curcumin (CUR), a natural polyphenol extracted from the dried

rhizomes of the ginger plant turmeric (Curcuma longa L.), has a long

history of culinary, traditional medicinal, cosmetic, and herbal

supplement use (24). Chemically, curcumin is a diarylheptanoid,

a polyphenol, with beta-diketone and enone functionalities, and

its structure is related to a dimer of ferulic acid (25). Natural

curcumin consists of three distinct curcuminoids: curcumin,

demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC)

(21). The compound demonstrates a broad spectrum of

pharmacological effects, including anti-inflammatory, antimicrobial,

anticarcinogenic, antioxidant, and antithrombotic activities (26, 27).

Curcumin is known for its safety, efficacy, and environmentally

friendly characteristics (28). It has also been extensively investigated
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as a highly effective PS in the field of photodynamic therapy due to its

broad absorption range between 300 and 500 nm and its nontoxicity

in cell culture models and animal studies (29). Due to its favorable

properties, curcumin has been extensively researched for its

therapeutic potential and supportive care in clinical conditions such

as breast cancer, multiple myeloma, non-small cell lung cancer, and

depression (30–33).

As a natural compound, curcumin has been widely investigated

as a PS in aPDT. For instance, Li et al. demonstrated the effective

eradication of Bacillus subtilis (B. subtilis) through curcumin-

mediated PDT by inducing an imbalance in the cellular redox

state, causing DNA damage and disrupting membrane structures

(13). Wang et al. demonstrated that curcumin (25 mM)-mediated

aPDT could inhibit 5 log CFU/ml of Staphylococcus saprophyticus

(S. saprophyticus) with the irradiation parameters (430-470 nm,

4.32 J/cm2 10 min) in food production (34). Abdulrahman et al.

concluded that curcumin-mediated aPDT inhibits the biofilm

formation by 70% of Pseudomonas aeruginosa (P. aeruginosa)

with 10 J/cm2 laser light and 6.75 mM of curcumin (35).

However, the use of curcumin in aPDT is currently limited to

local applications on superficial wounds, such as the skin and oral

cavity, primarily due to its absorption of blue light within the light

spectrum (300-500 nm), which has restricted tissue penetration

capabilities. Muniz et al. demonstrated that curcumin (100 µg), as a

PS being activated ex vivo by LED (450 nm, 13.5 J/cm2), effectively

controlled Staphylococcus aureus (S. aureus) infections in mice with

type 1 diabetes mellitus (36). Méndez et al. found that curcumin-

mediated aPDT effectively reduced the viability of microbial cells

and compromised the vitality of intact biofilms of infected dentin

caries microcosms (37). Moreover, curcumin-mediated aPDT has

shown efficacy against various pathogens, including Escherichia coli

(E. coli, inactivated up to 3 log CFU/mL), Listeria innocua (L.

innocua, inactivated more than 5 log CFU/mL) in food systems

(38), Propionibacterium acnes (P. acnes, inhibition ratio was 100%)

associated with acne vulgaris (39), significantly decreased

planktonic Streptococcus mutans (S. mutans) and S. mutans
SCHEME 1

The chemical structures of polyphenols.
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biofilm (2 log10 CFU/mL reductions) in dental caries (40, 41),

complete kill of Aggregatibacter actinomycetemcomitans (A.

actinomycetemcomitans) (42), methicillin-resistant S. aureus

biofilm (2.03 log10 CFU/mL reductions) (24), and fungi such as

Candida albicans (C. albicans, 1 log reductions) and other stains of

the Candida spp. (43) Table 1 for a detailed description of the

application of polyphenols as PSs in aPDT.

However, the excellent biological and pharmacological activities

of curcumin are hindered by its inherent physicochemical

properties, including low solubility, rapid metabolization,

instability, and the presence of a negative charge state, which

hampers effective contact and adhesion to the surfaces of bacteria

with negative charge (72). Extensive research has been conducted to

address these challenges, particularly through the exploration of an

ideal nanocarrier for curcumin (73–75). Additionally, optimizing

the formulation and delivery methods of curcumin-based aPDT is

crucial to overcome limitations related to tissue penetration.

Further research is necessary to improve the bioavailability and

absorption of curcumin, maximizing its efficacy in medical and

health applications.
2.2 Hypericin

Hypericin (HYP), a naturally occurring pigment isolated from

hypericum plants of the genus Hypericum perforatum (commonly

referred to as Saint John’s Wort), is well-known for its

antidepressant, antioxidant, antineoplastic, potential antiviral and

analgesic activities. It has recently been recognized as an effective

and promising PS agent found in nature (44, 45). HYP, an

anthraquinone derivative exhibits a high quantum yield for the

generation of ROS and a slow rate of photobleaching (49, 76). It can

also be synthesized from emodin, another anthraquinone derivative

(77). The optical properties of HYP enable its absorbance of

electromagnetic radiation within the visible spectrum range of

500-620 nm, with a peak absorbance at 595 nm. Upon light

exposure, it displays strong red fluorescence, typically emitted at

approximately 603 nm, contributing to its intense red fluorescence

characteristics (78). HYP exhibits high lipophilicity and poor water

solubility, displaying multiple absorption peaks in organic solvents

within its visible spectrum, notably at 550 nm and 588 nm in

ethanol. Additionally, emodin in ethanol exhibits fluorescence

emission at approximately 600 nm. However, when dissolved in

aqueous solutions, HYP tends to form nonfluorescent high-

molecular-weight aggregates (79, 80).

Recently, there has been increasing interest in investigating the

pharmaceutical potential of HYP as a PS in aPDT. Barroso et al.

demonstrated effective antimicrobial activity of aPDT using HYP as

a PS against P. acnes biofilms and highlighted its potential for

clinical treatment of acne vulgaris (44). Kashef et al. investigated the

high phototoxicity of HYP against S. aureus, Enterococcus faecalis

(E. faecalis), and E. coli at extremely low drug concentrations. While

observing minimal cytotoxic effects on cultured human fibroblast

cells (46). Aponiene et al. showed efficient elimination of food-

borne pathogen Bacillus cereus (B. cereus) through hypericin-based

photosensitization in both in vitro experiments and on the surfaces
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of fruits and vegetables (45). Paz-Cristobal et al. confirmed the

greater efficacy of HYP at lower concentrations against azole-

resistant C. albicans (47). In a study by Alam et al., the

effectiveness of PDT against P. aeruginosa, a gram-negative

bacterium with limited PS penetration, was enhanced by

combining HYP with ampicillin. This combination acted as a

permeabilizing agent, disrupting the bacterial cell wall and

increasing cell permeability, thereby maximizing the efficacy of

PDT (48). Additionally, Kashef et al. demonstrated the efficacy of

combining HYP with acetylcysteine in reducing biofilm formation

and disrupting mature biofilms across various bacterial strains,

notably, against S. aureus, a prominent pathogen (49).

Despite its desirable properties such as a high quantum yield of

singlet oxygen generation, low dark toxicity, a high extinction

coefficient near 600 nm, and significant inhibition of gram-

positive bacterial growth, the utilization of HYP in biological

applications is limited by its high lipophilicity and water

insolubility in its natural form. Consequently, its potential in

biopharmaceuticals is constrained, and its clinical implementation

faces substantial hurdles. Therefore, the development of a delivery

system is crucial to overcome these limitations. Various delivery

systems, including polymeric nanoparticles and liposomes, have

been extensively explored for HYP, showing promising results (76,

81–83).
2.3 Quercetin

Quercetin (QCT), a natural polyphenol, belongs to the subclass

of flavonols, one of the six subclasses of flavonoid compounds (84).

It is abundantly found in various fruits and vegetables such as

apples, grapes, onions, and tomatoes, as well as beverages such as

tea and red wine, nuts and honey, from different plant sources (50,

84). As a secondary metabolite, QCT exhibits a diverse array of

pharmacological activities, including neuroprotection,

antioxidation, antimicrobial, anticancer, anti-inflammatory, and

anti-allergic and anti-apoptotic effects (50, 51). QCT

demonstrates distinct absorption peaks at 380 and 258 nm (85),

and its biological efficacy is significantly enhanced at micromolar

concentrations when activated by light within the range of 405 ± 10

nm (51).

Despite limited research on the application of QCT as a PS in

aPDT, some studies have explored its correlation and potential. One

study demonstrated that QCT-mediated aPDT significantly

reduced the growth of E. coli and Listeria monocytogenes (L.

monocytogenes) in a buffer solution, indicating its potential as an

antimicrobial agent against these bacteria (52). Pourhajibagher et al.

utilized QCT with a light-emitting diode to effectively reduce the

growth of A. baumannii biofilms and downregulate genes involved

in the biofilm formation (53). Condat et al. developed synthetic

photoactivable glycerol-based coatings incorporating QCT, which

demonstrated a remarkable 99% inhibition of S. aureus

proliferation after 2 and 6 hours of incubation under light

activation (50). Another study conducted by Pourhajibagher et al.

demonstrated that the synergistic combination of blue laser and

low-concentration nanoquercetin can disrupt the microbial biofilm
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LED, 405 nm, 25.3 J/cm2, 300 s S. mutans 104 ng/mL, NR,

Blue Light, 385-515 nm, 14.6 J/cm2, 60 s S. mutans biofilm 0.10wt% CUR loading
physicochemical, 6 h

LED, 420-480 nm, 16.8 J/cm2, 1 min A.
actinomycetemcomitans

0.78 mg/mL Curcuma
extract, 48 h

LED, 450 nm, 50 J/cm2, 455 s MRSA biofilm 80 mg/mL, 20 min

Blue LED, 450 ± 5 nm, first:10 J/cm2, 91 s; second: 25 J/cm2, 228
s

C. albicans 200 µg/mL, 20 min

Blue LED, 450 ± 5 nm, first:10 J/cm2, 91 s; second: 25 J/cm2, 228
s

C. tropicalis 200 µg/mL, 20 min

Hypericin 590-595 nm

LED, 660 nm, 100 J/cm2, 30 s P. acnes biofilms 15 µg/mL, 3 min

BL-300 LED, 585 nm, 9.2 J/cm2, 40 min B. cereus 10-7 M, 60 min

LED, 590 nm, 48 J/cm2, 10 min S. aureus 1 µg/mL, 5 min

LED, 590 nm, 48 J/cm2, 10 min E. faecalis 1 µg/mL, 5 min

LED, 590 nm, 48 J/cm2, 10 min E. coli 1 µg/mL, 5 min

LED, 590 nm, 48 J/cm2, 10 min P. aeruginosa 1 µg/mL, 5 min

LED, 602 ± 10 nm, 18 or 37 J/cm2, 10 min Azole-resistant and
sensitive C. albicans

5 or 10 µM, 5 h

LED, 590 nm, 150 ± 20 W/m2,3 h Ampicillin-resistant
P. aeruginosa

10 mM + ampicillin (1
30 min
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TABLE 1 Continued

and
e of PSs

Efficacy Reference

4.8 log reductions (48)

mL
,

5.7 log killing (49)

, No effect (50)

Total death (50)

4 log10 CFU/mL reductions (51)

6.20 log reductions (52)

>7.55 log reductions (52)

40.8% reductions (53)

Approximately 50% reductions (54, 55)

, 30 min >99.9% mortality (56)

lyethylene Completely kill (57)

G-PCL, 24 h Minimum bactericidal concentration (58)

No viable cells (59)

6.01 log10 reductions (59)

7 log10 reductions (59)

5 min 5 log reductions (60)

Approximately 75% reductions (61)

4.95 ± 0.19 log CFU/mL reductions (62)

ctic acid, 4.7 ± 0.5 log CFU/ml reductions (63)

>5 log reductions (64)

4.50~6.89 log10 reductions (65)

(Continued)
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Polyphenols The absorption
range/peak

Light type and parameters (wavelength,
power/power density, irradiation time) *

Microorganisms Concentratio
incubation tim

LED, 590 nm, 150 ± 20 W/m2,1 h C. albicans 10 mM, 30 min

LED, 590 nm, 16 J/cm2, 10 min S. aureus biofilms 0.5 µg/mL + 10 mg
acetylcysteine, 5 mi

Quercetin 405nm

Xenon lamp, 365 nm, 70 mW/cm2, 240 s E. coli 500 mM, 2 h or 6 h

Xenon lamp, 365 nm, 70 mW/cm2, 240 s S. aureus 500 mM, 2 h or 6 h

Blue laser, 405 ± 10 nm, 150 mW/cm2, 60 s S. mutans biofilms 64 µg/mL, 5 min,

LED, 405 nm, 80 J/cm2, 68 min 21 s E. coli O157:H7 75 µM, 68 min 21

LED, 405 nm, 80 J/cm2, 68 min 21 s L. monocytogenes 75 µM, 68 min 21

LED, 435 ± 10 nm, 300-420 J/cm2, 5 min A. baumannii biofilms 500 µg/mL, 2 h

Hypocrellin A 400-700nm

Incandescent lamp,400-780 nm, 1128 lux, 30 min C. albicans 1.0 mg/mL, 30 min

Laser, 470 nm, 100 mW/cm2, 30 min C auris With polylactic acid

Laser, 470 nm, 100 mW/cm2, 30 min Multidrug-resistant
Candida spp.

12.5 mg/mL with po
glycol, 30 min

NR, 470 nm, 90 mW/cm2, 60 min Methicillin-resistant S.
aureus

1.38 mg/L with mP

Hypocrellin B 450-550nm

Xenon lamp, 400-780 nm, 72 J/cm2, 15 min C. albicans 100 µM, 30 min

Xenon lamp, 400-780 nm, 72 J/cm2, 15 min Azole-sensitive clinical
isolate of C. albicans

100 µM, 30 min

Xenon lamp, 400-780 nm, 72 J/cm2, 15 min Azole-resistant clinical
isolate of C. albicans

100 µM, 30 min

LED, 460 ± 20 nm/645 ± 20 nm, 24 J/cm2, 3 min Drug-resistant P.
aeruginosa

10 µM (HB: La+3)&

Resveratrol 200-330nm Blue LED,450 ± 20 nm/, 54 J/cm2, 5 min S. aureus 2 mg/mL, 5 min,

Gallic acid 273nm

UVA-light, 2646 ± 212 mW/cm2, 15 min E. coli O157:H7 10 mM, 15 min

UVA-light, 3.2 ± 0.2 mW/cm2, 30 min E. coli O157:H7 1 mM with 5 mM
30 min

LED, 400 nm, 80 mW/cm2, 15 min S. aureus 4 mmol/L, 15 min

Aloe emodin
250nm, 284nm,
430nm

Xenon lamp, 435 ± 10nm, 96 J/cm2, 20 min Multidrug-resistant A.
baumannii

100 µM, 20 min
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TABLE 1 Continued

Microorganisms Concentration and
incubation time of PSs

Efficacy Reference

C. albicans (a standard
strain)

5 µM, 30 min 5.84 log10 reductions (66)

Azole-sensitive C.
albicans

5 µM, 30 min 5.56 log10 reductions (66)

Azole-resistant C.
albicans

5 µM, 30 min 4.69 log10 reductions (66)

T. rubrum (control
strain)

1 mM, 2 h Decreased survival rate to 17.10% (67)

T. rubrum (clinical
strain)

1 mM, 2 h Decreased survival rate to 18.63% (67)

Malassezia furfur 10 mM, 30 min No viable cells (68)

S. aureus 20 µg/mL (TWE), 30 min 3.3 log reductions (69)

MRSA 20 µg/mL (TWE), 30 min 3.4 log reductions (69)

C. albicans 20 µg/mL (TWE), 30 or 60 min 2.0 log reductions (69)

S. aureus,
P. aeruginosa
E. coli

0.1 mg/mL with PEG, 15 min Approximately 4 log reductions (70)

S. typhimurium,
Coliphage

0.1 mg/mL with PEG, 15 min Approximately 3 log reductions (70)

S. aureus, E. coli, MRSA 100 µL (Riboflavin-loaded
supramolecular hydrogels), NR,

Inhibition ratio over 99.999% (71)

thicillin-resistant Staphylococcus aureus; LED, light-emitting diode; UVA, ultraviolet A; CUR, curcumin; mPEG-PCL, methoxy poly (ethylene
its.
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63
Polyphenols The absorption
range/peak

Light type and parameters (wavelength,
power/power density, irradiation time) *

Xenon lamp, 400-780 nm, 24 J/cm2, 5 min

Xenon lamp, 400-780 nm, 24 J/cm2, 5 min

Xenon lamp, 400-780 nm, 24 J/cm2, 5 min

Xenon lamp, 435 ± 10nm, 72 J/cm2, 30 min

Xenon lamp, 435 ± 10 nm, 72 J/cm2, 30 min

Xenon lamp, 400-780 nm, 96 J/cm2, 20 min

Celastrol and T.
wilfordii extract

425nm

LED, 660 nm, 120 ± 20 W/m2, 15 min

LED, 660 nm, 120 ± 20 W/m2, 10 min

LED, 660 nm, 120 ± 20 W/m2, 30 min

Riboflavin
270 nm, 366 nm, and
445 nm

LED, 365 nm, 30 J/cm2, 1 h

LED, 365 nm, 30 J/cm2, 1 h

Blue light, 460 nm, 80 mW/cm2, 10 min

NR, not reported; *The irradiation frequency is 1 without special explanation; &Hypocrellin B with lanthanide ions; MRSA,: me
glycol)-block-poly(ϵ-capro-lactone); TWE, ethanolic extract of T. wilfordii; PEG, polyethylene glycol; CFU, colony forming u
n
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of S. mutans and reduce its metabolic activity (51). However,

further research is necessary to evaluate the antibacterial

pharmacological activity of QCT and determine its potential value

in clinical applications.
2.4 Hypocrellins

Hypocrellins, primarily composed of hypocrellin A and B,

which are perylenoquinone derivatives, are obtained from the

fruiting bodies of the traditional Chinese medicine fungi

Hypocrel la bambusae and Shiraia bambusae (86, 87) .

Hypocrellins, structurally related to HYP, are predominantly

lipophilic, although a few hydrophobic hypocrellin derivatives

have been synthesized, with limited studies on their properties

(86, 88). Structurally, hypocrellin A (HA) and hypocrellin B (HB)

exhibit a high degree of similarity, differing only by the presence of a

single hydroxyl group (59, 89). Hypocrellins exhibit several

advantageous characteristics, including a notable quantum yield

for singlet oxygen (1O2) generation, strong generation of anionic

free radicals in deoxygenated environments, rapid clearance from

normal tissues, minimal dark toxicity, and existence in a pure

monomeric form. These exceptional attributes have led to the

extensive utilization of hypocrellin as a PS in photodynamic

therapy (89). In ethanol, HA exhibits three distinct absorption

peaks at 581 nm, 542 nm, and 463 nm, within the visible light

spectrum range of 400 - 700 nm (54). The absorption wavelength of

HB ranges from 450 nm to 550 nm (90).

Hypocrellins have been extensively studied for their potential

applications in treating various dermatological conditions, and viral

infections, including human immunodeficiency virus (HIV), and

even cancer (91). Due to their unique characteristics, such as ease of

preparation and purification, high photoreactivity with low dark

toxicity (92), and rapid tissue clearance, hypocrellins have garnered

significant attention as novel therapeutic agents and/or diagnostic

tools (87, 91). In PDT, HA plays a crucial role in anticancer

treatment (93). However, research on the antimicrobial

photodynamic activity of HA is limited and primarily focused on

C. albicans (55), Candida auris (C. auris) (56, 57), and methicillin-

resistant S. aureus (58). Nonetheless, the efficacy of HA is limited by

certain characteristics, including poor water solubility, tendency to

aggregate under physiological conditions, and limited absorption

within the phototherapeutic window, which restricts its clinical

application in PDT. To overcome these limitations, Guo and

colleagues developed a self-assembled amphiphilic micelle that is

sensitive to lipase, enabling efficient delivery of HA. The micelles

composed of mPEG-PCL/HA demonstrated promising

antimicrobial activity against methicillin-resistant Staphylococcus

aureus (MRSA) (58). In another study, Liu et al. prepared a

recyclable and light-triggered nanofibrous membrane of polylactic

acid conjugated with HA and modified porous organic cages with

HA for targeting C. auris and multidrug-resistant Candida species,

respectively (56, 57). Similarly, research on HB primarily revolves

around its antitumor and antiviral properties. Studies have revealed

that HB demonstrates potent photodynamic effects against

malignant tumors, human immunodeficiency virus type I (HIV-
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I), and herpetic stomatitis (90). In their in vitro experiments, Hu

et al. demonstrated that HB-LED PDT triggers apoptosis in human

keloid fibroblasts through the mitochondrial apoptotic pathway

(89). Moreover, Hashimoto et al. found that HB-mediated aPDT

exhibits promise as a viable alternative treatment for P. aeruginosa-

infected burns, as it effectively reduces P. aeruginosa at the infection

site, delays bacteremia, maintains lower bacterial levels in the

bloodstream compared to untreated groups, and significantly

increases the lifespan of mice (60). The Jan group investigated the

photodynamic inactivation effects of HB on both azole-sensitive

and azole-resistant strains of C. albicans in vitro. HB exhibited

negligible dark toxicity and efficiently deactivated C. albicans cells in

a light-dose and PS concentration-dependent manner (59).

Recently, Law et al. proposed HB as a potential PS for PDT in the

treatment of SARS-CoV-2 (94). These innovative approaches hold

great potential for enhancing therapeutic outcomes in the treatment

of microbial infections.
2.5 Resveratrol

Resveratrol, also known as trans-3,4,5-trihydroxystilbene, is a

naturally derived polyphenolic compound and phytoalexin. It is

synthesized in response to various stressors, including plant

damage or microbial infections caused by bacteria or fungi (95).

Resveratrol is commonly found in a variety of dietary substances,

such as grapes, berries (cranberries), red wine, nuts (peanuts) and

other foods (96–98). Chemically, it belongs to the stilbene family and

acts as a fundamental precursor for the synthesis of other stilbenes,

such as piceatannol and pterostilbene (specifically trans-3,5-

dimethoxy-4’-hydroxystilbene) (96). Resveratrol presents a diverse

array of biological activities, encompassing antimicrobial, antiviral,

antioxidant, anti-aging, anti-inflammatory, and anticancer

properties. Moreover, it has been recognized for its cardioprotective

and neuroprotective attributes (99). These notable biological

functions can be attributed to its unique molecular structure, which

enables effective interactions with various biomolecules. Resveratrol

displays a wide absorption spectrum ranging from 290 nm to 360 nm,

with a peak wavelength observed at approximately 320 nm (100).

The antimicrobial activity of resveratrol has been studied

extensively. Klančnik et al. reported a minimum inhibitory

concentration (MIC) of 0.313 mg/ml for resveratrol against

Campylobacter jejuni (101). In contrast, Duracka et al. found no

significant bactericidal activity of resveratrol against Enterococcus

faecalis in rabbit ejaculates (102). Li et al. discovered that

resveratrol, at a concentration of 800 µg/mL, significantly inhibits

the growth of S. mutans (96). Furthermore, Kugaji et al.

demonstrated remarkable antibacterial and anti-biofilm activity of

resveratrol against Porphyromonas gingivalis (P. gingivalis), a

bacterium associated with gum disease (99). Dos Santos et al.

were the first to establish a connection between aPDT and

resveratrol, highlighting its effective inhibition of S. aureus when

used as a PS (61). Resveratrol as a natural polyphenol compound,

exhibits therapeutic potential. However, it is pertinent to

acknowledge that the stability of the resveratrol can be influenced

by factors such as UV radiation, pH, and temperature (103).
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2.6 Gallic acid

Gallic acid (GA) (3,4,5-trihydroxybenzoic acid), a natural

polyphenolic compound, is abundant in various plants, including

trees, herbs, fruits, and nuts, as well as processed beverages such as

red wine and green tea (104). Recognized for its inherent and potent

biological activities, GA exhibits a diverse range of effects,

encompassing antioxidative, antimicrobial, antiallergic, anticancer,

anti-inflammatory, antimutagenic, anti-melanogenic, anti-

atherosclerotic, neuroprotective, and hepatoprotective properties

(105, 106). Its versatile applications span multiple fields, such as

medicine, chemical research, pharmaceuticals, cosmetics, and the

food industry (107). The polyphenolic functional groups present in

GA contribute to its remarkable ability to scavenge oxygen-derived

free radicals (108). Moreover, GA is commonly employed as a

standard compound for quantifying phenol content using the Folin-

Ciocalteu method (109). Derived from protocatechuic acid, GA

serves as an intermediate in the secondary metabolism of plants

(108). Structurally, GA is a phenolic acid consisting of benzene ring

with a carboxyl group and three hydroxyl groups attached to it. Its

formation can be obtained through the acid hydrolysis of

hydrolysable tannins (110). It has the capability to absorb

ultraviolet (UV) irradiation and light in the visible spectrum (111).

GA has demonstrated remarkable inhibitory effects on the

motility, adhesion, and biofilm formation of S. aureus, S.

pyogenes, P. aeruginosa, and L. monocytogenes (112–114). In an

insightful study by Cossu et al., GA treatment combined with UV-A

irradiation significantly inactivated metabolically active E. coli

O157:H7 (62). Furthermore, De Oliveira et al. demonstrated that

the synergistic combination of GA with lactic acid (LA) and UV-A

was specifically effective against E. coli O157:H7 (63). A study

conducted by Nakamura et al. investigated the antibacterial effect of

GA (4 mmol/L) on S. aureus under LED light irradiation, resulting

in a 99.9% reduction in bacteria. Notably, the authors suggest that

the antibacterial action is induced by photooxidation and automatic

oxidation of GA, as its individual bactericidal effect is less

pronounced (64).
2.7 Aloe emodin

Aloe emodin (AE) is a naturally occurring anthraquinone

derivative with structural similarity to HYP. It is extracted from

traditional Chinese medicine (TCM) plants such as Aloe vera, Rheum

officinale Baill., Rumex patientia Linn., Cassia mimosoides L. and

Polygonum multiflorum Thunb (115, 116). AE shares a remarkable

chemical structure resemblance to HYP, an extensively studied

classical PS, and exhibits light absorption capability in the

ultraviolet-visible regions. AE displays three primary absorption

bands centered at 250 nm, 284 nm and 430 nm. Light sources

within the blue region, including lasers emitting wavelengths of 405

nm, 430 nm, and 473 nm, as well as broadband light using suitable

filters, effectively activate AE (65). The maximum absorption band of

AE in the blue region makes AE-mediated PDT particularly

advantageous for the treating of superficial diseases, including skin

cancer, oral disorders, and ocular conditions. The singlet oxygen
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quantum yield (1O2) of AE was determined to be 0.57 (2) in methanol,

which is marginally higher than that of methylene blue (117).

Recently, AE has gained increasing attention due to its potential

applications in the treatment of various diseases. Several studies

have indicated that aloin, a compound found in aloe vera, possesses

various biological properties, including antiviral, antibacterial, anti-

inflammatory, and hepatoprotective activities (118–120). Moreover,

AE has demonstrated anticancer activity against lung squamous cell

carcinoma, neuroectodermal tumors, hepatocellular carcinoma

cells, gastric cancer cells, and colon cancer cells (121, 122).

However, AE exhibits low solubility in aqueous medium (~19

mM), leading to poor oral absorption and bioavailability (123).

Furthermore, long-term administration of AE may result in

genotoxicity, including gene lesions and mutations, and pose

potential risks such as the occurrence of acute renal failure. These

factors constrain the widespread application of AE in the medical

field. Consequently, research efforts aimed at enhancing the

aqueous solubility of AE assume significant importance as they

can substantially improve its bioavailability (124–126).

Nanomaterials are widely recognized as exceptional drug carriers

due to their good biodistribution, enhanced bioavailability, and low

drug toxicity. Li et al. developed AE-encapsulated nanoliposomes

using reverse evaporation to improve the bioavailability of AE against

human gastric cancer cells (126). Unfortunately, there have been few

studies on nanomaterials for AE-mediated aPDT. AE has emerged as

a promising agent for aPDT, garnering considerable attention for the

treatment of surface or localized bacterial infections in recent years.

Studies conducted by Li and Wang et al. provide evidence that AE-

mediated aPDT is highly effective in inactivating in vitro isolates of

MDR Acinetobacter baumannii (A. baumannii) and successfully

treating infections caused by MDR A. baumannii following thermal

burn injuries in mice. In summary, AE, as an exceptionally promising

PS, exhibits tremendous potential in the context of managing of

superficial infections caused by MDR A. baumannii through aPDT

(65, 127). Ma et al. confirmed that AE-aPDT exhibited significant

efficacy in the inactivation of C. albicans cells in a concentration-

dependent manner by causing damage to the cell wall, cytoplasm, and

nuclei (66). Additionally, the research conducted by Ma et al.

demonstrated that AE is highly effective in inactivating

Trichophyton rubrum (T. rubrum) microconidia in a light dose-

dependent manner, exhibiting substantial inhibitory effects on the

growth of T. rubrum (67). Cui et al. reported the in vitro

photodynamic antimicrobial efficacy of AE on Malassezia furfur (M.

furfur), a lipo-dependent yeast fungus frequently found on the skin.

The findings revealed that AE-mediated aPDT demonstrated

remarkable effectiveness in inactivating the fungal cells in a

concentration- and light energy dose-dependent manner (68). These

results suggest the potential application of AE-aPDT as a promising

therapeutic option for addressing M. furfur-related skin conditions.
2.8 Celastrol

Tripterygium wilfordii Hook F. (Tripterygium wilfordii), is an

ivylike vine belonging to the Celastraceae family, widely employed

as a traditional natural medicine in Chinese traditional medicine
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(128). The main chemical constituents of Tripterygium wilfordii

include diterpenoids, triterpenoids and alkaloids, with triptolide

and celastrol being the most studied and clinically applied

components (129). Tripterygium wilfordii exhibits a range of

pharmacological activities, including anti-inflammatory,

immunomodulatory, anticancer, and anti-rheumatic effects. As a

result, it finds extensive application in the treatment of autoimmune

diseases, encompassing rheumatoid arthritis and systemic lupus

erythematosus (130, 131). Furthermore, Tripterygium wilfordii has

demonstrated anticancer activity and is currently under

investigation as a potential anticancer drug (128). Alam et al.

conducted a study exploring the application of a natural PS

derived from the medicinal plant Tripterygium wilfordii for

aPDT. The ethanolic extract and PS-enriched fraction contained

six demethylated chlorophyll derivatives as active compounds. The

combined treatment of red light (660 nm) and the natural PS

effectively eradicated pathogenic bacteria and fungi, particularly

various skin pathogens in vitro. The in vivo efficacy and adverse

reactions of aPDT were evaluated using a nematode model infected

with S. aureus and Streptococcus pyogenes (69).

Celastrol is a quinone methide triterpenoid natural compound

that possesses a broad range of antiviral, anti-inflammatory, and

anticancer properties (132). In a previous investigation, titanium

dioxide (TiO2) nanofibers conjugated with celastrol were employed

for the treatment of HepG2 cancer cells with ultraviolet A (254 nm)

(128). Caruso et al. conducted a study investigating the mechanism

of action of celastrol at the active site of the main SARS-CoV-2

protease, 3CLpro, employing various techniques. Their findings

suggest that celastrol could potentially serve as a PS in

photodynamic therapy against SARS-CoV-2 (132, 133).
2.9 Riboflavin

Riboflavin, scientifically termed vitamin B2, is a water-soluble

vitamin with inherent photodynamic properties. It can be found in

various food sources such as dairy products (milk and cheese),

meat, fish, fruits, dark green leafy vegetables, bread, grains, and

grain products (134). Chemically, riboflavin comprises an

isoalloxazine ring attached to a ribitol side chain and exists in two

coenzyme forms: flavin mononucleotide (FMN) and flavin adenine

dinucleotide (FAD). These key cofactors play a pivotal role in

energy metabolism as indispensable components of oxidation-

reduction enzymes, reductases, and dehydrogenases (134, 135).

Riboflavin, a potent light-activated free-radical producer, exhibits

absorption maxima at 270 nm, 366 nm, and 445 nm, facilitating

efficient generation of ROS (135, 136).

Riboflavin plays an indispensable role in maintaining human

health and has exhibited the ability to hinder the growth of a diverse

spectrum of microorganisms, encompassing bacteria, viruses, fungi,

and parasites, suggesting its potential as an effective antimicrobial

agent (134). Its biocompatibility, nontoxic characteristics, and ROS

generation capacity have attracted significant attention among

researchers, particularly in the field of dentistry (135). In aPDT,

riboflavin serves as both a photosensitizer and a crosslinking agent.

Its multifunctional properties extend beyond reducing
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inflammation and eradicating microbial biofilms to preserving

adhesive strength in orthodontic brackets (135, 136). Studies by

Maisch et al. and Mahsa et al. have showcased the safety and

effectiveness of riboflavin-based aPDT in eradicating multidrug-

resistant bacteria such as S. aureus, E. coli, P. aeruginosa, A.

baumannii, and E. faecalis biofilm. Despite the widespread use of

riboflavin as a PS in aPDT, its water-soluble nature limits its

incorporation rate in diverse biological tissues. Consequently,

numerous studies have focused on enhancing its bioavailability by

employing riboflavin derivatives or nanodelivery systems. Zhang

et al. demonstrated that riboflavin formulated into a nanoemulsion

exhibited potent bactericidal effects against S. aureus cell

membranes (70, 71, 137). Additionally, Du et al. found that

supramolecular materials loaded with riboflavin were capable of

killing gram-positive bacteria (e.g., S. aureus), gram-negative

bacteria (e.g., E. coli), and multidrug-resistant S. aureus (71).

These approaches aim to overcome the challenges associated with

riboflavin solubility and improve its effectiveness in aPDT.
3 The photochemical mechanism and
targets of aPDT

aPDT relies on the generation of ROS by PSs upon exposure to

specific wavelengths of light. This process involves the transfer of

electrons or energy from the excited PSs to molecular oxygen (138),

leading to photochemical reactions of Type I or Type II (139). In type

I reactions, the excited PS transfers high-energy electrons to nearby

molecules, often molecular oxygen, resulting in the production of

ROS, including hydrogen peroxide (H2O2), superoxide anion (O2
•-),

and hydroxyl radical (·OH), among others (134, 140). Type II

reactions involve the transfer of energy from the PS to oxygen,

generating highly reactive singlet oxygen (1O2) (52). These two

reaction types induce oxidative stress and cellular damage,

ultimately leading to cell death. The equilibrium between Type I

and Type II reactions can be influenced by specific substrates, PSs,

and oxygen levels (141). Recently, a novel mechanism termed the

“Type III photochemical pathway” has been proposed, which is an

oxygen-independent mechanism for antimicrobial photoinactivation.

Currently, this mechanism has been primarily observed under

anaerobic/hypoxic conditions, involving PSs such as psoralens and

tetracyclines, as well as the addition of organic salts such as potassium

iodide and sodium azide (142, 143).

aPDT is a multitarget process that inflicts damage on multiple

levels. Natural product PSs can be categorized into three distinct

types according to their proximity and interaction with bacterial

cells: (i) PSs positioned in close proximity to the bacterial cell wall,

(ii) PSs exhibiting affinity for bacterial cells, potentially causing

oxidative damage to extracellular structures, and (iii) PSs capable of

penetrating bacterial cells and reaching the cytoplasm, thereby

exerting detrimental effects on intracellular components such as

cytoplasmic proteins or DNA (144). Overall, aPDT operates

through ROS generation and subsequent oxidative damage, with

PSs targeting various cellular components depending on their

location and interaction with bacterial cells. Understanding the

mechanism and targets of aPDT is crucial for optimizing
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treatment strategies and developing effective antimicrobial

interventions (Figure 2).
3.1 biofilm

The formation of biofilms involves the adhesion and

aggregation of bacteria on living or nonliving surfaces. Biofilms

exhibit a complex and organized structure, providing protection

and facilitating the survival and growth of the microorganisms

within the community (145, 146). They represent a distinct lifestyle

from planktonic states and serve as a survival strategy for

microorganisms in challenging environments (15, 147).

Extracellular polymeric substances (EPS), comprising proteins,

extracellular DNA (eDNA), polysaccharides, humic substances,

and water-insoluble compounds, such as cellulose, amyloid

proteins, nonamyloid protein fibers, and lipids, surround and

immobilize biofilm cells (148). Biofilms shield microorganisms

from host defense systems, increasing their tolerance to various

antibiotics and disinfectants. which can result in persistent and

difficult-to-treat infections (149, 150). However, polyphenolic

natural product-mediated aPDT has shown significant potential

in targeting biofilms and inactivating clinically relevant

microorganisms. Minhaco et al. reported that curcumin-loaded

PLGA nanoparticles presented effective antimicrobial activity

against endodontic biofilms. Notably, encapsulated curcumin

demonstrated potent antibacterial effects on both mono- and

multispecies biofilms (e.g. , E. faecalis, S. mutans, and
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Streptococcus oralis) at a lower concentration (29). A study by

Ribeiro et al. demonstrated that curcumin-mediated aPDT, when

irradiated with LED light, effectively generated photoproducts, and

ROS, such as singlet oxygen and free radicals, inducing

phototoxicity. Thus, PDT with curcumin significantly reduced the

viability of MRSA strains in biofilms (24).

Hypericin-mediated aPDT has shown effective activity against

both methicillin-susceptible and methicillin-resistant S. aureus

biofilms, as evidenced in the study conducted by Garcıá et al.

(151); nevertheless, inactivation of S. aureus biofilms was not

achieved with HYP alone, as shown in the study by Kashef et al.

Interestingly, the combination of HYP with acetylcysteine exhibited

remarkable efficacy in eradicating the preformed mature biofilms of

S. aureus strains. The authors hypothesized that acetylcysteine’s

ability to degrade the extracellular polysaccharide matrix of the

biofilm enhances the susceptibility of biofilm-associated bacteria to

the phototoxic properties of HYP (49). Xiang et al. observed that AE

does not disrupt the anchoring of surface proteins to the cell wall.

Instead, its inhibitory effect on biofilm development was attributed

to the downregulation of specific surface protein expression or the

direct obstruction of adhesion of these proteins to other matrix

components (119).
3.2 Cell wall and cell membrane

Bacteria consist of three primary components: the cell wall, cell

membrane, and cytoplasm (152). The cytoplasmic membrane
FIGURE 2

Schematic illustration of the photochemical mechanisms and the role of polyphenols as photosensitizers in aPDT targeting biofilms, Gram-positive
bacteria, Gram-negative bacteria, and fungal cell. PS, photosensitizer; ROS, reactive oxygen species; EPS, extracellular polymeric substances.
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shares a similar structure in both gram-negative bacteria and gram-

positive bacteria, consisting of a phospholipid bilayer along with

minor lipids and proteins (153). However, extensive research has

demonstrated that gram-positive bacteria exhibit higher sensitivity

to aPDT than gram-negative bacteria due to differences in their cell

wall structures. Gram-positive cells have a single thick

peptidoglycan layer surrounding their cytoplasmic membrane,

resulting in higher porosity of their cell walls. Consequently, this

increased porosity facilitates easier diffusion of the PSs into the

intracellular space. In contrast, gram-negative bacteria possess a

highly selective and complex outer membrane composed of

lipopolysaccharides, lipoproteins and lipoteichoic acids, along

with a thin peptidoglycan layer. These factors collectively make

the penetration of PSs significantly more challenging (154, 155). In

the study, Wang et al. demonstrated that quercetin had the ability to

disrupt the cell wall and cell membrane structures in both gram-

positive and gram-negative bacteria. This disruption increased the

permeability of these structures, leading to the release of cellular

cytoplasmic contents and impairment of adenosine triphosphate

(ATP) activity (152). Furthermore, Lee et al. illustrated that the

inactivation process of aPDT mediated by quercetin involved

damage to E. coli O157:H7 and L. monocytogenes membranes

through the generation of ROS. The predominant mechanism

observed was type I, with O2
•- and H2O2 identified as the main

ROS involved (52). The fungal cell wall consists of a cell membrane

containing various membrane proteins. At the outermost layer,

mannoproteins form a protective fibrous layer that conceals the

underlying b-glucan layer, while chitin is situated in close proximity

to the cell membrane (156, 157). In their investigation, Jan et al.

discovered that HB-mediated aPDT resulted in significant

impairment to the cell wall, cell membrane, cytoplasm, and

nucleus of C. albicans, suggesting that ROS might be accountable

for the damage observed in the cytoplasm and cell wall components,

signifying a distinct mechanisms from that of antifungal drugs

(59) (Figure 2).
3.3 Nucleic acids, proteins and lipids

To date, there have been relatively few studies investigating the

direct influence of polyphenolic natural product PSs on bacterial

nucleic acids, proteins, and especially lipids in aPDT. Previous

research suggested that the DNA of microorganisms was primarily

affected when they were either inactivated or nonviable, rendering

the probability of developing resistance mechanisms against aPDT

extremely low (155, 158). In a study by Lee et al., quercetin was

identified as an exogenous PS located outside bacterial cells that

generates ROS. This process initiated the attack on bacterial cells

from the outermost structures. Subsequently, quercetin diffused

into the damaged bacteria, and the ROS generated upon its entry

resulted in the degradation of bacterial DNA (52). Furthermore,

quercetin exhibited the ability to reduce bacterial protein synthesis,

thereby affecting protein expression within the cell. Ultimately, this

disruption led to cell lysis and death (152). Despite the lipid-rich

composition of the bacterial cytoplasm and outer membranes, our

understanding of the lipid-related mechanisms underlying natural
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product-mediated aPDT remains limited. The complexity

associated with identifying and characterizing lipid damage has

contributed to this gap (155).
4 In vivo aPDT with polyphenols

Currently, research on polyphenol-based natural product-

mediated aPDT is primarily focused on oral and skin diseases in

both in vivo (Table 2). In a study conducted by Dascalu Rusu LM

and colleagues, utilizing curcuma extract, arnica oil, and oregano

essential oil, novel natural PSs mediated aPDT effectively improved

induced periodontal disease in rats and reduced inflammation (12).

Paolillo FR et al. discovered that a combination of curcumin (0.06

mL of 1.5% curcumin gel) and blue light (450 nm, 80 mW/cm2, at

the dose of 60 J/cm2)-mediated aPDT, with artificial skin,

accelerated bacterial inactivation (S. aureus 4.14 log10) and

enhanced wound healing in Wistar rats without inducing adverse

effects on the tissue (159). Muniz IPR et al. demonstrated that ex

vivo activation of curcumin (100 mg) by blue LED light (450 nm) at

a fluence of 13.5 J/cm2 effectively controlled S. aureus cutaneous

infection in type I diabetic mice (36, 160). Alam et al. achieved

significant eradication of Ampicillin-Resistant P. aeruginosa in the

Caenorhabditis elegans (C. elegans) model by using HYP in

conjunction with ampicillin and subsequent orange light

treatment (48). Liu et al. assessed the antibacterial capabilities of

Poly (lactic acid)-Hypocrellin A (PLA-HA) nanofiber membranes

through in vivo photodynamic therapy in rats infected with C.

albicans. The study revealed that PLA-HA-mediated aPDT

significantly promoted wound healing, reduced the infected

wound area, and increased the wound healing rate by

approximately 10% compared to other groups (56). Guo et al.

discovered that lipase-sensitive methoxy poly (ethylene glycol)-

block-poly(ϵ-caprolactone) (mPEG-PCL)/HA micelles mediated

aPDT (470 nm, 90 mW/cm2, 60 min) effectively eradicated

MRSA in the abdominal cavity of mice, increasing the survival

rate to 86% at a low concentration of 10 mg/kg (HA concentration)

(58). Hashimoto et al. treated burn mice infected with P. aeruginosa

with HB: La+3 and aPDT (LED, 24 J/cm2). They found that aPDT

reduced bacterial burden at the burn wound, delayed bacteremia,

and lowered bacterial levels in the blood by 2-3 logarithmic units.

Survival rates of mice increased 24 hours after treatment (60). Dos

Santos et al. observed that blue LED light (54 J/cm2) enhanced the

antimicrobial effect of resveratrol (2 mg/mL, 100 µL) against MRSA.

In a mouse abscess model, it induced the production of TNF-a and

IL-17A cytokines, reduced bacterial burden, and consequently

decreased inflammation 24 hours after infection (61). Ma et al.

demonstrated that AE-mediated aPDT effectively treated tinea

corporis caused by T. rubrum in a guinea pig model and tinea

unguium in an ex vivomodel (67). In vivo studies reported byWang

et al. showed that AE-mediated aPDT effectively treated skin

infections caused by multidrug-resistant A. baumannii in mice

following burn injuries (127). Alam et al. evaluated the efficacy of

ethanol extract of Tripterygium wilfordii (TWE)-mediated aPDT

against various pathogens (E. coli, S. aureus, MRSA, S. pyogenes, and

C. albicans) in a nematode model. Their findings indicated that it
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effectively controlled the pathogens without inducing strong

adverse effects. TWE-mediated aPDT reversed the growth

inhibition caused by pathogen infection in the nematodes,

reduced the viable pathogen count associated with C. elegans, and

improved the survival rate of the nematodes infected with Pyogenic

Streptococcus, in conjunction with aPDT (69). Du et al. uniformly

applied riboflavin G4 hydrogel (2 mL) onto sterile dressings and

treated wounds infected with MRSA in rats by irradiating them with

blue light at a wavelength of 460 nm and a light power density of 80

mW/cm2 for 10 min. Their results revealed that the hydrogel

exhibited robust antimicrobial activity in the rat infection wounds

after irradiation (71).
5 Conclusions and perspectives

In recent years, aPDT has emerged as a pioneering modality

specifically formulated for the inactivation of an extensive array of

microorganisms, including bacteria, fungi, and viruses. Its

application has grown progressively in diverse fields, notably in
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dermatology for conditions such as acne, in oral health for issues

such as tooth decay and halitosis, and in managing fungal infections

and viral diseases, notably COVID-19. Additionally, aPDT’s

effectiveness in eliminating pathogens has paved its way into the

food industry, bolstering food safety measures. PSs, a crucial

component of aPDT, are responsible for generating ROS. Natural

polyphenolic compounds derived from plants, fruits, vegetables,

and other natural sources are increasingly used as PSs in aPDT due

to their lower toxicity, structural diversity, and excellent

biocompatibility. However, their clinical application is limited by

factors such as water solubility. To overcome these limitations,

innovative techniques such as nanotechnology have been employed.

Nanoparticles, in particular, have proven to be efficacious drug

delivery systems for hydrophobic PSs, facilitating their effective

transport both in vitro and in vivo. They enable circumvention of

physiological and biological barriers, thereby enhancing bacterial

cell uptake. Despite these advancements, further research and

technological innovation are imperative to fully exploit the

potential of natural polyphenolic PSs and enhance their efficacy

in treating a plethora of infectious diseases. Overcoming their
TABLE 2 In vivo aPDT with polyphenols.

Authors Polyphenols Disease Models Effects References

Dascalu
Rusu LM
et al.

CUR extract Rats’ periodontal disease Effectively improved periodontal disease and reduced inflammation (12)

Paolillo FR
et al.

CUR Wistar rats wound healing Accelerated bacterial inactivation and enhanced wound healing (159)

Muniz IPR
et al.

CUR S. aureus cutaneous infection
of type I diabetic mice

Effectively controlled S. aureus cutaneous infection (36)

Galinari
CB et. al.

HYP Mouse dermatophytosis
caused by M. canis

After three treatment, a rapid improvement in clinical symptoms at the
infection site;After six treatments,a statistically significant reduction in fungal

burden compared to untreated infected animals

(160)

Alam et al. HYP C. elegans of Ampicillin-
Resistant P. aeruginosa

infection

Achieved significant eradication of Ampicillin-Resistant P. aeruginosa (48)

Liu et al. HA Rats infected with C. albicans Significantly promoted wound healing, reduced the infected wound area (56)

Guo et al. HA Mouse abdominal MRSA
infection model

Effectively eradicated MRSA in the abdominal cavity of mice (58)

Hashimoto
et al.

HB Burn mice infected with P.
aeruginosa

Reduced bacterial burden at the burn wound, delayed bacteremia, and lowered
bacterial levels

(60)

Dos Santos
et al.

Resveratrol A mouse abscess model of
MRSA infection

induced the production of TNF-a and IL-17A, reduced bacterial burden, and
decreased inflammation

(61)

Ma et al. AE Tinea corporis caused by T.
rubrum in a guinea pig model

Effectively treated tinea corporis (67)

Wang et al. AE A mouse skin infection model
caused by A. baumannii
multidrug after burn

Effectively treated skin infections (127)

Alam et al. Tripterygium
wilfordii

Pathogen-infected nematode
model

Effectively controlled the pathogens and improved the survival rate of the
nematodes infected with Pyogenic Streptococcus

(69)

Du et al. Riboflavin A rat model of wound
infection with MRSA

Exhibited robust antimicrobial activity in the rat infection wounds (71)
CUR, curcumin; HYP, hypericin; HA, hypocrellin A; HB, hypocrellin B; AE, aloe emodin; S. aureus, Staphylococcus aureus; M. canis, Microsporum canis; C. elegans, Caenorhabditis elegans; P.
aeruginosa, Pseudomonas aeruginosa; C. albicans, Candida albicans; MRSA: methicillin-resistant Staphylococcus aureus; T. rubrum, Trichophyton rubrum; A. baumannii, Acinetobacter baumannii.
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limitations and achieving enhanced efficacy in the treatment of

various infectious diseases will require continuous exploration

and innovation.

Overall, natural polyphenolic PSs-mediated aPDT, in

combination with nanoparticle-based drug delivery systems, holds

great potential in combating microbial infections and advancing the

field of infectious disease treatment. With concerted efforts and

ongoing research, it is expected that aPDT will continue to evolve

and find wider applications in the future.
Author contributions

GH: Funding acquisition, Investigation, Writing – review &

editing. XYW: Conceptualization, Visualization, Writing – original

draft. RF: Writing – review & editing, Investigation. LW: Writing –

original draft, Funding acquisition, Investigation. LZ: Writing –

original draft, Investigation, Visualization. XJ: Funding acquisition,

Writing – review & editing. XW: Conceptualization, Funding

acquisition, Investigation, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study
Frontiers in Immunology 1470
was supported by grants from the National Natural Science

Foundation of China (22177084, 82273559, 82103757 and

82073473), the China Postdoctoral Science Foundation

(2022M722283), PostDoctor Research Project, West China Hospital,

Sichuan University (2023HXBH076), Sichuan Natural Science

Foundation Project (2023NSFSC1554), the Science and Technology

Department of Sichuan Province (2022YFQ0054), Sichuan Provincial

Administration of Traditional Chinese Medicine (2023MS324) and

the 1.3.5 Project for Disciplines of Excellence, West China Hospital,

Sichuan University (ZYJC21036).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Berman D, Chandy SJ, Cansdell O, Moodley K, Veeraraghavan B, Essack SY.
Global access to existing and future antimicrobials and diagnostics: antimicrobial
subscription and pooled procurement. Lancet Glob Health (2022) 10:e293–7.
doi: 10.1016/s2214-109x(21)00463-0
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Rosa L, da Silva Rosa FC, et al. Photoactivated resveratrol against Staphylococcus
aureus infection in mice. Photodiagnosis Photodyn Ther (2019) 25:227–36.
doi: 10.1016/j.pdpdt.2019.01.005

62. Cossu A, Ercan D, Wang QY, Peer WA, Nitin N, Tikekar RV. Antimicrobial
effect of synergistic interaction between UV-A light and gallic acid against Escherichia
coli O157:H7 in fresh produce wash water and biofilm. Innovative Food Sci Emerging
Technol (2016) 37:44–52. doi: 10.1016/j.ifset.2016.07.020

63. de Oliveira EF, Cossu A, Tikekar RV, Nitin N. Enhanced antimicrobial activity
based on a synergistic combination of sublethal levels of stresses induced by UV-A light
and organic acids. Appl Environ Microbiol (2017) 83(11):e000383-17. doi: 10.1128/
AEM.00383-17
frontiersin.org

https://doi.org/10.1016/j.pdpdt.2023.103495
https://doi.org/10.1016/j.pdpdt.2023.103495
https://doi.org/10.3389/fphar.2022.847702
https://doi.org/10.3390/biomedicines9060689
https://doi.org/10.3390/biomedicines9060689
https://doi.org/10.1016/j.pdpdt.2022.102729
https://doi.org/10.1016/j.pdpdt.2022.102729
https://doi.org/10.1002/anie.201107724
https://doi.org/10.1039/d1tb02457d
https://doi.org/10.1016/j.pdpdt.2013.02.002
https://doi.org/10.3390/antibiotics11030322
https://doi.org/10.3390/antibiotics11030322
https://doi.org/10.1016/j.pdpdt.2023.103322
https://doi.org/10.1016/j.phymed.2023.154810
https://doi.org/10.2174/1871520620666200918113625
https://doi.org/10.1016/j.biopha.2021.111439
https://doi.org/10.1080/10408398.2019.1653260
https://doi.org/10.1016/j.lwt.2021.111567
https://doi.org/10.1016/j.pdpdt.2019.101645
https://doi.org/10.1016/j.jphotobiol.2021.112325
https://doi.org/10.1016/j.pdpdt.2018.09.007
https://doi.org/10.1016/j.postharvbio.2017.11.014
https://doi.org/10.1016/j.jphotobiol.2018.09.021
https://doi.org/10.1016/j.pdpdt.2017.09.003
https://doi.org/10.1016/j.pdpdt.2017.09.003
https://doi.org/10.1038/s41598-022-21363-5
https://doi.org/10.1016/j.pdpdt.2018.03.001
https://doi.org/10.1155/2022/5837864
https://doi.org/10.1016/j.jfoodeng.2014.07.012
https://doi.org/10.1016/j.pdpdt.2012.11.007
https://doi.org/10.1111/myc.12099
https://doi.org/10.1111/myc.12099
https://doi.org/10.3390/pharmaceutics11120641
https://doi.org/10.1016/j.pdpdt.2015.04.001
https://doi.org/10.1039/c5ra25267a
https://doi.org/10.1186/s12866-022-02544-8
https://doi.org/10.1186/s12866-022-02544-8
https://doi.org/10.1016/j.crfs.2022.100428
https://doi.org/10.1016/j.pdpdt.2022.103134
https://doi.org/10.1039/b302125d
https://doi.org/10.3389/fmicb.2019.01810
https://doi.org/10.1371/journal.ppat.1010534
https://doi.org/10.1016/j.drup.2022.100887
https://doi.org/10.1016/j.msec.2019.110230
https://doi.org/10.1016/j.pdpdt.2019.07.014
https://doi.org/10.1111/j.1751-1097.2012.01137.x
https://doi.org/10.1111/j.1751-1097.2012.01137.x
https://doi.org/10.1016/j.pdpdt.2019.01.005
https://doi.org/10.1016/j.ifset.2016.07.020
https://doi.org/10.1128/AEM.00383-17
https://doi.org/10.1128/AEM.00383-17
https://doi.org/10.3389/fimmu.2023.1275859
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1275859
64. Nakamura K, Yamada Y, Ikai H, Kanno T, Sasaki K, Niwano Y. Bactericidal
action of photoirradiated gallic acid via reactive oxygen species formation. J Agric Food
Chem (2012) 60:10048–54. doi: 10.1021/jf303177p

65. Li J, Qin MT, Liu CC, Ma WP, Zeng XY, Ji YH. Antimicrobial photodynamic
therapy against multidrug-resistant Acinetobacter baumannii clinical isolates mediated
by aloe-emodin: An in vitro study. Photodiagnosis Photodyn Ther (2020) 29:101632.
doi: 10.1016/j.pdpdt.2019.101632

66. Ma WP, Liu CC, Li J, Hao M, Ji YH, Zeng XY. The effects of aloe emodin-
mediated antimicrobial photodynamic therapy on drug-sensitive and resistant Candida
albicans. Photochemical Photobiological Sci (2020) 19:485–94. doi: 10.1039/c9pp00352e

67. Ma WP, Zhang MM, Cui ZX, Wang XP, Niu XW, Zhu YY, et al. Aloe-emodin-
mediated antimicrobial photodynamic therapy against dermatophytosis caused by
Trichophyton rubrum. Microbial Biotechnol (2022) 15:499–512. doi: 10.1111/1751-
7915.13875

68. Cui ZX, Zhang MM, Geng SM, Niu XW, Wang XP, Zhu YY, et al. Antifungal
effect of antimicrobial photodynamic therapy mediated by haematoporphyrin
monomethyl ether and aloe emodin on malassezia furfur. Front Microbiol (2021)
12:749106. doi: 10.3389/fmicb.2021.749106

69. Alam ST, Hwang H, Son JD, Nguyen UTT, Park J-S, Kwon HC, et al. Natural
photosensitizers from Tripterygium wilfordii and their antimicrobial photodynamic
therapeutic effects in a Caenorhabditis elegans model. J Photochem Photobiology. B Biol
(2021) 218:112184. doi: 10.1016/j.jphotobiol.2021.112184

70. Borodina TN, Tolordava ER, Nikolaeva ME, Solov’ev AI, Romanova YM,
Khaydukov EV, et al. Antimicrobial photodynamic activity of hydrophilic riboflavin
derivatives. Mol Genetics Microbiol Virol (2021) 36:176–80. doi: 10.3103/
S0891416821040042

71. Du P, Shen Y, Zhang B, Li S, Gao M, Wang T, et al. A H2 O2 -supplied
supramolecular material for post-irradiated infected wound treatment. Advanced Sci
(Weinheim Baden-Wurttemberg Germany) (2023) 10:e2206851. doi: 10.1002/
advs.202206851

72. Meng X, Guan J, Lai S, Fang L, Su J. pH-responsive curcumin-based nanoscale
ZIF-8 combining chemophotodynamic therapy for excellent antibacterial activity. RSC
Adv (2022) 12:10005–13. doi: 10.1039/d1ra09450e

73. Mushtaq S, Yasin T, Saleem M, Dai T, Yameen MA. Potentiation of
antimicrobial photodynamic therapy by curcumin-loaded graphene quantum dots.
Photochem Photobiol (2022) 98:202–10. doi: 10.1111/php.13503

74. Crugeira PJL, Almeida HHS, Teixeira LG, Barreiro MF. Photodynamic
inactivation of Staphylococcus aureus by ecological antibacterial solutions associating
LED (ʎ 450 ± 10 nm) with curcumin and olive leaf extracts. J Photochem Photobiology.
B Biol (2023) 238:112626. doi: 10.1016/j.jphotobiol.2022.112626

75. Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima E. Antimicrobial activity
of curcumin in nanoformulations: A comprehensive review. Int J Mol Sci (2021) 22
(13):7130. doi: 10.3390/ijms22137130

76. Plenagl N, Seitz BS, Reddy Pinnapireddy S, Jedelska J, Brussler J, Bakowsky U.
Hypericin loaded liposomes for anti-microbial photodynamic therapy of gram-positive
bacteria. Physica Status Solidi a-Applications Materials Sci (2018) 215(15):1700837.
doi: 10.1002/pssa.201700837

77. Yow CMN, Tang HM, Chu ESM, Huang Z. Hypericin-mediated photodynamic
antimicrobial effect on clinically isolated pathogens. Photochem Photobiol (2012)
88:626–32. doi: 10.1111/j.1751-1097.2012.01085.x
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111. Hostnik G, Tosǒvić J, Štumpf S, Petek A, Bren U. The influence of pH on UV/
Vis spectra of gallic and ellagic acid: A combined experimental and computational
study. Spectrochimica Acta Part A Mol Biomolecular Spectrosc (2022) 267:120472.
doi: 10.1016/j.saa.2021.120472

112. Shao D, Li J, Li J, Tang R, Liu L, Shi J, et al. Inhibition of Gallic Acid on the
Growth and Biofilm Formation of Escherichia coli and Streptococcus mutans. J Food
Sci (2015) 80:M1299–305. doi: 10.1111/1750-3841.12902

113. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, et al.
Pharmacological effects of gallic acid in health and diseases: A mechanistic review.
Iranian J Basic Med Sci (2019) 22:225–37. doi: 10.22038/ijbms.2019.32806.7897

114. Kang M-S, Oh J-S, Kang I-C, Hong S-J, Choi C-H. Inhibitory effect of methyl
gallate and gallic acid on oral bacteria. J Microbiol (Seoul Korea) (2008) 46:744–50.
doi: 10.1007/s12275-008-0235-7

115. Dong XX, Zeng YW, Liu Y, You LT, Yin XB, Fu J, et al. Aloe-emodin: A review
of its pharmacology, toxicity, and pharmacokinetics. Phytotherapy Res (2020) 34:270–
81. doi: 10.1002/ptr.6532

116. Wu J, Liu D, Sun J. Photodynamic inactivation of staphylococcus Aureus with
aloe-emodin and its potential application on fresh-cut apples. doi: 10.2139/
ssrn.4332273

117. Zang LX, Zhao HM, Ji XY, Cao WW, Zhang ZG, Meng PS. Photophysical
properties, singlet oxygen generation efficiency and cytotoxic effects of aloe emodin as a
blue light photosensitizer for photodynamic therapy in dermatological treatment.
Photochemical Photobiological Sci (2017) 16:1088–94. doi: 10.1039/c6pp00453a

118. Chen SH, Lin KY, Chang CC, Fang CL, Lin CP. Aloe-emodin-induced
apoptosis in human gastric carcinoma cells. Food Chem Toxicol (2007) 45:2296–303.
doi: 10.1016/j.fct.2007.06.005

119. Xiang H, Cao FJ, Ming D, Zheng YY, Dong XY, Zhong XB, et al. Aloe-emodin
inhibits Staphylococcus aureus biofilms and extracellular protein production at the
initial adhesion stage of biofilm development. Appl Microbiol Biotechnol (2017)
101:6671–81. doi: 10.1007/s00253-017-8403-5

120. Park MY, Kwon HJ, Sung MK. Evaluation of aloin and aloe-emodin as anti-
inflammatory agents in aloe by using murine macrophages. Bioscience Biotechnol
Biochem (2009) 73:828–32. doi: 10.1271/bbb.80714

121. Pecere T, Gazzola MV, Mucignat C, Parolin C, Dalla Vecchia F, Cavaggioni A,
et al. Aloe-emodin is a new type of anticancer agent with selective activity against
neuroectodermal tumors. Cancer Res (2000) 60(11):2800–4.

122. Lin KY, Uen YH. Aloe-emodin, an anthraquinone, in vitro inhibits
proliferation and induces apoptosis in human colon carcinoma cells. Oncol Lett
(2010) 1:541–7. doi: 10.3892/ol_00000096

123. Giuliani C, Atieri B, Bombelli C, Galantini L, Mancini G, Stringaro A. Remote
loading of aloe emodin in gemini-based cationic liposomes. Langmuir (2015) 31:76–82.
doi: 10.1021/la5038074

124. Sevcovicova A, Bodnarova K, Loderer D, Imreova P, Galova E, Miadokova E.
Dual activities of emodin - DNA protectivity vs mutagenicity. Neuroendocrinol Lett
(2014) 35:149–54.

125. Tu PH, Huang Q, Ou YS, Du X, Li KT, Tao Y, et al. Aloe-emodin-mediated
photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell
line MG-63 through the ROS/JNK signaling pathway. Oncol Rep (2016) 35:3209–15.
doi: 10.3892/or.2016.4703

126. Li KT, Duan QQ, Chen Q, He JW, Tian S, Lin HD, et al. The effect of aloe
emodin-encapsulated nanoliposome-mediated r-caspase-3 gene transfection and
photodynamic therapy on human gastric cancer cells. Cancer Med (2016) 5:361–9.
doi: 10.1002/cam4.584

127. Wang Y, Li J, Geng S, Wang X, Cui Z, Ma W, et al. Aloe-emodin-mediated
antimicrobial photodynamic therapy against multidrug-resistant Acinetobacter
baumannii: An in vivo study. Photodiagnosis Photodyn Ther (2021) 34:102311.
doi: 10.1016/j.pdpdt.2021.102311

128. Li J, Wang X, Jiang H, Lu X, Zhu Y, Chen B. New strategy of photodynamic
treatment of TiO2 nanofibers combined with celastrol for HepG2 proliferation in vitro.
Nanoscale (2011) 3:3115–22. doi: 10.1039/c1nr10185d

129. Xu Y, Li W, Wen R, Sun J, Liu X, Zhao S, et al. Voltage-gated sodium channels,
potential targets of Tripterygium wilfordii Hook. f. to exert activity and produce
toxicity. J Ethnopharmacology (2023) 311:116448. doi: 10.1016/j.jep.2023.116448

130. Cascão R, Fonseca JE, Moita LF. Celastrol: A spectrum of treatment
opportunities in chronic diseases. Front In Med (2017) 4:69. doi: 10.3389/
fmed.2017.00069

131. Chen S-R, Dai Y, Zhao J, Lin L, Wang Y, Wang Y. A mechanistic overview of
Triptolide and Celastrol, natural products from Tripterygium Wilfordii Hook F. Front
In Pharmacol (2018) 9:104. doi: 10.3389/fphar.2018.00104

132. Law S. Could celastrol be a photosensitizer for photodynamic therapy to
combat SARS-CoV-2? Pharm Biomed Res (2022) 8:163–6. doi: 10.18502/
pbr.v8i3.11030

133. Caruso F, Singh M, Belli S, Berinato M, Rossi M. Interrelated mechanism by
which the methide quinone celastrol, obtained from the roots of Tripterygium wilfordii,
Frontiers in Immunology 1773
inhibits main protease 3CLpro of COVID-19 and acts as superoxide radical scavenger.
Int J Mol Sci (2020) 21(23):9266. doi: 10.3390/ijms21239266

134. Farah N, Chin VK, Chong PP, Lim WF, Lim CW, Basir R, et al. Riboflavin as a
promising antimicrobial agent? A multi-perspective review. Curr Res In Microbial Sci
(2022) 3:100111. doi: 10.1016/j.crmicr.2022.100111

135. Saedisomeolia A, Ashoori M. Riboflavin in human health: A review of current
evidences. Adv In Food Nutr Res (2018) 83:57–81. doi: 10.1016/bs.afnr.2017.11.002

136. Fawzy AS, Nitisusanta LI, Iqbal K, Daood U, Neo J. Riboflavin as a dentin
crosslinking agent: ultraviolet A versus blue light. Dental Materials Off Publ Acad
Dental Materials (2012) 28:1284–91. doi: 10.1016/j.dental.2012.09.009

137. Zhang C, Zhang Y, Fang Q, Li R, Yuan Y, Zhuang H. Nanoemulsions loaded
with compound photosensitisers: synergistic photodynamic inactivation effects of
curcumin and riboflavin tetra butyrate. Int J Food Sci Technol (2023) 58:1728–40.
doi: 10.1111/ijfs.16258

138. do Prado-Silva L, Brancini GTP, Braga GUL, Liao XY, Ding T, Sant'Ana AS.
Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control
spoilage and pathogenic microorganisms in agri-food products: An updated review.
Food Control (2022) 132:108527. doi: 10.1016/j.foodcont.2021.108527

139. Gnanasekar S, Kasi G, He X, Zhang K, Xu L, Kang ET. Recent advances in
engineered polymeric materials for efficient photodynamic inactivation of bacterial
pathogens. Bioact Mater (2023) 21:157–74. doi: 10.1016/j.bioactmat.2022.08.011

140. Polat E, Kang K. Natural photosensitizers in antimicrobial photodynamic
therapy. Biomedicines (2021) 9(6):584. doi: 10.3390/biomedicines9060584

141. Mackay AM. The evolution of clinical guidelines for antimicrobial
photodynamic therapy of skin. Photochem Photobiol Sci (2022) 21:385–95.
doi: 10.1007/s43630-021-00169-w

142. Hamblin MR, Abrahamse H. Oxygen-independent antimicrobial
photoinactivation: type III photochemical mechanism? Antibiotics (Basel
Switzerland) (2020) 9(2):53. doi: 10.3390/antibiotics9020053

143. Gholami L, Shahabi S, Jazaeri M, Hadilou M, Fekrazad R. Clinical applications
of antimicrobial photodynamic therapy in dentistry. Front In Microbiol (2022)
13:1020995. doi: 10.3389/fmicb.2022.1020995

144. Chrubasik-Hausmann S, Hellwig E, Müller M, Al-Ahmad A. Antimicrobial
photodynamic treatment with mother juices and their single compounds as
photosensitizers. Nutrients (2021) 13(3):710. doi: 10.3390/nu13030710

145. Brindhadevi K, LewisOscar F, Mylonakis E, Shanmugam S, Verma TN,
Pugazhendhi A. Biofilm and Quorum sensing mediated pathogenicity in
Pseudomonas aeruginosa. Process Biochem (2020) 96:49–57. doi: 10.1016/
j.procbio.2020.06.001

146. Rodrigues ME, Gomes F, Rodrigues CF. Candida spp./bacteria mixed biofilms. J
Fungi (Basel) (2019) 6(1):5. doi: 10.3390/jof6010005

147. Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol (2010)
8:623–33. doi: 10.1038/nrmicro2415

148. Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P,
et al. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol (2023)
21:70–86. doi: 10.1038/s41579-022-00791-0

149. Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial
photodynamic therapy to control clinically relevant biofilm infections. Front
Microbiol (2018) 9:1299. doi: 10.3389/fmicb.2018.01299

150. Martins Antunes de Melo WC, Celiesǐūtė-Germanienė R, Šimonis P, Stirkė A.
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photodynamic activity of hypericin against methicillin-susceptible and resistant
Staphylococcus aureus biofilms. Future Microbiol (2015) 10:347–56. doi: 10.2217/
fmb.14.114

152. Wang S, Yao J, Zhou B, Yang J, Chaudry MT, Wang M, et al. Bacteriostatic
effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in
vitro. J Food Prot (2018) 81:68–78. doi: 10.4315/0362-028x.Jfp-17-214

153. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb
Perspect Biol (2010) 2:a000414. doi: 10.1101/cshperspect.a000414

154. de Annunzio SR, de Freitas LM, Blanco AL, da Costa MM, Carmona-Vargas
CC, de Oliveira KT, et al. Susceptibility of Enterococcus faecalis and Propionibacterium
acnes to antimicrobial photodynamic therapy. J Photochem Photobiol B (2018)
178:545–50. doi: 10.1016/j.jphotobiol.2017.11.035
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Background: Catechins are a class of natural compounds with a variety of health

benefits, The relationship between catechins and the prevalence of osteoarthritis

(OA) is unknown. This study investigated the associations between daily intake of

catechins and the prevalence of OA among American adults and assessed the

moderating effect of physical activity (PA).

Methods: This study included 10,039 participants from the National Health and

Nutrition Examination Survey (2007–2010,2017-2018). The logistic regression,

weighted quantile sum (WQS) regression, and restricted cubic spline (RCS)

regression models were conducted to explore the associations between daily

intake of catechins and the prevalence of OA. Moreover, interaction tests were

performed to assess the moderating effect of PA.

Results: After multivariable adjustment, the weighted multivariable logistic

regression and RCS regression analyses revealed significant J-shaped non-

linear correlations between intakes of epigallocatechin and epigallocatechin 3-

gallate had significant associations with the prevalence of OA among in U.S.

adults. WQS regression analysis showed that excessive epigallocatechin intake

was the most significant risk factor for OA among all subtypes of catechins. In the

interaction assay, PA showed a significant moderating effect in the relationship

between epigallocatechin intake and OA prevalence.

Conclusions: The intake of gallocatechin and gallocatechin 3-gallate had a

significant negative correlation with the prevalence of OA and the dose-
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response relationship was J-shaped.PA below 150 MET-min/week and the

threshold intakes of 32.70mg/d for epigallocatechin and 76.24mg/d for

epigallocatechin 3-gallate might be the targets for interventions to reduce the

risk of developing OA.
KEYWORDS

osteoarthritis, catechins, physical activity, epigallocatechin, epigallocatechin 3-gallate
Introduction

Osteoarthritis (OA) is a degenerative and inflammatory joint

disease caused by multiple factors, which is characterized by joint

swelling, pain and cartilage destruction (1, 2). Although the

underlying mechanism is not fully understood, its impact on the

quality of life of patients is beyond doubt. According to

epidemiological statistics, the age-standardized prevalence rate of

OA in the United States increased by 23.2% from 1999-2017, which

is one of the highest age-standardized prevalence rate increases of

OA in the world (3). It is estimated that the number of OA patients

in the USA will increase to 67 million by 2030 (4). The financial

expenditure on OA care is estimated at US $15.5-28.6 billion per

year (2). OA is becoming a disease that attracts more and

more attention.

Flavonoids are a group of polyphenolic compounds derived

from plant secondary metabolism. They are widely present in a

variety of foods, such as vegetables, fruits, tea and wine (5, 6).

According to their chemical structure, they can be divided into six

subgroups, namely flavonoids, flavanones, flavonols, isoflavones,

anthocyanins and flavanols (7–11). Catechins are a subgroup of

flavonols. There were eight monomers of catechins, catechin (C),

epicatechin (EC),gallocatechin (GC), epigallocatechin (EGC),

catechin gallate (CG), epicatechin gallate (ECG), gallocatechin

gallate (GCG) and epigallocatechin gallate (EGCG) (12–14). In

recent years, with the deepening of research, catechins have been

proven to have a kind of biological activities such as anti-

inflammatory, anti-oxidation, anti-cancer and bone protection (6,

12, 15, 16). Therefore, supplemental catechins are increasingly

recognized as nutritional supplements for the treatment of many

diseases, including OA.

The relationship between physical activity and OA has been

well-paid attention to in recent years. Homeostasis of joints and

joint damage are regarded as the main causes of OA caused by PA

(17–20). In addition, the loss of muscle strength caused by low-

intensity PA is also the key to the elderly getting OA (21). However,

for the general population, daily PA does not increase the risk of

joint OA, and moderate levels of PA can also improve soft tissue

ductility, blood flow, and synovial fluid mobility, maintain normal

joint range of motion, and provide essential nutrients to the

cartilage matrix (18, 22, 23).
0276
Since catechins are easily accessible in daily life and have shown

excellent medical effects, the present study, which used the

NHANES database, attempted to investigate the relationship

between daily intake of catechins and the prevalence of OA and

to explore whether physical activity plays a moderating role.
Methods

Study population

TheNational Health andNutrition Examination Survey (NHANES)

is a periodic cross-sectional random sample survey of the non-

institutional population in the United States. Survey data are compiled

by professionals and released on the NHANES official website for public

access (https://www.cdc.gov/nchs/nhanes/). NHANES was approved by

the Division of Health and Nutrition Examination Surveys (DHANES)

and the National Center for Health Statistics (NCHS), and all

participants provided written informed consent.

This study included all 29,940 participants in the “2007-2008”,

“2009-2010” and “2017-2018” survey cycles, which have published

data on dietary flavonoid intake. After excluding individuals with

missing osteoarthritis, catechins, and covariates data, a total of

10039 participants were included in this study.
OA status

Participants with OA were defined by previous physician

diagnosis, and collected by trained interviewers through

questionnaires. Shortly, participants aged ≥20 years were asked

two questions related to arthritis: “Has a doctor or other health

professional ever told you that you have arthritis?” and “Which type

of arthritis was it?” Participants who responded “yes” and

“osteoarthritis” were divided into the osteoarthritis group and the

other participants were divided into the Non-osteoarthritis group.
Dietary catechins intake assessment

Catechins are widely found in plants and can be consumed in

the daily diet through fruits, tea, coffee, and so on (24). Dietary
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catechins intake data were extracted from the Food and Nutrient

Database for Dietary Studies (FNDDS), which used 24-hour dietary

recall interview data from NHANES to calculate participants’

nutrient intakes over 24 hours. In FNDDS, flavonoids were

subdivided into 29 species, of which (-)-Epicatechin,

(-)-Epicatechin 3-gallate, (-)-Epigallocatechin, (-)-Epigallocatechin

3-gallate, (+)-Catechin, (+)-Gallocatechin were included in the

“total catechins” category.
Physical activity assessment

Physical activity (PA) data were collected by trained

interviewers through a global physical activity questionnaire

survey. The metabolic equivalent (MET) of weekly PA was

calculated by multiplying the weekly minutes of moderate or

vigorous PA, frequency, and MET value recommended by

NHANES. According to the WHO guidelines, participants who

achieved moderate intensity (150 min per week) were categorized

into the sufficiently PA group (>600 MET-min/wk) and the rest into

the insufficiently PA group (600-150 MET-min/wk), low PA group

(<150 MET-min/wk), and inactive PA group (PA=0) (25).
Covariates

Demographic information, including age, gender, ethnicity,

education level, marital status, and poverty income ratio (PIR),

was collected by trained interviewers using a questionnaire

standardized. History of hypertension and diabetes were

determined by the use of prescribed medications and previous

physician diagnosis. Body mass index (BMI) was measured by

professionals in the Mobile Examination Center (MEC). Defined

as a drinker based on ≥ 12 drinks per year and < 12 drinks per year

as a non-drinker. Smokers were defined as having smoked more

than 100 cigarettes in the past.
Statistical analyses

Considering the complex sampling design of NHANES, the

dietary day one sample weights were included in all analyses of this

study. In the characterization of osteoarthritis and non-osteoarthritis

participants, normally distributed continuous variables were

presented as mean (standard deviation), catechins intake was

presented as median (25th, 75th) due to non-normal distribution,

and categorical variables were expressed as absolute values (weighted

percentages). Statistical differences between the two groups were

tested by t-tests, Wilcoxon rank sum tests, and Rao-Scott Chi-

square tests., respectively. Univariate and multivariate logistic

regression analyses adjusting for the confounding factors and trend

tests for the Q group of catechins were used to investigate the 6

catechins and total catechins intake in relation to the prevalence of

OA. Model 1 was a univariate logistic regression model without

adjustment. Model 2 was the multivariate logistic regression model

adjusted for age (20–59 years, ≥60 years), gender (male, female), and
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ethnicity (non-Hispanic White, non-Hispanic Black, Mexican

American, Other race). Model 3 was additionally adjusted for

education level (less than high school, high school or equivalent,

and college or above), marital status (married/cohabiting, widowed/

divorced/separated, never married), PIR, BMI, smoke, alcohol

drinking, and history of diabetes or hypertension. The restricted

cubic spline (RCS) regression model was performed to investigate the

non-linear relationship between the intake of Epigallocatechin and

Epigallocatechin 3 gallate with the risk of OA. The number of knots

for the RCS regression was three, with the smallest Akaike

information criterion to ensure the best fit. Weighted quantile sum

(WQS) regression models were performed to evaluate the

relationship between indexes representing six catechins or

Epigallocatechin and Epigallocatechin 3 gallate co-exposure and the

risk of OA. The likelihood ratio test was used to test the significance

of the effect on the risk of OA caused by the multiplicative interaction

term of PA with Epigallocatechin or Epigallocatechin 3 gallate.

Multiple sensitivity analyses are conducted to check the robustness

of our results, including logistic regression models adjusting for

different covariates, weighted regression models, stratified analyses,

and interaction tests. All analyses were conducted using R software

(version 4.2.1), and a bilateral P value less than 0.05 was considered

statistically significant.
Result

Basic characteristics and catechins intake
of study participants

As shown in Table 1, a total of 10,039 volunteers from the

NHANES were enrolled in our study, including 8839 non-

osteoarthritis and 1,200 osteoarthritis patients. Interestingly, in

addition to catechin and gallocatechin, we found that intakes of

epigallocatechin, epigallocatechin 3-gallate, epicatechin, epicatechin

3-gallate, and total Catechins were statistically different between the

OA and non-OA populations (P < 0.05). In addition, there were

significant differences in age, gender, ethnicity, marital status, BMI,

poverty income ratio, smoke, diabetes, hypertension, and physical

activity between the OA and non-OA populations (P < 0.05).

Among them, those aged ≥60 years old, female, divorced,

widowed, obesity, smoke, diabetes, and hypertension were more

likely to have osteoarthritis.
The associations between six catechins
subclass intakes and the prevalence of OA

Firstly, we used logistic regression models to analyze the single

effect of each catechin subclass on the prevalence of OA (Table 2).

Interestingly, we found, in model 3 adjusted for all covariates,

intakes of epigallocatechin (P for trend = 0.02) and epigallocatechin

3-gallate (P for trend = 0.01) showed significant associations with

OA in the third Qs. Compared to the Q 1 group, epigallocatechin

(OR: 1.76, 95% CI: 1.28, 2.42) and epigallocatechin 3-gallate (OR:

1.338, 95% CI: 1.08, 1.77) in the Q 3 group presented a higher risk of
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TABLE 1 Characteristics and catechins intake in participants stratified by OA in the US (NHANES 2007-2010 and 2017-2018).

Characteristic All participants
(10039)

Osteoarthritis (1200) Non- Osteoarthritisa (8839) p valueb

Age (years), n (%) < 0.0001

20-59 7170 (71.42) 393 (42.38) 6777 (84.38)

> = 60 2869 (28.58) 807 (57.62) 2062 (15.62)

Gender, n (%) < 0.0001

Female 4969 (49.5) 773 (65.41) 4196 (48.80)

Male 5070 (50.5) 427 (34.59) 4643 (51.20)

Ethnicity, n (%) < 0.0001

Non-Hispanic Black 1891 (18.84) 170 (5.88) 1721 (10.85)

Non-Hispanic White 4614 (45.96) 784 (82.96) 3830 (66.64)

Mexican American 1684 (16.77) 96 (3.02) 1588 (9.36)

Other Hispanic 973 (9.69) 79 (2.32) 894 (5.74)

Other Race 877 (8.74) 71 (5.82) 806 (7.40)

Education level, n (%) 0.76

Less than high school 2333 (23.24) 245 (13.29) 2088 (14.04)

High school or equivalent 2333 (23.24) 288 (25.58) 2045 (24.62)

College or above 5373 (53.52) 667 (61.13) 4706 (61.34)

Marital status, n (%) < 0.0001

Married/cohabiting 6102 (60.78) 712 (64.90) 5390 (61.90)

Widowed/divorced/separated 2031 (20.23) 418 (28.05) 1613 (15.23)

Never married 1906 (18.99) 70 (7.05) 1836 (22.87)

Poverty income ratio 3.13 (0.04) 3.10 (0.04) 3.34 (0.09) 0.01

Body mass index (kg/m2) 28.73 (0.12) 28.49 (0.13) 30.42 (0.32) < 0.0001

Smoke, n (%) < 0.001

no 5665 (56.43) 573 (49.99) 5092 (58.48)

yes 4374 (43.57) 627 (50.01) 3747 (41.52)

Alcohol drinking, n (%) 0.28

Non-drinker 1249 (12.44) 162 (10.57) 1087 (9.29)

Drinker 8790 (87.56) 1038 (89.43) 7752 (90.71)

Diabetes, n (%) < 0.0001

no 8957 (89.22) 965 (84.36) 7992 (93.43)

yes 1082 (10.78) 235 (15.64) 847 (6.57)

Hypertension, n (%) < 0.0001

no 6188 (61.64) 394 (39.38) 5794 (70.60)

yes 3851 (38.36) 806 (60.62) 3045 (29.40)

Physical activity, n (%) < 0.0001

Inactive 2435 (24.26) 2024 (18.42) 411 (26.27)

Low 1061 (10.57) 913 (10.08) 148 (12.68)

Insufficiently 176 (1.75) 138 (1.53) 38 (3.82)

(Continued)
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OA. In addition, we further used the WQS regression model to

analyze the mixed effects of total catechins subclass intakes on the

risk of OA (Table 3), and the results showed that the WQS index

had no statistical significance with OA risk reduction. Subsequently,

we selected epigallocatechin and epigallocatechin 3-gallate for re-

analysis, and the results showed that the WQS index was

significantly correlated with increased OA risk (OR: 1.04, 95% CI:

1.00,1.08). The estimated weights of epigallocatechin and

epigallocatechin 3-gallate in the WQS regression model are

shown in Figure 1B.

As shown in Figure 1, in the WQS regression model containing

all catechins, the highest contribution to theWQS index was made by

epigallocatechin (40%), and in the WQS regression model consisting

of intakes of epigallocatechin and epigallocatechin 3-gallate, the

highest contribution to the WQS index was still made by

epigallocatechin (98.5%). Moreover, we further explored the

associations with the regression coefficients assumed to be negative

in the two WQS models. Unsurprisingly, the weight of

Epigallocatechin in the models was zero and neither model is

statistically significant (Figure S1 and Table S3). Furthermore, the

restricted cubic spline (RCS) modes adjusted for all confounders

demonstrated a nonlinear and J-shaped association between the

intakes of epigallocatechin (P for non-linearity = 0.0016) and

Epigallocatechin 3-gallate (P for non-linearity = 0.0004) and risk of

OA (Figure 2). The risk of OA reached a nadir when epigallocatechin

at approximately 32.70 mg/day and epigallocatechin 3-gallate at

approximately 76.24 mg/day, followed by a gradual increase in OR

with increasing daily intake.
Subgroup analysis

In the subgroup analyses, we stratified all covariates and used

multifactorial logistic regression models adjusted for all

confounders except the variables themselves to analyze the

association between daily dietary epigallocatechin and

epigallocatechin 3-gallate intake and the prevalence of OA. In

addition, a multiplicative interaction term was added to each
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model for testing potential interactions, and the results indicated

no significant interactions between daily dietary intake of

epigallocatechin and epigallocatechin 3-gallate and the

stratification variables (Tables S1, 2).
Interaction effect between physical activity
and epigallocatechin intake on the
prevalence of OA

In the interaction assay, as shown in Table 4, we found a

significant moderating effect of PA in the relationship between

epigallocatechin intake and the prevalence of OA (P for interaction

= 0.03), whereas this interaction was not observed in the

relationship between epigallocatechin 3-gallate and OA

prevalence (P for interaction = 0.58). Specifically, in the Low PA

group, the results of the multivariate-adjusted logistic regression

model showed ORs (95%CI) were 0.02 (0.00, 0.21) and 0.05 (0.01,

0.27) for Q 2 and 3, respectively, compared to the Q 1 group

(Figure 3). While in the sufficiently PA group, with Q 1 group being

the reference, the ORs (95%CI) were Q 2 1.55 (1.09, 2.22) and Q 3

2.03 (1.25, 3.30). In addition, the results of the trend test were

statistically significant in the Low PA group (P for trend = 0.004)

and sufficiently PA group (P for trend = 0.03).
Discussion

In this study, the relationship between dietary catechins intake

and the prevalence of OA was investigated for the first time, using

the study cohort of 10039 participants from the NHANES database,

including both OA and non-OA individuals. Our results suggest

that a J-shaped nonlinearly correlation between the intakes of

epigallocatechin and epigallocatechin 3-gallate with the risk of

OA, in which PA played a significant moderating effect.

Most studies have found that catechins have a positive effect

on OA treatment. The mechanisms are not fully understood, but

several possible mechanisms have been suggested. Catechins could
TABLE 1 Continued

Characteristic All participants
(10039)

Osteoarthritis (1200) Non- Osteoarthritisa (8839) p valueb

Sufficiently 6367 (63.42) 5764 (69.97) 603 (57.22)

Catechin (mg/day) 4.99 (1.13, 11.03) 6.05 (1.49, 12.21) 4.84 (1.08, 10.87) 0.05

Gallocatechin (mg/day) 0.00 (0.00, 1.08) 0.01 (0.00, 1.08) 0.00 (0.00, 1.08) 0.21

Epicatechin (mg/day) 4.74 (0.79, 15.33) 7.05 (1.42, 16.28) 4.46 (0.72, 15.20) 0.003

Epicatechin 3-gallate (mg/day) 0.01 (0.00, 1.38) 0.02 (0.00, 10.38) 0.00 (0.00, 1.03) 0.001

Epigallocatechin (mg/day) 0.40 (0.06, 3.73) 0.73 (0.20, 16.30) 0.35 (0.04, 3.06) < 0.0001

Epigallocatechin 3-gallate (mg/day) 0.00 (0.00, 3.37) 0.11 (0.00, 24.34) 0.00 (0.00, 2.76) < 0.001

Total Catechins (mg) 12.41 (3.19, 54.31) 16.38 (4.95, 79.50) 12.01 (3.04, 52.35) 0.004
fr
aThe non-osteoarthritis group was defined as participants who had not self-reported any kind of arthritis.
bStatistical differences between the two groups were tested by t-tests for normally distributed continuous variables, Wilcoxon rank sum tests for non-normal distributed continuous variables, and
Rao-Scott Chi-square tests for categorical variables.
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up-regulate the expression of nuclear factor erythrocyte 2-related

factor 2 (Nrf2), oxygenase 1 (HO-1), NADPH quinone

oxidoreductase 1 (NQO1), and other antioxidant enzymes, and

improve the oxidative stress-induced chondrocyte dysfunction

(26). Moreover, catechins can effectively clear excessive ROS in

cells, significantly reduce the expression of pro-inflammatory

cytokines, reduce the expression of M1-type macrophages, and

show an excellent promotion effect on the transformation of

macrophages to M2 phenotype (27, 28). However, the

relationship between catechins intake and the risk of OA has
Frontiers in Immunology 0680
not been evaluated in any study. In this research, we explored the

associations between six catechins subclasses and the prevalence

of OA, with multifactorial logistic regression and WQS regression

model, and found that excessive intake of epigallocatechin and

epigallocatechin 3-gallate increases the risk of OA in the general

US population.

Several experimental animal studies and epidemiological

studies have shown that tea polyphenols have dose-dependent

toxicology and low and medium doses (0.01-0.25%) of tea

polyphenols show beneficial effects in the large intestine, liver,
TABLE 2 The association between the catechins intake and osteoarthritis in the US (NHANES 2007-2010 and 2017-2018).

Variable Q 1 Q 2 Q 3 p for trend

Catechin (mg/day)

Model 1 [OR (95% CI), p] Reference 1.15 (0.92, 1.43) 0.22 1.25 (0.95, 1.66) 0.11 0.15

Model 2 [OR (95% CI), p] Reference 0.81 (0.66, 0.99) 0.95 1.09 (0.80, 1.50) 0.56 0.52

Model 3 [OR (95% CI), p] Reference 1.10 (0.85, 1.42) 0.46 1.26 (0.90, 1.77) 0.18 0.18

Gallocatechin (mg/day)

Model 1 [OR (95% CI), p] Reference 1.78 (1.36, 2.31) < 0.0001 1.07 (0.85, 1.34) 0.57 0.50

Model 2 [OR (95% CI), p] Reference 1.40 (1.03, 1.90) 0.03 1.06 (0.81, 1.40) 0.65 0.86

Model 3 [OR (95% CI), p] Reference 1.56 (1.11, 2.18) 0.01 1.12 (0.85, 1.47) 0.40 0.99

Epicatechin (mg/day)

Model 1 [OR (95% CI), p] Reference 1.47 (1.15, 1.88) 0.003 1.45 (1.06, 1.97) 0.02 0.13

Model 2 [OR (95% CI), p] Reference 1.25 (0.96, 1.62) 0.09 1.21 (0.86, 1.72) 0.27 0.54

Model 3 [OR (95% CI), p] Reference 1.36 (1.03, 1.80) 0.03 1.35 (0.93, 1.94) 0.11 0.31

Epicatechin 3 gallate (mg/day)

Model 1 [OR (95% CI), p] Reference 1.50 (1.15, 1.94) 0.003 1.53 (1.22, 1.92) < 0.001 0.001

Model 2 [OR (95% CI), p] Reference 1.19 (0.88, 1.60) 0.25 1.18 (0.91, 1.53) 0.20 0.29

Model 3 [OR (95% CI), p] Reference 1.30 (0.93, 1.80) 0.12 1.28 (0.96, 1.72) 0.09 0.16

Epigallocatechin (mg/day)

Model 1 [OR (95% CI), p] Reference 2.07 (1.69, 2.54) < 0.0001 2.55 (1.95, 3.33) < 0.0001 < 0.0001

Model 2 [OR (95% CI), p] Reference 1.40 (1.11, 1.78) 0.01 1.68 (1.25, 2.25) < 0.001 0.01

Model 3 [OR (95% CI), p] Reference 1.37 (1.07, 1.77) 0.02 1.76 (1.28, 2.42) < 0.001 0.02

Epigallocatechin 3 gallate (mg/day)

Model 1 [OR (95% CI), p] Reference 1.52 (1.16, 1.99) 0.003 1.60 (1.32, 1.94) < 0.0001 < 0.0001

Model 2 [OR (95% CI), p] Reference 1.17 (0.82, 1.67) 0.37 1.28 (1.02, 1.62) 0.03 0.03

Model 3 [OR (95% CI), p] Reference 1.31 (0.91, 1.88) 0.14 1.38 (1.08, 1.77) 0.01 0.01

Total catechins (mg/day)

Model 1 [OR (95% CI), p] Reference 1.31 (1.05, 1.63) 0.02 1.41 (1.06, 1.87) 0.02 0.08

Model 2 [OR (95% CI), p] Reference 1.19 (0.93, 1.52) 0.17 1.17 (0.85, 1.61) 0.33 0.59

Model 3 [OR (95% CI), p] Reference 1.30 (1.00, 1.70) 0.05 1.31 (0.93, 1.85) 0.12 0.31
Model 1: No adjustment.
Model 1: Adjusted for age, gender, ethnicity.
Model 2: Adjusted for age, gender, ethnicity, education level, marital status, poverty income ratio, body mass index, smoke, alcohol drinking status, and history of diabetes or hypertension.
CI, confidence interval; OR, odds ratio.
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and kidney (29). Conversely, a high dietary dose (0.5-1%) of GTP

reduced the expression of antioxidant enzymes and heat shock

protein (HSP), leading to the worsening of colitis and colorectal

cancer in mice, and also causing liver and kidney dysfunction (30).
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In addition, there have been case reports that excessive

consumption of tea extract can cause liver damage (31, 32). It has

been suggested that this may be related to the properties of tea

polyphenols. Mechanistically, studies have found that tea

polyphenols can produce reactive oxygen species (ROS) through

auto-oxidation. Low and medium doses of tea polyphenols produce

low levels of ROS, which can activate Nrf2 to reduce oxidative

stress, while high doses of tea polyphenols produce high levels of

ROS, leading to apoptosis and tissue damage (33–35). All the above

research evidence suggests that the daily intake of dietary catechins

should take into account the complementary and toxicological

effects of dose relationships. Noteworthy, our findings suggest

that although catechins have some adjunctive therapeutic effects

in the OA population, gallocatechin intake greater than 32.70 mg/d

or gallocatechin 3-gallate intake greater than 76.24 mg/d

significantly increased the risk of OA in the general population.

Interestingly, in the present study, using the WQS regression

model, we first explored the mixed effect of intake of all catechins on

the prevalence of OA and the results showed that this model was
TABLE 3 The association between the catechins intake and
osteoarthritis in the US by WQS analysis in the US (NHANES 2007-2010
and 2017-2018).

Adjusted OR
(95% CI)

p-
value

WQS (all catechins)a 1.03 (0.99, 1.07) 0.11

WQS (Epigallocatechin and
Epigallocatechin 3-gallate)b

1.04 (1.00, 1.08) 0.04
aThe WQS regression model containing all catechins as exposure factors.
bThe WQS regression model containing epigallocatechin and epigallocatechin 3-gallate intake
as exposure factors.
All the models wereadjusted for age, gender, ethnicity, education level, marital status, poverty
income ratio, body mass index, smoke, alcohol drinking status, and history of diabetes
or hypertension.
WQS, weighted quantile sum; CI, confidence interval; OR, odds ratio.
A B

FIGURE 1

The weighted quantile sum (WQS) regression model index weights for the WQS regression model that included (A) all catechins and (B) only
Epigallocatechin and Epigallocatechin 3-gallate. The red dashed line indicates the inverse of the number of exposed variables in the model. All the
models were adjusted for age, gender, ethnicity, education level, marital status, poverty income ratio, body mass index, serum cotinine, alcohol
drinking status, and history of diabetes or hypertension.
A B

FIGURE 2

The non-linear association of osteoarthritis with (A) Epigallocatechin intake and (B) Epigallocatechin 3-gallate intake in the US (NHANES 2007-2010
and 2017-2018), using the restricted cubic spline (RCS) regression analysis. The solid red line is the OR value and the shadowed area is the
corresponding 95% CI. The model was adjusted for age, gender, ethnicity, education level, marital status, poverty income ratio, body mass index,
serum cotinine, alcohol drinking status, and history of diabetes or hypertension. CI, confidence interval; OR, odds ratio.
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not associated with the prevalence of OA. Subsequently, we focused

on the mixed effect of intake of epigallocatechin and

epigallocatechin 3-gallate, and unsurprisingly, there was

significance between the model and the prevalence of OA.

Therefore, the results of the WQS regression model showed that

the overall effect of all six catechins subclasses or epigallocatechin

and epiga l locatechin 3-ga l late mainly resulted from
Frontiers in Immunology 0882
Epigallocatechin suggesting that Epigallocatechin intakes are more

important for studying the prevalence of OA in the general U.S.

population. Not alone, we found that there was no significant

interaction effect in the intake of epigallocatechin and OA

prevalence in age, gender, and ethnicity subgroups, while a

significant interaction effect was found in the PA subgroup.

According to the 2018 Physical Activity (PA) Guidelines from

the U.S. Department of Health and Human Services (DHHS),

maintaining a moderate intensity of physical activity each week

can reduce OA risk and also have a positive effect on OA recovery

(18, 36). Many reports have shown that high-intensity exercise itself

is easy to cause joint strain, which has shown that high-intensity

exercise is an increased risk of OA (19, 37, 38). Similarly, our study

found that intake of epigallocatechin hardly affected the protective

effect of low PA on the risk of OA in the Low PA group. However, in

the Sufficiently PA group, the prevalence of OA was significantly

higher in the epigallocatechin Q 3 group compared to the Q 1

group, and OA prevalence increased with the higher daily intake

of epigallocatechin.

This study is a relatively large population study using three

complementary methods to reveal the relationship between dietary

catechin intake and the prevalence of OA in American adults.

Under the premise that dietary catechins are now recommended as

natural health products in daily life, we first found that excessive

daily catechins intake will lead to an increase in the risk of OA.

However, further large-scale prospective studies and clinical trials

are needed to confirm our findings and their underlying

mechanisms. In addition, there are some limitations to our study.

First, we used data from a cross-sectional survey. The assessment of

dietary catechin intake in this study can only reflect current intake

status, but OA is a long-term developing disease, which may have

biased our results. Second, dietary catechins intake data were

collected through a 24-hour dietary recall survey, which could

lead to recall bias. Third, our analysis was unable to conclude a
TABLE 4 Interaction effect between physical activity and Epigallocatechin or Epigallocatechin 3-gallate intake on the risk of osteoarthritis in the US
(NHANES 2007-2010 and 2017-2018).

Variable Adjusted OR (95% CI) p for
trend

p for interaction

Q 1 Q 2 Q 3

Epigallocatechin (mg/day) 0.03

Inactive Reference 1.45 (0.94, 2.23) 1.90 (1.17, 3.09) 0.22

Low Reference 0.02 (0.00, 0.21) 0.05 (0.01, 0.27) 0.004

Insufficiently Reference 1.44 (0.79, 2.63) 1.68 (0.80, 3.53) 0.36

Sufficiently Reference 1.55 (1.09, 2.22) 2.03 (1.25, 3.30) 0.03

Epigallocatechin 3-gallate (mg/day) Reference 0.58

Inactive Reference 1.46 (0.81, 2.66) 1.57 (1.02, 2.42) 0.07

Low Reference 2.31 (0.18, 29.41) 1.69 (0.58, 4.92) 0.66

Insufficiently Reference 0.66 (0.25, 1.75) 1.07 (0.71, 1.62) 0.38

Sufficiently Reference 1.49 (1.01, 2.21) 1.43 (1.02, 1.99) 0.08
The model was adjusted for age, gender, ethnicity, education level, marital status, poverty income ratio, body mass index, smoke, alcohol drinking status, and history of diabetes or hypertension.
CI, confidence interval; OR, odds ratio.
FIGURE 3

The association between osteoarthritis and Epigallocatechin intake
in different physical activity subgroups. The model was adjusted for
age, gender, ethnicity, education level, marital status, poverty
income ratio, body mass index, serum cotinine, alcohol drinking
status, and history of diabetes or hypertension. CI, confidence
interval; OR, odds ratio.
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causal relationship between dietary catechin intake and OA. Fourth,

our population inclusion is limited by the NHANES database. It is

unclear whether the relationship between dietary catechin intake

and OA applies to other populations.
Conclusion

In summary, the results of this study suggested that

epigallocatechin intake greater than 32.70 mg/d or epigallocatechin

3-gallate intake greater than 76.24 mg/d significantly increases the

risk of OA in the general US population. In addition, PA showed a

significant moderating effect on the relationship between

epigallocatechin intake and the prevalence of OA.
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24. Gouveia HJCB, Urquiza-Martıńez MV, Manhaes-de-Castro R, Costa-de-Santana
BJR, Villarreal JP, Mercado-Camargo R, et al. Effects of the treatment with flavonoids on
metabolic syndrome components in humans: A systematic review focusing on
mechanisms of action. Int J Mol Sci (2022) 23(15). doi: 10.3390/ijms23158344

25. Chen L, Cai M, Li HT, Wang XJ, Tian F, Wu YL, et al. Risk/benefit tradeoff of
habitual physical activity and air pollution on chronic pulmonary obstructive disease:
findings from a large prospective cohort study. BMCMed (2022) 20(1):70. doi: 10.1186/
s12916-022-02274-8

26. Zhu WR, Tang H, Cao L, Zhang J, Li JC, Ma D, et al. Epigallocatechin-3-O-
gallate ameliorates oxidative stress-induced chondrocyte dysfunction and exerts
chondroprotective effects via the Keap1/Nrf2/ARE signaling pathway. Chem Biol
Drug Des (2022) 100(1):108–20. doi: 10.1111/cbdd.14056

27. Li H, Xiang D, Gong C, Wang X, Liu L. Naturally derived injectable hydrogels
with ROS-scavenging property to protect transplanted stem cell bioactivity for
osteoarthritic cartilage repair. Front Bioeng Biotechnol (2022) 10:1109074. doi:
10.3389/fbioe.2022.1109074

28. Wei H, Qin J, Huang QX, Jin ZQ, Zheng L, Zhao JM, et al. Epigallocatechin-3-
gallate (EGCG) based metal-polyphenol nanoformulations alleviates chondrocytes
inflammation by modulating synovial macrophages polarization. BioMed
Pharmacother (2023) 161:114366. doi: 10.1016/j.biopha.2023.114366

29. Bonkovsky HL. Hepatotoxicity associated with supplements containing Chinese
green tea. Ann Intern Med (2006) 144:380–380. doi: 10.7326/0003-4819-144-1-
200601030-00020
Frontiers in Immunology 1084
30. Murakami A. Dose-dependent functionality and toxicity of green tea
polyphenols in experimental rodents. Arch Biochem Biophys (2014) 557:3–10. doi:
10.1016/j.abb.2014.04.018

31. Mazzanti G, Menniti-Ippolito F, Moro PA, Cassetti F, Raschetti R, Santuccio C,
et al. Hepatotoxicity from green tea: a review of the literature and two unpublished
cases. Eur J Clin Pharmacol (2009) 65(4):331–41. doi: 10.1007/s00228-008-0610-7

32. Salminen WF, Yang X, Shi Q, Greenhaw J, Davis K, Ali AA. Green tea extract
can potentiate acetaminophen-induced hepatotoxicity in mice. Food Chem Toxicol
(2012) 50(5):1439–46. doi: 10.1016/j.fct.2012.01.027

33. Song S, Huang Y-W, Tian Y, Wang X-J, Sheng J. Mechanism of action of
(-)-epigallocatechin-3-gallate: auto-oxidation-dependent activation of extracellular
signal-regulated kinase 1/2 in Jurkat cells. Chin J Nat Med (2014) 12(9):654–62. doi:
10.1016/S1875-5364(14)60100-X

34. Wei YQ, Chen PP, Ling TJ, Wang YJ, Dong RX, Zhang C, et al. Certain
(-)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the
cytotoxic activities of EGCG. Food Chem (2016) 204:218–26. doi: 10.1016/
j.foodchem.2016.02.134

35. Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea: animal studies,
molecular mechanisms and human relevance. Nat Rev Cancer (2009) 9(6):429–39. doi:
10.1038/nrc2641

36. Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, et al. 2019
American college of rheumatology/arthritis foundation guideline for the management
of osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken) (2020) 72
(2):149–62. doi: 10.1002/acr.24131

37. U.S. Department of Health and Human Services. Physical Activity Guidelines
Advisory Committee report, 2008. To the Secretary of Health and Human Services.
Part A: executive summary. Nutr Rev (2009) 67(2):114–20. doi: 10.1111/j.1753-
4887.2008.00136.x

38. Conn JM, Annest JL, Gilchrist J. Sports and recreation related injury episodes in
the US population, 1997-99. Inj Prev (2003) 9(2):117–23. doi: 10.1136/ip.9.2.117
frontiersin.org

https://doi.org/10.1002/acr.20299
https://doi.org/10.1002/jor.1100090102
https://doi.org/10.3390/ijms23158344
https://doi.org/10.1186/s12916-022-02274-8
https://doi.org/10.1186/s12916-022-02274-8
https://doi.org/10.1111/cbdd.14056
https://doi.org/10.3389/fbioe.2022.1109074
https://doi.org/10.1016/j.biopha.2023.114366
https://doi.org/10.7326/0003-4819-144-1-200601030-00020
https://doi.org/10.7326/0003-4819-144-1-200601030-00020
https://doi.org/10.1016/j.abb.2014.04.018
https://doi.org/10.1007/s00228-008-0610-7
https://doi.org/10.1016/j.fct.2012.01.027
https://doi.org/10.1016/S1875-5364(14)60100-X
https://doi.org/10.1016/j.foodchem.2016.02.134
https://doi.org/10.1016/j.foodchem.2016.02.134
https://doi.org/10.1038/nrc2641
https://doi.org/10.1002/acr.24131
https://doi.org/10.1111/j.1753-4887.2008.00136.x
https://doi.org/10.1111/j.1753-4887.2008.00136.x
https://doi.org/10.1136/ip.9.2.117
https://doi.org/10.3389/fimmu.2023.1287856
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Danila Cianciosi,
Università Politecnica delle Marche,
Italy

REVIEWED BY

Md Tajmul,
National Institute of Diabetes and Digestive
and Kidney Diseases (NIH), United States
Lei Zhang,
University of Waterloo, Canada

*CORRESPONDENCE

Xian Jiang

jiangxian@scu.edu.cn

Gu He

hegu@scu.edu.cn

RECEIVED 02 October 2023

ACCEPTED 08 January 2024
PUBLISHED 26 January 2024

CITATION

Qi J, Pan Z, Wang X, Zhang N, He G
and Jiang X (2024) Research advances of
Zanthoxylum bungeanum Maxim.
polyphenols in inflammatory diseases.
Front. Immunol. 15:1305886.
doi: 10.3389/fimmu.2024.1305886

COPYRIGHT

© 2024 Qi, Pan, Wang, Zhang, He and Jiang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 26 January 2024

DOI 10.3389/fimmu.2024.1305886
Research advances of
Zanthoxylum bungeanum
Maxim. polyphenols in
inflammatory diseases
Jinxin Qi1,2, Zhaoping Pan1,2, Xiaoyun Wang1,2, Nan Zhang3,
Gu He1,2* and Xian Jiang1,2*

1Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China, 2Laboratory
of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for
Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China, 3State
Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of
Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese
Medicine, Chengdu, China
Zanthoxylum bungeanum Maxim., commonly known as Chinese prickly ash, is a

well-known spice and traditional Chinese medicine ingredient with a rich history

of use in treating inflammatory conditions. This review provides a comprehensive

overview of the botanical classification, traditional applications, and anti-

inflammatory effects of Z. bungeanum, with a specific focus on its

polyphenolic components. These polyphenols have exhibited considerable

promise, as evidenced by preclinical studies in animal models, suggesting their

therapeutic potential in human inflammatory diseases such as ulcerative colitis,

arthritis, asthma, chronic obstructive pulmonary disease, cardiovascular disease,

and neurodegenerative conditions. This positions them as a promising class of

natural compounds with the potential to enhance human well-being. However,

further research is necessary to fully elucidate their mechanisms of action and

develop safe and effective therapeutic applications.
KEYWORDS

Zanthoxylum bungeanum Maxim., inflammation, polyphenols, inflammatory disease,

NF-kB
1 Introduction

Chinese prickly ash, also known as Hua Jiao in Mandarin, belongs to the genus

Zanthoxylum in the Rutaceae family (1). Widely cultivated in Asia, including China, Japan,

India, and Korea (2), the genus comprises approximately 250 species, with 41 found in

China (Table 1) (3). Chinese prickly ash, or Hua Jiao, is a popular spice and traditional

Chinese medicine ingredient specifically derived from Zanthoxylum bungeanum Maxim.

and Zanthoxylum schinifolium, according to the Pharmacopoeia of the People’s Republic of

China (4). This review, we will focus on Zanthoxylum bungeanumMaxim. (Z. bungeanum).
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Zanthoxylum bungeanum Maxim., commonly known as

Honghuajiao, is a deciduous shrub with a height range of 3-7

meters, bearing small, crimson fruits measuring 4-5 mm in

diameter. The flowering period spans from April to May, while

fruit ripening occurring between August and October. Z.

bungeanum holds significant importance in both traditional

Chinese medicine and cuisine. The earliest record of its use in

China can be traced back to the “Book of Songs,” a compilation of

folk poetry from the Western Zhou period, underscoring a history

of over two thousand years of utilization (5). The dried fruit follicles

of Z. bungeanum are integral to Chinese cuisine, often incorporated

for their distinctive flavor and numbing taste (1). Additionally,

leaves at various stages of maturity serve as ingredients and

seasonings in Chinese culinary practices (6).

In traditional Chinese medicine, Z. bungeanum is esteemed for

its properties in warming the spleen and stomach, alleviating pain,

and demonstrating anthelmintic and antipruritic effects (4). It is

also recognized for promoting the flow of Qi and dispelling coldness

(5). Decoctions of Z. bungeanum find primary application in

treating conditions such as stomachaches accompanied by

sensations of coldness and dampness, vomiting, intestinal

disorders, diarrhea, ascarid infections, schistosomiasis, and

rheumatic joint inflammations (5, 7). Externally, the plant is used

to address issues like bruises, eczema, and snakebites (2).

Z. bungeanum also features prominently in Indian and

Nepalese folk medicine. Its decoction serves as an aromatic tonic

for fevers, and as a carminative and stomachic remedy for

dyspepsia, cholera, and toothaches (7).

Current research endeavors have demonstrated the

pharmacological effects of Z. bungeanum on the gastrointestinal,

neurological, and cardiovascular systems. Additionally, it exhibits

anti-inflammatory and analgesic properties, along with displaying

antioxidant, anti-tumor, antibacterial, antifungal, and insecticidal

effects (2) (Figure 1).

Inflammation constitutes an adaptive response of the immune

system to deleterious stimuli, encompassing pathogens, cellular

injury, and toxic agents. Its principal role is protective, expelling

these detrimental agents from the body and instigating the recovery

process. However, unbridled inflammation can also be deleterious,

culminating in conditions such as atherosclerosis, type 2 diabetes,

and rheumatoid arthritis (8). Empirical evidence corroborates the

noteworthy anti-inflammatory attributes of polyphenols. They
Frontiers in Immunology 0286
possess the capacity to ameliorate inflammation in various

diseases induced by inflammation, such as inflammatory bowel

disease and acute pancreatitis (9). The molecular mechanisms

underlying the anti-inflammatory activities of polyphenols involve

scavenging free radicals, modulating the activity of inflammatory

cells, inhibiting enzymes linked to pro-inflammatory attributes like

COX2, iNOS, and LOX, suppressing NF-kB and AP-1, and

impeding the activation of MAPK, protein kinase C, and Nrf2 (10).

Currently, more than 140 constituents have been identified in

Zanthoxylum bungeanum, encompassing polyphenols, alkaloids,

lignans, coumarin, fatty acids, essential oils, and others (2, 11,

12). Among these, more than 40 polyphenols have been ascertained

in Z. bungeanum, categorized into various types based on their

chemical structures, including flavonoid glycosides, flavonoids,

glycosides, phenylpropanoid, anthocyanin and non-glycosides.

These polyphenolic compounds have exhibited promising anti-

inflammatory effects on disorders affecting diverse organs and

systems, comprising ulcerative colitis, arthritis, pain, asthma,

UVB-induced skin damage, and cognitive function of the brain

ulcerative colitis (13), arthritis (14), pain (15), asthma (16), UVB

skin damage (17), and cognitive function of the brain (18).

Polyphenols derived from Z. bungeanum proficiently inhibit

inflammatory cytokines and modulate NF-kB, p38-MAPK, TLR4,

Erk1/2, JNK, and Nrf2/HO-1 pathways to exert their anti-

inflammatory effects.

In this review, we summarize the polyphenolic compounds present

in Zanthoxylum bungeanum (Z. bungeanum) and the therapeutic

effects of Z. bungeanum on inflammation, with a particular emphasis

on the polyphenols. Recent research suggests that Z. bungeanum

polyphenols have the potential to significantly contribute to the

management and prevention of inflammatory conditions. Further in-

depth research is needed to promote their health benefits.
2 Composition and structure of
polyphenols in Z. bungeanum

Both the leaves and seeds of Z. bungeanum contain polyphenolic

compounds, predominantly comprising flavonoid glycosides.

Research conducted by three independent groups (19–21) provides

substantial evidence of the polyphenol richness in the leaves,

characterized by potent antioxidant properties. Noteworthy
TABLE 1 Species of the genus Zanthoxylum in China.

Z. acanthopodium Z. collinsiae Z. khasianum Z. molle Z. pilosulum Z. stipitatum

Z. ailanthoides Z. dimorphophyllum Z. kwangsiense Z. motuoense Z. pteracanthum Z. tomentellum

Z. armatum Z. dissitum Z. laetum Z. multijugum Z. rhombifoliolatum Z. undulatifolium

Z. austrosinense Z. echinocarpum Z. leiboicum Z. myriacanthum Z. scandens Z. wutaiense

Z. avicennae Z. esquirolii Z. liboense Z. nitidum Z. schinifolium Z. xichouense

Z. bungeanum Z. glomeratum Z. macranthum Z. oxyphyllum Z. simulans Z. yuanjiangense

Z. calcicola Z. integrifolium Z. micranthum Z. piasezkii Z. stenophyllum
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constituents include 5-feruloyquinic acid, vanillic acid-4-glucoside,

quercetin-3-arabinoside, chlorogenic acid, epicatechin, quinic acid,

syringetin-3-glucoside, quercetin, isorhamnetin-3-glucoside,

trifolin, afzelin, hyperoside, isovitexin, quercitrin, trifolin, rutin,

isorhamnetin 3-O-a-L-rhamnoside, astragalin, and isoquercitrin

(19–21). In the outer coverings of Z. bungeanum fruits,

Xiong et al. have identified tamarixetin 3,7-bis-glucoside,

quarcetin 3’,4’-dimethyl ether 7-glucoside, 3,5,6-trihydroxy-7,4’-

dimethoxyflavone, hyperoside, sitosterol b-glucoside, quercetin,
quercitrin, isorhamnetin 7-glucoside, rutin, arbutin, and L-

sesamin (22). Additionally, the research conducted by Jia’s group

has revealed the presence of epigallocatechin, dihydrorobinetin,

naringenin, catechin, kaempferol, catechin gallate, and

isorhamnetin are identified by Jia’s group (23). Recently, with the

advancement of technology such as the application of high-

throughput sequencing techniques, a series of polyphenolic

compounds with lower concentrations in Z. bungeanum have

been identified. The identification of polyphenols in Z.

bungeanum has expanded from approximately 40 types to over

150 types (24), thanks to these technological developments. Due to
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words limit, our review specifically revisits polyphenols with higher

concentrations in Z. bungeanum, focusing on those extensively

studied for their anti-inflammatory activities (Figure 2).

Investigation of the structure-activity relationships of Z.

bungeanum polyphenols reveals a correlation between elevated

antioxidant efficacy and the presence of a hydroxyl (-OH) group

at both the 4’ position on the B ring and the 7 position on the A ring.

Moreover, adjacent -OH groups on the B and/or A rings

significantly enhanced antioxidant capabilities. Additionally, the

diverse structures of these polyphenols suggest that they may

display different antioxidant capacities in solution or oil-in-water

emulsion reactions (20). Z. bungeanum polyphenols have

demonstrated effective radical scavenging activities in DPPH,

ABTS (21), FRAP, lipid peroxidation inhibition assays (20), and

superoxide anion (19). Furthermore, polyphenols have been

reported to protect Escherichia coli under peroxide stress (20)

and concurrently reduce reactive oxygen species (ROS) levels in

HT-29 cells without inducing any cell toxicity (19). Moreover,

polyphenols have a cell-protective impact, mitigating oxidative

damage in PC12 cells caused by H2O2 (21).
FIGURE 1

Constituents of Z. bungeanum and their pharmacological effects.
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3 Inflammatory diseases and
polyphenols in Z. bungeanum

A combination of polyphenols found in Zanthoxylum

bungeanum has demonstrated anti-inflammatory effectiveness in

both in vivo and in vitro experiments. The ethyl acetate fraction of

Z. bungeanum has been identified as the primary active component

in enhancing cognitive function in aging mice with D-galactose-

induced cognitive decline. This fraction contains several

polyphenols, such as hyperoside, chlorogenic acid, quercetin-3b-
Frontiers in Immunology 0488
d-glucoside, rutin, and epicatechin. It aids in reducing

neuroinflammation, inhibiting the NLRP3/caspase-1 pathway,

GSDMD, and downstream pyroptosis, both in the mouse model

and in BV-2 cells subjected to LPS and ATP treatment, leading to

overall cognitive improvements (25).

The treatment with Z. bungeanum pericarp extract (ZBE),

predominantly composed of rutin, isoquercitrin, and quercitrin,

has demonstrated effectiveness in protecting mice with dextran

sulfate sodium (DSS)-induced ulcerative colitis (UC). It has been

observed to mitigate body weight loss, prevent colonic shortening,
FIGURE 2

Polyphenols identified in Z. bungeanum.
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reduce disease activity index scores, and inhibit myeloperoxidase

activity. ZBE is found to inhibit caspase-1, ASC, NLRP3, TLR4,

subsequent MAPK and NF-kB pathways, and the production of

TNFa, IL-12, and IL-1b, both in vitro in the LPS-triggered J774.1

cell model and in vivo. Concurrently, activation of PPARg is

detected (13).

In the subsequent section, we will individually discuss the

research pertaining to the anti-inflammatory effects of each

polyphenolic component found in Z. bungeanum. We will

categorize the 40 polyphenolic constituents of Z. bungeanum into

various groups based on their chemical compositions: flavonoids,

flavonoid glycosides, glycosides, phenylpropanoid, anthocyanin,

and nonglycosides (Figure 2). Please note that we do not aim to

provide an exhaustive or comprehensive list of all anti-

inflammatory studies for each component here. Instead, we have

selected those with high citation counts or the most recent research

to provide an overview of the association between inflammation

and polyphenols in Z. bungeanum.
3.1 Flavonoid glycosides

3.1.1 Rutin
Rutin is a flavonoid with well-established anti-inflammatory

properties (26) Administered at doses of 50-100 mg/kg, rutin

exhibits protective effects against hepatotoxicity induced by

cyclophosphamide (CP), a potent anticancer agent, in rats. This

protection is associated with decreased levels of pro-inflammatory

cytokines and signaling molecules, including IL-6, TNFa, iNOS,
COX2, p38-MAPK, and NF-kB. Histopathological analysis reveals

substantial structural damage to the liver caused by CP, effectively

reversed through prior administration of rutin (27). Rutin has also

demonstrated the preservation of the vascular barrier integrity in

human umbilical vein endothelial cells stimulated by LPS and in an

acetic acid-induced mouse mode (28). It effectively reduced

hyperpermeability induced by LPS, TNFa, and HMGB1, and

suppressed both TNFa production and NF-kB activation triggered

by LPS (28). Beyond its anti-inflammatory and vascular protective

effects, rutin has demonstrated neuroprotective and anti-colitic

properties. In a rat model of spinal cord injury, rutin administration

significantly attenuated histological alterations and reduced tissue

damage. This was associated with decreased levels of oxidative stress

markers, pro-inflammatory cytokines, and caspase-1 (29). In a mouse

model of DSS-induced colitis, rutin significantly improved several key

indicators of disease severity, including the disease activity score, colon

length, and the integrity of goblet cells and colon epithelium. Rutin

also reduced the expression of a range of oxidative-inflammatory

markers, including IgE, IgM, iNOS, HO-1, and ICAM-1, and restored

the balance among effector cells, regulatory cells, and B cells. The study

revealed a substantial increase in the activation of the PI3K/Akt/

GSK3b/MAPKs/NF-kB and p38/MK2 pathways during DSS-induced

colitis in the animal subjects, a condition that rutin treatment

effectively mitigated. In silico studies supported the specificity of

rutin’s interaction with these pathways (30).

In terms of pharmacokinetics, orally administered rutin is

absorbed in the small intestine, transferred to the liver via the
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bloodstream, and eliminated through bile and the kidneys (31).

Major metabolites include sulfates and glucuronides of quercetin

(32). In rats, Zhang et al. reported elimination rate half-life, area

under the curve, and plasma clearance values of 3.345 minutes, 5750

mg min/ml, and 5.891 mL/min/kg, respectively (33). Intravenous

rutin accumulates in the liver, with a significant portion then

transferred to the small intestine, and is also detected in the lung

post-injection (31). Interactions between rutin and drugs were

studied as well. Rutin reduces the anticoagulant effect of racemic

warfarin by 31% when co-administered orally. This outcome was

ascribed to a noteworthy 77% rise in the unbound formation

clearance of both oxidative and reductive metabolites, coupled

with an elevation in the unbound renal clearance of the more

potent S-enantiomer of warfarin (34). Rutin also significantly

decreases the oral Cmax and AUC of cyclosporine by 63.2% and

57.2%, respectively, through the activation of Pgp transporter and

CYP3A enzyme (35).

3.1.2 Hyperoside
Hyperoside is another flavonoid known for its anti-

inflammatory properties. In mouse peritoneal macrophages

subjected to LPS stimulation, hyperoside inhibited TNFa, IL-6,
and NO production by 32.3%, 41.3%, and 30%, respectively.

Moreover, hyperoside reduced NF-kB activation and IkB-a
degradation (36). This compound also exhibits anti-

neuroinflammation effect in vitro and in vivo (37, 38). In the

LPS-induced HT22 murine neuronal cell line, hyperoside

enhances cell survival and mitigates inflammation, oxidative

stress, and apoptosis. This effect is achieved by amplifying SIRT1,

triggering the activation of bothWnt/b-catenin and sonic hedgehog

pathways (38). In rats, 50 mg/kg hyperoside protected against

cerebral ischemia-reperfusion injury by mitigating oxidative

stress, inflammation, and cell death. Rats treated with hyperoside

exhibited significantly enhanced neurological function and a

substantial reduction in the ratio of cerebral infarction volume (37).

Hyperoside also attenuate several vascular inflammatory

responses initiated by elevated glucose levels in human umbilical

vein endothelial cells and mice. These responses include vascular

permeability, monocyte attachment, CAMs expression, ROS

formation, and NF-kB activation (39). Furthermore, hyperoside’s

anti-arthritic properties have also been verified both in vitro and in

vivo. It can suppress inflammation and prevent cartilage breakdown

by influencing the PI3K/AKT/NF-kB and MAPK signaling

pathways, as well as the interplay between the Nrf2/HO-1 and

NF-kB signaling pathways (40). Hyperoside also inhibited OVA-

induced airway hyperresponsiveness in mice through activation of

Nrf2/HO-1 (41). In a rat model of antiphospholipid syndrome

(APS), hyperoside at a dose of 40 mg/kg led to increased fetal

weight, reduction of fetal resorption rates, and reduced pregnancy

loss by modulating the mTOR/S6K and TLR4/MyD88/NF-kB

signaling pathways (42).
3.1.3 Quercitrin
Quercitrin demonstrates the ability to attenuate carbon

tetrachloride (CCl4) induced brain injury by suppressing ROS,
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MDA, TNFa, and IL-6 (43). Furthermore, it exhibits protective

effects against skin damage induced by UVB damage. This

protection is achieved through the reduction of ROS, NF-kB
activation, and DNA damage triggered by UVB exposure.

Quercitrin also restores the diminished expression of catalase and

the GSH/GSSG ratio due to UVB exposure (17). In a study

involving mice with Alzheimer’s disease, quercitrin inhibits the

activation and proliferation of microglia, decreases the

accumulation of amyloid-b plaques, and improves cognitive

impairment by inhibiting inflammation. Specifically, this

compound inhibits the level of IL-1a, IL-17A, IL-6, and G-CSF in

peripheral blood, as well as IL-1a, IL-4, IL-6, Eotaxin, CXCL-1,
MIP-1a, MIP-1b and G-CSF in the brain, thereby alleviating

systemic inflammation in the 5XFAD mice (44).

Quercetin and quercitrin, common flavonoids in vegetables, are

frequently compared (45). Theoretical calculations clarify that the

oxygen atom located on the B rings could serve as the primary site

for alterations in electron cloud density, providing insights into how

quercetin and quercitrin exert their anti-inflammatory and ROS

scavenging effects (46). In LPS-stimulated RAW264.7 cells, both

compounds markedly decrease NO and ROS production, as well as

the expression of TNFa, IL-1b, and IL-6 (46). However, Comalada

et al. reported that unlike quercitrin, quercetin can reduce the

expression of cytokines and iNOS by inhibiting the NF-kB pathway

in vitro in bone marrow-derived macrophages, without affecting c-

Jun N-terminal kinase activity. The group revealed that quercitrin’s

in vivo impact in a rat colitis model induced by DSS may be

attributed to the liberation of quercetin, which occurs following the

breakdown of glycosides by intestinal microbiota. In other words,

quercitrin releases quercetin to exert its anti-inflammatory

influence, achieved by inhibiting the NF-kB pathway (45).

3.1.4 Isoquercitrin
Isoquercitrin has undergone tested in an LPS-stimulated

RAW264.7 cell model, revealing its ability to decrease NO

production, downregulate the expression of PGE2, COX2, iNOS,

and NF-kB p65 protein, and reduce the mRNA levels of IL-1, IL-6,

PTGES2, and MCP-1 (47). Moreover, at a dosage of 20 mg/kg,

isoquercitrin has demonstrated the capacity to protect denervated

muscle from atrophy. This protective effect is achieved by reducing

the levels of IL-1b, TNFa, and IL-6 and inactivating the JAK/

STAT3 signaling pathway in the target muscle (48).

3.1.5 Vitexin
Vitexin exhibits anti-inflammatory properties in the OVA-

induced mouse allergic asthma model at doses of ranging from

0.2 to 5 mg/kg. Specifically, vitexin mitigates the migration of

eosinophils, neutrophils, and mononuclear cells prompted by

OVA within bronchoalveolar lavage fluid (BALF). Examination of

lung tissue reveals that vitexin effectively suppresses the invasion of

leukocytes, mucus production, and development of pulmonary

edema. It also moderates the escalation of Th2 cytokines in BALF

and reduces the concentration of IgE in the plasma (49). Vitexin has

also demonstrated anti-inflammatory effects in chronic cerebral

hypoperfusion injury in a rat model of persistent bilateral common
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carotid artery occlusion and in HT22 mouse hippocampal neuronal

cells exposed to oxygen and glucose deprivation followed by

reoxygenation injury. The findings confirm vitexin’s ability to

modulate Epac and NLRP3. Additionally, in the rat model,

vitexin has shown the potential in diminishing the severity of

ongoing pathological harm in the cortex and hippocampus and

preventing further decline in cognitive function (18). Moreover,

vitexin inhibits inflammatory pain in various mouse models of

inflammation-related pain, including acetic acid-induced writhing,

pain-like behavior prompted by phenyl-p-benzoquinone, capsaicin,

complete Freund’s adjuvant (CFA), and both phases of the formalin

test. It also alleviates mechanical and thermal hyperalgesia triggered

by capsaicin, carrageenan, and chronic CF. TRPV1 is considered the

key target (50). Additionally, vitexin alleviates liver inflammation in

a DSS-induced colitis model by inhibiting the TLR4/NF-kB
signaling pathway activation. Administration of vitexin results in

lower ALT and TC levels in the livers of mice suffering from liver

injury. It also reduces the release of IL-6, TNFa, and IL-1b induced

by DSS (51). Furthermore, vitexin inhibits the movement of

neutrophils toward areas of inflammation by suppressing the p38,

ERK1/2, and JNK pathways (52).

3.1.6 Isovitexin
Isovitexin effectively alleviates contact dermatitis in mice

triggered by ginkgolic acids, leading to a significant reduction in

ear swelling, splenomegaly, and inflammatory cell infiltration.

Subsequent investigations have revealed that isovitexin can

impede the MAPK and STAT signaling pathways, along with the

phosphorylation of SHP2 (53). In the mouse models of kidney

injury induced by cyclophosphamide (CP) (54), liver injury

triggered by LPS/d-galactosamine (55), and acute lung injury

induced by LPS (56), isovitexin demonstrates its therapeutic

effects via inhibiting NF-kB activation and inducing Nrf2 and

HO-1 expression. In the kidney injury model, isovitexin mitigates

CP-induced increases in serum BUN and creatinine, and curbs

TNFa, IL-1b, and IL-6 (54). Isovitexin substantially diminishes

liver injury, evidenced by reduced histopathological changes and

lower AST and ALT levels. It also reduces TNFa levels, MPO

activity, and MDA content (55). Pretreatment with isovitexin

significantly alleviates acute lung injury, as demonstrated by

reduced histopathological changes, diminished granulocyte

infiltration, and subdued endothelial activation. Additionally, it

lowers VCAM-1 and ICAM-1 expression, reduces MPO and

MDA levels, and enhances GSH and SOD (56).

3.1.7 Astragalin
Astragalin notably alleviates inflammatory reactions and bone

damage in both DBA/1J mice with collagen-induced arthritis and

human fibroblast-like synoviocytes. It reduces joint swelling,

arthritis index, and bone erosion, while also inhibiting the

production of IL-1b, TNFa, IL-6, and IL-8. Moreover, a decrease

in MMP-1, MMP-3, and MMP-13 levels has also been observed in

chondrocytes, synovial cells, and TNFa-induced MH7A cells.

Additionally, astragalin inhibits p38, JNK phosphorylation, and c-

Jun/AP-1 activation (57). Furthermore, through the ROS and
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MAPK signaling pathway, the process of osteoclastogenesis in

inflammatory osteolysis is alleviated by astragalin (58). In an

OVA-challenged mouse model, astragalin at doses of 10-20 mg/

kg impedes mast cell recruitment, preventing airway thickening and

alveolar emphysema (59).

3.1.8 Afzelin
Afzelin performs anti-inflammatory effect in two in vitro

experiments (60, 61). In human keratinocytes exposed to

particulate matter (PM), a widespread airborne contaminant,

afzelin mitigates inflammation and ROS production. It also

inhibits p38 kinase, as well as the transcription factors c-Fos and

c-Jun (61). The inhibitory effect of afzelin on the p38 kinase

pathway contributes to its protective effect of human

keratinocytes and epidermal equivalent models exposed to UVB,

resulting in a reduction of IL-6, TNFa, and PGE2 release induced

by UVB (60).
3.2 Flavones

3.2.1 Quercetin
Quercetin stands out as one of the extensively researched

polyphenols in Z. bungeanum. showcasing therapeutic potential

in addressing inflammatory conditions, particularly arthritis (62,

63). In a study involving women with rheumatoid arthritis, a daily

supplement of 500mg quercetin over 8 weeks resulted in significant

improvements in the clinical symptoms, disease activity, hs-TNFa
levels, and health assessment questionnaire outcomes (62). For

rabbits with surgically-induced osteoarthritis (OA), a 4-week

gavage treatment of 25 mg/kg quercetin demonstrated increased

SOD and TIMP-1 expressions, reduced MMP-13 expression, and

mitigation of OA degeneration, comparable to the effects observed

in the celecoxib-treated group (63). Quercetin’s impact extends to

inflammation-based pain models, as intraperitoneal and oral

administrations significantly suppressed pain induced by phenyl-

p-benzoquinone and acetic acid. It also mitigated the second phase

of pain intensity escalation caused by formalin and carrageenin.

This compound further demonstrated its efficacy in curtailing

hypernociception stimulated by TNFa and CXCL1, along with

reducing carrageenin-induced IL-1b production (15). Moreover,

in RAW264.7 cells stimulated with LPS, quercetin significantly

reduced the production of NO, inducible NO synthase, and IL-6.

It also hindered the relocation of NF-kB to the cell nucleus and

suppressed the activation of Erk1/2 and JNK. In DNCB-induced

atopic dermatitis mouse model, quercetin exhibited anti-

inflammatory effects, as evidenced by improvements in ear

thickness, serum IgE levels, and histological analysis (64).

Regarding the pharmacokinetic aspects of quercetin, initial

metabolism occurs in the small intestine through processes like

glucuronidation and O-methylation. The subsequent breakdown

and processing take place in the liver after reaching it through the

hepatic portal vein. Notably, gut bacteria, especially clostridium

orbiscindens, play a role in the breakdown process in the large

intestine. Key metabolites found in human plasma include
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quercetin-3-glucuronide, quercetin-3-sulfate, and isorhamnetin-3-

glucosidic acid. Quercetin distribution involves various organs

(lungs, kidneys, heart, and liver), with the lungs exhibiting the

highest concentrations. Conjugates are predominantly present in

the blood and are excreted in urine (65).

Pharmacokinetic and pharmacodynamic interactions between

quercetin and drugs have been unveiled in studies. Competitive

binding to serum albumin influence on cytochrome P450,

glycoproteins, and other factors modify drug profiles, affecting

treatment outcomes for infectious diseases, cardiovascular

diseases, diabetes, and cancer (65). For example, quercetin

competes with erlotinib for binding to bovine serum albumin,

potentially contributing to increased adverse events associated

with erlotinib use (66). Additionally, combined treatment with

quercetin and methotrexate significantly reduces inflammatory

mediators in collagen-induced arthritis mice, suggesting

quercetin’s potential as an adjuvant to enhance anti-rheumatic

monotherapy (67).

3.2.2 Epicatechin
Epicatechin exhibits dose-dependent reduction in TNFa-

induced increase of JNK, p38, and ERK1/2 phosphorylation,

nuclear AP-1-DNA interaction, activation of the NF-kB signaling

pathway, nuclear NF-kB-DNA binding, p65 nuclear translocation,

and PPARg expression in 3T3-L1 adipocytes (68). A dosage of 20

mg/kg epicatechin proves effective in mitigating inflammation in

the renal cortex of fructose-fed rats (69), while a higher dose of 80

mg/kg demonstrates efficacy in alleviating LPS-induced renal

inflammation in rats (70). In both studies, downregulation of

TNFa, iNOS and IL-6 are observed (69, 70). Furthermore, a

dosage of 15 mg/kg epicatechin exhibits anti-inflammatory

properties in mice experiencing LPS-induced acute lung injury,

achieved by directly impeding the function of the p38-MAPK

signaling pathway (71). Epicatechin also shows significant effects

in mitigating atherosclerosis, specifically reducing severe lesions by

27% in ApoE*3-Leiden mice, without affecting plasma lipids.

Additionally, it successfully countered diet-induced increases in

inflammatory markers such as serum amyloid A and human C-

reactive protein (72).

Concerning the pharmacokinetic parameters, orally

administered epicatechin is initially absorbed in the duodenum,

with the majority (70%) being absorbed in the lower intestine after

catabolism by the gut microbiome. Over 80% of ingested

epicatechin is absorbed, and the gut microbiome plays a crucial

role in its metabolism, yielding more than 20 identifiable

metabolites. These metabolites are then mainly excreted through

urine (73).

3.2.3 Catechin
Catechin mitigates coronary heart disease in rats induced by

pituitrin injection and a high-fat diet by inhibiting, lipoprotein-

associated phospholipase A2, C-reactive protein, TNFa, and IL-6.

Simultaneously, catechin treatment also demonstrates the

inhibition of NF-kB and upregulation of FXR, p-STAT3, and p-

Akt expression levels (74). High fructose consumption over a six-
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week period in rats induces a series of metabolic problems,

including insulin resistance, dyslipidemia, obesity, reduced plasma

adiponectin, and inflammation of adipose tissue. Supplementing

their diet with 20 mg/kg/day of catechin effectively enhances all

these parameters. In the TNFa induced 3T3-L1 adipocyte model,

catechin inhibits inflammation by suppressing MAPKs, JNK and

p38 activation, and preventing PPAR-g reduction (75). At a dose of

75-300 mg/kg, catechin alleviates allergic symptoms such as

sneezing and nose rubbing in mice suffering from OVA-induced

allergic rhinitis. It reduces the levels of ovalbumin-specific IgE, IL-5,

IL-13, restoring the balance between Th2 and Th1 cells. The

potential mechanism of action involves the inhibition of TSLP

expression in epithelial cells through the modulation of the NF-kB/
TSLP pathway by catechin (76).

3.2.4 Naringenin
Naringenin significantly inhibits paw swelling and pathological

changes in the joint tissue in the SD rat model of complete Freund’s

adjuvant-induced arthritis. Additionally, IL-1b, TNFa, and IL-6 in

serum are notably suppressed (14). Naringenin demonstrates

neuroprotective effects by ameliorating neuroinflammation

through the inhibition of p38-MAPK and STAT-1. In neuroglial

cells induced by LPS/IFN-g, this compound reduces the production

of TNFa and NO, along with the expression of iNOS, thereby

preventing neuron death induced by inflammation (77).

Furthermore, naringenin inhibits pain behavior in mice triggered

by various inflammatory stimuli, including acute pain caused by the

use of acetic acid, PBQ, formalin, capsaicin, and CFA, as well as the

provocation of mechanical hyperalgesia through subplantar

injection of capsaicin, CFA, carrageenan, or PGE2. The

mechanism of naringenin involves the activation of NF-kB and

the inhibition of IL-1b, IL-33, TNFa, and oxidative stress.

Additionally, naringenin activates the analgesic NO-cyclic GMP-

PKG-ATP sensitive K+ channel pathway (78). Naringenin also

exhibits anti-inflammatory effects in respiratory inflammation. In

a murine COPD model, characterized by 90 days of cigarette smoke

exposure-induced initiation, 20-80mg/kg of naringenin

significantly improves pulmonary function, reduced inflammatory

cells, and inhibits IL-8, TNFa, and MMP-9 in mouse BALF and

serum. Suppression of the NF-kB pathway is also observed in mice

treated with naringenin (79).

Delving into the pharmacokinetic characteristics, orally

administrated naringenin exhibits limited absorption in the human

gastrointestinal tract, yielding a modest 15% oral bioavailability. The

absorption process encompasses both passive diffusion and active

transport mechanisms. Once absorbed, naringenin swiftly distribute

to vital organs such as the liver, cerebrum, kidney, spleen, and heart,

suggesting potential neuroprotection within the central nervous

system. Remarkably, naringenin demonstrates high permeability

across blood-brain barrier models. The enterohepatic recycling of

naringenin plays a crucial role, contributing to hepatic conjugate

excretion in bile and participating in the enteric excretion of phase II

conjugation. Post-absorption, Naringenin undergoes a significant

metabolic process involving glucuronidation, resulting in the
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detection of 98% of naringenin−o−b−d−glucuronide in plasma.

Before absorption in the caecum, naringenin undergoes hydrolysis

by beta–glucosidase in the small intestine. Further metabolism by

intestinal bacterial microflora produces p−hydroxybenzoic acid, p

−hydroxyphenylpropionic acid, and p−coumaric acid, which

manifest in plasma and urine. Ultimately, flavonoid excretion

primarily occurs through two pathways: the biliary and urinary

pathways (80).

3.2.5 Kaempferol
In OVA challenged asthmatic mouse models, oral intake of

kaempferol mitigated the increase in eosinophil major basic protein

and eotaxin-1 expression, achieve through the transactivation

inhibition of NF-kB. Consequently, this reduction leads to

decreased accumulation of eosinophils in the airways and lung

tissue (16). Furthermore, kaempferol demonstrates the ability to

control vascular inflammation in an atherosclerosis rabbit model

with a high-cholesterol diet for ten weeks. Following treatment with

kaempferol, decreased levels of IL-1b, TNFa, and MDA, an increase

in serum SOD activity, and a reduction in the gene and protein

expression of aortic E-selectin, ICAM-1, VCAM-1, and MCP-1 are

observed (81). In a rat model simulating cerebral ischemia/

reperfusion by occluding the middle cerebral artery for 60

minutes and then reperfusion, kaempferol is administered at

doses of 25-100 mg/kg. The treatment significantly reduces the

volume of cerebral infarction following cerebral ischemia-

reperfusion, alleviated inflammation, and prevented the

breakdown of the blood-brain barrier, thereby improving the

neurological outcome on the 7th day after cerebral ischemia

reperfusion. Additionally, reduced nuclear translocation and

phosphorylation of the transcription factor NF-kB p65 are

observed (82). What’s more, kaempferol exerts a protective effect

on osteoarthritis chondrocytes by regulating the XIST/miR-130a/

STAT3 axis, thereby inhibiting inflammation and extracellular

matrix degradation (83).

Limited absorption and minimal oral bioavailability are

observed with kaempferol. Its lipophilic nature allows for passive

absorption, diffusion facilitation, and active transport. Metabolism

in the liver results in the formation of glucuronic acid and sulfate

conjugates, while intestinal enzymes in the small intestine

contribute to its processing. Aglycogens, produced through the

metabolism of kaempferol by colonic microbiota, are further

transformed into 4-hydroxyphenylacetic acid, 4-methylphenol,

and phloroglucinol. These metabolites undergo absorption into

the systemic circulation, distribution to tissues, and eventual

excretion in feces or urine (84).

Notably, the administration of a 12 mg/kg kaempferol dose

demonstrated a substantial improvement in oral etoposide

bioavailability in rats, showing a 64% enhancement compared to

lower doses of 47% and 15%. At the highest dose, 12 mg/kg

kaempferol exhibited a 26% increase in intravenous etoposide

bioavailability. This intriguing finding suggests potential hepatic

CYP3A4 inhibition and implicates kaempferol in reducing the

unpredictable oral bioavailability of etoposide (85).
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3.2.6 Isorhamnetin
Isorhamnetin possesses the ability to inhibit inflammation and

provide renal protection. In a rat model of type 2 diabetes induced

by a high-fat diet and streptozotocin, isorhamnetin significantly

improved the renal function. The study reported that Isorhamnetin

inhibited NF-kB signaling activity, resulting in reductions in IL-1b,
IL-6, TNFa, TGF-b1, and ICAM-1 levels, as well as the mitigation

of oxidative stress in diabetic rats and glomerular mesangial cells

(86). Research conducted by Dou’s team demonstrated that

isorhamnetin exerts beneficial effects on TNBS- and DSS-induced

mouse inflammatory bowel disease (IBD) by upregulating

xenobiotic metabolism mediated by PXR and concomitantly

downregulating NF-kB signaling. Isorhamnetin inhibited the

expression of IL-6 and TNFa, as well as the mRNA levels of

ICAM-1, iNOS, TNFa , COX2, IL-6, IL-2, through the

aforementioned pathways (87). Isorhamnetin has been found

to inhibit neuroinflammation. In BV2 microglial cells stimulated

with LPS, isorhamnetin significantly inhibits NO and PEG2, as

well as IL-1b, TNFa, iNOS and COX2. Research on its anti-

inflammatory mechanism indicates that isorhamnetin controls

neuroinflammation by inhibiting the TLR4/MyD88/NF-kB

pathway (88). Moreover, isorhamnetin exhibits efficacy in asthma.

In TNFa-induced human bronchial epithelial cell line BEAS-2B,

isorhamnetin at concentrations of 20-40 mM can reduce cellular

proliferation and notably suppress the expression of CXCL10, IL-

1b, IL-6, and IL-8. Furthermore, treatment with isorhamnetin

downregulates the phosphorylation of the NF-kB and MAPK

pathways in this model (89).

In the context of collagen-induced arthritis, isorhamnetin at

doses ranging from 10 to 20 mg/kg significantly alleviate arthritis,

improving arthritis score, joint damage score, and inflammation

score. Isorhamnetin can also regulate the production of cytokines

such as IL-1b, TNFa, IL-6, IL-10, IL-17A, IL-17F, and IL-35, while

mitigating oxidative stress (90).
3.3 Glycosides

Arbutin significantly enhances kidney function in rats

experiencing LPS-induced acute kidney damage. It reduces

inflammation and cell death by modulating the PI3K/Akt/Nrf2

pathway after LPS exposure both in vivo and in vitro. Moreover, the

Akt inhibitor GDC effectively inhibits this arbutin-induced

improvement in vitro (91). Additionally, arbutin protects mice

from isoproterenol (ISO)-induced cardiac hypertrophy. Pre-

treatment with arbutin notably inhibits the TLR4/NF-kB
pathway, resulting in decreased IL-6 and TNFa (92). In a DSS-

induced mouse colitis model, arbutin significantly mitigates

symptoms such as elevated disease activity index, loss of body

weight, and increased colon weight-to-length ratio. This anti-

inflammatory impact is contingent upon the control of JAK2 and

the suppression of IL-1b, TNFa, and IL-6. Arbutin also suppresses

inflammatory responses in epithelial (IEC6) and immune

(RAW264.7) cells triggered by LPS. However, these benefits, both

in vitro and in vivo, can be negated by the JAK2 inhibitor AG490 (93).

In addressing metabolic issues, arbutin is found to suppress high-
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glucose-induced inflammation in adult human retinal pigment

epithelial cells via upregulation of SIRT1, which provides a novel

therapeutic target for diabetic retinopathy management (94). In

arbutin-treated LPS-triggered BV2 murine microglial cells, inhibition

of NO production, and reduced expression of COX2 and iNOS are

observed. Arbutin significantly diminishes the expression of IL-1b, IL-
6, MCP-1, and TNFa. Additionally, it impedes the nuclear

transcriptional and translocation activity of NF-kB (95).

Jin’s group developed arbutin-loaded gelatine methacryloyl-

Liposome microspheres (GM-Lipo@ARB), offering extended

arbutin release and notable cartilage targeting. The microspheres

decrease inflammation in IL-1b-stimulated arthritic chondrocytes

and maintain cartilage matrix equilibrium through NF-kB
inhibition and Nrf2 pathway activation. Application of the GM-

Lipo@ARB lessens inflammation and oxidative stress in articular

cartilage, effectively decelerating osteoarthritis progression in a

mouse model (96).
3.4 Phenylpropanoid

The anti-inflammatory effects of chlorogenic acid (CGA) have

been investigated in LPS-stimulated RAW 264.7 macrophages and

BV2microglial cells. CGA inhibits the production of NO, IL-1b, IL-6,
TNFa, CXCL1, COX2, and iNOS. A possible mechanism of action

involves the reduction of ninjurin1 level and nuclear translocation of

NF-kB (97). CGA also downregulates the TLR4/MyD88/NF-kB
signaling pathway (98, 99). Through this pathway, CGA can

potently inhibit CCl4-induced liver fibrosis in rats (98), and

alleviate renal inflammation in a mouse model of hyperuricemia

induced by hypoxanthine and potassium oxonate (99). Animal

experiments have confirmed that the systemic administration of

CGA can help alleviate both inflammatory and neuropathic

pain (100).

The hydrophilic nature of CGA essentially impedes its passage

through the lipophilic membrane barrier, resulting in low

absorption. Absorption likely occurs in the stomach rather than

the small intestine. Caffeic acid is detected in plasma and urine 1.5

hours after a CGA-supplemented meal, along with derivatives like

ferulic acid and isoferulic acid. These derivatives result from CGA

hydrolysis in the small intestinal mucosa. CGAs’ absorption and

metabolism are relatively low, constituting about one-third of total

intake in the upper gastrointestinal tract. The remaining two-thirds

reach the colon, where intense microbial metabolism occurs.

Microflora-derived esterase hydrolyzes CGA, producing microbial

metabolites, comprising 57.4% of the total CGA consumed,

emphasizing the crucial role of gut microbiota in CGA

metabolism and biological properties (101).
3.5 Anthocyanin

Anthocyanins, a member of the polyphenolic family in Z.

bungeanum, contribute to the crimson coloration of its fruit peel. (102).

In total, five types of anthocyanins with clear chemical structure

have been identified in Z. bungeanum (24, 102–104).
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The anti-inflammatory efficacy of cyanidin 3-O-glucoside

(C3G) has been demonstrated across various in vivo and in vitro

models. C3G exhibits the ability to safeguard mice from chronic

skin damage induced by UVB exposure, leading to notable

improvements in UVB-induced epidermal hyperplasia, collagen

fiber preservation, ROS levels, and the expression of COX-2 and

IL-6 (105). Furthermore, C3G demonstrates protective effects in

rats against cecal ligation and puncture (CLP)-induced acute lung

injury (ALI), enhancing their survival rate. C3G treatment results in

reduced serum levels of TNF-a, IL-1b, and IL-6, along with the

inhibition of COX-2 protein expression and PGE2 production in

the lung, potentially through the suppression of the NF-kB
signaling pathway (106). C3G also exerts anti-neuroinflammatory

effects. In LPS-stimulated BV2 microglia, C3G effectively suppresses

microglial activation and the levels of neurotoxic mediators and

pro-inflammatory cytokines. Moreover, there is observed

suppression of the NF-kB and p38 MAPK signaling pathways

(107). Additionally, in TNBS-challenged mice, C3G significantly

ameliorates clinical symptoms and mitigates histological damage,

possibly by protecting the intestinal barrier and suppressing

inflammatory cytokine secretion (108).

Cyanidin 3-O-rutinoside, peonidin 3-O-glucoside, pelargonidin

3,5-O-diglucoside, cyanidin-3,5-O-diglucoside have limited study

in inflammatory disorders. Only a few in vitro studies were found

(109, 110).
3.6 Non-glycosides

Research on the anti-inflammatory effects of quinic acid is

limited. However, one study shown that quinic acid mitigates

vascular inflammation in TNFa-stimulated vascular smooth

muscle cells by reducing MAPK phosphorylation and inhibiting

NF-kB activation (111).

Limited study has been conducted on the anti-inflammatory

effects of catechin gallate, epigallocatechin, dihydrorobinetin,

quercetin-3-arabinoside, quarcetin 3’,4’-dimethyl ether 7-

glucoside, isorhamnetin-3-glucoside, isorhamnetin 7-glucoside,

isorhamnetin 3-O-a-L-rhamnoside, tamarixetin 3,7-bis-glucoside,

3,5,6-trihydroxy-7,4’-dimethoxy flavone, sitosterol b-glucoside,
trifolin, vanillic acid-4-glucoside, syringetin-3-glucoside, L-

sesamin, and 5-feruloyquinic acid.
4 Direct target of
Z. bungeanum polyphenols

In the preceding sections, we primarily delineated the anti-

inflammatory pharmacological activities of Z. bungeanum

polyphenols, highlighting their modulation of inflammation

through signaling pathways, including NF-kB, MAPK, Nrf2/keap1,

and the NLRP3 inflammasome (Figure 3). However, to date, limited

research has been conducted on the direct targeting of proteins or

genes associated with inflammation by Z. bungeanum polyphenols.

In this section, we consolidate and summarize the pertinent studies
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investigating the direct interactions of Z. bungeanum polyphenols

with inflammatory-related proteins or genes (Table 2).
5 Clinical trials of
Z. bungeanum polyphenols

Currently, several clinical trials have utilized Z. bungeanum

polyphenols; however, their application in inflammatory conditions

remains limited. Table 3 below summarizes completed clinical

studies on Z. bungeanum polyphenols to date. Notably, no severe

adverse reactions associated with these polyphenols have been

reported across these clinical investigations, providing a certain

degree of evidence supporting their safety profile.
6 Inflammatory diseases and other
compositions in Z. bungeanum

6.1 Alkaloids

Alkaloids, such as hydroxy-alpha-sanshool (HAS), constitute

the characteristic compounds in Z. bungeanum, contributing to the

notable sensation of numbness in the mouth (124). In a rat model of

type 2 diabetes mellitus (T2DM), Zanthoxylum alkylamides (ZA), a

mixed extract containing hydroxyl-g-sanshool, hydroxyl-b-
sanshool, and hydroxyl-a-sanshool, demonstrated the ability to

control inflammation and address protein metabolism disorders,

consequently ameliorating T2DM. The PI3K/Akt/forkhead box O

signaling pathway and the TNFa/NF-kB pathway are implicated in

this process (125).

Among the alkaloids in Z. bungeanum, HAS has been extensively

studied for its anti-inflammatory effects. HAS exhibits a

neuroprotective effect on H2O2-stimulated PC12 cells without

inducing cytotoxicity in normal PC12 cells. The suppression of

apoptosis is achieved by regulating the PI3K/Akt signaling pathway

(126). Oral administration of HAS markedly improves spontaneous

locomotion, cognitive function, and histopathological injuries in a

mouse model of Alzheimer’s disease induced by D-galactose and

AlCl3. The therapeutic effect of HAS involves the mitigation of

oxidative stress damage and the activation of the Nrf2/HO-1

signaling pathway (127). As one of the main active ingredients in the

herbal medicine TU-100, HAS enhances the production of

antimicrobial defense molecules (ADM) by intestinal epithelial cells.

TU-100, administered orally, prevents weight loss and colon ulceration

in both TNBS-induced type-1 model colitis and OXN-induced type-2

model colitis. This suggests that HAS possesses anti-inflammatory

properties and could potentially serve as a beneficial treatment agent

for UC through the promotion of ADM production (128).

Zanthoxylin, another major alkaloid of Z. bungeanum, exhibits

anti-inflammatory and pain-relieving effects in a variety of animal

models. In mice, zanthoxylin alleviates pain in both general and

formaldehyde-induced pain models. Its mechanism of action

involves binding to the a7nAChR receptor and activating the

JAK2/STAT3 signaling pathway, thereby inhibiting inflammation
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and reducing the production of pro-inflammatory cytokines such as

IL-6 and TNFa (129).
6.2 Fatty acid

Research on the anti-inflammatory properties of fatty acids in Z.

bungeanum predominantly focuses on Z. bungeanum seed oil

(ZBSO). The primary components of ZBSO include eicosoic acid,

linolenic acid, linoleic acid, oleic acid, palmitic acid, arachidonic

acid, stearic acid, eicosenoic acid, and docosahexenoic acid (130). In

LPS-triggered lung epithelial cells, ZBSO effectively inhibits the

production of pro-inflammatory cytokines and chemokines,

including IL-6, IL-10, TNFa, PGE2, MMP2, MMP9, MCP1, and

COX2. This inhibition is achieved by blocking the TLR4/MyD88/
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NF-kB signaling pathway. Additionally, ZBSO inhibits the nuclear

translocation of NF-kB/p65 (131).

Zanthoxylum bungeanum Maxim seed (ZBMS), rich in oleic

acid, linoleic acid, and a-linolenic acid, exhibits potential for

treating asthma and stress-related disorders (132). ZBMS protects

mice from histamine/acetylcholine-induced asthma, reduces citric

acid-induced cough in guinea pigs, and increases swimming

endurance and survival time in mice, indicating a positive anti-

stress effect. In an OVA-induced airway inflammation mouse

model, ZBMS treatment improved lung peak inspiratory airflow

in a dose-dependent manner (132).

Another group examined ZBSO in an OVA-induced asthmatic

mouse model, demonstrating its efficacy in alleviating airway

inflammation, attenuates lung tissue injury and airway remodeling,

and inhibits leukocytes and eosinophils infiltration into the airway.
FIGURE 3

Molecule mechanism of polyphenols in Z. bungeanum and their anti-inflammatory effect.
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ZBSO also reduces IL-5 and IL-4 in the bronchial airway, attenuates

the induction of ICAM-1 and TNFa mRNA and protein expression

levels, and alleviates ERK, JNK phosphorylation, c-fos and c-JUN

induction in the lung tissue (133). ZBSO exhibits effective anti-

inflammatory properties in the wound healing process. In SD rat

models with deep second-degree burns, topical ZBSO application

resulted in decreased levels of TNFa, IL-6, and IL-1b in serum,

elevated IkBa, and reduced p-IkBa and p-NF-kB p65 expression

(134). In copper comb-induced rat burn model, ZBSO can reduce the

level of thiobarbituric acid reactant, IL-6, TNFa, increase GSH level

and promote wound recovery (135). ZBSO also inhibits

inflammation in bone-destroying diseases. In RAW264.7 cells

stimulated with NF-kB ligand (RANKL), ZBSO decreases NF-kB,
TNFa, NFATc1, and TRAP, leading to the inhibition of

osteoclastogenesis. Among the fatty acids in ZBSO, alpha-linolenic

acid (ALA) exhibits the strongest effect. In ovariectomized
TABLE 2 Direct target of Z. bungeanum polyphenols.

Polyphenols Target Verified by Publication

Rutin HMGB1 SPR (112)

Quercetin
HMGB1 SPR (112)

PI3K1R SPR (113)

Kaempferol

HMGB1 SPR (114)

TNF- a SPR (115)

CASP3
PARP1

SPR (116)

JAK3 IP (117)
*SPR, Surface plasmon resonance;
BLI, Bio-Layer Interferometry;
IP, Immunoprecipitation;
ChIP, Chromatin immunoprecipitation.
TABLE 3 Completed clinical trials utilizing Z. bungeanum polyphenols.

Compound ID
Study
phase

Dose & Administraton Condition Publication

Quercetin
and Rutin

NCT01847521 2 Quercetin 70 mg/10kg/d and Rutin 30 mg/
10kg/d
po

Autism Spectrum Disorders /

Rutin NCT03437902 2 & 3 180mg po Type 2 Diabetes Mellitus /

Quercetin

NCT00913081 4 500-2000 mg po one time Flushing /

NCT01708278 1 500-2000 mg/d po Chronic Obstructive
Pulmonary Disease

(118)

NCT02463357 4 1000mg/d po Mountain Sickness /

NCT01722669 1 500mg po Healthy (119)

Epicatechin

NCT01856868 1 & 2 100mg/day, po Becker Muscular Dystrophy /

NCT03236662 2 100mg/day, po Becker Muscular Dystrophy /

NCT01691404 / 100mg/d po Hypertension,
Endothelial Dysfunction

(120–122)

Naringenin

NCT01091077 1 1000mg po HCV Infection /

NCT04697355 / 900mg/d po Energy Expenditure
Safety Issues
Glucose Metabolism

/

Kaempferol NCT06060691 1 Topical Female Sexual Dysfunction /

Arbutin NCT03868748 1 150-400mg/d po Healthy Volunteers /

Chlorogenic acid

NCT02245204 1 Injection* Advanced Cancer /

NCT02136342 1 Injection* Advanced Cancer /

NCT02728349 1 Injection* Glioblastoma /

NCT02728349 1 Injection* Glioblastoma /

NCT03758014 2 & 3 Injection* 3 mg/kg/d Glioblastoma /

NCT02621060 2 1200 mg/d po Impaired Glucose Tolerance /

NCT02929901 2 & 3 200mg/d po Type 2 Diabetes Nonalcoholic
Fatty Liver

(123)
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osteoporotic rats, preventive and therapeutic interventions with ALA

resulted in decreased levels of IL-1b, IL-6, TAK1, TRAP, NFATc1,
and TNFa (136).
6.3 Z. bungeanum essential oil

Z. bungeanum essential oil (ZBEO) is the primary source of the

distinctive flavor of Sichuan pepper, with terpenoids being a major

component of ZBEO (2). ZBEO has demonstrated anti-inflammatory

effects in various skin disease models. In a guinea pig model of

psoriasis, ZBEO treatment significantly improved Baker scores and

reduced inflammatory cell infiltration (137). In a mouse model of

ultraviolet-induced skin photoaging, topical application of ZBEO

improved photoaging damage, reduced skin thickening, and

attenuated inflammatory cell infiltration. ZBEO also inhibits the

levels of MMP9, MMP1, and MMP3 in skin tissue, enhance the

activity of CAT, SOD, and GSH-Px/GPX, and reduced the

production of the lipid peroxidation byproduct MDA.

Furthermore, ZBEO effectively suppress the expression of TNFa,
IL-6, IL-1b, and IL-1a (138). In a HaCaT cell inflammatory model

induced by Propionibacterium acnes (P. acnes), pretreatment with

ZBEO reduced the levels of TNFa, IL-1b, IL-8, and IL-6, as well as

the mRNA levels of TLR2, IL-8, IL-6, and NF-kB (139).

ZBEO also shows therapeutic effects in gastrointestinal

disorders due to its anti-inflammatory properties. ZBEO has

demonstrated protective effects against DSS-induced colitis in

mice. ZBEO doses of 20-80 mg/kg reduced myeloperoxidase

activity, colonic pathological damage, colon length shortening,

disease activity index, and DSS-induced weight loss (140, 141).

Administration of ZBEO significantly reduced IL-1b, IL-12 (140),

TNFa, VCAM-1, TLR8, and IL-11 (141) mRNA levels. ZBEO is

reported to inhibit inflammation in colitis in mice by regulating the

PPARg and NF-kB pathways, and suppressing NLRP3 activation

(140). Next-generation sequencing (NGS) verifies that ZBEO

increases VCAM-1 and CYP, and suppresses CXCL and S100A8

to attenuate UC symptoms (141). In vitro studies also demonstrate

that ZBEO can reverse the imbalanced expression of IL-1b, IL-6, IL-
10, and TNFa in LPS-induced NCM460 colon epithelial cells (141).

ZBEO inhibited enteritis and intestinal dysfunction caused by E.

coli infection in mice. Histopathological observations indicated that

ZBEO significantly improved the impairment of intestinal tissue

structure, which could be associated with its inhibitory effect on the

gene expression of inflammatory cytokines such as IL-8, TNFa,
TLR4, and TLR2 (142). Atomized inhalation of ZBEO protects

mouse from inflammation related colorectal cancer by reducing

inflammation and cancer transformation. Furthermore, a decrease

in AChE activity, an increase in ChAT activity, an increase in

a7nAChR expression, and a decrease in IL-6 mRNA levels are

observed in ZBEO treated group (143).
6.4 Other extractions

Z. bungeanum-cake-separated moxibustion (ZBCS-moxi) is a

traditional Chinese therapy that has been employed for centuries to
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treat rheumatoid arthritis. A recent study assessed the anti-

inflammatory effects of ZBCS-moxi in a rat model of rheumatoid

arthritis. The study found that rats treated with ZBCS-moxi for

three weeks exhibited a significant reduction in paw volume,

pannus formation, synovial hyperplasia of synovial membranes,

and levels of TNFa and IL-1b in serum (144).

These findings suggest that Zanthoxylin and ZBCS-moxi may

have therapeutic potential for the treatment of inflammation and

pain. However, more research is needed to confirm these findings

through clinical trials.
7 Discussion

Zanthoxylum bungeanum Maxim., or Chinese prickly ash, holds

a rich history spanning over two millennia in traditional Chinese

medicine (5). This herb has been extensively used orally and topically

to address various ailments, including gastrointestinal discomfort,

arthritis, and bruises (5, 7). Its significance extends beyond China,

finding a place in traditional medical practices in countries such as

India and Nepal (7). Additionally, the unique flavor and numbing

taste of the dried fruit follicles of Z. bungeanum have made it a

significant ingredient in Chinese cuisine (1). Over time, research on

and applications of Z. bungeanum have expanded significantly. Z.

bungeanum exhibits diverse pharmacological activities such as anti-

inflammatory, analgesic, antibacterial, and anti-tumor properties,

showcasing therapeutic effects on multiple organ systems, including

the gastrointestinal tract, cardiovascular system, and nervous system

(2). The plant contains over 140 compounds, including polyphenols,

alkaloids, lignans, coumarin, fatty acids, and essential oils (2, 11, 12).

Beyond its polyphenolic content, constituents like hydroxy-alpha-

sanshool, a mixed extract of fatty acids, and essential oil extraction

from Z. bungeanum, have proven anti-inflammatory efficacious in

various systems, such as the nervous system (127) and digestive

system (140, 141). As research progresses, the application of Z.

bungeanum in both medical and daily contexts continues to

broaden, promising potential benefits to human health.

Polyphenols from Z. bungeanum emerge as a promising class of

natural compounds with potential health benefits, particularly in

preventing and treating inflammatory diseases. Numerous studies

have highlighted their anti-inflammatory and antioxidant

properties through a variety of mechanisms, including:
• Inhibiting pro-inflammatory cytokine production, such as

IL-1b, TNFa, and IL-6.

• Suppressing the NF-kB and MAPK signaling pathway,

central to inflammation.

• Activating the Nrf2/HO-1 signaling pathway, protecting

cells from oxidative damage.

• Modulating the immune response, promoting regulatory T

cells and suppressing inflammatory T cells.
While much of the current research on polyphenols of Z.

bungeanum has been conducted in vitro or in animal models,

promising preclinical data suggest therapeutic potential for a

range of inflammatory diseases in humans, including ulcerative
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1305886
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qi et al. 10.3389/fimmu.2024.1305886
colitis, arthritis, asthma, chronic obstructive pulmonary disease,

cardiovascular disease, and neurodegenerative diseases. In addition

to their anti-inflammatory effects, polyphenols of Z. bungeanum

have demonstrated other beneficial properties, such as anti-cancer,

anti-diabetic, anti-bacterial, and neuroprotective effects.

Several clinical trials have tested Z. bungeanum polyphenols in

non- inflammatory diseases, indicating the safety of these

compound. Future research should prioritize human clinical trials

to validate the clinical efficacy of polyphenols of Z. bungeanum on

inflammatory diseases. Additionally, researchers should investigate:
Fron
• Optimal dosages and long-term safety of polyphenols of

Z. bungeanum.

• Synergistic or antagonistic interactions of polyphenols of Z.

bungeanum with other bioactive substances.

• Effects of polyphenols of Z. bungeanum on specific

biomarkers of inflammation and disease activity.

• Mechanisms by which polyphenols of Z. bungeanum exert

their beneficial effects.
Ultimately, research outcomes may contribute to the

development of novel therapeutic interventions and dietary

recommendations that harness the power of polyphenols of Z.

bungeanum to improve human health and well-being. For

example, polyphenols of Z. bungeanum could be used to develop:
• New drugs or dietary supplements for the prevention and

treatment of inflammatory diseases.

• Functional foods or fortified beverages that promote overall

health and well-being.

• Personalized nutrition plans that take into account

individual genetic and environmental risk factors.
Overall, the polyphenols of Z. bungeanum are a promising class

of natural compounds with the potential to play a significant role in

human health and well-being. Further research is needed to fully

elucidate their mechanisms of action and develop safe and effective

therapies for human use.
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Introduction: This paper examines the association between the dietary 
inflammatory index (DII) and the risk of metabolic syndrome (MS) and its 
components among Uygur adults in Kashi, Xinjiang.

Methods: The study used the multi-stage random cluster sampling method to 
investigate the adult residents of Uighu aged over 18 years old in one county and one 
township/street of three cities in Kashi between May and June 2021. All dietary data 
collected were analyzed for energy and nutrient intake with a nutritional analysis 
software, followed by a calculation of DII. Logistic regression was used to estimate 
the association between DII and the risks of MS and its components.

Results: The maximum DII value across our 1,193 respondents was 4.570 to 4.058, 
with an average value of 0.256. When we analyzed the DII as a continuous variable, 
we determined the anti-inflammatory diet has been identified as a mitigating factor 
for metabolic syndrome (OR = 0.586, 95% CI = 0.395–0.870), obesity (OR = 0.594, 
95% CI = 0.395–0.870), elevated fasting glucose levels (OR = 0.422, 95% CI = 0.267–
0.668), and hypertension (OR = 0.698, 95% CI = 0.488–0.996). When the model was 
adjusted by sex, age, and occupation, we found a significant correlation between 
high- and low-density lipoproteinemia and DII (OR = 1.55, 95% CI = 1.040–2.323). The 
present study identified four distinct dietary patterns among the population under 
investigation. There was a linear trend in the incidence of MS and hypertension 
across low, middle, and high levels of fruits and milk dietary pattern model (p = 0.027; 
p = 0.033), within this dietary pattern may serve as protective factors against MS and 
hypertension, suggesting that fruits and milk within this dietary pattern may serve as 
protective factors against MS and hypertension. And the linear trend in the incidence 
of elevated fasting glucose and obesity across the low, medium, and high scores 
of meet and eggs dietary pattern (p = 0.006; p < 0.001), suggest that a diet rich in 
meat may potentially contribute to an increased risk of developing elevated fasting 
glucose levels and obesity. An observed linear trend in the incidence rate of high 
fasting blood glucose across low, moderate, and high scores of dried fruits and nuts 
dietary pattern (p = 0.014), indicating that increased consumption of nuts acted as a 
protective factor against elevated fasting blood glucose levels and contributed to 
their reduction.

Discussion: The dietary inflammation index was integrated with the findings 
from the study on the dietary patterns of the sampled population, revealing that 
an anti-inflammatory diet demonstrated a protective effect against metabolic 
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syndrome, obesity, high fasting blood glucose, and hypertension in this specific 
population. laying the foundation for further research.

KEYWORDS

dietary inflammatory index (DII), metabolic syndrome, Xinjiang (China), Kashi urban, 
nation of Uygur, diet quality

1 Introduction

Metabolic syndrome (MS) is a cluster of conditions stemming 
from central obesity, including hypertension, dyslipidemia, impaired 
glucose tolerance, diabetes, and other metabolic abnormalities. MS 
involves a group of risk factors that are particularly important for the 
development of cardiovascular disease. Its prevalence in China has 
risen together with economic growth and subsequent changes in 
lifestyle. In 1992, the prevalence rate of MS was estimated at 13.3% by 
a cohort study covering 27,739 adults in 11 provinces and cities (1). 
The results of the cross-sectional survey of Chinese adults conducted 
by the Asian International Cardiovascular Disease Cooperation 
Group in 2000–2001 showed that the prevalence rate of MS in China 
had risen to 16.5% (2), and by 2013, Wang et al. (3) estimated it at 
33.9% among urban residents.

Many epidemiological and clinical studies show that chronic and 
low-grade systemic inflammatory reaction may be the core point of 
MS pathogenesis and the connecting link between mutual 
transformation and interaction of various components, and is part of 
the initiation factor of MS-insulin resistance or hyperinsulinemia (4). 
At present, an increasing amount of evidence indicates that different 
dietary patterns, foods, and nutrients have anti-inflammatory or 
pro-inflammatory effects, suggesting that optimizing dietary structure 
can help improve chronic low-grade inflammation.

Therefore, some studies have used the population-based dietary 
inflammatory index (DII) to obtain the potential inflammatory factors 
in individual diets (5). The School of Public Health of the University of 
South Carolina summarizes all the literature and data relevant to the 
effect of common dietary ingredients/nutrients on serum inflammatory 
markers from 1950 to 2010, and calculates the inflammatory effect 
index of each dietary ingredient/nutrient (6, 7). The paper uses official 
data and relevant literature referring to 11 countries, to calculate (i) the 
average daily intake and standard deviation of the global average daily 
intake of common dietary ingredients/nutrients of the population, and 
(ii) their DII according to the daily dietary intake of the respondents, 
and provide an effective tool for accurate and quantitative evaluation 
of the level of dietary anti-inflammation/pro-inflammatory (6, 7). At 
present, many scholars use DII to evaluate cardiovascular disease, 
metabolic disease, cancer, and COPD (8–11), and think that the DII 
score can provide accurate insight into the potential of dietary 
inflammation and better explain the relationship between diet, 
inflammation, and cardiovascular metabolic disease.

Many population studies suggest that the dietary structure of the 
Uyghur population is questionable: with its high intake of calories, 
protein and fat and low intake of vitamins and trace elements, it is 
little wonder that the prevalence of MS has been estimated at 30–35% 
(12). Hitherto, no study has examined the impact of the overall anti-
inflammatory/pro-inflammatory tendency on the MS of ethnic 

minorities in China. This study uses the DII developed by the School 
of Public Health of the University of South Carolina to investigate the 
overall dietary inflammation of Xinjiang Uygur residents and its 
contributing factors. The aim is to evaluate the dietary anti-
inflammatory/pro-inflammatory tendency of MS and explore the 
relationship between DII and MS and its components in order to 
propose effective evaluation indicators for clinical prevention and 
treatment of MS, and provide a solid scientific reference for 
government departments to improve nutritional policy, dietary 
guidance, nutritional intervention, and research the pathogenic 
factors related to chronic diseases.

2 Object and method

2.1 Research object

The study was backed by empirical evidence and substantial 
financial support from the Xinjiang Uygur Autonomous Region 
Natural Science Foundation (the correlation between dietary patterns, 
TCF7L2 gene interaction, and diabetes mellitus in Xinjiang Uygur 
population, Project Number: 2016D01C242) and the Youth Research 
Voyage Project of the First Affiliated Hospital of Xinjiang Medical 
University (Study on the correlation between dietary inflammatory 
index and inflammatory factors of metabolic syndrome and glycolipid 
metabolism in Urumqi population, 2022YFY-QKQN-27). The 
subjects used the multi-stage stratified cluster random sampling 
method. Between May and June 2021, Kashgar City and Shule County 
were selected from the Kashgar region (one city and 11 counties) for 
this study, and then two townships (Haohan Township, Kashgar City, 
Tazihong Township, Shule County) and one street office (Chasa Street 
Office, Kashgar City) were randomly pickedfrom 28 townships/towns 
and streets, and three administrative villages and communities were 
selected from each township/town or street. A total of 1,193 Uighur 
adult residents≥18 years old in the survey site were investigated. 
We excluded pregnant women, nursing mothers, individuals on anti-
stress medication, and others with purposefully differentiated dietary 
habits (such as fasting during Ramadan or attending weddings 
and services).

2.2 Data collection and methods

2.2.1 Data collection
 (1) A questionnaire and dietary survey. The former collected basic 

information, such as sex, age, marital status, education level, 
occupation, and other demographic characteristics. The dietary 
questionnaire was mainly based on the 24-h dietary review 
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questionnaire used in the 2002 survey of the dietary habits and 
health of Chinese residents (6), revised to consider the local 
characteristics of Xinjiang and the Uighur diet in Kashgar. 
We used a quasi-quantitative food frequency questionnaire 
(SQFFQ), modified to reflect the characteristics of the Uighur 
diet. The questionnaire took its final form after reliability and 
validity tests (13). During face-to-face interviews, the 
respondents were asked about the frequency and consumption 
of various foods in the past 12 months. Data sorting led to the 
creation of 12 food groups: grain, vegetables, fruits, beans and 
their products, milk and its products, meat, eggs, nuts and 
dried fruits, beverages, salt oil and other foods (excluding 
health food).

 (2) Physical measurement and blood sample collection. Physical 
measurement was based on the 2002 survey standard of 
nutrition and health status of Chinese residents (6), and height 
(cm), weight (kg), waist circumference (WC, cm), hip 
circumference (HC, cm), blood pressure (SBP, mmHg), 
diastolic pressure (DBP, mmHg), and other indicators were 
collected; the body mass index (BMI = height (kg)/weight (m)2) 
and waist to hip ratio (WHR = waist circumference (cm)/hip 
circumference (cm)) were calculated according to the 
corresponding formula. After collecting 5 mL of venous blood 
from the elbow of the subjects and centrifuging, the relevant 
biochemical indexes of the serum were determined, including 
fasting blood glucose (FPG, mmol/L), total cholesterol (TC, 
mmol/L), triglycerides (TG, mmol/L), high-density lipoprotein 
cholesterol (HDL-C, mmol/L), and low-density lipoprotein 
cholesterol (LDL-C, mmol/L).

2.2.2 Survey method
 (1) A face-to-face questionnaire survey. The investigator explained 

the purpose of the survey to the respondents, obtained their 
consent in signed consent forms, then read through the 
questionnaire to respondents and filled in the responses. For 
the dietary survey, we  used the continuous 3d-24 h 
retrospective inquiry method to collect the type and intake of 
all foods and cooking methods for each respondent in the 
previous three days to estimate the intake of edible salt and oils 
from the foods listed by each individual. In combination with 
the food weighing method, a random household survey was 
carried out in the families of some individuals in our sample to 
determine their families’ consumption of edible salt and oil in 
the past month, which was distributed evenly to individuals 
according to the number of family population. Then 
we calculate the average daily food intake of each group.

 (2) Physical examination in the township/town or street health 
centers where the survey took place. The investigators and 
medical staff who had received training in the physical 
examination standards conducted standardized measurements 
of the respondents’ physical traits (as listed in 1.2.1 above). 
Height and weight were measured by a domestic height scale 
that was calibrated before use; respondents were asked to take 
off their hats, shoes, and clothes and assume a standing position 
of 30–40 degrees with their feet evenly distributed. Our team 
noted the average value after two consecutive measurements 
(the height measurement is accurate to 0.1 cm and the weight 

measurement to 1 kg) and calculated BMIs accordingly. The 
waist and hip circumference were measured with an inelastic 
soft leather ruler (with a minimum scale of 1 mm). Before 
taking measurements, we asked the respondents to wear thin 
underwear, and fully expose their abdomen and buttocks. 
Waist circumference was measured close to but not pressuring 
the skin through the middle point of the line between the lower 
edge of the 12th rib of the anterior superior iliac spine and the 
iliac crest in the midaxillary line. Hip circumference was 
measured at the maximum circumference of the hip (i.e., the 
most convex part of the pubic symphysis and the gluteus 
maximus). Our team noted the average value after two 
consecutive measurements (readings are accurate to 0.1 cm). 
We measured blood pressure with a domestic desktop sleeve 
mercury sphygmomanometer. After the subjects sat 
comfortably in a quiet room for 5 min, they were asked to 
assume a sitting position to measure the blood pressure of the 
right brachial artery. The first and fifth tones of Koch’s were SBP 
and DBP, respectively. Their blood pressure was measured 
thrice (accurate to 1 mmHg; 1 mmHg = 0.133 kPa) with 
one-minute intervals between measurements. If the difference 
between any two measurements was more than 10 mmHg, 
we took a fourth measurement and used the average value of 
all four measurements.

 (3) We collected 5 mL blood samples of elbow vein blood from all 
respondents, whom we asked to fast for more than 8 h, and 
centrifuged them at 4,500 r/min within 2 h after collection. All 
separated serum samples were measured in a Hitachi 7,600 
Automatic Analyzer at the Laboratory of Kashgar People’s 
Hospital for relevant biochemical indicators (FPG, TC, TG, 
HDL-C, LDL-C5). The equipment was operated by the same 
group of professional inspectors above the technician in charge, 
and the kit was provided by the Northern Institute of Biology. 
FPG was determined with the use of the GOP-POD method, 
serum TC and TG by terminal colorimetry, and serum HDL-C 
and LDL-C by selective melting.

2.2.3 Relevant definitions of MS
MS Research Collaboration Group of Diabetes Society of Chinese 

Medical Association, Recommendations on MS of Diabetes Society of 
Chinese Medical Association in 2004 (7), The individuals who satisfy 
all three criteria and possess all components are deemed to have 
metabolic syndrome: (1) overweight and/or obesity: BMI ≥ 25 kg/m2; 
(2) Abnormal blood lipids: TG ≥ 1.7 mmol/L and/or 
HDL-C < 0.9 mmol/L (male) or < 1.0 mmol/L (female); (3) 
Hypertension: systolic/diastolic blood pressure ≥ 140/90 mmHg and/
or confirmed as hypertension and treated; (4) Hyperglycemia: 
FPG ≥ 6.1 mmol/L and (or) 2 h postprandial blood glucose 
(2hPG)>7.8 mmol/L and (or) those who have been confirmed as type 
2 diabetes and have been receiving treatment.

2.2.4 Calculation of the dietary anti-inflammatory 
index

The following DII formula developed by the University of South 
Carolina was used to calculate the DII of the respondents (6): DII of a 
certain dietary component/nutrient = (daily intake of this dietary 
component or nutrient—average daily intake of this dietary component 
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or nutrient per capita in the world)/standard deviation of daily intake of 
this dietary component or nutrient per capita in the world × Inflammatory 
effect index of this dietary component or nutrient. Then, we summarize 
the DII of various dietary components/nutrients in the diet, which is the 
total score of DII. The higher the positive value of DII, the stronger the 
tendency to promote inflammation; The higher the negative value of DII, 
the stronger the anti-inflammatory tendency.

The final dietary inflammation index (DII) comprised 45 dietary 
components or nutrients. Among these, 9 components (energy, 
carbohydrates, protein, fat, cholesterol, iron, vitamin B12, saturated fatty 
acids and trans fatty acids) were found to have pro-inflammatory 
properties while the remaining 36 components exhibited anti-
inflammatory properties. The intake of these 45 dietary components was 
determined through dietary surveys. Subsequently, individual component 
intakes were integrated to assess the overall inflammatory potential of the 
diet. Due to limitations in our current version of nutrition calculator 
software used for this study, we calculated the daily intake of more than 
20 common dietary components/nutrients in the respondents’ diet and 
three-day data with the use of dietary nutrition analysis software, and 
measured for energy, protein, fat, carbohydrate, dietary fiber, iron, zinc, 
selenium, magnesium, VitA, VitC, VitE, VitB1, VitB2, niacin, cholesterol, 
folic acid, saturated fatty acid, monounsaturated fatty acid, and 
polyunsaturated fatty acid. We used the average daily intake of dietary 
ingredients/nutrients during the three-day period to calculate the DII 
value of the respondents using the DII formula. Then, according to the 
total quartile of DII, P25, P50 and P75 were divided into four groups. Q1 
was the anti-inflammatory tendency group (DII < −2.029), Q2 (DII 
2.029 ~ 0.374), Q3 (DII 0.374 ~ 2.514), and Q4 were the pro-inflammatory 
tendency group (DII>2.514).

2.3 Quality control

 (1) Given the unique dietary habits of the Uygur residents in 
Kashgar, a preliminary survey and demonstration were 
conducted to tailor the content of our dietary survey to the 
actual diet of the respondents. Considering that the daily 
dietary structure of the individuals in our sample varies during 
the week, we adjusted the period to reflect both workdays and 
weekends. We collected the respondents’ daily tableware and 
food as food models, using different food models to help them 
judge their food types and intake.

 (2) We ensured that all personnel who conducted the physical 
examinations were relatively fixed, and all instruments and 
equipment were used only after appropriate calibration. The 
collection of blood samples was conducted by personnel assigned 
in strict accordance with quality control standards. All relevant 
operations were carried out by personnel assigned in strict 
accordance with the instructions and requirements of the 
experiment. All blood samples were subject to quality control 
in batches.

Data input was delegated to two persons, and the logical error 
correction function was set in the database to prompt in real time and 
correct in time. The obvious illogical outliers were eliminated, missing 
values within the allowable range were statistically processed, and 
possible confounding factors, such as age and sex, were controlled 
through hierarchical analysis.

2.4 Data processing method

Epidata3.0 software was used to input the original data, and each 
subject’s daily intake of each nutrient was calculated using the 
nutrition calculator V2.65 standard version (prepared by the China 
Center for Disease Control and Prevention). We used MS Excel for 
data collation and the SPSS17.0 statistical software for data analysis. 
Measurement data consistent with the normal distribution were 
represented by the mean; the data of non-normal distribution were 
represented by the median (interquartile interval), and its natural 
logarithm was taken for statistical analysis. With the quartile level of 
the DII as the independent variable and MS and its components as 
the dependent variable, we analyzed the relationship between DII and 
MS and its components by using a two-class logistic regression 
model; we adjusted and controlled the confounding factors such as 
age, sex, occupation, and others, as covariates in the model fitting. 
The difference was statistically significant with p < 0.05.

3 Results

3.1 Sample parameters

A total of 1,193 people were surveyed, aged between 18 and 91, 
with an average 45.18 ± 15.010 years. The sample included 485 men 
(40.7%) with an average age 47.66 ± 15.737 years, and 708 women 
(59.3%) with an average age 43.48 ± 14.254 years. A total of 1,113 
people (94.3%) were married or remarried; 56 were unmarried (4.7%), 
and 24 divorced or widowed (2%). 671 (56.2%) were farmers; 335 
declared themselves unemployed (35.3%), 161 (13.5%) in employment 
and 26 (2.2%) retired. 1,027 (86.1%) had education below the high-
school level, and 166 people (13.9%) had high-school level education 
or above. 448 respondents (37.6%) were city dwellers and 745 (62.4%) 
lived in rural areas (full presentation in Table 1). 429 adults with 
metabolic syndrome in Kashgar, Xinjiang, were investigated, with a 

TABLE 1 Sample characteristics (n, % or x s± ).

Category MS Non-MS p

(n =  429) (n =  764)

Gender

Male 114 (26.6) 289 (37.8)
<0.001**

Female 315 (73.4) 475 (62.2)

Place of residence

Urban 206 (48.0) 319 (41.8)
0.061

Rural areas 223 (52.0) 445 (58.2)

Degree of education

Below high school 390 (90.9) 665 (87.0)
0.056

High school and above 39 (9.1) 99 (13.0)

Occupation

Farmer 203 (47.3) 400 (52.4)
<0.001**

Other working or unemployed 126 (52.7) 364 (47.6)

Age (average) 47.84 ± 10.94 43.39 ± 13.88 –

Chi-square test was used for counting data and t-test for measuring data. **p < 0.001, with 
significantly different results.
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prevalence rate of 35.96%; 158 cases of high-altitude abdominal 
glucose with a prevalence rate of 13.24%; 195 cases of hypertension 
(prevalence rate: 16.35%); 766 cases of obesity (prevalence rate: 
64.42%); 527 cases of hypertriglyceridemia (prevalence rate: 44.17%); 
362 people with high-density lipoprotein disease (prevalence rate: 
30.34%) Full data are illustrated in Table 2.

3.2 DII, MS, and its components

Our physical and laboratory examinations show that the DII in 
our sample varies from Q1-Q4 (anti-inflammatory grading to 
pro-inflammatory grading) to obesity (χ2 = 9.825, p = 0.020), high 
fasting blood glucose or not (χ2 = 15.390, p = 0.002), with or without 
metabolic syndrome (χ2 = 15.626, p = 0.001) was statistically significant. 
We  found no statistically significant difference between the DII 

components with or without hypertriglyceridemia, with or without 
low high-density lipoprotein, and with or without hypertension (see 
Table 3).

3.3 OR value of DII and risk of MS and its 
components

Our research shows that the maximum DII value across our 1,193 
respondents was 4.570 to 4.058, with an average value of 0.256. When 
we analyzed the DII as a continuous variable, we revealed the anti-
inflammatory diet has been identified as a mitigating factor for 
metabolic syndrome (OR = 0.586, 95% CI = 0.395–0.870), obesity 
(OR = 0.594, 95% CI = 0.395–0.870), elevated fasting glucose levels 
(OR = 0.422, 95% CI = 0.267–0.668), and hypertension (OR = 0.698, 
95% CI = 0.488–0.996). When the model was adjusted by sex, age, and 
occupation, we  found a significant correlation between high-and 
low-density lipoproteinemia and DII (OR = 1.55, 95% CI = 1.040–
2.323; as in Table 4).

3.4 Dietary patterns, MS and its 
components

A total of four factors with eigenvalues greater than 1 were 
extracted through factor analysis, resulting in a cumulative 
contribution rate of 65.93%. This suggests that the extracted common 
factors effectively capture the variability within each food group. The 
four derived models from this analysis include: a grain and vegetable-
based dietary model, a fruit and milk-based dietary model, a meat 
and egg-based dietary model, a dried fruit and nut-based dietary 
model. The results of the multiple logistic regression analysis 
indicated no significant association between the grain-vegetable 
dietary pattern and MS or its components. The consumption of fruit 
and milk was inversely associated with the prevalence of multiple 

TABLE 2 Physical examination and DII of the respondents (n, % or x s± ).

Category MS Non-MS p

(n =  429) (n =  764)

BMI(kg/m2) 30.57 ± 4.30 26.02 ± 4.89 <0.001**

WHR 0.95 ± 0.07 0.89 ± 0.08 <0.001**

TG (mmol/L) 2.48 ± 1.25 1.44 ± 0.88 <0.001**

HDL (mmol/L) 1.07 ± 0.22 1.14 ± 0.24 <0.001**

SBP (mmHg) 139.97 ± 20.51 113.56 ± 18.92 <0.001**

DBP (mmHg) 90.31 ± 13.60 74.11 ± 12.51 <0.001**

FPG (mmol/L) 7.40 ± 3.09 5.44 ± 1.72 <0.001**

DII 0.403 ± 3.49 (−0.386) ± 3.972 0.003**

BMI is the body mass index; WHR is the Waist-to-Hip Ratio; TG is the triglyceride; HDL is 
high density lipoprotein; SBP and DBP are the systolic and diastolic blood pressure; FPG is 
the fasting blood glucose; DII indicates the dietary inflammatory index. **p < 0.001; results 
are significantly different.

TABLE 3 DII grades, MS, and its components in our sample of Uygur adults (n, %).

MS and its components DII classification Total χ2 p

Q1  
(<-2.029)

Q2  
(−2.029–0.374)

Q3  
(0.374–2.514)

Q4  
(>2.514)

Obesity Y 125 (29.3) 110 (25.8) 101 (23.7) 91 (21.3) 427 9.825 0.020*

N 171 (22.3) 189 (24.7) 197 (25.7) 209 (27.3) 766

Hypertriglyceridemia Y 178 (26.7) 164 (24.6) 159 (23.9) 165 (24.8) 666 4.569 0.206

N 114 (21.6) 136 (25.8) 143 (27.1) 134 (25.4) 527

Hypohigh-density 

lipoprotein

Y 198 (23.8) 213 (25.6) 209 (25.2) 211 (25.4) 831 3.381 0.337

N 104 (28.7) 85 (23.5) 89 (24.6) 84 (23.2) 362

High fasting blood 

glucose

Y 283 (27.3) 260 (25.1) 243 (23.5) 249 (24.1) 1,035 15.390 0.002*

N 22 (13.9) 39 (24.7) 51 (32.3) 46 (29.1) 158

hypertension Y 261 (26.2) 254 (25.5) 244 (24.4) 239 (23.9) 998 3.115 0.374

N 42 (21.5) 46 (23.6) 52 (26.7) 55 (28.2) 195

MS Y 204 (26.7) 195 (25.5) 180 (23.6) 185 (24.2) 764 15.626 0.001**

N 78 (18.2) 100 (23.3) 131 (30.5) 120 (28.0) 429

*p < 0.05, **p < 0.001, and results are significantly different. In this chart, “Y” represents the presence of metabolic syndrome (MS), while “N” indicates its absence. Revised sentence: Please 
refer to Section 2.2.3 for the diagnostic criteria of MS.
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sclerosis (MS) and hypertension, with individuals having a high 
intake showing 0.41 times and 0.33 times higher risk for MS and 
hypertension compared to those with low intake (95% CI 0.22–0.87, 
95% CI 0.25–0.92). Furthermore, there was a linear trend in the 
incidence of MS and hypertension across low, middle, and high levels 
of this dietary pattern model (p = 0.027; p = 0.033), suggesting that 
fruits and milk within this dietary pattern may serve as protective 
factors against MS and hypertension. The meat-egg dietary pattern 
did not exhibit a significant association with multiple sclerosis (MS); 
however, it demonstrated a positive correlation with elevated fasting 
glucose levels and obesity. Individuals with high consumption had 

1.35 times higher odds of having elevated fasting glucose (95% CI 
0.89–2.84) and 3.26 times higher odds of being obese (95% CI 2.21–
5.71), compared to those with low consumption levels. Furthermore, 
there was a linear trend in the incidence of elevated fasting glucose 
and obesity across the low, medium, and high scores of this dietary 
pattern (p = 0.006; p < 0.001). These findings suggest that a diet rich 
in meat may potentially contribute to an increased risk of developing 
elevated fasting glucose levels and obesity. The dried fruits and nuts 
dietary pattern demonstrated a significant inverse association with 
elevated fasting blood glucose levels. Specifically, individuals 
consuming a higher quantity of nuts had a 0.20 times lower 
prevalence of high fasting blood glucose compared to those with low 
nut intake (95%CI 0.12–0.75). Furthermore, there was an observed 
linear trend in the incidence rate of high fasting blood glucose across 
low, moderate, and high scores of this dietary pattern (p = 0.014), 
indicating that increased consumption of nuts acted as a protective 
factor against elevated fasting blood glucose levels and contributed 
to their reduction. The specifics are presented in Table 5.

4 Discussion

The Uygurs generally like to eat red meat, preferably beef and 
mutton (smoked or stewed), which abound in Xinjiang, whereas 
their white meat and seafood intake is generally low. Our analysis 
of their dietary habits shows that nuts and dried fruits with high 
factor load values remain part of their weekly diet. Our study 
confirms higher values for the factor load of salt and oil food 
groups, which were included in the first matrix of the Uygur dietary 
pattern. Some studies have shown that fruits are rich in dietary 
fiber, minerals, antioxidant substances, and vitamins. In addition, a 
reasonable daily fruit intake can reduce the risk of diabetes and 
cardiovascular disease (14). However, in view of the sample size and 
other factors, the study found no difference in fruit intake between 
individuals with more than three items and their related 
components and individuals without MS and its related components 
abnormalities (15). Moreover, milk and dairy products are rich 
sources of calcium. Some studies have found that they may reduce 
blood pressure and obesity, while Khan et al. (16) found that the 
intake of milk and its products are negatively correlated with waist 
circumference, hypertension, and MS. Back to our study, after 
adjusting the calcium intake, we say the OR value dropped, but the 
difference remained statistically significant (p < 0.05). The Fifth 
National Health and Nutrition Survey in South Korea showed that 
(17) the prevalence of MS in individuals with a high intake of milk 
or yoghurt was significantly lower than that with low intake 
(p < 0.001).

Our study also determined a positive correlation between the 
dietary pattern of meat-and-eggs type and high fasting blood glucose 
and obesity. The high blood sugar of meat eaters is almost ubiquitous, 
which may be related to the fact that a high meat intake tends to 
reduce glucose tolerance. Cantero et  al. (18) conducted a 
multifactorial analysis of the dietary risk factors of obesity among 871 
Hispanic and 1,599 non-Hispanic white women in the United States, 
and found that the prevalence of obesity was increased due to the 
western dietary pattern, rich in saturated fatty acid and energy intake, 
dominated by red meat and refined grain intake. However, a different 

TABLE 4 DII and OR values of MS and its components.

Group Case 
(n)

ORa 95%CI ORb 95%CI

MS

Q1 78 1 1

Q2 100 0.586 0.395–0.870 0.966 0.617–1.512

Q3 131 0.787 0.541–1.144 1.018 0.688–1.507

Q4 120 1.118 0.783–1.596 1.379 0.954–1.994

Obesity

Q1 171 1 1

Q2 189 0.594 0.432–0.817 1.121 0.776–1.619

Q3 197 0.749 0.543–1.033 1.049 0.746–1.474

Q4 209 0.842 0.610–1.163 1.057 0.756–1.477

Hypertriglyceridemia

Q1 114 1 1

Q2 136 0.784 0.568–1.083 1.184 0.819–1.710

Q3 143 1.021 0.745–1.401 1.269 0.911–1.768

Q4 134 1.117 0.816–1.530 1.319 0.954–1.824

Hypohigh-density lipoprotein

Q1 104 1 1

Q2 85 1.316 0.924–1.873 1.554 1.040–2.323

Q3 89 0.996 0.692–1.434 1.073 0.736–1.566

Q4 84 1.066 0.743–1.530 1.067 0.737–1.543

High fasting blood glucose

Q1 22 1 1

Q2 39 0.422 0.267–0.668 0.695 0.415–1.164

Q3 51 0.83 0.559–1.233 1.082 0.712–1.644

Q4 46 1.154 0.792–1.681 1.47 0.992–2.178

Hypertension

Q1 42 1 1

Q2 46 0.698 0.488–0.996 1.103 0.722–1.684

Q3 52 0.785 0.553–1.114 0.991 0.678–1.449

Q4 55 0.937 0.665–1.319 1.216 0.844–1.752

aIndicates the establishment of a logistic regression model with DII index.
bSignifies a logistic regression model based on gender, age, occupation, and DII index.
The statistically significant results are indicated by the bold part with p < 0.05. An odds ratio (OR) 
less than 1 and a 95% confidence interval (CI) ranging from 0 to 1 (excluding 1) suggest a potential 
protective factor for the corresponding disease, while an OR greater than 1 and a CI greater than 1 
(excluding 1) indicate a possible risk factor for the corresponding disease.
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diet pattern with a higher intake of vegetables, fruits, low-fat milk, 
and whole grains, and a lower intake of meat and beverages, can 
reduce obesity. Abe et al. (19) Among the male population, a multi-
food and beverage dietary pattern containing medium-energy cheese 
and fat meat increases the risk of hyperglycemia and central obesity, 
while a fiber/bread dietary pattern rich in high-energy fiber reduces 
the risk. For the female population, a diet rich in white bread 
increases the risk of hyperinsulinemia, whereas a diet rich in milk 
and fat reduces the risk of hyperinsulinemia (20). Luo Tao et al. (21) 
found that high DII values correlate with an increased risk of 
cardiovascular metabolic diseases in Xinjiang’s multi-ethnic 
population. The key to controlling the impact of DII on cardiovascular 
metabolic diseases is to help a population group maintain moderate 
levels of waist circumference, blood pressure, and LDL. This study 
provides a pilot reference for future inflammatory investigations on 
local Uygurs population incorporating the genomics and 
metageomics data.

The dietary inflammation index was integrated with the findings 
from the study on the dietary patterns of the sampled population, 
revealing that an anti-inflammatory diet demonstrated a protective 
effect against metabolic syndrome, obesity, high fasting blood 
glucose, and hypertension in this specific population. Analysis of 
dietary patterns suggested that fruits and dairy products may possess 
anti-inflammatory properties for individuals with metabolic 
syndrome and hypertension, while nuts were identified as potential 
anti-inflammatory foods for those with high fasting blood glucose. 
Conversely, meat was found to be a pro-inflammatory food source 
for individuals with high fasting blood glucose and obesity. In a 
comprehensive survey on dietary habits and metabolic syndrome in 

China, it was discovered that adherence to the traditional diet rich in 
fruits, vegetables, and aquatic products plays a crucial role in 
preventing and managing metabolic syndrome (22). The findings of 
a meta-analysis examining the association between dairy 
consumption and the incidence of metabolic syndrome suggest that 
an increased intake of dairy products may potentially mitigate the 
risk of developing metabolic syndrome (23). A certain finding 
suggested that of the 6 common types of milk consumed, semi-
skimmed and soya milk products were protective against essential 
hypertension, whereas skim milk had the opposite effect (24). The 
study conducted in Urumqi, Xinjiang on middle-aged and elderly 
individuals revealed that the appropriate consumption of nuts 
exhibited a protective effect against fasting blood glucose 
abnormalities (25). Numerous studies have consistently demonstrated 
that excessive consumption of meat, particularly red meat (such as 
lamb, beef, and pork), is associated with an increased risk of obesity, 
hypertension, hyperlipidemia, and abnormal blood sugar levels 
(26–28).

Some limitations of this study must be acknowledged. First, to 
create our sample we  relied on voluntary participants willing to 
undergo a physical examination and provide ample dietary data. 
Second, fieldwork took place during the spring and summer, but 
dietary intake may be affected by seasonal changes; moreover, our 
24-h dietary regression method for three consecutive days cannot fully 
represent long-term dietary habits. Finally, the survey primarily 
targets the general population who willingly participate in community 
or town physical examinations, spanning from 18 to 90 years of age, 
with notable variations in demographic characteristics. Following age 
stratification, the sample size within each stratum is relatively small, 

TABLE 5 The relationship between various dietary patterns and metabolic syndrome and its components.

Dietary 
pattern

The 
level of 
intake

MS and its components

MS High fasting 
blood 

glucose

Hypertension Obesity Hypertriglyceridemia High-density 
lipoprotein 

anemia

Type of 

grain and 

vegetable

Q1
a 1.00 1.00 1.00 1.00 1.00 1.00

Q2 1.36 (0.72–2.98) 0.73 (0.46–1.76) 1.05 (0.62–2.49) 1.08 (0.64–2.32) 1.16 (0.61–2.51) 1.01 (0.52–2.16)

Q3 1.39 (0.78–3.05) 0.69 (0.53–1.25) 1.45 (0.67–2.55) 1.25 (0.71–2.63) 1.38 (0.85–2.82) 1.45 (0.91–2.98)

P 0.306 0.237 0.408 0.649 0.239 0.216

Type of fruit 

and milk

Q1 1.00 1.00 1.00 1.00 1.00 1.00

Q2 0.47 (0.25–0.91) 0.63 (0.37–1.59) 0.56 (0.31–0.98) 0.97 (0.58–1.67) 0.89 (0.47–1.65) 1.64 (0.75–2.08)

Q3 0.41 (0.25–0.91) 0.52 (0.25–0.91) 0.45 (0.25–0.91) 0.83 (0.25–0.91) 0.61 (0.25–0.91) 2.28 (0.25–0.91)

P 0.027* 0.081 0.033* 0.432 0.187 0.279

Type of 

meet and 

eggs

Q1 1.00 1.00 1.00 1.00 1.00 1.00

Q2 1.07 (0.61–2.33) 1.23 (1.85–2.49) 1.45 (0.92–3.42) 2.54 (1.54–4.25) 1.26 (0.89–2.95) 1.14 (0.73–2.15)

Q3 1.58 (0.98–3.02) 1.35 (1.89–2.84) 1.63 (0.98–3.54) 3.26 (2.21–5.71) 1.38 (0.93–3.12) 1.34 (0.95–2.73)

P 0.256 0.006** 0.384 <0.001** 0.349 0.385

Type of 

dried fruits 

and nuts

Q1 1.00 1.00 1.00 1.00 1.00 1.00

Q2 0.74 (0.41–1.58) 0.33 (0.19–0.81) 0.45 (0.31–1.58) 0.73 (0.49–1.67) 0.61 (0.32–1.53) 1.82 (0.91–3.25)

Q3 0.65 (0.29–1.36) 0.20 (0.12–0.75) 0.36 (0.18–1.22) 0.67 (0.42–1.55) 0.49 (0.36–1.35) 2.28 (0.98–3.58)

P 0.093 0.014* 0.071 0.474 0.432 0.487

* indicates statistical significance at p ≤ 0.05; ** indicates statistical significance at p ≤ 0.01.
aIndicates the dietary patterns were categorized into low, medium, and high intake levels, with Q1 serving as the reference group.
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potentially impacting the representativeness of the samples. 
Subsequent research will delve into a comprehensive analysis of the 
multi-ethnic population and explore factors such as ethnicity, age, and 
other variables during stratification.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary materials, further inquiries can be directed 
to the corresponding author or the primary author.

Ethics statement

The studies involving humans were approved by the First Affiliated 
Hospital of Xinjiang Medical University. The studies were conducted 
in accordance with the local legislation and institutional requirements. 
The participants provided their written informed consent to 
participate in this study.

Author contributions

YaZ: Conceptualization, Data curation, Formal analysis, Funding 
acquisition, Investigation, Methodology, Project administration, 
Software, Supervision, Writing – original draft. XL: Conceptualization, 
Data curation, Formal analysis, Funding acquisition, Investigation, 
Methodology, Project administration, Software, Supervision, 
Validation, Writing – original draft. YS: Conceptualization, Data 
curation, Formal analysis, Investigation, Software, Writing – original 
draft. YJ: Conceptualization, Investigation¸ Methodology, Project 
administration, Writing – original draft. JuC: Formal analysis, 
Methodology, Supervision, Writing – original draft. XY: 

Conceptualization, Formal analysis, Methodology¸Writing – review 
& editing. YuZ: Conceptualization, Formal analysis, Supervision, 
Validation¸Writing – original draft. JiC: Funding acquisition, 
Methodology, Validation, Writing – review & editing. XZ: 
Methodology, Project administration, Writing – original draft. HX: 
Conceptualization, Data curation, Formal analysis, Funding 
acquisition, Software, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This study was 
received from funding project “Study on the correlation between 
dietary inflammatory index and inflammatory factors of metabolic 
syndrome and glycolipid metabolism in Urumqi population” 
(2022YFY-QKQN-27).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References
 1. The writing committee of the report on cardiovascular health and diseases in China. 

Report on Cardiovascular Health and Diseases in China 2021: An Updated Summary[J]. 
Biomedical and Environmental Sciences (English). (2022) 35:573–603. doi: 10.3967/
bes2022.079

 2. Yaru Li. Study on the relationship between dietary intake characteristics and 
metabolic syndrome. China Center for Disease Control and Prevention (2019).

 3. Wang GR, Li L, Pan YH, Tian GD, Lin WL, Li Z, et al. Prevalence of metabolic 
syndrome among urban community residents in China. BMC Public Health. (2013) 
13:599. doi: 10.1186/1471-2458-13-599

 4. Linna D, Shan L, Wang M. The relationship between dietary inflammation index 
and inflammation and research progress. Clin Med Res Pract. (2021) 6:191–192, 195. doi: 
10.19347/j.cnki.2096-1413.202112065

 5. Shivappa N, Steck SE, Hurley TG, Hussey JR, Ma Y, Ockene IS, et al. A population-
based dietary inflammatory index predicts levels of C-reactive protein in the seasonal 
variation of blood cholesterol study (SEASONS). Public Health Nutr. (2014) 17:1825–33. 
doi: 10.1017/S1368980013002565

 6. Yonghong Ma. Preparation of a semi-quantitative food frequency questionnaire for 
preschool children in Northwest China and study on dietary patterns. Chinese People's 
Liberation Army Air Force Military Medical University (2020).

 7. Diabetes Branch of Chinese Medical Association MS Research Collaboration 
Group. Recommendations on MS from diabetes branch of Chinese Medical Association. 
Diabetes J Chin Med Assoc. (2004) 12:156–161. doi: 10.3321/j.issn:1006-6187.2004.03.002

 8. Ruiz-Canela M, Bes-Rastrollo M, Martínez-González MA. The role of dietary 
inflammatory index in cardiovascular disease, metabolic syndrome and mortality. Int J 
Mol Sci. (2016) 17:1265. doi: 10.3390/ijms17081265

 9. Shivappa N, Hébert JR, Zucchetto A, Montella M, Serraino D, la Vecchia C, et al. 
Dietary inflammatory index and endometrial cancer risk in an Italian case–control 
study. Br J Nutr. (2016) 115:138–46. doi: 10.1017/S0007114515004171

 10. Shivappa N, Blair CK, Prizment AE, Jacobs DR Jr, Steck SE, Hébert JR. Association 
between inflammatory potential of diet and mortality in the Iowa Women’s health study. 
Eur J Nutr. (2016) 55:1491–502. doi: 10.1007/s00394-015-0967-1

 11. Neufcourt L, Assmann KE, Fezeu LK, Touvier M, Graffouillère L, Shivappa N, et al. 
Prospective association between the dietary inflammatory index and cardiovascular 
diseases in the SUpplémentation en VItamines et Minéraux AntioXydants (SU.VI.MAX) 
cohort. J Am Heart Assoc. (2016) 5:e002735. doi: 10.1161/JAHA.115.002735

 12. Meixia Lv Study on the correlation between dietary pattern and inflammatory 
factors in Uighur overweight and obese people. Xinjiang Medical University (2021).

 13. Yangyi Zhang. A case-control study on the relationship between dietary patterns 
and Urumqi Uygur type 2 diabetes. Xinjiang Medical University (2018).

 14. Lanfang L, Guolong P. Jiang Zhisheng Interpretation of 2021 AHA guidelines for 
promoting cardiovascular health diet. Chin J Arterioscler. (2022) 30:321–4. doi: 
10.3969/j.issn.1007-3949.2022.04.007

 15. Shivappa N, Steck SE, Hussey JR, Ma Y, Hebert JR. Inflammatory potential of diet and 
all-cause, cardiovascular, and cancer mortality in National Health and nutrition examination 
survey III study. Eur J Nutr. (2017) 56:683–92. doi: 10.1007/s00394-015-1112-x

 16. Khan I, Kwon M, Shivappa N, Hébert JR, Kim MK. Positive Association of Dietary 
Inflammatory Index with incidence of cardiovascular disease: findings from a Korean 
population-based prospective study. Nutrients. (2020) 12:588. doi: 10.3390/nu12020588

 17. Choi YH, Huh DA, Moon KW. Joint Effect of Alcohol Drinking and Environmental 
Cadmium Exposure on Hypertension in Korean Adults: Analysis of Data from the Korea 

109

https://doi.org/10.3389/fnut.2024.1334506
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://doi.org/10.3967/bes2022.079
https://doi.org/10.3967/bes2022.079
https://doi.org/10.1186/1471-2458-13-599
https://doi.org/10.19347/j.cnki.2096-1413.202112065
https://doi.org/10.1017/S1368980013002565
https://doi.org/10.3321/j.issn:1006-6187.2004.03.002
https://doi.org/10.3390/ijms17081265
https://doi.org/10.1017/S0007114515004171
https://doi.org/10.1007/s00394-015-0967-1
https://doi.org/10.1161/JAHA.115.002735
https://doi.org/10.3969/j.issn.1007-3949.2022.04.007
https://doi.org/10.1007/s00394-015-1112-x
https://doi.org/10.3390/nu12020588


Zhang et al. 10.3389/fnut.2024.1334506

Frontiers in Nutrition 09 frontiersin.org

National Health and Nutrition Examination Survey, 2008 to 2013. Alcohol.: Clin. Exp. 
Res.. (2014) 45:548–560. doi: 10.1111/acer.14551

 18. Cantero I, Abete I, Babio N, Arós F, Corella D, Estruch R, et al. Dietary 
inflammatory index and liver status in subjects with different adiposity levels 
within the PREDIMED trial. Clin Nutr. (2018) 37:1736–43. doi: 10.1016/j.
clnu.2017.06.027

 19. Abe M, Shivappa N, Ito H, Oze I, Abe T, Shimizu Y, et al. Dietary inflammatory 
index and risk of upper aerodigestive tract cancer in Japanese adults. Oncotarget. (2018) 
9:24028–40. doi: 10.18632/oncotarget.25288

 20. Rong H, Guanmian L, Fangying Y. Study on the correlation between 
the  level  of dietary inflammation index and the risk of head and neck 
squamous  cell  carcinoma. Nurs Res. (2021) 35:4447–50. doi: 10.12102/j.
issn.1009-6493.2021.24.020

 21. Tao Luo Study on the relationship between dietary inflammatory index and 
cardiovascular metabolic diseases of rural residents in Ili, Xinjiang. Xinjiang Medical 
University (2021).

 22. Pengkun S, Qingqing M, Yuqian L, Shanshan J, Shuang S, Liyun Z, et al. Analysis 
of the association between dietary pattern and metabolic syndrome in the elderly in 
Southeast China. China Chronic Dis Prev Control. (2022) 30:415–20. doi: 10.16386/j.
cjpccd.issn.1004-6194.2022.06.004

 23. Babio N, Becerra-Tomás N, Martínez-González MÁ, Corella D, Estruch R, Ros E, 
et al. Consumption of yogurt, low-fat Milk, and other low-fat dairy products is 
associated with lower risk of metabolic syndrome incidence in an elderly Mediterranean 
population. J Nutr. (2015) 145:2308–16. doi: 10.3945/jn.115.214593

 24. Shi Z, Zhao Z, Zhu P, An C, Zhang K. Types of milk consumed and risk of essential 
hypertension: a 2-sample Mendelian randomization analysis. J Dairy Sci. (2023) 
106:4516–23. doi: 10.3168/jds.2022-22392

 25. Xiaoxia L, Lei Y, Hui X, Jing S, Xiaoli T, Xue L. Study on fasting blood glucose 
abnormalities and dietary patterns in middle-aged and elderly people in Urumqi. China 
Food Nutr. (2020) 26:5. doi: CNKI:SUN:ZGWY.0.2020-04-019

 26. Daneshzad E, Askari M, Moradi M, Ghorabi S, Rouzitalab T, Heshmati J, et al. Red 
meat, overweight and obesity: a systematic review and meta-analysis of observational 
studies. Clin Nutr ESPEN. (2021) 45:66–74. doi: 10.1016/j.clnesp.2021.07.028

 27. Chai W, Morimoto Y, Cooney RV, Franke AA, Shvetsov YB, Le Marchand L, et al. 
Dietary red and processed meat intake and markers of adiposity and inflammation: the 
multiethnic cohort study. J Am  Coll Nutr. (2017) 36:378–85. doi: 
10.1080/07315724.2017.1318317

 28. Lisa S, Meredith W, Kevin M. Red meat intake and glycemic and insulinemic risk 
factors for type 2 diabetes: a systematic review and meta-analysis. Curr Dev Nutr. (2023) 
77:156–65. doi: 10.1093/cdn/nzab041_037

110

https://doi.org/10.3389/fnut.2024.1334506
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://doi.org/10.1111/acer.14551
https://doi.org/10.1016/j.clnu.2017.06.027
https://doi.org/10.1016/j.clnu.2017.06.027
https://doi.org/10.18632/oncotarget.25288
https://doi.org/10.12102/j.issn.1009-6493.2021.24.020
https://doi.org/10.12102/j.issn.1009-6493.2021.24.020
https://doi.org/10.16386/j.cjpccd.issn.1004-6194.2022.06.004
https://doi.org/10.16386/j.cjpccd.issn.1004-6194.2022.06.004
https://doi.org/10.3945/jn.115.214593
https://doi.org/10.3168/jds.2022-22392
https://doi.org/CNKI:SUN:ZGWY.0.2020-04-019
https://doi.org/10.1016/j.clnesp.2021.07.028
https://doi.org/10.1080/07315724.2017.1318317
https://doi.org/10.1093/cdn/nzab041_037


Frontiers in Nutrition 01 frontiersin.org

Turmeric: from spice to cure. A 
review of the anti-cancer, 
radioprotective and 
anti-inflammatory effects of 
turmeric sourced compounds
Mihai Cozmin 1†, Ionut Iulian Lungu 2†, Cristian Gutu 3,4*†, 
Alina Stefanache 2*†, Letitia Doina Duceac 1,3,5†, 
Bogdan Dorin Șoltuzu 1†, Daniela Damir 2†, Gabriela Calin 1†, 
Elena Roxana Bogdan Goroftei 3,6†, Carmen Grierosu 1† and 
Monica Boev 3,7†

1 "Apollonia” University of Iasi, Faculty of Dental Medicine, Iași, Romania, 2 "Grigore T. Popa" University 
of Medicine and Pharmacy, Iași, Romania, 3 University Dunarea de Jos Faculty of Medicine and 
Pharmacy, Galați, Romania, 4 "Dr. Aristide Serfioti” Military Emergency Clinical Hospital, Galați, 
Romania, 5 Prof. Dr. Nicolae Oblu” Neurosurg Hospital Iasi, 2 Ateneului, Iasi, Romania, 6 Sf. Ioan 
Emergency Clinical Hospital for Children, 2 Gheorghe Asachi Str., Galați, Romania, 7 Research Centre 
in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, Galați, Romania

Turmeric (Curcuma longa) has been extensively studied for its diverse 
pharmacological properties, including its potential role as an anticancer agent, 
antioxidant, and radioprotector. This review provides an overview of the chemical 
composition of turmeric, focusing on its main bioactive compounds, such as 
curcuminoids and volatile oils. Curcumin, the most abundant curcuminoid 
in turmeric, has been widely investigated for its various biological activities, 
including anti-inflammatory, antioxidant, and anticancer effects. Numerous in 
vitro and in vivo studies have demonstrated the ability of curcumin to modulate 
multiple signaling pathways involved in carcinogenesis, leading to inhibition of 
cancer cell proliferation, induction of apoptosis, and suppression of metastasis. 
Furthermore, curcumin has shown promising potential as a radioprotective 
agent by mitigating radiation-induced oxidative stress and DNA damage. 
Additionally, turmeric extracts containing curcuminoids have been reported 
to exhibit potent antioxidant activity, scavenging free radicals and protecting 
cells from oxidative damage. The multifaceted pharmacological properties of 
turmeric make it a promising candidate for the development of novel therapeutic 
strategies for cancer prevention and treatment, as well as for the management 
of oxidative stress-related disorders. However, further research is warranted 
to elucidate the underlying mechanisms of action and to evaluate the clinical 
efficacy and safety of turmeric and its bioactive constituents in cancer therapy 
and radioprotection. This review consolidates the most recent relevant data on 
turmeric’s chemical composition and its therapeutic applications, providing a 
comprehensive overview of its potential in cancer prevention and treatment, as 
well as in radioprotection.
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1 Introduction

Turmeric (Curcuma longa) (Figure 1), originating from India, is a 
curry spice that has garnered significant attention in recent decades 
due to its composition of bioactive curcuminoids—curcumin, 
demethoxycurcumin, and bisdemethoxycurcumin.

Curcumin (Figure 2), known chemically as 1,7-bis-(4-hydroxy-3-
methoxyphenyl)-hepta-1,6-diene-3,5-dione, is a lipophilic polyphenol 
believed to exhibit anticancer, antibiotic, anti-inflammatory, and anti-
aging properties, as indicated by various in vitro, in vivo studies, and 
clinical trials. Despite its potential, the therapeutic application of 
curcumin is hindered by challenges such as poor aqueous solubility, 
limited bioavailability, and unfavorable pharmacokinetic profiles. To 
overcome these issues, numerous formulations of curcumin have been 
developed (1, 2).

However, suboptimal sample preparation and analysis 
methodologies often impede accurate assessments of bioactivities and 
clinical efficacy. This review provides a summary of recent research on 
the biological, pharmaceutical, and analytical aspects of curcumin, 
covering various formulation techniques and discussing associated 
clinical trials and in vivo outcomes.

Turmeric, a member of the Zingiberaceae family, is a perennial 
plant that reaches a height of up to one meter, featuring oblong or 
cylindrical rhizomes. Externally, these rhizomes are brown and 
include an egg-shaped primary rhizome known as the “tuber” and 
multiple branched secondary rhizomes referred to as the “rhizome.” 

Internally, the rhizomes exhibit colors ranging from yellow to yellow-
orange, attributed to pigments called curcuminoids, with diverse 
pharmacological activities (3–5).

Chemically, curcuminoids, specifically diarylheptanoids, consist 
of two aryl groups connected by a chain with seven carbons. Among 
these, curcumin (diferuloylmethane) stands out as the most significant 
bioactive curcuminoid, alongside others like desmethoxycurcumin 
and bisdesmethoxycurcumin found in turmeric rhizomes (6).

Extensive research, encompassing preliminary, preclinical, and 
clinical studies, underscores the pharmacological significance of 
curcuminoids, the yellow pigment in turmeric. Its versatile properties 
include anti-inflammatory, immunomodulatory, antioxidant, 
hypolipidaemic, antimicrobial, anticarcinogenic, antitumor, 
radioprotective, neuroprotective, hepato-protective, nephroprotective, 
cardio-protective, and vasoprotective activities (7, 8). Curcumin’s 
impact extends to various biochemical pathways, influencing 
molecular targets such as cytokines, transcription factors, kinases, 
growth factors, and microRNAs (9).

Turmeric, also known as Indian saffron, boasts a rich history of 
use as an herbal medicine, spice, and coloring agent. Records dating 
back to 600 BC in an Assyrian herbal book, references by the 
renowned Greek physician Dioscorides, and mentions in Islamic 
traditional medicine (ITM) contribute to its historical significance. 
Turmeric is integral to Chinese traditional medicine (TCM), 
Ayurveda, and various folk medicines worldwide, with traditional uses 
ranging from topical treatment for skin disorders to internal remedies 
for poor digestion and liver function. Recognizing the valuable 
insights from traditional medicine in guiding natural product-based 
drug discovery, researchers explore the medicinal applications of 
turmeric across different traditional systems and investigate the 
modern pharmacological activities of curcumin, bridging the 
knowledge from ancient practices to current clinical trials (10, 11).

2 Methods

Comprehensive literature searches were conducted across various 
databases, including Pubmed, Scifinder, ScienceDirect, Medline, 
Embase, Google Scholar, and Web of Science. The key terms employed 
for the search encompassed topics such as turmeric, Curcuma longa, 
curcuminoids, curcumin, bioavailability, bioactive compounds, 
pharmacokinetic, pharmacological effects. Additionally, a thorough 
examination of articles published in peer-reviewed journals was 
performed through a library search.

3 Biological activities

Turmeric displays a rich chemical diversity, with around 235 
compounds identified so far, predominantly comprising phenolic 
compounds and terpenoids (Figure 3). The non-curcumin compounds 
exhibit diverse chemical structures, including 22 diarylheptanoids, 
diarylp entanoids, 8 phenylpropenes, various phenolic compounds, 68 
monoterpenes, 109 sesquiterpenes, 5 diterpenes, 3 triterpenoids, 4 
sterols, 2 alkaloids, and 14 other compounds (12, 13).

Turmeric is a plant with a diverse chemical profile (Figure 4 and 
Table 1), its extracts are obtained using ethanol, methanol, water, or 
ethyl acetate, and they are both water-soluble and water-insoluble. The 

FIGURE 1

The turmeric plant.
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water-insoluble fraction comprises turmeric oil and polyphenols, 
mainly diarylheptanoids (curcuminoids), with curcumin constituting 
80%, demethoxycurcumin 18%, and bisdemethoxycurcumin 2%. 
While 70% ethanol is the preferred solvent for extracting 
curcuminoids from turmeric, hydrodistillation followed by hexane 
extraction is the chosen method for separating essential oils. 
Curcumin, demethoxycurcumin, and bisdemethoxycurcumin 
collectively may make up over 30% of the ethanol extract of turmeric. 

Additionally, a distinctive component exclusive to C. longa is 
cyclocurcumin (15, 16).

3.1 Anti-cancer effects

Curcumin the primary constituents of turmeric has demonstrated 
efficacy across various stages of cancer progression, exerting inhibitory 

FIGURE 2

(A) The tautomerization of the curcumin molecule. (B) Curcuminoids – the main yellow pigments found in turmeric.

FIGURE 3

Chemical structure of the common components of turmeric, other than curcumin.
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effects on the transformation, initiation, development, and invasion 
of tumors, as well as angiogenesis and metastasis. It has been identified 
as a suppressor of tumor cell growth through modulation of key 
cellular pathways, including the cell proliferation pathway involving 
cyclin D1 and c-myc, the cell survival pathway targeting Bcl-2, Bcl-xL, 
cFLIP, XIAP, and cIAP1, the caspase activation pathway encompassing 
caspase-8, caspase-3, and caspase-9, the tumor suppressor pathway 
involving p53 and p21, the death receptor pathway through DR4 and 
DR5, and various cell signaling pathways, including protein kinase 
pathways such as c-Jun N-terminal kinases (JNK), protein kinase B 
(PKB or Akt), and 5′ adenosine monophosphate-activated protein 
kinase (AMPK) (17).

Curcuminoids exhibit a diverse range of biological activities 
(Figure 5). In the context of MCF-7 human breast tumor cells, the impact 
of curcuminoids and cyclocurcumin was investigated. DMC displayed 
superior inhibitory effects compared to CUR and BDMC, attributed to 
the presence of phenolic hydroxyl groups, methoxyl groups, and the 
diketone moiety. Notably, cyclocurcumin did not influence MCF-7 cell 
proliferation, indicating that the diketone system within curcuminoids 
likely contributes to their antiproliferative effects (18).

Semsri et  al. explored the influence of pure CUR on the 
expression of the Wilm’s tumor 1 (WT1) gene in leukemic K562 
cell lines. The study revealed that CUR’s effects were mediated 
through PKCa signaling upstream of the WT1 transcription 
factor’s auto-regulatory function. Pure CUR impacted WT1 
protein-promoter binding, reduced WT1-mRNA levels, and 
decreased protein levels in K562 cells, contributing to its anti-
proliferative effects. This suggests the potential therapeutic utility 
of CUR in the development of approaches for treating 
leukemia (19).

Jiang et al. identified the antitumor constituents in curcuminoids 
from C. longa (Figure 6) on He La cells, demonstrating a significant 
correlation between curcuminoids and antitumor activity. The 
inhibitory role of CUR in lipolysis was investigated in 3 T3-L1 
adipocytes, revealing its potential to attenuate TNF-α-mediated 
lipolysis. This antilipolytic effect could underlie CUR’s ability to reduce 
plasma free fatty acid levels and improve insulin sensitivity (20).

CUR emerged as a potent tight binding inhibitor of human 
carbonyl reductase 1 (CBR1), inhibiting daunorubicinol formation. 
This inhibition could enhance the therapeutic effectiveness of 
daunorubicin by preventing heart tissue damage (21).

Yodkeeree et al. (22) conducted a study to compare the impact of 
CUR, DMC, and BDMC on the expression levels of urokinase 
plasminogen activator, metalloproteinases (MMPs), membrane type 
1 (MT1-MMP), tissue inhibitor of MMPs, and the in vitro invasiveness 
of human fibrosarcoma cells. The order of potency in inhibiting cancer 
cell invasion was found to be BDMC > DMC > CUR. Zymography 
analysis revealed that, in a dose-dependent manner, CUR, DMC, and 
BDMC significantly reduced urokinase plasminogen activator and 
active MMPs from the cells. Notably, BDMC and DMC exhibited 
greater potency in this regard compared to CUR. All three forms of 
curcuminoids significantly inhibited collagenase and MMPs. DMC 
and BDMC demonstrated higher antimetastatic efficacy than CUR, 
attributable to their differential down-regulation of extracellular 
matrix (ECM) degradation enzymes (23).

FIGURE 4

The chemical profile of the turmeric plant.

TABLE 1 The percentage by weight of the compounds found in the 
turmeric plant (14).

Constituent Percentage by weight (%)

Curcuminoids 1–6

Volatile oils 3–7

Fiber 2–7

Mineral matter 3–7

Protein 6–8

Fat 5–10

Moisture 6–13

Carbohydrates 60–70
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The administration of DMC resulted in the inhibition of nuclear 
factor-kappa B’s DNA binding activity, a factor that orchestrates the 
expression of MMPs, urokinase plasminogen, intercellular adhesion 

molecule-1, and chemokine receptor 4. The anti-invasive effect of 
DMC appears to be primarily mediated through the modulation of the 
expression of proteins associated with invasion, potentially by targeting 

Curcumin
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FIGURE 5

The biological activity of curcumin on different ailments.

FIGURE 6

Curcumin analogues and their use in cancer treatment.
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nuclear factor-kappa B in MDA-MB-231 cells (24). Moreover, 
curcuminoids-mediated photodynamic therapy (PDT) exhibited a 
substantial suppression of cell viability in breast cancer cell lines, with 
DMC-PDT demonstrating the most pronounced anti-proliferative 
effect. The potential of DMC as a novel photosensitizer in PDT for 
cancer treatment was substantiated by its ability to reverse cell viability, 
reduce LC3 conversion, and inhibit PARP cleavage, all of which were 
attenuated by pre-treatment with a singlet oxygen scavenger or JNK 
inhibitor in the context of DMC-PDT. Notably, DMC-PDT displayed 
superior efficacy compared to DMC alone in curtailing cell viability in 
breast cancer cell lines, suggesting its promising role as a potential 
photosensitizer in cancer therapy (25, 26).

The metabolic profile of Rhizoma paridis saponins combined with 
turmeric intervention in H22 hepatocarcinoma mice showed 
promising anticancer effects by suppressing levels of amino acids, lipid 
compounds, and carbohydrates in tumor tissues (27).

In a research investigation focused on the monocarbonyl analogue 
of B63, derived through chemical modifications of curcumin’s 
structure, this compound demonstrated a heightened antiproliferative 
impact compared to curcumin specifically on colon cancer cells. 
Furthermore, utilizing a lower dosage of B63 (50 mg/kg B63 versus 
100 mg/kg curcumin) still resulted in the suppression of tumor 
growth, akin to the effects observed with curcumin (28).

3.2 Radioprotective effects

Curcuminoids, as potent antioxidant polyphenols, exhibit 
radiomodulatory properties by conferring radioprotection to 
non-cancerous cells while sensitizing tumor cells to radiation. In a 
study conducted by Lopez-Jornet et al. (29) the potential protective 
effects of lycopene and CUR on the parotid glands of female Sprague 
Dawley rats during radiotherapy were explored. Morphological and 
histopathological analyses revealed reduced cell necrosis in the 
CUR-treated group compared to other groups. Pre-administration of 
lycopene and CUR 24 h before irradiation contributed to mitigating 
structural damage to the salivary glands. Sebastià et al. (30) reported 
a dual action of polyphenols present in CUR, manifesting as both 
radioprotective and radiosensitive effects. The observed 
radiosensitization was attributed to compromised G2-checkpoint 
functionality, diminishing its capacity to effectively halt damaged cells 
in the G2-phase and resulting in a significant increase in radiation-
induced chromatid breaks. The simultaneous dual-mode action of 
these polyphenols suggests that the overall net effect—whether 
radioprotective or radiosensitizing—depends on the cell-cycle status 
of the cells at the time of irradiation (31, 32).

Belcaro et al. (33) conducted a clinical investigation evaluating a 
specialized lecithin delivery system of CUR (Meriva) in 160 cancer 
patients undergoing chemotherapy and radiotherapy. The study 
findings led the authors to conclude that the formulated CUR has the 
potential to reduce the pain-related side effects associated with cancer 
therapy (33).

In another clinical trial involving 30 breast cancer patients, the 
protective effects of Curcumin C3 Complex® (6 g/day) against 
radiodermatitis were assessed. Parameters such as moist 
desquamation, pain level, redness, and severity of radiation dermatitis 
were measured. The curcumin group exhibited a significant reduction 
in moist desquamation and the severity of radiation dermatitis 

compared to the placebo group (35). Another study investigated the 
effectiveness of Vicco® turmeric cream (Vicco Laboratories, Parel, 
India), containing sandalwood and turmeric oil, in alleviating 
radiodermatitis induced by radiotherapy in 50 patients with head and 
neck cancer. The cream was applied daily (five times a day) from the 
first day and continued until 2 weeks after treatment completion. 
Acute skin reactions were monitored twice a week. Results indicated 
a notable decrease in dermatitis grades among patients using Vicco® 
turmeric cream at all evaluated time points (36, 37).

3.3 Anti-inflammatory effects

Inflammation represents a fundamental and noteworthy 
defensive mechanism employed by organisms in response to tissue 
damage. This reaction is elicited by various factors, including 
ischemic injury resulting from insufficient blood supply to a tissue 
or organ, physical trauma, exposure to toxins, infection, or other 
forms of trauma (38). It is imperative to effectively curtail the 
inflammatory response once its necessity diminishes to prevent 
undesirable tissue damages and cellular destruction, potentially 
leading to chronic inflammation (39).

The inflammatory process involves the participation of leukocytes 
or inflammatory cells, namely neutrophils, lymphocytes, and 
macrophages. Subsequent to the inflammatory cascade, leukocytes 
release specific elements such as eicosanoids, vasoactive peptides and 
amines, cytokines, and acute-phase proteins. These factors act in 
concert to mediate the inflammatory procedure, thereby averting 
further tissue damage and ultimately facilitating the healing and 
restoration of tissue function (40).

Curcumin, a component extensively utilized in Eastern medicine, 
has demonstrated therapeutic efficacy in treating various chronic 
diseases and inflammatory disorders, including airborne diseases. 
Attributed to its phenolic composition, curcumin exhibits antioxidant 
properties, preventing apoptosis by promoting the growth of inhibited 
cells. Turmeric, containing curcumin, enhances safety in food by 
preventing peroxide formation and surpasses vitamin E in effectively 
preventing lipid oxidation. Components extracted from Curcuma 
longa display significant antioxidant effects, playing a crucial role in 
preventing lipid oxidation (41, 42).

Traditionally, turmeric has been topically applied for skin diseases, 
insect bites, and chickenpox in India, serving as an alternative medical 
support for wound healing (Figure 7). Curcumin treatment accelerates 
wound contraction, increases fibronectin and collagen expression in 
myofibroblasts, and enhances granulation tissue formation and 
neovascularization in mouse-wound models with diabetes and 
hydrocortisone (43). Curcumin reduces injuries induced by hydrogen 
peroxide in yellow keratinocytes and fibroblasts, significantly 
decreasing wound healing time. In mouse models, curcumin exhibits 
antiulcer effects, reducing lipid peroxidation and protein oxidation, 
and promoting re-epithelialization to reverse gastric epithelial cell 
damage (44).

Numerous common skin disorders are associated with the 
dysregulation of the inflammatory response. Curcumin has 
demonstrated the ability to down-regulate various inflammatory 
targets, including lipoxygenase, cyclooxygenase-2, and inducible nitric 
oxide synthase. Additionally, it acts as an inhibitor of several 
inflammatory cytokines, such as TNF-α, interleukin-1, −2, −6, −8, 
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and − 12 (45). The transcription factor nuclear factor kappa B 
(NF-κB), which governs cyclooxygenase-2 and inducible nitric oxide 
synthase and regulates cellular proliferation, is proposed to 
be suppressed by curcumin (46). TNF-α, implicated in psoriasis and 
atopic dermatitis, triggers proinflammatory cytokines and activates 
NF-κB (47). Hence, the potential reduction of NF-κB by curcumin 
could contribute to its therapeutic efficacy in managing inflammatory 
skin diseases (48). Mohanty et al. applied a curcumin-loaded oleic 
acid-based polymeric bandage (COP) topically on the backs of 
wounded rats and observed a downregulation in the expression of 
various kinases in the PI3K/AKT/NF-κB pathway. The application of 
the COP bandage resulted in the downregulation of P13K and pAKT 
kinases, leading to reduced activation of the NF-κB gene and 
decreased inflammation. Additionally, an upregulation in I-κB-α 
protein, which inhibits the NF-κB pathway, was observed. Therefore, 
Mohanty et  al. demonstrated that curcumin effectively reduces 
inflammation at wounded sites by modulating the NF-κB pathway 
(49). In contrast to Mohanty’s findings, an in vivo study reported an 
increase in inflammatory cell infiltration in burn wounds on rats 
treated with curcumin compared to untreated groups (50). However, 
the study did not specify the type of inflammatory cells measured, 
necessitating further investigations to elucidate the proinflammatory 
effects of curcumin on wounds. Interestingly, curcumin was also 
found to enhance nitric oxide (NO) production in excision wounds of 
mice exposed to gamma radiation (51). Increased NO production has 
been shown to promote wound healing in patients by enhancing 
inflammation (35). Although Jagetia and Rajanikant proposed that the 
increase in NO contributed to improved wound healing with 

curcumin treatment, the majority of studies provide evidence that 
curcumin indeed reduces inflammation. By mitigating the 
inflammatory response, damaged skin can more efficiently progress 
to later stages of healing, such as proliferation and remodeling. 
Uncontrolled and prolonged inflammation may delay these 
subsequent stages and impede the overall wound healing process (52). 
Despite its potent modulative effects on wound healing, curcumin 
faces challenges related to low bioavailability, rapid metabolism, 
inadequate solubility, and sensitivity. Exploring new formulations, 
such as nanoparticles, is crucial to overcoming these limitations and 
harnessing the full potential of curcumin (53).

Curcumin’s also influence extends to inhibiting platelet 
production, removing mitogens that stimulate the rapid growth of 
mononuclear blood cells, and partially inhibiting the protein kinase 
enzyme (54). Given the well-established role of oxidative stress in the 
pathogenesis of various diseases (e.g., myocardial ischemia, ischemia–
reperfusion, bleeding, shock, nerve cell damage, and cancer), 
curcumin’s anti-inflammatory and antioxidant properties are 
substantiated. It eliminates various forms of reactive oxygen species 
(ROS), including hydroxyl radicals and nitrogen dioxide radicals. The 
antioxidant capacity of curcuminoids has been reported to 
be equivalent to that of ascorbic acid (55).

The inflammation and the oxidative stress and its associated 
alterations in neuroplasticity play pivotal roles in the development of 
this neurodevelopmental disorder. Recent studies have suggested a 
potential role for curcumin in the treatment of depression and bipolar 
disorder. Adding curcumin to antidepressant drugs has demonstrated 
significant reductions in depressive symptoms compared to a placebo 
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FIGURE 7

The effects of applying curcumin products to skin lesions and pathologies.

117

https://doi.org/10.3389/fnut.2024.1399888
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Cozmin et al. 10.3389/fnut.2024.1399888

Frontiers in Nutrition 08 frontiersin.org

supplement. Furthermore, a recent meta-analysis has provided 
support for the effectiveness of adjunctive curcumin in managing 
depression and anxiety disorders. Importantly, curcumin has been 
shown to be well-tolerated and safe in various randomized clinical 
trials involving humans (56).

Functioning as a potent hydroxyl radical scavenger and superoxide 
radical capturer (Figure 8), curcumin protects DNA from oxidative 
injury by retaining free radicals. Following oral intake, it undergoes 
hydrogenation in the intestines, transforming into 
tetrahydrocurcumin, and is subsequently absorbed, distributed into 
the blood and tissues, and excreted in the bile. Curcumin 
supplementation has been shown to reduce muscle damage induced 
by eccentric exercise in rats (57).

Multifaceted anticancer effects of turmeric encompasses various 
aspects, including the modulation of key cellular pathways, the impact 
on specific cancer cell lines, the inhibition of metastasis, and the 
exploration of potential therapeutic applications. Curcumin, a primary 
constituent of turmeric, has exhibited remarkable efficacy throughout 
multiple stages of cancer progression. Its inhibitory effects extend to 
the transformation, initiation, development, and invasion of tumors, 
as well as angiogenesis and metastasis. This broad spectrum of action 
positions curcuminoids as potent suppressors of tumor cell growth.

3.3.1 Mechanistic insights
The discussion delves into the intricate molecular mechanisms 

underlying curcuminoids’ anticancer effects. The modulation of 
crucial cellular pathways, including the cell proliferation, cell survival, 
caspase activation, tumor suppressor, and death receptor pathways, 
elucidates the diverse strategies employed by curcuminoids in 
targeting cancer cells. These pathways involve key regulators such as 
cyclin D1, c-myc, Bcl-2, Bcl-xL, caspases, p53, p21, DR4, and 
DR5 (58).

3.3.2 Cell-line specific effects
Studies on specific cancer cell lines, such as MCF-7 human breast 

tumor cells, highlight the differential potency of curcuminoids. For 

instance, DMC demonstrates superior inhibitory effects compared to 
CUR and BDMC, emphasizing the importance of structural elements 
like phenolic hydroxyl groups, methoxyl groups, and the 
diketone moiety.

3.4 Potential therapeutic applications

The research extends its focus to potential therapeutic 
applications. In leukemia treatment, pure CUR shows promise in 
modulating the expression of the WT1 gene, indicating its potential 
utility in leukemia therapy. Furthermore, the exploration of 
curcuminoids in lipolysis inhibition suggests a potential avenue for 
reducing plasma free fatty acid levels and improving insulin 
sensitivity. The order of potency in inhibiting cancer cell invasion is 
identified as BDMC > DMC > CUR, and their ability to significantly 
reduce urokinase plasminogen activator and active MMPs 
underscores their potential in inhibiting invasion and metastasis (59). 
The discussion introduces the application of curcuminoids in 
photodynamic therapy (PDT), revealing their substantial suppression 
of cell viability in breast cancer cell lines. The heightened anti-
proliferative effect observed with DMC-PDT, coupled with its 
potential as a novel photosensitizer, suggests a promising avenue for 
cancer therapy. Additional studies explore the metabolic profile of 
curcuminoids in combination with other agents, showcasing their 
anticancer effects by suppressing levels of amino acids, lipid 
compounds, and carbohydrates in tumor tissues. The discussion also 
touches upon the enhanced antiproliferative impact of a 
monocarbonyl analogue of B63 compared to curcumin, specifically 
in colon cancer cells (60).

Regarding radiomodulatory properties of curcuminoids, there are 
a collection of studies exploring turmeric bioactive compounds 
particularly curcumin, and their potential applications in the context 
of cancer therapy. These studies both preclinical and clinical 
investigations, shedding light on the multifaceted effects of 
curcuminoids in the presence of radiation.

FIGURE 8

The antioxidant action of curcumin.
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Studies show a dual nature of curcuminoids, acting as both 
radioprotectors for normal cells and radiosensitizers for tumor cells. 
The study by Lopez-Jornet et al. (29) on female Sprague Dawley rats 
during radiotherapy elucidates the potential protective effects of 
curcumin on parotid glands. Morphological and histopathological 
analyses revealed reduced cell necrosis in the CUR-treated group, 
indicating a radioprotective effect. Furthermore, the 
pre-administration of lycopene and CUR contributed to mitigating 
structural damage to the salivary glands. (30) reported a dual action 
of polyphenols in CUR, manifesting both radioprotective and 
radiosensitive effects. The radiosensitization was attributed to 
compromised G2-checkpoint functionality, leading to increased 
radiation-induced chromatid breaks (61).

Inflammation, oxidative stress, and neuroplasticity-related 
changes play key roles in the development of this 
neurodevelopmental disorder. Recent studies have suggested a 
potential role for curcumin in the treatment of depression and 
bipolar disorder. Adding curcumin to antidepressant medications 
has shown significant reductions in depressive symptoms 
compared to a placebo supplement (62).

Curcumin (Figure 9) has the complexity of a long carbon chain 
that bonds at the ends with two benzenes. Along this chain there can 
be  found both carbonyl and hydroxyl oxygens which provide 
curcumin its specific character, besides these the double bonds also 
have a role in the bioavailability and polymerization of multiple 
molecules and the formation of bonds with other diverse componds.

The diketo moiety can also act as a potent metal chelator, 
coordinationg metal ions and forming with them a complex salt. The 
phenolic hydroxyl groups also act as potent antioxidants by donating 
their hydrogens to free radicals, minimizing the formation of reactive 
oxygen species and inhibiting oxidative stress.

In summary, the cumulative evidence presented in the text 
underscores the multifaceted and promising anticancer properties of 
curcuminoids. From elucidating molecular mechanisms to exploring 
specific applications, the diverse range of studies contributes valuable 
insights into the potential of curcuminoids as effective agents in 
cancer therapy.

This review highlights curcumin’s inhibitory effects on various 
stages of cancer progression, including transformation, initiation, 
development, invasion, angiogenesis, and metastasis. This broad 
spectrum of action positions curcuminoids as potent suppressors of 
tumor cell growth. The involvement of key regulators such as cyclin 
D1, c-myc, Bcl-2, caspases, p53, p21, DR4, and DR5 is explored, 
providing a mechanistic understanding of the diverse strategies 
employed by curcuminoids in targeting cancer cells. Potential 
therapeutic applications, including leukemia treatment, lipolysis 
inhibition, and photodynamic therapy, are explored, showcasing the 
versatility of curcuminoids in diverse cancer-related contexts (63, 64).

In the context of cancer therapy, we  find a dual nature of 
curcuminoids, acting as both radioprotectors for normal cells and 
radiosensitizers for tumor cells. Insights from preclinical and clinical 
investigations shed light on the potential of curcuminoids in 
minimizing radiation-induced damage to normal tissues while 
enhancing the sensitivity of tumor cells to radiation. The findings 
collectively suggest that curcuminoids have promising applications in 
cancer therapy, acting both as protectants for healthy cells and 
sensitizers for cancer cells. Despite valuable insights, the article 
acknowledges potential limitations and calls for future research to 
standardize methodologies, explore long-term effects, and elucidate 
molecular mechanisms. Randomized controlled trials are proposed to 
strengthen the scientific basis for integrating curcuminoids into 
cancer treatment regimens (65, 66).

4 Conclusion

In this review we  find the role of curcumin in modulating 
inflammatory responses and promoting wound healing. Through its 
antioxidant properties and the down-regulation of inflammatory 
targets, curcumin emerges as a promising agent in managing 
inflammatory skin diseases. Discrepancies in findings prompt further 
investigations, while the acknowledgment of challenges underscores 
the need for innovative formulations like nanoparticles to maximize 
curcumin’s therapeutic potential in wound healing.

FIGURE 9

The building blocks of the curcumin molecule and its multifaceted uses.
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The present article provides a comprehensive overview of 
curcumin’s multifaceted roles in cancer therapy, inflammation, and 
wound healing. The diverse applications of curcuminoids in cancer 
treatment, coupled with their immunomodulatory properties, present 
exciting prospects for future research and clinical applications. The 
nuanced understanding of curcumin’s mechanisms of action 
contributes to its potential integration into mainstream cancer 
therapies and wound care, offering a natural and versatile approach to 
disease management.

Novel aspects underlined in the review paper are related to the 
versatility of curcuminoids in cancer-related contexts, showcasing 
potential therapeutic applications beyond traditional chemotherapy. 
In the realm of cancer therapy, we uncover a dualistic property of 
curcuminoids, wherein they serve as both radioprotective agents for 
healthy cells and radiosensitizing agents for tumor cells. This 
distinctive attribute carries implications for mitigating radiation-
induced harm to normal tissues while concurrently augmenting the 
susceptibility of tumor cells to radiation therapy.

While acknowledging the promising therapeutic potential of 
curcuminoids, we have uncovered potential limitations such as the 
low bioavailabiliy of the molecule and its fast metabolism, althought 
these present as obstacles, they can be used to our advantage for 
making different curcumin formulations that are easily metabolized 
and do not leave traces behind. Besides these, the bioavailabily of 
curcumin can be  potentially increased by combining it with 
different bioavailable molecules. Curcumin can also be used as a 
chelator for different metal ions, for adminestering or removing 
them from the body, this property seems to be  useful in 
different supplements.

In summary, our review has uncovered the multifaceted 
potential of curcumin both as an immunomodulator, as a 
radioprotective, anticancer medication and so much more. 
Curcumin boasts multiple benefits and presents itself as an 
interesting subject for future research.
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Dietary supplementation with 
mulberry leaf flavonoids and 
carnosic acid complex enhances 
the growth performance and 
antioxidant capacity via 
regulating the p38 MAPK/Nrf2 
pathway
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Dingfu Xiao 1,4*
1 College of Animal Science and Technology, Hunan Agricultural University, Changsha, China, 2 College 
of Xiangya Pharmaceutical Sciences, Central South University, Changsha, China, 3 Geneham 
Pharmaceutical Co., Ltd., Changsha, China, 4 Yuelushan Laboratory, Changsha, China

Introduction: This study aimed to investigate the regulatory effects of mulberry 
leaf flavonoids and carnosic acid complex (MCC) on the growth performance, 
intestinal morphology, antioxidant, and p38 MAPK/Nrf2 pathway in broilers.

Methods: A total of 256 healthy 8-day-old female yellow-feathered broilers 
were randomly divided into 4 equal groups: a control group (CON) fed a basal 
diet, an antibiotic group (CTC) supplemented with 50  mg/kg chlortetracycline, 
and two experimental groups (MCC75, MCC150) fed basal diets with 75  mg/kg 
and 150  mg/kg of MCC, respectively. The experiment lasted for 56  days, with 
days 1–28 designated as the initial phase and days 29–56 as the growth phase.

Results: The results on the growth performance showed that diets supplemented 
with MCC and CTC decreased the feed-to-gain ratio (F/G), diarrhea rate, and 
death rate, while significantly increasing the average daily weight gain (ADG) 
(p  <  0.05). Specifically, the MCC150 group enhanced intestinal health, indicated 
by reduced crypt depth and increased villus height-to-crypt depth ratio (V/C) 
as well as amylase activity in the jejunum. Both the MCC and CTC groups 
exhibited increased villus height and V/C ratio in the ileal (p  <  0.05). Additionally, 
all treated groups showed elevated serum total antioxidant capacity (T-AOC), 
and significant increases in catalase (CAT) and glutathione peroxidase (GSH-
Px) activities were observed in both the MCC150 and CTC groups. Molecular 
analysis revealed an upregulation of the jejunal mRNA expression levels of PGC-
1α, Nrf2, and Keap1 in the MCC and CTC groups, as well as an upregulation of 
ileum mRNA expression levels of P38, PGC-1α, Nrf2, and Keap1 in the MCC150 
group, suggesting activation of the p38-MAPK/Nrf2 pathway.

Discussion: These findings indicate that dietary supplementation with MCC, 
particularly at a dosage of 150  mg/kg, may serve as a viable antibiotic alternative, 
enhancing growth performance, intestinal health, and antioxidant capacity in 
broilers by regulating the p38-MAPK/Nrf2 pathway.
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1 Introduction

The expansion of chicken farming is associated with substantial 
challenges, including environmental stressors, prevalent diseases, and 
substandard feeding practices, which significantly compromise the 
immune health and growth performance of broilers (1). While 
antibiotics have been employed to enhance disease resistance and boost 
production metrics, their use has been marred by considerable 
drawbacks, notably the specter of antibiotic residues persisting in poultry 
products (2). Antimicrobial resistance has escalated into a critical global 
health emergency, spurred by the overutilization and incorrect 
application of antibiotics within the realm of animal husbandry, which 
catalyzes the emergence of resistant microbial strains (3). Specifically, the 
poultry industry has been implicated as a major source of this problem, 
wherein the routine use of antibiotics for growth promotion has elicited 
heightened concern over potential impacts on human health and 
environmental safety (4). Therefore, it is urgent to explore alternative 
strategies to promote poultry growth and disease prevention. Plant 
extracts, which have been shown to possess antimicrobial, antioxidant, 
and immune-stimulating properties, emerge as a promising avenue for 
diminishing the reliance on antibiotics in poultry farming (5, 6).

Mulberry leaf flavonoids are one of the significant active 
components of mulberry plants, mainly including quercetin, 
kaempferol, rutin, morin and its derivatives (1). Extensive research 
indicates that these flavonoids can effectively improve the antioxidant 
properties and oxidative stress resilience of broilers, alongside 
bolstering their immunity and disease resistance (7, 8). Moreover, these 
compounds have been found to facilitate the growth and development 
of broilers, suggesting their promising utility in broiler production 
practices (1). Carnosic acid is a phenolic diterpenoid primarily 
extracted from rosemary and other Lamiaceae plants, and its content 
in air-dried rosemary leaves can range from 3 to 10% (9). There are 
currently few studies on the application of carnosic acid, which is a 
natural fat-soluble antioxidant with demonstrated antibacterial, anti-
inflammatory, and antioxidant effects (9, 10). Although these two 
natural chemicals have been the subject of extensive research in recent 
years due to their health benefits, their complexes have received 
comparatively little attention. Based on the extensive research on these 
two natural substances, we hypothesize that their complex has growth-
promoting and antioxidant effects on livestock and poultry, potentially 
serving as a substitute for antibiotics. Therefore, the major objectives 
of this study were to investigate the effects of dietary supplementation 
with mulberry leaf flavonoids and carnosic acid complexes (MCC) on 
broiler performance, nutrient digestibility, intestinal digestive enzymes, 
intestinal morphology, and antioxidant properties, to evaluate the 
potential of MCC as a green feed additive.

2 Materials and methods

2.1 Animal ethics statement

To ensure animal welfare, all experiments and methods are 
designed to minimize animal suffering. All experiments and sample 
collection procedures were performed according to the Chinese 
guidelines for animal welfare and were approved by the Institutional 
Animal Care and Use Committee of Hunan Agricultural University 
(Permit Number: CACAHU 2020-0821).

2.2 Animals and experimental treatments

A total of 256 healthy 8-day-old female yellow-feathered broilers, 
with an average initial body weight of 101.0 ± 2.0 g, were randomly 
divided into four groups. Each group had 8 replicates of 8 birds each. 
The four groups were denoted as the CON group (basal diet), the CTC 
group (basal diet with 50 mg/kg chlortetracycline), the MCC75 group 
(basal diet supplemented with 75 mg/kg MCC), and the MCC150 
group (basal diet supplemented with 150 mg/kg MCC). The addition 
dosage of MCC was determined based on the preliminary experiments 
of our research team. The experiment included a 7-day pretest period 
and a subsequent 56-day trial period. According to the standard 
nutritional requirement of broilers (Agricultural industry standard of 
the people’s Republic of China—chicken breeding standard NY/
T33-2004), the basic diet formula of the formal trial period was 
divided into two periods (d 1–28 and d 29–56), and its nutrient profile 
is shown in Table 1.

The MCC used in the experiment was sourced from Hunan 
Geneham Pharmaceutical Co., Ltd. It consisted primarily of 25% 
mulberry leaf flavone, 25% carnosic acid, and the remaining 
components served as carriers. Of which, mulberry leaf flavonoids 
were obtained by dissolving mulberry leaves in water, followed by two 
rounds of reflux, and subsequently concentrating and spray drying the 
filtrate. Carnosic acid was extracted from Salvia miltiorrhiza using 
alcohol, followed by high-pressure filtration and spray drying.

The experiment was conducted at the breeding base of Hunan 
Agricultural University. Prior to the test, the floor walls of the chicken 
house and the chicken cage underwent a cleaning, disinfection, and 
ventilation process for 3 days. The test chickens were raised in four-
layer fully enclosed chicken cages (60 cm width × 120 cm length × 
50 cm height) with artificial lighting throughout the test. The humidity 
was controlled at 50–70%, and the temperature was maintained at 
33–35°C from d 1–7 and at 27–31°C from d 8–14, gradually reducing 
to approximately 22°C until d 28. All birds were fed twice a day at 
08:00 h and 16:00 h. Water and feed (crumbled) were provided ad 
libitum, the chicken house was regularly cleaned, and immunizations 
were administered as per standard protocols.

2.3 Sample collection

At the end of the trial, one broiler close to the average weight of 
each replicate was chosen, weighed, and data were collected (8 birds 
per group, respectively). Subsequently, blood samples from the jugular 
vein were collected in 10 mL centrifuge tubes, centrifuged at 3,500 r/
min for 10 min at 4°C, and the obtained serum samples were stored at 

Abbreviations: MCC, Mulberry leaf flavone and carnosic acid complexes; ADFI, 

Average daily feed intake; DM, Dry matter; EE, Ether extract; T-AOC, Total 

antioxidant capacity; GSH-PX, Glutathione peroxidase; MDA, Malondialdehyde; 

β-actin, Beta-actin (loading control); TNF-α, Tumor necrosis factor; p38 MAPK, 

P38 mitogen-activated protein kinase; PGC-1ɑ, Peroxisome proliferator-activated 

receptorγcoactivetor-1ɑ; ADG, Average daily gain; F/G, Feed/gain; CP, Crude 

protein; CF, Crude fiber; SOD, Superoxide dismutase; CAT, Catalase; Nrf2, Nuclear 

factor erythroid 2-related factor 2; JNK, C-Jun N-terminal kinase; IL-6, 

Interleukin-6; IL-1β, Interleukin-1β.
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−20°C. The birds were euthanized by cervical dislocation. The spleen, 
thymus, and bursa of Fabricius were removed and weighed. The 
digesta from the middle jejunum was transferred to a 1.5 mL 
centrifuge tube, temporarily stored in liquid nitrogen, and then stored 
at −80°C. Additionally, samples for morphological analysis were 
collected from the middle jejunum and middle ileum (1–2 cm). The 
mucosa of jejunum and ileum was collected, rapidly frozen with liquid 
nitrogen, and stored at −80°C.

2.4 Growth performance

The broilers were weighed on the 0th, 28th, and 56th days of the 
experiment, and the feed intake was recorded during the experiment 
to calculate the average daily feed intake (ADFI), average daily gain 
(ADG), feed conversion ratio (F/G), diarrhea rate, and death rate of 
broilers in the early, late, and overall stages. The diarrhea rate was 
calculated as follows: Diarrhea rate (%) = number of diarrhea broilers/ 
(total number of broilers × total experimental days) × 100. Diarrhea 
was defined as watery manure with an irregular shape.

2.5 Immune organ index

The immune organ index (n = 8) was calculated by dividing the 
fresh weight (g) of the immune organs (thymus, spleen and bursa of 
Fabricius) by the pre-slaughter weight (g) of the chickens (6).

Immune organ indexes Immune organ weight g

body we

%

/

( ) = × ( )100

iight g( ) .

2.6 Apparent digestibility of nutrients

During the final 7 days of the experiment (d 50–56), 0.3% titanium 
dioxide (TiO2) was added to the diet as an exogenous indicator, and 
feed samples were randomly collected from each group and stored for 
testing. Fecal samples were collected on the last 4 days of the test 

period (d 53–56), and approximately 50 g of representative fecal 
samples were collected daily in the fecal pan under each cage using a 
five-point method to remove debris such as feathers and dander in the 
feces, and 10 mL of 10% dilute sulfuric acid was added to each 100 g 
of feces for nitrogen fixation and stored in a freezer at 20°C. The fecal 
samples were then properly combined, primary dried for 
approximately 6 h at 65°C, and weighed before being kept for testing. 
The crude extract content of ether in feces and feed was determined 
by the Soxhlet extraction method, the crude ash content of feces and 
feed was determined by high temperature ignition at 550°C, the crude 
protein content was determined by the Kjeldahl method, and the 
crude fiber content was determined by a semi-automatic fiber detector. 
The apparent digestibility of nutrients in the diet was calculated 
according to the following formula (11):

AD G1 F2 G2 F1% /( ) = − ×( ) ×( )  ×1 100.

AD, apparent digestibility of nutrients in the diet; G1, content of 
titanium in the diet; F1, content of a nutrient in the diet; G2, content 
of titanium in feces; F2, content of a nutrient in feces.

2.7 Intestinal digestive enzyme activity

The amylase (AMY, Kit Serial No: C016), lipase (LIP, Kit Serial 
No: A054), and trypsin (TP, Kit Serial No: A080) levels in jejunal 
contents (n = 8) were determined following the protocols of 
commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China), according to the manufacturer’s instructions.

2.8 Morphological structure of intestinal 
tract

Briefly, intestinal samples were dehydrated and embedded in 
paraffin (Thermo Fisher Scientific, Kalamazoo, MI, United States), 
and then sectioned into 4-μm thick histological slices for hematoxylin 
and eosin staining (HE). Representative fields were chosen for 

TABLE 1 Ingredients and nutrients composition of the basal experimental diet (air-dry basis, %).

Ingredients 1–28  days 29–56  days Nutrient levelb 1–28  days 29–56  days

Corn 62.20 67.50 ME (MJ/kg) 12.40 12.54

Soybean meal 28.00 28.00 CP 20.49 18.80

Puffed soybeans 6.00 0.00 Lysine 1.13 1.00

Soybean oil 0.10 1.20 Methionine 0.46 0.40

DL-Methionine 0.10 0.10 Cystine + Methionine 0.83 0.74

Dicalcium phosphate 1.50 1.30 Ca 1.00 0.90

Stone powder 1.20 1.10 AP 0.45 0.40

Choline 0.10 0.00

NaCl 0.30 0.30

Premixa 0.50 0.50

Total 100.00 100.00

aProvided per kilogram of diet: 50 mg of Cu; 50 mg of Fe; 50 mg of Mn; 60 mg of Zn; 1 mg of I; 0.5 mg of Se; 50,000 IU of vitamin A; 15,000 IU of vitamin D3; 130 IU of vitamin E; 10 mg of 
vitamin K3; 20 mg of vitamin B1; 0.5 mg of vitamin B2; 0.5 mg of vitamin B6; 75 mg of vitamin B12; 0.4 mg of biotin; 30 mg of pantothenic acid; 6 mg of folic acid; 160 mg of nicotinic acid.
bCalculated values.
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photography from a large number of randomly selected 
non-continuous fields. The ratio of villus height to crypt depth was 
calculated by measuring intestinal villus height and crypt depth with 
IMAGEEX, an image analysis program included in the YLE-21DY 
microscopic imaging system (Leica, Germany).

2.9 Serum antioxidant

The activities of total superoxide dismutase (T-SOD, Kit Serial No: 
A001), glutathione peroxidase (GSH-Px, Kit Serial No: A005), catalase 
(CAT, Kit Serial No: A007), total antioxidative capacity (T-AOC, Kit 
Serial No: A015), and the content of malondialdehyde (MDA, Kit 
Serial No: A003) were assayed (n = 8) using colorimetric methods with 
a Microplate Reader (Infinite M200 PRO, TECAN, Switzerland). The 
assays were conducted using the commercial kits purchased from 
Nanjing Jiancheng Biotechnology Co., Ltd. (Nanjing, China) and 
following their corresponding procedures.

2.10 Expression of antioxidation-related 
gene in the intestinal p38-MAPK/Nrf2 
pathway

Total RNA (n = 8) was extracted from the jejunum and ileum 
mucosa by using the Trizol method (R401-01, Vazyme, Nanjing, 
China), and then reverse transcription and real-time quantitative PCR 
were performed using the reverse transcription kit (R223-01, Vazyme, 
Nanjing, China) and fluorescence quantitative kit (Q711-02, Vazyme, 
Nanjing, China), respectively. The quality and quantity of extracted 

RNA were determined using a Nanodrop Spectrophotometers 
(IMPLEN, CA, United  States) and a Qubit Fluorometer (Life 
Technologies, CA, United States). The primers for the target gene were 
synthesized by Tsingke Biotechnology Co., Ltd. (Table 2). Real-time 
PCR analysis of the gene expression was performed using SYBR Green 
(Thermo Fisher Scientific, MA) on an ABI 6 flex real-time PCR 
instrument (Thermo Fisher Scientific). The reaction conditions were 
as follows: 50°C for 2 min, 95°C for 10 min; 40 cycles of 95°C for 15 s, 
60°C for 1 min. Melt curve analysis was performed to confirm the 
PCR amplification specificity (12). The target gene relative expression 
was calculated according to the 2−ΔΔCt method and the housekeeping 
gene β-actin was chosen as an internal reference gene.

2.11 Statistical analysis

SPSS 22.0 statistical software (SPSS Inc., Chicago, IL, United States) 
was used for general linear model (univariate) analysis. The Duncan’s 
multiple comparison method was employed for significant difference 
analysis, with p < 0.05 serving as the criterion for significant difference, 
and p < 0.01 indicating extremely significant difference. All results were 
expressed as mean ± standard deviation (SD).

3 Results

3.1 Growth performance

The effects of dietary supplementation of MCC on growth 
performance are presented in Table 3. In the 1–28 d period, the F/G 

TABLE 2 Sequence of primers for real-time PCR.

Target gene Accession no. Nucleotide sequence of primers (5′-3′) Product size (bp)

β-actin NM_205518.2 F: ATGATGATATTGCTGCGCTCGT 139

R: CCCATACCAACCATCACACCCT

JNK NM_205095.1 F: TGACCGAGTGAGGAGACGAT 211

R: ACTGTATCGAACGCAGCACA

TNF-ɑ NM_204267 F: TGTGTATGTGCAGCAACCCGTAGT 229

R: GGCATTGCAATTTGGACAGAAGT

IL-6 NM_204628.1 F: AAATCCCTCCTCGCCAATCT 106

R: CCCTCACGGTCTTCTCCATAAA

p38 MAPK NM_001353939.1 F: GCGAGTCCCTAATGCCTACG 199

R: ACAACTGTTGAGCCACACTCA

IL-1β NM_204524.1 F: ACTGGGCATCAAGGGCTACA 142

R: GCTGTCCAGGCGGTAGAAGA

PGC-1ɑ XM_015285697.2 F: CCAAAGGACACGCTCTAGATCA 76

R: TCTCGATCGGGAATATGGAGAA

Nrf2 XM_025152148.1 F: ATCACGAGCCCTGAAACCAA 143

R: GGCTGCAAAATGCTGGAAAA

Keap1 XM_025145847.1 F: GTACCAGATCGACAGCGTGG 197

R: GGCAGTGGGACAGGTTGAAG

JNK, c-Jun N-terminal kinase; TNF-ɑ, tumor necrosis factor-ɑ; IL, interleukin; p38 MAPK, p38 mitogen-activated protein kinase; PGC-1ɑ, peroxisome proliferator-activated receptor γ 
coactive-tor-1ɑ; Nrf2, Nuclear factor erythroid 2-related factor 2; Keap1, kelch like ECH associated protein 1.
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ratio was significantly lower (p < 0.05) in MCC75 group compared to 
the in the CON group, while no significant difference (p > 0.05) was 
observed in ADFI and ADG among the 4 groups. In the 29–56 d 
period, the MCC150 and CTC groups exhibited significantly higher 
ADG (p < 0.05) and lower F/G ratio (p < 0.05) compared to the CON 
group. There was no significantly difference (p > 0.05) observed in 
ADFI among the 4 groups. In the whole period of the experiment, the 
F/G ratio, the diarrhea rate, and the dead panning rate were lower 
(p < 0.05) in the CTC, MCC75, and MCC150 groups compared to the 
CON group. Additionally, compared to the CON group, both the 
MCC75 and CTC groups exhibited significantly greater ADG 
(p < 0.05).

3.2 Immune organ indexes

Table 4 showed the effect of MCC on the immune organ indexes 
of broilers. The spleen index of the MCC 75 group was markedly 
higher (p < 0.05) than that of the CON and CTC groups. However, 
there were no significant differences in the thymus index and bursa 
index among the 4 groups (p > 0.05).

3.3 Apparent digestibility

The apparent digestibility of dry matter (DM) was significantly 
higher (p < 0.05) in the MCC150 group than in the CON group 
(Table  5). Furthermore, ether extract (EE) digestibility markedly 
improved by 7.66, 7.19, and 6.66% (p < 0.05) in the CTC, MCC75, and 
MCC150 groups, respectively, compared to the CON group. 
Additionally, the content of crude protein (CP) was significantly 
greater (p < 0.05) in the MCC75 and MCC150 groups compared to the 
CON and CTC groups, while no significant difference was observed 
among crude fiber (CF) and ash digestibility (p > 0.05).

3.4 Intestinal digestive enzyme activity

The digestive enzyme activity of amylase, lipase, and trypsin in the 
jejunum of broilers was presented in Table 6. Compared with the 
control group, the amylase activity in the jejunum was significantly 
increased in the MCC and CTC groups (p < 0.05). However, no 
significantly differences were observed in the activities of jejunal lipase 
and trypsin among the 4 groups (p > 0.05).

TABLE 3 Effect of mulberry leaf flavonoids and carnosic acid complex (MCC) on growth performance of broilers.

Items Groups p-value

CON CTC MCC75 MCC150

d 1–28 ADFI (g/d) 45.75 ± 0.56 44.83 ± 0.56 44.35 ± 0.56 44.83 ± 0.56 0.333

ADG (g/d) 19.20 ± 0.39 19.82 ± 0.39 20.30 ± 0.39 19.32 ± 0.45 0.215

F/G 2.39 ± 0.05a 2.26 ± 0.05ab 2.19 ± 0.05b 2.31 ± 0.05ab 0.033

d 29–56 ADFI (g/d) 91.88 ± 1.55 90.72 ± 1.55 88.66 ± 1.55 87.60 ± 1.79 0.267

ADG (g/d) 29.77 ± 0.55b 32.09 ± 0.55a 30.77 ± 0.55ab 31.68 ± 0.63a 0.032

F/G 3.09 ± 0.07a 2.84 ± 0.07b 2.88 ± 0.07ab 2.77 ± 0.08b 0.027

d 1–56 Initial BW (g) 102.89 ± 1.07 100.98 ± 0.93 99.75 ± 0.93 100.98 ± 0.93 0.193

Final BW (g) 1475.14 ± 17.08b 1554.46 ± 17.08a 1529.64 ± 17.08ab 1512.21 ± 17.08ab 0.021

ADFI (g/d) 67.97 ± 0.78 67.69 ± 0.78 66.50 ± 0.78 66.03 ± 0.90 0.309

ADG (g/d) 24.49 ± 0.30b 25.96 ± 0.30a 25.53 ± 0.30a 25.50 ± 0.34ab 0.012

F/G 2.78 ± 0.05a 2.61 ± 0.05b 2.61 ± 0.05b 2.59 ± 0.05b 0.024

Diarrhea rate (%) 7.84 ± 0.43a 2.16 ± 0.43b 1.65 ± 0.43b 0.77 ± 0.43b <0.001

Death rate (%) 9.38 ± 1.69a 1.56 ± 1.69b 1.56 ± 1.69b 1.56 ± 1.69b <0.001

Data are presented as mean ± SD (n = 8). In the same row, values with no letter or the same letter superscripts mean no significant difference (p > 0.05), while with different small letter 
superscripts indicate a significant difference (p < 0.05). CON, basal diet; CTC, basal diet with 50 mg/kg chlortetracycline; MCC75, basal diet supplemented with 75 mg/kg MCC; MCC150, 
basal diet supplemented with 150 mg/kg MCC; BW, body weight; ADG, average daily gain; ADFI, average daily feed intake; F/G, feed-to-gain ratio.

TABLE 4 Effect of mulberry leaf flavonoids and carnosic acid complex (MCC) on indices immune organs of broilers (%).

Items Groups p-value

CON CTC MCC75 MCC150

Spleen index, % 0.17 ± 0.02b 0.17 ± 0.02b 0.23 ± 0.02a 0.20 ± 0.02ab 0.021

Thymus index, % 0.24 ± 0.02 0.23 ± 0.02 0.18 ± 0.02 0.25 ± 0.02 0.136

Bursa index, % 0.21 ± 0.02 0.22 ± 0.02 0.18 ± 0.02 0.18 ± 0.02 0.553

Data are presented as mean ± SD (n = 8). In the same row, values with no letter or the same letter superscripts mean no significant difference (p > 0.05), while with different small letter 
superscripts indicate a significant difference (p < 0.05). CON, basal diet; CTC, basal diet with 50 mg/kg chlortetracycline; MCC75, basal diet supplemented with 75 mg/kg MCC; MCC150, 
basal diet supplemented with 150 mg/kg MCC.
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TABLE 7 Effect of mulberry leaf flavonoids and carnosic acid complex (MCC) on intestinal tissue morphology in broilers.

Items Groups p-value

CON CTC MCC75 MCC150

Jejunum Villus height, μm 716.28 ± 40.52 784.16 ± 40.52 830.97 ± 36.99 814.21 ± 40.52 0.218

Crypt depth, μm 139.04 ± 3.74a 134.45 ± 4.10a 138.28 ± 4.10a 122.45 ± 4.10b 0.035

V/C ratio 5.15 ± 0.36b 5.82 ± 0.40b 6.14 ± 0.36ab 6.65 ± 0.40a 0.024

Ileum Villus height, μm 496.42 ± 49.24b 749.69 ± 55.04a 696.46 ± 55.04a 707.37 ± 60.30a 0.006

Crypt depth, μm 155.31 ± 3.12a 148.77 ± 3.12ab 146.2 ± 3.12ab 141.01 ± 3.12b 0.031

V/C ratio 3.24 ± 0.31b 5.03 ± 0.25a 4.76 ± 0.25a 5.01 ± 0.28a 0.001

Data are presented as mean ± SD (n = 8). In the same row, values with no letter or the same letter superscripts mean no significant difference (p > 0.05), while with different small letter 
superscripts indicate a significant difference (p < 0.05). CON, basal diet; CTC, basal diet with 50 mg/kg chlortetracycline; MCC75, basal diet supplemented with 75 mg/kg MCC; MCC150, 
basal diet supplemented with 150 mg/kg MCC; V/C ratio, villus height-to-crypt depth (V/C) ratio.

3.5 Histomorphology of intestinal tract

Dietary MCC150 decreased the crypt depth (p < 0.05) and 
increased the V/C ratio value (p < 0.05) in the jejunal (Table  7; 
Figure 1). In the ileal, the villus height and villus height-to-crypt 
depth (V/C) ratio value were increased (p < 0.01) in the CTC, 
MCC75, and MCC150 groups. Furthermore, the MCC150 group 
decreased the crypt depth in the ileal compared to the CON group 
(p < 0.05).

3.6 Serum antioxidation

According to the data presented in Table 8, it can be observed that 
dietary supplementation with MCC75, MCC150, and CTC significantly 
increased the T-AOC values in serum (p < 0.01). Additionally, the CAT 
activities were significantly increased (p < 0.05) in the CTC and 

MCC150 groups compared to the CON group. It is worth noting that 
dietary supplementation with MCC150 also led to an increase in 
GSH-Px levels (p < 0.05). However, there were no significant differences 
(p > 0.05) in T-SOD and MDA levels among the 4 groups.

3.7 Expression of antioxidant related genes 
in intestinal p38-MAPK/Nrf2 pathway

In the jejunum, dietary supplementation with CTC, MCC75, 
and MCC150 decreased (p < 0.05) the relative mRNA expression 
abundance of C-Jun N-terminal kinase (JNK), while increasing the 
mRNA levels of Peroxisome proliferator-activated 
receptorγcoactivetor-1ɑ (PGC-1) and nuclear factor erythroid 
2-related factor 2 (Nrf2) (p < 0.05) (Figure 2).

In the ileum, dietary supplementation with MCC150 increased 
the relative mRNA expression abundance of P38 mitogen-activated 

TABLE 5 Effect of mulberry leaf flavonoids and carnosic acid complex (MCC) on nutrient apparent digestibility of broilers (%).

Items Groups p-value

CON CTC MCC75 MCC150

DM 94.82 ± 0.24b 95.25 ± 0.24ab 95.52 ± 0.26ab 95.95 ± 0.24a 0.019

CP 72.45 ± 1.28b 73.28 ± 1.28b 77.27 ± 1.28a 77.41 ± 1.28a 0.019

EE 82.15 ± 1.46b 88.44 ± 1.46a 88.06 ± 1.46a 87.62 ± 1.46a 0.015

CF 39.99 ± 4.51 38.64 ± 4.03 40.32 ± 4.03 43.62 ± 4.51 0.870

Ash 22.18 ± 2.23 25.23 ± 1.93 26.80 ± 1.93 24.80 ± 2.07 0.491

Data are presented as mean ± SD (n = 8). In the same row, values with no letter or the same letter superscripts mean no significant difference (p > 0.05), while with different small letter 
superscripts indicate a significant difference (p < 0.05). CON, basal diet; CTC, basal diet with 50 mg/kg chlortetracycline; MCC75, basal diet supplemented with 75 mg/kg MCC; MCC150, 
basal diet supplemented with 150 mg/kg MCC; DM, dry matter; CP, crude protein; EE, ether extract; CF, crude fiber.

TABLE 6 Effect of mulberry leaf flavonoids and carnosic acid complex (MCC) on digestive enzyme activity of jejunum in broilers.

Items Groups p-value

CON CTC MCC75 MCC150

α-Amylase (U/mgprot) 170.34 ± 96.05c 766.99 ± 96.05a 394.85 ± 88.93bc 538.28 ± 83.18ab 0.005

Lipase (U/mgprot) 244.52 ± 97.45 622.76 ± 97.45 362.44 ± 97.45 440.84 ± 97.45 0.071

Trypsin (U/mgprot) 19173.67 ± 8230.13 29111.33 ± 7361.25 18689.53 ± 8230.13 19395.61 ± 7361.25 0.366

Data are presented as mean ± SD (n = 8). In the same row, values with no letter or the same letter superscripts mean no significant difference (p > 0.05), while with different small letter 
superscripts (a, b, and c) indicate a significant difference (p < 0.05). CON, basal diet; CTC, basal diet with 50 mg/kg chlortetracycline; MCC75, basal diet supplemented with 75 mg/kg MCC; 
MCC150, basal diet supplemented with 150 mg/kg MCC.
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protein kinase (P38), PGC-1, Nrf2, and Kelch like ECH associated 
protein 1 (Keap1) (p < 0.05) (Figure 3). Notably, the mRNA expression 
levels of Nrf2 were markedly higher (p < 0.05) in the MCC150 group 
than in the CTC group.

4 Discussion

Flavonoids, which are anti-inflammatory and antioxidant 
chemicals, can influence animal immunity and growth performance 
by regulating lipid metabolism, immunological function, and growth 
axis function (1, 7). Simultaneously, carnosic acid, a plant phenolic 
acid molecule, exhibits antibacterial, anti-inflammatory, antioxidant, 
hypoglycemic, and hypolipidemic properties (9, 10). It can function 
as an antibiotic replacement by modulating lipid metabolism and 
blocking cholinesterase, thereby improving animal growth (13). A 
previous study found that dietary supplementary with 200 mg/kg, 
400 mg/kg, and 800 mg/kg of flavonoid (quercetin) could increase 

ADG in broilers (14). In the present study, the ADG increased and the 
F/G ratio, diarrhea rate, and dead panning rate decreased when 
supplemented with MCC or chlortetracycline, indicating that the 
synergistic effect of MCC could promote broiler growth and 
development with comparable antibiotic efficacy. Nutrient metabolism 
can influence animal growth, and it has been demonstrated that 
mulberry leaf flavonoids increase the rate of metabolism in calves after 
weaning (1). Moreover, because flavonoids have a structure similar to 
estradiol, they can interact with the hypothalamus and pituitary gland, 
helping to regulate hormone levels and promote growth in animals. 
Qi et al. (15) also revealed that Allium flavones could boost serum 
hormone and insulin-like growth factor-1 levels, thereby promoting 
broiler chicken growth. Therefore, the promotive effect of MCC on 
growth performance is likely closely associated with the presence of 
mulberry leaf flavonoids. These results suggest that supplementing an 
appropriate amount of MCC into the diets of broilers is feasible.

The immune organ index is commonly used to measure the 
immune system function and overall health status of animals. There 

FIGURE 1

Morphological structure of jejunum and ileum in yellow-feathered broilers (HE staining, 40×). CON, basal diet; CTC, basal diet with 50  mg/kg 
chlortetracycline; MCC75, basal diet supplemented with 75  mg/kg MCC; MCC150, basal diet supplemented with 150  mg/kg MCC.

TABLE 8 Effect of mulberry leaf flavonoids and carnosic acid complex (MCC) on serum antioxidant indexes of broilers.

Items Groups p-value

CON CTC MCC75 MCC150

T-AOC (U/mL) 0.97 ± 0.11c 1.82 ± 0.11a 1.30 ± 0.10b 1.54 ± 0.10ab <0.001

SOD (U/mL) 773.95 ± 45.99 866.15 ± 45.99 811.54 ± 65.03 692.42 ± 49.16 0.105

GSH-Px (U/mL) 1588.80 ± 41.30b 1709.68 ± 41.30ab 1611.58 ± 41.30ab 1729.74 ± 38.64a 0.049

CAT (U/mL) 13.69 ± 1.67b 20.21 ± 1.56a 17.92 ± 1.67ab 19.75 ± 1.67a 0.038

MDA (nmol/mL) 12.25 ± 1.40 12.49 ± 1.52 11.83 ± 1.52 12.52 ± 1.52 0.987

Data are presented as mean ± SD (n = 8). In the same row, values with no letter or the same letter superscripts mean no significant difference (p > 0.05), while with different small letter 
superscripts (a, b, and c) indicate a significant difference (p < 0.05). CON, basal diet; CTC, basal diet with 50 mg/kg chlortetracycline; MCC75, basal diet supplemented with 75 mg/kg MCC; 
MCC150, basal diet supplemented with 150 mg/kg MCC; T-AOC, total antioxidant capacity; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; CAT, catalase; MDA, 
malondialdehyde.
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FIGURE 2

Effect of MCC on antioxidation-related gene expression in p38-MAPK/Nrf2 pathway in jejunum. Bars represent the means ± SD (n  =  8), bars with 
different letters on top represent statistically significant results (p  <  0.05). CON, basal diet; CTC, basal diet with 50  mg/kg chlortetracycline; MCC75, 
basal diet supplemented with 75  mg/kg MCC; MCC150, basal diet supplemented with 150  mg/kg MCC; JNK, c-Jun N-terminal kinase; TNF-ɑ, tumor 
necrosis factor-ɑ; IL, interleukin; p38 MAPK, p38 mitogen-activated protein kinase; PGC-1ɑ, peroxisome proliferator-activated receptor γ coactive-tor-
1ɑ; Nrf2, nuclear respiratory factor 2; Keap1, kelch like ECH associated protein 1.

is a positive correlation between the immunological organ index and 
immune organ development, and immune function rises with 
immune organ index (16). The thymus, spleen, and Fabricius bursa 
play crucial roles as immune organs in birds, and their indices serve 
as valuable indicators for assessing the organism’s immune status (8, 
17). The thymus functions as a central immune organ that secretes T 
lymphocytes and also plays a significant role in the neuroendocrine 
network (8). The spleen, as an important peripheral immune organ, 
directly affects broiler immunity (6, 17). Furthermore, previous 
research has demonstrated that plant flavonoids can promote the 
development of immune organs and enhance animal immunity (8). 
For example, the supplementation of alfalfa flavonoids in the feed can 
enhance the growth performance, spleen and bursa weights, as well as 
aspartate transaminase activity of meat geese (8). The results of this 
experiment and the above conclusion show some similarities, as MCC 
was observed to increase the spleen index and facilitate the 
development of immune organs. This effect could potentially 
be attributed to the action of mulberry leaf flavonoids in increasing 
protein synthesis and secretion while fully promoting the immune 
mechanisms of the spleen.

Animal growth and development are related to apparent 
digestibility of nutrients, which can directly reflect the digest and 
absorb ability of the animal body (18). Recent studies have 

demonstrated the positive effects of rosemary extract on enhancing 
nutrient digestibility in weaned piglets (19). Additionally, 
supplementation of 1,000 mg/kg quercetin has been found to increase 
the apparent digestibility of DM and nitrogen in growing pigs (20). 
Moreover, flavonoids derived from mulberry leaves have shown the 
potential to improve the digestibility of DM, CF, and metabolizable 
energy in broilers (21). In the present study, our results showed that 
the MCC increased the apparent digestibility of DM, CP, and CF in 
broilers. This suggested that MCC could effectively improve the 
apparent digestibility of nutrients in broilers, with a similar effect to 
that of chlortetracycline. The rate of nutrient digestibility and 
absorption in animals has a favorable correlation with animal growth, 
which further supports the aforementioned finding that MCC could 
enhance broiler growth performance. Gut microbiota plays a crucial 
role in digestive processes and possess a diverse metabolic repertoire 
closely associated with food metabolism (22). Furthermore, a study 
has demonstrated that flavonoids and carnosic acid can induce 
changes in gut microbiota composition (23). Flavonoids can increase 
nutrient digestion and utilization by promoting the growth of 
probiotics in the intestine while inhibiting the growth of harmful 
bacteria (24). Therefore, it is hypothesized that the MCC could 
improve nutrient digestibility in broilers via influencing intestinal 
bacteria in broilers. Unfortunately, the intestinal bacteria were not 
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detected in our study. Mulberry leaf flavonoids could also improve 
nutritional digestion and absorption in broilers by boosting intestinal 
villus formation, expanding the area of intestinal digestion and 
absorption, and enhancing the activity and production of intestinal 
digestive enzymes (25).

The enzymes in the intestine of chickens, namely amylase, lipase, 
and trypsin, play a vital role in the digestion and breakdown of 
nutrients. Flavonoids have been proven to increase the activity of 
digestive enzymes. Ding et  al. (1) observed that mulberry leaf 
flavonoids might enhance the growth of intestinal villi in broilers and 
dramatically increase digestive enzyme activity. Figueroa-Perez et al. 
(26) demonstrated that flavonoids could boost the growth of good 
bacteria in the colon, limit the proliferation of dangerous bacteria, and 
enhance intestinal trypsin and amylase activity. Moreover, relevant 
studies have demonstrated that MCC could affect the composition 
and activity of the microbiota, improving the growth of intestinal 
epithelial cells and exerting beneficial effects on intestinal barrier 
function and gastrointestinal inflammation (27, 28). Our results 
showed that combining chlortetracycline with 150 mg/kg MCC could 
significantly increase the activity of jejunum-amylase in broilers, 
indicating that MCC could increase the activity of intestinal digestive 
enzymes in broilers. This may be  related to the modulation of 

microbial metabolism in the intestine by MCC, thereby promoting the 
secretion of digestive enzymes and enhancing the activity of relevant 
digestive enzymes (28).

The small intestine is the primary site of nutritional absorption 
in animals, and the morphological structure of the gut plays an 
essential role in the digestion and absorption of numerous nutrients 
(29). Under normal conditions, intestinal villi can significantly 
increase the surface area for nutrients digestion and absorption. 
Additionally, the crypt depth is inversely correlated with the ability 
of intestinal epithelial cells to secrete digestive juices, whereas a larger 
V/C ratio corresponds to a higher digestive and absorptive capacity 
in the intestine (30). By enhancing the alkaline phosphatase activity 
of intestinal epithelial cells, hawthorn flavone compounds can 
encourage epithelial cell growth and proliferation, enhance the 
intestinal epithelial barrier, and promote the development of 
intestinal villous tissue (31). Flavonoids have been shown to increase 
the height of the ileal villus in broilers (32). Additionally, carnosic 
acid improved intestinal crypt architecture and goblet cell loss, 
according to research conducted by Yang et al. (33). In mice with 
colitis, rosemary extract supplemented with carnosic acid was able to 
enhance intestinal barrier integrity (28). In this study, 150 mg/kg 
MCC could significantly increase the villus height and V/C value of 

FIGURE 3

Effect of MCC on antioxidation-related gene expression in p38-MAPK/Nrf2 pathway in ileum. Bars represent the means ± SD (n  =  8), bars with different 
letters on top represent statistically significant results (p  <  0.05). CON, basal diet; CTC, basal diet with 50  mg/kg chlortetracycline; MCC75, basal diet 
supplemented with 75  mg/kg MCC; MCC150, basal diet supplemented with 150  mg/kg MCC; JNK, c-Jun N-terminal kinase; TNF-ɑ, tumor necrosis 
factor-ɑ; IL, interleukin; p38 MAPK, p38 mitogen-activated protein kinase; PGC-1ɑ, peroxisome proliferator-activated receptor γ coactive-tor-1ɑ; Nrf2, 
nuclear respiratory factor 2; Keap1, kelch like ECH associated protein 1.
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the jejunum and ileum while decreasing the crypt depth in broilers. 
These results were in agreement with the previous research (34). 
Broilers’ intestinal tracts may benefit from the MCC because 
flavonoids lower oxidative stress by inhibiting inflammatory factors, 
down-regulating the expression of NADPH oxidase, and 
up-regulating the intestinal hormone glucagon-like peptide (GLP)-2, 
which strengthens the intestinal barrier (34). As a result, the MCC 
complex can promote the secretion of jejunal amylase, the 
development of intestinal villi, and effectively improve the 
morphological structure of the intestinal tract. This leads to a greatly 
increase in the digestion and absorption area of nutrients in the 
intestinal tract, and improves the apparent digestibility of nutrients 
in broilers, thereby improving broiler growth performance.

The strength of antioxidant performance is a key indicator of 
physical health, reflecting the level of the body’s antioxidant defense 
system and its ability to scavenge free radicals (35). SOD plays a vital 
role in scavenging superoxide anion radicals in the body and 
maintaining a balance between oxidation and anti-oxidation process 
(36). GSH-Px, as an essential peroxidase in the body, catalyzes the 
conversion of GSH into oxidized glutathione and efficiently 
eliminating hydrogen peroxide (37). SOD and GSH-Px can effectively 
eliminate excessive free radicals and prevent peroxides from 
damaging the structure and function of the cell membrane. 
Additionally, CAT decomposes hydrogen peroxide in the body and 
acts as an important antioxidant enzyme (36). The MDA is one of the 
byproducts of lipid peroxide metabolism in the body, created by the 
action of oxygen free radicals on the membrane. The MDA level is 
inversely connected with the level of cellular oxidative damage and 
can serve as an indirect indicator (38). Carnosic acid dramatically 
enhanced the levels of GSH and SOD, and decreased the level of 
MDA caused by DSS, according to Yang et al. (33); this indicates that 
carnosic acid could be important in the development of treatments 
for inflammatory disorders linked to oxidative stress. By controlling 
prooxidants and antioxidant enzymes, carnosic acid can increase 
broilers’ antioxidant capacity (39). It has been demonstrated that the 
bioavailability of flavonoids could limited when supplemented in 
animal diets and may be  less likely to directly exert antioxidant 
capacity (40). The mulberry leaf flavonoids are able to incorporate 
substantial antioxidant activity by scavenging free radicals and 
chelating metals (41). The antioxidant capacity increased and plasma 
MDA levels decreased when dietary supplementation of total 
flavonoids from Artemisia annua in Wenchang hens, as shown in a 
study by Guo et al. (7). Similarly, alfalfa flavonoids were found to 
enhance plasma T-AOC activity as well as the gene expression of 
antioxidant enzymes in broilers (42). Chen et  al. (43) also 
demonstrated that the flavonoid quercetin could alleviate changes in 
CAT and SOD activities in oxidatively injured cells. In the present 
study, our results showed that MCC and chlortetracycline could 
increase serum T-AOC levels and the activities of CAT and GSH-Px, 
indicating that MCC could effectively increase the antioxidant level 
of broilers, which was in agreement with a previous study in 
broilers (42).

To elucidate how MCC might enhance the antioxidant capacity of 
broilers, we examined the role of the p38 mitogen-activated protein 
kinase (p38 MAPK) signaling pathway. The p38 MAPK signaling 
pathway is a common mechanism for intracellular information 
transmission, primarily involved in gene transcription, stress 
response, inflammatory response, and cellular immune regulation 

(44). The p38 MAPK pathway is critical in regulating the expression 
of several antioxidant enzyme genes (45). Moreover, the p38 signaling 
pathway stimulates the production of the transcription factor Nrf2 
(46), which further enhances the cellular antioxidant defense system. 
Peroxisome proliferator receptor gamma coactivator 1 (PGC-1) is a 
transcriptional regulator that plays an important function in the anti-
oxidative stress system and can enhance the body’s antioxidant 
capacity by promoting the production of cellular antioxidant enzymes 
(47). The Nrf2-Keap1 signaling pathway is one of critical pathway for 
cellular protection against oxidative stress. Under normal 
physiological conditions, Nrf2 binds to Keap1, forming a complex that 
is recognized and degraded by the proteasome via polyubiquitinated 
markers. However, when the Nrf2-Keap1 pathway is activated, the 
complex dissociates, allowing Nrf2 to translocate into the nucleus. 
Once in the nucleus, Nrf2 binds to the antioxidant response element 
(ARE) and stimulates the transcription of genes involved in 
antioxidant enzymes, thereby enhancing cellular antioxidant capacity 
and tolerance to oxidative stress (48). Our results revealed that MCC 
and chlortetracycline could reduce JNK mRNA expression while 
increasing PGC-1 and Nrf2 mRNA expression in broiler jejunal 
mucosa. The combination of 150 mg/kg MCC increased the expression 
of p38, PGC-1, Nrf2, and Keap1 mRNA in broiler ileal mucosa. 
Flavonoids containing carnosic acid have been shown to possess 
robust antioxidant properties by activating the Nrf2-Keap1 pathway. 
Previous studies have reported that flavonoids facilitate the 
transcription of Nrf2 to the nucleus, where it binds to antioxidant 
response element (ARE) and stimulates the transcription of 
antioxidant proteins, phase II detoxifying enzymes, and other genes 
(49). Flavonoids may also interact with AhR (aryl hydrocarbon 
receptor), leading to the dissociation of the Keap1/Nrf2 complex and 
facilitating Nrf2 translocation into the nucleus, thereby enhancing the 
transcription of antioxidant enzymes such as superoxide dismutase, 
glutathione peroxidase, and catalase (50). Furthermore, Lee and Jang 
(51) demonstrated that carnosic acid could promote Nrf2 nuclear 
displacement, effectively reducing the generation of harmful ROS 
(reactive oxygen species) and promoting the translation of phase II 
antioxidant enzymes. Carnosic acid may also protect against 
DSS-induced decreases in Nrf2 protein levels by interfering with the 
interaction of Cullin3 and Keap1 (33). The results of this study were 
basically consistent with the above studies, suggesting that MCC 
could influence gene expression in the intestinal p38-MAPK/Nrf2 
signaling pathway and improve the ability of broilers to resist oxidative 
stress, and thus promote growth. However, further investigations are 
needed to elucidate the underlying mechanisms of p38-MAPK/Nrf2 
activation by MCC. Furthermore, it is widely recognized that 
antioxidants play a pivotal role in protecting against inflammatory 
diseases, as oxidative stress and inflammation are intricately 
interconnected (52, 53, 54). In light of this, it is plausible to 
hypothesize that MCC may also contribute to reducing inflammation 
in broilers, thus warranting further exploration.

5 Conclusion

Collectively, these results demonstrate that dietary supplementation 
with MCC could effectively improve growth performance, intestinal 
morphology, nutrient absorption, and antioxidant capacity in broilers, 
which may be  related to regulation of the MAPK/Nrf2 signaling 
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pathway. These findings provide valuable insights into the potential 
benefits of MCC for broiler performance. Thus, it is feasible and 
beneficial to use MCC at a dosage of 150 mg/kg as an antibiotic 
alternative in the diet of broilers. Future research will focus on 
elucidating the mechanisms of MCC’s effects on the MAPK/Nrf2 
pathway and assessing its long-term impacts and economic feasibility 
in commercial broiler production.
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Introduction: Animal waste proteins have been increasing in the past decade, 
along with consumer demands. Their huge volume and the environmental 
issues caused by improper treatment probably pose a massive threat to human 
health. These animal waste proteins contain many valuable bioactive peptides 
and can be used not only as nutrient substances but also as primary functional 
ingredients in many industries, including agriculture, food, and pharmaceuticals. 
However, the advancement of the value-added application of animal waste 
proteins within the past 10  years has not been elucidated yet. In this regard, this 
paper scrutinized the studies on the applications of hydrolysates and peptides 
from animal waste proteins throughout the last decade, hoping to display a 
whole picture of their value-adding applications.

Methods: The Web of Science and Google Scholar were searched from January 
1, 2013, to December 12, 2023. This review included field trials, in vitro and 
in vivo assays, and in silico analysis based on literature surveys or proteolysis 
simulation. The quality of the included studies was evaluated by Journal Citation 
Reports, and the rationality of the discussion of studies included.

Results: Numerous studies were performed on the application potential of 
hydrolysates and peptides of animal waste proteins in agricultural, food, and 
medicinal industries. Particularly, due to the nutritional value, safety, and 
especially competitive effects, the peptide with antioxidant, antimicrobial, 
antihypertensive, antidiabetic, or antithrombotic activities can be  used as a 
primary functional ingredient in food and pharmaceuticals.

Discussion: These value-added applications of animal waste proteins 
could be  a step towards sustainable animal by-products management, and 
simultaneously, open new avenues in the rapid development of nutraceuticals 
and pharmaceuticals. However, further studies on the bioavailability and 
structure-activity relationship are required to verify their therapeutic effects.
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1 Introduction

Over the past few years, there has been a significant surge in the 
global intake of high-protein foods (Peydayesh et al., 2022). When the 
meat industry and slaughterhouses yield a tremendous amount of 
meat products, a copious supply of protein-rich by-products is also 
produced. These animal by-products are frequently considered to 
be  low-value and therefore discarded (Chakrabarti et  al., 2018; 
Etemadian et al., 2021; Yao et al., 2022; Yang et al., 2023). However, it 
is worth noting that these by-products contain a diverse range of 
highly valuable bioactive compounds. Recently, there has been a 
significant upswing in the research of bioactive peptides derived from 
animal waste proteins. These peptides have been discovered to possess 
distinctive properties and intricate compositions with exceptional 
potential in diverse industries, including but not limited to agriculture, 
nutraceuticals, pharmaceuticals, and cosmetics (Korhonen and 
Pihlanto, 2006; Giordano et al., 2018; Karami and Akbari-Adergani, 
2019; Phadke et al., 2021). As a result, researchers are keenly exploring 
their applications in various fields, intending to meet the continuous 
need for protein and unlock their full potential (Owji et al., 2018; 
Chavez and Uchanski, 2021; Lee S. Y. et al., 2021; Lee S. et al., 2021; 
Madhu et al., 2022).

Animal waste proteins can be one of the best sources of bioactive 
peptides, which are crucial molecules and may exert physiological 
effects in life (Wadhwa and Bakshi, 2016; Peydayesh et  al., 2022; 
Timorshina et al., 2022). Animal waste proteins are mainly obtained 
from by-products or unused parts of animals from slaughterhouses 
after their primary processing for food production, such as skin, 
bones, cartilage, tendons, organs, trimmings, and other components 
that are not used for human consumption (Mora et al., 2014; Zhao 
et al., 2021). Nowadays, engineers and researchers are working hard 
to give value to these waste proteins by converting them into 
functional ingredients and new valuable products with high potential 
human health value and, at the same time, to reduce environmental 
pollution caused by them (dos Santos et  al., 2021; Li et  al., 2021; 
Martinez-Burgos et al., 2021; Norouzi et al., 2022). The hydrolysates 
and potential benefits of these animal proteins are immense and 
far-reaching for humanity and sustainability (Wadhwa and Bakshi, 
2016; Peydayesh et al., 2022). Therefore, it is crucial to explore and 
implement ways in which animal waste proteins can be utilized to the 
fullest extent to support sustainable development and improve our 
overall quality of life (Cheung et al., 2015).

Several methods were used to generate the desired proteins and 
peptides, including direct extraction, chemical methods, enzymatic 
hydrolysis, and microbial fermentation (Pagán et al., 2021; Wen et al., 
2023b). However, the choice of the method for the hydrolysis of 
proteins usually depends on their sources. The enzymatic hydrolysis 
and microbial fermentation methods were demonstrated to improve 
the solubility, viscosity, emulsification, and gelation propriety of 
peptides generated. These methods improved the peptide’s nutritional 
quality, which may hold significant advantages for human health by 
reducing any associated factors that affect their applications 
(Marciniak et al., 2018; Zhu et al., 2022). The peptides unlocked from 
parent proteins can boost the immune system, improve digestion and 
adsorption of food, reduce inflammation, and promote the 
regeneration of cells and tissues (like skin and hair), remarkably 
improving our quality of life (Ullah et al., 2018; Wang B. et al., 2021). 
Furthermore, these peptides can be used as food additives, like natural 

preservatives and nutrition enhancers (Chi et  al., 2015a; Nielsen 
et al., 2017).

To date, due to the strengthening of environmental protection 
policies, resource scarcity, and food security, livestock and aquaculture 
industries are meeting the harmless treatment and resource 
application problems of animal waste proteins, which attract the most 
interest of scientists to find better ways to solve them. Nowadays, 
much research has improved the enzymatic hydrolysis or microbial 
fermentation methods to produce various protein or peptide-based 
products, including food for both humans and animals, medicine, 
fertilizers, and antibiotics (Korhonen and Pihlanto, 2006; Dai et al., 
2016; Minj and Anand, 2020). To show a whole picture of the 
application potential of animal waste proteins and the bioactive 
peptides derived from them, this study focuses on the production 
method for bioactive peptides derived from protein-rich animal 
wastes and their applications in agriculture, food industry, and 
medicine (Figure 1).

2 Methods

2.1 Literature search

For the purpose of the review, Web of Science and Google Scholar 
were searched for all published studies. During searching, the 
following topics were used for each section: “livestock,” “meat 
by-product,” “aquatic by-product,” “fish waste,” “food processing 
waste,” “animal waste protein” or “waste animal protein” for sources of 
animal waste proteins; “animal waste protein” or “waste animal 
protein,” “burning” or “combustion,” “burying” or “burial,” 
“rendering,” and “compost” or “composting” for the traditional 
treatment of animal waste proteins; “microbial fermentation” or 
“fermentation” and “enzymatic hydrolysis” or “hydrolysis” for 
biotechnological methods for releasing peptides from animal waste 
proteins; “agricultural application,” “plant growth promotion,” “abiotic 
stress tolerance” or “heat stress” or “salinity stress” or “drought stress,” 
“biotic stress tolerance” or “resistance to microorganism” or “resistance 
to fungi/bacteria/virus,” and “animal waste proteins” for agricultural 
application; “food addictive,” “functional food,” “enzyme in 
gastrointestinal system,” and “animal waste proteins” for food 
application; “medicinal application” or “pharmaceuticals,” “bioactivity” 
or “antihypertensive” or “antioxidant” or “antimicrobial” or 
“antidiabetic” or “antithrombotic,” “peptides,” and “animal waste 
protein” for medicinal application. The data range was restricted in the 
past decade (January 1, 2013 to December 12, 2023). Furthermore, a 
backward citation search was performed for the searched articles.

2.2 Study selection

The searched articles were all imported into Endnote 20 (Clarivate 
Analytics, United States). After removing the duplicate records, two 
investigators independently screened the titles and the abstracts of all 
the retained articles, according to the inclusion and exclusion criteria. 
After excluding irrelevant articles in the initial screening, the same 
two investigators carefully read the relevant sections of the retained 
articles and extracted the useful information. Any disagreements were 
resolved by consulting other authors.
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Studies were included if they: (1) involved the source, treatment, 
or application of animal waste proteins; (2) involved the direct use of 
peptides or other components from animal waste proteins in field 
studies, in vitro studies, and in vivo studies, but had no description of 
the treatment of animal waste proteins; (3) were the statistical analysis 
based on database or computer simulation using a software; (4) were 
the latest reviews that can provide a part of data to this review or the 
relevant reports from influential governments and international 
organizations. Studies were excluded if they: (1) were related to this 
review, but the argument of the relevant section is not tenable. (2) 
investigated the application of the hydrolysates and peptides from 
animal waste proteins other than in agriculture, food, and medicinal 
industries; (3) investigated the health-promoting effects of the 
hydrolysates and peptides from animal waste proteins other than 
antihypertension, antioxidant, antimicrobial, hypoglycemic, and 
antithrombosis. The statistical data of the number of articles used for 
this study is shown in Figure 2.

3 Sources of animal waste proteins

Animal waste proteins are mainly from the by-products of meat 
and aquatic products processing industries. According to the National 
Bureau of Statistics of China (National Bureau of Statistics of China, 
2023), in 2020, the raw meat yield (including pork, beef, mutton, and 
poultry meat) was 7.639 million tons. The aquatic product yield in 
2020 was 6.549 million tons (Ministry of Agriculture and Rural Affairs 
of the People’s Republic of China, 2020). The production of raw meat 
and aquatic food was accompanied by large amounts of animal wastes 

and fish wastes, which caused burdensome disposal problems and 
environmental concerns. For instance, the meat yield percentage for 
pork is around 72–80%, while for beef it is 50–60%. Since disposal 
costs and efficiency are previously prioritized, these wastes are directly 
burned or buried. Later, people realized that the lipids in the animal 
and fish products processing wastes could be recovered for animal 
feeds, cosmetics, etc., and thus used as a raw material for the rendering 
system. Besides, agriculturists found that the animal and fish products 
processing wastes could be  converted to small-molecular organic 
compounds, like humus, through microbial metabolism under 
favorable conditions. Therefore, agriculturists compost the animal and 
fish products processing wastes.

3.1 Meat source

A huge amount of waste is generated during meat product 
processing due to the rapid growth of meat consumption throughout 
the world. These wastes can be classified into two groups: liquid blood 
and solid bones and trimmings. The blood consists of plasma and 
blood cells and is rich in proteins. After separation and hydrolysis or 
extraction, the protein hydrolysate, bioactive peptides, and especially 
thrombin, fibrinogen, heme iron peptide, and globin, can be obtained 
(Figure  3). These extracted proteins or peptides are beneficial for 
human health as dietary supplements or pharmaceuticals.

The trimmings and bones are rich in fat and proteins. Mature beef 
cattle or pigs have skeletal muscles that contain roughly 70% protein 
on a dry-matter basis (Sun et  al., 2016; Bravo et  al., 2023). The 
trimmings include skin, hair/bristle, feathers, horns, hooves, tails, 

FIGURE 1

Schematic of the valorization of animal waste proteins. Created with BioRender.com.
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viscera/cartilage, and deboning residues (Wadhwa and Bakshi, 2016; 
Marciniak et al., 2018). Through the rendering technique, the lard/
tallow, fat, chemicals, pharmaceuticals, and animal feeds can 
be produced using trimmings. The lard/tallow and fat can be further 
processed into biodiesel through an esterification reaction, which 

helps to alleviate not only the environmental concerns but also the 
energy crisis. Due to being rich in proteins and other nutrients [like 
minerals (Tran et al., 2020)], the trimmings are one of the best raw 
materials to extract collagens and the bones can be  ground into 
powder to produce animal feeds.

FIGURE 2

The number of searched articles.

FIGURE 3

Route for valorizing meat processing by-products.
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3.2 Aquatic source

The fish processing industry has a meat yield percentage of about 
60%. The fish products processing waste includes skin, scale/fin, head, 
viscera (like liver), roes, bones, exoskeletons, shells, and carcasses 
(Ahn et al., 2014; Sila et al., 2014; Silva et al., 2014; Chi et al., 2015c). 
These wastes often contain protein-rich materials, which are typically 
processed into the animals’ dietary supplements and feeds, fish meal, 
and fertilizers (Subhan et al., 2021). However, these products do not 
make full use of the value of the fish products processing wastes 
because some proteins and peptides derived from these wastes 
through enzymatic hydrolysis can play a huge role in treating chronic 
diseases (Lee and Hur, 2017; Phadke et al., 2021; Ucak et al., 2021). For 
example, the protein hydrolysate obtained by hydrolyzing the stomach 
and intestine of smooth hound sharks by Purafect, Esperase, and 
Neutrase, exhibited a good therapeutic effect on hypertension, cancer, 
and infections (Abdelhedi et al., 2016). Compared to the proteins and 
peptides derived from meat processing sources, those derived from 
aquatic sources characterized by short chain length, the presence of 
lysine or arginine at the C-terminal, and possessing more hydrophobic 
amino acids, exhibit a high capability of regulating blood pressure and 
immune system and killing microorganisms (Ngo et al., 2016). For 
instance, the gelatin obtained by using Alcalase to hydrolyze giant 
squid (Dosidicus gigas) exhibited an extremely high angiotensin-
converting enzyme inhibitory (ACE-I) ability (IC50 = 0.34 mg/mL) and 
those obtained by using Esperase exhibited an extremely high 
cytotoxic effect on cancer cells (IC50 = 0.13 mg/mL for human breast 
carcinoma and IC50 = 0.10 mg/mL for glioma cell lines). These two 
gelations were mostly composed of peptides with molecular weights 
of 500–1,400 Da.

4 Traditional treatment methods for 
animal waste proteins

4.1 Burning process

Burning or incineration reduces the volume of animal products 
processing wastes and animal carcasses volume by converting them to 
ash, which is very beneficial concerning limited waste disposal space. 
The volume of solid wastes can be reduced by over 90% by burning 
(Yamamoto et al., 2018; Velusamy et al., 2020). Besides, burning has 
two other great advantages. The one is that high temperatures destroy 
pathogens (e.g., Escherichia coli and Salmonella sp.), mitigating disease 
transmission risks (Franke-Whittle and Insam, 2013; Mozhiarasi and 
Natarajan, 2022). It is because the temperature during burning is 
usually maintained at 850–1,200°C to thermally decompose the 
animal by-products and carcasses completely. The other is that 
burning generates heat energy, which can be  used to supply heat 
directly or generate electricity by steam turbines to satisfy the heating 
and electricity demands of livestock cultivation, aquaculture and even 
surrounding. However, burning has a disadvantage of air pollutants 
release. The pollutants produced during burning animal products 
processing wastes include particulate matter, noxious gases (sulfur 
dioxide and nitrogen oxides), odors, and potentially toxic substances, 
depending on the composition of the wastes. Therefore, incinerators 
should guarantee the purification of exhaust gases to reduce secondary 
environmental pollution and comply with local environmental 

regulations and emission control policies. Considering burning 
animal by-products and carcasses can raise local public concerns 
about air pollution, community engagement, transparency, and 
emission control technologies are essential for its public acceptance. 
Besides, animal by-products and carcasses contain many valuable 
substances with high commercial application potential, like protein 
and fat. Thus, Burning is not a particularly good method of disposal.

4.2 Burying process

Burying animal by-products and carcasses in the soil allows them 
to decompose naturally. This method emits less greenhouse gas and 
particulate matter compared to burning. The process involves digging 
a hole, placing the waste by-products or carcasses inside, and covering 
it with soil. The time it takes for buried objects to decompose varies 
depending on several factors, including the type of buried objects, 
burial depth, and burial site conditions. Burying offers several 
advantages, including quick disposal, reduced costs and logistical 
challenges, and enhanced soil structure and organic matter content 
(Yuan et al., 2013). However, the natural decomposition is slow and 
thus the resultant low release of nutrients will limit the agronomic 
benefits of buried animal by-products and carcasses as a nutrient 
source for crops or soil improvement. It also has potential 
disadvantages of land occupation, groundwater contamination, odor 
issues, disease transmission, and regulatory compliance requirements 
(Kim and Kim, 2017). Burying animal by-products and carcasses is 
banned in the European Union and some states of the United States. 
Although burying is permitted in some countries, strict regulations 
are implemented, like Scotland (Agriculture and Rural Economy 
Directorate of Scotland, 2023). Proper techniques are crucial for 
burying animal by-products and carcasses to avoid environmental 
contamination and disease spread. The proper techniques involve 
selecting appropriate burial sites, ensuring proper ventilation, 
monitoring the site regularly for potential environmental 
contamination, and handling and disposing of protective gear properly 
during the burial process to prevent disease spread.

4.3 Rendering process

Burning and burying are two simple and fast methods for 
disposing of animal by-products and carcasses, but not ideal methods 
because these wastes and mortalities contain various valuable 
components, for instance, proteins and fat (McGauran et al., 2021; 
Pagán et al., 2021). In contrast, the rendering process is favorable for 
recovering these valuable components for value-added applications. 
The basic process of rendering is shown in Figure 4. This process can 
be classified into wet rendering and dry rendering, which both include 
heating (or cooking), pressing, separation, and drying stages (Adewale 
et al., 2015). The difference between the two kinds is that hot water or 
hot steam is used to pressurize feedstocks to separate fats in wet 
rendering, while direct heating is used in dry rendering (Shi and Ge, 
2020). Dry rendering is the most commonly used method to convert 
animal by-products and mortalities to useful industrial, agricultural, 
and pharmaceutical materials. After the heating and pressing stages, 
the proteins and lipids are mostly separated. The obtained lipids 
(including fats and oils) include tallow, grease, poultry fast, and lard, 
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and are good raw materials for the oleochemical industry to produce 
animal feed, soap and cosmetics, pet food, and more recently to 
produce biofuels (Mekonnen et al., 2016). The use of them to produce 
biodiesel can be  realized through microemulsions, pyrolysis (Ben 
Hassen-Trabelsi et  al., 2014), and transesterification reactions 
(Emiroglu et  al., 2018; Keskin, 2018). The obtained proteins can 
be used to produce bio-based plastics, wood adhesives, surfactants, 
firefighting foams, and flocculants (Thakur et al., 2023). Therefore, the 
rendering process can be  considered as a sustainable strategy of 
resource utilization, not only mitigating the environmental 
contamination caused by animal by-products and mortalities but also 
fully utilizing these discards. Due to the high temperature (up to 
100°C), animal-borne pathogenic microbes [like Listeria 
monocytogenes and Salmonella species (Karyotis et  al., 2017)] can 
be  killed during rendering, but prion proteins that can cause 
transmissible spongiform encephalopathies cannot be  destroyed. 
Consequently, certain cattle tissues, like the brain and spinal cord, 
denoted as the specified risk materials (SRM) due to the highest 
possibility of carrying prion proteins, are banned from rendering 
industries to produce protein-and fat-rich materials (Mekonnen 
et al., 2016).

4.4 Composting process

Composting is a sustainable and natural processing method to 
convert organic materials, including animal by-products and 

carcasses, food scraps, yard waste, and biogas residues, into soil 
amendment or fertilizers by passive or active methods (Gooding and 
Meeker, 2016; Lim et al., 2017). The passive methods include static 
piles and turned windrows, while the active ones include aerated static 
pile systems and in-vessel systems. The regular turning of windrows 
is one of the most important management techniques for composting, 
aimed at supplying enough oxygen for aerobic microorganisms (Hong 
et al., 2014). Regular turning can also expedite water evaporation and 
maintain proper temperature ranges for compost piles, promoting the 
maturity of compost piles and making the humus crumblier. Since the 
anaerobic fermentation inside piles is avoided by turning, the odors 
and potential nuisances for nearby communities are minimized. 
However, the regular turning of windrows is laborious and time-
consuming (Wan et al., 2022). The time required ranges from months 
to a year, depending on materials, pile size, and desired decomposition. 
Thus, it requires sufficient space for piles, which may be a challenge 
for facilities with limited land availability.

During composting, animal by-products and carcasses are 
decomposed into simple or dissolved inorganic materials under 
aerobic microorganisms [mainly bacteria like Actinomycetes and 
Bacteroidetes (Huhe et al., 2017)] and finally converted into stabilized 
organic matter (compost or humus), which is a dark, crumbly 
substance rich in organic matter and essential nutrients like nitrogen, 
phosphorus, and potassium (Thomson et al., 2022). Therefore, it is a 
great soil amendment to ameliorate the fertility, structure, and 
moisture-holding capacity of soil and promote crop growth. To meet 
the needs of microorganisms’ metabolism and promote the maturity 

FIGURE 4

Basic process flow of rendering to recover fats, oils, and protein-rich meal products (Mekonnen et al., 2016).
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of compost piles, other organic materials, like sawdust (Michalopoulos 
et  al., 2019), are usually mixed with animal by-products and 
mortalities for the carbon-nitrogen (C/N) ratio adjustment. 
Microorganism agents are also inoculated into compost piles (Gaind, 
2014). With the use of humus, chemical fertilizers can be minimized, 
contributing to maintaining favorable physicochemical properties 
[like pH (Fleming et al., 2013)], nutrition, and structure for soil and 
sustainable agriculture practices. Moreover, by diverting from landfills 
or open-air storage, composting helps reduce the emissions of odors 
and volatile compounds during the breaking of organic matter, 
avoiding waterbody eutrophication and mitigating air pollution. As 
with the rendering, a properly managed composting process can 
effectively inactivate most pathogens, parasites, and weed seeds 
present in the wastes to be processed, for example, Escherichia coli, 
Ascaris eggs, cockspur grass seeds (Khadra et al., 2021; Rai et al., 
2021), due to elevated temperature and pH (Lepesteur, 2022).

5 Biotechnological methods for 
extracting peptides from animal waste 
proteins

Although fat, proteins, minerals, and other organic matter are 
recovered or used based on rendering or composting processes, the 
values of these substances have not been fully reflected in the obtained 
products, especially the proteins. Numerous studies indicated that the 
protein hydrolysates of animal by-products contain various bioactive 
peptides, like antihypertensive peptides and antioxidant peptides, 
which are most beneficial for disease treatment (Vázquez et al., 2020; 
Ramakrishnan et al., 2023). Thus, using animal waste proteins as a 
source of bioactive peptides is a way to further expand their 
application range, transforming them into more valuable and 
profitable products than meat meals. Currently, two biotechniques, 
enzymatic hydrolysis, and microbial fermentation, have been 
considered to be the most valuable for decoding bioactive peptides 
from precursor proteins (Cruz-Casas et al., 2021). Their applications 
in valorizing animal waste proteins are detailed below (see Table 1).

5.1 Microbial fermentation

Microbial fermentation is the other typical biotechnological 
method to release bioactive peptides from animal waste proteins. It 
utilizes the proteolytic enzymes synthesized by indigenous or 
inoculating microorganisms during their metabolism to break down 
proteins into small molecules and release the peptides and amino 
acids (Nasri et al., 2022; Wen et al., 2023b). Therefore, the use and 
control of microorganisms is one of the most important factors for 
realizing complete hydrolysis of proteins and obtaining peptides with 
high bioactivity.

The microorganisms involved in fermentation are bacteria and 
fungi. Among the bacteria, the lactic acid bacteria are the most 
beneficial because of their safety, high proteolytic ability, and high 
adaptability (Cruz-Casas et al., 2021). Lactic acid bacteria are found 
not only in nature but also in people’s digestive systems, for example, 
Lactobacillus acidophilus and Lactobacillus Casei (Krasaekoopt and 
Watcharapoka, 2014). It has been recognized as “generally recognized 
as safe” (GRAS) by the U.S. Food and Drug Administration (FDA) and 

has been used in food industries since the 1940s. The commonly used 
lactic acid bacteria genera include Carnobacterium, Enterococcus, 
Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, 
Streptococcus, Tetragenococcus, and Weissella in food fermentations. 
The protein hydrolysis by lactic acid bacteria is generally divided into 
three steps: first, casein is broken into oligopeptides by cell envelope 
protease. Second, oligopeptides are transported into lactic acid 
bacteria cells by transporters, including permeases, ABC transporters, 
and antiports (Lorca et al., 2015). Finally, oligopeptides are hydrolyzed 
into small peptides or free amino acids by intracellular endopeptidases 
(e.g., calpins and cathespins) and exopeptidases (e.g., aminopeptidases) 
(Zou et al., 2023). Some lactic acid bacteria are widely employed in 
research due to their efficient hydrolysis performance, and they are 
Lactococcus lactis, Lactobacillus helveticus, and Lactobacillus 
delbrueckii ssp. Bulgaricus. For instance, L. lactis RQ1066 had a degree 
of hydrolysis of mung bean milk of 16.62 ± 0.75% after 24 h 
fermentation and 18.45 ± 0.29% after 48 h fermentation at room 
temperature (Liang et al., 2022). Lactic acid bacteria can adapt to 
various environments and change their metabolism accordingly. It was 
reported that a typical lactic acid bacteria is aerotolerant, acid-tolerant, 
organotrophic, and a strictly fermentative rod or coccus (König and 
Fröhlich, 2017). Compared to bacteria, fungi also have been used to 
ferment animal by-products but not so common due to the limited 
source and proteolytic activity (Sadh et  al., 2018; Cruz-Casas 
et al., 2021).

The fermentation conditions and time should be  carefully 
controlled to realize high protein hydrolysis of animal waste proteins 
and obtain peptides with high bioactivities. This is because 
fermentation conditions significantly affect the metabolism of 
microorganisms, and microorganisms will continue to break bioactive 
peptides for growth if fermentation time exceeds the optimal time 
length. The condition generally involves temperature, pH, moisture, 
nutrients, etc. (Melini et  al., 2019). For instance, the prevailing 
anaerobic condition, low initial pH, and higher salt and sugar facilitate 
the growth of lactic acid bacteria. However, in some unsmoked meat 
products that should have a sour taste, the amount of the added lactic 
acid bacteria, sugar level, and water activity are carefully controlled 
(Kumar et al., 2017).

Compared to enzymatic hydrolysis, microbial fermentation is a 
more inexpensive biotechnique to extract bioactive peptides from 
animal waste proteins. This is because the microorganisms used and 
their culture processes are not costly (Akbarian et al., 2022). Besides, 
the microorganisms secrete an entire set of proteases, instead of one 
or several, which makes proteins in substrates adequate and shortens 
the production cycle of peptide-based products (Song et al., 2023). 
Additionally, if lactic acid bacteria are employed, the proteases 
secreted by them will expressed in the cell membrane, simplifying the 
subsequent purification of peptides (Agyei and Danquah, 2011). 
However, microbial fermentation has disadvantages of the generation 
of undesirable substances [like live bacteria, bacteria debris, 
exopolysaccharides, and organic acids (Mora-Villalobos et al., 2020)] 
and the implementation of optimal fermentation conditions. In a 
study, to recover proteins from monkfish by-products (heads and 
viscera), the effect of temperature, pH, and protease concentration was 
first investigated using a mixture of monkfish and water [ratio = 1:1 
(w/v)], based on which the optimal fermentation conditions were 
obtained and were 57.4°C, pH 8.31, alcalase with a concentration of 
0.05% (v/w), and 3 h for hydrolysis.
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TABLE 1 Some application examples in the food industry of bioactive peptides and hydrolysates from animal waste proteins.

Animal 
source

By-
product

Extraction 
method

Reaction 
condition

Effect Method to 
oberve the effect

Application References

Fish Heads, skins, 

and skeletons 

of carp fish

Enzymatic hydrolysis 

with alcalase

pH 8.0, 55°C, 

and 3 h

Antioxidant In vitro study: evaluating 

DPPH radical 

scavenging activity, 

hydroxyl radical 

scavenging activity, and 

ferric reducing power

Functional food 

ingredients and 

pharmaceutical 

products

González-Serrano 

et al. (2022)

Waste meat of 

anchovy 

(Coilia mystus)

Homogenization and 

enzymatic hydrolysis 

with a mixture of 

alcalase, papain, and 

pancreatin

pH 6.8, 55°C, 

and 3 h

Memory 

improvement

In vitro study: conducting 

mouse behavioral trial 

and inhibition of 

acetylcholinesterase

In vivo study: conducting 

H2O2-stressed PC12 cell 

assay and inhibition of 

acetylcholinesterase

Therapeutic 

potential for 

memory deficits

Su et al. (2016)

Muscles of 

Gadidae

Enzymatic hydrolysis 

with pepsin

pH 3.0, 37°C, 

and 8 h

Antioxidant In vitro study: evaluating 

DPPH radical scavenging 

activity

Safe food 

preservatives and 

functional food 

ingredients

Maky and Zendo 

(2021)

Skin of 

unicorn 

leatherjacket

Autolysis and 

enzymatic hydrolysis 

with glycyl 

endopeptidase 

extracted from 

papaya

40°C and 1 h Immunomodulation In vitro study: 

determining the pro-

inflammatory cytokine 

and NO production of 

RAW264.7 cells

Functional food 

ingredients

Karnjanapratum 

et al. (2016)

Pig Liver Enzymatic hydrolysis 

with papain, 

bromelain, alcalase, 

and flavourzyme

Papain: pH 6.0 

and 37°C; 

bromelain: pH 

6.0 and 40°C; 

alcalase: pH 8.0 

and 50°C; 

flavourzyme: pH 

5.5 and 50°C; 7 h

Antioxidant In vitro study: evaluating 

DPPH radical scavenging 

activity, ABTS

Radical scavenging 

activity, ferric reducing 

antioxidant power, and 

oxygen radical absorbance 

capacity

Functional food López-Pedrouso 

et al. (2020)

Cattle Skeletal 

muscles

Enzymatic hydrolysis 

with pepsin

pH 3.0, 37°C, 

8 h

Antimicrobial activity Safe food 

preservatives and 

functional food

Maky and Zendo 

(2021)

Chicken Liver Ultrasonic-assisted 

alkaline extraction

40°C; a pulsed 

on-time of 2 s 

and off-time of 

3 s; 24 kHz and a 

maximum 

power of 300 W

Better surface 

hydrophobicity, 

water/oil holding 

capacity, and 

emulsifying 

properties

Fluorescence 

spectroscopy for 

determining surface 

hydrophobicity

Suspending protein and 

water/oil in a centrifuge 

tube. Then vortexing and 

centrifuging samples for 

calculating water/oil 

holding capacity

Absorbance measurement 

for calculating 

emulsifying activity and 

emulsion stability indexes

Food preservatives Zou et al. (2017)

(Continued)
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5.2 Enzymatic hydrolysis

Enzymatic hydrolysis is a way of using enzymes to cleave peptide 
bonds to liberate the encrypted peptides and has been widely used to 
extract bioactive peptides from animal waste proteins on an industrial 
scale (Figure 5). The often-used enzymes include pepsin, bromelain, 
trypsin, neutrase, chymotrypsin, alcalase, papain, flavourzyme, and 
protamex. The source of the often-used enzyme is usually well-known in 
the bioengineering field. For example, the papain is from papayas, and the 
trypsin is from the pancreas of pigs, cows, or sheep. Each enzyme has two 
crucial functions in catalyzing protein hydrolysis: binding affinity and 
catalytic performance. The protease contains one or several active sites 
with catalysis. The amino acid residue on the catalytic site can recognize 
and bind to a special peptide bond in the substrate, based on which 
protease can easily combine with the substrate and then for the enzyme-
substrate complex. Besides, the amino acid residue on the catalytic site can 
supply the acidic or alkalic environment or functional groups required by 
catalytic reaction, based on which proteases promote the break of peptide 
bonds. After protease finishes hydrolyzing substrates, it will release 
products, return to the active state, and come into the next protein 
hydrolysis (Jovanović et al., 2016).

The protease used for hydrolyzing animal waste proteins had a wide 
source, including animal, plant, and microorganisms. The most used 
proteases are pepsin, trypsin, chymotrypsin, papain, bromelain, neutrase, 
alcalase (e.g., As1398 and protease K), flavourzyme, and protamex (Dey 
and Dora, 2014; Gajanan et al., 2016; Teshnizi et al., 2020; Tacias-Pascacio 
et al., 2021). For instance, the pepsin was usually obtained from porcine 
gastric mucosa and was used to hydrolyze the by-products of marine 
fishes, like the skin and bone of Spanish mackerel (Li et al., 2013) and the 
spines and skulls of skipjack tuna (Yu et al., 2014), to obtain collagen and 
peptides. Like microbial fermentation, appropriate conditions, including 
time, pH, temperature, enzyme specificity, and substrate/enzyme ratio, 
should be guaranteed to maximize the catalytic activity of proteases and 
the efficiency of enzymatic hydrolysis. A study found that the alcalase had 
the highest degree of hydrolysis (DH) for shrimp waste proteins (mainly 
consisting of head and shell of Penaeus monodon) and DH increased with 
temperature (50–60°C) during alcalase hydrolysis. The response surface 
graphs revealed that the optimal hydrolysis conditions were 59.37°C, pH 
8.25, 1.84%, and 84.42 min (Dey and Dora, 2014). Another study 
observed that the porcine gastric mucin could not be hydrolyzed by 
pepsin at neutral pH because of the inactivity of stomach-derived pepsin 
at pH 7 (Schömig et al., 2016).

The enzymatic hydrolysis for animal waste proteins is characterized 
by mild reaction conditions and selectivity. The rational temperature 
range for most proteases is 50–60°C, and the higher one for some 
proteases does not exceed 70°C. The pH used for hydrolysis using 
microorganism-derived protease, which is more often used in 
hydrolyzing animal waste proteins on the industrial scale, is located at 
5.5–8.0 (Dey and Dora, 2014; Razzaq et  al., 2019). Therefore, this 
biotechnology has no high requirement of energy, facilities, and 
control, saving cost and simplifying management. In addition, due to 
the substrate specificity of protease, the enzymatic hydrolysis has 
remarkable regioselectivity, for instance, the preferential cleaving 
hydrophobic amino acid residues, especially the aromatic residues, of 
pepsin (Tavano, 2013). This substrate specificity offers an excellent 
suggestion to determine the protease for the given substrate, resulting 
in a high DH and hydrolysates with desirable compositions and 
properties. Moreover, no secondary products are generally generated 
during the enzymatic hydrolysis. The production of desirable amino 
acid sequences with secondary products renders the enzymatic 
hydrolysis ecologically sound.

However, enzymatic hydrolysis is plagued with low yield and high 
cost at an industrial scale. To improve DH, pretreatment is carried out, 
like thermal and acid treatment, but it has the risk of destroying peptides 
(Fauzi et al., 2016; Feng et al., 2017). The higher cost compared with 
microbial fermentation is attributed to the high price of protease (Aspevik 
et  al., 2016). To solve the two problems, some technologies are 
incorporated into enzymatic hydrolysis, including microwave heating, 
ultrasound, high voltage electrical treatments (including pulsed electric 
field and electrical arc), and high hydrostatic pressure (Mikhaylin et al., 
2017; Thoresen et al., 2020; López-Pedrouso et al., 2023b).

6 Applications of bioactive peptides 
and hydrolysates from animal waste 
proteins

6.1 Agricultural application of bioactive 
peptides and hydrolysates from animal 
waste proteins

Peptides derived from animal waste proteins have potential 
applications in agriculture. They can be used as natural fertilizers, 
biostimulants, and biopesticides, improving soil health, promoting 

TABLE 1 (Continued)

Animal 
source

By-
product

Extraction 
method

Reaction 
condition

Effect Method to 
oberve the effect

Application References

Goat Deboning 

meat of 

Kacang goat 

(Capra 

aegagrus 

hircus)

Homogenization and 

enzymatic hydrolysis 

with flavourzyme and 

protamex

Step 1: 

protamex: pH 

7.0, 50°C, and 

1 h

Step 2: 

Flavourzyme: 

pH 7.0, 50°C, 

and 1, 3, and 5 h

ACE inhibition and 

antihypertensive 

activity

In vitro study: measuring 

absorbances of sample, 

blank, and control 

solutions to calculating 

ACE inhibitory activity

In vivo study: using 

spontaneous hypertensive 

rats (SHR) and 

performing oral 

administration for 

determining 

antihypertensive activity

Primary or 

supplement 

ingredients of 

functional food

Mirdhayati et al. 

(2016)
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plant growth and yield, enhancing plant stress tolerance, and 
providing protection against pests and diseases (Da Silva, 2018).

6.1.1 Plant growth promotion
The ability to promote plant growth of animal waste proteins can 

be  attributed to two aspects: ameliorating soil quality and directly 
enhancing the physiological processes. For one thing, the free amino 
acids, soluble proteins, and peptides that occur in hydrolyzed animal 
waste proteins can directly adjust the C/N ratio (Bhari et al., 2021). These 
nitrogen-containing nutrients also can increase the total count of 
heterotrophic bacteria in soil (e.g., nitrogen fixers and phosphate 
solubilizers), which is an important indicator for soil fertility, and thus 
change the rhizosphere microorganisms indirectly promote plant growth 
(Paul et al., 2013; Bhange et al., 2016). For another, amino acids, peptides, 
and proteins are the essential nutrients of plants and are required by a 
series of metabolic activities, including synthesizing nucleic acids, 
proteins, chlorophyll, vitamins, alkaloids, terpenoids, and forming 
vegetable tissues and organs. Thus, these materials from animal waste 

proteins can effectively promote plant growth in each stage, from seed 
germination to early root and shoot growth, and finally to blossom and 
fruition (Figures 6A,B) (Nurdiawati et al., 2019; Jagadeesan et al., 2023).

6.1.2 Abiotic stress tolerance enhancement of 
plants

Research demonstrates that the peptides and amino acids in 
animal waste protein hydrolysates can induce plant defense responses 
to some unfavorable conditions, including heat/cold, salinity, drought, 
and acidity, and thus enhance their tolerance to these abiotic stresses 
(Figure 6C) (Colla et al., 2015). A study used commercial animal-
originated protein hydrolysates, neutralized with calcium salts, to treat 
Diospyros kaki L. cv. “Rojo Brillante” grafted on Diospyros lotus L. to 
explore their effects on the tolerance to soil affinity of Diospyros lotus 
L. Diospyros lotus L. is highly sensitive to salinity, especially chloride. 
The tree treated with protein hydrolysates had a lower leaf chloride 
uptake, stem water potential, and leaf necrosis than the untreated 
trees, indicating the used animal-originated protein hydrolysates 

FIGURE 5

Schematic of the typical industrial production of bioactive peptides from animal waste proteins [modified from Mora et al. (2014)].
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enabled an improved tolerance to salinity for persimmon trees. The 
improvement of tolerance to salinity was due to two complementary 
mechanisms of salts: first, Ca2+ enhanced the tree’s ability to exclude 
chloride; second, the Ca2+, proline, glycine, glutamate, and glycine 
betaine in the protein hydrolysates stimulated the tree’s mechanism to 
increase compatible solutes proline and glycine betaine, which was 
indirectly demonstrated by the lower stem water potential (Visconti 
et  al., 2015). The beneficial effect of proline on enhancing plant 
tolerances to abiotic stresses has also been observed in another study 
(Lucini et al., 2015), where a remarkable increase of proline occurred 
in lettuce under saline conditions. The enhanced tolerance to heat 
stress of the plant treated by animal-originated protein hydrolysates 
was observed in research. In a study, the lettuce (Lactuca sativa L. var. 
capitata) treated by Terra-Sorb Foliar, an animal-derived protein 
hydrolysate obtained by enzymatic hydrolysis, had a higher total fresh 
weight (root and aerial part) and stomatal conductance in three 
controlled cold environments, i.e., diurnal cold (4°C/20°C), nocturnal 
cold (22°C/2°C), and radicular cold (6°C at root zone and 4°C/20°C 
in air), than controlled environment (22°C/20°C). Besides, the heat 
stress tolerance of perennial ryegrass (Lolium perenne L.) under three 
temperatures (20°C, 28°C, and 36°C) was evaluated. The results 
showed that the ryegrass treated with Terra-Sorb falior had a higher 
photosynthetic efficiency and higher levels of photosynthetic pigments 
(chlorophylls and carotenoids). The comparison between Terra-Sorb 
falior treatment and the other three treatments (Terra-Sorb falior + 

nutrient solution, nutrient solution, and nutrient solution matching 
to Terra-Sorb falior) revealed that it was the biostimulant effect 
exerted by the amino acids in Terra-Sorb falior, instead of its nitrogen 
fertility effect, that enhanced the plant’s tolerance to heat stress.

6.1.3 Biotic stress tolerance enhancement of 
livestock and fish

The huge demand for meat and fish brings about the continual 
development of an intensive culture of livestock and fish. In intensive 
livestock and fish farms, the animals have a high risk of infectious 
diseases caused by pathogens. The use of antibiotics is a quick and 
powerful method to control these diseases. However, it suffers from 
several adverse effects, including the development of drug resistance 
in animals and antibiotic residues in both animals and the 
environment, which pose a threat to food quality, environmental 
protection, and human health. The search for alternative strategies is 
important. In this sense, research found that some protein hydrolysates 
of animals could improve the disease resistance of farmed livestock 
and fish, and thus higher yield and healthier food was obtained.

The mechanisms that animal-originated protein hydrolysates 
improve animals’ disease resistance involve immune stimulation, 
pathogen destruction, oxidative radical clearance, or stress and satiety 
adjustment. A study found that juvenile red seabream (Pagrus major) 
fed with the diet prepared by using about 5% protein hydrolysates 
(krill hydrolysates, shrimp hydrolysates, or tilapia hydrolysate) to 

FIGURE 6

Agricultural application of animal waste proteins. (A) Nutrition uptake. (B) Seed germination and plant growth. (C) Abiotic stress tolerance 
enhancement.
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replace 10% fish meal had increased antiprotease and superoxide 
dismutase activities and enhanced total immunoglobulin level than 
the fish fed with basal fish meal. Moreover, the juvenile red seabream 
fed with the prepared diet exhibited a higher resistance against 
Edwardsiella tarda (Bui et al., 2014). Another study also showed that 
the abalone (Haliotis midae) fed with a commercial protein hydrolysate 
at a low inclusion level (ACTIPAL HP  1, 6%) showed increased 
cellular immunity because the phagocytic activities of their hemocytes 
were improved by 18% compared to the control diet (Goosen et al., 
2014). Some protein hydrolysates from animal by-products have 
exhibited antimicrobial effects against pathogenic species, like bovine 
hemoglobin hydrolysates (the main component of bovine cruor 
by-products), seafood skin hydrolysates, beef sarcoplasmic protein 
hydrolysates, and fish collagen (Anal et al., 2013; Zamorano-Apodaca 
et al., 2020; Beaubier et al., 2021). Compared with the antibiotics on 
the market, the peptides from animal waste proteins have a broader 
spectrum and faster action, despite they are not as powerful as 
antibiotics. Specifically, a study showed a peptide faction from collagen 
hydrolysates obtained by mixed by-products (skins, heads, and 
skeletons) of various fish species (pompano dolphinfish, seabass, 
squid, ray, snapper, weakfish, guitarfish, mullet, and different sharks) 
exhibited antimicrobial and antioxidant activities, which could be as 
a potential ingredient in both agricultural and pharmaceutical 
industries (Zamorano-Apodaca et al., 2020). In addition, the opioid-
like peptides have been extracted from fish and bovine hemoglobin 
and can affect the nervous system, adjusting pain, sleep, and behavior, 
showing interesting applications as anti-stress agents (Lafarga and 
Hayes, 2014; Mora et al., 2014). They can also regulate the digestion 
and ingestion of food and can be used as satiety agents for animal 
obesity control (Iwaniak et al., 2018; Tyagi et al., 2020).

6.1.4 Post-harvest preservation
Postharvest storage is an equally important stage as seedling and 

growth for agriculture because the harvested products are perishable, 
especially the fresh vegetables and fruits. For instance, strawberries 
are susceptible to postharvest decay mainly due to gray mold and 
rhizopus rot caused by Botrytis cinerea (Pers.) and Rhizopus stolonifer 
(Ehrenb.) (Romanazzi et al., 2013). Traditionally, chemosynthetic 
fungicides are applied to retain the freshness of vegetables and fruits 
during the periods of storage and transportation. However, they are 
not permitted in the context of sustainable and organic agriculture 
because of environmental and health issues. In this regard, alternatives 
are required. Among these, resistant inducers can increase plant 
disease defenses and also can exert their antimicrobial activities, with 
the potential for large-scale application. Among the natural materials, 
protein hydrolysates produced with animal or plant extracts have 
gained scientific interest. A study found that six hydrolysates of 
casein, soybean, pea, lupin, malt, and yeast, with a concentration of 
1.6 mg/mL, could significantly reduce the disease incidence and 
severity of wounded citrus fruit caused by Penicillium digitatum, the 
main postharvest pathogen of citrus fruit. Among the six hydrolysates, 
casein, lupin, and soybean exhibited the most powerful introduction 
of resistance. This indicated that these protein hydrolysates could 
be used as resistant inducers to extend the storage duration (Lachhab 
et al., 2015). Similarly, another study showed that when used in the 
field during grape growth, casein hydrolysates enable a gray mold 
incidence reduction of 94%. When used in vivo trials, the protein 

hydrolysates of casein could reduce gray mold by 54% at a 
concentration of 0.8 g/L. When simultaneously used before and after 
harvest, they enabled a storage rot reduction of 40% (Lachhab et al., 
2016). These studies indicate protein hydrolysates enable an extension 
of the postharvest storage period, with a low risk of pesticide-resistant 
strains and a better satisfaction of increasingly high requirements of 
food safety (Albert, 2013). In addition, considering that the microbial 
infection of fruits may happen at the flowering phase (Romanazzi 
et al., 2016), a combination of preharvest and postharvest can further 
extend the storage periods of vegetables and fruits because the latent 
infection and pathogen inoculum in the field are decreased more 
compared the only use of postharvest (Lachhab et al., 2016).

6.2 Food application of bioactive peptides 
and hydrolysates from animal waste 
proteins

Protein hydrolysates are the best use form of protein concerning 
nutritional value with variety and balance of amino acids and high 
solubility. Through enzymatic hydrolysis (Figure  5), animal waste 
proteins can be  decomposed into free amino acids and peptides, 
which are high-value substances used to develop new healthy foods as 
additives and functional ingredients and produce food-grade enzymes 
(Figure 7) (Sila and Bougatef, 2016; Zou et al., 2019).

6.2.1 Food additives
Plentiful studies have reported that the protein and its hydrolysates 

derived from animal by-products possess various favorable 
characteristics for food processing, such as antioxidant and 
antimicrobial activities and good abilities of foaming, emulsion, and fat 
adsorption, and have the potential use as additives (Lafarga et al., 2015; 
Lorenzo et  al., 2018; Fang et  al., 2020; Zhang et  al., 2023b). The 
antioxidant peptides, used as food additives, can delay the irreversible 
decay of the food matrix from a few hours to several months and even 
years when proper strategies are implemented. For instance, a study 
extracted the α137–141 fragment (Thr-Ser-Lys-Tyr-Arg), a small 
(653 Da) and hydrophilic peptide, from bovine cruor, which contained 
mainly hemoglobin. The study found that the α137–141 (0.5%, w/w) 
reduced the lipid oxidation of ground beef by 60%, delaying its rancidity. 
Moreover, the α137–141 inhibited the growths of microbes, including 
coliform, mold, yeast, and lactic acid bacteria. These results indicated 
that the α137–141 possessed antioxidant and antimicrobial activities 
and could be  used as functional ingredients for food preservatives 
(Przybylski et al., 2016). Interestingly, another study showed that four 
peptide fractions of collagen hydrolysates of common carp by-products 
(skeletons, skins, and heads) exhibited antioxidant activity and 
emulsifying and foaming properties. Among these peptide fractions, 
the fraction (<3 kDa) exhibited the strongest hydroxyl radical (95.4%, 
10 mg/mL) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (87%, 1 mg/mL) 
scavenging activities and reducing power (0.34, 10 mg/mL), while the 
faction (>30 kDa) exhibited the greatest emulsifying activity index, 
foaming activity, and foaming stability, but the lowest emulsion stability 
(González-Serrano et al., 2022). The good foaming and emulsifying 
properties of proteins hydrolysates derived from fish by-products 
(skeletons, heads, and skins) (Zamorano-Apodaca et al., 2020) and 
porcine livers (Verma et al., 2019) have also been demonstrated.
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6.2.2 Functional foods
Meat and fish contain not only the complete set of essential amino 

acids but also based on these amino acids, contain plentiful bioactive 
peptides. Thus, the peptides or hydrolysates of animal waste proteins 
show potential use as functional ingredients for foods besides as basic 
nutritive sources. These functions involve antioxidants, iron 
supplements, fatigue resistance, and anti-inflammation (Zou et al., 
2021). In a study, the porcine liver was hydrolyzed with different 
enzymes, time lengths, and membrane pore sizes. The hydrolysates 
obtained using alcalase at 8 h exhibited the strongest antioxidant 
activity: the fraction (>30 kDa) obtained using alcalase exhibited the 
best DPPH (562 μg/Trolox/g), ferric reducing antioxidant power 
(FRAP) (82.9 μmol Fe2+/100 g), and oxygen radical absorbance capacity 
(ORAC) (53.2 mg Trolox/g) activities. The fraction (>30 kDa) obtained 
using bromelain at 4 h exhibited the strongest antimicrobial activity 
with a Brochothrix inhibition of 91.7% (Borrajo et al., 2020). More 
surprisingly, a study first extracted a peptide, AJHbα, with strong 
antimicrobial activities from the hemoglobin alpha chain in the liver 
of a Japanese eel (Anguilla japonica), finding that the AJHbα, with a 
molecular weight of 2,388.05 Da, could kill 8.64% ± 3.91% of E. tarda 
(Zhang et al., 2013). Similarly, a study observed the peptides and amino 
acids with antioxidant and anti-fatigue effects in monkfish hydrolysates 
using both in vitro and in vivo assays. The in vivo assay showed mice 

administrated with monkfish liver hydrolysates had a longer climbing 
period than the control group, and in their hepatic and kidney 
homogenate, a higher level of superoxide dismutase was detected (Xu 
et al., 2017). Another study extracted a tripeptide (Pro-Ala-Tyr) from 
salmon pectoral fin hydrolysates and found it could significantly inhibit 
the NO (63.80%), prostaglandin E2 (45.33%), and three 
pro-inflammatory cytokines syntheses in RAW264.7 cells because of 
its inhibitory effect on inducible NO synthesis protein and 
cyclooxygenase-2 (Ahn et al., 2015).

However, studies on peptides or protein hydrolysates of animal 
by-products used as ingredients of functional foods are limited, especially 
in clinical studies. Therefore, further studies are warranted to develop 
their uses in the food industry and bioavailability. Besides, some animal 
wastes, like the brain and spinal cord of cattle denoted as the specified 
risk materials (SRM), cannot be used to produce food ingredients due to 
the highest possibility of carrying prion proteins (Mekonnen et al., 2016). 
Moreover, different guidelines and safety assessments have been 
established by regulatory agencies, such as FDA [U.S. Food and Drug 
Administration (FDA), 2022] and the European Food Safety Authority 
(EFSA) [Madende and Hayes, 2020; European Food Safety Authority 
(EFSA), 2023], for the food use of extracts from animal by-products. 
Thus, thorough testing and evaluation are required before approval, 
though it has certain economic, environmental, and social benefits.

FIGURE 7

Food application of proteins and peptides derived from animal products processing wastes. Created with BioRender.com.
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6.2.3 Food-grade enzymes
Multiple enzymes have been extracted from animal by-products 

and become one of the important ingredients in food processing. These 
enzymes generally are gastrointestinal proteases and include pepsin, 
trypsin, and chymotrypsin (Udenigwe and Howard, 2013). The pepsin 
can be  extracted from the stomachs of pigs, cattle, and sheep. An 
excellent review found that pepsin was more often used to hydrolyze 
eggs to release ACE inhibitory peptides compared to the enzymes 
extracted from microorganisms (Lee and Hur, 2017). The trypsin and 
chymotrypsin are found in the small intestine and secreted by the 
duodenum (Sauer and Merchant, 2018). The three food-grade enzymes 
have been excessively used in hydrolyzing animal waste proteins, for 
instance, using pepsin to explore novel bioactive peptides in fish and 
beef skeletal muscles (Maky and Zendo, 2021) and to release 
antihypertensive peptides from bovine lactoferrin (Fernández-Musoles 
et  al., 2014) and using trypsin to hydrolyze rice bran to obtain 
antioxidant and ACE inhibitory peptides (Wang X. et al., 2017). These 
food-grade enzymes can also be used together to enhance the release 
of encrypted peptides from parental proteins. For instance, the deer 
skin hydrolysates prepared by the combination of pepsin and trypsin 
to exhibited a much more potent DPP-IV inhibitory activity than that 
prepared by pepsin (Jin et al., 2015). Similarly, pepsin and pancreatin, 
an agent containing trypsin, were used together to treat trout frame 
proteins (Ketnawa et al., 2018). The discovery of these food-grade 
enzymes in animal waste proteins and the commercial versions based 
on them have played a huge role in the extraction of bioactive peptides 
from natural sources (Lee and Hur, 2017).

6.3 Medicinal application of bioactive 
peptides and hydrolysates from animal 
waste proteins

The peptides extracted from animal waste proteins exhibit various 
bioactivities. Besides, due to the cost-efficiency and the smaller 
possibilities of drug resistance and side effects, these peptides show a 
promising application prospect in the medicinal industry, on which 
much research has been done (Mahgoub et  al., 2021; Wen et  al., 
2023b). Among these investigations, the antihypertensive, antioxidant, 
antimicrobial, antidiabetic, and antithrombotic activities of peptides 
extracted from animal waste protein have occupied much attention, 
and are summarized in the study.

6.3.1 Antihypertensive drugs
These years have witnessed a growth of hypertension due to the 

changes in diet and work styles, leading to an increasing demand for 
cost-effective and safe hypertensive therapy (Zaky et  al., 2022). 
Numerous studies have found that naturally occurring peptides 
showed antihypertensive activity through different action mechanisms 
and could be an effective ingredient for hypotension (Khiari et al., 
2014; Meinert et al., 2016; Mahdi and Ojagh, 2017; Pujiastuti et al., 
2019; Bravo et al., 2023).

These action mechanisms can be classified into two types: renin-
angiotensin system and kinin-arginine-nitric oxide system (Figure 8). 
In the renin-angiotensin system, some peptides can inhibit the release 
renin, an enzyme catalyzing the conversion of angiotensinogen to 
angiotensin I (Harnedy and FitzGerald, 2013), while some peptides 
can inactivate ACE, an enzyme that can catalyze the conversion of 

angiotensin I to angiotensin II and also the degradation of bradykinin, 
an enzyme that can relax blood vessels, to inactive peptide fragments 
in kinin-arginine-nitric oxide system (Siltari et  al., 2016; Wang 
X. et al., 2017). Besides, some peptides act as angiotensin II receptor 
blockers, inhibiting angiotensin II-mediated vasoconstriction and 
releases of antidiuretic hormone and aldosterone, all of which can 
induce blood pressure (Fernández-Musoles et al., 2014). In the kinin-
arginine-nitric oxide system, apart from the effect of inactivation 
ACE, the peptides rich in arginine contribute to synthesizing more 
nitric oxide, a substance that enables vasodilation, lowering blood 
pressure (Mas-Capdevila et al., 2019). A study showed found many 
peptides isolated from the fibrinogen hydrolysates of bovine 
slaughterhouse blood had ACE and renin inhibition. Among these 
peptides, a tripeptide SLR had ACE and renin inhibitory IC50 values 
of 0.17 and 7.29 mM and a peptide RR was resistant to gastrointestinal 
digestion (Lafarga et al., 2015). Similarly, the peptide fraction (<1 kDa) 
of the skin gelatin hydrolysate and bone gelatin hydrolysate of 
pangasius catfish (Pangasius sutchi) had ACE inhibitory IC50 values of 
3.2 and 1.3 μg/mL respectively, higher than untreated gelatins and the 
other two fraction (>10 kDa and 3–10 kDa), but all three fractions 
showed resistance to gastrointestinal digestion. Besides, the fraction 
(<1 kDa) was rich in hydrophobic amino acids, like glycine and 
proline (Mahmoodani et al., 2014). A further study of Lafarga et al. 
(2015) identified three peptides (His-Phe, Tyr-Arg, and His-Arg) with 
both ACE and renin-inhibitory activities and one peptide 
(His-Leu-Pro) with ACE inhibitory activity in the bovine hemoglobin 
hydrolyzed by papain. His-Arg had ACE and renin-inhibitory IC50 
values of 0.19 and 7.09 mM, respectively (Lafarga et al., 2016). These 
studies demonstrated that the peptide fractions could have a role in 
improving human health as a functional ingredient of drugs or 
nutraceuticals, but also reflect that there is a relationship between the 
antihypertensive activity and amino acid sequence and molecular 
weight and the bioavailability of peptide after administration should 
be considered, which necessitate the more studies.

6.3.2 Antioxidant drugs
When many more free radicals [like reactive oxygen/nitrogen 

species (ROS and NOS)] are produced in human bodies, causing the 
amount to exceed the scavenging capability of antioxidant enzymes 
and other antioxidants (like glutathione and vitamins), the free 
radicals that are not scavenged will oxidate nucleic acids, proteins, and 
lipids, leading to serious damage of cells and tissues. This phenomenon 
is called oxidative stress. If oxidative stress is not controlled, various 
illnesses might happen, such as tumors, aging, Parkinson’s disease, and 
Alzheimer’s disease (Forman and Zhang, 2021; Zhang et al., 2023a). 
In this sense, the study of antioxidants with high efficiency, safety, and 
low cost is significant for human well-being.

Many antioxidant peptides have been identified in protein 
hydrolysates of animal by-products, most of which consist of 4–16 
amino acids and have a small molecular weight [e.g., a range of 
0.4–2 kDa claimed by two studies (Khiari et al., 2014; Zaky et al., 
2022)] (López-Pedrouso et al., 2020; Akbarian et al., 2022; González-
Serrano et  al., 2022; López-Pedrouso et  al., 2023a). Although the 
mechanisms of antioxidant peptides to mitigate oxidative stress have 
not been clear yet, studies have found that the antioxidant effects of 
peptides are based on donating proton or electron to free radicals, 
chelating metals to prevent the production of free radicals, and 
trapping lipid peroxyl radicals and are related to the size, 
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hydrophobicity, and amino acid composition (Zaky et al., 2022). A 
study extracted three novel peptides with strong antioxidant activities 
from protein hydrolysate of bluefin leatherjacket skin. They are 
Gly-Ser-Gly-Gly-Leu, Phe-Ile-Gly-Pro, and Gly-Pro-Gly-Gly-Phe-Ile, 
with molecular weights of 389.41, 432.52, and 546.63 Da, respectively. 
Their antioxidant activities were evaluated by scavenging capabilities 
of free radicals, including DPPH•, HO•, and O2

−•. These strong 
antioxidant activities were supposed to be due to the small size and 
the presence of hydrophobic and aromatic amino acid residues (Chi 
et al., 2015b). Smaller peptides are thought to have easier access to free 
radicals compared to larger ones and a higher possibility of crossing 
the intestinal barrier and exert antioxidant functions. Hydrophobic 
amino acids containing non-polar aliphatic groups, including leucine, 
isoleucine, proline, alanine, tryptophan, tyrosine, and valine, have a 
high reactivity to polyunsaturated fatty acids. Among aromatic amino 
acids, His, can donate protons to inactive free radicals, while tyrosine, 
tryptophan, and phenylalanine can donate electrons to free radicals to 
convert them into stable substances. Apart from free radical 
scavenging capabilities, some studies also demonstrated that the 
antioxidant activity of extracted peptides from animal waste proteins 
based on high FRAP values, for instance, a porcine liver hydrolysate 
(0.09%, w/w) with a FRAP value of 21.50 ± 0.78 (Verma et al., 2019) 
and the peptide LGEHNIDVLEGNEQFINAAK extracted from 
porcine liver hydrolysates with a positive correlation with FRAP 
(0.592) (López-Pedrouso et al., 2020). The ferric ion is a pro-oxidant 
metal, playing an important role in lipid peroxidation. Therefore, the 
conversion of ferric form to ferrous form enables a mitigation of lipid 
peroxidation. Some amino acids with reducibility, like Tyr and Trp, 

can chelate with ferric ions at their functional groups with lone pairs 
of electrons, like-NH2, contributing to the reduction of ferric ions.

6.3.3 Antimicrobial drugs
The antimicrobial effect exhibited by peptides of hydrolysates 

derived from animal waste proteins intrigues scientists, doctors, and 
health workers because it provides a safe alternative to antibiotics, 
which are deeply plagued with its induction of microorganism 
resistance in human bodies, farming animals, and even nature (Wang 
et al., 2016; Maky and Zendo, 2021).

Over 75% of antimicrobial peptides (AMPs) originated from 
animals, according to a statistic (as of September 2017) (Kumar 
et al., 2018). Based on the structure, antimicrobials can be classified 
into three categories: α-helical peptides, β-sheet peptides, and 
extended/flexible peptides. The AMPs originated from common 
animal (like bovines and pigs) waste proteins have all three 
structures, for instance, bovine myeloid AMP (BMAP)-27 and 
porcine myeloid AMP (PMAP)-36 both have α-helical structures 
(Lv et al., 2014; Yang et al., 2019). In terms of subcategory, most of 
these AMPs belong to cathelicidins, one of the most diverse 
vertebrate AMPs with 12–80 amino acids (Valdez-Miramontes 
et  al., 2021). For instance, PMAP-36 has a sequence of 
GRFRRLRKKTRKRLKKIGKVLKWIPPIVGSIPLGCG-NH2. Despite 
that AMPs from different sources have different sequences and 
structures, they share several common points, including a net 
positive charge with a range of +2 to +13 (even to +14), 
hydrophobicity, and amphipathicity (Lv et al., 2014; Kumar et al., 
2018). Many AMPs contain positively charged amino acids, 

FIGURE 8

Mechanisms of the action of antihypotensive peptides. Created with BioRender.com.
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including leucine, arginine, or histidine, for instance, the AMP 
GLSRLFTALK derived from Anchovy (Engraulis japonicus) cooking 
wastewater (Tang et al., 2015). In AMPs, hydrophobic amino acids 
typically occupy 50% of the total. Hydrophobicity is a very 
important property for AMPs because it determines the extent to 
which AMPs partition into the membrane lipid bilayer when AMPs 
interact with microorganisms. Amphipathicity can be considered 
as a result of the balance between the cationic and hydrophobic 
residues at both the primary sequence level and the two-dimensional 
or three-dimensional structure of AMPs. The antimicrobial activity 
of peptides is closely related to their hydrophobicity, net charge, and 
hydrophobicity (Hollmann et al., 2016; Wang C.-K. et al., 2017).

These AMPs originated from animal waste proteins and are 
characterized by a wider spectrum of activity than those derived from 
microorganisms (Bhat et al., 2015). They can be used as the primary 
functional ingredient of antiviral, antibacterial, antifungal, and 
antiparasitic agents and exert their antimicrobial effect by acting on 
microorganisms or hosts (Figure  9) (Schmidt and Wong, 2013; 
Mahdi and Ojagh, 2017; Bechaux et al., 2019; Maestri et al., 2019; 
Yang et al., 2019). They can kill the microorganism by inhibiting the 
synthesis of nucleic acid (DNA and RNA) and proteins, proteins from 
functioning, cell wall formation, intercalating DNA, disrupting cell 
membranes, and activating autolysis. When acting on the host of 
pathogens, they can protect the host by binding or neutralizing 
microbial products, promoting the translation, stability, and 
processing of inflammatory cytokines, inhibiting Nuclear factor κB 
(NF-κB) movement, blocking the signal pathway of protein kinase, 
and activating immunocytes. For example, the leakage of unbroken 
cytoplasm and DNA fiber and the loss of cell integrity were observed 
in the treated E. coli by an AMP faction derived from camel whey 
hydrolysate, indicating the peptide exerted an antimicrobial effect 
through the inhibition of cell wall formation and disruption cell 
membrane (Abdel-Hamid et al., 2016).

6.3.4 Hypoglycemic drugs
Diabetes is a serious chronic disease and mainly includes Type 1 

diabetes and Type 2 diabetes. Compared to Type 1 diabetes, Type 2 
diabetes is much more common, occupying 90–95% of the total 
diabetes cases (Patil et al., 2015). It occurs when the body cannot 
generate or use insulin and thus blood glucose rises to a higher level. 
The generation of insulin is primarily modulated by two important 
peptide incretin hormones, glucagon-like peptide 1 (GLP-1) and 
glucose-dependent insulinotropic polypeptide (GIP). However, these 
two incretin hormones can be rapidly cleaved by a metabolic enzyme, 
dipeptidyl peptidase-IV (DPP-IV) (Figure 10A) (Kęska et al., 2019). 
Therefore, the peptide with DPP-IV inhibitory activity has the 
potential for Type 2 diabetes treatment.

Many antidiabetic peptides have been identified in animal waste 
proteins, such as the peptides Gly-Pro-Phe-Pro-Leu-Pro-Asp and 
Gly-Ala-Thr-Phe-Gly-Phe-Phe-Tyr-Leu identified in porcine skin 
gelatin hydrolysate (Huang et  al., 2014). Most of these peptides 
consist of no more than eight amino acids and have molecular 
weights of 200–2,000 Da. They generally have a sequence of X-Pro 
or X-Ala at the N-terminal, where X is a hydrophobic amino acid 
and probably has a small size. Considering that DPP-IV has 
specificity for cleaving X-Pro or X-Ala fragments from the 
N-terminal of peptides and proteins, antidiabetic peptides with a 
sequence of X-Pro or X-Ala at the N-terminal may act as 

substrate-type inhibitors (FitzGerald et  al., 2014; Nongonierma 
et al., 2014; Jin et al., 2015). Differently, a study acquired 45 peptides 
with antidiabetic activity from the amphibian innated immune 
system through bioinformatic analysis, summarizing their proposed 
action mechanisms and recognizing their consensus amino acids, 
including alanine, glycine, lysine, and leucine (Figure  10B) 
(Soltaninejad et al., 2021). These proposed action mechanisms and 
main amino acids are not the same as those of the antidiabetic 
peptides mentioned above.

The antidiabetic effect of peptides has been thought to pertain 
to their sequence length, charge, and hydrophobicity (Kuo-Chiang 
et al., 2013), but there is no consensus in terms of the antidiabetic 
peptides derived from animal waste proteins. For instance, the 
tripeptide Gly-Pro-Hyp and tetrapeptide Gly-Pro-Ala-Gly, derived 
from a porcine skin hydrolysate fraction, exhibited DPP-IV 
inhibitory activity (IC50 = 49.6 and 41.9 μM, respectively) 
(Kuo-Chiang et al., 2013) similar to the pentapeptide Ile-Pro-Ala-
Val-Phe derived from porcine skin hydrolysate (IC50 = 44.7 μM) 
(Silveira et al., 2013). Besides, the peptides Gly-Pro-Val-Gly-Hyp-
Ala-Gly-Pro-Pro-Gly-Lys and Gly-Pro-Val-Gly-Pro-Ser-Gly-Pro-
Hyp-Gly-Lys, derived from deer skin hydrolysate, exhibited similar 
DPP-IV inhibitory activity (IC50 = 83.3 and 93.7 μM, respectively) 
(Jin et al., 2015). Likely, the peptides Arg-Ala-Ser-Asp-Pro-Leu-
Leu-Ser-val, Arg-Asn-Asp-Asp-Leu-Asn-Tyr-Ile-Gln, and 
Leu-Ala-Pro-Ser-Leu-Pro-Gly-Lys-Pro-Lys-Pro-Asp, derived from 
an egg-yolk protein by-product exhibited a similar DPP-IV 
inhibitory activity (IC50 ranging from 361.50 to 426.25 μM) 
(Zambrowicz et al., 2015).

These comparisons seem to mean that the antidiabetic peptides 
with similar sequence lengths have similar activity. However, the 
peptide Gly-Pro-Val-Gly-Pro-Ser-Gly-Pro-Hyp-Gly-Lys, also derived 
from deer skin hydrolysate, exhibited an antidiabetic activity 
(IC50 = 318.1 μM) much lower than the other two peptides consisting 
of 11 amino acids mentioned above (Jin et al., 2015). Additionally, 
based on the statistical analysis of 45 antidiabetic peptides from the 
amphibian innate immune system, a study supposed that the 
antidiabetic peptides with a higher net positive charge and weaker 
hydrophobicity exhibited a stronger insulinotropic effect (Soltaninejad 
et  al., 2021). However, this relationship has not been observed in 
animal-derived peptides (Rivero-Pino et al., 2020; He et al., 2023; Li 
et al., 2023). Specifically, the study (Nasri et al., 2015) showed that two 
protein hydrolysates derived from goby fish using Bacillus mojavensis 
A21 protease fraction (HFFD + GPH-A) and triggerfish protease 
fraction (HFFD + GPH-TF), respectively, could reduce blood glucose 
level and hepatic glycogen and protect the kidney of high-fat-high-
fructose diet (HFFD)-fed rats by reversing the HFFD-induced uric 
acid reduction and creatinine level increase in serum and preventing 
some HFFD-induced changes in the kidney (including tubular 
dilatation, glomerular space, vacuolization, and epithelial cells 
necrosis of the proximal tubule) (Figure 10C). However, the amino 
acid composition analysis showed higher percentages of hydrophobic 
amino acids (41.33 and 38.42%) in both HFFD + GPH-A and HFFD 
+ GPH-TF.

6.3.5 Antithrombotic drugs
Apart from hypertension, thrombosis (i.e., the blood clotting 

inside the vessels) is another major cause of cardiovascular disease and 
can lead to several serious results, including paralysis, myocardial 
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infarction, and vascular diseases. Due to the safety and comparable 
antithrombotic effect to synthetic drugs [like aspirin and heparin 
(Indumathi and Mehta, 2016; Cheng et al., 2018)], antithrombotic 
peptides derived from animal waste proteins are considered to be a 
good alternative to them and have continuously gained attention in 
the past 10 years, though not as much as the aforementioned four 
kinds of bioactive peptides (Madhu et al., 2022; Wen et al., 2023a). For 
instance, a study found that the mackerel skin gelatine hydrolysate 
exhibited high antithrombotic activity, probably owing to the presence 
of the peptide tripeptide Phe-Gly-Asn with a molecular weight of 
337 Da (Khiari et al., 2014).

Anticoagulants are one of the main therapeutic drugs for 
antithrombic diseases. Fortunately, research has identified 
anticoagulant peptides in animal meat and by-products (Kong et al., 
2014; Cheng et al., 2018; Qiao et al., 2018; Bezerra et al., 2019; Ucak 
et  al., 2021). The anticoagulant effect of these peptides is often 
evaluated by the extension of activated partial thromboplastin time, 
thrombin time, and prothrombin time. The study (Bezerra et al., 2019) 
proved that the peptides extracted from the hydrolysate of a mixture 
of chicken combs and wattles were anticoagulant and very 
ACE-inhibitory. The anticoagulant effect was achieved by activating 
partial thromboplastin time.

FIGURE 9

Mechanisms of the action of antimicrobial peptides (AMPs). (A) Inhibiting the growth of microbes and killing microbes. (B) Activating immune response 
and reducing the impact of microbial products. Created with BioRender.com.
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7 Challenges

Animal waste proteins will continue to grow worldwide, along 
with consumer demands. Their adding-value applications through 
advanced biotechnological methods in agricultural, food 
processing, and medical fields not only mitigate the environmental 
pressure brought by their discard but also bring new opportunities 
for the progress of agriculture, food processing, and medicine. 
However, these adding-value applications also face some 
challenges, including bioavailability or stability during 
gastrointestinal digestion and the relationship between the 
bioactivity and properties of peptides.

7.1 Stability and bioavailability of bioactive 
peptides from animal waste proteins

The stability and bioavailability of bioactive peptides are extremely 
important to exert their activities in functional food and 

pharmaceuticals. After oral administration, peptides may 
be decomposed into smaller molecules during gastrointestinal digestion, 
resulting in the reduction and even loss of their activities (Ketnawa 
et al., 2018; Wang K. et al., 2021; Cai et al., 2022; Zhang et al., 2023b). 
For example, a study identified many peptides with ACE, renin, and 
DPP-IV inhibitory activities in bovine fibrinogen fraction. However, the 
computer simulation of gastrointestinal digestion predicted some 
peptides were cleaved by pepsin, trypsin, and chymotrypsin into amino 
acids (Lafarga et  al., 2015). Therefore, the resistance of peptides to 
gastrointestinal digestion should be considered when assessing their 
effects on human bodies and animals. Recently, the computer simulation 
of proteolysis has been used for predicting the decomposition of 
proteins in the gastrointestinal system, like the ExPASy PeptideCutter 
used in Lafarga et al. (2015) and the BIOPEP-UWM database used in 
Kęska et al. (2019). However, in the gastrointestinal system of humans 
and animals, the digestion and adsorption of proteins is a more 
complicated process than the simulated cleavage of proteins in silico 
analysis, due to the effect of multiple factors, including intestinal 
motility and body temperature fluctuation (Li et al., 2020; Sensoy, 2021). 

FIGURE 10

(A) Proposed mechanisms of action for antidiabetic peptides (Soltaninejad et al., 2021). (B) Scheme of the activity of the dipeptidyl peptidase IV  
(DPP-IV) inhibitor. GLP-1, glucagon-like peptide-1; GIP, glucose-dependent insulinotropic peptide (Kęska et al., 2019). (C) Wistar rat-feeding assay by 
different diets: CD, control diet; HFFD, high-fat-high-fructose diet; HFFD + UGP, HFFD + undigested goby fish muscle proteins; HFFD + GPH-A, HFFD 
+ goby fish muscle protein hydrolysate obtained with the Bacillus mojavensis A21 protease fraction; HFFD + GPH-TF, HFFD + goby fish muscle protein 
hydrolysate obtained with the triggerfish protease fraction. (D) Histopathology of kidney tissues from CD group, high-fat-high-fructose diet (HFFD) 
group [(1) and (2)], HFFD + undigested goby fish muscle proteins (HFFD + UGP) group, HFFD + (HFFD+GPH-A) group, and HFFD + (HFFD + GPH-TF) 
group. Photomicrographs were taken by optic microscopy: ×200. : tubular dilatation; : glomerular space; : vacualization; : 
epithelial cells necrosis of the proximal tubules. Modified from Nasri et al. (2015).
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Therefore, in vivo study and the subsequent clinic trial are essential to 
explore the absolute bioavailability and effect of bioactive peptides after 
being oral administration. The combination of in silico analysis and in 
vivo study may open new avenues in the rapid development of 
functional food and pharmaceuticals with bioactive peptides as primary 
ingredients (Ketnawa et al., 2018).

7.2 Action mechanisms of bioactive 
peptides from animal waste proteins

The comprehension of the action mechanisms of bioactive peptides 
is fundamental for them to be  used as functional ingredients in 
industrial products. The action mechanisms of bioactive peptides are 
associated with their amino acid composition, structure, 
hydrophobicity, and charge. The comprehension of these associations 
will be beneficial to the identification of novel bioactive peptides and 
the synthesis of bioactive peptides. However, the association of some 
bioactivities of peptides with their feathers has not been clear yet. As 
mentioned above, the peptides with X-Pro or X-Ala (X represents a 
hydrophobic amino acid) at the N-terminal derived from livestock or 
aquatic product protein hydrolysates are competitive with GLP-1 GIP 
as the substrate of DPP-IV, based on which these peptides enable the 
reduction of blood glucose level. However, a database analysis of 
amphibian-originated antidiabetic peptides concluded that these 
peptides exert the antidiabetic through eight different mechanisms and 
have four consensus amino acids (alanine, glycine, lysine, and leucine), 
an average sequence length of 22.24, and an average net charge of 3.50 
(Soltaninejad et al., 2021), quite different from features of those derived 
from livestock and aquatic sources, including DPP-IV inhibition, no 
more than eight amino acids, and richness in proline.

8 Conclusion

This paper reviewed the advancement of the value-added application 
of animal waste proteins in the past decade. Microbial fermentation and 
enzymatic hydrolysis are the most favorable biotechnological methods 
to treat animal waste proteins to decode bioactive peptides from parental 
proteins, especially enzymatic hydrolysis, which is more efficient at 
producing the peptide with a specific activity and more used in finding 
novel bioactive peptides in animal waste proteins, than microbial 
fermentation. The bioactive peptides produced enable the promotion of 
whole-life growth of plants, enhancement of both abiotic and biotic stress 
tolerance, and prolongation of post-harvest preservation of agricultural 
products. In the food industry, these peptides have been used as additives 
and primary functional ingredients. Besides, animal waste proteins are 
also good sources of food-grade enzymes. In addition, these bioactive 
peptides show a prospective application in medicine as a functional 
ingredient, including antihypertension, antioxidant, hypotensive, and 
antithrombosis. These value-added applications of animal waste proteins 

may be a step towards sustainable animal by-products management and 
circular bioeconomy and, simultaneously, open new avenues in the rapid 
development of nutraceuticals and pharmaceuticals.
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Glossary

ACE-I Angiotensin-converting enzyme inhibitory

AMP Antimicrobial peptide

BMAP Bovine myeloid antimicrobial peptide

C/N ratio Carbon-nitrogen ratio

DH Degree of hydrolysis

DPPH 2,2-diphenyl-1-picrylhydrazyl

DPP-IV Dipeptidyl peptidase-IV

EFSA European Food Safety Authority

FDA The U.S. Food and Drug Administrating

FRAP Ferric reducing antioxidant power

GIP Glucose-dependent insulinotropic polypeptide

GLP-1 Glucagon-like peptide 1

GPH Goby fish muscle proteins

GRAS Generally recognized as safe

HFFD High-fat-high-fructose diet

HFFD + GPH-A HFFD + goby fish muscle protein hydrolysate obtained with the Bacillus mojavensis A21 protease fraction

HFFD + GPH-TF HFFD + goby fish muscle protein hydrolysate obtained with the triggerfish protease fraction

IC50 Half maximal inhibitory concentration

INF-γ Interferon γ

MAPK Mitogen-activated protein kinase

MyD88 Myeloid differentiation 88

NF-κB Nuclear factor κB

NOS Reactive nitrogen species

ORAC Oxygen radical absorbance capacity

PMAP Porcine myeloid antimicrobial peptide

ROS Reactive oxygen species

SRM Specified risk material

TNF-α Tumor necrosis factor α

UGP Undigested goby fish muscle proteins

159

https://doi.org/10.3389/fsufs.2024.1366333
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Frontiers in Nutrition 01 frontiersin.org

Neurodegenerative diseases and 
catechins: (−)-epigallocatechin- 
3-gallate is a modulator of 
chronic neuroinflammation and 
oxidative stress
Siying Li 1,2, Zaoyi Wang 1, Gang Liu 1* and Meixia Chen 2

1 Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for 
Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, 
Changsha, China, 2 Department of Neurology, The Yuhuan People’s Hospital, Taizhou, Zhejiang, China

Catechins, a class of phytochemicals found in various fruits and tea leaves, have 
garnered attention for their diverse health-promoting properties, including their 
potential in combating neurodegenerative diseases. Among these catechins, 
(−)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green 
tea, has emerged as a promising therapeutic agent due to its potent antioxidant 
and anti-inflammatory effects. Chronic neuroinflammation and oxidative 
stress are key pathological mechanisms in neurodegenerative diseases such as 
Alzheimer’s disease (AD) and Parkinson’s disease (PD). EGCG has neuroprotective 
efficacy due to scavenging free radicals, reducing oxidative stress and 
attenuating neuroinflammatory processes. This review discusses the molecular 
mechanisms of EGCG’s anti-oxidative stress and chronic neuroinflammation, 
emphasizing its effects on autoimmune responses, neuroimmune system 
interactions, and focusing on the related effects on AD and PD. By elucidating 
EGCG’s mechanisms of action and its impact on neurodegenerative processes, 
this review underscores the potential of EGCG as a therapeutic intervention for 
AD, PD, and possibly other neurodegenerative diseases. Overall, EGCG emerges 
as a promising natural compound for combating chronic neuroinflammation 
and oxidative stress, offering novel avenues for neuroprotective strategies in the 
treatment of neurodegenerative disorders.

KEYWORDS

catechins, (−)-epigallocatechin-3-gallate, neurodegenerative diseases, Alzheimer’s 
disease, Parkinson’s disease

1 Introduction

Catechins, a class of physiologically active phytochemicals, are commonly found in the 
fruits and leaves of various plants, including tea, apricots, cherries, peaches, blackberries, 
strawberries, blueberries, raspberries, and cocoa (1). Research indicates that catechins 
possess numerous health-promoting properties, notably benefiting cardiovascular disease, 
metabolic syndrome, diabetes, cancer, stroke, and neurodegenerative diseases (Figure 1) 
(2–9). As predominant polyphenols in tea, constituting approximately 30% of the dry mass 
of tea leaves, catechins serve as key functional components. Major green tea polyphenols 
encompass (−)-epicatechin (EC), (−)-epicatechin gallate (ECG), (−)-epigallocatechin 
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FIGURE 1

The chemical structures of four common green tea catechins are depicted. Their potential as therapeutic agents for common diseases is discussed. 
Additionally, the absorption and metabolism of green tea catechins are explored, accompanied by diagrams illustrating the absorption process across 
various organs of the body. Molecular formula, molecular weight, number of phenoile OH groups of four common catechins. Comparison of the four 
common catechins in green tea catechin profiles, anti-inflammatory, radical scavengers, and reduced efficiency of lipid peroxidation effects.
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(EGC), and (−)-epigallocatechin gallate (EGCG) (Figure 1) (10, 
11). EGCG, the most abundant among green tea catechins at 60%, 
garners significant interest due to its broad spectrum of benefits 
elucidated in clinical trials, animal studies, and cell culture research 
(12). The molecular weight of EGCG is 442.37. Mechanisms 
underlying EGCG’s multifaceted health effects include antioxidant 
properties, anti-inflammatory activity, interactions with plasma 
membrane proteins, activation of second messenger and signaling 
pathways, modulation of metabolic enzymes, and promotion of 
autophagy (13–15).

Neurodegenerative diseases manifest through the gradual and 
progressive degeneration of nerve cells in defined regions of the 
brain and spinal cord, leading to functional impairment. Prominent 
examples encompass Alzheimer’s disease (AD), Parkinson’s disease 
(PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis 
(ALS) (16–18). Although the specific cellular and molecular 
mechanisms vary across these diseases, common features include 
oxidative stress, mitochondrial dysfunction, DNA damage, protein 
aggregation, and neuroinflammation (18, 19). Notably, chronic 
neuroinflammation and oxidative damage represent shared 
pathological hallmarks among all neurodegenerative diseases (20, 
21). Neuroinflammation serves as a common defense mechanism to 
protect the brain by removing or inhibiting various pathogens (22). 
This inflammatory response plays a crucial role in facilitating tissue 
repair and preserving tissue homeostasis (23). Typically, 
neuroinflammation abates upon successful tissue repair or pathogen 
clearance (22, 24). However, when the inflammatory stimulus 
persists, chronic neuroinflammation ensues (22, 25). Various factors 
contribute to sustained inflammatory responses, including protein 
aggregation, systemic infections, gut microbiota dysbiosis, aging, 
and genetic mutations. Prolonged activation of microglia and 
astrocytes, key players in neuroinflammation, can precipitate 
neurodegenerative diseases (26–28). Furthermore, neurons exhibit 
heightened susceptibility to oxidative damage, attributed to their 
elevated content of unsaturated fatty acids, rendering them 
susceptible to free radical attack and peroxidation. Additionally, 
increased levels of iron in specific brain regions further augment 
neuronal vulnerability to oxidative stress (29). Consequently, 
interventions targeting anti-neuroinflammatory and antioxidant 
pathways hold particular significance in the context of 
neurodegenerative diseases.

EGCG, a natural polyphenol abundant in green tea, exhibits 
promising neuroprotective properties attributed to its potent 
anti-inflammatory and antioxidant activities (12). Accumulating 
evidence underscores its therapeutic potential in the prevention 
and treatment of neuroinflammatory and neurodegenerative 
disorders (30). EGCG demonstrates notable neuroprotective 
efficacy by modulating signals implicated in autoimmune 
responses, enhancing interplay between the nervous and immune 
systems, and effectively attenuating inflammatory processes. 
Furthermore, EGCG exhibits iron chelation capabilities, 
scavenges free radicals, and exerts significant antioxidant effects, 
as evidenced by pertinent studies (31). Therefore, this review 
comprehensively explores the role of EGCG in various 
neurodegenerative conditions, particularly AD and PD, with a 
focus on elucidating its molecular mechanisms underlying anti-
neuroinflammatory and antioxidant actions.

2 Antioxidant and anti-inflammatory 
effects of EGCG

Multiple investigations have substantiated the beneficial 
impact of green tea on neurodegenerative disorders. For instance, 
Shinichi Kuriyama et al. studied 1,003 elderly individuals aged 
over 70 years to assess the influence of green tea intake on 
cognitive function (32). Their findings revealed that subjects 
consuming more than 100 mL of green tea twice daily exhibited 
reduced susceptibility to neurodegenerative diseases (32). 
Similarly, Hu et  al. conducted a 13-year longitudinal study 
involving nearly 30,000 Finnish adults, demonstrating that 
individuals consistently consuming over 600 mL of green tea daily 
exhibited a diminished risk of developing PD (33). These 
observations underscore the association between green tea 
consumption and a lowered incidence of neurodegenerative  
conditions.

The health-promoting bioactive components of green tea catechins 
include a wide range of isomers, the most representative of which are 
mainly four (EGCG, ECG, EGC and EC), with EGCG accounting for 
the vast majority of green tea research (34, 35). The biological action of 
the molecule will be  determined by its chemical structure. EGCG 
(C22H18O11) is a catechin flavanol, specifically a gallate ester formed by 
the condensation of gallic acid with the (3R)-hydroxyl group of 
(−)-epigallocatechin, labeled A, B, C, and D (Figure  2) (36). The 
pentacosanoyl group esterification on Carbon −3 of the C-ring, along 
with hydroxyl groups on Carbon −3′, −4′, and − 5′ of the B-ring, 
underlie EGCG’s robust antioxidant activity compared to other 
catechins. The D- and B-rings contribute to its reactive oxygen species 
(ROS) neutralizing properties, with the D-ring further enhancing its 
anticancer and anti-inflammatory attributes. EGCG has seven hydroxyl 
groups in its aromatic ring. The location and number of hydroxyl groups 
on the ring determines its biological activity, giving EGCG greater 
antioxidant properties than EGC or EC, as well as water solubility, 
making EGCG highly permeable to the blood–brain barrier (BBB) (37). 
EGCG has been reported to cross the BBB within 0.5 h. Moreover, 
EGCG features two structures—the ortho-3′,4′-dihydroxy moiety and 
the 4-keto, 3-hydroxyl, or 4-keto, and 5-hydroxyl moiety—that can 
chelate metal ions, thereby neutralizing their activity. In essence, 
EGCG’s distinctive chemical structure and composition confer potent 
antioxidant and anti-inflammatory properties, suggesting potential 
benefits in select neurodegenerative disorders (38).

Following oral administration, EGCG undergoes limited 
absorption by the intestines, resulting in minimal entry into the 
bloodstream and tissues (39). The constrained bioavailability of orally 
administered EGCG arises from factors including extreme pH 
conditions, digestive enzymes, and EGCG’s restricted membrane 
permeability within the intestinal wall (9). Within the body, EGCG 
undergoes extensive biotransformation via sulfonation, 
glucuronidation, and methylation reactions (39). Its half-life is 
approximately 3.9 h, with complete metabolism occurring within 24 h 
(40). Furthermore, the biological effects of EGCG are contingent on 
concentration levels. Plasma concentrations ≤10 μM elicit antioxidant, 
anti-inflammatory, and insulin-sensitizing effects. Conversely, plasma 
EGCG levels exceeding 10 μM may induce pro-oxidant activity, 
augmenting autophagy and cell death, and are commonly employed 
in tumor therapy (41).
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2.1 Anti-chronic neuroinflammatory effects 
of EGCG

Neuroinflammation serves as a protective mechanism within the 
nervous or central nervous system (CNS) against various threats 
including infections, toxic metabolites, autoimmunity, and traumatic 

brain injury, with the aim of eliminating harmful substances and 
damaged tissues (42). This process entails the activation of glial cells, 
which serve as neuroprotective agents by removing endogenous and 
exogenous substances while safeguarding themselves from ROS (43). 
Notably, microglia, as ubiquitous innate immune cells in the CNS, are 
pivotal contributors to neuroinflammation, participating in both 

FIGURE 2

A schematic representation elucidates the role of EGCG in neuroprotection. The diagram illustrates how EGCG exerts antioxidant, anti-inflammatory, 
and anti-apoptotic effects via various molecular mechanisms, thereby conferring protection against neurodegenerative diseases.
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anti-inflammatory and pro-inflammatory responses (44). The anti-
neuroinflammatory properties of EGCG primarily involve the 
inhibition of microglial activation and the modulation of 
pro-inflammatory cytokine expression (45). The pro-inflammatory or 
neuroprotective functions of microglia are contingent upon their 
activation status (46). Pathogens or cellular debris induce heightened 
expression of pro-inflammatory cytokines such as IFNs and LPS, 
prompting microglial activation from a resting state (47). Activated 
microglia upregulate pro-inflammatory mediators including IL-1β, 
IL-23, TNF-α, IL-6, NO, and SOC3 via NF-κB and STAT1 pathways 
(48). In neuroinflammation, activated microglia sustain the release of 
pro-inflammatory cytokines, perpetuating chronic inflammation and 
generating cytotoxic molecules such as ROS and RNS (49). Extensive 
scientific evidence underscores the role of persistent inflammation in 
promoting neurodegenerative disorders. Conversely, neuroprotective 
microglia activated by IL-13, IL-10, and IL-4 secrete various factors 
associated with neuroprotection and tissue repair, including TGF-β, 
Chi3l3, Arginase 1, Ym1, IGF-1, and Fzd1 (48).

The effects of EGCG on microglia encompass: (1) Modulation of 
microglial activation under inflammatory conditions, primarily 
within the M1/M2 spectrum (50). M1 microglia release neurotoxic 
and inflammatory factors such as IL-6, IL-1β, and TNF-α, contributing 
to neuronal damage and death, while M2 microglia secrete 
neurotrophic factors including BDNF, IL-4, and IL-10, fostering 
neuronal growth and protection (51). EGCG downregulates M1 
markers (IL-6, TNF-α, and IL-1β) and upregulates M2 markers (IL-10 
and NQO1) in microglia, thereby modulating the M1/M2 ratio and 
mitigating neurotoxicity and neuronal damage arising from microglial 
hyperactivity (13). (2) EGCG induces M1 polarization via various 
signaling pathways including TLR4/NF-κB, JAK2/STAT3, TLR2, 
TLR4, JNK/P38, thereby suppressing the activation of inflammatory 
vesicles and reducing microglial inflammation and neurotoxicity (13). 
(3) Voltage-gated proton channels play a pivotal role in microglial 
NADPH oxidase-dependent ROS generation (52). EGCG impedes 
proton channel function in microglia without affecting channel gating 
processes. This inhibition of proton channels constitutes a significant 
mechanism through which EGCG suppresses microglial activation 
and neurotoxicity (53). (4) Neuronal injury or neuroinflammation 
triggers microglial activation, leading to NO production. NO reacts 
with cysteine thiols, resulting in protein S-nitrosylation, which 
regulates various cell signaling and protein activities, including protein 
misfolding and mitochondrial apoptosis. EGCG attenuates protein 
S-nitrosylation in activated microglia (54). In summary, EGCG 
mitigates excessive inflammatory responses and neurotoxicity induced 
by inflammation by inhibiting inducible NO synthase activity, 
reducing oxidative stress levels, and modulating the M1/M2 ratio 
in microglia.

2.2 Antioxidant effects of EGCG

EGCG, a significant natural antioxidant, demonstrates efficacy in 
neutralizing ROS like hydrogen peroxide, superoxide anions, and 
hydroxyl radicals (55). Its antioxidant properties stem from the 
polyhydroxyl structure and gallic acid moiety, which facilitate free 
radical scavenging, while the presence of phenolic moieties can lead 
to quinone generation via oxidative sensitivity (56). EGCG exerts 
antioxidant effects through diverse mechanisms, including hydrogen 

atom transfer (HAT), electron transfer, and catalytic metal chelation 
(Figure 2) (57). ROS are metabolically generated by organelles such as 
mitochondria, peroxisomes, and the endoplasmic reticulum (58). 
Normally, the antioxidant system efficiently eliminates ROS. However, 
oxidative stress prompts a shift in signaling pathways, fostering 
inflammation via pathways like NF-κB, PKC, MAPK, Nrf-2, and 
PI3K/Akt (59). EGCG mitigates oxidative stress by modulating these 
pathways (38, 60).

Moreover, studies have indicated that EGCG exerts a direct 
antioxidant effect by chelating free transition metals such as iron and 
copper (61). EGCG functions as a free radical scavenger, acting 
through two mechanisms: HAT and single electron transfer reaction 
(SET), in relation to its one-electron reduction potential (62). 
Additionally, EGCG enhances the activity of phase II enzymes and 
detoxification enzymes, including catalase, glutathione peroxidase 
(GPX), superoxide dismutase (SOD), and glutathione S-transferase 
(63). The regulation of these enzymes is primarily governed by Nrf2, 
which binds to cis-acting regulatory elements to initiate the gene 
expression of antioxidant enzymes (64). Furthermore, EGCG 
attenuates excessive levels of NO generated by inducible nitric oxide 
synthase (iNOS) (65). NO plays a crucial role in various physiological 
processes at appropriate concentrations. However, under oxidative 
stress, NO can act as a pro-inflammatory mediator, generating reactive 
nitrogen species (RNS) such as peroxynitrite (66). Studies have 
demonstrated that EGCG inhibits iNOS activity, thereby enhancing 
the bioavailability of NO levels (67). Additionally, EGCG effectively 
suppresses the activity of xanthine oxidase, an enzyme involved in 
purine catabolism and uric acid formation, thereby mitigating the 
associated increase in ROS (68). Moreover, EGCG inhibits the 
expression of cyclooxygenase-2 (COX-2), an enzyme crucial for fatty 
acid metabolism that is upregulated during inflammation, particularly 
in activated macrophages (69).

3 Neuroprotective role of EGCG in the 
context of neurodegenerative 
diseases

Neurodegenerative disease is a common and growing cause of 
mortality and morbidity worldwide (70), with 152 million people 
expected to receive the effects of the disease by 2060 (71), including 
AD, PD, HD, ALS, and prion diseases (72). Among various forms of 
dementia, AD exhibits the highest prevalence, accounting for 62%, 
followed by PD (73). The pathology of AD is characterized by the 
accumulation of extracellular amyloid β (Aβ) plaques and the 
formation of intracellular neurofibrillary tangles composed of 
hyperphosphorylated tau protein (38). Clinical manifestations 
encompass memory loss, cognitive impairment, personality changes, 
and in severe cases, hallucinations and seizures (74). PD onset is 
marked by progressive degeneration of dopaminergic neurons within 
the substantia nigra, leading to diminished levels of striatal dopamine 
and its metabolites in the adult brain (75). Clinical features include 
motor dysfunction, bradykinesia, tremors, gait and balance 
disturbances, cognitive decline, and disorientation (76). ALS, 
commonly known as Lou Gehrig’s disease, represents an adult-onset 
progressive neurodegenerative disorder characterized by selective 
motor neuron degeneration (77). This degeneration progressively 
affects both upper and lower motor neurons within the brain and 
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spinal cord. The etiology of ALS remains largely elusive in the majority 
of cases, with fewer than 10% attributed to specific genetic mutations 
involving genes such as SOD1, C9orf72, TDP43, and FUS (78). HD 
arises from an unstable polyglutamine repeat expansion within the 
first exon of the IT-15 gene, which encodes the 350 kDa huntingtin 
protein (79). The aggregation propensity of huntingtin fibers 
contributes to the progressive degeneration of cortical and striatal 
neurons, alongside the formation of neuronal inclusions containing 
aggregated huntingtin. Clinical manifestations encompass movement 
disorders and psychiatric symptoms including chorea, coordination 
deficits, depression, psychosis, and obsessive-compulsive disorder (80).

While the pathological and clinical presentations of 
neurodegenerative diseases vary, they share common features 
including specific pathological alterations within distinct brain regions 
and the degeneration of various neuronal subtypes. Key factors 
contributing to neurodegenerative processes encompass the 
dysregulation of pro-apoptotic proteins, oxidative stress damage, 
immune-mediated inflammation, mitochondrial dysfunction, and 
reduced expression of trophic factors (81–83). Here we focus on the 
crosstalk between EGCG and neurodegenerative diseases in terms of 
EGCG anti-neuroinflammation and oxidative stress. 
Neuroinflammation and oxidative stress are intertwined, as 
inflammation amplifies ROS production while ROS, in turn, 
exacerbate inflammation (84). ROS can directly activate the NF-kB 
transcription factor pathway, promoting the synthesis of inflammatory 
cytokines (85). Given the multifactorial nature of neurodegenerative 
pathologies, the emergence of novel therapeutic strategies is 
imperative. The antioxidant properties and neuroprotective effects of 
EGCG have garnered significant attention from researchers 
worldwide, positioning it as a promising treatment for neurological 
disorders and a cytoprotective agent. In this section, we delve into the 
role of EGCG in mitigating oxidative stress and chronic 
neuroinflammation in two prevalent neurodegenerative diseases: 
AD and PD.

3.1 Alzheimer’s disease

Neurodegenerative disease affects an estimated 24 million 
individuals globally, with AD being the most prevalent disease (86). 
In developed Western nations, individuals aged over 85 exhibit an AD 
prevalence ranging from 24 to 33%, a figure that escalates with 
advancing age (87). Given the global aging demographic, AD is poised 
to become a substantial public health concern over the next two 
decades and has been identified as a research priority (86). The 
pathogenic mechanisms underlying AD encompass microglia-
induced inflammation, elevated intracellular calcium levels, disruption 
of antioxidant defense systems, cholinergic dysfunction, overactivation 
of glutamate receptors, and amplification of the inflammatory 
response (88). Despite the availability of various medications for 
managing AD, a definitive treatment remains elusive (89), 
underscoring the pressing need for research into novel therapeutic 
approaches and adjunctive therapies. Optimal antioxidant levels in the 
body have been associated with cognitive preservation, and several 
studies have demonstrated the neuroprotective effects of catechins, 
highlighting their potential as adjunctive therapy in select 
neurodegenerative diseases. These effects rely on the anti-
inflammatory and antioxidant properties of catechins (90). Moreover, 

multiple studies have established a correlation between tea 
consumption, reduced risk of severe cognitive impairment, and a 
lower prevalence of AD.

3.1.1 Observational epidemiologic study of green 
tea consumption and risk of AD

Moeko Noguchi-Shinohara et al. conducted a 2-year follow-up 
survey of 490 subjects over 60 years of age with cognitive performance 
and blood tests. Even after correcting for potential confounders, 
drinking green tea was found to significantly reduce the chance of 
cognitive deterioration (91). In a questionnaire-based study of 1,003 
Japanese participants aged 70 or older, Shinichi Kuriyama et  al. 
discovered a correlation between higher green tea drinking and a 
lower prevalence of cognitive impairment (32). A brief analysis of tea 
consumption and prevalence of AD in different country regions by 
Fernando et al. revealed that countries with higher intake of tea, such 
as Japan, China, and India, had lower prevalence of AD, whereas 
European and American countries with lower intake of tea had higher 
prevalence of AD (92). Although epidemiological data favorably show 
a negative relationship between drinking tea and the preponderance 
of AD in that part of the country, any correlation between tea 
consumption and AD prevalence should be evaluated with caution 
because the effects of racial differences, dietary preferences, and 
lifestyle cannot be excluded (92). Yang Yuhuan et al. conducted a 
questionnaire survey to gauge the cognitive function of seniors 
60 years of age and older in the Huangshi community in order to 
better understand the prevalence of mild cognitive impairment (MCI) 
and its influencing factors (93). The survey data were tested by 
chi-square test and it was concluded that the prevalence of MCI was 
lower in occasional tea drinkers, which may be related to the caffeine 
and catechins contained in tea, caffeine can reduce the level of Aβ in 
the brain, which is beneficial for improving cognitive function, while 
catechins have strong antioxidant capacity, but the study did not prove 
the relationship between tea drinking and AD prevalence. Wang, Ziqi 
et al. performed the Mini-Mental State Examination (MMSE) for the 
assessment of cognitive function in 870 people aged 90 years or older, 
and cardinality testing of the collected data revealed that the mild 
cognitive index was significantly different from normal in those who 
regularly consumed animal oils and legumes (94). In contrast, no 
significant differences were found for the other 10 foods, including tea, 
in both the unadjusted and adjusted models (94). Numerous studies 
have demonstrated the potential of tea consumption to mitigate 
cognitive decline in older adults; however, experimental evidence 
supporting its efficacy in AD is lacking (95). Controlled studies 
examining AD cases have not yielded significant findings regarding 
tea consumption, thus limiting the inference of beneficial effects of 
green tea catechins solely based on AD pathogenesis and in vitro 
studies (96). Despite this, the observed efficacy of green tea in AD 
surpasses initial expectations, warranting further investigation into 
the specific role of catechins in AD patients.

3.1.2 Experimental studies and mechanisms of AD
Given that Aβ aggregation is recognized as a pivotal factor in the 

pathogenesis of AD and its impact on the human nervous system, 
Mahsa Amirpour et al. investigated the neuroprotective potential of 
green tea in a streptozotocin (STZ)-induced AD model. Their study 
examined the effects of green tea on cognitive decline, inflammation, 
and oxidative stress (97). The findings demonstrated that the active 
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compounds present in green tea could mitigate cognitive impairment 
and ameliorate learning and memory deficits associated with STZ 
injection (81). Furthermore, green tea may reduce the risk of AD 
through antioxidative and anti-inflammatory pathways, thus 
positioning it as a potential preventive intervention (90) (Table 1).

Tingting Chen et al. used mice as a model to demonstrate that the 
polyphenolic compounds EGC and ECG effectively alleviated Aβ40 
aggregation and protofibrillar toxicity by chelating Cu2+ and Zn2+ and 
reduced ROS production, thereby mitigating Cu2+-Aβ40 and Zn2+-
Aβ40induced neuronal toxicity (111). The results showed that tea 
polyphenols had significant beneficial effects on different aspects of 
AD pathology (112). Among them, catechin ECG had the most 
significant effect due to the therapeutic effect of ECG through the 
BBB, reducing Aβ plaques in the brains of APP/PS1 mice and thus 
protecting neurons from damage (111). Therefore, the potential of 
catechins to prevent or improve AD symptoms was laterally 
demonstrated (111). Lee JW et al. found that EGCG reduced Aβ1-42-
induced memory dysfunction by altering the secretion of α-secretase, 
in addition to EGCG inhibiting Aβ1-42-induced apoptosis (113). 
These findings imply that EGCG may be a useful tool for delaying the 
start or progression of AD (Figure 3).

3.1.3 EGCG anti-neuroinflammatory activity in AD
Neuroinflammation as a pathogenesis of AD has been confirmed 

by numerous studies. It has been found that cerebrospinal fluid levels 
of pro-inflammatory factors such as IL-1β, IL-6, and TNF-α are high 
in AD patients and increase with disease progression (114, 115). In 
addition, microglia, which play an important role in chronic 
neuroinflammation, are also involved in this process. Microglia resist 
the onset and progression of AD by degrading Aβ and tau. However, 
Aβ in turn activates microglia through TLRs to release 
pro-neuroinflammatory mediators. In the early stages of AD 
development, neuroprotective phenotypic microglia appear around 
Aβ plaques (116, 117). However, in late AD pathogenesis, elevated 
expression of proinflammatory factors will result in the emergence of 
microglia with a proinflammatory phenotype and a decrease in their 
phagocytic activity (118, 119). Pro-inflammatory microglia drive tau 
proliferation and toxicity by promoting neuroinflammation, such as 
activation of NLRP3 inflammasomes or induction of NF-kB signaling 
(23). Defective microglial autophagy leads to dysregulation of lipid 
metabolism, which increases the pathology of tau within neurons 
further exacerbating AD (23).

Numerous studies have shown that EGCG treatment of AD is 
associated with chronic neuroinflammation induced by microglia of 
anti-inflammatory phenotype (105). Wei et  al. conducted in vitro 
experiments demonstrating that EGCG effectively suppressed the 
expression of TNFα, IL-1β, IL-6, and iNOS while concurrently 
restoring intracellular antioxidant levels, including Nrf2 and HO-1. 
These actions counteracted the pro-inflammatory effects of microglia 
(120). Furthermore, EGCG inhibited the secretion of 
pro-inflammatory factors from Aβ-induced pro-inflammatory 
microglia phenotypes and attenuated microglial neurotoxicity (121). 
Importantly, EGCG also mitigated Aβ-induced cytotoxicity by 
attenuating ROS-mediated NF-κB activation and MAPK signaling 
pathways, including JNK and p38 signaling (121). In vitro 
investigations have demonstrated that Aβ deposition significantly 
diminishes following intraperitoneal injection of EGCG at a dose of 
20 mg/kg or oral administration of EGCG at 50 mg/kg in drinking 

water (109, 122). Similarly, Li et al. observed a substantial reduction 
in Aβ deposition in the frontal cortex (60%) and hippocampus (52%) 
following oral administration of EGCG at a dose of 20 mg/kg/day for 
3 months in an AD mouse model (123). Furthermore, recent findings 
by Lee et al. revealed that EGCG attenuated LPS-induced memory 
impairment and neuronal apoptosis, concomitant with a reduction in 
the expression of inflammatory cytokines TNF-α, IL-1β, and IL-6 
(105). These results align with in vitro observations, suggesting that 
EGCG holds promise as a therapeutic agent for neuroinflammation-
associated AD.

3.1.4 EGCG antioxidant activity in AD
The brain is particularly vulnerable to oxidative damage due to its 

high content of easily oxidizable lipids, elevated oxygen consumption 
rates, and limited antioxidant defense mechanisms. Age-related 
increases in brain oxidation contribute to the recognized risk of AD 
(124). Under normal physiological conditions, SOD catalyzes the 
conversion of superoxide anions to hydrogen peroxide, thereby 
safeguarding cells against free radical assault. However, in the presence 
of elevated levels of certain metal ions such as Fe and Cu, SOD can 
convert hydrogen peroxide to the more hazardous hydroxyl radical 
(125). Notably, AD patients exhibit heightened SOD activity, 
diminished glutamine synthetase activity, and elevated lipid 
peroxidation, collectively resulting in heightened oxidative stress and 
accumulation of free radicals. Free radicals inflict damage upon 
biofilms, disrupting the intracellular milieu and precipitating cellular 
senescence and demise (126). Peroxidation of impaired lipids results 
in ribonucleic acid inactivation, prompting DNA and RNA cross-
linking and instigating DNA mutations (127). Decomposition of 
peroxidized lipids yields aldehydes, such as acrolein, which react with 
phosphoric acid and proteins to generate lipofuscin (128). 
Accumulation of lipofuscin in the brain contributes to cognitive 
impairment (129). Furthermore, mitochondrial dysfunction and 
oxidative stress in AD patients are intricately intertwined, with 
evidence indicating mutual exacerbation, culminating in AD 
pathogenesis (130).

Numerous studies have delineated the involvement of increased 
oxidative stress in AD pathogenesis, and highlighted the potential of 
EGCG’s antioxidant properties in mitigating this process (131, 132). 
Abdul M. Haque et al. observed that long-term administration of 
green tea catechins to AD model mice significantly ameliorated 
cognitive impairment, accompanied by reduced ROS levels and 
enhanced antioxidant capacity in the hippocampus and cortex (133). 
Similarly, Regina Biasibetti et al. investigated the effects of oral EGCG 
administration (10 mg/kg/day) for 1 month in a rat model of 
dementia, revealing cognitive deficits reversal and notable reductions 
in ROS levels and NO production (110). Catechins exert their 
antioxidative effects by scavenging free radicals and chelating metal 
ions such as Fe and Cu, thereby reducing ROS production. This dual 
action mitigates oxidative stress in both peripheral and brain tissues, 
thereby inhibiting further deterioration of cognitive deficits-
associated behaviors (134). Mitochondrial dysfunction enhances ROS 
generation via the NADPH oxidase pathway (135). EGCG reinstates 
mitochondrial respiration rate, ATP levels, ROS levels, and membrane 
potential (102). Its antioxidant properties scavenge ROS production 
and safeguard against mitochondrial damage (136). Furthermore, 
EGCG treatment mitigates neuronal apoptosis triggered by 
endoplasmic reticulum stress subsequent to Aβ exposure. The 
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TABLE 1 Specific benefits and mechanisms of action of EGCG in AD.

Animal model EGCG administration Outcome measures Neuroprotective 
mechanisms

Publication

Aβ 25-35-induced AD rat model. EGCG (100, 250 or 600 mg/kg/d) by gavage 

for 9 weeks.

Decreased Tau hyperphosphorylation in the hippocampus; inhibited BACE1 expression and 

activity as well as Aβ1-42 expression; increased Ach by reducing AchE activity.

Antioxidative stress. (98)

APP/PS1 transgenic mice (AD 

model).

EGCG (50 mg/kg) by gavage for 4 months. Reduced cognitive deficits in AD model mice; improved brain dendritic integrity and 

synaptic protein expression levels; inhibited microglia activation and reduced pro-

inflammatory cytokines (IL-1β); reduced β-amyloid (Aβ) plaques in the hippocampus.

Anti-inflammatory; 

neuroprotective; anti-

amyloidogenic.

(99)

SAMR1 and SAMP8 mice. EGCG (5 or 15 mg/kg/d) by gavage for 

60 days.

Alleviates deterioration of cognitive function; reduced brain NEP levels and decreased 

accumulation of Aβ.

N/A (100)

APP/PS1 mice. EGCG (40 mg/kg/d) orally for 3 months. Reduces synaptic deficits; reduces neuroinflammation and Aβ plaque accumulation; enhances 

learning ability and spatial memory.

N/A (101)

APP/PS1 mice. EGCG-containing (10 mg/mL) drinking water 

for 5.5 months.

Restoration of mitochondrial respiration rate, MMP, ROS production, and ATP levels; 

reduction in toxic levels of brain Aβ.

Antioxidant; reduces 

mitochondrial dysfunction.

(102)

APP/PS1 mice EGCG (30 mg/kg/d) by gavage for 90 days. Reduced brain parenchyma and cerebrovascular Aβ deposition; increased expression of 

nonamyloidogenic soluble APP-α and α-secretase candidate proteins, as well as decreased 

expression of amyloidogenic soluble APP-β and β-secretase proteins; alleviated synaptic 

toxicity, neuroinflammation and oxidative stress.

Anti-neuroinflammatory; 

antioxidant stress.

(103)

Aβ injection induces AD rat model. Intraperitoneal injections of EGCG (10 mg / 

kg) were administered for 3 weeks (every 

other day).

Reduces Aβ accumulation; restores motor coordination and memory. N/A (104)

LPS-induced neuroinflammation and 

memory impairment in mice.

EGCG (1.5 mg/kg or 3 mg/kg) was 

administered orally for 3 weeks.

Prevented memory damage and neuronal apoptosis; inhibited elevated Aβ levels and APP 

and β-site APP cleavage enzyme 1 expression; prevented astrocyte activation; decreased levels 

of cytokines (TNF-α, IL-1β, GM-CSF, ICAM-1, and IL-16); reduced iNOS and COX-2 

expression.

Anti-neuroinflammatory; 

antioxidant stress.

(105)

SAMP8 mice EGCG (5 or 15 mg/kg/d) orally for 8 weeks. Improves spatial learning ability and memory impairment; reduces levels of Aβ1-42 and 

BACE-1; prevents hyperphosphorylation of tau.

N/A (106)

APP/PS1 mice EGCG (2 mg/kg/d) orally for 4 weeks. Improved cognitive impairment; reduced Aβ and APP expression and inhibited neuronal 

apoptosis; activation of TrkA signaling and inhibition of p75NTR signaling.

Adjust the TrkA/p75NTR signal 

balance.

(107)

APP/PS1 mice EGCG (2 or 6 mg/kg/d) orally for 4 weeks. Improves learning and memory deficits; decreases hippocampal levels of IRS-1pS636 and 

Aβ42; inhibits TNF-α/JNK signaling; increases Akt and glycogen synthase kinase-3β 

phosphorylation in the hippocampus.

Attenuates central insulin 

resistance.

(108)

Tg APPsw transgenic mice Intraperitoneal injection of EGCG (20 mg / 

kg/d) for 60 days.

Promotes APP for nonamyloidogenic processing; reduces cerebral amyloidosis. N/A (109)

STZ-induced AD mouse model. EGCG (10 mg/kg/d) by gavage for 4 weeks. Reduces cognitive impairment; reverses AChE activity, GPX activity, NO metabolites, and 

ROS levels.

Antioxidant stress. (110)
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inflammatory response to neuronal injury induced by various stimuli 
culminates in the release of pro-inflammatory cytokines and 
cytotoxins, further exacerbating oxidative stress (137). Numerous 
studies have demonstrated EGCG’s protective effects against 
lipopolysaccharide-induced memory impairment and inflammatory 
responses (105, 138). Through mechanisms associated with protein 
kinase C (PKC), which facilitates the generation of nontoxic soluble 
peptide APPβ (sAPPβ) and cell survival, catechins may exert an 
influence on AD (139, 140). Levites et  al. reported that EGCG 

(1–5 μM) enhances sAPPβ production from PC12 and human 
neuroblastoma cells (141).

3.2 Parkinson’s disease

PD follows AD as the second most prevalent neurodegenerative 
disorder affecting middle-aged and elderly individuals. While PD is 
uncommon before the age of 50, its incidence escalates markedly with 

FIGURE 3

The multifactorial pathophysiology of Alzheimer’s disease is depicted in an illustration. Furthermore, epigallocatechin-3-gallate is highlighted as a 
potential therapeutic intervention for AD, attributed to its ability to counteract oxidative stress and chronic neuroinflammation.
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advancing age, peaking between 70 and 85 years, afflicting 7 to 10 
million individuals worldwide (142, 143). Pathologically, PD is 
characterized by the degeneration and loss of dopaminergic neurons 
within the substantia nigra pars compacta, accompanied by the 
formation of eosinophilic inclusion bodies known as Lewy bodies 
within the residual neurons. These alterations disrupt the balance 
between dopamine and cholinergic neurotransmitters, culminating in 
aberrant motor function within the basal ganglia. The resultant motor 
and non-motor symptoms include postural reflex deficits, 
bradykinesia, muscular rigidity, gait disturbances, and resting tremor 
(144, 145). The episodic nature of PD in most cases suggests a 
multifactorial etiology involving genetic susceptibility and 
environmental influences. While the precise pathogenesis remains 
elusive, current hypotheses implicate abnormal aggregation of 
α-synuclein, mitochondrial dysfunction, calcium dyshomeostasis, 
oxidative stress, and neuroinflammation (146).

3.2.1 Observational epidemiologic study of green 
tea consumption and risk of PD

In order to determine the relationship between PD incidence and 
tea consumption, Quintana et al. examined a total of 12 studies from 
1981 to 2003, comprising 2,215 cases and 145,578 controls. Their 
analysis revealed that tea consumption can prevent PD and that this 
protective effect is more pronounced in the Chinese population (147). 
In order to study the non-hereditary factors associated with PD, 
Hosseini Tabatabaei N. et al. used a sample of 150 people, including 
75 PD patients and 75 people as controls, and showed that tea intake 
was protective against PD and that adherence to daily tea consumption 
reduced the risk of PD by 80% (148). A case–control study was 
conducted by Harvey Checkoway et al. By studying and counting PD 
cases (n = 210) and controls (n = 347), it was found that people who 
drank two or more cups of green tea per day had a reduced incidence 
of PD compared to those who did not drink green tea (149). According 
to research by E-K Tan and colleagues, drinking one unit of tea (3 cups 
per day for 10 years) would result in a 28% decrease in the incidence 
of PD (150). The effects of tea consumption on 60 patients with 
idiopathic PD were examined by Chahra CD et al. According to the 
study’s findings, PD patients who drank tea in addition to traditional 
medication experienced improvements in their non-motor symptoms 
and depression (143). Boris Kandinov et al. also demonstrated that 
drinking tea and smoking delayed the age of PD attacks, while 
drinking coffee may have the opposite effect (151). Observational 
epidemiological studies in PD have more experimental data 
demonstrating a protective effect of green tea compared to AD, and 
even though epidemiological findings support the beneficial effects of 
tea consumption, some have not yet provided clear evidence. 
Therefore, more research is required to determine the connection 
between drinking tea and the risk of PD.

3.2.2 Experimental studies and mechanisms of PD
Pathological accumulation of metal ions or a rapid increase in 

monoamine oxidase B (MAO-B) activity can induce endogenous 
dopamine (DA) oxidation, leading to α-synuclein aggregation, 
mitochondrial dysfunction, and other factors contributing to the 
heightened incidence of PD. Consequently, mitigation strategies 
involve the use of ROS scavengers, DA oxidation inhibitors, MAO-B 
inhibitors, and DA quenchers (152). Zhou et al. demonstrated that 
catechins can impede DA oxidation by inhibiting enzymes and metal 

ions. Furthermore, they inhibit MAO-B activity, detoxify ROS, DA 
quenchers, and harmful DA oxidation byproducts, while regulating 
the Nrf2-Keap1 and PGC-1 pathways. These findings underscore the 
inhibitory effects of tea polyphenols on DA-related toxicity (153). In 
a study by Shyh-Mirnin Ph.D. et  al., the influence of EGCG on 
MAO-B enzyme activity in the adult rat brain was investigated, 
revealing a decrease in MAO-B enzyme activity (154).

PD primarily affects dopaminergic neurons in the substantia nigra 
pars compacta (SNpc) region of the brain (155). The neurotoxins 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 
6-hydroxydopamine (6-OHDA) specifically damage this brain region, 
resulting in the loss of dopaminergic neurons (156). This neuronal loss 
leads to disrupted neural firing patterns and impaired motor control 
(157). Weinreb et al. investigated the impact of pretreatment with tea 
extract (0.51 mg/kg) and the tea polyphenol EGCG (2.10 mg/kg) on 
dopamine neurogenesis loss in the substantia nigra of MPTP-induced 
PD mouse models (158). Their study revealed a considerable 
mitigation of neurogenesis loss (158). Siddique Y. H. et al. examined 
the effects of EGCG in an α-synuclein (h-αS) transgenic Drosophila 
model of PD, analyzing statistical data and markers of changes in 
climbing capacity, lipid peroxidation, and apoptosis (159). Their 
findings demonstrated that various concentrations of EGCG (0.25, 
0.50, and 1.0 g/mL) substantially delayed the loss of climbing ability in 
Drosophila, while reducing oxidative stress and apoptosis (159).

In a study by Tingting Zhou et al., a PD mice model induced by 
MPTP was utilized to investigate the potential therapeutic effects of 
EGCG for PD. The results demonstrated that EGCG administration 
ameliorated impaired locomotion behavior in MPTP-treated mice and 
protected tyrosine hydroxylase-positive cells in the substantia nigra 
pars compacta from MPTP-induced toxicity (160). Additionally, 
following EGCG treatment, flow cytometric analysis revealed an 
increase in the CD3 + CD4+ to CD3 + CD8+ T cell ratio in peripheral 
blood of MPTP-treated mice. Furthermore, EGCG appeared to 
downregulate the expression of inflammatory mediators such as TNF 
and IL-6  in serum (160). These findings suggest that EGCG may 
confer neuroprotective effects in MPTP-induced PD mice models, 
potentially by modulating peripheral immune responses.

Current understanding of PD pathogenesis implicates 
neurofilaments, synaptic vesicle proteins, and ubiquitinated 
α-synuclein as primary contributors to the disease pathology (161). 
Additionally, Lewy bodies may exacerbate the release of free radicals, 
excessive nitric oxide synthesis, microglia-mediated inflammation, 
and disruption of protein degradation pathways, further exacerbating 
the pathophysiology (162). Specific beneficial effects and mechanisms 
of action of EGCG in PD are summarized in Table 2. In conclusion, 
EGCG exhibit diverse pharmacological activities in PD by modulating 
gene expression and interfering with signaling pathways (172). 
Despite substantial experimental evidence supporting this notion, 
challenges such as low solubility, limited bioavailability, and BBB 
impermeability hinder efficient delivery of EGCG to the brain and 
impede clinical translation (173). Overcoming these obstacles 
necessitates cross-sectional studies aimed at elucidating chemical 
modification strategies and optimizing drug delivery mechanisms to 
enhance their therapeutic efficacy.

3.2.3 EGCG anti-neuroinflammatory activity in PD
Numerous studies have established neuroinflammation as a 

significant etiological factor in PD, playing a pivotal role in its early 
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TABLE 2 Specific benefits and mechanisms of action of EGCG in PD.

Animal model EGCG administration Outcome measures Neuroprotective 
mechanisms

Publication

MPTP-induced PD mouse model. EGCG (50 mg/kg/day) gavage administration 

for 20 days.

PD mice recovered motor behavior; increased the CD3CD4 to CD3CD8 T-lymphocyte ratio 

in the peripheral blood; and decreased the inflammatory factor (TNF-α and IL-6) expression 

in the serum.

Anti-neuroinflammatory. (160)

LPS (substantia nigra injection)-

induced PD rat model.

EGCG-Loaded Liposomes 2 μL/d (12.5 μM) 

was administered for 14 days.

Recovery of dyskinesia in PD rats; reduction of TNF-α production in the brain substantia 

nigra region; prevention of BV-2 activation.

Anti-neuroinflammatory. (163)

Paraquat-induced TH > dj-1-β-

RNAi/+ Drosophila melanogaster flies 

(PD Drosophila model)

Feed 0.5 mM EGCG for 15 days. Drosophila restored lifespan and locomotor activity, with decreased lipid peroxidation and 

neurodegeneration.

Antioxidative stress. (164)

Rotidone (ROT)-induced PD rat 

model.

Intravenous EGCG (100 or 300 mg/kg/d) for 

21 days.

NO levels and lipid peroxidation were reduced; SDH, ATPase, and ETCase activities, and 

catecholamine levels were elevated; and levels of neuroinflammatory and apoptotic markers 

were reduced.

Antioxidant effects; prevention of 

mitochondrial dysfunction; 

anti-neuroinflammatory effects; 

anti-apoptotic effects.

(165)

MPTP-induced PD mouse model. EGCG (2 and 10 mg/kg/day) gavage 

administration for 10 days.

Prevention of nigrostriatal dopamine neuron death; restoration of striatal dopamine and 

tyrosine hydroxylase protein levels; elevation of striatal antioxidant enzymes SOD and 

catalase activity.

Antioxidant; iron chelate. (158)

MPTP-induced PD mouse model. EGCG (2 and 10 mg/kg/day) gavage 

administration for 10 days.

Reduced neurotoxicity in PD mice; restored rotational latency; increased striatal dopamine 

concentration and nigral ferritin expression.

Antioxidative stress. (166)

α-Synuclein preformed fibers (α-syn-

PFFs)-induced PD mouse model.

Intraperitoneal injection of EGCG (10 mg/kg/

day) for 7 days.

Reduces anxiety-like behavior and dyskinesia in mice; reduces neuronal degeneration and 

accumulation of p-α-syn in Lewy bodies and Lewy neurons; reduces expression of pro-

inflammatory cytokines (IL-6, IL-1, and TNF-α) while promoting expression of anti-

inflammatory cytokines (TGF-β, IL-10, and IL-4).

Anti-neuroinflammatory. (167)

MPTP-induced PD mouse model. EGCG (25 mg/kg) was administered by gavage 

for 1, 2, 4 and 7 days.

Prevents loss of TH-positive cells in the SN and loss of TH activity in the striatum; maintains 

HVA levels in the striatum; decreases nNOS expression in neurons.

Antioxidative stress. (168)

MPTP-induced PD mouse model. Intraperitoneal injection of EGCG (10 mg/kg 

or 50 mg/kg per day) for 14 days.

Reduced neuronal death rate and iNOS expression. Antioxidative stress. (169)

MPTP-induced PD mouse model. EGCG (25 mg/kg/day) gavage administration 

for 7 days

Increased rotational latency; elevated striatal dopamine concentration; and higher substantia 

nigra ferritin expression.

Reduction of oxidative stress; 

iron-export protein ferroportin 

in substantia nigra.

(166)

LPS -induced PD rat model. Intraperitoneal injection of EGCG (10 mg/

kg/d) for 7 days.

Decreased expression of TNF-α and NO; increased levels of dopamine neurons. Anti-neuroinflammatory; anti-

oxidative stress.

(170)

MPTP-induced PD mouse model. EGCG (25 mg/kg/day) gavage administration 

for 6 days

Protected tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) and TH 

activity in the striatum; reduced nNOS expression in the substantia nigra and neuronal 

nNOS expression.

Antioxidative stress. (168)

L-DOPA and carbidopa-induced PD 

rat model.

Only one oral dose of EGCG (25 mg/kg). Restores striatal dopamine accumulation; reduces glutamate-induced oxidative cytotoxicity 

by inactivating the NF-kB signaling pathway; reduces neuronal death.

Antioxidative stress; COMT 

inhibiton.

(171)

170

https://doi.org/10.3389/fnut.2024.1425839
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2024.1425839

Frontiers in Nutrition 12 frontiersin.org

pathogenesis. Notably, activated microglia make substantial 
contributions to this process. Evidence supporting the involvement of 
activated microglia-mediated chronic neuroinflammation in PD 
includes: (1) Pro-inflammatory effects are often observed in activated 
microglia surrounding dopaminergic neurons, with the degree of 
microglial activation correlating with dopaminergic endings loss in 
PD (174, 175). (2) Injured neurons release excessive α-synuclein, 
activating proinflammatory factors like TNF-α, NO, and IL-1β 
produced by microglia, thereby modulating chronic 
neuroinflammation in PD (176, 177). (3) Jmjd3, critical for microglial 
cell phenotype expression, when inhibited, leads to overactivation of 
pro-inflammatory microglial responses, exacerbating 
neuroinflammation and neuronal cell death (178). Additionally, it has 
been proposed that α-synuclein aggregates exert toxicity on neurons 
only in the presence of microglia (179, 180). In PD patients, misfolded 
α-synuclein is released from injured neurons into the extracellular 
fluid, where it binds to Toll-like receptors (TLRs), Fcγ receptors 
(FcγR), or nucleotide-binding oligomerization domain-like receptors 
(NLRPs), further activating microglia (181–184). The proinflammatory 
cytokines released by activated microglia subsequently activate protein 
kinase R (PKR), leading to phosphorylation of α-synuclein at Ser129, 
a process considered of significant pathological importance, 
particularly in Lewy bodies of PD patients. Moreover, microglia are 
involved in the clearance of protein deposits, including α-synuclein 
and Aβ, from astrocytes (185–187). Activation of microglia 
upregulates MHC I  expression on neurons, promoting neuronal 
presentation of α-synuclein antigen. Subsequently, these neurons are 
targeted and eliminated by α-synuclein-reactive T cells (187). The 
emergence of α-synuclein pathology follows microglial activation, 
suggesting α-synuclein’s pivotal role in PD progression, albeit not as 
an initiator. Similarly, mounting evidence suggests that the immune 
response contributes to neuronal death as a cause rather than a 
consequence (22).

A growing body of evidence suggests that EGCG may impede or 
postpone the progression of PD by targeting chronic 
neuroinflammation. EGCG exhibits potent anti-inflammatory activity 
both in vitro and in vivo, primarily attributed to its ability to inhibit 
microglia-induced cytotoxicity (120). In vitro studies have 
demonstrated that EGCG suppresses the secretion of pro-inflammatory 
factors from LPS-activated microglia by downregulating the expression 
of iNOS and TNF-α (188). Furthermore, EGCG has been shown to 
inhibit microglial activation and reduce neuronal damage in SH-SY5Y 
and rat mesencephalic cultures (188). Gülşen Özduran et al. reported 
that EGCG restored viability in PD model cells, inhibited apoptosis, 
and enhanced survival by attenuating 6-OHDA-induced expression of 
TNF-α and IL-1β in SK-N-AS cells (189). The findings from the in vivo 
study corroborate those observed in vitro, further substantiating the 
potential of EGCG to mitigate the inflammatory response associated 
with microglia-mediated damage to dopaminergic neurons. Al-Amri 
et al. demonstrated that EGCG significantly increased the number of 
TH-immunoreactive neurons in the midbrain of PD model rats by 
reducing the production of TNF-α and NO (170). Similarly, EGCG 
liposomes alleviated symptoms in a PD rat model by suppressing the 
expression of NO and TNF-α in microglia exhibiting an LPS-induced 
inflammatory phenotype (165). In summary, EGCG shows promise as 
a therapeutic and prophylactic agent for PD, exerting neuroprotective 
effects both in vivo and in vitro through the inhibition of 
neuroinflammation (Figure 4).

3.2.4 EGCG antioxidant activity in PD
PD patients commonly exhibit reduced mitochondrial 

complex I  activity and increased ROS production (190). This 
diminished function of proton pumps on mitochondria, coupled 
with decreased membrane voltage and the opening of permeability 
channels, initiates the apoptotic process. Deficiency in 
mitochondrial complex I can result in oxidative stress, heightening 
neuronal susceptibility to excitotoxic injury. The densely packed 
substantia nigra is particularly vulnerable to elevated oxidative 
stress compared to other brain regions. Under normal conditions, 
H2O2 generated by dopamine toxicity is neutralized by reduced 
glutathione, mitigating potential harm. However, in the remaining 
dopamine neurons of PD patients, ineffective scavenging of H2O2 
may occur due to compensatory mechanisms, including 
accelerated toxicity production in dopamine metabolism, 
heightened monoamine oxidase (MAO)-B activity, and reduced 
glutathione levels (191). Excessive H2O2 reacts with Fe2+ via 
Fenton chemistry, yielding highly toxic hydroxyl radicals, 
culminating in lipid peroxidation and apoptosis of nigral neurons. 
This oxidative stress and mitochondrial dysfunction form a 
reciprocal relationship, perpetuating a vicious cycle.

The neuroprotective effects of EGCG, attributed to its 
antioxidant properties, have been observed in PD (Figure  4). 
Typically, α-synuclein localizes to the mitochondria-associated 
membrane, and its presence may disrupt mitochondrial function 
by promoting the formation of the mitochondrial permeability 
transition pore (mPTP), leading to mitochondrial membrane 
potential (MMP) loss, subsequent mitochondrial degradation, and 
ultimately cell death (192). Compounds capable of preserving 
mitochondrial activity are therefore deemed invaluable in 
combating PD. EGCG has been shown to safeguard mitochondrial 
function by preventing Ca2+ influx through voltage-gated calcium 
channels and mitochondrial Ca2+ uptake via the mitochondrial 
Ca2+ uniporter (159, 193). Furthermore, in vivo studies have 
demonstrated EGCG’s ability to reduce oxidative stress by 
decreasing serum protein carbonyls and mitigating neurotoxicity 
in the MPTP-induced mouse model of PD (166). Similarly, Pinto 
et  al. reported that EGCG improved cognitive dysfunction 
induced by 6-OHDA in male Wistar rats. 6-OHDA is known to 
induce ROS generation. EGCG treatment reversed striatal 
oxidative stress and attenuated immunohistochemical alterations 
(194). In conclusion, EGCG has been shown to alleviate PD by 
inhibiting neurotoxin-induced oxidative stress injury both in vitro 
and in vivo.

4 EGCG bioavailability, toxicity, and 
safe dose

When evaluating EGCG for clinical therapeutic applications, 
significant concerns arise regarding its safety, toxicity, and optimal 
dosage post-treatment. While numerous studies have highlighted 
EGCG’s beneficial impact on neurodegenerative diseases due to its 
antioxidant and anti-neurotoxic properties, others have reported 
adverse effects such as heightened oxidative stress and the generation 
of toxic EGCG metabolites (195–197). Hence, there is a critical need 
for systematic investigations into EGCG’s bioavailability, toxicity 
profile, and appropriate dosing regimens.
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4.1 Bioavailability of EGCG

EGCG has been extensively investigated for its notable health-
promoting effects, with particular focus on its neuroprotective 
properties. Despite these benefits, the bioavailability of EGCG is 
limited, posing a challenge for its clinical application in treating 

neurodegenerative diseases. Following oral administration, EGCG 
exhibits a mean peak plasma concentration between 1.3 and 2.2 h, 
a half-life ranging from 1.9 to 4.6 h, and is almost completely 
metabolized within 24 h (198). Pharmacokinetic studies reveal that 
merely 0.1% of the ingested EGCG dose reaches detectable levels 
in the bloodstream at its peak concentration time (Tmax) in 

FIGURE 4

A schematic representation illustrates the neuroprotective effects of EGCG in Parkinson’s disease. EGCG exerts neuroprotection by inhibiting oxidative 
stress, neuronal apoptosis, and neuroinflammatory responses via diverse molecular mechanisms.
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healthy individuals (39, 199). This minimal absorption occurs 
primarily through passive diffusion (paracellular and transcellular 
diffusion) in the small intestine, while the remaining EGCG 
reaches the colon to be degraded by intestinal microbial enzymes 
(198, 200, 201). EGCG undergoes phase II metabolism in 
enterocytes and hepatocytes following ingestion (199, 202). The 
polyphenolic hydroxyl structure of EGCG facilitates binding 
reactions such as methylation, glucuronidation, sulfation, and 
cysteine binding, contributing to its limited bioavailability (203). 
Upon entering the colon, EGCG encounters rapid hydrolysis of 
conjugate groups like glucuronides and sulfates by colonic 
microbiota. Subsequently, glycosides are released and further 
catabolized into ring cleavage products and low molecular weight 
phenolic acids (198, 204). While absorption studies traditionally 
focus on the small intestine, phenolic acid metabolites degraded by 
colonic microorganisms constitute approximately 40% of the 
ingested EGCG, underscoring the significant role of colonic 
metabolism in EGCG bioavailability.

Keiko Unno et al. demonstrated that EGCG can penetrate the BBB 
to access the brain parenchyma, influencing neuronal cell proliferation 
and neurogenesis, thus potentially mitigating neurodegenerative 
diseases (34). There are two common views on the impact of EGCG 
bioavailability on neuroprotection. We know that only a small fraction 
of oral EGCG is absorbed into the circulation. In addition, Shimizu 
et al. found that oral EGCG accumulates primarily in the gut (50%), 
with less than 0.01% distributed in the liver, blood, and brain (205). 
Upon comparison of the distribution of EGCG in mice following oral 
and intravenous administration, it was observed that the majority of 
orally administered EGCG entered the bloodstream in its 
glucuronidated form. Additionally, a significant portion of EGCG 
accumulated in the small intestine and colon (206). Intravenously 
injected EGCG was rapidly distributed in an uncoupled state in other 
tissues such as brain, liver, and lung (207, 208). These findings 
underscore the notion that while intravenous EGCG achieves rapid 
tissue penetration, oral administration necessitates absorption 
through the intestine followed by redistribution to tissues and organs. 
Thus, intestinal absorption emerges as a critical factor limiting EGCG 
bioavailability and its potential neuroprotective effects across the BBB.

An alternative perspective posits that the gut harbors a 
substantial population of immune cells and neural networks, and 
EGCG has the potential to modulate signaling and functional 
disruptions in intestinal neuroimmune communication via the 
brain-gut axis (13, 209–211). This theory underscores the 
gut-brain axis as pivotal in brain injury, neuroinflammation, and 
related diseases, with microbiota signaling pathways playing a 
crucial role in neuroprotection (212, 213). It is known that gut 
microbes can metabolize EGCG into fission products that are more 
bioavailable and easier to pass through the BBB to exert 
neuroprotective effects (214). Moreover, evidence supporting 
EGCG’s neuroprotective effects via BBB-mediated anti-
neuroinflammation and reduction of oxidative stress includes: (i) 
EGCG enhances dopamine neuron activity in the gut, decreases 
serotonin levels in the colon, and increases hippocampal 
5-hydroxytryptamine levels by enhancing intestinal permeability 
(215–217). (ii) EGCG alleviates intestinal inflammation and 
repairs the intestinal barrier by altering the gut microbiome. The 
alteration of the gut microbiome ultimately results in the 
alleviation of neuroinflammation and neurodegenerative diseases 

by affecting physiological processes such as immune cell 
development and migration, amyloid deposition, BDNF and 
NMDA signaling (218–220). (iii) EGCG also impacts the 
metabolome of gut microbes, influencing short-chain fatty acids, 
secondary bile acids, and tryptophan-related metabolites (221, 
222). These metabolites traverse the BBB and modulate the host’s 
nervous system.

4.2 Toxicity of EGCG

Despite its limited oral bioavailability, EGCG can induce toxicity, 
particularly when administered in fasted states or at high doses. 
Numerous studies have questioned whether EGCG has a clinical 
therapeutic role, as well as concerns about EGCG toxicity during 
treatment of various neurodegenerative diseases. Multiple system 
atrophy (MSA) is a rare neurodegenerative disorder characterized by 
neuronal loss and gliosis in various regions of the CNS, including the 
striatum, olivocerebellum, and central autonomic structures (223). A 
histopathological hallmark of MSA is the presence of oligodendrocyte 
cytoplasmic inclusions containing misfolded and aggregated 
α-synuclein (223, 224). EGCG has been shown to inhibit α-synuclein 
aggregation and mitigate associated toxicity. Johannes Levin et al. 
conducted a randomized, double-blind, parallel-group, placebo-
controlled clinical trial, which demonstrated that 48 weeks of EGCG 
treatment did not alter disease progression or provide clinical benefit 
in MSA (225). Two patients discontinued EGCG therapy due to severe 
hepatotoxicity during the trial (225). The study concluded that 
elevated transaminase concentrations at therapeutic doses greater 
than 1,200 mg would cause hepatotoxicity (225). However, the study 
affirms that EGCG is generally well tolerated in humans and supports 
the idea that EGCG therapy acting on the α-synuclein oligomer 
formation may be  an effective target for the treatment of 
neurodegenerative diseases (225). Additionally, numerous animal 
studies have highlighted adverse effects of EGCG, particularly 
affecting the liver and kidneys (226–228). We  focus on the 
hepatotoxicity and nephrotoxicity of EGCG and briefly summarize the 
other adverse effects of EGCG (gastrointestinal toxicity).

4.2.1 Hepatotoxicity of EGCG
The liver is known to be the major drug metabolizing organ in the 

human body. Initially, K Nakagawa et al. examined the distribution of 
EGCG (500 mg/kg body weight) in the body after 1 h of oral 
administration in rats (227). They observed that EGCG concentrations 
were highest in the intestine, followed by the liver, with plasma levels 
approximately one-fourth of those in the liver and notably lower 
concentrations in the brain (227). Autopsy findings further confirmed 
EGCG induced hepatotoxicity, correlating the extent of liver damage 
with dosage, route, and duration of EGCG administration (228). 
Studies on oral EGCG toxicity have documented varying degrees of 
hepatotoxicity, ranging from mild elevation in liver enzymes (alanine 
aminotransferase (ALT) and aspartate aminotransferase (AST)) to 
severe hepatocellular necrosis and bile duct hyperplasia as therapeutic 
doses increased (229). Thus, it is evident that the liver is a significant 
target organ for EGCG toxicity.

Animal studies have shown that the severity of liver injury 
produced by EGCG treatment is related to dose, administration route, 
and treatment duration. Balaji Ramachandran et al. investigated the 
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relationship between the adverse effects of EGCG treatment with dose 
and administration route by giving EGCG (108, 67.8, 21.1, and 6.6 mg/
kg/d) orally or intraperitoneally to mice (230). Subcutaneous injection 
of 108 mg/kg EGCG resulted in severe hepatic parenchymal 
congestion, hepatocellular balloon-like degeneration, kupffer cell 
hyperplasia, and calcification (acute hepatitis); serum levels of 
bilirubin, AST, ALT, and ALP were markedly elevated, leading to 
mortality by the 8th day of treatment (230). Mice injected with 
67.8 mg/kg EGCG subcutaneously exhibited moderate hepatic 
peritoneal and mild lobular inflammation; elevated serum AST and 
ALT levels were observed, with mortality occurring by day 16 of the 
experiment (230). In comparison to subcutaneous injection, oral 
administration of EGCG resulted in lower hepatotoxicity, with 
significant liver damage observed only in mice receiving 108 mg/kg 
EGCG orally. Notably, increasing EGCG doses correlated exclusively 
with hepatic toxicity, ranging from mild periportal inflammation to 
severe hepatitis (230). Similarly, Dongxu Wang et al. investigated the 
dose-dependent hepatotoxic effects of subcutaneously injected EGCG 
(55, 70, and 125 mg/kg/day) in mice (229). Their findings revealed that 
all mice injected with 125 mg/kg or 70 mg/kg EGCG succumbed 
within 2 days, showing severe hepatotoxicity characterized by elevated 
serum levels of ALT, AST, and 4-HNE, along with increased expression 
of Nrf2 target genes in the liver. Mice injected with 55 mg/kg EGCG 
exhibited hepatotoxic effects but survived the duration of the study 
(229). It has also been demonstrated that subcutaneous injection of 
45 mg/kg/day of EGCG represents the maximum tolerated dose in 
mice, with long-term administration at this dose showing no impact 
on the body’s oxidative defense mechanisms (231). However, injections 
of 55 or 75 mg/kg/day of EGCG induced hepatotoxicity in mice, 
accompanied by inhibition of hepatic antioxidant enzymes and 
increased nuclear distribution of Nrf2 (231). Furthermore, repeated 
injections of 75 mg/kg/day of EGCG altered the oxidative defense 
mechanism, significantly reducing levels of SOD, catalase, and GPX 
(231). Subcutaneous injection of EGCG in mice at doses exceeding 
100 mg/kg/day induces severe hepatotoxicity and dose-dependent 
mortality, with higher concentrations leading to accelerated death. 
This treatment also inhibits Nrf2 target gene expression and diminishes 
antioxidant defense capacity (231). Similarly, gavage administration of 
EGCG yielded comparable results: mice exhibited hepatic congestion 
and a slight elevation in ALT levels after receiving 750 mg/kg/day of 
EGCG for 5 consecutive days (228). Following gavage of 750 mg/kg/
day of EGCG for 7 consecutive days, mice exhibited a significant 
increase in ALT, MDA, MT, and γH2AX levels in the liver, along with 
hepatocyte degeneration, resulting in a mortality rate of 75% (232). 
single gavage of 1,500 mg/kg of EGCG led to a 108-fold increase in 
ALT levels and an 85% mortality rate among mice (232). Metabolites 
EGCG-2′-cysteine and EGCG-2″-cysteine were detected in urine 
following high-dose gavage of EGCG (233). Notably, EGCG 
administered via diet was well tolerated and demonstrated reduced 
hepatotoxicity compared to gavage administration in animals (233). 
Studies administering EGCG to Beagles indicated that fasting 
increased the likelihood of hepatotoxicity compared to animals that 
were fed prior to treatment (234). These findings underscore the 
influence of dose, route of administration, treatment duration, and 
nutritional status on EGCG-induced hepatotoxicity.

Animal experiments have shown that EGCG induced 
hepatotoxicity correlates with changes in several oxidative stress 
markers in the body, including MDA, 4-HNE, MT, γH2AX, and Nrf2 
(228, 229, 231, 235). MDA and 4-HNE are products of lipid 

peroxidation and serve as biochemical indicators of oxidative stress 
(228). MT and γH2AX are molecular markers associated with 
oxidative stress. All these biomarkers suggest that hepatotoxicity 
induced by EGCG treatment is largely induced by oxidative stress 
(201). Nrf2 functions as a crucial transcription factor in antioxidant 
defense. Under normal physiological conditions, Nrf2 is sequestered 
by Keap1; however, during oxidative stress, Nrf2 dissociates from 
Keap1 and translocates to the nucleus where it binds to antioxidant 
response elements. This activation of the Nrf2-ARE signaling pathway 
upregulates the expression of various antioxidant genes such as HO-1, 
GST, and NADP (H): NQO1 (231). The Nrf2-ARE signaling pathway 
activates and enhances the expression of downstream antioxidant 
enzymes, serving as a critical cellular defense mechanism against 
oxidative stress (236). This pathway, particularly in the liver, is pivotal 
in mitigating EGCG-induced hepatotoxicity (236). Animal studies 
have shown that subcutaneous injection of EGCG at 45 mg/kg/day in 
mice does not impair major hepatic antioxidant defenses but modestly 
increases hepatic expression of Nrf2 target genes (231). Conversely, 
injection of 75 mg/kg/day of EGCG inhibits major hepatic antioxidant 
enzymes while significantly elevating Nrf2 expression and its target 
genes (231). Injection of 100 mg/kg/day of EGCG notably suppresses 
the hepatic Nrf2 pathway (231). These findings indicate a biphasic 
response of Nrf2 to different EGCG doses. In summary, EGCG-
induced hepatotoxicity involves the inhibition of major antioxidant 
enzymes, with the Nrf2 salvage pathway playing a crucial role in 
mitigating toxicity. However, this pathway becomes inhibited at higher 
concentrations of EGCG.

4.2.2 Other toxicities of EGCG
Nora O. Abdel Rasheed et al. investigated potential nephrotoxic 

effects of EGCG treatment in diabetic mice, a crucial concern due to 
the kidney’s vulnerability in diabetes (237). Diabetic mice injected with 
100 mg/kg EGCG daily for 4 days exhibited decreased resistance to 
oxidative stress, as indicated by elevated NADPH oxidase levels and 
reduced expression of Nrf2, HO-1, and HSP90 (237). Serum levels of 
CYS-C and NGAL were significantly elevated, and histopathological 
analysis confirmed EGCG-induced renal injury in diabetic mice (237). 
Similarly, another study demonstrated nephrotoxicity in colitis mice 
treated with green tea extract containing 35% EGCG, evidenced by 
increased serum creatinine levels (a nephropathy biomarker), and 
elevated expression of antioxidant enzymes (HO-1 and NQO1) and 
HSP 90 (238). These findings collectively underscore the potential 
nephrotoxic effects of EGCG treatment, exacerbated by oxidative stress 
implicated in diabetes and its complications (239). Thus, caution is 
advised when considering EGCG supplements for diabetic patients, 
particularly at high doses.

In addition to nephrotoxicity and hepatotoxicity, numerous 
studies have documented gastrointestinal toxicity associated with 
EGCG administration, whether by gavage or in diet, in animal 
models (240–242). The severity of gastrointestinal effects varied with 
dosage, ranging from mild gastric erosion and vomiting to severe 
ulceration, hemorrhage, and epithelial necrosis. Notably, 
gastrointestinal toxicity was more pronounced in animals 
administered EGCG via gavage or when fasted, whereas 
administration via diet, water, or capsule resulted in milder effects 
(234, 243). In conclusion, treatment with EGCG at high doses or for 
prolonged duration may have adverse effects, and the above data 
suggest that the boundary between protective and toxic doses of 
EGCG may be narrow.
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4.3 Safe dose of EGCG

Another critical issue is establishing safe dosage levels of EGCG to 
optimize therapeutic efficacy while minimizing adverse effects. Current 
clinical studies on EGCG dosages vary widely, and extrapolation from 
animal dosages to humans is virtually impossible (244–255). Safety data 
from human studies indicate distinct toxicity thresholds for EGCG 
consumed as a beverage compared to capsules or tablets, necessitating 
separate consideration of safe intake levels. Studies have shown that 
ingestion of up to 676 mg of EGCG in capsules or tablets did not result 
in significant adverse effects in healthy adults or patients with various 
conditions (256). In addition, liver toxicity has been documented with 
the intake of 800 mg or 1,200 mg of EGCG (225, 253). However, 
considering that the pro-health benefits of EGCG are similar to those of 
nutrients. Jiang Hu et al. used an approach similar to the Institute of 
Medicine (IOM) nutrient risk assessment to determine the safe intake of 
EGCG (257). The results indicated that the safe intake of EGCG in 
capsules or tablets for adults is 338 mg/day (257). This safe dose is 
consistent with the dose derived from animal data (322 mg/day) and is 
consistent with recent doses proposed by Yates et al. (258) and Dekant 
et al. (195). Regarding the toxicity threshold for EGCG intake in the form 
of beverages, the highest reported intake level of EGCG was 704 mg/day 
with no apparent adverse effects (245). For the current study, it is still 
uncertain what the standardized safe intake level of EGCG is, as the data 
currently available from human clinical studies may vary in terms of 
design, duration, and subject populations. However, the results of the 
current analyses suggest that diluting and/or slowing the rate of systemic 
administration of EGCG often appears to be better tolerated by the body. 
Even so, careful calculation of daily EGCG intake is important when 
EGCG is used as a dietary supplement. When other EGCG sources are 
available, EGCG intake may require health-based guidance. The use of 
EGCG as a clinical agent for neurodegenerative diseases still requires 
further evaluation of toxicity and dosage.

5 Conclusion

In conclusion, this review highlights the significant potential of 
EGCG, a prominent catechin abundant in green tea, as a therapeutic 
agent for neurodegenerative diseases. By targeting chronic 
neuroinflammation and oxidative stress, EGCG demonstrates 
promising neuroprotective effects in conditions such as AD and 
PD. Through its antioxidant properties and anti-inflammatory 
activities, EGCG shows efficacy in mitigating key pathological 
mechanisms associated with neurodegeneration. The comprehensive 
exploration of EGCG’s molecular mechanisms, including its modulation 
of autoimmune responses, nervous-immune system interactions, and 
inflammatory pathways, underscores its therapeutic relevance in AD 
and PD. Observational epidemiological studies and experimental 

investigations provide compelling evidence for EGCG’s neuroprotective 
effects, supporting its potential as a therapeutic intervention. 
Furthermore, EGCG’s ability to scavenge free radicals, chelate iron, and 
attenuate neuroinflammatory processes highlights its multifaceted 
mechanisms of action. Overall, EGCG emerges as a promising natural 
compound with the capacity to combat chronic neuroinflammation 
and oxidative stress, offering novel avenues for the development of 
neuroprotective strategies in the treatment of neurodegenerative 
disorders. Further research into EGCG’s therapeutic potential, 
including clinical trials and mechanistic studies, is warranted to fully 
elucidate its efficacy and safety profile in neurodegenerative diseases.
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Inflammation is a normal immune response in organisms, but it often triggers

chronic diseases such as colitis and arthritis. Currently, themost widely used anti-

inflammatory drugs are non-steroidal anti-inflammatory drugs, albeit they are

accompanied by various adverse effects such as hypertension and renal

dysfunction. Bioactive peptides (BAPs) provide therapeutic benefits for

inflammation and mitigate side effects. Herein, this review focuses on the

therapeutic effects of various BAPs on inflammation in different body parts.

Emphasis is placed on the immunomodulatory mechanisms of BAPs in treating

inflammation, such as regulating the release of inflammatory mediators,

modulating MAPK and NF-kB signaling pathways, and reducing oxidative stress

reactions for immunomodulation. This review aims to provide a reference for the

function, application, and anti-inflammation mechanisms of BAPs.
KEYWORDS

bioactive peptides, inflammation, immunomodulation, inflammatory mediators, pathways
1 Introduction

Inflammation is a normal immune response of the body’s innate and adaptive immune

systems to infections (1), which can protect the body from damage caused by external toxins

and stimuli (2). It is a way to self-heal, repair damaged tissues, and combat pathogens (3).

However, the attack of inflammatory factors will result in cellular necrosis and the reduction

of metabolic and immune functions, eventually leading to tissue damage and organ

dysfunction. The duration of inflammation is different, which could be divided into acute

and chronic inflammation (4). Many chronic diseases are associated with inflammation,

including arthritis, inflammatory bowel disease (5), cardiovascular diseases (6), osteoporosis

(7), cancer (8), and obesity (9). Therefore, combating inflammatory damage is one of the

major health challenges of the 21st century. Non-steroidal anti-inflammatory drugs

(NSAIDs), such as aspirin and ibuprofen, are a class of chemically synthesized anti-

inflammatory drugs that do not contain steroid structures (10). They are the most widely
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used anti-inflammatory drugs. However, numerous studies have

shown that NSAIDs have various side effects on the host, including

hypertension, nephrotic syndrome, cardiovascular toxicity, acute

renal failure, and gastrointestinal complications (1). Additionally,

antibiotics can be used to treat inflammation, but they can induce to

the emergence of antibiotic-resistant superbugs. Therefore, there is an

urgent need to explore new strategies for anti-inflammation. Since the

first antimicrobial peptide Cecropins was discovered in 1981, the

antibacterial and anti-inflammatory activity of peptides has attracted

more and more attention from academia (11). Research has described

that the peptide GPETAFLR possessed anti-inflammatory activity,

effectively inhibiting neuroinflammation and maintaining stability in

the central nervous system (12).

BAPs refer to short-chain amino acid sequences with active

biological functions within organisms, typically consisting of 2 to 20

amino acid residues interconnected by peptide or amide bonds (13).

The arrangement and combination of these amino acid residues are

different and can form linear or cyclic structures (13). The sources of

BAPs are diverse, mainly including animals, plants, microorganisms,

marine organisms, soy products, milk, and fermented products (14).

When BAPs remain inactive within parent proteins, they can become

active upon enzymatic release through peptide cleavage (15). Apart

from being generated through the hydrolysis of parent proteins, BAPs

can also be produced via microbial fermentation. In order to obtain

BAPs with specific activity, specific proteases with a wide range of

functions are usually used for hydrolysis (16).

Peptides offer several advantages over traditional drugs in

disease treatment (17). For example, their low molecular weight

allows them to penetrate membranes effectively (18, 19), making

them more potent (20). Furthermore, bioactive peptides (BAPs)

have the potential for targeted therapy with minimal or negligible

toxicity, even at low concentrations (21). Inflammation occurs after

the activation of inflammatory pathways by triggering factors,

leading to the release of inflammatory agents (22). Concurrently,

the anti-inflammatory characteristics of BAPs may be influenced by

molecular weight, amino acid composition (hydrophobic amino

acids, positively charged amino acids, specific amino acids), and

amino acid position (3).

This review provides a detailed overview of the research status

of BAPs in the treatment of skin inflammation, intestinal

inflammation, pulmonary inflammatory disease, arthritis, and

ocular inflammation. Subsequently, it delves into the

immunomodulatory mechanisms employed by BAPs in the

treatment of inflammation, such as regulating the release of

inflammatory mediators, modulating mitogen-activated protein

kinase (MAPK) and nuclear factor kB (NF-kB) signaling

pathways, and reducing oxidative stress response for

immunomodulation. The aim is to seek new strategies for

inflammation treatment and provide references for the

development and application of anti-inflammatory peptides.
2 The functions of BAPs

BAPs exhibit a wide array of functions including antimicrobial,

ant ioxidat ive , ant i- inflammatory, memory-enhancing,
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antithrombotic and antihypertensive activities, regulation of

gastrointestinal absorption, appetite suppression, opioid

modulation, immune modulation, and cell regulation. According to

different functions, BAPs are mainly divided into anti-inflammatory

peptides, antimicrobial peptides (AMPs), antioxidant active peptides,

anticancer active peptides, antihypertensive peptides, and

neuropeptides (Table 1). Anti-inflammatory peptides can modulate

immune responses and alleviate inflammation. They can suppress the

production of pro-inflammatory cytokines and the activation of

inflammatory pathways, or directly interact with immune cells.

BAPs with antibacterial activity are called AMPs.The activity of

AMPs may be attributed to their ability to effectively disrupt

bacterial cell walls or membranes with a strong negative charge,

exerting their action with cations and their hydrophobic effect (15).

They may also attack microbial membranes or cytoplasmic

components, altering their cellular functions and leading to cell

death (23). AMPs can inhibit the synthesis of cell walls, nucleic

acids, and proteins by engaging various enzymes within target cells

(23). AMPs possess minimal to provoke resistance (24), thereby

conferring a natural advantage over antibiotics for combating

microbial infections. Han et al. (25) discovered that AMPs

containing tryptophan can downregulate the expression of DNA

replication initiation genes in cells, consequently demonstrating

efficacy in combating multidrug-resistant Pseudomonas aeruginosa.

The antioxidant effect of BAPs can slow down or prevent cellular

damage (26). With the disturbance of the prevailing environment,

oxidative stress reactions occur, resulting in the release of free

radicals, which may contribute to health issues, including cancer,

cardiovascular, and other diseases (27). These peptides primarily

consist of 5-16 hydrophobic amino acids (27). They typically include

tyrosine, whose phenolic side chain serves as an important scavenger

of free radicals (28). Hydrophobic amino acids can increase the

penetration rate of peptides to cell membranes, and enhance the

ability of peptides to reach mitochondria, which is one of the main

sites of free radical production (29, 30). An important feature of the

antioxidant activity of BAPs is their hydrophobicity. It helps protect

the polyunsaturated fatty acids and other lipophilic targets from

oxidation (29, 30). Teng et al. (31) reported that jellyfish peptides

(JPHT-2) were effective antioxidants which could scavenge free

radicals. The peptides enhanced the levels of superoxide dismutase

(SOD) and inhibited oxidative damage by H2O2. Gao et al. (32)

reported a new anti-inflammatory peptide from sturgeonmuscle, and

found that it can effectively inhibit the release of NO, IL-6 and IL-1b,
increase the SOD activity in the LPS-induced RAW264.7 cells, and

down-regulate MAPK pathway. Zhou et al. (33) described that milk

casein-derived peptide OEPVL could regulate the release of nitric

oxide (NO) and the production of cytokines IL-4, IL-10, IFN-g, and
TNF-a in vivo, thereby achieving the purpose of inhibiting LPS-

induced inflammation.
3 Anti-inflammation of BAPs

As infection affects or damages different organs within the body,

an inflammatory response occurs to combat infection, address

injury, and facilitate self-repair. However, inflammatory factors
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TABLE 1 The names/sequences and source of BAPs with different functions.

Species Peptide names/sequences Source Reference

Anti-inflammatory peptides

GPETAFLR Lupinus angustifolius L. (34)

DAPAPPSQLEHIRAA,
AADGPMKGILGY

Lateolabrax maculatus (35)

SSEDIKE Amaranth proteins (36)

Lectin Red algae Amansia multifida (37)

VHYAGTVDY Sturgeon muscle (32)

PRRTRMMNGGR Juice of cooked tuna (38)

KQSESHFVDAQPEQQQR Simulated gastrointestinal digestion of extruded
adzuki bean protein

(39)

MSCP Chanos chanos (40)

VVNEGEAHVELVGPKGNKETLEYES,
AMPVNNPQIHDFFL

Beans (Phaseolus vulgaris var. pint) (41)

WNLNP OPEH (Crassostrea hongkongensis) (42)

Antimicrobial peptides

Turgencin A Arctic sea squirt Synoicum turgens (43)

Myticusin-beta Mytilus coruscus (44)

Temporin-1CEh Rana chensinensis (45)

EQLTK Bovine a-L A (46)

ISGLIYEETR,
IGNGGELPR,
ILVLQSNQIR

Saccharina longicruris (47)

cNK-2(RRQRSICKQLLKKLRQQLSDALQNNDD) Chicken NK-lysin (48)

Clavanin-MO
(FLPIIVFQFLGKIIHHVGNFVHGFSHVF-NH2)

Hemocytes of marine tunicates (48)

Phylloseptin-PV1 Phyllomedusa vaillantii (49)

GDVIAIR Chia seed (50)

TSKYR,
STVLTSKYR,
TSKYR

Human hemoglobin: active peptide a137-141 (51)

AGLAPYKLKPIA Ovotransferrin (52)

YPWTQR,
ITMIAPSAF,
DSYEHGGEP,
VVSGPYIVY

Egg yolk (53)

Antioxidant active peptides

GGAW Octopus (54)

JPHT-2 Jellyfish (31)

WSVPQPK Human b-CN (55)

VPP,
IPP

Whey protein concentrate (WPC) (56)

GAPGPQMV Skipjack tuna (K. pelamis) bones (57)

GPGGFI N. septentrionalis skin (58)

SMRKPPG Peony (P. suffruticos) seed (59)

YFPH Limanda aspera (60)

GFPGRLDHWCASE Flaxseed (Linum usitatissimum) (61)

Finger millet (Eleusine coracanac) protein hydrolysate (62)

(Continued)
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can attack cells, leading to cell death, reduced cellular metabolism,

and compromised immune function (3). BAPs can treat skin,

intestine, lung, joint and eye inflammation, etc (Figure 1). BAPs

can regulate the inflammatory pathways, the levels of cytokines or

gut microbiota, and alleviate oxidative stress (Table 2).
3.1 Skin inflammation

The skin serves as a physical barrier between internal and

external environments (107). Various factors can induce

inflammatory responses in the skin, primarily due to immune

dysregulation caused by internal diseases, infections, and allergic

reactions. Skin inflammation is a primary manifestation of chronic

autoimmune inflammatory diseases such as psoriasis, atopic

dermatitis (AD), and lupus erythematosus (108). Approximately,

60 million people suffer from psoriasis, a chronic, systemic,

immune-mediated inflammatory skin disease (109). As previously

described, the synthetic peptide LKEKK (150-500 mg) combined with
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Aldara cream containing 5% imiquimod was applied to the ears of the

imiquimod-induced psoriasis mouse model (80). After 6 days of

treatment, the thickness of mouse ears was significantly reduced,

indicating that the development of inflammation was effectively

inhibited. Traditional medications for AD often yield unsatisfactory

results. Lee et al. (83) reported a short peptide TPS240 and

investigated its therapeutic effect in a DNCB-induced AD mouse

model. The control group was treated with the same concentration of

dexamethasone. Finally, it was found that the symptoms of AD in the

TPS240 group were alleviated, and the skin damage was significantly

restored by using 5 mg/kg TPS240. The body weight of mice treated

with 5 mg/kg dexamethasone decreased and the organs contracted

abnormally. TPS240 exerts its anti-AD effect by inhibiting the

activation of NF-kB and STAT3, which is similar to

dexamethasone and has no side effects. These results indicated that

TPS240 would be a safe and effective drug for AD. Systemic lupus

erythematosus (SLE) is an autoimmune disease that can promote

chronic inflammation (110). It has been reported that the artificial

peptide pConsensus, which blocks the PD-1/PD-1 ligand 1 pathway
TABLE 1 Continued

Species Peptide names/sequences Source Reference

TSSSLNMAVRGGLTR,
STTVGLGISMRSASVR

VECYGPNRPQF Algae (Chlorella vulgaris) protein waste (63)

IDHY,
VVER

Water-soluble protein (Gracilariopsis chorda)
(64)

VLPVPQK Milk (65)

Anticancer active peptides

Callyaerins A-F,
Callyaerins H

Callyspongia aerizusa (66)

Bowman-Birk-type PI Phaseolus acutifolius (67)

Homophymine A Marine sponge Homophymia sp. (68)

FIMGPY Skate (Raja porosa) cartilage protein hydrolysate (69)

Antihypertensive peptides

IVDR,
WYK,
VASVI

Paralichthys olivaceus (70)

VHVV Soybean (71)

ERYPIL,
VFKGL,
WEKAFKDED,
QAMPFRVTEQE

Egg white hydrolysate (72)

DGVVYY Seed meal of tomato (73)

BCH,
BCH-III

Chicken blood (74)

PPL,
PAP,
AAP

Iberian dry-cured ham (75)

Neuroactive peptides

Doppelganger-related peptides Cone snail toxins (76)

Arginine vasopressin Hypothalamus (77)

Glucagon-like peptide-1 Proglucagon derived peptide (78)

Human urotensin-II Central nervous system (79)
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in untreated mice, promotes tolerance and inhibits SLE (111). Schall

et al. (112) reported the peptide P140 could clear harmful T and B

cells, and normalize the immune response in lupus-susceptible mice.

Additionally, due to the skin’s susceptibility to various injuries,

wounds disrupt its environmental barrier, leading to a cascade of

inflammatory responses. Controlling inflammation is crucial for

maintaining skin health. Li et al. (113) demonstrated that the

peptide OA-RD17 extracted from Odorrana-andersonii skin tissue

could activate MAPK to promote macrophage proliferation and

migration, block inflammation and propel wound healing by

inhibiting NF-kB. OA-RD17 could accelerate the regeneration of

full-thickness skin wounds in mice, showing that the repair rate of

skin wounds was nearly 100%. At the same time, it had a certain

repair effect on deep second-degree burns and isolated skin wounds

of diabetic patients. OA-RD17 could up-regulate the expression of

miR-632 and promote the regeneration of full-thickness skin wounds

in rats, and the repair rate reached 92.4%. Therefore, BAPs with their

antimicrobial and immune-modulating functions offer efficacious

therapeutic approaches for wound healing and skin inflammation.
3.2 Intestinal inflammation

The intestine plays a crucial role in human health, serving as a site

for digestion and nutrient absorption, and the largest organ of the
Frontiers in Immunology 05186
immune system (114). The intestinal barrier is essential for separating

the external environment from the host’s internal environment. As

the intestine is exposed to pathogens or other toxic substances,

inflammatory responses occur under the influence of harmful

stimuli (115). Enteritis is a prevalent inflammatory bowel disease.

So far, the main methods used clinically for enteritis treatment

include drug therapy, dietary interventions and surgical treatment.

However, the treatment outcomes are often unsatisfactory. Therefore,

it is very important to find a better and safer treatment method. BAPs

have immunomodulatory and anti-inflammatory effects, making it

possible to effectively treat intestinal inflammation and provide a new

treatment for enteritis. Zhi et al. (116) reported that walnut-derived

peptide leucine-proline-phenylalanine (LPF) could promote the

repair of the intestinal epithelial barrier, reduce levels of pro-

inflammatory cytokines, and exert protective and restorative effects

on DSS-induced colitis in mice. It was found that the number of

apoptotic cells in the treatment group was significantly less than that

in the DSS group. The percentages of reduction in the three groups of

DSS + 50 mg/kg LPF, DSS + 100 mg/kg LPF, and DSS + 200 mg/kg

LPF on the 10th day were 50.00%, 41.18%, and 57.35%, respectively.

In addition, 16S rDNA sequencing results showed that 100 mg/kg

LPF had a regulatory effect on the intestinal flora of colitis mice.

Additionally, Rahabi et al. (117) reported that fish collagen peptide

Naticol®Gut could also be used to treat colitis. It directly acts on

macrophages, polarizing them into an anti-inflammatory,
FIGURE 1

Scheme of the treatment of organ inflammation by BAPs.
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TABLE 2 Application of BAPs in the treatment of inflammation of various organs.

Organ Peptide names Disease type Peptide activity Reference

Skin

LKEKK Psoriasis ↑ IL-10, IFN-g
↓ IL-17

(80)

MHP1-AcN Psoriasis ↓ IL-6, IL-23, IL-17A (81)

AES16-2M Atopic dermatitis ↓ CD4 T cells
↓ TSLP

(82)

TPS240 Atopic dermatitis Inhibition of NF-kB and STAT3 activation (83)

AMP-IBP5 Atopic dermatitis ↑ TJ barrier function (84)

ARA290 Systemic lupus erythematosus ↓ IL-6, MCP-1, TNF-a
↑ TGF-b
Suppressing the level of serum ANAs and anti-dsDNA
autoantibodies
Inhibiting the inflammatory activation of macrophages
Promoting the phagocytic function of macrophages

(85)

Intestinal

rVIPa Colitis ↓ TNF-a, MPO activity, serum endotoxin, TLR4
↑ IL-10
↑ occluding, ZO-1, NF-kB p65, IkBa

(86)

R7I Intestinal inflammation Inhibition of TLR4 and NF-kB expression
↑ SOD and GSH-PX
↓ MDA

(87)

MOP Colitis Inhibiting JAK-STAT pathway’s activation
Regulating gut microbiota and its metabolites

(88)

TBP Ulcerative colitis ↑ SOD and GSH-Px
↓ LPS, IL-6, TNF-a
↑ Gene expression of TJ protein
↑ SCFAs
Restoring intestinal flora

(89)

Cecropin A (1-8)-LL37 (17-30) Intestinal inflammation ↓ TNF-a, IL-6, IFN-g
↓ Apoptosis
↓ Markers of jejunal epithelial barrier function

(90)

Lung

PS1-2 Fungal pneumonia ↓ Activity of TLR-2
↓ TNF-a

(91)

7-amino acid peptide (7P),
(Gly-Gln-Thr-Tyr-Thr-Ser-Gly)

Allergic lung inflammation ↓ Airway hyperresponsiveness
↓ Airway inflammation
↓ Th2 responses

(92)

IDR-1002 Pneumonia ↓ IL-6, TNF-a (93)

Hydrostatin-SN1 Acute lung injury ↓ TNF-a, IL-6, IL-1b (94)

Joint

AKP Osteoarthritis ↓ HIF-2a and downstream genes (95)

AESIS-1 Rheumatoid arthritis Downregulation of STAT3 signaling (96)

KPs Adjuvant-induced arthritis Inhibiting IL-1b-related inflammation and
MMPs production

(97)

GLPP Rheumatoid arthritis ↓ TNF-a, IL-1b, IL-6, MMPs, BCL-2, OPN, b-Catenin,
HIF-1a
↑ Bax
Inhibiting NF-kB and MAPK signaling pathways

(98)

IQW Ankylosing spondylitis ↓ IL-6, IL-1b, TNF-a
↑ CAT, GSH-PX, SOD

(99)

Alamandine Rheumatoid arthritis ↓ IL-6, IL-23 and IFN-g mRNA expression
↓ TNF-a, IL-6, IL-17
↑ IL-10

(100)

Eyes
R9-SOCS1-KIR Uveitis Inhibiting nuclear factor kB and p-p38 pathways (101)

WP-17 Uveitis Inhibition of NF-kB pathway activation (102)

(Continued)
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immunotolerant, and antioxidative phenotype through an MR-

dependent mechanism. For enteritis, antibiotics are often used for

treatment, but their long-term use can lead to increased antibiotic

resistance, posing a significant challenge. Sun et al. (118) reported

that AMP R7I with anti-proteolytic properties could reduce

inflammatory factors and maintain intestinal barrier function. The

histological examination of the intestine showed that the tissue

structure in the 20 mg/kg R7I group was basically normalized with

only a small amount of isolated epithelial cells, and R7I could restore

the normal morphology of the intestine. In addition, this peptide

plays a crucial role in the treatment of murine bacterial enteritis and is

helpful in finding effective strategies for the treatment of enteritis.
3.3 Lung inflammation

Pneumonia is a prevalent respiratory illness that involves

inflammation in the lungs (119). Its occurrence is associated with

respiratory viruses, common gram-negative or gram-positive

bacteria, and mycobacterium (120, 121). Pneumonia has a

complex etiology, and traditional treatment methods mainly

involve the use of antibiotics, which can effectively reduce the

incidence and mortality of pneumonia. However, issues such as

antibiotic resistance, low bioavailability, and strong side effects exist

(92, 122). Therefore, there is a necessity to discover novel treatment

approaches. BAPs as a novel therapeutic drug may have potential in

the treatment of pneumonia. Zhao et al. (92) reported that 7-amino

acid peptide (7P), as a synthetic analog peptide, could effectively

reduce bronchial contraction, inhibit acute inflammatory

cytokines (TNFa, IL-1b and IL-6) and Th2 cytokine responses

(IL-5, IL-4 and IL-13), and has certain effects on relieving airway

hyperresponsiveness, airway inflammation and Th2 response. The

results inferred that 7P could reduce allergic lung inflammation. It

made a new option for addressing allergic pulmonary

inflammation. Additionally, peptide modification can also be

employed to improve the therapeutic effects. Moreira et al. (123)

pegylated the synthetic peptide LyeTx I-b derived from natural

LyeTx I, and reported that pegylated LyeTx I-b exhibited significant

therapeutic effects against multidrug-resistant Acinetobacter

baumannii-induced pneumonia. LyeTx I-bPEG increased the

anti-biofilm activity. At 16 mM and 32 mM, LyeTx I-bPEG

reduced the carbapenem-resistant Acinetobacter baumannii
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biofilm by 33 ± 4% and 26 ± 8%, respectively, compared with

untreated cells. Furthermore, Jin et al. (124) designed two derived

peptides GHbK4R and GHb3K based on the maternal peptide GHb.

Vancomycin reduced lung bacteria in mice to 7.8 × 107 CFU/g,

whereas GHb3K and GHbK4R decreased lung bacteria to 5.3 × 105

and 5.4 × 105 CFU/g. These results demonstrated that these

peptides had significant therapeutic effects in a mouse model of

acute pneumonia caused by Staphylococcus aureus infection. PS1-2

peptide is active against fluconazole-resistant Candida albicans, can

inhibit the activity of TLR-2 and the expression of TNF-a, and has

anti-fungal and anti-inflammatory functions for intratracheal

infection induced by Candida albicans (91). However, there is

limited research on the use of BAPs for the treatment of human

pneumonia. It still needs a good strategy to treat pneumonia.
3.4 Joint inflammation

Arthritis is a common inflammatory disease which affects the

joints and surrounding tissues. It can be acute or chronic, leading to

joint pain, swelling and difficulty movement in severe cases.

Arthritis has a high prevalence and encompasses various types,

including osteoarthritis, rheumatoid arthritis, and psoriatic arthritis

(125). Osteoarthritis is a progressive disease and a major cause of

chronic disability (126). Peptides offer a new therapeutic approach

for osteoarthritis. Wu et al. (127) validated that the anti-

inflammatory capacity of skipjack tuna elastin peptides in a

zebrafish model could inhibit the JAK2/STAT3 signaling pathway,

suppress inflammation and protect cartilage. Rheumatoid arthritis

is an autoimmune disease that can lead to joint and bone damage

(128, 129). For rheumatoid arthritis, Kim et al. (96) reported that a

synthetic peptide AESIS-1 could inhibit STAT3-mediated signaling

by upregulating SOCS3 expression, resulting in the decrease of

Th17 cells. Psoriatic arthritis is a chronic systemic inflammatory

disease affecting the skin, joints, and tendons (130). Wixler et al.

(131) discovered small splenic peptides (SSPs) in the spleen, which

could target dendritic cells and transforming them into tolerant

cells, thus differentiating naive CD4 cells into regulatory T cells

expressing Foxp3. SSPs had anti-inflammatory effects in vivo, and

restore peripheral tolerance, effectively inhibiting the development

of psoriatic arthritis. In addition, ankylosing spondylitis and gouty

arthritis could be treated by using BAPs. Ankylosing spondylitis is
TABLE 2 Continued

Organ Peptide names Disease type Peptide activity Reference

TSP Dry eye disease Regulating Bax/Bcl-2 signal pathway Inhibiting iNOS and
COX-2
Moderating ROS/Nrf2/HO-1 axis
Apoptosis inhibiting

(103)

Others

P140 Periodontitis ↓ TNF-a, INF-g
↓ Infiltration of activated lymphocytes

(104)

Nal-P-113 Periodontitis ↓ IL-1b, TNF-a (105)

Bomidin Periodontitis Downregulation of MAPK and NF-kB signaling pathways
Activation of Keap1/Nrf2 pathway

(106)
↑ and ↓ indicated increase and decrease, respectively.
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an immune-mediated chronic inflammatory rheumatic disease that

most commonly affects the spine (132). Liu et al. (99) reported that

BAPs IQW could treat mice with ankylosing spondylitis, delay

disease progression, alleviate inflammation in the intervertebral

joints, and reduce the concentration of pro-inflammatory factors.

Gouty arthritis is caused by inflammation triggered by the

deposition of urate crystals in the joints and surrounding tissues

(108). Commonly used medications include colchicine,

corticosteroids, NSAIDs, and adrenocorticotropic hormone, but

these drugs have certain side effects such as nausea and

gastrointestinal toxicity. Therefore, there is an urgent need to

develop new drugs to treat gouty arthritis (133). Yan et al. (134)

described that BAPs mastoparan M (Mast-M) extracted from wasp

venom could inhibit the MAPK/NF-kB signaling pathway and

reduce oxidative stress, thereby blocking the activation of the

NLRP3 inflammasome and effectively treating gouty arthritis.

Hence, BAPs have good therapeutic effect on joint inflammation.
3.5 Eyes inflammation

Eye inflammation is a common ocular condition that can occur

from the surface of the eye to intraocular tissues (135). As

threatened by inflammation, the eye tissues can sustain damage

over the short or long term (136). The causes of eye inflammation

are varied, including pathogen infections such as bacterial, fungal,

and viral infections, as well as non-infectious factors like external

environmental stimuli and allergic reactions (137). The treatment of

eye inflammation mainly involves the use of anti-inflammatory

drugs and antibiotics for medication or surgical methods. However,

these approaches have certain drawbacks such as drug side effects

and long recovery times. In recent years, more BAPs with

therapeutic potential have emerged. Lu et al. (102) designed a

peptide called WP-17, which targeted the toll-like receptor 4

(TLR4) to inhibit the activation of the NF-kB pathway. The

highest dose of WP‐17 (10 mg/eye) strikingly decreased the

protein levels of TNF‐a and IL‐6 in the aqueous humor of rats by

77.26% and 85.67%, respectively. WP-17 has shown promising

therapeutic effects in rat uveitis. Similarly, Ho et al. (138)

reported that a 29-mer peptide derived from pigment epithelium-

derived factor could inhibit the expression of matrix

metalloproteinase-9 and pro-inflammatory cytokines on murine

dry eye. In addition, Zeng et al. (103) described that tilapia skin

peptides (TSP) impeded the generation and development of dry eye

disease via inhibition of apoptosis (19.4%), inflammation, and

oxidative stress.
3.6 Other inflammation

The oral cavity is an important part of the human body and

serves as the starting point of the digestive system. The oral cavity

harbors a rich microbial population, constituting the second
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abundant microbial community in the human body after the gut,

with over 700 identified oral microbial species (139, 140).

Disruption of the oral microbiota can lead to an increase in local

TH17 cells, which are associated with oral immunity and

inflammation (141). Dysbiosis of the oral microbiota can lead to

periodontitis, a common oral disease caused by pathogens invading

the periodontal tissues such as the gums (142, 143). BAPs can

inhibit bacterial growth and reduce inflammation. Akiyama et al.

(104) reported the role of peptide P140 in a mouse model of

periodontitis, and found that treatment with P140 effectively

alleviated inflammation in gingival tissues, reduced lymphocyte

infiltration, and lowered the expression of pro-inflammatory

mediators. In addition, liver injury can also be treated by

bioactive peptides. Zhu et al. (144) described a peptide

HEPFYGNEGALR isolated and identified from Apostichopus

japonicus. This peptide can activate the Nrf2/HO-1 pathway,

block the nuclear translocation of NF-kB, alleviate oxidative stress
and inflammation, and alleviate acute alcoholic liver injury caused

by excessive alcohol intake. Besides, BAPs have a certain ability in

the treatment of myocarditis. Cortistatin is a small molecule

bioactive peptide (145). Delgado-Maroto et al. (146) reported the

therapeutic effect of cortistatin in experimental autoimmune

myocarditis, and found that it could inhibit the inflammatory

response driven by cardiomyogenic T cells.
3.7 Clinical application of BAPs

Peptides and peptidomimetics are emerging as an important

class of clinic therapeutics (147). However, their application is

hindered by their poor stability, short half-life, and low retention

rate (148). It was reported that cyclic peptide structures had high

topological flexibility, and their shape changes without

transforming the amino acid composition sequence could not

alter their properties (149). Therefore, molecular grafting is a

good choice. It has been demonstrated that bradykinin

antagonists were conjugated onto cyclic peptide scaffolds for the

inflammation treatment (150). And sustained-release peptide

analogues can be used for clinical treatment (151). BAPs are

widely used to regulate inflammatory pathways and inflammatory

factors to treat inflammation in clinics. Brimapitide (XG-102), a

peptide bound to the N-terminal sequence of c-Jun, inhibits JNK by

competing with endogenous c-Jun. In this way, it suppresses

inflammation caused by JNK. This drug is currently under Phase

III (149). Thymosin alpha-1 is an immunostimulatory peptide. It

can regulate the immune system, enhance T cell function, inhibit

the release of pro-inflammatory cytokines, and promote the

production of anti-inflammatory cytokines (152). It is clinically

used to treat hepatitis B (153). Since one century ago, more than 80

peptide drugs have reached the market for a wide range of diseases,

including diabetes, cancer, osteoporosis, multiple sclerosis, HIV

infection and chronic pain (154). However, there are still few

peptides as clinical drugs for the treatment of inflammation.
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4 Anti-inflammatory mechanism
of BAPs

4.1 Regulation of the release of
inflammatory mediators

Chemical substances released by cells or produced by body

fluids during the inflammatory process, which participate in or

cause the inflammatory reaction, are referred to as inflammatory

mediators. They mainly include prostaglandins, NO, cytokines like

interleukins (IL) (e.g., IL-1b, 2, 6, and 8), chemokines, etc. (155). As

activated through toll-like receptors (TLR), these innate immune

cells induce the release of IL-6 and TNF-a, along with transforming

growth factor-b, which facilitates cell proliferation (156). The NF-

kB and MAPK are also key pro-inflammatory intermediaries that

are produced after TLR activation (157). Cytokines are low

molecular weight glycoproteins produced and secreted by

different cells, which can regulate the proliferation and

differentiation of immune cells (158). They can be divided into

two major categories: pro-inflammatory and anti-inflammatory

factors. Pro-inflammatory factors such as IL-1b and TNF-a
further induce the inflammatory response, while anti-

inflammatory factors such as IL-10 can promote the resolution of

the inflammatory response (159). Many studies show that BAPs can

regulate the release of inflammatory mediators. Tornatore et al.

(157) isolated four peptides from eggs white and these peptides

exhibited anti-inflammatory activities in colitis mice by inhibiting

the production of TNF-a and IL-6 as well as reducing the mRNA-

expressions TNF-a, IL-6, IL17, IL-1b, IFN-g, and MCP-1. Xing

et al. (160) reported that bovine bone gelatin peptides could

alleviate the additional secretion of inflammatory factors IL-6,

NO, and TNF-a induced by lipopolysaccharide (LPS) in

RAW264.7 cells to mitigate DSS-induced colitis. Cresti et al. (161)

conducted efficacy studies on the synthetic peptide SET-M33

targeting gram-negative bacteria by using an LPS-induced

pneumonia model. They found that the peptide effectively

reduced the production of pro-inflammatory cytokines KC, MIP-

1a, IP-10, MCP-1, and TNF-a.
4.2 Regulation of inflammatory
signaling pathways

Inducers like LPS can stimulate and activate key proteins or genes

involved in cellular signaling pathways such as NF-kB pathway (162)

and MAPK pathway (163). The anti-inflammatory peptides inhibit

cell inflammatory responses mainly through the MAPK and NF-kB
pathways. NF-kB pathway is the most important way to regulate the

transcription of pro-inflammatory cytokines such as IL-6, IL-1b and

TNF-a, and also plays a vital role in the expressions of inducible

nitric oxide synthase (iNOS) and COX-2 (164). NF-kB is a family of

transcription factor proteins, including five subunits: p65 (RelA), p50,

p52, Rel, and RelB. After dimer p65/p50 is released into the cytosol, it

can be translocated into the nucleus and initiates target gene

transcription for pro-inflammatory factors, causing inflammation
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(164, 165). MAPK can regulate many cellular activities, including

proliferation, differentiation, death and immune response. The

stimulus and MAP3K phosphorylation can mediate the

phosphorylation of the downstream MAP2K and MAPK, which

contain three subfamilies: p38, extracellular signal-regulated kinases

(ERK1 and ERK2), and c-Jun N-terminal kinase (JNK). In

unstimulated cells, JNK mainly exists in the cytoplasm and partly

distributes in the nucleus. After being stimulated, JNK accumulates in

the nucleus and causes the corresponding gene (IL-1 and TNF-a)
expression, resulting in an inflammatory response (166). BAPs

inhibit the expression of inflammatory genes by blocking NF-kB
andMAPK signaling pathways (Figure 2). The JAK-STAT pathway is

also important for inflammatory response, which can regulate

hematopoietic cell development and inflammatory cytokines (167).

Phosphorylation of JAK and STATs can form the dimer translocated

to the nucleus (168). In addition, the peptide transporter PepT1 can

transport small BAPs to the bloodstream. Therefore, the role of

PepT1 is vital to the bioactivity of BAPs (167). Chei et al. (169)

described that acid-hydrolyzed silk peptide (SP) inhibited LPS-

induced inflammation by modulating the TLR4 signaling pathway,

while clam peptide MMV2 reduced the mRNA levels of

inflammation-related genes induced by LPS in adult zebrafish

(170). Formyl peptide receptors (FPRs), members of the GPCR

family with seven transmembrane domains (171), play important

roles in antimicrobial host defence mechanisms. FPRs recognize

formylated peptides, non-formylated peptides, synthetic small

molecules, and formyl analogs from bacteria and mitochondria to

regulate inflammatory responses that lead to chemotaxis,

degranulation, and oxidative bursts (172). Jin et al. (173) reported

that VLATSGPG (VLA), a DPP-IV inhibitory peptide isolated from

the skin of Salmo Salar, could inhibit the activation of PERK through

the AKT signaling pathway, and increase the expression of IkBa
mRNA through the PERK/IkBa pathway, leading to blocking the

activation of NF-kB p65 and further cell inflammation. Tsuruki et al.

(174) isolated some immunostimulating peptides from soy protein,

which had specific binding sites on mouse or human macrophages

and could stimulate their phagocytic activity.
4.3 Regulation of reduced oxidative
stress response

Oxidative stress is a significant pathological factor that

contributes to various inflammatory diseases. Inflammatory

responses trigger the excessive generation of reactive oxygen

species (ROS) within cells, disrupting the body’s free radical

metabolism and leading to oxidative stress. Moreover, during

oxidative metabolism, excessive ROS can attack cells or tissues,

causing structural and functional damage and exacerbating

inflammatory reactions (175, 176). BAPs can reduce the

generation of ROS. Lee et al. (177) isolated the peptide PPY1

from Pyropia yezoensis, and stated that PPY1 significantly

decreased the ROS levels in LPS-induced macrophages. Oxidative

stress and inflammation are closely related, which can elucidate why

NF-kB is the initial mammalian transcription factor to be

influenced by oxidation (178). NF-kB plays a crucial role in
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FIGURE 2

The mechanism of anti-inflammation of BAPs. Treatment of inflammation by modulating the four signaling pathways, such as NF-kB, MAPK, JAK and
STATs. p, phosphorylation; Ikks, inhibitor of kappa B kinase. Adapted from previous reports (167).
FIGURE 3

ROS activate NF-kB through three pathways. ① Canonical pathway: ROS activates the IKK complex, phosphorylating IkBa. Phosphorylation leads to
ubiquitination and proteasomal degradation of IkBa, resulting in nuclear translocation of the NF-kB complex and gene expression through high-
affinity binding to kB components, ② ROS directly phosphorylate IkBa, subsequently following the same pathway as the canonical pathway,
③ Noncanonical pathway: NIK is activated by ROS through inhibition of phosphatases and oxidation of cysteine residues. The NF-kB activation
pathway relies on IKKa and activates the p52/RelB complex by triggering proteolytic cleavage of the p52/p100 precursor. IKK, IkB kinase; NIK, NF-
kB-inducing kinase. Adapted from previous reports (181).
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mediating inflammatory responses and is regulated by various

mediators, including H2O2 and ROS (178). ROS can modulate

NF-kB through both the Canonical and Noncanonical pathways

(Figure 3). Malondialdehyde (MDA) and glutathione (GSH) are

important markers of oxidative stress. MDA is the final product of

ROS-induced lipid peroxidation, while GSH is an intracellular

antioxidant that protects cells from oxidative stress damage. Peng

et al. (54) identified an active peptide, GGAW, which exhibits

excellent antioxidant functionality. This peptide effectively reduces

the production of ROS, MDA and lactate dehydrogenase (LDH),

and increases the activity of SOD and glutathione peroxidase (GSH-

PX). Consequently, it enhances cell viability and protects IEC-6

cells from H2O2-induced oxidative damage. The Kelch-like ECH-

associated protein 1-(Keap1) Nrf2-antioxidant response element is

the main antioxidant signaling pathway that prevents oxidative

stress and helps maintain the optimum redox steady state in vivo

(179). Hence, the Nrf2 antioxidant signaling pathway can be

stimulated to suppress oxidative stress within the body (167).

Fernando et al. (180) reported that AMVDAIAR, a peptide isolated

from pepsin hydrolysate of krill enhanced antioxidant enzymes SOD,

CAT and GPx, thereby suppressing the oxidative stress in H2O2-

induced hepatocytes and increasing the expression of Nrf2.
5 Conclusions and prospects

BAPs are widely employed in the treatment of inflammation.

This review summarizes the therapeutic effects of BAPs on various

inflammatory diseases such as pulmonary, gastrointestinal,

dermatological, arthritic, oral and ocular inflammations. It also

outlines the anti-inflammatory mechanisms of action of BAPs,

which include modulation of inflammatory mediators’ release,

regulation of inflammatory signaling pathways (NF-kB, MAPK,

and JAK-STAT), and reduction of oxidative stress reactions to

influence the development of inflammation.

BAPs have promising prospects for the preparation of anti-

inflammatory drugs. However, BAPs are commonly implicated

with several challenges, encompassing a short half-life,

susceptibility to proteases, instability, potential toxicities, and other

processing-related issues. Attempts can be made to modify or

transform the BAPs, such as by attaching metal ions, targeting

groups or nanomaterials to maximize their effectiveness. However,

before using BAPs to treat various inflammatory diseases, more
Frontiers in Immunology 11192
experiments are needed to obtain additional data on dosages,

pharmacodynamics and pharmacokinetics. Studies should also

investigate the differential effects of BAPs on different populations

to better understand their efficacy. Furthermore, the anti-

inflammatory mechanisms of various types of BAPs require

investigation to ensure their safety in clinical applications.

Additionally, many peptides face challenges in maintaining stability

and functional activity in vivo due to inherent limitations of amino

acids. BAPs can be encapsulated within nanoparticles to improve

their stability. Future efforts should concentrate on finding more

methods to overcome these challenges to maximize the efficacy of

BAPs. In conclusion, BAPs hold great promise as potential

inflammatory therapy. Further research and clinical data are

necessary to support their widespread and safe application.
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