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Editorial on the Research Topic

IPPS 2022 - plant phenotyping for a sustainable future
Plants are a venue for addressing the challenges facing humanity. The need for a

reliable supply of food, feed, materials, chemicals and energy as well as ways to manage

agroecology and climate change are among the challenges that we can address through the

sustainable use of plants and plant ecosystems. The research community needs to integrate

plant systems approaches, from molecular to organismal to applications in the field and

ecosystems, to increase productivity sustainably while using fewer land, water, and nutrient

resources. In the past two decades, plant phenotyping research has developed a highly

valuable portfolio of technologies, processes and infrastructures to address these questions

(Pieruschka and Schurr, 2019). In the past, the creation of datasets was limited by low

throughput sensing and image analysis (Tsaftaris et al., 2016). However, through the

development of digital image analysis the previous phenotyping “bottleneck” has shifted

towards a capacity problem, making it difficult to interpret vast datasets (especially in the

face of plant x environment interactions), leading to an “interpretation bottleneck” (Smith

et al., 2021). Innovative plant phenotyping approaches that reveal and target relevant traits

are thus still needed to identify and quantify key traits and processes and to understand the

dynamic interactions between genetics, molecular and biochemical processes, and the

physiological responses to changes in the environment that lead to the development of

a phenotype.

The IPPS 2022 conference in Wageningen (the Netherlands) brought together a diverse

phenotyping community from academia and industry to discuss and realize potentials to

harness the power of plant phenotyping. In this Research Topic (RT), we have collected

contributions from attendees of IPPS 2022, as well as from other scientists working on plant

phenotyping. The RT comprises ten experimental and three review papers. It is noteworthy

that eight out of ten research papers are devoted to field crops (including the major crops
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wheat, maize, potato, sugarcane, and cotton), highlighting the

community’s increasing focus on the application of plant

phenotyping for crop improvement and the understanding of

physiological patterns in large populations of crops for food, feed,

and energy security. Plant phenotyping is a highly interdisciplinary

field, as it requires constant development and critical evaluation of

methods in both data acquisition and analysis. The papers of this

RT can be categorized broadly into those focused on data collection

(7 papers), those focused on data analysis and/or modeling (5

papers), and one review paper on policy and governance that

broadly deals with both aspects (Gerullis et al.).

Regarding data collection through rapid phenotyping, several

authors applied existing methods to new problems, thereby

expanding the tested range of these methods. Ma et al.

successfully applied near-infrared spectroscopy to a diversity

panel of sugarcane to detect differences in stalk crushing strength,

a trait closely related to mechanical stability of sugarcane. Using this

method, breeders may be able to breed for more lodging-resistant

sugarcane. In a noteworthy example of phenotyping of growth and

photosynthesis during the growing season in the field, Knopf et al.

assessed the genotypic diversity of ten wheat cultivars under

ambient and elevated (CO2). Among other sensors, the light-

induced fluorescence transient (LIFT) sensor was used, enabling

the researchers to detect earlier onset of senescence under elevated

(CO2). Shi et al. provide an example of combined phenotyping of

root and shoot growth in maize, an approach that is currently

unusual and deserves more attention given the intimate connection

of root and shoot functioning, as well as the importance of above-

and belowground biomass allocation. Njane et al. assessed the

effects of UAV height on imaging of potato, for traits including

crop height and volume. They determined that a flying height of 15

m was preferable to that of 30 m, as it provided for better resolution.

Dong et al. visually inspected seeds of several accessions of the

leguminous plant Sophora moorcroftiana, identifying genetic

variation in traits that in other species have been shown to

correlate with fitness in the field, such as seed weight, providing

implications for crop improvement in legumes, which contribute

largely to global food security. In their review paper on Sainfoin

(Onobrychis spp. Fabaceae), Karabulut et al. provide an overview of

all traits (82 in total) which have so far been measured on this

perennial forage legume, which is mostly used as livestock feed but

could feed humans as well.

Although they are undoubtedly useful, large high-throughput

phenotyping (HTP) facilities are subject to several pitfalls, as

illustrated in the review by Poorter et al. For example, projected

leaf area, which is often used to estimate biomass, can be

underestimated by ~20% due to diurnal leaf movement. Also,

Poorter et al. highlight the fact that the high degree of

automation that HTP systems require results in reduced

experimental flexibility (in terms of possible measurements and

treatments) and a demand for expert knowledge (to run and fix

such systems). Proxies generated by such systems often require

calibration curves that are specific to a given crop. Given the

inflexibility in the set of traits measured by many HTP systems,

researchers using such systems may fall prey to the “if the only tool
Frontiers in Plant Science 026
you have is a hammer, everything looks like a nail” problem. The

importance of systemic approaches to regulation and governance in

plant breeding is highlighted by Gerullis et al. The authors propose

a new governance heuristic – a rule of thumb for decision makers –

for evaluating plant breeding research that includes social systems

feedback, along with genetics, environment and management.

Several publications report progress on the use of data analysis

and modelling for trait estimation. One highlight is presented by

Cantürk et al. who used 3D point clouds based on RGB and laser

data acquired by UAVs to detect key morphological features of vine

plants in the field, including plant height, plant volume and canopy

width. Key to determining these features was correct identification

of trunk location, which allowed for the identification of single

plants. Carlier et al. tested several model types on RGB and

multispectral data of wheat, identifying convolutional neural

network (CNN) models to be superior to partial least squares

regression (PLSr) models for trait extraction. Similarly, Renó et al.

used two AI models – random forest and multilayer perceptron

processing – to detect drought in cotton using thermography,

thereby increasing the throughput of thermal image analysis.

The last two papers of this RT deal with the connection between

phenomics data and genetics, a topic that is highly relevant for plant

breeding. In a population of potato grown throughout several

seasons and across various levels of heat stress, Martins et al.

showed that including a family effect significantly improved the

genetic selection of potato clones for subsequent breeding. Finally,

Li et al. describe an interesting example of using phenomic rather

than genomic selection to estimate genetic diversity in Scots pine.

They performed phenomic selection using hyperspectral reflectance

data acquired by UAVs, which in many cases is much easier and

cheaper to obtain than molecular markers, especially in long-living

woody plants. Phenomic selection may hold great promise in the

future of plant breeding.

We believe that this RT is a nice representative sample of the

state of the art of plant phenotyping. We hope that readers will

thoroughly enjoy these articles and derive valuable knowledge

from them.
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Sainfoin (Onobrychis spp.) is a perennial forage legume that is also attracting

attention as a perennial pulse with potential for human consumption. The dual

use of sainfoin underpins diverse research and breeding programs focused on

improving sainfoin lines for forage and pulses, which is driving the generation of

complex datasets describing high dimensional phenotypes in the post-omics

era. To ensure that multiple user groups, for example, breeders selecting for

forage and those selecting for edible seed, can utilize these rich datasets, it is

necessary to develop common ontologies and accessible ontology platforms.

One such platform, Crop Ontology, was created in 2008 by the Consortium of

International Agricultural Research Centers (CGIAR) to host crop-specific trait

ontologies that support standardized plant breeding databases. In the present

study, we describe the sainfoin crop ontology (CO). An in-depth literature review

was performed to develop a comprehensive list of traits measured and reported

in sainfoin. Because the same traits can bemeasured in different ways, ultimately,

a set of 98 variables (variable = plant trait + method of measurement + scale of

measurement) used to describe variation in sainfoin were identified. Variables

were formatted and standardized based on guidelines provided here for

inclusion in the sainfoin CO. The 98 variables contained a total of 82 traits

from four trait classes of which 24 were agronomic, 31 were morphological, 19

were seed and forage quality related, and 8 were phenological. In addition to the

developed variables, we have provided a roadmap for developing and submission

of new traits to the sainfoin CO.

KEYWORDS

sainfoin, Onobrychis spp., crop ontology, perennial grain, pulse, forage
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1 Introduction

Sainfoin (Onobrychis spp. Fabaceae) has a long and rich history

of cultivation across Asia, Europe, and North America where it is

used to provide roughage for livestock and to maintain soil fertility

(Frame et al., 1998). Sainfoin has been used as a perennial forage

legume and in crop rotation regimes with major grains such as

wheat and barley (Hayot Carbonero et al., 2011). Sainfoin use has

been centered in Turkey, the Balkans, and Central and Southern

Europe (Bennett et al., 2001), but historical evidence suggests it was

also grown in Palestine, Syria, and Lebanon in the late 1800s

(Tristram, 1885). The introduction of synthetic fertilizer-based

production schemes led to a reduction in sainfoin cultivation in

these regions (Hayot Carbonero et al., 2011), and a concomitant

decline in research and breeding efforts. Recently, as concerns about

synthetic fertilizers have grown, attention has refocused on the

crucial role of legumes in agricultural systems, and as a result,

interest in sainfoin has been revived (Şakiroğlu, 2021; Craine

et al., 2023).

Agriculture and plant breeding are undergoing a revolution in

response to calls for the development of more diverse, sustainable,

agricultural systems. A key part of this is plant breeding, the

improvement of existing crops and development of new ones that

provide agronomic products and critical ecosystem services. For

example, there is emerging interest in domesticating sainfoin as a

potential novel, sustainable food source - a perennial pulse - for

human consumption (Butkutė et al., 2018a; Butkutė et al., 2018b;

Schlautman et al., 2018). Evidence from nutritional analyses and

animal feeding studies suggest sainfoin seeds could be suitable for

human and animal consumption (Ditterline, 1973; Tarasenko et al.,

2015; Baldinger et al., 2016; Wijekoon et al., 2021; Craine et al.,

2023). Thus, recent breeding efforts to develop sainfoin for dual-

purpose perennial grain and forage production by selecting

phenotypes related to grain yield and grain quality have begun

at The Land Institute (Salina, KS, USA), Adana Alparslan

Türkes ̧ Science and Technology University (Adana, Turkey),

and elsewhere.

As plant breeding programs expand and evolve to meet current

and future agricultural needs, it is necessary to adapt existing

frameworks for cataloging plant information. In the post-omics

era (e.g. genomics, transcriptomics, proteomics, metabolomics,

hormonomics, ionomics, and large-scale automated phenomics)

the amount and complexity of data collected, stored, and shared

within and among breeding and agriculture research programs has

reached an all-time high (Langridge and Fleury, 2011; Leonelli et al.,

2017; Li and Yan, 2020; Van Tassel et al., 2022). These post-omics

era technologies promise to generate more data at lower costs than

ever before, which could accelerate genetic gains in underutilized

crops or even rapidly domesticate new ones. However, leveraging

these technologies and large datasets when collaborating is only

possible with available infrastructure to robustly store and access
Abbreviations: Crop Ontology, CO; Plant Ontology, PO; Agronomy Ontology,

AGRO; Plant Trait Ontology, TO; Plant Experimental Conditions Ontology,

PECO; The Environment Ontology, ENVO; The Phenotype And Trait Ontology,

PATO; The Consultative Group on International Agricultural Research, CGIAR.
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data. As such, there is a need for new frameworks that enable

breeders to efficiently share and communicate about the multi-

dimensional plant phenotypes characterized in their programs, for

different breeding goals, in a broader diversity of current and

emerging crop species like sainfoin.

As early as the 1990s, the need for designing databases serving

multiple users with a robust set of common ontologies was

recognized (Wieczorek et al., 2012). Numerous ontologies and

ontology platforms have since been created to support and

standardize data sharing within and among research fields such

as Darwin Core (https://dwc.tdwg.org) as a standard for

biodiversity data and the Planteome platform (https://

www.planteome.org) and related Plant Ontology (PO), Plant Trait

Ontology (TO), and Plant Experimental Conditions Ontology

(PECO) frameworks, which provide a base for ontologies for

plant and species-specific traits related to plant development,

anatomy, physiology in the context of genomics data (Jaiswal

et al., 2005; Pujar et al., 2006; Ilic et al., 2007; Avraham et al.,

2008; Arnaud et al., 2012; Cooper et al., 2013; Cooper and Jaiswal,

2016; Cooper et al., 2018).

Crop Ontology (CO, https://cropontology.org, Matteis et al.,

2013)) was created in 2008 by the CGIAR to provide a framework

and common language to catalog crop-specific trait data, allowing

traits to be easily interpretable and interoperable for further

aggregation, analysis, and multidisciplinary communication

(Gruber, 2009). CO currently supports the standardization of

plant breeding databases such as the Integrated Breeding

Platform’s BMS (IBP; https://www.integratedbreeding.net/), the

Boyce Thompson Institute’s Breedbase (https://breedbase.org/,

(Morales et al., 2022), and others (Arnaud et al., 2020) which

allow the creation and management of annotated trial data (Crop

Ontology 2022). The Minimum Information About a Plant

Phenotype Experiment (MIAPPE https://www.miappe.org/;

(Ćwiek-Kupczyńska et al., 2016; Papoutsoglou et al., 2020) and

the Breeding Application Programming Interface (BrAPI; https://

brapi.org/; (Selby et al., 2019) have both adopted the CO

format, demonstrating the widespread acceptance and utility

of the standard (Arnaud et al., 2020). The CO Application

Programming Interface (API) is used by third-party websites and

databases like the EMBL-EBI Ontology Lookup Service that

replicates CO and provides term search access through its own

portal. Agroportal, the registry of ontologies in agriculture and

related domains, regularly synchronizes their files with CO.

Several different COs have since been developed and made

accessible through the CO platform by research groups and crop

specific consortiums for several commonly cultivated crops

including apple, banana, cotton, corn, common bean, potato, rice,

and wheat. We expect that the broader impacts made possible

through international and transdisciplinary collaboration and

germplasm characterization in sainfoin can be magnified through

early efforts of a consortium of researchers, hereafter referred to as

the “Sainfoin Consortium.” In this current work, we describe the

efforts of the Sainfoin Consortium to standardize the nomenclature

and data storage systems used for sainfoin research to create a

sainfoin CO - the first CO developed for a perennial forage legume

and grain crop. We also include a roadmap for further expansion of
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the sainfoin CO through a set of guidelines for the development and

suggestion of new traits.
2 The sainfoin ontology framework

2.1 Ontology construction methods

We used the Crop Ontology framework guidelines (version 2.1;

Pietragalla et al., 2022) and trait dictionary template to build the

first version of a sainfoin crop ontology. The online database

software, Airtable, was used to create the first version of the

ontology as it incorporates relational data structures that can be

used to easily link ontology terms across tables in the database.

Figures and entity relation diagrams were constructed in DrawIO

(https://github.com/jgraph/drawio). The Crop Ontology CGIAR

advisory board assigned the crop code CO_369 to sainfoin, which

is prepended to Variable terms in the final sainfoin ontology. The

sainfoin crop ontology is available to the public, can be browsed on

the Crop Ontology website (https://cropontology.org/term/

CO_369:ROOT), resides in a dedicated GitHub repository

(https://github.com/Planteome/CO_369-sainfoin-traits), and is

maintained by a group of community curators from the

Sainfoin Consortium.
2.2 Term types and structure

The CO phenotype annotation model is based on three

fundamental CO term types: Trait, Method, and Scale. These

three fundamental types are then used in conjunction to

construct a fourth term type, Variable, which formalizes how a

given trait is collected. Each CO term in the sainfoin ontology was

assigned a persistent unique identifier (PUID), which is composed

of the sainfoin CO crop code and a seven-digit number in the form

{CO crop code}:{#######}, e.g., CO_369:0000001. While the format

of the ID system is constrained as shown above, the CO guidelines

do not mandate a particular system for assigning PUIDs to

Variables, Traits, Methods, or Scales within an individual

ontology. To maintain an incremental, identifiable PUID system,

we added constraints for each term type (Variable, Trait, Method,

and Scale) shown in Table 1.

In addition to PUIDs, all terms in the ontology were given

human-readable names and abbreviations that can be used in trait

selection used in data collection. We avoided using acronyms within
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CO term names except where the term name would become

unwieldy without its use or when the acronym is more widely

known than the actual phrase which the acronym represents (e.g.,

‘SPAD’ for soil plant analysis development). Term names were

constrained to standard ASCII characters, and aside from

acronyms, only the first letter of the first word in each name

is capitalized.
2.3 Trait composition framework

A Trait in the Sainfoin CO is a subcomponent of a variable that

defines what is observed. Traits are composed of a meaningful, two-

to four-word phrase consisting of an Entity, the observed part of a

plant, and an Attribute, a feature of an entity, in the form {Entity}

{Attribute} such as {Plant} {height}. Traits are then assigned to one

of the nine Trait classes specified in the CO guidelines for

organizational purposes when viewing the ontology (Table 2).

When possible, Entities and Attributes in the sainfoin ontology

were cross referenced with terms in existing relevant ontologies

such as PO, the Agronomy Ontology (AGRO, Aubert et al., 2017),

The Environment Ontology (ENVO, Buttigieg et al., 2016) and The

Phenotype And Trait Ontology (PATO, Gkoutos) to standardize

term vocabulary across other ontology frameworks.

Extensive examination of ontologies from other species revealed

inconsistent approaches for assigning Entities and Attributes,

especially those that can have multiple states. This multiple state

problem is common when a treatment or processing step is applied

(e.g., drying, boiling, milling). Using the example of the Entity

{Forage} and the attribute {mass}, which can be measured either in a

fresh or dried state. The CO guidelines specify two distinct

approaches for assigning the state “dry”, but each has its

own challenge.

1. The “dry” state is assigned to the Entity {Dry forage} rather

than the Attribute{mass}.

a. This approach creates a hierarchy of entities with multiple

states rather than treating entities as a single observed part of

a plant.

2. The “dry” state is not assigned to either the Entity {Forage} or

Attribute {mass} but is instead included in the Method describing

how Forage mass was measured either fresh or dry.

b. This approach results in multiple traits with the same name,

which can create downstream challenges for users in selecting the

proper Variable in tools such as Field Book (Rife and Poland, 2014)

or Gridscore (Raubach et al., 2022). This is especially important in
TABLE 1 Term type ID series composition and creation.

Term Type Term PUID Base Series Term PUID Constraints

Variable CO_369:0000000 1-999

Trait CO_369:0001000 1001-1999

Method CO_369:0002000 2001-2999

Scale CO_369:0003000 3001-3999
The Sainfoin Crop Ontology V1 increments each term type from the base series within the constraints of each term type. This allows for the development of 999 unique terms for each term type
while enforcing strict identifiability for each term type.
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the sainfoin ontology where only the Method class abbreviation is

included in the Variable name.

We chose a third approach, which was to assign the state to the

attribute instead of the entity or method. In this fashion, any traits

with state(s) would be constructed as {Entity} {(state) attribute} as

in Forage dry mass and Forage fresh mass. With this format, we can

have Methods that simply describe the Method for a given Trait(s)

without having to form specific Methods for each Trait that only

differ in the state of a Trait.

Finally, when choosing Attribute words, we opted for words

that were specific enough to be contextually correct, but general

enough that they could be used in more than one context. For

example, “mass” was used instead of “weight”, and “mass” was

chosen over “biomass” since the latter adds no further meaning

when the context is already scoped to biological organisms.
2.4 Method composition framework

Methods are the component of a Variable that describes how an

observation is made. The framework we followed for composing

Methods was based on the outline specified in the CO guidelines,

with some modifications that add clarity to the procedures and

allow for some flexibility between different breeding programs’

goals. Our modifications fall into three main categories: Method

name, Method description, and Method abbreviation.

First, we constrain the Method name to be a succinct, human-

readable name appended with the Method class abbreviation. In

most cases this should be the trait name followed by the Method

class the Method belongs to following the format of {Trait} {Method

class}. For example, ‘Leaflet SPAD measurement’ tells us this

Method describes how to measure SPAD values of a leaflet.

However, exceptions were made when general Methods could be

assigned to multiple traits, as in the case of ‘Object equivalent

diameter measurement’, which describes a simple image processing

technique that could be applied to many different objects in an

image. Methods were categorized into one of the seven classes
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(measurement, counting, estimation, computation, prediction,

description, or classification) defined in the CO Guidelines.

Second, the Method description should be structured according

to the format shown in Figure 1. While the Method description is

allowed to be a free text field in the CO guidelines, we constrained

our descriptions to include at minimum the following structured

information: Description: A brief, one sentence description of the

Method; Materials: A semicolon separated list of materials or

supplies needed for the Method; Dependent_on: A semicolon

separated list of Variables that the Method uses for computational

purposes or for normalization. Variables can be specified either by

the variable label (Raceme length msr [cm]), ID (CO_369:0000061),

or name (RaL_RaLmsr_cm); Protocol: A detailed, ordered list of

steps in the protocol needed to complete the Method. When it is

infeasible to write out a lengthy protocol, it is indicated by writing

“See full protocol in {publication title, author, year}”.

Many existing CO Method descriptions either present no added

information beyond that which is already specified in the Method

name or present methodology too vague to be followed without error.

We developed our Method descriptions to be agnostic regarding the

sampling procedure so that the employment of a given Method can

be adapted to the end user’s specific experimental design. This

modification is not entirely in line with the CO guidelines which

state that the sampling should specify whether the observation is

collected on a single plant or an aggregation frommultiple plants (an

experimental group or plot). However, this poses an issue with the

scope of sample sizes (e.g., number of samples aggregated) commonly

seen in breeding or agronomic trials. Specifically, a trait collected in

greenhouse studies using single plant reps should, according to this

guideline, have a separate method from the same trait collected in a

field trial with collections of plants in a plot or sward. This leads to, at

most, doubling the number of variables in the ontology. Furthermore,

while the guidelines state that the experimental protocol should be

distinguished from the observational protocol, the authors realize that

the sampling protocol is inevitably linked to the experimental design

and informs the observation procedure. Various research groups have

their preferred sampling methods, dependent on goals, scale of
TABLE 2 List of trait classes, descriptions, and corresponding frequencies in the Sainfoin Crop Ontology.

Trait class Absolute
frequency

Relative
frequency

Class Description

Agronomic 24 0.29 All main traits contributing to yield and related to the agronomic performance of plants.

Morphological 31 0.38 All traits related to anatomical and morphological structure of the plant, its organs, and tissues.

Quality 19 0.23 All traits related to key characteristics that influence end-use quality of crop/plant products and sub-products.

Phenological 8 0.10 All traits related to growth/developmental stages and periods of crop/plants.

Abiotic Stress 0 0.0 All traits related to stress caused by non-living stressors.

Biochemical 0 0.0 All traits related to chemical components of a plant entity.

Biotic Stress 0 0.0 All traits related to stress caused by living stressors.

Fertility 0 0.0 Traits specifically related to fertility aspects of importance to breeding.

Physiological 0 0.0 All traits related to the functioning of the crop/plant and its response/adaptation to the environment.

Total 82 1.00
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projects, funding, etc.; therefore, we leave the specific sampling

procedure up to the individual researchers and only dictate

that the trait value is represented as-is for data collected on one

observational unit, or the mean/aggregated value for a collection of

observational units.

Finally, we constrain the abbreviation of the Method used in

Variable name construction to include the Trait abbreviation, or if

not possible, at least a portion of the Trait abbreviation. Ambiguous

abbreviations such as ‘PH’ for ‘Plant height’ or ‘pH’ were avoided.

Additionally, the standard abbreviation of the Method class is

appended at the end: msr, cnt, est, cmp, prd, dsc, or cls (See

Supplemental Table 3). This is to avoid confusion about what

type of methodology is being employed in a Variable.

New Methods are to be developed following the above guidelines

as schematized in Figure 1. Briefly, there are five obligatory Method

components: Method ID, Method name, Method class, Method

description, and Method abbreviation. The Method ID is assigned

automatically and incrementally. The Method class must be selected

among the seven different Method classes (Figure 1).
2.5 Scale composition framework

Scales are the component of a variable that describes how the

observation is expressed. Scales were composed of units in the

International System of Units (SI) with their associated official

abbreviations. Scales were cross referenced to the Units of

measurement Ontology (Gkoutos et al., 2012) or other ontologies

such as PO and AGRO when applicable. Units with a ‘m’ prefix were
included even though they are not a part of the ASCII standard
Frontiers in Plant Science 0512
character set, however, ‘u’ may be used in place of ‘m’ when
convenient. Scales were specified as either a Date, Duration,

Nominal, Numerical, Ordinal, Text, or Code Scale class.
2.6 Variable composition framework

Variables are the breeder’s or agronomist’s observations or

measurements. The CO model defines a Variable as a unique

combination of a Trait, Method, and Scale (Variable = Trait +

Method + Scale), which allows for standardized data collection,

storage, and sharing. Variable labels are human readable: they are

composed of a Trait name followed by an associated Method class

abbreviation, and a Scale enclosed in square brackets (e.g., Seed

length msr [mm]); and used in scientific discussions and

publications. Variable abbreviations, also referred to as names in

the CO guidelines, are composed of {Trait abbreviation}_{Method

abbreviation}_{Scale abbreviation} with no further modifications,

(e.g., ‘SdL_Lmsr_mm’); and used as unique IDs in databases,

analyses, and phenotyping applications. A detailed schematic of

Variable composition is shown in Figure 2.
3 Populating the sainfoin ontology

3.1 Gathering a broad target list and
shortlist of most used traits

Despite limited interest in sainfoin in the research community,

a wealth of research targeting various aspects of the crop has been
FIGURE 1

Schematic representation of the Method development for the Sainfoin Crop Ontology.
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published in different languages. In addition to forage yield and

quality traits, adaptability, resistance to biotic and abiotic stress

factors, biochemical, physiological, morphological and phenological

traits have been investigated. Research targeting cytogenetic,

morphological, and molecular aspects along with taxonomic

status of sainfoin and allied taxa have also been investigated and

reported (Aktoklu, 1995; Hayot Carbonero et al., 2011; Kempf et al.,

2017; Şakiroğlu, 2021).

We performed an in-depth literature review in the languages

accessible to our consortium (English and Turkish) to develop a

comprehensive list of Variables that have been previously measured

and reported in sainfoin. The process of determining which of these

variables to include, and the specific Trait, Method, and Scale terms

to use, required many discussions, compromises, and decisions that

spanned multiple months. The terms we included reflect the traits,

methods, and scales currently being used in breeding and research

programs led by the authors of this manuscript. In some instances,

multiple variables are included for the same trait reflecting the

differences in methods or scales used within the consortium. We

selected 76 sainfoin Variables to include in sainfoin CO v1, of which

the majority are from the agronomic, morphological, quality, and

phenological trait classes (Table 2). We observed many traits from

other classes (e.g. abiotic stress and biotic stress) during our

literature review, but did not incorporate them into Variables in

the first version of the sainfoin CO. We have included a list of 79

Traits that could be added to the sainfoin CO in the future as our

community’s expertise or interest in these other trait classes

expands (Supplementary Table 1).
3.2 Adding quality traits relevant to sainfoin
as a perennial grain crop

Developing sainfoin as a new perennial pulse will require

measuring new traits that are typically relevant only to cereal and
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grain legume crops. We reviewed the ontologies for several grain

crops, including wheat, barley, oat, and common bean, that are

available on the CO platform, and we compiled a list of 258

Variables from multiple trait classes that have not been previously

measured in sainfoin but might be applicable to sainfoin breeding as

a perennial pulse crop (Supplemental Table 2). While cereals

provide a broad frame for grain related traits, common bean

traits are particularly relevant, serving as a source of legume

specific traits.

A comprehensive understanding of the chemical composition

and nutritional quality of sainfoin seeds is needed to determine the

safety of this new food source and the nutritional value of sainfoin

as a novel pulse crop. Some of these quality traits, such as crude

protein, dietary fiber, and phytic acid content, were recently

measured in sainfoin for the first time (Craine et al., 2023).

Compared to other pulses, depodded sainfoin seeds have higher

protein content, as reported by Baldinger et al. (2016) (38.8%),

Woodman and Evans (1947) (36.6%), Craine et al. (2023) (38.78%),

and Ditterline (1973) (36.0%), and comparable iron and zinc

content, as reported by Craine et al. (2023) (Fe, 56.25 - 74.24

ppm; Zn, 54.78 - 79.05 ppm), each of which plays a vital role in

human health.

Of the many potential “grain” related traits, we chose to create

only 8 Variables related to seed quality in the initial sainfoin CO,

which were recently profiled in a study evaluating sainfoin seed

attributes (Craine et al., 2023). Creating Variables and appropriate

terms for these eight seed quality Traits, namely, protein, crude

fat, carbohydrates, total starch, dietary fiber, iron, zinc, and phytic

acid content, was simplified by their common use across many

crop species (Table 3). These quality Traits are measured using

methods approved by the Association of Official Agricultural

Chemists (AOAC) and/or American Association of Cereal

Chemists (AACC), and the appropriate AOAC and AACC

method codes are referenced in the related Method description

in the sainfoin CO.
FIGURE 2

Schematic representation of Variable term composition in the Sainfoin Crop Ontology. In this example, the Variable ‘Canopy height msr [cm]’ is used
to demonstrate how complex ontology terms are constructed of simpler terms and how the term identification number system functions. For each
term type, (Variable, Trait, Method, and Scale) the PUID, term label and abbreviations are listed in order.
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4 Future perspectives

4.1 Guidelines for contributing to the
sainfoin ontology

The sainfoin CO represents a necessary step towards making

sainfoin research accessible and discernable to an international

community of researchers. However, the sainfoin CO is far from

complete. Sainfoin has tolerance to various biotic and abiotic

stresses, and traits related to sainfoin drought and salinity

tolerance would be of immense importance in agriculture

(Heinrichs, 1972; Juan, 1982; Morrill et al., 1998; Meyer and

Badaruddin, 2001; Irani et al., 2015; Kölliker et al., 2017). We

encourage researchers with expertise and experience in areas not

represented in the current sainfoin CO to contribute to expanding

its scope and utility in the future.

Researchers can suggest and submit new sainfoin ontology

terms (I.e., Variables, Traits, Methods, or Scales) through https://

trait-requests.planteome.org/or a GitHub issues template form.

Extant terms can be updated with sufficient rationale, or term

synonyms can be suggested where two competing names are

commonly used to describe that term. Any new terms should

meet the baseline guidelines laid forth in the official CO

Guidelines v2.1, and conform to the additional requirements and

constraints set forth above. Such a system will aid in constructing a

more helpful ontology. Two curators (English and Turkish native

speakers) are actively maintaining and improving the sainfoin CO.

The curators are notified upon any new term submission, and

follow-up discussions about the term are handled through

GitHub issues.
4.2 The roles of crop ontologies in
developing new sustainable crops and
cropping systems

In this manuscript, we share our experiences in building the

sainfoin CO in hopes that we can continue improving research
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infrastructure for the international sainfoin community and to

provide a template for future crop ontology development for

other perennial grains, forages or minor pulse crops. There is

global recognition for the growing need for agroecosystem

sustainability and resilience to climate change (FAO (Food and

Nations), A. O. of the United Nations, 2018; Tittonell, 2020).

Sainfoin, as both a perennial pulse and perennial forage, has the

potential to contribute towards these goals internationally; however,

many other new and underutilized crops will be needed in various

contexts. We expect that data infrastructure, such as the sainfoin

CO presented herein, combined with technology to collect multi-

dimensional data at scales and rates higher than ever before, will

allow researchers from multiple languages and research disciplines

to collaborate effectively to make rapid progress towards

domesticating new perennial grains, developing new sustainable

cropping systems, and preparing agriculture internationally for

climate challenges in the future.
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TABLE 3 Variables from Craine et al. (2023) that are included in the Sainfoin Crop Ontology V1.

Variable Trait Method Scale

Name Class Protocol Class Name Class

Seed protein content msr [DMB*] Seed crude protein Quality AACC 46-30.01 Measurement g/100g Numerical

Seed crude fat content msr [DMB] Seed crude fat content Quality AACC 30-25.01 (ETHER EXTRACTION) Measurement g/100g Numerical

Seed carbohydrate content cmp [DMB] Seed carbohydrates Quality 100 - (ASH + MOISTURE + FAT + PROTEIṄ) Computation g/100g Numerical

Seed total starch content msr [DMB] Seed total starch content Quality AOAC 996.11 Measurement g/100g Numerical

Seed dietary fiber content msr [DMB] Seed dietary fiber content Quality AACC 32-07.01/AOAC 991.43 Measurement g/100g Numerical

Seed iron content msr [DMB] Seed iron content Quality AACC 40-70.01 Measurement ppm Numerical

Seed zinc content msr [DMB] Seed zinc content Quality AACC 40-70.01 Measurement ppm Numerical

Seed phytic acid content msr [DMB] Seed phytic acid content Quality HPLC RI Measurement mg Numerical
fro
*DMB, Dry matter basis.
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3College of Agriculture, Guizhou University, Guiyang, China, 4Key Lab Forest Ecology Tibet Plateau,
Ministry Education, Tibet Agriculture & Animal Husbandry University, Nyingchi, China
Sophoramoorcroftiana is a leguminous plant endemic to theQinghai-Tibet Plateau.

It has excellent abiotic stress tolerance and is considered an ideal species for local

ecological restoration. However, the lack of genetic diversity in the seed traits of S.

moorcroftiana hinders its conservation and utilization on the plateau. Therefore, in

this study, genotypic variation and phenotypic correlations were estimated for nine

seed traits among 15 accessions of S. moorcroftiana over two years, 2014 and 2019,

respectively from 15 sample points. All traits evaluated showed significant (P< 0.05)

genotypic variation. In 2014, accession mean repeatability was high for seed

perimeter, length, width, and thickness, and 100-seed weight. In 2019, mean

repeatability for seed perimeter and thickness, and 100-seed weight were high.

The estimates of mean repeatability for seed traits across the two years ranged from

0.382 for seed length to 0.781 for seed thickness. Pattern analysis showed that 100-

seed weight was significantly positively correlated with traits such as seed perimeter,

length, width, and thickness, and identified populations with breeding pool potential.

In the biplot, principal components 1 and 2 explained 55.22% and 26.72% of the total

variation in seed traits, respectively. These accessions could produce breeding

populations for recurrent selection to develop S. moorcroftiana varieties suitable

for restoring the fragile ecological environment of the Qinghai-Tibet Plateau.

KEYWORDS

Sophora moorcroftiana , seed traits, genotypic variation, image analysis,
digital technologies
1 Introduction

The Qinghai-Tibet Plateau, with an average altitude of more than 4,000 m above sea

level (m a.s.l.), is called the “Roof of the World” or the “Third-Pole on Earth” (Chen et al.,

2020). The area is approximately 2.5 million km2, accounting for a fourth of China’s total

territorial land (Dong et al., 2020; Shi et al., 2021). Owing to its characteristics of high
frontiersin.org0117

https://www.frontiersin.org/articles/10.3389/fpls.2023.1185393/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1185393/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1185393/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1185393/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1185393&domain=pdf&date_stamp=2023-05-29
mailto:lihuiesh@126.com
https://doi.org/10.3389/fpls.2023.1185393
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1185393
https://www.frontiersin.org/journals/plant-science


Dong et al. 10.3389/fpls.2023.1185393
terrain and low oxygen, the unique biological resources of the

Qinghai-Tibet Plateau play a vital role in global biodiversity (Tao

et al., 2020). At the same time, although different terrain and

topography create a large number of diverse habitats for plants,

the ecosystem in this region is fragile, and the vegetation is

extremely sensitive to global climate change (Chen et al., 2020;

Deng et al., 2020).

Sophora moorcroftiana (Benth.) Baker, is a perennial deciduous

dwarf shrub of the legume family endemic to the Qinghai-Tibet

Plateau. It has strong ecological adaptability, such as drought

resistance, barren tolerance, and wind and sand resistance. It is

mainly distributed in the valleys and hillsides of the Yarlung Zangbo

River Basin at an altitude of 2,800–4,500 m above sea level (m a.s.l.)

and is a dominant pioneer plant among drought-tolerant shrubs

(Liu et al., 2020) and the preferred tree species for ecological

restoration in the plateau. Further, low-polarity compounds

contained in the seeds, such as matrine and sophocarpine, can be

used to treat Echinococcus granulosus infections (Luo et al., 2018).

Seeds provide plants with an evolutionary advantage that allows

them to survive and develop in drier places/times, store energy and

nutrients to support initial development and growth, increase

offspring fitness, and allow colonization and survival in adverse

environments (Niklas et al., 2008; Lamont and Groom, 2013;

Saatkamp et al., 2019). A range of seed morphological

characteristics (e.g., seed size and epidermal characteristics) and

physiological traits can coordinate the timing of seed germination

under conditions suitable for seedling establishment (Saatkamp et al.,

2019). In addition, both seed shape and size traits are useful for

analyzing plant biodiversity and can be used to characterize intra-

and inter-species variation as well as genotypic discrimination, and

their correlation information is important for breeding, targeting seed

yield and quality (Cervantes et al., 2016; Saatkamp et al., 2019;

Khamassi et al., 2021). For example, seed mass has been identified

as a key plant fitness-related trait, with larger seeds conferring

advantages to plants in properties such as drought tolerance during

seedling establishment, compared to small-seeded plants (Cochrane

et al., 2015). This trait may reflect a trade-off for plants to develop

short-term reductions in reproductive success (e.g., reduced seed

production) with reduced long-term risk (Venable, 2007).

Compared to other plant organs such as flowers and leaves,

using seed traits to characterize the genetic diversity of species has

certain advantages because seeds are relatively easier to collect and

store (Grillo et al., 2010). Pinna et al. (2014) used seed morphology

parameters to analyze the interspecific, specific, and intraspecific

levels of 10 Juniperus populations collected from the

Mediterranean. Khamassi et al. (2021) characterized and

evaluated the seed morphology of 24 local faba bean (Vicia faba)

accessions and found that accessions with a white hilum were

associated with lower mature grain content. Bacchetta et al.

(2008) measured seed morphological characteristics for 220

accessions in the Sardinian Germplasm Bank using digital image

analysis techniques and concluded that the method could be used to

identify very similar taxa in these species with an accuracy of

83.7%–100%. At present, the precise quantification of seed

morphological characteristics is facilitated by the development
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and use of digital techniques, quantification, and modeling

methods (Cervantes et al., 2016).

Therefore, in this study, the variation in seed morphological

characteristics of 15 S. moorcroftiana populations collected from

different locations on the Qinghai-Tibet Plateau was studied using

digital image analysis techniques. Our research focused on

estimating the genetic variation within and among populations.

In addition, a combination of potentially beneficial seed traits has

been evaluated in breeding programs. This study aimed to provide

data support for the genetic diversity and taxonomy of S.

moorcroftiana, and to provide valuable parameters and

information for the selection and breeding of strong adaptability

S. moorcroftiana varieties.
2 Materials and methods

2.1 Germplasm

The seed resources of 15 accessions were evaluated in this study.

S. moorcroftiana seeds were collected at 15 sampling points during

October 1–7, 2014, and October 1–7, 2019 (Figure 1). The collected

seeds were dried to a moisture content of 6%–8% and stored at 4°C

and 30%–50% relative humidity. The climate data of the sampling

points are provided by the meteorological data center of the China

meteorological administration.
2.2 Trait measurements

Nine seed traits were measured: SL, seed length (mm); SW, seed

width (mm); W/L, seed width to seed length ratio; HL, hilum length

(mm); HW, hilum width (mm); HW/HL, hilum width to hilum

length ratio; Pe, perimeter (mm); ST, seed thickness (mm) and SY,

100-seed weight (g). 100 seeds were manually counted. Use an

electronic balance (Sartorius, BSA224S-CW, China) for weighing.

Before trait measurements, a flatbed scanner (EPSON GT-15000)

was used to obtain digital images of the seed samples. During the

scan, the seeds were allowed to equilibrate before measurement

(room temperature was maintained at 20 ± 3°C and 40 ± 5% relative

humidity) (Grillo et al., 2010). The scanned image resolution was

200 dpi, and the number of pixels was 1024 × 1024.

Three replicates were scanned for each population and each

replicate included 100 seeds. Seed samples were prepared and

scanned according to methods described by Venora et al. (2007);

Bacchetta et al. (2008), and Dong et al. (2016). A WinSEEDLE 2011

image analysis system was used to process the acquired images

(Dong et al., 2016).
2.3 Data analysis

Data analysis was based on (1) variance component analysis to

assess the magnitude and significance of genotypic variation

between populations and (2) pattern analysis, including a
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combination of clustering and principal component analysis (PCA)

(Dong et al., 2016; Dong et al., 2019) to provide a graphical

summary of the multi-trait data matrices.

Data on seed traits from 15 S. moorcroftiana population

accessions were analyzed within and over two years (2014 and

2019). The analyses were conducted using the variance component

analysis procedure, residual maximum likelihood (REML), in

GenStat 7.1 (2003) (Dong et al., 2019). Analysis of data over the

years was performed using a mixed linear model (Dong et al., 2019).

All seed trait means were derived from the best linear unbiased

predictor (BLUP) analysis (White and Hodge 1989; Dong et al.,

2019). These BLUP values were used to build a population × trait

mean matrix adjusted for population × year interaction effects.

Referring to Fehr (1987) method, the estimated genotypic (s 2
 g),

genotype × year interaction (s 2
 g), experimental error (s 2

 e ), nl

(number of years), and nr (number of replications) obtained from

REML analysis were used to estimate the population accession

mean repeatability (R).

Accession mean repeatability within a single year:

R1 =
s  2
g

s  2
g + s  2

e
nr

(1)

Accession mean repeatability across years:

R2 =
s  2
g

s  2
g +

s  2
gl

nl
+ s  2

e
nlnr

(2)

Phenotypic correlation (rp) analysis was performed using

GenStat 7.1 (2003), and multivariate analysis of variance

(MANOVA) was used to assess accessions for 15 populations

over two years, resulting in the sum of the estimated cross-

products of the multi-trait data matrix.
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Pattern analysis is a combination of cluster analysis and

principal component analysis (PCA): a) based on the variance

components over the two years 2014 and 2019 to obtain an

adjusted mean matrix of genotype × trait BLUP and finally obtain

a graphical summary of accession traits for eight populations; and

b) to analyze the type of association (positive or negative) among

the nine seed traits in 2014 and 2019.
3 Results

3.1 Genotypic variance components and
the mean repeatability of nine seed traits
of S. moorcroftiana

The genotypic variance components of the nine seed traits in

2014 and 2019 showed significant differences (P< 0.05) for all the

traits evaluated in the 15 S. moorcroftiana accessions (Tables 1, 2).

In 2014, accession mean repeatability (R1) was high for seed

perimeter, length, width, and thickness, and 100-seed weight,

ranging from 0.933 to 0.992 (Table 1; Supplementary Figure 1A).

The R1 values for the hilum length, width, and hilum length/width

ratio were intermediate, ranging from 0.633 to 0.697. R1 for seed

width/seed length was the lowest at 0.058. In 2019, R1 for seed

perimeter and thickness, and 100-seed weight were high, ranging

from 0.846 to 0.991 (Table 2; Supplementary Figure 1B). R1 for seed

length, hilum length and width, and hilum length/width ratio were

intermediate, ranging from 0.604 to 0.767. R1 values for seed width

and seed width/length ratio were lower than those of the other traits

(0.489 and 0.054, respectively).

Analysis of variance for over two years, 2014 and 2019, showed

significant genotypic variation (P< 0.05) among the 15 S.
FIGURE 1

The distribution of 15 S. moorcroftiana accessions used in this study. The red dots represent the sampling points. LZX, Lin zhi; NML, Nan mu lin; GG,
Gong ga; RB, Ren bu; JC, Jia cha; LS, La sa; JD, Jin dong; BL, Bai lang; XTM, Xie tong men; DG, Dong ga; SJ, Sa jia; NM, Ni mu; SR, Sang ri; MR, Mi
rui; LZ, Lin zhou.
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moorcroftiana accessions for nine seed traits (Table 3). The mean

repeatability (R2) of hilum length/width and seed thickness was

higher than that of the other traits (0.757 and 0.781, respectively).

The R2 values for the hilum length and width, and 100-seed weight

were intermediate at 0.597, 0.643, and 0.626, respectively. R2 for

seed perimeter, length, width, and width/length ratio were lower

than those for the other traits, ranging from 0.097 to 0.493.
3.2 Pattern analysis and phenotypic
correlation of S. moorcroftiana

In 2014, based on phenotypic correlation analysis, there was a

positive correlation between 100-seed weight and seed perimeter,
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length, width, and thickness (Table 4). Seed perimeter, length, and

width also exhibited strong positive correlations at the phenotypic

level. In the biplot, principal components 1 and 2 explained 53.88%

and 24.26% of the total variation in seed traits, respectively

(Figure 2). The BLUP mean matrix of nine seed traits was used

for the cluster analysis grouping of 15 S. moorcroftiana accessions in

2014, truncated at the group three level. According to the trait

means for each group, Group 1 had the highest mean seed

perimeter, length, width, and width/length ratio, hilum length,

width, and length/width ratio, and 100-seed weight and included

two accessions (Supplementary Table 1).

In 2019, the phenotypic correlation analysis showed that 100-

seed weight, seed perimeter, length, width, and thickness showed

strong positive correlations at the phenotypic level (Table 5). In the
FIGURE 2

Biplot generated using standardized Best Linear Unbiased Predictor values for nine seed traits measured from 15 S. moorcroftiana accessions,
evaluated in 2014. Components I and II account for 53.88% and 24.26% of total variation, respectively. The different symbols indicate progeny
Groups 1 to 3 generated from cluster analysis.
TABLE 1 Average, maximum, minimum, least significant differences (l.s.d.0.05), estimated genotypic (s 2
g ) and experimental error (s 2

e ) variance

components and associated standard errors ( ± SE), and mean repeatability (R1) estimated from the 15 S. moorcroftiana accessions, evaluated in 2014.

Traits Perimeter Seed
Length

Seed
Width

Seed width/
Seed Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

100-seed
weight

Average 14.661 4.453 4.405 0.990 1.790 1.295 0.725 3.594 0.791

Min 13.626 4.157 4.066 0.951 1.612 1.171 0.683 3.305 0.553

Max 15.262 4.644 4.611 1.023 1.918 1.516 0.797 3.711 0.900

l.s.d.0.05 0.491* 0.157* 0.143* 0.044* 0.117* 0.093* 0.040* 0.107* 0.064*

s2g
0.211 ±
0.091

0.016 ±
0.007

0.016 ±
0.007

0.001 ± 0.001
0.004 ±
0.002

0.133 ±
0.359

0.141 ± 0.097
0.010 ±
0.004

0.009 ± 0.004

s 2
 e

0.086 ±
0.023

0.007 ±
0.002

0.008 ±
0.002

0.007 ± 0.002
0.005 ±
0.001

0.152 ±
0.549

0.186 ± 0.016
0.004 ±
0.001

0.001 ± 0.003

R1 0.948 0.939 0.933 0.058 0.688 0.697 0.633 0.949 0.992
* indicates significance at P< 0.05.
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biplot, principal component 1 explained 70.74% of the total seed

trait variation and principal component two explained 15.39%

(Figure 3). The 15 S. moorcroftiana accession groups generated

from the cluster analysis were truncated at the two-group level. The

results showed that the second group had a higher seed perimeter,

length, width, thickness and width/length ratio, hilum length, and

100-seed weight (Supplementary Table 2).

In 2014 and 2019, based on the phenotypic correlation analysis,

100-seed weight showed a strong positive correlation with seed

perimeter, length, width, and thickness at the phenotypic level and a

strong negative correlation with hilum length/width ratio (Table 6).

In the biplot, principal components 1 and 2 explained 55.22% and

26.72% of the total variation in seed traits, respectively (Figure 4).

The 15 S. moorcroftiana accession groups generated from the

cluster analysis were truncated at the three-group level. The third

group of accessions had higher seed perimeter, seed length, width,

width/length ratio, thickness, and 100-seed weight, including five

accessions (Supplementary Table 3). Furthermore, in 2014 and
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2019, the seed traits perimeter, hilum length/width ratio, seed

thickness, and 100-seed weight were all significantly correlated

with altitude, and hilum length/width ratio, seed thickness, and

100-seed were significantly correlated with the monthly average

maximum temperature, monthly average minimum temperature,

and monthly average temperature during the growing season

(Supplementary Figure 2).
4 Discussion

Numerous studies have shown that structural diversity in seed

traits helps characterize both intra- and inter-species variation.

Therefore, the study of macro- and micro-seed traits is important

in quantifying genetic diversity and plant taxonomy (Barthlott,

1981; Grillo et al., 2010).

Previous studies on S. moorcroftiana have mainly focused on its

population distribution (Liu et al., 2020; Xin et al., 2021; Yang et al.,
TABLE 3 Average, maximum, minimum, least significant differences (l.s.d.0.05), estimated genotypic (s 2
g ), genotype × year interaction (s 2

gy) and

experimental error (s 2
e ) variance components and associated standard errors ( ± SE), and mean repeatability (R2) estimated from the 15 S.

moorcroftiana accessions, evaluated across two years, 2014 and 2019.

Traits Perimeter Seed
Length

Seed
Width

Seed width/
Seed Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

100-seed
weight

Average 14.778 4.522 4.470 0.989 1.782 1.297 0.729 3.652 0.830

Min 13.626 4.157 4.066 0.951 1.612 1.171 0.683 3.305 0.548

Max 15.340 4.706 4.720 1.023 1.918 1.516 0.806 3.846 0.995

l.s.d.0.05 0.551* 0.182* 0.181* 0.025* 0.108* 0.083* 0.035* 0.136* 0.134*

s2g
0.055 ±
0.017

0.043 ±
0.006

0.072 ±
0.005

0.068 ± 0.000
0.180 ±
0.002

0.260 ±
0.221

0.016 ± 0.062
0.058 ±
0.001

0.099 ± 0.006

s 2
 e

0.154 ±
0.054

0.016 ±
0.006

0.111 ±
0.004

0.042 ± 0.001
0.080 ±
0.003

0.450 ±
0.142

0.382 ± 0.135
0.004 ±
0.001

0.003 ± 0.001

s2
gy

0.005 ±
0.001

0.005 ±
0.002

0.008 ±
0.003

0.046 ± 0.001
0.052 ±
0.004

0.069 ±
0.030

0.003 ± 0.080
0.004 ±
0.003

0.015 ± 0.009

R2 0.441 0.382 0.493 0.097 0.597 0.643 0.757 0.781 0.626
* indicates significance at P< 0.05.
TABLE 2 Average, maximum, minimum, least significant differences (l.s.d.0.05), estimated genotypic (s 2
g ) and experimental error (s 2

e ) variance

components and associated standard errors ( ± SE), and mean repeatability (R1) estimated from the 15 S. moorcroftiana accessions, evaluated in 2019.

Traits Perimeter Seed
Length

Seed
Width

Seed width/
Seed Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

100-seed
weight

Average 14.959 4.592 4.554 0.992 1.773 1.307 0.738 3.730 0.876

Min 14.427 4.453 4.379 0.978 1.695 1.242 0.704 3.561 0.548

Max 15.340 4.706 4.720 1.010 1.856 1.368 0.806 3.846 0.995

l.s.d.0.05 0.851* 0.263* 0.214* 0.034* 0.110* 0.070* 0.045* 0.113* 0.094*

s2g
0.327 ±
0.068

0.018 ±
0.006

0.009 ±
0.008

0.008 ± 0.001
0.002 ±
0.002

0.001 ±
0.001

0.007 ± 0.001
0.007 ±
0.005

0.020 ± 0.011

s 2
 e

0.242 ±
0.092

0.023 ±
0.009

0.017 ±
0.006

0.059 ± 0.001
0.003 ±
0.001

0.002 ±
0.001

0.007 ± 0.002
0.004 ±
0.002

0.003 ± 0.001

R1 0.846 0.648 0.489 0.054 0.604 0.715 0.767 0.890 0.991
* indicates significance at P< 0.05.
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2021), soil seed banks (Zhao et al., 2007), medicinal functions

(Wang et al., 2014; Luo et al., 2018), analysis of transcriptome (Li

et al., 2015) and verification of gene functions (Li et al., 2017). In

this study, we report, for the first time, the phenotypic and

genotypic variations in nine seed traits and the mean repeatability

of 15 accessions of S. moorcroftiana.

In nature, plants growing in various environments have evolved

adaptive traits related to seed morphology and physiology to cope

with adverse environments, such as variability in seed size, seed

dormancy characteristics, and a special structure that maintains the

reproduction and spread of the population (Venable and Brown,

1988; Luzuriaga et al., 2006). These seed traits are mainly

determined by the seed genotype and parental environment

(Schmitt et al., 1992). At the same time, parental effects also

include the result of the interaction of genotype and maternal

environment. The influence of parents on offspring is partly

determined by genes; therefore, they are evolvable (Lacey, 1998).

In the present study, seed perimeter, seed thickness, and 100-seed

weight all had high R1 values in a single year, whereas hilum length/

hilum width and seed thickness had high R2 values across years.
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The relatively high genotypic variation in these traits indicated

potential genetic variation among the 15 S. moorcroftiana

accessions that could be used for selection and breeding (Dong

et al., 2019). Furthermore, these seed trait variation reflects the

result of genetic variation and phenotypic plasticity in response to

environmental variation (Wang et al., 2023). This information helps

to understand the response mechanism and variation rules of plants

to the environment, which is important for the collection,

preservation and evaluation of germplasm resources.

The size and weight of seeds produced by different plant species

vary widely. A previous study found that seed size showed different

characteristics during the growth and development of plant

offspring (Moles et al., 2005). Small-seeded plant species can

produce more seeds than large-seeded plant species for a given

amount of energy. However, seedlings of large-seeded plant species

are more resilient to biotic and abiotic stresses during their

establishment. Small-seeded plant species adopt another strategy

for winning by quantity: producing as many offspring as possible to

ensure their survival. This suggests that traits such as seed size and

weight of different species grown in a specific environment can have
TABLE 5 Phenotypic (rp) correlation coefficients, between traits based on the 15 S. moorcroftiana accessions, evaluated in 2019.

Traits Perimeter Seed
Length

Seed
Width

Seed width/Seed
Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

Seed Length 0.865**

Seed Width 0.811** 0.658**

Seed width/Seed
Length

-0.068 -0.419** 0.408**

Hilum length 0.227 0.266 0.301* 0.040

Hilum width 0.014 0.025 0.131 0.126 0.252

Hilum width/
Hilum length

0.005 0.014 0.117 0.122 0.205 0.998**

Seed thickness 0.622** 0.641** 0.636** -0.006 0.377* 0.012 -0.012

100-seed weigh 0.710** 0.793** 0.747** -0.058 0.313* 0.062 0.047 0.762**
*, ** indicates significant at P< 0.05 and P< 0.01 levels, respectively.
TABLE 4 Phenotypic (rp) correlation coefficients, between traits based on the 15 S. moorcroftiana accessions, evaluated in 2014.

Traits Perimeter Seed
Length

Seed
Width

Seed width/Seed
Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

Seed Length 0.947**

Seed Width 0.846** 0.825**

Seed width/Seed
Length

-0.220 -0.346* 0.245

Hilum length 0.384** 0.388** 0.382** -0.033

Hilum width 0.017 -0.010 0.014 0.038 0.133

Hilum width/
Hilum length

-0.006 -0.033 -0.010 0.040 0.072 0.998**

Seed thickness 0.680** 0.725** 0.755** 0.009 0.288* -0.176 -0.195

100-seed weigh 0.668** 0.728** 0.764** 0.024 0.424** -0.011 -0.038 0.833**
*, ** indicates significant at P< 0.05 and P< 0.01 levels, respectively.
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a major impact on seedling establishment and survival (Dong et al.,

2016). Therefore, information on the genetic variation in key seed-

size traits in breeding materials will facilitate the execution of

various developmental programs (Odiaka, 2005). In this study,

the ranges of seed perimeter, seed thickness, and 100-seed weight

reflecting seed size and quality were 13.626–15.262 mm, 3.305–

3.711 mm, and 0.553–0.900 g in 2014 and 14.427–15.340 mm,

3.561–3.846 mm, and 0.548–0.995 g in 2019, respectively; the R1 of

these traits was higher than 0.8, and the R2 of seed thickness and

100-seed weight were higher than 0.6. This suggests that these traits

are mainly affected by the genotype and can provide valuable

information for S. moorcroftiana breeding. In addition, seed

thickness, length, width, and perimeter, and 100-seed weight
Frontiers in Plant Science 0723
showed extremely significant positive correlations between the

two years, indicating that changes in any trait may significantly

affect seed weight. This result indicated that these traits were mainly

determined by seed genotype and that changes in either trait could

significantly affect seed weight. This positive correlation has

important commercial and practical implications for breeding

programs (Amiri et al., 2010; Dong et al., 2019). At the same

time, variability in seed size affects seed dispersal in a variety of

ways. Because smaller seeds are usually dispersed further by abiotic

factors such as water and wind. This is closely related to the external

environment such as the altitude, slope, temperature and rainfall of

the population (Liao et al., 2020; Yang et al., 2021). This was also

supported by the correlations between seed traits and altitude and
TABLE 6 Phenotypic (rp) correlation coefficients, between traits based on the 15 S. moorcroftiana accessions, evaluated across two years, 2014 and 2019.

Traits Perimeter Seed
Length

Seed
Width

Seed width/Seed
Length

Hilum
length

Hilum
width

Hilum width/
Hilum length

Seed
thickness

Seed Length 0.954**

Seed Width 0.907** 0.834**

Seed width/Seed
Length

-0.081 -0.286 0.289

Hilum length 0.466* 0.434* 0.467* 0.058

Hilum width -0.053 -0.079 -0.215 -0.242 0.299

Hilum width/
Hilum length

-0.443* -0.436* -0.582** -0.259 -0.610** 0.572**

Seed thickness 0.599** 0.584** 0.755** 0.303 0.312 -0.554** -0.735**

100-seed weigh 0.562** 0.569** 0.717** 0.266 0.452* -0.520** -0.832** 0.859**
*, ** indicates significant at P< 0.05 and P< 0.01 levels, respectively.
FIGURE 3

Biplot generated using standardized Best Linear Unbiased Predictor values for nine seed traits measured from 15 S. moorcroftiana accessions,
evaluated in 2019. Components I and II account for 70.74% and 15.39% of total variation, respectively. The different symbols indicate progeny
Groups 1 and 2 generated from cluster analysis.
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temperature in this study. This phenomenon has important

implications for individual reproductive success, community

structure, and biodiversity patterns of plants (Snell et al., 2019).

In previous studies, pattern analysis has been successfully used

to analyze nine environmental and nine genotype trait data matrices

(Jahufer et al., 1997; Zhang et al., 2006; Luo et al., 2016). Jahufer

et al. (1997) used pattern analysis to analyze 439 white clover

germplasm resources and screened out germplasm populations

characterized by large leaves, tall plants, and thick stolons, which

could be used to develop varieties that can tolerate summer drought

stress environments. Dong et al. (2019) analyzed the genotypic and

phenotypic variation of 18 traits of 418 common vetch germplasms

based on pattern analysis and obtained germplasm populations

with low shattering rates, high seed yields, and high plant dry

weights, which can be used for common vetch breeding programs

with high seed yield and high dry plant weight. Similarly, in this

study, we obtained germplasm populations with higher seed sizes

and 100-seed weights using pattern analysis. These accessions could

be used in S. moorcroftiana breeding programs with high seedling

establishment success rates to adapt to the harsh natural conditions

of the Qinghai-Tibet Plateau.

Seed size, shape, and epidermal surface characteristics of plants

play important roles in plant morphological diversity, and these

seed morphological characteristics can provide data for taxa at

different taxonomic levels (Ocampo et al., 2014). In addition, the

seed characteristics of plants are different from their floral features,

which are generally considered to be more conserved and thus can

provide valuable information on the evolutionary history of

flowering plants (Barthlott, 1981). Becquer et al. (2014) studied

seed shape and size, raphe shape and size, and seed coat surface

morphology data of 47 Compositae species from the Antilles,
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providing information for phylogenetic reconstruction and trait

evolution analysis. In this study, the genotypic variation in different

seed traits of each accession was significantly different (P < 0.05),

which may help to investigate their taxonomic relationships.

Analysis of the seed morphological characteristics of S.

moorcroftiana showed that the JC, JD, SR, and BL accessions

were significantly different (P < 0.05) from the GG, RB, NML,

XTM, NM, DG, and SJ accessions, which could be divided into

two groups. Our study shows that these heterogeneous seed traits

can provide valuable information on the evolutionary relationship

of S. moorcroftiana, and the seed morphology database has the

potential for taxonomic screening (Dell'Aquila, 2007).

Nondestructive studies based on the plant seed characterization

have proven to be an informative, noninvasive, and suitable tool for

differentiating germplasm resources (Sinkovič et al., 2019). The

results obtained in this study are serving as the useful information

on genetic diversity, plant classification and breeding of S.

moorcroftiana accessions, which could be used for future research

on the evolution, classification and population restoration of

S. moorcroftiana.
5 Conclusion

This study estimated the phenotypic correlation, genotypic

variation, and mean repeatability of nine seed traits in 15 S.

moorcroftiana accessions. Seed perimeter, seed thickness, and

100-seed weight showed high mean repeatability over two years

(2014 and 2019), indicating their potential for genetic

improvement. Pattern analysis showed that the 100-seed weight

was significantly and positively correlated with seed perimeter,
FIGURE 4

Biplot generated using standardized Best Linear Unbiased Predictor values for nine seed traits measured from 15 S. moorcroftiana accessions,
evaluated across two years, 2014 and 2019. Components I and II account for 55.22% and 26.72% of total variation, respectively. The different
symbols indicate progeny Groups 1 to 3 generated from cluster analysis.
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length, width, and thickness. The significant correlation between

these traits provides key information for S. moorcroftiana breeding

programs that focus on developing varieties with high seedling

establishment success rates. This study not only deepens our

understanding of the genetic diversity of S. moorcroftiana seed

morphological traits but also provides important information for

the development of breeding banks.
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scale sugarcane germplasm
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Guanyong He1, Wei Yao1, Muqing Zhang1*

and Jiangfeng Huang1*

1State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key
Laboratory of Sugarcane Biology, Ministry Co-sponsored Collaborative Innovation Center of
Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi
University, Nanning, Guangxi, China, 2Guangxi China-ASEAN Youth Industrial Park, Chongzuo
Agricultural Hi-tech Industry Demo Zone, Chongzuo, Guangxi, China
Sugarcane is a major industrial crop around the world. Lodging due to weak

mechanical strength is one of the main problems leading to huge yield losses in

sugarcane. However, due to the lack of high efficiency phenotyping methods for

stalk mechanical strength characterization, genetic approaches for lodging-

resistant improvement are severely restricted. This study attempted to apply

near-infrared spectroscopy high-throughput assays for the first time to estimate

the crushing strength of sugarcane stalks. A total of 335 sugarcane samples with

huge variation in stalk crushing strength were collected for online NIRS

modeling. A comprehensive analysis demonstrated that the calibration and

validation sets were comparable. By applying a modified partial least squares

method, we obtained high-performance equations that had large coefficients of

determination (R2 > 0.80) and high ratio performance deviations (RPD > 2.4).

Particularly, when the calibration and external validation sets combined for an

integrative modeling, we obtained the final equation with a coefficient of

determination (R2) and ratio performance deviation (RPD) above 0.9 and 3.0,

respectively, demonstrating excellent prediction capacity. Additionally, the

obtained model was applied for characterization of stalk crushing strength in

large-scale sugarcane germplasm. In a three-year study, the genetic

characteristics of stalk crushing strength were found to remain stable, and the

optimal sugarcane genotypes were screened out consistently. In conclusion, this

study offers a feasible option for a high-throughput analysis of sugarcane

mechanical strength, which can be used for the breeding of lodging resistant

sugarcane and beyond.
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sugarcane, lodging resistance, mechanical strength, crushing strength, NIRS
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Introduction

In crops, lodging is one of the major problems that affect growth

and potential yield (Guo et al., 2021). Generally, stalk lodging and

root lodging constitute the two most common forms of lodging

(Zhang et al., 2016). The term root lodging refers to the entire plant

falling to the ground without being bent by the stalk, whereas stalk

lodging refers to the stalk inclines and bends at different angles

(Berry et al., 2003).

As one of the most commonly grown C4-type industrial crops,

sugarcane (Saccharum spp.) is known for its high photosynthesis

efficiency and high yield (Swapna and Kumar, 2017). However, due

to its stalk-harvesting nature, sugarcane faces a much higher risk of

lodging, which results in a huge decrease in yield, as well as

difficulties with mechanical harvesting, increasing the cost of

production (van Heerden et al., 2015). It has been documented

that sugarcane lodging is influenced by the environment and

phenotype, as well as number of canopy leaves, planting depth,

center of gravity height, and stalk hardness (Park et al., 2005; Babu

et al., 2010; van Heerden et al., 2010). Specifically, from the

perspective of genetic bias, mechanical strength appears to be the

most important factor affecting stalk lodging resistance (Xie et al.,

2022). It has been shown that stalk mechanical strength can be used

as an important index to predict lodging risk, and that bending

strength and rind penetrometer resistance (RPR) can reflect stalk

mechanical strength (Zhang et al., 2019). A combination of

crushing strength, rind penetrometer resistance (RPR), and

bending strength has been used to determine the relationship

between stalk mechanical strength and lodging (Stubbs et al.,

2020; Wang et al., 2020; Shao et al., 2021). In a recent study, we

have demonstrated that rind penetrometer resistance (RPR) and

breaking force can be used to determine the mechanical strength of

sugarcane stalks (Shen et al., 2021). However, it is important to

realize that rind penetrometer resistance (RPR) alone cannot

properly reflect stalk lodging resistance because it ignores the

contributions from the stalk’s cross-sectional area and vascular

bundles (Robertson et al., 2016). Particularly, laboratory-based

mechanical phenotyping requires a significant amount of time

and therefore cannot be used for large-scale genetic screening

projects. Hence, it is essential to develop high-throughput assays

for measuring the stalk mechanical strength of sugarcane onto a

global scale.

The near infrared spectroscopy (NIRS) is a very efficient

method that has been widely used for high-throughput determine

various chemical and biochemical structures of agricultural crop

(Washburn et al., 2013). For instances, NIRS has been used for

high-throughput predicting fiber and nutrient content of dryland

cereal cultivars (Brenna and Berardo, 2004; Stubbs et al., 2010),

phenotyping of moisture and amylose content in maize (Wang

et al., 2019; Dong et al., 2021), evaluating the composition of

carbohydrates in soybean (Leite et al., 2020; Singh et al., 2021),

detecting biomass of plant root mixtures (Roumet et al., 2006),

analyzing available P contents in soils to aid fertilization (Patzold

et al., 2020), as well as determining the internal quality and

physiological maturity in the fruit (Cunha et al., 2016; de

Carvalho et al., 2019; Minas et al., 2021). In our previous studies,
Frontiers in Plant Science 0228
the NIRS has been successfully applied for stalk quality

determination (Wang et al., 2021), cell wall features and

lignocellulose digestibility characterization in sugarcane (Li et al.,

2021; Adnan et al., 2022). Notably, in a recent study, we have also

successfully implemented the NIRS for assessing the mechanical

strength of sugarcane stalks by measuring the rind penetrometer

resistance (RPR) and breaking force (Shen et al., 2022).

As a coupled complementary exploration, this study aimed to

establish a set of methods for high-throughput phenotyping of

sugarcane crushing strength. Due to the large number of diverse

sugarcane germplasms collected, a precise online NIRS assay was

developed using chemometric analysis. After three years of testing

in large-scale sugarcane germplasm, the NIRS model exhibited

stable and reliable performance, enabling the optimal germplasm

to be selected. Therefore, this study provided a reliable strategy for

crushing strength determination, which could be integrated with

our previous studies for lodging resistant aimed precision breeding

in sugarcane.
Materials and methods

Experimental site and sugarcane planting

This experiment was conducted at the Fusui experimental field

located at Guangxi University (107° 47′17.66′′ E, 22° 31′ 5.85′′ N),
and the soil type is loam. As a subtropical monsoon climate, there

are 1050 - 1300 mm of precipitation annually, a mean annual

temperature of 21.3 - 22.80°C, and a mean annual sunshine of 1693

hours (data source: http://www.gxcounty.com/pindao/112287/).

We utilized a randomized block design to plant the sugarcane

genotypes at three identical experimental field plots of 5 m row

length, 2 m row spacing, and 0.6 m depth. A total of 860 sugarcane

germplasm collected from all over China were planted in each

planting plot, of which 416 core germplasm samples were selected

for crushing strength characterization in this study. All sugarcane

germplasm were planted in May 2019 with basal fertilizer (organic-

inorganic fertilizer 12-6-7, 750 kg ha-1), tillering fertilizer (NPK 20-

10-10, 300 kg ha-1) and jointing fertilizer (NPK 20-10-10, 1500 kg

ha-1). For the fertilization of ratoon sugarcane, urea (150 kg ha-1)

and KCl (150 kg ha-1) were applied in April and August, and

compound fertilizer (NPK 15-15-15, 1875kg ha-1) was applied in

May. Pest control was not applied throughout the growing period,

but irrigation and weeding were performed as necessary.
Assay of stalk crushing strength in
sugarcane population

An electronic universal testing machine, DNS-20 (Sinotest

Equipment Co., Ltd, China), was used to measure the stalk

crushing strength. For each sugarcane genotype, the 15th

internode was selected to measure stalk crushing strength (kN)

(Shen et al., 2021). In summary, the sugarcane stalk was arranged

horizontally on the stage to permit direct compression of the

internodes by a circular probe of 90 mm diameter. The
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movement of probe consisted of four processes (descent, gap

elimination, compression, lifting). In order to maximize test

efficiency and data accuracy, we set the speed of the four

processes at 500 mm/min, 150 mm/min, 150 mm/min, 500 mm/

min, respectively. The load cell collected force data every 100 ms.

Three biological replicates were performed for each genotype

planted in each experimental field plot. The mechanical data were

recorded and analyzed using the TestExpert software (version 3.2).
Online NIRS data collection

During the maturity period, 383, 368, and 376 genotypes of

sugarcane germplasm were collected from three planting plots in

November 2021 for online NIRS modeling. The online NIRS data

were collected by a well-established method previously described by

Li et al. (2021) with minor modification. Briefly, for each genotype,

three plants were randomly selected, and leaves and young tips were

removed and immediately shredded using DM540 (IRBI Machines

and Equipment Ltd, Brazil). The shredded sugarcane sample was

blended and transmitted via CPS (Cane presentation system,

Bruker Optik GmbH, Germany). The spectral was collected

through MATRIX-F (Bruker Optik GmbH, Germany) online

system. A full scanning mode was used to scan the shredded

samples, with a wavelength range of 4000 to 10000 cm-1 in 4 cm-

1 steps. The absorbance values of the spectra were recorded in log(1/

R), where R is the reflectance of sample. To provide a more

comprehensive analysis, the OPUS software automatically

averaged the online reflectance values obtained. A standard

equipped in Q413 sensor of MATRIX-F was scanned every one

hour for instrument correction.
NIRS pretreatments and modeling

The spectral data were collected and analyzed using the OPUS

software. Before modeling, the samples were randomly divided into

calibration and validation sets in a roughly 4:1 ratio, which was used

for modeling and external validation, respectively. Pretreatment of

spectral data was performed in order to minimize the risk of

physical disturbance. To obtain the optimal spectral region for

modeling, OPUS software used ten spectral pretreatment methods

in combination to divide the NIRS spectrum into multiple sections

(Wang et al., 2021), including constant offset elimination (COE),

straight-line subtraction (SSL), standard normal variate (SNV),

Min-Max normalization (MMN), multivariate scattering

correction (MSC), first derivative (FD), second derivative (SED),

combination of the first derivative and straight-line subtraction (FD

+SSL), standard normal variate (FD+SNV), and multiplicative

scattering correction (FD+MSC). A principal component analysis

(PCA) of the raw spectral data was conducted to determine the

distribution of spectral groups, and outlier samples were excluded

based on GH values (> 3.0). Based on the partial least squares (PLS)

method, the calibration equations were generated by combining the

selected samples with the optimal parameters. A default setting in

OPUS software was used to select the wavelength range. A
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combination in terms of wavelength range selection and spectrum

pretreatment was made to obtain calibration models in PLS analysis

(Li et al., 2021; Adnan et al., 2022). Internal cross-validation and

external validation of the equations were used to evaluate the

performance of the model (Williams and Sobering, 1996). Finally,

the optimal equation was selected based on high coefficient of

determination (R2
c/R

2
cv/R

2
ev), ratio of prediction to deviation

(RPD), and low root mean square error (RMSEC/RMSECV/

RMSEP) f rom ca l ibra t ion/ in terna l c ross -va l ida t ion/

external validation.
Application of the model in sugarcane
population

A total of 336 samples of sugarcane were harvested at

maturation in three years (2019, 2020, and 2021), the NIR spectra

were online collected as described above. Based on our established

model in the year of 2021, the acquired spectral data was analyzed

with the help of the OPUS software to obtain the predicted stalk

crushing strength across these three years. Samples with GH > 3.0

were considered outlier based on principal component analysis.

After excluding all outliers, sugarcane germplasm with high and low

stalk crushing strength was screened out.
Results

Accurate determination of stalk crushing
strength in sugarcane

For a precise and reliable determination of stalk mechanical

strength, the 15th internode of the sugarcane stalk was selected to

determine crushing strength at maturity. In detail, the selected

internode was placed horizontally in the middle of the stage and

compressed by a probe with a threshold force of 4 kN (Figure 1A).

As illustrated in Figure 1B, when a certain amount of pressure is

applied to the cane stem, cracks begin to appear along its axis. The

internodes ruptured when a continuous compressive force was

applied to the internodes up to the threshold, causing irreversible

morphological changes (Figure 1C). In the course of this process,

TestExpert software generated a compression force curve with

multiple peaks (Figure 1D). Remarkably, the curve showed three

compressive states (elasticity, yield, compaction strengthening)

(Sun et al., 2022). For the purpose of verifying the reliability of

each peak, ten randomly selected sugarcane samples were tested for

compressive force. A similar fluctuating change in the compressive

force between the same samples was observed (Figure S1),

consistent with the results observed in maize (Kovacs and

Kerenyi, 2019; Zhang et al., 2020). Noteworthy, the relative

standard deviation (RSD) value of the first peak was significantly

less than that of the other peaks (Figure 1E; Table S1).

Further tests were conducted on two representative groups of

ten representative sugarcane genotypes, and the differences in

compressive force was clearly observed between them (Figure S2).

Particularly, a comparison of the first peak of compressive force in
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the two groups revealed that there was a significant difference

between them (Figure 1F), indicating that the first peak was

sufficient to identify the high and low samples. Therefore, it was

appropriate to assess the crushing strength of sugarcane stalks based

on the first peak.
Diversity of stalk crushing strength in
sugarcane population

Sugarcane germplasm planted in three experimental field plots

were applied for the stalk crushing strength determination by DNS-

20 electronic universal testing machine. In detail, 383, 368, and 376

sugarcane samples were harvested at maturity in each of the three

planting plots and the first peak from the compressive force curves

was recorded (Figure 2A). Among these samples, 306 were common

to all three plots and they displayed a wide range of agronomic trait

variability (Table S2). Specifically, their crushing strength exhibited

considerable variation, although some genotypes varied across three

planting plots (Figures 2B, C; Table S3). An analysis of correlations

revealed that stalk crushing strength was negatively correlated with

internode length, but positively correlated with stalk diameter and

internode number (Table S4), suggesting that the stalk crushing

strength should be affected by the physiological morphology of

sugarcane stalks. Besides, the frequency distribution statistics

showed that stalk crushing strength exhibited a normal
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distribution in all three planting plots (Figure 2D), implying that

stalk crushing strength of sugarcane should be a quantitative trait.

Notably, upon a correlation analysis of the stalk crushing strengths

between the three planting plots, a highly significant (P < 0.001)

correlation was observed (Figure 2D), indicating that stalk crushing

strength should be a genetically controlled characteristic that could

be stably applied for stalk mechanical strength characterization in

sugarcane. Therefore, the observed genetically stable large variation

of crushing strengths in the collected sugarcane germplasm

population allows for reliable NIR modeling and applications.
Characterization of sugarcane samples by
online near-infrared spectroscopy

A total of 335 sugarcane samples from three planting plots were

used for NIRS modeling. The NIR spectral data of collected

sugarcane samples showed continuous fluctuations with a normal

range (Figure 3A), indicating a high level of genetic diversity in the

germplasm for biochemical traits (Wang et al., 2021). The principal

component analysis (PCA) was employed to identify and classify

the samples based on their spectrum (Martin-Tornero et al., 2020).

To characterize 335 sugarcane samples, the first ten principal

components were extracted from the raw NIRS data. Notably, the

first three principal components showed a greater contribution rate

to the variable explanation (Figure 3B; Table S5), which explained
B C

D E F

A

FIGURE 1

Laboratory analytical method for stalk crushing strength determination in sugarcane. (A) Schematic diagram of sugarcane crushing strength
determination. (B, C) Morphological changes of internode at the moment of cracks appeared (B) and complete ruptured (C), bars = 3 cm.
(D) Compression force curve with multiple peaks for crushing strength determination. S1-S3: three compressive states (elasticity, yield, compaction
strengthening); Red dots represent the detected peaks; X1 and X2 represent the key steps as described in B and C, respectively; (E) Comparative
analysis of each detected peaks in the compressive force curves in ten representative sugarcane samples. RSD: relative standard deviation.
(F) Comparative analysis of the first peak between two groups of ten representative sugarcane genotypes. Different letters indicated statistically
significant differences among these genotypes via one-way ANOVA and LSD test at a ≤ 0.05 level; *** indicated statistically significant different
between the two groups at p < 0.001 level. H1-H5 and L1-L5 represented five sugarcane genotypes with high (H) and low (L) mechanical strength,
respectively. Each sample contained three biological replicates.
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B C D

A

FIGURE 3

Characterization of near-infrared spectral in 335 sugarcane samples. (A) Original spectra of sugarcane samples in three planting plots. (B-D) Principal
component analysis of NIRS data. (B) Contribution of each principal component to variable explanation. (C) Cumulative contribution of principal
components to variable explanation. (D) 3D score view of sugarcane samples by PCA. P1-P3: three planting plots.
B C

D

A

FIGURE 2

Diversity of stalk crushing strength (SCS) in collected sugarcane samples. (A) Venn diagram of sugarcane samples collected from three identical
experimental field plots. (B) Heatmap and (C) violin chart displaying the stalk crushing strengths in collected sugarcane genotypes. (D) Distribution
and correlation analysis of stalk crushing strength of 306 sugarcane genotypes in three planting plots. *** indicated significant correlations at p <
0.001 level. P1-P3: three planting plots.
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99.09% of the variance (Figure 3C; Table S5). As a means of better

observing the distribution of the samples, the first three principal

components were selected in order to generate the 3D scores plot of

all samples. Consequently, we observed a relatively symmetrical

distribution of sugarcane samples from different planting plots in

the 3D plot (Figure 3D), with no obvious differences between the

planting plots. According to the results, a quantitative analysis

model for stalk crushing strength of sugarcane can be developed

using online NIRS.
Online NIRS modeling for stalk crushing
strength in sugarcane

In order to ensure accurate and stable NIRS modeling,

sugarcane samples were allocated into critical calibration and

validation sets (Payne and Wolfrum, 2015). In detail, a total of

262 sugarcane samples were used for calibration, whereas 73

samples were used for external validation. A wide variation range

and continuous normal distribution were observed in all samples

used for calibration and external validation (Figure 4A). Meanwhile,

calibration set contained the range of the external validation set

(Table S6), preventing the predicted value from exceeding the

prediction range of model. Since the calibration and external

validation sets were comparable, the NIRS model could be

calibrated as well as externally validated.

With the assistance of OPUS software, the prediction equation of

NIRS model was established through a partial least squares analysis

(PLS) (Li et al., 2021). A pretreatment of raw spectral data was carried

out before calibration in order to minimize the detrimental effect of
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the baseline (Devos et al., 2014). A series of complex eliminating

modeling processes were applied by the OPUS software to optimize

the prediction capability of the obtained equation. Performance of

equations were measured by the coefficient of determination (R2), the

root mean square error (RMSE) and the ratio performance deviation

(RPD) (Yang et al., 2016). As the calibration result, the coefficient of

determination (R2c) and RPD values were obtained as high as 0.92

and 3.58, respectively (Figure 4B; Table S7). Besides, cross-validation

and external validation of the model were applied for model

evaluation, resulting in constant high R2cv/R2ev values of over 0.8,

RPD values of over 2.4, as well as low root mean square errors of 0.09

and 0.11 kN (Figure 4B; Table S7).

For the purpose of improving the prediction performance of the

equation, external validation and calibration sets were combined to

generate the final calibration equation (Windley and Foley, 2015).

Although the R2c value of the equation did not increased significantly

during the calibration process (Figure 4C; Table S8), a higher

correlation was observed between the measured value and the

predicted value during the internal cross-validation. Accordingly,

the R2cv value increased from 0.89 to 0.90, and the RPD value

increased from 3.06 to 3.16 (Figure 4C; Table S8), indicating that the

new equation was capable of making even better predictions.
Model-based evaluation of stalk crushing
strength in sugarcane germplasm

In an effort to evaluate the performance of our model developed

for predicting stalk crushing strength in large-scale sugarcane

germplasm, the model was applied to 336 sugarcane genotypes
B

C

A

FIGURE 4

Online NIRS modeling for stalk crushing strength. (A) Distribution characteristics of calibration and validation sets. (B) Online NIRS calibration and
external validation. (C) Performance of the integrative final NIRS equation.
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planted in three planting plots over a period of three years (2019,

2020, 2021). As can be seen from the sample data, a limited number

of outliers were observed, providing evidence that the model is

robust and may be applied widely (Table S9). In either of all three

planting plots for the same planting year or across different planting

years, stalk crushing strength exhibited a similar range of variation

(Figure 5A). In 2019, the sugarcane population appeared to have a

slight lower in mean value and a substantial variation in crushing

strength, which may be a result of the rainy climate in that year.
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Specifically, in 2020 and 2021, stalk crushing strengths were

observed ranging from 0.69-2.13 kN and 0.69-2.10 kN,

respectively, whereas in 2019 they ranged between 0.69-1.85

kN (Figure 5A).

Moreover, we conducted a correlation analysis of the predicted

crushing strength of sugarcane samples across different years. It was

observed that stalk crushing strength was highly correlated across

all three years at a p < 0.001 significant level (Figure 5B), confirming

the findings in NIRS calibration sets (Figure 2D), demonstrating
B

C

A

FIGURE 5

Model-based evaluation of stalk crushing strength in sugarcane germplasm. (A) Distribution of stalk crushing strength in sugarcane population.
(B) Correlation analysis of stalk crushing strength between three years. *** indicated significant correlations at p < 0.001 level. (C) Comparative
analysis of stalk crushing strength in the screened sugarcane germplasm. LC/HC: representing the sugarcane samples with low and high crushing
strength, respectively. Different letters indicated statistically significant differences between the groups using one-way ANOVA and LSD test at a ≤

0.05; *** indicated statistically significant different at p < 0.001 levels, respectively.
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that sugarcane stalk crushing strength should have a steady

inheritance pattern. It also proved that the model-based

characterization of sugarcane crushing strength by means of NIRS

is both accurate and stable. Accordingly, sugarcane germplasm with

high and low stalk crushing strengths were successfully screened out

according to the results predicted by the model. Notably, these

screened sugarcane genotypes maintained significant differences in

stalk crushing strengths over three years, consistent with the

correlation results, further demonstrating that the NIRS model-

based method of sugarcane crushing strength analysis is accurate

and repeatable (Figure 5C). Overall, these findings suggest that the

model is practical and can be used to rapidly identify ideal

sugarcane germplasm from large-scale populations of sugarcane.
Discussion

Lodging is one of the major problems that affect the growth and

potential yield of agricultural crops (Guo et al., 2021). However, it is

challenging to accurately identify the lodging resistance of crops as

it is a complex trait affected by a variety of factors (Khobra et al.,

2019; Shah et al., 2019). Stem mechanical properties indicate the

load-bearing capacity of plants, and therefore can be used as an

indirect criterion for selecting lodging-resistant varieties (Yang

et al., 2020). Studies have evaluated lodging resistance of stems by

measuring their mechanical strength, and it has been found that

improving the mechanical strength of stems can reduce lodging

risks (Xue et al., 2016; Zhan et al., 2022). In spite of this, it remains a

serious problem that there is currently no method of measuring

mechanical strength in crops that is both accurate and high-

throughput. In our latest study, a precise and high-throughput

mechanical strength characterization assay was developed in terms

of measuring rind penetrometer resistance (RPR) and breaking

force by NIRS modeling in sugarcane (Shen et al., 2022), providing a

framework for high-throughput phenotyping of crop stalk

mechanical properties. Through a combination of complementary

explorations, this study aimed to establish high-throughput

phenotyping methods for sugarcane crushing strength.

As a first step toward an effective NIRS calibration, a laboratory

analytical method was performed in an effort to ensure accuracy.

Owing to an electronic universal testing machine packed with

TestExpert software, we were able to obtain the curves of the

changes in mechanical properties of sugarcane during crushing

(Figure S1; Figure 1D). A comparative analysis revealed that the first

peak of the sugarcane crushing mechanics curve provides a stable

assessment of the sugarcane crushing strength (Figures 1E, F; Figure

S2), which was consistent with the findings in maize (Xu et al.,

2017). According to our established laboratory analysis method for

sugarcane stalk crushing strength determination, a collection of 306

sugarcane germplasms revealed considerable genetic variability

(Figure 2), which provides a significant basis for NIRS modeling.

It should be noted that a total of 416 sugarcane genotypes planted in

three test plots (with some samples missing in each plot) were tested

for crushing strength characterization (Figure 2). However, only
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335 of those that showed the best biological replicates across three

test plots were selected for NIRS modelling to ensure an accurate

calibration (Figure 3). As we expected, a high-performance NIRS

model for sugarcane crushing strength characterization was

obtained based on our established NIRS modeling method. In

particular, the model exhibits stable and reliable prediction

parameters in both internal cross-validation and external tests

(Figure 4), indicating excellent performance in practice. In spite

of this, it may be possible to improve the model further by adding

more reliable data.

Besides, the model was applied to a large-scale phenotypic analysis

of sugarcane crushing strength over a period of three consecutive years.

Accordingly, the model demonstrated good robustness in its

application, with only a few samples being detected as out of range

(Table S9). In particular, we found that model-based predictions of

sugarcane crushing strength showed significant correlations between

years (Figure 5B). Material with high and low crushing strengths were

consistently screened out from sugarcane population for three

consecutive years (Figure 5C). It was further confirmed that the

developed model has excellent predictive performance and can be

applied to high-throughput phenotyping of sugarcane crushing

strength in sugarcane population.

Notably, in our study, significant correlations were found between

sugarcane crushing strength and internode length, stem diameter, and

internode number (Table S4). This suggests that sugarcane crushing

strength is a complex trait that is closely related to the biological

properties of sugarcane stalks. This is different from the pattern of rind

penetrometer resistance (RPR) and breaking force that characterized in

our previous study (Shen et al., 2022). It implies that the application of

a single indicator in assessing the mechanical strength of sugarcane

stalks to determine the lodging resistant is not desirable. Therefore, the

high-throughput phenotypic analysis assay for sugarcane crushing

strength determination established in this study, combined with our

previously established rapid assays for sugarcane rind penetrometer

resistance (RPR) and breaking force characterization (Shen et al., 2021;

Shen et al., 2022), can provide a more comprehensive and systematic

technical support for lodging resistance targeted sugarcane breeding

and beyond.
Conclusions

Using the established accurate laboratory method for crushing

strength characterization as well as effective NIR modeling, this

study developed a precise and high-throughput phenotyping assay

for the determination of mechanical strength in sugarcane. The

obtained final equation via integrative modeling exhibited a

coefficient of determination (R2) and ratio performance deviation

(RPD) as high as over 0.9 and 3.0, respectively, reflecting excellent

prediction capacity. Model-based application provided a stable and

effective approach for crushing strength trait evaluation in large-

scale sugarcane germplasm screening tasks. This study suggests that

the NIRS assay could be applied as a highly reliable tool for lodging-

resistant targeted phenotyping jobs.
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Effect of varying UAV height
on the precise estimation
of potato crop growth

Stephen Njehia Njane1*, Shogo Tsuda1, Bart M. van Marrewijk2,
Gerrit Polder2, Kenji Katayama1 and Hiroyuki Tsuji 1

1Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization,
Memurocho, Kasaigun, Hokkaido, Japan, 2Wageningen Greenhouse Horticulture, Wageningen
University and Research, Wageningen, Netherlands
A phenotyping pipeline utilising DeepLab was developed for precisely estimating

the height, volume, coverage and vegetation indices of European and Japanese

varieties. Using this pipeline, the effect of varying UAV height on the precise

estimation of potato crop growth properties was evaluated. A UAV fitted with a

multispectral camera was flown at a height of 15 m and 30 m in an experimental

field where various varieties of potatoes were grown. The properties of plant

height, volume and NDVI were evaluated and compared with the manually

obtained parameters. Strong linear correlations with R2 of 0.803 and 0.745

were obtained between the UAV obtained plant heights and manually

estimated plant height when the UAV was flown at 15 m and 30 m

respectively. Furthermore, high linear correlations with an R2 of 0.839 and

0.754 were obtained between the UAV-estimated volume and manually

estimated volume when the UAV was flown at 15 m and 30 m respectively. For

the vegetation indices, there were no observable differences in the NDVI values

obtained from the UAV flown at the two heights. Furthermore, high linear

correlations with R2 of 0.930 and 0.931 were obtained between UAV-

estimated and manually measured NDVI at 15 m and 30 m respectively. It was

found that UAV flown at the lower height had a higher ground sampling distance

thus increased resolution leading to more precise estimation of both the height

and volume of crops. For vegetation indices, flying the UAV at a higher height had

no effect on the precision of NDVI estimates.

KEYWORDS

UAV, Potatoes, volume, vegetation indices, multispectral
1 Introduction

The precise monitoring of the phenotypic properties of potatoes is important for the

development of new potato varieties for high quality and improved yield. Not only are

some varieties susceptible to disease infestation such as early blight disease but also, their

growth properties affect the yield of potatoes. Until today, monitoring of the growth of

crops has relied on manual physical sampling where height of potato crops is sampled in
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the plots containing the phenotypes. However, this is not only

limited to a small area and several crops within the plots, but also

the estimation of the height of the crops is difficult, especially due to

the complex canopy of potato crops.

Recently the utilisation of remote sensing techniques together

with image processing has enabled the precise estimation of the

phenotypic properties of potatoes. Especially, the utilisation of

UAV’s has revolutionized phenotyping not only due to their low

cost, but also a large area can be sampled in a short time. The

emergence of potato crops was estimated using UAV thus reducing

the time required for manual sampling of potato crops to determine

their emergence (Li et al., 2019). The disease severity on potato crop

field was estimated using an RGB camera mounted on a UAV

(Sugiura et al., 2016) and while Jindo et al. (2023) utilised UAV to

detect the damage caused by potato cyst nematode, Van De Vijver

et al. (2022) utilised UAV to detect early blight disease.

Furthermore, a multispectral camera mounted on a UAV could

estimate SPAD values of barley leaves as demonstrated by Liu et al.

(2021). The prediction of yield has also been made possible by

utilisation of UAV in combination with machine learning (Sun

et al., 2020), and also by combining cultivar information (Li

et al., 2021).

Hitherto, parameters of plant height and canopy cover

estimates have been used to measure the ability of crops to

intercept radiation and also as a representation of the activity of

the crop that relate to growth and development. Stewart et al. (2007)

found a high correlation between canopy cover and leaf area index

(LAI). Using non-linear models, Bojacá et al (2011) could estimate

potato crop canopy coverage on different fields. However, only a

small area could be sampled hence limiting observation in the whole

field. de la Casa et al. (2007) found that there was a high linear

correlation between potato crop coverage and the fraction of light

interception. However, (Boyd et al., 2002) found that such a

correlation of crop coverage with LAI, although linear, it varies

with management of the field. Furthermore, (Bojacá et al., 2011)

found that applying a non-linear model to characterise potato

canopy coverage could yield more precise simulation results.

Using crop canopy, Li et al. (2019) investigated the rate of

emergence of various varieties and assessed the differences in the

uniformity of their emergence from the soil. However, the

penetration of light is affected not only by the crop surface cover,

but also the architecture of the canopy, leaf size, angle, and the

number of leaves. Photosynthesis activity is highly related to the

light intensity within the leaf canopy, which is depended on the leaf

size, distribution, and volume of the canopy. Therefore, it is

important to estimate not only the surface crop cover but also the

3D properties of the potato canopies for informed decision making.

To generate such values, Structure fromMotion (SfM) is utilised to

reconstruct the images to form a 3D model. This is normally used in

UAV imagery since special active illumination is not required.

Furthermore, the resolution of the constructed model depends not

only on the number of images, but also on the ground sampling

distance and the resolution of the acquired images (Paulus, 2019).

While, the combination of crop height and coverage was used to

determine the spraying volume on potato (Xie et al., 2022), it was found
Frontiers in Plant Science 0238
that the point cloud data was unreliable especially during low coverage.

Burgess et al. (2017) utilised individual plants extracted from a field

grown plot to generate 3D representation of crops. However, this is

difficult to apply in phenotyping in the actual field. Furthermore, due to

the complex canopy of the potato crops and the ridges planted on

them, it is imperative to develop an improved technique for extracting

phenotypic properties of potato crops.

Hitherto, an easy-to-use automatic system for generating

important crop properties like height, volume, crop coverage and

vegetation indices has not been developed. This has limited such

analysis to either commercial software or complicated

programming skills which not only require fundamental

understanding, but also complex computer environmental

settings. Guo et al. (2017) developed a python-based tool for

phenotyping. However, this could only estimate ground coverage

ratio. Tresch et al. (2019) developed an automatic technique for

generation of plots in the field thus making it easier to divide the

field into plots. It is imperative to estimate not only the coverage but

also the height and the volume of potato crops during growth.

Especially during emergence, it is important to determine these

parameters to precisely determine the sprout rate and their traits. It

has been shown that increased flight altitude results in decreased

resolution of the densified surface model (DSM) which is used to

extract height and related parameters (Abou Chakra et al., 2020).

While increasing the UAV flight height reduces the time taken to

take mages in the same field, the lesser number of images captured

reduces the processing time. This results in reduced time taken

during the SfM (Structure from Motion) reprocessing to produce

densified surface model and orthomosaic which are used to extract

the parameters of height and coverage respectively. However, the

increased UAV flight height results in decreased resolution, and this

might affect the accuracy of extraction of the parameters of plant

height, volume, and coverage. The effect of varying UAV height on

seedling rapeseed found that higher GSD resulted in lower precision

of NDRE vegetation index when estimating LAI (Zhang et al.,

2020). While the effect of varied resolution by resampling the

orthomosaic found that high resolution had higher correlation

with potato’s above ground biomass, however, this was only

limited to a fixed UAV height of 20 m height (Liu et al., 2022).

Therefore, it is paramount to determine the best UAV flight

conditions that reduce processing time without compromising on

the quality of the crop parameters to be estimated. Furthermore, for

precise phenotyping properties, it is required to estimate the height,

volume and crop coverage of potato varieties with high precision.

In this study, we will develop a new system for estimating the

potato varieties traits. Firstly, a new automatic system for processing

UAV-obtained DSM and orthomosaic will be developed. Secondly,

using this new system, the crop properties of height, volume and

coverage of both European and Japanese varieties will be estimated.

As a lead on determining the ideal flight parameters for precisely

obtain these phenotypic traits, we will compare the accuracy of

UAV-obtained data by comparing the precision effect when UAV is

flown at two different heights over the same area while analysing the

growth parameters of plant height, volume, crop coverage and

vegetation indices.
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2 Materials and methodology

2.1 Experimental field set up

Eight varieties of potatoes were planted in an experimental plot

in Memuro Hokkaido, Japan inside the National Agricultural and

Research Centre (NARO) experimental field station as shown in

Figure 1 on the 7th of May 2021. The experimental field measured

23.1 m by 19.5 m and three replications were planted with each plot

measuring 4.5 m by 2.25 m. The potato varieties consisted of 5

European varieties, Euroviva, Etana, Priska, Sorentina and

Montana, and 3 Japanese varieties, Toyoshiro, Konahime and

Irish cobbler (locally known as Danshaku-imo). The potatoes

which were hand planted were firstly cut into two and the half-

cut potatoes whose sprout faced upward were placed at a crop

spacing of 30 cm and each row was spaced at 75 cm from each

other. After planting, the rows were covered with soil using a

tractor-driven hiller thus ensuring a ridge of 30 cm height and a

spacing of 75 cm between the ridges.
2.2 UAV images acquisition

For obtaining images on the experimental field from both 15 m

and 30 m heights, a DJI P4 Multispectral UAV (SZ DJI Technology

Co., Ltd) was utilised. The UAV has a camera consisting of 1 RGB

camera and a 5-band multispectral camera. The multispectral

camera consists of the Blue (450 ± 16nm), Green (560 ± 16nm),

Red (650 ± 16nm), Red-edge (730 ± 16nm) and Near-infrared

bands (840 ± 26nm). The UAV which also has an integrated RTK

module was set at a FIXED GNSS position thus ensuring precise
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positioning when taking images. Furthermore, four ground control

points were set at the four corners of the experimental field and

their coordinates measured thus ensuring the project was

georeferenced. The flight plan consisted of taking images in a grid

system both at 15 m and 30 m. The time series images when the

UAV is at 15 m and 30 m is as shown in Figure 2. For both heights,

the RGB camera and the multispectral cameras ISO was set to

AUTO mode with the shutter speed set at 1/1000 and shooting

interval of 2 seconds with a front and side overlap of 80%. The

camera was set such that the shooting angle was perpendicular to

the course, and the cameras were set at Nadir (facing downwards) at

an angle of 90 degrees with the horizontal field plane.
2.3 Pre-processing of the UAV images

The images were aligned and processed using a SfM (Structure

from Motion) technique where the DSM was generated from the two-

dimensional images obtained from the UAV. To do this, Pix4D

mapper (Pix4D SA) software was utilised. In order to increase the

accuracy of the map, the pre-measured GCP (Ground Control Points)

were imported and marked in the ray cloud. Finally, re-optimisation

was carried out, resulting in a calibration error of ± 2 cm. This error is

equal to the absolute error of the RTK measurement of the GCP’s. The

point cloud was processed after which the orthomosaic and the Digital

Surface Model (DSM), the Orthomosaic (RGB) and the reflectance

maps (for each sensors’ wavelength) were generated.

The parameters for obtaining UAV images and processing time

when processing using a GPU NVIDIA Quadro RTX 6000 with an

intel core i9 and a CPU processing speed of 3.31GHz are compared

as shown in Table 1 below.
FIGURE 1

Set up of the field with the varieties planted on plots with three replications and ground control points were placed as shown with a black and red
two-tone marker.
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2.4 Plant segmentation

To do determine the crop properties, the crop parameters must

be segmented from the bare soil. In this research segmentation is

done by using DeeplabV3+ implemented in detectron2 (Chen et al.,

2018). DeepLab is a deep learning based semantic segmentation

method (Wu et al., 2023). In this research we used the pretrained

weights available from the detectron2 framework. Transfer learning

was applied by annotating 48 potato images. Since the dataset was

quite small the number of iterations was set to 1000. Image size was

set to 384 x 384. All the other parameters were similar as those

mentioned by Wu et al. (2023). An example of the segmentation on

an independent test image is shown Figure 3. Other segmentation

methods like Otsu thresholding (Li et al., 2019) would fail at sunny

condition or when the image is fully covered by crops.
2.5 Plant height measurement

A densified surface model with a resolution of 0.833 cm/pixel and

1.667 cm/pixel was generated from the densified point cloud for

images taken at 15 m and 30 m respectively. To determine the height

of crops from each plot, shapefiles measuring 3 m by 0.75 m were

generated as representatives of each variety’s plot’s area (using QGIS

software). To ensure precise height estimation, a plane surface on the

top of the ridge was generated for each plot. This was done by

determining the height of the bare soil 10 days after planting. Noise

was removed by sorting the height array and selecting the height at

90% of the data. This base altitude (Zplanei) was determined for each

plot as shown in Figure 4.
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In the successive days as the crops grew, the height of the crops

increased. The height was calculated by segmenting the background

from the image and subsequently the difference between the base

altitude and the terrain altitude of each segmented plot (Zy) was

used to determine the height, as shown in Eq. 1. Where iindicates

the plot number and j indicates the pixel number.

Hij = Zij − Zplanei (1)

The height of the crops in each plot was extracted by

determining the average of the total number of pixels.

As a proof of concept, the height of crops from each crop was

measured manually on a weekly basis. This was done by placing the

meter rule at the top of the ridge and measuring the height of the

crop close to the apex. Taking care to prevent injuring the potato

crops foliage, the height of the 5 sample crops in each plot were

measured recorded from which the average height with growth

period was calculated.
2.6 Volume measurement

The volume of the crops from each plot was determined by

summation of the total volume of the pixels from the densified

surface model. Each pixel consisted of length Lij (cm), the widthWij

(cm), and the height Hij (cm). The height was obtained using Eq. 1

(section 2.4). By multiplying the height with the length and width of

each cell the volume was calculated as shown in Eq. 2 below.

Vij = Lij  �Wij �Hij (2)

The length and width of each pixel is equidistant and is equal to

the ground sampling distance (GSD). Therefore, the length and

width of each pixel obtained from the UAV’s height, i.e., 15 m and

30 m was 0.833 cm/pixel and 1.667 cm/pixel respectively. Although

the grid of the higher GSD i.e., 30 m would be larger than the grid

with a smaller GSD, however, since the total volume was limited to

the plot area of each variety, then the total area utilised for

estimating volume would be similar despite their different GSD.
FIGURE 2

Time series orthomosaic images of the potato varieties plots for both UAV heights of 15 m and 30 m.
TABLE 1 Comparison of flight parameters for both flight altitudes.

Height
(m)

Camera
angle

Mission
type

Flight
Time
(min)

Processing time
DSM and

Orthomosaic

15 Nadir Parallel 15 3 hours

30 Nadir Parallel 7 1 hour
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In order to compare the accuracy of estimation, the volume of

the crops was also estimated by hand. This was done by manually

measuring the width, breadth, and height of four samples from each

plot. The average volume per plot was estimated from the four

samples and used as the ground truth values for the volume of

the crops.
2.7 Vegetation indices measurement

To determine the health of the potato crops during growth, each

plot’s average Normalised Difference Vegetation Index (NDVI) was

estimated (Datt, 1999) from the NIR and Red reflectance maps

generated from the processing of images in these respective

wavelengths. In the mid to late stages when the chlorophyll
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concentration was relatively high, the Normalised Difference

RedEdge (NDRE) was utilised to estimate the health of the potato

crops. Both the NDVI and NDRE are popularly used to map the

variability of nitrogen and hence determine the fertilizer

requirement. The ratio of the reflectivity in the NIR and red-edge

bands were used to estimate the chlorophyll content in the leaves

using the Chlorophyll index -Red-Edge (Clre). Leaf Chlorophyll

Index (LCI) was used to determine the change in chlorophyll

content by estimating the spectral reflectance properties of both

the near-infrared and the red reflectance wavelengths. The indices

are shown in Table 2.

To compare the estimated NDVI values obtained from the

reflectance maps generated by the UAV images, a handheld crop

sensor, GreenSeeker (Trimble Inc.) was utilised to measure NDVI.

The sensor had sensitivity of measurement at the wavelengths of
A B C

FIGURE 3

Example image of input image (A), segmented image (B) and visualized height map, with height in meters (C) obtained on 46th day after planting.
A B

FIGURE 4

(A) plot with the fitted plane (red) on bare soil (day 5 after planting) and (B) 36 days after planting.
TABLE 2 Vegetation indices generated from the respective reflectance maps.

Vegetation index Equation Reference

Normalised Difference Vegetation Index (NDVI) NIR − Green
NIR + Green

(Datt, 1999)

Normalised Difference Red Edge (NDRE) NIR − Re dEdge
NIR + Re dEdge

(Barnes et al., 2000)

Chlorophyl Red Edge
(Clre)

NIR
Re dEdge

− 1
(Gitelson, 2005)

Leaf Chlorophyll Index (LCI) NIR − Re dEdge
NIR + Re d

(Rouse et al., 1974)
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Red 660 ± 10 nm (full-width half-magnitude) and near-infrared 780

± 15 nm (full-width half-magnitude). The sensor emits both of

these wavelengths and measures the amount of each wavelength

reflected from the surface of the crops. Measurements were taken by

engaging the trigger and scanning the potato field crops’ plots at

height of about 50 cm from the surface of the crops. In each plot, the

reading was taken three times and the average value was calculated.
3 Results

3.1 Potato crop height estimation

The orthomosaic images and the height of the potato crops was

obtained after processing the densified surface model obtained

when the UAV was flown at 15 m and 30 m as shown in
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Figures 5A, B below. During the early growth stages, there was a

gradual increase in the height of the crops especially after

emergence. However, 30 days after emergence, there was a

sporadic increase in the height of all the potato varieties. The

growth peaked between 60-67 days after planting from which the

plant height decreased as the potato crops matured and senescence

started. However, for the Euroviva variety, the plant height

continued to increase with a prolonged growth period with the

growth peaking at 102 days after planting after which maturity and

senescence occurred.

For both UAV-heights, the plant height peaked between day 61

day 67. However, during the senescence stage, it was observed that

plant heights obtained when the UAV was at 30 m showed a gradual

increase in plant height at day 102 while the plant height obtained

when the UAV was at 15 m showed a slight or no increase in plant

height during the senescence stage. At days 81 and 102 where a large
B

C D

A

FIGURE 5

Plant height of 8 varieties with growth time when the UAV was at (B) 15 m and (C) at 30 m and comparison between manually measured plant
height with the UAV-obtained height when the UAV was at (C) 15 m and (D) at 30 m.
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decrease followed by a rapid increase in crop was observed, the

standard deviation showed that a larger error was observed in the

height values obtained when the UAV was at 30 compared to at

15 m as shown in Tables 3, 4.

There was a high correlation between the plant height obtained

when the UAV was at 15 m and at 30 m as shown in Figure 6 below.

It was clear that especially during the early growth (plant height

0 - 0.1 m), the plant height obtained from images taken at 30 m

showed no change in the height of the crops while there was

observable change and differences in the height of potato crops

when the UAV was at 15 m as shown in Figure 5C. The differences

in the plant height were also compared with the manually obtained

plant height obtained by sampling in the plots of the respective

varieties. It was observed that while the plant height obtained from

the UAV at 15 m showed a high linear correlation with the

manually obtained values, the plant height obtained when the

UAV was flown at 30 m as shown in Figure 5D. had a slightly

lower correlation with the manually obtained plant height.
3.2 Plant volume estimation

The potato varieties’ volume was compared between those

estimated when the UAV was at 15 m from those obtained when

the UAV was at 30 m as shown in Figures 7A, B. A similar tendency

of growth was obtained when the UAV was at both heights. During

the early stages of sprout emergence, there was little or no

observable change in the volume of the potato varieties, until day

30, after which a rapid increase in the volume of the potato varieties

was observed. From the volume estimated when the UAV was at

15 m, it was observed that the volume of all the varieties peaked at

day 67 while the volume estimated when the UAV was at 30 m

peaked at day 61. A similar growth curve tendency was obtained in

both data sets when the UAV was flown at 15 m and at 30 m.

A high linear correlation was obtained between the volume of

all the varieties when the UAV was at 15 m and at 30 m as shown in

Figure 8. While it takes less time to obtain images at a higher

altitude (30 m in this case), resulting in higher ground sampling

distance and thus lower sampling resolution, it would, however, still
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have sufficient accuracy for precise estimation of the volume of

potatoes with similar precision as that obtained when the UAV is

flown at half the height (15 m).

A comparison was made between the UAV estimated volume

and the manually estimated volume. From the manual

measurement, the height, width and length of the potato crops

was measured as a representative of the volume of crops. While a

high linear correlation was obtained between the UAV estimated

volume when the UAV was at 15 m, a slightly lower correlation was

obtained from the volume estimated when the UAV was at 30 m as

shown in Figures 7C, D respectively. However, in both cases, the

manually estimated volume was higher than the UAV

estimated volume.

It was considered that during the early stages of growth, at days

31, there was a low correlation with an R2 of 0.67 between the UAV-

estimated volume and the manually estimated volume as shown in

Figure 9A. With successive growth, a high linear correlation of 0.9

was obtained between the UAV-estimated and the manually

estimated volume as shown in Figure 9B.
3.3 Vegetation indices

From the multispectral bands, the reflection maps of NIR and

Red bands were utilised to estimate the NDVI values of all the

varieties of potato crops and a comparison was made between the

NDVI values obtained when the UAV was at 15 m and 30 m as

shown in Figures 10A, B respectively. A similar tendency of change

in NDVI was obtained between the two datasets where the NDVI

value increased rapidly from 30 days after planting to about 74 days

after planting after which the values decreased, except for Euroviva

variety which had a prolonged stable NDVI value from day 74 to

day 116 after which NDVI values decreased.

A high linear correlation with a coefficient of variation close to 1

was obtained between the NDVI values obtained when the UAV

was at 15 m and at 30 m as shown in Figure 11.

A comparison was made between the UAV estimated NDVI

and the manually estimated NDVI. A similar high linear correlation

with a coefficient of variation of 0.97 was obtained between the
TABLE 4 STDEV comparing plant heights on day 102.

Variety name 15 m 30 m

Euroviva 0.005 0.055

Etana 0.038 0.051

Konahime 0.021 0.063

Priska 0.019 0.054

Sorentina 0.020 0.060

Madison 0.025 0.048

Toyoshiro 0.029 0.043

Irish cobbler 0.012 0.018
frontie
TABLE 3 STDEV comparing plant heights on day 88.

Variety name 15 m 30 m

Euroviva 0.005 0.033

Etana 0.073 0.079

Konahime 0.069 0.097

Priska 0.010 0.035

Sorentina 0.036 0.045

Madison 0.033 0.030

Toyoshiro 0.029 0.032

Irish cobbler 0.018 0.00
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FIGURE 6

Comparison between plant height of all varieties when the UAV was at 15 m and at 30 m. A linear correlation with a coefficient of variation of 0.947
was obtained.
B

C D

A

FIGURE 7

Plant volume of 8 varieties when the UAV was at (A) 15 m and (B) at 30 m and comparison between manually measured plant volume with the UAV-
obtained volume when the UAV was at (C) 15 m and (D) at 30 m.
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manually estimated and the UAV estimated NDVI when the UAV

was at 15 m and at 30 m as shown in Figures 10C, D.

A high coefficient of determination was obtained for all

parameters of height, volume and NDVI when the UAV was

flown at both heights as shown in Table 5.

While both UAV-heights can be used to obtain the parameters

of height, volume and NDVI, a comparison between manually

estimated values of height, volume and NDVI with those when the

UAV was at 15 m and 30m was obtained as shown in Tables 6, 7

showed that higher precision was obtained when the UAV was

flown at a lower height. A high linear coefficient of determination

with a lower RMSE was obtained when the UAV was at a lower

height of 15 m than when flown at 30 m.
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4 Discussion

Although there was a high correlation between the height of the

varieties at both UAV heights, the potato crops height obtained

when the UAV was flown at a higher height showed slightly higher

errors especially at day 88 and day 102. This was as a result of noise

in the densified point cloud as a result of reduced spatial resolution

leading to inaccuracies in plant height extraction during the early

stages (Moeckel et al., 2018). When the images were obtained at a

lower height of 15 m this increased resolution, thus indicating that

the plant height increased gradually according to the growth period

as shown in Figure 12. There was no effect of downwash form the

propellers of the UAV at both 15 m and 30 m height. While flying
FIGURE 8

Comparison between plant volume of all varieties when the UAV was at 15 m and at 30 m. A linear correlation with a coefficient of variation of 0.956
was obtained.
A B

FIGURE 9

Early stages of growth (A) 31st day after planting and successive days (B) 38 to 102 days after planting showing the comparison between UAV
estimated and manually estimated volume.
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lower than 15 m would increase the ground sampling distance,

however, this would also lead to more images and thus lengthening

the processing time. Furthermore, for larger fields, this would mean

that due to lower ground sampling distance, images would have to

be taken at a hover-and-capture mode which takes much longer

time as the UAV would have to stop while taking images before

proceeding. While flying at higher heights such as 30 m would lead

to fewer images and shorter processing time, however increased

ground sampling distance leads to lower resolution, thus not ideal

especially when estimating the crop traits at the initial stages of

growth. Further studies exploring larger phenotypic fields would

utilise higher UAV heights in order to cover such large areas.

From the images obtained when the UAV was both at 15 m and

at 30 m, Euroviva had the highest height due to its prolonged

maturity period. Thus Euroviva plant height remained relatively

high even after flowering and the beginning of senescence period.
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Euroviva which has a late maturity, it continues to grow even after

other varieties start to senescence. This was equally translated to the

yield as Euroviva has been reported to have higher yields (Seed

potatoes of the highest quality, 2021). Due to the prolonged growth

period, the light interception area also increased as the height and

volume of Euroviva varieties increased. This resulted in increased

height and volume of the canopy thus leading to increased light

penetration and providing higher sinks for photosynthesis leading

to increased photosynthetic activities at the leaves level (Burgess

et al., 2017). The sudden decrease in the plant height from day 67 to

day 81 for the other varieties during the growth period was a result

of senescence where the leaves begin to wither thus leading stems of

the potatoes weakening thus decreased height. There was a sudden

slight increase in the crops height from day 81 to day 96 as a result

of sudden increased precipitation thus leading to the stems vigour

increasing and thus increased height, but it was short-lived as
B

DC

A

FIGURE 10

Time series NDVI values of 8 varieties when the UAV was at (A) 15 m and (B) at 30 m and comparison between manually measured NDVI with the
UAV estimated NDVI when the UAV was at (C) 15 m and (D) at 30 m.
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withering continued due to senescence and decreased height was

obtained until near harvesting period.

Similarly, there was a high correlation between the volume of

the potato varieties when the UAV was flown at both heights. It was

observed that even during the early stages, since volume estimated
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not only the vertical elongation but also the horizontal elongation of

the canopy, a normal growth curve was observed at both heights.

The manual estimated volume was higher than the UAV estimated

volume. This is because the manual measurement assumes that the

vegetation block is cuboid thus estimates volume using the
FIGURE 11

Comparison between NDVI volume of all the potato varieties when the UAV was at 15 m and at 30 m. A linear correlation with a coefficient of
variation of 1 was obtained.
TABLE 5 Correlation between UAV parameters between UV flown at 15 m and 30 m.

Parameters R2
Adjusted

R2 RSME
p

value

Height 0.955 0.955 0.046 0

Volume 0.959 0.959 0.100 0

Coverage 0.992 0.992 0.037 0

NDVI 0.999 0.999 0.004 0
frontie
TABLE 6 Comparison between manually estimated and UAV-estimated values at 15 m height.

Parameters R2 Adjusted R² RMSE pvalue

Height 0.803 0.801 0.0919 <0.001

Volume 0.828 0.825 0.209 <0.001

NDVI 0.939 0.929 0.060 <0.001
TABLE 7 Comparison between manually estimated and UAV-estimated values at 30 m height.

Parameters R2 Adjusted R2 RMSE pvalue

Height 0.745 0.742 0.113 <0.001

Volume 0.735 0.732 0.280 <0.001

NDVI 0.931 0.930 0.060 <0.001
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measurements of height, length and volume, unlike potato canopy,

which is not only irregular in shape, but also has air spaces in

between the vegetation foliage, thus resulting in overestimation

when measured manually. Secondly, in the first days, the potatoes

are relatively small. Deep learning networks like DeepLabv3+ are

capable of detecting objects, but small objects ten to disappear in the

large networks. Small plants are consequently not always recognized

causing an underestimation of the volume compared to the manual

measurements (Figure 10A). In the successive days, a higher

correlation was obtained between the UAV and the manually

obtained data (Figure 10B).

Furthermore, volume would be ideal in monitoring the growth

of mixed varieties in large breeding fields since a similar precision

for volume estimation would be obtained when the UAV was flown

at a higher height thus ideal for obtaining phenotypic properties.

Sun et al. (2018) observed that large differences in the volume of the

cultivars could be obtained, in comparison to canopy area.

Furthermore, while it is erroneous to measure the volume of

crops manually due to their irregularity in both shape and

structure, volume estimation using the densified surface model

was precise and added a new trait for varietal differentiation. A

similar tendency in the growth curve NDVI was obtained when the
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UAV was flown at both heights. This is because the reflectance map

was not easily affected by the difference in the UAV height since

clear reflectance values were obtained. This shows that the NDVI

values are not affected by the changes in the ground sampling

distance hence a higher UAV height would be ideal as it saves time

and battery when taking images in the field. Furthermore, a similar

high precision would be obtained thus enabling faster return and

monitoring of potato varieties in the field.

However, because of the difference in the NIR bands between

the UAV -multispectral camera (840 ± 26 nm) and the GreenSeeker

(780 ± 15 nm) the sensitivity of measurement of NDVI varied

between the former from that of the latter. Since the UAV utilises

the sunshine sensor to correct for the irradiation, it is ideal in

extracting the reflectance values on different days where the

radiation would vary. Furthermore, since sampling using the

GreenSeeker can only be done in a single plot, then utilisation of

the UAV would be ideal in determining the change in the vegetation

indices over the whole plot. Therefore, not only would it be faster to

monitor a larger field using UAV compared to manual sampling of

NDVI which can only be done in a small area and take a lot of time

for sampling measurement, NDVI can be estimated using UAV at a

faster rate, lesser time and the whole field can be estimated thus
FIGURE 12

Time series orthomosaic images of one of the plots showing the difference between 15 m and 30 UAV processed orthomosaic files.
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ensuring precise monitoring of the growth of potato varieties in the

field. A combination of these parameters of plant height, volume

and NDVI would be ideal for predicting yield of potato crops or

estimating nitrogen content (Lu et al., 2021).
5 Conclusion

A precise phenotyping pipeline using DeepLab was developed

for estimating the potato crop traits from both the European and

Japanese potato varieties. Using this pipeline, the precise estimates

of height, volume and vegetation indices of potato varieties was

compared with UAV-images taken at 15 am and 30 m altitude.

There was a high correlation between the potato varieties at both

heights with an R2 of 0.947, 0.956 and 1 for crop varieties height,

volume and NDVI respectively. While a high correlation was

obtained, it was found that in the early stages of growth, higher

resolution obtained from 15 m would be ideal for determining the

volume and height of the potato crops after emergence.

Furthermore, for NDVI, there was no difference between images

obtained at the two heights of the UAV. As a proof of concept, it

was found that there was a high correlation between the UAV

obtained parameters of height, volume and NDVI with those

measured manually with R2 of 0.856, 0.845 and 0.968 respectively

when the UAV was flown at a height of 15 m thus confirming the

preciseness of the parameters obtained by the UAV. In the future, it

is expected that these parameters would not only be useful for yield

prediction but also provide breeders with more information about

the varieties in the field thus saving time compared to

manual measurements.
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Genomic selection (GS) is an option for plant domestication that offers high

efficiency in improving genetics. However, GS is often not feasible for long-lived

tree species with large and complex genomes. In this paper, we investigated UAV

multispectral imagery in time series to evaluate genetic variation in tree growth

and developed a new predictive approach that is independent of sequencing or

pedigrees based on multispectral imagery plus vegetation indices (VIs) for slash

pine. Results show that temporal factors have a strong influence on the h2 of tree

growth traits. High genetic correlations were found in most months, and genetic

gain also showed a slight influence on the time series. Using a consistent ranking

of family breeding values, optimal slash pine families were selected, obtaining a

promising and reliable predictive ability based onmultispectral+VIs (MV) alone or

on the combination of pedigree and MV. The highest predictive value, ranging

from 0.52 to 0.56, was found in July. The methods described in this paper

provide new approaches for phenotypic selection (PS) using high-throughput

multispectral unmanned aerial vehicle (UAV) technology, which could potentially

be used to reduce the generation time for conifer species and increase the

genetic granularity independent of sequencing or pedigrees.

KEYWORDS

phenomic selection, forest phenomics, PBWAS, high throughput, time-series
1 Introduction

Tree breeding primarily mimics the natural selection of breeding domestication based

on cycles of selection, mating, and testing that have successfully increased tree productivity

and genetically improved tree materials for multiple traits (Pâques, 2013). However, forest

trees typically have long breeding cycles and large physical sizes, making breeding and
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progeny testing complex and expensive (Isik, 2014). Compared to

crop breeding, forest tree breeding is still in its infancy (Lyzenga

et al., 2021). The development of molecular genetic methods has

greatly improved selection efficiency. Many available molecular

markers are colocalized with functional genetic variation, and

breeders can use these markers to aid breeding (Lande and

Thompson, 1990; Wang et al., 2018). The goal of molecular

genetics is to identify the polymorphic markers or genes

associated with phenotypic variation in target traits (Rasmussen,

2020). However, most target traits are complex and influenced by

numerous genes, but each effect is small. Low-throughput marker

selection methods, such as microsatellites (Jarne and Lagoda, 1996)

and marker-assisted selection (MAS) (Ribaut and Hoisington,

1998), are outdated and not as successful as expected. Therefore,

genomic selection (GS) using genome-wide markers has been

proposed in breeding (Jannink et al., 2010). GS mainly aims to

calculate the genomic estimated breeding value (GEBV) of target

traits by estimating the effects of all loci using single nucleotide

polymorphism (SNP) markers, resulting in more comprehensive

and reliable selection (Newell and Jannink, 2014). GS has been

successfully applied in crop breeding, which can greatly improve the

prediction of breeding value (BV) and reduce the recurrent cycles of

selection. GS is becoming the most popular and successful strategy

for predicting breeding values of target traits for selection (Crossa

et al., 2017; O’Connor et al., 2021). As high-throughput sequencing

becomes more efficient and affordable, interest in GS has increased

in forest tree breeding (Grattapaglia et al., 2018; Ukrainetz and

Mansfield, 2020). However, GS may not always be appropriate for

tree species, especially conifers that have not been whole-genome

sequenced, such as slash pine (Scott et al., 2020), because these

candidates often have large, uncharacterized, and complex

genomes, making rapid assembly of reference genomes difficult;

without sufficient funding or prior genome characterization, GS

seems out of reach (Rincent et al., 2018).

There are two important kernel functions that have been used

primarily in GS, including the Gaussian kernel (GK) and the

genomic best linear unbiased predictor (GB) (Cuevas et al., 2016).

GB is a linear kernel that uses the marker matrix to compute the

genomic relationship matrix, also called the kinship matrix, while

GK is a covariance matrix that reveals the complex marker effects

and the possible interactions (Cuevas et al., 2019). The prediction of

GK usually performs better than GB in a single environmental

condition (Bandeira e Sousa et al., 2017). All these kernel functions

use a large number of molecular markers to predict the target traits,

which is similar to predictive models built using machine or deep

learning methods based on near-infrared spectroscopy (NIRS) or

hyperspectral data (Yoosefzadeh-Najafabadi et al., 2021; Li et al.,

2022). Therefore, it is plausible to use spectral data to estimate the

kinship matrix, similar to the use of markers (Van Tassel

et al., 2022).

Recently, phenomic selection (PS) has emerged to address these

issues by using high-dimensional secondary traits (HDSTs) (e.g.,

individual sample near-infrared (NIR) spectra or hyperspectral

imaging) instead of SNPs to estimate the realized genomic

relationship matrix (kinship matrix) between individuals, taking

advantage of algorithms and workflows developed for GS (Krause
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et al., 2019; Adak et al., 2021). PS was first proposed by Rincent et al.

(2018), who compared the predictive ability of both NIRS and

molecular markers with two types of GS models, including the GB

and Bayesian LASSO (BL) models, respectively, and the results

showed that using NIRS provided similar or even better predictive

results than using molecular markers, depending on the trait of

interest and the different types of NIRS. Similar results have been

consistently shown in maize and soybean, where the use of NIRS or

hyperspectral imaging could generate competitive estimated

breeding values, called phenomic estimated breeding values

(PEBVs), rather than genomic estimated breeding values (GEBVs)

(Adak et al., 2021; Zhu et al., 2021; Weiß et al., 2022). However,

phenomic selection using unmanned aerial vehicle (UAV)-based

imagery has been less studied.

UAV-based remote sensing has been greatly facilitated for data

acquisition by advances in sensor technology, which has the

potential to increase fieldwork efficiency with less time to collect

spatial information than ground-based spectroscopy and to cover

large areas while maintaining accuracy and resolution.

UAVs can acquire various types of data, including spectral,

structural, thermal, and feature data, which have been widely used

in plant science to estimate various traits (Tsouros et al., 2019). For

example, UAV-based multispectral or hyperspectral imagery could

be used to estimate leaf chlorophyll content and nitrogen

concentration (Zheng et al., 2018), canopy structure information

such as height and canopy area from the Light Detection and

Ranging (LiDAR) system (Maesano et al., 2020) and real-time

kinematic (RTK) positioning system (Tao et al., 2021) for plant

biomass (Masjedi and Crawford, 2020; Nik Effendi et al., 2021) and

grain yield prediction (Li et al., 2020).

In addition, UAV-based imagery also provides a high-precision,

high-throughput method for field-based multitemporal

phenotyping data collection in the context of plant breeding. This

allows for the provision of dynamic information on plant growth

and performance (Dıáz-Varela et al., 2015; Song et al., 2022). For

example, the height data of sorghum and maize from different

groups of breeding material estimated by UAV-based imagery have

been used to detect the different growth stages (Han et al., 2018;

Pugh et al., 2018). UAV-based thermal imagery has been used for

high-throughput field phenotyping of black poplar response to

drought (Ludovisi et al., 2017). Therefore, UAV-based imagery is

very helpful for forest inventories because traditional measurements

of tree height and crown growth are difficult due to the difficulty in

determining the top of the tree crown and the two cross-crown

diameters to simplify the calculation of crown area (Guerra-

Hernández et al., 2017). With the specific wavelengths and the

RTK system, UAV-based multispectral imagery allows us to obtain

the growth parameters as well as the content of physiological and

photosynthetic pigments in the leaves.

Although there are achievements in growth trait detection and

leaf physiological prediction for plant breeding based on UAV-

based imagery, no research has been found on the use of

multitemporal HDSTs to perform phenomic selection of growth

traits in slash pine. In previous studies (Tao et al., 2021; Song et al.,

2022), we developed a UAV-based multispectral imagery

phenotyping method that successfully detected growth parameters
frontiersin.org
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such as tree height, crown area, and biomass, which were combined

to estimate genetic variation with various vegetation indices (VIs) in

slash pine (Pinus elliottii). However, previous studies did not

consider using the multispectral as an indicator to predict the

genetic parameter. Here, we further combined this methodology

with multitemporal growth and multispectral data in a slash pine

breeding plantation to evaluate the potential of linking high-

throughput phenotyping with growth parameters to perform

phenomic selection.

Slash pine is a typical conifer with a large, uncharacterized, and

complex genome, and the reference genome of slash pine is still

unavailable; therefore, genetic studies of slash pine are mainly based

on the transcriptome (Diao et al., 2019; Ding et al., 2022).

Therefore, we used slash pine breeding populations as model

materials to evaluate a novel approach for low-cost, high-throughput

phenomic selection of growth trait-based multispectral images. Our

objectives were to 1) estimate genetic variation in growth traits in

time series using UAV multispectral imagery; 2) evaluate the

predictive ability of the GB and GK models using time series

multispectral data for phenomic selection; and 3) develop new

predictive selection approaches that are independent of sequencing

or pedigrees in trees, especially in conifer breeding programs.
2 Methods and materials

2.1 Site description

The study was conducted on a slash pine population in a

national forest farm in Anhui, China; details can be found in

Song et al. (2022). There were twenty open-pollinated families

with a lattice incomplete block single-tree plot design planted in

2013 within two sites. Each block contained 20 trees, and the

spacing between each tree per block was 2 m×3 m. Each tree

represented a single family, with no replications within a block.

There were 2 sites, and each site contained 20 blocks. 30% of the

trees died (240/800) during these years. In total, there were 560

remaining individual trees. Tree canopies did not overlap. This

region has a subtropical temperate climate with an average

temperature of 15°C.
2.2 UAV flights and field data collection

Flights were performed monthly in 2021 (at the age of 8 years)

using DJI Phantom 4 Multispectral (DJI, Shenzhen, China), which

has 1 RGB camera and 5 wavelengths (450 nm ± 16 nm, 560 nm ±

16 nm, 650 nm ± 16 nm, 730 nm ± 16 nm, 840 nm ± 16 nm). This

UAV is equipped with an RTK system that can reduce the

horizontal and vertical positioning errors to 0.03 m and 0.06 m,

respectively. The output images from each multispectral camera are

in TIF format with a resolution of 1600×1300 pixels.

Flights were conducted at a fixed height of 35 m above ground

level during a sunny and less windy day in each month to ensure

high accuracy requirements and to reduce any systematic bias

caused by environmental factors. A standard reflectance panel
Frontiers in Plant Science 0353
was used during each flight to improve the consistency of the

spectral data. The operation was set to 80% overlap between images

and a forward speed of 5 m/s during the flights. The original images

were normalized to adjust the data and align the spectral

information across the images. The total area covered was 4.5 ha

and the duration of each flight was 1 hour. During the Covid-19, the

field trip was strictly restricted in February 2021, so data were not

available. To validate the accuracy of tree height and crown area

(CA) measurement by UAV images, the ground truth data of tree

height and CA were measured by randomly selected 100 trees in

July of 2021, with the high accuracy of RTK system, the UAV-based

tree height and CA have a high correlation with the ground truth,

with the R2 value higher than 0.85 (Song et al., 2022).
2.3 Image processing

In this study, the image processing methodology employed a

series of steps to extract essential information from the original

multispectral images of the plantation. The initial data processing

involved the use of DJI Terra software (version 3.3.0, Shenzhen,

China) to generate multispectral orthomosaics and dense 3D point

clouds of the entire plantation. These orthomosaic images, along

with the 3D point clouds, served as the basis for further analysis.

The orthomosaic images and 3D point clouds were then further

processed using the R software version 4.2.0 and the lidR package

version 4.0.0 (Roussel et al., 2020). The first step in data analysis was

the classification of ground points within the 3D point clouds using

the cloth simulation filtering (CSF) function, as proposed by Zhang

et al. (2016).This step was critical for creating a digital terrain model

(DTM) that accurately represented the bare ground surface.

With the classified ground points, the next step was to create

digital surface models (DSM) using a point-to-grid algorithm. The

resolution of both the DTM and the DSM was set at 0.5 m, ensuring

a high level of detail in the representation of terrain and surface

objects. The difference between the DSM and the DTM provided

the canopy height models (CHM), which indicate the height of

vegetation above the ground surface.

Using the CHM, individual trees were detected using the

dalponte2016 function with specific criteria, including a minimum

height threshold of 2.6 m and a maximum crown diameter of 2.5 m.

This step allowed for the identification and delineation of individual

trees within the study area.

For each detected individual tree, tree-level attributes such as

tree height and crown area were manually labeled. In addition,

relevant family, site, and block information was associated with

each tree to improve the accuracy and context of the tree-level data.

To represent the spatial extent of individual tree canopies, tree

crown polygons were generated from the manually labeled crown

areas using the raster package (Hijmans et al., 2015). Finally, the

spectra of each individual tree were extracted using the tree crown

polygons. This extraction involved collecting spectral information

from the multispectral orthomosaic images for all pixels within the

boundary of each tree crown.

Similar to previous studies (Tao et al., 2021; Song et al., 2022),

fifteen vegetation indices (VIs) were calculated for each pixel from all
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extracted tree images (Table 1). These VIs were then averaged at the

tree level based on the red, green, blue, red edge, and near-infrared

(NIR) spectra, providing valuable insights into the vegetation health

and other biophysical characteristics of the individual trees. The

comprehensive image processing methodology described above

ensured accurate data extraction and analysis, allowing researchers to

gain valuable information about the structure, health, and vegetation

dynamics of the plantation.
2.4 Genetic parameters

Estimates of genetic parameters for slash pine growth traits in

each month of the year were collected by fitting a general multiple

mixed linear model using restricted maximum likelihood (REML);

details can be found in (Li et al., 2018; Cuevas et al., 2019). A brief

description can be expressed as:

yi   = xim + bi + fi + ei (1)

yi is a vector containing the phenotypic values for both traits

(tree height and crown area) for the individual. xiis a vector linking

the fixed effects m to the observations for the individual. m is a

vector of fixed effect coefficients for the traits. bi is a vector

representing the random block effects for the individual. fi is a

vector representing the random family effects for the individual. ei is

a vector representing the random residual effects for the individual.

By stacking these vectors for all trees, we can represent the overall

model equation as:

Y   = Xm + Z1b + Z2f + e (2)
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where Y is a vector of phenotypic observations (containing

measurements for both traits). m is a vector of fixed effects,

representing the overall mean. b , f , and e are vectors of bivariate

random effects for block, family, and residual effects, respectively.X

is the incidence matrix linking observations to the fixed effects. Z1

and Z2 are incidence matrices linking observations to the

appropriate random effects for block and family, respectively. In

this model, the fixed effects represented by m(overall mean) are

connected to the phenotypic observations through the incidence

matrix X. Similarly, the random effects for block and family,

represented by b and f respectively, are linked to the observations

through the incidence matrices Z1 and Z2. The vector e accounts for

the residual effects, which are not explained by the fixed or random

effects. For each month, the equation can be:

Yi   = Xim + Zi1bi + Zi2 fi + ei (3)

Where Yi is the vector of bivariate phenotypic observations for

the ithmonth. m is the vector offixed effects, representing the overall

mean. bi , fi, and ei are the vectors of bivariate random effects for

block, family, and residual effects, respectively, specific to the ith
month. Xiis the incidence matrix linking observations to the fixed

effects for the ith month. Zi1and Zi2are the incidence matrices

linking observations to the appropriate random effects for block and

family, respectively, for the ithmonth. The variance components

were used to estimate the temporal narrow sense of h2 for trait i  and

the genetic correlations (rgij ) between trait iand trait j,

h2i =
2:5s 2

fi

s 2
fi + s2

bi + s 2
ei

(2)
TABLE 1 The spectral indices used in this study.lr, lb and lgare the reflectances at wavelength l.

Name Abbrev. Equation Reference

Normalized difference vegetation index NDVI (NIR − R)=(NIR + R) Peñuelas et al. (1993)

Optimized soil adjusted vegetation index OSAVI ((NIR − R)(1 + 0:16))=((NIR + R + 0:16)) Rondeaux et al. (1996)

Green normalized difference vegetation index GNDVI (NIR − G)=(NIR + G) Gitelson et al. (1996)

Soil adjusted vegetation index SAVI ((NIR − R)(1 + 0:5))=((NIR + R + 0:5)) Huete (1988)

Modified soil adjusted vegetation index MSAVI (2NIR + 1 − √ ((2NIR + 1) 2 − 8(NIR − R)   ))=2 Qi et al. (1994)

Triangular greenness index TGI − 0:5½(lr − lb)(R − G) − (lr − lg )(R − B)� (Hunt et al., 2011)

Green leaf index GLI (2G − R − B)=(2G + R + B) (Louhaichi et al., 2001)

Triangular vegetation index TVI 0.5[120(N-G)-200(R-G)] (Broge and Leblanc, 2001)

Red edge chlorophyll index RECI NIR=E − 1 Gitelson et al. (2003)

Leaf chlorophyll index LCI (NIR − E)=(NIR + R) Pu et al. (2008)

Anthocyanin reflectance index ARI G=NIR van den Berg and Perkins (2005)

Modified green red vegetation index MGRVI (G 2 − R 2)=(G 2 + R 2 ) Bendig et al. (2015)

Modified anthocyanin reflectance index MARI (G ( − 1) − E ( − 1))=NIR Gitelson et al. (2006)

Normalized difference red edge index NDRE (NIR − E)=(NIR + E) Barnes et al. (2000)

Red green blue vegetation index RGBVI (G 2 − R� B)=(G 2 + R� B) Bendig et al. (2015)
R: red bands, G: green bands, B: blue bands, E: red edge bands, NIR: near infrared bands.
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rgij=
s  
fijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
fi  
+ s 2

fj  

q (3)

where s 2
fi , s

2
bi  and  s 2

ei  are the temporal family, block and

residual variance for trait i, respectively, and s  
fij
is the estimated

family covariance between trait iand trait j. The genetic gain

represents the effectiveness of tree improvement and is measured

by the change in the mean breeding value of each trait population.

In this study, genetic gain (DGR) of each trait for each month was

calculated by subtracting the mean breeding value of selected ratio

growth traits from the total mean of growth traits by breeding value.

DGR = MBV � r  −TBV

Where TBV is the total mean of the growth traits determined by

breeding value, MBV is the mean breeding value of the top selected

proportions (r) of the growth traits in descending order. The

variable rdenotes the proportion of growth traits selected as

top performers.
2.5 Kernel methods

We performed two important GS methods, including GB and

GK kernels (Cuevas et al., 2019), to compare the phenomic

prediction accuracy, and we used multispectral as input instead of

SNP data. GB is a standard linear kernel, usually referred to as the

genomic relationship matrix (Cuevas et al., 2016). GB is described

as GB = XX 0
p , where X in our study is the kernel matrix formed based

on the multispectral and VIs matrix (M BLUP). GK, defined as G

K = exp( − hd2ii=q), is different from GB, which is defined as the

semiparametric model reproducing kernel Hilbert spaces (RKHS)

and appears as a reproducing kernel(González-Camacho et al.,

2012), where q and h are the median of the Euclidean squared

distance and the bandwidth parameter affecting the covariance

decay rate between genotypes, respectively. Specifically, for each

month, we randomly divided the data into an 80% training set for

model training and a 20% validation set for model validation. To

evaluate model stability, the data were randomly divided 100 times

for model training.
2.6 Phenotyping-based Wide Association
Analysis (PBWAS)

The PBWAS in our study was conducted according to the

principles of GWAS (Genome-Wide Association Study)

methodology. We considered each temporal month as a

chromosome, and a genome-wide association analysis (GWAS)

was applied to detect the multispectral and VIs (20 variables)

related to the growth traits at each temporal month level.

Thresholds of P< 10^-3 were used as the significance level to

identify associations between variables and traits. While a typical

threshold for GWAS is usually around 10^-4 to 10^-5, we chose a

relatively lower threshold given the smaller size and scope of our

study compared to traditional GWAS studies with larger genomic

datasets. The lower threshold allowed us to identify potentially
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meaningful associations between the multispectral and VIs traits

and tree growth traits in the context of our specific study using

spectral data.

All statistical analyses were performed in R software. The BGGE

package (Granato et al., 2018) was used for GB and GK model

calibration, the sommer package was used for genetic parameter

analysis (Covarrubias-Pazaran, 2016), the statgenGWAS package

(van Rossum and Kruijer, 2020) was used for PBWAS analysis, and

the ggtree (Yu et al., 2017; Yu, 2020), ggplot2 (Wickham, 2011) and

CMplot packages (LiLin-Yin, 2022) were used for data visualization.
3 Results

3.1 The growth of height and CA in
different months

The average growth trait performance of 20 families is shown in

Figure 1. Since the growth rate can reflect the percentage change in

the indicator over a given time horizon, it can be seen that the

growth rate varies considerably among the families during the one-

year growth period according to Figure 1. The NDVI shows that all

trees have a high growth rate from April to September and a slow

growth rate from December to March, and families 3, 5, 10, 13, 14,

16, and 19 have a higher mean tree height than other families.

However, not all families had high mean tree height followed by

high mean CA; only three families, including 3, 10, 16, had both

high tree height and CA. Families 7 and 12 had relatively lower

mean tree height and CA than the other families, but their growth

rate (NDVI) from April to September was high. In general, the total

amount of tree height and CA started to increase in summer and

slowed down in winter (Figures 2A, B).
3.2 Genetic variation, correlations and
family selection

The variation of the estimate h2 for tree height, CA, VIs and the

spectral bands over 11 months is shown in Figure 3. A range of h2

from 0 to 0.41 was found for all traits. Temporal phenotypes have a

strong influence on the h2 estimates for all traits. All spectral bands

including red, blue, green and NIR had relatively low h2 in all

months with a range of 0 to 0.25. RGBVI, MGRVI, and LCI had

moderate h2 in March, with h2 values of 0.35, 0.31, and 0.31,

respectively, but low h2 values in all other months. The h2 values

of ARI, MACI, NDRE, GCI, GNDVI, LCI and RECI in the month of

October also showed relatively high values compared to other

months, with a range of 0.26 to 0.36. Tree height showed a strong

stable h2 in all months except Dec, ranging from 0.26 to 0.41. The

highest h2 for tree height was found in September, with a value of

0.41, but all spectral and VIs in September were low, with a range

from 0 to 0.19. The months had a strong influence on the h2 of CA;

the highest h2 of CA was found in January, June and July, and the

lowest h2 was found in April, with a value of 0.09.

Figure 4 shows the estimated genetic correlations between

multispectral, VIs and tree growth traits (height and CA) in
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different months. High genetic correlations were found from

January and July to December. Multispectral and VIs have no

significant genetic correlation with tree height or CA in March,

April and June, and the highest genetic correlations between tree
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height and CA were found in October, with an rg value of 0.99. A

large number of correlations between multispectral, VIs and tree

growth traits (height and CA) were found in January, and red edge,

blue and green spectra had a significant positive correlation with
B

A

FIGURE 2

The density mean of tree height (A) and CA (B) in different months and seasons of the 560 slash pines in 2021.
FIGURE 1

The growth traits of tree height, CA and NDVI in different months. Jan, Mar, Apr, May, June, July, Aug, Sep, Oct, Nov, Dec are represented as
January, March, April, May, June, July, August, September, November, December, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1156430
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1156430
CA, with rg values of 0.79, 0.75 and 0.94, respectively. SAVI has a

significant positive correlation with height in December (rg=0.77)

and CA in May (rg=0.78), and the red spectra also have a strong

positive correlation with CA (rg=0.89). In addition, a strong

negative correlation was found between the blue spectra and CA

in May (rg=-0.82).

The breeding values ranked between multitemporal of all

families for tree height, CA, are shown in Figure 5. Although

each family has variable breeding values in different months,

most of the families are consistent between each month, and

breeding selection is possible for high tree height and CA families

in certain months. For tree height, family 19 had the highest

breeding values, in addition to families 6 and 10, which also had
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the highest breeding values in most months. For CA, families 6, 10

and 19 were found to have the highest breeding values for month

influence. Family 19 was also selected in January, March, May,

November, and December. Families 6, 10 and 19 show the highest

breeding value for tree height and CA.
3.3 Genetic gain

The top 10%, 20% and 30% genetic gains of the families for tree

height and crown in different months are shown in Figure 6. The

highest and lowest genetic gains for tree height and CA with strong

selection rates (top 10% and 20%) were found in September, July,

and December, April, with values of 0.35, 0.25, 0.8, and 0.53 for the

highest and 0.23, 0.18, 0.32, and 0.23 for the lowest, respectively. In

general, genetic gains increased as stronger selection rates were

applied to tree height and CA.
3.4 Phenomic selection using the GB and
GK kernels

The phenomic selection based only on multispectral+VIs (MV)

and the combination of MV and pedigree (MV+P) using the GB

and GK models is shown in Figure 7. Temporal time influenced the

predictive ability of PS, with a range from 0.13 to 0.56 for all traits

using two kernels (GB, GK). The average prediction of GB is similar

to that of the nonlinear kernel GK in all cases. Pedigree does not

improve the prediction ability compared to the kernels using MV

+P. Interestingly, the combination of pedigree with MV shows

similar prediction accuracy compared to the prediction using MV

only for the two kernels in some months (December, October, June,

May), but similar in January, March, and April. The highest

prediction ability for tree height and CA using GB and GK was

found in July, with a prediction ability value ranging from 0.52 to

0.56, followed by Dec. The lowest prediction ability for tree height
FIGURE 4

The genetic correlations between tree height and CA and
multispectral and VIs at 11 months in 2021. Red indicates genetic
correlations above 0.75 in absolute value. Blue color indicates CA;
green color indicates height.
FIGURE 3

Estimates of h2 from 11 months in 2021 for all traits, including five spectral bands, vegetation indices (VIs), and growth traits.
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and CA was found in June using GB and March and June using

GK, respectively.
3.5 PBWAS

PBWAS reveals 15 associations between significant multispectral,

VIs and tree height and CA with P< 10-3 in these 11 months

(Figure 8). Tree height was associated with 9 VIs from Jan to Dec,

including TGI in May and Sep, GLI in June, NIR in Aug, GNDVI in

Sep and ARI, MSAVI, and OSAVI in Oct. Six significant associations

emerged between multispectral, VIs and tree CA, including MARI in

Mar, Rededge and NIR in Apr, GLI in June and GNDVI in Sep.
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Among those, the GLI in June and GNDVI in Sep were associated

with both tree height and CA. Time series significantly influence the

association between multispectral, VIs and tree growth traits. No

associations were found to emerge with tree height in Jan, Mar, Apr,

July, Nov and Dec and Jan, May, July, Aug, Oct, Nov and Dec for

tree CA.
4 Discussion

UAV-based imagery has been shown to predict tree growth

traits at high throughput and to be used for breeding selection in

various tree species (Ota et al., 2017; Jang et al., 2020; Jones et al.,
FIGURE 6

Realized genetic gains of tree height and CA traits at age 8 for slash pine at different months in 2021.
FIGURE 5

Family rankings for tree height and CA in slash pine in different months. Each line represent one family. Family values are expressed as deviation
from each trait mean. AU: arbitrary units.
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2020; Rallo et al., 2020). Equipped with the RTK system, UAV

multispectral imagery provided high accuracy of 3D point cloud

data and spectral data for individual trees in forest plantations (Tao

et al., 2021). Supportive results were reported by Volpato et al.

(2021), who found that postprocessed kinematic (PPK) corrections

are an affordable method for plant height, and that PPK or RTK

corrections could greatly increase the accuracy of image

georeferencing and provide a promising method for plant height.

Therefore, UAV imagery is well suited to monitor plant growth

traits in a long time series, and successful studies have been

conducted in agriculture to estimate growth and yield for

breeding selection purposes, including soybean (Borra-Serrano

et al., 2020), cotton (Ashapure et al., 2020), sorghum (Masjedi

et al., 2020) and tomato (Chang et al., 2021). However, there is

limited research on monitoring tree growth in time series for

breeding selection purposes (Guerra-Hernández et al., 2017;

Solvin et al., 2020). Our study is the first to apply UAVs for tree

growth trait identification and the use of multispectral data to

perform multitemporal phenomic selection for tree growth traits in
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a slash pine breeding plantation. This comprehensive approach

integrating UAV, multispectral data and multi-temporal analysis

represents a unique contribution to the field of tree growth trait

identification and phenomic selection in a breeding program. UAV

imagery provides a cost- and time-saving phenotyping method for

individual tree estimation of growth-related traits, greatly

improving data collection over different months or years and

characterization of the genetic basis underlying phenotypic

differentiation (Masjedi and Crawford, 2020). Our approach

collected growth information through multitemporal flights

(n=11), each with low computational time, using a low-cost UAV

device. This approach has been shown to provide accurate estimates

of growth characteristics and VIs in slash pine plantations (Tao

et al., 2021). Similar indices have been widely used in many studies

at the individual tree level (Santini et al., 2019b; Santini et al., 2021).

Tree height and CA differences were detected among families

and increased during spring (March, April, May) and summer

(June, July and August) with the increase of tree growth

characteristics. However, with the limitation of low quality of
FIGURE 8

Results of the PBWAS using GWAS methodology based on multispectral and VIs for tree height and CA in 11 months in 2021. Each dot in a different
month is a representation of that multispectral or VIs.
FIGURE 7

Average Pearson’s correlations between observed and predicted values with standard deviation for 2 methods with 80% of the families in the training
set and 20% of the families in the test set. Methods GB and GK are GBLUP and Gaussian Kernel, respectively. The black line in each bar represents
the standard deviation (SD). The SD was calculated by training the model on 100 randomly divided subsets of the data and obtaining the standard
deviation of the predicted values across these subsets.
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RGB camera, there are some tree height and CA do not extract

correctly. which occurred that the tree height and CA for some trees

from January to May have a trend of decreasing. The h2 of tree

height remained relatively stable during the whole growth year in

2021, with a range from 0.22 to 0.41, and tree CA did not have a

stable h2. The highest h2 for CA was found in June and July. These

results are consistent with our previous study in which tree height

and CA had moderate h2 values of 0.37 and 0.30, respectively, in

July (Zhaoying Song et al., 2022). Moderate genetic variability in

tree growth traits has also been found in other tree species, for

example, a range of 0.21 to 0.30 and 0.19 to 0.28 h2 for tree height in

different ages of Norway spruce (Picea abies L. Karst.) were found

by Solvin et al. (2020) using UAV imagery. The consistency of the

families ranked in different months, and the moderate h2, selected

families with high genetic gains for both tree height and CA at

different selection ratios. In addition, the best month of selection for

tree height and CA was also found in our study.

Most multispectral and VIs in this paper have a large positive or

negative genetic correlation with tree height and CA in different

months, and multispectral and VIs have been shown to have a strong

correlation with plant photosynthetic status, which has the potential

to be used in plant phenomics approaches. Santini et al. (2021)

proposed that VIs show a strong relationship with aboveground

growth traits, whereas leaf biochemistry has no significant effect on

tree growth (Santini et al., 2019a). The strong genetic correlation

between VIs and tree growth traits suggests that a PS based on these

factors is possible. In this paper, we aim to apply a PS approach

similar to that first reported by Rincent et al. (2018), who used NIRS

as a low-cost, high-throughput phenotype to make predictions

instead of genetic markers. The only difference in our study is that

we use five spectral bands and many VIs as inputs instead of markers

to perform PS. Most of the canopy spectrum and VIs showed genetic

variability in different months, which is consistent with the results of

Rincent et al. (2018), who found that VIS-NIR wavelengths between

400-2500 nm mostly showed genetic variability. Therefore, Vis, like

NIRS, should be used to process PS instead of genetic markers. We

collected the spectrum and VIs from different growth months to

determine the temporal influence on PS performance. Since we do

not have marker data, the GB and GK models were performed based

on MV and the combination of MV and pedigree data. Although the

growth time influences the PS prediction, we still obtained the highest

PS prediction ability in July with a range of 0.52 to 0.56. A supported

study was reported by Rincent et al. (2018), who used NIRs and

obtained moderate PS predictive abilities ranging from 0.34 to 0.53

for wood properties in black poplar, but slightly lower predictive

abilities than those with SNPs. There were no significant differences

in the accuracy of the PS models generated by GB and GK in our

study. Moreover, the accuracy of both models was higher than the

range reported by Cuevas et al. (2019), for wheat data, where GB and

GK yielded a range between 0.349 and 0.367 for grain yield prediction

using NIR spectroscopy. The PS models generated in our study also

outperformed models using only genomic markers or a combination

of genomic markers, pedigrees, and NIRS, which had predictive

abilities ranging from 0.40 to 0.47. Cuevas et al. (2019) also

reported that the markers obtained slightly higher correlations

between observed and predicted values than pedigree + NIRS,
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indicating that even if PS is less accurate than GS in some cases, it

could be a feasible alternative and reliable method for filtering the

poor performing germplasm when markers are not available, which

could be a low-cost and high-throughput method independent of

sequencing or pedigrees for tree breeding selection, especially for tree

species with large and complex genomes without prior genome

characterization, GS is often costly and inaccessible.

We used GWAS methodology to reveal the significant VIs and

spectra associated with growth traits at different growth times,

which we call PBWAS. The results demonstrated the effectiveness

of combining phenomic information with UAV imagery to

characterize growth differentiation at different growth times in

slash pine. We identified relevant VI phenotypic associations for

tree height and CA in several months. These associations were

inconsistent across months for tree height and CA, as reported by

Roberts et al. (2016). NDVI, OSAVI, and GNDVI were found to be

saturated at high leaf area and may not capture individual

differences in tree growth. These indices were also found in our

work to be highly associated with tree growth in different months.

The strongest correlations between VIs and tree growth traits were

TGI and LCI in Sep, ARI in Oct, GLI in June, and NIR spectra in

Apr and Aug, respectively. TGI, LCI and GLI are the optimal

spectral indices for leaf nitrogen detection, which are highly related

to leaf chlorophyll content (Hunt et al., 2013; Lima et al., 2021). The

anthocyanin reflectance index (ARI) can be used to estimate

anthocyanin concentration (Kior et al., 2021). Santini et al. (2021)

found four SNPs associated with anthocyanin content in P.

halepensis, suggesting that VIs are associated with genomic

information. Some VIs, such as GLI in June and GNDVI in

September, showed associations with both tree height and crown

area (CA), suggesting the possibility of pleiotropy where these VIs

simultaneously influence both growth traits within the same month.

These results suggest that the detected spectrum and VIs across

different months deserve further attention in exploring their

potential adaptive role for slash pine.

In discussing the limitations of our study, it is important to

acknowledge the lack of a propagation of error analysis in our current

manuscript. We recognize the importance of such an analysis in

determining the reliability and applicability of our findings. However,

several factors prevented us from including a comprehensive error

propagation analysis in this study. First, the limitations of our

experimental design and data collection process, including sample

size limitations and measurement precision, may have affected the

feasibility of conducting a robust error propagation analysis. Second,

the selected data analysis methods, which rely on model-based

estimation and prediction, have inherent limitations with respect to

error propagation. Finally, given the scope and objectives of this

study, we faced time and resource constraints, as well as limitations in

data availability. As a result, a comprehensive analysis of error

propagation was beyond the scope of this study.
5 Conclusion

With the development of UAV technology, the collection of

multispectral or NIR spectra has greatly increased and conversely
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decreased in cost. In this paper, we use this technology to reinforce

the advantages of using the PS approach in Scots pine to estimate

the ability of PS used in conifers independent of sequencing or

pedigrees. The heritable variation of growth traits in time series was

evaluated, temporal growth strongly influenced the genetic

variation of growth traits, and the optimal breeding selection time

for tree growth traits was suggested. Two types of GS kernels,

including GB and GK, showed satisfactory prediction ability based

on the tree growth traits at different months using the pedigree and

MV instead of genomic markers, indicating that with high-

throughput UAV imagery, phenomic selection using multispectral

and VIs was possible and reliable. Our study provides insight into

the spectral processes reflecting phenotypic differentiation (in our

case, tree growth traits) in a time series of UAV technology. Our

new PS approach in slash pine bridges the gap between high-

dimensional secondary traits (in our study, multispectral imaging)

and individual phenotypes.
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Pitfalls and potential of
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and Anika Wiese-Klinkenberg 1,6
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4International Plant Phenotyping Network e.V. (IPPN), Jülich, Germany, 5Plant Sciences Group,
Wageningen University & Research, Wageningen, Netherlands, 6Bioinformatics (IBG-4),
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Automated high-throughput plant phenotyping (HTPP) enables non-invasive,

fast and standardized evaluations of a large number of plants for size,

development, and certain physiological variables. Many research groups

recognize the potential of HTPP and have made significant investments in

HTPP infrastructure, or are considering doing so. To make optimal use of

limited resources, it is important to plan and use these facilities prudently and

to interpret the results carefully. Here we present a number of points that users

should consider before purchasing, building or utilizing such equipment. They

relate to (1) the financial and time investment for acquisition, operation, and

maintenance, (2) the constraints associated with such machines in terms of

flexibility and growth conditions, (3) the pros and cons of frequent non-

destructive measurements, (4) the level of information provided by proxy traits,

and (5) the utilization of calibration curves. Using data from an Arabidopsis

experiment, we demonstrate how diurnal changes in leaf angle can impact

plant size estimates from top-view cameras, causing deviations of more than

20% over the day. Growth analysis data from another rosette species showed

that there was a curvilinear relationship between total and projected leaf area.

Neglecting this curvilinearity resulted in linear calibration curves that, although

having a high r2 (> 0.92), also exhibited large relative errors. Another important

consideration we discussed is the frequency at which calibration curves need to

be generated and whether different treatments, seasons, or genotypes require

distinct calibration curves. In conclusion, HTPP systems have become a valuable

addition to the toolbox of plant biologists, provided that these systems are

tailored to the research questions of interest, and users are aware of both the

possible pitfalls and potential involved.

KEYWORDS

calibration curve, digital biomass, high-throughput plant phenotyping, leaf mass per
area, sensors
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1 Introduction

For decades, plant growth has been studied by taking non-

destructive measurements such as plant height, along with

destructive measurements such as plant dry mass. Typically, these

assessments involved serial measurements over time, or

comparisons of plants or plots at a ‘final’ harvest (Evans, 1972).

Usually, 3-8 plants per treatment were harvested, or 2-30 genotypes

compared, in a process that could easily take a full day or more for a

single person. However, In the past 15 years, there has been a

significant shift towards high-throughput plant phenotyping

(HTPP). Fully automated systems now screen up to hundreds of

genotypes and thousands of individual plants or field plots using

non-destructive sensors, with the collected data automatically

processed and stored for later use. (Furbank and Tester, 2011;

Fiorani and Schurr, 2013; Tardieu et al., 2017; Lorence and Jimenez,

2022). In controlled conditions, automated phenotyping is often

achieved by bringing individual plants to sensors (Yang et al., 2014;

Al-Tamimi et al., 2016), or by moving sensors to or over the plants

(Granier et al., 2006; Nagel et al., 2012). In the field, sensors are also

brought to plants, either through mobile vehicles (White and

Conley, 2013; Deery et al., 2014) or via drones or other aerial

platforms that fly over field trials (Vargas et al., 2020; Roth et al.,

2022). In all of these cases, automation has enabled a significant

increase in the number of individual plants or plots that can be

processed daily, often by an order of magnitude.

An important driver for the development of HTPP systems has

been the rapid progress in the field of molecular biology. The

extensive expansion and utilization of molecular tools at

continuously decreasing costs have enabled thorough genotypic

characterization of many plant species, cultivars, and genotypes.

Phenotypic characterization, however, still lags behind, first because

it is a time-consuming and often still manual measurement process,

and second because plants of the same genotype can exhibit a range

of different phenotypes, depending on environmental conditions

(Furbank and Tester, 2011; Zavafer et al., 2023). This phenotyping

bottleneck is particularly pronounced when studying traits that are

controlled by multiple genes. In such cases, top-down approaches

like Quantitative Trait Loci (QTL) analysis or Genome-Wide

Association Studies (GWAS), are necessary to identify regions of

the genome that are determining these traits (Gibson, 2018).

However, conducting these analyses requires phenotyping

hundreds of different genotypes, preferably all grown

simultaneously in a common environment. Such analyses greatly

benefit from the automation and standardization provided by

HTPP systems (reviewed in Xiao et al., 2022).

Various technological advancements have facilitated the

development of automated HTPP systems. A wide range of non-

destructive sensors, including digital RGB cameras, hyperspectral,

thermal, and fluorescence cameras, laser scanners, and LIDARs (Liu

et al, 2020) enable repeated measurements of individual plants over

time. This provides a higher resolution for capturing time-related
Abbreviations: HTPP, High-Throughput Plant Phenotyping; MAPE, Mean

Absolute Percentage Error; MdAPE, Median Absolute Percentage Error;

RMSE, Root Mean Square Error; PLA, Projected Leaf Area; TLA, Total Leaf Area.
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phenotypic changes compared to experimental designs where new

plants need to be harvested destructively for each time point

(Poorter and Garnier, 1996; Walter et al., 2007). The use of

automated gantries and transportation systems as well as drones

allow us to minimize the distance between sensors and plants.

Another significant factor is the increased computational power and

improved algorithms that enable efficient image processing, with or

without machine learning (Walter et al., 2015; Dobrescu

et al., 2020).

As mentioned above, HTPP systems encompass a diverse range

of approaches, all centered around non-destructive measurements.

In the years ahead, more and more of these systems will be built to

effectively screen a large number of plants for their size, growth

trajectory, and other traits. However, like any complex equipment,

the use of these platforms also presents challenges and limitations

that may be overlooked by those who have not yet utilized them.

Therefore, before investing in the purchase, construction, and

utilization of these platforms, it is crucial to consider potential

issues that may arise, and how they can be addressed. In the Results

and Discussion section, we share insights gained from our

experience in developing and deploying HTPP systems over the

past 15 years. While our focus is primarily on systems operating in

(semi-)controlled environments, several of the issues discussed will

apply to field phenotyping as well.
2 Materials and methods

Part of the discussion that follows will address the relationship

between non-destructive measurements, such as projected leaf area,

and variables that require destructive analysis, including total leaf

area, shoot biomass, and total plant biomass. We illustrate this part

of the discussion with data from two experiments. In the first

experiment, Arabidopsis thaliana (Col-0) plants were cultivated in a

growth room using a rack equipped with neon tubes (Fluora,

Osram, Munich). The plants were grown in soil (ED73,

Einheitserde, Uetersen, Germany) in a cultivation tray with

adjacent 80 ml cells. After incubating the seeds in the dark at

4°C, they germinated in the tray. The plants were then subjected to a

12-hour day length, a photosynthetic photon flux density (PPFD) of

40-50 mmol m-2 s-1, a day/night temperature of 23/20°C and a

relative humidity (RH) of ca. 55%. Plants were watered from below

when the top-soil was fully dry. Thirty-nine days after sowing, the

plants were imaged six times during the day, with 2-hour intervals.

Screening and image analysis were performed following Walter

et al. (2007). The data from this experiment can be found in

Supplementary Data Sheet A1.

The second experiment involved studying Plantago major,

another rosette-forming species, throughout a significant part of its

growth cycle and included a large number of replicates per harvest

(n=12). The plants were grown hydroponically under two different

CO2 concentrations (350 and 700 µmol mol-1), in growth chambers

with a 12-hour day length, a PPFD of 230-270 mmol m-2 s-1, a day/

night temperature of 20/18°C and a day/night RH of 60/90%. Plants

from both treatments were monitored weekly over a 7-week growth

period. Projected leaf area (PLA) was determined by capturing
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slides with an analogue camera placed at a height of 2 meters. The

slides were projected, plant outlines traced on papers, and those

were subsequently digitized semi-manually using a digitizer (model

9874a, Hewlett Packard, Stanford, CA, USA). Total leaf area per

plant (TLA) was determined using a leaf area meter (LiCor 3100, Li-

Cor Inc, Lincoln, NE, USA) equipped with a conveyor belt system.

The determination of the total dry mass of shoots and roots was

done manually, with plant size varying >300-fold throughout the

course of the experiment. The data for this experiment is sourced

from a previously published study by Poorter et al. (1988) and can

be found in Supplementary Data Sheet 2.

Data were analyzed using R version 4.1 (R Core Team, 2022).

Various calibration curves were established by employing the

function lm, with or without a ln-transformation of the relevant

variables, and with or without a quadratic term for the

explanatory variable.
3 Results and discussion

Before proceeding with the design and implementation of a

high-throughput plant phenotyping (HTPP) system, it is essential

to consider the following questions. Figure 1 shows a schematic

overview of the relevant aspects to be considered.
3.1 What is the specific research need?

HTPP systems are designed based on principles of automation

and standardization. However, several critical aspects must be

considered and discussed in order to effectively design and

implement these systems. These include the required scale of the

experiments, the selection of sensors that will be installed, the

necessary software infrastructure, and the expected return on

investment in terms of financial and human resources. These
Frontiers in Plant Science 0366
aspects can only be fruitfully discussed if guided by the question

what purpose the system should serve and what goal(s) one would

like to achieve through this platform. This is even more important

in the case where multiple research groups with diverse interests are

involved, as there is a risk that the intended platform becomes a

compromise that in the end does not satisfy any.
3.2 What are the costs of investment and
maintenance for a phenotyping platform?

HTPP systems involve a complex combination of logistics and

technology, particularly when plants need to be moved to sensors.

Such machines require the use of conveyor belts, gantries, or mobile

robots to transport plants through growth chambers or glasshouses

to an imaging station. At the imaging station, plants are generally

subjected to controlled conditions, such as a consistent light

spectrum and intensity, allowing for a consistent acquisition of

images or other sensor-based data. Additionally, plants in pots or

carriers can be automatically weighed and watered. Measurement

equipment must be linked to large-scale data storage facilities and

databases, in order to store and retrieve the collected measurement

information and other metadata. Clearly, expert knowledge of

automation, logistics, error control, fine mechanics, non-

destructive sensing, image analysis, and database management is

required to build and operate these systems properly. Companies

specializing in these different fields offer to construct customized

machines on-site. The costs of these systems can be substantial.

Prices typically range from approximately €60,000 to €120,000 for

small systems with a lower degree of automation and throughput,

€350,000 – €500,000 for fully automated sensor-to-plant or plant-

to-sensor systems, and up to €3,000,000 for high-end systems with

extensive optimization and automation of the workflow. The costs

vary depending on factors such as the types and number of sensors

used, system size, quality of the product and service provided by the
FIGURE 1

A schematic diagram indicating different aspects of high-throughput plant phenotyping (HTPP) systems that should be considered before purchasing
such a system (in blue) and using it (in brown).
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supplier. In addition, these custom-built facilities require expert

maintenance, including sensor calibration, replacement of worn-

out parts and preventive check-ups. Yearly servicing contracts often

amount to 5-10% of the acquisition price and are necessary for the

duration of system usage.

Given the above considerations, certain laboratories opt to

construct HTPP systems themselves, either utilizing off-the-shelf

products or with the support of robotics companies (Bagley et al.,

2020). Building customized platforms can allow for increased

flexibility (as discussed in section 3.4) and better fit the specific

requirements of the involved labs. However, it is important to

acknowledge that the path to a fully functional machine is

challenging and time-consuming. While the direct hardware costs

may be lower than those of commercial HTPP systems, the

substantial human resources required for the development and

maintenance of such automated systems should not be

underestimated (Reynolds et al., 2019).

There are two additional points to consider regarding personnel

investment. Firstly, it is advisable to involve expert users, project

managers, and engineers throughout the planning and building

phase. This ensures that any necessary compromises that almost

inevitably have to be made during the whole process do not strongly

constrain the desired goals of the end-users. Secondly, operating

these systems can be complex, particularly when troubleshooting

errors, as there are numerous variables to consider within the

plat form software , plat form mechanics and network

communications. Therefore, it is recommended to have an

operational team led by an expert who is responsible for the

platform. This lead expert can receive training from the supplier

or the constructors, and subsequently train all other individuals

who will be utilizing this platform. Clearly, such a person requires

both technological as well as plant biological expertise to effectively

manage and operate the HTPP system.
3.3 What other logistical and infrastructural
adjustments are necessary?

An HTPP platform allows researchers to significantly scale up

their experiments, often by an order of magnitude. This implies that

also an order of magnitude more plants are processed, more

containers have to be filled, more consumables are used, more

electricity and irrigation are required, and additional cleaning has to

be done at the end of the experiment. While these aspects are not

part of the phenotyping platform per se, they contribute to a

significant workload. As a result, there is often a need for

subsequent adjustments to the workflow’s ergonomics, such as

automating tasks like pot filling, seed sowing (Jahnke et al., 2016)

or plant transplantation. Together with the sampling for further

physiological characterization and disinfection or disposal of used

components, they bring about additional planning and investments

on top of those for the platform itself.

Another aspect to consider is the data infrastructure. Given the

massive amount of data generated by HTPP systems, effective

storage and accessibility of data for both short-term and long-

term use are essential. Such utilization of data requires a good
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documentation of data and metadata, as described in the ‘Minimal

Information About Plant Phenotyping Experiments’ (MIAPPE)

guidelines (Krajewski et al., 2015; Papoutsoglou et al., 2020). Also,

data and metadata should be stored in accordance with the FAIR

principle (findable, accessible, interoperable, and reusable;

Wilkinson et al., 2016) as in GnpIS (Pommier et al., 2019) and as

currently established in research data management infrastructures

like DataPLANT (www.nfdi4plants.de).

Remote support by the different suppliers requires a safe,

secure, and reliable access policy. Moreover, in the analysis of

data from such platforms, there is a growing emphasis on

integrating genotypic and phenotypic data, as well as

incorporating detailed environmental characterization of the

experiments. Bringing all these data together often requires a

considerable a-posteriori effort from trained personnel, which also

needs to be budgeted in advance to make full use of the potential of

these HTPP systems (Reynolds et al., 2019).
3.4 How flexible can or should the
system be?

Automation can replace a considerable amount of tedious

repetitive manual labor, especially when routine operations are

customized to the research question and species of interest.

However, this increased automation often comes at the cost of

reduced flexibility. For instance, a system that is perfectly fit for

small rosette plants like Arabidopsis thaliana, may not be as

suitable for a large species with different architecture, such as Zea

mays. Increased flexibility of the system can be achieved by

planning for modular components that can be interchanged

depending on the prevailing research question. However,

increased flexibility to accommodate the needs of a variety of

researchers also implies that the system becomes increasingly

complicated, with a higher likelihood of failures and more efforts

to solve these problems. A ‘jack-of-all-trades’ system will hardly

provide the same level of detail and raw data resolution across the

entire range of plant sizes and architectures as a dedicated high-

resolution system designed specifically for either small or big

plants, due to limitations imposed by the optical properties of

the sensor and system layout. In those cases, a potential solution

could be to have two smaller and targeted systems, rather than

relying on a one-size-fits-all solution.

Another aspect of flexibility is the expected lifespan of system

components. Technological advancements occur rapidly, and new

sensors, for example, will generally be more powerful and

informative than their predecessors. However, owners of

commercially-acquired phenotyping systems often face problems

in that the software to run the whole system is proprietary to the

company, and therefore not accessible for further development. In

such cases, it is complicated or impossible to integrate new sensors

or apply other modifications to existing HTPP systems. New buyers

are advised to discuss with their suppliers what support they can get

in that respect. Self-builders are suggested to set up their software

interfaces as flexible as possible, to easier adjust their system when

new sensors or updates become available.
frontiersin.org

http://www.nfdi4plants.de
https://doi.org/10.3389/fpls.2023.1233794
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Poorter et al. 10.3389/fpls.2023.1233794
3.5 What constraints does the system
impose on growth conditions?

Plants are strongly influenced by their environment and

different genotypes or species may show varying degrees of

genotype x environment interactions for many of their

phenotypic traits. This becomes particularly critical, because in

most (semi-)controlled environments we impose abiotic conditions

that significantly deviate from the natural conditions plants

experience outdoors (Poorter et al., 2016; Chiang et al., 2020).

Considerations about the location of the HTPP system (growth

chamber, glasshouse, or field) and the range of environmental

conditions provided to the plants are therefore an integral part of

the design process.

Compared to traditional experiments, the use of high-

throughput phenotyping systems often introduces additional

constraints, that can impact the growth environment of the plants

and, consequently, the outcomes of experiments. For instance, in a

typical plant-to-sensor system, the combined weight of plants plus

pots is limited by the strength of the conveyor belt used, as well as

the scales used for gravimetric measurements. This limitation

results in experiments being confined to plants in relatively small

pots with substrates of low specific mass, which clearly affects plant

growth and experimental outcomes (Passioura, 2002; Poorter et al.,

2012). Transportation may also have other consequences. Tall

plants, such as Zea mays, may topple over if the conveyor belts

move too quickly. During transport, leaves of sensitive species (e.g.

Brassica rapa, Hordeum vulgare) can get damaged, causing them to

droop downwards along the pot. To mitigate damage, researchers

may choose to place suitable support structures next to or around

each plant, except in cases where wilting would be a phenotypic trait

of interest. Apart from direct damage, one would also expect

thigmo-morphogenetic responses to occur as a reaction to the

mechanical perturbations during transport of plants, such as

thicker and shorter stems (Anten et al., 2005). However, plant

height was not negatively affected in the experiment of Brien et al.

(2013), and neither was shoot biomass or leaf area in various

experiments (Table 1).
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Fixed distances between cameras/sensors and plants may restrict

the range of plant sizes that can be investigated, thereby limiting the

developmental stages that can be studied in such HTPP systems to

young vegetative plants. A last example pertains to the watering of the

plants. Well-watered containers, especially with peat substrate, often

show algal growth on the soil surface, which hampers the non-

destructive derivation of plant size through image analysis

(Figure 2A). To avoid this complication, researchers may opt to

cover the top of the pots with a plastic sheet of contrasting color

(Junker et al., 2015). Alternatively, for small rosette species like

Arabidopsis, reducing the volume and/or frequency of watering can

keep the topsoil dry for a longer duration. Although this suppresses

algal growth, it also has unknown consequences for the growth rate

and phenotype of the plants. It is recommended to consider a-priori

whether the additional constraints imposed by an HTPP system are

acceptable within the scope of the research question.
3.6 When and how often should the plants
be measured?

Once an operational HTPP system is in place, attention can

shift to the performance of experiments. Given their typical large

scale, careful consideration of experimental design is essential. For a

comprehensive discussion on this topic, the reader is referred to

Thompson et al. (2022). One notable advantage of high-throughput

phenotyping systems is that individual plants (or microplots) can be

measured frequently and non-destructively. This allows for the

repeated measurements of the same plants, enabling the tracking of

their growth and development over time. Such analyses can yield

valuable insights, with a good example discussed in Box 1. However,

in cases where the research question focuses on identifying the best-

performing genotype at the end of the experiment, repeated

measurements may be unnecessary. In those cases, researchers

could also opt for one final destructive harvest, which might be

more simple, cheaper, and more informative, as also illustrated in

Box 1. A lower measurement frequency may also be advantageous if

the measurements have the potential to interfere with plant growth.
TABLE 1 Effect of plant-to-sensor transport on shoot biomass, as based on various experiments carried out in glasshouses.

Reference Mode of
transport Species Measured

variable

Size ratio of shoots
(moving vs. non-
moving plants)

P

Nagel et al. (2020) pneumatically Arabidopsis thaliana LA 0.96 ns

F. Fiorani &
N. Körber (unpubl.)

gantry system Hordeum vulgare FM 0.97 ns

F. Fiorani &
N. Körber (unpubl.)

gantry system Brassica napus FM 1.02 ns

Brien et al. (2013) conveyor belt Triticum aestivum FM 1.03 ns

Junker et al. (2015) conveyor belt Arabidopsis thaliana DM 1.08 *
LA, Leaf area; FM, Fresh mass of the shoot; DM, Dry mass of the shoot. Statistical significance: *, P < 0.05; ns, non-significant. Included are the mode of transport of the plants, the species
investigated, variable measured, the size ratio of shoots of plants that were moved relative to control plants that were not moved, and the statistical significance of these differences in plant mass.
The experiments are ranked based on the observed effect size.
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This is particularly relevant when plants are taken out of their

growth environment for longer-duration measurements, such as

magnetic resonance imaging (MRI) or computer tomography (CT)

scans. A higher measurement frequency then provides better insight
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into plant development, but may also have a stronger negative effect

on plant growth.

A second point to consider is the time of day when plants will

be measured. When using a drone to fly over an experimental field,

it can capture images of many microplots simultaneously.

Acquiring images or other data for these plots using sensors

mounted on vehicles will take longer. Depending on the type of

measurements taken, it may require minutes or more per microplot.

With plant-to-sensor systems within a glasshouse, where it takes

minutes to move a plant through the imaging station and measure

its characteristics, phenotyping all plants in one experiment could

take a full day. During that period, large changes in environmental

variables, such as light intensity and temperature, may occur, likely

resulting in large variation in physiological variables such as

stomatal conductance and photosynthesis as well. One

morphological trait that can exhibit considerable diurnal variation

is leaf angle (Rosa and Forseth, 1996), which has obvious

implications for the projected leaf area (PLA; Dobrescu et al.,

2017) as used in many HTPP systems. For example, during the

diurnal part of the diel cycle, Arabidopsis plants may increase their

leaf area and biomass by 20% (Wiese et al., 2007). However, in a

similar experiment, PLA values were found to decrease by 18-35%

during the light period (Figures 4A, B, 5), due to upward

movements of leaves and petioles. Consequently, when

conducting consecutive 2D measurements of plants day after day,

it is important to measure them at the same time of day, to avoid

bias caused by the diurnal rhythm of leaf movements. Moreover,

different genotypes or treatments should be blocked into the same

time window, to ensure that no confounding effects occur. One fast

alternative approach is to perform a 3D laser scan (Dornbusch et al.,

2012). Other options include using multiple imaging stations, or

employing a gantry system where sensors are brought to the plants,

enabling parallel measurements of many plants in short time.

In some cases, the research question requires a high frequency

of measurements on the same plants. Examples are physiological

responses of plants following the application of a compound,

exposure to a pathogen, or exposure to abiotic stress (Jansen

et al., 2009; Mahlein et al., 2019). In some species, capturing

images at higher frequencies and analyzing them in almost real-

time can be used to detect the onset of potentially undesired

drought stress during the experiment (Figures 4C, D; Eberius and

Lima-Guerra, 2009; Janni et al., 2019).
3.7 How adequate is the quality control
and data handling?

The amount of information collected from a single experiment

can be substantial, especially when imaging of any kind is involved.

The question is how well we, as experimenters, can handle this vast

quantity of data (Eberius and Lima-Guerra, 2009; Tardieu et al.,

2017). Based on our own experience, we have observed several issues

that can arise during an experiment. Sensors, especially

environmental sensors that are deployed throughout the year, may

have not been calibrated for a long time or show failures of various

kinds during the experimental period. With larger amounts of plants,
FIGURE 2

Examples where unsupervised automated high-throughput
phenotyping may lead to incorrect results. (A) Algal growth resulting
in a mask that is too broad and yields an overestimation of projected
leaf area (PLA). (B) A plant grown out of the image acquisition area,
resulting in an underestimation of PLA. (C) A neighboring plant
growing into the image acquisition area, resulting in an
overestimation of PLA. All pictures depict Arabidopsis thaliana plants
and are masked images, used for measuring PLA by counting the
number of green pixels. These images are for illustrative purposes
only. The scale indicates a length of 1 cm.
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BOX 1 Example of the trade-off between measuring with higher frequency or higher precision.

Here we provide two examples of experiments focusing on root distribution. The first one followed root development non-destructively over time (Nabel et al., 2018).
Seedlings of a woody shrub (Sida hermaphrodita) were grown for 90 days in rhizotrons of 36 x 75 x 2.6 cm in size, where one side consists of transparent acrylic glass. The
researchers placed digestate, which is a residue remaining after anaerobic digestion of biomass to methane, at a specific location in the rhizobox. This location is indicated
by the brown circles in Figures 3A–C. Root growth of the part of the root system close to the transparent side of the rhizobox was monitored by regularly capturing images
(Nagel et al., 2012). These images showed that plants strongly avoided the digestate patch in the first 60 days of the experiment (Figures 3A, B). However, roots strongly
proliferated into this patch of nutrients later in time (Figure 3C). In this case, the timing proved to be an essential aspect of how these plants reacted to the treatment.
Although these analyses of root distribution are still challenging for computers and often need human supervision, the effort in this case proved worthwhile for
understanding the timing of root responses.

An alternative approach was followed by Singh et al. (2010; Figure 3D). They grew two Sorghum genotypes in rhizotrons measuring 120 x 240 x 10 cm.When it comes
to selecting, for example, the best-performing genotypes of a panel of genotypes, an evaluation at the end of the experiment could be as informative as a complete analysis
over time. If this is the case, researchers may also opt for alternative and cheaper set-ups, such as rhizoboxes that are not integrated into automated HTPP systems. Those
rhizoboxes could have larger dimensions and allow a wider range of root substrates. By pushing a pinboard into one of the sides before washing away the soil with water,
the distribution of a whole root system can be characterized, rather than only those roots close to the acrylic glass (Singh et al., 2010; Figures 3D, E).

The dilemma faced by researchers in these cases is whether it is more informative to have estimated data over the course of the experiment for only a portion of the
root system, as provided by automated rhizotron systems, or to have more precise data capturing the entire root system but only at the end of the experiment.
FIGURE 3

(A–C) Root distribution of Sida hermaphrodita plants in rhizotron boxes with a localized depot of digestate, indicated by the brown circle. (D) Root
distribution in a rhizobox at the end of an experiment after the soil has been removed. Figures (A–C) are adapted from Nabel et al. (2018) and show
in false colors ranging from dark blue to bright red the number of rhizotrons (out of 10 in total) where roots were observed for each x-y location in
the rhizotron. (A) 30 days, (B) 60 days and (C) 90 days after the start of the experiment. Figures (D, E) show the root systems of two Sorghum
bicolor genotypes at the 12th-leaf stage (ca. 6-8 weeks after germination) in an experiment similar to that described in Singh et al. (2010). The white
bars indicate a length of 10 cm. Picture credits Figures (A–C): Moritz Nabel, Forschungszentrum Jülich, Germany. (D, E): Vijaya Singh, University of
Queensland, Australia.
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problems might more easily go undetected. For example, some plants

could topple over or do not receive adequate watering. In image

analysis systems, leaves from neighboring plants might appear in

pictures taken, photos might not cover the full plant, or masking

might not function properly (Figures 2B, C). These errors are easily

noticed if they occur frequently, but in the midst of hundreds of

plants, thousands of pictures, and tens of thousands of other collected

data points, such errors can easily go unnoticed. Thorough data

inspection and double-checking for mistakes are therefore crucial, but

can be cumbersome without the assistance of digital tools. Dedicated

software programs for data visualization and targeted image retrieval,

such as Azure, iRods, PHIS, Fairdom, Zegami, or similar solutions,

enable fast selection of images of specific plants over time, aiding in

the identification of potential outlier data. Automated quality control

procedures should routinely flag instances where parts of leaves are

outside the picture, or leaves of neighboring plants are distorting the

results. Graphical analysis of data distribution, time courses, or dose-

response curves can provide insights into potential issues with

specific plants or entire groups of plants (Xu et al., 2015). This is

particularly useful in ongoing experiments, when possible problems

can be detected and solved by data analysis at an early stage. Real-

time reporting, along with easy and user-friendly (remote) access to
Frontiers in Plant Science 0871
visualizations and resulting analyses, facilitates early detection and

problem-solving.
3.8 How informative are the selected
proxies for the actual variables of interest?

For decades, scientists have relied on spectrophotometric

measurements to asses enzyme activity, wet digestion or pyrolysis

for leaf nitrogen determination, infra-red gas analyzers to

determine photosynthesis, and manual harvesting to measure

plant biomass. However, these conventional measurements all

require significant manual effort, and are therefore not suitable

for high-throughput phenotyping. Efforts have been made to

automate such measurements (e.g. Gibon et al., 2004; Gomez

et al., 2010), but challenges remain in automating processes such

as grinding and weighing, particularly under low-temperature

conditions to prevent chemical degradation (Hall et al., 2022). In

search of alternatives, scientists have explored measurements that

are easier to perform, yet still provide valuable information. For

example, leaf nitrogen content can be estimated non-destructively

using multispectral analysis (Ye et al., 2020), photosynthesis can be
FIGURE 4

(A, B) The same Arabidopsis thaliana plant photographed (A) in the morning, with a low leaf angle and (B) at the end of the day with a much higher
leaf angle. The yellow and orange circles indicate the positions of the youngest full-grown leaves which exhibit the largest change in leaf angle. (C,
D). The same plant photographed (C) before and (D) after the onset of water stress, which resulted in leaf wilting. These images are for illustrational
purposes only. The scale indicates a length of 1 cm.
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assessed through fluorescence, and biomass by counting green

pixels in plant images.

Are these proxies informative enough? The chlorophyll

fluorescence parameter (Fv/Fm), for instance, is often measured,

but in many cases variation in Fv/Fm does not reflect variation in the

actual rate of photosynthesis (Poorter et al., 2019). The electron

transport rate offers a better approximation, but still does not

capture the true rate of C-fixation (Kalaji et al., 2014). Similarly,

estimating digital biomass based on the number of green pixels in

an image can provide an indication of plant size, but does not give

the actual biomass, or information on biomass allocation to leaves,

stems, and roots. This lack of information hampers comparisons

across experiments, platforms, and the published literature.

However, advancements in machine learning techniques now

enable the segmentation of 2D or 3D images into leaves and

stems (Golbach et al., 2016; Jin et al., 2019; Shi et al., 2019), so far

only for smaller and/or specific species. Moreover, combined shoot

and root phenotyping is feasible in rhizotron or agar-based

platforms (Nagel et al., 2012; Nagel et al., 2020). These

developments hold the potential to extract more comprehensive

information from these photographs or raw sensor data.

In all cases, users must maintain a critical approach to their

data, particularly when changes in plant morphology occur. A clear

example is observed in drought-stressed plants where a loss in

turgor can result in leaf rolling or wilting, leading to a noticeable

decrease in projected leaf area (PLA; Figures 4C, D), while actual

dry biomass is little affected. Even when the variable of interest is

directly provided by sensors, it is wise to verify the definitions used.

For one researcher, plant height may be the distance from the shoot

basis to the highest plant part, for another it could be the distance

from the basis to the apical meristem. In some non-destructive

systems, a more statistical approach is taken, where this variable is

defined as the average value of the pixels (or voxels) from the 80th

till the 90th percentile with respect to height (Kjaer and Ottosen,

2015). Ideally, these definitions are included in the meta-data

provided by the HTPP system.
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3.9 Are non-destructive
measurements sufficient?

The phenotype of plants is multifaceted, composed of hundreds

of variables related to anatomy, morphology, chemical composition,

carbon and water economy, growth, as well as reproduction

(Lambers and Oliveira, 2019; Poorter et al., 2022; Zafaver et al.,

2023). While some of these variables can be estimated non-

destructively, the majority of plant traits require destructive

sampling or harvesting. Consequently, HTPP systems, which are

primarily non-destructive by nature, can only cover a subset of the

phenotypic traits that researchers would ideally like to measure.

However, by bringing sensors to the plant, additional

measurements may become feasible. For example, continuous

monitoring of transpiration over a plant’s lifespan in real time

can be achieved by placing plants on a balance (Tardieu et al., 2017;

Dalal et al., 2020). Nevertheless, many other traits can only be

measured through destructive sampling or harvesting, which

necessitates additional planning and manpower.

A highly promising advancement is the development of robots

capable of approaching a plant and taking a leaf punch from a

specific leaf blade (Alenyà et al., 2013; Foix et al., 2018). By

promptly storing these samples in liquid nitrogen, a broad array

of relevant biochemical analyses can be conducted, including the

assessment of key metabolites and RNA expression levels (Hall

et al., 2022).
3.10 What calibration curve is required?

In certain cases, well-calibrated phenotyping equipment can

directly provide data on physiologically relevant variables of

interest. For instance, measurements such as leaf temperature or

Fv/Fm yield output that is readily biologically interpretable and can

be easily related to published work in the literature. In other cases,

however, additional calibration is required to transform acquired
FIGURE 5

Measured Projected Leaf Area (PLA) over a day for Arabidopsis thaliana plants grown in a growth chamber. The values for each plant are normalized
to the maximum value measured during the diurnal part of the day-night cycle. The dots indicate mean values, and the ‘error bars’ represent the 5%
and 95% percentiles (n = 44).
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data (e.g., number of green pixels) into biological meaningful

variables (e.g., shoot dry mass). In such cases, a common

procedure involves periodic measurements of a subset of plants,

initially through non-destructive imaging, and subsequently

destructively by determining leaf area, shoot dry mass or other

traits of interest. An example is shown in Figure 6, where the

projected leaf area of Plantago major plants grown under different

[CO2] levels was assessed non-destructively through imaging,

followed by destructive measurement of total leaf area and shoot

biomass (see Material & Methods).

The first step in establishing a calibration curve involves

plotting the variable of interest against the measured variable. We

illustrate this process with a graph that depicts the relationship

between total leaf area (TLA) and projected leaf area (PLA). The

graph demonstrates that for small plants (< 30 cm2 in this case, for

plants up to 4 weeks old), TLA and PLA exhibit largely similar

values. However, in larger plants, TLA increases at a faster rate than

PLA, as newly-grown leaves will inevitably overlap partially or even

fully with older leaves. In the experiment presented here, the TLA at

the final harvest was approximately 2.3 times larger than the

corresponding PLA, with no clear difference between plants of the

two treatments.

The second step in constructing the calibration curve involves

computing a regression line. Taken over both treatments, a linear

regression yielded highly significant results (P < 0.001). Based on

the calculated r2, we found that variation in PLA accounted for 92%

of the variation in TLA. While this initial outcome may appear very

satisfactory, further examination showed that the regression line

underestimated TLA at very small and high TLA values, while

overestimating TLA at intermediate PLA values. Given the gradual

increase in leaf overlap with plant size, a curved relationship

appears to be a more appropriate model. Subsequent analysis

with a second-order polynomial confirmed the high significance

(P<0.001) of the quadratic term, resulting in a slightly improved

r2 (Table 2).

Although many users are satisfied with the aforementioned

correlative approach and the high r2 values (e.g. Nagel et al., 2012;

Vadez et al., 2015; Banerjee et al., 2020), certain aspects warrant

further inspection. For instance, the growth of young plants often

follows an exponential pattern, characterized by smaller absolute

size increases in small plants, and larger increases as plants grow

bigger. As a consequence, in the experiment we are discussing with

weekly harvests, the first half of the calibration curve is determined

by 82% of the observations, while the remaining 18% contribute to

the second half. To achieve a more balanced distribution, we could

log-transform both PLA and TLA. In our experiment, this log-

transformation resulted in the first half of the curve containing 32%

of the data, with the remaining 68% in the second half (Figure 6B).

Although the distribution is still not perfectly equal, it improved

considerably compared to the non-transformed dataset. Performing

a linear regression on the log-transformed data yielded a highly

significant fit, with an r2 of 0.986. However, it is important to

acknowledge the biological phenomenon of overlapping leaves.

Incorporating a quadratic term into the equation further
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improved the fit, resulting in an r2 value of 0.989. Clearly, it pays

to analyze which function is most appropriate, and whether log-

transformation of the data and/or non-linear fits can provide a

more robust basis for the calibration curve than a standard linear

regression on non-transformed data.
3.11 How accurate is the calibration curve?

The coefficient of determination (r2) is a convenient parameter

to describe the goodness of fit of a statistical relationship between

variables, and because it (generally) scales between 0 and 1, it allows

easy comparisons across various experiments (Chicco et al., 2021).

The calibration curves discussed in the previous section all exhibit

relatively high r2 values (Table 2), but does this r2 truly represent the

desired accuracy? Different expressions of plant size, such as leaf

number, leaf area, and total biomass, are generally well correlated.

How well the calibration curve works depends partly on the

appropriateness of the chosen proxy trait. For instance: a top-

view picture might provide more information for a rosette plant,

while side views or views from different angles could be more

informative for species with a single stem. Furthermore, it is

important to note that r2 provides information on the total

variation in the y-variable that can be explained by the total

variation in the x-variable. Hence, in monotonically increasing

relationships like the one depicted in Figure 6, the larger the span

in size in both x and y, the higher the r2 will be. If we restrict the

calculation to plants with a PLA >100 cm2 instead of considering all

data, the r2 value decreases from 0.92 to 0.76. Consequently, a high

r2 for a calibration curve like the one shown in Figure 6, indicates

that we are able to effectively distinguish between small and large

plants. However, if a researcher’s prime interest lies in

understanding the variation in final size across genotypes, relying

solely on the r2 of the full calibration curve may provide a somewhat

misleading sense of accuracy.

An alternative measure to assess the goodness of fit is the root

mean square error (RMSE), which quantifies the average distance

in the y-direction between the observed data points and the fitted

line. It gives more weight to points that are further away from the

line, compared to those that are closer (Hodson, 2022). The

advantage of RMSE is that, all else being equal, it is not

influenced by the total variation range in x and y, as is the case

with r2. Additionally, RMSE provides an absolute error in the units

of the Y-axis. If the residuals follow a normal distribution, it

informs the researcher that there is a 68% probability that the

estimated total leaf area (TLA) deviates by less than the RMSE from

the true TLA. However, RMSE may not be suitable for calibration

curves that cover a wider range of plant sizes, as the error is not

equal for plants of all sizes. For instance, an RMSE of 5 cm2 may

represent a minor deviation for a plant of 1000 cm2, but a huge

variation for a plant with a leaf area of 1 cm2.

To assess the accuracy of the estimates, we calculated for each

plant the absolute percentage error. This involved determining the

absolute difference between the actual TLA, and the TLA value
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estimated from the calibration curve, normalized to the actual TLA

measured. These values ranged from nearly 0%, indicating a highly

accurate estimate, to over 1000% in the specific case of very young

plants where TLA was fitted with a straight line across all plant sizes

(Figure 7A). In the last case, the actual TLA value was 1 cm2,

whereas the estimated TLA value was calculated to be -10 cm2. This

illustrates that even an r2 value exceeding 0.90 does not necessarily

guarantee accurate estimates for every individual plant. The median

absolute percentage error (MdAPE) serves as a useful summary

descriptor for non-normally distributed data. For the linear

calibration curve, MdAPE was approximately 37% (Table 2;

Figure 7A), indicating that the accuracy fell short of our

expectations. However, when utilizing a quadratic fit with log-log
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transformed values, the MdAPE decreased to 11%, signifying a

substantial improvement in accuracy. Additionally, in the quadratic

fit, MdAPE values were lower for smaller compared to larger ones

(Figure 7B), which is logical given the increased leaf overlap in

larger plants.

The mean absolute percentage error (MAPE) is increasingly

utilized in the field of high-throughput plant phenotyping (e.g.

Paproki et al., 2012; Paulus, 2019; Rossi et al., 2022). However, given

the log-normal distribution of these data, we advocate for the use of

the median absolute percentage error (MdAPE) as a more

informative measure of the general accuracy. By employing the

MdAPE, we aim to capture a representative summary of the actual

accuracy, rather than relying solely on the r2 of a calibration curve.
BA

FIGURE 6

Relationship between projected leaf area and total leaf area of Plantago major plants harvested over an 8-week period and plotted on (A) linear or
(B) logarithmic scales. Blue circles represent plants grown at low [CO2] (350 µL L-1), and orange triangles representplants grown at high [CO2] (700
µL L-1). The grey dotted line represents the 1:1 relationship between TLA (Total Leaf Area) and PLA (Projected Leaf Area), the green dashed line
represents the linear fit through the data, and the black continuous line shows the quadratic fit. The vertical brown line indicates where the divide is
between the 50% smaller and 50% larger plants, based on PLA.
TABLE 2 Characterization of different calibration curves for estimating total leaf area (TLA) from projected leaf area (PLA).

lin qua Log(lin) Log(qua)

P-value for a *** ns *** ***

P-value for b *** *** *** ***

P-value for c – *** – ***

Adj. r2 0.920 0.926 0.986 0.989

Df for the error term 162 161 162 161

RMSE (cm2) 53.9 51.6 29.9 † 27.3 †

MdAPE (%) 38 25 17 † 12 †
Adj. r2: adjusted r2; df: degrees of freedom; RMSE: Root Mean Square Error; MdAPE: the Median values of the Absolute Percentage Error. Significance levels: ***, P < 0.001. Equations are of the
form y = a + bx for a linear polynomial (lin) or y = a + bx + cx2 for a quadratic polynomial (qua). The last two columns are for x and y data that were log10-transformed, with the fields marked by a
† calculated after back-transformation to the original scale.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1233794
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Poorter et al. 10.3389/fpls.2023.1233794
3.12 How many calibration curves
are required?

So far, we have considered a common calibration curve for both

low and high CO2 plants. For the relationship between projected

leaf area (PLA) and total leaf area (TLA), this approach may seem

reasonable as long as the treatment does not influence leaf angle or

any other aspect of leaf display. However, what would happen if we

aim to use PLA to estimate shoot biomass (Figure 8A)? The

relationship between leaf dry mass and leaf area is known to shift,

as plants exposed to elevated CO2 almost invariably exhibit higher

leaf mass per area (LMA; Poorter et al., 2022). Using quadratic

polynomials on log-transformed PLA and shoot dry mass, we

indeed found different curves (Figure 8B). They indicated that for

a given PLA, elevated CO2 plants were 20-30% heavier, although

not for the smallest or largest plants. These findings align with the

LMA data, which also showed LMA averages to be 20-30% heavier,

except for the first and last harvest (cf. Figure 8B in Poorter et al.,

1988). However, statistically, this did not show up as a significant

effect, neither for CO2 as a main factor nor for the interaction of

CO2 with the linear and quadratic components of PLA.

Having different calibration curves for different treatments, or

maybe for different genotypes, can be quite inconvenient, as it

requires more manual harvesting, partially nullifying the intended

savings in human effort. What could we do about that? A well-cited

method paper by Golzarian et al. (2011) discussed the phenotyping

aspects of calibration curves, using the example of an experiment

where plants were exposed to salinity or to control conditions. The
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study found that the two calibration curves were significantly

different, with salt-stressed plants exhibiting higher biomass

estimates for a given number of pixels compared to control

plants. That would fit with the general understanding that salt

stress increases leaf mass per area (LMA; Poorter et al., 2009;

Kamanga et al., 2023). Golzarian et al. (2011), however, reasoned

that salt-stressed plants were smaller, and considered them to be of

‘younger’ age. By adding the factor age to the equation, a single

calibration function could be achieved for plants of both treatments.

However, this approach mixes plant ontogeny with the direct effects

of salinity, and is likely not broadly valid, especially when multiple

treatments with varying salinity concentrations would be involved.

Consequently, if the treatment of interest affects LMA, leaf angle, or

other relevant morphological parameters, different calibration

curves for different treatments may indeed be unavoidable.

Another important question to consider is the validity of a

calibration curve that has been developed for a particular species,

and whether it can be applied to other experiments involving the

same species. In growth chambers, where light and temperature stay

fixed to the same level, the transferability of a calibration curve

seems more likely compared to glasshouses or field settings, where

seasonal variation in light and temperature may strongly impact

both LMA and stem thickness (and consequently stem mass per

projected area). To use HTPP systems more effectively, calibration

curves deserve more attention than they got so far. As is custom in

many other laboratory methods, it might be good to regularly

validate the measuring pipeline with a couple of reference samples

that are measured using destructive methods.
BA

FIGURE 7

(A) Boxplot characterizing the distribution of the Absolute Percentage Error (APE) in the estimate of Total Leaf Area (TLA) from the measurements of
Projected Leaf Area (PLA), using four different calibration curves. (B) Absolute Percentage Error in the estimate of Total Leaf Area using a log-
quadratic calibration curve plotted against Projected Leaf Area. In (A), boxplots indicate the 5th, 25th, 50th, 75th and 95th percentile of the APE values,
taken over all plants and treatments. lin, linear regression; qua, quadratic regression; loglin, linear regression through the log10-transormed value of
TLA and PLA; logqua, quadratic regression through the log10-transformed values. In (B), blue circles represent plants grown at low [CO2] (350 µL L-1),
and orange triangles represent high [CO2]-grown plants (700 µL L-1). The regression line passes through all points, and is significantly (P<0.001)
different from zero, with an adjusted r2 of 0.15.
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3.13 How many replicates per genotype
or treatment?

Plants grown singly in pots may show quite some variability in

plant mass or other traits, which can negatively impact the statistical

power to detect differences between genotypes or treatments

(Poorter and Garnier, 1996). When planning the size of an HTPP

system, it is important to consider not only the number of species or

genotypes to be tested, but also the number of replicates per

genotype that will be required. Genome-wide association studies

(GWAS) or Quantitative Trait Loci (QTL) experiments often

benefit more from including additional genotypes rather than

increasing the number of replicates per genotype (Zou et al.,

2006). If treatments are compared across many genotypes, the

large number of plants grown in HTPP systems will provide

sufficient statistical power for general conclusions. However, when

researchers are also interested in testing specific differences between

individual genotypes, the number of replicates becomes more

critical. This is particularly true when a calibration curve is used

to estimate the values of the trait of interest. Calibration curves with

low r2 and high MdAPE introduce additional variability on top of

the inherent variation that will already be present among plants. In

the case of the CO2 experiment, a t-test conducted at the final

harvest revealed that the actual shoot dry mass for the two

treatments was only marginally significant (P = 0.10). However,

the difference was far further from significance when the shoot dry

mass estimates based on PLA values were used (P = 0.24). In

situations where HTPP system users are interested in specific

contrasts, the utilization of calibration curves implies that they

may need to include more replicates than in traditional experiments

to achieve the same level of statistical power.
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3.14 How often do you need to repeat
an experiment?

Despite the robotized and computerized systems, HTPP

experiments often push limits and compare large amounts of

genotypes in a standardized manner. In as far as these

experiments have a background in (eco)physiological approaches,

with single plants growing in pots under controlled conditions, data

from a single experiment is often considered sufficient for

publication. However, in agriculture it is generally regarded as the

gold standard to repeat an experiment in multiple years or

locations, before any importance is attached to the results.

Possibly, HTPP in controlled conditions can be seen as the

initial, important step in a two-phase approach. During this first

step, a wide range of genotypes or species can be tested, either in

their own right or in combination with specific treatment factors.

Without being overly concerned about genotypic effects on

calibration curves (as mentioned in point 12), this step can be

used to identify the worst-performing and best-performing

genotypes, simply based on green pixel counts or similar proxy

traits (‘forward phenomics’ sensu Mir et al., 2019; cf. Merlot et al.,

2002). The most extreme and interesting genotypes, for example

those carrying contrasting alleles for important QTLs can then be

further investigated in a targeted experiment. This subsequent

phase would involve non-destructive phenotyping complemented

by more labor-intensive physiological analyses such as gas exchange

and chemical characterization on the one hand, and destructive

harvesting of both shoot and root biomass on the other hand

(Poudyal et al., 2018). Such a two-step approach would also be

helpful in screening a wide range of germplasm for

contrasting genotypes.
BA

FIGURE 8

Relationship between projected leaf area and shoot dry mass of Plantago major, grown at low {CO2] (350 µL L-1) and high [CO2] (700 µL L-1). (A)
Combined data for plants of both treatments; (B) calibration curves separately calculated for plants from each [CO2]. All curves exhibited highly
significant linear and quadratic components (P < 0.001) and r2 > 0.978.
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4 Conclusions and outlook

In this paper, we discussed a number of issues relevant to

consider during the design and implementation phases of high-

throughput plant phenotyping (HTPP) systems. A crucial aspect of

an HTPP platform is its alignment with the specific research

questions of interest and its careful design, both from the

hardware and the workflow perspective. Different treatments

applied to the shoot environment (such as light, CO2,

temperature) are often more complicated to implement, as this

requires various growth environments all integrated into one HTPP

system, or replicated HTPP systems, which is feasible but expensive.

Treatments that can be applied to separate pots in the same location

(such as drought, nutrients, salinity) are relatively easier to

implement and amenable to computerized control. Additionally,

efforts must be made to effectively address unforeseen problems

and errors.

Regardless of the treatment approach, it is important to

acknowledge that investment costs and maintenance requirements

for most phenotyping systems are substantial. This is in part

because the systems build now are often highly customized. If

over time researchers will settle for more standardized systems and

sensors, platform costs and time spend on complications will

hopefully decrease.

Obtaining meaningful information from HTPP experiments

requires to carefully consider the selection of meaningful proxy

traits that enable us to answer the research questions at hand.

Attention should also be paid to well-designed and regularly

validated calibration curves, if necessary. An alternative strategy is

to use HTPP systems as a good opportunity for prescreening. Such a

prescreening would then be followed by an experiment focusing on

a limited number of the most interesting genotypes. It allows to

measure not only the proxy variables easily acquired by the

phenotyping system (‘soft’ traits), but also the physiological ‘hard-

to-get’ traits that provide valuable insights and a more

comprehensive understanding of observed differences in

plant performance.
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Vadez, V., Kholová, J., Hummel, G., Zhokhavets, U., Gupta, S. K., and Hash, C. T.
(2015). LeasyScan: a novel concept combining 3D imaging and lysimetry for high-
throughput phenotyping of traits controlling plant water budget. J. Exp. Bot. 66, 5581–
5593. doi: 10.1093/jxb/erv251

Vargas, J. Q., Bendig, J., Mac Arthur, A., Burkart, A., Julitta, T., Maseyk, K., et al.
(2020). Unmanned aerial systems (UAS)-based methods for solar induced chlorophyll
fluorescence (SIF) retrieval with non-imaging spectrometers: state of the art. Remote
Sens. 12, 1624. doi: 10.3390/rs12101624

Walter, A., Liebisch, F., and Hund, A. (2015). Plant phenotyping: from bean
weighing to image analysis. Plant Meth. 11, 1–11. doi: 10.1186/s13007-015-0056-8

Walter, A., Scharr, H., Gilmer, F., Zierer, R., Nagel, K. A., Ernst, M., et al. (2007).
Dynamics of seedling growth acclimation towards altered light conditions can be
quantified via GROWSCREEN: a setup and procedure designed for rapid optical
phenotyping of different plant species. New Phytol. 174, 447–455. doi: 10.1111/j.1469-
8137.2007.02002.x

White, J. W., and Conley, M. M. (2013). A flexible, low-cost cart for proximal
sensing. Crop Sci. 53, 1646–1649. doi: 10.2135/cropsci2013.01.0054

Wiese, A., Christ, M. M., Virnich, O., Schurr, U., and Walter, A. (2007). Spatio-
temporal leaf growth patterns of Arabidopsis thaliana and evidence for sugar control of
the diel leaf growth cycle. New Phytol. 174, 752–761. doi: 10.1111/j.1469-
8137.2007.02053.x

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak,
A., et al. (2016). The FAIR Guiding Principles for scientific data management and
stewardship. Sci. Data 3, 1–9. doi: 10.1038/sdata.2016.18

Xiao, Q., Bai, X., Zhang, C., and He, Y. (2022). Advanced high-throughput plant
phenotyping techniques for genome-wide association studies: A review. J. Adv. Res. 35,
215–230. doi: 10.1016/j.jare.2021.05.002

Xu, L., Cruz, J. A., Savage, L. J., Kramer, D. M., and Chen, J. (2015). Plant
photosynthesis phenomics data quality control. Bioinformatics 31, 1796–1804.
doi: 10.1093/bioinformatics/btu854

Yang, W., Guo, Z., Huang, C., Duan, L., Chen, G., Jiang, N., et al. (2014). Combining
high-throughput phenotyping and genome-wide association studies to reveal natural
genetic variation in rice. Nat. Commun. 5, 5087. doi: 10.1038/ncomms6087

Ye, X., Abe, S., and Zhang, S. (2020). Estimation and mapping of nitrogen content in
apple trees at leaf and canopy levels using hyperspectral imaging. Precis. Agric. 21, 198–
225. doi: 10.1007/s11119-019-09661-x

Zavafer, A., Bates, H., Mancilla, C., and Ralph, P. J. (2023). Phenomics:
conceptualization and importance for plant physiology. Trends Plant Sci. 28, 1004-
1013. doi: 10.1016/j.tplants.2023.03.023

Zou, F., Xu, Z., and Vision, T. (2006). Assessing the significance of quantitative trait
loci in replicable mapping populations. Genetics 174, 1063–1068. doi: 10.1534/
genetics.106.059469
frontiersin.org

https://doi.org/10.1046/j.0016-8025.2001.00802.x
https://doi.org/10.1186/s13007-019-0490-0
https://doi.org/10.34133/2019/1671403
https://doi.org/10.1071/FP12049
https://doi.org/10.1111/nph.14243
https://doi.org/10.1093/jxb/47.12.1969
https://doi.org/10.1111/nph.17802
https://doi.org/10.1111/nph.15754
https://doi.org/10.1111/j.1469-8137.2009.02830.x
https://doi.org/10.1111/j.1399-3054.1988.tb05440.x
https://doi.org/10.1071/FP17317
https://www.R-project.org/
https://doi.org/10.1016/j.plantsci.2018.06.015
https://doi.org/10.1016/0168-1923(95)02249-X
https://doi.org/10.1016/j.compag.2022.106937
https://doi.org/10.1016/j.rse.2021.112797
https://doi.org/10.1016/j.biosystemseng.2019.08.014
https://doi.org/10.1007/s11104-010-0343-0
https://doi.org/10.1016/j.cub.2017.05.055
https://doi.org/10.1016/j.cub.2017.05.055
https://doi.org/10.1093/jxb/erv251
https://doi.org/10.3390/rs12101624
https://doi.org/10.1186/s13007-015-0056-8
https://doi.org/10.1111/j.1469-8137.2007.02002.x
https://doi.org/10.1111/j.1469-8137.2007.02002.x
https://doi.org/10.2135/cropsci2013.01.0054
https://doi.org/10.1111/j.1469-8137.2007.02053.x
https://doi.org/10.1111/j.1469-8137.2007.02053.x
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1016/j.jare.2021.05.002
https://doi.org/10.1093/bioinformatics/btu854
https://doi.org/10.1038/ncomms6087
https://doi.org/10.1007/s11119-019-09661-x
https://doi.org/10.1016/j.tplants.2023.03.023
https://doi.org/10.1534/genetics.106.059469
https://doi.org/10.1534/genetics.106.059469
https://doi.org/10.3389/fpls.2023.1233794
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Elias Kaiser,
Wageningen University and
Research, Netherlands

REVIEWED BY

Hannah Schneider,
Wageningen University and
Research, Netherlands
Hafiz Muhammad Ahmad,
Government College University, Pakistan

*CORRESPONDENCE

Thomas Altmann

altmann@ipk-gatersleben.de

Rongli Shi

shi@ipk-gatersleben.de

†
PRESENT ADDRESS

Astrid Junker,
Phenomics Department, Syngenta Seeds
GmbH, Bad Salzuflen, Germany

RECEIVED 02 June 2023

ACCEPTED 07 August 2023
PUBLISHED 01 September 2023

CITATION

Shi R, Seiler C, Knoch D, Junker A and
Altmann T (2023) Integrated phenotyping
of root and shoot growth dynamics in
maize reveals specific interaction patterns
in inbreds and hybrids and in
response to drought.
Front. Plant Sci. 14:1233553.
doi: 10.3389/fpls.2023.1233553

COPYRIGHT

© 2023 Shi, Seiler, Knoch, Junker and
Altmann. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 01 September 2023

DOI 10.3389/fpls.2023.1233553
Integrated phenotyping of root
and shoot growth dynamics in
maize reveals specific interaction
patterns in inbreds and hybrids
and in response to drought

Rongli Shi1*, Christiane Seiler2, Dominic Knoch1,
Astrid Junker1† and Thomas Altmann1*

1Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK),
Seeland, Germany, 2Federal Research Centre for Cultivated Plants, Institute for Resistance Research
and Stress Tolerance, Julius Kühn Institute (JKI), Quedlinburg, Germany
In recent years, various automated methods for plant phenotyping addressing

roots or shoots have been developed and corresponding platforms have been

established to meet the diverse requirements of plant research and breeding.

However, most platforms are only either able to phenotype shoots or roots of

plants but not both simultaneously. This substantially limits the opportunities

offered by a joint assessment of the growth and development dynamics of both

organ systems, which are highly interdependent. In order to overcome these

limitations, a root phenotyping installation was integrated into an existing

automated non-invasive high-throughput shoot phenotyping platform. Thus,

the amended platform is now capable of conducting high-throughput

phenotyping at the whole-plant level, and it was used to assess the vegetative

root and shoot growth dynamics of five maize inbred lines and four hybrids

thereof, as well as the responses of five inbred lines to progressive drought stress.

The results showed that hybrid vigour (heterosis) occurred simultaneously in

roots and shoots and was detectable as early as 4 days after transplanting (4 DAT;

i.e., 8 days after seed imbibition) for estimated plant height (EPH), total root

length (TRL), and total root volume (TRV). On the other hand, growth dynamics

responses to progressive drought were different in roots and shoots. While TRV

was significantly reduced 10 days after the onset of the water deficit treatment,

the estimated shoot biovolume was significantly reduced about 6 days later, and

EPH showed a significant decrease even 2 days later (8 days later than TRV)

compared with the control treatment. In contrast to TRV, TRL initially increased

in the water deficit period and decreased much later (not earlier than 16 days

after the start of the water deficit treatment) compared with the well-watered

plants. This may indicate an initial response of the plants to water deficit by

forming longer but thinner roots before growth was inhibited by the overall water

deficit. The magnitude and the dynamics of the responses were genotype-

dependent, as well as under the influence of the water consumption, which was

related to plant size.

KEYWORDS

maize, whole-plant phenotyping, root imaging, dynamic growth, hybrid, inbred,
drought stress
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Introduction

Plant phenotyping is essential for genetic mapping approaches

as well as selecting elite lines from diverse germplasms in breeding.

About half of the improvements in grain yield observed over the

past seventy years have been attributed to improvements in cultivar

genetics (Hauck et al., 2014). In maize, hybrids contribute greatly to

increased yield and play an important role in breeding (Duvick,

2005; Li C. et al., 2022). With rapid technological advancements,

modern plant phenotyping has been widely applied in plant

research during recent decades (Costa et al., 2019). It is mainly

performed using non-invasive methods to measure complex plant

traits, such as growth and physiology dynamics over time (Walter

et al., 2015; Costa et al., 2019). Plant phenotyping is considered a

key tool for understanding plant growth and development and

plant–environment interactions across different scales of resolution,

from the cellular to the whole plant or plant stand level (Janni and

Pieruschka, 2022). It supports fundamental plant research towards

the elucidation of biological processes and mechanisms leading

from genetic variation and interaction with the environment to the

expression of important traits (Langstroff et al., 2022). Furthermore,

it can speed up the characterization and improvement of agronomic

traits enabling more sustainable agriculture as well as the

development of new industrial products, such as biostimulants

(De Diego and Spıćhal, 2022).

Initially, most phenotypic analyses have focused on the

aboveground parts of plants. Many desirable agronomic traits,

hybrid performance-related traits, or stress adaption-related traits

were assessed via imaging-based high-throughput shoot

phenotyping (Junker et al., 2015; Neumann et al., 2015; Knoch

et al., 2020). Adaptation to stress mainly involves morphological

and physiological changes. These changes are controlled by

molecular mechanisms that regulate the expressions of genes.

Plant phenotyping helps identify genomic regions associated with

trait and ultimately causal genes and genetic variants (Janni et al.,

2019). For example, Wu et al. (2021) identified 1,529 QTL and 2,318

candidate genes related to drought responses by using a high-

throughput system to study 368 maize genotypes, and further

validated the functions of two candidate genes.

In recent years, the importance of roots has been increasingly

appreciated by researchers. Roots display strong plasticity and are

able to respond dynamically to local gradients of moisture and

nutrients and shape their architecture to explore the heterogeneous

soil according to the plant’s needs (López-Bucio et al., 2003; Hauck

et al., 2015). Roots show plastic developmental responses to

differences in nitrogen or other nutrients (Giehl et al., 2014; Jia

et al., 2019) or water availability (Orman-Ligeza et al., 2018; Orosa-

Puente et al., 2018; von Wangenheim et al., 2020) or to soil

compaction (Pandey et al., 2021). The alteration of the root

system architecture (RSA) by the DEEPER ROOTING 1 (DRO1)

gene, which was identified within a quantitative trait locus

controlling root growth angle, improves drought avoidance in rice

(Uga et al., 2013). Moreover, heterosis, the enhanced performance

of hybrids compared to their inbred parents, is also manifested in

roots (Hoecker et al., 2006) and Hauck et al. (2015) detected high

variation and heterosis in traits of RSA and root complexity (the
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degree of branching) among 12 parental maize inbred lines and 66

F1 hybrids thereof using the excavated roots of field grown plants

and a high-throughput imaging device. In order to support the

assessment of root traits and thus to accelerate genetic analyses and

investigations of mechanisms controlling root growth and

development, as well as programs addressing the improvement of

root traits important for plant performance, various root

phenotyping facilities have been established. These include

systems with artificial growth substrates such as agar or other

media and platforms to monitor roots growing in soil (Iyer-

Pascuzzi et al., 2010; Downie et al., 2012; Gioia et al., 2017; Shi

et al., 2018), which offer different degrees of accessibility of the root

in terms of visualizing the entire root system and in terms of the size

to which the root system can grow.

At the whole plant level, the close interaction between the shoot

and the root and their strong interdependence should be

considered. When studying maize inbred lines released in

different years, Ren and colleagues (2022) found that newly

released inbred lines had steeper root angles. The results suggest

that root traits were indirectly selected during modern breeding as

breeders aimed at improving aboveground agronomic traits. By

selecting shoot and root traits simultaneously and directly, it is

possible to achieve genetic gain for the whole plant more quickly

than selecting shoot or root traits alone (Tracy et al., 2020).

However, to date, phenotyping studies have mostly focused on

only the shoot or root system; there are quite limited platforms able

to phenotype at the whole plant level (Nagel et al., 2012; Jeudy et al.,

2016). With the GROWSCREEN-Rhizo, Nagel et al. (2012)

presented a phenotyping system capable of automatic and

simultaneous imaging of roots and shoots using soil-filled

rhizotrons. However, the work focused mainly on characterizing

root systems, and very few shoot phenotypic traits, such as the leaf

area, were quantified. Shoot architecture-related traits or colour-

related traits were not included. On the other hand, the relationship

between shoot and root traits shows different patterns under various

environmental conditions. Some researchers pointed out that

altering the relationship among root and shoot traits is part of the

strategies of plants to cope with drought (Lozano et al., 2020).

Therefore, whole plant phenotyping covering both roots and shoots

is required to gain a better understanding of the fundamental

biological processes governing plant growth and development and

ultimately plant performance.

The Leibniz Institute of Plant Genetics and Crop Plant Research

(IPK), Gatersleben, operates and uses several automatic non-

invasive high-throughput phenotyping platforms for different

plant sizes in controlled-environment growth facilities, including

a system suitable for large plants [described in Junker et al. (2015)].

The system facilitated the analysis of shoot phenotypes of diverse

plant species such as maize (Muraya et al., 2017; Dodig et al., 2021)

and rapeseed (Knoch et al., 2020). Increasing recognition of the

importance of root system adaptation prompted us to extend our

established shoot phenotyping platform for large plants with root

phenotyping units based on a previously validated concept (Shi

et al., 2018). In the following, we present two case studies

illustrating the applicability of the platform: the vegetative root

and shoot growth dynamics of 1) five maize inbred lines and four
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hybrids and 2) the assessment of the responses of five inbred lines to

progressive drought stress. The upgraded phenotyping system will

facilitate future research on different environmental cues and in

different plant species by simultaneously analysing the dynamics of

root and shoot growth.
Materials and methods

Plant materials and growth conditions

Four maize (Zea mays L.) hybrids: B73xUH007, N22xUH007,

P148xUH007, and PHT77xUH007 and their parental inbred lines

B73, N22, P148, PHT77, and UH007 were used for the first case

study. Four of these inbred lines, B73, N22, P148, and PHT77, and

one additional inbred line, S052, were used for the second case

study. Each line had nine replicates (individual pots/plants). All the

lines are part of the EPPN/EPPN2020 reference maize panel and

were selected for the present study according to results of a previous

investigation on the genetics of shoot growth (Muraya et al., 2017).

The lines B73, N22, and PHT77 were initially provided by Alain

Charcosset and Cyril Bauland, INRA(E) Mulon, France (see

Rincent et al., 2014) and lines S052, P148, and UH007 were made

available by Albrecht Melchinger, University of Hohenheim,

Germany, and were propagated at IPK Gatersleben. Seeds of the

hybrids B73xUH007, N22xUH007, P148xUH007, and

PHT77xUH007 were supplied by Claude Welcker, INRA(E),

LEPSE, Montpellier, France.

Seeds were germinated on wet filter paper and, after 4 days,

seedlings were transplanted into the custom-made ‘rhizo-pots’, one

plant per pot. The special rhizo-pot was designed based on the root

phenotyping concept, which was validated in our previous work

(Shi et al., 2018) and the prototype was pre-tested in the system. The

bottom and three sides of the box are made of black PVC in order to

prevent the roots from being exposed to light. The front side is tilted

30 degrees allowing the roots to be visualized effectively. A NIR filter

which allows the spectrum above 750 nm to pass through is inserted

at this side. The plants were transplanted close to the NIR filter, and

the root images were taken only from this side. The size of the box is

35 x 25 x 40 cm (LxBxH; Figure 1). The boxes were filled with about

7 kg of black peat soil (Graberde, Plantaflor, Germany). The top

surface of the boxes were covered with a black mesh to improve
Frontiers in Plant Science 0382
image quality and reduce water evaporation. All the rhizo-pots were

placed in carriers and entered the conveyor belt-based automated

plant phenotyping system. The system is located at the IPK in a

climatized greenhouse and plants were grown under controlled

long-day conditions with 25/20 °C and 16/8 h day/night, as

descripted by Junker et al. (2015).

All the hybrids and inbred lines used for the first case study

were grown only under well-watered conditions (60% field capacity

(FC)). The FC was determined on a gravimetric basis as described

by Junker et al. (2015). Briefly, soil water content corresponding to

100% field capacity was determined by weighing soil-filled pots

(0.3L) after watering to full saturation (100% FC) and weighing

them after drying the soil completely (20 days at 70 °C). The weight

corresponding to 60% or 35% field capacity was then calculated

accordingly. For the second case study, the five inbred lines were

grown under well-watered (WW) and drought (D) conditions

within the same experiment. The plants of the well-watered

inbred lines B73, PHT77, P148, and N22 were the same in both

studies. Water supply was maintained by automated weighing and

watering towards target weight and was stopped at 13 days after

transplanting (DAT) to induce drought stress and was kept to 35%

FC. Five soil moisture sensors (Decagon 5TE, UMS, Germany) were

inserted in the soil at a depth of 10 cm for each genotype under

different treatment to record the water content in the pot. All plants

were fertilized with Hakaphos Blau (Compo Expert, Germany) 150

ml/pot at 11 DAT. The hybrids and WW plants were fertilized two

times more at 21 DAT and 27 DAT.

In order to further evaluate the newly integrated root

phenotyping system, additional plants of two inbred lines B73

and N22 (each with seven replicates) were cultivated

simultaneously with the plants of the two case studies and

sampled at 19 DAT. These two lines have contrasting root

biomass as shown in our previous work (Shi et al., 2018): B73 has

a relatively large root biomass while N22 has a small root biomass.

At the end of the experiment, roots of B73 and N22 were dug out,

washed, and placed in a 28 x 40 cm transparent tray filled with

distilled water. The roots were scanned at 400 dpi on an Epson

Expression 10000 XL scanner (Seiko Epson).

The V stage (the number of visible leaf collars) and leaf number

were counted manually after 13 DAT on a weekly basis. At 40 DAT,

shoots were cut from the base and the fresh and dry weight (oven-

dry at 70˚C for one week) were determined.
FIGURE 1

Custom-made ‘rhizo-pot’ for simultaneous root and shoot imaging. NIR filter: long pass near infrared filter plate allows only light above 750nm to
pass through. The root images are taken by a NIR-sensitive camera directed at right angles to the NIR filter plate upon illumination with NIR (850
nm) emitting diodes.
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Imaging acquisition and analysis

After transplanting, visible light (RGB) and static fluorescence

(FLUOR) top view and side view images of shoots, as well as near

infra-red (NIR) images of roots, were taken on a daily basis from 4

to 40 DAT (4 to 39 DAT for roots). Due to technical failures, time

points were missing at 9 (only for root), 30, and 35 to 39 DAT. Root

images were taken by a CMO Mono sensor with 12 Mp resolution

(UI-5200SE-M-GL Rev.4, iDS, Germany) which was integrated into

the system. During imaging, an LED (LZ4-00R408 peak: 850 nm,

range 835-875 nm) panel was used for NIR illumination.

To extract image-based shoot traits, the Integrated Analysis

Platform (IAP) software (version 2.0; Klukas et al., 2014) was used

with a customized analysis pipeline. From the very elaborate output

of the image analysis with 445 phenotypic traits, the shoot traits

‘estimated shoot biovolume (px3)’ (ESV; biomass-related),

‘projected leaf area (px2)’ (PLA; biomass-related), ‘estimated plant

height (px)’ (EPH; architecture-related), and the ‘brown to green

ratio’ (colour-related) were selected and presented. They are based

on visible light and from a combined view, top view, side view, and

side view, respectively.

The scanned roots from B73 and N22 were analysed by

WinRhizo Pro ver. 2013c (Regent Instruments). Root images

derived from the phenotyping facility were pre-processed and

analysed by the semi-automated Root Image Analysis (saRIA)

software (Narisetti et al., 2019). It supports efficient image

segmentation on soil-root images, while user input for selecting

the best combination of algorithmic parameters is required. Noisy

regions could be manually removed as well (Narisetti et al., 2019).

The root traits ‘total root length (px)’ (TRL), ‘total root surface area

(px2)’ (TRSA), ‘total root volume (px3)’ (TRV), and ‘average root

diameter (px)’ (RD) were used for further analysis. The NIR root

images from B73 and N22 at 19 DAT, which were used for

validation, were additionally analysed by the SmartRoot software

(Lobet et al., 2011). The root trait values extracted from images

acquired after 29 DAT were not considered for statistical analysis as

they were regarded as unreliable due to the increasing density of the

root system and the progressive merging and overlapping of roots.

Nevertheless, values derived from images taken at two time points,

34 and 39 DAT, were included in the figures, but only for illustrative

purposes (shaded grey in the figures).

For the first case study, mid-parent heterosis (MPH in %) was

calculated as the difference between hybrid performance (F1) and

the mean value of the two parents [MP=(P1+P2)/2] for each trait at

all time points as Eq.1.

MPH =
(F1 −MP)

MP
� 100 (Eq: 1)

To evaluate the drought tolerance of the lines, the biomass

ratio was assessed by comparing the biomass under drought (D)

with the biomass under well-watered (WW) conditions. The

calculation was done as follows (Eq.2-Eq.5; Fischer and Maurer,

1978; Correia et al., 2022). Shoot DW ratio was calculated based

on the data at the end of the experiment, while the estimated shoot

biovolume (ESV), total root length (TRL), and total root volume
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(TRV) were derived from the daily acquired images. Mean values

were calculated for each day of the growth period after drought

was imposed at 13 DAT.

Shoot DW ratio =
shoot DWD

shoot DWWW
(Eq: 2)

ESV ratio =
ESVD

ESVWW
(Eq: 3)

TRL ratio =
TRLD
TRLWW

(Eq: 4)

TRV ratio =
TRVD

TRVWW
(Eq: 5)
Statistical analysis

The manually measured traits were analysed by an analysis of

variance (ANOVA) or t-test using GENSTAT software ver. 16.0.

Correlations between traits were analysed using the Pearson

product moment correlation. The data visualization for

phenotyping data was performed using the R software (R Core

Team, 2019). Significant differences between the treatments for each

day and trait were determined by one-way ANOVA at a significance

level of 0.05.
Results

Validation of the root
phenotyping implementation

Two genotypes contrasting in root biomass, B73 and N22, each

analysed with seven replicates, were sampled at 19 days after

transplanting (DAT) and used to validate the root phenotyping

setup in our phenotyping platform. To this end, roots were dug out

manually, washed, scanned, and root morphological traits were

analysed using the WinRhizo (SC) software to generate ground

truth data. The high-throughput phenotyping images were

processed with ‘SmartRoot’ (SR) and ‘Semi-automated Root

Image Analysis’ (saRIA).

The correlations between root dry weight (RDW) and root traits

obtained by different software tools are shown in Table 1. There

were high positive correlations among all three root traits: total root

length (TRL), total root surface area (TRSA), and total root volume

(TRV). The TRV obtained by scanning the root system displayed

the highest correlation with RDW (r = 0.99). TRV reflected RDW

better than TRL, regardless which software was used. Notably, the

traits obtained by the saRIA software showed higher correlation

with RDW than the traits obtained by the SmartRoot software

which required manually tracing the roots. Therefore, the saRIA

software was used to analyse root traits in the two case

studies performed.
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Dynamic shoot and root growth of hybrid and inbred

maize genotypes.
Manually measured shoot traits

At the end of the experiment, most hybrids (B73xUH007,

N22xUH007, P148xUH007, and PHT77xUH007) had a

significantly higher plant height (PH) and shoot dry weight (DW)

compared with the corresponding female parental inbred lines

(B73, N22, P148, and PHT77) or the male tester UH007 (Figure 2

and Supplementary Figure 1). The only exception was the DW

difference between N22xUH007 and UH007. The manually

measured traits V stage and leaf number, both representing the

development of the maize plants, increased over time. At 13 DAT,

the hybrids were further developed, displaying a higher V stage and

leaf number than the female inbred lines. Significant differences in

V stage between UH007 and the hybrids were detectable starting at

26 DAT (P148xUH007). For leaf number, B73xUH007 and

P148xUH007 had significantly more leaves than UH007 at 13

DAT and all the hybrids had a higher leaf number than UH007

at 40 DAT, similar to the other female inbred lines. Among the

inbred lines, N22 displayed significantly lower shoot DW and a

lower plant height compared with B73, PHT77, and UH007. During

the whole growth period, N22 developed fewer leaves than the other

inbred lines, which could be observed as early as 13 DAT.
Image-derived shoot and root
phenotypic traits

Similar tendencies of the manually measured traits were also

observed for the image-derived shoot traits. Estimated shoot

biovolume (ESV), estimated plant height (EPH), and projected

leaf area (PLA) from 4 to 40 DAT are shown in Figures 3A, B

and Supplementary Figure 2, respectively. Due to a technical failure
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at 30 DAT, no imaging and watering was performed on this

particular day. There were also no images between 35-39 DAT,

but watering was carried out every second day during this period.

Both hybrid and inbred lines showed continuous ESV, PLA, and PH

increases over time. There was more variation at the later stages,

most likely caused by losing some old leaves and/or greater overlap

of leaves. As mentioned by Scharr et al. (2016), with the growth of

plants, leaves tend to overlap which could result in less accurate

estimates of the leaf area due to partial occlusion.

The traits TRL, TRV, and TRSA were extracted from the root

images acquired by the NIR camera and their changes over time

(from 4-29 DAT) were analysed (Figures 4A, B and Supplementary

Figure 3, respectively). In concordance with shoot growth, the

hybrid lines displayed higher TRL values compared to the inbred

lines almost throughout the whole growth period. This tendency

could be observed already during the early growth phase at 4 DAT

(Table 2). At 29 DAT, the hybrids B73xUH007, N22xUH007,

P148xUH007, and PHT77xUH007 had a 1.6, 4.2, 2.5, and 1.6

times greater TRL than their respective parental inbred lines B73,

N22, P148, and PHT77. Among the inbred lines, B73, PHT77, and

UH007 had similar TRL, and they were substantially higher

compared with N22 (Figure 4A). Roots of N22 were not only

shorter, but also displayed a limited volume, which reflected a

smaller root system. TRV showed a similar tendency as TRL

regarding the growth pattern of hybrids and inbred lines, except

that UH007 had the highest TRV among all inbred lines, which was

even higher than the hybrid N22xUH007. This mainly resulted

from the bigger RD, as show in Supplementary Figure 3.

The mean mid-parent heterosis (MPH) for the hybrids was

calculated based on the imaging-derived traits of both shoots and

roots (Figure 5). Generally, the MPH of all traits varied dynamically

over time with higher MPH values at the early stage. TRL, TRV, and

TRSA especially displayed high MPH at 4 DAT, though with quite

high variation. The highest MPH for EPH was found at 5 DAT which

reached 144%. The MPH of ESV and PLA showed the highest value

several days later, in the period of 9 to 10 DAT, and both reached
TABLE 1 Correlations between RDW (root dry weight), root traits TRL (total root length), TRSA (total root surface area), and total root volume (TRV)
analysed by different software (n=14).

SC-TRL SC-TRSA SC-TRV SR-TRL SR-TRSA SR-TRV saRIA-TRL saRIA-TRSA saRIA-TRV

RDW 0.967 0.985 0.99 0.915 0.941 0.959 0.939 0.953 0.963

SC-TRL – 0.993 0.974 0.922 0.933 0.937 0.942 0.950 0.947

SC-TRSA – 0.994 0.932 0.949 0.958 0.947 0.958 0.961

SC-TRV – 0.929 0.952 0.965 0.939 0.954 0.962

SR-TRL – 0.992 0.966 0.944 0.955 0.948

SR-TRSA – 0.990 0.956 0.966 0.968

SR-TRV – 0.963 0.972 0.982

saRIA-TRL – 0.993 0.987

saRIA-TRSA – 0.995

saRIA-TRV –
SC (WinRhizo), SR (SmartRoot), and saRIA (Semi-automated Root Image Analysis) refer to the used software. The values denote correlation coefficient (R) between the traits analysed by
Pearson correlation. The correlations were all statistically highly significant at p< 0.001.
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more than 200%. It seems that heterosis was manifested earlier in

roots than in shoots, while the degree of heterosis was lower in roots

compared to shoots. The range of MPH for TRL and TRV (4-29

DAT) was 70-146%, and 28-144%, while MPH for ESV and PLA (4-

40 DAT) it ranged between 73-217% and 81-224%, respectively.
Shoot and root growth dynamics under
drought stress

The inbred lines B73, N22, P148, PHT77, and S052 were

evaluated for their phenotypic response to drought. Drought

stress was induced by stopping the water supply starting from 13

DAT. Due to the large soil volume in the rhizo-pot, the soil

moisture level dropped down progressively as shown either by

soil VWCmeasured with soil sensors (Figure 6) or by the calculated

field capacity (FC; Supplementary Figure 4). Both methods showed

the same tendency that only at a late stage, after 33 DAT, did the FC

of the soil in the pots of B73 and PHT77 decrease to 35%. For P148
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and S052, the FC dropped to 40% during the last two days, while the

pots of N22 still had about 45% FC at the end of the experiment

(Supplementary Figure 4).
Manually measured shoot traits

Drought stress significantly decreased PH and shoot DW of

B73, PHT77, and S052. Although P148 displayed a decreased PH,

the DW did not differ significantly between well-watered and

drought-stressed plants. Both PH and shoot DW were unaffected

by the drought treatment in N22, likely due to a lower stress

intensity with a relatively high FC (higher than the intended 35%)

even at the late growth stages (Figure 7). The V stage and leaf

number of B73 and PHT77 were affected by the drought from 33

DAT, while only at 40 DAT, a substantial effect was observed on

P148 and S052. Similar to PH and shoot DW results, the V stage

and leaf number did not differ between the two treatments in

N22 (Figure 7).
FIGURE 2

Manually measured plant height and shoot dry weight (DW) at the end of the experiment, V stage, and leaf number over time of hybrid and inbred
lines. DAT: days after transplanting. Bars indicate means ± SD (n = 9). A black * indicates significant differences between the hybrid and the female
parent inbred lines, while a white * indicates significant differences between the hybrid and the male parent inbred line UH007 compared by t-test
(p<0.05). Different letters indicate statistically significant differences among all the lines (p<0.05) determined by ANOVA and Tukey’s HSD test.
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Image-derived shoot and root
phenotypic traits

It took several days for plants to show detectable phenotypic

changes after the drought stress was imposed. Starting from 29

DAT, a significant difference in ESV appeared between well-

watered and drought-treated plants (Table 2). Drought tended to

reduce PH for all the tested inbred lines over time, although

significant differences were not detectable until 32 DAT. The ESV

and EPH at 40 DAT were 2.3 and 1.35 times higher, respectively,

under well-watered conditions compared with drought treatment

(Figures 8A, B). B73 and PHT77 were most severely affected by the

drought stress. Their ESV and PLA decreased about ten days after

drought imposition, while there was no significant difference

detectable in N22 at that time (Figure 8A; Supplementary

Figure 5). Most colour-related shoot traits, such as the brown to

green ratio (Supplementary Figure 6), showed no obvious changes

due to the drought stress.

Root growth of all tested lines was substantially affected by the

drought stress (Figures 9A, B and Supplementary Figure 7). Water

deficit significantly decreased TRV compared to well-watered plants,
Frontiers in Plant Science 0786
and this was evident from 24 DAT, about 10 days after the watering

was stopped (Figure 9B and Table 2). TRL showed a trend toward

higher TRL in the drought-treated plants, although the differences

between 18 and 23 DAT were not significant (Figure 9A).

Subsequently, the TRL of most drought-treated plants stagnated or

decreased over time and was on average 10% lower than that of the

well-watered plants at 29 DAT. RD of all the lines were decreased

under drought stress (Supplementary Figure 7).

Drought stress reduced the shoot DW for all tested inbred lines

(Figure 10A). Among the lines, B73 was most severely affected by the

drought treatment and gained only 45.3% of shoot biomass of the

corresponding well-watered plants, while N22 was least affected

(79.5%). After one week of drought stress, the ESV ratio between

drought and well-watered plants dropped below a value of 1 for all

lines. The value continuously decreased over time and reached on

average about 0.5 at 40 DAT (Figure 10B). There was variation in the

degree of reduction in the five inbred lines. Starting from 32 DAT, the

observed tendency became stable. Consistent with the end-point

results at 40 DAT, the ESV ratios for B73, PHT77, and S052 were

lower than for P148 and N22, indicating a stronger effect on those

lines. Root growth was affected by the water deficit as well, as shown
B

A

FIGURE 3

Estimated shoot biovolume (ESV) (A) and estimated plant height (EPH) (B) derived from the images of hybrid and inbred maize plants over time. Data
are shown as means of nine replicates and the error bars denote ± SE.
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A

B

FIGURE 4

Estimated total root length (TRL) (A) and total root volume (TRV) (B) of hybrid and inbred maize plants over time extracted from NIR-images by saRIA
(semi-automated Root Image Analysis) software. Data are shown as means of nine replicates and the error bars denote ± SE. The grey area marks
time points with data of low reliability due to the increasing density of roots and their progressive merging and overlapping. Values derived from
images taken at 34 and 39 DAT are included only for illustration.
TABLE 2 Statistical analysis by using ANOVA (analysis of variance) between hybrid and inbred lines, as well as well-watered (WW) and drought-treated
(D) maize plants.

Hybrid vs. Inbred WW vs. D

DAT ESV EPH TRL TRV ESV EPH TRL TRV

4 – a * *** *** NS b NS NS NS

5 – * *** *** NS NS NS NS

6 *** *** *** *** NS NS NS NS

7 *** *** *** *** NS NS NS NS

8 *** *** *** *** NS NS NS NS

9 *** *** *** *** NS NS NS NS

10 *** ** *** *** NS NS NS NS

11 *** ** *** *** NS NS NS NS

12 *** * *** *** NS NS NS NS

13 *** *** *** *** NS NS NS NS

(Continued)
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in Figures 10C, D. The TRV ratio decreased over time, and it appears

there were genotypic differences between the lines. After ten days of

water deficit, the TRV of S052 was much less reduced than the TRV

of the other lines (Figure 10C). The ratio of TRL showed a different

pattern. The ratio was above 1 for all lines during more than half of

the drought stress period from 15 to 25 DAT. This increased root

length (ratio >1) lasted for about ten days, and then decreased to an

average value of 0.83 at 29 DAT (except for S052). Notably, for S052

the TRL increased for a period of 14 days (15 to 29 DAT), while for

N22 it only increased for 7 days (15 to 22 DAT; Figure 10D).
Discussion

Although diverse high-throughput phenotyping facilities have

been developed in recent years, platforms capable of simultaneously
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assessing both the root and the shoot of plants are rare. It has been

reported that the growth and structure of the belowground and

aboveground parts of plants affect each other and, hitherto, this

relationship has been particularly investigated in trees by ecologists

(Parsons et al., 1994; Wang et al., 2023). However, also in annual

plants like maize, effects of aerial conditions such as solar radiation

can affect both shoot and root growth and can cause shifts in the

root/shoot ratio (Guo et al., 2021). As reported by Su et al. (2019),

the growth of plant shoots is closely associated with the size of the

root system. They found nitrogen efficient maize hybrids had

deeper and bigger roots and higher grain yield than nitrogen

inefficient lines at low nitrogen application rates, although the

mechanism of the interaction between shoots and roots is still

unclear. Therefore, further studies with suitable phenotyping

facilities are necessary to examine root and shoot traits in a

single framework.
TABLE 2 Continued

Hybrid vs. Inbred WW vs. D

DAT ESV EPH TRL TRV ESV EPH TRL TRV

14 *** *** *** *** NS NS NS NS

15 *** *** *** *** NS NS NS NS

16 *** ** *** *** NS NS NS NS

17 *** *** *** *** NS NS NS NS

18 *** *** *** *** NS NS NS NS

19 *** *** *** *** NS NS NS NS

20 *** *** *** *** NS NS NS NS

21 *** *** *** *** NS NS NS NS

22 *** *** *** *** NS NS NS NS

23 *** *** *** *** NS NS NS NS

24 *** *** *** *** NS NS NS *

25 *** *** *** *** NS NS NS *

26 *** *** *** *** NS NS NS **

27 *** *** *** *** NS NS NS ***

28 *** *** *** *** NS NS NS ***

29 *** *** *** *** * NS NS ***

31 *** *** * NS

32 *** ** *** *

33 *** ** ** *

34 *** * *** **

35 – – – –

39 – – – –

40 *** ** *** ***
*indicates p< 0.5, **p<0.1, and ***p< 0.01. Analysis results of values derived from root images taken from 30 to 39 DAT are not shown due to the increasing density of roots and their progressive
merging and overlapping.
adenotes no data, bdenotes no significant difference.
ESV, estimated shoot biovolume; EPH, estimated plant height; TRL, total root length; TRV, total root volume; NS-no significant difference.
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Integrated root phenotyping

The non-invasive high-throughput shoot phenotyping platform at

IPK has been utilized in many research studies for diverse models and

crop plants (Junker et al., 2015; Muraya et al., 2017; Knoch et al., 2020;

Dodig et al., 2021). As realized by many researchers, crop species with

optimised root systems are essential for future food security and key to

improving agricultural productivity and sustainability (Li A. et al.,

2022). In order to enhance our understanding of the root system, in

particularly the dynamics of root growth and development, a root

phenotyping concept was developed (Shi et al., 2018) and root

phenotyping units were established and integrated in the existing

phenotyping platform for large plants. In this work, we present the

upgraded facility and the use of the root phenotyping units to evaluate

jointly shoot and root growth in two case studies.
Frontiers in Plant Science 1089
The high positive correlations between root DW and image-

derived traits such as TRL and TRV indicate that our root

phenotyping facility is well suited to monitor root growth

(Table 1). The root analysis software saRIA (Narisetti et al., 2019)

was utilized to analyse the root images obtained by the automated

high-throughput phenotyping system. This upgraded system now

enables simultaneous non-invasive analysis of root and shoot traits

of the same plants in a particular phenotyping experiment.
Shoot and root growth dynamics in maize
hybrid and inbred lines

Hybrids often display superior phenotypes due to their vigorous

nature (van Dijk et al., 2016), a phenomenon widely known as

heterosis. The superior performance of F1 hybrids compared to

their parental inbreds has been known for decades, although the

underlying genetic and regulatory mechanisms remain largely

unclear (Paschold et al., 2010). Heterosis studies rely on

morphological and physiological analyses of inbred lines and

corresponding hybrids. So far, most related research has

focused either on shoot or root traits independently using

separate approaches.

In the present study, the dynamics of vegetative shoot and root

growth were investigated in a selection of maize hybrid and inbred

lines. Growth-related image-derived shoot and root traits were

analysed during the early vegetative growth phase, from 4 to 40

DAT. The phenotyping results indicated an early establishment of

heterosis in the tested hybrids. EPH, TRL, and TRV were higher in

hybrids than in their corresponding parental inbred lines as early as

4 DAT, the first day when shoot and root images were taken

(Table 2). At the end of the growth period, EPH and shoot DW in
B C

D E F

A

FIGURE 5

Mean mid-parent heterosis (MPH) for estimated plant height (EPH) (A), estimated shoot biovolume (ESV) (B), projected leaf area (PLA) (C), total root
length (TRL) (D), total root volume (TRV) (E), and total root surface area (TRSA) (F) across hybrids by using image-derived traits. The grey area marks
time points with data of low reliability due to the increasing density of roots and their progressive merging and overlapping. Values derived from
images taken at 34 and 39 DAT are included only for illustration.
FIGURE 6

Soil volumetric water content (VWC (v/v [%])) determined by a soil
sensor in well-watered (WW) and drought-treated (D) pots. The
values denote the mean of five replicates of each line.
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hybrids were on average 20% and 55% higher than in their parental

inbred lines, respectively. These findings are consistent with the

results of previous studies, which showed the superiority of hybrids

(Hauck et al., 2014; Zhou et al., 2018). The range of MPH for ESV

(73-217%) and PLA (81-224%) was similar to that reported by

Tollenaar et al. (2004). In their study, they reported MPH values

from 138% to 214% for dry matter accumulation and 92% to 204%

for leaf area at the 14-leaf stage, respectively. Thanks to the better

performance with superior biomass and higher seed yield, hybrid

maize varieties have been predominantly grown worldwide since

the 1960s (Li C. et al., 2022). Further increasing yield potential and

yield stability through heterosis remains a major goal of maize

breeding (Duvick, 2005; Li C. et al., 2022). The advances in

high-throughput phenotyping facilities will assist and fasten this

process by supporting the gain of fundamental genetic and

mechanistic knowledge.

In addition to the aboveground parts, heterosis is also

observable in the belowground organs of plants. In accordance

with Hoecker et al. (2006), the primary root length, number of

seminal roots, and the lateral root density can display substantial

heterosis. They demonstrated that heterosis manifests in the very

early stages of root development a few days after germination. We

observed in our study that hybrids displayed high MPH values as

early as 4 DAT (8 days after germination), with on average 67% and

70% higher TRL and TRV values than the inbred lines, respectively

(Figure 5). Compared to conventional methods of quantifying trait

expression at one particular time point (usually using destructive

techniques), heterosis in shoots and roots can be assessed here in a

dynamic manner by a non-invasive, fast, and high-throughput

procedure. We observed that heterosis occurred earlier in roots

than in shoots and decreased over time in both organs.
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The ability to compare heterosis for both shoot and root

simultaneously, even under various conditions, will help

researchers to further explore the developmental and physiological

mechanisms associated with heterosis and to jointly study the

genetic basis of heterosis for both organ systems, which are

highly interdependent.
Shoot and root growth dynamics in maize
in response to drought

Drought stress is one of the most serious adverse environmental

factors limiting crop productivity and a major threat to world food

security (Boyer et al., 2013; Berdugo et al., 2020). Due to global

climate change, the frequency and duration of drought periods will

most likely increase (Trenberth et al., 2014). Therefore, it is of the

utmost importance to understand how plants respond and adapt to

water deficit in order to support solutions to this problem and

enhance the sustainability of agricultural production.

In the present study, drought stress was induced at 13 DAT and

drought symptoms such as leaf wilting and rolling could be

observed in B73 and PHT77 at the growth stages V6-V10. The

effect of drought was reflected by decreases in PLA and ESV, as well

as in the final shoot DW. Plants generally decline the number and

area of leaves in response to drought stress. This was confirmed by

our manually measured parameters and image-derived shoot

phenotypic traits (Figures 7, 8). To cope with drought, plants

induce protective mechanisms against water deficit. In addition to

stomatal closure, assimilates are often re-allocated from the shoot to

the root, thereby enhancing root growth and extension into deeper

soil layers (Rich and Watt, 2013; Xu et al., 2015). Roots have the
FIGURE 7

Manually measured shoot height and shoot dry weight (DW) at the end of the experiment, V stage, and leaf number over time. DAT: days after
transplanting. Bars indicate means ± SD (n = 9). * indicates significant differences between well-watered (WW) and drought-treated (D) plants
(p<0.05). Different letters indicate statistically significant differences among the genotypes under well-watered (small letters) or drought (capital
letters) condition (p<0.05).
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ability to plasticly change their spatial distribution in the soil in

response to drought stress (Orman-Ligeza et al., 2018; Orosa-

Puente et al., 2018; von Wangenheim et al., 2020). The degree of

plasticity, however, is trait and genotype dependent. As mentioned

by Tracy et al. (2020), phenotypes in roots and shoots are expressed

differently depending on environmental conditions. Our results

show that roots respond faster to drought than shoots as

significant differences between drought and WW treatments

occurred 10 days after drought imposition in roots, while in

shoots significant differences could only be observed 4 days later

(Table 2). Drought affected not only root biomass, which was

represented by TRV, but also modified the morphology of root

with changes in other traits, such as TRL, and also the

root diameter.

Notably, there was a tendency for TRL to increase shortly after

the onset of drought stress, although the difference was not

significant. Sharp and Davies (1979) showed that a mild degree of

water stress resulted in a higher root elongation rate compared to

well-watered maize. The rate of root growth probably depends on the
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degree and the duration of the stress. Under extreme water deficit,

root growth will be inhibited in many species (Rich and Watt, 2013;

Kou et al., 2022). It is therefore highly important to assess the

dynamics of root growth changes over time and under different

conditions to gain deeper insights into the responsible mechanisms.

Addressing only single time points will be inappropriate. Our high-

throughput phenotyping platforms supports such measurements and

thus the elucidation of the responses of plant organs to

environmental cues and the adaptation to stress conditions.

The biomass ratio between well-watered and drought-treated

plants provides a parameter to compare different genotypes with

respect to their response to drought (Harb et al., 2010; Correia et al.,

2022). Among the five inbred lines tested here, B73 exhibited the

lowest ESV ratio at most time points. This suggests that B73 was

most severely affected by drought, which is in line with the study of

Chen et al. (2012), who classified B73 as a drought-sensitive line.

The estimated TRL and TRV ratios suggested that S052 produced

more roots, likely through enhanced lateral root growth and this

effect lasted also longer than in the other lines. This might partly
B

A

FIGURE 8

Estimated shoot biovolume (ESV) (A) and estimated plant height (EPH) (B) derived from the images of well-watered (WW) and drought-treated (D)
plants over time. Data are shown as means of nine replications and the error bars denote ± SE. The vertical dashed line denotes the starting time of
imposing drought stress at 13 DAT.
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result from the relatively small shoot biomass (and transpiration)

and the lower water consumption of the plants of this line

(Figure 10), which caused a longer time period to reach water

deficit than for other genotypes.

In future, some features of the phenotyping installation need to

be taken into account when it is used to assess genotypic difference

in responses to drought: due to the relatively large volume of the

rhizo-pots compared to regular growth pots, soil moisture levels will

decrease more slowly. This is closer to the natural drought scenarios

in the field, where gradual changes in water availability occur rather

than abrupt changes (Poorter et al., 2012). Soil drying in the rhizo-

pots occurs due to the water consumption by the plants and the

evaporation from the soil surface. While the latter is rather uniform

(also due to the use of the soil cover), the former is affected by the

size of the plants and by their physiological states, in particular their

rates of transpiration. The impact of small plant size was evident for

the line N22, which did not suffer from the drought stress as much

as the other lines, since the FC was still 40% at the end of the
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experiment (Supplementary Figure 4). This is probably the main

reason why the reduction of shoot mass was least compared to the

other genotypes. A similar tendency could be observed for many

other measured traits. Also, most colour-related traits did not differ

after water deprivation, which might also be caused by the weak

stress imposed in the system. If the different water consumption of

plant lines under investigation (mainly due to different plant sizes)

cannot be avoided by an appropriate selection of the population

under investigation, we suggest adjusting the drought regime

imposed to all plants to that of the plants with the lowest water

consumption. This could be achieved by programming a gradual

decrease of the watering target weight, which is gauged to the

weakest water consumer, rather than a complete stop of watering.

To avoid a too long period to reach considerable water stress levels,

the soil moisture level in the rhizo-pot used in the initial phase of

the experiment should be carefully adjusted.

Plant productivity is the results of integrating processes

occurring in both the root and the shoot systems. Therefore, a
A

B

FIGURE 9

Estimated total root length (TRL) (A) and total root volume (TRV) (B) of well-watered (WW) and drought-treated (D) plants over time extracted from
the NIR-images by saRIA (semi-automated Root Image Analysis) software. Data are shown as means of nine replications and the error bars denote ±
SE. The vertical dashed line denotes the starting time of imposing drought stress at 13 DAT. The grey area marks time points with data of low
reliability due to the increasing density of roots and their progressive merging and overlapping (particularly in the WW plants). Values derived from
images taken at 34 and 39 DAT are included only for illustration.
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deeper understanding of the effects of different stresses such as

water deficit or nutrient limitation on roots and shoots is of great

value for cultivar selection, the improvement of crop models, and

low-input agriculture (Hadir et al., 2020). Our observations confirm

that the root phenotyping upgrade of the platform supports

experiments to assess the dynamic phenotypic changes of both

shoots and roots (and thus the relations of these two important

organ systems) caused by genetic variation and/or induced by

environmental triggers such as drought stress.
Conclusion

With the latest updates, the IPK automated high-throughput

phenotyping platform for large plants is capable of capturing

images from both shoots and roots. Consequently, the dynamic

growth patterns among various genotypes in up to 396 carriers/

plants, as well as the response to different environmental scenarios,

can be analysed in a single experiment.

This study illustrates the applicability and importance of this

system. Combing growth-related shoot and root traits helps us to

better interpret the difference between hybrid and inbred lines.

Moreover, it sheds some light on the hidden parts of plants and

illustrated the early response of roots to drought. Genotypic

differences in adaptation were identified in the five inbred lines.

The assessment of dynamic growth from more diverse lines with

different degrees of drought resilience will be helpful to explore the

underlying mechanisms and to obtain more information about the

shoot–root relationships in response to drought. The integrated

shoot and root phenotyping platform can also be applied to
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investigate other stress responses or nutrient deficiency scenarios

for large plant species.
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FIGURE 10

Shoot DW ratio (shoot DW under drought/shoot DW under well-watered) of the five inbred lines at the end of the experiment at 40 DAT (A).
Estimated shoot biovolume ratio (ESV ratio) over time after drought imposition at 13 DAT (B). Estimated total root length (TRL) and total root volume
ratio (TRV) over time (C, D). The mean values of nine replicates under each treatment were used to calculate the ratio. The dashed line denotes 1
which means the trait had the same value in the drought and the well-watered (WW) conditions. DAT: days after transplanting. The grey area marks
time points with data of low reliability due to the increasing density of roots and their progressive merging and overlapping (particularly in the WW
plants). Values derived from images taken at 34 and 39 DAT are included only for illustration.
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López-Bucio, J., Cruz-Ramıŕez, A., and Herrera-Estrella, L. (2003). The role of
nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280–287.
doi: 10.1016/S1369-5266(03)00035-9

Lozano, Y. M., Aguilar-Trigueros, C. A., Flaig, I. C., and Rillig, M. C. (2020). Root
trait responses to drought are more heterogeneous than leaf trait responses. Funct. Ecol.
34, 2224–2235. doi: 10.1111/1365-2435.13656

Muraya, M. M., Chu, J., Zhao, Y., Junker, A., Klukas, C., Reif, J. C., et al. (2017).
Genetic variation of growth dynamics in maize (Zea mays L.) revealed through
automated non-invasive phenotyping. Plant J. 89, 366–380. doi: 10.1111/tpj.13390

Nagel, K. A., Putz, A., Gilmer, F., Heinz, K., Fischbach, A., Pfeifer, J., et al. (2012).
GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous
measurements of root and shoot growth for plants grown in soil-filled rhizotrons.
Funct. Plant Biol. 39, 891. doi: 10.1071/FP12023

Narisetti, N., Henke, M., Seiler, C., Shi, R., Junker, A., Altmann, T., et al. (2019). Semi-
automated root image analysis (saRIA). Sci. Rep. 9, 19674. doi: 10.1038/s41598-019-55876-3

Neumann, K., Klukas, C., Friedel, S., Rischbeck, P., Chen, D., Entzian, A., et al.
(2015). Dissecting spatiotemporal biomass accumulation in barley under different
water regimes using high-throughput image analysis: Biomass accumulation in barley.
Plant Cell Environ. 38, 1980–1996. doi: 10.1111/pce.12516

Orman-Ligeza, B., Morris, E. C., Parizot, B., Lavigne, T., Babé, A., Ligeza, A., et al.
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From genes to policy: mission-
oriented governance of
plant-breeding research
and technologies

Maria Gerullis1,2*, Roland Pieruschka3, Sven Fahrner3,
Lorenz Hartl4, Ulrich Schurr3 and Thomas Heckelei2

1Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, United States,
2Institute for Food and Resource Economics, University of Bonn, Bonn, Germany, 3Plant Sciences,
Institute of Bio- and Geosciences 2, Jülich Research Centre, Jülich, Germany, 4Wheat and Oat
Breeding Research, Institute for Crop Science and Plant Breeding, Bavarian State Research Center for
Agriculture, Freising, Germany
Mission-oriented governance of research focuses on inspirational, yet attainable

goals and targets the sustainable development goals through innovation

pathways. We disentangle its implications for plant breeding research and thus

impacting the sustainability transformation of agricultural systems, as it requires

improved crop varieties and management practices. Speedy success in plant

breeding is vital to lower the use of chemical fertilizers and pesticides, increase

crop resilience to climate stresses and reduce postharvest losses. A key question

is how this success may come about? So far plant breeding research has ignored

wider social systems feedbacks, but governance also failed to deliver a set of

systemic breeding goals providing directionality and organization to research

policy of the same. To address these challenges, we propose a heuristic

illustrating the core elements needed for governing plant breeding research:

Genetics, Environment, Management and Social system (GxExMxS) are the core

elements for defining directions for future breeding. We illustrate this based on

historic cases in context of current developments in plant phenotyping

technologies and derive implications for governing research infrastructures

and breeding programs. As part of mission-oriented governance we deem

long-term investments into human resources and experimental set-ups for

agricultural systems necessary to ensure a symbiotic relationship for private

and public breeding actors and recommend fostering collaboration between

social and natural sciences for working towards transdisciplinary collaboration.

KEYWORDS

research policy, governance, sustainability goals, plant phenotyping, automated
phenotyping technologies
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1 Introduction

With Horizon Europe there is a €95.5 billion program fostering

mission-oriented research and innovation in Europe (Mazzucato,

2019), entailing a new approach to research and its governance

aiming to achieving the sustainable development goals (SDGs;

Mazzucato, 2018). Mission orientation calls for a changed role of

state and public organizations. Public organizations are supposed to

act entrepreneurial, meaning they need to actively set innovation

pathways and create markets, instead of only intervening in failed

markets (Mazzucato, 2013). This implies a change in governance of

research centered around specific, inspirational, yet, attainable

goals, called missions (Mazzucato, 2018). Similar to the Apollo

mission, putting a man on the moon, mission-oriented governance

in Europe sets out with missions on, for example, climate-resilient

regions (DGRI (Directorate General Research and Innovation),

2020b), beating cancer (DGRI (Directorate General Research and

Innovation), 2020c), or healthy soils (DGRI (Directorate General

Research and Innovation), 2020a). Mission goals need to be

supported and brought about aided by appropriately governed

research and innovation activities. We call these new efforts of

governance ‘mission-oriented governance’. The different mission

goals are developed such that they prioritize those systemic

transformations with the best leverage towards reaching the SDGs

(Sachs et al., 2019).

Achieving SDGs, demands that systemic transformation occurs in

(1) education, gender, and inequality; (2) health, well-being, and

demography; (3) energy decarbonization and sustainable industry;

(4) sustainable food, land, water, and oceans; (5) sustainable cities

and communities; and (6) digital revolution for sustainable

development (Sachs et al., 2019). The agricultural sector is touched

by all of these transformations: Be it through land-use efficiency,

developing more productive plants, reducing food waste, impacts of

unequal supply of education in rural areas, or applications of

biotechnology in medicine amongst many others. Mission-orientated

governance aims to facilitate these transformations from current

agricultural production into sustainable agricultural systems (Sachs

et al., 2019).

Core to sustainable agriculture is plants with improved

properties and management practices allowing circularity and

decoupling negative impacts (Pretty, 2018; Sachs et al., 2019).

Currently plant production and breeding focus on increased

yields, which needs to be extended to include other sustainability

aspects, such as lower use of chemical fertilizers and pesticides, crop

resilience to climate stress, and reduced postharvest losses (Qaim,

2020). Hence, plant breeding needs to provide the scaffold for

efficient use of resources like water, nutrients, and minimization of

pollutants in plant production. Targeted improvements of plants

through plant breeding, however, are bound by evolving social and

technological systems in research accelerating plant breeding.

Our objective is to propose a governance heuristic illustrating

core elements needed for governing plant breeding research, such

that its mission-oriented governance can achieve overall

sustainability goals. Genetics (G), environment (E), management

(M), and social system feedbacks (S) influence plant breeding

outcomes. Symbolized by GxExMxS (as governance heuristic) we
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motivate, that holistic and systemic considerations need enter the

creation of mission-oriented policy targets for plant improvements.

Yet, mission-oriented governance of agriculture creates a

tension between how economists traditionally give policy advice

on research and innovations in agriculture – with the state as

intervening in failing markets (Alston and Pardey, 1996) - and a

kind of governance centering around actively creating pathways of

innovation. Hence, policy advice on mission-oriented governance

focuses on a) directionality, b) dynamic evaluation, c) organization,

and d) risk-and-reward sharing amongst public and private actors

(Mazzucato, 2016). Directionality addresses how one may pick

concrete targets and evaluation measures of effectiveness, which

are broad enough to not stymie bottom-up exploration, discovery,

and learning of involved actors within breeding contexts.

Organizational challenges are related to building research

infrastructures (RIs) advancing plant breeding providing sufficient

absorptive capacity and long-run patience for high-risk

undertakings, yet remain agile and innovative from within. This

entails tackling how one can foster risk-and-reward sharing

amongst public and private actors when RIs promise overall

benefits. We adopt this approach in the following for research

policy advice on mission-oriented governance of new approaches

and technologies for phenotyping.

Phenotyping is the current bottleneck in developing advanced

quantitative approaches to breeding needed for successfully creating

improved crops (Pieruschka and Schurr, 2019). Developing ways

for non-invasive high-throughput phenotyping and quantitative

analytics is necessary for developing these new processes and

tools for creating sustainable plant attributes. The European

research infrastructure on plant phenotyping (EMPHASIS),

currently being implemented, provides services like access to

plant phenotyping facilities, competencies and data. Since 2002

the European Strategy Forum on Research Infrastructures (ESFRI)

put forward the establishment of RIs integrated across Europe. RIs

are public organizations that are supposed to provide access and

other services to physical and virtual infrastructures for researchers

across the EU (e.g. experimental facilities, biological samples,

scientific data) and integrate national towards pan-European and

global efforts (ESFRI (European Strategy Forum on Research

Infrastructures), 2021). The RIs can develop their pan-European

strategies towards providing research services and adapting RIs’

governance such that SDGs can be met in long-term. Accordingly,

mission-oriented governance of plant breeding research – private

and public - is supposed to support and bring forward

breakthroughs in plant breeding research, and the EMPHASIS RI

will be a vital part in implementing this strategy.

In the following, we first introduce the ‘nuts and bolts of plant

breeding (section 2.1), then introduce what we mean by

sustainability for agricultural systems (section 2.2) and how plant

breeding in the past promoted and failed in achieving these goals.

We highlight historic cases illustrating how genetics (G),

environment (E), management (M), and social system (S)

influenced plant breeding outcomes in the past (section 2).

Symbolized by GxExMxS we motivate, that holistic and systemic

considerations need enter the creation of mission-oriented policy

targets for plant improvements (section 3). Then we introduce new
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modes and technologies of phenotyping, which will change and

accelerate plant breeding processes (section 4.1). We discuss related

economic implications for variety development in governing

individual breeding programs (section 5.1) and point at potential

challenges and bottlenecks in reaching sustainability goals (section

5.2). We then illustrate what mission-orientation under the premise

of sustainability means for the governance of RIs developing

phenotyping technologies and potential threats to their

effectiveness (section 5.3 and 5.4) before concluding.
2 From genes to institutions – history
and governance of plant breeding
towards sustainability

In the following, we first describe basic terms for plant breeding.

Then we illustrate the role plant breeding plays for the sustainability

of societies and how we use the term sustainability for this paper.

We then illustrate with historic cases what role phenotyping played

in plant breeding and how modern advances in phenotyping

technologies evolved from past challenges in sustaining societies.
2.1 Key terms in plant breeding

Phenotyping is observing the appearance of a plant and

evaluating its products (Fiorani and Schurr, 2013). It is vital for

plant breeding being concerned with selecting amongst different

candidates those variants of plants showing superior attributes, also

called traits (Becker, 2011). Breeding processes usually aim at a

dedicated breeding target, a combination of superior attributes.

Breeding targets are for example improving yield, resistance to

pathogens, or having a certain quality, such as baking qualities. All

observable measures, as they appear in a plant, are termed

phenotype. The phenotype, however, is connected to the genotype.

A genotype is the genetic material of an organism and hence

carries the hereditary information recorded in the organism’s

genome. Changes in the genotype lead to changes in the plant’s

phenotype dynamically interacting with its environment (Pieruschka

and Schurr, 2019). Breeders usually denote this relationship between

genotype (G) and phenotype (P) by using the formula P=GxExM

with E for environment and M for the management of the plant. In

practice plant scientists measure phenotypic traits under different

conditions of environment and management (ExM) and connect

these insights to the genetic makeup of the plant (G) (Becker, 2011).

Plant scientists are usually more interested in how functional

properties (like photosynthesis, transpiration, nutrient uptake) or

structural properties (like shoot and root architecture, leaf size) of

the plant are affected by the environment.

When looking at the genetic setup, bringing about phenotypes,

researchers usually discern traits into complex (quantitative) and

simple (qualitative) ones (Acquaah, 2007). Flowering time is an

example of a simple trait, determined only by a few genes. Whereas,

nutrient uptake or yield signify complex genetic traits being spread

out over multiple loci on the genome. Plant phenotyping is
Frontiers in Plant Science 0398
particularly important to quantify the diversity of phenotypic

traits and understand in which social and ecological contexts

which genetic setup translates to which phenotypes.

Yield exemplifies how the different actors in the breeding

system all have different perceptions and understanding of

complex traits. Basic research in biology and plant science

contributes to improving yield, by looking at the multitude of

plant physiological traits influencing yield. For example, scientists

try to understand how photosynthesis works in C3 compared to C4

plants telling us the range of yield in- or decrease in crops reacting

to increased levels in CO2 in the atmosphere (Kebeish et al., 2007).

These insights serve as theoretic background for pre-breeders.

Pre-breeders make some of these insights from basic research

utilizable for breeding. They transfer knowledge about how single

plants work to small populations of crops or introduce new genetic

resources, for example from wild relatives to more adapted breeding

material. They breed crops having advantageous new traits and

bring about a yield level comparable to adapted varieties of a specific

pedo-climatic region. Varieties are groups of homogenous,

distinguishable plants of the same crop (Becker, 2011).

Introducing new traits to a gene pool of already adapted varieties

demands a lot of effort in pre-breeding (Gerullis et al., 2021). It is

usually undertaken by partnerships between academia and industry

(Moore, 2015; Gerullis et al., 2021). Figure 1 shows the different

steps of breeding and pre-breeding. Pre-breeders usually focus on

selecting for those plants containing targeted traits into a better

adapted genetic background with higher yields. This process usually

takes years in practice (Gerullis et al., 2021), as complex traits need

specific combinations of genes, being spread over the genome,

whilst crossing-in new traits abates these efforts. Once new traits

have entered an adapted gene pool, applied breeders can take these

materials and cross them in with their breeding material (Figure 1

box 1, 5 to 7). They create new varieties containing these new traits,

aiming for best performance of all other important traits (higher

average yields and qualities) by even better adapting these to a

specific region. While applied breeders still include grain yield, seed

weight, and resistances when they refer to yield, multipliers and

farmers usually talk about yield in terms of tons per hectare.

Developing genetic markers for different traits necessitates

characterizing genetic diversity (Figure 1 box 1). Phenotyping

provides here the necessary information to correlate genetic

information with observations on how these genotypes perform

under different environmental and management conditions, and

how well different traits are inherited (Figure 1 box 2 to 4).

Phenotyping is basis for developing of molecular markers and

genomics-based selection (Cooper et al., 2014). Automated

systems in laboratory and field promise an increase in speed and

precision in generating data and thereby accelerating pre-breeding

and breeding processes.

Breeding outputs, namely varieties with improved properties,

usually focus on improving yields, but also include other qualities,

such as flowering colors, baking qualities, resistances to pests,

nutrient content, or edibility. These are important to the

remaining supply chain of agricultural and other plant-based

products. It can take a decade or more to make a new variety of a

crop. (Becker, 2011)
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Plant breeding maintains and increases global productivity in

agricultural products, see Laidig et al. (2017) for the contribution of

breeding progress to yields and qualities in German winter wheat.

Due to changes in the environment, breeders need to constantly

adapt to changing conditions, and therefore maintaining the same

yield level facing ever-changing pests can already be considered an

improvement (see Olmstead and Rhode, 2008). Yet, as we are going

to see in the following plants’ efficiency in resource use, their

attributes in nutrient cycling and the systemic position cropping

takes within the agricultural system determines how sustainable the

overall system will be.
2.2 Sustainability by plant breeding?

In this section, we define what we mean by sustainable

agricultural systems to clarify towards which goals we are

heading, if we transform agriculture with mission-oriented

governance. For this paper sustainability means that we can

ensure the survival and thriving of humanity over an infinite time

horizon. Doing so means living within the ecological boundaries of

our planet (Rockström et al., 2009) while providing the social means

to do so for all – as laid out by the SDGs (Raworth, 2017).

Sustainable agricultural systems are social-ecological-technical

systems (McGinnis and Ostrom, 2014) in which social, ecological,

and technical processes produce food and fiber for the nourishment

and fulfillment of the needs of humanity, while staying within the

ecological boundaries of our planet (Rockström et al., 2017).

Sustainability of agricultural practices is in question if the

current performance cannot be kept up in the long term. Some

farming practices may lead to decreasing yields over shorter or

longer periods and are as such intrinsically unsustainable. Whereas

some are easily recognized in a short time (e.g. onion monoculture,

Aragona and Orr, 2011) others involving soil erosion or

accumulating salt may not be recognized by the individual farmer
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(see ancient Mesopotamian agriculture in Jacobsen and Adams,

1958; Gibson, 1974). Additionally, farming practices relying on

resources that are not replenished as fast as they are being used are

also non-sustainable. Phosphorus use for fertilizer or water use for

irrigation are examples of it. The task of breeding in this context is

to provide varieties that allow those agricultural systems avoiding

such unsustainable practices.

Whether changes of traits by breeding are an ‘improvement’

depends on the boundaries of and the specific social-ecological

context of the system considered. For example, if we breed plants

for a cropping system with higher input of phosphorus, then this

has implications not only for crop management but the whole

supply chain of inputs related to it. Higher yields may directly

impact the nutritional and income status of those growing the

crops, yet phosphorus may need to be mined and economic and

social conditions of those handling the resource on its way to the

farm are impacted (Yiin et al., 2016; Nesme et al., 2018). If we,

however, breed new traits into crops to use the phosphorous in the

ground more effectively and have a lower phosphate extraction rate

(van de Wiel et al., 2016), maybe some transportation of resources

around the globe can be saved and additional extraction activities

need not take place (Schipanski and Bennett, 2012). As we can see

from this example, what to consider and how different changes in

varieties affect sustainability depends on the context.

The overall direction of breeding goals for future cropping

systems should consider context-specific resource-use efficiency,

stability, or more generally, sustainability of farm and food system

outcomes. Improving the ratio of relevant output to resources used

such as land, water , energy, biodivers ity , and other

environmental pressures.

The adoption of high-yielding crops by farmers challenges plant

breeders when it comes to incorporating other beneficial traits into

their breeding programs. Farmers predominantly adopting crops

with high potential yield (Lassoued and Smyth, 2023) favors

varieties that promise just this at the expense of other
FIGURE 1

Pre-breeding and breeding processes adopted and extended from Watt et al. (2020).
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characteristics like resistance to pathogens. Plant breeders face the

dilemma of balancing expected yield enhancement with

incorporating traits such as disease resistance, or other qualities

(Gerullis et al., 2021). Incorporating new traits into breeding

programs may initially lead to lower yields compared to ‘elite’

varieties, and yields have to be regained for example through

backcrossing. This prolongs the breeding process and increases

cost. Consequently, breeders must find innovative ways to address

these challenges, striving to strike a balance between high yield

potential and other traits, ensuring the long-term resilience and

sustainability of agricultural systemsCrop traits shape crop

production and we need to give plant breeding proper

consideration in its role towards achieving the mission targets

ahead. Hence, we point at new directions that may open up with

new technologies and approaches to phenotyping in breeding

research to navigate towards the SDGs more effectively. Yet,

phenotyping technologies will not solve all challenges in bringing

about sustainability and should not be treated as a panacea, as we

elaborate in the following section.
2.3 Origins of phenotyping - or
how to adapt genes to fit
environmental conditions

Early forms of phenotyping were already employed in the

rudimentary forms of plant breeding appearing when sedentism

emerged. Having domesticated plants meant a vital step towards

sustaining large-scale societies where agriculture serves using and

bundling energy – sunlight – such that human societies can use it

for better survival and thriving (Bätzing, 2020). As crops pose very

specific demands on climate, soils, pathogens to survive, it is

decisive to know which crop functions well in which environment

to reliably secure nutrition and allow humans to pursue other

purposes. Domesticating wild plant species into early crops

through plain eye-sight, intuitive judgment and trial and error

was thereby a form of mending the first plant-based biological

technologies1 (Maisels, 1993; Becker, 2011).

Aggregating plants, through mass selection into landraces, can

be counted as a process of cultural learning (Henrich and

McElreath, 2003). Adapting plants, like the wild relatives of

cereals, throughout domestication to the pedo-climatic conditions

of the Fertile Crescent (Maisels, 1993; Brown et al., 2009), is a

process of cumulative cultural evolution (Henrich and McElreath,

2003). The most important information of these early days of

agriculture was enclosed in the genetic information of saved seed

and could be propagated to the next generation by simple mass

selection (Purugganan and Fuller, 2009). The accumulation of

advantageous traits took several intermediate stages before certain

crops were prominent over wider regions (Brown et al., 2009; Smith

et al., 2019).
1 The same is also true for the even earlier domestication of animal species.
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2.3.1 The advent of scientific plant breeding
The advent of scientific plant breeding in the late 19th century

stimulated more targeted breeding practices compared to the

formerly used mass selection (Kloppenburg, 2004; Harwood,

2015). Breeders started to incorporate experimental designs

(Mendel, 1866; Wieland, 2004). They generated scientific insights

on-farm management and included the first mental models of the

influences of genes on farm outputs (Brandl and Glenna, 2017).

Breeders selected for more homogenous plant types (Kloppenburg,

2004; Wieland, 2004) and adopted more explicit and precise

approaches to the underlying causalities assumed between plant

physiological traits and farm outputs. They developed different

forms of breeding and introduced the concepts of varieties, as

uniform and stably performing groups of plants outperforming

landraces in their yield by far (Becker, 2011). Meanwhile, crop

genetic diversity reduced in richness (van de Wouw et al., 2010).

Approaching the management of crops with scientific methods

emerged together with the different disciplines within the

agricultural sciences (Wieland, 2004). They targeted higher yields

by adding synthetic fertilizer and crop protection agents tested with

experimental designs. Aiming for control of the natural

environment in fields, by suppressing pathogens and weeds

(Wieland, 2004). Coinciding, use of machinery increased, labor

intensity decreased and productivity of western agricultural systems

increased immensely (Olmstead and Rhode, 2008; Pardey et al.,

2010). These scientific developments meant adding “M” to the basic

formula of breeding, GxExM. This evolution in the agricultural

sciences invoked the impression that the impact of the environment

“E” was controllable by management practices (Wieland, 2004).

Yet, pests constantly diminished the gains just realized by more

targeted breeding (Olmstead and Rhode, 2008).

Discovering semi-dwarfed varieties, capable of producing

comparatively higher yields, denoted a breakthrough in plant

breeding (Pingali, 2012). Scientists, like Norman Borlaug, were

capable of reversing a trait (long stems in cereals) brought about

by natural selection in crops (Denison, 2012). Instead of further

fueling individual competition between plants, dwarfing genes lead

to plants putting their energy in higher grain yields and low stems,

producing even greater outputs if fertilized (Denison, 2012).

Developments in breeding went hand in hand with farm

management advancements.

2.3.2 Genotyping and biotechnology – answers
to the pest problem?

Genotyping technologies invented in the 1980s allowed a deeper

look into the genome. Breeders and pre-breeding scientists use these

technologies to associate specific phenotypic traits, like a certain

degree of susceptibility to a pathogen, with different mostly simple

traits in the genome of crops (Eathington et al., 2007). Several

genotyping techniques have been invented over the last two decades

and have dramatically improved in terms of cost, speed, and

accuracy for detecting correlations amongst gene loci and their

phenotypic performance in different environments. While modern

genotyping technologies permit to find those places in massive

amounts of genetic data which bring about complex traits, limited

data in phenotypes across different environments is available and
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hinders scientists to leverage their full potential. The data limitation

in phenotypic information poses a bottleneck to advancing insight

on how different genotypes perform in different environments

(Fiorani and Schurr, 2013; Pieruschka and Schurr, 2019).

Explicitly taking genetic information into account for breeding

opened up possibilities for modification. Pairing chemical

mechanisms of pesticides with plant physiological traits, rooted in

genetic modification (GM), was used to fight pests. Herbicide

tolerance means that GM plants will survive a broad-spectrum

herbicide where other weeds die (Kishore et al., 1992). Insect

resistances for example induced through parts of Bacillus

thuringiensis (Bt) genes lead to plants producing insecticidal

proteins (Ranjekar et al., 2003). Yet, these alleged solutions to

pressing pests are in vain from an evolutionary perspective, as the

mechanisms employed to fend off pests are overcome by evolved

resistances against these (Tabashnik, 2008; Carroll et al., 2014).

Denison et al. (2003) states that we merely enter an arms race

between host plants and pests, but not resolving underlying

problems. These cases of GMs2 represent low-hanging fruit in

genetic modification and may even be misdirected in how they

approach agricultural systems as a whole in face of natural selection.

What seems successful at first produces no long-lasting

improvements of agricultural systems. Natural selection caught up

with human inventions, as these traits were used in big

monocultural setups and pathogens had plenty of room for

developing resistances to the employed chemical mechanisms

(Denison, 2012; Søgaard Jørgensen et al., 2020). Consequently,

the targeted plant protection starts to fail (Gassmann et al., 2011;

see Tabashnik and Carrière, 2017 for an overview). In these cases,

GMs add nothing new than what the application of pesticides and

the co-evolving resistant weeds already did in conventional

agriculture (Varah et al., 2020).

From an evolutionary perspective, Denison (2012) argues that

humans are less likely to improve on those traits natural selection

has been optimizing for millennia, but chances for improvement lie

in redirecting natural selection. As plants face trade-offs in how they

use their energy, some traits, stemming from increases in individual

plant fitness, but unnecessary to human use, can be reversed for

improvements towards human needs. Denison (2012) puts forward

that for pests, there is no way of winning at the individual level, as

plants and pathogens have been in these co-evolutionary cycles for

long enough that natural selection developed plenty of strategies

implemented in individual organisms to circumvent them. We can

only hope to prolong a cycle in the arms race long enough to come

up with new ideas of adaptation.

There is, however, a set of strategies aimed at changing

agricultural practices on a collective level. When looking at pests

from the perspective of an ecosystem, another set of possibilities

opens up. Interrupting a pathogens propagation mechanism, for
2 Usually termed as first generation GMOs, not to be confused with second

generation GMOs who were altered for farming output traits like nutrient

profiles of plants or third generation GMOs used for medical uses like insulin

production.
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example by eradicating intermediate hosts (Olmstead and Rhode,

2002) as done with mulberries to eradicate black rust in wheat.

These strategies alter a crop’s environment on a higher level.

Strategies like these cannot be considered a mere change in

management practices of an individual farmer, as they involve

targeted collective action by farmers, extension services, and other

interest groups on landscape level. The entailed social dilemmas,

where incentive structures for individual costs and collective

benefits diverge, can be quite complex, but have been achieved

before with successful governance– see Olmstead and Rhode (2008)

for more examples of historic accounts from the United States.

The principles and elements of agroecology as suggested by the

FAO (FAO, 2018) target integration of social and ecological aspects

for design and management of agricultural systems at a higher level

(ecosystem level). Yet, Denison (2012) warns of false mimicry of

whole ecosystems as it may lead to suboptimal outcomes compared

to competitively tested systems. Competitive selection pressures of

natural selection are not as effective on ecosystem level, as they are

on individual (plant) level, as ecosystems usually do not compete for

space against each other, opposed to individuals in ecosystems

(Denison, 2012). Pest management is such an example, as any pest

management strategy is counteracted by individual adaptations of

pests. Yet, within an agroecosystem with homogenous conditions

where a single strategy is being scaled up, pests are going to have an

easier time for counteraction. Hence pest management strategies

that employ diversity as a principle, for example refugia or crop

mixtures with susceptible plants (Mallet and Porter, 1992;

Tabashnik, 1994), need to be considered.

Independent of detailed strategies in governing agricultural

practices, pest management is a good example to show, that aside

of the fit between genetics, biological environment, and direct farm

management practices, the social system and its governance on a

higher-level needs consideration when developing targets for

innovations in breeding. This will allow for achieving relevant

individual and whole system-level outcomes (Carroll et al., 2014).
3 A governance heuristic for
sustainability in plant breeding

Successful breeding demands very high R&D costs, which led to

considerable concentration of firms in commercial seed markets

(Deconinck, 2020) and the need for wise decisionmaking in how and

where public spending is directed. We can learn three things from

the cases presented: One, not all traits are created with equal ease.

We need to account for this in policy such that hard-to-get traits are

developed by public monies, as private actors may be more likely to

produce the low-hanging fruits. Two, the direction of genetic

development is not open towards all possibilities. We need to

account for what traits have been brought about by natural

selection and where there is still room for development towards

human needs. Three, the pest management examples highlighted

above show that interactions of social-ecological dynamics lead to

co-evolutionary cycles influencing cropping long-term. Short-term

successes must not be overrated, as second-order effects on collective

level may turn out to hamper overall systemic performance. We may
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need to find ways of slowing down arms races on wider systemic

levels to have enough time for developing new adaptions.

While words like “social system” or “governance” may strike

plant breeders and most crop scientists as a vague notion irrelevant

to their work, we want to prevent exactly that and add an “S” for

social system to the mental model of breeding and create a new

heuristic for plant breeding governance:

GxExMxS

As explained, cropping outcomes rely on interaction of genetics

(G), biological environment (E), directly applied management

practices (M), and influences from the collective level

implemented through governing the social system. Comparable to

ecological environments higher-level social systems are complex in

themselves. They are usually being structured by institutions

(Ostrom, 2006) and entail all prescriptions bringing about

individual-level behavioral patterns – usually subcategorized in

rules, norms, and strategies, opposed to the laymen notion of an

institution being an organization like a ministry. The management

practices pointed out above are classical examples of strategies –

describing what activities specific actors (e.g. farmers) perform.

Norms and rules are usually brought about by different forms of

governance systems, like cooperation organizations, lobby groups,

or law-making bodies; they specify the conditions and sanctioning

mechanisms under which individual strategies may or must (not) be

enacted. Incentive alignment between individual strategies and the

rules and norms brought about by the governance systems on all

scales is key to structuring future breeding and farming systems.

We suggest the GxExMxS formula, see Table 1, as a governance

heuristic to those people in policy advice and governance specific to

plant breeding contexts. It should serve as a gentle reminder of not

putting considerations of collective level activities in agricultural

systems aside too quickly. For example, when EU project funds are

being granted to researchers, funders should have some notion how

activities scale up as this will influence the effectiveness of

implementing innovations from plant breeding. Meanwhile, we want

to encourage economists, who are traditionally good at considering

markets and other institutions of governance, to more explicitly

include notions of interactions between genetics and environment

together with individual management and system-level outcomes.
4 Phenotyping technologies

In the following section, we define and introduce automated

phenotyping technologies and delineate underlying scarcities these
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breeding technologies may alleviate and point out bottlenecks they

may bring about.
4.1 Overview of technologies in early
research and development stages

Non-invasive high-throughput phenotyping technologies measure

plant growth, structure, and composition with a specific precision in an

automated manner, without destroying organs or canopy of the

observed plant (Fiorani and Schurr, 2013). Being non-invasive, the

new technologies enable observing plant traits without interrupting

plant growth. Basic sensors and data processing may also be employed

in farming, but plant breeding and pre-breeding pose different

demands on these technologies, as they need to process smaller

batches and have more heterogeneous tasks to fulfill (Watt et al.,

2020). Sensor-based vision goes beyond the spectrum visible to

humans’ eyes and even below ground, making it possible to observe

new traits, only passively accounted for in breeding so far.

Researchers involved in breeding encounter scarcities in

phenotypic data due to limited time and person-power. Precision

and depth of data are usually an issue in collecting phenotypic data,

depending on the physiological plant traits or farming outputs

researchers are looking for. For example, daily images of the same

plants throughout their growth period can be interlinked

mathematically with genotypic information and daily climate data,

for inferring how different genotypes may react to various weather

conditions. Usually, multiple people need to score these attributes, by

hand and eye inspection, while the source of data changes, once the

person leaves the field, as plants continue growing. Main advantages of

the new technologies are that one can see more, see faster, more

precisely and there is no primary data loss.

For plant scientists there is a plethora of automated phenotyping

technologies in different stages of development. Table 2 presents an

overview of the heterogeneity of phenotyping systems available for

(pre)-breeding. All breeders must have some form of implicit or explicit

notion about what and how inputs and efforts connect with their (pre)-

breeding outputs, called mental models (Kieras and Bovair, 1984).

Depending on their technical possibilities for inquiry, breeders use a

variety of physical infrastructures for phenotyping: a) controlled

conditions, like greenhouses or climate chambers, used alongside b)

lean fields using minimal phenotyping equipment, like drones or robots

or c) intensive fields using highly equipped for monitoring plants and

environments. All physical infrastructure is complemented with d)

information systems and e) modeling tools for processing sensor data.
TABLE 1 Governance heuristic for plant breeding research.

Definitions of GxExMxS

G “Genetics” – stands for changes on genetic/plant level.

E “Environment” – denotes biotic (e.g. pathogens) and abiotic (e.g. soil and climate) environment of an agricultural system. It means those parts of the biophysical
surroundings of locations where agricultural production or breeding takes place.

M “Management” – means those activities undertaken by actors directly influencing plant growth in fields and controlled environments.

S “Social” – implies the wider social system influencing management activities from the collective level but also co-evolving with the wider biophysical environment.
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4.2 Controlled environments and
enhanced vision traits

Controlled environments, in greenhouses and climate chambers,

serve to investigate genetic variability in measured plant traits as a

response to well-defined environmental conditions (Table 2).
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Researchers and breeders need to know the functional connection of

how individual genes interact with each other as part of a plant and

their environments. Most platforms can phenotype shoots throughout

their growth period observing plant response when simulating biotic

and/or abiotic environments, like temperature, water, nutrient

availability, pathogens, etc. (example: PhenoTron in Table 2).
TABLE 2 Overview of phenotyping technology types.

Infrastructure
category

Object of interest Basic characteristics Operational modes Limitations/
challenges

Examples

Mental Model Design of experiment Denotes the functional and heuristic
connections between breeding
inputs and outputs

Present in all forms of breeding and
pre-breeding practice:
Implicit knowledge
Explicit knowledge

Bound by
computational
capacity and
information
storage

• Breeder’s eye
• Experimental
designs and idea
funnel

Controlled
Conditions

Mostly single plants in
pots (up to containers)

• Plant growth: plants are grown
in growth chambers, greenhouse
• Environment: well controlled
environment
• Capacity: 100-1000s plans per
experiment
• Experimental duration: days to
weeks

Quantitative plant measurement using:
Carrier system for plants PtS
• Conveyor belts
• Robotic systems
Carrier system for sensors StP
• Gantry systems
Sensor:
• Optical sensors (visible light
(RGB), near infrared, multispectral,
hyperspectral, thermal, fluorescence
imaging, tomographic systems)

Often only small
to medium sized
plants possible

• WIWAM xy;
• GrowScreen-
Rhizo-1
• Phenotron
Lemnatec

Intensive Field Canopies in plots • Plant growth: micro-plots usually
in natural soil
• Environment: Environmental
monitoring (Semi-controlled
conditions)
• Capacity: 100-1000s plots per
experiment
• Experimental duration: Usually a
growth season

Quantitative plant measurements:
Carrier systems for sensors:
• Fixed (e.g. towers, gantry systems)
• Ground based mobile (e.g.
phenomobiles)
• Airborne mobile (e.g. drones)
Sensors:
• Optical sensors (visible light
(RGB), near infrared, multispectral,
hyperspectral, thermal, fluorescence
imaging,)

Heterogeneous
environment

• Breed-FACE
• Pheno3C
• Field
Scanalyzer
Rothamsted

Lean Field Canopies in plots • Plant growth: micro-plots usually
in natural soil
• Environment: Basic
environmental monitoring
• Capacity: 100s – 1000s of
microplots multiple field sites
• Experimental duration: Usually
one or more growth seasons

Quantitative plant measurements
Sensor carrier:
• Ground based mobile (e.g.
phenomobiles)
• Airborne mobile (e.g. drones)
Sensors:
• Optical sensors (visible light
(RGB), near infrared, multispectral,
hyperspectral, thermal, fluorescence
imaging,)

Heterogeneous
environment

• Projects with
networks of field
trials (DROPS)

Modelling Plants in silico (=
virtual representation
of phenotypes under
different conditions)

• Virtual tools:
–integrated in phenotyping

pipelines (experimental design,
image analysis)

–interfacing with phenotyping
pipelines (develop, validate in silico
models)

In silico plant modelling
• Process based models (e.g. simulate
growth)
• Functional structural plant models
(e.g. plant architecture and physiology)
• Statistical models
• Models in phenotyping pipelines
(e.g. trait quantification, dissection)

Need for
experimental
data

• Collection of
models: https://
www.
quantitative-
plant.org/

Phenotyping
Information
Systems

Data (all kinds of data,
images and outcome
measures)

• methods and interfaces for
interoperability of datasets
• manage, share, reuse and
visualize heterogeneous, high-
throughput plant phenotyping data
stemming from different sources

Local information systems
• Data base as part of a physical
infrastructure for storage, visualisation
data etc.
• Data integration and reusability
standardisation (data models,
metadata)

Implementation
of standards

• Data
standards:
MIAPPE
(https://www.
miappe.org/)
BrAPI (https://
brapi.org/ )
Source: based on Morisse et al. (2018) for updated list of examples from EU Infrastructure for plant phenotyping – EMPHASIS - see https://emphasis.plant-phenotyping.eu/phenotyping-
landscape/infrastructure-map.
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Predominantly for controlled conditions the platform upon which the

sensor system is mounted is fixed and plants are automatically moved

to sensors creating observations (Table 2; Yang et al., 2020). Yet, there

are also large installations where plants grow in fixed carriers and are

being moved towards sensor systems – e.g., GrowScreen-Rhizo 1

(Nagel et al., 2012). Sensor systems are usually defined by

noninvasive imaging measuring time series of dynamic processes

such as plant growth. Depending on the trait of interest an entire

electromagnetic spectrum can be used for different modes of imaging

(Fiorani et al., 2012) usually in fully or semi-automated systems. With

the current state of the art, most installations can process plants only

until a certain stage in their growth – or only smaller crops and some

platforms only permit to scan single plants, which decreases speed of

inspection (Fiorani and Schurr, 2013).

Some platforms are capable of phenotyping roots below ground.

While breeders have inspected above ground for thousands of years,

to judge a plant’s quality, seeing it below ground opens up new

possibilities to research. Now breeders can select for below-ground

traits in a targeted manner. There are a few success stories

demonstrating targeted selection of root traits (Watt et al., 2020).

Being able to observe root setup without destroying them or their

soil habitat over the growth period in an automated manner allows

for data improving the speed in selection for root traits. This is

essential for traits like water or nutrient use efficiency. These

observations allow disentangling the role of root structures and

their functional properties such as uptake of nutrients, biotic

interactions within the rhizosphere (Watt et al., 2006). This

brings about insights on genotype-to-phenotype relationships

including those related to soil environments. (e.g. flood or

drought stress, interactions between microorganisms and roots.

We may be able to select entirely new trait types in applied

breeding based on roots, where so far only shoot observations

were used (Ober et al., 2021). So far, however, simultaneous

measures of roots and shoots show that relationships between

both are unpredictable, particularly for plant growth traits, like

biomass (Nagel et al., 2015). Having more data available will likely

give rise to disentangling these relationships.

Applying results from pre-breeding to practical breeding

depends on how well genotypes predict intended outcomes, like

yield, under field conditions. Yet, there are significant differences

between controlled and field conditions in the target environments

(Poorter et al., 2012) for example regarding light intensities or room

for root expansion. It is impossible to fully simulate outdoor

environmental conditions in experimental setups due to their

complex dynamics (Kumar et al., 2015). Moreover, insight can

usually only be gathered for smaller time spells in growth phases of

a plant and rarely spans from seedling to harvest. Therefore,

correlations between controlled environments and field

conditions are generally fairly low (Kumar et al., 2015; Watt

et al., 2020). Controlled environments allow predictions and

heritability assessments of yield components where it may not be

possible to assess those under field conditions. This allows directly

developing insights for plants grown under controlled conditions,

as needed for horticulture and vertical farming. However,

phenotyping under field conditions is needed to see the
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performance of farming outcomes of different genotypes of crops

farmed in large outdoor spaces.
4.3 Field environments and faster
data generation

Field phenotyping serves testing plants – or rather their

genotypes – under real environmental conditions. Testing plants

in as many different environments of future potential relevance

reveals the range of environments in which plant candidates

perform well. This information can already be used for crop

model simulations to scale up the variety’s ‘spatial reach’

(Grassini et al., 2015; Ersoz et al., 2020).

The range of technologies applicable for usage in the field is wide

(Araus and Cairns, 2014; Table 2). Ensuring adaptability to differences

in agricultural practice technologies range from rather low-tech field-

bikes, with sensors mounted between two manually pushed wheels,

robots looking like moving photobooths for cereals, or drones scanning

fields. Most technology combinations of platforms and sensors

currently tried out are mobile devices where the sensor is carried to

the plants for imaging and can be distinguished by scanning single

plants or multiple plots at a time. Some technologies are being

developed for specific crops – like grapevines or sugar beet canopies

– and therefore have limited flexibility in their technical setup

(Schemenner and Tatikonda, 2005).

There are trade-offs involved at the technical level. Drones have

the advantage of being faster at scanning a whole field than any

human, yet resolution in their data is still limited (Burud et al.,

2017). Drones do not need to navigate driving lanes or muddy

fields nor do they compact soils. Yet, drones have trouble flying in

adverse conditions with wind and rain (Chapman et al., 2014).

Automated wheel-driven robots can easily produce high-resolution

images of individual plants but still, take a lot longer than their

human counterparts at scanning a whole field (Vijayarangan

et al., 2018).
4.4 Socio-technological bottlenecks –
data processing and management
as the missing link

Scientists and breeders need to have actionable insights they can

directly translate into their breeding practice. The knowledge about

causal relationships between different factors and the phenotype is key

to know what material to use next for breeding actual varieties.

Scientists need to communicate these insights for breeders to use.

Their experimental set-ups should enhance our understanding of

relevant traits and their functional interactions of GxExMxS.

Machine Learning is capable of compressing the high-dimensional

‘big data’ obtained and to produce predictions of phenotypical traits

from genetic and environmental features (Minervini et al., 2015,

Tsaftaris et al., 2016). To be able to employ machine learning,

breeders need training or hire services/employees with the required

new skills.
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Another challenge is managing data for reusability. In pre-

breeding, genotype-to-phenotype data in different environments is

scarce, as a low number of candidate plants or seeds contain specific

traits limiting repeated measurements. Meta-analyses could support

robust insights on quantitative and qualitative traits (Watt et al.,

2020). There are challenges involved in facilitating these studies:

Data needs to be a) accessible, b) standardized/interoperable and c)

worded in a common language (ontology), (d) findable (FAIR

principle; Wilkinson et al., 2016) for describing what is being

measured to make data comparable and re-usable across

experiments. For meaningful comparison across different

environmental contexts, pedo-climatic conditions, pathogen

pressures, and other plant growth conditions need to be recorded

systematically. Reusable data and replicable results are hard to gain

under constantly changing environmental conditions (Massonnet

et al., 2010). Ensuring FAIR data needs a collective effort by

scientists and breeding practitioners complying with these

principles. Several initiatives already exist aiming to harmonize

experimental data from phenotyping, like the International Wheat

Information System (http://www.wheatis.org/) or MIAPPE (https://

www.miappe.org/).
5 The future of governing
phenotyping technologies
in plant breeding

High throughput phenotyping can contribute to sustainable

intensification on different scales by shaping and accelerating crop

improvements. Automation will influence individual breeding

programs as they produce varieties with better traits than before.

RIs provide the socio-technical environment and concrete demand-

driven services to achieve this.
5.1 Implications for managing applied
breeding programs

Breeding programs produce varieties for farmers to use. Private

businesses try to recoup their research and development

investments through sales of varieties or licenses for

multiplication. Breeders are usually faced with the two-fold

problem of creating variation of trait expressions in candidate

variants and then selecting effectively and efficiently from the

variation created for combinations leading to improved farm

outputs. The number of varieties admitted for sale and income

generated from sales or licenses can be seen as their current measure

of success. Yet, these numbers need to be interpreted as relative to

the inputs used by a breeding firm. (Gerullis et al., 2021).

Inputs - limiting factors to practical breeders’ operations - are

nursery space, different locations for having a variety of

environments available to test breeding lines under different

conditions, genetic variation in their material, and skilled or

unskilled person-power producing and evaluating the depth and

breadth of data created through the mentioned factors of
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production. Breeders employ social strategies to work around the

physical limits of their firm. Some breeders share and exchange

information, nursery space in different locations, and material with

their colleagues or co-produce new genetic traits with scientists in

pre-breeding programs (Gerullis et al., 2021). Even small breeding

programs can be quite successful as such (Brandl, 2018) if they

manage their input to output ratio well and produce well-working

varieties for different ecological niches.

Adopting high throughput phenotyping as an applied breeder

leading a breeding program only makes sense if the technologies

alleviate the resource scarcities mentioned and if they help

outperform the return on investments necessary for the technologies

of the breeding process currently in use. Those firms will be the most

successful in employing the technologies that can leverage them for

developing wider phenotypic variation and/or then employing the

technologies for increased selection pressure, thereby accelerating the

breeding process (Brandl, 2018).

Breeders’ mental models of the functional connection between

crop physiological traits, genotypic information, and the phenotypic

observations of varieties and farming outputs under different

environments (biological and social) determine what breeders use

in their breeding process. It is vital to know for a breeder how and

when to inspect signs of a disease, for example, fusarium head blight

in late growth stages shows a whitening of wheat ears, to look for

resistance of the same (Champeil et al., 2004). They need to know

how candidate variants perform under different disease pressures

and then relate observable farm outcomes, like toxin levels in wheat

harvests if they are susceptible to fusarium.

Sensors employed in high throughput phenotyping can enhance

vision beyond plain eye-sight, opening up possibilities for

completely new breeding input traits, so far ignored (Watt et al.,

2020). Yet, for bringing about improved varieties, breeders’ mental

models, depicting causal connections in terms of structure and

processes of the plant system (Kieras and Bovair, 1984), are decisive.

For example, if a higher-level goal for breeding is to boost plant

productivity by introducing crop varieties paired with specific

variants of mycorrhizae (Brito et al., 2021), then the tricky part

for the pre-breeder is figuring out which plant physiological

attributes an applied breeder needs to look out for to bring about

improved farm outputs. Breeders need to know what patterns to

look for in the images of root structures they gather and what these

different patterns mean to formulate expectations of how crops

work and how they can gain improvements. Additionally,

opportunities arise where interactions of multiple factors come

into play. For example, if different root structural patterns allow

for a narrower planting on the same space, an increase in yield

through interspecies cooperation (e.g. micro-organisms and plants)

and variation in field arrangements (Grahmann et al., 2021) allows a

push and pull pest control, then all three factors may be combined

(Denison, 2012). Both examples need new ways of phenotyping and

the integration of experimental meta-data into experimental set-ups

of applied breeders.

Automation – once established – can bring about more

comparable and precise measures of phenotypes across locations.

In handicraft breeding, personnel have to hand-inspect and rate

every variant plot for multiple time slots throughout growing
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seasons (Reynolds et al., 2019). There are differences in how

individuals rate plots. Breeders usually compensate this by

knowing their staffs’ style of judgment and triangulating the

results for important diseases. Human staff will usually correct

their ratings for environmental conditions. Some diseases may not

be visible well if another disease already infected big parts of a plant

or if only low disease pressure is present. Automated phenotyping

and the corresponding image processing algorithms could, once

machine learning models employed are trained to compensate for

these problems, aid in inspecting and rating over multiple locations

saving person power and time (Reynolds et al., 2019). Paired with

decision support systems for breeders, which pre-process the data,

there is potential for accelerating breeders’ work in this approach if

robotics and data management systems can be maintained and

adapted easily (Kuriakose et al., 2020). Yet, the additional data in

terms of quality and quantity created needs to be processed,

standardized and interoperable to work effectively (van Dijk

et al., 2021).
5.2 Bottlenecks in breeding programs and
opportunities for new service industries

Depending on their pre-existing socio-technological

infrastructures, private breeders face different trade-offs when

considering investing in automated phenotyping technologies.

The cost and risks of investing in robotics-based phenotyping

may be immense for a small breeding firm currently equipped

with just the minimum technical setup for instance in wheat

breeding – nursery fields, skilled and unskilled labor, and a

rudimentary computer system where they store and manage data

from plant inspections. The firm would need to invest, in the robot

(s) itself, the highly skilled robotics personnel to implement,

maintain and improve it and more personnel skilled in computer

science for implementing, maintaining, and improving data and

knowledge management and analysis (Reynolds et al., 2019). With

shifting to new systems, firms run the risk that the new technology

will cost more than it adds in value. Similar considerations struck

breeding programs 35 years ago when they faced the integration of

molecular genetics with plant physiology (Reece and Haribabu,

2007). Some breeding firms outsourced genotyping their seeds and

a service industry appeared (Shkolnykova, 2020). This outsourcing

generally worked better for some breeding programs, where the

initially chosen interdisciplinary collaboration between molecular

biologists and applied plant breeders was problematic (Reece, 2007;

Reece and Haribabu, 2007). Today, smaller breeding programs use

genotyping services to scan for specific markers, targeted genetic

sequences, of intended breeding input traits and base their selection

on the results. Using services for genetic markers in breeding

accelerates breeding already.

Having more data from an automated phenotyping process will

only increase value-added if the software for processing the new

data types enables breeders to integrate their hypotheses into

building new ideotypes, i.e. targeted ideal phenotypes. Software

needs to be flexible enough to accommodate new insights when new

traits are developed (Xu and Crouch, 2008). They need to contain
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graphical user interfaces, which allow for ample flexibility for the

set-up of data processing through the breeder, without having to

have a computer science degree (Galitz, 2007). It is important that

breeders can individually fine-tune analyses and try out

assumptions for different functional models between trait

expressions and outcomes. Breeders need to be able to arrange

their experimental designs for crossing and selecting according to

their wishes. Breeders need to learn how to explicitly transform the

“breeders’ eye” (Brandl, 2018) into heuristic computer models.

Open question is whether breeders will actively engage in pre-

breeding and try to develop different ideotypes, or go for merely

applying what pre-breeding research serves to them as new

ideotypes and use trial and error in application.

There is ample opportunity for specialized services to develop

alongside new breeding technologies. Effortless usage and maintenance

of robots and data infrastructures may be provided well by businesses,

who arrange their activities around co-producing services for multiple

breeders. We specifically say co-production, as these services demand a

collective and dynamic learning process, based on research by

universities and research institutes, then tailored to different localized

social contexts, biological environments, and crops. In other sectors,

like banking, the co-creation of technologies with heterogeneous small

actors has brought about decentralized organizational structures and

kept market concentration at bay (Hannan and McDowell, 1990).

Considering how heterogeneous and locally adapted breeding needs to

be to produce varieties fit for prevailing environmental conditions,

long-run cooperative networks of firms may outperform single players

in achieving this goal. Multiple firms may pool resources and share

risks in developing software, data management services, and robots

focusing on ease of use and flexibility for individual ideas and specific

conditions. This way, a diversified approach of adopting the new

technologies seems possible for breeders even if they currently possess

low-tech infrastructure. As the case of German winter wheat shows

(Brandl, 2018), cooperative breeding strategies have led to German

wheat breeders outperforming the global competition over the last 100

years in terms of yields (Brandl et al., 2014). Going for co-production

may in the long-term better hedge our bets for societal goals of

sustainability overall, as we maintain flexibility and adaptiveness to

localized conditions.

Accelerating the breeding process through increased selection

pressure may bring about a trade-off over nursery space for short-

term variety development and maintaining genetic resources in

adapted breeding material (Gerullis et al., 2021). If automated

phenotyping provides more precise predictions compared to

current selection schemes, breeders will be quicker with selection

decisions for dropping material. Meaning that breeders run the risk

of dropping material earlier in the breeding process than before,

possibly losing too much valuable variation in genotypes. Private

incentives led to underinvestment in crop genetic resources in the

past already in the USA (Day-Rubenstein et al., 2005). Hence,

monitoring and evaluating in-situ genetic resources from breeders

and their released varieties will be vital to ensure long-term

functioning of seed production and needs to be developed

alongside the new technologies. In the next section, we will go

deeper into how public RIs can support these strategies and

promote overall sustainability goals.
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5.3 Implications for policy: threats and
opportunities to effective research
infrastructure governance

RIs provide resources and services for research communities

conducting research and fostering innovation (ESFRI (European

Strategy Forum on Research Infrastructures), 2020). From a

mission-oriented perspective, a RI around plant phenotyping

serves as an accelerator for developing agricultural systems

adapted to existing or upcoming challenges. Developing these

sustainable agricultural systems demands governance connecting

scientists and all relevant stakeholders, providing physical and

mental space to rigorously test different system configurations

against each other. Principles of mission-oriented governance

(Mazzucato and Li, 2021) necessitate a) defining overall but also

intermediate goals, b) entertaining a widespread portfolio of project

set-ups so that failures become acceptable, c) involving actors and

investment across different scientific disciplines, private and public

sectors, d) joined governance, yet, strategic division of labor among

involved research sections with well-defined responsibilities for

coordination and monitoring.

We put forward GxExMxS as rule of thumb for thinking about

how efficiencies in land use, water, energy, ecological impacts due to

changes in nitrogen, phosphorous, and carbon cycling are brought

about, at different levels initiated and/or complemented by changes

in traits of crops. Research programs under the Horizon Europe

missions should integrate relevant stakeholders having expertise in

different topics. RIs are supposed to function as an organization

providing services such as access to facilities, data, resources and

could function as an important element stimulating cross-

disciplinary interaction and research towards common goals.

With their cross-cutting capabilities to reach many different actor

groups, RIs are key in shaping how governmental monies spill over

to private industry (Mazzucato and Li, 2021). They can deploy

mission-oriented organizations, to crowd-in private investment and

use knowledge governance for public values, by putting in play

conditionalities of public interest (Mazzucato, 2018; Mazzucato and

Li, 2021).

Aside from immediate breeding outcomes, the performance on-

farm and beyond must be considered as well, potentially already

during pre-breeding. High-throughput installations need to be

accessible to create high-quality, reusable data sets to yield

reliable results for crop model predictions and integration into

simulation models over larger spatial scales including different

pedo-climatic zones. Basic research on crop improvement needs

rigorous testing of different technical systems’ performance,

necessitating flexibility in where and how different sensors are

used. This demands modular installations, sensors, and platforms.

Scientific testing and optimization must not stop until new system

configurations outperform the best running systems in use on

farms, to provide proper proof of concept ready for wider

application. On the level of research, this includes from biological

insights of symbiotic interactions amongst crops and other

organisms to technical inventions developing enhanced vision

with machines.
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EU funding of RIs together with other fiscal incentive schemes

for agricultural research aims at developing innovations for the

Green New Deal (Mazzucato and McPherson, 2019) and achieving

sustainable development goals with mission-oriented governance

(Sachs et al., 2019). The goal is to crowd-in those individuals and

organizations, who are willing to innovate for achieving these goals

and co-creating new markets for and through sustainable

innovations. RIs play a role as enabling scaffold in these overall

European goals.

Yet, treating RIs merely as enabling organizations is not enough.

Supporting the overall directionality of missions like healthier soils

or adaptation to climate change (European Strategy Forum on

Research Infrastructures, 2016; ESFRI (European Strategy Forum

on Research Infrastructures), 2020) effectively not only requires the

development of technological features, like steering software for

robots, but collective learning across sectors and disciplines to

achieve goals like the SDGs. As reaching the SDGs requires deep

structural changes across all sectors of society (Sachs et al., 2019),

they include social cooperation problems across multiple scales and

amongst different stakeholders discussed in section 2.3. Leading

actors in RIs may need to adopt institutional navigation as they

pursue the SDG policy goals against a backdrop of complex,

polycentric governance, where multiple decision-makers engage

in different forms of organization to manage cooperation

problems present in agriculture (Lubell and Morrison, 2021).

Facilitating a research environment with learning and high

explorative capacity best fits for tackling the mission’s challenges

(Mazzucato, 2015; Lubell and Morrison, 2021). High explorative

capacity within these organizational structures may be achieved

through a social environment where RI staff can welcome

uncertainties and long-term competencies are developed

(Mazzucato, 2015). Additionally, staff need to be proactive and

entrepreneurial in their role of leading researchers and other actors

using the infrastructure and its outputs (Table 2 for examples).

In fiscal terms, this necessitates long-term investment in

equipment and human resources (Mazzucato, 2016). In RIs for

breeding and agricultural purposes, long-term experimentation is

important (e.g. considering breeding cycles taking 10 years and

more, Gerullis et al., 2021). Experimental set-ups need to go beyond

the usual 3-year project term and limited field space to bring about

useful and accurate long-term results. With the current set-up of

phenotyping networks in Europe (see Figure 2 for the Emphasis RI)

it is possible to leverage multiple locations and installations

distributed across Europe even though individual scientists may

not have the same access to specialized installations at their

home institutions.

There is a necessity to keep a good portion of scientific expertise

within the RI as it needs maintenance and building up expertise for

smooth workflows (ESFRI (European Strategy Forum on Research

Infrastructures), 2020; Knowles et al., 2021). Long-term human

resource development must be applied to scientists in the same way

it is usually done in private businesses. While high-throughput

phenotyping will need the same level of highly trained scientific

staff, it will ease the shortage in person-power of technical staff for

phenotyping large amounts of plant materials. Yet, technical
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knowledge on installations being run needs to be maintained over

time as well and allowed to evolve further.

Individual scientists need to find an environment fostering

collaboration across a wide range of disciplines and working

cultures, who need to find new and transdisciplinary ways of

solving research challenges (Brown et al., 2015). Transdisciplinary

research needs disciplinary specialists and generalists who function

as boundary actors between these different disciplines (Poteete et al.,

2011). Hiring and maintaining the right set of people will determine

success or failure of these infrastructures. Evaluation criteria for

scientists working in research facilities connected to infrastructures

determine the type of individuals joining different projects (Brown

et al., 2015), research venues, and the success in using technological

installations over longer time horizons. From climate change

science we can learn that team science is key in solving complex

challenges at hand and one can safely assume that sustainable

agriculture is similar (Ledford, 2015; Cundill et al., 2019). Likewise,
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integration of social sciences is vital for tackling research challenges

such as social system feedbacks (Viseu, 2015). For example, having

a few social scientists that “speak plant” may help elicit unknown

areas of knowledge between what breeders have been selecting for

with “breeders eye” (Timmermann, 2009) – i.e. implicit knowledge

on how breeding input traits translate into farm output traits in

plants – and what pre-breeding scientists can see with their new

sensors for enhanced vision. Such insights have potential to

improve the effectiveness in implementing new breeding

strategies, farming practices complementing newly bred plants,

and extension services.

On an organizational level, polycentric governance of plant

breeding requires RIs to build cooperative relationships amongst

different actor groups to ensure effective research towards reaching

mission goals (Lubell and Morrison, 2021). Scientists need to co-

produce with farmers, breeders, agri-business, and citizens what

sustainable traits in crops are and how they manifest in the food and
FIGURE 2

Overview of network for automated phenotyping technologies within research infrastructure.
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fiber supply chain. Note though that each of these groups needs

separate consideration in transdisciplinary approaches (Max-

Neef, 2005).

Integrating farmers and food processors into the trait

development process may also be of advantage when fruit

attributes like thicker skins can enhance shelf life, for example in

horticultural breeding. This could be done in a business-to-business

context. An option would be to actively build platforms for public

and private research cooperation by supporting start-up incubators

with a focus on plant breeding (Shkolnykova, 2021) or to target

participation of food processors in trait development as in the

EMPHASIS RI context withthe Agroserv project (https://

emphasis.plant-phenotyping.eu/european-infrastructures/cluster-

projects/agroserv). Another option is integrating crop producers in

participatory breeding processes (see Ceccarelli and Grando, 2020

for an overview) or in an extension service context, where extension

employees survey the needs of the producers to allow plant breeders

to make use of the knowledge on demanded traits.

Integrating non-scientific actor groups early on spells-out issues

usually leading to unforeseen transition risks and lack of adoption

(Mazzucato and McPherson, 2019). An example is the considerable

societal resistance in Europe towards GMs and their ban from most

agricultural use thereafter (Directive 2001/18/EC). Incorporating a

dialogue with stakeholders and the public may lower transition risks

and can be used as an opportunity for collective learning and

diffusing innovations in public interest. Using and including

governmental organizations already in place, such as agricultural

extension services should be tried early on in development and

testing processes, as it provides a notion of feasibility of traits in

farm management practices.

How private businesses are integrated into a phenotyping

network providing public services for research will greatly

influence the effectiveness of delivering research insights. ‘Toxic

actors’ can have detrimental effects on whole research venues and

hamper their effectiveness in delivering research outcomes (Lubell

and Morrison, 2021). Conflicts of interest may arise around data

and material sharing, or specific methodological insights that

constitute trade secrets. Mitigating these problems relies partially

on a shift in mindset and ethics, towards more sharing attitudes and

balancing incentive structures towards long-term goals over short-

term revenues. A recent example within the EU RIs is the

ENVRIplus project, which developed ethical guidelines for RIs

(Capua et al., 2018) explicitly mentioning reciprocity amongst

their guiding values. Including private actors may enhance testing

capacities and promote insights if data is shared in a FAIR manner

and symbiotic relationships are fostered (Mazzucato, 2016). Public

value creation must be in focus of those taking care of research

contracts over new projects for effective long-term risk and reward

sharing (Mazzucato, 2016). Risk and reward sharing needs to be

implemented such that they maintain an open innovation culture,

which reinvests into further research. For example, in the RI Cluster

project, CORBEL, governing guidelines for industry collaborations

are provided to support this (Abuja et al., 2019).

Overall, the success of RIs will depend on how well its staff

strategizes over knowledge, relationships, and decisions for

implementation toward mission goals (Lubell and Morrison, 2021).
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Mission-oriented governance for research is supposed to be

implemented for plant breeding research to fulfill the SDGs and

facilitate green growth. Improving crops through plant breeding

will be vital for reaching the SDGs associated with agriculture. Crop

breeding research shall bring about varieties enabling the necessary

transformations to agricultural systems. High throughput

technologies for phenotyping are meant to accelerate the plant

breeding process and enhance breeders’ vision of breeding

materials, leveraging innovation pathways. Yet, against the

backdrop of complex agricultural systems and polycentric

research venues, and agricultural governance, the question

remains how to reach these ambitious goals.

We propose a governance heuristic illustrating how mission-

oriented governance can work for plant breeding research. We show

the current state-of-the-art of phenotyping technologies and draw,

based on historic examples from plant breeding, implications for

their introduction to individual breeding programs and RIs.

Our core result is that plant breeding is not only about the

interaction of genetics (G), environment (E), and farmmanagement

practices (M), but that activities at collective level (S) are crucial for

the sustainability performance at lower levels of the system. Hence,

we propose GxExMxS as a guiding rule of thumb for future

governance of plant breeding. This heuristic needs to be

interpreted in specific context of application, e.g. when a funder

wants to decide if a research project for plant breeding may be

justified they may ask how novel plant traits lead to results on a

higher level in the social-ecological system.

Additionally, we want to caution that novel phenotyping

technologies alone will not bring about sustainable agricultural

systems. Integrating robotics, sensors, and information systems

meaningfully is necessary to elevate mental models of breeders,

scientists, and other actors contributing to crop breeding. This

implies a high heterogeneity in potential adoption of these

technologies in breeding programs. Concurrently, RIs need to

care how they institutionally navigate their role as facilitator and

promoter of research to reach mission goals.
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Because of its wide distribution, high yield potential, and short cycle, the potato

has become essential for global food security. However, the complexity of

tetrasomic inheritance, the high level of heterozygosity of the parents, the low

multiplication rate of tubers, and the genotype-by-environment interactions

impose severe challenges on tetraploid potato–breeding programs. The initial

stages of selection take place in experiments with low selection accuracy for

many of the quantitative traits of interest, for example, tuber yield. The goal of

this study was to investigate the contribution of incorporating a family effect in

the estimation of the total genotypic effect and selection of clones in the initial

stage of a potato-breeding program. The evaluation included single trials (STs)

and multi-environment trials (METs). A total of 1,280 clones from 67 full-sib

families from the potato-breeding program at Universidade Federal de Lavras

were evaluated for the traits total tuber yield and specific gravity. These clones

were distributed in six evaluated trials that varied according to the heat stress

level: without heat stress, moderate heat stress, and high heat stress. To verify the

importance of the family effect, models with and without the family effect were

compared for the analysis of ST and MET data for both traits. The models that

included the family effect were better adjusted in the ST and MET data analyses

for both traits, except when the family effect was not significant. Furthermore,

the inclusion of the family effect increased the selective efficiency of clones in

both ST and MET analyses via an increase in the accuracy of the total genotypic

value. These same models also allowed the prediction of clone effects more

realistically, as the variance components associated with family and clone effects

within a family were not confounded. Thus, clonal selection based on the total

genotypic value, combining the effects of family and clones within a family,
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proved to be a good alternative for potato-breeding programs that can

accommodate the logistic and data tracking required in the breeding program.
KEYWORDS

Solanum tuberosum L., nested structure, accuracy, G×E interactions, autotetraploid
genetics, tuber yield
1 Introduction

Potato is the third most important crop for human

consumption worldwide, playing a central role in global food

security. Potato has a wide adaptation and higher yield compared

with cereal crops (FAO, 2020). It will certainly continue to have an

essential role in food security in the coming years, particularly

regarding population growth (Devaux et al., 2014; FAO, 2020;

Devaux et al., 2021). The world’s average potato production has

grown at a rate of 2% per year for the past 20 years, with an average

yield of 21.0 Mg ha−1, which represents only 13% of the potential

yield (Kunkel and Campbell, 1987; FAO, 2021). The gap in

production between average and potential yield presents the

potential for increasing global potato production. This potential

can be exploited through technological innovations in the potato

production system, using new and improved cultivars, and

optimizing agricultural practices. Within the framework of

genetic improvement, tuber yield can be increased through an

accurate selection of clones more tolerant to biotic and abiotic

stresses, and more efficient in the use of resources, such as water and

nitrogen, meeting the demand for an increasingly sustainable global

production system (Foley et al., 2011; Birch et al., 2012; Obidiegwu

et al., 2015; Dahal et al., 2019; Devaux et al., 2021).

Tetraploid potato–breeding programs generate thousands of

seedlings annually (Stich and Van Inghelandt, 2018). Larger

populations are required to increase the probability of selecting

superior clones because potato breeders must deal with the

complexity of tetrassomic segregation, heterosis, and high level of

heterozygosity of parents (Meyer et al., 1998; Gopal, 2015). A small

number of seed potatoes are available in the early stages of a potato-

breeding program (Haynes et al., 2012; Stich and Van Inghelandt,

2018), which restricts the use of repetitions and the number of

plants per plot (Haynes et al., 2012; Paget et al., 2017). In this

context, the use of unreplicated designs, such as the augmented

block design (ABD) (Federer, 1956), has been frequent (Andrade

et al., 2020; Fernandes Filho et al., 2021). Partially replicated design

(P-REP) (Cullis et al., 2006) is an efficient alternative in the initial

stages of potato breeding (Paget et al., 2017). Furthermore, P-REP

can be increased (Williams et al., 2011; Williams et al., 2014), i.e., a

proportion of candidates can be replicated in each location, which

allows the study of genotype-by-environment interaction (G×E)

even with limited seed.

The G×E heavily influences quantitative traits of economic

importance in potatoes. Currently, up to 40 traits can be selected

in potato-breeding programs (Bradshaw, 2017), where the low
02114
correlation of the main traits between the environments results in

a considerable loss of genetic gain (Andrade et al., 2021). This effect

is significant for potato-breeding programs in tropical and

subtropical regions as the crop is grown in different seasons

throughout the year (winter, fall, and summer). Therefore, one

goal of this program is the development of heat-tolerant clones by

assessing promisor clones in contrasting seasons to determine their

ability to withstand heat stress (Fernandes Filho et al., 2021; Patiño-

Torres et al., 2021). Mixed model methodologies have an important

role in connecting these different experiments and estimating

parameters that are useful for the selection process (Henderson

et al., 1959; Smith et al., 2001; Smith et al., 2015).

The limited number of repetitions, presence of G×E, and low

heritability result in low selection accuracy in the early stages of a

potato-breeding program. This implies low genetic progress over

the selection cycles once accuracy is directly proportional to

expected gains with selection (Cobb et al., 2019). Using a genetic

relationship matrix has been demonstrated to increase the accuracy

of estimated breeding values for traits with low heritability. This

approach leverage information from all relatives (half and full-sibs,

parents, etc.) to accurately estimate the breeding values of

candidates (Slater et al., 2014a). However, in estimating non-

additive effects, such as dominance, you need a balanced mating

design to capture general and specific combining ability (Amadeu

et al., 2020; Voss-Fels et al., 2021; Yadav et al., 2021).

The prediction of the total genotypic value (additive + non-

additive effects) for complex quantitative traits, such as tuber yield,

in the initial stage of the potato-breeding programs, relies on the use

of genomic resources (Stich and Van Inghelandt, 2018; Amadeu

et al., 2020; Voss-Fels et al., 2021; Wilson et al., 2021; Yadav et al.,

2021). Nevertheless, early-stage genotyping is more expensive than

phenotyping, making unfeasible use of genomic selection in some

research, especially in stages where many candidates were evaluated

(Stich and Van Inghelandt, 2018; Wilson et al., 2021; Bradshaw,

2022). Alternatively, Piepho et al. (2008) argued that the use of

models with nested structure (Family/Clone = Family + Family   + 

Clone) could be advantageous. These models account implicitly for

the kinship relationship. Furthermore, using this structure allows us

to predict the total genotypic value more easily, without the need for

a kinship matrix, which can be valuable in cases where the mating

design does not allow an accurate estimation of the specific

combining ability.

The dominance effect can be estimated with a kinship matrix

using complete mating design or using genomics. A third

alternative is the modeling of the family effect. Although the
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nested structure appears naturally in the initial stage of potato-

breeding programs because seedlings are derived from different

crosses (usually bi-parental), the family effect has been neglected

(Fernandes Filho et al., 2021), mainly due to the easiness of mass

selection in the early stages of selection. Therefore, it is

hypothesized that using nested structure models can increase the

selective efficiency of clones, both in single-trial (ST) and multi-

environment–trial (MET) selection schemes.

Thus, this work aims to investigate the impact of the family

effect and the selection accuracy of clones in the initial stage of a

tetraploid potato–breeding program in ST and MET clonal

selection schemes.
2 Materials and methods

2.1 Field trials

2.1.1 Experimental designs and crop management
A total of six trials from the potato-breeding program at the

Universidade Federal de Lavras (PROBATATA-UFLA) were

installed at the Center for Scientific and Technological

Development, City Lavras, Minas Gerais State, Brazil (21°12′19.8″
S, 44°58′48.8″W), located at 919 m American Sign Language (ASL),

and soil was classified as red-yellow latosol.

The details of each trial are shown in Table 1. Four trials were

designed in an ABD (Federer, 1956), and two trials a P-REP with pN
around 20% were employed (Cullis et al., 2006).

Each plot consisted of five plants spaced 0.30 m between plants

and 0.80 m between rows. Crop management practices for all the

trials were done according to the recommendations for the state of

Minas Gerais, in which 1.5 Mg ha−1 of 08-28-16 fertilizer blend (N–

P2O5–K2O) was applied during the planting. Side dress fertilizer

application was performed with 0.30 Mg ha−1 20-00-20 (N–P2O5–

K2O). All the trials were irrigated using a sprinkler irrigation

system, according to the need of the crop and the incidence of

rainfall through the seasons.
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2.1.2 Levels of heat stress
The trials were evaluated in three seasons with different levels of

heat stress: without heat stress (WHS), moderate heat stress (MHS),

and high heat stress (HHS) (Figure 1). The trials WHS (season from

May to September), MHS (February to May), and HHS (November

to February) were carried out during winter, fall, and summer

seasons, respectively (Figure 1; Table 1).

The compensated mean temperatures (TMEAN, °C) were

obtained using the expression TMEAN = (T9am + 2T9pm +

TMAX + TMIN)/5, where T9am, T9pm, TMAX, and TMIN are

the air temperature at 9 a.m., 9 p.m., maximum, and minimum,

respectively (INMET, 2022).

2.1.3 Phenotyping
Two traits were evaluated in each trial: total tuber yield (TTY

− Mg ha−1) and specific gravity (SG). Total tuber yield was

estimated by the weight of all tubers harvested in 1.2 m2 for

each plot. The SG was estimated by the expression SG = tuber

mass in air/(tuber mass in the air − tuber mass in water), where

tuber mass in air and tuber mass in water were measured from

fresh samples of tubers, ranging from 2.0 kg and 2.5 kg, using a

hydrostatic scale (Schippers, 1976).
2.2 Statistical analysis

A nested genetic treatment structure was evaluated. The clones

were obtained from different clonal families. Thus, it is possible to

access family and clone within-family effects from the data.

For the analysis, in which c clones were sampled from s clonal

families and evaluated together with p checks, the general form of

the linear mixed model is presented in Equation (1). This model is

suitable for both ST or MET data. For MET data analysis,

appropriate (co)variance structures should be used to model the

vectors of the family (us) and clone within-family (uc) effects,

aiming to account for the G×E:

y = 1m + Xoto + Zsus + Zcuc + Zbub + e (1)
TABLE 1 Trials characterization, size, and number of blocks, family, clone, check, and percentage of plots replicate.

Trial† Year Design‡
Number of levels

pN§

Block Family Clone Check Plot

POP1(WHS) 2013 ABD 48 24 477 3 621 22.71

POP2(WHS) 2017 ABD 20 31 491 2 531 7.16

POP2(MHS) 2017 ABD 20 31 491 2 531 7.16

POP2(HHS) 2018 ABD 20 31 491 2 531 7.16

POP3(WHS) 2021 P-REP 20 12 304 4 400 23.00

POP3(HHS) 2021 P-REP 20 12 312 3 400 21.25
frontier
†The trial identification: POP1(WHS), POP2(WHS), POP2(MHS), POP2(HHS), POP3(WHS), and POP3(HHS), where the codes POP1, POP2, and POP3 identify different clonal populations
and codes WHS, MHS, and HHS identify three different seasons, varying in the function of stress level: without heat stress (WHS) moderate heat stress (MHS), and high heat stress (HHS).
‡Experimental designs: augmented block design (ABD) and partially replicated design (P-REP).
§pN: percentage of plots experimental units occupied by replicated clones, given by the expression. pN = (N − Ntreat)/N, where N is the number of plots and Ntreat is the number of treatments.
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where y(N× 1) is the vector of phenotypic observations, where N

is the number of plots for ST data or plots by seasons for MET data;

1(N× 1) is a vector in which all elements are unity; m(1 × 1) is the

intercept; to(o × 1) is the vector of fixed effects, composed of check,

environment, and check by environment interaction effects (the

environment and check by environment interaction effects were

only used in MET data analysis), associated with matrix the design

Xo
(N × o) (assuming full rank), where o is the number of fixed effects;

us
(s × 1) is the vector of random effects of family associated with the

design matrix Zs
(N × s), where s is the number of families for ST data

or families by seasons for MET data; uc
(cs × 1) is the vector of

random genotypic effects of clone within-family associated with the

design matrix Zc
(N × cs), where c is the number of clone within-
Frontiers in Plant Science 04116
family for ST data or clone within-family by seasons for MET data;

ub
(b × 1) is the vector of random effects of block associated with the

design matrix Zb
(N × b), where b is the number of blocks for ST data

or blocks by seasons for MET data; and e(N× 1) is the vector of

random errors.

We assume that the uc, us, ub, and e vectors of random effects

are mutually independent and distributed as multivariate Gaussian,

with zero means and (co)variance matrices var(uc) = Gc, var(us) =

Gs, var(ub) = Gb, and var(e) = R. The structures of these (co)

variance matrices are shown in Table 2 for ST (STMpF and

STMwF) and MET (METMpF and METMwF) data analysis

models, including or not the family effect, respectively. For

STMwF and METMwF models, the vector of clone effects was
B

C

A

FIGURE 1

Temp: Maximum temperature (TMAX), minimum temperature (TMIN), and compensated mean temperature (TMEAN) in degrees Celsius for all trials:
(A) POP1(WHS), ranging from May to August of 2013; (B) POP2(WHS), ranging from June to September 2017; POP2(MHS), ranging from February to
May 2017; POP2(HHS), ranging from November 2017 to February 2018; POP3(WHS), ranging from June to September 2021; and (C) POP3(HHS),
ranging from November 2020 to February 2021 for Lavras, Minas Gerais State, Brazil (INMET, 2022). Seasons varying in terms of stress level: without
heat stress (WHS) moderate heat stress (MHS), and high heat stress (HHS) from 2013 to 2021.
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called uc′. For the MET data analysis, the heterogeneity of variances

of block and error effects was accommodated by the direct sum

operation (⊕), whereas the heterogeneity of the variances and

covariances of the G×E interaction for family and clone within-

family effects was accommodated by the direct product operation

(⊗). The (co)variance matrices of environments for family and

clone within-family effects were modeled by an unstructured matrix

with t(t + 1)/2 covariance parameters, where t is the number

of trials.

The covariance parameters of models shown in Table 2 were

estimated by the residual maximum likelihood (REML) method

(Patterson and Thompson, 1971) and best linear unbiased

predictions (BLUP) of the random effects by Henderson’s mixed

model equations (Henderson et al., 1959) through the software

Echidna Mixed Models (Gilmour, 2021) version 1.61. The graphic

plots and other analyses discussed in the following sections were

performed using the R software (R Core Team, 2021) and R

packages base and ggplot2 (Wickham, 2016).

2.2.1 Single-trial analysis
From the linear mixed model for STMpF presented in Table 2,

the vector of random total genotypic effects of clones can be

predicted for ST analysis (ugST) by combining the vectors of

family (us) and clone within-family (uc) effects as presented in

Equation (2). The (co)variance structure of the ugST vector is given

by the composite symmetry (CS) form as shown in Equation (3):

ugST =  (1c ⊗ Is) us + uc (2)

var(ugST )  =  (s 2
s Jc + s 2

s Ic)⊗ Is (3)

where 1c is a vector in which all elements are unity, Jc is a matrix

in which all elements are unity, and s 2
s and s2

c are variance

components of family and clone within-family effects, respectively.

The simple reparameterization of Equation (3), for correlation

scale, allows obtaining rS correlation by Equation (4). This

correlation ranges from 0 to 1 (assuming s 2
s > 0 and s 2

c > 0) and

measures the proportion of total genetic variance due to variation

among families.
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rS =
s 2
s

s 2
s + s 2

c
  (4)

The vector of clone effects (uc′) from STMwF model was also

predicted. However, for STMwF, both the variance component and

the BLUP of clones are confounded with family effect. Thus, the

comparison between STMpF and STMwF models in terms to

accuracy of total genotypic values of clones is inadequate if s 2
s >

0 (Supplementary Information, Note S1). In this context, the

STMpF and STMwF models were compared using the Akaike

information criterion (AIC) presented in Equation (5) (Akaike,

1974) and through the correspondence of the top 20% best clones

by Czekanowski coefficient (Qiao et al., 2000) [CC, Equation (6)], as

well as ranking concordance through the Spearman correlation

coefficient (rS) between uc′ and ugST. Furthermore, the variance

components of the STMwF and STMpF models were tested using

the likelihood ratio test (LRT) shown in Equation (7):

AIC  =   − 2ℓ  +  2p (5)

CC  =  a=(a  +  b) (6)

LRT  =   − 2ln (ℓ1= ℓ2) (7)

where ℓ is the maximum point of residual log-likelihood

function, p is the number of variance parameters, a is the number

of coincident clones by both selection strategies, b is the number of

divergent clones by both selection strategies, ℓ1 is the maximum

point of residual log-likelihood function from reduced model

(without the effect tested), and ℓ2 is the maximum point of

residual log-likelihood function from complete model.

Although the variance component s 2
c represents the average

within-families genotypic variance, the BLUP of the clone within-

family effect is coded to the overall mean and adjusted for the family

structure, which allows for comparison of clones from different

families (Supplementary Information, Note S1). Thus, we also

compared the selection by uc and ugST vectors through the

correspondence of the top 20% best clones by Czekanowski

coefficient [Equation (6)], as well as ranking concordance through

the Spearman correlation coefficient (rS).
TABLE 2 Summary of models fitted: single-trial model without family effect (STMwF), single-trial model plus family effect (STMpF), multi-
environment–trial model without family effect (METMwF), and multi-environment–trial model plus family effect (METMpF).

(Co)variance matrix
Single-trial analysis Multi-environment–trial analysis

STMwF STMpF METMwF METMpF

Gb s 2
b Ib s 2

b Ib ⊕t
j=1 s

2
bj Ibj ⊕t

j=1 s
2
bj Ibj

Gs s 2
s Is Gts⊗Is

Gc s 2
c 0 Ic⊗Is s 2

c Ic⊗Is Gtc′⊗Ic⊗Is Gtc⊗Ic⊗Is

R s 2 IN s 2 IN ⊕t
j=1 s

2
j INj ⊕t

j=1 s
2
j INj
Gb, Gs, Gc, and R: (co)variance matrices associated with the block, family, clone within-family, and error effects, respectively; Gts, Gtc′, and Gtc: unstructured (co)variance matrices used to

accommodate the G×E interaction for the family, clone, and clone within-family effects, respectively; s 2
b ,s

2
bj ,  s

2
s ,  s 2

c 0 ,s
2
c ,  s 2, and s 2

j : variance components associated with the block, block in

each trial, family, clone, clone within-family, error, and error in each trial effects, respectively; Ib, Ibj, Is, Ic, IN e, and INj: identity matrices associated with the block, block in each trial, family, clone
within-family, error, and error in each trial effects, respectively; ⊗: Kronecker product operator; ⊕: direct sum operator.
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To facilitate the visualization of the results, the variance

components of the STMwF and STMpF models have been

presented at percentage of total variation (sum of all variance

components of ST analysis of the STMwF or STMpF model). To

compare the efficiency of the selection strategies based on total

genotypic (ugST) and clone within-family (uc) effects from STMpF,

we assessed the efficiency through the accuracy ratio of

respective effects.

2.2.2 Multi-environment–trial analysis
The models METMwF and METMpF are extensions of the

models STMwF and STMpF for MET data, respectively (Table 2).

Similarly, to what was done for the STMpF model, the vector of

total genotypic effects may also be predicted for the MET analysis

using the METMpF model, combining the vectors of family (us) and

clone within-family (uc) effects as presented in Equation (8).

However, unlike Equation (2), Equation (8) capitalizes the G×E.

The (co)variance structure of vector ugMET is given by multivariate

compound symmetry form as shown in Equation (9):

ugMET =  (1c ⊗ Is ⊗ It)us + uc (8)

var(ugMET )  =  (Gts ⊗ Jc + Gtc ⊗ Ic)⊗ Is (9)

where It is an identity matrix of trials and Gts and Gtc are (co)

variance matrices of trials for family and clone within-family effects.

A similar vector to the vector ugMET may also be predicted from

the METMwF model, which was called uc′. However, because of the

reasons highlighted in Section 2.2.1, the models METMpF and

METMwF models were compared using the AIC presented in

Equation (5) (Akaike, 1974) and through the correspondence of

the top 20% best clones by Czekanowski’s coefficient (CC) (Qiao

et al., 2000) [Equation (6)], as well as ranking concordance through

the Spearman correlation coefficient (rS) based on FAI-BLUP index

score (Rocha et al., 2018), between the strategies (ugMET vs. uc′).

Because of the difficulty of performing the LRT test for

parameters of the unstructured matrices (Gtc′, Gts, and Gtc), two

95% confidence intervals were used for parameters of the METMwF

and METMpF models. The first one, based on Chi-Square

distribution (SAS Institute, 2016), used the variance components

for family and clones within-family. The second is based on the

Normal distribution (Meyer, 2008) for the correlations between

pairs of environments for family and clone within-family effects

(Supplementary Information, Note S2).

The genotypic correlations between the environment pairs for

clone (rGc 0 ), family (rGs
), and clone within-family (rGc

) effects were

estimated from parameters of matrices Gtc′, vGts, and Gtc, using the

expressions (10), (11), and (12):

rGc 0 ij =
sc 0 ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s 2
c 0 i

� s 2
c 0 j

q (10)

rGsij
=

ssijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
si � s 2

sj

q (11)
Frontiers in Plant Science 06118
rGcij
=

scijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
ci � s 2

cj

q (12)

where sc 0 ij , ssij , and scij are covariances between environments

pairs i and j for clone, family, and clone within-family effects; s 2
c 0 i

and s 2
c 0 j are variance components of environments i and j for clone

effect; s 2
si and s 2

sj are variance components of environments i and j

for family effect; and s 2
ci and s 2

cj are variance components of

environments i and j for clone within-family effect.

The visualization of the results and the variance components of

the models METMwF and METMpF were presented in percentage

of total variation for each trial (sum of all variance components for

each trial of the MET analysis of the model METMwF or

METMpF). To compare the effectiveness of the selection

strategies based on total genotypic (ugMET) and clone within-

family (uc) effects from METMpF, we assessed the effectiveness

through the accuracy ratio of respective effects.

Finally, we used the FAI-BLUP index (Rocha et al., 2018), to

rank the clones based on predicted BLUPs of MET data for both

strategies (ugMET vs. uc). The two selection strategies have been

compared as described before. Conducted the exploratory factor

analysis, with Factor Analysis (FA) and Principal Component

Analysis (PCA). PCA was used to extract the factorial loads from

the genetic correlation matrix, obtained by the predicted values

(BLUPs). The analysis used is varimax criterion (Kaiser, 1958) for

the analytic rotation and the calculation of the factor scores of the

weighted least squares method (Bartlett, 1938). Thus, PCA and FA

were performed on the set of BLUP mean for six variables from

population 2, three seasons (POP2HHS, POP2MHS, and

POP2WHS), and two traits (TTY and SG) of each vector uc, uc’,

and ugMET. They were estimated from multi-environment–trial

model without the family effect (METMwF) and multi-

environment–trial model plus the family effect (METMpF).

2.2.3 Accuracy of family, clone within-family,
total genotypic effects, and relative efficiency

The accuracy of family (rŝ s), clone within-family (rĉ c), total

genotypic effects (rĝ g), and relative efficiency (RE) were obtained by

expressions (13), (14), (15), and (16) for both ST and MET data

analysis:

rŝ s =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

υs
s2
s

r
  (13)

rĉ c =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

υc
s 2
c

r
(14)

rĝ g =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

υg
s 2
s + s 2

c

r
(15)

RE =
rĝ g
rĉ c

(16)

where υs, υc, and υg are the average prediction error variance of

family, clone within-family, and total genotypic effects, respectively.
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The RE was used to measure the difference between the proposed

models to ST and MET data.
3 Results

3.1 Comparison of the STMwF and
STMpF models

The inclusion of the family effect improved the goodness offit of

the models in all trials, on which the STMpF model showed lower

AIC than the STMwF, and the only exception was for TTY from

POP3(WHS) (Table 3). In addition, the inclusion of family effect

also increased the log-likelihood (ℓ) in all trials for both traits. Only

for the TTY trait in the POP3(WHS) trial did this increment does

not exceed 1.92 units (critical point for the detection of significant
Frontiers in Plant Science 07119
s2
s effect) (Table 3). These results are reinforced by the results of the

LRT test (Table 4) and indicate the presence of genetic variability

between families in most trials.

Clone (s 2
c 0 , STMwF) and clone within-family (s2

c , STMpF)

variances were significant in all trials for both traits (Table 4;

Supplementary Material, Table S2), revealing the existence of

genetic variability among clones. The contribution of clone within-

family variance (C) to the total phenotypic variance was always lower

than the clone effect (C′) (Table 4). However, the magnitude of the

difference between C′ and C was directly proportional to the

contribution of family variance to the total genetic variation (rS).
The amplitude of   rS for the SG trait (0.09 and 0.35) exceeded the

amplitude for the TTY trait (0.03 and 0.26) (Table 4).

CC and Spearman’s correlation coefficient (rS) were used as

comparison criterion for both selection strategies tested (uc′ vs. ugST
and uc vs. ugST). It was observed that, regardless of the selection strategy
TABLE 3 Log-likelihood residual (ℓ) and Akaike information criterion (AIC) for single-trial model without family effect (STMwF) and single-trial model
plus family effect (STMpF), for all trials and traits.

Trait‡ Model Trial† ℓ AIC

T
T
Y

STMwF

POP1(WHS) −1,826.81 3,659.63

POP2(WHS) −1,459.44 2,924.89

POP2(MHS) −1,584.44 3,174.88

POP2(HHS) −1,191.74 2,389.47

POP3(WHS) −1,031.07 2,068.14

POP3(HHS) −1,155.63 2,317.27

POP1(WHS) −1,820.36 3,648.72

STMpF

POP2(WHS) −1,450.92 2,909.84

POP2(MHS) −1,581.43 3,170.85

POP2(HHS) −1,189.63 2,387.26

POP3(WHS) −1,030.43 2,068.85

POP3(HHS) −1,149.94 2,307.87

SG

STMwF

POP1(WHS) 2,587.78 −5,169.57

POP2(WHS) 2,200.75 −4,395.51

POP2(MHS) 2,262.34 −4,518.68

POP2(HHS) 1,822.53 −3,639.06

POP3(WHS) 1,278.39 −2,550.77

POP3(HHS) 1,591.35 −3,176.70

POP1(WHS) 2,613.73 −5,219.45

STMpF

POP2(WHS) 2,209.84 −4,411.68

POP2(MHS) 2,276.28 −4,544.56

POP2(HHS) 1,833.07 −3,658.15

POP3(WHS) 1,281.73 −2,555.45

POP3(HHS) 1,594.28 −3,180.55
fron
‡Total tuber yield (TTY; Mg ha−1) and specific gravity (SG).
†The trial identification: POP1(WHS), POP2(WHS), POP2(MHS), POP2(HHS), POP3(WHS), and POP3(HHS), where the codes POP1, POP2, and POP3 identify the different clonal
populations and the codes WHS, MHS, and HHS identify three different seasons, varying in function of stress level: without heat stress (WHS) moderate heat stress (MHS), and high heat stress
(HHS).
tiersin.org

https://doi.org/10.3389/fpls.2023.1253706
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Martins et al. 10.3389/fpls.2023.1253706
and trait, both coefficients showed an inverse relationship with rS,
suggesting that an increase in genetic variability among families reduces

the similarity of the uc′ and uc vectors with the ugST vector in the ranking

of clones. Furthermore, the magnitude of the correlations of the CC and
Frontiers in Plant Science 08120
rS coefficients with rS was higher for the TTY (−0.82 and −0.78)

compared with that for the SG (−0.72 and −0.71) (Figure 2).

In general, both CC and rS showed lower magnitude for the

second selection strategy with family effect (uc vs. ugST), which
TABLE 4 Contribution (%) of the variances of block, clone (C′), family (F), clone within-family (C), and residuals (Res.) for the phenotypic variance of
the traits total tuber yield (TTY; Mg ha−1) and specific gravity (SG) estimated from single-trial model without family effect (STMwF) and single-trial
model plus family effect (STMpF) in different seasons.

Trait Trial†
STMwF STMpF

Block Clone (C′) Res. Block Family (F) Clone (C) Res. rS ‡

T
T
Y

POP1(WHS) 2.67ns 40.97** 56.35 2.05ns 7.18** 34.42** 56.35 0.17

POP2(WHS) 7.88** 47.78** 44.34 5.50** 11.56** 35.56* 47.38 0.26

POP2(MHS) 3.88** 37.74* 58.38 3.77** 4.43** 32.62* 59.18 0.12

POP2(HHS) 0.22ns 69.55** 30.23 0.19ns 4.38* 65.25** 30.18 0.06

POP3(WHS) 7.13** 77.27** 15.61 7.26** 2.32ns 74.90** 15.52 0.03

POP3(HHS) 1.09ns 68.44** 30.47 1.61ns 8.76** 59.62** 30.01 0.13

SG

POP1(WHS) 9.83** 69.87** 20.30 7.69** 18.56** 53.15** 20.60 0.26

POP2(WHS) 12.76** 35.00* 52.24 5.03ns 15.11** 28.43* 51.43 0.35

POP2(MHS) 2.26* 43.40* 54.34 2.10ns 13.60** 29.94* 54.36 0.31

POP2(HHS) 3.91** 56.78** 39.31 3.57* 12.97** 44.10** 39.36 0.23

POP3(WHS) 3.29* 57.63** 39.09 3.42* 6.75** 49.88** 39.96 0.12

POP3(HHS) 8.01** 58.58** 33.41 7.97** 5.04** 52.42** 34.56 0.09
frontier
†The trial identification: POP1(WHS), POP2(WHS), POP2(MHS), POP2(HHS), POP3(WHS), and POP3(HHS), where the codes POP1, POP2, and POP3 identify the different clonal
populations and the codes WHS, MHS, and HHS identify three different seasons, varying in function of stress level: without heat stress (WHS) moderate heat stress (MHS), and high heat stress
(HHS).
‡rS correlation: measures the proportion of total genetic variance due to variation among families.
Significance by the likelihood-ratio test (LRT): p-value< 0.01 “**” and 0.05 “*” and p-value > 0.05 not significant “ns”.
B

C D

A

FIGURE 2

(A, B) Spearman correlation coefficient (rS), and (C, D) Czekanowski coefficient (CC) (Supplementary Material, Tables S3, S4) between the proportion
of total genetic variance of families (rS) (Table 4) for the vector of clone effects of models from the single trial without family (uSTMwF) and plus family
effect (uSTMpF) to the total tuber yield (TTY; Mg ha−1) and specific gravity (SG). Labels in bold are correlations between selective efficiency and rS .
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suggests a greater agreement of the uc′ vector without family effect

with ugST in the clone ranking (Figure 2; Supplementary Material,

Tables S4, S5). Furthermore, independent of the selection

strategy, an increment in CC and rS can be observed with

increasing heat stress for both traits in POP2 and POP3, except

for the TTY in population POP3 (Supplementary Material, Tables

S4, S5).
3.2 Relative efficiency of selection based
on total genotypic effect of clone for
ST analysis

Regardless of the trait, selection based on the vector of total

genotypic effects of clone (ugST) was found to be greater than the

selection based on the vector of clone effects within family (uc)

(Table 5). The efficiency was directly proportional to rS, showing
that the increment in genetic variability among families increases

the selective efficiency of clones. The correlation between efficiency

and rS   was higher for SG (0.88) when compared with that for TTY

(0.72) (Figure 3).

On average, the accuracies rŝ s, rĉ c, and rĝ g were higher for SG

(0.80, 0.70, and 0.78, respectively) compared with that for TTY

(0.71, 0.69 and 0.74), respectively. The difference between the

accuracies rĝ g and rĉ c was higher for SG (0.78 and 0.70) than that

for TTY (0.74 and 0.69), which resulted in higher average selective

efficiency for the SG (11%) compared with that for TTY

(7%) (Table 5).
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3.3 Comparison of the METMwF and
METMpF models

Variance component associated with family effect in the trial

POP3(WHS) was not significant by the LRT test for TTY (Table 4)

and, thus, was not included in the MET analysis. The family effect

(METMpF) did not improve the goodness of fit compared with the

METMwF model for POP3 (Table S5); thus, the MET analysis

results were presented only for POP2 (Table 6).

The variance estimates associated with the effects of clone (s 2
c 0 ,

METMwF), family (s 2
s , METMpF), and clone within-family (s 2

c ,

METMpF), as well as their respective contributions to the

phenotypic variance, were similar to those obtained in the ST

analyses in all trials and traits. The variance components

associated with clone, family, and clone within-family were higher

than zero in all scenarios (Table S6), confirming the results found in

the ST analyses (Tables 4, 6; Supplementary Material, Tables S6,

S7). It is worth noting that the values of rS   were also like those

obtained in the ST analyses (Tables 4, 6).

Overall, variation was observed in the estimates of variance

components s 2
c 0 , s

2
s , and s 2

c across the different seasons for both

traits, indicating that populations that have G×E can be attributed

to the interaction of a simple nature (Supplementary Material,

Table S8). Genetic correlation between seasons for the effects of

clone, family, and clone within-family was positive in all scenarios

for SG, with values higher than 0.50 in most cases. This suggests a

low contribution of complex type G×E for this trait. In contrast,

most genetic correlation estimates for TTY were lower than 0.50,
TABLE 5 Accuracy of the family (rŝ s), clone within-family (.), and total genotypic (rĝ g) effects for traits total tuber yield (TTY; Mg ha−1) and specific

gravity (SG) estimated from single-trial model plus family effect (STMpF) in different seasons.

Trait Trial† rŝ s rĉ c rĝ g Efficiency‡

T
T
Y

POP1(WHS) 0.74 0.60 0.67 1.12

POP2(WHS) 0.76 0.64 0.71 1.11

POP2(MHS) 0.63 0.58 0.63 1.09

POP2(HHS) 0.60 0.81 0.83 1.02

POP3(WHS) 0.90§

POP3(HHS) 0.81 0.81 0.84 1.02

Average 0.71 0.69 0.74 1.07

SG

POP1(WHS) 0.87 0.82 0.87 1.06

POP2(WHS) 0.80 0.58 0.71 1.22

POP2(MHS) 0.82 0.58 0.71 1.22

POP2(HHS) 0.79 0.70 0.78 1.11

POP3(WHS) 0.77 0.75 0.78 1.04

POP3(HHS) 0.73 0.78 0.80 1.03

Average 0.80 0.70 0.78 1.11
†The trial identification: POP1(WHS), POP2(WHS), POP2(MHS), POP2(HHS), POP3(WHS), and POP3(HHS), where the codes POP1, POP2, and POP3 identify the different clonal
populations and the codes WHS, MHS, and HHS identify three different seasons, varying in function of stress level: without heat stress (WHS) moderate heat stress (MHS), and high heat stress
(HHS).
‡Relative efficiency: rĝ g=rĉ c ratio.
§Not included in estimate of average accuracy.
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suggesting a greater contribution of the complex G×E

(Supplementary Material, Tables S6, S7).

Regardless of the model and trait, the variance component

estimates associated the effects of clone (s 2
c 0 ) and clone within-

family (s 2
c ) were always higher in the higher heat stress season

(HHS) when compared with that in the no heat stress season (WHS),

indicating an increase in genetic variability under extreme heat stress

(Supplementary Material, Table S1). The variance component

associated with family effect (s 2
s ) showed a behavior inversely

proportional to the increase of heat stress for the TTY trait,

reducing about 50% with the increment of heat stress [11.32

(WHS), 7.32 (MHS), and 3.64 (HHS)] (Supplementary Material,

Table S3). Furthermore, regardless of the model adopted, we recorded

reductions of 42% and 3% in the average of the clones in the POP2

population for the traits TTY and SG under HHS, respectively

(Supplementary Material, Table S3). It is worth noting that,

considering the period from the beginning of tuberization (about

30 days after planting) until harvest, the average daily temperature

exceeded 20°C on 64% of the days in the MHS season and 88% of the

days in the HHS season (88%) (Figure 1).

The exploratory factor analysis showed mean communality of

0.91, 0.91, and 0.87 for the respective vectors uc′, uc, and ugMET,
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respectively, indicating that the three factors were sufficient to

explain more than 87% of the relationship between seasons.

Regardless of the effect, Factor 1 represented the three seasons for

SG, Factor 2 represented the WHS and MHS seasons for TTY, and

Factor 3 represented only the HHS season (Supplementary

Material, Table S8).

After obtaining the FAI-BLUP index scores, which included

both traits and all seasons, the Czarnowski’s coefficients (CC) and

Spearman’s correlation (rS) were utilized to compare the two

selection strategies tested (uc′ vs. ugMET and uc vs. ugMET).

Similarly, to what was observed for the ST analysis, both CC and

rS showed lower magnitude for the second selection strategy (uc vs.

ugMET), which suggests closer concordance of the vector uc′ with

ugMET in the ranking of the clones (Table 7).
3.4 Relative efficiency of selection based
on the total genotypic effect of clone for
MET analysis

Similar to the ST results, independent of trait or season, the

selection based on the vector of genotypic effect of clones in the
TABLE 6 Contribution (%) of the variances of blocks, clones (C′), families (F), clone within-family (C), and residuals (Res.) for the phenotypic variance
of the traits total tuber yield (TTY; Mg ha−1) and specific gravity (SG) estimated from multi-environment–trial model without family effect (METMwF)
and multi-environment–trial model plus family effect (METMpF) in different seasons.

Trait Trial†
METMwF METMpF

Block Clone (C′) Res. Block Family (F) Clone (C) Res. rS ‡

T
T
Y

POP2(WHS) 8.75+ 48.17+ 43.09+ 5.80+ 11.26+ 36.45+ 46.48+ 0.24

POP2(MHS) 3.22+ 38.34+ 58.44+ 3.00+ 4.81+ 33.08+ 59.11+ 0.13

POP2(HHS) 0.00# 70.02+ 29.98+ 0.00# 4.38+ 65.70+ 29.92+ 0.06

SG

POP2(WHS) 12.63+ 33.33+ 54.04+ 6.37+ 13.50+ 28.03+ 52.10+ 0.33

POP2(MHS) 1.53+ 43.06+ 55.41+ 1.52+ 13.79+ 29.70+ 54.99+ 0.32

POP2(HHS) 3.81+ 56.31+ 39.88+ 3.47+ 12.71+ 44.13+ 39.69+ 0.22
frontier
†The trial identification: POP2WHS, POP2MHS, and POP2HHS, where the code POP2 identify the clonal population and codes WHS, MHS, and HHS identify three different seasons, varying in
function of stress level: without heat stress WHS, moderate heat stress MHS, and high heat stress HHS.
‡ rS correlation: measures the proportion of total genetic variance due to variation among families.
+Variance component does not intercept the zero by 95% Chi-Squared confidence intervals.
#Variance component intercept the zero by 95% Chi-Squared confidence intervals.
BA

FIGURE 3

Family effect response (rS) (size) on the selective accuracy of potato clones (relative efficiency) in the function of heat stress level (color): without
heat stress (WHS), moderate heat stress (MHS), and high heat stress (HHS), in three populations evaluated (shape): POP1, POP2, and POP3. (A) Total
tuber yield (TTY; Mg ha−1) and (B) specific gravity (SG).
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MET (ugMET) was higher than the selection based on the vector of

clone within-family in the MET (uc) (Table 8). It is worth noting

that, because of the relationship between the season’s pairs, the

accuracy associated with the within-family clone effect was

increased in all seasons for both traits, although the accuracy

assoc ia ted the fami ly e ffec t was mainta ined or was

increased (Table 8).

For the TTY trait, efficiency estimates were progressively

reduced with increasing heat stress levels [1.09 (WHS), 1.06

(MHS), and 1.02 (HHS)], although, for the SG trait, efficiencies

were similar in all seasons. On average, the accuracies rŝ s, rĉ c, and

rĝ g were higher for the SG trait (0.82, 0.70, and 0.78) in comparison

with the TTY trait (0.70, 0.71, and 0.75), respectively. Furthermore,

the magnitude of the difference between the accuracies rĝ g and rĉ c
was higher for the SG trait (0.78 and 0.70) detriment of TTY (0.75

and 0.71), which resulted in higher average selective efficiency for

the SG trait (12%) when compared to the TTY trait (6%) (Table 8).
4 Discussion

4.1 ST analyses

The results presented here indicate that adjusting for the

structure created by family effects can improve the estimation of
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genetic values. However, it is important to highlight that

phenotyping individual data in the early stages of the process

may not be compatible with certain breeding pipelines. For

example, in certain programs, the first-year evaluation takes place

in the field, with mass selection, and using single-hill trials (one seed

potato). In this case, the extra phenotyping and modeling of the

data would incur additional resources, and the feasibility of such

change needs to be evaluated on a case-by-case basis. One

technology that potentially can be used to facilitate data collection

in the early stages of the program would be the use of aerial images

for phenotyping tubers that are dug out of the ground but left in the

field (Matias et al., 2020). In contrast, in cases where the early stages

are already established with larger plots and randomization of

clones, the inclusion of the family effect in the quantitative

genetics model would come at no additional effort in data collection.

The genetic progress obtained through conventional potato

breeding is slow due to the complexity of the tetrassomic

inheritance, the elevated level of heterozygosity of the genitors,

and the large number of traits to be assessed (~40) (Haynes et al.,

2012; Slater et al., 2014b; Gopal, 2015; Bradshaw, 2017). Potato-

breeding programs generate thousands of seedlings annually to

overcome these challenges (Stich and Van Inghelandt, 2018).

Furthermore, initial stage of potato breeding has low availability

of seeds because of the slow tuber multiplication rates, which

restricts the use of repetitions and plot size (Paget et al., 2017).

These factors contribute to lower experimental precision and

selection accuracy.

Typically, the clones being evaluated come from various

families, which are often created through biparental crossings.

Therefore, the selection process involves making comparisons not

only between clones from the same family but also between those

from different families. Thus, the effect of clones, and its variance

component, are confounded with the family effect. To address this

problem and achieve higher selection accuracy, is the use of a nested

model, on which the effect of clones is nested within the family effect

(Family/Clone = Family + Family + Clone). According to Piepho

et al. (2008), models with this structure can be advantageous as they
TABLE 8 Accuracy of family (rŝ s), clone within-family (rĉ c), and total genotypic (rĝ g) effects for traits total tuber yield (TTY; Mg ha−1) and specific

gravity (SG) estimated from multi-environment–trial model plus family effect (METMpF) in different seasons.

Trait Trial† rŝ s rĉ c rĝ g Efficiency‡

T
T
Y

POP2(WHS) 0.76 0.67 0.73 1.09

POP2(MHS) 0.68 0.65 0.69 1.06

POP2(HHS) 0.65 0.82 0.84 1.02

Average 0.70 0.71 0.75 1.06

SG

POP2(WHS) 0.80 0.67 0.75 1.12

POP2(MHS) 0.84 0.69 0.78 1.13

POP2(HHS) 0.82 0.73 0.80 1.10

Average 0.82 0.70 0.78 1.12
†The trial identification: POP2(WHS), POP2(MHS), POP2(HHS), where the code POP2 identify the clonal population and codes WHS, MHS, and HHS identify three different seasons, varying
in function of stress level: without heat stress (WHS) moderate heat stress (MHS), and high heat stress (HHS).
‡Relative efficiency: rĝ g=rĉ c ratio.
TABLE 7 Czekanowski’s coefficient (CC) and Spearman’s correlation (rS)
between the FAI-BLUP index score vectors of different strategies (uc′ vs.
ugMET and uc vs. ugMET), for traits total tuber yield (TTY; Mg ha−1) and
specific gravity (SG).

Strategies† CC rS

uc′ vs. ugMET 0.94 0.98

uc vs. ugMET 0.82 0.92
†uc′ is the vector of clone effects from multi-environment–trial model without family effect
(METMwF), uc is the vector of clone’s effects from multi-environment–trial model with
family effect (METMpF), and ugMET is the vector of total genotypic effects of clones from
METMpF.
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implicitly account for the genetic relatedness of clones. It is

important to highlight that including the family effect enhances

the model performance due to a better representation of the

families, once the clones within a family work as repetitions.

Resende et al. (2016) conducted a study on the effectiveness of

the nested structure in a dry bean breeding program using

progenies from various populations. They emphasized the

significance of the population effect, as the use of the nested

model resulted in 20 times more repetitions for each population

compared to the progenies. Resulted from an increase in the

selective efficiency of progenies. Some papers that considered the

effect of populations are reported on bean (Resende et al., 2016;

Paula et al., 2020) and soybean (Pereira et al., 2017; Volpato et al.,

2018) crops. Thus, the nested structure allows obtaining a more

accurate BLUP of the family, which enables a more reliable selection

of the best clones. In addition, it allows for the selection of the best

families, which enables the evaluation of a greater number of clones

per family and increased plot size, thereby increasing the probability

of obtaining superior clones.

The utilization of a nested structure presents a significant

advantage in providing precise estimations of genetic parameters.

This is because the variance components within and between

families are not confounded, which can happen in models that do

not take family effects into account (Supplementary Material, Note

S1). In the former, the heritability of clones is overestimated due to

the variance component of family, whereas, in the nested models,

the family structure gives a better estimate of the clone effect

(Supplementary Material, Note S1). The effects of clone and clone

within-family are only equivalent when the variance component of

families is zero or close to zero. Pereira et al. (2017) indicates that

incorporating the population effect into the estimation of genetic

and non-genetic components in soybean breeding data offers a

more accurate and realistic methodology.

Higher accuracy was observed using the vector of total

genotypic effects (ugST), obtained by combining the vectors of

family effects (us) and clone within-family (uc), and it was directly

proportional to the contribution of the variance component

associated with family in the total genetic variation (rS). Resende
et al. (2016) in a simulation study showed that the selection

accuracy increases in function of the increased contribution of the

between-population variance component to the total genetic

variation. Therefore, although, in potato breeding, the genetic

variance between families is lower than the genetic variance

within families, the inclusion of the effect of family can increase

the selection accuracy because the heritability of families has been,

in general, higher than the heritability of clone within-family (Diniz

et al., 2006; Melo et al., 2011). Greater average RE recorded for the

SG trait is associated with the higher mean accuracy for the effect of

families (0.80) and the higher rS mean (0.23).

The utilization of the family effect in potato breeding, which

models the nested effect of clones within the family, has been shown

to be advantageous. This methodology has led to an improvement

in the accuracy of predicting the genotypic values of clones and has

achieved a greater degree of RE for the two traits that were studied.

The increase in accuracy achieved by the nested model does not

reflect increased costs in cases where the data are already recorded.
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We expect that animal modeling properly accounting for additive

and dominance effects would also result in more efficient results.

However, the results showed that family effect inclusion is a simpler

approach, mainly in cases where the mating design is not complete.
4.2 MET analyses

Understanding and effectively managing the G×E interaction is

essential for achieving long-term improvements in plant breeding

programs because the success of a new cultivar depends on its

improved performance on different traits (e.g., TTY and SG) while

also presenting good adaptability and stability. The G×E assumes a

particular importance for potato breeding, mainly under tropical

conditions, because heat stress limits yield and quality in the hottest

periods of the year (Fleisher et al., 2017; Fernandes Filho et al., 2021;

Patiño-Torres et al., 2021).

Potato crop generally presents better performance in regions

with temperate climate, with average temperatures between 5°C and

21°C (Haverkort and Verhagen, 2008). With temperature exceeding

21°C, heat stress significantly reduces tuber yield and quality, due to

a series of physiological changes, including an increase in tuber

disorders (e.g., internal heat necrosis, knobs, and tuber chain),

reduced plant growth, increased respiration rate, greater

allocation of dry biomass to leaves at the expense of the tubers,

and the reduction in photosynthetic pigments (Lambert et al., 2006;

Haverkort and Verhagen, 2008; Hancock et al., 2014; Rykaczewska,

2015; Patiño-Torres et al., 2021). Thus, the selection of heat-tolerant

clones is vital to increase potato tuber yield and quality.

Brazil potato season is carried out in three distinct seasons: dry

(January to March), winter (April to July), and water (August to

December) seasons. Temperatures above the critical threshold, 21°C,

are commonly recorded in the dry and water seasons (Andrade et al.,

2021). Fernandes Filho et al. (2021) classified these seasons according

to their level of heat stress: MHS, WHS, and HHS. One of the major

limiting factors for Brazilian potato yield is the use of cultivars that

are poorly adapted for tropical conditions and hot temperatures.

The Universidade Federal de Lavras’s potato-breeding program

has worked intensively developing heat-tolerant clones (Benites and

Pinto, 2011; Figueiredo et al., 2015; Fernandes Filho et al., 2021;

Patiño-Torres et al., 2021). To determine which clones, have high

heat tolerance, they are tested under varying levels of heat stress.

Only clones that perform well under mild and high temperatures

are selected (Benites and Pinto, 2011; Rykaczewska, 2015;

Fernandes Filho et al., 2021; Patiño-Torres et al., 2021).

Furthermore, Andrade et al. (2021) reported that environments

with a higher level of heat stress showed a greater capacity to

differentiate clones according to their performance.

The strategy mentioned above for selecting heat-tolerant clones

requires clones to be evaluated in two or more contrasting

environments regarding heat stress. According to Smith et al.

(2001), to better evaluate G×E, it is more realistic to use models

that consider variance heterogeneity and genetic covariances when

analyzing MET data. Cullis et al. (1998) and Smith et al. (2001)

reported a significant reduction in the log-likelihood REML when

homogenous variance was assumed for the G×E. In multiplicative
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models for MET data, the interaction of simple nature is accounted

by the heterogeneity of genetic variances along the environments,

whereas the complex interaction is accounted by the heterogeneity

of genetic correlations between pairs of environments (Crossa et al.,

2004; Eeuwijk et al., 2016). According to Eeuwijk et al. (2016), when

the genetic correlations between two environments are high, it

means that there is a smaller percentage of complex

interaction involved.

MET data analysis can be carry out in one or two stages (Cullis

et al., 1998; Smith et al., 2001; Smith et al., 2015; Gogel et al., 2018).

Although the two-stage analysis is often employed, under unbalance

(varying number of genotypes between environments or varying

number of repetitions between and within environments), a

common condition in the early stage of potato-breeding

programs, the MET data analysis in one stage is more efficient

(Cullis et al., 1998; Smith et al., 2001; Paget et al., 2017; Gogel

et al., 2018).

Although the analysis of MET data is advantageous because of

the advantage of the interrelationship between environments, it is

increasing selective accuracy and allows a better interpretation of

the G×E interaction (Smith et al., 2001; Kelly et al., 2007). The

family effect, naturally present in the initial stage of potato-breeding

programs, has also been neglected in this type of analysis

(Fernandes Filho et al., 2021). However, one can combine the

advantages cited above with those described in Section 4.1.

Making MET analysis a powerful tool for clone selection in the

early stages of potato-breeding programs, especially under tropical

conditions, it is opportune to highlight that the recovery of inter-

environmental information was more pronounced for the effect of

clones within-family because of the higher magnitude of genetic

correlations between seasons. This corroborates with the lower

magnitude of the selective efficiency in MET analysis comparison

to ST analysis. Selective efficiency for the TTY trait progressively

reduced with increasing heat stress levels, whereas the selective

efficiency for the SG trait was maintained practically constant.

These results ratify the importance of environments with higher

heat stress levels to discriminate potato clones for the TTY trait, as

well as the greater contribution of the family effect to the selection of

superior clones for the SG trait.

The unstructured model can be used in cases when only a few

trials are included, due to the smaller number of parameters that

need to be estimated, avoiding the use of factor analysis (Smith

et al., 2001; Melo et al., 2020; Fernandes Filho et al., 2021).

However, the use of the unstructured model implies the

prediction of genotypic effects for each trial (Kelly et al., 2007;

Eeuwijk et al., 2016; Melo et al., 2020; Fernandes Filho et al.,

2021). Hence, it is desirable to use a selection index to capture the

G×E interaction and to combine MET analyses realized for

multiple traits (Kelly et al., 2007; Melo et al., 2020; Fernandes

Filho et al., 2021).

There are many options for selection indexes (Mendes et al.,

2009; Rocha et al., 2018; Yan and Frégeau-Reid, 2018; Melo et al.,

2020). Among the different indexes, the FAI-BLUP index stands

out, because it can incorporate data from various environments and

traits without the need for weights. It also avoids issues with

multicollinearity and makes it easier to understand the G×E
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interaction through exploratory factor analysis (Rocha et al., 2018;

Oliveira et al., 2019). In the present study, factor analysis showed a

superior performance in summarizing the relationships among

environments (WHS, MHS, and HHS) and traits (TTY and SG)

for each effect (uc′, uc, and ugMET). In addition, the factor analysis

showed that the SG trait had a lower level of interaction because all

seasons were grouped under Factor 1. On the other hand, the TTY

trait had a higher level of interaction as the WHS and HHS seasons

were grouped under distinct factors. Thus, including the effect of

families in the MET analysis is a helpful strategy to increase the

accuracy of superior clone selection.

Finally, the inclusion of the family effect increased the selective

efficiency of clones in ST and MET selection on schemes through an

increment in the accuracy of the total genotypic value. On average,

the selective efficiency of clones was 11% and 7% for ST and 12%

and 6% in MET for the traits SG and TTY, respectively. An

expressive reduction of the family effect under heat stress for TTY

and of lower magnitude for SG was observed.

Thus, the results of the present work suggest that the inclusion

of the family effect in clone selection models, in the initial stage of

potato-breeding programs, is desirable because it contributes to

increasing the selective efficiency of clones without generating

additional costs, especially for the SG trait.
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UAV-based individual plant
detection and geometric
parameter extraction
in vineyards

Meltem Cantürk*, Laura Zabawa, Diana Pavlic, Ansgar Dreier,
Lasse Klingbeil and Heiner Kuhlmann

Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
Accurately characterizing vineyard parameters is crucial for precise vineyard

management and breeding purposes. Various macroscopic vineyard parameters

are required to make informed management decisions, such as pesticide

application, defoliation strategies, and determining optimal sugar content in

each berry by assessing biomass. In this paper, we present a novel approach

that utilizes point cloud data to detect trunk positions and extract macroscopic

vineyard characteristics, including plant height, canopy width, and canopy

volume. Our approach relies solely on geometric features and is compatible

with different training systems and data collected using various 3D sensors. To

evaluate the effectiveness and robustness of our proposed approach, we

conducted extensive experiments on multiple grapevine rows trained in two

different systems. Our method provides more comprehensive canopy

characteristics than traditional manual measurements, which are not

representative throughout the row. The experimental results demonstrate the

accuracy and efficiency of our method in extracting vital macroscopic vineyard

characteristics, providing valuable insights for yield monitoring, grape quality

optimization, and strategic interventions to enhance vineyard productivity

and sustainability.

KEYWORDS

precision viticulture, grapevine detection, vineyard canopy characteristics, 3D vineyard
structure, UAV-based point cloud
1 Introduction

Enhancing and optimizing the productivity and quality of grapevine crops is a primary

goal for winegrowers, making vineyard management decisions significant (Moreno and

Andújar, 2023). A key factor in achieving this lies in obtaining precise and detailed

information about the overall structure of vineyards, which encompasses plant

arrangements and geometric canopy attributes. This information plays a pivotal role in

making well-informed decisions that are essential for tasks like pruning, applying
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pesticides, and maximizing yield (De Castro et al., 2018). Plant-wise

canopy characteristics offer insights into plant vigor, which is

crucial for informed decisions during the growth season. Despite

the challenge of measuring these attributes across the entire

vineyard, such as estimating per-plant volumes, their inspection

can provide valuable information. This, in turn, has the potential to

significantly impact the precise application of sprayed substances,

enhancing overall vineyard management strategies (Caruso

et al., 2017).

Key geometric parameters of grapevine crops, such as canopy

structure, height, width, volume, and leaf area, are closely connected

to plant growth, health, and potential yield. These factors allow

breeders to identify and efficiently manage distinct vineyard areas,

optimizing their cultivation strategies (Moreno and Andújar, 2023).

Estimation of these parameters is traditionally performed by human

operators collecting manual measurements about the canopy

characteristics. However, as this task is labor intensive, these

parameters are typically extrapolated from a small sub-section of

the vineyard, preventing farmers from making optimal decisions at

the individual plant level (Zabawa et al., 2020). Thus, automating

the identification and accurate mapping of individual vine rows and

trunks becomes crucial for precisely evaluating the vineyard’s state

(Jurado et al., 2020; Biglia et al., 2022). Recently, Unmanned Aerial

Vehicles (UAVs) have been commonly used for this task due to

their efficient data acquisition, simplicity, and cost-effectiveness

(Matese and Di Gennaro, 2015). UAVs can quickly cover large

vineyard areas and capture high-resolution images at low altitudes,

offering advantages over ground-based, satellite, and aircraft

systems (Ferro and Catania, 2023).

Although some grapevine parameters can be extracted from

single images, a complete 3D vineyard model is more effective for

investigating conditions under the canopy and deriving traits like

biomass, canopy volume, and vine-row width and height (Weiss

and Baret, 2017; Pádua et al., 2018; Pádua et al., 2019; Tsouros et al.,

2019; Di Gennaro and Matese, 2020; Ferro and Catania, 2023). For

an accurate 3D vineyard model, different sensor modalities can be

used, including LiDAR sensors, Terrestrial Laser Scanners (TLS),

and RGB cameras combined with structure from motion (SfM)

algorithm (Remondino and El-Hakim, 2006). LiDAR and SfM

point clouds have distinct characteristics that impact their

suitability for vineyard plant phenotyping, and several studies

compared the accuracy of the two point clouds. In one study

(Madec et al., 2017), both UAV-based SfM and ground-based

LiDAR showed comparable accuracy in wheat crop height

determination, while another (Petrović et al., 2022) showed SfM

point cloud superior accuracy in representing grapevine canopies

due to its higher data density capture based on ground sampling

distance. The affordability of RGB cameras compared to LiDAR has

sparked interest, leading to numerous studies utilizing SfM-derived

point clouds to estimate vineyard parameters (De Castro et al.,

2018; Matese and Di Gennaro, 2018; Jurado et al., 2020; Pádua

et al., 2020).

Accurately determining the location of individual plants within

a vineyard is crucial for precision vineyard management tasks like

selective harvesting, accurate spraying, fertilization and weeding,

and effective crop management (Milella et al., 2019). In a related
Frontiers in Plant Science 02129
study, Milella et al. (2019) proposed an algorithm using an

affordable RGB-D sensor on an agricultural vehicle to estimate

per-plant canopy volume via k-means clustering of a reconstructed

3D vine row. However, this method requires knowing the exact

plant count (k) and spacing, which is unfeasible for larger vineyards

where the number of plants and their spacing can vary significantly

between vineyards. Additionally, they segmented images into grape

bunches, leaves, and trunks but they did not explore individual

trunk detection and only tested on a single vine row. In another

study, Jurado et al. (2020) described an automatic method for

identifying and locating individual grapevine trunks, posts, and

missing plants based on spatial segmentation without using prior

knowledge of the number of plants and the distance between plants.

However, this method cannot provide the canopy parameters of the

vineyard but just the individual plants’ locations within a point

cloud. Both of these research efforts highlight the challenges of

accurately estimating vineyard parameters, particularly when

dealing with large-scale vineyards. While they contribute valuable

methods for plant detection and identification, they each have

limitations regarding the information they can provide about the

vineyard as a whole.

Several studies investigated the estimation of geometric canopy

characteristics. Mathews and Jensen (2013) utilized the SfM

technique to construct a 3D vineyard point cloud to estimate the

vine leaf area index (LAI). Furthermore, Weiss and Baret (2017)

developed an algorithm that utilizes dense point clouds derived

from an SfM algorithm to estimate crucial vineyard structural

attributes like row orientation, height, width, and spacing.

Similarly, Comba et al. (2018) introduced an unsupervised

algorithm for vineyard detection and evaluation of vine-row

attributes such as vine rows orientation and inter-rows spacing

based on the 3D point cloud. Subsequently, Comba et al. (2019)

extended the utilization of 3D point clouds by integrating

multispectral and thermal images with RGB data to perform a

comprehensive characterization of vineyard vigor. Mesas-

Carrascosa et al. (2020) classified 3D point cloud into vegetation

and soil using RGB information through color vegetation indices

(CVIs) and calculated the height of vines with respect to the

classified soil. In a distinct approach, Di Gennaro and Matese

(2020) implemented the 2.5D-surface and 3D-alpha shape

approaches to build an unsupervised and integrated procedure for

biomass estimation and missing plant detection in a vineyard. All

the above approaches estimate a subset of the necessary parameters

for vineyard management. To the best of our knowledge, no single

automatic pipeline capable of concurrently estimating a large set of

vine canopy traits from 3D point clouds has been proposed in

the literature.

The contribution of this paper is a pipeline to determine single

plant locations in a vineyard from UAV-derived point clouds.

Additionally, we extract geometric parameters like plant height,

width, and volume along the row with a high spatial resolution,

making it possible to assign the values to the detected single plants.

We demonstrate the method’s capability with several datasets

generated with an SfM approach using UAV imagery. We also

analyze which flight parameters are suitable for the task. Finally, we

show the results derived from UAV-based LiDAR data without
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changing any parameters of the pipeline. This demonstrates that

our pipeline significantly reduces the need for manual parameter

tuning and can be successfully applied to different 3D sensors.
2 Materials and methods

2.1 Study site and data acquisition

The study area is located in the experimental vineyard plots of

JKI Geilweilerhof in Siebeldingen, Germany. The institute aims to
Frontiers in Plant Science 03130
breed new cultivars resistant to grapevine disease, weather-related

stress factors, and high-quality wine production. The vineyard plot

was composed of 23 rows, comprising 14 rows trained in the semi-

minimal pruned hedge (SMPH) system and 9 rows in the vertical

shoot positioning (VSP) system, as illustrated in Figure 1. Our

investigation focused on assessing the accuracy of the proposed

method within two distinct training systems, both characterized by

irregular vine spacing.

The VSP system has been commonly used in traditional grape

cultivation in Germany due to its suitability for cool climates. However,

this system requires labor-intensive tasks like winter pruning and wire
A

B

C

FIGURE 1

(A) The camera positions at the moment of image acquisition and reconstructed 3D point cloud. The 5 yellow flags represent the GCPs. (B) Top
view of the reconstructed 3D point cloud. The area in the red rectangle was selected as a subset. (C) Side view of the subset that comprises 3 rows
of the SMPH training system (left) and 4 rows of the VSP training system (right).
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positioning, leading to high labor costs. To address this challenge and

reduce manual labor expenses, a new training method called SMPH

was introduced. SMPH aims to optimize grapevine growth and canopy

development while minimizing the need for time-consuming pruning

and maintenance activities (Kraus et al., 2018). The SMPH pruning

system for grapevines results in notable physiological and

morphological changes compared to the traditional VSP trellis. VSP

has a single main branch that grows over several years, and the rest gets

removed after each growth period. Every year, the other branches

regrow. The grapes are mostly positioned near the bottom of the

canopy where they are rarely occluded (Zabawa et al., 2019). On the

other hand, SMPH allows branches to remain in the trellis after the

growing season, creating a more voluminous canopy with older wood

and smaller leaves that bud earlier in spring than the VSP. Moreover, it

changes the grape cluster structure, producing smaller berries on longer

stalks in looser clusters (Pennington, 2019). Two different training

systems can be seen in detail in Figure 1C. This distinction highlights

the variety of cultivation practices employed within the vineyard,

enriching the scope of our study.

This study used two different setups for data collection and

generating the vineyard point cloud. The first setting is based on a

DJI Phantom 4 Pro quadcopter UAV, equipped with an onboard

RGB camera. Three flights were conducted over one plot (49°

13’10.4” N, 8°02’33.5” E) with different heights and camera

angles. The flight parameters of the UAV measurements can be

seen in Table 1. To obtain the absolute coordinates of the 3D point

cloud, 5 ground control points (GCPs) have been measured using

the Leica GS18 GNSS RTK system, with 2-3 cm accuracy in position

and height. The camera positions at the time of image acquisition at

15 m height and with a nadir angle can be seen in Figure 1A. The

point cloud was reconstructed using images with a combination of

three different flight parameters and individually with the images

belonging to each flight number. This first study setting utilized the

SfM technique in Agisoft Metashape Professional (version 1.7.4) to

generate 3D point clouds. Aerial images acquired with three

different flight parameter settings are aligned using the software

automatically identifying features from each image (Che et al., 2020;

Wu et al., 2022). For each flight, GCPs were used to get a

georeferenced dense point cloud. Since the UAV was equipped

with an RGB camera, the result was a 3D point cloud including RGB

information. The area in the red rectangle in Figure 1B was

manually selected as a subset to investigate the impact of different

flight parameters on the extracted plant parameters. The subset

included three rows (1, 2, and 3) trained in SMPH, and four rows (4,

5, 6, and 7) trained in VSP. As a result, we obtained four different

point clouds, one of them being the combined dataset, while the

others were associated with their respective flight parameters:

tilted_20m, nadir_20m, and nadir_15m.
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The second experimental setup for this study is based on a DJI

Matrice 600 Pro UAV equipped with a Riegl miniVUX-2UAV laser

scanner with a 200kHz pulse repetition rate and a 15 mm accuracy at

50 m distance. Furthermore, the platform has pose estimation sensors

onboard, including the Inertial Measurement Unit (IMU) Applanix

APX-20 and GNSS antenna Applanix AV14. For this second setting,

we used another vineyard plot (49°13’03” N, 8°02’49.5” E). The

resulting georeferenced LiDAR point cloud had horizontal accuracy

below 0.05 m and vertical accuracy under 0.10 m.
2.2 Point cloud processing pipeline

We proposed a pipeline to extract different phenotypic traits of the

vineyard such as plant height, canopy width, and canopy volume as well

as individual plant (trunk) positions. The pipeline included three main

steps; (i) point cloud separation into the ground (GroundPCl) and plant

(PlantPCl), (ii) individual row segmentation, and (iii) extraction of row

parameters. The study workflow is shown in Figure 2. Furthermore, the

study utilized the software Matlab 2022b for point cloud processing and

CloudCompare 2.12 for point cloud visualization.
2.2.1 Ground-plant separation and
height normalization

To extract plant parameters, the point cloud was separated into

ground and plant using the Cloth Simulation Filtering (CSF)

algorithm (Zhang et al., 2016) in CloudCompare and defined as

Ground PCl and Plant PCl. The CSF algorithm is well-suited for

rugged and sloping terrains (Liu et al., 2021). Since the vineyard was

located in a sloped area, we used the CSF algorithm to separate

ground and plant. The algorithm inverts the point cloud and then

covers the inverted surface with a simulated cloth. Using the

interactions between the cloth nodes and the corresponding

points, the point cloud can be separated into the ground and

non-ground points. The main two parameters we tuned in this

algorithm are grid resolution GR and distance threshold DT. GR

represents the horizontal distance between two neighboring

particles in the simulated cloth to cover the terrain. As the GR

decreases, the level of detail in the resulting digital terrain model

becomes more refined. The DT determines whether the points are

classified as ground or non-ground based on their distances from

the cloth grid. Fewer ground points are obtained with a smaller DT

value, while more points are separated as plants. We chose a grid

resolution GR of 0.3 m and a distance threshold DT of 0.3 m as the

parameter settings. The 0.3 m GR allowed for capturing sufficient

details in the point cloud while maintaining computational

efficiency. Similarly, the 0.3 m DT was suitable for accurately

separating the ground and plant points, minimizing the likelihood

of misclassification. The qualitative result can be seen in Figure 3A.

In the point cloud, the z-value of each point was the ellipsoidal

height. Since we were interested in plant height which is the vertical

distance between the ground level and the uppermost boundary of

the primary photosynthetic tissues of a plant (excluding

inflorescences) (Perez-Harguindeguy et al., 2016), the separated

PlantPCl was normalized in height by subtracting the ground point
TABLE 1 Flight parameters of the UAV measurements.

tilted_20m nadir_20m nadir_15m

Flight height 20 m 20 m 15 m

Camera angle 65° Nadir Nadir

Number of images 88 76 153
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A

B

FIGURE 3

(A) The segmentation of the whole point cloud into plant and ground. (B) The height-normalized PlantPCl.
FIGURE 2

Flowchart of the general framework for row parameter extraction.
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elevation from all plant points to estimate plant height. By

substituting the z-value of each plant point with the computed

height difference, the height-normalized PlantPCl was

obtained (Figure 3B).

2.2.2 Row segmentation
We segmented the PlantPCl and GroundPCl into individual

rows to extract plant parameters row-wise. Our pipeline for row

segmentation consisted of two steps: segmentation of the PlantPCl

into rows and defining a bounding box in 3D space to represent the

spatial location of each segmented row to effectively segment the

GroundPCl into rows as well. The flowchart of the proposed method

for row segmentation can be seen in Figure 4.

First, we downsampled the PlantPCl to reduce the

computational complexity and processing time of the algorithm

using a 3D grid box with the size of (0.1 x 0.1 x 0.1 m). Second, we

reduced the dimension to 2D by removing the z component.

Assuming that the single rows do not overlap, we then applied

the Density-based Spatial Clustering of Applications with Noise

(DBSCAN) algorithm in the xy-plane. This algorithm was proposed

by Ester et al. (1996) and is a density-based clustering algorithm

intended to find clusters of any shape. DBSCAN relies on two main

parameters: ϵ, the radius distance for point neighbors (Euclidean

distance in our case), and Pmin, the minimum points needed to form

a cluster (Amiruzzaman et al., 2022). We selected the parameters of

the DBSCAN algorithm empirically based on the characteristics of

the point cloud and the desired clustering outcome. After

performing some preliminary experiments, we empirically set ϵ to

0.35 m, corresponding to the average inter-point distance in the

downsampled PlantPCl, capturing closely located point clusters
Frontiers in Plant Science 06133
effectively. Pmin was set to 40 to identify clusters with a sufficient

number of points while excluding noise, based on the point density

distribution in the point cloud. This value was chosen based on the

point density distribution in the downsampled point cloud, making

it independent of the input point cloud density.

The initial result of the DBSCAN algorithm can be seen in Figure 5.

Each row cluster is shown with a different color. However, these

clusters may not be consistent due to gaps ormissing plants. To address

this issue, we improved the results by incorporating cluster centroids

and leveraging the assumption that rows are linear. To achieve this, we

fit a 2D line to the row clusters, allowing us to estimate the row

orientation. Then, we rotated the point cloud with the row orientation

angle q parallel to the y-axis. After rotation, we calculated the centroids
of the clusters and determined their similarity based on Euclidean

distances d along the x-axis (Figure 5). Clusters with closely spaced

centroids were merged into the same row, while clusters with larger

centroid distances were considered separate rows. In our refinement

method for row segmentation, we set the d between the centroids of

clusters as 1 m by analyzing the datasets to address the issue of disjoint

rows merging.

To segment the GroundPCl into rows, we used 3D bounding

boxes that represent the spatial location of each segmented plant

row. As explained before, since the rows had an orientation, it

became challenging to compute the skewed boundaries of the

bounding boxes. Therefore, we defined the 3D bounding boxes

after obtaining the rotated rows. We used the maximum boundaries

of the PlantPCl in the x and y direction and the boundaries of the

GroundPCl for the z-direction to calculate the boundaries of the

bounding boxes. To segment the GroundPCl into rows, we rotated it

using the angle q and used 3D bounding boxes for clustering.
FIGURE 4

The proposed pipeline for the individual row segmentation.
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2.2.3 Row parameters extraction
2.2.3.1 Trunk position

Identifying trunks under the canopy in vineyards with complex

geometric structures is challenging. In our investigation in the

PlantPCl, we observed that the thin structure of the majority of

trunks was hard to reconstruct accurately due to the occlusions

caused by the leaves, as can be seen in Figure 6A. On the other hand,

the bottom part of the trunks was reconstructed better in the

GroundPCl (Figure 6B). Furthermore, Figure 6B shows that the

ground approximates a planar surface; in contrast, the trunks were

observed with a different geometry clearly distinguished from the

ground. We used geometric features to detect trunks in the

GroundPCl to address this issue.

We proposed a pipeline for trunk detection in vineyards,

leveraging features derived from the local neighborhood. To

enhance computational efficiency, reduce noise, and improve

feature stability, we downsampled the segmented row of the

GroundPCl using a 3D grid box with dimensions of (0.05 x 0.05 x

0.05 m). This downsampling ensured a manageable density of

points for subsequent calculations. Feature calculation involved

two steps: computing the covariance matrix for the points within

a local neighborhood around each point, defined by a specified
Frontiers in Plant Science 07134
radius R to analyze the variability of the point cloud in different

directions, and determining eigenvalues of the matrix that provides

insight into the principal axes of variability. The corresponding

eigenvalues were sorted as l1 ≥ l2 ≥ l3 ≥ 0. After conducting several

experiments, we determined that the sphericity feature Sl = l3/l1
outperformed other features for trunk identification in the

GroundPCl. For the sphericity feature calculation, we set the

radius R to 0.25 m for the nearest neighbor search, as it

effectively captured the approximate trunk diameter.

We performed three steps to identify trunk candidates and

estimate their 3D positions. Firstly, the sphericity values of each

point in the segmented ground row were sorted into a histogram.

We determined a threshold that helps us identify trunk candidates

using Otsu’s method (Otsu, 1979). These candidates were the points

with sphericity values exceeding the threshold (Figure 7A). Since

trunk candidates stored many points for each trunk, the points

belonging to the same trunk must be clustered. To achieve this, the

DBSCAN algorithm was used to cluster the trunk candidates. The

chosen parameters for the DBSCAN were 0.10 m and 5 for ϵ and

Pmin, respectively. These parameter choices aided in effectively

grouping the trunk candidates into meaningful clusters. Figure 7B

illustrates the trunk candidates clusters, each represented by a
FIGURE 5

Initial result of the DBSCAN algorithm. Each row cluster is shown with a different color. Each centroid of the cluster is represented with a blue cross.
In the grey rectangle (left), a whole row and a metal post in the row are clustered separately and are colored greenish-grey and purple, respectively.
In the grey dashed rectangle (right), the row is segmented into two clusters due to the gap in the canopy. The clusters are shown in pink and orange
colors. These centroids are analyzed more closely in the red frame. The distance between these pairs in grey and grey dashed rectangles
respectively is less than the threshold value, therefore they are merged into the same cluster.
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distinct color. Finally, to estimate the position of each trunk, we

calculated the 3D centroid of each cluster. By following these steps,

we effectively identified trunk candidates and estimated their

respective 3D positions in each segmented ground row, enabling

a comprehensive analysis of the trunks in the given

dataset (Figure 7C).

2.2.3.2 Canopy characteristics

Canopy geometric parameters were extracted for each row of

the PlantPCl with a high spatial resolution along the row. Our
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approach involved segmenting each row into 3D bounding boxes of

equal length along the y-axis according to the methodology

described in Escolà et al. (2017); Cabrera-Pérez et al. (2023), and

Escolà et al. (2023). Segments, represented by yellow bounding

boxes, were visually depicted along a single row in Figure 8A.

Furthermore, a top and close-up view of the segments was

presented in Figure 8B. Each parameter was computed in each

segment along the row. By doing this, we can achieve a detailed

analysis of parameters along a row by adjusting the number of

segments. Therefore, any desired resolution of the parameter
A

B

FIGURE 6

(A) Trunks that are not reconstructed well in the segmented plant row are shown in purple rectangles. (B) The trunks in a segmented ground row
are encircled with cyan circles.
A

B

C

FIGURE 7

(A) Trunk candidate points that have a sphericity value larger than the sphericity threshold in a segmented ground row. (B) Trunk candidates are
segmented into clusters with the DBSCAN algorithm, and each cluster of trunk candidates is shown in a different color. (C) The calculated centroid
of each cluster is shown in different colors with trunk candidates.
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estimation along the row can be achieved. To ensure a high level of

detail, we chose the number of segments to be 250. This decision

resulted in a consistent segment length of 10 cm along the row.

Comprehensive information and visualizations regarding each

plant parameter along each row were provided through detailed

diagrams and histograms. In the following, we described the

parameters extracted by our pipeline.

Plant Height: The shortest distance from the ground to the

highest point of the canopy in the z-axis is defined as plant height

(Perez-Harguindeguy et al., 2016). We used a method based on the

90th percentile of normalized heights, as shown in a prior study

(Becirevic et al., 2019), which highlighted the reliability of the UAV-

based crop height extraction. We also visually inspected the data to

ensure our choice of percentile was appropriate. By calculating the

mean of the z-values within the 90th percentile of the normalized

height, we obtained height estimations for each segment.

Canopy Width: Assuming that each row in the PlantPCl was

positioned on the xy-plane and aligned parallel to the y-axis following

the rotation and ground projection, we can define the canopy width as

a distance perpendicular to the y-axis. In our pipeline, we calculated the

canopy width as the difference between the mean of the y-values within

the 90th percentile and the mean of the y-values within the 10th

percentile, following the procedure already described for the plant

height. In this way, we obtained a more accurate estimation of the

canopy width while excluding extremes.

Canopy Volume: The canopy volume is a reliable indicator of the

overall health and vigor of plants (Arnó et al., 2013; Caruso et al., 2017;
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Escolà et al., 2017). The estimated vine canopy volume becomes

particularly valuable in assessing vigor, especially where a single

measure, such as height and width, is insufficient to understand

canopy geometry. To calculate the canopy volume we employed the

alpha shape algorithm (Edelsbrunner et al., 1983), which generates a

bounding volume encompassing a set of plant points. However, to

accurately calculate the canopy volume, it was necessary to discard

pieces of trunks or single branches that were occasionally present in the

PlantPCl, as illustrated in Figure 9A. As explained before, since the

trunks were not reconstructed well, the number of trunk points was

significantly lower than the canopy points in the PlantPCl. To address

this, we applied the Statistical Outlier Removal (SOR) filter to eliminate

these points within the row. As a result, we obtained a filtered PlantPCl

that excludes trunk or branch pieces, as illustrated in Figure 9B. After

filtering, the alpha shape approach was employed with different alpha

radius a. The parameter a is the sphere’s radius that sweeps over the

points to create the alpha shape and is used to tighten or loosen the

object. The approach, in theory, uses an optimal alpha value to

approximate bounding volume; however, finding an optimal value is

extremely difficult (Yan et al., 2019). Therefore, we empirically chose an

alpha radius representing the canopy’s concave structures without

creating disconnected objects. Through empirical observations in our

study, we determined the value of a as 0.3 m for the alpha shape object

when calculating the canopy volume (Figure 9C).

Canopy Lower Bound: The filtered PlantPCl, which excludes

the trunks, holds significant importance in facilitating a

comprehensive analysis of the canopy structure. In the filtered
A B

FIGURE 8

(A) Segments of the one row in the PlantPCl that were enclosed with a yellow bounding box in 3D space. (B) Top view of the segments along the row.
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PlantPCl, we can define the canopy lower bound as the lowest point

that belongs to the canopy on the z-axis. In our pipeline, the canopy

lower bound was estimated as the mean of the z-values within the

10th percentile. Thus, by incorporating this canopy characteristic,

we obtain valuable insights into the vertical structure of the canopy,

enabling a more detailed examination of the vegetation distribution

and its variability along the row.
2.3 Evaluation method

2.3.1 Row segmentation
To evaluate the accuracy of the segmented plant rows, the point

clouds of the segmented rows were compared with the manually

segmented rows. The evaluation involved comparing the number of

points in the segmented row with the number of points in the

corresponding manually segmented row. Segmentation accuracy

was calculated for each row considering the overlap between the

segmented row and the ground truth one. Furthermore, we took

into account the training system associated with each row. This

analysis provided insights into the performance of the segmentation

method across different training systems.

2.3.2 Trunk position
Our study focused on accurately estimating the positions of

individual trunks within vineyard rows. We evaluated the accuracy

of our estimations by comparing them to ground truth data which is

manually selected trunks in the point cloud. To determine the accuracy

of our estimates, we defined a 15 cm search radius and checked if any

ground truth trunks were within this radius. Then the confusionmatrix

was calculated based on the presence or absence of ground truth

trunks. The evaluation of our estimated trunk positions involved

calculating true positives (TP), false positives (FP), and false

negatives (FN). We computed precision, recall, and F1 scores for

each dataset to assess the performance of trunk detection. Precision

focuses on the quality of the detected trunks, measuring the extent to

which the identified trunks are valid. On the other hand, recall, in our

case, quantifies the capability to accurately identify actual trunks,

emphasizing the detection rate. To obtain a comprehensive

evaluation, we utilized the F1 score, which offers a balanced

assessment of the overall performance, considering both recall

and precision.

Furthermore, we conducted an additional experiment to

investigate the impact of different flight parameters on the trunk
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detection method. To do so, we applied our method to three distinct

datasets, tilted_20m, nadir_20m, and nadir_15m, and subsequently

compared the obtained results.

2.3.3 Canopy characteristics
In previous studies (De Castro et al., 2018; Di Gennaro andMatese,

2020; Mesas-Carrascosa et al., 2020), UAV-based canopy geometric

parameter estimation has demonstrated higher accuracy compared to

ground truthmeasurements; however, the validity of such comparisons

is highly dependent on the specific sample positions, rendering them

less meaningful. For instance, ground truth volume measurements are

highly subjective and depend on the specific person taking the measure

(Colaço et al., 2017; Qi et al., 2021). These measurements are also time-

consuming, with the additional limitation of not accounting for canopy

gaps. Furthermore, certain studies have indicated that manual

measurements tend to overestimate canopy thickness by

approximately 30% when compared to LiDAR-based measurements

(Gil et al., 2014). Therefore, considering these challenges, we rely on the

proven reliability of parameter estimation methods, as demonstrated in

previous research, and do not directly compare our estimates with

reference measures.
3 Results and discussion

3.1 Row segmentation

The final result of row segmentation is visually represented in

Figure 10. Figure 10A illustrates the segmentation results for the

PlantPCl. The rows are color-coded, with each row represented by a

different color. Our segmentation method accurately separates the

PlantPCl into distinct rows, therefore we can have a clear

understanding of the spatial distribution and arrangement of the

plants within the vineyard. By employing our proposed method, we

successfully address the challenges posed by gaps or missing plants in

the canopy, resulting in accurate and consistent row segmentation.

Similarly, Figure 10B shows the segmentation result for theGroundPCl.

The ground points are assigned different colors based on the rows they

belong to. This segmentation allows for a comprehensive analysis of the

ground characteristics along each row, which is interesting for

individual trunk detection.

As a result, the row segmentation method demonstrated

outstanding accuracy in all datasets, achieving a flawless

segmentation rate of 100%, in line with existing research (Jurado
A B C

FIGURE 9

(A) Side view of the segmented row in PlantPCl. (B) Filtered point cloud. Trunk and branch pieces are removed with the SOR filter. (C) The alpha
shape object of the row.
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et al., 2020; Moreno and Andújar, 2023). Notably, our analysis revealed

that the training systems had no noticeable effect on the performance of

the row segmentation method. Furthermore, the comparison of

different flight parameters revealed no impact on the accuracy of

row segmentation.
3.2 Row parameters extraction

3.2.1 Trunk position
We presented the estimated trunk positions and ground truth data

in Figure 11, where blue dots represent estimated trunks and black

circles represent ground truth trunks. Table 2 shows the corresponding

numerical evaluation. In combined dataset, trunk positions in the

SMPH training system were estimated with a higher F1 score of 76%

compared to 59% F1 score in the VSP training system. It can be seen in

Figure 11 that trunks were not detected well in rows number 4, 5, and 6.

This is because, in this specific dataset, these trunks belonging to these

rows were not properly reconstructed by the SfM pipeline due to the

occlusions caused by the canopy.

The evaluation revealed that the highest F1 score of 91% was

achieved in nadir_20m dataset with the VSP training system. This is

because, in the VSP case, the canopy volume is much lower so that a

larger portion of the trunk is visible from the camera, which results

in a higher precision on all datasets for our pipeline. Considering

both training systems, the highest F1 score was achieved with the

tilted_20m dataset, indicating that the trunks were detected better in

this dataset. Specifically, we observed that the more inclined camera

angle outperformed the nadir angle in effectively detecting plants

under the canopy. This confirms existing research on both maize

(Che et al., 2020) and grapevines (Garcıá-Fernández et al., 2021)

where a more inclined camera angle was more effective for the point

cloud reconstruction. However, in existing works, no assessment of

the trunk detection performances was investigated.
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The lowest F1 score of 59% was achieved in the combined

dataset. Although being reconstructed using images captured from

different camera angles and flight heights, the combined dataset did

not yield an improvement in performance. Interestingly, the

individual datasets displayed significantly higher recall rates when

compared to the combined dataset. These findings suggest that the

variability in data introduced by the different flight parameters did

not enhance the overall detection outcome. Based on these results, it

is evident that selecting a specific flight parameter set, rather than

combining data captured using different flight parameters, provided

superior trunk detection performances.

We can see from the results that there is no substantial difference in

terms of F1 score between the nadir_20m and nadir_15m datasets.

These datasets were both captured from a nadir angle but at varying

flight heights, enabling us to assess the influence of flight height on

plant detection directly. Notably, we discovered that higher flight

height can still yield accurate results with lower data density but a

larger field of view, potentially shortening data collection time.

Although existing research achieved high accuracy for grapevine

detection, some conditions were assumed regarding either plant

distributions (Milella et al., 2019; Pádua et al., 2020) or the absence

of the canopy (Jurado et al., 2020; Di Gennaro et al., 2023). Instead, in

our work, we assess the trunk detection performances without any

assumptions about the vineyard conditions. In fact, we tested our

pipeline with different training systems, irregular plant spacing, and the

presence of a fully developed canopy, achieving a precision of 92%. It is

important to note that, although in our case most plants within the

vineyard were effectively reconstructed, the thin-structured trunks

located under the canopy posed a challenging scenario for accurate

trunk detection. Our research findings highlight the impact of camera

angle and flight height when designing aerial imaging surveys for plant

detection within vineyards. By optimizing these parameters,

researchers and practitioners can substantially improve performances

in individual trunk identification.
A

B

FIGURE 10

Result of row segmentation. The rows are color-coded, with each row represented by a different color. (A) Segmented rows of PlantPCl. (B) Segmented
rows of GroundPCl.
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3.2.2 Canopy characteristics
In Figures 12 and 13, we show the distribution of the canopy

characteristics along a subset of rows using our segment-based

approach. Figure 12 provides valuable and comprehensive insights

into the canopy characteristics and trunk positions in Row-5 trained in

the VSP system. The side view and top view of the row are shown in

Figures 12A, B, respectively. It allows us to observe the changes in

canopy geometry along the row, beginning from point P to the end of
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the row, with the highlighted regions of interest indicating areas where

the canopy structure undergoes abrupt variations.

By analyzing the estimated plant height and the lower canopy

bound in Figure 12C, we gain a deeper understanding of the vertical

structure of the plants. The blue points representing the estimated

trunk positions allowed us to relate the plant positions to the respective

canopy structures. The proposed method for height estimation

provided us with not only height estimation but also identification of
FIGURE 11

Evaluation of the trunk positions in geographic coordinates. The estimated trunk positions are colored in blue. The black circles represent the
ground truth trunk positions.
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TABLE 2 Evaluation of detected trunks.

Training system TP FP FN Precision Recall F1 score

combined
SMPH 66 14 27 83% 71% 76%

VSP 54 5 70 92% 44% 59%

tilted_20m
SMPH 83 9 10 90% 89% 90%

VSP 101 10 23 91% 81% 86%

nadir_20m
SMPH 73 19 20 79% 78% 79%

VSP 111 11 13 91% 90% 91%

nadir_15m
SMPH 67 11 26 86% 72% 78%

VSP 109 12 15 90% 88% 89%
F
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FIGURE 12

Canopy characteristics of Row-5. (A) Side view of the row. Point P marks the starting point of the row, representing the location with the minimum
y-coordinate. The cyan, magenta, yellow, and orange rectangles highlight significant regions of interest where the canopy geometry changes
abruptly. (B) Top view of the row. (C) Estimated plant height and lower canopy bound along the row. The blue points indicate the estimated
positions of the trunks. (D) Estimated canopy width along the row. (E) Estimated canopy volume along the row. The circles within the GroundPCl of
Row-5 indicate the positions of the estimated trunks related to abrupt changes in the canopy.
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the missing plants along the row. We observed an interruption and

sharp fall in the graph in the absence of plants as can be seen in yellow

rectangles. The absence of the related trunk in the black circle in

GroundPCl proved our analysis as can be seen in Figure 12E.

Furthermore, the estimated canopy width in Figure 12D revealed

variations in the lateral extent of the canopy along Row-5. In

particular, we observed sudden declines in the graph, highlighted

with magenta, cyan, and yellow frames in Figure 12D. It is clear that

the canopy width has decreased in these frames, as can be seen

in Figure 12B.

The graph of the estimated canopy volume in Figure 12E provided

a quantitative measure of the three-dimensional extent of the canopy,

reflecting the overall vegetative vigor and biomass accumulation. This

specific alpha radius selection allowed for accurately representing

concave structures within the canopy while avoiding creating

disconnected or fragmented objects. While no significant change was

observed in plant height and width, there was a significant decrease in

canopy volume as can be seen in the orange frame. Therefore, when

combined with plant height and canopy width, canopy volume

provided a holistic perspective on the vineyard’s canopy architecture,

allowing for a more accurate assessment of its health and growth

dynamics (Escolà et al., 2017).

We further focused on the comparison between the results for two

training systems, VSP and SMPH. Figure 13 shows the histogram of

row parameters for two exemplary rows that are Row-1 (trained in the

SMPH system) and Row-5 (trained in the VSP system). The expected

difference in plant height, canopy width, and volume explained in

Section 2.1 could be precisely detected between the two training

systems. As shown in Figure 13, the mean height, width, and volume
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of Row-1 are much larger than Row-5, as in the SMPH system the

canopy volume is typically denser than in VSP. Although we show

histograms just for two rows, we also computed the mean of the row

parameters trained with the SMPH and VSP system separately for each

dataset. In this way, we investigated both the differences in row

parameters for the two training systems and the influence of the

different flight settings, as shown in Table 3. Similarly to the Row-1/

Row-5 results, we observed that the mean plant height, canopy width,

and canopy volume of the rows trained in the SMPH system were

higher than those trained in the VSP system for all datasets. Our results

found no significant differences in plant height and canopy width

across tilted_20m, nadir_20m, and nadir_15m datasets in two training

systems. However, a relatively lower canopy volume was observed in

the SMPH training system within the nadir_15m dataset. The reason

for this may be the lower flight altitudes can yield a higher spatial

resolution, which makes the system more sensitive to small canopy

variations potentially causing an underestimation of canopy volume.

One of the notable advantages of our method is its flexibility in

achieving the desired resolution of parameter calculations. By adjusting

the number of segments, we can readilymodify the resolution along the

row. Compared to other methods that fix the segment length a priori

(Escolà et al., 2017; Cabrera-Pérez et al., 2023), we can precisely analyze

and evaluate the plant’s characteristics and variations along the row at

the desired level of detail. One example of this is given in Table 3, where

the canopy volume is computed with a segment length of 1 m instead

of 10 cm to give a more reasonable value. Overall, our approach

provides a robust and adaptable framework for obtaining essential

plant parameters, offering valuable insights into the spatial distribution

and properties of the plant along the row.
A

B

FIGURE 13

A comparison was conducted between (A) Row-1 in the SMPH training system and (B) Row-5 in the VSP training system in terms of their training
systems, using histograms to analyze the row parameters.
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3.3 Algorithm application on LiDAR dataset

We successfully applied our pipeline to the vineyard’s LiDAR point

cloud dataset. Figure 14 shows the qualitative results of row

segmentation and trunk detection algorithm. We utilized the same

set of parameters used in the image-based datasets for all components
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within the pipeline. Remarkably, our method effectively segmented the

point cloud into rows with 100% accuracy. Figure 14A shows the

qualitative result of row segmentation. Notably, our trunk detection

algorithm also succeeded in identifying trunks, achieving an F1 score of

77%. Figure 14B shows the detected trunks with red spheres. This

experiment demonstrated that our algorithm can generalize effectively
TABLE 3 Row parameters in different datasets.

Parameters: Plant height [m] Canopy width [m] Canopy volume [m3]

SMPH VSP SMPH VSP SMPH VSP

Training system: Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

combined 1.72 0.04 1.66 0.03 0.66 0.03 0.35 0.05 0.61 0.03 0.23 0.02

tilted_20m 1.71 0.03 1.61 0.02 0.69 0.03 0.36 0.04 0.59 0.03 0.24 0.02

nadir_20m 1.70 0.06 1.58 0.01 0.70 0.03 0.36 0.05 0.55 0.02 0.23 0.02

nadir_15m 1.71 0.04 1.58 0.01 0.71 0.03 0.37 0.05 0.46 0.02 0.21 0.01
frontiers
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B

FIGURE 14

Results of our pipeline in the vineyard’s LiDAR point cloud dataset. (A) The row segmentation output. Each segmented row is represented with a
different color. (B) The result of the trunk detection algorithm. The detected trunks are shown with red spheres.
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to different sensor settings with accurate results without

parameter tuning.
4 Conclusion

The determination of the geometric properties and the

identification of the individual plants were the main focus of this

work, and the results presented demonstrate the potential of using a

3D plant model derived from RGB images acquired with a UAV for

achieving these objectives in the vineyard. The extraction of single rows

was performed. Consequently, for each row, we derived the plant

positions as well as detailed row parameters, including the plant

height, canopy width, and canopy volume. In contrast to many other

approaches, we provided detailed information and visualizations of the

height, width, and volume in the form of diagrams and histograms,

giving essential clues on the distribution of these factors along the row.

These extracted parameters have the potential to enhance vineyard

productivity, improve grape quality, and contribute to the long-term

sustainability of vineyard operations. This detailed geometric analysis of

the canopy offers valuable insights for vineyard managers and breeders,

assisting them in crucial tasks such as pruning, agrochemical spraying,

and optimizing yields. Additionally, the influences of different flight

parameters on the extracted plant parameters have been investigated.

The whole pipeline is independent of the terrain slope and does not

require assumptions like plant or row spacing. We investigated all these

parameters in detail and had reference data for the segmented rows and

estimated trunk positions for the evaluation. The vine rows were

segmented with a high accuracy of 100% in the vineyard plot

independent of the training systems and different flight parameter

settings. We could also identify the trunk positions with a precision

of 92%. Furthermore, we applied our algorithm to the LiDAR point

cloud and showed accurate results regarding row segmentation and

trunk detection. This experiment demonstrates that our algorithm can

generalize to different sensor settings with good performances without

the need for parameter tuning.
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De Castro, A. I., Jiménez-Brenes, F. M., Torres-Sánchez, J., Peña, J. M., Borra-
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Estimation of biophysical vegetation variables is of interest for diverse

applications, such as monitoring of crop growth and health or yield prediction.

However, remote estimation of these variables remains challenging due to the

inherent complexity of plant architecture, biology and surrounding environment,

and the need for features engineering. Recent advancements in deep learning,

particularly convolutional neural networks (CNN), offer promising solutions to

address this challenge. Unfortunately, the limited availability of labeled data has

hindered the exploration of CNNs for regression tasks, especially in the frame of

crop phenotyping. In this study, the effectiveness of various CNN models in

predicting wheat dry matter, nitrogen uptake, and nitrogen concentration from

RGB and multispectral images taken from tillering to maturity was examined. To

overcome the scarcity of labeled data, a training pipeline was devised. This

pipeline involves transfer learning, pseudo-labeling of unlabeled data and

temporal relationship correction. The results demonstrated that CNN models

significantly benefit from the pseudolabeling method, while the machine

learning approach employing a PLSr did not show comparable performance.

Among the models evaluated, EfficientNetB4 achieved the highest accuracy for

predicting above-ground biomass, with an R² value of 0.92. In contrast, Resnet50

demonstrated superior performance in predicting LAI, nitrogen uptake, and

nitrogen concentration, with R² values of 0.82, 0.73, and 0.80, respectively.

Moreover, the study explored multi-output models to predict the distribution of

dry matter and nitrogen uptake between stem, inferior leaves, flag leaf, and ear.

The findings indicate that CNNs hold promise as accessible and promising tools

for phenotyping quantitative biophysical variables of crops. However, further

research is required to harness their full potential.

KEYWORDS

phenotyping, close-range sensing, wheat, CNN, biophysical variables, multi-task, PLSr
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1 Introduction

Biophysical vegetation variables are critical indicators of plant

growth and health, providing essential information for understanding

complex plant-environment interactions (Hawkesford and Riche, 2020;

Lemaire and Ciampitti, 2020). Among these variables, Leaf Area Index

(LAI), Aboveground Biomass (AGB), and Nitrogen Uptake (Nupt)

stand out as key parameters that aid in crop monitoring and yield

prediction. Additionally, they play a pivotal role in unraveling the

underlying physiological processes that govern the intricate

associations between final yield, genotype, and the surrounding

environment. As concerns about climate change and the human

food security continue to intensify, the accurate assessment of

vegetation variables becomes increasingly crucial (Hickey et al.,

2019). Timely and reliable information on crop growth and health

can help optimize agricultural practices, enhance resource utilization,

and help breeders and researchers improve crops.

Recent developments in phenotyping systems, utilizing multiple

remote sensing platforms such as satellites, drones, and ground

platforms equipped with various sensors (e.g., RGB, spectral data,

thermal, LiDAR, etc…), have led to an improvement in the high-

throughput and non-destructive screening of crops (Reynolds et al.,

2020; Araus et al., 2022; Sun et al., 2022). These technologies have

enabled the collection of large volumes of image data, facilitating

the rapid, non-invasive, and detailed acquisition of plant

phenotyping traits throughout the entire crop lifecycle (Verrelst

et al., 2019). Remote sensing, which has lower spatial resolution, can

capture the canopy in its entirety in a fast way. In contrast, proximal

sensing provides more precise measurements at the organ level and

might better handle the impact of unwanted factors (Deery et al.,

2014). Ground-based phenotyping systems equipped with multiple

sensors can acquire high-resolution data, facilitating improved

identification of plant organs, diseases, or yellow and green plant

parts (Carlier et al., 2022; Dandrifosse, 2022; Serouart et al., 2022;

Tanner et al., 2022; Xu and Li, 2022). The integration of big data

and machine/deep learning techniques further enhances the

potential for precision phenotyping, enabling more accurate and

efficient analyses of crop characteristics for enhanced agricultural

management and breeding practices (Verrelst et al., 2019).

The assessment of such biophysical variables using remote

sensing and proximal sensing methods requires a comprehensive

understanding of agronomy, image and data analysis, given the

inherent complexity of these traits and their susceptibility to various

influencing factors. Usual methods for estimating AGB and LAI rely

on crop architecture, vegetation indices, radiative transfer models,

or a combination of these models (Tilly et al., 2015; Brocks and

Bareth, 2018; Yue et al., 2019; Raj et al., 2021; Schiefer et al., 2021;

Wan et al., 2021). Such methods are also widely used for assessing

crop nitrogen status (Berger et al., 2020).

The algorithm pipeline commonly used in plant phenotyping

comprises several stages, which involve feature extraction through

image analysis methods, including color information collection,

thresholding, edge detection, or/and pattern recognition. While

these methods can be effective, their reliance on handcrafted

features and hyperparameter tuning often results in a lack of

robustness. This limitation becomes particularly evident when
Frontiers in Plant Science 02146
dealing with complex environmental conditions, such as the

presence of soil, weeds, and biotic and abiotic stresses, as well as

variations in plant characteristics like growth stage and canopy

architecture. Thus, many phenotyping studies focus solely on local

areas or specific agricultural practices, leading to limitations in the

broader applicability and generalization of proposed models (Chao

et al., 2019).

These challenges can lead to suboptimal performance and

reduced accuracy in plant phenotyping tasks (Kamilaris and

Prenafeta-Boldú, 2018; Nabwire et al., 2021). Yet, it becomes

paramount to design studies that effectively capture the diversity

present within crop populations and account for the variability of

growing conditions. By doing so, we could unlock valuable insights

into the intricate interactions shaping these biophysical variables,

fostering more robust and adaptable solutions for the future

(Hawkesford and Riche, 2020). To address these issues, researchers

have been exploring the potential of deep learning and artificial

intelligence techniques also in agricultural applications. These

approaches have shown promising results in overcoming the

limitations of traditional methods by automatically learning

relevant features and adaptively adjusting to diverse conditions.

By leveraging advanced machine learning algorithms, such as deep

neural networks and convolutional neural networks (CNNs), plant

phenotyping can benefit from improved accuracy and generalization

across varying scenarios (Singh et al., 2018; Kattenborn et al., 2021;

Arya et al., 2022). These methods excel in handling complex datasets

and can effectively capture intricate patterns and relationships in plant-

related data. Additionally, they reduce the need for manual feature

engineering and parameter tuning, leading to more efficient and

reliable analyses. For instance, when predicting wheat biomass

during early growth stages, CNNs demonstrated less susceptibility to

plant density variations compared to alternative methods (Ma et al.,

2019). Moreover, these innovative approaches enhance the ability to

accurately estimate traits and unlock the extraction of more advanced

parameters, such as crop growth rate, particularly when applied to

time-series data (Buxbaum et al., 2022). Furthermore, their remarkable

ability to solve highly complex patterns makes them ideal for multi-

output purposes, enabling the production of multi-trait outputs using a

single model (Pound et al., 2017; Nguyen et al., 2023).

The accessibility of ready-to-use libraries, datasets, and

emerging methodologies like transfer learning has enabled the

application of sophisticated algorithms to crop characterization.

The ever-growing availability of neural networks architectures and

hyperparameters can present a challenge when it comes to selecting

or designing the most suitable architecture. While some authors

have successfully created their own neural architectures that

perform comparably to well-known ones in terms of accuracy (Li

et al., 2021), it is still highly recommended to use established and

widely recognized architectures. Nonetheless, ensuring the accuracy

and robustness of these models is crucial, and their training and

validation with large ground-truth datasets remain essential. This

becomes particularly challenging when dealing with biophysical

variables, such as AGB, which require a significant amount of

human labor and destructive measurements to construct a dataset

(Jiang and Li, 2020). This could explain why regression CNN is not

yet widely adopted.
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To address the need for data, several methods have been

proposed to train robust models with a limited amount of labeled

data. One approach is to use pre-trained models with transfer

learning, which has been successful in estimating forage biomass

(Castro et al., 2020; de Oliveira et al., 2021). However, when dealing

with multispectral images, pre-trained models that are generally

trained on RGB images may not perform well. Another approach is

to use data augmentation to artificially increase the dataset size by

applying transformations to the images. Advanced data

augmentation methods, such as generative adversarial networks

(GANs), have been used to improve wheat yield estimation (Zhang

et al., 2022). Yet, phenotyping users often acquire large amounts of

unlabeled data that still can be used to train a part of a CNN. Semi-

supervised learning methods could be used to pre-trained the

convolutional parts of CNN from unlabeled datasets (Zbontar

et al., 2021). Additionally, one can predict labels for unlabeled

data and subsequently insert them into the training dataset if they

meet certain criteria; this technique is known as pseudo-labeling

(Lee, 2013).

The use of CNNs in various domains has shown promise, and

their potential in agriculture for regression purposes needs more

investigation. The current study investigate the use of CNN for

estimating biophysical variables such as AGB, LAI, nitrogen

concentration, and nitrogen uptake from proximal images of

wheat. While some studies have already shown some good

examples of the use of CNNs for biomass or LAI prediction (Ma

et al., 2019; Li et al., 2021; Sapkota et al., 2022; Schreiber et al., 2022;

Zheng et al., 2022), many questions remain unanswered. These

unanswered questions encompass identifying the optimal CNN

architectures for achieving superior performance in estimating

LAI, above-ground biomass, nitrogen uptake, and nitrogen

concentration for wheat organs utilizing RGB and multispectral

close-range images. Additionally, addressing the challenges related

to insufficient training data and devising an effective training

pipeline is imperative. Furthermore, there is a need to evaluate

the effectiveness of multi-output models in assessing dry matter and
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nitrogen uptake partitioning, as well as nitrogen concentration

partitioning in various wheat organs. Lastly, the best-performing

CNN methods will be compared to a traditional machine learning

approach, a Partial Least Squares regression (PLSr), using

feature engineering.
2 Materials and methods

2.1 Experimental design

Data were acquired on winter wheat trials during four years in

the Hesbaye area, Belgium (50 33’50” N and 4 42’00” E).

Experimental microplots measuring 1.95 m × 6 m were sown

with an inter-row spacing of 0.14 m, on homogeneous deep silt

loamy soil in a temperate climate. The microplots were fertilized

with 27% ammonium nitrate during the tillering, stem elongation

and flag leaf stage corresponding to the BBCH 28, 30 and 39 growth

stages, respectively. The trials were of two types: (i) trials testing

different fertilization fractioning, noted as F and detailed in Table S1

and in Table S2, (ii) trials composed of different fertilization

fractioning combined with different fungicide application

programs, noted as FP and detailed in Table S3. These

abbreviations, along with the year of experimentation, are used in

the trial names presented in Table 1.

2.1.1 Reference measurements
Manual measurements were conducted on major phenological

growth stages (Table 1), which mainly consisted of tillering, stem

elongation, flag leaf, flowering, grain development, and maturity

stages. The F trials involved five treatments, while the FP trials

involved seven treatments, with three and four replicates conducted,

respectively. Fresh AGB was sampled from the three central rows of

the microplot over a length of 0.50 m. In the laboratory, the samples

were manually separated into ear, stem, flag leaf (L1) and inferior

leaves (Linf) groups. Each part was subsequently dried to determine
TABLE 1 Field trial details.

Trial
name

Cultivar BBCH growth stages of
samples

No. image
acquisitions dates

Sensor Sowing
(grains/m2)

Sowing date (dd/
mm/yyyy)

19-F Safari 30, 32, 39, 65, 77, 89 11 RGB 250 23/10/2018

20-FP
LG
Vertikal

39, 65, 89 11
RGB +
MS

250 07/11/2019

20-F Mentor 32, 39, 65, 75, 89 15
RGB +
MS

250 05/11/2019

21-FP
LG
Vertikal

39, 65, 89 16
RGB +
MS

300 27/10/2020

21-F Mentor 30, 32, 39, 65, 75, 89 15
RGB +
MS

275 20/10/2020

22-F Mentor 30, 65, 89 13
RGB +
MS

300 28/10/2021

22-FP Bennington 30, 32, 39, 65, 75, 89 17
RGB +
MS 300 28/10/2021
In 2019, there was only one RGB camera, whereas the other years there were two RGB cameras and one multispectral (MS) camera.
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the associated dry matter (DM) expressed in t/ha. The nitrogen

concentration (%N) was then measured using the Dumas method,

and nitrogen uptake (Nupt) was calculated by multiplying the DM

by the corresponding %N, expressed in kgN/ha. Organs DM and

Nuptake values of organs were expressed as relative values,

representing the partitioning of DM and N uptake among each

organ. These relative values indicate the proportion of each organ in

relation to the total plant values. Additionally, the Nitrogen

Nutrition Index (NNI) was computed using the traditional

approach described in (Justes, 1994).

To determine LAI, plants were sampled by taking one row

measuring 0.50 m in length. The leaves were separated from the

stems, weighed, spread on a white paper using a transparent

adhesive sheet, and scanned. An Otsu segmentation method was

employed to isolate the leaves from the white background (Otsu,

1979). The leaf surface area was calculated by summing the areas of

the scanned paper sheets multiplied by the proportion of pixels

segmented as leaf. Since this protocol was time-consuming, only

five microplots with contrasting fertilization were selected for

manual LAI measurements at each collection date. These LAI

values were correlated with the associated fresh masses by means

of a linear regression to predict the LAI of the other microplots.

Each correlation had a really high correlation above 0.9, thus

validate this method as a reference.

2.1.2 Image acquisitions
To capture nadir frames of wheat microplots, a phenotyping

platform was designed (Figure 1). In 2019, a single RGB camera was

utilized, while a sensor pod combining two types of cameras was

employed in 2020, 2021, and 2022. The sensor pod comprised of

two close-up RGB cameras dedicated to stereovision. These RGB

cameras were GO-5000C-USB cameras from JAI A/S in

Copenhagen, Denmark, and featured a 2560 × 2048 CMOS

sensor. Additionally, a multispectral camera, the Micro-MCA

from Tetracam Inc. in Gainesville, FL, USA, was used. It had six

1280 × 1024 pixel CMOS sensors, each of them equipped with

narrow filter centered respectively at 490, 550, 680, 720, 800, and

900 nm. To avoid shadows from the rest of the platform in the

images, both cameras were installed on a cantilever beam. The

height of the cameras was adjusted at each acquisition date to
Frontiers in Plant Science 04148
maintain a consistent distance between the cameras and the top of

the canopy. The height was about 1 m in 2019 and 1.6 m for the

other years. Two to four images were taken per microplots for

both cameras.

The RGB images were recorded using a color depth of 12-bit per

pixel in 2019, 2020 and 2021, which were then converted to 8-bit to

match the following algorithms. The multispectral grey scale images

were converted from 10 to 8-bit, in accordance with the constructor

recommendations. In 2019, the RGB camera auto-exposure

algorithm was used. Then, a custom exposure algorithm was

developed to limit the number of saturated pixels to less than 1%.

The multispectral auto-exposure algorithm was based on a master-

slaves principle. The 800 nm filter served as the master and its

exposure time was determined automatically using the

manufacturer algorithm. The exposure time of each slave filters

was then defined as a ratio of the master time. These ratios were

adjusted across the season to avoid saturated pixels.

The cropping seasons were thoroughly covered, with multiple

image acquisitions from tillering to maturity (Figure 2). Nevertheless,

some unforeseen events occurred, such as the COVID-19 pandemic

and a violent storm in 2021, which disrupted data acquisition.

The multispectral images underwent two pre-processing steps.

The first step involved image registration to correct for shifts between

the gray-scale images caused by the proximity to the canopy and the

physical lenses gap. The considered method proposed by Dandrifosse

et al. (2021) employs a b-spline approach to achieve pixel-wise

alignment. The second step involved correcting the multispectral

images for different light conditions during acquisition, using the

method described by Dandrifosse et al. (2022). A laboratory

calibration was performed to convert the digital numbers of the

images to Bi-directional Reflectance Factor (BRF), known as

reflectance, using an Incident Light Spectrometer, specifically an

AvaSpec-ULS2048 from Avantes, Apeldoorn, The Netherlands.
2.2 Partial Least Squares
regression approach

A conventional machine learning approach was tested to

confront the CNN models presented below. As machine learning
FIGURE 1

Experimental setup. A ground mobile platform (on the left) was equipped with a camera pod (on the right) comprising two high-resolution RGB
cameras, a multispectral camera, and an incident light spectrometer, all positioned at a height of 1.6m above the canopy.
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algorithms require relevant image features to be extracted,

additional processes were applied after performing the pre-

processing steps as described in the previous section. Firstly, a

stereovision process was used to extract plant height information

using the 95th percentile of the height map (Dandrifosse et al.,

2020). Secondly, the plant ratio was computed as the proportion of

plants in the scene, using a simple threshold method on the 800 nm

image as detailed in Dandrifosse et al. (2022). Finally, twelve

vegetation indices (see Table S7) were computed using the six BRFs.

A Partial Least Squares regression (PLSr) model was trained and

validated using these twenty features for DM, %N and Nupt of the

entire plant. It is worth noting that PLSr has previously exhibited

good performance in analogous studies (Freitas Moreira et al.,

2021). To fine-tune the model, a sequential backward feature

selection approach was employed similar to (Song et al., 2022).

This method involved generating all possible feature subsets of size

n - 1, where n represents the total number of features. Each subset

was rigorously assessed using a 5-fold cross-validation technique on

the training dataset. The feature to be removed at each step was

determined based on the subset’s performance, with the least

contributing feature being eliminated. This iterative process

continued until the maximum R² value was achieved. It is

important to mention that the training data did not encompass

the 2019 dataset, primarily due to the limited availability of only one

RGB camera during that period. Furthermore, the efficacy of the

pseudo-labeling strategy, as described in Section 2.3.3 was also

explored for PLSr. This training was performed using the PLSr

default parameters from the Scikit-Learn 1.3 Python library

(Pedregosa et al., 2011).
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2.3 CNN training

2.3.1 Architecture
Three CNN architectures available in the python library

Tensorflow 2.4. and Keras 2.4 were tested in this study. They

were Resnet50 (He et al., 2015) and EfficientNetB0 and B4 (Tan

and Le, 2020). They represent the actual state-of-the-art CNN

models with different properties (i.e., architecture and number of

parameters) and purposes. Resnet 50 was already used for biomass

prediction by (Zheng et al., 2022) and EfficientNet is a cutting-edge

neural network architecture with a remarkable ability to seamlessly

scale from smaller to larger sizes while maintaining good efficiency.

The CNN architectures were customized to perform two tasks: (i) a

single-output model to estimate LAI, DM, %N and Nupt of the whole

plant respectively; and (ii) a multi-output model to estimate DM, %N, or

Nupt of each wheat organ, also referred as partitioning model in the rest

of this paper. Multi-output, also known as multi-task model have already

been successfully used in phenotyping by (Nguyen et al., 2023) to predict

a set of traits using a single model. Whereas a multivariate model deals

with multiple dependent variables and aims to model their relationships,

a multi-output model is a machine learning model designed to predict

multiple output variables simultaneously. A linear activation function

was considered for the last neuron of each single-output model.

Regarding the multi-output models, four output neurons were

considered, one for each organ. A linear activation function was used

for the estimation of %N whereas the softmax activation function were

used for the relative values of DM and Nupt, i.e., the proportion, in order

to keep the values between 0 and 1. All models were initialized with

weights from the ImageNet dataset (Deng et al., 2009).
FIGURE 2

Overview of the data acquisitions during the cropping seasons. Green diamonds represent the image acquisitions, and the blue crosses the
agronomic samples.
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The CNN architectures were originally designed for three-

channel images, but the multispectral images used in this study

had six channels. To accommodate this, a 2D convolutional layer

with three filters and a kernel size of (1,1) was added at the

beginning of each model when using multispectral images. It

allowed to provide a three channels input required for the

selected CNN models with pre-trained weights.

2.3.2 Dataset configuration
The study used a dataset consisting of 1809 RGB images and

1391 multispectral images with their corresponding reference

measurements. These numbers correspond to the multiplication of

dates, samples, replicates, and images per microplots. Each image was

associated with a specific combination of agronomic variables. From

this dataset, two treatments from F trials (Tables S1, S2), and one

treatment from FP trials (Table S3) were selected for the validation

dataset that included 424 RGB images and 341 multispectral images.

In addition to the images acquired on the same days as the

manual sampling, each trial was monitored continuously

throughout the season, as illustrated in Figure 2. All those

acquisitions yielded a dataset comprising 16 812 RGB images and

14 491 multispectral images. To prepare the data for the CNN

models, some pre-processing steps were taken.

The first pre-processing step involved determining the image

size, which is a trade-off between retaining as much information as

possible and limiting the computing time and resources required.

Additionally, when using pre-trained models, it is recommended to

set the input image size to match the size used during initial

training. Therefore, all images were resized to 224 x 224 for the

ResNet50 and EfficientNetB0 models, and to 380 x 380 for the

EfficientNetB4 model. It is worth noting that the images were

previously cropped into a square to avoid distortion.

In addition to image resizing, the pixel scaling was also adjusted

for each model. For the RGB images, pixel scaling was adapted

according to the Keras documentation and the requirements of each

model. For the multispectral images, Bi-directional Reflectance

Factor (BRF) values were first normalized between 0 and 1. Next,

the data was standardized based on the mean and standard

deviation of the training dataset as advice by Tensorflow. To

further enhance the dataset, data augmentation techniques,

namely random flip up/down and right/left, were applied. These

techniques increase the diversity of the dataset, which can improve

the generalization performance of the models.

2.3.3 Training pipeline
In the field of phenotyping, researchers often encounter a

substantial amount of unlabeled data. However, these data hold

untapped potential for enhancing the performance of machine

learning models. In this study, a pseudo-labeling method was

employed to leverage the unlabeled data effectively. Pseudo-labeling

involves predicting the labels of unlabeled data using a model that

demonstrates acceptable performance. These predicted labels, known

as pseudo-labels, can then be incorporated into the training dataset,

subject to a predefined confidence threshold. For classification tasks,

this confidence threshold is based on class probabilities. Nevertheless,

regression tasks utilize a linear activation function, leading to the
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absence of probabilities. To overcome this challenge, this research

proposes a novel approach. The predicted biophysical variables from

each microplot were plotted against time to generate a crop growth

curve. This curve characterizes the growth pattern of the crop over

time and can be harnessed to rectify the predicted values.

Based on this idea, a well-defined pipeline was constructed (see

Figure 3). The pipeline entailed utilizing CNN models pre-trained on

ImageNet through transfer learning. The initial training phase involved

training the CNNmodels for 40 epochs with a learning rate of 1×10−3.

During this process, only the last layer, specifically the linear dense

layer, was trained, while keeping the remaining layers frozen.

Following this, a fine-tuning stage was conducted for 10 epochs,

with a reduced learning rate of 1×10−5. During fine-tuning, the last

convolutional layer block was unfrozen and retrained, leading to the

creation of Model 1.

Next, Model 1 was utilized to generate predicted labels (Ypred)

for the complete training dataset. These predicted labels were then

plotted against the Photo-Vernalo-Thermic Units (°C-days)

(Duchene et al., 2021). A cubic B-Spline for LAI and a cubic

polynomial function for the other variables was fitted with a high

smoothing condition. These curves are traditionally used in

biophysical variables modeling (van Eeuwijk et al., 2019). Basic

correction conditions were also implemented to help that fitting,

such as setting organ values to 0 when they were not present at

specific times. The outcome of this process yielded a fitted curve

from which “corrected” pseudo-labels (Ypseu) could be extracted.

Last, pre-trained CNNs from ImageNet were trained on the

corrected pseudo-labels (Ypseu) for 30 epochs, using a learning rate

of 1×10−5. This resulted in the development of Model 2, which was

thus trained on a much larger dataset compared to Model 1.

The Mean Square Error (MSE) loss function and Adam optimizer

were used in all models. However, in the case of multi-output model for

%N, theMSE calculation was limited to true labels above 0. This means

that if an organ was not yet visible (e.g., the ear during tillering growth

stage), the loss function did not take it into account, which prevented it

from interfering with the loss function. Additionally, a weight was

applied to the loss calculation when working with relative multi-output

models. Specifically, the flag leaf pool weights were multiplied by

twenty to ensure consistency with the order of magnitude of the other

organ pools. This helped to balance the contributions of different organ

pools and prevent one pool from dominating the loss calculation. All

models were trained on an NVidia Tesla V100 GPUs.

To evaluate the performance of all models, two metrics were

used: the determination coefficient (R²) and the root mean square

error (RMSE).
3 Results

3.1 Variations of winter wheat
biophysical variables

The descriptive statistics reveal significant variations in the four

biophysical variables across the different growth stages: biomass

ranging from 0.51 to 27.89 T/ha, LAI from 0.69 to 8.66, nitrogen

concentration from 0.61 to 4.76%, and nitrogen uptake from 13.49
frontiersin.org

https://doi.org/10.3389/fpls.2023.1204791
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Carlier et al. 10.3389/fpls.2023.1204791
to 338.59 kg N/ha (Table 2). This wide variability in the datasets was

attributed to diverse factors, including variations in growing stages,

repeated measurements over multiple years, and heterogeneous

treatments, particularly variations in nitrogen inputs. The

analysis, specifically employing ANOVA, indicates that most of

these biophysical variables exhibit significant differences among

treatments (Table S4). Both the training and validation datasets

exhibit similar statistics, which validates the appropriateness of the

dataset splitting method. Furthermore, correlations between these

variables were examined, and the results show that biomass

demonstrated a Pearson correlation of -0.27, -0.71, and 0.87 with

LAI, nitrogen concentration, and nitrogen uptake, respectively. The

correlation between nitrogen concentration and nitrogen uptake

was found to be -0.44.
3.2 Plant biophysical variable modeling

This study evaluated various models for predicting plant

biophysical variables. The EfficientNetB4 model trained on
Frontiers in Plant Science 07151
pseudo-labels demonstrated the highest performance for DM,

achieving an R² of 0.92 and a low RMSE of 1.50 on the validation

dataset (Table 3). In contrast, the PLSr model had an R² of 0.77 and

a higher RMSE of 2.58, indicating weaker predictive ability.

Regarding LAI, the ResNet50 model trained on pseudo-labels

yielded the best R² of 0.82 (Table 4). For nitrogen concentration

prediction using multispectral images, the ResNet50 model

achieved an R² of 0.80 (Table 5) and an R² of 0.73 for Nitrogen

uptake (Table 6).

The other CNN models investigated in this study exhibited

robust and comparable performance levels when subjected to the

pseudo-labeling pipeline during training. The utilization of pseudo-

labels played a pivotal role in mitigating disparities between the

outcomes observed on the validation and training datasets. It is

worth noting that the PLSr model did not yield any discernible

advantages from the pseudo-labeling technique, consistently falling

short of the CNNmodels in terms of performance. One noteworthy

observation is that this pseudo-labeling method appeared to

exacerbate the disparities between the performance of the training

and validation sets. Furthermore, the results of the backward feature
FIGURE 3

Proposed training pipeline. (1) is the training with transfer learning, and (2) is the training with pseudo-labels. Ytrue corresponds to the reference
measurements. Ypred are predicted labels. A curve is fitted to provide the Ypseu which represent the corrected pseudo-labels. n and m correspond
to the number of reference measurements and the total number of images respectively.
TABLE 2 Descriptive statistics of dry matter (T/ha), LAI, N concentration (%) and N uptake (kg N/ha).

Dataset Statistic Dry matter (T/ha) LAI N concentration (%) N uptake (kg N/ha)

Training

mean
std
min
max

10.44
6.15
0.51
23.07

3.40
1.65
0.72
8.66

1.81
0.85
0.61
4.76

152.31
77.37
13.49
338.59

Validation

mean
std
min
max

10.32
6.00
0.51
27.89

3.28
1.45
0.69
7.35

1.76
0.80
0.87
4.09

145.21
66.86
16.26
307.14
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selection analysis, as depicted in Figures S1 to S4, indicated that the

augmentation of the dataset via this approach led to an increased

requirement for features to achieve optimal performance levels.

Throughout the growing season, the models successfully

assessed the variables, as evidenced by Figures 4 and 5. However,

there were some outliers that significantly deviated from the ideal

1:1 relationship between predicted and true values. Additionally, a

saturation effect was observed, where the models struggled to

accurately predict the maximum values of each variable, leading

to a lack of detail in certain growing seasons. These observations

provide valuable insights for further refining the modeling

approach and improving predictive accuracy.
3.3 Organs biophysical variable modeling

The utilization of multi-output models yielded diverse

outcomes regarding the proportion of dry matter and nitrogen

uptake, as indicated in Table S5. Table 7 displays the performance of

the multiplication of both the single output models and the multi-

output models for dry matter and nitrogen uptake, and solely the

multi-output model for nitrogen concentration.

Among the models evaluated, EfficientNetB0 demonstrated

superior performance for predicting nitrogen uptake, achieving

commendable R² values of 0.7, 0.59, 0.69, and 0.86 for stem,
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inferior leaves, flag leaf, and ear, respectively. ResNet50 exhibited

R² values of 0.87, 0.62, 0.38, and 0.94 for dry matter, and 0.50, 0.76,

0.69, and -1.07 for nitrogen concentration, indicating its

effectiveness in certain cases.

Analyzing individual organs, the ear and stems exhibited higher

prediction accuracy by the models, while the flag leaf showed

comparatively poorer prediction, depending on the specific model

employed. Concerning the %N models, the stem and inferior leaf

pools were accurately predicted, but the prediction performance for

the ear was notably inadequate.

Interestingly, while the pseudo-labeling method led to reduced

performance for the multi-output models (Table S5), its combination

with the single output models, which significantly benefit from

pseudo-labels, did not have a substantial impact on the prediction

of DM and %N for each organ. This suggests that the pseudo-labeling

approach is effective in enhancing the single output models but may

require further optimization for multi-output models.

The Figure 6 presents the predicted partitioning of wheat dry

matter and nitrogen uptake over the growing season for a single

microplot. It offers a nice alternative to provide valuable insight

about the partitioning of the matter within the plant. Moreover,

both RGB and multispectral models successfully detected the

emergence of new organs, such as the flag leaf and ear. Notably,

the dry matter model showed an earlier appearance of ears

compared to the nitrogen uptake model in this specific example.
TABLE 3 Model performances for DM of the plant.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 1.76 0.91 2.11 0.83

EfficientNetB0 Ypseu 0.91 0.95 1.66 0.91

EfficientNetB4 Ytrue 1.38 0.93 1.89 0.86

EfficientNetB4 Ypseu 1.09 0.96 1.50 0.92

Resnet50 Ytrue 0.78 0.98 1.87 0.89

Resnet50 Ypseu 1.05 0.97 1.64 0.90

PLSr Ytrue 2.49 0.80 2.55 0.78

PLSr Ypseu 1.32 0.92 2.58 0.77
TABLE 4 Model performances for LAI.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 1.06 0.69 1.18 0.57

EfficientNetB0 Ypseu 0.72 0.86 0.80 0.80

EfficientNetB4 Ytrue 0.68 0.86 0.78 0.80

EfficientNetB4 Ypseu 0.67 0.87 0.78 0.81

Resnet50 Ytrue 0.27 0.98 0.79 0.79

Resnet50 Ypseu 0.66 0.98 0.78 0.82

PLSr Ytrue 0.77 0.75 0.83 0.75

PLSr Ypseu 0.28 0.95 0.91 0.69
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TABLE 6 Model performances for Nupt of the plant.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 42.42 0.65 37.97 0.66

EfficientNetB0 Ypseu 28.84 0.84 34.38 0.72

EfficientNetB4 Ytrue 37.46 0.70 43.39 0.47

EfficientNetB4 Ypseu 25.33 0.87 34.05 0.69

ResNet50 Ytrue 14.24 0.96 37.27 0.68

ResNet50 Ypseu 26.69 0.86 33.89 0.73

PLSr Ytrue 39.72 0.65 39.89 0.70

PLSr Ypseu 17.78 0.88 42.81 0.66
F
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TABLE 5 Model performances for %N of the plant.

Model Data RMSE train R² train RMSE val R² val

EfficientNetB0 Ytrue 0.37 0.74 0.36 0.72

EfficientNetB0 Ypseu 0.24 0.90 0.30 0.79

EfficientNetB4 Ytrue 0.33 0.75 0.32 0.55

EfficientNetB4 Ypseu 0.23 0.89 0.31 0.73

ResNet50 Ytrue 0.14 0.97 0.32 0.78

ResNet50 Ypseu 0.24 0.90 0.30 0.80

PLSr Ytrue 0.49 0.59 0.43 0.54

PLSr Ypseu 0.20 0.88 0.44 0.51
FIGURE 4

Comparison between observed and predicted values of DM of the whole plant and LAI for both training and validation datasets, using the
EfficientNetB4 model for DM and the ResNet50 model for LAI. The dots are color-coded according to the stages in the season, with darker dots
indicating later stages. The dark line represents the 1:1 line.
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4 Discussion

4.1 Convolutional neural networks as an
effective approach for predicting
biophysical variables

This study presents a comprehensive investigation into the

potential of recent CNNs in accurately predicting biophysical

vegetation variables, such as dry matter, leaf area index, and

nitrogen uptake and concentration. The research demonstrate

that our CNN-based approach stands as one of the most
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advanced methods for this task, even though direct performance

comparisons with prior studies are hindered by the limited

availability of benchmark datasets.

In this study, CNN models outperformed a PLSr approach,

consistent with previous research findings (Ma et al., 2019; Castro

et al., 2020). Thus, CNN stands out as a potent tool in this context

due to its ability to autonomously extract features, eliminating the

need for manual feature extraction. It demonstrates remarkable

adaptability in handling the evolving features of crops throughout

the growing season, including changes in physiology and color. This

adaptability negates the necessity for fine-tuning models to specific
FIGURE 5

Comparison between observed and predicted values of %N and Nupt of the whole plant for both training and validation datasets, using the
ResNet50 model. The dots are color-coded according to the stages in the season, with darker dots indicating later stages. The dark line represents
the 1:1 line.
TABLE 7 R² of the different multi-outputs models to predict nitrogen uptake, dry matter and nitrogen concentration of each organ.

Model Data Dataset Nuptake DM %N

Stem Linf L1 Ear Stem Linf L1 Ear Stem Linf L1 Ear

EfficienNetB0
Ypseu
Ytrue

train
train

0.84
0.72

0.78
0.67

0.77
0.7

0.92
0.91

0.91
0.90

0.49
0.49

0.08
0.17

0.97
0.96

0.71
0.60

0.86
0.75

-0.08
0.60

-2.18
-1.09

EfficienNetB4
Ypseu
Ytrue

train
train

0.54
0.6

0.02
0.48

0.65
-0.47

0.75
0.7

0.90
0.92

0.53
0.65

-0.11
0.57

0.96
0.97

0.67
0.38

0.75
0.56

-0.10
0.10

-1.95
-2.46

ResNet50
Ypseu
Ytrue

train
train

0.8
0.84

0.75
0.78

0.76
0.8

0.93
0.96

0.88
0.93

0.51
0.76

0.15
0.67

0.94
0.98

0.73
0.86

0.87
0.93

-0.05
0.95

-2.10
0.52

EfficienNetB0
Ypseu
Ytrue

val
val

0.7
0.63

0.59
0.47

0.69
0.54

0.86
0.86

0.83
0.82

0.28
0.34

-0.09
-0.16

0.95
0.93

0.54
0.47

0.84
0.69

-0.43
0.58

-2.64
-1.72

EfficienNetB4
Ypseu
Ytrue

val
val

0.51
0.41

-0.2
0.3

0.52
-1.66

0.66
0.65

0.83
0.84

0.38
0.55

-0.15
0.14

0.94
0.94

0.59
0.10

0.73
0.55

-0.46
0.13

-2.11
-3.91

ResNet50
Ypseu
Ytrue

val
val

0.64
0.67

0.52
0.56

0.64
0.66

0.85
0.86

0.87
0.87

0.57
0.62

0.22
0.38

0.94
0.94

0.48
0.50

0.84
0.76

-0.45
0.69

-3.17
-1.07
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growth stages or cultivars, as highlighted by previous machine

learning research (Yue et al., 2019). These studies commonly

adopt a strategy of employing one model for each growth stage,

alongside a single overarching model that typically yields less

satisfactory results (Wang et al., 2022a). Nevertheless, it would

remain intriguing to explore the performance of the presented CNN

models on new cultivars, which may exhibit distinct characteristics.

Moreover, the results pertaining to nitrogen concentration are

particularly intriguing. One might expect that CNNs would prioritize

features related to plant architecture, which would be more closely

associated with nitrogen uptake. However, the observed medium

correlation (-0.44) between nitrogen concentration and uptake tends

to limit this assumption, suggesting that the CNNs might have also

identified some kind of vegetation indices contributing to the

predictions. Despite these remarkable outcomes, interpreting the

specific features extracted by CNNs remains challenging. To

enhance our understanding of the underlying mechanisms and

improve model interpretability, ongoing research is dedicated to

developing techniques for explaining CNN predictions. One such

approach, Grad-CAM (Selvaraju et al., 2020), shows promise in

providing insights into the regions of the image that significantly

influence the model’s decisions.

Among the CNN architectures explored, ResNet50 exhibited

high performance, consistent with similar studies (Castro et al.,

2020). Notably, EfficientNet also yielded promising results,

especially for DM prediction of the entire plant. However, it is

worth considering that the advantage of EfficientNetB4 might be

attributed to its capacity to capture finer details in larger images.

Interestingly, recent research has shown that performance gains

may saturate beyond a certain image size (Li et al., 2021). This

behavior could be dependent on the architecture, as EfficientNet is

explicitly designed for scalable optimization on specific datasets

(Tan and Le, 2020).
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In contrast, the machine learning approach utilizing PLSr and

feature fusion from the multi-sensor system consistently delivered

inferior performance when compared to CNN models.

Nevertheless, it is important to underscore that this method still

achieved commendable results, boasting an R² value exceeding 0.6,

which aligns with the findings reported in Yue et al. (2019).

An intriguing aspect arising from the backward feature selection

analysis was the observed increase in the number of selected

features between Ytrue and Ypseu, signifying the heightened

demand for features in constructing models with a larger dataset

(See Supplementary Material). Additionally, both sets of features

exhibited substantial similarities, affirming their efficacy in

modeling agronomical parameters. Among these features, plant

height emerged as the most frequently utilized, followed by plant

ratio andMCARI index. Furthermore, it is noteworthy that DM and

Nuptake shared three out of four features, a logical outcome given

that Nuptake was derived from DM. Other features selected for

nitrogen-related analysis included well-established indices such as

MCARI, mNDB, and GR.

However, it is essential to exercise caution when drawing

overarching conclusions solely based on this method. Notably, the

selection of these features can be intricate, as they may exhibit

seasonal variations, as documented in (Yue et al., 2019; Wang et al.,

2022a, b). It is conceivable that more advanced methods may yield

superior results, as suggested in (Wang et al., 2021).
4.2 The significance of the amount of
ground truth data in deep learning for
regression of biophysical variables

Deep learning techniques, especially in regression tasks

involving biophysical variables, encounter a substantial challenge
FIGURE 6

Predicted partitioning of dry matter and nitrogen uptake throughout the season for a microplot from the 22-F trial. This results from the use of the
multi-output ResNet50 (Table S5) multiplied by the single output ResNet50 (Table 3).
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due to the scarcity of sufficient training datasets. The limited

availability of labeled data necessitates the development of

innovative approaches to overcome this issue. A training pipeline

was devised in this study, which capitalizes on the abundance of

unlabeled data commonly found in highthroughput phenotyping

installations. This method represents a practical approach to

leverage unlabeled data, leading to optimized performance of

CNN models in phenotyping applications.

The pseudo-labeling method emerged as an effective strategy to

mitigate overfitting of the model. As a result, the performance gap

between the training and validation datasets was reduced, signifying

enhanced generalization. To perform such data correction, a

polynomial cubic curve was chosen for its simplicity in

representing biophysical curves and ease of fitting. Finer curves

more related to plant growth pattern, such as P-splines or logistic

curves, could have been used, but the fitting process may prove

difficult (van Eeuwijk et al., 2019). These finer curves often require

more frequent measurements (one to two per week) for accurate

fitting (Roth et al., 2020), a frequency that our data did not meet. To

address potential bias, correcting conditions were introduced,

particularly essential for organ models. For example, when an

organ was absent at a specific time (t), the corresponding pseudo-

label was set to 0, a correction that, while seemingly straightforward,

significantly contributed to the accuracy of representations. The

effectiveness of traditional machine learning might also be a good

option to generate pseudo-labels in the case of fewer ground

truth data.

During the research, we also examined more advanced data

augmentation techniques, such as 90° rotation and color space

transformations without success. It is crucial to exercise caution

when employing such methods, as their indiscriminate application

may adversely affect model performance, as observed in certain

models in (Castro et al., 2020). Conversely, (Ma et al., 2019)

reported clear performance improvements with these methods.

The discrepancy in results may be attributed to the risk of the

model becoming overly reliant on specific features, such as wheat

lines in the case of image rotation. Hence, prudent consideration of

data augmentation is warranted based on the specific characteristics

of the dataset and model.
4.3 Limitations and perspectives

An effective approach for evaluating model performance is to

combine their predictions into a single other variable. In this study,

we used DM and %N of the plant, predicted from their respective

models, to calculate the Nitrogen Nutrition Index (NNI). The R²

values for the training and validation datasets were 0.71 and 0.33,

respectively, suggesting the potential utility of this method for

measuring NNI as well. Although the dataset contains a

substantial amount of heterogeneous ground truth data, the

performance of the models may raise questions due to its limited

size in terms of crop architecture and color, which only includes a

few genotypes. The observed patterns in predicted values in

Figures 5 and 4 appeared scattered, resembling a cloud rather
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than forming a clear line, and some outliers were evident,

indicating room for improvement in the models. Overfitting was

also observed, particularly with ResNet50, which frequently

achieved R² values above 0.95 for the training dataset. To address

this, a prudent approach would be to initially use small architectures

and acquire more data. Despite the need for improvements

concerning trait saturation and accuracy within specific growth

stages Figure 4, the models’ potential is significant. They can be

employed to compute advanced traits, such as growth rate and spot

ideotypes using temporal curves, as demonstrated in a recent study

(Roth et al., 2022).

By leveraging diverse and large-scale datasets, CNNs can yield

more robust and precise models, reducing the need for heavily

relying on study-specific feature engineering. Therefore, the

phenotyping community should prioritize the development of

extensive and well-annotated datasets for essential phenotyping

challenges, such as the Global Wheat Head Detection (GWHD)

dataset (David et al., 2021). Additionally, exploring alternative

solutions, such as self-supervised learning (Zbontar et al., 2021)

or generating synthetic data using Functional-Structural Plant

Models (FSPM) (Gao et al., 2023), can further enhance model

training and performance.

Research on the allocation of major plant elements, such as

sink/source regulation processes and their relationship with grain

nitrogen content, heavily relies on dry matter and nitrogen uptake

partitioning (Martre et al., 2003; Gaju et al., 2014). The multi-

output models proposed in this study have shown promising results

(Table 7), with good performance in most cases. However, certain

organs exhibited poor performance, such as %N of the ear, which

may be attributed to the lack of visible traits that could account for

it, like a greener ear. The subpar performance of DM and Nupt for

flag leaf could be mainly attributed to the multi-output proportion

model’s poor performance for this organ (Table S5), despite

assigning it a higher weight in the loss function. Additional

images specifically featuring flag leaves might be needed to

improve its representation, as the ear rapidly develops behind them.

This multi-output model exemplifies the potential of such

approaches for plant phenotyping. While this study employed a

simple approach by sharing a common loss function, the benefits of

multi-output learning can be substantial. For instance, a single

model assessing both dry matter and leaf area index can

significantly reduce computational costs and processing time,

while maintaining high accuracy for both tasks. In fact, when

tasks share complementary information, they can act as

regularizers for each other, enhancing prediction performance

(Standley et al., 2020). However, combining complex associations

between tasks, such as classification and regression tasks, requires

careful consideration of model architecture, loss function, and

training strategy to achieve optimal performance. Ongoing

research in this area is actively being pursued (Vafaeikia et al.,

2020; Vandenhende et al., 2020).

The ability of the models to autonomously discover the

appearance of new organs, such as ears and flag leaves, is

particularly intriguing and opens exciting new research avenues

too. This suggests the feasibility of developing growth stage
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estimation models per RGB image in a similar manner. Such models

could be further utilized for various purposes, such as optimizing

crop models (Yang et al., 2021).
5 Conclusions

In this study, a robust training pipeline that leverages unlabeled

data through the innovative combination of pseudo-labeling and

temporal relationship correction were developed and implemented.

The results demonstrate the significant advantages of employing

CNN models over a PLSr approach, as they achieve superior

performance without the need for labor-intensive feature

engineering. Notably, EfficientNetB4 was better in predicting

above-ground biomass, while ResNet50 exhibited superior

performances in predicting LAI, nitrogen uptake, and nitrogen

concentration. Additionally, our exploration of multi-output

models provided valuable insights into the distribution of dry

matter and nitrogen uptake among different plant organs,

enriching our understanding of plant biophysical characteristics.

While CNN models show great promise, it is evident that

further investigation is required to fully unlock their potential.

This research effectively demonstrates the capabilities of CNNs in

predicting biophysical vegetation variables and offers valuable

insights into addressing limitations and future perspectives in

plant phenotyping. Moving forward, data sharing within the

phenotyping community will be critical to optimize model

performance. Access to large and diverse datasets, such as the

Global Wheat Head Detection dataset, is indispensable for

advancing phenotyping research and enhancing the performances

of CNN models. By fostering data sharing and continued research

efforts, CNNs can continue to revolutionize plant phenotyping

and make profound contributions to agricultural and

environmental sciences.
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SUPPLEMENTARY FIGURE 1

Backward feature selection with PLSr for DM Estimation: On the left, selected
features for estimating DM from Ytrue include Plant Ratio, 95th Percentile of

Height, MCARI, and BRF 490. On the right, the selected features for

estimating DM from Ypseu comprise Plant Ratio, 95th Percentile of Height,
MCARI, and BRF 550.

SUPPLEMENTARY FIGURE 2

Backward feature selection with PLSr for LAI Estimation: On the left, selected
features fo estimating LAI from Ytrue include SR, GNDVI, MCARI, CIgree, BRF

900 and BRF 720. On the right, the selected features for estimating LAI from

Ypseu comprise NDRE, SR, GNDVI, CIgreen, CIrede and BRF 550.
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SUPPLEMENTARY FIGURE 3

Backward feature selection with PLSr for Nuptake Estimation: On the left,
selected features for estimating Nuptake from Ytrue include Plant Ratio, 95th

percentile of height and MCARI. On the right, the selected features for

estimating Nuptake from Ypseu comprise Plant Ratio, 95th percentile of
height, GR, MCARI, mNDB and BRF 550.

SUPPLEMENTARY FIGURE 4

Backward feature selection with PLSr for Nrate Estimation: On the left,
selected features for estimating Nrate from Ytrue include 95th percentile of

height and MCARI. On the right, the selected features for estimating Nrate

from Ypseu comprise 95th percentile of height, GR and mNDB.
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Field phenotyping of ten wheat
cultivars under elevated CO2

shows seasonal differences in
chlorophyll fluorescence, plant
height and vegetation indices
Oliver Knopf 1*, Antony Castro 1, Juliane Bendig 1,
Ralf Pude 2, Einhard Kleist1, Hendrik Poorter 1,3,
Uwe Rascher 1 and Onno Muller 1

1Institute of Bio- and Geosciences: Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH,
Jülich, Germany, 2INRES-Renewable Resources, University of Bonn, Rheinbach, Germany,
3Department of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
In the context of climate change and global sustainable development goals,

future wheat cultivation has to master various challenges at a time, including

the rising atmospheric carbon dioxide concentration ([CO2]). To investigate

growth and photosynthesis dynamics under the effects of ambient (~434

ppm) and elevated [CO2] (~622 ppm), a Free-Air CO2 Enrichment (FACE)

facility was combined with an automated phenotyping platform and an array

of sensors. Ten modern winter wheat cultivars (Triticum aestivum L.) were

monitored over a vegetation period using a Light-induced Fluorescence

Transient (LIFT) sensor, ground-based RGB cameras and a UAV equipped

with an RGB and multispectral camera. The LIFT sensor enabled a fast

quantification of the photosynthetic performance by measuring the

operating efficiency of Photosystem II (Fq’/Fm’) and the kinetics of electron

transport, i.e. the reoxidation rates Fr1’ and Fr2’. Our results suggest that

elevated [CO2] significantly increased Fq’/Fm’ and plant height during the

vegetative growth phase. As the plants transitioned to the senescence phase,

a pronounced decline in Fq’/Fm’was observed under elevated [CO2]. This was

also reflected in the reoxidation rates Fr1’ and Fr2’. A large majority of the

cultivars showed a decrease in the harvest index, suggesting a different

resource allocation and indicating a potential plateau in yield progression

under e[CO2]. Our results indicate that the rise in atmospheric [CO2] has

significant effects on the cultivation of winter wheat with strong

manifestation during early and late growth.
KEYWORDS

CO2, wheat, fluorescence, phenotyping, climate change, senescence, chlorophyll,
FACE (Free-Air CO2 Enrichment)
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1 Introduction

Since the industrial age, the atmospheric CO2 concentration

([CO2]) has increased by 50%, from 280 ppm at the end of the 19th

century to 418 ppm in 2022 (Keeling et al., 1976; IPCC, 2021a;

NOAA ESRL, 2023). Current climate scenarios predict a further

increase to an expected level of 550 ppm CO2 by 2060 (IPCC,

2021b), resulting in significant global climatic changes, including

rising air temperatures and changing precipitation patterns (IPCC,

2021a). The complex and variable responses of crops to elevated

CO2 concentrations complicate crop management and breeding

strategies, making it increasingly difficult to meet the food demands

of a growing population (FAO, 2011; OECD and FAO, 2012).

Understanding genotype, environment, and management

(GxExM) interactions and developing resource-efficient, climate-

resilient crops are among the top priorities for plant scientists and

breeders (Beres et al., 2020; Cooper et al., 2021). Plant breeding has

evolved over the years by incorporating new tools and technologies,

but the main objectives remain unchanged - improving crop

productivity by selecting heritable traits (Reynolds and Braun,

2022). Given the dynamic nature of the effects resulting from

increased atmospheric CO2, crops will need to adapt to an

increasingly different growing environment within a few breeding

cycles. Wheat plays a crucial role as the third most important staple

crop, providing one-fifth of the global caloric intake. It also is a

major source of income for many small-scale farmers, and therefore

also a significant contributor to global economic development

(FAO, 2021).

Since CO2 is a key molecule in the plants’ carbon assimilation

process, increased atmospheric CO2 levels may also lead to notable

increases in photosynthesis (Long et al., 2004). Improving the

effectiveness at which crops capture and convert H2O, CO2 and

light energy into substance, i.e. photosynthetic efficiency, is

regarded as a key pathway to achieving our sustainable
Abbreviations: ChlF, Chlorophyll fluorescence; DEM, Digital elevation model

(ppm); DOY, Day of the year, sequential day number starting with day 1 on

January 1st(ppm); a[CO2], Ambient carbon dioxide concentration; e[CO2],

Elevated carbon dioxide concentration; EVI, Enhanced Vegetation Index; ExG,

Excess Green Index; FACE, Free-air CO2 enrichment; Fm’, Maximal chlorophyll

fluorescence yield from light-adapted plants; Fr1’, Reoxidation efficiency of QA¯

up to ~0.65 ms after Fm’ is reached, i.e., the kinetics of electron transfer from QA

to PQ pool from light-adapted plants; Fr2’, Reoxidation efficiency of QA¯ up to

~6.64 ms after Fr1’, i.e., the kinetics of electron transfer from PQ pool to PSI from

light-adapted plants; FRR, Fast repetition rate; Fq’/Fm’, Photosystem II operating

efficiency of light-adapted plants; GNSS, Global navigation satellite systems;

GxExM, Genotype x environment x management interaction; LIFT, Light-

induced fluorescence transient; NDVI, Normalised difference vegetation index;

OSAVI, Optimised Soil-Adjusted Vegetation Index; PAM, Pulse-amplitude

modulation; PAR, Photosynthetically active radiation(mmol·s−1); PSI/PSII,

Photosystem I/Photosystem II; ppm, Parts per million; QA, Primary Quinone

electron acceptor in photosystem II; RE, Relative error; RGB, RGB colour space;

ROI, Region of interest; RQA, Rexoiddation sequence of QA; SQA, Saturation

sequence of QA; SP1, Senescence period 1, i.e. DOY 168 – DOY 176; SP2,

Senescence period 2, i.e. DOY 176 – DOY 193; UAV, Unmanned aerial vehicle;

VI, Vegetation index.
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development goals and is expected to play a significant role in the

Fourth Green Revolution (Long et al., 2015). The fundamental

prerequisite is a better understanding of the light-use efficiency of

crops under dynamic light conditions and their interactions with

the environment. Studying the highly dynamic photosynthesis

process under such conditions presents a challenge to overcome.

To address this knowledge gap, a number of elaborate growth

chamber experiments, open-top chambers and free-air CO2

enrichment (FACE) emerged after the publication of the

Brundtland report in 1987 (United Nations, 1987). FACE

experiments mimic future atmospheric CO2 conditions under

actual field conditions. Among the most important findings of

these experiments is the capability of elevated CO2 concentrations

(e[CO2]) to boost photosynthetic assimilation rates and increase the

productivity of C3 and C4 plants (Ainsworth and Long, 2004;

Ainsworth and Long, 2021; Gardi et al., 2022). Despite these

advances, it remains unclear whether we can fully capture and

describe the physiologically relevant dynamic features of field

photosynthesis in sufficient detail. Therefore, Murchie et al.

(2018) emphasise the need for extensive field data collection at

different time points over the growing season.

In response to the growing need for a more holistic quantitative

assessment of plants, the last decade has seen a surge in advanced

phenotyping platforms, as highlighted by Cendrero-Mateo et al.

(2017). These incorporate automated imaging, robotics, and

machine learning to analyse plant growth, physiology, and

morphology on a large scale. Recent sensor advancements in

remote sensing and field phenotyping have shifted the focus from

individual plants to canopy and field-level observations. These non-

invasive methods enable quicker, more accurate measurements of

plant traits, greatly benefiting breeding and genetic studies.

RGB imagery and Chlorophyll Fluorescence (ChlF) acquisition

methods have shown great promise in studying the impact of

abiotic and biotic stress on various plant species and crops

(Rebetzke et al., 2019; Fu et al., 2022; Pieruschka and Schurr,

2022). ChlF is a measurable optical signal resulting from the

competing light energy pathways in plants where light is either

(a) utilised in photosynthesis (photochemistry), (b) transferred to

other pigments, (c) dissipated in the form of heat (NPQ) or (d) re-

emit as a byproduct with a longer wavelength in the form of

fluorescence. ChlF can be quantified using active instruments

containing an excitation light source and a fluorometer (Maxwell

and Johnson, 2000; Baker and Rosenqvist, 2004; Baker, 2008).

Pulse-amplitude modulation (PAM) fluorometry is commonly

used for active ChlF measurements, but its limitations, such as

short-distance applicability, hinder large-scale open field studies

with high throughput. To address these challenges, the Light-

induced fluorescence transient device (LIFT) has emerged as a

promising alternative to actively quantify ChlF traits, including the

PSII operating light-use efficiency of light-adapted plants (Fq’/Fm’)

(Osmond et al., 2017; Keller, 2018). Previous work has suggested

that LIFT can be useful for uncovering genetic variation in response

to environmental stress (Zendonadi dos Santos et al., 2021).

Several studies investigated the effect of e[CO2] on

photosynthetic assimilation (Lauriks et al., 2021) and efficiency

(Javaid et al., 2022) at different stages of development in diverse
frontiersin.org
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plant species yielding various outcomes – a large number of them

were devoted to understanding long term effects of tree species and

grasslands. A growth chamber experiment with Acacia logifolia

showed increased photosynthetic assimilation per unit leaf area

under e[CO2], mainly at the beginning of the growing period. As the

growing period progressed, relative differences in assimilation

under a[CO2] and e[CO2] got smaller and finally dropped

significantly (p = .001) towards the end of the experiment (Javaid

et al., 2022). Potential alterations of the photosynthetic efficiency

under e[CO2] could be substantially relevant to global agricultural

production. Most previous studies on the effect of CO2 enrichment

on senescence reported either no changes or a delay in plant

senescence (Curtis et al., 1989; Taylor et al., 2008). On the other

hand, there are also studies which reported a slightly earlier

flowering and senescence under e[CO2], often associated with the

underlying concept that e[CO2] boosted photosynthesis; this

ramped up sugar accumulation, depleting chloroplast nitrogen

reserves faster and thus directly affecting the C/N balance

resulting in oxidative stress (Agüera and De la Haba, 2018; Zani

et al., 2020). A greenhouse experiment from Marc and Gifford

(1984) investigated the floral initiation of wheat under e[CO2] and

did not show an apparent effect on the crop. Bresson et al. (2018)

suggest that senescence is not only driven by environmental factors

but also genotypic properties, as well as the development of the

plant. In turn, each of these factors can affect the onset, intensity

and rate of progression of senescence. These previously observed

species-dependent responses urge the need to study photosynthesis

and the seasonal dynamics of crops under elevated CO2 closer.

This study introduces a pioneering approach by combining a

LIFT instrument to monitor photosynthesis with an automated

field phenotyping platform. This unique combination enables

investigating winter wheat growth under elevated [CO2] in a

typical agricultural field environment.

Our study aimed to employ novel techniques to gather a

comprehensive dataset, enhancing our understanding of how e

[CO2] influences the photosynthetic dynamics and growth

patterns of winter wheat across its various developmental stages.

In particular, we wanted to (1) provide a comprehensive description

of the combination of a FACE system with an automated field

phenotyping platform, emphasising its capabilities and

contributions to the research, (2) assess the final biomass and

various yield parameters across cultivars, (3) investigate seasonal

growth dynamics by the help of UAV data, and (4) evaluate the

seasonal variation in ChlF-related traits and the influence of abiotic

factors, in response to ambient and elevated [CO2].
2 Materials and methods

2.1 Plant material and crop management

Ten modern winter wheat (Triticum aestivum L.) cultivars,

released between 2014 and 2020 (Appendix Table A1), were

evaluated within the ‘BigBaking project’. These cultivars, provided

by nine European breeders, are commonly used in Germany. The

selection targeted high-yielding cultivars with genotypic diversity
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from different quality groups to validate recent breeding efforts and

to assess their resilience to climate change. Additionally, these

cultivars served for subsequent baking quality and proteomics

analysis to explore the relationship between yield and grain

quality under e[CO2]. The cultivars were grown in plots sized 2 x

3 m with a sowing density of 330 kernels per m-2 and a row distance

of 0.11 m. Winter wheat was sown on October 22nd 2020, with

three replicate plots per treatment and in a complete randomised

plot design. Plants emerged on November 2nd 2020 and were

harvested on August 12th 2021. A total of 160 kg N per ha-1 liquid

nitrogen fertilisers were applied in three doses of 60/60/40 kg per

ha-1 on March 24th, April 20th and June 7th 2021. The field was

managed following standard agricultural practices for the region

and was monitored regularly to prevent damage from pests and

pathogens. Significant crop management events were summarised

together with phenological stages in Table 1.
2.2 Study site, experimental design, and
phenotyping platform

The study was conducted at Campus Klein-Altendorf, the

experimental field site of the University Bonn, near Rheinbach,

Germany (50°37’ 29.3196” N 6°59’12.9834 “E, elevation: 177 m).

Over the past 64 years, the mean annual temperature has been 9.6°

C, and the mean annual precipitation was 603 mm year-1. Situated

in the Lower Rhine Bay, the region is influenced by the Atlantic

climate with prevailing westerly winds. The soil is classified as a

Haplic Luvisol developed from loess with high clay content and

high soil fertility (Pätzold and Pude, n.d).

To elevate the atmospheric CO2 concentration (e[CO2]), a Free-

Air Carbon Dioxide Enrichment (FACE) experiment was set up.

This so-called BreedFACE facility is a mobile system and, therefore,

allows for a three-year crop rotation system with winter barley

(Hordeum vulgare) as a pre- and follow-crop (Muller et al., 2018;

Quiros-Vargas et al., 2021; Soares et al., 2021). Eight ~7.25 m long

steel pipes were joined together to form an octagonal structure of

18.5 m diameter (~254 m2). This sub-construction could be

adjusted to the canopy height and was used to attach smaller

poly-vinyl-chlorid pipes with tiny holes every 20 cm where pure

CO2 was released. The amount of released CO2 was adjusted in real-

time depending on the wind direction, wind speed and the actual

CO2 concentration. Those factors were measured at a centrally

positioned environment station together with the photosynthetic

active radiation (model LI-190R, Li-COR Inc., Lincoln, NE, USA,

licor.com/env/products/light/quantum), air temperature and air

humidity. The target [CO2] was set to 600 ppm and measured

using different CO2 sensors (HMP110, GMP343 and GMT221,

Vaisala Oyj, Vantaa, Finland, vaisala.com). Over the growing

season, the sensors were adjusted so they were always slightly

above the canopy, i.e. a minimum of 0.2 m higher (Figure 1).

CO2 feeding started with plant emergence in November 2020,

was paused for two weeks for safety reasons over New Year and was

elevated with a few minor interruptions as long as we could perform

measurements with detectable photosynthesis activity. This was the

case until July 12th, 2021. As day length increased throughout the
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season, the CO2 feeding period was adapted, ranging from 9 hours

per day during the early vegetation period up to 13 hours per day

later in the year.

The BreedFACE facility is complemented by the FieldSnake (see

Figures 1B, C), a semi-automated mobile phenotyping platform

(prototype developed by Lommers Tuinbouwmachines, Bergeijk,

The Netherlands and the Forschungszentrum Jülich, Jülich, NRW,

Germany). Integral part of the FieldSnake is a movable

measurement platform that is attached to a bridge, adjustable in

height (1.5 – 3.5 m) and capable of carrying various phenotyping

sensors up to a payload of 100 kg. The 20-meter-wide bridge is

supported by compartments on each side (i.e. engine and steering)

running on caterpillars.

Under human surveillance, the FieldSnake is capable of

navigating autonomously over the experimental field at a speed of

about 2-3 km/h with the help of three Global Navigation Satellite

System (GNSS) antennas, two of them positioned at the outer edges

of the machine and one directly on the measurement platform. The

GNSS signal is supplemented by the German SAPOS reference

service (https://sapos.de/) to optimise the accuracy of the navigation

to centimetres. The data acquisition pattern was set beforehand in

an iOS-based mobile application (HariPilot, Hari Tech KFT,
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Pötréte, Hungary, https://hari-tech.hu/) and could be checked and

adapted on an iPad among other settings, e.g. the traverse speed of

the measurement platform (0.05 – 0.18 m/s), measurement height,

acquisition mode (scanning or stationary). Positioning data were

logged every second, together with other relevant parameters and

transmitted to a server.
2.3 LIFT and PhenoCam data acquisition

A Light-Induced Fluorescence Transient device (model LIFT-

REM 1.0, Soliense Inc., Shoreham, NY, USA; https://soliense.com/

LIFT_Terrestrial.php) was employed to monitor variations in ChlF.

The active probing method first described by Kolber et al. (1998)

induces chlorophyll fluorescence by emitting a series of sub-

saturating excitation light impulses at a fast repetition rate (FRR).

Multiple lenses focus the light of a blue (l 450 nm) light-emitting

diode (LED) to a 40mm light beam at a distance of 0.6 m. By the FRR

method, the capacity of Electron Transport to Photosystem II (PSII)

is exceeded, causing reaction centres to close. Thereby, resulting

changes in the plants’ fluorescence signal can be measured within

microseconds by an avalanche photodiode in combination with an
TABLE 1 Important cultivation measures and relevant phenological stages.

Event

Phenological stage Date Day of Year
Management

Sowing 22-Oct-20 296

Emergence 02-Nov-20* 307

Herbicide treatment (Malibu) 04-Nov-20 309

Start of CO2 enrichment 13-Nov-20 318

Leaf development 16-Nov-20* 321

1st fertiliser application (AHL 30% N) 24-Mar-21 83

Growth regulator (CCC, Moddus) 25-Mar-21 84

Canopy closure 30-Mar-21* 89

Stem elongation 15-Apr-21* 105

2nd fertiliser application (AHL 30% N) 20-Apr-21 110

Fungicide and growth regulator (Input, Moddus) 23-Apr-21 113

3rd fertiliser application (AHL 30% N) 07-May-21 127

Fungicide treatment (Ascra Xpro) 21-May-21 141

Heading 31-May-21* 151

Fungicide and insecticide (Protendo, Solzil, Karate) 08-Jun-21 159

Anthesis 14-Jun-21* 165

Ripening 28-Jun-21* 179

End of CO2 enrichment 12-Jul-21 193

Harvest
Grain maturity 12-Aug-21 224
*indicates the time point where a majority of the cultivars reached that stage.
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optical interference filter (685 nm ± 10 nm) that separates the red

ChlF from the rest of the light. The device was programmed to

progressively saturate the plastoquinone A pool (SQA sequence)

within 300 ms. Following the maximum ChlF (Fm'), a 127 ms long

relaxation sequence (RQA) with exponentially increasing breaks

between the flashlets allows QA to reoxidate (Osmond et al., 2017).

This saturation-relaxation-measurement protocol ultimately results

in a transient of which kinetics can be calculated (Appendix Figure

A1). The PSII operating efficiency for light-adapted plants (Fq'/Fm')

has been found to exhibit a high correlation with Fv'/Fm'

measurements obtained using pulse amplitude modulation (PAM)

techniques (Wyber et al., 2017). Fr1' and Fr2' are parameters used to

characterise the electron transport kinetics of light-adapted plants

during the RQA sequence, as described by Zendonadi dos Santos et al.

(2021). These parameters are obtained through log-log-transformed

regression analysis of the slope of the transient, and they correspond

to two specific time intervals of the measurement protocol, i.e. t1 0.82-

1.44 ms and t2 1.56-8.08 ms. Within these intervals, electron transfer

occurs fromQA to the PQ pool and, to some extent, from the PQ pool

to PSI.

To closely follow the senescence period, a permanent setup of

two identical RGB cameras (model SD500BN, StarDot

Technologies, Buena Park, CA, USA) was set up at a fixed

distance from the ring (15 m) to ensure continuous
Frontiers in Plant Science 05164
measurements of phenological changes (PhenoCams). They were

mounted on a tower of 7 m in height and acquired daily images

from June 13th till the harvest on August 12th, 2021 (Figure 1).
2.4 Field measurements

2.4.1 LIFT measurements
During the vegetation period, nine LIFT measurements were

conducted bi-weekly under clear-sky conditions (see Appendix:

Table A2), starting with canopy closure from late March (DOY 89)

to mid-July (DOY 193). Therefore, the 15 kg heavy LIFT instrument

capable of measuring ChlF up to a distance of 3 m was mounted to

the FieldSnake platform, levelled by a gimbal pointing downward

(Nadir) at a fixed measurement distance of ~0.6 m above the

canopy. The platform’s height was adjusted to match the average

canopy height of the plants grown at a[CO2] and e[CO2]. Scanning

at approximately 10 cm s-1 along crop rows, over 1’200 point

measurements were acquired across the BreedFACE field, with

around 20 measurements per plot.

2.4.2 Manual height measurements
Canopy height was assessed manually six times throughout the

vegetation period by measuring the vertical distance from the tip of
A B

C

FIGURE 1

The Free-Air CO2 Enrichment (BreedFACE) experiment and the automated multipurpose phenotyping platform. (A) Aerial view of the BreedFACE
field at Campus Klein-Altendorf, Rheinbach, Germany. (B) Ground-level photograph of the automated ‘FieldSnake’ phenotyping platform (shown in
blue) alongside the FACE system. (C) A detailed illustration of the setup, highlighting the structural components such as the octagonal ring structure
surrounding the winter wheat plots, the control cabinet, the CO2 supply tank, the environmental station, and PhenoCam alongside with
the ‘FieldSnake’.
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the plant closest to the ruler to the soil level. These measurements

were performed using a folding ruler at three random locations

across the plots.

2.4.3 UAV data acquistion
A total of twelve flight campaigns covered key growth stages of

the crop from November 2020 to July 2021 (Figure 3). Flights were

mostly conducted under clear-sky conditions around midday (see

Appendix: Table A2). To obtain RGB and multispectral data, a Sony

ILCE-7RM3 respectively a MicaSense dual camera system (AgEagle

Sensor Systems Inc., Wichita, KS, USA) were mounted to an

Unmanned Aerial Vehicle (UAV, DJI Matrice Pro 600, SZ DJI

Technology Co., Ltd., Shenzhen, China) as described in

Chakhvashvili et al. (2022). Geotagging was performed using

onboard equipment. Flights were conducted at a 20 m altitude,

resulting in 0.001-0.002 m pixel size.

2.4.4 Harvest and post-processing
The above-ground biomass was determined at the harvest on

August 12th 2022. A special combine harvester (model Quantum Plus,

Wintersteiger AG, Ried, Austria) allowed for a core harvest of 1.5 x 2 m

and separated grains from the shoot. The straw was immediately

collected and weighed. Straw sub-samples were taken, weighed, and

dried for 72 h in a drying oven at 70°C before being weighed again to

calculate the vegetative dry matter. Grain samples underwent

additional cleaning, and their weight, along with the thousand-grain

weight, was measured before conducting subsequent analysis.
2.5 Data processing and statistics

2.5.1 LIFT and FieldSnake data processing
Data were mainly processed using R (Version 2022.02.2 + 485,

R Core Team, 2013). After processing the acquired LIFT raw data,

the data was linked to spatial data logged by the FieldSnake using

timestamps from both systems. The combination of data allowed to

correct for the sensor mounting offset, enabling further spatial data

cleaning in QGIS (Version 3.24.2), e.g. excluding measurements in

border areas (30 cm).

2.5.2 UAV data processing
Digital elevationmodels (DEMs) were generated fromRGB imagery

and orthomosaics from multispectral imagery using AgiSoft Metashape

(Version 2.0.1). Nine panels with varying reflectance factors were used

for processing multispectral images to top of canopy reflectance

(Chakhvashvili et al., 2022). We chose to analyse the Normalised

Difference Vegetation Index (NDVI), a commonly used index for

assessing vegetation health and cover. The Enhanced Vegetation Index

(EVI), which offers refinements of the NDVI such as atmospheric

correction and improved performance in densely vegetated areas, as well

as the Optimised Soil-Adjusted Vegetation Index (OSAVI), which is

used to minimise the impact of soil background (Table 2).

Plant height was extracted by subtracting DEMs from a

respective growth stage from a DEM of bare soil (Bendig et al.,

2014). Plot-level information was extracted using the zonal statistics
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function exact_extract (Baston, 2022). Data were further analysed

and visualised in R.

2.5.3 PhenoCam data processing
Within each image retrieved from the PhenoCam, a region of

interest (ROI) with multiple points of interest was set for the cores

of all plots. Values retrieved from the images were then normalised

(Richardson et al., 2018) in order to calculate the excess green index

(ExG, Table 2), which was used to describe plant senescence on a

canopy level. The data was then fitted with a log-regression model

for the time intervals between the LIFT measurements during the

senescence period, i.e. senescence period 1 being DOY 168 – DOY

176 and senescence period 2 from DOY 176 to DOY 193 where the

dependent PSII operating efficiency was log-transformed.
3 Results

3.1 Abiotic environmental parameters

At the experimental site, the mean temperature during the

growing period (October 2020 - August 2021) was 10.1°C and thus

half a degree warmer than the observed long-term average. While

November 2020 was a rather cold month (-2.2°C), the months of

February and June were relatively warm, with monthly mean

temperatures deviating by +2.4°C and +3.2°C, respectively,

compared to the long-term average. The annual precipitation

reached 707 mm, representing a 17.3% increase compared to the

recorded long-term average. This increase was mainly driven by

heavy rainfall events in January and July 2021, during which more

than twice the average amount of rainfall was recorded. With an

annual sum of 1054 kWh m-2, the global radiation was slightly

lower compared to the long-term measured global radiation of

1093.0 kWh m-2 per year.

Regarding the CO2 concentrations, the mean ambient CO2

concentration during operating hours was 434 ± 24 ppm in

control plots and elevated by 43% to a mean concentration of 622

± 57 ppm CO2 in the FACE system. During operating hours, the

CO2 target concentration of 550 ppm and higher was reached 93%

of the time at the ring’s centre (see Appendix: Figure A2).
3.2 Yield parameters

Given that intermediate destructive harvests were not feasible

due to the limited number of replicates, plant height served as a

proxy for seasonal biomass accumulation in this study. Following

the start of the flight campaign in November 2020, a significant

(p<.001) difference in plant height for winter wheat grown under e

[CO2] was observed in January 2021 (DOY 14), with a mean

difference of 1.43 cm ± .09 cm (Figure 2). This significant

increase in plant height gradually continued throughout the entire

vegetation period and peaked on June 11th, 2021 (DOY 162), with a

mean difference of 19.11 cm ± 5.82 cm. However, on August 4th,

2021 (DOY 216), just before the harvest, a decline in canopy height

was observed for plants grown under e[CO2].
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To validate the UAV data, manual measurements were taken on

six days from May 22nd, 2021 (DOY 142), to July 23rd, 2021 (DOY

204). These measurements confirmed the trend observed from the

UAV data and showed a high correlation (r = .89, R2 = .79) with

similar statistically significant differences. However, the difference in

height between winter wheat cultivars treated with e[CO2] and the

control was smaller. The maximum mean difference was measured

on June 16th, 2021 (DOY 167), with plants under e[CO2] being 8.49

± 3.08 cm taller, and a smaller decrease in mean height difference

after that date to 7.07 ± 2.38 cm was recorded on July 23rd, 2021

(DOY 204). A more detailed look at the data revealed that while there

were cultivar-specific variations in the extent of height increase, the

overall trend — an increase in height in response to elevated CO2

levels — was consistently observed across all ten cultivars.

The relative difference in biomass was determined by the

absolute weight at the end of the vegetation period, where

significant CO2 effects were observed with notable increases in

plants grown under e[CO2] compared to those grown under a

[CO2]. Winter wheat cultivars grown under e[CO2] exhibited a

significant (p<.001) increase in vegetative biomass, i.e. straw only

(VDM, see Table 3). The mean vegetative biomass for plants grown

under a[CO2] was 776.03 ± 59.16 g per m2, while plants grown

under e[CO2] showed a 21.73% boost in vegetative biomass

accumulation, reaching 936.86 ± 88.46 g per m2 (excluding two

samples from Moschus due to a combine harvester processing

failure). In terms of vegetative biomass, the cultivar Apostel

displayed the strongest CO2 effect size of.28, with a 32.9%

increase. In contrast to that, KWS Emerick experienced the

smallest biomass increase of 16.3% under e[CO2].

For grain yield (GDM), generally, smaller effect sizes were

observed, but a significant treatment effect (p<.001) was

documented. Harvesting the core area of the plots resulted in an

average grain yield of 1017.23 ± 66.9 g per m2 for cultivars grown

under a[CO2] and a mean yield increase of 7.6%, equivalent to

1094.59 ± 102.65 g per m2, for cultivars grown under e[CO2].
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Although grain yield was generally positively affected by e[CO2], the

response varied significantly among cultivars. Campesino exhibited

a significant increase (p<.001) of 20.8% under e[CO2], while many

other cultivars demonstrated weaker and non-significant responses.

Hyvega was the only cultivar that experienced a 2.5% decrease

in grain yield under e[CO2]. Differences were also observed in Total

Dry Matter (see TDM, Table 3), with an average increase of 13.10%

in cultivar biomass under e[CO2]. Four cultivars showed a

significant (p<.001) increase in biomass, with the highest increase

of 19.95% observed in the cultivar Campesino.

The Harvest Index (HI, see Table 3) generally decreased, except

for the cultivar Campesino, where the ratio between grain yield and

vegetative mass remained consistent and was equally boosted under

e[CO2]. The most significant shift in biomass accumulation was

observed in Hyvega, where the HI decreased significantly (p<.05) by

9.79% under e[CO2].

The thousand-grain weight (TGW, see Table 3) decreased by

5.06%, with significant changes observed in six cultivars. Only KWS

Emerick maintained its grain weight but, in turn, showed a slight

decrease in the number of grains per m2. The number of grains

increased in all other cultivars, with an average increase of 12.87%

for cultivars grown under e[CO2]. Campesino displayed the most

significant increase, with a 29.47% difference (see TGW, Table 3).
3.3 Phenology

The vegetation indices (VIs) obtained from the UAV-

MicaSense setup revealed a comparable trend across all three

indices throughout the observation period (Figure 2). Before the

canopy closure on March 30th 2021, both the Enhanced Vegetation

Index (EVI) and the Optimised Soil-Adjusted Vegetation Index

(OSAVI) exhibited similarly low values, indicating a sparse and

young vegetation cover. In contrast, the Normalised Difference

Vegetation Index (NDVI) displayed increased values during the
FIGURE 2

Development of the UAV-retrieved canopy height (m) for ten modern winter wheat cultivars (Triticum aestivum L.) grown under ambient (~434 ppm)
and elevated (~622 ppm) [CO2] throughout the 2020/2021 vegetation period. The data for each treatment group is pooled across cultivars. Plants
were cultivated in the BreedFACE experimental field at Campus Klein-Altendorf, Rheinbach, Germany. Error bars indicate the standard deviation of
the mean height. Statistical significance was assessed using Welch’s Two Sample t-test, p< 0.001 *** (n = 30). The insert in the figure shows the
correlation between manual and UAV-based measurements, with the correlation coefficient (r) and coefficient of determination (R2).
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first flight campaign and continued to show consistently higher

values over the entire vegetation period.

At canopy closure (DOY 89), all three VIs were significantly

increased under e[CO2] (p<.001). This rise is indicative of an

increase in vegetation biomass and greenness, reflecting the

maturation and densification of the plant canopy. The values

continued to rise until reaching their peak on April 22nd 2021,

reflecting optimal vegetation health and productivity. Following this
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peak, a drop in all three VIs was observed, but values remained

significantly higher (p<.001) for plants grown under e[CO2] until

shortly after heading. At this stage, the NDVI did not exhibit any

significant differences (p = 0.05) for plants grown under e[CO2].

Towards the end of the vegetation period, the three VIs displayed

distinct patterns. While the EVI exhibited a trend of slightly

decreased values under e[CO2], the NDVI showed the opposite

effect, with values increasing under e[CO2].
A

B

C

FIGURE 3

Seasonal dynamics of the (A) Enhanced Vegetation Index (EVI), (B) Optimised Soil-Adjusted Vegetation Index (OSAVI) and (C) Normalised Difference
Vegetation Index (NDVI) derived from UAV with a Mica-Sense camera. Pooled data of ten modern winter wheat cultivars (Triticum aestivum L.) grown under
ambient (~434 ppm) and elevated (~622 ppm) [CO2] measured throughout the vegetation period 2020/2021. Plants were grown in the BreedFACE
experimental field at Campus Klein-Altendorf, Rheinbach, Germany. Error bars indicate the standard deviation from the mean. ** p<.01 *** p<001.
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Figure 4 presents a temporal high-resolution view of the plant

senescence progression obtained by PhenoCams. Data retrieved

from the PhenoCams indicate that the Excess Green index (ExG)

was generally higher under e[CO2]. Whereas senescence duration is

prolonged in cultivars like Apostel and Foxx, the onset is delayed in

other cultivars such as Hyvega or RGT Reform and then progresses

faster. In most cultivars, the e[CO2] treatment led to a further delay

of senescence, which is also compensated in several cultivars by a

faster progression rate and, in some cultivars, resulted in an even

stronger degradation of chlorophyll according to the ExG index.

According to PhenoCam data, plants grown under a[CO2]

exhibited a higher senescence rate, i.e. the slope of the curve was

steeper under a[CO2] in the second senescence period (Figure 5A).

The correlation between the LIFT-retrieved PSII operating

efficiency and the PhenoCam-retrieved senescence rate was

investigated at two independent time points during the senescence
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(DOY 168 and DOY 176). The findings show a significant negative

relationship between the senescence rate and Fq'/Fm' at both time

intervals. Plants grown under e[CO2] exhibited a correlation coefficient

of -0.91, while plants grown under a[CO2] had a correlation coefficient

of -0.85. These results suggest that an increase in senescence rate leads

to a decrease in Fq'/Fm' or vice versa (Figure 5B).
3.4 Chlorophyll fluorescence traits

Canopy closure in late March (DOY 89) marked the time point

where it was possible to conduct consistent and reliable LIFT

measurements. At this early vegetative growth stage, we observed

consistently high PSII operating efficiencies (Fq'/Fm') across cultivars

(Figure 6A). All cultivars grown under e[CO2] had higher Fq'/Fm'

values compared to plants grown under a[CO2]. At this time, the
TABLE 2 Visible (VIRGB) and near-infrared vegetation indices (VINIR) used in this study.

VI Name Formula Reference

ExG Excess Green Index
ExG  = 2*

Green
Red + Green + Blue

−
Blue

Red + Green + Blue
−

Red
Red + Green + Blue

(Sonnentag et al., 2012)

EVI Enhanced Vegetation Index
EVI  = 2:5*

NIR − Red
NIR + 6 x Red − 7:5 x Blue + 1

(Huete et al., 2002)

OSAVI Optimised Soil-Adjusted Vegetation Index
OSAVI  =

NIR − Red
NIR + Red + 0:16

(Rondeaux et al., 1996)

NDVI Normalised Difference Vegetation Index
NDVI  =

NIR − Red
NIR + Red

(Peñuelas et al., 1994)
TABLE 3 Relative change of various yield parameters.

Cultivar VDM GDM TDM HI TGW GN

Apostel 32.9 %*** 6.2 % 17.3 %* -9.7 %* -7.8 %** 15.9 %*

Asory 26.3 %** 11.0 % 17.3 %** -5.4 % -7.7 %** 20.2 %**

Campesino 18.8 %* 20.8 %*** 20.0 %** 0.8 % -6.5 %* 29.5 %***

Foxx 17.9 %* 5.7 % 11.1 % -4.9 % -6.5 %* 12.7 %*

Hyvega 23.4 %** -2.5 % 8.1 % -9.8 %* -8.1 %** 6.2 %

Informer 18.4 %* 6.7 % 11.7 % -4.5 % -2.9 % 9.9 %

KWS Emerick 16.3 %* 0.2 % 7.1 % -6.3 % 0.7 % -0.4 %

LG Initial 19.2 %* 6.0 % 11.6 % -4.8 % -7.4 %* 14.5 %*

Moschus 21.7 %* 4.4 % 11.2 % -7.4 %** -3.2 % 7.9 %

RGT Reform 22.3 %** 10.6 %* 15.6 %** -4.4 % -1.3 % 12.3 %*

Mean 21.7 % 6.9 % 13.1 % -5.6 % -5.1 % 12.9 %

Observations 60 62 60 60 62 62

Cultivar 0.138 0.002 0.017 0.171 <0.001 <0.001

e[CO2] <0.001 <0.001 <0.001 0.027 <0.001 <0.001

Cult. x e[CO2] 0.97 0.252 0.201 0.045 0.208 0.063
Relative change of Vegetative Dry Matter (VDM), Grain Dry Matter (GDM), Total Dry Matter (TDM), Harvest Index (HI), Thousand-Grain Weight (TGW) and Number of Grains (GN) of
plants grown under elevated CO2 and compared to ambient CO2. A two-way ANOVA was conducted to examine the effects of cultivars and elevated CO2 on yield components with Bonferroni-
adjusted p-values shown below. Stars indicate statistically significant differences in the main effects analysed by pairwise comparisons, * p <.05 ** p<.01 *** p<.001.
Bold values are significant at p < .05.
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retrieved values showed the highest absolute and relative differences

between elevated and a[CO2]. Measured Fq'/Fm' was more than 20%

higher under e[CO2] in cultivars such as Informer (M = 21.05%, RE

= 1.60), Foxx (M = 20.34%, RE = 1.68) and Campesino (M = 20.16%,

RE = 1.36). In order to investigate the effect of the three different

growth periods, i.e. vegetative period (DOY< 125), generative period

(DOY 125 - 160) and senescence period (DOY > 160) on the

response variable (Fq'/Fm'), a two-way ANOVA was conducted.

The results showed no significant main effect of the CO2 treatment

(F(1, 538) = .49, p = .484), but a highly significant main effect of the

three different growth periods (F(2, 538) = 364.89, p<.001) and a

highly significant interaction effect between CO2 and the growing

period (F(2, 538) = 29.32, p<.001). The simple main effects were

analysed to further investigate the nature of this interaction. The

analysis of the main effects on Fq'/Fm' revealed a significant treatment

effect (F(1, 184) = 53.91, p<.001) for the vegetative growth period.

While mean values for the vegetative period were higher under e

[CO2] (.531 ± .077) compared to a[CO2] (.484 ± .079), this changed
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during the generative period. There, winter wheat plants tended to

have a higher mean Fq'/Fm' under ambient conditions (M = .491 ±

.081 vs M = .505 ± .079). During the generative growth period, the

analysis indicated no significant treatment effect (F(1, 183) = .42, p =

.517). During the senescence period, mean values have dropped

significantly to M = .394 ± .0969 for wheat cultivars grown under e

[CO2] compared to M = 0.415 ± .0805 at a[CO2]. The simple main

effects analysis of Fq'/Fm' did reveal a trend towards lower values

under e[CO2] with a marginally significant treatment effect (F(1,

171) = 3.71, p = .056) due to larger variance during this final growth

stage. On DOY 176, Campesino grown under e[CO2] had a by

30.66% lower mean Fq'/Fm' (RE = 2.19) than plants grown at ambient

conditions. Overall, the results suggest that the CO2 treatment

affected the operating efficiency of PSII predominantly during

vegetative growth with reduced effect during later growth stages.

Fr1’ and Fr2' show a comparable trend (Figures 6B, C)

that consistently opposes the behaviour observed in Fq'/Fm', resulting

in a moderate to strong negative correlation (r -.58, respectively r =
FIGURE 4

Normalised Excess Green index (ExG) retrieved from RGB images of PhenoCams monitoring the experiment during the senescence period from
DOY 167 to DOY 225 of ten modern winter wheat cultivars (Triticum aestivum L.) grown under ambient (~434 ppm) and elevated (~622 ppm) [CO2]
measured throughout the vegetation period 2020/2021. Plants were grown in the BreedFACE experimental field at Campus Klein-Altendorf,
Rheinbach, Germany. Each dot represents the mean value of three plots (n = 3), and vertical lines indicate LIFT measurement dates and different
senescence periods.
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-.97). Specifically, at the beginning of the vegetation period, both Fr1'

and Fr2' demonstrate higher values under a[CO2] conditions compared

to e[CO2], with the difference between the two being more pronounced

in the case of Fr2'. As the seasons advanced, both Fr1' and Fr2' showed a

declining trend. But while Fr2' values increased again before heading,

Fr1' was decoupled, and values did not rise again before anthesis. Also

for Fr1' and Fr2', a significant growth period effect (F(2,538) = 79.65, p<

0.001; F(2,538) = 364.89, p<.001) and interaction effect was

documented (F(2,538) = 12.15, p<.001; F(2,538) = 29.32, p<.001).

The analysis of the simple main effects resulted in no significant

treatment effect for Fr1' but in significant treatment effects for Fr2'

during the vegetative growth period (F(1,184) = 56.70, p<.001) and

during senescence (F(1,171) = 14.00, p<.001). The development of Fr2'

included a more pronounced difference between treatments at the

beginning of the season, a decline in mid-season, and an increase after

heading, particularly under a[CO2].
4 Discussion

4.1 Abiotic environmental parameters

According to the German Meteorological Service (DWD), 2021

was an ambivalent year, generally following the long-term trends

with slightly increased temperatures (Imbery et al., 2021). During

the experiment, the vegetative growth period featured more

favourable environmental conditions compared to the grain-filling

phase, which faced a drought and heat period. The climatic

conditions observed in 2021, characterised by increased

temperatures, periods of drought, and episodes of heavy rainfall,

align with future climate prediction models, increasing the

relevance of our e[CO2] dataset for future projection scenarios.
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The here described FACE setup has shown to be an effective

experimental setup to increase the CO2 concentration in a winter

wheat field. The system also managed to increase the [CO2] during

cold and windy winter conditions. Outside the FACE operating

hours, especially in the early morning hours, we recorded a

substantial accumulation of the CO2 concentration in all sensors

placed in the elevated and ambient CO2 ring. On windless summer

nights, these values often exceeded thresholds of 1000 ppm. This

effect could also be observed in various eddy-covariance stations

(TERENO, https://ddp.tereno.net). The accumulation of CO2 can

be explained by plant respiration mechanisms, which tend to

increase with biomass accumulation over the season, peaking

shortly before ear emergence and are generally higher during

wind-still, warm nights with reduced air circulation (Ney and

Graf, 2018; Pearman and Garratt, 2022). Additionally, soil

respiration mechanisms of microorganisms releasing CO2 back

into the atmosphere during the night contribute to the effect and

may also lead to slightly increased values under e[CO2] (Lipson

et al., 2005). Since the effect was observed in either treatment and

mainly during the night when photosystems were idle, we presume

that this effect had a neglectable influence on crop development in

this study.

FACE experiments are constrained by their capacity for

homogenous CO2 distribution, limiting the experimental area and

leading to CO2 fluctuations. Although fluctuations in [CO2] are also

present in natural environments, they are substantially greater in a

FACE system. Allen et al. (2020) noted that these fluctuations can

cause a reduced photosynthetic activity which can lead to an

underestimation in yield, suggesting a yield data correction factor

of 1.5. Furthermore, the authors argue that until the effects of

fluctuating vs. constant elevated CO2 are better understood,

modelling plant growth and yield will remain uncertain. The
A B

FIGURE 5

(A) Senescence rate during two periods: period 1 spans from the start of the grain filling phase, DOY 168 to DOY 176, and period 2 covers DOY 176
to DOY 193. Data points represent the mean senescence rate for each cultivar, with error bars indicating the standard error. Dashed horizontal lines
indicate the overall mean senescence rate across all cultivars for the treatment and control groups during their respective periods. (B) Correlation
between the PhenoCam-retrieved senescence rate and the LIFT-retrieved PSII operating efficiency (Fq’/Fm’) at two time points (DOY 168 and DOY
176) during the senescence phase. Data points represent the mean value per cultivar. Both datasets come from ten modern Winter wheat cultivars
(Triticum aestivum L.) grown under ambient (~434 ppm) and elevated (~622 ppm) [CO2] in the BreedFACE experimental field at Campus Klein-
Altendorf, Rheinbach, Germany, during the 2020/2021 vegetation period.
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extent of these fluctuations can be largely managed through the

design and technology of the FACE system. To ensure best possible

results, the here presented FACE ring structure was limited to 18.5

m in diameter. The ability to achieve homogenous CO2 fumigation

is further dependent on factors such as wind speed, direction and air

temperature, which were carefully considered and accounted for in

the design and execution of the experiment.

Despite the technical and financial challenges of CO2 fumigation,

the target concentration was generally maintained at a high level.

Although the scalability of FACE experiments is limited by these

challenges, they offer the most accurate simulation of natural

conditions and are therefore indispensable for understanding plant

and ecosystem responses to future climatic conditions.
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4.2 Yield parameters

Since 2021 has been a year with rather challenging weather

conditions, and where extreme precipitation events led to increased

lodging and harvest losses, our grain yields were compared to a

multi-regional state cultivar trial. Despite the weather conditions,

cultivars grown in the present study are in range with the state trial

and obtained grain yields for plants grown at a[CO2] were

marginally higher (+2.8%) (NRW Chamber of Agriculture, 2021).

The observed substantial increase in straw biomass under e

[CO2] aligns with the prevailing favourable environmental

conditions during the vegetative growth phase. This increase,

coupled with the observed rise in photosynthetic efficiency, could
A

B

C

FIGURE 6

Seasonal dynamics of chlorophyll fluorescence traits, pooled data of ten modern light-adapted winter wheat (Triticum aestivum L.) cultivars grown
under ambient (~434 ppm) and elevated (~622 ppm) [CO2]. (A) PSII operating efficiency (Fq’/Fm’) and (B) Fr1’ representing the kinetics of electron
transfer from QA to PQ pool, up to ~0.65 ms after Fm’ is reached, i.e., Fr1’ the kinetics of electron transfer from QA to PQ pool from light-adapted
plants and (C) Fr2’ the kinetics of electron transfer from PQ pool to PSI up to 6.64 ms after initiation of the measurement protocol. The data was
collected using a LIFT-REM device in 2021 at the BreedFACE experimental field at Campus Klein-Altendorf, Rheinbach, Germany. Cultivar
independent comparison, error bars indicate the SE, Bonferroni adjusted t-test, ns = not significant, *** p< 0.001 (n = 30, total number of
measurements = 8’901). * p <.05.
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contribute to more sustainable and multifunctional agricultural

practice, where increased straw biomass not only contributes to

carbon sequestration, e.g. carbon farming, but potentially also offers

valuable ecosystem services or serves as a valuable industrial raw

material. While the increase in photosynthetic efficiency correlates

with biomass accumulation, it may not fully capture the complexity

of the processes contributing to biomass accumulation. However,

the synergy between the increased photosynthetic efficiency and the

boosted growth in the early vegetative stage may be linked to clarify

the potential shift in resource allocation as indicated by the Harvest

Index (HI). Interestingly, Campesino was the only cultivar that

maintained its grain-to-shoot biomass ratio. This cultivar belongs to

the quality group B and is characterised by its low crude protein

content. Moschus, an Elite-cultivar characterised by high crude

protein content, had the highest decrease in the HI. Similar

decreases in the HI have previously been reported in a meta-

analysis on barley grown under elevated [CO2] (Gardi et al.,

2022). The observed shift in the resource allocation for the large

majority of the cultivars, favouring vegetative growth over

investments into reproductive organs, is potentially based on the

down-regulation of RuBisCo activity and electron transport under e

[CO2] (Ainsworth et al., 2004). LIFT measurements performed

during the grain filling phase showed an apparent down-regulation

of the PSII operating efficiency in Moschus. In contrast, Campesino

could maintain higher Fq'/Fm' during our last measurements under

e[CO2]. Whether the higher CO2 concentration and the related

change in the resource allocation of crops also led to an impairment

of the crop quality needs further investigation.

Although a handful of FACE studies investigated the yield

response of spring wheat, only very few studies explicitly focused

on winter wheat. Dier et al. (2018) conducted a two-year FACE

study with a single cultivar and observed an 18% increase in

vegetative biomass and 17% in grain yield. In another experiment

dealing with two winter wheat cultivars, conducted by Bunce

(2012), no significant grain yield increase was detectable. The

results obtained in our study indicated an above-average increase

in vegetative dry matter for most of the cultivars. However, the

mean grain yield was lower than in previous studies, except for the

cultivars Asory and Campesino. The substantial relative increase in

grain yield under e[CO2] observed for these two cultivars could

potentially be attributed to genetic factors such as the integration of

a rye translocation genome T1AL.1RS/T1RS.A1, which has

previously been described to cope well with dry conditions during

the grain filling stage (Dr. B. Hackauf, personal communication).

The below-average grain yield increase could be attributed to the

anthropogenic-caused rise in temperature, which is suggested to

offset growth enhancements driven by e[CO2] as described in a

recent meta-analysis (Helman and Bonfil, 2022). Disparities in

reported biomass accumulation of other FACE studies can also be

attributed to our selection of cultivars characterised by a very high

yield, presumably reaching their maximum yield potential. The

phenomenon known as yield plateauing may account for the non-

environmentally caused limited increase under e[CO2]. Also, past

studies often include fewer cultivars, typically with older release

years. The diversity of these findings highlights the importance of

studying cultivar-specific responses to e[CO2] and stresses the
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importance of genetic diversity in developing climate-

resilient crops.

Both manual and UAV-based data demonstrated increased

height for plants grown under e[CO2]. Intriguingly, this growth

stimulation occurred early in the season and was maintained

throughout the entire growth period, exhibiting only marginal

variations. This trend indicates that the examined cultivars are

especially prone to e[CO2] during early growth and that the

investments made during that time were decisive for later

development. Towards the end of the vegetation period, however,

a decline of plant height was observed for plants grown under e

[CO2], which may be linked to the observed phenomenon of earlier

senescence, which was also noticeable in the EVI and in ChlF traits

(see section 4.3 and 4.4). While a strong correlation was observed

between manual plant height measurements and UAV-retrieved

data, we also observed an increasing discrepancy between the two

methods. The offset between the two methods can primarily be

attributed to differences in the measurement technique. While

manual measurements allowed for a simple determination of a

plant’s tip, identifying the relatively small tips, i.e. ears, from a nadir

perspective in UAV imagery with a resolution of several centimetres

is challenging. The increasing disparities can also be attributed to

observed alterations during the senescence phase. While ears

maintained their height, leaves were shrinking and changing their

angle, i.e., more downwards, leading to a potential decline in canopy

height. Furthermore, during the processing of the UAV data, a 95%

confidence interval was set to exclude extremes, e.g. overreaching

plants. Similar observations were previously reported by Bareth

et al. (2016). Although UAV-retrieved measurements seem to result

in a slightly lower accuracy, they allow for large area assessments

and thus are by far more time efficient.
4.3 Phenology

The potential to boost the vegetative growth by e[CO2] was also

demonstrated by the significantly higher VI values (p<.001) observed

under e[CO2] after canopy closure. As the vegetation period advanced,

the EVI and OSAVI clearly responded to the disparities between a

[CO2] and e[CO2] and were maintained up to anthesis. After that, we

observed a noticeable decrease in VIs and photosynthetic performance

measured by ChlF traits. This decline in photosynthetic activity is a

result of the transition from the generative phase to the senescence

phase, which is marked by a progressive browning of the vegetation.

During the senescence period, the response was different for the

different VIs. While EVI values for plants grown under e[CO2]

slightly dropped below the values of plants grown under a[CO2], the

NDVI values were maintained, suggesting that e[CO2] either extended

the vegetation’s productive phase or mitigated the effects of senescence.

On the other hand, the NDVI already showed rising values during the

first flight campaign, suggesting that the increasing CO2 levels

continued to have a consistent and prolonged influence on the plant

height and biomass accumulation throughout the observation period

and followed a similar trend as the ExG throughout the senescence

period. The persistent increases in vegetation indices relative to

ambient CO2 conditions indicate that the NDVI was generally less
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sensitive to increases in biomass, which has previously been

documented (Baret and Guyot, 1991; Mutanga and Skidmore, 2004).

Often described as the final stage of a plant’s life cycle, senescence is

an essential upcycling process where resources such as RuBisCo are

reallocated within the plant to maximise reproductive success (Pyung

et al., 2007). The visible degreening process or degradation of pigments

results from oxidative stress, caused by an imbalance of the C/N ratio

and is accompanied by reduced enzymatic activity, resulting in an

increased H2O2 production (Agüera and De la Haba, 2018). To

monitor senescence dynamics at the canopy level, temporally high-

resolved data was recorded with PhenoCams. The ExG index, derived

from the PhenoCam data, notably revealed a less pronounced

senescence rate under e[CO2]. However, the declining ExG values

may not solely be attributed to wilting leaves and chlorophyll

degradation but also to an architectural change in the plants. This

phenomenon is also evident in the UAV data (DOY 216), showing

differences in canopy height between a[CO2] and e[CO2]. Even though

one of the earliest visible signs of senescence is the breakdown of

chlorophyll, leaf yellowing is not a good indicator of the early stages

since it occurs when the process has proceeded for some time (Diaz

et al., 2005). Bertheloot et al. (2008) described that senescence in winter

wheat progresses from the bottom to the top of the canopy, influenced

by the quantity of available protein in the vegetative organs. The

instruments used in our study, PhenoCams and LIFT, captured this

phenomenon differently due to their viewing angles. Specifically,

PhenoCams, which capture the canopy from a side view, primarily

focus on the upper leaves. In contrast, LIFT takes a nadir (top-down)

view, giving it a more comprehensive look into the deeper layers of the

canopy. This is crucial for understanding the differential effects of e

[CO2] on the plant. Under e[CO2], the lower leaves, presumably richer

in protein, show an earlier decrease in Fq'/Fm'. This suggests that

resources are being reallocated to the upper leaves, allowing them to

maintain higher photosynthetic activity for a longer period. Therefore,

the combination of both systems under e[CO2] reflect not just current

photosynthetic efficiency but also the plant’s adaptive resource

allocation strategy in response to e[CO2].
4.4 Chlorophyll fluorescence traits

Regardless of the treatment, the obtained Fq'/Fm' parameter generally

followed the expected trend of a high photosynthetic efficiency during the

beginning of the vegetation period, followed by a decline over the

vegetation period. This decline can be attributed to the natural ageing

process of the plants, which consequently also leads to a continuous

reduction of carbon fixation per unit leaf area throughout the growing

season. Further examination of the data showed that all ChlF traits

followed a consistent trend across varieties until the grain-filling stage.

After DOY 170, however, the responses became strongly cultivar-specific.

The results of this study indicate that ChlF traits of plants grown

under e[CO2] differed from those grown under ambient conditions.

While under e[CO2], Fq'/Fm' was significantly increased during the

vegetative period, it showed a more substantial decline towards the

end of the vegetation period. Conversely, there was no discernible

trend during the mid-season.
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In this context, understanding the relationship between

photosynthesis and sink capacity is critical. Existing research

suggests that a plant’s ability to utilise excess assimilates produced

under e[CO2] is likely driven by its sink capacity. Variations in the

observed ChlF traits across different growth stages could reflect

differences in sink strengths. Early in the growing season, resources

are allocated primarily towards the developing stem and leaf tissues.

The observed rapid growth under e[CO2] likely stimulated the

production of NADPH and ATP, which are essential for efficient

electron transport, thereby promoting photosynthetic efficiency.

The gap between Fq'/Fm' under ambient and e[CO2] then

narrows, possibly due to increased sink-driven respiration or

potential acclimation effects (Lauriks et al., 2021).

However, as the plants approach heading and anthesis, the focus of

resource allocation shifts from leaves to reproductive structures, such as

developing inflorescence and grains, which serve as strong sinks.

Although the timing of anthesis across different cultivars was

relatively consistent and not significantly altered by e[CO2], the

accelerated growth and increased carbohydrate production during

the vegetative phase might indirectly lead to a more pronounced

decline in Fq'/Fm' under e[CO2] conditions. The increased Fr1' and

Fr2' values during the senescence phase suggest a slowing down of

reoxidation rates under e[CO2], possibly due to a shift in resource

allocation. Fewer electrons from PSII could be available for

downstream processes like the Calvin cycle, leading to this

deceleration in reoxidation rates. The strong correlation between Fr1’

and Fr2’ with Fq’/Fm’ indicates that e[CO2] likely influences the

efficiency of the Calvin cycle, contributing to the observed changes in

photosynthetic efficiency.

Correlation analysis of the ChlF traits and environmental

factors revealed distinct correlations during different growth

stages. During the vegetative growth phase, there is a positive

correlation between temperature and Fq'/Fm' (r = .50), while the

reoxidation efficiencies Fr1’ and Fr2’ exhibit a negative correlation

(r = -.70 respectively r = -.44). The observed pattern in

the vegetative phase could indicate that winter wheat optimises

Fq'/Fm' under e[CO2], particularly at higher temperatures during the

initial growth stages. A meta-analysis by Poorter et al. (2021)

highlighted that the internal water-use efficiency of C3 plants

tends to be significantly higher under e[CO2]. This could explain

why winter wheat grown under e[CO2] maintained a relatively

higher Fq’/Fm’, particularly during dry days.

When transitioning into the generative growth phase, a strong

positive correlation exists between Fr2’ and both temperature (r = .64)

and PAR (r = .80), indicating increased electron transfer kinetics from

the PQ pool to PSI. This may suggest an enhancement of reproductive

growth processes. In the senescence growth phase, Fq'/Fm' is again

positively correlated with temperature (r = .71) and PAR (r = .50),

implying an augmented light-associated plant efficiency during the

transition to senescence. In contrast, Fr1' and Fr2' exhibit a negative

correlation with these factors during this phase (rTemp = -.87 and rPAR =

-.60, respectively rTemp = -.60 and rPAR = -.40). These observations

underline the intricate and dynamic interactions between

photosynthetic efficiency, electron transfer kinetics, and

environmental variables across the growth stages.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1304751
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Knopf et al. 10.3389/fpls.2023.1304751
5 Conclusions

We demonstrated that a future increase in the atmospheric CO2

concentration, to an expected level of the second half of this century,

significantly impacts the growth dynamics and development of

modern winter wheat cultivars. Early vegetation stages particularly

benefit from enhanced growth under e[CO2], a crucial phase where

plants establish the foundation for subsequent development.

However, e[CO2] also appears to alter the senescence process. This

dual impact results in a changed resource allocation strategy, as

evidenced by changes in yield parameters like the harvest index.

The observed variations in photosynthetic efficiency, quantified

as Fq'/Fm', reflect a complex interplay of environmental conditions,

developmental stages, and potentially genetic factors. This suggests

that plants’ ability to exploit additional resources under e[CO2] may

be constrained by varying sink capacities throughout the growth

cycle. Such insights could guide targeted management interventions,

such as the application of growth regulators or breeding programs

aimed at optimising genetic composition for resilience under

changing climatic conditions. Importantly, these findings were

made possible by integrating an automated phenotyping platform

in a FACE system in combination with an array of sensors. Platforms

like this offer invaluable data for the assessment of climate-resilient

crop cultivars. Moreover, continuous photosynthetic measurements

could serve as a monitoring tool for assessing the impact of

environmental stressors. This knowledge could then be applied to

fine-tune crop management practices, enhancing yield while

minimising the input, thereby contributing to broader efforts to

make farming systems more sustainable.
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Wyber, R., Malenovský, Z., Ashcroft, M. B., Osmond, B., and Robinson, S. A. (2017).
Do daily and seasonal trends in leaf solar induced fluorescence reflect changes in
photosynthesis, growth or light exposure? Remote Sens. 9 (6). doi: 10.3390/rs9060604

Zani, D., Crowther, T. W., Mo, L., Renner, S. S., and Zohner, C. M. (2020). Increased
growing-season productivity drives earlier autumn leaf senescence in temperate trees.
Science 370 (6520), 1066–1071. doi: 10.1126/science.abd8911

Zendonadi dos Santos, N., Piepho, H., Condorelli, G. E., Groli, E. L., Newcomb, M.,
Ward, R., et al. (2021). High-throughput field phenotyping reveals genetic variation in
photosynthetic traits in durum wheat under drought. Plant Cell Environ. 1–21.
doi: 10.1111/pce.14136
frontiersin.org

https://doi.org/10.1787/agr_outlook-2012-en
https://doi.org/10.1071/FP17024
https://www.aussenlabore.uni-bonn.de/cka/de/standort/copy_of_standortbeschreibung
https://www.aussenlabore.uni-bonn.de/cka/de/standort/copy_of_standortbeschreibung
https://doi.org/10.1016/j.agrformet.2022.108944
https://doi.org/10.1016/0034-4257(94)90136-8
https://doi.org/10.19103/AS.2022.0102.01
https://doi.org/10.19103/AS.2022.0102.01
https://doi.org/10.1111/nph.17802
https://doi.org/10.1146/annurev.arplant.57.032905.105316
https://doi.org/10.1109/igarss47720.2021.9554347
http://www.r-project.org/
http://www.r-project.org/
https://doi.org/10.1016/j.plantsci.2018.06.017
https://doi.org/10.1007/978-3-030-90673-3_1
https://doi.org/10.1038/sdata.2018.28
https://doi.org/10.1016/0034-4257(95)00186-7
https://doi.org/10.1016/0034-4257(95)00186-7
https://doi.org/10.1002/pei3.10065
https://doi.org/10.1016/j.agrformet.2011.09.009
https://doi.org/10.1016/j.agrformet.2011.09.009
https://doi.org/10.1111/j.1365-2486.2007.01473.x
http://digitallibrary.un.org/record/139811
https://doi.org/10.3390/rs9060604
https://doi.org/10.1126/science.abd8911
https://doi.org/10.1111/pce.14136
https://doi.org/10.3389/fpls.2023.1304751
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Philipp Von Gillhaussen,
Interantional Plant Phenotyping Network
(IPPN), Germany

REVIEWED BY

Germano Gomes,
Flemish Institute for Biotechnology, Belgium
Muqing Zhang,
Guangxi University, China

*CORRESPONDENCE

Carmela Rosaria Guadagno

cguadagn@uwyo.edu

†These authors have contributed equally to
this work

RECEIVED 01 October 2023

ACCEPTED 21 December 2023

PUBLISHED 21 February 2024

CITATION
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Introduction: Drought detection, spanning from early stress to severe

conditions, plays a crucial role in maintaining productivity, facilitating recovery,

and preventing plant mortality. While handheld thermal cameras have been

widely employed to track changes in leaf water content and stomatal

conductance, research on thermal image classification remains limited due

mainly to low resolution and blurry images produced by handheld cameras.

Methods: In this study, we introduce a computer vision pipeline to enhance the

significance of leaf-level thermal images across 27 distinct cotton genotypes

cultivated in a greenhouse under progressive drought conditions. Our approach

involved employing a customized software pipeline to process raw thermal

images, generating leaf masks, and extracting a range of statistically relevant

thermal features (e.g., min and max temperature, median value, quartiles, etc.).

These features were then utilized to develop machine learning algorithms

capable of assessing leaf hydration status and distinguishing between well-

watered (WW) and dry-down (DD) conditions.

Results: Two different classifiers were trained to predict the plant treatment—

random forest and multilayer perceptron neural networks—finding 75% and 78%

accuracy in the treatment prediction, respectively. Furthermore, we evaluated

the predicted versus true labels based on classic physiological indicators of

drought in plants, including volumetric soil water content, leaf water potential,

and chlorophyll a fluorescence, to provide more insights and possible

explanations about the classification outputs.

Discussion: Interestingly, mislabeled leaves mostly exhibited notable responses

in fluorescence, water uptake from the soil, and/or leaf hydration status. Our

findings emphasize the potential of AI-assisted thermal image analysis in
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enhancing the informative value of common heterogeneous datasets for

drought detection. This application suggests widening the experimental

settings to be used with deep learning models, designing future

investigations into the genotypic variation in plant drought response and

potential optimization of water management in agricultural settings.
KEYWORDS
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Introduction

Climate change is exerting a profound impact on global crop

production, primarily driven by the escalating variability in

precipitation patterns and the increased occurrence of droughts

(IPCC, 2022). These shifts in water availability have far-reaching

consequences, affecting the productivity, quantity, and quality of all

agricultural crops, including those essential for anthropic use.

One such crop is Gossypium hirsutum L., important for its

significant contributions to fiber production, seed oil extraction,

and livestock fodder. Thriving in arid environments where water

resources are already limited, this species necessitates a substantial

volume of annual water (60–120 cm) to support its robust growth

(Wegier et al., 2016; Khan et al., 2020). With 25 million tons of fiber

produced per year and an economic impact exceeding 600 billion

dollars, cotton plays a pivotal role in supplying over 80% of the

global natural fiber demand, underscoring its critical importance to

both individuals and global economies (Townsend, 2020). In recent

years, the production of this crop has been decreasing due to more

severe weather events (Meyer et al., 2023), and projections suggest

that the world cotton production may struggle to meet the

burgeoning demand in the next decades (Li et al., 2021).

However, a silver lining is represented by the substantial genetic

diversity inherent within this species constituting an unprecedented

avenue for the selection, breeding, and cultivation of varieties that

are inherently better equipped to endure and thrive amidst

increasing climatic pressures.

Plant phenotyping consistently applies image processing (IP)

techniques (either classical or modern ones to data acquired from

visible, infrared, and hyperspectral cameras, showing the potential

to enable for non-destructive, high-throughput detection and

selection of desirable traits across different temporal and spatial

scales (Zhao et al., 2019). Thermal imaging, also known as infrared

thermography, is a powerful and non-invasive technique that has

found widespread relevance in recent years to assess canopy

temperature and their responses to both abiotic and biotic

stressors, from salt stress, heat, and drought stress to bacterial

and fungal infections (Pineda et al., 2021). The analysis of canopy

temperatures has been connected to traditional physiological

measurements—leaf water potential, gas exchange, and
02178
chlorophyll a fluorescence (Cohen et al., 2005; Casari et al., 2019)

—and utilized to screen for genotypic variation across several

species (Casari et al., 2019; Bhandari et al., 2021; Ferguson et al.,

2021). The processing of thermal images usually starts by separating

the canopy impression from the background pixels that may

include soil particles and other structures. This initial pixel

exclusion process can be completed through a variety of different

approaches: manual isolation of the canopy and leaf via polygon

selection, gray scaling, image segmentation, two-means clustering,

and bimodal peak detection (Mohanty et al., 2016; Prakash et al.,

2021; Stutsel et al., 2021; Sakurai et al., 2023). Despite the utilized

methodology, the postprocessing times for the analysis of thermal

images are usually long and often affected by the low resolution of

the images (Kohin and Butler, 2004).

To cope with the constraints imposed by traditional IP

methods, over the last few years, the scientific community has

largely adopted machine learning (ML) and, particularly, deep

learning (DL) techniques to deal with data acquired by plant

phenotyping platforms or, more in general, from high-throughput

measurements (Solimani et al., 2023). These algorithms can also

represent a great opportunity to implement the postprocessing of

thermal images captured with handheld cameras and indeed

increase their final throughput. ML algorithms have already been

used to analyze thermal images, specifically to enhance stomatal

count, surface recognition, and crop disease classification (Cho

et al., 2018; Ferguson et al., 2021; Pignon et al., 2021; Batchuluun

et al., 2022). Three different ML algorithms, namely, random forest,

multivariate linear regression, and gradient boosting, were

previously used to correlate thermal data—acquired by thermal

IR images—to environmental drivers, such as solar radiation, air

temperature, relative humidity, and wind speed, to assess the

relationship between the stomatal conductance in crop canopies

and changes in environmental factors (Zhao et al., 2021). Another

approach consisted of two models based on variations for decision

trees used to define a relationship between the regression of thermal

indexes for droughted and well-watered scenarios of vineyard crops

(Gutiérrez et al., 2018). DL approaches have also been proposed by

developing a custom architecture based on convolutional neural

networks (CNNs) to classify five different crop diseases and defects

(e.g., blast, bacteria leaf blight, leaf folder) (Batchuluun et al., 2022).
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Renó et al. 10.3389/fpls.2023.1305292
In that case, the model was first trained on the Paddy crop dataset

and then refined on a new empirical dataset consisting of 4,720

images. The results were further investigated by using class

activation maps to highlight the parts of the image that were

considered relevant by the network to achieve the classification

result. Finally, indexes of classification, such as the crop water stress

index (CWSI), have been computed to distinguish between

droughted and well-watered crops. Despite these significant IP

applications to thermal images and the correlations to different

physiological indicators from various crops, models that use

thermal crop response to water stress across extreme genotypes

using deep learning are scarce (Berni et al., 2009; Pratap et al., 2019).

Here, we provide an evaluation of the response of different

genotypes to different levels of water limitations, from mild to

severe drought. First, we screened a panel of 27 geographically

different genotypes (Supplementary Figure S2) in the species

Gossypium for their response to water limitation using a

handheld IR camera. These imaging data were used as the basis

to develop a hybrid IP/ML processing software pipeline, which used

IP techniques to extract the region of interest from each leaf and

then feed a statistically enhanced ML algorithm to predict the leaf

water status, as either well-watered (WW) or subjected to dry-down

(DD) at two different times during the complete water withholding

(mild and severe drought). Finally, we coupled additional leaf-level

physiological measurements, such as water potential and

chlorophyll a fluorescence to the IP/ML analysis, providing a

meaningful interpretation of the modeled results.
Materials and methods

Plant materials

A panel of 27 different genotypes was utilized for the experiment,

and all seeds were obtained from the USDA Germplasm Collection.

Genotypes originate from Australia, China, Guatemala, Mexico,

Trinidad and Tobago, and the USA, covering all four zones that have

the highest production of cotton in the world (Wendel et al., 2009).

Aside from being geographically diverse, the selected genotypes also

span a large range in leaf size, plant and leaf architecture, and coloration

(Figure 1). This extreme genotypic variation inevitably affects the

physiology of these genotypes, including their water status and their

ability to maintain leaf turgor despite water limitations (e.g., large versus

small leaves, significantly impacting transpiration rates) making the

panel of choice perfectly suited for testing our pipeline, due to expected

great variation in the thermal features of the leaves under

progressive drought.
Growth conditions

The cotton panel was grown in a greenhouse research bay of the

Plant Growth & Phenotyping Facility at the University of Wyoming

(Laramie, Wyoming, USA) for a total of 122 days from seed to seed,

planting to harvesting, during the winter of 2022–2023. The cotton

panel, 27 genotypes × 3 replicates each, was grown following a
Frontiers in Plant Science 03179
random block design, and the greenhouse environmental

conditions were controlled by state-of-the-art climate control

systems (Argus, British Columbia, Canada). Temperature was set

to 27°C ± 3°C/26°C ± 3°C (day/night), and relative humidity was

between 10% and 30%. Additional lighting was given by a four-

channel Heliospectra growth light system (Heliospectra AB,

Gothenburg, Sweden). The intensity of the Elixia LED channels

was set as follows: 450 nm (blue) at 500 units, 660 nm (red) at 500

units, 735 nm (far-red) at 500 units, and the white 5,700K LED

channel at 1,000 units. All intensities are reported as 0–1,000 units

corresponding to 0%–100% of max LED output as for the

Heliospectra manual. The photoperiod was 14/10 (D/N), 0600h–

0800h; the highest recorded photosynthetically active radiation

(PAR) was 1,600 mmol photons m−2 s−1 with the sensor located

in the middle of the canopy. Aside from the OMNI sensors from

Argus, the environmental conditions were also tracked using

CR1000 Data Logger (Campbell Scientific Inc. Logan, UT, United

States) monitoring: air temperature and relative humidity

HMP45AC (VAISALA, Vantaa, Finland); PAR, LI-COR

Quantum (LI-COR, Lincoln, NE, United States); and soil

moisture, Delmhorst GB-1 (Delmhorst Instrument Co., Towaco,

NJ, United States). Sensors were spaced across the entire area

covered by canopy in the ~40-m/420-ft2 greenhouse bay.
Experimental design

One seed per pot (10 quarts/11 L in volume) was sown in a

substrate made up of sand (80% v/v; Premium Play Sand, Quickrete,

Atlanta, GA), fritted clay (10% v/v; Greens Grade, Buffalo Grove,

IL), and organic soil mix (10% v/v; Miracle-Gro moisture control

Potting Mix, Marysville, OH) amended with ½ tablespoon of

Osmocote 16–6–12 fertilizer (Scotts, Marysville, OH). Sown seeds

were covered and placed centrally in the pot at a depth of ~½ inch/

1.2 cm and covered in vermiculite to aid in the germination. Plants

were hand-watered with reverse osmosis (RO) water daily to

maintain soil field capacity and a soil water potential close to

saturation until 105 days after sowing (DAS) when all genotypes

and replicates had at least 50% of opened flowers (Figure 2). At 106

DAS, two randomly chosen replicates for each genotype were

subjected to complete water withholding for the rest of the

experiment forming the dry-down cohort of plants (DD), while

one replicate per genotype was maintained at the daily watering

regime in the well-watered (WW) cohort. All physiological

measurements occurred at two points in time, at 110 DAS (mild

drought) and 121 DAS (severe drought), after 4 and 14 days of

uninterrupted progressive drought, respectively.
Leaf-level physiological measurements

On measurement days, chlorophyll a fluorescence was

measured on two separate fully developed leaves of the mid-

canopy with a handheld fluorometer (FluorPen FP100, Photon

System Instruments, Drásov, Czech Republic). Measurements of

photosystem II efficiency were taken using a saturation pulse that
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FIGURE 2

Experimental design. A panel of 27 diverse genotypes of cotton was grown for a total of 122 days after sowing (DAS). All plants were watered at
saturation until 105 DAS when drought was applied as complete water withholding for a subset of plants (dry-drown). All data presented in the
manuscript were collected at 110 DAS (mild drought) and 121 DAS (severe drought).
FIGURE 1

In-vivo pictures of extreme genotypes in the cotton panel. Striking examples of plant architecture, leaf types, and coloration differences in the
experimental panel. Red/dark green medium size leaf for Red Dwarf Harrison (A); large, with low venation leaves in TX_180 (B); inverted margins for
the leaves of Cup Leaf (C); trilobate morphology for Gumbo leaves (D); pale green and short overall plant size for Virescent nankeen (E); and short-
overall plant size and okra-like leaves for Pronto (F). All plants were WW and imaged on the same day (70 DAS).
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was applied (1,500 mmol photons m−2 s−1) to measure Fv/Fm or Fv

′/Fm′ on dark- or light-acclimated leaves, respectively (Murchie and

Lawson, 2013). During the same measurement days, one fully

developed leaf per plant was also harvested and used to measure

leaf water potential (PMS Instrument Company, Albany, OR,

United States). Soil moisture measurements were also taken using

a HydroSense II (Campbell Scientific Inc., Logan, UT, United

States). Leaf water potential, chlorophyl a fluorescence, and soil

moisture measurements were taken over a 24-h time course during

the hours of 10:00–12:00 h, 16:00–18:00 h, and 22:00–24:00 h. After

the start of the dry-down, all physiological measurements were

taken during the hours of 04:00–06:00 h (predawn) and 11:00–13:00

h (midday).
Thermal imagery collection

Thermal images were taken using a handheld FLIR Thermal

Camera T560, 640 × 480 pixel resolution, wide angle lens f = 10

mm (FLIR Systems Inc., Wilsonville, OR, United States). Fully

developed leaves near the top of the canopy were chosen for

imaging, and one leaf per replicate plant across all genotypes and

treatment was imaged at the same time as the other leaf-level

physiological measurements. A white paper backdrop was placed

directly behind the leaf, and an image was taken holding the

camera objective facing both the leaf and backdrop to allow for a

full frontal view of the images (Figure 3). Image parameters were

set using leaf emissivity, 0.95, and with focus regulation (Buitrago

et al., 2016). A total of 648 images was made up from two images
Frontiers in Plant Science 05181
per leaf, from three replicate plants for 27 genotypes at two times

of the day (predawn and midday) and at two drought treatments.

After initial QC, the final dataset used for the ML analysis was a

balanced dataset of 419 images between WW and DD. All

thermal images were converted to CSV format using FLIR

Thermal Studio.
Data analysis

Physiological data were processed using Excel and R 4.3.1 (R

Core Team, 2013) with packages dplyr (Wickham et al., 2023) and

tidyverse (Wickham et al., 2019). The presented graphs were

generated using the packages ggplot2 (Wickham, 2016) and

ggrepel (Slowikowski, 2023).
Hybrid IP/ML software pipeline for
thermal data

The hybrid IP/ML pipeline used in this work is summarized in

Figure S2, and it includes the following computational steps.

1. Data parsing: First, raw format data exported by the FLIR

thermal camera were parsed by a specific software routine to store the

data in an interoperable format such as comma-separated value (CSV)

files. Each one of these files held two separate representations, that is, a

thermal representation, where each pixel represented a thermal value

stored as a floating point number, and an RGB value, used for

visualization purposes.
B C DA

FIGURE 3

Leaf thermal variation in extreme cotton genotypes. Bright green, large leaf from Delta Pine 16 (A); red/dark green medium size leaf from Red Dwarf
Harrison (B); okra-like leaf from Siokara L23 (C), and dark green medium to large leaf from Tipo Chaco (D).
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2. Data preprocessing: After the parsing step, a preprocessing

step aimed at obtaining a high-pass-filtered version of the raw

thermal image, as well as its gradient, was performed. To this end,

the fast Fourier transform (FFT) of the raw thermal image was first

computed (Figure 4A). Then, a binary mask was computed to keep

all the FFT pixels whose value was less than the continuous

component, considered as the central, brighter, pixel (Figure 4B).

Then, the inverse transform was applied, as shown in Figure 4C.

Finally, the gradient of the filtered image was computed (Figure 4D)

and used to compute the leaf mask in the next step.

3. Leaf mask computation: The computation of the leaf mask is

performed starting from the gradient obtained during the

preprocessing step. First, the first quartile q1 and the third quartile

q3 of the values of the gradient image are computed. Then, the

interquartile range IQR = q3 − q1 is the used to compute a threshold

thrdw = q1 − 1:5 · IQR. Let d be the gradient image; a binary maskM

is then obtained according to the following binarization logic:

M(i, j) =
1,   if   d (i,   j)  ∨ d (i, j) < thrdw  

0,   otherwise

(

To enhance the mask M, the morphological operations of

dilation, hole filling, and erosion, followed by a blob analysis,

were performed, computing the connected components of the

image. The final mask M is then selected as the region with the

greatest number of contiguous pixels turned on. Some examples of
Frontiers in Plant Science 06182
leaf masks for different genotypes are shown in Figure 5. The pixel

values in the region highlighted by the leaf masks are used to

compute thermal features. As such, the temperature values are first

statistically filtered removing the outliers, hence making the

algorithm robust to small leaf mask misalignments. Then, a set of

eight statistical thermal indicators are computed from raw thermal

values, that is, mean, standard deviation, median, 25th and 75th

percentiles, interquartile range, max, min, and temperature range.

The IP/ML software pipeline was developed and tested, and all

the AI applications were run on a machine equipped with an Intel

Core i9-11900K, 32 GB of RAM, and an Nvidia GeForce RTX 3080

GPU with 10 GB of RAM. The software was developed in Python

3.10, and the Scikit Image (Van der Walt et al., 2014) and Scikit

Learn (Pedregosa et al., 2011) libraries were used.
Results and discussion

Statistical analyses

The first step was to use the IP preprocessing techniques (Figure

S1) to extract all the leaf masks from the raw thermal data along

with the associated features. The algorithms used at this stage are

non-parametric, meaning that they automatically tune the

parameters after a preprocessing step of each thermal image, so

that the leaf mask can be estimated (Figure 6) and the thermal
B

C D

A

FIGURE 4

Data preprocessing details. Raw thermal image (A), a fast Fourier transform (FFT) of the raw thermal image is computed to keep all the FFT pixels
whose value is less than the continuous component, considered as the central, brighter, pixel (B), inverse transform application (C), computed
gradient of the filtered image (D) used to compute the actual leaf mask.
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features are extracted almost in real time. This step was mandatory

for providing the baseline data to be used for the next steps of

the pipeline.

The thermal features extracted from this initial data parsing step

were then used as the basis for the ML processing software pipeline.

For this, a first exploratory analysis was performed using a two-

sample Kolmogorov–Smirnoff test on single features. This led to a

comparison between well-watered leaves and droughted ones,

aiming at identifying those features that were not sampled from

the same statistical distribution. In other words, this test allowed the

evaluation of features that were likely to be used to discriminate

between WW and DD leaves.

As no assumptions were made on the distribution for WW and

DD leaves, two non-parametric distributions were anticipated. A

comparison was performed using the median, mean, standard

deviation, range, and interquartile range of each distribution

(Figures 5, 7). Median (Figure 5A), mean (Figure 5B), and standard

deviation (Figure 5C) were statistically compared for the two

distributions, and they all showed an extremely low p-value, below

the standard threshold a = 0:05. As a consequence, the null hypothesis

stating that data come from the same distribution could be rejected for

these variables. When the data range and the interquartile range (IQR)

were statistically compared (Figures 5A, B), the p-value was not lower

than the standard threshold a , with p = 0.00764 and p = 0.0753,

respectively. Hence, in this case, the null hypothesis could not be

rejected, and we could not conclude that these quantities were drawn

from different data distributions. From this statistical evaluation, we

can assume that features related to the median, mean, and standard

deviation of the values for the thermal features of the leaves can be

effectively used to distinguish between WW and DD leaves. However,

the range of the features and the interquartile range cannot be

confidently considered during the evaluation since it cannot be

concluded whether they are drawn from different distributions.
Machine learning algorithms

A complete comparison between two different processing

software pipelines was performed. Specifically, two different
Frontiers in Plant Science 07183
classifiers were trained to predict the plant treatment (DD or

WW), that is, random forest (RF) and multilayer perceptron

(MLP). The dataset used for the ML algorithms training, test, and

validation was composed of 419 samples, 212 of them for WW

leaves and 207 for DD leaves. Each sample is obtained by joining the

automatically computed thermal features with the respective plant

treatment (DD or WW), removing all the non-discriminating

features from the dataset. The dataset subset split strategy was as

follows: 75% of the samples (314) to compute the T subset (for the

training and test) and 25% of the samples (105) to compute the V

subset (for the validation). Each one of the ML algorithms was

inserted in a pipeline, which first scaled each feature to match a

normal distribution N(0, 1), namely, a distribution with zero-

average and unitary standard deviation. A feature selection

procedure was then performed using the mutual information

criterion. Finally, the T subset was used to train and test the

classifier using a random search for hyperparameter optimization

and a K-fold cross-validation with k = 10. A summary of the results

for optimization is shown in Table 1 for both the RF and

MLP pipelines.

The resulting classification report (computed on the V subset)

for the RF classifier showed weighted average values for precision

and recall of 78% and 71%, respectively (Table 2). Overall, the

weighted accuracy on a total support of 105 leaves across all

genotypes was approximately 75%, meaning that the classifier was

incorrect in predicting 25% of the original images during validation.

Comparing the true labels of the leaves against the predicted labels

using the RF classifier, 40 WW and 38 DD leaves across all

genotypes were correctly predicted, while a total of 27 leaves were

miscategorized (Figure 8A).

The MLP classifier showed slight overall improvements: the

classifier achieved improved recall on DD leaves and precision on

WW leaves, at the cost of lower values of precision and recall for

DD and WW leaves, respectively (Table 3). However, there was an

improvement in terms of the overall accuracy, increasing to 78%. It

is important to highlight that for this second classifier, the data

support was changed, although not significantly, due to the random

generation process for the validation dataset used to ensure the

generalization properties of the classifier. The higher overall
B CA

FIGURE 5

Statistical comparisons of data distributions (significant). Statistical comparison using the KS test of the median (A), mean (B), and variance (C)
computed over the distributions of WW and DD leaves.
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Renó et al. 10.3389/fpls.2023.1305292
accuracy of the MLP approach was reflected in the confusion matrix

showing that the correct predictions across all 27 genotypes

increased for both treatments (Figure 8B). Specifically, the MLP

correctly categorized a total of 82 leaves between WW (37) and DD

(45), compared with the 78 total of the RF classifier.

Both the RF and MLP classifiers resulted in an accuracy greater

than 70%, considering support data (105 leaves) pooled from 27

different genotypes for both WW and DD treatments, in mild and

severe drought, corresponding to 4 and 14 days after the beginning

of the progressive water withholding (Figure 2).
Frontiers in Plant Science 08184
Testing the physiological soundness of the
AI analysis

Since the presented ML pipelines were built using the data from

the entire panel of Gossypium under different degrees of water

limitation, the accuracy results of the classifications can be

considered in line with previous results (Solimani et al., 2023).

The great genotypic diversity of the experimental cotton panel

inevitably caused extreme variability in leaf size, plant and leaf

architecture, and coloration (Figure 1). These diverse genotypes
BA

FIGURE 6

Leaf mask comparison. Examples of thermal images (A) and correspondent computed masks (B).
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have already been reported to be indeed affected by their physiology

resulting in a large spectrum of water status and drought response

(Wendel et al., 2009; Wendel et al., 2010; Sreedasyam and Schmutz,

2019). This variability was clearly visible in the range of leaf

temperatures captured already in WW conditions (Figure 3). For

instance, the Delta Pine16 genotype showed a leaf temperature

mean almost 5°C lower than Tipo Chaco in the same WW

conditions, while two morphologically dissimilar genotypes,

namely, Dwarf Red Harrison and Siokara L23—one with dark

red/green, medium-size leaves and one with green, okra-like type

of leaves—showed very similar leaf temperatures. It is known that

leaf temperature is affected by changes in the microclimate at the

canopy level and this can be somewhat variable in greenhouse

conditions based on the spatial locations of the pots and on the time
Frontiers in Plant Science 09185
of the day (Beverly et al., 2020). However, drawing significant

relationships between leaf temperature per se and genotypic

variation was not the scope of the current work, and the diverse

experimental panel was used as a robust testbed for the

development of the novel IP/ML software pipeline for thermal data.

To understand the misclassifications from the ML classifiers, we

more closely analyzed the environmental and the volumetric soil

water content associated with each image (Supplementary

Table S3). First, we confirmed that the applied drought

treatments caused a reduction of volumetric soil water content

(%) for the DD plants compared with the WW, and this reduction

was more evident under severe drought (Figure S4). As expected,

the 27 genotypes responded differently to the progressive drought,

with the most water-efficient genotypes like Cup Leaf, L23, and
TABLE 1 Hyperparameters selected for random forest and multilayer perceptron processing software pipelines.

Processing pipeline Hyperparameter Value Description

RF pipeline (feature selection +
random forest)

K 3 Number of the most relevant features selected according to the mutual information criterion

Minimum samples
per leaf

5
Minimum number of samples to determine whether a node of each tree in the decision
forest can be marked as a terminal one (i.e., a leaf)

Max depth 5 Maximum depth of each tree in the decision forest

MLP pipeline (feature selection +
multilayer perceptron)

K 7 Number of the most relevant features selected according to the mutual information criterion

Solver ADAM Optimization algorithm used during backpropagation

Learning rate Constant
Learning rate schedule used during backpropagation. In this case, constant means that no
adaptive scheduling is used.

Hidden layer sizes 50 Number of neurons used in the hidden layer of the multilayer perceptron
BA

FIGURE 7

Statistical comparisons of data distributions (non-significant). Statistical comparison using the KS test of the data range (A) and interquartile range
(IQR) (B) computed over the distributions of WW and DD leaves.
TABLE 2 Classification report for the random forest.

Class Precision Recall F1 score Weighted accuracy Support

DD 0.78 0.71 0.74 0.75 51

WW 0.71 0.78 0.74 0.74 54
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Lorinator, maintaining their leaf water potential closer to the WW

value even under drought conditions (Figure 9). When comparing

soil moisture and the efficiency of PSII from chlorophyll a

fluorescence values for a random subset from all classified images,

we found that the leaves wrongly classified by the ML pipeline also

showed an outlier behavior in either one or both traits under both

mild and severe drought conditions (Figure 10, Figure S4). For

instance, under mild drought, the mislabeled genotypes (TM1,
Frontiers in Plant Science 10186
Lorinator, and Durango) were the ones that did not significantly

decrease their soil moisture although they were sitting in the DD

cohort of the panel, most likely due to microclimate variations in

the greenhouse. The same validation with soil moisture was

revealed for mislabeled plants under severe drought as well, and it

similarly applied for plants sitting in the WW cohort, such as Tipo

Chaco that for the true label of WW resulted in a predicted label of

DD for the image pipeline (Figure 8B). While soil moisture seems to
BA

FIGURE 8

Confusion matrix outcomes. Confusion matrix for the random forest (A) and the multilayer perceptron (B) classifiers.
TABLE 3 Classification report for the multilayer perceptron.

Class Precision Recall F1 score Weighted accuracy Support

DD 0.74 0.87 0.80 0.79 52

WW 0.84 0.70 0.76 0.78 53
fr
FIGURE 9

Leaf water potential across the 27 experimental genotypes. The distribution of leaf water potentials is observed across genotypes in both mild and
severe drought. The well-watered plants (WW) are represented in gray and the plants under dry-down (DD) in black.
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be sufficiently explanatory for the mislabeled leaves, the efficiency of

PSII seems to be less correlated to the ML outcomes. While the

randomly chosen DD leaves in severe drought showed high PSII

efficiency, such as expected from their still relatively high soil

moisture, the mislabeled Tipo Chaco sitting in the WW cohort was

misclassified as DD by the ML pipelines even if it maintained a PSII

efficiency of 0.55 (Figure 10B). Chlorophyll a fluorescence as the

efficiency of PSII has previously been shown to follow drought

response dynamics across different species (Guadagno et al., 2017),

and this mismatch between soil moisture value and fluorescence

might be due to a particular resistance of the photosynthetic

machinery of this specific genotype to severe drought, which is not

the focus of the presented work. This analysis of the software pipeline

outcomes indicated soil moisture as a highly possible driver of the

misclassification and the efficiency of PSII evidently being a less but

still correlated physiological trait. From the physiological ground

truthing, thermal imaging and the classifiers had lower than 25% and

22%mislabeled leaves (Supplementary Table S3) considering that the

actual label was not meaningful of the actual treatment and/or

physiological status of the plant.
Conclusions

Our work confirmed the efficiency of thermal imaging data in

detecting water limitations and the invaluable assistance of AI

analysis in increasing the throughput of handheld IR cameras

(Kamarudin and Ismail, 2022). Our results are suggestive of

increased efficiency in the postprocessing of thermal data time

even when extreme genotypic variation is present. In the utilized

experimental panel, the spectrum of thermal features for different

genotypes was in fact extremely variable even for WW samples. The

presented classification becomes more meaningful considering that

the support data for the ML application were coming from leaves

exposed to two different levels of water limitation—aside from the
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WW control—triggering a large variety of physiological interplays

across the 27 genotypes. Our leaf-level experimental approach

coupled other physiological measurements to the thermal

imaging, allowed us for further testing of the ML results. We

found that mislabeled leaves also had a significantly different

behavior in other means of plant water status such as soil water

potential and content to partly account model errors. Overall, our

study confirms that AI can be an incredible resource to optimize the

throughput of handheld thermal cameras despite genotypic

variation, extreme morphological and temperature features, and

over a large combination of G × E, allowing for more generalized

applications in water management across different geographical

agricultural scenarios. In the future, we auspicate for the

development of more targeted designs aimed to dissect the

temporal progression of water limitation across different

genotypes and its correlation with peculiar leaf venation types

and architectures. Higher accuracy in thermal image classification

will allow for the development of more complex ML pipelines,

representing an essential aid in breeding and water management

efforts,especially for globally relevant crop species like cotton.
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SUPPLEMENTARY FIGURE S1

The processing image pipeline. Building blocks of the developed pipeline

used in this work includes four computational steps: CSV parsing, pre-
process, leaf mask computing, and thermal stats computing.

SUPPLEMENTARY FIGURE S2

Genotypes included in the experimental panel. All 27 genotypes included in

the cotton experimental panel and their correspondent abbreviations used in
during the experiment.

SUPPLEMENTARY TABLE S3

Single measurements of volumetric soil water content across all
collected images.

SUPPLEMENTARY FIGURE S4

Volumetric soil water content across the 27 experimental genotypes.

Distribution of leaf water potentials are observed across genotypes in both
mild and severe drought. The well-watered plants (WW) are represented in

grey and the plants under dry down (DD) in black.
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Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using deep learning for image-
based plant disease detection. Front. Plant Sci. 7, 1419. doi: 10.3389/fpls.2016.01419

Murchie, E., and Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to
good practice and understanding some new applications. J. Exp. Bot. 64, 3983–3998.
doi: 10.1093/jxb/ert208

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Pignon, C. P., Fernandes, S. B., Valluru, R., Bandillo, N., Lozano, R., Buckler, E., et al.
(2021). Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water
use efficiency-related genes. Plant Physiol. 187 (4), 2544–2562. doi: 10.1093/plphys/kiab395
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