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Editorial on the Research Topic 


The interplay of gut-microbiome between infection and inflammation


Because of its varied makeup and role in regulating human health and disease, the gut microbiome has drawn huge attention from the scientific community in recent years. As a result of scientific advancements including high-throughput genome sequencing and transcriptome analysis, the gut microbiome has become a viable therapeutic target for both infectious and autoimmune diseases. In particular, it has been demonstrated that respiratory infections, such as COVID-19 and tuberculosis, significantly influence the pathogenesis of the disease progression due to gut dysbiosis, which in turn impacts the regulation of the gut-lung axis and advances the disease (Baindara et al., 2021). Conversely, it has been noted that gut dysbiosis plays a significant role in several chronic conditions, such as cancer, diabetes, obesity, inflammatory bowel disease, neurological disorders, cardiovascular complications, biliary diseases, colitis, appendicitis, and metabolic disorders (De Vos et al., 2022; Hou et al., 2022). Despite the acknowledged involvement of the gut microbiome in various pathologies, it is currently unclear how the gut microbiota contributes to the development and regulation of various diseases. Infection-associated inflammation or sterile inflammation and its molecular interaction with gut microbiota and gut dysbiosis, along with overall disease progression is one of the exciting research areas that requires further detailed investigation to understand the unanswered questions. Furthermore, understanding and methods to overcome gut dysbiosis, gut microbiome transfer, gut microbiota-based host-directed therapies, understanding the impact of conventional antibiotics on the gut microbiome, and drug-repurposing techniques to alter the gut microbiome are key underexplored Research Topics on the path to scientific advancement in the role and regulation of gut microbiome research.

Acting as a bridge between the liver and the intestine, the biliary system demonstrates proximity to the gut microbiome. Importantly, the biliary system plays an essential role in metabolic regulation, especially in lipid metabolism in the bile duct. The occurrence of biliary system diseases has rapidly increased in recent years, but the involvement of the microbiota has not yet been fully explored in this regard. In a recent systemic review, Wang et al. reviewed the associated microbial diversity in patients with gallstones (GS), primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and biliary tract cancer (BTC). Systemic analysis revealed that the prevalence of the genus Faecalibacterium was decreased in GS, PSC, PBC, and BTC patients, whereas the abundance of the genera Veillonella, Lactobacillus, Streptococcus, and Enterococcus was noticeably increased in the cases of PSC, PBC, and BTC-associated patients. Remarkably, the diversity of the genus Clostridium was found to be decreased in GS, PBC, and BTC patients while it was generally increased in PSC patients. Another study by Chen et al. explored the microbiome associated with biliary obstruction in patients infected with Clonorchis sinensis. An increase in Proteobacteria and a decrease in Firmicutes were reported in the biliary microbiome of C. sinensis-infected patients at the phylum level. Also, a significant increase in the genera Pseudomonas and Staphylococcus was observed along with a noticeable reduction in Enterococcus bacteria at the genus level in infected patients. Furthermore, lying within proximity, the gut microbiome was found to have a significant role in the liver environment via the gut-liver axis. Any changes in the gut microbiota can induce liver inflammation, which can further result in chronic liver diseases (CLDs) such as liver cirrhosis (Figure 1). Next, Wu et al. studied the distribution of the gut microbiome in patients with liver cirrhosis by employing 16S rRNA gene sequencing of stool samples. The results demonstrated a prominently reduced microbial diversity and diminished abundance of typical SCFA-producing bacterial groups including Firmicutes, Coprococcus, and Clostridium IV, along with an enhanced burden of pathogenic bacterial groups, Gammaproteobacteria, Veillonella, and Bacilli in cirrhotic patients. It has been suggested that probiotics may be used as an adjuvant therapy to boost SCFA-producing bacteria in patients with liver cirrhosis.

A gut infection caused by Clostridioides difficile is a major cause of nosocomial diarrhea. A microbial profiling study by Vázquez-Cuesta et al. reported an increased burden of Fusobacterium, and a reduction of Collinsella, Senegalimassilia, Prevotella, and Ruminococcus in recurrent C. difficile infection (R-CDI). Interestingly, the rate of R-CDI was significantly correlated with increased levels of calprotectin (Figure 1). The authors suggested a predictive model for R-CDI, employing dominant microbial genera and calprotectin levels.

In addition to infection-associated gut dysbiosis and involvement in the inflammatory response, the gut microbiome has also been reported to play an important role in the progression of cancers such as colorectal cancer (CRC). A study by Bucher-Johannessen et al. showed an abundance of Phascolarctobacterium succinatutens, Bifidobacterium, and Lachnospiraceae spp. associated with the patient samples diagnosed with CRC and high-risk adenoma (HRA). In another study, Xu et al. evaluated the dynamic changes of migratory microbial components in colonic tissue using an LPS-induced rat model of sepsis. The results of this study determined the temporal dynamics of bacteria and bacterial translocation from various sources to colonic tissues at different time points of sepsis progression (Figure 1). In conclusion, the identified bacterial migrants may serve as potential biomarkers that directly or indirectly alter the structure and function of the colonic microbiota, during the pathophysiology of sepsis.

It is a known fact that during COVID-19, gut microbiota played an important role in disease regulation by modulating the gut-lung axis. However, children showed only mild symptoms. To uncover the protective effect of the gut microbiome in children during COVID-19, Marzano et al. performed a metaproteome analysis of the gut microbiota in pediatric patients. Univariate analysis revealed that the pediatric gut microbiota played a protective role by being involved in metabolic processes such as tryptophan, butanoate, fatty acids, and bile acid biosynthesis along with antibiotic resistance and virulence. Another, meta-analysis by Reuben et al. analyzed the oral and nasopharyngeal or gut microbiome in COVID-19 patients and found a prominent reduction in the gut microbial diversity but not in the respiratory microbiome. Furthermore, Petakh et al. reported on the role of gut microbiota in COVID-19 progression in Type 2 diabetes (T2D) patients (Figure 1). The results showed a positive correlation between specific gut microbiota (Klebsiella spp. and Enterococcus spp.) and C-reactive protein levels and length of stay in COVID-19 patients with or without T2D. Overall, this study revealed the potential role of specific gut microbiota in COVID-19 patients with T2D, which can be used to develop treatment strategies for COVID-19 and associated T2D.

In the recent past, the impact of the gut microbiota on cardiovascular disease has also been demonstrated. An interesting review by Wang et al. explored the gut-heart axis and its role in myocarditis along with detailing the cross-linking of the immune system with the gut microbiota, and its metabolites. Next, Zhang et al. studied the gut microbiome in infants with congenital heart disease and showed the association between heart failure and the gut microbiome. The results suggested an abundance of Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes at the phylum level and Enterococcus, Bifidobacterium, Subdoligranulum, Shigella, and Streptococcus at the genus level in the heart failure group of infants (Figure 1). Moreover, a noticeable reduction was observed in the alpha and beta diversity of the gut microbiome in the heart failure group in comparison to the control group along with a downregulation of the retinol metabolism. Overall, it is suggested that the gut microbiome could serve as a potential biomarker for the early diagnosis of heart disease.

The azomethane-dextran sodium sulfate (AOM-DSS) mouse model is well-established for the induction of acute colitis, but the success rate has always been an issue. A study of the gut microbiome associated with the AOM-DSS mouse model by Sun et al. revealed the important role of gut microbiota at the early stage of model development to improve the success rate of model construction. Gut microbiome analysis revealed uncontrolled proliferation of Pseudescherichia, Turicibacter, and Clostridium XVIII leading to death. A significant reduction was observed in the genera Ligilactobacillus, Lactobacillus, and Limosilactobacillus while Akkermansia and Ruthenibacterium were found to be increased in the gut of live AOM-DSS mice. The involvement of F. nucleatum in the progression of colitis has also been reported in the recent past. Taking this further, Duan et al. explored the role of fucose in the mice treated with F. nucleatum or fucose-treated F. nucleatum followed by colitis induction using DSS. The results suggested a protective role for fucose in colitis as the group of mice injected with fucose-treated F. nucleatum showed a reduced inflammatory response. It is revealed that the metabolic pathways of F. nucleatum are altered upon fucose treatment resulting in reduced pro-inflammatory properties of F. nucleatum. Overall it is suggested that fucose could be used as a functional food or prebiotic for the treatment of F. nucleatum-induced colitis. Next, a two-sample Mendelian Randomization (MR) study by Zhang et al. explored the relationship between gastroduodenal ulcers and gut microbiota employing a genome-wide association study (GWAS). The results demonstrated a negative correlation of gastroduodenal ulcers with the prevalence of Enterobacteriaceae, Butyricicoccus, Candidatus soleaferrea, Lachnospiraceae NC2004, Peptococcus, and Enterobacteriales while a positive correlation was observed with the abundance of Streptococcaceae, Lachnospiraceae UCG010, Marvinbryantia, Roseburia, Streptococcus, Mollicutes RF9, and NB1n. Overall, this study provides an important perspective for the gut microbiota-based therapeutic approaches for gastroduodenal ulcers. Similarly, another two-sample MR study by Wang et al. investigated the relationship between appendicitis and gut microbiota using GWAS. Their analysis revealed an inverse association of appendicitis risk with the prevalence of the genera Deltaproteobacteria, Christensenellaceae, Desulfovibrionaceae, Eubacteriumruminantium, Lachnospiraceae NK4A136, Methanobrevibacter, Desulfovibrionales, and Euryarchaeota while a positive correlation was found with the increased number of Family XIII, Howardella, and Veillonella which are associated with appendicitis susceptibility (Figure 1).

Interestingly, the gut microbiota has also been reported to be involved in dysbiosis-associated depression, but the detailed mechanism is unknown. An exciting study by Huang et al. examined chronic unpredictable mild stress (CUMS) and its association with the gut microbiome and NLRP3 inflammasome using fecal transplantation (FMT). It was found that FMT from CUMS rats to the antibiotic-treated rats showed enhanced NLRP3 inflammasomes along with increased levels of inflammatory cytokines. Moreover, probiotic treatment successfully balanced the altered gut microbiome induced by CUMS treatment and resulted in a diminished inflammatory response. Gut dysbiosis is also known to be associated with autoimmune diseases and associated inflammation (De Luca and Shoenfeld, 2019; Baindara, 2024). Chang and Choi recently reviewed the correlation of the gut microbiome with autoimmune diseases, especially focusing on Sjögren’s syndrome (SS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). The study suggests that gut dysbiosis in autoimmune diseases plays an essential role in the immune response by maintaining gut homeostasis, and so associated gut microbiota could be used as biomarkers for the treatment and early diagnosis of autoimmune diseases (Figure 1).

Overall, these studies have demonstrated the interplay of gut microbiota and defined microbial biomarkers in multiple infectious and autoimmune diseases (Figure 1). It is strongly recommended that specific gut microbiota could be used as therapeutic biomarkers in the early diagnosis of associated diseases. In addition, a general enrichment of the gut microbiome using probiotics could help reduce the incidence of diseases.




Figure 1 | The gut microbiome in human health and disease. The upper panel shows the involvement of gut microbiota in the regulation of infectious and autoimmune diseases including cancer. The lower panel shows a schematic representation of the inverse relationship between inflammation, gut dysbiosis, and infection. CUMS, Chronic unpredictable mild stress; T2D, Type 2 diabetes; GS, Gallstone; PSC, Primary sclerosing cholangitis; PBC, Primary biliary cholangitis; BTC, Biliary tract cancer; R-CDI, C. difficile infection; CRC, Colorectal cancer; and HRA, High-risk adenoma.






Author contributions

PB: Conceptualization, Investigation, Project administration, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. SM: Investigation, Supervision, Validation, Writing – review & editing.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.





References

 Baindara, P. (2024). Targeting interleukin-17 in radiation-induced toxicity and cancer progression. Cytokine Growth Factor Rev 75, 31–39. doi: 10.1016/j.cytogfr.2024.01.001

 Baindara, P., Chakraborty, R., Holliday, Z. M., Mandal, S. M., and Schrum, A. G. (2021). Oral probiotics in coronavirus disease 2019: connecting the gut–lung axis to viral pathogenesis, inflammation, secondary infection and clinical trials. New Microbes New Infect. 40, 100837. doi: 10.1016/j.nmni.2021.100837

 De Luca, F., and Shoenfeld, Y. (2019). The microbiome in autoimmune diseases. Clin. Exp. Immunol. 195, 74–85. doi: 10.1111/cei.13158

 De Vos, W. M., Tilg, H., Van Hul, M., and Cani, P. D. (2022). Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032. doi: 10.1136/gutjnl-2021-326789

 Hou, K., Wu, Z. X., Chen, X. Y., Wang, J. Q., Zhang, D., Xiao, C., et al. (2022). Microbiota in health and diseases. Signal Transduction Targeting Ther. 7. doi: 10.1038/s41392-022-00974-4




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2024 Baindara and Mandal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 09 February 2023

doi: 10.3389/fcimb.2023.1142578

[image: image2]



Gut microbiota in patients with COVID-19 and type 2 diabetes: A culture-based method



Pavlo Petakh 1,2*, Nazarii Kobyliak 3,4 and Aleksandr Kamyshnyi 2*


1 Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine, 2 Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine, 3 Medical Laboratory CSD, Kyiv, Ukraine, 4 Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine




Edited by: 

Piyush Baindara, University of Missouri, United States

Reviewed by: 

Pratima Kumari, Georgia State University, United States
 Swati Jaiswal, University of Massachusetts Medical School, United States
 Jyotsna Kuma, University of Connecticut, United States
 
Richa Dwivedi, University of Pittsburgh, United States

*Correspondence: 
 Pavlo Petakh
  pavlo.petakh@uzhnu.edu.ua  
Aleksandr Kamyshnyi
  kamyshnyi_om@tdmu.edu.ua

Specialty section: 
 
This article was submitted to Intestinal Microbiome, a section of the journal Frontiers in Cellular and Infection Microbiology


Received: 11 January 2023

Accepted: 30 January 2023

Published: 09 February 2023

Citation:
Petakh P, Kobyliak N and Kamyshnyi A (2023) Gut microbiota in patients with COVID-19 and type 2 diabetes: A culture-based method. Front. Cell. Infect. Microbiol. 13:1142578. doi: 10.3389/fcimb.2023.1142578




Background

The global pandemic of coronavirus disease 2019 (COVID-19) continues to affect people around the world, with one of the most frequent comorbidities being Type 2 Diabetes (T2D). Studies have suggested a link between disbalances in gut microbiota and these diseases, as well as with COVID-19, potentially due to inflammatory dysfunction. This study aims to analyze the changes in gut microbiota in COVID-19 patients with T2D using a culture-based method.



Methods

The stool samples were taken from 128 patients with confirmed COVID-19. Changes in the composition of gut microbiota were analyzed by culture-based method. The study used chi-squared and t-test to find significant differences in gut bacteria between samples and non-parametric correlation analysis to examine relationship between gut bacteria abundance, C‐reactive protein (CRP) levels and length of stay (LoS) in COVID-19 patients without T2D.



Results

The gut microbiota of T2D patients with COVID-19 showed increased Clostridium spp., Candida spp., and decreased Bifidobacterium spp., Lactobacillus spp. Metformin-treated patients with T2D and COVID-19 without antibiotic treatment showed increased Bacteroides spp., Lactobacillus spp., and decreased Enterococcus, Clostridium compared to the same group with antibiotic treatment. The study also found a positive correlation between the abundance of certain gut microbiota genera, such as Klebsiella spp. and Enterococcus spp., and CRP levels and LoS in COVID-19 patients without and with T2D, while the abundance of other genera, such as Bifidobacterium spp. and Lactobacillus spp., was found to have a negative correlation.



Conclusion

In conclusion, this study provides important insights into the gut microbiota composition of SARS-CoV-2-infected individuals with T2D and its potential impact on the course of the disease. The findings suggest that certain gut microbiota genera may be associated with increased CRP levels and longer hospital stays. The significance of this study lies in the fact that it highlights the potential role of gut microbiota in the progression of COVID-19 in patients with T2D, and may inform future research and treatment strategies for this patient population. The future impact of this study could include the development of targeted interventions to modulate gut microbiota in order to improve outcomes for COVID-19 patients with T2D.





Keywords: gut microbiota, coronavirus disease 2019, dysbiosis, metformin, diabetes 

  1 Introduction

In December 2019, the first reports of unknown pneumonia cases emerged in Wuhan, China (She et al., 2020). The virus responsible for the illness was identified as a new coronavirus, which was named SARS-CoV-2, and it was found to have a genetic similarity to SARS-CoV (Hu et al., 2021). Since then, 4 years have passed and the world has experienced multiple waves of COVID-19 outbreaks caused by different versions of the SARS-CoV-2 virus, known as variants. So far, the Alpha, Beta, Gamma, Delta, and Omicron variants have been designated as “variants of concern” due to their high infectivity and virulence, and each later one appears to be more transmissible than the previous one (Shrestha et al., 2022). The pandemic is ongoing, and the dominant strain currently is Omicron.

Type 2 diabetes (T2D) is a common comorbidity among people with COVID-19, with a prevalence that ranges between 7-30% (Corrao et al., 2021). People with diabetes who are infected with SARS-CoV-2 have a higher risk of being hospitalized, developing severe pneumonia, and a higher mortality rate compared to those without diabetes (Lima-Martínez et al., 2021). The chronic elevation of blood sugar levels associated with T2D can weaken innate and adaptive immunity. Additionally, T2D is linked to a low-grade chronic inflammation state that can exacerbate the inflammatory response and increase the risk of developing acute respiratory distress syndrome (Al-Kuraishy et al., 2021; Petakh et al., 2022).

One of the factors influencing the course of COVID-19 is the gut microbiota (Petakh et al., 2022). Recent research is starting to uncover the connection between gut microbiota and the way COVID-19 affects the body. The gut, being the largest immune organ in the body, has its own set of microorganisms that can control host immunity, protect against pathogens and aid in nutrient digestion (Belkaid and Hand, 2014). Gut dysbiosis with a reduction in microbial diversity is commonly linked to immune-mediated inflammatory and autoimmune diseases (Mousa et al., 2022). The gut microbiota could also regulate local and systemic inflammatory activity, and some studies have demonstrated that respiratory infections are associated with both compositional and functional alterations of the gut microbiota through vital crosstalk between gut microorganisms and the pulmonary system, otherwise known as the “gut–lung axis” (Cruz et al., 2021). It is also interesting that gut dysbiosis is observed not only in patients with COVID-19, but also in patients with T2D and other non-communicable diseases (Iatcu et al., 2021).

Currently, molecular-based methods are used to assess the gut microbiota, such as 16S rRNA gene sequencing, but the main disadvantage of these methods is the price. In this study, we used the culture-based method, which is relatively cheap and can be used in low-income countries.


 2 Materials and methods

 2.1 Study design and sample collection

From COVID-19 confirmed patients who were admitted to the Transcarpathian Regional Infectious Hospital from 2020 to 2022, 128 feces samples were collected. The study had four stages, each of which analyzed the characteristics of the gut microbiota in different types of groups of patients with COVID-19 ( Figure 1 ). Patients with COVID-19 were assigned to the Delta and Omicron groups based on the predominance of the respective strains during this period. In the group of patients who used antibiotics, 29.3% of patients were prescribed linezolid, 34.4% were prescribed meropenem, 25.8% were prescribed fluoroquinolones (moxifloxacin and ciprofloxacin), and 10.5% were prescribed cephalosporins of the III or IV generations. Metformin-Treated Patients with T2D (MTP with T2D) took metformin in a dose of 1000-1500 mg per day for at least 3 months before admission.

 

Figure 1 | Study flow chart. 




 2.2 Microbiota analysis

For analysis of gut microbiota, grams of feces were weighed, 9 ml of isotonic (0.9%) sodium chloride solution were added to a test tube, and the mixture was thoroughly rubbed until a homogeneous mass was formed. This created a 10-1 dilution. Subsequently, a series of dilutions from 10-2 to 10-11 were prepared in the same way ( Figure 2 ). Using sterile micropipettes, 10 μl was taken from each dilution and applied to nutrient media. For the isolation of enterobacteria, commercial nutrient media Endo agar and Bismuth sulfite agar were used; for Staphylococcus spp. - Mannitol Salt Agar; for Enterococcus spp. – Bile Esculin Agar; for Yeast – Sabouraud Agar. Iron sulfite agar (Wilson-Blair) was used for isolation of Clostridia, Sharpe agar for Lactobacillus spp., Bifidobacterium Selective Agar for Bifidobacterium spp., and Bacteroides Bile Esculin Agar for Bacteroides species. Identification of microorganisms was carried out according to the scheme ( Figure 3 ) based on the Clinical Microbiology Procedures Handbook, Volume 1-3, 4th Edition (Dunn et al., 2016). For the convenience of presentation of the material and mathematical and statistical processing, decimal logarithms of the quantitative indicator of the grown colonies of microorganisms (lg CFU/g) were used, and the proportion of genera were also calculated.

 

Figure 2 | Methodology for serial dilution of stool samples. 



 

Figure 3 | Methodology for bacterial identification. 




 2.3 Statistical analysis

To determine whether any differences observed between samples were statistically significant, we used the chi-squared test, which compares the observed frequencies of different bacterial taxa to the expected frequencies. We also used the Student’s t-test, which compares the mean values of different bacterial taxa between two groups of samples. In the current study, non-parametric correlation analysis was also used to examine the relationship between the abundance of various bacterial genera and C‐reactive protein (CRP) levels and length of stay (LoS) in COVID-19 patients without T2D. Spearman’s rank correlation coefficient (r) was calculated to determine the strength and direction of the correlation, with a p-value of <0.05 considered statistically significant. All statistical analyses were performed using the IBM SPSS Statistics and GraphPad Prism 9, and a p-value of <0.05 was considered statistically significant.



 3 Results

The average age of the patients was 55.5 (IQR (interquartile range) 51.25 – 60.00). Among them, men - 72 (56.3%), women - 56 (43.4%) ( Table 1 ;  Figure 4 ). The results of our study indicate that patients infected with the Omicron variant of the virus (period of Omicron variant predominance in our region) have a higher abundance of certain gut bacteria genera compared to those infected with the Delta variant. Specifically, we found that the Omicron group had a significantly higher abundance of the genus Bifidobacterium (P=0.000), Bacteroides (P=0.023), Klebsiella (P=0.000), Enterobacter (P=0.016), and Lactobacillus (P=0.005). In contrast, patients in the Delta group had a significantly higher abundance of the genus Clostridium (P=0.000), Enterococcus (P=0.000), and Candida (P=0.003) compared to the Omicron group ( Figure 5 ).

 Table 1 | Basic characteristics of the study population. 



 

Figure 4 | Median percentage of gut bacteria in all patients included in the study. 



 

Figure 5 | Comparison of gut microbiota composition in patients infected with Omicron or Delta variants of SARS-CoV-2 and Antibiotic-Treated or Non-Antibiotic-Treated group. The results indicate that the Omicron group had a significantly higher abundance of the genera Bifidobacterium, Bacteroides, Klebsiella, Enterobacter, and Lactobacillus compared to the Delta group (P<0.05). In contrast, the Delta group had a significantly higher abundance of the genera Clostridium, Enterococcus, and Candida compared to the Omicron group (P<0.05). The figure also shows the comparison of gut microbiome composition between patients treated with antibiotics and those who were not. It demonstrates that patients treated with antibiotics had a higher abundance of the genera Enterococcus, Candida, and Clostridium, while non-antibiotic-treated group had a higher abundance of the genera Proteus, Klebsiella, Citrobacter, Staphylococcus, Lactobacillus and Bacteroides. 



Our study’s findings suggest that patients treated with antibiotics have a different gut microbiome composition compared to those who were not treated with antibiotics. Specifically, we found that the antibiotic-treated group had a higher abundance of the genus Enterococcus (P=0.000), Candida (P=0.003) and Clostridium (P=0.000). In contrast, patients in the non-antibiotic-treated group had a higher abundance of the genus Proteus (P=0.000), Klebsiella (P=0.000), Citrobacter (P=0.028), Staphylococcus (P=0.000), Lactobacillus (P=0.000) and Bacteroides (P=0.000) compared to the antibiotic-treated group. Also, we found that patients with COVID-19 and T2D had a lower abundance of the genus Bifidobacterium (P=0.000) and Lactobacillus (P=0.000) and a higher abundance of the genus Candida (P=0.000) compared to patients with COVID-19 but no T2D ( Figure 6 ).

 

Figure 6 | Comparison of gut microbiota composition in patients with COVID-19 and T2D, and gut microbiota composition in metformin-treated patients. The results indicate that the patients with COVID-19 and T2D had a lower abundance of the genus Bifidobacterium (P=0.000) and Lactobacillus (P=0.000) and a higher abundance of the genus Candida (P=0.000) compared to patients with COVID-19 but no T2D. Also, the metformin-treated group without antibiotic treatment had a higher abundance of the genus Bacteroides (P=0.000), E. coli (P=0.005), Lactobacillus (P=0.000), and a lower abundance of the genus Clostridium (P=0.000) and Enterococcus (P=0.000) compared to the metformin-treated group with antibiotic treatment. This figure illustrates the impact of metformin treatment and antibiotic treatment on gut microbiome composition in patients with COVID-19 and T2D and the difference in gut microbiome composition between patients with COVID-19 and T2D and patients with COVID-19 but no T2D. 



Our study found that metformin-treated patients with T2D and COVID-19 without antibiotic treatment had a different gut microbiome composition compared to metformin-treated patients with T2D and COVID-19 who also received antibiotic treatment. Specifically, we found that the metformin-treated group without antibiotic treatment had a higher abundance of the genus Bacteroides (P=0.000), E. coli (P=0.005), Lactobacillus (P=0.000), and a lower abundance of the genus Clostridium (P=0.000) and Enterococcus (P=0.000) compared to the metformin-treated group with antibiotic treatment ( Figure 6 ).

Additionally, the results revealed a positive correlation between the abundance of the genus Klebsiella spp. (r= 0.68, p = 0.002) and Enterococcus spp. (r= 0.84, p=0.005) and CRP levels in COVID-19 patients without T2D, while the abundance of Bifidobacterium spp. was found to have a negative correlation with CRP levels (r=-0.62, p=0.032).Similarly, the abundance of Clostridium spp. (r= 0.62, p=0.022), Klebsiella spp. (r= 0.61, p=0.024), Enterococcus spp. (r= 0.85, p=0.004), and Candida spp. (r= 0.65, p=0.043) were positively correlated with the LoS, while the abundance of Bifidobacterium spp. was negatively correlated with LoS (r= -0.65, p = 0.045). In addition to the findings in COVID-19 patients without T2D, the study also investigated the correlation between gut microbiota and CRP and LoS in COVID-19 patients with T2D. The results showed that in this patient population, the abundance of genus Clostridium spp. (r=0.66, p = 0.038), Klebsiella spp. (r=0.75, p= 0.003), Enterococcus spp. (r= 0.88, p < 0.001), Candida spp. (r=0.82, p= 0.002) was positively correlated with CRP levels, while the abundance of genus Bifidobacterium spp. (r= - 0.75, p = 0.028) and Lactobacillus spp. (r= -0.62, p= 0.032) was negatively correlated with CRP. Similarly, the abundance of Klebsiella spp. (r=0.72, p=0.022), Enterococcus spp. (r=0.87, p < 0.001) and Candida spp. (r=0.74, p=0.005) was positively correlated with LoS, and Bifidobacterium spp. (r= - 0.72, p=0.007) was negatively correlated with LoS ( Figure 7 ).

 

Figure 7 | Association of CRP, LoS and Abundance of Gut Microorganisms in COVID-19 Patients with and without T2D. 




 4 Discussion

In this article, we showed changes in the gut microbiota in patients with COVID-19, using the culture-based method. Culture-based gut microbiome research is a method of studying the gut microbiome by isolating and culturing bacteria from fecal samples. This method can provide information on the growth and metabolic characteristics of specific bacteria, which can be useful for identifying and characterizing new bacterial species or strains. However, it also has some limitations, particularly when compared to PCR and 16S rRNA sequencing (Ito et al., 2019). One major limitation of culture-based gut microbiome research is that it is limited to only a small subset of the total gut microbiome. This is because many gut bacteria are difficult or impossible to culture in laboratory conditions, and so are not captured by this method. On the other hand, PCR and 16S rRNA sequencing can provide a more comprehensive view of the gut microbiome by amplifying and sequencing the 16S rRNA gene, which is present in all bacteria (Hitch et al., 2021).

An important finding that should be noted in our research is the significant increase Enterococcus spp. in patients with the Delta variant. Recent studies have suggested a possible association between Enterococcus and COVID-19. Some studies have found that patients with COVID-19 have higher levels of Enterococcus in their gut microbiome compared to healthy controls (Toc et al., 2022). Other studies have found that certain strains of Enterococcus are more common in COVID-19 patients than in healthy individuals (Giacobbe et al., 2021). The exact role of Enterococcus in COVID-19 is not yet fully understood, but some researchers believe that it may play a role in the development of severe illness. For example, it has been proposed that Enterococcus may contribute to the development of cytokine storm, which is a severe immune response that can occur in some COVID-19 patients (Zuo et al., 2020; Gago et al., 2022; Righi et al., 2022; Toc et al., 2022). The exact mechanism by which Enterococcus may contribute to cytokine storm is not well understood, but it is suggested that it may involve the activation of Toll-like receptors (TLRs), which are proteins on the surface of immune cells that recognize specific microbial products (Guiton et al., 2013). It’s also suggested that Enterococcus may increase the production of pro-inflammatory cytokines such as TNF-alpha and IL-6, which have been shown to be elevated in patients with COVID-19 and are associated with severe disease (Strickertsson et al., 2013; Sparo et al., 2014). In our opinion, the possible increase in the abundance of Enterococcus spp. is related to the widespread use of carbapenems during the delta wave of COVID-19 in our region (Righi et al., 2022).

 Klebsiella pneumoniae, a member of the Enterobacteriaceae family, is considered an opportunistic pathogen and has been frequently identified in high levels in the gut of critically ill COVID-19 patients (Tang et al., 2020). An overgrowth of pathobionts such as this can weaken the gut barrier, increasing the risk of bloodstream infections in these patients (Langford et al., 2020). Additionally, a number of studies have reported co-infections involving Klebsiella spp. and Enterococcus spp. in a significant proportion of COVID-19 patients. It is worth noting that in critical cases, these co-infections have been linked to up to 50% of deaths (Zhou et al., 2020).

Also, to some extent, the use of antibiotics is associated with an increase in the abundance of Clostridium spp. There are some studies in which Hospitalized patients with COVID-19 showed an increased abundance of Clostridium ramosum compared with those hospitalized with other types of viral pneumonia (Zuo et al., 2020). Clostridium ramosum can induce RORγt expression in Foxp3+ Treg cells. RORγt+ Foxp3+ Treg cells downregulate TH1-, TH2-, and TH17 cell-type immune responses (Ohnmacht et al., 2015; Sefik et al., 2015). Clostridium butyricum, Clostridium leptum as a butyrate-producing bacterium were decreased significantly in COVID-19 patients in some studies (Tang et al., 2020). Butyrate is one of the short-chain fatty acids (SCFAs) which can activate anti-inflammatory responses of immune cells, inhibit inflammatory signalling pathways and maintain the integrity of the gut barrier to prevent translocation of gut endotoxins and bacteria into the circulation, thereby alleviating local and systemic inflammatory responses (Geirnaert et al., 2017). Empiric antibiotic treatments for microbial infections in hospitalized patients with COVID-19 in addition to experimental antiviral and immunomodulatory drugs may increase Clostridioides difficile infection (CDI) (Azimirad et al., 2021).

Previous research found that the gut microbiota was moderately dysregulated in Chinese and Danish T2D patients. Specifically, Chinese patients showed an increase in multiple pathogenic bacteria, such as Clostridium hathewayi, Clostridium symbiosum and Escherichia coli, while healthy controls had a high abundance of butyrate-producing bacteria (Qin et al., 2012). Compared with individuals with normal glucose regulation, the most significant feature of the gut microbiota in Danish patients with prediabetes was the decreased abundance of Clostridium genus and A. muciniphila (Allin et al., 2018). In our study, patients with COVID-19 and T2D had significantly higher abundance of Clostridium spp. than patients without diabetes.

Several studies have shown that metformin treatment can change the structure of the gut microbiome (Kamyshnyi et al., 2021). In particular, some studies have shown that the concentration of SCFAs, such as propionate, is increased in people who take metformin compared to those who do not (Zhernakova et al., 2016). Another study found that after four months of treatment with metformin, the levels of fecal butyrate and propionate were higher in men who received metformin compared to those who received a placebo, which suggests that metformin can affect the levels of fermentative metabolites involved in regulating human metabolism (Wu et al., 2017). Additionally, research has shown that in patients with T2D who were given metformin or a placebo for four months, there was an increase in the abundance of certain types of bacteria such as Escherichia spp. and Bilophila wadsworthia, along with a decrease in other types such as Intestinibacter spp. and Clostridium spp (Forslund et al., 2015; Wu et al., 2017).. Similar changes in the gut microbiota were observed in our study.

Notably, some specific Bacteroides spp., capable of down-regulating ACE2 expression in the murine gut, are inversely correlated with the SARS-CoV-2 load (Zuo et al., 2020). Also, Bacteroides fragilis, promotes Treg induction and IL-10-mediated anti-inflammatory responses from T cells and DCs in a TLR2-dependent manner (Round and Mazmanian, 2010; Round et al., 2011). Based on these findings, it is suggested that Bacteroides species have an anti-inflammatory effect and play a role in managing inflammation through the gut-lung axis.

Gastrointestinal symptoms, such as diarrhea, which occur for an extended period in people with COVID-19, have been linked to a decrease in the variety and abundance of gut bacteria, immune system imbalances, and delayed clearance of the SARS-CoV-2 virus (Gu et al., 2020; Lamers et al., 2020). The relationship between the gut and respiratory systems, known as the gut-lung axis, is thought to play a role in the body’s immune response to the virus (Budden et al., 2017). Studies have shown that an imbalance in gut bacteria, called dysbiosis, can lead to higher mortality rates in other respiratory infections, as it can exacerbate inflammation and weaken the lung’s and gut’s ability to regulate and reduce inflammation (Grayson et al., 2018). Therefore, given that both the respiratory and gastrointestinal tracts can be affected by the virus and that dysbiosis and inflammation can occur, it is reasonable to consider additional therapies that focus on modulating the gut microbiome, such as using metformin, probiotics, or fecal microbial transplantation to re-establish a healthy balance of gut bacteria, as a potential treatment option (Baindara et al., 2021).

Additionally, the idea that probiotics, which have been studied and recommended for respiratory tract infections, could potentially have a beneficial effect against COVID-19 is being explored. Studies have shown that an imbalance in gut bacteria, known as dysbiosis, can worsen lung pathology and lead to secondary infections during influenza virus infections (Sencio et al., 2020). Additionally, some COVID-19 patients have reported an imbalance in gut bacteria, including a decrease in natural probiotic species such as Lactobacillus and Bifidobacterium (Xu et al., 2020).


 5 Limitations

This study has several limitations that should be taken into consideration when interpreting the results. Firstly, the sample size of 128 COVID-19 patients with T2D is relatively small and may not be representative of the general population. Additionally, the study only used a culture-based method to analyze the gut microbiota changes, which may not capture all the bacterial taxa present in the gut. Furthermore, the study only looked at the correlation between gut microbiota, CRP levels, and length of stay and did not establish causality. Finally, this study is a cross-sectional study, so it’s unable to establish temporal relationships. Future studies with larger sample sizes and using more advanced techniques, such as 16S rRNA sequencing, are needed to confirm these findings and investigate the mechanisms underlying the observed associations.
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Purpose

There is a close relationship between the intestinal microbiota and heart failure, but no study has assessed this relationship in infants with congenital heart disease. This study aimed to explore the relationship between heart failure and intestinal microbiota in infants with congenital heart disease.





Methods

Twenty-eight infants with congenital heart disease with heart failure admitted to a provincial children’s hospital from September 2021 to December 2021 were enrolled in this study. A total of 22 infants without heart disease and matched for age, sex, and weight were selected as controls. Faecal samples were collected from every participant and subjected to 16S rDNA gene sequencing.





Results

The composition of the intestinal microbiota was significantly disordered in infants with heart failure caused by congenital heart disease compared with that in infants without heart disease. At the phylum level, the most abundant bacteria in the heart failure group were Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes, and the most abundant bacteria in the control group were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. At the genus level, the most abundant bacteria in the heart failure group were Enterococcus, Bifidobacterium, Subdoligranulum, Shigella, and Streptococcus, and the most abundant bacteria in the control group were Bifidobacterium, Blautia, Bacteroides, Streptococcus, and Ruminococcus. The alpha and beta diversities of the gut bacterial community in the heart failure group were significantly lower than those in the control group (p<0.05). Compared with the control group, retinol metabolism was significantly downregulated in the heart failure group.





Conclusion

Heart failure in infants with congenital heart disease caused intestinal microbiota disorder, which was characterised by an increase in pathogenic bacteria, a decrease in beneficial bacteria, and decreases in diversity and richness. The significant downregulation of retinol metabolism in the intestinal microbiota of infants with heart failure may be related to the progression of heart failure, and further study of the underlying mechanism is needed.
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Introduction

Heart failure is the terminal stage of all types of cardiovascular disease and is a common cause of death (Mosterd and Hoes, 2007; Targher et al., 2017). The pathophysiological mechanisms of heart failure are complex and include haemodynamic abnormalities, neuroendocrine system activation, cardiac remodelling, and inflammatory responses (Mudd and Kass, 2008). To reduce the disease and economic burden associated with heart failure, it is important to elucidate the mechanisms of heart failure development and explore new potential therapeutic targets (Zhang et al., 2021). Accumulating evidence indicates that there is a close relationship between the intestinal microbiota and heart failure. Heart failure can cause a disturbance in the intestinal microbiota, and the intestinal microbiota has potential significance in mediating or regulating the pathophysiology of heart failure (Sandek et al., 2012; Brown and Hazen, 2015; Miele et al., 2015; Marques et al., 2017; Tang et al., 2017; Tang et al., 2019).

Congenital heart disease is a deformity caused by disorders of foetal heart and large blood vessel development (Hoffman and Kaplan, 2002). It is one of the most common congenital malformations and the most common cause of heart failure in children (Hinton and Ware, 2017). Left-to-right shunt congenital heart disease, including patent ductus arteriosus, ventricular septal defect, atrial septal defect, and endocardial pad defect, accounts for approximately 50%–70% of congenital heart disease. Patients with severe disease often develop heart failure in infancy due to a large left-to-right shunt and are seriously ill, which places a heavy burden on families and society. Studies of the relationship between heart failure and the intestinal microbiota have mainly focused on heart disease in adults, and few studies have explored this relationship in infants with congenital heart disease (Ellis et al., 2013). Therefore, we conducted a cohort study of infants with heart failure caused by left-to-right shunt congenital heart disease to explore the relationship between heart failure and the intestinal microbiota. We hypothesised that heart failure in infants with congenital heart disease can cause intestinal microbiota disorder and that this disorder can aggravate the progression of heart failure.





Methods




Research design and study cohort

The present study was approved by the ethics committee of our hospital and adhered to the tenets of the Declaration of Helsinki. Additionally, all parents of the patients signed the consent form before participating in the study.

This cohort study aimed to explore the relationship between heart failure and the intestinal microbiota in infants with congenital heart disease. A total of 28 infants with heart failure caused by left-to-right shunt congenital heart disease who were admitted to the cardiac surgery department of a provincial children’s hospital in southeast China from September 2021 to December 2021 were enrolled in this study. A total of twenty-two infants without heart disease and matched for age, sex, and weight were selected as controls.

Inclusion criteria were infants with heart failure caused by left-to-right shunt congenital heart disease. Exclusion criteria the following: (1) other major organ diseases, such as digestive tract malformation, liver failure, or kidney failure; (2) digestive tract diseases, such as diarrhoea, constipation, or jaundice; (3) infection or receiving antibiotics; and (4) parental refusal to participate in the study.





Faecal sample collection

Faecal samples (1 ml) were collected from each patient, immediately frozen in liquid nitrogen, and stored at −80°C.





16S rDNA sequencing

Total genomic DNA samples were extracted using the OMEGA Soil DNA Kit (M5635-02) (Omega Bio-Tek, Norcross, GA, USA). DNA extracted from the sample was used as a template. PCR amplification of the bacterial 16S rRNA genes V3–V4 region was performed using the forward primer 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and the reverse primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′ ). The amplified product was purified and recycled by using clean beads. The purified and recycled products were subjected to fluorescence quantitation with a Quant-iT PicoGreen dsDNA Assay Kit in a microplate reader (BioTek, FLx800). According to the fluorescence quantitation results, each sample was mixed in proportion according to the sequencing volume requirements of each sample. The sequencing library was prepared with a TruSeq Nano DNA LT Library Prep Kit (Illumina). Finally, paired-end sequencing was carried out on a NovaSeq sequencer with a NovaSeq 6000 SP Reagent Kit (500 cycles).





Bioinformatics analysis

Microbiome bioinformatics were performed with QIIME2 2019.4 with slight modification according to the official tutorials. Briefly, raw sequence data were demultiplexed using the demux plugin followed by primers cutting with cutadapt plugin. Sequences were then quality filtered, denoised, and merged, and chimera removed using the DADA2 plugin. Venn diagram was generated to visualise the shared and unique ASVs among samples or groups using R package “VennDiagram,” based on the occurrence of ASVs across samples/groups regardless of their relative abundance. Alpha-diversity metrics, such as Chao1 richness estimator, observed species, Shannon diversity index, Simpson index, Faith’s PD, Pielou’s evenness, and Good’s coverage were calculated using the ASV table in QIIME2, and visualised as box plots. Beta diversity analysis was performed to investigate the structural variation of microbial communities across samples using Jaccard metrics, Bray–Curtis metrics, and UniFrac distance metrics, and visualised via principal coordinate analysis, non-metric multidimensional scaling, and unweighted pair-group method with arithmetic means hierarchical clustering. Microbial functions were predicted by PICRUSt2 upon MetaCyc and KEGG databases.





Statistical analysis

SPSS 25.0 software was used for statistical analysis. Continuous variables with a normal distribution were expressed as the mean ± standard deviation and were compared via the t-test. Continuous variables without a normal distribution were compared via the non-parametric test. Categorical variables were described as integers and percentages, and comparisons between groups were performed using Fisher’s exact test. A p-value <0.05 was considered statistically significant.






Result

A total of 28 infants with heart failure caused by left-to-right shunt congenital heart disease were enrolled as the heart failure group. There were 21 infants with ventricular septal defects, 5 infants with ductus arteriosus defects, and 2 infants with complete endocardial pad defects. The heart failure group comprised 15 male and 13 female infants with a mean age of 2.8 ± 2.9 months, weight of 4.6 ± 1.8 kg, pulmonary artery pressure of 59.8 ± 10.1 mmHg, and NT-proBNP of 4,218.7 ± 3,757.1 pg/ml. Nine of the infants in the heart failure group were exclusively breastfed, 5 were formula fed, and 14 were both breastfed and formula fed. A total of 22 age- and sex-matched children without heart disease served as controls. The control group comprised 12 male and 10 female infants with a mean age of 2.6 ± 1.7 months and weight of 5.1 ± 1.6 kg. Eight of the infants in the control group were exclusively breastfed, 3 were formula fed, and 11 were both breastfed and formula fed. There were no differences in sex, age, weight, or feeding style between the two groups (Table 1).


Table 1 | Comparison of general data between the two groups.



To analyse the differences in intestinal microbial species between the heart failure group and control group, a Venn diagram was constructed using the ASV/OTU abundance table, and the number of members in each set was counted according to presence or absence in the ASV/OTU abundance table. The results showed that there were 1,744 (10.9%) ASVs/OTUs that were shared between the heart failure group and the control group, 7,758 (48.48%) ASVs/OTUs unique to the heart failure group, and 6,502 (40.63%) ASVs/OTUs unique to the control group (Figure 1).




Figure 1 | There were 1,744 identical ASVs/OTUs in the heart failure group and the control group. There were 7,758 unique ASVs/OTUs in the heart failure group and 6,502 unique ASVs/OTUs in the control group.



We further analyse the species composition and abundance of intestinal microorganisms in the two groups at the phylum and genus levels. At the phylum level, the most abundant bacteria in the heart failure group were Firmicutes (58.8%), Actinobacteria (20.6%), Proteobacteria (10.3%), and Bacteroidetes (3.7%), and the most abundant bacteria in the control group were Firmicutes (47.8%), Proteobacteria (22.1%), Actinobacteria (21.8%), and Bacteroidetes (3.1%). At the genus level, the most abundant bacteria in the heart failure group were Enterococcus (30.3%), Bifidobacterium (13.1%), Subdoligranulum (5.7%), Shigella (3.6%), and Streptococcus (3.1%), and the most abundant bacteria in the control group were Bifidobacterium (24.3%), Blautia (6.0%), Bacteroides (3.3%), Streptococcus (3.0%), and Ruminococcus (2.5%) (Figure 2).




Figure 2 | At the phylum level, the most abundant bacteria in the heart failure group were Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes, and the most abundant bacteria in the control group were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. At the genus level, the most abundant bacteria in the heart failure group were Enterococcus, Bifidobacterium, Subdoligranulum, Shigella, and Streptococcus, and the most abundant bacteria in the control group were Bifidobacterium, Blautia, Bacteroides, Streptococcus, and Ruminococcus.



The comparison of the alpha diversity of the intestinal microbiota between the two groups showed that the Chao1 and observed species indices were significantly lower in the heart failure group than in the control group (Figure 3).




Figure 3 | The Chao1 and observed species indices of abundance were significantly lower in the heart failure group than in the control group. The meaning of each symbol in the boxplot was as follows. The upper and lower end line of the box were the upper and lower Interquartile range. Median line of the box was the median. The upper and lower margins were the maximum and minimum internal circumference (1.5 times of interquartile range). Numbers under the diversity index label are p-values.



The beta diversity index focuses on the comparison of diversity between different environments, which are represented by infant groups in the present study. We visually analyse the data using principal coordinate analysis, and differences were further examined using Adonis. The PCoA of beta diversity based on the Bray−Curtis distance matrix revealed that the differences in community composition between the two groups were significant (Figure 4).




Figure 4 | The PCoA of beta diversity based on the Bray−Curtis distance matrix revealed that the differences in community composition between the two groups were significant.



The functional properties of the intestinal microbiota were predicted using PICRUSt2. The analysis of Kyoto Encyclopedia of Genes and Genomes pathway annotations at level 2 as determined by PICRUSt2 revealed significant differences in retinol metabolism between the two groups. Compared with the control group, retinol metabolism was significantly downregulated in the heart failure group (Figure 5).




Figure 5 | Compared with the control group, retinol metabolism was significantly downregulated in the heart failure group. The negative value of the horizontal axis logFC represents the downregulation of metabolism in the heart failure group compared with the control group. The ordinate represents the different KEGG metabolic pathway labels. The degree of saliency is shown in different colors.







Discussion

Heart failure is a formidable global public health challenge and is responsible for more than 1 million hospitalisations each year (Jackevicius et al., 2019). Heart failure describes a variety of cardiac structural or functional diseases that result in impaired ventricular filling or ejection capacity, insufficient blood perfusion in organs and tissues, and pulmonary or systemic circulation stasis (Jia et al., 2019). The gut is an endocrine organ that is rich in blood, accounting for approximately 40% of the body’’s total blood, and it is significantly affected by reduced blood supply (Takala, 1996). During the heart failure process, the gut is the first organ to undergo ischaemia and the last organ to recover. Intestinal ischaemia or hyperaemia reduces the intestinal oxygen supply, which can lead to changes in intestinal microbial composition and, in turn, metabolic disorders and intestinal microbiota dysfunction. Furthermore, the intestinal microbiota affects the body’s physiology, including the progression of heart failure (Polsinelli et al., 2019).

The gut contains trillions of microbes—as many cells as the total number of human cells (Sender et al., 2016a). The microbes that colonise the intestinal tract play an important role in the physiological and pathological processes of the body. They participate in nutrient metabolism and absorption, regulate intestinal epithelial barrier function, and affect local or systemic immune inflammatory responses (Nicholson et al., 2012). The composition of the intestinal microbiome is dynamic and may differ in the same individual under different physiological conditions and at different times. These changes may play an important role in human health and disease. Many studies have shown that there is a close relationship between the intestinal microbiota and heart failure (Sandek et al., 2012; Brown and Hazen, 2015; Miele et al., 2015; Marques et al., 2017; Tang et al., 2017; Tang et al., 2019). However, these studies have focused on adults, and few studies have explored the relationship between heart failure and the intestinal microbiota in infants with congenital heart disease. We conducted a cohort study to analyse the relationship between heart failure and intestinal microbiota in infants with congenital heart disease.

Heart failure causes intestinal ischemia or hyperemia, which can result in a reduction in the intestinal oxygen supply. As a result, the intestinal environment changes, which leads to changes in the composition of the intestinal microbiota, mainly a reduction in beneficial intestinal bacteria and an increase in pathogenic bacteria. Chen et al. showed that intestinal microbiota disorder in patients with heart failure manifested as decreases in Bacteroides and Bifidobacteria and increases in Firmicutes and Proteus (Chen et al., 2017). Pasini et al. found increased abundances of intestinal pathogens such as Candida, Salmonella, Shigella, and Campylobacter in faecal samples from patients with heart failure (Pasini et al., 2016). Sandek et al. also observed excessive growth and adhesion of pathogenic bacteria in the intestinal mucosa of patients with heart failure (Sandek et al., 2007). A similar phenomenon was observed in the present study. Compared with infants without heart disease, the proportion of pathogenic bacteria such as Enterococcus, Shigella, and Subdoligranulum in the intestinal tract was significantly higher in infants with congenital heart disease with heart failure, while the proportion of beneficial bacteria such as Bifidobacterium, Blautia, and Bacteroides was significantly lower. Nagatomo et al. and Hooper et al. demonstrated that an increase in pathogenic bacteria and a decrease in beneficial bacteria lead to an increase in inflammatory factors in the intestine and an increase in the body’s inflammatory response, which aggravate the progression of heart failure (Hooper et al., 2012; Nagatomo and Tang, 2015).

The intestinal microbiota coexists with the host. The intestine provides a good colonisation environment for microbes, and the intestinal microbiota plays an important role in maintaining nutrient metabolism, the stability of the intestinal environment, and the health of the body. The intestinal microbiota is the most complex ecosystem in the human body and is composed of a variety of microorganisms residing in the human intestine. These microorganisms coexist mutually in the intestinal tract to jointly maintain the stability of the intestinal environment. Once homeostasis is disrupted, the disorder of the intestinal microbiota will aggravate the pathological state (Sender et al., 2016b). Kummen showed that intestinal hypoxia caused by heart failure reduces the diversity and richness of the intestinal microbiota (Kummen et al., 2018). In severe left-to-right shunt congenital heart disease, heart failure often occurs in infancy due to a large left-to-right shunt, which results in gastrointestinal congestion and disruption of the ecology of the intestinal microbiota. In this study, compared with infants without heart disease, the alpha and beta diversities of the intestinal microbiota were significantly lower in infants with heart failure. These findings indicate that heart failure reduced the diversity of the intestinal microbiota, with a decrease in beneficial bacteria and an increase in pathogenic bacteria, and ultimately aggravated the progression of heart failure.

Many studies have suggested that retinol metabolism is also involved in the progression of heart failure in infants with congenital heart disease. Yang et al. found that cardiac retinoic acid levels decline in heart failure patients (Yang et al., 2021). Osorio found that the protein expression of retinoid X receptor was reduced in pacing-induced heart failure (Osorio et al., 2002). Choudhary showed that retinoic acid can prevent angiotensin II- and mechanical stretch-induced reactive oxygen species generation and cardiomyocyte apoptosis (Choudhary et al., 2008). Subramanian observed that all-trans retinoic acid supplementation can prevent cardiac fibrosis and cytokines induced by methylglyoxal (Subramanian and Nagarajan, 2017). Huang et al. reported that lower levels of serum retinoic acid were associated with more serious cardiovascular disease and higher mortality (Huang et al., 2021). Hence, retinol metabolism was studied in this study. Compared with the control group, retinol metabolism was significantly downregulated in the heart failure group. Disorders of the intestinal microbiota will inevitably lead to changes in the metabolic function of the microbiota, which may cause downregulation of retinol metabolism. Adjusting the intestinal microbiota to upregulate retinol metabolism may be a new way to treat heart failure in infants with congenital heart disease, but further studies are needed.

There are some limitations to this study. First, the main food of infants is milk. In this study, infants were selected as the participants. Although the influence of some foods on the microbiota has been ruled out, interference from differences in formula and the diets of breastfeeding mothers cannot be ruled out. Second, this study only analyse the intestinal microbiota of infants with left-to-right shunt congestive heart failure and did not analyse other types of heart failure. Third, this study was a single-centre study with a small sample size, and a multicentre study with a large sample size should be conducted next.





Conclusion

There is a close relationship between heart failure and the intestinal microbiota in infants with congenital heart disease. Heart failure in infants with congenital heart disease caused intestinal microbiota disorder, which was characterized by an increase in pathogenic bacteria, a decrease in beneficial bacteria, and decreases in diversity and richness. We also found that retinol metabolism of the intestinal microbiota was significantly downregulated in infants with heart failure, which may be related to the progression of heart failure. The underlying mechanism needs to be studied further.
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To better understand the impact of gut dysbiosis on four autoimmune diseases [Sjögren’s syndrome (SS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS)], this review investigated the altered gut bacteria in each disease and the shared ones among the four diseases. The enriched gut bacteria shared by three of the four autoimmune diseases were Streptococcus, Prevotella, and Eggerthella, which are associated with autoantibody production or activation of Th17 cells in immune-related diseases. On the other hand, Faecalibacterium comprises depleted gut bacteria shared by patients with SLE, MS, and SS, which is associated with various anti-inflammatory activities. The indexes of gut dysbiosis, defined as the number of altered gut bacterial taxa divided by the number of studies in SLE, MS, RA, and SS, were 1.7, 1.8, 0.7, and 1.3, respectively. Interestingly, these values presented a positive correlation trend with the standardized mortality rates —2.66, 2.89, 1.54, and 1.41, respectively. In addition, shared altered gut bacteria among the autoimmune diseases may correlate with the prevalence of polyautoimmunity in patients with SLE, SS, RA, and MS, that is, 41 percent, 32.6 percent, 14 percent, and 1–16.6 percent, respectively. Overall, this review suggests that gut dysbiosis in autoimmune diseases may be closely related to the failure of the gut immune system to maintain homeostasis.
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1 Introduction

The etiology of autoimmune diseases is complex involving both genetic and environmental factors. Genetic risk factors for autoimmune diseases are composed of HLA and non-HLA genes expressed at different levels depending on the disease (Greiling et al., 2018; van der Meulen et al., 2019; Frazzei et al., 2022). On the other hand, environmental factors include smoking, lifestyle disorders, reduced sun exposure, and chronic stress (Frazzei et al., 2022). However, the scope of these factors to explain the cause of the rapid increase in autoimmune diseases over the decades is insufficient (Chen et al., 2017; Dinse et al., 2022; Frazzei et al., 2022). Recently, gut dysbiosis has attracted great attention as a risk factor for autoimmune diseases. However, it is unclear whether gut dysbiosis is a result or a cause of an autoimmune disease (Jubair et al., 2018). Autoimmune diseases such as primary Sjögren’s syndrome (SS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS) have been linked to gut dysbiosis (Zhang et al., 2015; Chen et al., 2016a; Nikitakis et al., 2017; Luo et al., 2018; Bellando-Randone et al., 2021). The causes of gut dysbiosis include depletion of the mucus layer, rapid dietary changes, use of antibiotics, infection and inflammation, and gastrointestinal surgery (Van de Wiele et al., 2016). Chen et al. proposed the following five mechanisms by which gut dysbiosis contributes to autoimmune diseases: 1) dysregulation of TLR in antigen presenting cells (APCs) and imbalance of Treg/Th17 ratio; 2) generation of new autoantigens due to the modification of host proteins induced by microbial enzymes; 3) microbial components similar to self-peptides, activating autoreactive B and T cells; 4) induction of immunopathology through the transport of microbial components or metabolites throughout the host; and 5) autoantibody generation against curli-DNA composites (Chen et al., 2017). In this review, the altered gut bacteria in SLE, MS, RA, and SS were investigated to better understand the impact of gut dysbiosis on autoimmune diseases. First, we investigated whether there are common taxa in different studies of gut dysbiosis for each disease. Second, we investigated whether the four autoimmune diseases share altered gut bacteria and whether there are altered gut bacteria unique to each autoimmune disease. Third, the altered gut bacteria’s functions or mechanisms of action in immune-related diseases were investigated. Fourth, we explored whether the shared, altered gut bacteria are related to polyautoimmunity. Finally, we examined whether the degree of gut dysbiosis is related to the disease’s standardized mortality rate (SMR).




2 Gut dysbiosis in autoimmune diseases

Altered gut bacteria refer to the taxa whose enrichment or depletion in the gut bacteriota has been cross-validated by at least two studies with statistical significance (p < 0.05, q < 0.1, or false discovery rate < 0.1). The taxonomic range of altered gut bacteria investigated in the four autoimmune diseases was at the family, genus, or species levels. Most altered bacteria were cross-validated at the genus or species levels because some papers only presented them at the genus or species levels.



2.1 Altered gut bacteria in SLE

SLE is a prototypical autoimmune disease associated with loss of self-tolerance of the immune system, abnormal antibody response to cytoplasmic antigens, persistent autoantibody production, and subsequent systemic inflammation (Chen et al., 2021). Its clinical signs include multiple symptoms, such as skin rash, glomerulonephritis, neurological disorders, and severe vasculitis, suggesting that the pathogenesis of SLE may be complex (Guo et al., 2020). A total of 22 altered gut bacterial genera/families were identified from the review of 13 papers published since 2014 (Table 1). While Alistipes, Bacilli, Bacteroides, Clostridium, Eggerthella, Escherichia, Klebsiella, Lactobacillus, Prevotella, Ruminococcus, and Streptococcus are enriched, Bacteroides, Dialister, Faecalibacterium, Odoribacter, Roseburia, and Ruminococcus are depleted in the gut of SLE patients. Interestingly, Bacteroides and Ruminococcus were reported to be enriched or depleted depending on studies, but at the species level, different species were enriched or depleted with the exception of B. uniformis, which was reported to be enriched or depleted in different studies (Table 1). Even in the same species, Bacteroides fragilis is classified into polysaccharide A-producing beneficial bacterium or enterotoxigenic bacterium, depending on strains (Nagao-Kitamoto and Kamada, 2017). Thus, B. fragilis enrichment in patients with SLE might be associated with enterotoxigenic strains. Among the 22 altered gut bacterial genera, Bacteroides, Escherichia, Ruminococcus, and Streptococcus have known functions associated with the induction of inflammatory response or autoimmunity in immune-related diseases (Vatanen et al., 2016; Cunningham, 2019; Henke et al., 2019; Qiu et al., 2019), whereas Faecalibacterium and Ruminococcus_2 have anti-inflammatory mechanisms of action (Houtman et al., 2022; Matsuoka et al., 2022). More details about this phenomenon have been described in Section 2.6.


Table 1 | Commonly altered gut bacteria in gut dysbiosis of patients with autoimmune diseases.






2.2 Altered gut bacteria in MS

MS is an autoimmune disease in which the immune system destroys the myelin sheaths surrounding nerve axons in the central nervous system (CNS). MS is on the rise in developed countries and occurs three times higher in young women, for which an environmental factor, such as gut dysbiosis, than genetic factors seems to account (Miyake et al., 2015; Cekanaviciute et al., 2017; Duscha et al., 2020). This assumption is supported by the fact that the transfer of feces from MS patients exacerbates the disease in the animal models of MS (Berer et al., 2017). A total of 16 altered gut bacterial genera were found from the review of nine papers published since 2015 (Table 1). While Actinomyces, Akkermansia, Clostridium, Eggerthella, and Streptococcus are enriched, Bacteroides, Butyricimonas, Clostridium, Eubacterium, Faecalibacterium, Lachnospira, Lactobacillus, Megamonas, Parabacteroides, Prevotella, and Sutterella are depleted in the gut of MS patients. Eggerthella and Streptococcus are associated with the induction of autoimmunity (Valour et al., 2014; Ravindra et al., 2018; Cunningham, 2019; Alexander et al., 2022), whereas Butyricimonas and Faecalibacterium have reported anti-inflammatory functions (Jing et al., 2021; Bai et al., 2022; Houtman et al., 2022), as detailed in Section 2.6. Interestingly, the relative abundance of Prevotella_9 and Sutterella increased in experimental autoimmune encephalomyelitis mice after receiving fecal microbiota transplantation from healthy mice, which, in turn, improved clinical scores (Wang et al., 2021). These results suggest that beneficial bacteria in the host may maintain the homeostasis of the immune system in MS.




2.3 Altered gut bacteria in RA

RA is a chronic autoimmune disease that causes joint destruction and functional impairment. Recently, the etiology of RA has been hypothesized to be a combination of genetic factors and gut dysbiosis (Maeda et al., 2016; Jubair et al., 2018). Particularly, the concordance rate for RA in monozygotic twins studied in Europe is 15 percent, which is insufficient to solely explain its etiology by genetic influences (Aho et al., 1986; Silman et al., 1993). Autoantibody production against citrullinated peptides produced by Porphyromonas gingivalis is a mechanism to induce RA (Kishikawa et al., 2020). Anti-citrullinated protein antibodies (ACPAs) have been detected in all high-risk RA patients and 93 percent of patients with RA (Tong et al., 2019). A total of five altered gut bacterial genera/families were identified from the review of seven papers published since 2013 (Table 1). All four enriched genera, Bacteroides, Eggerthella, Prevotella, and Streptococcus, have known functions associated with the induction of inflammatory response or autoimmunity in immune-related diseases detailed in Section 2.6.




2.4 Altered gut bacteria in SS

SS is an autoimmune disease characterized by dry mouth and dry eyes (keratoconjunctivitis sicca). Eight genera were identified from the review of six papers published since 2017 (Table 1). While Prevotella, Streptococcus, and Veillonella are enriched, Bifidobacterium, Blautia, Dorea, Faecalibacterium, and Lachnospira are depleted in the gut bacteriota of SS patients. Among these, Prevotella and Streptococcus have known functions associated with the induction of inflammatory response or autoimmunity in immune-related diseases, whereas Bifidobacterium and Faecalibacterium have anti-inflammatory mechanisms of action or efficacy, as detailed in Section 2.6 (Maeda et al., 2016; O’Callaghan and van Sinderen, 2016; Cunningham, 2019; Yao et al., 2021; Houtman et al., 2022).




2.5 Altered gut bacteria shared among the four autoimmune diseases versus those unique to each disease

We posed the pertinent question of whether altered gut bacteria are shared among the four autoimmune diseases. The altered taxa listed in Table 1 were classified into those shared among the four autoimmune diseases (Table 2) and those unique to each autoimmune disease (Table 3).


Table 2 | Altered gut bacteria shared in different autoimmune diseases.




Table 3 | Altered gut bacteria unique to each autoimmune disease.



Thereafter, we could identify taxa shared among four, three, and two diseases in various combinations (Table 2). Interestingly, Streptococcus was enriched in all four diseases. In addition to Streptococcus, Prevotella was commonly enriched in SLE, RA, and SS, and Eggerthella in SLE, MS, and RA. Meanwhile, SLE, MS, and SS shared the depletion of Faecalibacterium and the enrichment of Streptococcus. Comparing two autoimmune diseases, the SLE–MS, SLE–SS, and SLE–RA combinations shared at least four altered gut bacterial taxa, and the MS–SS combination shared three altered gut bacterial genera. Collectively, SLE shared altered gut bacteria (SAGB) through virtually all comparison groups.

In the case of uniquely altered gut bacteria in each autoimmunity, SLE, MS, and SS had eight, nine, and four genera, respectively, whereas RA had none (Table 3). The abundance of Lactobacillus was changed in SLE and MS, but in the opposite direction—enriched in SLE but depleted in MS. In addition, the depletion of Prevotella was unique to MS.




2.6 Potential contribution of altered gut bacteria to disease pathogenesis

To further understand the role of altered gut bacteria in the etiology of autoimmune diseases, we investigated whether the altered bacteria listed in Table 1 have known functions in immune-related diseases. Studies on gut bacteria’s role and mechanism of action of gut bacteria in human autoimmunity are still limited. Thus, studies on immune-related diseases were also included. We hypothesized that the altered gut bacteria shared among different diseases might be associated with common immunologic pathways of the diseases and that the bacteria unique to each disease may be associated with the specific characteristics of the diseases.

Streptococcus, enriched in all four autoimmune diseases, produces antigens that are cross-reactive with host-derived antigens (Cunningham, 2019). These cross-reactive antigens can activate T cells and contribute to autoantibody production through molecular mimicries—hallmarks of autoimmune diseases. This is the third model of immunopathology proposed by Chen et al. for autoimmune mechanisms (Chen et al., 2017). Streptococcus mutans/sanguinis bind to salivary proteins and glycoproteins to form biofilms (Matsumoto et al., 2004; Xie et al., 2020). In addition, bacterial biofilms are rich in bacterial extracellular DNA complexed with amyloid, which stimulates autoimmunity (Gallo et al., 2015; Andreasen et al., 2019; Qiu et al., 2019). Thus, DNA abundant in Streptococcus-induced biofilms might contribute to autoantibody production by forming a complex with E. coli-derived curli amyloid in the gut environment (Chen et al., 2019; Qiu et al., 2019; Barrasso et al., 2022). These results suggest that Streptococcus may be closely related to the development of autoimmune diseases through autoantibody production. However, further understanding of Streptococcus species and their strains involved in disease etiology is needed.

Eggerthella lenta is commonly enriched in SLE, MS, and RA (Tables 1, 2). In an inflammatory bowel disease (IBD) model, E. lenta activates Th17 cells through the cardiac glycoside reductase 2 (Cgr2) enzyme, which metabolizes endogenous Rorγt inhibitors (Alexander et al., 2022). However, the activation of Th17 cells by E. lenta is affected by two variables. First, a high concentration of dietary arginine (3 percent/kg) can inhibit the function of the Cgr2 enzyme (Alexander et al., 2022). Second, E. lenta does not express Cgr2 depending on the strain, and Cgr2- strains do not activate Th17 cells. This result indicates that the contribution of E. lenta to the development of autoimmune diseases may depend on host dietary factors and bacterial strains. This finding relates to the first immunopathology model proposed by Chen et al. for autoimmune mechanisms (Chen et al., 2017). In addition, E. lenta was enriched in the gut of mice exposed to cigarette smoke for seven months (Bai et al., 2022). Furthermore, the transplantation of feces from smoking-exposed mice into germ-free mice induced enrichment of E. lenta, an impairment of the gut barrier in the colonic epithelium, and an increase in proinflammatory cytokines IL-17 and TNF (Bai et al., 2022). Notably, smoking is a common risk factor for SLE, MS, and RA (Majka and Holers, 2006; Healy et al., 2009; Amador-Patarroyo et al., 2012; Mowry et al., 2012; Baka et al., 2009), and Th17 cells are involved in the pathogenesis of these three diseases (Yang et al., 2019; Moser et al., 2020; Robert and Miossec, 2020).

Prevotella is enriched in SLE, RA, and SS but depleted in MS. Specifically, P. copri is enriched in RA but depleted in MS (Table 1). Interestingly, the colonization of germ-free mice with fecal samples from RA patients dominated by P. copri induced a Th17 cell-dependent autoimmune arthritis, suggesting that gut dysbiosis with enriched P. copri contributes to the development of RA (Maeda et al., 2016). Kishikawa et al. also suggested that enriched multiple Prevotella spp. are associated with the etiology of RA in Japanese patients (Kishikawa et al., 2020). However, clinical trials of IL-17 blockers presented limited clinical efficacy in RA compared with their efficacies in psoriasis or psoriatic arthritis (Schett et al., 2013; Fauny et al., 2020). This suggests that the roles of Th17 cells and IL-17 in the etiology of RA may be multi-faceted, as the presence of Foxp3+IL-17+ T cells is observed in the subjects’ synovium (Komatsu et al., 2014; Dominguez-Villar and Hafler, 2018). Multiple Prevotella spp. have been suggested to be associated with the etiology of RA (Table 1); however, their mechanisms of action are more complex than previously recognized. Therefore, the roles of Th17 subtypes and multiple Prevotella spp. in the etiology of RA need to be clarified (Omenetti et al., 2019). Considering the role of Th17 cells in the pathogenesis of MS, further investigation is needed to determine the role of P. copri depletion in MS etiology.

Faecalibacterium is commonly depleted in SLE, MS, and SS (Tables 1, 2). Faecalibacterium maintains homeostasis of the gut immune system by secreting anti-inflammatory compounds such as (Houtman et al., 2022), salicylic acid (Miquel et al., 2015), and microbial anti-inflammatory molecules (Quevrain et al., 2016). In addition, F. prausnitzii and its supernatant effectively increase the function of Short-chain fatty acid (SCFA)-producing bacteria (Zhou et al., 2021). SCFAs are produced through the breakdown of various indigestible dietary fibers and complex carbohydrates catalyzed by the gut microbiota (Park and Kim, 2021). Beneficial bacteria in the oral cavity and gut of healthy individuals can modulate the inflammatory response through the secretion of immunomodulators such as SCFAs (acetate, butyrate, and propionate) (Feng et al., 2018; Dalile et al., 2019; Mendez et al., 2020; Vijay and Valdes, 2021; Houtman et al., 2022). In addition, Faecalibacterium, which secretes SCFAs such as butyrate, is well known for its anti-inflammatory properties (Van de Wiele et al., 2016).

The anti-inflammatory effect of SCFAs is mediated through the induction of Treg cells and the alleviation of disease symptoms (Machiels et al., 2014; Kim et al., 2017; Moon et al., 2020b; Vijay and Valdes, 2021). Specifically, among the three types of SCFAs, butyrate and propionate were effective in inducing Foxp3, but acetate was not [untreated 30.4 percent, acetate 31.4 percent, propionate 41.9 percent (p < 0.01), and butyrate 54.2 percent (p < 0.01)] (Furusawa et al., 2013). In patients with relapsing-remitting MS (RRMS), SCFA concentrations in the fecal samples were significantly reduced compared to controls (Takewaki et al., 2020). However, the hypersecretion of SCFAs may also lead to side effects, such as bacterial invasion associated with the reduced mucus layer and inflammation (Gaudier et al., 2009; Park et al., 2016; Clarke, 2020; Okumura et al., 2021). Butyrate enemas reduced the thickness of the adherent mucus layer by approximately two-fold when administered to mice (Gaudier et al., 2009). The fact that RA developed only in mice with increased gut permeability suggests that bacterial invasion may be associated with a decrease in the mucus layer (Clarke, 2020). These results suggest that the decrease and hypersecretion of SCFAs may be related to the etiology of autoimmune diseases, which are long-term chronic diseases. Thus, more detailed studies on the role of SCFAs in autoimmune diseases may be needed.

Bacteroides are enriched in SLE and RA (Table 1). The structure and function of Bacteroides-derived LPS have been shown in relation to the development of type 1 diabetes (T1D). The immunostimulatory efficacy of Bacteroides-derived LPS was four times lower than that of Escherichia coli-derived LPS. While the E. coli-derived LPS delayed the onset of T1D in non-obese diabetic mice by inducing endotoxin resistance, Bacteroides-derived LPS neither induced endotoxin resistance nor delayed the development of T1D (Vatanen et al., 2016). As a result, Bacteroides-derived LPS caused more inflammatory responses than E. coli. A similar mechanism may play a role in the pathogenesis of SLE and RA. However, SLE patients also have depleted species that belong to the Bacteroides genus. In this context, species-specific modulation of immune function by Bacteroides must be studied.

E. coli, enriched in SLE, can be divided into pathogenic and nonpathogenic strains (Palmela et al., 2018; Lorenz et al., 2020). Infection with E. coli expressing curli amyloid can induce the production of autoantibodies by forming a complex with DNA derived from bacteria or viruses. The amyloid/DNA complexes produce anti-nuclear autoantibodies and anti-dsDNA autoantibodies involved in SLE pathogenesis (Dema and Charles, 2016; Qiu et al., 2019). This was verified because curli amyloid-deficient mutant E. coli does not produce autoantibodies (Gallo et al., 2015). This finding may be related to the fifth model of immunopathology proposed by Chen et al. for autoimmune mechanisms (Chen et al., 2017).

Although Ruminococcus gnavus is a gram-positive bacterium, the complex glucorhamnan polysaccharide secreted from this bacterium induces TNFα through TLR4 in dendritic cells (Henke et al., 2019). In contrast, Ruminococcus_2 is associated with the improvement of metabolic dysfunction. For example, the consumption of barley for eight months in subjects with metabolic dysfunction improved blood sugar levels and cholesterol levels, which accompanied the enrichment of Ruminococcus_2 and Dialister in the subjects’ gut (Matsuoka et al., 2022). This suggests that the depletion of these commensal bacteria may be associated with the development of metabolic dysfunction. Abnormal metabolic reactions, such as elevations in glycolysis and mitochondrial oxidative metabolism, have also been reported in patients with SLE (Yin et al., 2015; He et al., 2020). Gut dysbiosis in patients with SLE includes enrichment of R. gnavus and depletion of Ruminococcus_2 and Dialister (Table 1). These results suggest that abnormal metabolism in SLE may be closely associated with gut dysbiosis.

A mouse model of spinal cord injury shows the neuroprotective effects of Butyricimonas, a genus depleted in patients with MS. Butyricimonas is depleted in mice with spinal cord injury but recovers by fecal microbiome transfer from healthy mice, which induces downregulated IL-1β and NF-κB signaling in the spinal cord (Jing et al., 2021). Therefore, these results suggest that the depletion of Butyricimonas in patients with MS may be closely related to its etiology (Table 1).

The Bifidobacterium genus was reported to be depleted in patients with SS in three papers (Table 1) (Mandl et al., 2017; Cano-Ortiz et al., 2020; Moon et al., 2020a). However, this commensal bacterium needed to be further classified for comparative analysis with other diseases because its relative abundance in gut dysbiosis differed depending on the species. For example, B. longum is effective in preventing IBD and treating diarrhea (O’Callaghan and van Sinderen, 2016; Yao et al., 2021). On the other hand, B. bifidum can induce the differentiation of Th17 cells (Rinaldi et al., 2019). Based on these results, the Bifidobacterium genus in SS, an autoimmune disease, is likely to be B. longum, but it remains a task to be identified at the species level in the future.

We also investigated how many targeted therapies are shared among the four autoimmune diseases. This is because the altered gut bacteria that may be associated with the etiology of the disease are shared in autoimmune diseases. Petitdemange et al. reported targeted therapies shared in autoimmune or inflammatory diseases (Petitdemange et al., 2020). Four targeted therapies (abatacept, anakinra, ianalumab, and rituximab) are shared among the four autoimmune diseases (Table 4). Among the targeted therapies shared by three diseases, seven (alemtuzumab, atacicept, evobrutinib, ocrelizumab, secukinumab, tabalumab, and ustekinumab) are shared among SLE, MS, and RA. Furthermore, seven (belimumab, etanercept, filgotinib, iscalimab, lanraplenib, omalizumab, and telitacicept) are shared among SLE, RA, and SS, and one (baminercept) is shared among MS, RA, and SS. These results suggest that targeted therapies in autoimmune diseases are related to overlapping immunological pathways due to common causes. It is tempting to say that the altered gut bacteria shared among diseases might be partially involved (Petitdemange et al., 2020). In particular, 52.6 percent (10 out of 19) of the treatments for these four diseases consisted of molecules that target B cells or antibody production, indicating that the altered gut bacteria may be closely related to autoantibody production.


Table 4 | Targeted therapies and commensal bacteria shared by four autoimmune diseases.






2.7 Association between shared gut bacteria and polyautoimmunity

Polyautoimmunity can be defined as the coexistence of one or more autoimmune diseases in one patient (Rojas-Villarraga et al., 2012). Polyautoimmunity in patients with SLE, SS, and RA has a prevalence of 41 percent, 32.6 percent, and 14 percent, respectively (Ordonez-Canizares et al., 2022). Although data on overall polyautoimmunity in patients with MS are unavailable, the prevalence of coexisting SS has been suggested to be between 1 and 16.6 percent (Amador-Patarroyo et al., 2012). These results may be related to the fact that autoimmune diseases share altered gut bacteria associated with the failure to maintain immune homeostasis (Table 2). The enriched relative abundance of Bacteroides, Eggerthella, Prevotella, and Streptococcus, shared in autoimmune diseases, has been reported to be related to the promotion of immune responses in immune-related diseases. This is due to Bacteroides-derived LPS, metabolizing Rorγt inhibitors, Th17 cell induction, and antibodies to cross-reactive antigens, respectively (Maeda et al., 2016; Vatanen et al., 2016; Cunningham, 2019; Alexander et al., 2022). In particular, as aforementioned, Streptococcus, which is shared by all four autoimmune diseases, has been suggested to be involved in autoantibody formation (Cunningham, 2019). This result might also be partially related to the fact that many therapies for these four diseases involve the inhibition of autoantibody production (Table 4) (Petitdemange et al., 2020).

Meanwhile, SLE, MS, and SS patients showed a decreased abundance of Faecalibacterium abundance. The decrease of Faecalibacterium has the potential to significantly impact the etiology of autoimmune diseases because they secrete various immune modulators, such as butyrate, salicylic acid, and microbial anti-inflammatory molecules, as aforementioned (Miquel et al., 2015; Quevrain et al., 2016; Houtman et al., 2022). These results suggest that the altered gut bacteria shared between autoimmune diseases might contribute to the development of polyautoimmunity (De Luca and Shoenfeld, 2019; Xu et al., 2021). However, a direct causal relationship between the shared, altered gut bacteria and polyautoimmunity remains to be further elucidated.




2.8 Association between altered gut bacteria and mortality

The total number of altered gut bacteria in each autoimmune disease differed depending on the disease—22 in SLE, 16 in MS, 5 in RA, and 8 in SS (Table 1). As the number of altered taxa cross-validated across different studies can increase with the increased number of studies, we defined a gut dysbiosis index as the number of altered gut bacterial taxa divided by the number of studies. The gut dysbiosis indexes of SLE, MS, RA, and SA were 1.7, 1.8, 0.7, and 1.3, respectively. Based on these results, we investigated whether a higher degree of gut dysbiosis in SLE and MS was associated with mortality. The most recent papers from developed countries were used for similar comparative conditions for mortality due to each disease. The SMR of patients with MS was 2.89 [95 percent CI, 2.71 to 3.07; UK (period: 1980–2007)], indicating a 189 percent higher risk of death than the general population (Kingwell et al., 2012). The SMR of patients with SLE was 2.66 [95 percent CI, 2.09 to 3.39; Korea (period: 1990–2015)], indicating a 166 percent higher risk of death than the general population (Lee et al., 2016). However, the SMRs of patients with RA and SS were 1.54 [95 percent CI, 1.41 to 1.67; Netherlands (period: 1997–2012)] (van den Hoek et al., 2017) and 1.15 [95 percent CI, 0.86 to 1.50; USA (period: 2006–2015)] (Maciel et al., 2017), respectively. These values were slightly higher than or no different from the general population. Interestingly, the SMRs presented a positive correlation trend with the gut dysbiosis indexes (Figure 1), suggesting that a high degree of gut dysbiosis may adversely affect immune homeostasis and increase mortality rates.




Figure 1 | Association between the number of altered gut bacteria and mortality in patients with autoimmune diseases. The index of gut dysbiosis is defined as the number of altered gut bacterial taxa divided by the number of studies. R is Pearson’s correlation coefficient.







3 Conclusion

The importance of gut dysbiosis in the etiology of autoimmune diseases is increasing. Thus, to better understand the impact of gut dysbiosis, we first investigated the cross-validated altered gut bacteria in each disease and further analyzed the altered gut bacteria shared between autoimmune diseases. Interestingly, the shared, altered gut bacteria enriched in autoimmune diseases are partially related to autoantibody production or the activation of Th17 cells in reports of immune-related diseases. In particular, the decrease of Faecalibacterium shared in SLE, MS, and SS, which secretes various immunomodulatory substances, can greatly affect the failure to maintain immune homeostasis. The SMR in patients with SLE and MS was higher than that of RA and SS, which was shown to be positively correlated with the total number of altered gut bacteria in four autoimmune diseases. In taxonomic abundance analysis, Bifidobacterium, Bacteroides, Lactobacillus, Prevotella, and Ruminococcus should be classified at the species level, not the genus level, as their relative abundance may vary depending on the species. However, the abundance of Bacteroides fragilis and Prevotella copri varies according to diseases or strains, even if the species are the same, so further research is needed. In addition, the non-cross-validated microbiome, excluded from this study, is left for future tasks by accumulating more data. This review suggests that the altered gut bacteria in patients with autoimmune diseases may be closely related to abnormal immune activity and weakened anti-inflammatory activity. In addition, the increased number and sharing of altered gut bacteria are likely to be associated with disease exacerbation and polyautoimmunity, respectively. However, the direct causal relationship between altered gut bacteria and each autoimmune disease remains to be clarified.
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The success rate of azomethane-dextran sodium sulfate (AOM-DSS) model in mice has been a long-standing problem. Treatment of AOM and the first round DSS induces acute colitis and is of great significance for the success of AOM-DSS model. In this study, we focused on the role of gut microbiota in the early stage of AOM-DSS model. Few mice with obvious weight loss and high disease-activity score survived from double strike of AOM and the first round DSS. Different ecological dynamics of gut microbiota were observed in AOM-DSS treated mice. Pseudescherichia, Turicibacter, and Clostridium_XVIII were of significance in the model, uncontrolled proliferation of which accompanied with rapid deterioration and death of mice. Akkermansia and Ruthenibacterium were significantly enriched in the alive AOM-DSS treated mice. Decrease of Ligilactobacillus, Lactobacillus, and Limosilactobacillus were observed in AOM-DSS model, but significant drop of these genera could be lethal. Millionella was the only hub genus of gut microbiota network in dead mice, which indicated dysbiosis of the intestinal flora and fragility of microbial network. Our results will provide a better understanding for the role of gut microbiota in the early stage of AOM-DSS model and help improve the success rate of model construction.
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Introduction

Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of cancer deaths worldwide (Sung et al., 2021). Taking tumor heterogeneity into consideration, experimental animal models of CRC are still main ways to study the pathogenesis of CRC. Azomethane (AOM) combined with dextran sodium sulfate (DSS) in rodents is one of the most common models to construct chemical-induced colorectal neoplasm. The model established by AOM-DSS has been widely used for pathological and genetic studies of CRC (Chung et al., 2021; Gong et al., 2022). Methyl diazo ions are generated following AOM treatment, which lead to aberrant DNA methylation and ultimately initiate and promote the development of CRC (Fiala et al., 1987; Reddy, 2004). Abnormal expression of β-linked proteins caused by DSS induces local inflammatory environment and exacerbates the process of tumorigenesis (Reddy, 2004). However, it’s difficult to establish this model due to the dual use of AOM and DSS and the variable sensitivity of mice from different genetic and environmental backgrounds (Amos-Landgraf et al., 2014; Neufert et al., 2021). It has been documented that the development of moderate colitis level during each DSS cycle is crucial in AOM-DSS model (Neufert et al., 2021). Specifically, occurrence of DSS-induced acute colitis in the pre-construction phase of AOM-DSS model is of great significance to successful colorectal tumorigenesis.

Increasingly number of studies have shown that the gut microbiota plays an important role in CRC induced by AOM-DSS. The disturbance of the gut microbiota is one of the important reasons for the deterioration of CRC. Decrease in beneficial bacteria (anaerobic species) and increase in parthenogenic anaerobes (e.g., pathogenic Enterobacteriaceae) are main characteristics of dysbiosis in gut microbiota (Lupp et al., 2007; Zitvogel et al., 2018). It has been shown that pathogenic Parasutterella was significantly enriched after AOM-DSS treatment (Ibrahim et al., 2019). This may lead to disruption of intestinal barrier, destruction of the mucus layer and epithelium, and induction of an immune response that may lead to chronic inflammation (Davenport et al., 2014; Shahanavaj et al., 2015). Genera of the Lachnospiraceae family, which had been shown to have potential probiotic properties, were found to be significantly reduced after AOM-DSS interference (Ibrahim et al., 2019). However, most of the previous studies reported there were microbial compositional changes after the model was successfully constructed, few studies focused on the constructing process, especially on the early stage (Zackular et al., 2013; Ibrahim et al., 2019). In the constructing process, the barrier function of the intestine and destabilization of the mucus layer in the intestinal wall were significant impairment caused by the intervention of DSS in mice, which made the bacteria more permeable (Morgan et al., 2013; Johansson et al., 2014). The double strike of AOM-DSS increased the mortality of mice in the early stage and was one of the main reasons for the failure of model construction. It is intriguing and important to explore the role of gut microbiota in the early stage of the AOM-DSS model. Therefore, we focused on the dynamic evolution of gut microbiota in this study. Our findings will provide a better understanding of the rapid transformation of gut microbiota in the early stage of AOM-DSS model construction and help build foundation for improving success rate of model construction.





Methods




Animal experiments

Male C57BL/6 mice (6 weeks old) were purchased from Hunan Sleek Jingda (SLAC), Changsha, China. All mice were housed in plastic cages with stainless steel grids. The environmental conditions were sterile, with free access to standard rat food and drinking water under controlled temperature (25 ± 5°C), humidity (60%-70%), and light (12/12hour light/dark cycle). Mice were given 7 days to acclimatize to the environment prior to the start of the experiment. The study was approved by the Laboratory Animal Ethics Committee of Xiangya Hospital, Central South University (No. 2022060872). All animal experimental operations were performed in accordance with the Institutional Guidelines for the Care and Use of Laboratory Animals.

At the end of the acclimation period, mice were randomly divided into Control group and DSS group. The DSS group was then divided into DSS_Alive group and DSS_Dead group according to the survival status of the first round DSS. The Control group continued having free access to standard rodent chow and sterile drinking water. Mice in the DSS group were fed 2% DSS drinking water daily for one week after intraperitoneal injection of the mutagen AOM (10 mg/kg). Then they consumed sterilized drinking water for two more weeks. AOM was purchased from Sigma-Aldrich (St. Louis, MO) and DSS was from MP Biomedicals (Santa Ana, CA).





Sample collection and physical measurement

Fecal samples were collected every two days, and feces were stored at -80°C for further analysis. Body weight, the presence of blood in the stool, and stool consistency were measured every two days. Disease activity index (DAI) was then evaluated based on the three parameters, similar to the subjective clinical signs observed in human ulcerative colitis (Howarth et al., 2000).





PCR and high-throughput sequencing of 16S rRNA

Microbial DNA extraction was performed using HiPure Stool DNA Extraction Kit (Magen, Guangzhou, China). The V3-V4 region of the ribosomal RNA gene were amplified by polymerase chain reaction (PCR, 95°C for 5 min, followed by 30 cycles at 95°C for 1 min, 60°C for 1 min, and 72°C for 1 min and a final extension at 72°C). PCR was conducted using the forward primers 341F (5’-CCTACGGGNGGCWGCAG-3’) and reverse primers 806R (5’- GGACTACHVGGGTATCTAAT-3’). Related PCR reagents were from New England Biolabs, USA. Amplicons were collected from 2% agarose gels, and purified by the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) according to the manufacturer’s instructions and quantified using ABI StepOnePlus Real-Time PCR System (Life Technologies, Foster City, USA). The purified libraries were then pooled in equimolar and paired-end sequenced on the Illumina MiSeq system using the PE250 sequencing strategy (MiSeq Reagent Kit) by Guangzhou Kidio Technology Services Co. After sequencing, the data were decomposed into appropriate samples based on barcodes and the appropriate sequences were imported into downstream software. To get high quality clean reads, raw reads were further filtered according to the following rules using FASTP (version 0.18.0) (Chen et al., 2018). Quality control and denoise of raw reads were performed based on standard amplicon pipeline as previously described (Liu et al., 2021). Specifically, the denoising method was -unoise3 available in USEARCH (Edgar and Flyvbjerg, 2015). The representative ASV sequences were classified into organisms by a naïve Bayesian model using RDP classifier (version 2.2) based on SILVA database (version 138.1) (Pruesse et al., 2007; Wang et al., 2007). The feature table and taxonomy annotation table were used for further data analysis.





Data analysis

All statistical analyses were performed using the R V4.1.2 environment (R Core Team, 2021). The statistical results were visualized using the “ggplot2” package unless specified otherwise. Rarefication, Shannon Wiener index, and beta diversity based on Bray-Curtis distance were generated using package “Vegan”. The package “randomForest” was used for random forest regression analysis, and the package “Pheatmap” was used for visualization of genus biomarkers. Functional analysis of microbial community was conducted based on ImageGP platform integrating several predictive algorithms including functional annotation of prokaryotic taxa (FAPROTAX), phylogenetic reconstruction of unobserved states (PICRUST), and BugBase (Langille et al., 2013; Louca et al., 2016; Ward et al., 2017; Chen et al., 2022).

The co-occurrence networks were established based on Spearman correlation analysis by the “igraph” package. Genera were screened prior to analysis, and only genera with relative abundances above 0.005 were retained. The Benjamin and Hochberg false discovery rate (FDR) was calculated to correct the P-value of Spearman analysis; Cutoff of correlation coefficient and corrected P-value was 0.6 and 0.05, respectively. Network topology properties and hub networks were generated with Gephi software (version 0.10.0).






Results




Effect of AOM-DSS modeling on physiological indications

In this study, we used AOM-DSS to construct an experimental model of CRC in mice. AOM-DSS treated mice had significantly poor prognosis, and the median overall survival (OS) time of which was eight days (Figure 1A). After receiving AOM injection, a large number of mice showed significant weight loss and appeared to die with the use of DSS (Figure 1B). The combined application of AOM and DSS in the early stage might be the key for CRC modeling. Throughout the experiment, we found that there were obviously different trends in the body weight changes of the three groups (Figure 1C). The body weight of mice in the Control group basically remained stable and showed a slightly increasing trend. Body weight of DSS group began to decline after receiving DSS drinking water. The disease activity index (DAI) of the mice was measured and there were significant differences among the three groups. The highest DAI score fluctuated from six to ten in the DSS_Alive group, and around eleven in the DSS_Dead group (Figure 1D). Collectively, the combination of AOM with DSS ultimately contributed to high mortality rate in the pre-modeling period of CRC. And the death of DSS-treated mice might be correlated with more serious colitis.




Figure 1 | Experiment overview and mice characteristics of the three group. (A) Survival plot of AOM-DSS treated mice and control. (B) Experimental protocols, progress and results for Control group, DSS_Alive group and DSS_Dead group. (C) Changes in body weight of the three group as the experiment was conducted over time. (D) Violin plot of the highest DAI score of the three group. Kruskal-Wallis test was used to tested the differences of the DAI scores at peak in three groups.







The diversity and composition dynamics of gut microbiota




The diversity of gut microbiota

Rarefaction curves revealed that sequencing depth of the three group was adequate (Figure S1). Rarefied feature table was generated in order to avoid bias of different sequencing depth. In the analysis of microbial diversity, alpha diversity was illustrated by the Shannon Wiener index. Alpha diversity between the Control group and the other two groups were of significant difference (Figure 2A). The Shannon Wiener index increased slowly over time in the Control group. However, the Shannon Wiener index decreased in the DSS_Alive group after receiving DSS and finally remained flat, while the DSS_Dead group decreased sharply after the fifth day of the experiment (Figure S2A). To evaluate the structural similarity of intestinal microbial communities among the Control group, DSS_Alive group, and DSS_Dead group, principal coordinate analysis (PCoA) was performed based on Bray-Curtis distance. In the constrained PCoA (CPCoA) analysis, we can see that the Control group, DSS_Alive group, and DSS_Dead group were completely separated (Figure 2B). There were significant differences in the gut microbial composition among the three groups (Table S1). However, microbial compositions of the AOM-DSS treated mice in different cages were similar (Figure S3, Table S1). The Bray-Curtis distance of the three groups increased with the development of the experiment (Figure S2B). The PCoA results showed that the samples of Control group clustered together with the progress of the experiment. Specifically, the samples of DSS_Alive group and DSS_Dead group gradually separated from the Control group after the use of DSS in the second coordinate axis, indicating that the induction of AOM-DSS was the key reason for samples shift. Additionally, the samples of DSS_Alive group and DSS_Dead group also shifted with the progress of the experimental time in the third axis, indicating that the intervention time was another important factor for the changes in these two groups (Figure 2C).




Figure 2 | Diversity and composition dynamics of the three group. (A) The comparison of Shannon index among three groups. (B) The analysis of CPCoA between three groups. (C) Beta diversity of three groups analyzed by PCoA. Color bars represent experimental days, and different groups are represented by different symbols. (D) Bacterial community composition at the genus level among Control group, DSS_Alive group and DSS_Dead group. Wilcoxon rank-sum test was used to test significance in boxplot. n.s. means no significance, * means P < 0.05, ** means P < 0.01.







The composition dynamics of gut microbiota

To further confirm the correlation between the gut microbial structure and experimental time among different groups, the Pearson correlation analysis showed that the microbial structure did not change significantly with the progress of experimental time in the Control group. The correlation in the DSS_Alive group and DSS_Dead group remained the same in the early period, but they had different trends in the late of experiment. The Pearson coefficients of DSS_Alive group increased gradually, while the DSS_Dead group decreased continuously (Figure S4). It revealed the rapid transformation of microbial structure during the acute phase of colitis. For microbial composition, Bacteroidetes consisted of nearly half of the Control group, while its percentage was less than 40% in the DSS_Alive and DSS_Dead group at the phylum level. The proportions of Proteobacteria was over 20% in AOM-DSS treated group, which was less than 20% in the Control. Compared with the Control group, the relative abundance of Verrucomicrobiota in the DSS_Alive and DSS_Dead group reached nearly 4% (Figure S5A). At the genus level, compared with the Control group, the relative abundance of Duncaniella, Ligilactobacillus, and Lactobacillus decreased in DSS_Alive group and DSS_Dead group, but Pseudescherichia, Bacteroides, and Akkermansia increased (Figure S5B). In addition, the relative abundance of most genera remained constant in the Control group showed by microbial composition over time, but Pseudescherichia mainly appeared in the early period. The relative abundance of Muribaculaceae, Ligilactobacillus, Lactobacillus, and Pseudescherichia showed a large variation in the DSS_Alive and DSS_Dead groups. In the DSS_Alive group, the relative abundance of Ligilactobacillus, Lactobacillus, and Pseudescherichia first decreased and then increased. From the fourth day of the experiment, the relative abundance of Bacteroides increased substantially, while Duncaniella slowly declined. However, in the DSS_Dead group, we could see that the relative abundance of Ligilactobacillus, Lactobacillus, and Muribaculaceae decreased, while Pseudescherichia and Bacteroides began to increase on the fourth day of the experiment (Figure 2D). The relative abundance of Bacteroides was elevated in the DSS_Alive and DSS_Dead groups in the later period of the experiment, which was rare in the Control group.






Gut microbiota with significant differences in abundance

To specify which microbiota might have the ability to decide fate of AOM-DSS treated mice, we performed differential analysis between the DSS_Alive group and the DSS_Dead group in stages of breakout and convalescence. Compared with the DSS_Alive group in stage of breakout, we found that Turicimonas and Clostridium_XVIII were significantly enriched while Ruthenibacterium and Akkermansia were significantly depleted in the DSS_Dead group (Figure 3A). As for convalescence stage, Ligilactobacillus, Limosilactobacillus, and Lactobacillus were significantly depleted and Pseudescherichia was significantly enriched (Figure 3B). The relative abundance of corresponding bacteria was specifically revealed. Akkermansia and Ruthenibacterium were significantly enriched in the DSS_Alive group (Figures 3C, D). The relative abundance of Akkermansia was significantly higher in AOM-DSS treated mice. While elevating to more than 10% in the DSS_Alive group, the median abundance of Akkermansia was less than 5% in the DSS_Dead group (Figure 3C). Ruthenibacterium was only significantly enriched in the DSS_Alive group, and there was no difference between the control group and the DSS_Dead group (Figure 3D). Pseudescherichia, Turicimonas, and Clostridium_XVIII were significantly enriched in the DSS_Dead group (Figures 3E–G). The significant difference of Turicimonas and Clostridium_XVIII only appeared between the DSS_Alive group and the DSS_Dead group (Figures 3E, F). Application of AOM-DSS induced significant increase of Pseudescherichia, and the median relative abundance of Pseudescherichia in the DSS_Dead group was over 50% (Figure 3G). The relative abundance of Ligilactobacillus, Lactobacillus, and Limosilactobacillus in the DSS_Alive group showed no significant decline when compared with the Control group, while those bacteria in the DSS_Dead group were significantly depleted (Figures 3H–J).




Figure 3 | Significant gut microbiota with differences in relative abundance. Volcano plot between the DSS_Dead group and the DSS_Alive group in the stage of breakout (A) and convalescence (B). Boxplot plot of corresponding significant bacteria among the three group (C–J). Wilcoxon rank-sum test was used to test significance in three groups. n.s. means no significance, * means P < 0.05, ** means P < 0.01, *** means P < 0.001.







Models about microbial biomarkers of experimental time and DAI scores

To build a model that correlates gut microbiota composition with the progression of CRC, we regressed the relative abundance of gut microbiota in three groups on the time of experiment by using the Random Forests machine learning algorithm. First, we assessed the importance of bacterial classes by cross-validation. We found that the cross-validation error was relatively low when 13 genera were used in the three groups. Therefore, we used these 13 genera as biomarker taxa. Most of the biomarker taxa of the three groups showed high relative abundance in corresponding experimental time. There were both similarities and differences in these time-specific genera of three groups. In the Control group, we found that Muribaclum, Peribacillus, and Lysinibacillus showed high abundance at the beginning (Figure S6A). While, Muribaclum, Prevotellamassili, and Limosilactobacillus showed high abundance in the DSS_Alive group (Figure S6B). As the disease worsened, Clostridium_sensu_stricto, Pseudescherichia, and Turicibacter increased rapidly in AOM-DSS treated mice, accompanied by some deaths (Figures S6B, C). While mice eventually survived, Mediterraneibacter, Mucispirillum, and Weeksella presented high abundance in the end (Figures S7A, B). Limosilactobacillus was time-specific genus in the DSS_Alive group and DSS_Dead group, indicating its importance and potential function of maintaining gut homeostasis in AOM-DSS treated mice (Figures S6B, C).

We also performed a Random Forest machine learning algorithm based on DAI scores. We assessed the importance of bacterial classes by cross-validation to discover key microorganisms, and the number of classes in the cross-validation error curve was relatively stable (Figure S7B). Therefore, we used these 13 genera as biomarker taxa (Figure S7A). Clostridium_Sensu_Stricto, Pseudescherichia, and Turicimonas showed positive correlations with DAI scores, while Muribaculum, Paramuribaculum, and Lachnospiracea_incertae_sedis presented negative correlations. Bacterium including Limosilactobacillus, Lactobacillus, Turicibacter, and Romboutsia had highest abundance in intermediate level of DAI scores (Figure S7C). These models provided a better understanding of microbial dynamics and corresponded with the result of differential analysis.





The interactions and networks in gut microbiota

Further, to reveal the interactions of microorganisms in the colorectum, we performed co-occurrence analysis of genus-level microbial network. All analysis was performed under the same parameters. Suggested by the results, the Control group had 30 nodes and 52 edges, the DSS_Alive group had 35 nodes and 40 edges, and the DSS_Dead group had 52 nodes and 85 edges (Figure 4A). And we also noticed that the DSS_Alive group had the highest number of modularity class, but its average number of edges per node (1.1429) was lower than that of the Control group (1.7333) and the DSS_Dead group (1.6346) (Figures 4B, C). Prevotellamassilia and Parasutterella were the hub genus of the Control group, and Lawsonibacter, Oscillibacter, and Neglecta were the hub genus of the DSS_Alive group. They might play a core role in the relevant microbial network. The degree of those hub genus was not very significant (Table S2). In contrast, Millionella was the hub genus of the DSS_Dead group, which had the highest degree (51) and a large gap compared with other microorganisms. It suggested that Millionella was essential for maintaining the stability of the microbial network of the DSS_Dead group, which made the network vulnerable. We also found that interactions between Neglecta, Mediterraneibacter, and Paludicola were simultaneously presented in the DSS treatment group and absent in the Control group, suggesting a correlation between the treatment of DSS and the interactions between these three bacteria. We also analyzed the properties of the microbial network. The results showed that treatment of DSS significantly reduced the degree of the microbial network, lowered its complexity, and decreased its modularity (Figures 4B–D). In conclusion, the treatment of DSS led to a decrease in the stability and cohesiveness of the microbial network and made microbial composition simpler.




Figure 4 | Co-occurrence network of the three group. (A) Microbial networks of Control group, DSS_Alive group, and DSS_Dead group. The size of the nodes was proportional to the value of the degree. The thickness of the edges was proportional to the degree of correlation. The properties of network about weighted degree, modularity and clustering coefficient present in (B–D). n.s. means no significant difference, * means P < 0.05, **** means P < 0.0001.







Predicted functions of microbial communities

To further explain and explore the potential functions of microbial communities, functional predictions were conducted based on algorithms including FAPROTAX, PICRUST, and BugBase. There were significant differences among the Control group, the DSS_Alive group, and the DSS_Dead group. Adonis p values based on functional matrix of FAPROTAX, PICRUST, and BugBase were 0.006, 0.001, and 0.003, correspondingly (Figures 5A–C). We further specified differential predicted phenotypes or pathways between the DSS_Alive group and the DSS_Dead group. Three functions were considered significant including aerobic phenotype, chemoheterotrophy, and fermentation. Relative levels of the three function in the DSS_Alive group were significantly higher than those in the Control group and the DSS_Dead group (Figures 5D–F). These results revealed significant differences in predicted functions of microbial communities, and promoted understanding of surviving mechanisms in AOM-DSS mice.




Figure 5 | Predicted functions of the three group. PCA plot of predicted functions based on FARPROTAX (A), PICRUST (B), and BugBase (C). P-values were calculated using permutational multivariate analysis of variance (Adonis). Boxplot plot of corresponding significant functions among the three group (D–F). Wilcoxon rank-sum test was used to test significance in three groups. n.s. means no significant difference, * means P < 0.05, ** means P < 0.01.








Discussion

As one of the most common methods to study CRC, the success rate of AOM-DSS model in mice has been a long-standing problem (Andrei et al., 2022). In our study, we found that the physiological signs of mice were extremely different among groups during CRC modeling. As the experimental time progressed, the relevant indicators changed. We observed that DSS_Alive and DSS_Dead groups had decreased body weight and their DAI scores were elevated compared to the Control group. They were consistent with previous studies, and these results indicated that the mice were successfully induced to status of inflammatory bowel disease under the pressure of AOM and first round DSS (Chartier et al., 2018; Chartier et al., 2020b; Chartier et al., 2020a). However, mice in DSS_Dead group showed a more obvious weight loss and higher DAI score, which indicated that more severe colitis was the main reason for the death and failure of model construction. It was intriguing to distinguish differences of gut microbial structures based on physiological results of these AOM-DSS treated mice.

The microbial community is generally considered an important biological factor in intestinal diseases (Cheng et al., 2020). Previous studies had shown that CRC patients underwent significant changes in the structure of the gut microbiome. Alterations in microbial composition modulated local responses and produced toxin genes, thus playing a regulatory role in tumor development (Dejea et al., 2018; Garrett, 2019; Janney et al., 2020). Our resulted suggested that in the early stage of AOM-DSS model, gut microbiota were inclined to appear phenotype of colitis rather than colorectal cancer. In this study, we found that the correlation between the microbial structure and experimental time was different in the DSS_Alive and DSS_Dead groups. The DSS_Alive group gradually reached the recovery phase. Concurrently, the mice weight recovered and the microbiota composition became similar. In contrast, the DSS_Dead group had rapid changes in intestinal microbial structure due to breakout of colitis. These were consistent with previous findings in acute and chronic colitis (Xu et al., 2021; Zhou et al., 2021). Mice treated with AOM-DSS would fail to convert microbial composition from acute to chronic colitis if severe colitis was induced. Significant microbes might have the potential to control colitis levels and decide fate of AOM-DSS treated mice.

In the early stage of AOM-DSS model, we found that there were significant differences in microbial composition between the DSS_Alive and DSS_Dead groups. By differential analysis, we observed that the relative abundance of Pseudescherichia in the DSS_Dead group was significantly increased to over 50% Studies have found that Pseudocherichia vulneris had close relatives with the pathogenic bacterium Escherichia vulneris, suggesting that Pseudocherichia might have a potential pathogenic role and deserved further investigation in the future (Alnajar and Gupta, 2017; Fan et al., 2021). We also noted that the relative abundance of Turicimonas and Clostridium_XVIII in the DSS_Dead group significantly increased at the end of induction phase. There were few studies related to Turicimonas, while Clostridium_XVIII was shown to produce exotoxins and promote inflammation with proinflammatory potential (Matsuda et al., 2000; Stiles et al., 2014; Woting et al., 2014). These genera, especially Pseudocherichia, might play an significant role in causing severe colitis and might be one of the main reasons for the death of AOM-DSS treated mice at the end of induction phase.

Concurrently, the relative abundance of Ruthenibacterium and Akkermansia were increased in mice surviving from AOM-DSS treatment. They preempted the niche of pathogenic bacteria at the end of induction phase, which could reduce damage of pathogenic bacteria and the mortality of model mice. There were few researches on Ruthenibacterium. Akkermansia, with relative abundance over 10% in the DSS_Alive group, is considered as a genus of gut beneficial bacteria. It can promote an anti-inflammatory and antioxidant status in the gut by increasing the production of short chain fatty acids (SCFAs) (Zhai et al., 2019). The significant increase in the relative abundance of the two genera at the end of induction phase might be of great significance for alleviating colorectal damage and preventing death of model mice.

In the convalescent phase, the relative abundance of Ligilactobacillus, Limosilactobacillus, and Lactobacillus returned to the normal level while Pseudocherichia was at a relatively low level. The beneficial effects of Lactobacillus have been widely reported, and many clinical studies have shown its ability to reduce chronic inflammation associated with cancer development (Salva et al., 2014; Shin et al., 2016; Zhuo et al., 2019). Studies have proven that probiotic bacteria such as Lactobacillus were able to inhibit deterioration of CRC by secreting SCFAs, suppressing inflammation and angiogenesis, and enhancing the function of the intestinal barrier (Chattopadhyay et al., 2021). Ligilactobacillus is another common probiotic. It could increase microbiota abundance of colorectum and alleviate symptoms of IBD by reducing serum inflammatory cytokine, declining bacterial translocation levels, and achieving protective effects on the barriers of colorectum (Shi et al., 2017; Alard et al., 2018). Therefore, the increase of these probiotics suggested that they gradually exerted protective effects on the colorectum and played an important role in the alleviation of the disease in model mice. It suggested a critical role of the three probiotics for the transition from acute to chronic colitis.

In general, the relative abundances of Pseudocherichia, Turicimonas, and Clostridium_XVIII were significantly elevated in the DSS_Dead group and might occupy niches of the other probiotics. In the convalescence, the relative abundance of beneficial bacteria returned to the normal level or even significantly increased, while the relative abundance of pathogenic bacteria was greatly reduced. This trend reduced the damage effect of pathogenic bacteria and promoted the beneficial bacteria to exert protective effects on the colorectum. Successful transition in the early stage of AOM-DSS model relied on sufficient niches of gut beneficial bacteria in induction phase and convalescence.

From the perspective of network properties, we found that the Control group had the highest average number of edges per node and a lower number of modularity classes compared to DSS_Alive and DSS_Dead groups. These meant that the co-occurrence network of Control group had the higher connectivity and stronger cohesion, which made it more stable. Compared to groups of Control and DSS_Alive, the DSS_Dead group had the most nodes and edges. However, Millionella was the only hub genus maintaining the entire network, which made the network vulnerable. There was very little known about Millionella. It was first isolated from human right colon in 2017, which has only been reported as a bacterium capable of promoting obesity and associated with liver injury and insulin resistance (Mailhe et al., 2017; Zhang et al., 2020; Ma et al., 2022). It might also function as a potential diagnostic biomarker for dysbiosis of the intestinal flora ecology (Zhang et al., 2020). More studies were needed to elucidate the properties and functions of Millionella in the future. The simplification and instability of the gut flora network might also be one of the reasons for the failure of the AOM-DSS model in the early stage of construction.

Potential functions were increased in the DSS_Alive group including aerobic phenotype, chemoheterotrophy, and fermentation. The significant function simultaneously modulated both microbial and host pathways, and changed rapidly in human infants (Li et al., 2022). SCFAs, productions of microbial fermentation, not only regulate community stability of gut microbiota, but underlies adaptive homeostasis and colonic health as well (Wong et al., 2006; Smith et al., 2013). Increased fermentation in emergency might play a vital function in promoting colonic homeostasis and health in AOM-DSS treated mice. These results corresponded with significant probiotics in the DSS_Alive group, and helped better understand their potential mechanisms.

In conclusion, our study showed that microorganisms played an important role in the construction of CRC model. We focused on the early stage of AOM-DSS model, conducted ecological and dynamic analysis, and provided a better understanding for the shift of gut microbiota in AOM-DSS treated mice. Some microbes might perform a vital function in the successful construction of AOM-DSS model.
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Background

The microbiome has been implicated in the initiation and progression of colorectal cancer (CRC) in cross-sectional studies. However, there is a lack of studies using prospectively collected samples.





Methods

From the Norwegian Colorectal Cancer Prevention (NORCCAP) trial, we analyzed 144 archived fecal samples from participants who were diagnosed with CRC or high-risk adenoma (HRA) at screening and from participants who remained cancer-free during 17 years of follow-up. We performed 16S rRNA sequencing of all the samples and metagenome sequencing on a subset of 47 samples. Differences in taxonomy and gene content between outcome groups were assessed for alpha and beta diversity and differential abundance.





Results

Diversity and composition analyses showed no significant differences between CRC, HRA, and healthy controls. Phascolarctobacterium succinatutens was more abundant in CRC compared with healthy controls in both the 16S and metagenome data. The abundance of Bifidobacterium and Lachnospiraceae spp. was associated with time to CRC diagnosis.





Conclusion

Using a longitudinal study design, we identified three taxa as being potentially associated with CRC. These should be the focus of further studies of microbial changes occurring prior to CRC diagnosis.





Keywords: archived fecal samples, colorectal cancer screening, microbiome, 16S rRNA, sequencing, metagenome, long term follow-up




1 Introduction

Colorectal cancer (CRC) is the third most common cancer in men and the second in women worldwide (1, 2). Symptoms are often unspecific, and many cases are detected at an advanced stage with reduced prospects for curative treatment. The progression toward CRC passes through stages of molecular and morphological changes from small and benign through advanced adenoma and finally to CRC. This adenoma–carcinoma sequence is estimated to take on average between 10 and 15 years (3). This time window provides an opportunity to screen and potentially remove lesions that have not yet developed into clinical cancer and advanced stages (3, 4). Several randomized studies have estimated that CRC screening by fecal tests reduces CRC mortality by 15%-30% (5–8). However, fecal-based tests are hampered by both poor sensitivity and specificity, particularly for the detection of CRC precursor lesions (9). Therefore, there is a need for additional markers that can be used in fecal-based screening for CRC precursor lesions.

Analyses of the gut microbiome composition, diversity, and functional potential have demonstrated that the gut microbiome of CRC patients is different from that of their healthy counterparts, making it a source of potential biomarkers for CRC (10–14). The presence of certain microbes is strongly associated with CRC. The most frequently reported are Fusobacterium nucleatum, Bacteroides fragilis, and pks+ Escherichia coli. The proposed mechanisms for the role of the microbiome in carcinogenesis include DNA damage through the secretion of genotoxic compounds, the induction of inflammation, and the activation of procarcinogenic signaling pathways (15, 16). While it has been shown that fecal tests in combination with microbial biomarkers are superior at separating healthy controls from CRC to that of a fecal test alone (17, 18), no specific bacterial profile is recognized as a biomarker for CRC. Still, less is known about the role of the microbiome in the early stages of carcinogenesis.

To identify a precancerous signal in the microbiome, there is a need for studies with sample collection prior to diagnosis and long-term follow-up. We performed microbiome sequencing on archived stool samples collected from screening attendees from the Norwegian Colorectal Cancer Prevention (NORCCAP) trial, with a 17-year follow-up time after sigmoidoscopy screening. This study included both screening-detected cancers and CRC precursor lesions, as well as incident post-screening cancers, and healthy controls. We aimed at detecting community-wide and specific differences in the microbial profiles between CRC, high-risk adenoma (HRA), and healthy controls.




2 Material and methods



2.1 Study design and participants

Details of the NORCCAP trial have been described previously (19–21). Briefly, NORCCAP was a randomized clinical trial in which 20,780 individuals were offered sigmoidoscopy screening in the intervention arm, and it was performed in 1999-2000 (age group 55-64) and 2001 (age group 50-54). The study recruited participants directly from the population registry of the Norwegian counties Oslo and Telemark. All participants were examined with flexible sigmoidoscopy, while 10,387 participants additionally delivered stool samples for an immunochemical fecal occult blood test (iFOBT – FlexSure OBT) and a fresh-frozen stool sample for biobanking. We selected a subset of participants with archived fresh-frozen fecal samples for microbiome analyses (Figure 1). The participants’ full CRC history was retrieved from the Cancer Registry of Norway in 2015 by using personal identification numbers and included the ICD-10 coded diagnoses C18, C19, and C20. We included all participants diagnosed with CRC at screening or by registry follow-up. Individuals with high-risk adenomas were defined as those presenting with one or more adenomas of ≥10 mm, with high-grade dysplasia or villous components regardless of polyp size, or those with three or more adenomas regardless of size, dysplasia, and villosity. We included a subset of HRA samples matching the CRC group on sex, age, and examination date. The control group was selected from a pool of participants with no findings (i.e., no lesions) at the screening examination (including low-risk adenomas) and who remained cancer-free during follow-up. Controls were selected by matching sex, age, and examination date to the CRC and HRA groups. Samples that were missing from the freezer, had a low amount of stool, or had no DNA extracted (none detected by Qubit) were excluded. All methods were carried out in accordance with the Declaration of Helsinki. All participants signed the informed consent that their samples and data could be used for research upon enrolment in the study. The study and all experimental protocols received ethical approval from the Regional Committees for Medical and Health Research Ethics in South-Eastern Norway (ref: 22337).




Figure 1 | Recruitment flowchart. Half of the NORCCAP participants were invited to deliver a stool sample in addition to participating in sigmoidoscopy screening. Half of these fecal samples were stored below −20°C. A subset of samples diagnosed with CRC and HRA and healthy controls were included in the study and homogenized in preservation buffers. Those with sufficient DNA extracted were included in 16S rRNA (n = 144) and metagenome sequencing (n = 47). FS, flexible sigmoidoscopy; FOBT, fecal occult blood test.






2.2 DNA extraction, library preparation, and sequencing

Participants were asked to collect stool samples immediately after defecation at home in 20-ml vials and to store the samples for at most 7 days in a freezer (−20°C) before sigmoidoscopy screening. The samples were delivered to either of the two screening centers in Oslo or Telemark at the time of sigmoidoscopy screening where further storage was at −20°C. We have previously demonstrated the feasibility of obtaining microbiota profiles from these archived stool samples (22). Prior to DNA extraction, the samples were thawed, homogenized, and mixed with OMNIgene gut buffer. The stool samples in NORCCAP have not been subjected to freeze–thaw cycles previously, with a few exceptions that have been thawed once only. The extraction of DNA was carried out using the QIAsymphony automated extraction system, using a QIAsymphony DSP Virus/Pathogen Midi Kit (Qiagen, Hilden, Germany), after an off-board lysis protocol with some modifications. Each sample was lysed with bead beating: a 500-µl sample aliquot was transferred to a Lysing Matrix E tube (Solon, USA:MP Biomedicals) and mixed with 700 µl of phosphate-buffered saline (PBS). The mixture was then shaken at 6.5 m/s for 45 s. After the bead beating, 800 µl of the sample was mixed with 1,055 µl of “off-board lysis buffer” (proteinase K, ATL buffer, ACL buffer, and nuclease-free water) and incubated at 68°C for 15 min for lysis. Nucleic acid purification was performed on the QIAsymphony extraction robot using the Complex800_OBL_CR22796_ID 3489 protocol. Purified DNA was eluted in 60 µl of AVE buffer (Qiagen, Hilden, Germany). DNA purity was assessed using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, MA, USA), and the concentration was measured using a Qubit instrument (Thermo Fisher Scientific, MA, USA).

After DNA extraction and sample quality assessment, the libraries were prepared for 16S rRNA and shotgun metagenome sequencing. In total, 144 samples had sufficient DNA for 16S rRNA sequencing. Sample amplification was carried out using 16S primers S-D-Bact-0341-b-S-17 (5′CCTACGGGNGGCWGCAG′3) and S-D-Bact-0785-a-A-21 (5′GACTACHVGGGTATCTAATCC′3) to amplify the V3-V4 regions (23). Amplification was performed using the TruSeq (TS)-tailed 1-step amplification protocol (24) with random spacers to shift the sequencing start. Paired-end 300 bp sequencing of PCR amplicons was performed on the Illumina MiSeq instrument (Illumina, Inc., CA, USA) (Figure S1A). Forty-seven of the samples had sufficient DNA for additional whole-genome shotgun sequencing (Figure S1B). The metagenomes provide additional taxonomical resolution and improved estimates of functional potential and were used for validation of the 16S rRNA sequencing results. Samples were cleaned up and concentrated using AMPure XP (Beckman Coulter, IN, USA) and normalized to a total input of 4 ng of dsDNA. Sequencing libraries were prepared using the Riptide protocol (Twist Bioscience HQ, CA, USA) and sequenced on Illumina NovaSeq paired-end 2 × 130 bp. The Riptide protocol includes linear amplification with random primers and dideoxy nucleotide-induced self-termination, thereby avoiding DNA fragmentation (25). Sequencing was performed at FIMM Technology Centre in Helsinki, Finland.




2.3 Bioinformatics analyses

Initial quality control of 16S sequencing reads included the removal of short reads (<50 bp) and low-quality bases with average quality across four bases below 30 using Trimmomatic v0.35.2 (26). The removal of primer sequences was performed using Cutadapt v2020.2.0 (27) with the following options: forward primer: CCTACGGGNGGCWGCAG, reverse primer: GACTACHVGGGTATCTAATCC, primer error 0.1, and primer overlap 3. Fastqc and multiqc (28) analyses were performed before and after trimming to ensure high-quality data. Reads were imported into Qiime2 v2020.2.0 (29), and amplicon sequence variant (ASV) classification was performed using the Divisive Amplicon Denoising Algorithm 2 (DADA2) plugin (30), including length trimming, merging, denoising, and chimera removal. ASV classification was carried out using the SILVA 16S rRNA database v132 (31) at a 97% similarity threshold. ASV data were filtered for the mitochondria and chloroplasts and were rarefied to a depth of 9,000 reads for each sample. Metagenome functional profiles were predicted from the 16S data using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) v2.3.0 (32) with default settings, using rarefied count tables as input and mapping to the MetaCyc database giving pathway abundance.

Metagenome reads were trimmed using Trimmomatic v0.66.0 (26) with a sliding window approach in which reads with average quality across four bases below 30 or a read length of less than 30 base pairs were discarded. Following trimming, Bowtie2 v2.4.2 (33) and Samtools v1.12 (34) were used with default settings to remove reads mapping to the human genome. MetaPhlAn3 v3.0.4 (35) was used for taxonomic classification with default parameters. Percent abundances generated by MetaPhlAn3 were transformed into count-like tables by multiplying by the number of quality-trimmed reads per sample and dividing by 100. HUMAnN3 v3.0.0.alpha.2 was used to profile gene families encoding microbial pathways, aggregating the data according to MetaCyc annotations using the UniRef90 v201901 database (35). Pathway abundance data were corrected for sequencing depth by dividing by the number of trimmed reads and multiplying by 106.




2.4 Statistical analysis

All statistical analyses were performed using R v3.5.3 and visualized using ggplot2 v3.3.2 (36). To assess the differences between CRC, HRA, and the control group, statistical tests were made contrasting all three groups or by combining CRC and HRA. Additionally, analyses were performed within the CRC group, using time to diagnosis as the dependent variable. Differences between the three groups were evaluated using the chi-square test for comparisons of two categorical variables and the Kruskal–Wallis test (or the Mann–Whitney U test for two-group comparisons) or Spearman`s correlation for comparisons of a continuous variable with a categorical and continuous variable, respectively. Statistical associations were considered significant at the p < 0.05 level.

Microbial diversity was measured on ASV and species level for 16S and metagenome data, respectively. Alpha diversity was determined using richness, Shannon, and inverse Simpson indices. Beta diversity was calculated using Bray–Curtis dissimilarity, as implemented in the Phyloseq R package v1.26.1 (37). Associations between beta diversity and CRC, HRA, and healthy controls were evaluated using permutational analysis of variance (PERMANOVA) with 999 permutations after adjustment for the participant’s sex and screening center, as implemented in the adonis function of the R package vegan v2.5-7 (38).

Differential abundance analyses were performed independently on ASV/species, genus, phylum, and pathways and were adjusted for sex and screening center. Before differential abundance analyses, we applied low abundance filtering, retaining all taxa/pathways with a read count of at least 10 in at least 10% of samples. Differential abundance analyses were performed using a negative binominal model-based Wald test implemented in the DESeq2 package v1.22.2 (39) with the type (poscounts) to account for the sparsity of microbiome data, and p-values were false discovery rate (FDR)-adjusted to control for multiple testing.





3 Results



3.1 Study population

Stool samples from 144 NORCCAP screening participants were selected for 16S sequencing based on registry follow-up data and initial screening results. Metagenome sequencing was also performed on 47 of these with the highest DNA amounts. All 144 participants in this study underwent sigmoidoscopy. Five cases of CRC (3.5%) were detected during screening. Based on registry follow-up, 23 (16%) participants received a CRC diagnosis within 17 years after screening (Figure 2 and Table 1). The median time from screening to CRC diagnosis was 7.4 years (range 0-16 years), and the median age at CRC diagnosis was 65.7 years (range 54-77), including both screening-detected and follow-up diagnosed CRC. Other screening-detected lesions included 63 HRAs (44% of the study participants). Fifty-three (37%) participants had no findings of adenomas or CRC during sigmoidoscopy and were cancer-free during follow-up; these constituted the control group. The median age for all groups at the sample collection was 57 years (range 51-65). We observed a significantly different distribution of sex and screening center between CRC, HRA, and healthy controls (p < 0.05). In total, 87 (60%) samples were from male participants and 89 (62%) samples were from the Telemark screening center.




Figure 2 | Illustration of time from sample collection to diagnosis (in years) for the 28 participants who received a CRC diagnosis during screening or 17 years of follow-up. Full diagnosis and cancer history was retrieved from the Cancer Registry of Norway and included the ICD-10 coded diagnosis C18, C19, and C20. Five participants with time to diagnosis ≤1 year received the diagnosis during screening. Twenty-three study participants received a CRC diagnosis during follow-up ≥1 year.




Table 1 | Characteristics of the study participants and samples.






3.2 Gut microbiome diversity

16S sequencing of 144 samples generated 11.8 million trimmed reads with a median read depth per sample of 50,205 (range 5,163-510,589). We identified a total of 7,228 ASVs mapped to 337 species, 229 genera, and 18 phyla. The median number of observed ASVs was 213.5 (range 79-603). Metagenomic sequencing of 47 samples resulted in 361 million trimmed reads with a median read depth of 6.2 million reads (0.76-20.1). In total, 561 taxa were identified, including 323 species, 116 genera, and 8 phyla. The median number of species per sample was 73 (34–107). ASV distribution for individual samples showed one sample with 83% of reads belonging to two ASVs within the genus Escherichia-Shigella. This was confirmed in the metagenome data in which 95% of reads belonged to the species E. coli. As this indicated an unrelated acute infection, the sample was excluded from further analyses (Figure S2).

Rarefying 16S data to 9,000 reads resulted in the exclusion of one sample with lower sequencing coverage, leaving 142 samples for 16S diversity analyses. Forty-six samples were used for metagenome diversity analyses. We found no significant differences in alpha (unadjusted) or beta diversity of taxa or pathways between CRC, HRA, and healthy controls (Figures 3A–D, 4A–D, p > 0.05 for all comparisons). This finding remained consistent when grouping CRC and HRA cases together, when looking at the time to diagnosis, when considering the metagenome data, and when adjusting for sex and screening center.




Figure 3 | Alpha diversity: box plots with taxa/pathway richness (observed), Shannon, and inverse Simpson (InvSimpson) diversity indices in CRC, HRA, and controls for (A) amplicon sequence variants from 16S sequencing data, (B) estimated MetaCyc pathways derived from 16S data, (C) species abundance based on metagenome shotgun sequencing, and (D) MetaCyc pathways based on metagenome shotgun sequencing. No significant (p > 0.05) associations were identified.






Figure 4 | Beta diversity: PCoA plots with Bray–Curtis dissimilarity indices between CRC, HRA, and controls for (A) amplicon sequence variants from 16S sequencing data, (B) MetaCyc pathways derived from 16S sequencing data, (C) species abundance based on metagenome shotgun sequencing, and (D) MetaCyc pathways based on metagenome shotgun sequencing. Ellipses describe 95% of group variation for the principal coordinate axes. No significant (p > 0.05) associations were identified.






3.3 Differentially abundant taxa and pathways

We evaluated the differences in the abundance of ASV/species, genus, phylum, and pathways between the outcome groups. We further assessed the associations of ASVs with the time elapsed from sample collection to CRC diagnosis.



3.3.1 CRC vs. control

For the 16S data, the ASV Phascolarctobacterium uncultured bacterium and the phylum Firmicutes were significantly more abundant in CRC than controls (FDR p < 0.05, Table 2; Figure 5A). Similarly, in the metagenome data, Phascolarctobacterium succinatutens was significantly more abundant in CRC. For the metagenome data, in total, nine species were differentially abundant (FDR p < 0.05, Table 2; Figure 5C). Five of these were significantly higher in CRC compared with controls, whereas four were significantly lower. The genus Acidaminococcus was significantly higher in CRC. Four pathways were significantly lower in CRC compared with controls (FDR p < 0.05, Table 2; Figure 5D).


Table 2 | Differential abundance analyses of taxa and pathways between CRC, HRA, and healthy controls.






Figure 5 | Volcano plots showing differences in the abundance of taxa and pathways between groups. FDR-significant differentially abundant taxa or pathways are highlighted in red. Group comparisons are indicated by different shapes where the control group or a shorter time to diagnosis is considered the reference. Differential abundance was analyzed for (A) amplicon sequence variants from 16S sequencing data, (B) MetaCyc pathways derived from 16S sequencing data, (C) species abundance based on metagenome shotgun sequencing, (D) MetaCyc pathways based on metagenome shotgun sequencing, and (E) amplicon sequence variants from 16S sequencing data for the 28 participants who received a CRC diagnosis.






3.3.2 HRA vs. control

For 16S data, the genera Azospirillum sp. 47_25 and Escherichia-Shigella were lower in HRA compared with controls (FDR p < 0.05, Table 2; Figure 5A). The phyla Proteobacteria and Firmicutes were lower and higher in HRA compared with controls, respectively. The direction of differences for these phyla was similar in the metagenome data, though not significant. Twenty pathways were lower in HRA based on 16S data. Of these, three pathways were related to heme biosynthesis: HEMESYN2-PWY [heme biosynthesis II (anaerobic)], PWY-5920 (superpathway of heme biosynthesis from glycine), and PWY0-1415 (superpathway of heme biosynthesis from uroporphyrinogen-III) (FDR p < 0.05, Table 2; Figure 5B). The direction was similar for PWY0-1415 in the metagenome data. We also observed differences in REDCITCYC [tricarboxylic acid (TCA) cycle VIII (Helicobacter)] and the closely related pathways PWY0-42 (methylcitrate cycle I), PWY-5747 (methylcitrate cycle II), and GLYOXYLATE-BYPASS (glyoxylate cycle). For metagenome data, the species Clostridium saccharolyticum was significantly higher and the genus Parasutterella was significantly lower in HRA compared with controls (FDR p < 0.05, Table 2; Figure 5C).




3.3.3 HRA and CRC vs. control

For 16S, when considering HRA and CRC as one group and comparing it with controls, the phylum Firmicutes was significantly higher in HRA/CRC (FDR p < 0.05, Table 2; Figure 5A). The same non-significant trend was observed in the metagenome data. The pathways CENTFERM-PWY (pyruvate fermentation to butanoate) and PWY-6590 (superpathway of Clostridium acetobutylicum acidogenic fermentation) were lower in HRA/CRC (FDR p < 0.05, Table 2; Figure 5B). For metagenome data, the species C. saccharolyticum was significantly more abundant in the HRA/CRC group (FDR p < 0.05, Table 2; Figure 5C).




3.3.4 Time to diagnosis

Assessing the CRC group only, those with a longer interval between sample collection and diagnosis had a higher abundance of one genus, Bifidobacterium, and one ASV within the Lachnospiraceae family. Additionally, three ASVs within Lachnospiraceae were lower in those with a long time to diagnosis (FDR p < 0.05, Figure 5E; Table 2).






4 Discussion

Using both 16S rRNA and metagenome sequencing data, we analyzed the microbial differences between CRC, HRA, and healthy controls of the 144 screening attendees with long-term follow-up data. Phascolarctobacterium spp. were more abundant in the CRC compared with controls and four ASVs belonging to the Lachnospiraceae family, and Bifidobacterium was associated with time to CRC diagnosis. Several heme biosynthesis pathways were less abundant in HRA. We did not observe compositional differences between CRC, HRA, and healthy controls and identified no correlation between richness and time to diagnosis in the CRC group.

We identified Phascolarctobacterium uncultured bacterium and P. succinatutens in the 16S and metagenome data, respectively, as being significantly higher in CRC compared with healthy controls. These annotations likely represent the same species. Three studies have reported similar findings (40–42). Interestingly, Yachida et al. found an elevation in P. succinatutens in the early stages of CRC, from polypoid adenomas to stage 1 CRC. Phascolarctobacterium succinatutens is broadly distributed in the GI tract and converts succinate into propionate (42). The strain can likely not ferment any other short-chain fatty acids or carbohydrates (43). Succinate is a TCA cycle intermediate and is produced both by the host and the microbiota, including the CRC-associated bacteria B. fragilis and F. nucleatum. Increased succinate in the colon has been linked to gut inflammation and disease, while increased propionate is thought to be anti-inflammatory (44, 45). Succinate is proposed to mediate cross-talk as a signaling metabolite that acts as a positive regulator of intestinal gluconeogenesis (45, 46) and thermogenesis (47). We also report several pathways related to the TCA cycle to be lower in HRA compared with controls. Vogtmann et al. found this pathway to be increased in cancer (48).

Three pathways related to heme biosynthesis were significantly lower in the HRA group compared with controls. While heme uptake, biosynthesis, and export in bacteria are not fully understood (49, 50), bleeding tumors release heme into the gut lumen. This might create a niche for heme-scavenging bacteria that could outcompete those who rely on heme biosynthesis.

Bifidobacterium and four ASVs belonging to the Lachnospiraceae family were associated with time to diagnosis. Bifidobacterium is a lactic acid-producing bacteria, aiding in colonocyte renewal and inhibiting the growth of pathogens. Two studies found Bifidobacterium to be lower in individuals with lesions compared with controls (3, 51). This is in line with our findings that lower levels are associated with a shorter time to diagnosis. We observed different members of the Lachnospiraceae family showing diverging associations with time to diagnosis. This family was found to be enriched in controls compared with patients with lesions (52). Some members of the Lachnospiraceae family can produce the short-chain fatty acid butyrate (53). Butyrate aids in the cell renewal of colonocytes, serves as a carbon source for the TCA cycle, and has anti-inflammatory and antitumorigenic properties (54, 55).

In contrast to several cross-sectional studies including established CRC cases (10, 11, 56), we did not observe any associations of bacteria including F. nucleatum, E. coli, and B. fragilis with CRC status when assessing mostly prediagnostic cases. These findings could indicate that shifts in the abundance of these bacteria might be late events in colorectal carcinogenesis.

We found no difference in diversity or composition between CRC, HRA, and controls. Results from similar studies seem to be conflicting, both for diversity and composition analyses (11, 56–59). Smaller differences in the microbiome of adenomas and healthy controls have been observed than those observed between cancers and healthy controls (3, 11). Unlike previous studies in the field, many of our samples were collected from asymptomatic subjects, years before the diagnosis of cancer. While our results indicate no overall difference in diversity or composition, it is possible that we have been underpowered or that factors related to study design and technical challenges have led us to miss any small differences in these ecological measures.

This study has some other noteworthy limitations. Firstly, our samples were stored for 17 years and could possibly be degraded. We do know that these samples have a maximum of one freeze–thaw cycle (22), but they were stored without a stabilizing agent, which could to some extent influence the composition of fecal samples (60, 61). Furthermore, we lack information on important confounding factors, such as diet, lifestyle factors, body mass index, and antibiotic use affecting microbiome composition (54, 62). Confounding by these factors may have introduced false-positive associations, and although the large effect sizes observed in many cases could suggest a causal relationship, ultimately, our findings will need to be validated in larger studies controlling for lifestyle factors. Lastly, we observed a high abundance of the phylum Firmicutes in our 16S data, but a similar composition was not observed for the metagenome data. This is likely due to the choice of primers, where for marker gene studies, certain primers favor the amplification of specific taxa (63). Still, this did likely not affect the differential abundance analyses, as the bias was uniform across samples.




5 Conclusions

The present study is, to the best of our knowledge, the first to examine gut microbiome samples collected several years prior to CRC diagnosis. We did not find any differences between the diversity and composition of the gut microbiome and the presence of CRC, HRA, and controls. However, analyses identified several taxa and pathways that were differentially abundant. Our study found that the succinate-metabolizing, associated with inflammation, P. succinatutens was more prevalent in individuals diagnosed with CRC than in healthy controls, identified using both 16S and metagenome data. In this population-based screening setting, we also show that CRC-associated taxa are identifiable years prior to diagnosis of CRC, including Bifidobacterium and Lachnospiraceae, which were associated with time to diagnosis.
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Introduction

Previous studies reported that fucose plays a protective role in inhibiting pathogens. Fusobacterium nucleatum (Fn) was recently found to promote the progression of colitis. However, the effects of fucose on Fn are poorly understood. This study aimed to explore whether fucose could ameliorate the proinflammatory property of Fn in colitis and the underlying mechanisms.



Methods

To validate our hypothesis, mice were administrated with Fn and fucose-treated Fn (Fnf) before dextran sulfate sodium (DSS) treatment to establish Fn related colitis model. The metabolism variation of Fn was detected by metabolomic analysis. To verify the effects of bacterial metabolites on intestinal epithelial cells (IECs), Caco-2 cells were treated with bacterial supernatant.



Results

More severe inflammation, intestinal barrier damage, autophagy block, and apoptosis in the colon were noted in DSS mice that were administrated with Fn or Fnf. However, the severity degree in Fnf+DSS group was less compared to Fn+DSS group. Metabolic pathways of Fn were altered after fucose treatment and proinflammatory metabolites were decreased. The supernatant of Fnf induced a lower level of inflammation than Fn in Caco-2 cells. One of the decreased metabolites, homocysteine thiolactone (HT), was proven to induce inflammatory effects in Caco-2 cells.



Discussion

In conclusion, fucose ameliorates the proinflammatory property of Fn via altering its metabolism and these findings provide evidence for the application of fucose as functional food or prebiotic in the treatment of Fn related colitis.
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1 Introduction

Inflammatory bowel disease (IBD) is a remittent and progressive inflammatory gastrointestinal disorder that causes a large global burden (Kaplan, 2015). Though the exact pathogenesis of IBD remains unclear, it is widely accepted that compositional and metabolic changes in the intestinal microbiota are closely associated with IBD (Lee and Chang, 2021; Michaels and Madsen, 2023). However, the relationship between IBD and dysbiosis still needs to be further explored.

Fusobacterium nucleatum (Fn), a commensal bacterium with potential pathogenicity, attracted many concerns in recent years. Researchers found a correlation between Fn and clinical features of IBD at first. About two-thirds of Fusobacterium spp. isolated from patients with the gastrointestinal disease were identified as Fn while Fn strains recovered from inflamed tissue showed stronger invasive ability on intestinal epithelium cell lines than those from healthy tissue. In addition, Fusobacterium is associated with the persistence of colonic inflammation in IBD and seems to consequently contribute to the pathogenesis of colorectal cancer (Strauss et al., 2011; Tahara et al., 2015; Bashir et al., 2016). Whereafter more and more research demonstrated through experiments that Fn could exacerbate colitis. Recent studies found that Fn regulates M1 macrophage polarization, promotes expression of inflammatory cytokines, and induces autophagy disorder, oxidative stress damage, and epithelial cell death, thus leading to intestinal epithelial barrier damage and aggravating colitis (Liu et al., 2019; Chen et al., 2020; Duan et al., 2021; Liu et al., 2021). Therefore, exploring the virulence factors of Fn and the corresponding treatment is worth considering in Fn-related colitis.

Fucose is involved in maintaining of gut homeostasis since the α1,2-fucosyl glycans expressed on intestinal epithelial cells work as a biological interface for the host-microbe interaction (Goto et al., 2016). We previously discovered that exogenous fucose could protect the intestinal mucosal barrier and alleviate dextran sulfate sodium (DSS) induced colitis (Li et al., 2021). More importantly, fucose could improve gut microbiome dysbiosis and regulate bile acid metabolism in colitis (Ke et al., 2020). It is reported that fucose was metabolized by gut microbiota and affects their metabolic pathways and the expression of virulence genes (Pickard et al., 2014). Since there are correlations between bacterial metabolism and virulence, and virulence gene regulators are affected by changes in carbon source availability (Poncet et al., 2009), we assumed that fucose may mitigate the proinflammatory property of Fn by affecting its metabolism.

To verify this hypothesis, we administrated mice that received DSS treatment (or not) with Fn or fucose-treated Fn in the current study to investigate their proinflammatory characteristic. Metabolomics analysis was adopted to explore the effects of fucose on the metabolism of Fn. Furthermore, bacterial supernatant of Fn and fucose-treated Fn was used to treat intestinal epithelial cell line to detect whether the altered metabolites of Fn cause less damage to intestinal epithelial cells (IECs). Our results revealed that fucose could ameliorate the proinflammatory property of Fn via altering its metabolism.



2 Materials and methods



2.1 Cell and bacterial strain

Human epithelial colorectal adenocarcinoma Caco-2 cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco; Thermo Fisher Scientific, Inc.) supplemented with 10% fetal bovine serum (Gibco; Thermo Fisher Scientific, Inc.) and 100 U/ml streptomycin/penicillin (Gibco; Thermo Fisher Scientific, Inc.) at 37˚C under 5% CO2.

Fusobacterium nucleatum (ATCC 25586) was purchased from Wuhan Research Institute of First Light Industry (Wuhan, China) and cultured in brain heart infusion (BHI) culture medium (pH 7.4). The methods of bacterial culture were as previously described (Lin et al., 2020). To investigate the effect of L-fucose on the pro-inflammatory properties of Fn, 0.5% fucose (Sigma, F2252) was added to the bacterial culture medium (Fnf). Caco-2 cells were treated with supernatant of Fn or Fnf to investigate the effect of bacterial metabolites.



2.2 Animal models

Mice were housed in the specific pathogen-free (SPF) grade facility of Huazhong University of Science and Technology and maintained at 12 h light/dark cycles with free access to food and water. All animal experiments in this study were approved by the Animal Experimentation Ethics Committee of Huazhong University of Science and Technology (Approval ID 2020-2529) and performed following national and EU guidelines.

To investigate if there were differences in the effects of Fn and Fnf on colitis, adult male mice (8 weeks) were randomly divided into 6 groups: Control, Fn, Fnf, DSS, DSS+Fn, and DSS+Fnf (4 mice/group in Control, Fn and Fnf groups and 8 mice/group in DSS, DSS+Fn and DSS+Fnf groups). Daily gavage of 109 CFU Fn or Fnf phosphate- buffered saline (PBS) solution was conducted 7 days before DSS administration as previously described (Liu et al., 2019) and colitis was induced by 3% (wt/vol) DSS (MP Biomedicals, 160110) in the drinking water for 7 days. Control mice were given PBS and standard laboratory drinking water, respectively. The DSS group mice received PBS administration before DSS treatment. The DSS solution was refreshed every 2 days and the leftover DSS solution was measured. Mice were sacrificed on day 8. Tissues and blood were collected for subsequent analysis. Anesthetization was conducted before sacrificed by intraperitoneal injection of 50 mg/kg pentobarbital. Body weight, stool consistency, and any bleeding were examined every day to monitor disease activity index (DAI), which was calculated as previously described (Cooper et al., 1993). In brief, weight loss was calculated as: 0, no loss; 1, 1−5%; 2, 5−10%; 3, 10−20% and 4, >20%; stool consistency was calculated as: 0, normal; 2, loose stool; 4, diarrhea and stool bleeding were calculated as: 0, no blood; 2, presence and 4, gross blood.



2.3 Histological examination

For histological analysis, distal colon specimens were fixed in 4% formalin for 24 h and embedded in paraffin. 4μm thick sections were stained with hematoxylin and eosin (HE) and analyzed by a pathologist without prior knowledge of experimental design. Histological analysis was performed as previously described (Horino et al., 2008) based on inflammation severity (0, none; 1, mild; 2, moderate; 3, severe), inflammation extent (0, none; 1, mucosa; 2, mucosa and sub-mucosa; 3, transmural) and crypt damage (0, none; 1, basal 1/3 damaged; 2, basal 2/3 damaged; 3, crypts lost and surface epithelium present; 4, crypts and surface epithelium lost).



2.4 Immunofluorescence

For tissue immunofluorescence, paraffin-embedded colon tissues sections (4μm) were deparaffinized, hydrated, and treated with citrate buffer (pH 6.0) for antigen retrieval and then treated with 0.3% Triton for 15 min and blocked with 10% donkey serum for 1 h at room temperature. Tissues were incubated with ZO-1 (Invitrogen, 61-7300), occludin (Invitrogen, 42-2400), cladudin1 (GeneTex, GTX54539), LC3B (Cell Signaling Technology, 43566) and p62 (GeneTex, GTX100685) primary antibodies (all 1:200 dilution) overnight under 4°C. After washing with PBS 3 times, tissues were incubated with corresponding secondary antibodies conjugated Alexa Fluor 488 or 594 (Antgene, ANT024S and ANT030S) for 1 h at room temperature and then stained with DAPI (Antgene, ANT165) for 5 min for nuclear staining. For cell immunofluorescence, the slides of cells were fixed with 4% formalin for 30 min and subsequent works were similar to tissues from the 0.3% Triton treatment step. The images were acquired by a confocal laser microscope (Nikon).



2.5 Western blot analysis

Tissue or cell proteins were harvested with RIPA Lysis Buffer (Beyotime, P0013B) supplemented with phenylmethyl sulfonyl fluoride (PMSF, Beyotime ST506) protease inhibitor and phosphatase inhibitor. Total protein concentration was measured by BCA Protein Assay Kit (Thermo Fisher Scientific, 23225). Total proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS−PAGE) and transferred to a PVDF membrane, followed by blocking with 5% skimmed milk for 1 h. Then the membranes were incubated with ZO-1 (Invitrogen, 61-7300), occludin (Invitrogen, 42-2400), cladudin1 (GeneTex, GTX54539), LC3B (Cell Signaling Technology, 43566), p62 (GeneTex, GTX100685), caspase3 (Cell Signaling Technology, 9662), cleaved-caspase3 (Cell Signaling Technology, 9664), Bcl2 (Proteintech, 12789-1-AP), Bax (Proteintech, 50599-2-Ig), GAPDH (ABclonal, A19056) and ACTB (ABclonal, AC038) primary antibodies (all 1:1000 dilution) overnight under 4°C. After washing with TBST for 3 times, membranes were incubated with corresponding secondary antibodies conjugated HRP (Antgene, ANT020 and ANT019) for 1 h at room temperature. Protein bands were visualized by the Chemi-luminescence imaging system (UVP, USA) using enhanced chemiluminescent reagents (Beyotime, P0018).



2.6 TUNEL assays

One Step TUNEL Apoptosis Assay Kit (Beyotime, C1088) was used for detecting cell apoptosis following the manufacturer’s instructions. Briefly, paraffin-embedded colon tissue sections were deparaffinized, hydrated and treated with protease K (Beyotime, ST535) for 15 min at room temperature. After washing 3 times with PBS, the sections were incubated with TUNEL dilution including TdT and fluorescein-dUTP for 1 h at 37°C. DAPI was used for nuclear staining.



2.7 RNA extraction and qPCR

Total RNA was extracted from tissues or cells using TRIzol reagent (Invitrogen, 15596018) according to the manufacturer’s instructions and reversed to cDNA using Prime Script RT Master Mix (Takara Biotechnology, RR036). qPCR was performed using the LightCycler® 480 SYBR I Master Mix (Roche Diagnostics), running on a Roche LightCycle R480 system (Roche Diagnostics). The relative fold change of mRNA expression was normalized relative to GAPDH and measured by the 2−ΔCT method. The primer sequences are presented in Table 1.


Table 1 | Sequences of primers used for RT-qPCR.





2.8 Transepithelial electrical resistance measurement

For TEER measurement, Caco-2 cells were plated into upper inserts of transwell chamber (1.12 cm2 area, 0.4 μm pore size; Corning) at a density of 105 cells/well and cultured for 2 weeks to form polarized confluent monolayers. TEER was measured by EVOM TEER meter (World Precision Instruments) to evaluate the barrier functions of the monolayers. Measurements were performed every 6 hours after cells were treated with bacterial supernatant.



2.9 Cell apoptosis detection by flow cytometry

PI-Annexin V/FITC apoptosis detection kit (AntGene, ANT002) was used to examine Caco-2 cell apoptosis after being treated with bacterial supernatant according to the manufacturer’s instructions. Briefly, cells were collected from the culture plate using trypsin without EDTA, washing with PBS, then incubated with Annexin V-FITC and Propidium Iodide (PI) for 10 min at room temperature and analyzed with a FACS (BD FACSCanto) at Ex/Em: 488/519nm for Annexin V-FITC and 538/617nm for PI. The results were analyzed using FlowJo software.



2.10 mCherry-EGFP-LC3 adeno-associated virus transfection

To monitor autophagic flux, mCherry-EGFP-LC3 AAV (HANBIO) was transfected to Caco-2 cells. When cells grew to 50−70% confluence, cells were transfected with adenovirus (MOI=200) for 2 h. Then replacing the medium. Bacterial supernatant treatments were performed on the next day. Cells were fixed with 4% formalin and observed under a confocal laser scanning microscope (Olympus) 48 h after transfection.



2.11 Transmission electron microscopy

Cells were harvested after treatment with bacterial supernatant and fixed with 2.5% glutaraldehyde in PBS, post−fixed in 1% osmium tetroxide for 1 h, rinsed with 0.1 M phosphate buffer (pH 7.4), dehydrated with increasingly graded alcohols before being embedded in Epon. Ultrathin sections were cut using an ultramicrotome and examined by FEI Tecnai G2 12TEM (FEI Company).



2.12 Metabolomics analysis

Bacterial supernatant samples were processed and untargeted metabolic profiling of bacterial supernatant was performed by liquid chromatography-mass spectrometry (LC-MS) as described previously (Zou et al., 2013). Briefly, metabolite samples were extracted from the supernatant with methanol and acetonitrile combined with isotope-labeled compounds. Samples were detected by Vanquish Ultra-high performance liquid chromatograph (Thermo Fisher Scientific) and separated by Waters ACQUITY UPLC BEH Amide liquid chromatography. Data were collected with a Thermo Q Exactive HFX mass spectrometer (Thermo Fisher Scientific). Original data was managed as follows: removing deviation value and missing value, filling missing value, and normalization (Dunn et al., 2011). Then performing hierarchical clustering analysis and principal component analysis (Ringnér, 2008). Differential metabolites were screened through variable importance in projection (VIP) value combined with P value and fold change. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was used for annotation of the different metabolites as described previously (Ogata et al., 1999).



2.13 Statistical analysis

Experiments data were analyzed using SPSS Statistics 25.0, GraphPad Prism 7.0, nd ImageJ and presented by GraphPad Prism 7.0. All experiments were performed at least in triplicate and values are shown as means ± SEM. Significant differences were calculated using Student’s two-tailed t-test between 2 groups and one−way ANOVA among multiple groups. Statistical significance was defined at P<0.05.




3 Results



3.1 Fucose intervention mitigate the proinflammatory property of Fn in DSS-induced colitis

Considering that Fn could contribute to the progression of colitis, we treated DSS-induced colitis mice with Fn and Fnf to determine the effects of fucose on the proinflammatory property of Fn. Single Fn or Fnf administration showed no significant influence on mice in the process of model establishment. However, after administrated with these two kinds of bacteria (Fn and Fnf), mice showed more severe body weight loss in the process of DSS treatment while the body weights of DSS+Fnf group mice were higher than that in DSS+Fn group (Figure 1A). Also, Fn treatment induces more severe symptoms in DSS mice than Fnf, which was indicated by the DAI (Figure 1B). Along with these, Fn treatment resulted in decreased colon length in DSS mice compared to Fnf (Figures 1C, E). Through HE staining, we could also find more severe mucosal ulceration, inflammatory cell infiltration, crypt, and gland destruction in DSS+Fn group mice than DSS+Fnf group mice (Figures 1D, F). Moreover, qPCR showed that the mRNA expression level of inflammatory cytokines IL-1β, IL-6, and TNF-α was higher in DSS+Fn group compared to DSS+Fnf group (Figure 1G). All these results demonstrated that the proinflammatory property of Fn in the colon was weakened by fucose treatment.




Figure 1 | Fucose intervention mitigate the proinflammatory property of Fn in DSS-induced colitis. (A) Body weight changes during the acute colitis process. (B) DAI evaluation during the acute colitis process. (C) Colon length of mice in each group. (D) HE staining of sections from colon tissues, the arrows indicate epithelial structure lost (Scale bar, 100 μm). (E) statistical analysis of colon length. (F) Histopathological scores of colon tissues in each group. (G) mRNA expression of inflammatory cytokines in colon tissues. *P<0.05, **P<0.01, ***P<0.001.





3.2 Fucose-treated Fn caused less intestinal tight junction damage in colitis

Intestinal epithelial tight junction maintains the intestinal epithelial barrier. Fn was reported to damage epithelial integrity via destructing tight junction (Liu et al., 2020). Therefore, we examined the tight junction in the Fn and Fnf-related DSS-induced colitis. Western blot analysis showed that tight junction proteins ZO-1, occluding, and claudin1 expression in DSS+Fn group was lower compared to DSS only group (Figures 2A, B), while the expression in DSS+Fnf group was higher than DSS+Fn group (Figures 2A, B), and the tendency in immunofluorescence experiments was similar (Figure 2C). These results indicated that Fnf caused less damage to the intestinal tight junction compared to Fn.




Figure 2 | Fucose-treated Fn caused less intestinal tight junction damage in colitis. (A, B) Representative ZO-1, occludin and claudin1 western blots of colon tissues and statistical analysis. (C) Representative immunofluorescence images of ZO-1, occludin and claudin1 in colon tissues (Scale bar, 100 μm). *P<0.05, **P<0.01.





3.3 Fucose-treated Fn caused less autophagy block and apoptosis in IECs

We previously found that Fn exacerbates colitis through inhibiting autophagic flux (Duan et al., 2021), thus we analyzed the level of autophagy in the IECs here. As shown in Figures 3A, B, though the expression level of autophagy marker LC3B-II in Fn-infected mice was higher than Fnf infected mice, the p62 expression was increased at the same time, which indicated that the autophagy was blocked more severely in the former. This was further demonstrated by immunofluorescence analysis (Figure 3C).




Figure 3 | Fucose-treated Fn caused less autophagy block and apoptosis in IECs. (A, B) Representative LC3B and SQSTM1/p62 western blots of colon tissues in each group and statistical analysis. (C) Representative immunofluorescence images of LC3B and SQSTM1/p62 in colon tissues (Scale bar, 100 μm). (D) Representative TUNEL images of colon tissues (Scale bar, 100 μm). (E, F) Representative caspase3, cleaved-caspase3, bcl2 and bax western blots of colon tissues in each group and statistical analysis. *P<0.05, **P<0.01, ***P<0.001.



Moreover, intestinal epithelial apoptosis was related to IBD pathogenesis. It was confirmed that autophagy could protect IECs from cytokine-induced apoptosis (Larabi et al., 2020). Therefore, we supposed that Fn infection resulted in more severe epithelial apoptosis. TUNEL assays showed that Fn treatment led to more severe epithelial apoptosis in DSS mice, while there were fewer apoptotic cells in Fnf+DSS group (Figure 3D). We further examined the expression of apoptosis markers bcl2, bax, and caspase3. Results showed that the expressions of bax and cleaved-caspase3 were obviously increased in Fn+DSS group compared to Fnf+DSS group while the expression of bcl2 was decreased, indicating activated apoptosis (Figures 3E, F).



3.4 Fucose treatment altered the metabolism of Fn

Since fucose treatment could alter bacterial metabolism as described above, we detected the metabolites of Fn and Fnf through untargeted metabolomics analysis performed by LC-MS. Principal component analysis (PCA) showed that there was a significant separation between Fn and Fnf groups under positive ion mode as well as negative ion mode (Figure 4A). There were 48 upregulated metabolites and 190 downregulated metabolites in Fn group compared to Fnf under positive ion mode, while 240 upregulated metabolites and 382 downregulated metabolites under negative ion mode, as shown by the volcano plot (Figure 4B). KEGG annotation of differential metabolites revealed that biotin metabolism, vitamin B6 metabolism, histidine metabolism, lipopolysaccharide biosynthesis, and terpenoid backbone biosynthesis were enhanced in Fn group (Figure 4C). In addition, we found that D-glycero-D-manno-Heptose 1-phosphate, which was involved in lipopolysaccharide (LPS) synthesis, and homocysteine thiolactone (HT), the cyclic thioester of homocysteine, were decreased in Fnf supernatant (Figure 4D). Both of these two metabolites were related to inflammatory disorders (Adekoya et al., 2018; AnandBabu et al., 2019). Collectively, these data indicate that fucose may ameliorate the proinflammatory property of Fn by altering its metabolism.




Figure 4 | Fucose treatment altered metabolism of Fn. (A) Principal component analysis of metabolites of Fn and fucose treated Fn. (B) Volcano plot of different expressed metabolites. (C) KEGG annotation of the different metabolites. (D) Fold change of D-glycero-D-manno-Heptose 1-phosphate and HT in the two groups. ***P<0.001.





3.5 The supernatant of fucose-treated Fn caused less damage to Caco-2 monolayer

To further explore whether the fucose-induced metabolism alteration alleviate the proinflammatory property of Fn, we treated Caco-2 cells with supernatant of Fn and Fnf. As expected, mRNA expression of inflammation cytokines IL-6, IL-8, and TNF-α in Fn-treated cells was higher than Fnf (Figure 5A). The expression of tight junction proteins ZO-1, occludin, and claudin1 was declined when Fn or Fnf was added. However, the reduction was more obvious after Fn treatment compared to Fnf (Figures 5B, C). The fluorescence intensity variation of these three proteins was consistent with western blot results (Figure 5D). Moreover, TEER measurement showed that transepithelial electrical resistance of Caco-2 monolayer was constantly decreasing after bacterial supernatant was added. And the value was lower in Fn group than Fnf (Figure 5E). These results indicated that the fucose treatment restrain the Fn-induced impairment in Caco-2 monolayer.




Figure 5 | The supernatant of fucose-treated Fn caused less damage to Caco-2 monolayer. (A) Relative gene expression of IL-6, IL-8 and TNF-α in Caco-2 cells treated with supernatant of Fn and Fnf. (B, C) Representative ZO-1, occludin and claudin1 western blots of Caco-2 cells and statistical analysis. (D) Representative immunofluorescence images of ZO-1, occludin and claudin1 in Caco-2 cells (Scale bar, 50 μm). (E) TEER measurement of Caco-2 monolayer treated with Fn and Fnf. *P<0.05, **P<0.01, ***P<0.001.





3.6 Supernatant of fucose-treated Fn caused milder autophagy block and apoptosis in Caco-2 cells

We analyzed the autophagy and apoptosis level in Caco-2 cells to further verify the effects of altered metabolites. After being treated with Fn, expression of LC3B-II and p62 was increased in Caco-2, while Fnf treatment could not exert the same level of effects (Figures 6A, B). Furthermore, we detected autophagosomes and autolysosomes in Caco-2 cells through mRFP-GFP-LC3 adenovirus transfection and TEM. As shown in Figures 6C, D, there were fewer yellow dots, which indicate autophagosomes and autophagy block, in Fnf-treated cells compared to Fn treated. This can be proved by TEM observation, which showed a higher autophagosome to autolysosome ratio in the Fn group (Figures 6E, F). In addition, we found that there were fewer cleaved-caspase 3 positive cells in Fnf group than Fn group (Figure 6G). Flow cytometry analysis showed that the total number of Annexin V+/PI+ (indicating apoptotic cells at late stage) and Annexin V+/PI- cells (indicating apoptotic cells at early stage) increased less after Fnf intervention compared to Fn (Figure 6H). Consistent with these, there was higher protein expression of bax and cleaved-caspase3 and lower expression of bcl2 in Fn-treated Caco-2 than Fnf treated (Figures 6I, J). All these results demonstrated that the fucose-altered metabolites of Fn caused milder autophagy block and apoptosis in Caco-2 cells.




Figure 6 | Supernatant of fucose-treated Fn caused milder autophagy block and apoptosis in Caco-2 cells. (A, B) Representative LC3B and SQSTM1/p62 western blots of Caco-2 cells and statistical analysis. (C) Confocal micrographs of mRFP-GFP-LC3 in Caco-2 cells treated with Fn and Fnf (Scale bar, 10 μm). (D) TEM images of Caco-2 cells illustrating the autophagosomes and autolysosomes (Scale bar, 2 μm). (E, F) Statistical analysis of autophagosomes and autolysosomes. (G) Representative immunofluorescence images of cleaved-caspase3 in Caco-2 cells (Scale bar, 50 μm). (H) Flow cytometry analysis of apoptosis in Caco-2 cells by Annexin V-FITC and PI. (I, J) Representative caspase3, cleaved-caspase3, bcl2 and bax western blots of Caco-2 cells and statistical analysis. *P<0.05, **P<0.01, ***P<0.001.



To further confirm the role of autophagy in the proinflammatory property of Fn and Fnf, we added autophagy activator rapamycin at the meanwhile of bacterial supernatant treatment. Western blot analysis showed that rapamycin improved the tight junction proteins expression to a certain extent (Figures 7A, B). TEER measurement showed an increase in resistance of monolayer (Figure 7C), indicating that activating autophagy could partly restore the tight junction injury. Also, we tested the expression of apoptosis-related proteins and found there was an improvement in expression of bax, cleaved-caspase3, and bcl2 under the effect of rapamycin (Figures 7D–F).




Figure 7 | Autophagy activator alleviated Fn and Fnf induced tight junction damage and apoptosis in Caco-2 cells (A, B) Representative LC3B and SQSTM1/p62 western blots of Caco-2 cells treated with Fn, Fnf and rapamycin and statistical analysis. (C) TEER measurement of Caco-2 monolayer treated with Fn, Fnf and rapamycin. (D, E) Representative caspase3, cleaved-caspase3, bcl2 and bax western blots of Caco-2 cells and statistical analysis. (F) Representative immunofluorescence images of cleaved-caspase3 in Caco-2 cells (Scale bar, 50 μm). *P<0.05, **P<0.01, ***P<0.001.





3.7 Homocysteine thiolactone may play a role in the proinflammatory property of Fn

Since we observed that fucose treatment altered the metabolism of Fn, and the supernatant of fucose-treated Fn triggered less inflammation in Caco-2 cells, we speculated that fucose may reduce the secretion of some proinflammatory metabolites of Fn. As mentioned above, the decreased metabolite HT was found to induce oxidative stress and apoptosis in retinal pigment epithelial cells (AnandBabu et al., 2019). We speculate that there may be similar effects in IECs. As a result, HT treatment increased the mRNA expression of inflammatory cytokines IL-1β, IL-6, and TNF-α in Caco-2 (Figure 8A). In addition, the protein expression of tight junction proteins ZO-1, occludin, and claudin1 was decreased, though not so severely (Figures 8B, C). Autophagy was blocked to some extent, as the expression of LC3B-II and p62 was increased (Figures 8D, E). Meanwhile, the expression of bax, cleaved-caspase3, and bcl2 altered correspondingly, indicating apoptosis of Caco-2 cells after HT treatment (Figures 8F, G).




Figure 8 | Homocysteine thiolactone may play a role in the proinflammatory property of Fn. (A) Relative gene expression of IL-1β, IL-6, IL-8 and TNF-α in Caco-2 cells treated with HT. (B, C) Representative ZO-1, occludin and claudin1 western blots of Caco-2 cells treated with HT. and statistical analysis. (D, E) Representative LC3B and SQSTM1/p62 western blots of Caco-2 cells and statistical analysis. (F, G) Representative caspase3, cleaved-caspase3, bcl2 and bax western blots of Caco-2 cells and statistical analysis. *P<0.05, **P<0.01, ***P<0.001. NS, Not statistically significant.






4 Discussion

In the herein study, fucose was discovered to ameliorate the proinflammatory property of Fn in colitis. Infection of fucose-treated Fn in mice that received DSS treatment resulted in less inflammatory cytokines release, tight junction damage, autophagy block, and apoptosis in IECs compared to Fn. Moreover, the metabolism of Fn was altered after fucose treatment. In vitro experiments revealed that the supernatant of fucose-treated Fn induced lower inflammatory damage in IECs compared to Fn, which demonstrated the role of metabolites alteration in fucose-induced proinflammatory property decreasing of Fn (Supplementary Figure 1).

Existing studies have reported the association between Fn and colitis. However, little was focused on the treatment strategy for Fn. Fucose was reported to play a critical role in sustaining gut homeostasis. Epithelial fucose was an important element of the intestinal barrier that protects the gut against pathogens and inhibits colonization of pathogen (Pham et al., 2014; Garber et al., 2021). Furthermore, exogenous fucose could alleviate DSS-induced colitis by regulating gut microbial structures and functions (Borisova et al., 2020; Ke et al., 2020). It is reported that fucose promotes the colonization of Bifidobacterium spp. and Lactobacillus spp., and promotes Bifidobacterium-related tryptophan metabolism in DSS-induced colitis (Li et al., 2019; Borisova et al., 2020). Notably, a recent study found that fucose influences the chemotaxis of Campylobacter jejuni and reduces its biofilm formation, indicating an inhibition effect of fucose on intestinal pathogen (Dwivedi et al., 2016). Similarly, our study found fucose addition during Fn culture could reduce the Fn-induced damage to intestinal epithelium under an inflammatory environment. All these studies support the role of fucose as a promising functional food in coordinating gut microbiome and inflammation.

Increasing studies explored the underlying mechanisms by which Fn aggravates the progression of colitis, including modulating the immune microenvironment, expanding myeloid-derived immune cells, activating the NF-κB inflammation pathway and so on (Kostic et al., 2013; Yang et al., 2017). Since we found that Fn disturbs autophagic flux in IECs in colitis previously (Duan et al., 2021), we wondered whether fucose treatment could reduce this ability of Fn. As expected, fucose-treated Fn induced less autophagy blockage. Autophagy disorder leads to cell apoptosis, and this is another way by which Fn contributes to colitis progression (Su et al., 2020). Fucose-treated Fn induced less cell apoptosis, which was compatible with prior results. These results further support the inhibition effects of fucose on the proinflammatory ability of Fn.

Why fucose treatment could decrease the proinflammatory characteristic of Fn is the next question. Many researches revealed the diverse roles of bacterial metabolism in the pathogenesis of colitis. For example, decreased gut microbiota metabolism of tryptophan leads to less aryl hydrocarbon receptor activation and intestinal inflammation exacerbation, Eggerthella lenta worsens colitis through metabolizing steroidal glycosides and driving Th17-dependent autoimmunity (Lamas et al., 2016; Alexander et al., 2022). Similarly, extracellular vesicles of Fn, which contain metabolites and bioactive proteins, were found to promote epithelial barrier damage and aggravate intestinal inflammation (Alexander et al., 2022). Since fucose could affect bacterial metabolism and reduces the expression of virulence genes (Pickard et al., 2014), we examined the metabolism of fucose-treated Fn. There indeed were changes in metabolic pathways such as biotin metabolism, histidine metabolism, riboflavin metabolism, and so on. Some proinflammatory metabolites such as D-glycero-D-manno-Heptose 1-phosphate, which could activate the NF-κB pathway and inflammatory cytokines production in colonic epithelial cells (Adekoya et al., 2018), and HT, which induces oxidative stress and apoptosis in retinal pigment epithelial cells (AnandBabu et al., 2019), were reduced in fucose-treated Fn. In vitro experiments demonstrated that the proinflammatory property of altered metabolites of Fn in IECs was decreased. We also examined the effects of HT on IECs and detect similar results with retinal pigment epithelial cells mentioned above. These results gave more evidence that fucose mitigates the proinflammatory property of Fn. Actually, there should be other metabolites that contribute to the inflammatory effect because the influence of HT was relatively small compared to the bacterial supernatant.

There were still some limitations in the current study. On the one hand, the specific mechanism that how fucose influences the metabolism of Fn and whether fucose affects the virulence genes expression at the same time was unknown. On the other, whether exogenous fucose could alter the metabolism of Fn in vivo equally and relieve Fn-related inflammation need further studies to explore. In addition, as a prebiotic, fucose may be fermented by other gut bacteria and influence other aspects of intestinal function. For instance, increasing the production of short-chain fatty acids, stimulating bacteria growth such as Escherichia coli, and affecting bowel habits such as defecation (Cummings et al., 2001; Kim et al., 2019). A recent study found that idiopathic chronic diarrhea macaques host produces fucosylated mucins that act as carbon sources or adhesion sites for potentially pathogenic microbes such as Haemophilus and Campylobacter (Westreich et al., 2019). Therefore, further studies are necessary to reveal the comprehensive effects or side effects of fucose on gut microbe and intestinal functions to support the appropriate usage of fucose.

In conclusion, our study demonstrated that fucose treatment reduces the proinflammatory effects of Fn in DSS-induced colitis and in vitro Caco-2 cells model. The underlying mechanism was to alter the metabolism of Fn and reduce the production of proinflammatory metabolites such as HT, thus decreasing apoptosis, autophagy blocking of IECs, and tight junction damage. These results may provide new insight into the application of fucose as a prebiotic in the treatment of Fn-related colitis and regulating the interaction between gut microbe and IECs.
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Numerous studies have demonstrated that gut microbiota plays an important role in the development and treatment of different cardiovascular diseases, including hypertension, heart failure, myocardial infarction, arrhythmia, and atherosclerosis. Furthermore, evidence from recent studies has shown that gut microbiota contributes to the development of myocarditis. Myocarditis is an inflammatory disease that often results in myocardial damage. Myocarditis is a common cause of sudden cardiac death in young adults. The incidence of myocarditis and its associated dilated cardiomyopathy has been increasing yearly. Myocarditis has gained significant attention on social media due to its association with both COVID-19 and COVID-19 vaccinations. However, the current therapeutic options for myocarditis are limited. In addition, little is known about the potential therapeutic targets of myocarditis. In this study, we review (1) the evidence on the gut-heart axis, (2) the crosslink between gut microbiota and the immune system, (3) the association between myocarditis and the immune system, (4) the impact of gut microbiota and its metabolites on myocarditis, (5) current strategies for modulating gut microbiota, (6) challenges and future directions for targeted gut microbiota in the treatment of myocarditis. The approach of targeting the gut microbiota in myocarditis is still in its infancy, and this is the study to explore the gut microbiota-immune system-myocarditis axis. Our findings are expected to pave the way for the use of gut microbiota as a potential therapeutic target in the treatment of myocarditis.
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1 Introduction

Myocarditis is an inflammatory disease, characterized by the infiltration of inflammatory cells and deterioration of cardiac function (Richardson et al., 1996; Leuschner et al., 2015). Inflammation of the heart was first described in 1749, and the term myocarditis was coined in 1837. Furthermore, in 1980, the World Health Organization/International Society and Federation of Cardiology Task Force proposed a way of differentiating myocarditis from other myocardial diseases (Richardson et al., 1996). Myocarditis has multifaceted etiology, including infectious causes such as viral, bacterial, fungal, and parasitic infections, and non-infectious causes such as drug, autoimmune, and allergic reactions, amyloidosis, thyrotoxicosis, and genetic predisposition (Wiltshire et al., 2011; Basso, 2022). The clinical manifestations of myocarditis can vary from asymptomatic or subclinical/clinical symptoms to sudden death due to the damage of cardiomyocytes, inflammatory reaction, and myocardial fibrosis. Therefore, myocarditis poses a significant threat to the health and well-being of patients (D’Ambrosio and D’Ambrosio, 2001; Ammirati et al., 2020).

According to a previous study, cases of myocarditis have been associated with coronavirus disease 2019 (COVID-19) and COVID-19 vaccination (Inciardi et al., 2020; Heymans et al., 2022). The underlying mechanisms of myocarditis related to COVID-19 are believed to involve both direct harm caused by the virus itself and cardiac damage resulting from the host’s immune reaction (Siripanthong et al., 2020). Consequently, the management of myocarditis is an attractive area for research (Heymans et al., 2022). The primary management goals of myocarditis include alleviating biventricular load, ensuring adequate systemic and coronary perfusion, and reducing venous congestion. The management goals aim to minimize the risk of multiorgan dysfunction and accelerate recovery, transplantation, or the use of durable assist devices (Basso, 2022). Myocarditis represents a diverse group of diseases with distinct immunophenotypes. Despite extensive research and an improved understanding of the pathogenesis of myocarditis, translating knowledge into effective therapeutic strategies remains a challenge (Heymans et al., 2016). The typical management of myocarditis includes drug therapy, mechanical circulatory support, and management of complications and co-morbidities (Cooper, 2009). In addition, the management of myocarditis also includes vitamins and nutritional support. Drug therapy is the most used treatment modality for myocarditis. However, some drug therapies are ineffective and associated with severe side effects. On the other hand, mechanical circulatory support is a costly intervention and is not suitable for all patients. Moreover, immune modulation is a novel treatment approach that requires further research (Basso, 2022). Some potential strategies being explored include the use of probiotics, prebiotics, and synbiotics to modulate the gut microbiota, as well as fecal microbiota transplantation (FMT) to restore a healthy microbial balance (Schneiderhan et al., 2016; Hu et al., 2019; Wargo, 2020; Fan and Pedersen, 2021). These approaches aim to improve the overall gut health and immune response, which may have a positive impact on myocarditis treatment outcomes. It is important to note that more research is needed to establish the efficacy and safety of these strategies in the context of myocarditis.

The summary of the clinical characteristics and treatment strategies for myocarditis is compiled in Figure 1 (Trachtenberg and Hare, 2017; Błyszczuk and Błyszczuk, 2019; Leone et al., 2019; Cooper, 2021; Basso, 2022; Ammirati et al., 2023). In clinical practice, it is essential to tailor diagnostic or therapeutic approaches to individual patients, taking into account their specific circumstances and conditions. Although myocarditis has been recognized for two centuries, the available therapeutic regimens are limited (Krejci et al., 2016; Spallarossa et al., 2020). Therefore, there is a need for continued research into the pathogenesis and treatment of myocarditis to identify new therapeutic targets and cost-effective agents.




Figure 1 | Myocarditis: Classifications, clinical presentations, accessory examinations, treatments, and prognosis. ACS, acute coronary syndrome; CMR, cardiovascular magnetic resonance; CTA, coronary computed tomography angiography; DC, dilated cardiomyopathy; DR, digital radiography; ECG, electrocardiogram; ECMO, extracorporeal membrane oxygenation; EMB, endomyocardial biopsy; FDG-PET, Fluorodeoxyglucose-positron emission tomography; GI, gastrointestinal; HF, heart failure; IABP, intra-aortic balloon pump; ICI, immune checkpoint inhibitors; IHC, immunohistochemistry; ICM, inflammatory cardiomyopathy; LVCD, left ventricular assist device; NP, nasopharyngeal; PCI, percutaneous coronary intervention; RNV, radionuclide ventriculography; SLE, systemic lupus erythematosus; UCG, ultrasound cardiography; WBC, white blood cell.



In recent years, the human gut microbiota has gained significant attention, with metagenomic studies enhancing our understanding of its diverse species and potential applications in health (Gomaa and Gomaa, 2020). The human gut microbiota contains approximately 39 trillion microorganisms and about 150 times more microbial genes (3.3x10^6) than human genes (Collins and Patterson, 2020). The large intestines have the highest microbial density, with about 100 billion bacterial cells per gram of wet stool (Sender et al., 2016). Furthermore, the gut microbiome is highly complex, with its composition varying widely between individuals. The gut microbiome comprises more than 1000 species, including bacteria, archaea, viruses, and fungi (Sekirov et al., 2010). Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria form the most dominant bacterial phyla of the gut microbiome (Yan et al., 2022). Gut bacteria are mainly categorized into symbiotic, opportunistic, and pathogenic bacteria. Symbiotic bacteria interact with each other and with the host in a symbiotic manner. They maintain gut homeostasis and contribute to overall health (Cummings, 1983). The gut microbiome participates in various functions, including nutrient absorption, immune system regulation, and biological antagonism (Adak and Khan, 2019). However, dysbiosis of the gut microbiome has been associated with various diseases (Hou et al., 2022). The composition of the gut microbiome is affected by various factors, including genetics, diet, medication, and environment. Diet is among the most significant factors influencing the gut microbiome (Duda-Chodak et al., 2015; Singh et al., 2017; Klement and Pazienza, 2019). A high-fiber diet and plant-based foods can promote the growth of beneficial bacteria in the gut microbiome, while high-fat and high-sugar diets have been linked to dysbiosis (Koh et al., 2016; Nagai et al., 2016; Hills et al., 2019).

Previous studies have shown that the gut microbiota contributes to the occurrence and development of various cardiovascular diseases (CVDs) (Witkowski et al., 2020), including hypertension (Yang et al., 2018; Verhaar et al., 2020), atherosclerosis (Zhu et al., 2020), heart failure (HF) (Zhang et al., 2021b), arrhythmias (Oniszczuk et al., 2021), and diabetic cardiomyopathy (Bastin and Andreelli, 2020; Yuan et al., 2022). Moreover, recent studies revealed that gut microbiota was also associated with myocarditis (Gil-Cruz et al., 2019; Hu et al., 2019; Mandelbaum et al., 2020; Piccioni et al., 2021; Luo et al., 2022; Ozkan, 2022). Furthermore, gut microbiota modulation through dietary interventions, probiotics, drugs, or fecal microbiota transplantation, has shown promising results in various conditions, including inflammatory bowel disease (Li et al., 2021b), colorectal cancer (Feng et al., 2015; Wong and Yu, 2019; de Souza et al., 2022), liver diseases (Bajaj, 2019; Albillos et al., 2020), obesity (Duca et al., 2013; Gomes et al., 2018), diabetes (Qin et al., 2012; Komaroff, 2017; Hung et al., 2021), arthritis (Scher et al., 2013; Xu et al., 2022), osteoporosis (Lahiri et al., 2019; Di et al., 2021), CVDs (Ko et al., 2019; Bai et al., 2021), and neurological disorders (Varesi et al., 2022).

In recent years, the role of the gut microbiome in health and diseases has attracted significant research attention. However, animal studies and clinical trials evaluating the relationship between myocarditis and gut microbiota are limited (Hu et al., 2019). Therefore, this study reviews (1) the evidence on gut-heart axis, (2) the association between gut microbiota and the immune system, (3) the association between myocarditis and the immune system, (4) the association between gut microbiota and myocarditis, (5) current strategies for modulating gut microbiota, (6) challenges and future directions for targeted gut microbiota in the treatment of myocarditis. This study provides novel ideas for myocarditis treatment and references for future research.




2 Gut-heart axis: effect of gut microbiota on cardiovascular diseases

The gut microbiome regulates human health. Recent studies indicate that dysbiosis of the gut microbiota is thought to be cause of most CVDs, including coronary heart disease, hypertension, and heart failure (Lippi et al., 2017; Jia et al., 2019). Gut microbiota dysbiosis can also induce an inflammatory response and affect the metabolism of bile acids (BAs), short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO) and other bioactive molecules, resulting in systemic inflammation and endothelial dysfunction. These changes, in turn, promote the development of atherosclerotic plaques and increase the risk of thrombosis and cardiovascular events (Liu et al., 2020b). The role of the gut-heart axis in cardiovascular health and the relationship between the gut microbiome and CVDs are presented in the subsequent sections and Figure 2.




Figure 2 | Gut-Heart axis: The relationship between gut microbiota and cardiovascular diseases. SCFAs, short-chain fatty acids; TMA, trimethylamine; TMAO, TMA-N-oxide.





2.1 Coronary heart disease and atherosclerosis

Coronary heart disease (CHD) is a condition in which the arteries cannot supply adequate oxygenated blood to the heart. Most cases of CHD are caused by the blockage of coronary arteries due to either atherosclerosis, thrombosis, or a combination of both (Ulbricht and Southgate, 1991).

The effects of gut microbiota in CHD are due to alterations in their composition and metabolites. One previous study enrolling 29 CHD inpatients and 35 healthy volunteers showed the proportion of phylum Bacteroidetes (56.12%) was lower, whereas that of the phylum Firmicutes was higher (37.06%) in the CHD patients than that of the healthy controls (60.92% and 32.06%, P <0.05) (Cui et al., 2017). Elsewhere, a similar observation was obtained (Emoto et al., 2017). Furthermore, a case-control study revealed that lower Lactobacillus levels are associated with an increased likelihood of severe coronary atherosclerotic lesions and myocardial necrosis as well as a poorer prognosis for patients with the acute coronary syndrome (ACS), particularly those with ST-segment elevation myocardial infarction (Gao et al., 2021). A previous study showed that Faecalibacterium was the dominant microorganism in the healthy control group, whereas Escherichia-Shigella and Enterococcus were enriched in the coronary artery disease group (Zhu et al., 2018). Furthermore, Yang et al. showed that hydroxyurea effectively treated atherosclerosis, reduced serum cholesterol levels, modified the gut microbiota at various levels, and affected cholesterol absorption by decreasing Niemann-Pick C1-like 1 in the epithelial cells of small intestines of apolipoprotein E knockout ApoE(-/-) mice fed on a high-fat diet (Yang et al., 2022b). In addition, the severity of myocardial infarction in rats is associated with intestinal microbial metabolites (Lam et al., 2016). The gut microbiome can also affect lipid metabolism. Certain bacteria in the gut microbiome can metabolize BAs, thereby affecting lipid metabolism. On the other hand, dysbiosis can alter the production of BAs, causing changes in lipid metabolism and increasing the risk of atherosclerosis (Jonsson and Bäckhed, 2017). The gut microbiome can affect the development and progression of atherosclerosis and CHD in various ways. Firstly, inflammatory responses can exacerbate plaque development or cause plaque rupture. Secondly, cholesterol and lipids metabolism by the gut microbiota can influence the development of atherosclerotic plaques. Thirdly, diet and gut microbial metabolites, including TMAO and SCFAs, can have various effects on atherosclerosis (Jonsson and Bäckhed, 2017; Liu et al., 2020a).




2.2 Hypertension

Hypertension is one of the most prevalent risk factors for CVDs across the globe. Furthermore, hypertension arises due to a complex interplay of genetic and environmental factors (Li et al., 2021a; Zhou et al., 2021). Globally, hypertension and pre-hypertension account for 8.5 million deaths annually due to stroke, ischemic heart disease, other vascular disorders, and kidney diseases. The prevalence of hypertension among individuals aged 30-79 years doubled from 648 million people to 1278 million people between 1990 and 2019 (Zhou et al., 2021).

Unlike healthy controls, patients with hypertension show microbial diversity and a shift in microbial composition. In addition, the number of species associated with hypertension shows a stronger correlation with disease severity. Li et al. found that pre-hypertensive and hypertensive patients had significantly reduced microbial richness and diversity. They also exhibited distinct metagenomic composition characterized by an overgrowth of disease-associated bacteria and a decrease in healthy-associated bacteria. Additionally, these patients exhibited a Prevotella-dominated gut enterotype and disease-linked microbial function, in contrast to the healthy control group (Li et al., 2017). Surprisingly, the microbiome characteristics of the pre-hypertensive group were similar to those observed in the hypertensive group. In addition, a previous study enrolling 60 patients with primary hypertension and 60 gender-, age-, and body-weight-matched healthy controls revealed that opportunistic pathogenic bacteria such as Klebsiella spp., Streptococcus spp., and Parabacteroides merdae were frequently found in the gut microbiome of hypertensive individuals. In contrast, beneficial bacteria producing SCFAs, such as Roseburia spp. and Faecalibacterium prausnitzii, were more abundant in the control group. Short-chain fatty acids-producing bacteria can modulate blood pressure by promoting vasodilation. In terms of microbial function, the gut microbiome of hypertensive individuals exhibited higher membrane transport, lipopolysaccharide (LPS) biosynthesis, and steroid degradation. However, the healthy controls showed higher metabolism of amino acids, cofactors, and vitamins (Yan et al., 2017). Furthermore, dysbiosis of the gut microbiome in rat models of hypertension can directly influence systolic blood pressure. Therefore, modulation of the gut microbiota can be exploited as a novel therapeutic approach for managing hypertension (Durgan et al., 2016; Adnan et al., 2017). Australian researchers recently published a review article, summarizing the latest research findings on the role of gut microbiota and their metabolic byproducts in host blood pressure regulation mechanisms. Gut microbiota imbalances can affect blood pressure regulation via host gene pathways, vascular function, and the autonomic nervous system. Enteric bacterial metabolites, including SCFAs and indole-3-lactic acid, are beneficial, whereas TMAO is harmful to blood pressure. Regulating gut microbiota through diet or fecal microbiota transplantation (FMT) may serve as a potential therapeutic strategy for blood pressure reduction. Moreover, the article discussed the prospects, challenges, and difficulties of using gut bacteria for blood pressure control in clinical applications (O’Donnell et al., 2023).




2.3 Heart failure

Heart failure is a complex clinical syndrome characterized by dyspnea and fatigue due to its inability to efficiently fill or eject blood from the heart. Heart failure can progress to pulmonary or splanchnic congestion and peripheral edema. It can be categorized into four types, including heart failure with preserved ejection fraction (HFpEF), heart failure with mildly reduced ejection fraction (HFmrEF), heart failure with reduced ejection fraction (HFrEF), and heart failure with improved ejection fraction (HFimpEF). HF is a leading cause of morbidity and mortality across the globe. The 2022 guideline offers patient-centric recommendations for healthcare professionals to prevent, diagnose, and manage patients with heart failure (Heidenreich et al., 2022).

Alteration of gut microbiota composition and microbial metabolite shifts, especially those derived from dietary nutrients increase the risk of HF. Tang et al. reported that impaired intestinal barrier function and bowel wall edema in HF patients might promote local and systemic inflammation, as well as bacterial translocation (Tang et al., 2019b). In addition, the inflammation and immune response linked to intestinal barrier impairment and bacterial translocation can exacerbate heart failure (Jia et al., 2019). Moreover, Zhang et al. showed that TMAO was involved in the pathological processes of HF and could act as a marker for identifying patients at risk of disease progression. In addition, they reviewed the gut–TMAO–HF axis as a new target for HF treatment (Zhang et al., 2021b). Romano et al. investigated the relationship between the gut microbiota-derived metabolite phenylacetylgutamine (PAGln) and HF. Clinical and mechanistic analyses reveal a dose-dependent association between circulating PAGln levels and HF presence and severity. PAGln directly promotes HF-relevant phenotypes, including decreased cardiomyocyte sarcomere contraction and elevated B-type natriuretic peptide gene expression in both cultured cardiomyoblasts and murine atrial tissue. The findings suggest that regulating the gut microbiome, particularly PAGln production, may represent a potential therapeutic target for modulating HF (Romano et al., 2023). This together suggests that innovative therapeutic approaches that target gut microbial metabolic pathways or metabolites and modify the gut microbiota composition could be effective in reducing CVDs susceptibility and preventing the progression of HF.




2.4 Other CVDs

In recent years, numerous studies have investigated gut microbiota as a therapeutic target for CVDs prevention and management. For example, a previous study demonstrated that Bacteroides fragilis could prevent aging-related atrial fibrillation (AF) in rats through regulatory T cells (Tregs) mediated regulation of inflammation. Specifically, Bacteroides fragilis promotes the proliferation and function of Tregs as well as reduces inflammatory responses, thus decreasing the incidence of AF (Zhang et al., 2022). These findings provide novel insights for developing new drugs to prevent or treat AF. Furthermore, a clinical study showed that SCFAs could alleviate the development of AF through G protein-coupled receptor 43/NOD-like receptor family pyrin domain containing 3 (GPR43/NLRP3) signal pathways (Zuo et al., 2022). Moreover, the potential of probiotics, prebiotics, and FMT in modulating gut microbial composition and promoting cardiovascular health has been extensively studied (Oniszczuk et al., 2021). However, further studies are needed to reveal microbial mechanisms with diagnostic and therapeutic implications in CVDs (Walker et al., 2021). Furthermore, a previous study showed that hydroxyurea could prevent diabetic cardiomyopathy by inhibiting inflammation and cell apoptosis (Zhou and Lu, 2022). Inflammation is implicated in CVDs. In addition, dysbiosis has been linked to increased inflammation. A few gut microbiota, particularly Gram-negative bacteria, produce LPS, which activate the immune system and promote inflammatory responses (Yoo et al., 2020).

In summary, the gut-heart axis represents a complex network of interactions involving the gut microbiota, their metabolites, and the cardiovascular system. Myocarditis, an important cardiovascular disease, has gained significant attention in recent years. The emergence of the gut-heart axis concept might imply a potential connection between the gut microbiota and myocarditis. By delving into the role of the gut microbiota in myocarditis, we may discover new opportunities for prevention, diagnosis, and treatment, ultimately enhancing the prognosis and quality of life for those affected.





3 Gut microbiota and the immune system

The immune system is divided into innate and acquired immunity. Innate immunity refers to the immune response present at birth that can produce an effective response to pathogens without previous antigen exposure (Janeway et al., 2001). Components of the innate immune system include: the skin and mucosal barriers, macrophages, natural killer (NK) cells, and the complement system. On the other hand, acquired/adaptive immunity is developed after previous exposure to pathogens or vaccinations. The components of the adaptive immune system include B lymphocytes and T lymphocytes (Janeway et al., 2001). B cells secrete antibodies that can specifically bind to and neutralize pathogens. Furthermore, T cells have different subtypes, including helper T cells and cytotoxic T cells. T cells recognize and attack the surface antigens of infected cells and coordinate the immune response (Parkin et al., 2001). The immune system can help the body to fight infections and can induce inflammation. Cytokines are a class of small proteins with broad biological activity that are synthesized and secreted by immune cells upon stimulation. They maintain the stability of the body’s immune system and regulate the occurrence of pathological processes. Cytokines are classified into pro-inflammatory and anti-inflammatory cytokines based on their effects on inflammation. Anti-inflammatory cytokines include Th2 type cytokines (IL-4, IL-5, IL-10). Pro-inflammatory cytokines include Th1 type cytokines (IFN-γ, IL-2, IL-12p70); IL-1β; IL-6, IL-8, TNF-α; and Th17 type (IL-17) (Fajgenbaum and June, 2020). Understanding the gut microflora, associations among the microbiome and inflammasomes, the immune system, the role of gut microbiota metabolites, and gut permeability may lead to the development of preventive strategies for CVDs (Noor et al., 2021).



3.1 Gut-immune system crosslink

Gut microbiota is involved in the regulation of host immunity. For example, Lactobacilli and Bifidobacteria improve the host immune function (Vlasova et al., 2016). Furthermore, the gut microbiota stimulate the training and development of the host immune system and the occurrence of cellular immunity, enabling the host’s innate immune system to distinguish between pathogenic and symbiotic bacteria (Wu and Wu, 2012; Ursell et al., 2014; Yoo et al., 2020). In addition, the gut microbiota colonizes, and proliferates in the intestinal mucosa, forming a layer that protects the host from invasion by foreign pathogens. In addition, gut microbiota can compete with harmful bacteria for nutrients, thereby inhibiting their growth and generating antibacterial substances that suppress the proliferation of pathogens (Belkaid et al., 2014).

Gut microbiota primarily affects the disease process through endogenous metabolites produced by gut microbiota and changes in the composition of gut microbiota. About 70~80% of the human immune cells are found in the gut, and dysbiosis of the gut microbiota is related to alterations in the immune system. Emerging evidence has focused on the role of the gut microbiota in regulating the immune response to viral infections and has shown that the gut microbiota can influence the activity of immune cells, including T cells and dendritic cells (Mizutani et al., 2022). Specifically, some gut microbiota produces metabolites that modulate the activity of immune cells and the production of pro-inflammatory cytokines, thus promoting the development of myocardial inflammation. Figure 3 shows the possible relationship between gut microbiota and their metabolites, immune system, and myocarditis.




Figure 3 | A schematic overview of the possible relationships between gut microbiota, and its metabolites, immune system, and myocarditis. BCAAs, branched-chain amino acids; GPR, G protein-coupled receptor; LPS, lipopolysaccharide; SBAs, secondary bile acids; SCFAs, short-chain fatty acids; TMAO, trimethylamine-N-oxide; TLR4, toll-like receptor 4; FXR, farnesoid X receptor, GPBAR1/TGR5, G protein-coupled bile acid receptor 1; PXR, pregnane X receptor; S1PR2, sphingosine 1-phosphate receptor 2.






3.2 Gut microbiota composition

Gut bacteria can be classified into six primary phyla based on their genetic and physiological characteristics, including Firmicutes, Bacteroides, Actinobacteria, Proteobacteria, Fusobacteria, Verrucomicrobia, and some other phyla. Firmicutes, Bacteroides, Actinobacteria, and Proteobacteria, account for over 90% of the gut microbiota (Yan et al., 2022). (1) The phylum Firmicutes includes several common gut bacteria, such as Lactobacillus, Streptococcus, and Clostridium. Some Firmicutes species improve gut barrier function and enhance immunity (Rinninella et al., 2019). (2) The phylum Bacteroidetes include several bacteria that produce SCFAs, such as Bacteroides fragilis. Short-chain fatty acids have anti-inflammatory effects on the gut and promote immune homeostasis (Fabersani et al., 2021). (3) The phylum Proteobacteria includes several pathogenic bacteria, including Escherichia coli and Salmonella, which can cause gastrointestinal infections. However, some Proteobacteria, such as Akkermansia muciniphila, have beneficial effects on gut health, including promoting the growth of beneficial bacteria and reducing inflammation (Larsen et al., 2015). (4) The phylum Actinobacteria includes numerous beneficial gut bacteria, such as Bifidobacterium and Collinsella, which modulate the immune system, improve gut barrier function, and reduce inflammation (Barka et al., 2016).




3.3 Gut microbiota metabolites

Gut microbiota-dependent metabolites act as a bridge that connects the dynamic equilibrium between the host and the gut microbiota (Schoeler et al., 2019). The gut microbiota generates numerous small-molecule metabolites during microbial food digestion, playing a vital role in communication between host cells and gut bacteria (Ursell et al., 2014). The metabolites could have beneficial or harmful effects. Over the past decade, more than 300 endogenous metabolites of gut bacteria, including SCFAs, BAs, monoamines, biogenic amines, indole derivatives, phenols, vitamins, branched-chain amino acids (BCAAs), and lipids, have been discovered through non-targeted and targeted metabolomic analyses. Among them, extensive studies have been conducted on the primary endogenous metabolites, including, SCFAs, BAs, BCAAs, and TMAO (monoamines). These metabolites play significant roles in various physiopathologic processes. Furthermore, lipopolysaccharides, produced by Gram-negative bacteria, have also attracted attention for their effect on the host through metabolism-independent signaling pathways(Yang et al., 2021). This highlights the importance of understanding the complex interactions between these metabolites and their potential roles in human health and disease (Li et al., 2018b; Wang et al., 2018).Therefore, this section presents the effect of gut microbial metabolites on the host from the perspective of the immune system.



3.3.1 Short-chain fatty acids

Short-chain fatty acids (SCFAs), or volatile fatty acids, are a class of low-molecular organic fatty acids with approximately two to six carbon atoms. Short-chain fatty acids arise from the fermentation of dietary fiber by microorganisms in the colon (Chen et al., 2020). Short-chain fatty acids mainly include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, caproic acid, and isocaproic acid. The major metabolic products include SCFAs acetate (C(2)), propionate (C(3)) and butyrate (C(4)) (Schwiertz et al., 2010; Vinolo et al., 2011). The type and amount of SCFAs depend on the composition and fermentative ability of the gut microbiota, digestion time, host-microbe metabolic flux, and the fiber content of the host food (Parada Venegas et al., 2019; Deleu et al., 2021). Short-chain fatty acids are absorbed by the intestine primarily through monocarboxylate transporters 1 (MCT1) and 4 (MCT4) (Kirat et al., 2006; Sivaprakasam et al., 2017). The SCFAs promote cell growth, improve intestinal function, and influence cardiovascular metabolism. In addition, SCFAs act as mediators of the immune response and promote the production of anti-inflammatory cytokines by peripheral blood monocytes (Asarat et al., 2016). Depletion of gut microbiota by antibiotics decreased immune cell composition and impaired repair after myocardial infarction, while supplementation with SCFAs or Lactobacillus probiotics restored these effects. This highlights the importance of gut microbiota-derived SCFAs in modulating pathological outcomes after myocardial infarction and potentially impacting human health and disease as a whole (Tang et al., 2019a).

Short-chain fatty acids regulate the effector functions of CD8+ T cells by activating the G protein-coupled receptor 41(GPR41)(Vinolo et al., 2011). In addition, SCFAs can activate GPR43 or the free fatty acid receptor (FFAR 2) in peripheral adipose tissue, thereby regulating insulin sensitivity, promoting glucagon-like peptide 1 (GLP-1) release from stimulated L cells and regulating inflammation (Priyadarshini et al., 2016). One study proposed that SCFAs exert their effects on leukocytes and endothelial cells via two known mechanisms, i.e., activating GPR41 and GPR43 and inhibiting the histone deacetylase (HDAC) activity (Vinolo et al., 2011). Butyric acid and propionic acid inhibit HDAC activity, LPS-induced secretion of inflammatory mediators by macrophages, and macrophage reactivity, as well as exert anti-inflammation effects in mice (Li et al., 2018a; Yao et al., 2022). In addition, acetic acid induces immunoglobulin A (IgA) production in the intestines of mice and maintains a relatively stable immune system (Mei et al., 2022). However, excessive production of acetic acid can induce colitis (Sharon and Stenson, 1985; Uraz et al., 2013). Furthermore, butyric acid can attenuate inflammation by reducing macrophage adhesion and migration (Smith et al., 1998), hence reducing the production of IL-6 and IL-12, and increasing IL-10 (Park et al., 2022). Moreover, butyric acid and propionic acid produced by the gut microbiota can promote the differentiation of peripheral Tregs and maintain immune homeostasis (Kim et al., 2014; Asarat et al., 2016).

Taken together, SCFAs modulate the immune system and alleviate inflammation.




3.3.2 Bile acids

Bile acids (BAs) promote the emulsification of fats, thus increasing the surface area for pancreatic lipase and improving the solubility of lipids by forming mixed micelles (Amara et al., 2019). Bile acids facilitate the absorption of lipids in the small intestine. Clinical studies and animal experiments have shown that BAs, particularly secondary BAs (SBAs) generated during bacterial metabolism of BAs, can influence intestinal inflammation (Schirmer et al., 2019; Cai et al., 2022). The related gut microbiota mainly comprises Lactic acid bacteria, Enterobacteriaceae, and Enterococci bacteria, which can deconjugate BAs from taurine or glycine to produce deoxycholic acid (DCA) and lithocholic acid (LCA).

Bile acids are important signaling molecules, which regulate host metabolism and energy homeostasis, and affect innate immunity (Hang et al., 2019; Han et al., 2022). One recent study revealed that gut microbiota and LCA could regulate the host immune response by directly altering the balance between Th17 and Tregs (Hang et al., 2019). Previous studies have shown that SBAs could exert pro-inflammatory effects at high concentrations (Hang et al., 2019; Han et al., 2022). Digoxin was identified as the first Th17 cytostatic agent that binds to the retinoic acid-related orphan receptor-gamma-t (RORγT) (Karaś et al., 2018). After digoxin identification, other structurally related cholesterol derivatives have been identified as modulators of RORγT. Bile acids are cholesterol metabolites present in the intestine. Bile acids control Th17 by targeting RORγT activity (Song et al., 2020). BAs can inhibit macrophage function by activating BA receptors and promoting the differentiation of Tregs. The BAs receptors include nuclear receptors such as the farnesoid X receptor (FXR), the G protein-coupled bile acid receptor 1 (GPBAR1/TGR5), pregnane X receptor (PXR), sphingosine 1-phosphate receptor 2 (S1PR2), and other membrane receptors (Wang et al., 2011; Hu et al., 2022; Yao et al., 2022). By activating these receptors, BAs inhibit the overgrowth of intestinal bacteria, thus protecting against visceral infection.

Taken together, BAs may have pro-inflammatory or anti-inflammatory effects, depending on the type and concentration of bile acids.




3.3.3 Branched-chain amino acids

Branched-chain amino acids (BCAAs) have an aliphatic side chain and a branch (a central carbon atom bound to three or more additional carbon atoms). Leucine, isoleucine, and valine are three naturally occurring proteinogenic BCAAs (Lynch et al., 2014). These amino acids cannot be synthesized in animals. However, they are synthesized in bacteria, plants, and fungi (Neinast et al., 2019). The metabolism of BCAAs involves several complex enzymatic reactions. Furthermore, branched-chain amino acids affect cellular metabolism.

A previous study revealed that dietary supplementation of BCAAs in middle-aged mice is associated with increased mitochondrial formation and bioenergetics as well as reduced ROS production, which could prevent aging and promote survival (D’Antona et al., 2010). Furthermore, BCAAs may inhibit fibrosis by decreasing apoptosis, caspase-3 activity, and oxidative stress in mice (Takegoshi et al., 2017). In addition, BCAAs enhance the immune response of NK cells (Matsumoto et al., 2009) and liver-associated lymphocytes (Kajiwara et al., 1998; Takegoshi et al., 2017). A previous study investigated the potential role of BCAAs in reducing inflammation and improving immune function in athletes and individuals undergoing physical stress. BCAAs serve as signaling molecules. For example, BCAAs can activate the mammalian/mechanistic target of rapamycin complex 1 (mTORC1) (Mann et al., 2021). Previous studies revealed that supplementation of BCAAs reduced inflammation and oxidative stress in athletes, thereby improving their immune function and reducing infection risk (Matsumoto et al., 2009; Kim et al., 2012). However, high plasma levels of BCAAs are associated with inflammation, insulin resistance, and metabolic syndrome (Yoon and Yoon, 2016).

Taken together, the role of BCAAs on inflammation depends on the BCAAs concentration and the individual’s health status.




3.3.4 Trimethylamine-N-Oxide

Trimethylamine-N-Oxide (TMAO) is an intestinal-derived flora-related metabolite synthesized in the liver. It is derived from trimethylamine (TMA), metabolized by the gut microbiota. Some gut microbiota produces trimethylamine lyase, an enzyme that converts dietary choline, betaine, carnitine, and TMA- structured food into TMA (Cho and Caudill, 2017). For example, some bacteria belonging to the phylum Firmicutes, including certain species within the Clostridia class and the Enterococcus genus, as well as the Desulfovibrio genus from the phylum Proteobacteria, can produce enzymes like choline TMA-lyase, which is involved in the generation of trimethylamine. Trimethylamine is transported to the liver via portal circulation, where it is oxidized by flavin monooxygenases 3 (FMO3) to produce TMAO (Liu et al., 2020b).

Trimethylamine-N-Oxide promotes monocyte adhesion, increases macrophage infiltration, and promotes foam cell production. It has been shown that TMAO can inhibit the cellular activity of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), causing a reduction in the antioxidant activity of cells (He et al., 2021). Similarly, TMAO promotes the production of reactive oxygen species (ROS), thus exacerbating oxidative stress (Querio et al., 2019). Animal studies have shown that TMAO induces vascular inflammation by activating the sirtuin 3 -superoxide dismutase 2- mitochondrial ROS (SIRT3‐SOD2‐mtROS) and stimulating in vitro and in vivo formation of the NLRP3 inflammasome (Chen et al., 2017). In addition, TMAO can induce vascular inflammation by activating the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathways (Seldin et al., 2016). TMAO also activates the inflammatory response by inducing the expression of IL-6, cyclooxygenase-2 (COX-2), endothelial selectin, and intercellular cell adhesion molecule-1 (ICAM-1), which enhances macrophage adhesion through protein kinase C (PKC) and NF-κB signaling pathway. Furthermore, high serum levels of TMAO can increase the production of tumor necrosis factor-α (TNF⁃α) through the NF⁃κB signaling pathway. A recent study demonstrated that silencing of FMO3 was associated with decreased production of TMAO(Schiattarella et al., 2017). TMAO has also been shown to trigger adipose tissue inflammation (Yang et al., 2021).

Taken together, TMAO has pro-inflammatory effects.




3.3.5 Lipopolysaccharides

Endotoxins/LPS are a complex of lipids and polysaccharides. They are structural components of the outer membrane of Gram-negative bacteria such as Pectinatus. In addition, LPS determines the diversity of bacterial antigens. During bacterial pathogenesis, lipopolysaccharides trigger inflammation by activating the Toll-like receptor 4 (TLR4) in immune cells and other cell types, including adipocytes and hepatocytes (Neves et al., 2013; Schoeler et al., 2019). As activators of innate immune responses, LPS have a non-negligible role in human immune responses (Neves et al., 2013).

Interactions between LPS and Toll-like receptor 4 (TLR4) on surfaces of immune cells such as macrophages and dendritic cells induces a cascade of signaling events that produce of pro-inflammatory cytokines, such as TNF-α, IL-1β, NF-κB, and IL-6. These cytokines play a crucial role in the recruitment and activation of other immune cells, including neutrophils and NK cells, to sites of infection (Medzhitov and Medzhitov, 2007). Besides activating the innate immune system, LPS influences adaptive immune responses. They improve the antigen-presenting abilities of dendritic cells, which are crucial for initiating and shaping adaptive immune responses. The LPS can also promote T cells activation (CD4+ helper and CD8+ cytotoxic T cells) against the pathogen (Hoebe et al., 2004). In addition, LPS is useful in modeling inflammation-related diseases, including sepsis and myocarditis by activating the NF-кB signaling pathway (Wang et al., 2019b).

Gut microbiota-produced metabolites, including SCFAs, BAs, BCAAs, TMAO, and LPS can affect the immune system and contribute to development of inflammatory diseases. Additional studies should focus on elucidating the mechanisms underlying these associations and exploring the potential therapeutic interventions targeting these metabolites.






4 Myocarditis and the immune system

The role of inflammation in the progression of CVDs has attracted considerable attention. In pathogenesis, IL-1β, IL-6, TNF-α, and interferon-gamma (IFN-γ) are associated with heart inflammation while IL-10, TGFβ, and others are linked to the resolution of inflammation and heart tissue repair. IL-10 mitigates inflammation in the cardiovascular system and exerts protective effects by interacting with SMAD2, p53, HuR, miR-375, and miR-21 pathways (Goswami et al., 2021). Myocarditis is an inflammatory disease that affects myocardium health, and the extent of damage depends on the nature of the pathogen and associated inflammatory responses. Myocarditis is characterized by immune responses specific to the heart and is categorized based on the clinical and histopathological features (Figure 1) (Heymans et al., 2016). Experimental mice models have shown the significance of immune cells in myocarditis development (Swirski et al., 2018). The proinflammatory cytokine, IL-1, is crucial in the development of myocardial inflammation (Cavalli et al., 2016). IL-α activates the ‘inflammasome,’ leading to the infiltration of inflammatory cells, processing and release of active IL-1β (Toldo et al., 2014). IL-1β, a highly studied member of the IL-1 cytokine family, is primarily influenced by the functioning of the NLRP3 inflammasome in inflammation (Abbate et al., 2020). This section focuses on two types of myocarditis: Viral myocarditis and autoimmune myocarditis.



4.1 Viral myocarditis

Viral myocarditis is a significant cause of heart failure and dilated cardiomyopathy. Viral infection of the myocardium can lead to myocardial cell necrosis. The pathological and physiological mechanisms of viral myocarditis have been investigated using murine models of enterovirus infection, especially coxsackievirus B3 (CVB3) (Lin et al., 2021). The CVB3 cardiomyophilic strain virus (CVB3m) and the CVB3 non-cardiomyophilic strain virus (CVB3o) are variants of the CVB3 standard strain, which can be adapted for different research objectives to achieve the required pathology of myocarditis in specific tissue types (Błyszczuk, 2019).

Viral entry into the myocardium results in three kinds of responses. The acute phase is characterized by viral entry and replication, the subacute phase is characterized by inflammatory cell infiltration, and the chronic phase is characterized by cardiac remodeling. Myocardial injury includes direct injury mediated by viral infections and indirect injury due to secondary immune responses (Henke et al., 1995). The molecular mechanisms underlying injury were described in detail in a review published in 2016. Targeting these virus-encoded proteases may inhibit viral replication and viral direct damage to the myocardium (Fung et al., 2016). The adaptive immune responses begin after the acute and subacute phases of myocarditis (Lin et al., 2021). Opavsky et al. established gene knockout mice CD4(-/-), CD8(-/-), both co-receptors (CD4(-/-) CD8(-/-)), or T cells receptor beta chain (TCR beta (-/-)) to investigate the impact of T cell subsets on host susceptibility to CVB3 myocarditis. They found that myocarditis severity in the CD4 knockout group, CD4 and CD8 knockout group, and TCR beta knockout group was lighter than that in the CD8 knockout group. Moreover, IFN-γ levels were elevated while TNF-αlevels were suppressed in CD4 and CD8 knockout mice models (Opavsky et al., 1999). Chemokines are a class of small cytokines or signaling proteins secreted by cells. They can induce nearby responsive cells to directionally migrate towards the source of chemokines. A transgenic study involving mice models revealed that CXC chemokine ligand 10 (CXCL10) was upregulated in the early stages of myocardium infection and inhibited viral replication in the early CVB3 infection stages by recruiting NK cells and promoting IFN-γ expressions. However, in the late infection stages, it did not stimulate the antiviral effects to improve the survival rates of mice (Yuan et al., 2009). Male mice with CVB3-induced myocarditis had myocardial infiltrating macrophages expressing increased markers, including inducible nitric oxide synthase, IL-12, TNF-α, and CD16/32, which are associated with classically activated macrophages (M1) (Li et al., 2009).




4.2 Autoimmune myocarditis

Mice models are important in studies on autoimmune diseases (Lincez et al., 2011). Experimental autoimmune myocarditis mice models distinguish between autoimmune phases of viral myocarditis from the acute infection phase of CVB in genetically modified mice (Blyszczuk et al., 2008). Disease severity is classified based on the infiltration extent of inflammatory cells during the peak of inflammation. This model can also be used for other types of myocarditis (Błyszczuk, 2019).

Neu et al. reported that autoimmune myocarditis is often indirectly associated with a viral infection. One possible contributing factor is the release or exposure of cardiac myosin after viral-mediated myocyte damage, which induces autoimmune responses and myocardial inflammation (Neu et al., 1987). Pdcd1-/-Ctla4+/- mice spontaneously develop fulminant myocarditis. Therefore, Axelrod et al. performed single-cell sequencing and single-cell TCR sequencing of immune cells infiltrating these myocarditis tissues and found that CD8+ T cells were significantly increased in number and showed clonal expansions. Myocarditis did not develop when CD8+ T cells were removed from these mice. When CD4+ T cells were the only ones to be removed, myocarditis incidences did not change. When CD8+ T cells from Pdcd1-/-Ctla4+/- mice were adoptively transferred to Rag1-/- mice, the recipient mice developed myocarditis after two months. Therefore, CD8+ T cells are highly involved in fulminant myocarditis development (Axelrod et al., 2022). A recent study also found that macrophage migration is a significant histopathological feature of myocarditis, indicating that macrophages are potential therapeutic targets for this disease (Toita et al., 2021).





5 Gut microbiota and myocarditis, inflammatory cardiomyopathy

In previous discussions, we highlighted the strong associations between gut microbiota and the immune system. Furthermore, we elucidated the role of the immune system in myocarditis development. In this section, we assess the relationship between gut microbiota and myocarditis.

It has been demonstrated that FMT, a method used to restore gut microbial homeostasis, can improve myocardial damage in myocarditis mice (Hu et al., 2019). Zhang et al. investigated the significance of GLP-1 receptor agonists in alleviating autoimmune myocarditis by modulating gut microbiota (Zhang Wenyong, 2019). In spontaneous autoimmune myocarditis mice, gut microbiota promotes disease and interacts with MYH6-specific CD4+ T cells. Cruz et al. found that commensal Bacteroides produce an MYH6 mimic, β-galactosidase, which can lead to the activation of cross-reactive Th17 cells, ultimately causing inflammatory cardiomyopathy in individuals with a genetic susceptibility to this condition. Antibiotics reduce inflammation and prevent death in these mice. Acute myocarditis patients have increased anti-Bacteroides IgG and cross-reactive T cell activation (Gil-Cruz et al., 2019). These findings provide a better understanding of the mechanisms underlying the interaction between the microbiome and the immune system in autoimmune diseases. In the meanwhile, these findings also offer fresh insights into potential strategies for preventing and treating inflammatory cardiomyopathy. Additionally, the European Heart Journal reported Cruz et al’s study. The study focused on the largely unknown processes that cause myocarditis, revealing that gut bacteria composition promotes the development of myocarditis and inflammatory cardiomyopathy. These findings provide valuable insights into the role of gut microbiota in myocarditis, paving the way for future research and potential treatments targeting the gut-heart axis (Ozkan, 2022). Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment but can also initiate autoimmune diseases, including cardiomyopathy. Although antibiotics may counteract cardiomyopathy by eliminating cross-reacting bacteria, they could also impede ICI efficacy, as gut bacteria play a crucial role in ICI efficacy. A more targeted approach, including phage therapy, could be considered to specifically eradicate immune-mimicking gut commensals without compromising immunotherapy outcomes (Mandelbaum et al., 2020). Han et al. performed HeLa cellular experiments and revealed that gut microbiota metabolites-BAs can inhibit viral replication and attenuate endoplasmic reticulum stress-induced cell death (Han et al., 2018). Barin et al. revealed that enteric microorganisms play a role in determining the susceptibility of mice to the model of experimental autoimmune myocarditis (EAM) and its sequela, inflammatory dilated cardiomyopathy (Barin et al., 2017). Myopericarditis is an inflammatory heart condition involving the pericardium and myocardium, which has been linked to gut microbiota and its metabolites. Piccioni et al. explored the role of gut microbiota in myopericarditis, particularly in relation to the cardiovascular implications of COVID-19, suggesting that microbiota modulation may be a novel approach for preventing or treating inflammatory cardiomyopathies (Piccioni et al., 2021). One study investigated the causal relationship between gut microbiota, their metabolites, and heart failure and its risk factors using Mendelian randomization analysis. Genetic predictions revealed that with every 1-unit increase in Shigella concentration, the relative risk for myocarditis increases by 38.1%. These findings may guide future microbiome-based interventions in clinical trials (Luo et al., 2022).

In summary, gut microbiota dysbiosis may be implicated in myocarditis pathogenesis. Targeting gut microbiota provides novel clinically relevant strategies for myocarditis treatment. The mechanisms by which gut microbiota promote myocarditis are complex and involve dysregulation of the immune system, inflammation, endothelial dysfunction, and metabolism. By revealing the role of gut microbiota in the development and progression of myocarditis, we can gain insight into the disease’s pathophysiology and devise new therapeutic strategies.




6 Current strategies for modulating gut microbiota

The current strategies for modulating gut microbiota include fecal microbiota transplantation (FMT), live biotherapeutic productions (LBPs), probiotics, prebiotics, symbiotics, dietary interventions, gut microbiota enzyme inhibition, and microbial-drug interactions (Figure 4) (Schneiderhan et al., 2016; Adak and Khan, 2019; Wargo, 2020).




Figure 4 | Strategies for regulating gut microbiota based on animal, bioinformatics, and clinical research. GM, gut microbiota; FMT, fecal microbiota transplantation; LBPs, live biotherapeutic productions.





6.1 Fecal microbiota transplantation

FMT, a natural microbial ecosystem in feces, involves the transfer of fecal material from a healthy donor to a recipient to restore a healthy gut microbiota composition and functions (Wang et al., 2019a). Infant colonization by a specific microbial community, largely originating from the mother, is a natural process that rapidly occurs after birth and is influenced by the delivery mode (Fuentes and de Vos, 2016). As early as the 4th century BC, Chinese medical books recorded the use of fecal preparations to treat gastrointestinal diseases (Wargo, 2020). FMT can effectively treat recurrent Clostridioides difficile infections, and there is a growing interest in the use of FMT in other diseases, including inflammatory bowel disease and metabolic syndromes (Davidovics et al., 2019). The success rate of FMT relies on the composition of the recipient’s microbiome and the interplay between the microbiomes of the donor and recipient at both taxonomic and functional levels (Kazemian et al., 2020). FMT can provide a diverse range of microbial communities which play an important role in restoring functional redundancy of gut microbiota. However, there exist limitations in terms of reproducibility, whereas factors including safety, donor/recipient considerations, dosing, and administration route should be taken into account when considering FMT. Studies on the use of FMT, specifically in the context of myocarditis, are limited (Hu et al., 2019). Further, the safety and efficacy of FMT in myocarditis treatment should be investigated.




6.2 Live biotherapeutic productions, probiotics, and synbiotics

1) The LBPs are a type of therapeutic agent comprising many live microorganisms, typically bacteria, ingested or applied to the body for disease prevention and treatment (Charbonneau et al., 2020). They are also referred to as “live biotherapeutics” or “live biotherapeutic agents” (Dhansekaran and Sankaranarayanan, 2021). They differ from probiotics or prebiotics in that they are specifically designed to deliver a therapeutic effect (Dreher-Lesnick et al., 2017; Charbonneau et al., 2020). They are produced under strict manufacturing processes to ensure the viability and efficacy of bacteria when administered to the patient. Some clinical trials are assessing the efficacy of this strategy of regulating gut microbiota in cancer immunotherapy (Wargo, 2020). The potential of LBPs to treat various conditions, including gastrointestinal, metabolic, and immune system disorders is being investigated. A previous review outlined the factors to be considered during the design and development of genetically engineered LBPs to ensure compliance with regulatory standards and gain acceptance from patients (Charbonneau et al., 2020).

2) Antibiotics are drugs that can kill or inhibit the growth of bacteria. Excess or improper use of antibiotics can lead to gut microbiota dysbiosis (Gough, 2022). Probiotic supplementation is a treatment approach that can promote gut microbiota recovery. Probiotics are live microorganisms such as Bifidobacterium, Saccharomyces, Lactic acid bacteria, Lactobacillus acidophilus, Actinomycetes, and Lactobacillus rhamnosus with health benefits upon consumption (Hill et al., 2014). Probiotic supplementation reduces myocardial hypertrophy and heart failure following myocardial infarction in rat models (Gan et al., 2014). Intestinal stem cell regeneration was accelerated by Lactobacillus rhamnosus GG, which promoted colonic barrier recovery in septic mice (Chen et al., 2023). In vitro, anti-inflammatory activities of probiotic supernatants are unique, since they can modulate interleukin 1β (IL-1β), IL-6, TNF-α, and IL-10 production in human macrophages in distinct approaches (De Marco et al., 2018). Probiotic supplementation is considered safe for individuals with functional immune systems (Vallianou et al., 2020). Still, they may induce immune responses, require cold storage, and cannot be used with antibiotics (Suez et al., 2019).

3) Symbiotics are combinations of probiotics and prebiotics with synergistic effects on gut microbiota composition and function. They are developed to address the potential challenges associated with probiotics survival in the gastrointestinal tract (Rioux et al., 2005). Consumption of yogurt and fruits may have combined health benefits due to their potential prebiotic and probiotic effects (Fernandez and Marette, 2017).




6.3 Prebiotics, postbiotics, and dietary interventions

1) Prebiotics are nondigestible food ingredients that selectively stimulate the growth and activities of beneficial gut microbiota. They primarily consist of bifidogenic, non-digestible oligosaccharides, such as inulin, its hydrolysis product oligofructose, and (trans) galactooligosaccharides (de Vrese and Schrezenmeir, 2008). Prebiotics include nutritional supplements that promote gut microbiota proliferation. The natural sources of prebiotics include beans, cereals, and soybean among others (Kerry et al., 2018). They may reduce inflammatory responses and improve cardiac functions by regulating gut microbiota. Similar to findings from studies involving adult studies, prebiotic effects in infant nutrition results in significant alterations in gut microbiota composition, with a notable increase in Bifidobacteria levels in fecal matter (Roberfroid et al., 2010).

2) Postbiotics, gaining attention as health-promoting agents, are beneficial compounds produced through the metabolic activities of microorganisms, particularly probiotics. These diverse substances, including cell wall components, SCFAs, and enzymes, have various effects on the host, such as modulating the immune system, improving gut barrier function, and inhibiting pathogenic bacteria growth (Żółkiewicz et al., 2020); Tsilingiri and Rescigno, 2013). As a stable and safe alternative or complement to traditional probiotics, postbiotics show promise in maintaining and improving human health, necessitating additional research to optimize their production and develop effective therapies.

3) Food plays a vital role in shaping gut microbiota composition and diversity. Dietary interventions, including the Mediterranean diet and Dietary Approaches to Stop Hypertension diet, have beneficial effects on gut microbiota composition and cardiovascular health (Merra et al., 2020; Drapkina et al., 2022). The Mediterranean diet, rich in fruits, vegetables, whole grains, legumes, fish, and olive oil, improves gut microbiota composition, reduces frailty and improves health status (Ghosh et al., 2020). The Dietary Approaches to Stop Hypertension (DASH) diet, rich in fruits, vegetables, whole grains, and low-fat dairy products, reduces blood pressure and improves cardiovascular health (Maifeld et al., 2021). A Western-style diet, rich in saturated fats, salt, and sugar, reduces gut microbiota diversity which increases the prevalence of inflammatory disease (Statovci et al., 2017). Plant-based diets, rich in fibers, are associated with increased gut microbiota diversity and reduced cardiovascular disease risks (Satija and Hu, 2018; Losno et al., 2021).




6.4 Microbial-drugs interactions and gut microbial enzyme inhibition

1) The gut microbiome plays a crucial role in mediating host-environment interactions and exhibits a complex bidirectional relationship with non-antibiotic drugs. This intricate interplay involves the microbiome influencing drug efficacy and toxicity, while simultaneously being affected by the drugs themselves, a phenomenon known as pharmacomicrobiomics (Weersma et al., 2020). We review the relevant research on the interactions between gut microbiota and cardiovascular medications. Silva et al. discovered that statin therapy is a key covariate affecting gut microbiome diversity by analyzing the data from 888 volunteers in the Body Mass Index Spectrum cohort from the MetaCardis project. In patients with ACS under statin medications, the potentially pathogenic bacteria in the gut are reduced, with a better prognosis. Analysis of fecal samples suggests that the gut microbial communities of obese individuals taking cholesterol-lowering statin medications are “healthier” than expected, suggesting that the potential beneficial effects of statins on gut microbiota open up new prospects for disease treatment (Vieira-Silva et al., 2020). Yang et al. discovered a previously unrecognized mechanism in which the human commensal bacteria, Coprococcus comes, catabolizes ester ACE inhibitors in the gut, reducing their antihypertensive effects. The findings revealed that gut microbiota may play a role in the efficacy of antihypertensive medications, which could help explain why some individuals remain resistant to treatment (Yang et al., 2022a). Another study found that liraglutide could treat patients with type 2 diabetes mellitus by targeting the gut microbiota (Shang et al., 2021)

In clinical practice, traditional Chinese medicine (TCM) is orally administered and bidirectionally interacts with the gut microbiota. These interactions have two primary effects: (1) Enhancing effects: TCM modulates gut microbiota composition and metabolism, improving host health while the microbiota enhances TCM bioavailability. (2) Inhibitory effects: Some TCM constituents can weaken gut microbiota metabolic functions, and certain microbes may inhibit TCM absorption and metabolism (Zhu et al., 2023). A recent review revealed that numerous natural molecules (e.g., apigenin, berberine, and quercetin) and plant extracts can effectively alleviate experimental autoimmune myocarditis. Key anti-myocarditis mechanisms include the upregulation of Th1-type cytokines, the elevation of Th2-type cytokines (IL-4 and IL-10), mitigation of oxidative stress, modulation of mitogen-activated protein kinase signaling pathways, and increased sarco-endoplasmic reticulum Ca2+-ATPase levels (Javadi and Sahebkar, 2017). These molecules and extracts can alter the composition and abundance of gut microbiota, suggesting that they hold great potential as treatments that target gut microbiota.

The use of antibiotics can not only fight against pathogenic bacteria, but also affect the intestinal symbiotic flora. Compared to other antibiotics, the gut symbiotic bacteria are more sensitive to macrolides and tetracyclines. Some detoxifying agents protect the gut symbiotic bacteria from antibiotic damage (Maier et al., 2021). Haak et al. found that a one-week course of combined broad-spectrum antibiotics (ciprofloxacin, vancomycin, and metronidazole) has a profound and long-lasting impact on the gut microbiota of healthy humans, causing loss of diversity and shifts in community composition. Although the microbiota showed a remarkable return towards baseline after 8-31 months, the community composition often remained altered, with the long-term consequences remaining largely unknown (Haak et al., 2019).

2) Moreover, Mamic et al. summed up the application of gut microbiome in heart failure and its comorbidities. They highlighted that targeting gut microbial enzymes, which are not found in the host, is a promising approach to overcoming these challenges. The study focuses on the TMAO meta-organismal pathway and suggests that 3,3-dimethy-1-lbutanol, a natural inhibitor of TMA lyases, may be a non-lethal and elegant strategy to target this pathway. In mice fed a high choline diet, administration of 3,3-dimethy-1-lbutanol resulted in decreased circulating TMAO levels, decreased foam cell formation, and fewer atherosclerotic plaques. Targeted inhibition of microbial choline-TMAO conversion was also evaluated in a pressure overload mice model of heart failure, where it improved cardiac remodeling and cardiac function. The study proposes that both pharmacologic modification of the TMAO biosynthetic pathway and targeted dietary interventions may be viable strategies for modulating the pathogenesis and progression of heart failure. However, further human studies are necessary to evaluate the feasibility and efficacy of this approach (Mamic et al., 2021).

Gut microbiota dysbiosis is implicated in the pathogenesis of many diseases. The LBPs, FMT, pre/probiotics, postbiotics, synbiotics, and dietary interventions have the potential for disease prevention or treatment by modulating gut microbiota. The future of promoting overall health and treating diseases by regulating intestinal microorganisms is becoming clearer, and more strategies and methods to regulate gut microbiota are known (Wargo, 2020). The various approaches have shown promising results in animal studies, however, their effectiveness and safety for myocarditis treatment should be investigated further. Elucidating the mechanisms by which gut microbiota contribute to myocarditis pathogenesis may lead to the development of novel therapeutic approaches targeting the gut microbiota.





7 Challenges and future direction of targeted gut microbiota in myocarditis treatment

Myocarditis is a serious inflammatory disease of the heart muscles that can lead to heart failure and sudden cardiac death. The current treatment options for myocarditis are not fully effective, and there is a growing interest to understand the efficacy of targeted gut microbiome therapy (Hu et al., 2019). However, this approach has several challenges, including low efficacy of current treatment methods and the need for personalized treatment (Schneiderhan et al., 2016). Therefore, future research is needed to identify new therapeutic targets. Targeted gut microbiome therapy for myocarditis aims to restore the balance of bacteria in the gut and reducing the production of pro-inflammatory cytokines. However, the complex and diverse nature of the gut microbiome presents challenges in developing targeted therapies, therefore, studies should investigate its roles in disease development to identify effective treatment strategies.

One possible approach for targeted gut microbiome therapy is the use of gut microbiota-related strategies, including probiotics and FMT. Probiotics can reduce inflammation and improve immune functions, which may be beneficial in myocarditis treatment. FMT can help in restoring the balance of bacteria in the gut to reduce inflammation (Hu et al., 2019). Elucidating the mechanisms of enterobacteria in myocarditis will inform the development of enterobacteria-targeting drugs. However, a limited number of studies have investigated the relationship between enterobacteria and myocarditis. Herein, we summarize major studies with regard to myocarditis treatment, which may inspire further research design and direction (Table 1).


Table 1 | Exploration of the treatment of myocarditis in previous studies.





7.1 Limitations of treatment methods

The current treatment options for myocarditis are limited, and there is a need for new approaches to improve outcomes. Targeted gut microbiome therapy is a promising approach; however, it is still in the early developmental stages, and more research is necessary to determine its efficacy and safety. Several challenges and limitations to the development of gut microbiota-targeted therapies are defined by alternatives, such as FMT, and LBPs, as well as by the lack of a clear mechanistic understanding of disease pathophysiology. Another challenge is the lack of knowledge about the roles of specific bacteria in myocarditis pathogenesis (Mandelbaum et al., 2020). Although studies have reported that certain bacteria may be involved in the development of this condition, it is still unclear which bacteria are most important and how they interact with the host immune system (Hu et al., 2019). This limits the capacity to develop targeted therapies that can effectively treat myocarditis.




7.2 Personalized treatment and precision medicine

One of the challenges of targeted gut microbiome therapy is the need for personalized treatment. The gut microbiome is highly individualized, and bacterial composition can vary widely from person to person, therefore, a one-size-fits-all approach to treatment is unlikely to be effective. Instead, personalized treatment plans that take into account the specific bacteria present in each patient’s gut microbiome are needed (Wargo, 2020). Precision medicine approaches, such as genomics, metabolomics, and various omics techniques can help in identifying specific bacterial strains that are associated with myocarditis and develop personalized treatment plans based on these findings (Caesar et al., 2021).




7.3 Future directions and prospects

Despite the challenges of targeted gut microbiome therapy, it holds great promise in myocarditis treatment. One direction for future research is to identify new targets for therapy based on better understanding of interactions between the gut microbiome and the host immune system. Studies should aim at investigating the etiology, pathogenesis, and gender differences of myocarditis (Tschöpe et al., 2021).

Moreover, it’s possible to apply machine learning and artificial intelligence to analyze gut microbiome data, which can enhance our understanding of the connection between the gut microbiome and myocarditis. By adopting this innovative approach, we can identify previously unknown therapeutic targets and create more personalized treatment plans for individual patients (Loganathan and Priya Doss, 2022).

There is a need for personalized treatment plans based on specific bacteria present in each patient’s gut microbiome (Behrouzi et al., 2019). Targeted gut microbiome therapy has the potential to revolutionize myocarditis treatment and improve disease outcomes. There is a need for large-scale animal and clinical trials to evaluate the safety and efficacy of targeted gut microbiome therapy in myocarditis treatment. Moreover, studies should also explore the optimal timing and duration of treatment and assess the long-term effects of this therapy on patient outcomes.





8 Conclusion

Myocarditis and inflammatory cardiomyopathy present considerable threats to human life and well-being by causing inflammation and damage to the heart muscle, potentially resulting in severe complications including heart failure, arrhythmias, and even sudden cardiac death. Nonetheless, treatment options for myocarditis remain limited and research efforts face substantial challenges. The gut microbiota is a critical player in the regulation of immune responses and the maintenance of cardiovascular health. Gut microbiota dysbiosis is implicated in myocarditis development and progression, therefore, gut microbiota modulation may have potential therapeutic effects for this disease. Targeting the gut microbiota through interventions such as drugs, probiotics, prebiotics, symbiotics, antibiotics, FMT, and diet represent promising strategies for myocarditis treatment. Additional investigations are essential to understand the underlying mechanisms through which imbalances in gut microbiota promote myocarditis development. The findings will enable the identification of optimal strategies for targeting gut microbiota in the treatment and management of myocarditis.
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Dysbiosis of the gut microbiota is associated with the development of depression, but the underlying mechanism remains unclear. The aim of this study was to determine the relationship between microbiota and NLRP3 inflammasome induced by chronic unpredictable mild stress (CUMS). Fecal transplantation (FMT) experiment was conducted to elucidate the potential mechanism. Levels of NLRP3 inflammasome, microbiota, inflammatory factors and tight junction proteins were measured. CUMS stimulation significantly increased the levels of NLRP3, Caspase-1 and ASC in brain and colon(p<0.05), decreased the levels of tight junction proteins Occludin and ZO-1 (p<0.05). Interestingly, increased NLRP3 inflammasome and inflammatory cytokines and decreased tight junction proteins were found in antibiotic-treated (Abx) rats received CUMS rat fecal microbiota transplantation. Furthermore, fecal microbiota transplantation altered the microbiota in Abx rats, which partially overlapped with that of the donor rats. Importantly, probiotic administration amended the alteration of microbiota induced by CUMS treatment, then reduced the levels of NLRP3 inflammasome and inflammatory factors. In conclusion, these findings suggested that depression-like behaviors induced by CUMS stimulation were related to altered gut microbiota, broke the intestinal barrier, promoted the expression of NLRP3 inflammasome and elevated inflammation. Therefore, improving the composition of microbiota via probiotic can attenuate inflammation by amending the microbiota and suppressing the activation of NLRP3 inflammasome, which is considered as a novel therapeutic strategy for depression.
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1 Introduction

Recently, increasing studies have indicated that inflammation is one of the pathogeneses of depression (Kaufmann et al., 2017). Increased levels of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and interleukin (IL)-18 were found in depression patients and animals (Perry et al., 2021; Yang et al., 2021), and depressive-like behaviors were ameliorated by anti-inflammatory approaches (Köhler et al., 2014). When the inflammasome was activated, the level of inflammation was increased and resulted in the development of inflammatory diseases, including depression (Guo et al., 2015).

NLRP3 inflammasome is a crucial inflammasome that consists of, including nod-like receptor protein 3, adaptor protein ASC and procaspase-1 precursor (Haneklaus et al., 2013). Activated NLRP3 inflammasome by diverse factors, such as bacteria, fungi, endogenous danger associated molecular patterns (DAMPS) including mitochondrial DNA, Adenosine triphosphate (ATP) and reactive oxygen species (ROS) could promote the maturation of caspase-1, leading to the production and release of proinflammatory cytokines such as IL-1β and IL-18 (Heneka et al., 2018). Growing evidence suggested that NLRP3 inflammasome was associated with depression, Alzheimer’s diseases and other diseases. Increased levels of NLRP3, caspase-1 and ASC in peripheral blood mononuclear cells or plasma have been found in depression patients (Alcocer-Gómez et al., 2014; Syed et al., 2018). Similar results have also been demonstrated in animal studies (Arioz et al., 2019; Wang et al., 2021). What’s more, depression-like behaviors could be improved by knocking or suppressing the NLRP3 gene (Su et al., 2017; Li et al., 2021). Furthermore, the activation of NLRP3 inflammasome in prefrontal cortex in depression rats can be suppressed by fluoxetine, which is a widely used antidepressant (Pan et al., 2014). Given that NLRP3 inflammasome may be play a key role in depression.

Microbiota, as an environmental factor, can impact mood through the microbiota-gut-brain axis (Sarkar et al., 2016). Both clinical and animal studies found that altered microbiota was related to depression (Desbonnet et al., 2015; Jiang et al., 2015), and rats subjected to antibiotics treatment also replicated depressive behaviors when transplanted with the microbiota from depressive patients or animal (Zheng et al., 2016; Lai et al., 2021). However, the detailed mechanisms regarding the effects of microbiota on depression have not been determined. Currently, studies indicated that NLRP3 inflammasome may be a bridge between stress and stable intestinal environment, suggesting that the effects of microbiota on depression may be associated with the NLRP3 inflammasome (Hao et al., 2021). When microbiota was cleared by broad spectrum antibiotics, the NLRP3 inflammasome in the hippocampus was activated, which promote production and release inflammatory factors, leading to elevated levels of inflammation in brain (Lowe et al., 2018). On the other hand, NLRP3 inflammasome also can affect the abundance of microbiota to influence some disease, for example pancreatitis (Fu et al., 2018), colitis (Zhen and Zhang, 2019), depression-like behaviors (Zhang et al., 2019). Meanwhile, inhibition of caspase-1 levels through knockout gene or inhibitor can modulate the gut microbiota composition, thus alleviating depression-like behaviors (Wong et al., 2016). These evidences supported the concept of a gut-microbiota-inflammasome-brain axis, which suggested that microbiota can affect depression via inflammasome (Miao et al., 2011). In addition, microbiota could damage gut barrier function through decreasing Occludin and ZO-1 levels, contributing to the release of pro-inflammatory substances into the circulation and the increase of systemic inflammation and oxidative stress, which was relevant to the etiology, progression, and treatment of many neuropsychiatric disorders (Julio-Pieper et al., 2014; Anderson et al., 2016).

Our previous studies have found that chronic unpredictable mild stress (CUMS) stimuli induced depression-like behaviors, increased levels of IL-1β and IL-18 and altered the microbiota (Huang et al., 2022), which suggested NLRP3 inflammasome might be activated. What’s more, intervention with combined probiotic reversed altered microbiota and reduced levels of inflammatory cytokines, further indicating that microbiota might be a key role in activating NLRP3 inflammasome and upregulating inflammation (Mou et al., 2022). Thus, the aim of this study was further explored the effects of microbiota on NLRP3 inflammasome and the possible mechanism of probiotic antidepressant. In order to test this hypothesis, two experiments were performed. We used CUMS model of depression and added probiotic administration as a comparison to explore the role of microbiota on NLRP3 inflammasome. Subsequently, the fecal transplantation (FMT) experiment, a microbiota-targeted technique, was performed to further identify the effect of microbiota on NLRP3 inflammasome.




2 Materials and methods



2.1 Experimental animal

Male Sprague-Dawley (SD) rats were purchased from SPF Biotechnology Co,Ltd (Beijing,China) for this study. At the beginning of the study, the weight of each rat is 180-200g. All rats were kept under a 12h light/dark cycle at a constant temperature and humidity with ad libitum access to food and water. Rats were allowed to acclimate to housing conditions for a week prior to further treatments. All animal experiments were approved by the Animal Ethical and Welfare Committee of Tianjin Nankai Hospital (NKYY-DWLL-2020-180) and complied with the national and international guidelines for the Care and Use of Laboratory Animals.




2.2 Experimental design



2.2.1 Stage 1

In our previous study (Huang et al., 2022), rats that experienced CUMS stimulation were administered with Lactobacillus rhamnosus HN001 (HN001) and/or Bifidobacterium animalis subsp. lactis HN019 (HN019) to explore the effect of probiotic on depression-like behaviors. We demonstrated that CUMS exposure increased IL-1β and IL-18 levels, which are generated and released by an active NLRP3 inflammasome. However, our intervention with probiotics, either alone or in combination, led to a reduction in inflammatory factor levels and an improvement in depression-like behavior. Interestingly, the combination probiotic intervention outperformed a single probiotic in terms of enhancing microbiota and reducing IL-1β and IL-18 levels. We carried out a study using three donor groups—a Control group, a CUMS group and a combination probiotic—to further illustrate the possible connection between gut microbiota and NLRP3 inflammasome. Twenty-four male rats were randomly allocated into three groups (8 rats per group), including Control (Control group not subjected to any stress), CUMS (CUMS group subjected to CUMS procedure), Probiotic (probiotics treatment and CUMS procedure). After 6 weeks CUMS stimulus, the control group and CUMS group were given gavage saline 1mL/day, the probiotic group were given gavage probiotic 2*109cfu/day. The stressors and CUMS procedure were performed as previously described (Huang et al., 2022). All rats which were euthanized with CO2 after fasting overnight were sacrificed after completion of behavioral tests. Brain and colon tissue either fixed with 4% (w/v) paraformaldehyde for immunohistochemical staining or stored at −80°C after liquid nitrogen flash-freezing for biochemical tests. According to the other studies (Li et al., 2019; Yan et al., 2020), the cecum content was collected and mixed from the same group, then immediately diluted 40-fold in PBS. After centrifugation at 100×g for 5 min at 4°C, the supernatant was collected under sterile conditions and stored at –80°C until fecal transplant (FMT) (Figure 1A).




Figure 1 | Experimental design. (A) The experimental design of stage 1. (B) The experimental design of stage 2. CUMS, chronic unpredictable mild stress; OFT, open field test; EPM, elevated plus maze.






2.2.2 Stage 2

In the second stage of experiment, 24 male Sprague-Dawley (SD) rats (8 weeks old) were randomly divided into 3 groups (8 rats per group): FMT-Control, FMT-CUMS, FMT-Probiotic. All rats were orally administered an antibiotic cocktail of ampicillin, kanamycin, metronidazole, neomycin (all at 0.25 mg/day), and vancomycin (0.125 mg/day) for 14 consecutive days to deplete the microbiota to build the antibiotic-mediated microbiota depletion rat model. Then antibiotic-treated rats were orally administered 200 μL fecal supernatant from the donor rats of experiment 1 for the next 2 weeks (Yan et al., 2020). Finally, rats were euthanized under CO2 anesthesia, and their cecum content, brain and colon were collected and immediately stored at −80°C for further detection (Figure 1B).





2.3 Interleukin-1β and interleukin-18 detection

IL-1β and IL-18 levels in brain and colon were measured using rat enzyme-linked immunosorbent assay (ELISA) kits, according to the manufacturer’s instructions (MM-0047R1 and MM-0194R1, Meimian industrial Co, Ltd, Jiangsu, China). The brain and colon were homogenized in an ice bath and then centrifuged at 15000 rpm for 15 min. The supernatants were collected and immediately used to measure the concentration of inflammatory factors. The total protein concentrations of supernatants were determined with Enhanced BCA Protein Assay Kit (SparkJade, Shandong, China). The final results of IL-1β and IL-18 levels in brain and colon were normalized to the total protein concentration of each brain and colon supernatant accordingly.




2.4 Western blot analysis

Dissected whole brain and colon tissues were homogenized and lysed in RIPA buffer (SparkJade, China), incubated on ice for 30 min, and centrifuged at 14,000 g for 20 min at 4 °C. Then, the supernatant was collected using centrifugation and the total protein concentration was determined in the cleared lysates with the BCA protein assay kit (SparkJade, China). Equal amounts of protein from each sample were separated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to PVDF membranes (Millipore, Schwalbach, Germany) by wet electrical transfer method. Subsequently, the membranes were blocked with 5% milk in 1× Tris buffered saline Tween for 1 h at room temperature. After blocking, the membranes were incubated overnight with antibodies against, NLRP3 (1:2000, Bioss), caspase-1 (1:2000, Bioss), ASC (1:2000, Bioss), Occludin (1:2000, Bioss), ZO-1 (1:2000, Bioss). Then, secondary antibody (horseradish peroxidase-linked anti-rabbit IgG, 1:10000; all from SparkJade, China) were incubated for 1 h at room temperature. The blots were developed by immobilon western chemiluminescent horseradish peroxidase substrate and observed using a ChemiDocTM XRS Imaging System (Bio-Rad, Hercules, CA, USA). The band levels were quantified using ImageJ software (National Institutes of Health, Bethesda, MD, USA). To control sampling errors, the ratio of band intensities to GAPDH was obtained to quantify the relative protein expression level.




2.5 Immunofluorescence staining

The brain was removed and postfixed in 4% paraformaldehyde at 4°C overnight and then embedded in paraffin. All wax blocks were sectioned to 5-μm thickness by a fully automatic slicer, followed by conventional dewaxing to hydration. The sections were then treated with 3% H2O2 for 10 min and rinsed thoroughly in distilled water, washed in PBS buffer for 5 min. Subsequently the tissues underwent antigen retrieval by incubating the sections for 6 min in a solution of citric acid at 90°C. The brain sections were blocked with goat serum for 1 h at 37°C. Then, the primary antibodies against NLRP3 (1:100), caspase-1 (1:100), and ASC (1:100) were added. Then incubated with TRITC-conjugated goat anti-rabbit secondary antibodies (1:100) (zhongshanjinqiao, Bejing, China) for 1 h at 25 °C. The nuclei were stained with 4′,6-diamidino-2-phenyldiazole, dihydrochloride (DAPI) (10 μg/mL, SparkJade, China) 10 min before mounting. The fluorescence images were obtained with an inverted microscope (IX81; Olympus, Tokyo, Japan). The ratio of the number of red (positive cell) and blue (DAPI) were counted and quantified by Image Pro Plus 6.0 software (Media Cybernetics, Silver Spring, MD, USA).




2.6 16S rRNA sequencing

The experiments included extraction of total DNA from cecum content samples and analysis of microbial composition via 16S rRNA sequencing. The detailed experimental method has been described in our previous study (Huang et al., 2022).




2.7 Statistical analyses

The data were analyzed using IBM SPSS Statistics 24.0 software (IBM Corp, USA) and are expressed as the mean ± standard deviation (SD). After verifying normal distribution of data, comparisons among different groups were performed by two-way ANOVA with LSD t test for comparison between every two groups. P values of 0.05 or less were considered significant. GraphPad Prism 5 (GraphPad Software, La Jolla, CA) was used to generate graph. To confirm differences in the abundances of individual taxonomy between the two groups, STAMP software was utilized. LEfSe was used for the quantitative analysis of biomarkers within different groups. We rarified the OTU table and calculate four metrics: Chao1 index, ACE index, Simpson index and Shannon index to compute Alpha diversity. PCoA based on weighted and unweighted UniFrac metrics was used to assess the variation of bacterial composition among different groups. To identify differences of microbial communities between the different groups, ANOSIM and ADONIS were performed based on the Bray-Curtis dissimilarity distance matrices. The relative abundance of fecal microbiota in the three groups was compared using the Kruskal–Wallis H test. A value of p<0.05 was considered statistically significant.





3 Results



3.1 CUMS increased the expression of NLRP3 inflammasome

According to our previous study (Huang et al., 2022), probiotic could decrease concentration of inflammatory cytokines IL-1β and IL-18, which were produced after NLRP3 inflammasome activation. Therefore, expression of NLRP3 inflammasome were measured by western blot and immunofluorescence. Results of western blot showed that CUMS stimulation increased the expression of NLRP3, Caspase-1 and ASC in brain and colon compared to Control group (p<0.05). Probiotic intervention decreased the expression of NLRP3, Caspase-1 and ASC, in contrast to CUMS group (p<0.05, Figures 2A-D). These results were also confirmed by immunofluorescence analysis. Compared with control group, positive cells of NLRP3, Caspase-1 and ASC in hippocampus and cortex were significantly increased. Administration with probiotic significantly reversed the effects of CUMS on NLRP3 inflammasome (p<0.05, Figures 2E-H).




Figure 2 | CUMS increased the expression of NLRP3 inflammasome in brain and colon, but probiotic alleviated the upregulation. The expression of NLRP3 inflammasome in brain (A) and colon (B) were detected by western blot. (C, D) Quantitative analysis for NLRP3 inflammasome in brain and colon. (E) Immunofluorescence analysis of NLRP3 inflammasome in hippocampus and cortex. Representative images of NLRP3 inflammasome (red) staining in CA3 area of the hippocampus and cortex. Nuclei were stained with 4,6-diaminido-2-phenylindole (DAPI, blue). Merge image shown the positive cells expressed NLRP3 inflammasome. Each right-hand column depicts a magnified image of the rectangular region of the corresponding image in the left column. Scale bar=50 μm. (F-H) Quantification of NLRP3 positive cells in the hippocampus and cortex. All data are expressed as the mean ± SD (n=5 in western blot, n=3 in immunofluorescence). *p<0.05, compared with CUMS group.






3.2 CUMS decreased the expression of tight junction proteins

To further investigate the integrity of the barrier structures, the expression of Occludin and ZO-1, essential tight junction proteins of the gut barrier and blood-brain barrier, was measured by Western blot. As shown by the western blot results in Figure 3A-D, expression levels of Occludin and ZO-1 in brain and colon of CUMS group were significantly decreased compared with control group (p<0.05). Probiotic treatment significantly increased these proteins expression (p<0.05). These results suggested that probiotic supplementation ameliorated damaged barrier structures induced by CUMS stimulation.




Figure 3 | CUMS decreased the expression of tight junction proteins Occludin, ZO-1 in brain and colon, but probiotic alleviated the impairment of barrier function. Western blot was used to detect the expression of Occludin and ZO-1 in brain (A) and in colon (B). (C, D) Immunoblot analysis for the protein levels of Occludin and ZO-1 in brain and colon. All data are expressed as the mean ± SD (n=5). *p<0.05, compared with CUMS group.






3.3 Fecal transplantation from CUMS-exposed rat increased levels of IL-1β and IL-18 in the recipient rats

Effects of fecal transplantation on the levels of inflammatory cytokines IL-1β and IL-18 was evaluated. Compared with Control-FMT group, concentrations of IL-1β and IL-18 were increased in CUMS-FMT group(p<0.05), which indicated that altered microbiota induced by CUMS stimulation increased the inflammation level in colon and brain. In addition, concentrations of IL-1β and IL-18 were decreased in the Probiotic-FMT group compared with CUMS-FMT group (p<0.05, Figures 4A-D).




Figure 4 | Concentrations of IL-1β and IL-18 in brain and colon of recipient rats. The levels of IL-1β in brain (A) and in colon (B). The levels of IL-18 in brain (C) and in colon (D). All data are expressed as the mean ± SD (n=5 in brain, n=8 in colon). *p<0.05, compared with CUMS-FMT group.






3.4 Fecal transplantation from CUMS-exposed rat increased NLRP3 inflammasome expression in the recipient rats

Expression levels of NLRP3, Caspase-1 and ASC in recipient rats were detected by western blot and immunofluorescence to determine the effect of microbiota on NLRP3 inflammasome activation. Results of western blot and immunofluorescence showed that NLRP3, Caspase-1 and ASC levels were upregulated in the CUMS-FMT group compared that in the Control-FMT group (p<0.05). However, compared with CUMS-FMT group, levels of NLRP3, Caspase-1 and ASC in Probiotic-FMT group were lower (p<0.05, Figures 5A-H). These results suggested that microbiota could influence NLRP3 inflammasome activation both in brain and colon.




Figure 5 | Fecal transplantation from CUMS-exposed rat increased the levels of NLRP3 inflammasome in brain and colon of recipient rats. (A, B) Representative western blot for NLRP3 inflammasome. (C, D) Bar graphs show semiquantitative levels of NLRP3 inflammasome as determined by band analysis. (E) Representative images of immunofluorescence staining for NLRP3 inflammasome in hippocampus and cortex. Scale bar=50 μm. (F–H) Quantification of positive cells expressing NLRP3 inflammasome/DAPI graphed. All data are expressed as the mean ± SD (n=5 in western blot, n=3 in immunofluorescence). *p<0.05, compared with CUMS-FMT group; &p<0.05, compared with Control-FMT group.






3.5 Fecal transplantation from CUMS-exposed rat decreased tight junction proteins expression in the recipient rats

Tight junction proteins Occludin and ZO-1 were measured to further explore the effects of microbiota on barrier function. Quantitative analysis revealed that fecal transplantation from CUMS rats exhibited the lower level of Occludin and ZO-1, compared with the Control-FMT group (p<0.05). In addition, these tight junction proteins levels were significantly increased in the Probiotic-FMT group, compared with that in the CUMS-FMT group (p<0.05, Figures 6A-D).




Figure 6 | Fecal transplantation from CUMS-exposed rat decreased the levels of tight junction proteins in brain and colon of recipient rats. (A, B) Representative western blot for Occludin and ZO-1 in brain and colon, respectively. (C, D) Quantitative analysis of levels of Occludin and ZO-1 in brain and colon, respectively. All data are expressed as the mean ± SD (n=5). *p<0.05, compared with CUMS group.






3.6 Fecal transplantation from CUMS-exposed rat intestinal altered microbiota in the recipient rats

As shown in Figures 7A-D, ACE index, Simpson index and Chao1 index that reflected microbiota richness, exhibited lower levels in Probiotic-FMT group compared to CUMS-FMT group, but there was no significant difference (p>0.05). However, compared with CUMS-FMT group, the Shannon index was significantly decreased in the Probiotic-FMT group (p<0.05).




Figure 7 | Effect of fecal transplantation from donor rats on microbiota Alpha and beta diversity in the recipient rats. (A) ACE index. (B) Chao1 index. (C) Shannon index. (D) Simpson index. (E) Unweighted PCoA analysis. (F) ANOSIM analysis. All data are expressed as the mean ± SD (n=6). *p<0.05, compared with CUMS group.



The unweighted PCoA analysis and ANOSIM analysis were performed to compare the beta diversity of microbiota among three groups. The results of PCoA analysis showed that the composition of microbiota in CUMS-FMT group was significantly separated from other groups, however the Probiotic-FMT group was close to Control-FMT group. Furthermore, ANOSIM analysis also supported that a significant difference in microbiota community structure between three groups (p<0.05, Figures 7E-F).

The heat map of microbiota in phylum, family and genus as shown in Figures 8A-C. Composition of microbiota at phylum level was significant differences among the three groups. The Figure 8D revealed the composition of phylum, and firmicutes, facteroidetes, actinobacteria, proteobacteria and patescibacteria were the dominant microbiota. The relative abundance of actinobacteria, proteobacteria and patescibacteria were significantly higher in the CUMS-FMT group than those in the Control-FMT group (p<0.05), while the relative abundance of these microbiota was significantly downregulated in the Probiotic-FMT group relative to the CUMS-FMT group (p<0.05). There was no significant difference in the relative abundance of firmicutes and bacteroidetes between the three groups (p>0.05), but the abundance of bacteroidetes in the Probiotic-FMT group was superior to that in the CUMS-FMT group.




Figure 8 | Effect of fecal transplantation from donor rats on relative abundances of some species in the recipient rats. (A–C) Heat map of microbiota in phylum, family and genus. (D) Comparison of relative abundances of microbiota at the phylum level in the three groups. (E) Comparison of relative abundances of microbiota at the family level in the three groups. (F) Comparison of relative abundances of microbiota at the genus level in the three groups. All data are expressed as the mean ± SD (n=6). *p<0.05, compared with CUMS group.



At the family level, the relative abundance of five primary microbiotas were analyzed (Figure 8E). Compared with Control-FMT group, the relative abundance of lactobacillaceae and erysipelotrichichaceae were obviously upregulated in the CUMS-FMT group, but the relative abundance of lachnospiraceae was significantly downregulated (p<0.05). Furthermore, fecal transplantation from probiotic treatment rats showed a higher abundance of lactobacillaceae and erysipelotrichichaceae compared to the CUMS-FMT group (p<0.05). Meanwhile, compared with CUMS-FMT group, the relative abundance of peptostreptocollaceae and ruminococcaceae were downregulated in the Probiotic-FMT group, but the relative abundance of lachnospiraceae was upregulated, while no significant difference was found (p>0.05).

Similarly, the relative abundance of genus lactobacillus in the CUMS-FMT group was significantly increased relative to that in the Control-FMT group (p<0.05), but the relative abundance of lachnospiraceae NK4A136 group, which belonged to family lachnospiraceae was significantly decreased (p<0.05). Importantly, the relative abundance of lactobacillus and lachnospiraceae NK4A136 group in the Probiotic-FMT group were significantly decreased and increased respectively compared to the CUMS-FMT group (p<0.05). Probiotic-FMT group showed lower relative abundance of eubacterium-coprostanoligenes group, ruminococcaceae UCG-005 and faecalibaculum compared with CUMS-FMT group, but there was no significant difference (Figure 8F, p>0.05). In conclusion, these results suggested that the composition of microbiota in the recipient rat were partially consistent with that of the donor rats (Huang et al., 2022).





4 Discussion

Both clinical and animal studies indicated that microbiota could influence depression by regulating hormonal, metabolic and immune via gut-brain axis (Foster and McVey Neufeld, 2013). In this study, results indicated that CUMS stimulation increased the levels of NLRP3, Caspase-1 and ASC, while probiotic, a common method of changing microbiota, suppressed the expression of the NLRP3 inflammasome. Importantly, fecal transplantation from CUMS-exposed rat induced the activation of NLRP3 inflammasome. Meanwhile, alterations of tight junction proteins and microbiota in recipient rats were partially consistent with those in donor rats. These results suggested that microbiota was associated with NLRP3 inflammasome.

Fecal transplantation, as a microbiota-targeted technique, could significantly change gut microbial community in recipient via delivering infusion feces (the entire gut microbiota) of donor (Khoruts and Weingarden, 2014). In our study, the diversity and richness of intestinal flora in recipient rats, as reflected by ACE index, Chao1 index and Simpson index, and five dominant microbiotas in terms of phylum, family and genus were consistent with that of the donor rats (Huang et al., 2022), which further indicated that microbiota of recipient rats were influenced by the microbiota of donor rats. Consistent with other studies (Yu et al., 2017; An et al., 2020), the relative abundance of actinobacteria, proteobacteria and patescibacteria increased, while the abundance of bacteroidetes decreased in recipient rats that received fecal liquid from CUMS rats, suggested that chronic stress could alter the composition of gut microbiota (Galley et al., 2014; Marin et al., 2017). However, there were some disparities in microbiota between recipient and donor rats, such as upregulated relative abundance of firmicutes in CUMS donor rats, but downregulated relative abundance of firmicutes in CUMS recipient rats, and the alteration of Shannon index. Due to antibiotic intervention could deplete microbiota and affect the colonization of the intestinal flora, thus the microbiota of recipient rats was failed to completely overlap with that of the donor rats (Ceylani et al., 2018). In addition, microbiota structure may be influenced by many factors, such as genetic, age, source of the rats, breeding environment, etc (Laukens et al., 2016). Interestingly, these alterations of microbiota in Probiotic-FMT group were reversed, consistent with probiotic donor rats. Our previous study has shown that combined lactobacillus rhamnosus and bifidobacterium could alleviate depression-like behaviors induced by CUMS stress (Huang et al., 2022). These results suggested that gut microbial dysbiosis could potentially contribute to the development and manifestation of depression, and that probiotics may be effective in altering the microbiota and alleviating depression.

Inflammation was an important cause of depression, and increased inflammation cytokines was related to depression, particularly IL-1β (Yirmiya et al., 2015). NLRP3 inflammasome activated by a variety of pathogen-associated molecular patterns or damage-associated molecular patterns could promote IL-1β production (Gurung et al., 2015; Broz and Dixit, 2016). Increasing researches demonstrated that NLRP3 activation was the key factor in the pathogenesis of depression (Zhang et al., 2014; Zhang et al., 2015; Kim et al., 2016). Meanwhile, there was a certain association between gut microbiota and NLRP3 inflammasome. For example, activated NLRP3 inflammasome by microbiota affects the acute pancreatitis (Li et al., 2020), and the expression of NLRP3 also shapes the composition of the intestinal flora (Zhang et al., 2019), but the detailed understanding of their interactions in depression is lacking. In this study, our results indicated that levels of NLRP3, Caspase-1 and ASC were increased in the brain of CUMS rats, as found in other studies (Wang et al., 2021; Xie et al., 2021). Similarly, elevated NLRP3 inflammasome and IL-1β and IL-18 also were found in recipient rats gavaged fecal solution from CUMS donor rats, which suggested that altered microbiota induced by CUMS stimulus affected activation of NLRP3 inflammasome. Chronic stress was the risk factors and etiology for several gastrointestinal diseases such as functional intestinal disorders and inflammatory bowel diseases (IBDs), and chronic stress also increased the risk of ulcerative colitis (UC) recurrence (Levenstein et al., 2000; Ringel and Drossman, 2001). Moreover, depression patients and animal also might suffer from IBD (Yanartas et al., 2016; Wei et al., 2019). Our results found that CUMS treatment increased the expression of NLRP3 inflammasome and inflammatory cytokines in colon, which further indicated that depression and IBD might co-occur. In addition, downregulated levels of NLRP3 inflammasome were found in both probiotic donor and recipient rats, which suggested that probiotic treatment could reduce inflammation caused by CUMS stimulation via altering the intestinal flora. Our previous study has shown that combined probiotic could improve microbiota and depression-like behaviors. Therefore, probiotics may improve depression by altering the intestinal flora and inhibiting the activation of NLRP3 inflammasomes.

The tight junction proteins Occludin and ZO-1 formed the structures of intestinal mucosal barrier and blood-brain barrier (Li et al., 2018; Kealy et al., 2020). Studies found that stress can break the intestinal mucosal barrier and increase intestinal permeability, leading to the entry of bacterial metabolites and endotoxins into periphery or brain, which elevated inflammation (Söderholm et al., 2002; Vanuytsel et al., 2014). In fact, some neuropsychiatric disorders, such as Parkinson’s disease, Alzheimer’ disease and depression, have been linked to leaky gut and destruction of the blood-brain barrier (Pellegrini et al., 2018; Tikiyani and Babu, 2019). Therefore, the expression of tight junction proteins and the adequate function of the intestinal barrier were essential to prevent the development of associated neurological disorders, including depression. In this study, our results found that the expression of Occludin and ZO-1 was decreased in CUMS donor and recipient rats, indicating that microbiota could damage the barrier function by downregulating expression of tight junction proteins, thus decreasing the intestinal mucosal barrier and blood-brain barrier, thus improving the harmful components accessed to periphery, thus increasing inflammation (Rhee et al., 2009; Maqsood and Stone, 2016). Meanwhile, increased levels of Occludin and ZO-1 were found in probiotic donor and recipient rats, suggesting that probiotic could decrease inflammation via amending barrier function.




5 Conclusion

In this study, we found that the alteration microbiota induced by chronic stress activated the NLRP3 inflammasome and then increased the inflammatory cytokines in brain, leading to depressive-like behaviors. Furthermore, probiotic could improve depression-like behaviors by amending the microbiota and suppressing the activation of NLRP3 inflammasome. This study revealed a new mechanism of CUMS-induced depressive behaviors and provided a new therapeutic direction for prevention and treatment of depression.




6 Limitations of the current study

The absence of antibiotics treatment group makes it hard to exclude possible effect of antibiotics on microbiota. In addition, the recipient rats were not experienced CUMS stimulation and behavioral test, the relationship between intestinal flora and depression-like behavior lack direct evidence. Thirdly, we measured only the tight junction proteins Occludin and ZO-1 to reflect the permeability of the intestinal barrier and blood-brain barrier, which were only part of gut-brain axis. Finally, the sample size of the study was limited and solely concentrated on the impact of probiotic intervention for a 30-day period, rather than examining the effects of prolonged probiotic intervention. Therefore, further studies with larger samples and longer follow-up periods are needed to explore the effect of probiotic on depression-like behaviors via gut-brain axis.
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Background

Liver cirrhosis is the end stage of various chronic liver diseases (CLDs). The gut microbiota can impact the liver environment and trigger chronic liver inflammation through the gut-liver axis. Alteration of the gut microbiota has become an effective strategy in the biological treatment of cirrhosis.





Methods

Twenty-eight patients with liver cirrhosis and 16 healthy individuals were included, and fresh stool samples were collected. We analyzed changes in the gut microbiota between groups by 16S rRNA sequencing and evaluated the association between microbiota alterations and hepatic function. Additionally, 102 cirrhotic patients were retrospectively enrolled and divided into a probiotic group (n=44) and a nonprobiotic group (n=58) in addition to standard treatment for cirrhosis. Patients were monitored for hematological parameters and hepatic function during the six-month follow-up.





Results

The gut microbiota profile of patients with cirrhosis was greatly different from that of healthy individuals, presenting with significantly reduced α diversity and decreased abundance of representative SCFA-producing bacteria including Firmicutes, Coprococcus and Clostridium IV. The pathogenic bacteria Gammaproteobacteria, Veillonella, and Bacilli were greatly enriched in cirrhotic patients. Additionally, patients with decompensated cirrhosis (DCPC) had a significantly reduced abundance of Oscillibacter compared to compensated cirrhosis (CPC), which is also a SCFA-producing bacteria, and the lower Firmicutes to Bacteroidetes ratio and enhanced MDR values were also shown in DCPC patients compared to CPC patients. In addition, the abundance of Firmicutes was negatively related to hepatic function in cirrhotic patients, including the levels of ALT, AST, and DBIL. From the retrospective study, we found that biochemical improvements in alanine transaminase (ALT) and total bilirubin (TBIL) were obtained in DCPC patients who received oral probiotic therapy compared with the nonprobiotic group.





Conclusion

Severe microbial dysbiosis existed in patients with liver cirrhosis, especially patients who reached the decompensatory stage. SCFA-producing bacteria were significantly reduced in cirrhosis. Altered gut microbiota cause changes in functional modules, which may contribute to cirrhosis progression and are associated with clinical prognosis. Adjuvant probiotic supplementation to enhance SCFA-producing bacteria can be a prospective therapy for patients with cirrhosis.
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1 Introduction

Liver cirrhosis is the end stage of various chronic liver diseases (CLDs), which generally occur after long-term chronic inflammation of the liver, where the healthy liver parenchyma is gradually replaced by fibrotic tissue and regenerative nodules, and can complicate portal hypertension (Ginès et al., 2021). Cirrhosis is currently the 11th leading cause of death worldwide; approximately 1.5 billion persons have CLD worldwide, and the incidence of CLD and cirrhosis is 20.7/100,000, posing a substantial global burden (Moon et al., 2020). The common causes of cirrhosis are chronic viral hepatitis and alcoholic liver disease. In recent years, the incidence of hepatitis virus-related chronic liver disease has decreased with the implementation of hepatitis B vaccination and antiviral treatment, but the incidence of alcoholic and fatty liver disease has increased due to changes in people’s diet and lifestyle (Moon et al., 2020). Although etiological treatment has a therapeutic effect on cirrhosis, there are still no effective antifibrotic drugs approved; thus, it remains a clinical challenge in the treatment of liver cirrhosis (Fallowfield et al., 2021).

The gut microbiota is a dynamic entity that coevolves with the host (Adak and Khan, 2019). The gut microbiome contains at least 100 times more genes than the body’s own genome (Gill et al., 2006). There are three main microorganisms in the adult gastrointestinal tract: bacteria, archaea, and eukaryotes, with bacteria accounting for the largest proportion (Bäckhed et al., 2005). Gut microbiota and their metabolites could impact host digestion, metabolism, and immunity, thus playing an important role in human health and the progression of numerous diseases (Gomaa, 2020). Liver damage is associated with small intestinal bacterial overgrowth and microbial dysbiosis of the gastrointestinal tract (Philips et al., 2017). The levels of Veillonella, Streptococcus, Clostridium, and Prevotella were increased, while Bacteroides was significantly decreased in the gut microbiota of patients with liver cirrhosis when compared with healthy controls (Qin et al., 2014), and alterations in bacterial composition can lead to significant changes in gene function, which may be one of the causes of liver cirrhosis (Shu et al., 2022). The gut-liver axis is the bidirectional connection between the gut and its microbiota therein and the liver, leading to the interaction of signals generated by dietary, genetic, and environmental factors. The establishment of this bidirectional connection relies on the portal vein and the biliary system (Albillos et al., 2020). Gut-derived products can reach the liver via the portal vein, and the liver releases bile acid to the intestine via the biliary tract (Lee and Suk, 2020). Balancing the gut microbiome is critical for maintaining homeostasis of the gut-liver axis. At homeostasis, the intact intestinal mucosal and vascular barrier facilitate nutrition absorption and limit the systemic dissemination of microbes and toxins to the liver. Upon microbial dysbiosis, increased pathogenic bacterial load and their products could disrupt the gut barrier and allow the bacteria and their products to cross (Tripathi et al., 2018). These microbial- (or pathogen-) associated molecular patterns (MAMPs/PAMPs) are recognized by immune receptors on the lamina propria of gut and liver cells, such as Kupffer cells and hepatic stellate cells, which initiate inflammatory cascades that ultimately lead to liver damage and fibrosis (Uesugi et al., 2001; Csak et al., 2011; Seki and Schnabl, 2012; Anand et al., 2016).

Short-chain fatty acids (SCFAs), mainly acetate, propionate, and butyrate, are the main metabolites produced in the colon by bacterial fermentation of dietary fibers (Martin-Gallausiaux et al., 2021). SCFAs are essential for gut integrity by regulating the luminal pH, providing energy for epithelial cells and affecting mucosal immune function (Blaak et al., 2020), and they exert important roles in the progression of cardiovascular diseases (Hu et al., 2022), neurodegenerative diseases (Yadav et al., 2022) and ischemic strokes (Chen et al., 2019). In cirrhotic patients, the capacity of SCFA-producing fecal microbiota is reduced (Jin et al., 2019) and linked to the development of hepatic encephalopathy (Bloom et al., 2021). Therefore, the gut microbiome and its metabolites may affect the liver microenvironment and are closely associated with the progression of liver inflammation and cirrhosis.

Since gut microbiome alterations correlated with the severity, prognosis, and several complications of cirrhosis (Solé et al., 2021), probiotic therapy, which improves the composition of gut microbiota, has been increasingly studied in patients with liver cirrhosis in recent years (Pereg et al., 2011). Probiotic-assisted therapy can reduce variceal rebleeding events in cirrhotic patients and delay the occurrence of rebleeding after endoscopic therapy (Zhang et al., 2020). In addition, probiotics are recommended as a primary treatment for patients with hepatic encephalopathy (Agrawal et al., 2012; Lunia et al., 2014), as they could markedly improve the prognostic outcome of patients presenting with decreased Child-Pugh and Model for End-Stage Liver Disease (MELD) scores (Dhiman et al., 2014). Thus, probiotic supplementation is an essential therapeutic strategy for patients with liver cirrhosis.

With this background, we designed a cross-sectional study to analyze gut microbiota alterations in patients with cirrhosis and performed a retrospective study to assess the efficacy of probiotics in patients with cirrhosis. We found a profoundly abnormal gut microbiome in cirrhosis compared with healthy subjects with a characterization of abnormalities of 16S rRNA and demonstrated that adjuvant probiotic therapy can be helpful in improving the liver function of patients with cirrhosis.




2 Methods



2.1 Population and study design

For gut microbiota analysis, 28 cirrhotic patients (8 were CPC, 20 were DCPC) and 16 age- and gender-matched healthy volunteers who were admitted to the Second Xiangya Hospital of Central South University from April 2022 to November 2022 were included. For the retrospective study, 102 cirrhotic patients with cirrhosis at the Second Xiangya Hospital of Central South University from January 2017 to November 2022 were selected. Inclusion criteria for patients with liver cirrhosis were age ≥ 18 years, and the diagnosis of cirrhosis was confirmed by liver biopsy or a combination of clinical, biochemical, ultrasound, elastographic and endoscopic examinations. Exclusion Criteria were use of gut microecological agents such as probiotics and prebiotics, antibiotics and ursodeoxycholic acid in last 3 months, previous intestinal resection and carcinoma, intestinal infectious, immune diseases, diabetes mellitus, obesity, psychosomatic disorders, organ failures, pregnant/lactating women and lack of informed consent. The study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University (number: LYF2022112), and all study subjects provided informed consent.

For the retrospective study, 102 patients with cirrhosis were subdivided into a probiotic group and a nonprobiotic group, and they all received standard treatment according to previous reports(Yoshiji et al., 2021). The probiotics used in this study is commonly used and produced in China, is “Live Combined Bifidobacterium, Lactobacillus, and Enterococcus Capsules, Oral”, and the amount of probiotics was calculated using the defined daily dose. Patients who received ≥28 days of probiotics were enrolled in the probiotics group, while patients who didn’t receive probiotics were included in the nonprobiotics group. We collected basic information about the patients, including age, sex, and etiology. Routine blood tests and liver function tests were also performed. Child-Pugh classification was used to assess hepatic dysfunction. Patients were followed up for six months.




2.2 Fecal sample collection and 16S rRNA analysis

Fecal samples from 28 cirrhotic patients and 16 healthy subjects were collected. DNA group samples of acceptable quality were selected, and 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’) primers were used to configure the PCR system and amplify the V3-V4 variable region. Then, the PCR amplification products were purified and dissolved in Elution Buffer (MagPure Stool DNA KF Kit B was used for DNA extraction). The qualified DNA samples tested were sequenced by the DNBSEQ platform (provided by Beijing Genomics Institution). The data were filtered to keep the reads that could match to the primers, and then use cutadapt v2.6 to remove primers and reads that are contaminated by adapter sequences, and remove the reads shorter than 75% of initial length, as well as reads with ambiguous base, reads with low complexity, to acquire clean data (qualified reads) for analysis. The qualified reads were pulled into tags. Tags were clustered to generate OTUs (operational taxonomic units) according to 97% sequence similarity, and OTU representative sequences were aligned against the database for taxonomic annotation by RDP classifer (1.9.1) (sequence identity was set to 0.6). R software was used to analyze the relative abundance and diversity. PICRUSt2 was used to predict the functional abundance of the microbiota community. α diversity was used to describe the abundance of different bacterial taxa measured in one sample and it includes the ace index, chao index, shannon index and simpson index depending on the different calculation method.βdiversity was used to describe microbial diversity in different samples. Dimensionality reduction analysis using partial least squares discriminant analysis maximizes the distance between samples in two groups and can visualize intra- and intergroup differences. In addition to species richness, the LDA (linear discriminant analysis) values were used in the analysis of species differences to determine the intergroup differences of species and the extent of their contribution, and LEfSe (LDA effect size) analysis, an analytical tool for the discovery and interpretation of biomarkers in high-dimensional data, allowing the comparison of two or more subgroups with an emphasis on statistical significance and biological relevance, and also allowing the identification of biomarkers that are statistically different between groups.




2.3 Analysis of short-chain fatty acid contents in fecal samples

SCFAs in fecal samples among different groups were examined using high-performance liquid chromatography (HPLC; Shimadzu, Japan). SCFA samples were prepared by homogenization of fecal samples and centrifuged at 12,000 g at 4°for 10 min. SCFAs were separated using a chromatographic column (Kinetex C18, 2.6µm 100 x 3.00mm, Phenomenex, USA) with an isocratic mobile phase (acetonitrile; Fisher, USA) set at a flow rate of 0.7 ml/min and then identified at a wavelength of 210 nm using an liquid chromatography mass spectrometer (QTRAP 5500, SCIEX, USA).




2.4 Statistical analysis

Statistical analysis was performed using SPSS 26.0 and R software. Normally distributed data are described as the mean ± standard deviation, and nonnormally distributed data are described as the median and interquartile spacing. Counting data are described as frequency and percentage. Comparisons of count data were made using the chi-square test, and comparisons of measurement data were made using the t test or Wilcoxon signed rank sum test, with a two-sided p<0.05 defined as a statistically significant difference.





3 Results



3.1 Gut microbiota analysis in patients with liver cirrhosis and healthy individuals



3.1.1 General information of the study subjects

A total of 44 study subjects were recruited, including 28 cirrhotic patients and 16 healthy controls, with mean ages of 54.79 ± 12.68 and 54.25 ± 10.14 years and male to female ratios of 17/11 and 9/7, respectively; the gender and age of the two groups were matched and comparable (p>0.05, Table 1). Among the included patients with cirrhosis, 20 patients were diagnosed with decompensated cirrhosis (DCPC), and 8 patients were diagnosed with compensated cirrhosis (CPC). The liver function of patients with cirrhosis was graded according to the Child-Pugh score. Of these, 20 were identified as Child-Pugh A, 6 as Child-Pugh B, and 2 as Child-Pugh C. From the analysis of laboratory indicators, we found that the white blood cell count, hemoglobin, platelet count, and albumin were significantly decreased, while the alanine transaminase, aspartate aminotransferase, total bilirubin, indirect bilirubin, direct bilirubin, total bile acids, serum creatinine, prothrombin time, prothrombin time activity and international normalized ratio were significantly increased in patients with cirrhosis. The white blood cell count, neutrophil count, hemoglobin, and platelet count were significantly decreased in DCPC compared to CPC, while there was no difference in other liver-related parameters, including aminotransferases, bilirubin, ALB and PT (p>0.05, Table 1).


Table 1 | The demographic information, Child-Pugh grade and laboratory indication of LC and HC.






3.1.2 Microbial diversity between groups

From fecal 16S rRNA sequencing, we first analyzed the gut microbiota profile in different groups and found that the α diversity of the gut microbiota, including the ACE and Chao1 index, was significantly reduced in patients with liver cirrhosis (LC) compared with healthy controls (HCs) (p<0.05) (Figures 1A, B). The gut microbiota profile in the decompensated cirrhosis group (DCPC) showed the lowest α diversity evaluated by the ACE and Chao1 index when compared with the HC group (Figures 1C, D). However, no significant changes in α diversity were observed in the comparison between the DCPC and CPC groups (Figures 1C, D).




Figure 1 | α and β diversity of gut microbiota between patients with liver cirrhosis and healthy controls presented by box plot and PLS-DA. α diversity was illustrated by the (A, C) Ace and (B, D) Chao1 indices. The β diversity was illustrated by the weight_UniFrac distance matrix-based method (E, F). (G) PLS-DA between HC and LC; (H) PLS-DA between HC and CPC; (I) PLS-DA between CPC and DCPC. LC, liver cirrhosis; CPC, compensated cirrhosis; DCPC, decompensated cirrhosis. *p<0.05; **p<0.01; ***p<0.001. NS, not significant.



Then, we analyzed the β diversity in patients with cirrhosis compared to healthy controls. Two independent fecal samples were detected, and clearly different clusters were observed in the cirrhosis and HC groups (Figures 1E, F). Additionally, distinct fecal microbiota profiles were also shown between CPC and HC, CPC and DCPC by using PLS-DA, indicating that the composition of gut microbiota was greatly different between cirrhosis and healthy subjects (Figures 1G–I).




3.1.3 Differences in the composition of the gut microbiota between groups

Sequencing results showed an alteration in bacterial populations at the phylum level in the cirrhosis group compared with the HC group: Firmicutes (46.51% vs. 57.29%), Bacteroidetes (42.49% vs. 36.94%), Proteobacteria (6.36% vs. 3.36%), Fusobacteria (2.97% vs. 0.77%), and Actinobacteria (0.79% vs. 0.80%) (Figures 2A–C). The proportion of Firmicutes and Bacteroidetes in total bacteria was lower in patients with cirrhosis than in healthy individuals (88% vs. 94%). At the genus level, the predominant microbiota in the cirrhosis group compared with the HC group was Bacteroides (26.21% vs. 25.11%), Prevotella (13.51% vs. 10.53%), Megamonas (5.68% vs. 9.53%), and Faecalibacterium (7.54% vs. 6.32%) (Figure 2D).




Figure 2 | Pie charts and histograms of the gut microbiota composition in patients with liver cirrhosis and healthy controls. Pie charts were used to show the gut microbiota composition at the phylum level of healthy controls (A), cirrhotic patients (B), patients with compensated cirrhosis (E) and patients with decompensated cirrhosis (F). Histograms were used to show the gut microbiota composition at the phylum level (C, G) and genus level (D, H) in cirrhotic patients and healthy controls.



More importantly, in patients with cirrhosis, the SCFA-producing species Firmicutes, Lachnospiraceae, Ruminococcaceae, Coprococcus, Phascolarctobacterium, and Roseburia were reduced compared to those in healthy subjects, with a significant reduction in Firmicutes and Coprococcus (p < 0.05). Moreover, since a decreased Firmicutes/Bacteroidetes ratio is generally seen in dysbiosis, particularly in inflammatory bowel disease (IBD)(Stojanov and Berlec, 2020), in our study, we found that the F/B ratio was decreased in cirrhotic patients versus healthy individuals (1.21 vs. 1.78), indicating that gut dysbacteriosis were existed in cirrhosis. Therefore, these results demonstrate that the levels of the beneficial bacteria Firmicutes and SCFA-producing bacteria in cirrhosis were significantly reduced compared to those in healthy subjects.

Additionally, in patients with compensated and decompensated cirrhosis, the composition of the gut microbiota at the phylum and genus levels was distinct, with a lower abundance of Firmicutes in the DCPC group than in the CPC group (Figures 2E–H). Lower levels of SCFA-producing bacteria, including Lachnospiraceae, Ruminococcaceae, and Roseburia, were also observed in patients with DCPC. In addition, the F/B ratio was also lower in patients with DCPC than in patients with CPC (1.04 vs. 1.38). We then used the modified dysbiosis ratio (MDR), which refers to (Bacillus class% + Proteobacteria phylum %)/(Clostridium class % + Bacteroidetes phylum %) (Maslennikov et al., 2021), to estimate microbial dysbiosis in patients with cirrhosis. The results indicated that MDR in the DCPC group was significantly higher than that in the CPC group (p<0.05), suggesting that microbial dysbiosis is severe when cirrhosis reaches the decompensated stage.




3.1.4 Linear discriminant analysis effect size

Differential analysis of gut microbiota between liver cirrhosis and healthy controls was used by LEfSe (linear discriminant analysis effect size), and we found that levels of Firmicutes, Coprococcus, Parasutterella, Deltaproteobacteria and Clostridium IV were significantly reduced in cirrhotic patients compared with healthy individuals. Notably, Firmicutes, Coprococcus and Clostridium IV are representative SCFA-producing bacteria. Gammaproteobacteria, Veillonella, Lactobacillales, and Bacilli were greatly enriched in cirrhotic patients (Figure 3A). In the comparison between the DCPC and CPC groups, the results showed that Oscillibacter, which is a SCFA-producing bacterium, was significantly reduced in DCPC, indicating that with the progression of cirrhosis, especially when reaching DCPC, microbial dysbiosis gradually deteriorated and presented with significantly reduced levels of SCFA-producing bacteria (Figure 3B).




Figure 3 | Difference in the gut microbiota in (A) LC and HC, (B) CPC and DCPC. Species with LDA scores greater than 2 are shown; the color of the bar represents the respective group, while the length represents the LDA score. LDA, linear discriminant analysis; LC, liver cirrhosis; CPC, compensated cirrhosis; DCPC, decompensated cirrhosis.






3.1.5 Levels of SCFAs were reduced in patients with liver cirrhosis

Based on decreased levels of SCFA-producing species in cirrhosis patients, we further tested the levels of fecal SCFAs (acetic, butyric, isobutyric, and propionic acid) in cirrhotic patients and healthy individuals via HPLC. We found that the levels of acetic, butyric, isobutyric, and propionic acid were lowest in DCPC patients (173 ± 12.6; 20.6 ± 2.2; 1560 ± 126.4; 36.2 ± 2.5,respectively) when compared to CPC group (288.3 ± 41.3; 35.8 ± 4.8; 2136 ± 148.2; 48.9 ± 5.4) and healthy controls (393.7 ± 26.82; 48.6 ± 3.4; 2696 ± 139.5; 64 ± 3.9) (Figure 4).




Figure 4 | Differences in the levels of SCFAs in fecal samples among the groups. *p<0.05; **p<0.01.






3.1.6 Functional categories were different between groups

To compare the functional genetic differences of the colonies, the 16S rRNA gene sequencing results were compared by Kyoto Encyclopedia of Genes and Genomes. The genes of gut microbiota in both healthy individuals and cirrhotic patients are extensively involved in metabolic activities, including carbohydrate, vitamin, amino acid, lipid, polysaccharide and nucleotide metabolism. Dietary fibers are degraded by intestinal SCFA-producing microbiota to produce SCFAs (including acetate, propionate and butyrate), and most gut bacteria can produce acetate, while propionate and butyrate are generally produced by specific microbiota(Martin-Gallausiaux et al., 2021). A variety of substrates, including amino acids, carbohydrates, and lactic acid, are needed in the production of propionate and butyrate (Martin-Gallausiaux et al., 2021).

Overall, we found significant differences in functional modules in the comparison between cirrhosis patients and healthy individuals; a total of 165 functional modules were identified, among which 34 functional modules were found to be significantly different between healthy controls and patients with liver cirrhosis. Twenty-two functional modules were significantly enriched in cirrhotic patients, and 12 were more abundant in healthy controls. Pathways related to glycolysis/gluconeogenesis, peroxisome, taurine and hypotaurine metabolism, apoptosis, tyrosine metabolism, steroid hormone biosynthesis, glutathione metabolism and pyruvate metabolism were enriched in cirrhotic patients. In addition, pathways related to glycerolipid metabolism, polyketide sugar unit biosynthesis, metabolism of xenobiotics by cytochrome P450 and linoleic acid metabolism were diminished in cirrhotic patients. This result reveals that an altered gut microbiome brings changes in the functionality of the microbiome, which might contribute to the progression of cirrhosis (Figure 5).




Figure 5 | Differences in functional modules of the gut microbiota in LC and HC.






3.1.7 Correlation between gut microbiota profiles and hepatic function in cirrhosis

To evaluate the correlation between gut microbiota and the progression of cirrhosis, we correlated the abundance of gut microbiota with biochemical indicators such as liver function, kidney function and coagulation function. By Spearman’s correlation analysis, we found that at the phylum level, the abundance of Firmicutes was negatively correlated with ALT, AST, and DBIL levels (p<0.05), and the abundance of Bacteroidetes was positively correlated with AST level (p<0.05). Combined with the above finding that patients with cirrhosis had a greatly reduced abundance of Firmicutes compared to healthy individuals, we speculate that a decreased abundance of Firmicutes is closely associated with worsened liver dysfunction in cirrhotic patients (Figure 6).




Figure 6 | Heatmap of correlation coefficients between gut microbiota abundance and biochemical indicators in cirrhotic patients. Color and its depth represent the positive, negative and absolute magnitude of Spearman’s correlation coefficient r, respectively. *p < 0.05.







3.2 Efficacy of adjuvant probiotic therapy in patients with cirrhosis

Then, as Bifidobacterium and Lactobacillus are important SCFA-producing bacteria (Lee et al., 2020; Lv and Liu, 2020), we used “Live Combined Bifidobacterium, Lactobacillus, and Enterococcus Capsules, Oral”, a commonly used probiotics in China to determine the role of supplementary SCFA-producing bacteria on the progression of cirrhosis. A total of 102 subjects who met the inclusion and exclusion criteria were included in this study and were divided into 58 cases in the nonprobiotics group and 44 cases in the probiotics group. In the nonprobiotic group, there were 40 males and 18 females, with a mean age of 51.52 ± 13.50 years. In the probiotics group, there were 37 males and 7 females, with a mean age of 55.00 ± 12.74 years. There was no significant difference in sex, age, Child-Pugh classification, pathogenesis or blood tests at the time of admission between the two groups (all p >0.05). The hematological parameters and hepatic profile were comparable between the probiotic and nonprobiotic groups and pre- and post-treatment in each group. We found that both the probiotic and nonprobiotic groups post-treatment had significantly lower levels of neutrophil ratio, alanine transaminase, aspartate aminotransferase, total bilirubin and total bile acid compared with their pretreatment, respectively (p < 0.05), and levels of alanine aminotransferase and total bilirubin were markedly lower in probiotic group post-treatment than nonprobiotic group post-treatment (p < 0.05). Therefore, in patients with cirrhosis, the use of probiotics especially related to SCFA production in addition to standard treatment can be helpful in improving the patients’ hepatic function (Table 2).


Table 2 | Demographic information and clinical data of patients in both the probiotic and nonprobiotic groups.







4 Discussion

The gut microbiota and its metabolites can impact host digestion, metabolism and immunity and are critical in human health and disease progression. The gut-liver axis constructs the bidirectional connection between the gut and liver through the portal vein and biliary system. The gut microbiome is closely associated with the liver environment, which always acts as a biological initiator to trigger chronic inflammation and fibrosis upon microbial dysbiosis. In this study, we found that the gut microbiota profile in patients with cirrhosis was remarkably different from that of healthy individuals, presenting with significantly reduced α diversity of gut microbiota and decreased abundance of Firmicutes, particularly SCFA-producing microbiota. Furthermore, in a retrospective study, administration of probiotics to patients with cirrhosis effectively improved hepatic function compared to patients who received nonprobiotic treatment. Therefore, we concluded that gut microbial imbalance exists in patients with cirrhosis, and adjuvant probiotic therapy can be helpful in improving the liver function of patients with cirrhosis.

Gut microbial dysbiosis is generally present in liver cirrhosis, presenting with decreased richness of the gut microbiome, a reduction in autochthonous taxa, including Lachnospiraceae, Ruminococcaceae, and Clostridiales XIV, and an increase in pathogenic taxa such as Enterococcaceae, Staphylococcaceae, and Enterobacteriaceae, as previously reported (Bajaj et al., 2014; Bajaj et al., 2015; Chen et al., 2011). In our study, we found that the α diversity was significantly reduced in LC patients with a distinct composition of the gut microbiome, manifesting with a decreased abundance of Firmicutes and an increased level of Bacteroidetes at the phylum level. At the genus level, Coprococcus and Clostridium IV were significantly reduced, while Veillonella was enriched in LC. When comparing the CPC and DCPC groups, we found that Firmicutes and Oscillibacter were reduced in the DCPC group. Additionally, previous studies have mainly focused on alterations in α diversity and β diversity of gut microbiota in cirrhosis. Since an altered Firmicutes to Bacteroidetes ratio was correlated with microbial dysbiosis and patients with IBD showed a decreased F/B ratio (Stojanov and Berlec, 2020), we used F/B to assess microbial imbalance and found that the F/B ratio was higher in healthy individuals than in cirrhotic patients, and patients with CPC also had a higher F/B ratio than DCPC patients. In addition, patients with DCPC also had higher MDR values than CPC patients, indicating that severe bacterial imbalance was present in patients with cirrhosis, especially when reaching the decompensation stage.

SCFAs, mainly consisting of acetate, propionate and butyrate, can be produced by specific gut bacteria by fermentation of dietary fibers. SCFAs maintain gut integrity by regulating gut luminal pH, mucus production and mucosal immune function, and they also serve as an important energy source for epithelial cells (Morrison & Preston, 2016; Blaak et al., 2020). It has been shown that a decrease in gut SCFAs is associated with the progression of local or systematic diseases, such as inflammatory bowel disease (Parada Venegas et al., 2019), colon cancer(Hou et al., 2022), liver (Bajaj and Khoruts, 2020) and cardiovascular diseases (Hu et al., 2022). SCFAs can be absorbed in the colon and then transferred to the liver via the portal vein (Martin-Gallausiaux et al., 2021). In cirrhosis, the levels of SCFAs are markedly decreased (Baltazar-Díaz et al., 2022), and supplementary SCFAs may have regulatory effects in improving liver function. SCFAs can reduce liver inflammation by inhibiting M1 macrophages and increasing M2 macrophages, thereby resolving alcoholic liver disease (Wang et al., 2020). In addition, supplementation with SCFAs has emerged as a potential therapeutic approach in a variety of liver diseases because of its protective role in intestinal permeability (Pohl et al., 2022). In this study, when analyzing the levels of SCFA-producing bacteria between different groups, we found that Firmicutes, Coprococcus and Clostridium IV were significantly reduced in cirrhotic patients. The decreased abundances of Firmicutes and Coprococcus have been shown in cirrhosis as previously reported (Baltazar-Díaz et al., 2022; Li et al., 2022; Rodriguez-Diaz et al., 2022). Clostridium IV is a SCFA producer (Jin et al., 2022), which is an innovative finding in our study, and further investigations may focus on the relationship between Clostridium IV and cirrhosis. In addition, when compared with the species between DCPC and CPC patients, Oscillibacter was significantly reduced in the DCPC group. Oscillibacter is also a SCFA-producing bacterium (Jin et al., 2022) that is negatively linked to triglyceride concentration (Liu et al., 2022), and its level could facilitate the diagnosis of preeclampsia. Zhou et al. demonstrated that Oscillibacter was enriched in a long-term high-fructose diet mouse model and was associated with hepatic steatosis(Zhou et al., 2023). The role of Oscillibacter in the progression of liver cirrhosis requires further larger and deeper research. Therefore, the reduction in SCFA-producing bacteria in the gut microbiome of cirrhotic patients may bring decreased production of SCFAs, resulting in an impaired intestinal barrier and then triggering intestinal and liver inflammation, which is responsible for liver damage and cirrhosis. The species of SCFA-producing bacteria were even fewer in decompensated cirrhosis.

In our study, Gammaproteobacteria and Veillonella were enriched in cirrhotic patients. Gammaproteobacteria are related to many diseases, such as chronic intestinal infective disease (Salimi et al., 2022) and chronic kidney disease (Xu et al., 2017), and are therefore widely known as enteropathogenic bacteria. Veillonella is a lactic acid-fermenting bacterium normally present in the oral cavity (Loomba et al., 2021), and it is also a gut commensal bacterium (Shao et al., 2018). The existing findings support that increased richness of Veillonella is closely related to the progression of various liver diseases, including autoimmune hepatitis, primary biliary cirrhosis, and alcoholic hepatitis (Lv et al., 2016; Cortez et al., 2020; Lang et al., 2020; Kim et al., 2021;  Wei et al., 2020), and it is also positively correlated with the level of alpha fetoprotein (AFP) in patients with primary liver cancer (Zhang et al., 2019). In cirrhosis, Veillonella was correlated with the severity of cirrhosis, and it was enriched in patients with acute onset overt hepatic encephalopathy (Sung et al., 2019). Our study found an increase in Veillonella in the gut microbiota of patients with cirrhosis, which is consistent with previous findings (Shao et al., 2018; Tang et al., 2021).

An altered gut microbiome may lead to altered functionality of the microbiome, which may be a key factor for the induction of intestinal inflammation, disruption of the intestinal barrier, and translocation of microbial material, thus aggravating liver inflammation and intestinal dysbiosis, which may contribute to the progression of cirrhosis. Glycolysis can produce pyruvate, and pyruvate is fermented in an anaerobic environment to produce lactate; the lactate level is increased in cirrhotic patients (Scheiman et al., 2019). In addition, a high lactate level is related to a worse prognosis of hepatitis B virus-related decompensated cirrhosis (Nie et al., 2021). These previous studies support our finding that functional modules related to glycolysis and pyruvate metabolism were significantly increased in cirrhotic patients in this study. Notably, SCFAs, which are highly relevant to the development of lipid accumulation, presented with enhanced glycerolipid metabolism and the PPAR signaling pathway (Chang et al., 2023). In addition, linoleic acid is related to SCFA production, and supplementation with linoleic acid in mice can enhance the levels of SCFAs, including cecal acetate, propionate and isobutyrate(Marques et al., 2015). In our study, pathways related to glycerolipid metabolism and linoleic acid metabolism were greatly diminished in cirrhotic patients, which might suggest reduced levels of SCFAs in cirrhosis. Therefore, alterations in the gut microbiota cause changes in functional modules, which might indicate the decreased production of SCFAs in cirrhosis, contributing to disease progression.

Worsen microbial dysbiosis occurred with the progression of cirrhosis and was associated with poor prognostic outcomes. Patients with acute-on chronic liver failure (ACLF) had enriched Enterococcus and lower microbial richness than DCPC patients without ACLF, indicating the relationship between microbial dysbiosis and hepatic complications and disease severity (Solé et al., 2021). Due to the important regulatory role of the gut microbiota in hepatic function, in our study, we found that the abundance of Firmicutes was negatively correlated with the levels of ALT, AST, and DBIL. Based on the reduced richness of Firmicutes in cirrhotic patients, particularly in DCPC patients in our study, we demonstrated that a reduction in Firmicutes in cirrhotic patients might be associated with worse hepatic function and poor prognosis. In addition, the abundance of Fusobacteria was negatively correlated with the PTA level. Although the abundance of Fusobacteria in the microbiota profile of patients with cirrhosis was higher than that in healthy individuals, the results were not significant, which reveals that the abundance of Fusobacteria may be related to hepatic function and facilitate the assessment of the severity of cirrhosis. Further studies are needed to confirm this finding.

Because the gut microbiota of cirrhotic patients was markedly altered and this change was associated with the progression of cirrhosis, we then conducted a retrospective study to explore the role of probiotics in liver cirrhosis. Since probiotics do not have a significant beneficial effect on patients with compensated cirrhosis (Pereg et al., 2011), we explored the therapeutic effect of oral probiotic supplementation in patients with DCPC. We found that oral probiotics could effectively improve liver function in patients with cirrhosis, such as alanine aminotransferase (ALT) and total bilirubin (TBIL). A previous study reported the role of microbial therapy in reducing ALT levels in patients with nonalcoholic fatty liver disease (Loman et al., 2018). In addition, probiotic supplementation significantly reduced ALT levels and benefited liver injury in an animal model of acute liver injury and liver cirrhosis (Adawi et al., 2001; Liu et al., 2015; Liu et al., 2017; Zhang et al., 2022). In addition, treatment with probiotics prior to liver transplantation in cirrhotic patients was associated with improvements in early postoperative ALT (Grąt et al., 2017). Additionally, a modified gut microbiota after probiotic treatment results in reduced bilirubin in acute liver injury (Xu et al., 2021). In this study, oral intake of probiotics also resulted in decreased TBIL levels in cirrhotic patients, which was also consistent with a previous study (Chen et al., 2017). Therefore, probiotic therapy especially supplementing with SCFA-producing bacteria has been shown to improve liver function in patients with cirrhosis via alteration of microbiota dependent on the gut-liver axis.

In our study, we excluded patients who received antibiotic treatment, which will eliminate the impact of antibiotics on gut microbiota and could reflect more accurate changes in gut microbiota in patients with cirrhosis than a previous study (Solé et al., 2021). This also explains why fewer Child-Pugh C or hepatic failure patients were included in this study, as these patients may need antibiotic therapy after admission. It can also explain why there is no significance of α diversity between the DCPC and CPC groups. In addition, we conducted a retrospective study to identify the effect of gut microbiota alteration on hepatic function in addition to fecal analysis of the gut microbiome and its correlation with disease outcome. However, some issues important to the interpretation of the current findings deserve discussion. First, a greater number of LC patients with different pathogeneses and healthy controls should be enrolled, and multicenter studies with larger sample sizes are also needed. Second, the use of 16S rRNA sequencing limited further analysis of microbial composition and function, and it cannot cover all species with 100% coverage, therefore metagenomics sequencing (MGS) is needed in future studies. Third, we only collected stool samples that could not fully represent mucosal microbiota, and further serum and mucosal samples can be collected.

In summary, we concluded that LC patients have altered gut microbiota, presenting with reduced microbial richness, enriched pathogenic Veillonella bacteria, and reduced SCFA-producing bacteria, including Firmicutes, Coprococcus, and Clostridium IV. The altered gut microbiome leads to changes in the functionality of the microbiome, which might contribute to the progression of cirrhosis. Moreover, Firmicutes was negatively correlated with various liver indicators, and an increased level of Firmicutes may predict a good prognostic outcome. Furthermore, DCPC patients who received probiotics had significantly improved hepatic function compared to the nonprobiotic group, and the use of adjuvant probiotic therapy to supply with SCFA-producing bacteria can be helpful in improving the hepatic function and prognosis of patients with cirrhosis.
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Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected a substantial portion of the world’s population, and novel consequences of COVID-19 on the human body are continuously being uncovered. The human microbiome plays an essential role in host health and well-being, and multiple studies targeting specific populations have reported altered microbiomes in patients infected with SARS-CoV-2. Given the global scale and massive incidence of COVID on the global population, determining whether the effects of COVID-19 on the human microbiome are consistent and generalizable across populations is essential.





Methods

We performed a synthesis of human microbiome responses to COVID-19. We collected 16S rRNA gene amplicon sequence data from 11 studies sampling the oral and nasopharyngeal or gut microbiome of COVID-19-infected and uninfected subjects. Our synthesis included 1,159 respiratory (oral and nasopharyngeal) microbiome samples and 267 gut microbiome samples from patients in 11 cities across four countries.





Results

Our reanalyses revealed communitywide alterations in the respiratory and gut microbiomes across human populations. We found significant overall reductions in the gut microbial diversity of COVID-19-infected patients, but not in the respiratory microbiome. Furthermore, we found more consistent community shifts in the gut microbiomes of infected patients than in the respiratory microbiomes, although the microbiomes in both sites exhibited higher host-to-host variation in infected patients. In respiratory microbiomes, COVID-19 infection resulted in an increase in the relative abundance of potentially pathogenic bacteria, including Mycoplasma.





Discussion

Our findings shed light on the impact of COVID-19 on the human-associated microbiome across populations, and highlight the need for further research into the relationship between long-term effects of COVID-19 and altered microbiota.
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Introduction

The emergence and rapid spread of the novel beta-coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused severe and unprecedented public health and socioeconomic challenges globally (Waters et al., 2022). Primarily, COVID-19 presents as a multifaceted and multi-organ infection with variable severity. Symptoms range from acute respiratory distress syndrome to pneumonia and include non-specific flu-like symptoms, gastrointestinal symptoms, myocardial dysfunction, multiple organ failure, and death (Kumar Singh et al., 2019; Baud et al., 2020; Onder et al., 2020). In most cases, SARS-CoV-2-infected persons are either asymptomatic or show mild symptoms. However, approximately 5% of those infected, usually the elderly and/or individuals with comorbidities, develop a severe form of the disease, resulting in intensive medical care and death (Grasselli et al., 2020; Wiersinga et al., 2020). As of April 2023, there have been 762,791,152 confirmed COVID-19 cases with 6,897,025 mortalities worldwide (WHO Coronavirus (COVID-19) Dashboard).

Among the many long-term effects associated with COVID-19 infection, numerous studies have reported altered microbiota in COVID-19 patients. The human microbiome plays a vital role in host health (Kumpitsch et al., 2019) and has been suggested to act as an additional organ (Baquero and Nombela, 2012). These microbial communities maintain host homeostasis through complex and essential interactions, which result in improved immunomodulation, metabolism, organ functions, mucosal barrier integrity, and structural protection against intruding pathogens (Jandhyala et al., 2015; Kumpitsch et al., 2019). Specific microbial communities are associated with different human tissues (Human Microbiome Project Consortium, 2012; Pflughoeft and Versalovic, 2012).

Perturbations such as COVID-19 can result in microbiome dysbiosis in human microbiomes, in which the composition and diversity of beneficial and/or commensal microorganisms are altered, promoting the growth or opportunistic pathogens (Hoque et al., 2021b; Ren et al., 2021; Sun et al., 2022). In particular, the observation of increased host-to-host variability in the microbiomes associated with unhealthy hosts has been dubbed the Anna Karenina Principle (AKP), derived from the opening line of Tolstoy’s Anna Karenina: “All happy families are all alike; each unhappy family is unhappy in its own way”.

Different human diseases including obesity, psoriasis, arthritis, inflammatory bowel disease (IBD), influenza, HBV, and HIV have been reported to significantly alter human microbiomes (Ling et al., 2015; Lu et al., 2017; Gilbert et al., 2018; Gonçalves et al., 2019; Yun et al., 2019; Sencio et al., 2021). Similarly, several reports have demonstrated changes in the microbiomes (intestinal, nasopharyngeal, and oral) of COVID-19 patients during active infection and convalescent state, and these are usually characterized by the depletion of beneficial commensal microbes and a higher abundance of opportunistic pathogens (Zuo et al., 2020; Zuo et al., 2020; Hoque et al., 2021a; Hoque et al., 2021b; Jochems et al., 2021; Ren et al., 2021; Xu et al., 2021; Yeoh et al., 2021). The composition and diversity of the gut, nasal, or oral microbiome of COVID-19 patients are now widely believed to be predictive of COVID-19 prognosis, progression, and severity (Mathieu et al., 2018; Wypych et al., 2019; Chen et al., 2020; He et al., 2020; Hoque et al., 2021b). Moreover, the abundance of specific microbes within human microbiomes are now identified as biomarkers to distinguish COVID-19-infected individuals from healthy persons (Gou et al., 2020; Zuo et al., 2020; Tian et al., 2021).

Extensive interactions exist between the host immune system and microbiome. These interactions seem to induce immune responses to diseases, and in turn, the immune system affects the composition and diversity of the microbiome (Round and Mazmanian, 2009; Mangalmurti and Hunter, 2020; Attaway et al., 2021; Sun et al., 2022). COVID-19 has been reported to induce aberrant immune responses that not only elevate inflammatory markers including tumor necrosis factor-α, interleukin (IL)-10, and C-reactive protein, but also affect gut microbiome composition with a decreased population of beneficial bacteria especially bifidobacteria, Eubacterium rectale, and Faecalibacterium prausnitzii (Mangalmurti and Hunter, 2020; Attaway et al., 2021; Yeoh et al., 2021). Understanding microbiome changes across multiple microbiome compartments can shed light on the level and mechanisms of microbiome perturbation/dysbiosis associated with COVID-19, and may in turn aid the development of effective strategies for COVID-19 diagnosis, long-term management, and prevention.

All humans are susceptible to SARS-CoV-2 infection. Nevertheless, the human microbiome slightly differs across age, ethnicity, sex, race, and even geography (Human Microbiome Project Consortium, 2012; Brooks et al., 2018). Consequently, determining the effects of COVID-19 infections on the human microbiome requires assessing changes in the microbiomes of a wide range of patients across geographic regions. To this end, we performed a synthesis of human microbiome responses to COVID-19. We collected 16S rRNA gene amplicon sequence data from 11 studies sampling the oral and nasopharyngeal, or gut microbiome of COVID-19-infected and uninfected subjects. Our synthesis included 1,159 respiratory (oral and nasopharyngeal) microbiome samples and 267 gut microbiome samples and spanned four countries. We hypothesized that (1) because of stronger immune responses, infected patients would have a lower microbiome richness across microbiome compartments; (2) the microbiomes of infected patients would be more variable from host to host than that of healthy individuals, in line with the AKP; (3) as SARS-COV-2 is primarily a respiratory disease, the oral and nasopharyngeal microbiomes would be more strongly affected than the gut microbiomes; and (4) COVID-19 infection would result in consistent shifts in microbiome composition in both compartments.





Materials and methods




Literature search, selection criteria, and data extraction

This study was conducted through a robust literature search and selection using the RepOrting standards for Systematic Evidence Syntheses (ROSES) guidelines (Haddaway et al., 2018) (Figure 1). In January 2022, we performed a keyword search on the Web of Science database (www.webofscience.com) to identify and select relevant published articles. We used the terms “COVID-19” OR “SARS-CoV-2” OR “severe acute respiratory syndrome coronavirus 2” OR “coronavirus disease 2019” OR “nCoV” OR “novel coronavirus” AND “microbiome” OR “microbiota” OR “microflora” or “flora’’ OR “biome”. Furthermore, additional studies were included from other sources including PubMed and Google Scholar. We included published articles that performed 16S rRNA gene or transcript amplicon sequencing from gut/stool, nasopharyngeal, and oral samples collected from COVID-19+ individuals. We only included articles that were published in the English language. The authors independently reviewed the titles and abstracts of all the selected studies. Other COVID-19-related publications outside the scope of this study, as well as related commentaries, editorials, reviews, systematic reviews, and meta-analyses, were excluded.




Figure 1 | ROSES flowchart illustrating the systematic search, identification, screening, and final selection of articles.



For each selected study, we extracted information about the NCBI accession numbers to the 16S rRNA gene/transcript sequences, author names, patient characteristics, sample types, sample size, the 16S rRNA gene region sequenced, and the sequencing platform used. Studies were grouped based on the systems examined: gut microbiome, or oral, nasopharyngeal, and upper respiratory tract (URT) microbiomes (heretofore oral/URT).





Bioinformatics and statistical analyses

All sequences were downloaded from NCBI as.fastq files and sequence data were processed using R (v 4.1) software (Bunn, 2008) and the dada2 (Callahan et al., 2016) package. Following preliminary assessments of quality, we downloaded data for 1,588 samples from 11 studies. First, forward reads from each study were inspected to determine the optimal processing parameters using the plotQualityProfile function (detailed for each study in Supplementary Table 1), and trimmed to 100 base pairs with the filterAndTrim function, with maxEE = 2 and truncQ = 2. Reads were assigned a taxonomy using SILVA V.132 (Quast et al., 2013). The proportion of reads lost at each processing step for each study is shown in Supplementary Figure S1. According to available metadata, technical controls (e.g., blanks, mock communities) were removed prior to further processing.

Statistical analyses were performed with the phyloseq (McMurdie and Holmes, 2013), vegan (Oksanen et al., 2022), Maaslin2 (Mallick et al., 2021), and lmerTest (Kuznetsova et al., 2017) packages. Prior to analyses, all samples were standardized to 2,000 reads per sample using the rarefy_even_depth function, which led to a loss of 63 samples. To assess the effects of COVID-19 infection on different compartments of microbial diversity (i.e., rare and dominant), we calculated Hill numbers (richness, effective Shannon diversity, and inverse Simpson diversity, or q = 0, q = 1, and q = 2, respectively; Chao et al., 2014). Richness is more heavily affected by the diversity of rare taxa, while inverse Simpson diversity is more affected by the diversity of dominant taxa. To determine the contribution of COVID-19 infection to oral/URT and gut microbiomes, we performed a distance-based variance partitioning analysis using the varpart function of vegan, with Bray–Curtis dissimilarities. The Bray–Curtis dissimilarities between samples taken from the same region among COVID-19-infected and uninfected patients were used to measure microbiome variance. Unless otherwise noted, diversity measures are presented as mean ± standard deviation.

To test the effect of COVID-19 infection on microbiome diversity (i.e., Hill numbers, H1) and variability (i.e., Bray–Curtis dissimilarities, H2), we used linear mixed effect models, with the study as a random effect, and COVID-19 infection as a fixed effect using the lmer function from the lmerTest package (Kuznetsova et al., 2017). To compare the effect of SARS-CoV-2 infection on gut and oral/URT microbiomes (H3), we used linear mixed effect models, with the study as a random effect, and the interaction between COVID-19 status and the sampled region (i.e., gut vs. oral/URT) as a fixed effect. In addition, a contrast analysis was performed using the emmeans function from the emmeans package (Lenth et al., 2023) to quantify the effect of COVID-19 infection within sampled regions. Model assumptions and performances were tested using the performance package (Lüdecke et al., 2021); all model outputs and performances are found in the Supplementary Materials.

To identify bacterial genera that were consistently under- or overrepresented in SARS-CoV-2-infected patients, we used microbiome-oriented linear models (MaAsLin2 package; Mallick et al., 2021) for gut and oral/URT samples separately, with the study and sample type as random effects, SARS-CoV-2 infection as a fixed effect, and a prevalence threshold of 0.2.






Results

In total, we collected 1,426 high-quality, processed samples from the USA (Chicago, Jackson, Nashville, New York City, Philadelphia, and San Diego), Spain (Alicante), France (Paris), and China (Guangdong, Shanghai, and Wuhan) (Supplementary Figure S2), represented by 29,491 amplicon sequence variants, or ASVs (Supplementary Table 1). Of the 11 studies surveyed, 8 included COVID-19-infected patients and controls (Engen et al., 2021; Merenstein et al., 2021; Minich et al., 2021; Newsome et al., 2021; Shilts et al., 2021; Smith et al., 2021; Ventero et al., 2021; Wu et al., 2021), and 2 of these (Newsome et al., 2021; Wu et al., 2021) also included samples of recovered patients. Three of the studies only sampled infected patients (Shilts et al., 2021; Xu et al., 2021; Ventero et al., 2022), and one sampled infected and recovered patients (Tian et al., 2021).

On average, gut microbiome samples were more diverse (136 ± 54 ASVs) than oral/URT samples (80 ± 79 ASVs). Within studies, COVID-19 infection caused minor, but consistent decreases in gut microbial richness (Hill q = 0, estimate ± SE = 22.46 ± 6.22, p < 0.001), but not in oral/URT richness (p = 0.55, Figure 2; Supplementary Figure S3). This decrease was also significant for q = 1 and q = 2 (q = 1: 8.20 ± 2.50, p = 0.001; q = 2: 3.71 ± 1.38, p = 0.008, Figure 2), highlighting richness losses in the dominant portion of the community.




Figure 2 | The effect of COVID-19 infection on the alpha diversity of the gut and oral/URT microbiomes. Hill richness (A: q = 0), effective Shannon (B: q = 1) and Inverse Simpson (C: q = 2) diversity indices were calculated to assess the impact of increasingly dominant portions of the community. Points are colored by studies, and the average across studies is shown with a black point. Significant differences between infected and non-infected patients across studies are indicated with asterisks where significant (***p < 0.001; ** p < 0.01) and with “n.s.” otherwise.



SARS-CoV-2 infection led to changes in the microbiome composition, significantly explaining 2% of the variation in the microbial community, although these changes were study-dependent (p < 0.001, Supplementary Figure S4). Notably, of the 14.9% of the variance in community composition explained by each study, 7.3% could be ascribed to the participant’s country of origin (Supplementary Figure S4). In line with the AKP, patients infected with COVID-19 had a higher host-to-host variance in both the oral/URT and gut microbiome than uninfected patients (an increase of 0.06 ± 0.003 in Bray–Curtis dissimilarity relative to uninfected patients, p < 0.001, Figure 3).




Figure 3 | COVID-19 increases host-to-host variability across microbiomes. Community distances were measured as the Bray–Curtis distance between individuals in the same study, from the same body site, and with the same infection status. Points are colored by studies, and the average across studies is shown with a black point. Significant differences between infected and non-infected patients across studies are indicated with asterisks where significant (***p < 0.001).



In general, the gut microbiomes of infected and non-infected patients had more consistent shifts across studies for the gut than for the oral/URT microbiomes. We identified 51 dominant genera (38.3% ± 22.2% of the community) in the gut microbiome, whose relative abundances consistently and significantly differed between infected and non-infected patients across studies (Figure 4). These taxa belonged predominantly to Firmicutes, with the most consistent decreases in Fusicatenibacter, Lachnospiraceae NK4A316 group, Lachnoclostridum, Blautia, and Roseburia and the most consistent increases in Finegoldia, Porphyromonas, Anaerococcus, and Peptoniphilus for COVID-19-infected patients, relative to uninfected patients. In contrast, we only found 16 genera (23.8% ± 25.9% of the community on average) that consistently differed between the oral/URT microbiome of COVID-19-infected and uninfected patients (Figure 5). Of these, Enterococcus, Pseudomonas, unclassified Enterobacteriaceae, and Solobacterium were lower in uninfected patients, whereas Prevotella, Mycoplasma, Veillonella, Cutibacterium, Atopobium, and Megasphaera were consistently and significantly more abundant in COVID-19-infected patients.




Figure 4 | Altered relative abundances of bacterial genera in the gut microbiome of SARS-CoV-2-infected individuals. Bacterial genera that exhibit significantly different (p < 0.01) relative abundances between SARS-CoV- 2-infected and uninfected individuals in the gut microbiome were selected using the MaAsLin2 approach, which included random effects for sample type and study. Only significantly different genera are displayed, relative abundances are colored by quantiles, and genera are grouped according to Ward’s clustering method. Phylum membership is displayed on the left bar. These 51 genera make up 38.3% ± 22.2% of the community, on average across all samples.






Figure 5 | Altered relative abundances of bacterial genera in the oral and URT microbiome of SARS-CoV-2-infected individuals. Bacterial genera that exhibit significantly different (p < 0.01) relative abundances between SARS-CoV-2-infected and uninfected individuals in the oral or URT microbiome were selected using the MaAsLin2 approach, which included random effects for sample type and study. The log2 fold changes in taxon abundances for infected patients relative to non-infected patients are displayed. Only genera with significantly different (p < 0.01) abundances between these two groups are displayed, and in total, they represent 23.8% ± 25.9% of the whole community, on average across all samples.







Discussion

SARS-CoV-2 invades the human body mainly through the angiotensin-converting enzyme 2 (ACE2) and cofactor transmembrane serine protease 2 (TMPRSS2) receptors in the epithelial cells of the nasopharyngeal tract, and then gradually moves to initiate infection in the lungs, which gradually results in gastrointestinal involvement as well as affects other organs including the heart, kidneys, pancreas, eyes, and skin (Gavriatopoulou et al., 2020; Hoque et al., 2021a; Rahman et al., 2021; Rahman et al., 2021). Interestingly, high levels of both ACE2 and TMPRSS2 receptors are naturally expressed in multiple organs of the human respiratory and gastrointestinal tracts (Perlot & Penninger, 2013; Roncon et al., 2020; Xiao et al., 2020), thus enabling SARS-CoV-2 to circulate and induce severe inflammation, immune imbalance, and microbiome dysbiosis within these systems (Hoffmann et al., 2020; Villapol, 2020). Moreover, recent insights into coronavirus biology and SARS-CoV-2-human interactions attribute COVID-19 pathophysiology to aberrant and aggressive immune responses in SARS-CoV-2 clearance (Hoque et al., 2021b; Yeoh et al., 2021). COVID-19 infection can therefore result in a wide variety of responses in the human-associated microbiome, which may be further modulated by the host’s environment, such as diet and exposure to pollutants, which is population-specific. By simultaneously reanalyzing microbiome data from various microbiome compartments in infected and uninfected patients across the world, we sought to identify consistent, COVID-19 infection-specific changes in the human microbiome.

Consistent with our hypotheses, we found that SARS-CoV-2-infected individuals had a lower microbial diversity in the gut, but not in the upper respiratory tract. The reduction of gut microbial diversity in COVID-19 has been similarly reported (Zuo et al., 2020; Mazzarelli et al., 2021; Tian et al., 2021), regardless of antibiotic use (Zuo et al., 2020; Mazzarelli et al., 2021) and even several weeks after viral clearance (Zuo et al., 2020; Tian et al., 2021; Xu et al., 2021). The gut microbiome is relatively stable, and a major predictor of normal gut functioning, immunomodulation, and overall host health (Rooks and Garrett, 2016; Tian et al., 2021; Xu et al., 2021). Our study highlights SARS-CoV-2’s ability to disrupt human gut microbiome eubiosis through the depletion of gut microbial diversity, which may contribute to disease severity and opportunistic infections. The consistent decrease in diversity found across Hill numbers for the gut microbiome richness highlights that richness loss occurs in dominant taxa. This may have major implications on the composition and diversity of the gut microbiome in COVID-19 infection resulting in dysbiosis, impaired immune functioning, pro-inflammatory conditions, etc.

Our study did not control for COVID-19 patients’ medication use (e.g., antibiotics and antivirals), age, genetic background, sex, or diet, which may also affect the gut microbial diversity and further confound COVID-19-associated gut microbial signatures. However, the consistent results we recorded across studies after controlling for study–study particularities suggest that the decrease in gut microbial diversity is indeed due to SARS-CoV-2 infection. Intriguingly, the intestinal ACE2, which is the receptor of SARS-CoV-2, plays a vital role in maintaining the gut microbiome eubiosis (Hamming et al., 2004; Hashimoto et al., 2012; Tian et al., 2021), and the SARS-CoV-2 infection may downregulate the expression and availability of ACE2, which could disrupt gut homeostasis, adversely impacting microbial diversity. Our inability to detect a significant effect on the microbial richness of the oral/URT microbiome may be attributed to the oral/URT microbiome being more dynamic, resilient, and transient than the gut microbiome due to frequent bidirectional air and mucus movement as well as its regular exposure to the environment (Huffnagle et al., 2017). Recent studies have found inconsistent effects of COVID-19 on the microbial diversity of the URT (De Maio et al., 2020; Mostafa et al., 2020; Braun et al., 2021; Miao et al., 2021; Yamamoto et al., 2021; Zhang et al., 2021; Rafiqul Islam et al., 2022; Uehara et al., 2022), and others have proposed that SARS-CoV-2 has weak effects on the URT microbiome (De Maio et al., 2020; Braun et al., 2021; Yamamoto et al., 2021) akin to acute respiratory virus infections in humans (Ramos-Sevillano et al., 2019; De Maio et al., 2020; Yamamoto et al., 2021).

Higher variability is generally associated with lower stability and predictability. In accordance with previous studies (Ma, 2020; Altabtbaei et al., 2021), we also found that host-to-host gut and URT microbiome variability was greater in SARS-CoV-2-infected patients than in non-infected controls, in line with the AKP (Zaneveld et al., 2017) and with a previous synthesis, which found that most human-associated diseases result in a higher microbiome variability across patients (Ma, 2020).

Notably, our study shows that COVID-19 infection resulted in an overall loss of beneficial bacteria, and worryingly, a consistent increase in pathogenic bacteria, particularly in the oral/URT microbiome. The increased relative abundances and colonization of opportunistic pathogens including Mycoplasma, Prevotella, Peptostreptococcus, Veillonella, Cutibacterium, and Saccharibacteria in the oral/URT recorded in our study may be associated with the early-stage SARS-CoV-2-induced inflammation, the loss of beneficial bacteria, and the increased exposure and receptiveness to allochthonous and indigenous microorganisms (Man et al., 2017; Dubourg et al., 2019).

In the gut microbiome, increased relative abundances of pathogenic bacteria including Campylobacter, Corynebacterium, Staphylococcus, Clostridium, Peptostreptococcus, Prevotella, Anaerococcus, Actinomyces, Porphyromonas, and Bacteroides were recorded in SARS-CoV-2 infection. Increasingly, emerging reports posit that alterations in the gut microbiome may facilitate blooms of both pathogenic and previously rare bacteria, which can further aggravate overall gut inflammation (Mazzarelli et al., 2021; Tian et al., 2021; Xu et al., 2021). The presence and increased abundance of common oral/URT commensals and pathogens in the gut (e.g., Corynebacterium, Peptostreptococcus, Porphyromonas, Prevotella, and Staphylococcus) may suggest a possible translocation of these organisms from the oral/URT to the gut. Previously, inflammation, disruption, and increased permeability of membrane mucosa were associated with COVID-19 (Cao and Li, 2020). Increased permeability of membrane mucosa facilitates the translocation of some oral/URT microbes as well as enriched opportunistic pathogens to the gut (Man et al., 2017; Cao and Li, 2020; Giron et al., 2021).

We also detected the loss of beneficial microbes Fusicatenibacter, Lachnospiraceae NK4A316 group, Lachnoclostridium, Blautia, and Roseburia in the gut. These beneficial bacteria often enhance and maintain the integrity and function of mucosal barriers, metabolism, and immunomodulation, and protect against pathogen invasion through several mechanisms including the secretion of short-chain fatty acids (SCFA) and antimicrobial peptides (Gallo and Hooper, 2012; Abt & Pamer, 2014; Zhang et al., 2015). In line with our findings, SARS-CoV-2-associated microbiome perturbations were previously associated with a decline in SCFA (Lv et al., 2021; Sokol et al., 2021), thus promoting a systemic pro-inflammatory condition (Qin et al., 2015; Esquivel-Elizondo et al., 2017) and the severity of pulmonary viral infections such as COVID-19 (Chemudupati et al., 2020; Friedland and Haribabu, 2020; Tang et al., 2020). In the same vein, Lv and colleagues reported a pathogen-regulated feedback loop between the decline in SCFA production and SARS-CoV-2 infection (Lv et al., 2021).

Whether increased abundances of gut and oral/URT pathogenic and pro-inflammatory bacteria in SARS-CoV-2 infection actually play an active part in COVID-19 or mainly thrive opportunistically, exploiting the depletion of commensal bacteria, remains unknown. Nevertheless, our findings demonstrate that oral/URT and gut microbiomes are systematically perturbed by COVID-19, resulting in a lower microbial diversity, loss of beneficial microbes, and increased presence of pathogenic bacteria, which could trigger prolonged pro-inflammatory reactions, immunological changes, and secondary bacterial infections that could account for chronic COVID-19-associated symptoms, as well as prolonged sequelae. Understanding the dynamics of COVID-19-associated microbiome alterations may help identify microbiome-based strategies with potential applications in COVID-19 management and treatment. Furthermore, our findings highlight that non-invasive organ and/or system-based microbiome profiling may serve not only for COVID-19 diagnosis and prognosis but also, for the identification of individuals at risk of secondary infections, chronic disease, and/or degenerative inflammatory symptoms, including Kawasaki-like disease (KLD) and multisystem inflammation, as is the case with children and young adults (Akca et al., 2020; Cheung et al., 2020; Sokolovsky et al., 2021; Elouardi et al., 2022).

Finally, human microbiome composition and diversity are highly heterogeneous and largely driven by biogeographies, environments, ethnicity, and socioeconomic status (Amato et al., 2021; Yamamoto et al., 2021; Yeoh et al., 2021). While our study design highlights the importance of sampling across human populations to understand a disease, our study lacks samples from the Southern Hemisphere, in line with recent reports indicating very limited public human microbiome data from the Global South (Abdill et al., 2022). A global representation of data in human microbiome studies is critical to understanding global drivers and patterns of disease (in this case, COVID-19) to provide sustainable interventions to all populations without bias.
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Introduction

Clostridioides difficile infection (CDI) is the main cause of nosocomial diarrhoea in developed countries. Recurrent CDI (R-CDI), which affects 20%-30% of patients and significantly increases hospital stay and associated costs, is a key challenge. The main objective of this study was to explore the role of the microbiome and calprotectin levels as predictive biomarkers of R-CDI.





Methods

We prospectively (2019-2021) included patients with a primary episode of CDI. Clinical data and faecal samples were collected. The microbiome was analysed by sequencing the hypervariable V4 region of the 16S rRNA gene on an Illumina Miseq platform.





Results

We enrolled 200 patients with primary CDI, of whom 54 developed R-CDI and 146 did not. We analysed 200 primary samples and found that Fusobacterium increased in abundance, while Collinsella, Senegalimassilia, Prevotella and Ruminococcus decreased in patients with recurrent versus non-recurrent disease. Elevated calprotectin levels correlated significantly with R-CDI (p=0.01). We built a risk index for R-CDI, including as prognostic factors age, sex, immunosuppression, toxin B amplification cycle, creatinine levels and faecal calprotectin levels (overall accuracy of 79%).





Discussion

Calprotectin levels and abundance of microbial genera such as Fusobacterium and Prevotella in primary episodes could be useful as early markers of R-CDI. We propose a readily available model for prediction of R-CDI that can be applied at the initial CDI episode. The use of this tool could help to better tailor treatments according to the risk of R-CDI.
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1 Introduction

The clinical severity of Clostridioides difficile infection ranges from asymptomatic, mild, moderate and severe episodes and pseudomembranous colitis to toxic megacolon, sepsis or death (Rupnik et al., 2009).

One of the current challenges associated with CDI is recurrent CDI (R-CDI), which usually affects 20%-30% of patients with a first CDI infection and increases to 40%-65% after a first R-CDI episode (Barbut et al., 2000; Leffler and Lamont, 2015; Larrainzar-Coghen et al., 2016; Smits et al., 2016).

The costs associated with R-CDI in the United States reach $94,209 per year for patients with 1 R-CDI episode, increasing to $207,733 per year for patients with 3 or more R-CDI, with a length of stay ranging from 8.3 to 17.9 days (Feuerstadt et al., 2020). In Europe each episode of R-CDI involves an average cost of €40,941 and a length of stay of 55 days; these costs are 4-fold higher and with a 2.5-fold longer stay than for a primary CDI episode (Wingen-Heimann et al., 2022).

The main risk factors associated with R-CDI include advanced age, hospital exposure, treatment with proton pump inhibitors, prior antibiotic treatment and initial disease severity (Eyre et al., 2012; Lupse et al., 2013; Alrahmany et al., 2021).

The imbalance of gut’s microbial community, known as gut microbiota dysbiosis, is strongly linked to the risk of CDI, especially that resulting from the action of antibiotics (Buffie et al., 2012; Theriot et al., 2016). However, very few papers in the literature investigate the association between gut microbiota factors and the risk of R-CDI, and those that do include a low number of patients and report very disparate results (Khanna et al., 2016; Seekatz et al., 2016; Pakpour et al., 2017; Dawkins et al., 2022).Khanna et al. included 88 patients with CDI, 22 of them developed R-CDI; Seekatz et al. included 93 patients with CDI and 32 developed R-CDI, and Dawkins et al. included 53 patients with CDI and 19 developed R-CDI, all they found no significant differences in either alpha diversity or beta diversity. Pakpour et al. included 31 patients with CDI, of them 11 developed R-CDI, they found significant differences in alpha diversity and beta diversity. Because of the close relationship between gut microbiota and C. difficile, treatment with faecal microbiota transplantation for R-CDI to restore patients’ gut microbiota and prevent future recurrences is already included in IDSA/SHEA guidelines (McDonald et al., 2018). For this reason, clinical trials are now investigating the use of faecal microbiota transplantation in first episodes to reduce the risk of recurrence (Kates et al., 2020).

New CDI treatments for reducing recurrences include fidaxomicin, bezlotoxumab, and SER-109 (Escudero-Sánchez et al., 2020; Dubberke et al., 2022; Feuerstadt et al., 2022; Johnson et al., 2022; Tashiro et al., 2022).Both fidaxomicin and bezlotoxumab involve reducing damage to the gut microbiota in CDI patients, which has been shown to result in lower recurrence rates. SER-109 is an orally administered faecal microbiota treatment, helping microbiota recovery to prevent possible recurrences, just like the faecal microbiota transplants that have been performed for years. However, new CDI treatments are costly, and recent European guidelines suggest applying a risk stratification strategy in cases of economic restraints (van Prehn et al., 2021). Many attempts have been made to try to identify or profile patients at high risk for CDI (van Rossen et al., 2022), to date, no reliable objective markers to help predict who is at increased risk of R-CDI have been identified.

There are different markers of inflammation that can be measured directly in faeces, including faecal leukocyte analysis, in which blood is drawn from the patient, the leukocytes are labelled with a radioisotope and reintroduced to the patient. Stool samples are then collected and quantified for labelled leukocytes (Stathaki et al., 2009). Its main drawback is that it is invasive and exposes patients to radiation. Other methods involve measuring leukocyte proteins such as myeloperoxidase, lysozyme, elastase, S100A12, lactoferrin and calprotectin in the stool (Gonzalez et al., 2015; Lehmann et al., 2015; Galgut et al., 2018). Of these, calprotectin has been shown to be the most stable in faeces (Gonzalez et al., 2015) and is therefore the most commonly used in clinical practice, hence we included faecal calprotectin in our analyses.

Calprotectin is a protein secreted mainly by neutrophils, but also by macrophages, monocytes and dendritic cells (Odink et al., 1987; Edgeworth et al., 1991; Kumar et al., 2003). It is known to be a good marker of intestinal inflammation, can be obtained non-invasively and is stable at room temperature (Xu and Geczy, 2000; Lasson et al., 2015).Several studies have examined the role of calprotectin as a marker of severity of CDI with calprotectin levels being higher the more severe the CDI episode (Peretz et al., 2016; Kim et al., 2017; Suarez-Carantoña et al., 2021) and as a marker of CDI itself with higher levels of calprotectin in patients with CDI than in patients without CDI (Popiel et al., 2015; Barbut et al., 2017).

The high associated health and economic burden of R-CDI calls for the development of novel strategies by which R-CDI can be prevented in susceptible patients (Heimann et al., 2018; Reigadas Ramirez and Bouza, 2018). Profiling differences between gut microbiota and calprotectin levels in patients with CDI could help to predict which patients are more likely to experience R-CDI.

The main objective of this study was to explore the role of the microbiome and calprotectin as predictive biomarkers of R-CDI.




2 Methods



2.1 Setting, design, and study population

This study was carried out at Hospital General Universitario Gregorio Marañón in Madrid (Spain), a tertiary university hospital with 1,350 beds. Toxigenic C. difficile is routinely investigated in all diarrhoeic stool samples from patients older than 2 years. The microbiology laboratory receives samples both from the hospital itself and from 13 outpatient centres in the same area.

We conducted a prospective study from January 2019 to April 2021. We enrolled patients over 2 years old with a positive test result for toxigenic C. difficile and met the clinical criteria for CDI. We excluded patients younger than 2 years old because they have a high colonisation rate, which in many cases makes it difficult to determine the true cause of diarrhoea, in infants less than 7 days are 15%, in infants between 6 and 12 months 41% and 22% in 2 year old (Tougas et al., 2021). It appears that the infants’ gut is immune to the effects of toxins A and B although the mechanism is unknown, very few cases of CDI have been described in infants under 2 years of age (Jangi and Lamont, 2010). We collected clinical data and faecal samples from all patients. Patients were classified into 2 groups: patients with a primary CDI episode who did not subsequently develop recurrent CDI (non-recurrent) and patients with a primary CDI episode who subsequently developed recurrent CDI (recurrent).




2.2 Definitions

An episode of CDI was defined as the presence of a positive toxigenic CDI test result, together with diarrhoea (≥3 unformed stools in 24 h) or findings of pseudomembranous colitis by colonoscopy, following the definitions set out in the guidelines of the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA) (McDonald et al., 2018).

CDI is considered recurrent when it recurs within 8 weeks after a previous episode, provided the symptoms from the previous episode resolved after completion of the initial treatment (van Prehn et al., 2021). Having new symptoms and a positive sample after 60 days was considered a new episode.

Defined daily dose (DDD) is defined in the “WHO Collaborating Centre for Drug Statistics Methodology” as the assumed average maintenance dose per day in the case of a drug used for its main indication in adults (WHO, 2021).

We classified antimicrobial drugs as anaerobic, as previously described by Mulder et al, “We also classified the antimicrobial drugs in antimicrobial drugs with anaerobic activity (consisting of combinations of penicillins, including beta-lactamase inhibitors (J01CR), lincosamides (J01 FF) and imidazole derivatives (metronidazole) (J01XD): anaerobic+)…” (Mulder et al., 2020).

The severity of the CDI episode was defined according to the SHEA and IDSA guidelines (McDonald et al., 2018).

Death was considered CDI-related when there were no other attributable causes and/or it occurred within 10 days after the diagnosis of CDI and/or was due to known complications of CDI.

As for microbiome-related definitions, we considered richness as the number of different species found in a sample (Whittaker et al., 2001). Evenness (Pielou index) was defined as the degree to which different species are similar or uniform in abundance. Diversity indicated the degree of species richness and abundance, where alpha diversity is referred to the diversity within an individual -Inverse Simpson index: an indication of the richness in a community with the same evenness; and Shannon index: takes into account the number of species living in a habitat (richness) and their relative abundance (evenness)- and beta diversity referred to the difference in diversity between individuals (Whittaker et al., 2001).

We considered as microbiota-related diseases the following: cholelithiasis, colorectal cancer, hepatic encephalopathy, idiopathic constipation, inflammatory bowel disease, irritable bowel syndrome, familial Mediterranean fever, gastric lymphoma or carcinoma, arthritis, asthma, atopy, dermatitis, psoriasis, autoimmune disease, fatigue syndrome, diabetes mellitus, hypercholesterolaemia, idiopathic thrombocytopenic purpura, myocardial ischaemia, metabolic syndrome, behavioural disorders, multiple sclerosis, myoclonus dystonia, non-alcoholic fatty liver disease, oxalate kidney stones and Parkinson’s disease.




2.3 Detection of toxigenic C. difficile

Samples were processed using a rapid detection kit for toxigenic C. difficile. This rapid test consists of glutamate dehydrogenase antigen and toxins A and B detection by immunochromatography (C Diff Quik-Chek Complete assay, TechLab, Blacksburg, VA, USA) (Sensitivity 90.5%, specificity 93.1%, predictive positive value 76.4%, predictive negative value 97.6% in comparison with bacterial culture) and a real-time polymerase chain reaction (PCR) assay of the C. difficile toxin B gene (Xpert.C. difficile Assay, GeneXpert, Cepheid, Sunnyvale, CA, USA) (Sensitivity 98.79%, specificity 90.82%, predictive positive value 56.58%, predictive negative value 99.83% in comparison with bacterial culture).

In addition, all samples were cultured on C. difficile selective agar (bioMeriéux, Marcy l’Etoile, France). Suspected toxigenic C. difficile colonies were confirmed using immunochromatography (C Diff Quik-Chek Complete assay, TechLab, Blacksburg, VA, USA).




2.4 Calprotectin assay

Calprotectin levels were measured using EDITM Quantitative Faecal Calprotectin ELISA (Measurement range: 1 – 2000 µg/g stool) (Epitope Diagnostics, Inc, San Diego, CA, USA), according to the manufacturers’ instructions.




2.5 Clinical data

The demographic data collected included age and sex. Regarding clinical data, the underlying conditions were recorded using the McCabe and Jackson score for prognosis of underlying diseases. The McCabe score was used to categorise the risk of death by underlying comorbidities. The 3 categories were rapidly fatal (within 1 year), ultimately fatal (within 5 years) and non-fatal (>5 years) (Jackson and McCabe, 1962); comorbidity was graded according to the Charlson comorbidity index (Charlson et al., 1987). The Charlson comorbidity index is one of the most extensively used comorbidity indices (Huang et al., 2014). This index consists of 19 conditions, each of which is assigned a weighting of 1, 2, 3 or 6 based on the adjusted hazard ratio for each comorbidity. The sum of the weighted scores gives the total score (Yurkovich et al., 2015).

Other clinical data collected included antibiotic treatment, proton pump inhibitor use, nasogastric tube use, mechanical ventilation, surgery and chemotherapy or radiotherapy in the month prior to diagnosis of CDI. Regarding antibiotic consumption, the DDDs for each antibiotic were recorded. For the CDI episode, data on severity of the episode, treatment received, treatment failure, recurrence, mortality and CDI-related mortality were recorded.




2.6 Sample processing

Immediately upon receipt, the faecal samples were homogenized, aliquoted and stored at −80°C until the day of analysis. Total DNA was extracted from faecal samples using the Qiagen Fast QiaAmp DNA stool mini kit (QIAGEN, Valencia, CA, USA) according to the manufacturer’s protocol with the inclusion of a physical lysis step. The sample was lysed twice at 6.5m/s for 45 seconds in FastPrep-24 (MPBio, Derby, UK) with lysis matrix tubes E (MPBio, Derby, UK). The hypervariable V4 region of the 16S rRNA gene was amplified by PCR, with 515-806 primers (515:GTGCCAGCMGCCGCGGTAA, 806:GGACTACHVGGGTWTCTAAT) tailed with sequences to incorporate Illumina flow cell adapters and indexing barcodes (Illumina, San Diego, CA, USA). PCR amplification program was 1 cycle of 98°C 30 seconds; 25 cycles of 98°C 10 seconds, 60°C 20 seconds, 72°C 20 seconds; 1 cycle of 72°C 2 minutes. Q5® High-Fidelity 2X Master Mix (New England Biolabs, Ipswich, MA, USA)

Primer dimers and low-molecular-weight products were removed using Agencourt Ampure Beads (Beckman Coulter, Spain). Samples were quantified and quality was checked for amplicon size using the 4200 TapeStation (Agilent Technologies, Santa Clara, CA, USA). Amplicons were equimolar pooled and sequenced (2 × 250) on an Illumina Miseq platform (Illumina, San Diego, CA, USA) according to standard protocols.




2.7 Data analysis

The raw data were pre-processed, grouped by operational taxonomic units (OTUs) with 97% similarity and taxonomically classified using MOTHUR software (Patrick D. Schloss, PhD, © 2019, Michigan, USA) and SILVA and RDP databases. Analyses of species richness (OTUs observed), evenness (Pielou index), alpha diversity (Shannon index) and beta diversity (Bray-Curtys distance, unweighted unifrac distance) were performed with MOTHUR and R software (R Core Team, 2021, Vienna, Austria).

The statistical analyses were performed using R (R Core Team, 2021, Vienna, Austria). Frequencies were calculated for qualitative variables, and proportions were calculated with their 95% confidence interval (CI) following a binomial distribution. For quantitative variables, the median and interquartile range (IQR) or mean and standard deviation (SD) were calculated. Microbiota analyses were performed with R using the packages phyloseq, microbiome, microbiomeStat, vegan, DESeq2 and microeco.

The MaAslin2 (Multivariate microbial Association by Linear models) library was used to study the relationship between microbiota and clinical variables (Mallick et al., 2021). Differences between groups were determined using the χ2 test. Continuous variables were compared using the t test or the Mann-Whitney test (when a normal distribution could not be assumed). The normality of the distribution of continuous variables was assessed using the Kolmogorov-Smirnov test with the Lilliefors correction. A multivariate logistic regression model was used to assess predictors of R-CDI. The odds ratio (OR) and 95% CI were calculated. A p value <0.05 was considered significant. All significant variables in the bivariate study were included in the multivariate model, in the multivariate study a logistic regression was performed in which the weight of each variable was scored according to its odds ratio.




2.8 Ethical issues

This study was approved by the Ethics Committee of Hospital General Universitario Gregorio Marañón in Madrid (number MICRO.HGUGM.2016-029).

Participants’ informed consent was obtained before enrolment. All patients included in the study were given the sufficient time to make the decision to participate and understood each of the components of the study. Patients were also informed about their rights of access, rectification, cancellation and opposition.




2.9 Data availability

The data for this study have been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB57947 (https://www.ebi.ac.uk/ena/browser/view/PRJEB57947).





3 Results

During the study period, there were 1308 samples positive for toxigenic C. difficile from 906 patients. We obtained informed consent and a valid sample from 227 patients who had their first episode of CDI. Of these, 24 patients died before the end of the 2-month recurrence period follow-up, and 3 patients were lost to follow-up. We selected for analysis only samples from the patient’s first episode. Finally, we had 200 primary samples belonging to 200 patients, of whom 54 developed R-CDI and 146 did not.



3.1 Demographic and clinical characteristics

The median age of the patients was 67 years for those with non-recurrent disease and 78.50 years for those with recurrent disease. In both groups, there were more females than males (non-recurrent 54.8% [80/146]; recurrent 74.1% [40/54]; p = 0.013).

The most common underlying diseases were cardiovascular, metabolic, endocrine, nephrourological and gastrointestinal diseases (Table 1). The median Charlson comorbidity index was 4 (IQR: 2-6) in the non-recurrent group and 3.50 (IQR: 3-6) in the recurrent group (p= 0.256). Both groups contained a high percentage of patients with underlying diseases related to alterations of the microbiota, although this difference was not statistically significant (non-recurrent 65.8% [96/146]; recurrent 75.9% [41/54]; (p=0.169). Within this group of diseases, diabetes mellitus and ischemic heart disease were the most common (Table 1). Approximately 36% of all patients were immunocompromised (Table 1). Surprisingly, a higher percentage of patients had inflammatory bowel disease in the non-recurrent group (13.5%) than in the recurrent group (2.4%), and a higher percentage of patients had arthritis in the recurrent group (12.2%) than in the non-recurrent group (3.1%) (all p <0.05).


Table 1 | Clinical characteristics of patients with a primary Clostridioides difficile infection episode.



No significant differences regarding risk factors for CDI were recorded in either of the groups. The main risk factor for developing CDI was antibiotic therapy in the month prior to sampling. In the patients with non-recurrent disease, the most frequent antibiotics were cephalosporins, followed by penicillins, carbapenems and quinolones, while in the patients with recurrent disease the most frequently administered antibiotics were cephalosporins, followed by quinolones, penicillins and carbapenems (Table 2). As for other CDI risk factors, treatment with proton pump inhibitors and being hospitalised were widely present (Table 3).


Table 2 | Antibiotic treatment received 1 month prior to the primary Clostridioides difficile infection episode.




Table 3 | Risk factors for Clostridioides difficile infection.



Regarding the severity of the CDI episodes, most were mild (non-recurrent 65.8%; recurrent 64.8%; p=0.901). There were 2 cases of toxic megacolon and 2 cases of pseudomembranous colitis, all in the non-recurrent group. Most CDI episodes (non-recurrent 57.5%; recurrent 38.9%; p=0.020) were hospital onset, healthcare facility–associated (Table 4). The median toxin B PCR cycle was lower in patients with recurrent disease than in those with non-recurrent disease (23.25 vs 26.10; p=0.003). Those with recurrent disease had higher levels of creatinine and faecal calprotectin than those with non-recurrent disease (all p<0.05) (Table 4).


Table 4 | Characteristics of the primary Clostridioides difficile infection episode.



In both groups, most patients received treatment for CDI (non-recurrent, 97.9% [142/146]; recurrent, 100% [54/54]), mainly with vancomycin (non-recurrent, 85.6%, recurrent, 88.7%), followed by metronidazole (non-recurrent, 34.2%, recurrent, 26.4%). Fourteen patients included in this study had been enrolled in a clinical trial with faecal microbiota transplantation as their initial treatment. Few patients received fidaxomicin, and few patients received bezlotoxumab. There were no significant differences between the groups with respect to the CDI treatment they received (Table 4).

One patient with recurrent disease died (probably CDI-related), and no patients in the non-recurrent group died from a probably CDI-related condition. Both 30-day mortality and 90-day mortality (3.7% and 11.1%, respectively) were higher in the recurrent group than in the non-recurrent group (0% and 1.4% respectively) (all p<0.05) (Table 5).


Table 5 | Outcome of the primary CDI episode.






3.2 Calprotectin levels and recurrent CDI predictive models

We analyzed 179 samples for calprotectin levels (128 from non-recurrent patients and 51 from recurrent patients). The median values obtained were 98.92µg/mg (IQR 8.33-191.05). We observed significant differences between non-recurrent and recurrent patients (92.91 µg/mg vs 150.36 µg/mg; p=0.01).We obtained a median calprotectin value of 81.32 µg/mg (IQR: 0.00-171.02) for mild CDI episodes and 148.16 µg/mg (IQR: 55.83-230.38) for severe CDI episodes (p=0.002).

We classified faecal calprotectin levels as >185µg/mg and <185µg/mg (45.1% and 21.1% of the recurrent group, respectively; p=0.01) (Table 6). Patients with faecal calprotectin >185µg/mg had a lower median toxin B PCR cycle threshold than patients with faecal calprotectin levels <185µg/mg (24.00 vs 25.60; p=0.034). Patients with faecal calprotectin higher than 185µg/mg had higher levels of leucocytes and more days of diarrhoea than patients with lower levels of faecal calprotectin. In addition, more patients had severe and severe-complicated CDI episodes with a calprotectin level >185µg/mg and more mild episodes with calprotectin <185µg/mg (all p<0.05) (Table 6).


Table 6 | Characteristics of patients and Clostridioides difficile infection episode according to faecal calprotectin levels.



We ran a multivariate model and found the following independent risk factors for developing R-CDI: age, faecal calprotectin level >185µg/mg, toxin B PCR cycle threshold <23, immunosuppression, female sex, and creatinine levels higher than 1mg/dL (all p<0.05). We built a risk index for developing R-CDI based on the risk factors we obtained in the multivariable model (Table 7). The ROC curve analysis showed that this risk index had an area under the curve (AUC) of 0.783, with a power of 0.999, significance level of 0.05 and an overall accuracy of 79.0% (Figure 1).


Table 7 | Predictive model of recurrent Clostridioides difficile infection.






Figure 1 | ROC curve (receiver operating characteristic curve) of our model of independent risk factors for developing a recurrent CDI: faecal calprotectin level >185µg/mg, toxin B PCR cycle lower than 23, immunosuppression, female gender, age higher than 65 years, and creatinin levels higher than 1mg/dL (all p<0.05).






3.3 Community structure (diversity)

When studying the primary episode microbiome diversity of patients who went on to develop R-CDI and those who did not, we found significant differences in the inverse Simpson index (p=0.021), with lower values in patients with non-recurrent disease.

We found significant differences between those who presented any type of inflammatory bowel disease in the Shannon index, richness and evenness, with lower values than those of patients who did not present this condition (all p<0.05). Patients with a nasogastric tube during the month prior to the episode had lower values in the Shannon index, richness and evenness (all p<0.05).We found lower evenness values for patients who had taken probiotics in the month prior to the episode and those who had undergone colectomy or ileostomy and lower richness values for smokers and patients who had received antifungal treatment in the month prior to the episode.

We also studied the effects of antibiotics on the diversity of the microbiota and found that patients who received more than 3 antibiotics had less alpha diversity, less evenness (all p<0.05) and significant differences in beta diversity with respect to patients who received fewer than 3 antibiotics. The differences in alpha diversity and evenness remained significant in patients with recurrent disease compared with those who had non-recurrent disease.

In terms of beta diversity and of the variance of the intra-group samples, we found no significant differences between the recurrent and the non-recurrent group.




3.4 Community composition (relative abundance of taxa)

Regarding the relative abundance of the different taxonomic groups, we found that Bacteroidetes was the major phylum in patients with non-recurrent disease (40.18%), followed by Firmicutes (35.69%), whereas in those with recurrent disease, the major phylum was Firmicutes (38.26%), followed by Bacteroidetes (37.63%). Differences in relative abundance between the groups were not significant.

At the taxonomic family level, we found Bacteroidaceae to be the most abundant taxon in all patients (non-recurrent, 30.57%; recurrent, 28.02%), followed by Enterobacteriaceae (non-recurrent, 16.77%; recurrent, 13.75%) (Figure 2). When we analysed the taxonomic level of genus, we found that Fusobacterium increased in abundance in recurrent versus non-recurrent disease and that Collinsella, Senegalimassilia, Prevotella and Ruminococcus decreased in abundance in recurrent versus non-recurrent disease (all p<0.05) (Figure 3).




Figure 2 | Heatmap of family relative abundance in each sample, divided in Non-recurrent patients (group Non-Rec; left) and recurrent patients (Rec; right).






Figure 3 | Genus Log2 Fold Change represent differentially abundance genus between groups. Recurrent patients vs Non-recurrent patients.



Our analysis of the differences between patients with calprotectin levels >185µg/mg and those with levels <185µg/mg revealed that, as in the recurrent group, Fusobacterium increased and Senegalimassilia, Prevotella and Ruminococcus decreased. We also found other differences such as lower abundance of Lactobacillus, Lactococcus, Streptococcus, Blautia, Dorea, Bacteroides, Faecalicoccus, Clostridium XVIa and Parasutterella in patients with faecal calprotectin >185µg/mg than in those with lower values (all p<0.05) (Figure 4).




Figure 4 | Genus Log2 Fold Change represent differentially abundance genus between the following groups: Fecal calprotectin >185μg/mg vs <185μg/mg.



We performed a multivariable association study between microbial communities and clinical metadata and found that the genera Senegalimassilia, Alistipes, Blautia and Lactococcus had a negative association with faecal calprotectin concentration and that the genera Bacteroides, Fusobacterium and Dialister had a positive association with faecal calprotectin concentration (all p<0.05) (Table 8).


Table 8 | Association between microbial communities and calprotectin concentrations.



In terms of similarities between the OTUs of both groups, we found that they shared 1921 OTUs: 1119 unique OTUs in the recurrent group and 2241 unique OTUs in the non-recurrent group.





4 Discussion

In the present study, we profiled the microbiota of a large cohort of patients with CDI and found marked differences that could be useful in predicting R-CDI. We also established a significant association between elevated calprotectin values in patients who will subsequently develop R-CDI and built a risk index for R-CDI.

Several studies have characterised the microbiota in patients with CDI and R-CDI, although very few have attempted to establish relationships between gut microbiota and the likelihood of developing R-CDI (Khanna et al., 2016; Seekatz et al., 2016; Pakpour et al., 2017; Dawkins et al., 2022). These studies include a limited number of patients, and their results are conflicting.

With respect to diversity, we found significant differences in alpha diversity (inverse Simpson index) between patients who later developed R-CDI and those who did not. This was also observed in a smaller study by Pakpour et al. (Pakpour et al., 2017). When studying beta diversity, we did not observe any significant differences between the recurrent and non-recurrent groups, consistent with findings published elsewhere, except for those of Pakpour et al. who found significant differences in beta diversity between these groups (Khanna et al., 2016; Seekatz et al., 2016; Pakpour et al., 2017; Dawkins et al., 2022).

With respect to changes in genus abundance, we observed significant differences in genera such as Fusobacterium, which is more abundant in recurrent than non-recurrent disease, and in Collinsella, Senegalimassilia, Prevotella and Ruminococcus, with lower abundance in recurrent than in non-recurrent disease. Very few data have been reported on taxa abundance in patients with primary CDI who later develop R-CDI, and the available data are conflicting (Khanna et al., 2016; Seekatz et al., 2016; Pakpour et al., 2017; Dawkins et al., 2022).

The genus Fusobacterium, which we observed to have higher abundance in patients who will further develop R-CDI, is considered an opportunistic pathogen associated with a wide range of human conditions, including inflammatory bowel disease, colorectal cancer, preterm birth and intestinal inflammation (Strauss et al., 2011; Amitay et al., 2017; Engevik et al., 2021). The genera that we found in lower abundance in patients with recurrent disease, such as Collinsella, Senegalimassilia, Prevotella and Ruminococcus, were previously associated with healthy individuals, had anti-inflammatory properties and produced metabolites that are very important for the preservation of the intestinal barrier (Ze et al., 2012; Ko et al., 2017; Adamberg et al., 2018; Yeoh et al., 2022).

The devalences of these genera could play a role in maintaining intestinal inflammation and thus providing a favourable environment for new R-CDI, although this has not been demonstrated.

These microbiota findings may relate to the results we had obtained for calprotectin, with higher levels in recurrent disease than in non-recurrent disease, as calprotectin is a good biomarker of intestinal inflammation. We also found the same response for some of the above-mentioned genera in patients with high calprotectin levels than in those with low calprotectin levels. In this sense, at diagnosis, patients who are likely to develop R-CDI have higher levels of calprotectin, together with a higher abundance of Fusobacterium and lower abundance of Senegalimassilia, Prevotella and Ruminococcus. To the best of our knowledge, this is the first study to report an association between calprotectin levels and microbiota abundance alterations (in CDI).

However, although it is known that faecal calprotectin reaches the gut via migration of neutrophils into gastrointestinal tissues due to inflammatory processes, the exact mechanism by which this happens, and the genera or species of microbes involved in this process, are not known (Pathirana et al., 2018).

In the literature, some studies use calprotectin levels to distinguish true episodes of CDI from colonisation by C. difficile (Popiel et al., 2015) or to classify the severity of the CDI episode. We obtained statistically significantly higher levels of faecal calprotectin in severe episodes than in mild episodes, consistent with previous studies, which reported significant results between calprotectin levels and the severity of the CDI episode. (Barbut et al., 2017; Kim et al., 2017; Han et al., 2020; Suarez-Carantoña et al., 2021). However, few studies have investigated the relationship between calprotectin levels and risk of developing R-CDI: those that did showed no significant association between R-CDI and calprotectin levels, and most of them included a low number of patients studied or only included a specific subpopulation such as children or cancer patients (Swale et al., 2014; Peretz et al., 2016; Nicholson et al., 2017; He et al., 2018). Our results for calprotectin reveal a significant association between elevated calprotectin values in patients who will subsequently develop R-CDI, possibly because we analysed a large cohort of patients.

We propose an early prediction model for R-CDI based on clinical and analytical data such as age, sex, immunosuppression, creatinine level, calprotectin level and C. difficile PCR toxin B gene cycle, which can be assessed using commercially available PCR methods found in many microbiology laboratories. Our R-CDI prediction model included variables already known to be risk factors for R-CDI or poor outcome of CDI, such as advanced age, female sex, creatinine levels >1mg/dL, C. difficile PCR toxin B gene cycle threshold <23, immunosuppression and faecal calprotectin levels (Hu et al., 2009; Eyre et al., 2012; Lupse et al., 2013; Miller et al., 2013; Reigadas et al., 2016; Origüen et al., 2019; Alrahmany et al., 2021).

Hence, the data on which the model is based are easy to obtain at the time of diagnosis of the primary CDI episode, with a reasonable AUC (0.783). Although several prediction models have been developed for R-CDI (Eyre et al., 2012; D’Agostino et al., 2014; LaBarbera et al., 2015; Escobar et al., 2017; Cobo et al., 2018; Ruzicka et al., 2022), none have been widely implemented in clinical practice. External validations of prediction tools have revealed disappointing results, probably owing to the low quality of most studies and the small effects of the proposed prognostic factors (van Rossen et al., 2022).

Most of these predictive R-CDI models yielded much lower AUC values than ours, including those of Ruzicka et al. (AUC 0.65-0.63), Cobo et al. (AUC 0.72), Zilberberg et al. (AUC 0.643), Escobar et al. (AUC 0.591-0.605), D’Agostino et al. (AUC 0.64) and Larrainzar-Coghen et al. (AUC 0.66). Of these models, only that of Cobo et al. incorporated laboratory parameters related to C. difficile (D’Agostino et al., 2014; Larrainzar-Coghen et al., 2016; Zilberberg et al., 2016; Escobar et al., 2017; Cobo et al., 2018; Ruzicka et al., 2022).Origüen et al. obtained a predictive model for R-CDI with an AUC very similar to ours, ie, 0.785. Their model also included the PCR cycles of the C. difficile toxin (as did ours), although when they included the result of toxin detection by EIA, their AUC dropped to 0.775 (Origüen et al., 2019). We found only 2 models with higher AUC values than ours, namely, that of Hu et al. (AUC 0.80 in the validation cohort, 0.62 in the derivation cohort), which includes the detection of C. difficile antitoxin A IgG, and that of LaBarbera et al. (AUC 0.83), which does not include any laboratory parameters (Hu et al., 2009; LaBarbera et al., 2015). However, given that the model of Hu et al. is based on obtaining antitoxin IgA levels at day 12 of the CDI diagnosis, it cannot be used to guide treatment at the beginning of the episode. The model of LaBarbera et al. was complex, including 25 different variables with an overall accuracy of 66.1%, whereas ours was 79%. Having a simple and good R-CDI prediction model could help to guide early treatment of R-CDI.

Our study and our prediction model are limited by their single-centre design; therefore, our results should be validated in multicentre studies. On the other hand, we recruited a large number of patients, making ours the largest cohort to date in which microbiota in CDI and risk of recurrence are analysed. Our results can therefore be considered robust.

In conclusion, abundance of various bacterial genera and faecal calprotectin levels could be used as biomarkers to help identify patients who will develop R-CDI from those who will not. We also propose the use of our simple R-CDI risk index, which includes readily available data and rapid laboratory tests. The use of these early markers of R-CDI can guide management and treatment of the initial CDI episode, thus optimizing the use of resources, especially for patients who are at increased risk of R-CDI. Further research is warranted.
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Background

Gastroduodenal ulcers are associated with Helicobacter pylori infection and the use of nonsteroidal anti-inflammatory drugs (NSAIDs). However, the causal relationship between gastroduodenal ulcers and gut microbiota, especially specific gut microbiota, remains unclear.





Methods

We conducted an analysis of published data on the gut microbiota and Gastroduodenal ulcer using genome-wide association studies (GWAS). Two-sample Mendelian randomization (MR) analysis was performed to determine the causal relationship between gut microbiota and Gastroduodenal ulcer. Sensitivity, heterogeneity, and pleiotropy analyses were conducted to confirm the accuracy of the research findings.





Results

Our study showed that the abundance of Enterobacteriaceae, Butyricicoccus, Candidatus Soleaferrea, Lachnospiraceae NC2004 group, Peptococcus, and Enterobacteriales was negatively correlated with the risk of Gastroduodenal ulcer. Conversely, the abundance of Streptococcaceae, Lachnospiraceae UCG010, Marvinbryantia, Roseburia, Streptococcus, Mollicutes RF9, and NB1n was positively correlated with the risk of Gastroduodenal ulcer. MR analysis revealed causal relationships between 13 bacterial genera and Gastroduodenal ulcer.





Conclusion

This study represents a groundbreaking endeavor by furnishing preliminary evidence regarding the potentially advantageous or detrimental causal link between the gut microbiota and Gastroduodenal ulcer, employing Mendelian Randomization (MR) analysis for the first time. These discoveries have the potential to yield fresh perspectives on the prevention and therapeutic approaches concerning Gastroduodenal ulcer, with a specific focus on the modulation of the gut microbiota.
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1 Introduction

Gastroduodenal ulcer, also known as peptic ulcers, are characterized by the formation of ulcers within the mucosal lining of the stomach or duodenum. Clinical manifestations typically encompass upper abdominal discomfort, accompanied by symptoms such as nausea, vomiting, and dyspepsia (Malfertheiner et al., 2009). Frequent etiological factors encompass Helicobacter pylori infection, the use of nonsteroidal anti-inflammatory drugs (NSAIDs), aspirin, and genetic predisposition (Huang et al., 2002; Graham, 2014; Miftahussurur and Yamaoka, 2015). Notwithstanding our deepening comprehension of the pathophysiological underpinnings of Gastroduodenal ulcer and the progress in therapeutic modalities, the persistent issues of extended treatment duration, post-treatment monitoring, and the specter of recurrence continue to pose substantial challenges. These challenges not only result in financial burdens on patients and their families but also exert a profound impact on patients’ quality of life and occupational productivity (Lanas and Chan, 2017). Furthermore, Gastroduodenal ulcer can give rise to complications, notably perforations, with potentially grave consequences for patients’ well-being (de Boer, 1997). Hence, there is an urgent demand for the exploration of additional therapeutic modalities for Gastroduodenal ulcer with the aim of ameliorating the socioeconomic strain on both families and society.

The gut microbiota constitutes an intricate and diversified microbial consortium inhabiting the human gastrointestinal tract. It encompasses a wide array of microorganisms, encompassing bacteria, fungi, viruses, and parasites. Notably, bacteria represent the predominant constituents among them (Sender et al., 2016). The gut microbiota assumes a pivotal role in the human organism. It is involved in the synthesis and secretion of diverse bioactive substances, including vitamins, enzymes, and antibiotics, that confer numerous advantages to human physiology. Furthermore, the gut microbiota actively participates in the processes of digestion, the maintenance of intestinal health, and the preservation of microbial diversity and equilibrium within the gut. These functions are of paramount importance for overall health (Thursby and Juge, 2017). Furthermore, the gut microbiota exerts a pivotal influence on the maturation and modulation of the human immune system, thereby actively contributing to the preservation of immune homeostasis (Belkaid and Hand, 2014). The correlation between the gut microbiota and Gastroduodenal ulcer is an ongoing subject of research. Studies have indicated disparities in the gut microbiota composition between Gastroduodenal ulcer patients and healthy individuals (Chen X. et al., 2018). For instance, patients with Gastroduodenal ulcer may exhibit an overabundance of pathogenic bacteria, such as Helicobacter pylori, in their gut microbiota. Moreover, the disturbance of gut microbiota equilibrium may be associated with Gastroduodenal ulcer development (Schulz et al., 2018).

Due to the potential influence of uncontrolled confounding variables, traditional research methodologies often face limitations in elucidating the precise association between gut microbiota and Gastroduodenal ulcer. Consequently, the establishment of a causal link between gut microbiota and Gastroduodenal ulcer remains inconclusively characterized. Mendelian randomization (MR) serves as a viable approach to assess the presence of a causal relationship between the exposure and the outcome. This is achieved by employing single-nucleotide polymorphisms (SNPs) closely linked to relevant risk factors as instrumental variables (IVs) (Emdin et al., 2017). The reliability of the causal relationship within this methodology stems from the fact that the random allocation of alleles during embryonic meiosis remains largely impervious to the influence of most confounding variables (Zhang et al., 2023). To address the current void in Mendelian randomization (MR) analyses concerning the causal nexus between gut microbiota and Gastroduodenal ulcer, we undertook a comprehensive genome-wide association study (GWAS) followed by a two-sample Mendelian randomization (MR) investigation. This research endeavors to furnish a more profound comprehension of the influence exerted by gut microbiota on Gastroduodenal ulcer and to proffer robust scientific substantiation conducive to the prevention and management of Gastroduodenal ulcer through gut microbiota modulation.




2 Methods



2.1 Study design and data sources

We conducted a Mendelian randomization (MR) study to explore the causal relationship between the gut microbiota and Gastroduodenal ulcer. The schematic diagram of our study process is shown in Figure 1. In summary, we extracted data from summary statistics of genome-wide association studies (GWAS) to identify genetic variations associated with the exposure, which were subsequently used as instrumental variables (IVs). We performed a sequential two-sample MR analysis employing five distinct MR methodologies. Finally, a comprehensive set of sensitivity analysis metrics, including tests for heterogeneity, pleiotropy, and leave-one-out analysis, were applied to assess significant associations.




Figure 1 | Flowchart of the present MR study and major assumptions. MR, Mendelian randomization; GWAS, genome-wide association study; SNPs, single nucleotide polymorphisms; IVW, inverse-variance weighted; LD, linkage disequilibrium; MR-PRESSO, MR pleiotropy residual sum and outlier.



Summary-level genomic data of the gut microbiota were acquired from the MiBioGen study (data from https://mibiogen.gcc.rug.nl/) (Kurilshikov et al., 2021).This study represented the largest and most diverse genome-wide meta-analysis of the gut microbiota to date, encompassing genome-wide genotyping data and 16S fecal microbiota profiles from 24 cohorts, comprising a total of 18,340 individuals. The majority of participants in the study were of European descent (N=13,266). Profiling of microbial composition was achieved through targeted sequencing of the V4, V3-V4, and V1-V2 regions of the 16S rRNA gene. Subsequently, taxonomic classification was performed utilizing direct taxonomic binning. Following the processing of 16S microbiome data, a total of 211 taxa were identified, encompassing 131 genera, 35 families, 20 orders, 16 classes, and 9 phyla. Comprehensive information regarding the microbiota dataset can be found in the original investigation (Kurilshikov et al., 2021).

The GWAS summary data on Gastroduodenal ulcer (finn-b-K11_GASTRODUOULC) were obtained from the FinGen, including 9216 cases of Gastroduodenal ulcer and 320387 controls (Kurki et al., 2023). To enhance the reliability of our findings, we carried out an extensive search in the “ieu open gwas project” focusing on data related to Gastroduodenal ulcer. After careful screening, we selected the dataset with the largest sample size, which not only had a large sample size but also contained detailed information about Gastroduodenal ulcer. Using this large sample dataset, we can analyze and study the relevant features and risk factors of Gastroduodenal ulcer more accurately. Thus, our results will be more persuasive and will provide stronger evidence for research and practices in relevant fields (data from https://gwas.mrcieu.ac.uk/).




2.2 Instrumental variable selection

To ensure the accuracy and validity of our conclusions regarding the causal relationship between gut microbiota and Gastroduodenal ulcer, we implemented a series of quality control procedures to filter instrumental variables (IVs). Firstly, we selected single-nucleotide polymorphisms (SNPs) with significant associations to the gut microbiome as IVs. SNPs were chosen based on two distinct thresholds. In order to obtain a comprehensive overview and enhance the explained phenotypic variability, we included a set of SNPs with locus-wide significance levels below 1×10-5 as IVs. Additionally, for secondary analysis, another set of SNPs with genome-wide significance (p<5×10-8) were selected as IVs, but we did not find enough sample size in our experiments. Secondly, to ensure the independence of the selected IVs and minimize the impact of linkage disequilibrium that violates the random allele assignment, we configured the clumping procedure with parameters set to r2<0.001 and kb=10,000kb. Thirdly, If exposure-related SNPs were not identified in the outcome genome-wide association study (GWAS) results, proxy SNPs highly correlated with the target variant (r2>0.8) were identified through the SNiPA website (Arnold et al., 2015). However, it’s important to note that such a scenario did not occur in our analysis. Fourthly, SNPs with palindromic properties and incompatible alleles were disqualified from the Mendelian Randomization (MR) analysis. Fifthly, in order to satisfy the second key assumption of MR (independence from confounders), we conducted a manual inspection and exclusion of SNPs significantly associated (p<5×105) with potential confounding factors using the PhenoScanner GWAS database (Staley et al., 2016; Kamat et al., 2019). SNPs such as rs166849 and rs6494306 were eliminated because they were associated with past smoking and type 2 diabetes. In addition, SNPs rs2952251 were associated with anxiety, past smoking, and mood swings, SNPs rs62532512 were associated with past smoking, mood swings, and misery, and SNP rs17708276 were associated with worry, tension, and misery, and all SNPs rs2952251, rs62532512, and rs17708276 were also deleted. Sixthly, a minimum minor allele frequency threshold of 0.01 was enforced. Lastly, to mitigate weak instrumental bias, the F-statistic was computed for each SNP, and any SNPs with F-statistics below 10 were discarded (Burgess and Thompson, 2011). The F-statistic is expressed as R2 (n-k-1)/k (1-R2), with n representing the sample size, k denoting the number of IVs, and R2 signifying the variance explained by the IVs.




2.3 Effect size estimate

We conducted a two-sample Mendelian randomization (MR) analysis to explore the causal relationship between gut microbiome features and the risk of Gastroduodenal ulcer.When multiple IVs were involved in a gut microbiota feature, we adopted the inverse-variance weighted (IVW) test as the primary analytical approach, complemented by other methodologies, including MR-Egger, simple mode, weighted median, and weighted mode (Burgess et al., 2013). To comprehensively assess the influence of the gut microbiome on Gastroduodenal ulcer, the meta-analysis technique known as IVW converted the outcome effects of IVs on exposure effects into a weighted regression model with an intercept constrained to zero. In the absence of horizontal pleiotropy, IVW yielded unbiased estimates by mitigating the influence of confounding variables (Holmes et al., 2017). It is noteworthy that the MR-Egger method may be susceptible to the influence of outlier genetic variables, potentially leading to incorrect estimations. However, even when all selected IVs are invalid, the MR-Egger approach can still produce unbiased estimates (Bowden et al., 2016b). The simple mode offers robustness against pleiotropy effects, although it may be less statistically powerful than IVW (Milne et al., 2017). The weighted median method, when at least 50% of data from valid instruments are available, is capable of providing precise and reliable effect estimates (Bowden et al., 2016a). In situations involving genetic variables that violate the pleiotropy assumption, the weighted mode method can be adapted (Hartwig et al., 2017).




2.4 Sensitivity analysis

To assess the potential impact of heterogeneity and pleiotropy among instrumental variables (IVs) on MR results, a comprehensive set of sensitivity analyses was undertaken to ascertain the robustness of our significant findings. Heterogeneity among the selected genetic instruments was quantified using Cochran’s Q test and visualized through funnel plots. Furthermore, we probed for potential horizontal pleiotropic effects of the included IVs, employing both the MR Egger intercept and the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) global test. Concurrently, we performed a leave-one-out sensitivity analysis to validate the precision and robustness of causal effect estimates, ensuring that our MR estimates were not unduly influenced by highly influential SNPs. In addition, the MR Steiger directionality test was employed to infer the causal direction (Hemani et al., 2017). Credible causal links were identified when the variance explained by the IVs on the exposure exceeded that on the outcome. All statistical analyses in our investigation, encompassing both MR and sensitivity analyses, were executed using the R packages “TwoSampleMR” and “MRPRESSO” within the publicly available R software (version 4.3.1).





3 Results



3.1 Instrumental variable selection

In our study, we commenced by choosing 211 bacterial taxa as the subjects of investigation. To guarantee the adherence of instrumental variables (IVs) to the established criteria, we conducted a rigorous screening process to eliminate instrumental variables that exhibited significant associations with the study objectives. In order to satisfy the second critical assumption of Mendelian Randomization (MR), which pertains to the independence of confounding factors, we further utilized the PhenoScanner GWAS database for a meticulous manual examination. This allowed us to identify and subsequently exclude instrumental variables that displayed significant associations with potential confounding factors. During this process, we carefully identified instrumental variables significantly linked to confounding factors and duly removed these variables to ensure the precision of our research outcomes. These procedures are essential in ensuring the independence of the instrumental variables we employed, allowing us to effectively infer causal relationships. Subsequently, the remaining data underwent re-analysis utilizing the aforementioned methodologies. The results of the analysis indicated that when employing the Inverse Variance Weighting (IVW) method as the primary analytical approach, the p-value associated with Rikenellaceae exceeded 0.05. As a result, Rikenellaceae and all the included Single Nucleotide Polymorphisms (SNPs) were removed. During the final screening phase, we rigorously selected 156 Single Nucleotide Polymorphisms (SNPs) as instrumental variables (see Supplementary Table S1). These instrumental variables underwent meticulous filtration to guarantee their effectiveness and reliability within the context of our study. It is noteworthy that all instrumental variables exhibited F-values exceeding 10, signifying their robust predictive capacity in explaining variables. Importantly, this observation underscores that our instrumental variables are not weak, and they can be effectively employed to address endogeneity issues (see Table 1). These outcomes bolster our confidence in the validity of our research findings and furnish robust support for subsequent analyses.


Table 1 | MR estimates for the association between gut microbiota and Gastroduodenal ulcer (p < 1 × 10−5).






3.2 Causal impact of gut microbiota on gastroduodenal ulcer

Based on our research findings, we have identified causal relationships between 13 bacterial genera and the risk of Gastroduodenal ulcer. Notably, several bacterial taxa with high predicted abundance exhibited significant correlations with the risk of Gastroduodenal ulcer.

Specifically, a higher abundance of Enterobacteriaceae (OR: 0.75, 95% CI: 0.58-0.97, p=0.031)was associated with a reduced risk of Gastroduodenal ulcer. Similarly, increased abundances of Butyricicoccus (OR: 0.74, 95% CI: 0.57-0.96, p=0.024), Candidatus Soleaferrea (OR: 0.88, 95% CI: 0.77-1.00, p=0.045), Lachnospiraceae NC2004 group (OR: 0.81, 95% CI: 0.69-0.95, p=0.012), Peptococcus (OR: 0.86, 95% CI: 0.76-0.97, p=0.018), and Enterobacteriales (OR: 0.75, 95% CI: 0.58-0.97, p=0.031) were associated with a decreased risk of Gastroduodenal ulcer (see Figure 2, Table 1).


Table 2 | Evaluation of heterogeneity and directional pleiotropy using different methods.



In contrast, higher abundances of Streptococcaceae (OR: 1.34, 95% CI: 1.09-1.83, p=0.004), Lachnospiraceae UCG010 (OR: 1.33, 95% CI: 1.07-1.66, p=0.011), Marvinbryantia (OR: 1.27, 95% CI: 1.01-1.58, p=0.037), Roseburia (OR: 1.29, 95% CI: 1.04-1.61, p=0.021), Streptococcus (OR: 1.28, 95% CI: 1.03-1.57, p=0.023), Mollicutes RF9 (OR: 1.26, 95% CI: 1.07-1.48, p=0.006), and NB1n (OR: 1.21, 95% CI: 1.07-1.36, p=0.002) were associated with an elevated risk of Gastroduodenal ulcer. These findings suggest that increased abundances of these gut microbiota may be linked to an increased risk of Gastroduodenal ulcer (see Figure 2, Table 1).




Figure 2 | Associations of genetically predicted Gastroduodenal ulcer with sepsis risk using IVW method SNPs, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval.






3.3 Sensitivity analysis

Our analysis of the relationship between gut microbiota and Gastroduodenal ulcer has revealed a total of 13 causal associations. Initially, we employed Cochran’s Q test to assess the heterogeneity of all instrumental variables (IVs). The results indicated no significant heterogeneity (P>0.05), signifying consistent effects of the selected instrumental variables (IVs) across various studies (refer to Table 2).

To further validate the instrumental variables (IVs), we performed MR-Egger intercept tests and MR-PRESSO tests. Encouragingly, all p-values exceeded 0.05, indicating the absence of horizontal pleiotropy and the detection of outliers by MR-PRESSO (refer to Table 2). This absence of outliers further bolsters our confidence in the instrumental variables (IVs). These sensitivity analyses confirm that the selected instrumental variables (IVs) exhibit good heterogeneity and lack horizontal pleiotropy, effectively assisting in addressing endogeneity concerns.

The scatter plot illustrates the relationship between distinct gut microbiota and the incidence of Gastroduodenal ulcer. Enterobacteriaceae, Butyricicoccus, Candidatus Soleaferrea, Lachnospiraceae NC2004 group, Peptococcus, and Enterobacteriales are considered to have a protective effect, indicating a negative correlation with the occurrence of Gastroduodenal ulcer. Conversely, Streptococcaceae, Lachnospiraceae UCG010, Marvinbryantia, Roseburia, Streptococcus, Mollicutes RF9, and NB1n are associated with a non-protective effect, demonstrating a positive correlation with Gastroduodenal ulcer incidence.

The scatter plot also displays the weights obtained through various MR analysis methods (IVW, MR-Egger, weighted median, weighted mode, and simple mode). These lines represent the non-protective or protective relationships between diverse gut microbiota and Gastroduodenal ulcer. An upward trend from left to right suggests a non-protective relationship with Gastroduodenal ulcer, while a downward trend indicates a protective relationship with Gastroduodenal ulcer (Supplementary Figures S3).

Through leave-one-out analysis, we identified no potential outliers among all instrumental variables (IVs), signifying that the established causal relationships remain unaffected by individual instrumental variables (IVs) (Supplementary Figures S1, S2). This finding further bolsters the reliability of the association between gut microbiota and Gastroduodenal ulcer.





4 Discussion

To the best of our knowledge, this study represents the inaugural exploration into the causal association between gut microbiota and Gastroduodenal ulcer, utilizing publicly available GWAS data. Employing two-sample MR methods, we have effectively uncovered 13 causal relationships connecting gut microbiota to Gastroduodenal ulcer risk. This discovery furnishes pivotal scientific substantiation, advancing our comprehension of the impact of gut microbiota on Gastroduodenal ulcer etiology. These findings underscore the integral role played by the gut microbiota composition in Gastroduodenal ulcer. Further investigations hold the potential to deepen our insights into how these microbial entities influence the onset and progression of Gastroduodenal ulcer. Moreover, these revelations proffer novel perspectives for Gastroduodenal ulcer prevention and treatment strategies, including the prospect of modulating gut microbiota composition to enhance gastrointestinal well-being and curtail Gastroduodenal ulcer risk.

In our study, a series of analyses have indicated that a high abundance of Enterobacteriaceae may confer protection against Gastroduodenal ulcer. Previous research has demonstrated that Enterobacteriaceae exhibits resilience in acidic environments by inducing a low pH-triggered lysine decarboxylase system (CadB-CadA system). This mechanism converts lysine into cadaverine, an alkaline amine, which is subsequently released from the cells via CadB, leading to a reduction in extracellular hydrogen ion concentration (McGowan et al., 1996). The reduction in hydrogen ion concentration plays a significant role in effectively controlling the occurrence of Gastroduodenal ulcer. This discovery enhances our understanding of the protective capacity of Enterobacteriaceae against Gastroduodenal ulcer. Further investigation into the mechanisms underlying the protective role of Enterobacteriaceae in Gastroduodenal ulcer can pave the way for the development of more effective treatments. For instance, by intervening in the CadB-CadA system, we can potentially augment the survival capabilities of Enterobacteriaceae, thereby strengthening its protective effects against Gastroduodenal ulcer. Such interventions could have implications for the prevention and treatment of these ulcerative conditions. It’s worth noting that the gut’s indigenous microbial population includes Proteobacteria, a major constituent of the gut microbiota (Kim et al., 2017). In a study investigating alterations in the gut microbial community following a 14-day bismuth quadruple therapy for peptic ulcers, substantial changes were observed in the gut microbiota at the phylum level after the treatment period. There was a notable reduction in the abundance of specific gut bacteria at the phylum level. However, it is noteworthy that the abundance of Proteobacteria, which includes Enterobacteriaceae, exhibited a relative increase after the treatment (Zhou et al., 2020). The observed increase in Proteobacteria abundance implies a potential protective effect against Gastroduodenal ulcer. Notably, our study revealed that Enterobacterales, a taxonomic order within the Proteobacteria phylum, is associated with this increase, suggesting that a higher abundance of Enterobacterales may correspond to a reduced incidence of Gastroduodenal ulcer. Furthermore, it is essential to underline that Enterobacteriaceae, which is a family within Proteobacteria, aligns with these findings, further corroborating our research results.

In a study evaluating the efficacy of Helicobacter pylori eradication therapy for Gastroduodenal ulcer induced by this bacterium, researchers focused on a group of patients diagnosed with Helicobacter pylori infection who had not undergone any prior treatment. Within this cohort, Butyricicoccus was detected in the gut microbiota. Subsequent to treatment, a notable reduction in the abundance of Butyricicoccus was observed in comparison to both the uninfected Helicobacter pylori group and the control group devoid of severe digestive system ailments. Interestingly, the study identified a substantial increase in the abundance of Butyricicoccus among patients with Gastroduodenal ulcer before treatment in contrast to after treatment (Cui et al., 2022). This implies that an elevated abundance of Butyricicoccus may play a role in the development of Gastroduodenal ulcer, which contrasts with our findings. To reconcile this inconsistency, a more comprehensive understanding of the underlying mechanisms and principles is required to better elucidate the impact of Butyricicoccus on Gastroduodenal ulcer.

Xia Chen et al. conducted a study indicating a notably higher abundance of Streptococcus in patients with gastroduodenal ulcer. This observation implies that an elevated abundance of Streptococcus might be a risk factor for gastroduodenal ulcer, aligning with our own findings (Chen X. et al., 2018). It’s important to highlight that prior studies have detected Mollicutes in patients with chronic gastritis, but its abundance is comparatively lower in healthy individuals (Nascimento et al., 2021). This indicates that Mollicutes may have an impact on the occurrence of Gastroduodenal ulcer. Both RF9 and NB1n are categorized under Mollicutes, and our findings align with the notion that RF9 and NB1n may also exhibit a positive correlation with Gastroduodenal ulcer.

Candidatus Soleaferrea belongs to the Candida genus. In an experiment involving rats induced with cysteamine to induce Gastroduodenal ulcer perforation, the group administered with Candida exhibited a significantly higher probability of Gastroduodenal ulcer perforation compared to the group administered with normal saline. Furthermore, the area of Gastroduodenal ulcer was also larger in the Candida-administered group than in the normal saline group. These findings from the cysteamine-induced Gastroduodenal ulcer experiment indicate that Candida can significantly exacerbate Gastroduodenal ulcer (Nakamura et al., 2007). Additionally, there have been studies indicating that Candida infection is present in some patients with gastric-duodenal ulcers. Moreover, in cases where patients have both Gastroduodenal ulcer and Barrett’s ulcers, Candida is observed exclusively in those with Gastroduodenal ulcer (Kalogeropoulos and Whitehead, 1988). Nonetheless, our experimental results revealing a negative correlation between increased Candidatus Soleaferrea abundance and Gastroduodenal ulcer contradict our initial hypothesis. This suggests the presence of other factors or mechanisms that may influence the relationship between Candidatus Soleaferrea and Gastroduodenal ulcer. Therefore, further research is warranted to comprehensively comprehend the association between Candidatus Soleaferrea and Gastroduodenal ulcer. This may involve investigating other potential microbiota alterations, host genetic factors, environmental influences, and more to elucidate the specific role of Candidatus Soleaferrea in Gastroduodenal ulcer occurrence. The findings from these studies will contribute to a deeper understanding of the interaction between Candidatus Soleaferrea and Gastroduodenal ulcer, offering fresh insights into potential treatment strategies and preventive measures.

Streptococcaceae, Lachnospiraceae NC2004 group, Lachnospiraceae U-CG010, Marvinbryantia, Peptococcus, and Roseburia all fall within the Firmicutes phylum. Firmicutes is a prevalent bacterial phylum typically identified in the human gut. The gut microbiota forms a multifaceted ecosystem comprising diverse microorganisms that exert significant influences on human health and disease (Belkaid and Hand, 2014; Sender et al., 2016; Thursby and Juge, 2017). Recent studies have indicated that patients infected with Helicobacter pylori tend to exhibit higher Firmicutes abundance in their gut microbiota prior to treatment. However, following a 14-day course of bismuth therapy, significant alterations occur within the gut microbial community, marked by a substantial reduction in Firmicutes abundance (Chen L. et al., 2018). In a study involving mice with Helicobacter pylori-induced gastritis, researchers observed an elevated abundance of Firmicutes. These findings indicate a potential positive correlation between increased Firmicutes abundance and the risk of Gastroduodenal ulcer (Lofgren et al., 2011). In our study, we identified a positive correlation between the abundance of Lachnospiraceae UCG010, Marvinbryantia, Streptococcaceae, and Roseburia and the incidence of Gastroduodenal ulcer. This suggests that an increase in the abundance of these bacteria may be associated with a higher risk of Gastroduodenal ulcer. However, the specific relationship between Firmicutes and Gastroduodenal ulcer remains unclear due to limited research in this area. The scientific community has yet to establish a consensus on this matter, necessitating further investigation to confirm these findings.Conversely, our research revealed a negative correlation between the abundance of Lachnospiraceae NC2004 group, and Peptococcus and Gastroduodenal ulcer. However, due to the scarcity of relevant studies, we do not have a comprehensive understanding of the specific relationship between these bacterial genera and Gastroduodenal ulcer. Thus, additional research is warranted to elucidate the associations between these genera and the occurrence and progression of Gastroduodenal ulcer. Through in-depth investigations and experiments, we can gain a better understanding of how these bacterial genera contribute to the development of Gastroduodenal ulcer.

Our study employed Mendelian Randomization (MR) analysis methods, which, in comparison to traditional observational studies, can mitigate the influence of confounding factors on the outcomes. We conducted an assessment of the causal relationship between gut microbiota and Gastroduodenal ulcer, specifically at the phylum level. This analysis serves as a foundational framework for future investigations into specific microbial strains, thereby contributing to a deeper comprehension of the pathogenesis of Gastroduodenal ulcer. Our study’s findings offer new insights and potential approaches for the future diagnosis and treatment of Gastroduodenal ulcer. Simultaneously, in order to assess the potential impact of heterogeneity and pleiotropy among instrumental variables on the MR results, we conducted an extensive sensitivity analysis, which further bolsters the reliability of our findings.

Our study has certain limitations that should be taken into account. Firstly, the participants included in the GWAS meta-analysis database were predominantly of European descent, with a limited amount of data from other ethnic groups regarding their gut microbiota. This discrepancy may have influenced our research results, as the composition of gut microbiota can vary among different ethnic groups. And, due to the fact that most of the GWAS data comes from individuals of European descent, even if there may be interference from population stratification, the results of this study may not be applicable to other populations of non-European ancestry. Secondly, in our study, 16S rRNA gene sequencing enables resolution only at the phylum level, preventing us from further exploring the causal relationship between gut microbiota and gastric ulcers at the species level. Moreover, concerning sample size, gut microbiota Genome-Wide Association Studies (GWAS) are in an early stage, with relatively few loci associated with gastric ulcers. To conduct sensitivity analysis and test at various significance levels, more genetic variations need inclusion as instrumental variables. Further exploration requires analysis at higher taxonomic levels, such as order, class, and phylum, which might limit the comprehensive study of specific impacts of individual bacterial species. Thirdly, using a limited number of gut microbiota Single Nucleotide Polymorphisms (SNPs) as instrumental variables, there’s a possibility that our study results could be influenced by weak instrument bias, despite all genetic instruments being associated with the exposure (F-statistic>10). It’s noteworthy that our study predominantly involved individuals of European descent, potentially limiting the generalizability of our study results to a more diverse population.

Furthermore, it’s essential to acknowledge that MR analysis is a hypothesis-based approach, and its outcomes can only establish associations rather than causal relationships. Subsequent experimental and clinical research is indispensable to establish the causal relationship between gut microbiota and specific diseases.

Additionally, there might be some subjectivity involved in eliminating the confounding effects of genetic variables through phenoscanner. This subjectivity could introduce some bias into our research results, emphasizing the importance of interpreting and understanding the findings with caution.

In conclusion, although our study has uncovered valuable insights, it’s imperative to recognize the aforementioned limitations. Future research should aim for more comprehensive and diversified investigations to further enhance our understanding of the intricate relationship between gut microbiota and diseases.

In summary, our study conducted a comprehensive assessment of the causal relationship between gut microbiota and Gastroduodenal ulcer. Our findings have contributed valuable insights and directions for further research on the prevention and treatment of Gastroduodenal ulcer. However, while we have acquired an initial understanding of the connection between gut microbiota and Gastroduodenal ulcer, the precise mechanisms underlying the role of gut microbiota in this condition remain unclear. Our study has established a correlation, but further research is necessary to elucidate how gut microbiota influences the occurrence and progression of Gastroduodenal ulcer.

In future investigations, we plan to delve deeper into the mechanisms through which gut microbiota contributes to the development of Gastroduodenal ulcer. This will involve analyzing the composition and functionality of the gut microbiota and its interactions with the host. Such endeavors will enhance our comprehension of the relationship between gut microbiota and Gastroduodenal ulcer, offering more targeted approaches for the prevention and treatment of this condition.

Moreover, while our study has uncovered pivotal insights into the relationship between gut microbiota and Gastroduodenal ulcer through Mendelian Randomization (MR), it’s essential to acknowledge the inherent limitations of this method. MR, by nature, establishes associations but doesn’t conclusively prove causation. It relies on genetic variance, lacking the capacity for direct exposure manipulation present in randomized controlled trials. Hence, it’s imperative to recognize the need for additional experimental and clinical research to validate and establish causative relationships between specific exposures and health outcomes, which can provide more direct and conclusive evidence.
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Background

Previous research has posited a potential correlation between the gut microbiota and the onset of appendicitis; however, the precise causal connection between appendicitis and the gut microbiota remains an unresolved and contentious issue.





Methods

In this investigation, we performed a Mendelian randomization (MR) analysis employing publicly accessible summary data extracted from genome-wide association studies (GWAS) to elucidate the potential causal nexus between the gut microbiota and the development of appendicitis. We initially identified instrumental variables (IVs) through a comprehensive array of screening methodologies, subsequently executing MR analyses using the Inverse Variance Weighted (IVW) technique as our primary approach, supplemented by several alternative methods such as MR Egger, weighted median, simple mode, and weighted mode. Additionally, we implemented a series of sensitivity analysis procedures, encompassing Cochran’s Q test, MR-Egger intercept test, Mendelian Randomized Polymorphism Residual and Outlier (MR-PRESSO) test, and a leave-one-out test, to affirm the robustness and validity of our findings.





Results

Our investigation indicates that an elevated prevalence of Deltaproteobacteria, Christensenellaceae, Desulfovibrionaceae, Eubacterium ruminantium group, Lachnospiraceae NK4A136 group, Methanobrevibacter, Desulfovibrionales, and Euryarchaeota is inversely associated with the risk of appendicitis. Conversely, we observed a positive correlation between an increased abundance of Family XIII, Howardella, and Veillonella and the susceptibility to appendicitis. Sensitivity analyses have corroborated the robustness of these findings, and Mendelian randomization analyses provided no indications of reverse causality.





Conclusion

Our Mendelian randomization (MR) analysis has unveiled potential advantageous or detrimental causal associations between the gut microbiota and the occurrence of appendicitis. This study offers novel theoretical and empirical insights into the understanding of appendicitis pathogenesis, along with its implications for preventive and therapeutic strategies.
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1 Background

Acute abdominal pain constitutes 7%-10% of all emergency department visits (Cervellin et al., 2016), with appendicitis emerging as the leading cause for individuals seeking emergency medical care due to abdominal distress (Di Saverio et al., 2020). Moreover, appendicitis stands as a prevalent cause of acute abdominal pain necessitating surgical intervention (Munakata et al., 2021). The lifetime risk of acute appendicitis encompasses 8.6% for males and 6.7% for females (Addiss et al., 1990), with indications suggesting a rising incidence of appendicitis in industrialized nations (Ferris et al., 2017). Appendicitis can be categorized into two forms: complicated and uncomplicated appendicitis (Perez and Allen, 2018). Primary etiological factors underlying appendicitis encompass appendiceal lumen obstruction, lymphoid hyperplasia, and infections (Vanhatalo et al., 2019). The etiology of appendicitis includes bacteria, fungi, viruses, parasites, etc. (Yigiter et al., 2007; Katzoli et al., 2009; Larbcharoensub et al., 2013; Altun et al., 2017; Habashi and Lisi, 2019; Jones et al., 2023). Presently, surgical intervention remains the primary treatment modality for appendicitis(Di Saverio et al., 2020), albeit mounting evidence supporting the use of antibiotics as the first-line treatment for most cases of uncomplicated acute appendicitis (Salminen et al., 2015; Sallinen et al., 2016; Podda et al., 2019). This underscores the potential feasibility of non-surgical approaches in the management of appendicitis. Urgent endeavors are warranted to delve deeper into the etiological aspects of appendicitis in order to explore novel avenues for its prevention and therapeutic intervention.

The term “gut microbiota” encompasses the complex microbial community residing within the human intestinal tract, encompassing bacteria, fungi, viruses, and more. It has been established that the gut houses a staggering count of up to 100 trillion symbiotic microorganisms, with a cellular abundance tenfold greater than that of the human body itself (Backhed et al., 2005). The gut microbiota assumes pivotal roles within the human system, encompassing the enhancement of immune system functionality, integral contributions to digestion and metabolic processes, modulation of epithelial cell proliferation and differentiation, mitigation of insulin resistance, and influence on insulin secretion, among other functions (Gomaa, 2020).

Research has unveiled distinctions in the gut microbiota profiles between appendicitis-afflicted individuals and their healthy counterparts. Specifically, appendicitis patients have exhibited diminished richness and diversity in Firmicutes, Actinobacteria, Fusobacteria, and Verrucomicrobia (Peeters et al., 2019). However, conflicting findings have emerged, with certain studies reporting an elevated abundance of Fusobacterium and a decreased presence of Bacteroides in samples from individuals with appendicitis (Zhong et al., 2014). Likewise, discernable differences have been noted in the diversity and composition of the gut microbiota between cases of uncomplicated and complicated appendicitis (The et al., 2019). These investigations collectively suggest a plausible connection between the gut microbiota and the development of appendicitis, yet the precise causal relationship remains a subject of ongoing debate and uncertainty.

Mendelian randomization (MR) stands as an epidemiological approach that leverages genetic variations as instrumental variables (IVs) to infer causal links between exposures and outcomes. In contrast to conventional observational studies, MR has the capacity to mitigate confounding factors and reverse causation, thus establishing robust causal connections. Single nucleotide polymorphisms (SNPs), distributed randomly at conception and independent of confounding influences, render Mendelian randomization (MR) akin to randomized controlled trials, thereby circumventing the biases inherent in observational studies. Notably, no prior investigations have undertaken the assessment of the causal implication of the gut microbiota in appendicitis risk through MR analysis. In this research endeavor, we have undertaken a two-sample MR analysis utilizing summary statistics data derived from genome-wide association studies (GWAS) to scrutinize the interplay between the gut microbiota and appendicitis, thereby contributing to an enhanced understanding of its pathogenesis. This study offers fresh theoretical and empirical evidence pertinent to appendicitis prevention and treatment.




2 Methods



2.1 Study design and data sources

We conducted a Mendelian Randomization (MR) study to explore the causal relationships between the gut microbiota and appendicitis The schematic representation of our research process is depicted in Figure 1. In summary, we identified genetic variants associated with the exposure by extracting data from Genome-Wide Association Study (GWAS) summary statistics, which were subsequently utilized as instrumental variables (IVs). We performed a sequential two-sample MR analysis employing five distinct MR methodologies. Finally, a comprehensive set of sensitivity analysis metrics, including tests for heterogeneity, pleiotropy, and leave-one-out analysis, were applied to assess significant associations.




Figure 1 | Flowchart of the present MR study and major assumptions. MR, Mendelian randomization; GWAS, genome-wide association study; SNPs, single nucleotide polymorphisms; IVW, inverse-variance weighted; LD, linkage disequilibrium; MR-PRESSO, MR pleiotropy residual sum and outlier.



Summary-level genomic data of the gut microbiota were acquired from the MiBioGen study (Kurilshikov et al., 2021; Consortium, 2023). This study represented the largest and most diverse genome-wide meta-analysis of the gut microbiota to date, encompassing genome-wide genotyping data and 16S fecal microbiota profiles from 24 cohorts, comprising a total of 18,340 individuals. The majority of participants in the study were of European descent (N=13,266). Profiling of microbial composition was achieved through targeted sequencing of the V4, V3-V4, and V1-V2 regions of the 16S rRNA gene. Subsequently, taxonomic classification was performed utilizing direct taxonomic binning. Following the processing of 16S microbiome data, a total of 211 taxa were identified, encompassing 131 genera, 35 families, 20 orders, 16 classes, and 9 phyla. Comprehensive information regarding the microbiota dataset can be found in the original investigation (Kurilshikov et al., 2021).

The summary GWAS data for appendicitis comes from FinnGen,which includes 16766 appendicitis patients and 201886 controls, with a total of 16380466 SNPs, all of whom are of European ancestry (Kurki et al., 2023). We conducted a search on the “ieu open gwas project” website using the keyword “appendicitis”. After considering our research needs, we decided to select the most recent and largest sample size dataset, called “Appendicitis, broad definition (Dataset: finn-b-APPENDICITIS BROAD)”. This dataset contains a comprehensive range of data related to appendicitis, which will provide a more comprehensive basis for our analysis in our research (Ben et al., 2020; Bristol, 2023).




2.2 Instrumental variables selection

To ensure the accuracy and validity of our conclusions regarding the causal relationship between gut microbiota and appendicitis risk, we implemented a series of quality control procedures to filter instrumental variables (IVs). Firstly, we selected single-nucleotide polymorphisms (SNPs) with significant associations to the gut microbiome as IVs. SNPs were chosen based on two distinct thresholds. In order to obtain a comprehensive overview and enhance the explained phenotypic variability, we included a set of SNPs with locus-wide significance levels below 1×10-5 as IVs. Additionally, No SNPs with genome-wide significance (p<5×10-8) was found in our study, therefore no secondary analysis was conducted using SNPs with genome wide significance. Secondly, to ensure the independence of the selected IVs and minimize the impact of linkage disequilibrium that violates the random allele assignment, we configured the clumping procedure with parameters set to r2<0.001 and kb=10,000kb. Thirdly, If exposure-related SNPs were not identified in the outcome genome-wide association study (GWAS) results, proxy SNPs highly correlated with the target variant (r2>0.8) were identified through the SNiPA website (Arnold et al., 2015). However, it’s important to note that such a scenario did not occur in our analysis. Fourthly, SNPs with palindromic properties and incompatible alleles were disqualified from the Mendelian Randomization (MR) analysis. Fifthly, in order to satisfy the second key assumption of MR (independence from confounders), we conducted a manual inspection and exclusion of SNPs significantly associated (p<5×10-5) with potential confounding factors using the PhenoScanner GWAS database (Kamat et al., 2019). No SNPs that may be significantly associated with potential confounding factors were found. Sixthly, a minimum minor allele frequency threshold of 0.01 was enforced. Lastly, to mitigate weak instrumental bias, the F-statistic was computed for each SNP (Burgess and Thompson, 2011), and any SNPs with F-statistics below 10 were discarded. The F-statistic is expressed as R2(n-k-1)/k(1-R2), with n representing the sample size, k denoting the number of IVs, and R2 signifying the variance explained by the IVs.




2.3 Effect size estimate

We conducted a two-sample Mendelian randomization (MR) analysis to explore the causal relationship between gut microbiome features and the risk of appendicitis When multiple IVs were involved in a gut microbiota feature, we adopted the inverse-variance weighted (IVW) test as the primary analytical approach, complemented by other methodologies, including MR-Egger, simple mode, weighted median, and weighted mode (Burgess et al., 2013). To comprehensively assess the influence of the gut microbiome on appendicitis risk, the meta-analysis technique known as IVW converted the outcome effects of IVs on exposure effects into a weighted regression model with an intercept constrained to zero. In the absence of horizontal pleiotropy, IVW yielded unbiased estimates by mitigating the influence of confounding variables (Holmes et al., 2017). It is noteworthy that the MR-Egger method may be susceptible to the influence of outlier genetic variables, potentially leading to incorrect estimations. However, even when all selected IVs are invalid, the MR-Egger approach can still produce unbiased estimates (Bowden et al., 2016b). The simple mode offers robustness against pleiotropy effects, although it may be less statistically powerful than IVW (Milne et al., 2017). The weighted median method, when at least 50% of data from valid instruments are available, is capable of providing precise and reliable effect estimates (Bowden et al., 2016a). In situations involving genetic variables that violate the pleiotropy assumption, the weighted mode method can be adapted (Hartwig et al., 2017).




2.4 Sensitivity analysis

To assess the potential impact of heterogeneity and pleiotropy among instrumental variables (IVs) on MR results, a comprehensive set of sensitivity analyses was undertaken to ascertain the robustness of our significant findings. Heterogeneity among the selected genetic instruments was quantified using Cochran’s Q test and visualized through funnel plots. Furthermore, we probed for potential horizontal pleiotropic effects of the included IVs, employing both the MR Egger intercept and the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) global test. Concurrently, we performed a leave-one-out sensitivity analysis to validate the precision and robustness of causal effect estimates, ensuring that our MR estimates were not unduly influenced by highly influential SNPs. In addition, the MR Steiger directionality test was employed to infer the causal direction (Hemani et al., 2017). Credible causal links were identified when the variance explained by the IVs on the exposure exceeded that on the outcome. All statistical analyses in our investigation, encompassing both MR and sensitivity analyses, were executed using the R packages “TwoSampleMR” and “MRPRESSO” within the publicly available R software (version 4.3.1).





3 Results

Utilizing the aforementioned criteria for instrumental variable (IV) selection, we identified 113 single nucleotide polymorphisms (SNPs) with a significance level of p<1×10-5 that exhibited substantial associations with gut microbiota at various taxonomic levels, encompassing class, family, genus, order, and phylum, which we subsequently employed as IVs. Detailed information regarding these selected SNPs, including effective alleles, alternative alleles, β values, standard error (SE) values, and p-values, is available in the Supplementary Material (see Supplementary Table 1).

To satisfy the second pivotal assumption of Mendelian randomization (MR), which necessitates independence of the instrumental variables (IVs) from confounding variables, we meticulously examined these SNPs using the PhenoScanner GWAS database (Staley et al., 2016; Kamat et al., 2019). We systematically excluded SNPs that displayed significant associations (p<5×10-5) with potential confounding factors. It is noteworthy that we did not detect any SNPs exhibiting links to confounding variables. Furthermore, all the chosen instrumental variables (IVs) boasted F-statistics exceeding 10, signifying the absence of evidence for weak instrument bias.

Subsequently, we conducted MR analyses for each exposure (i.e., gut microbiota) and outcome (i.e., appendicitis), investigating potential causal relationships through five distinct methodologies, namely Inverse Variance Weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode. Employing the IVW method, we identified 11 gut bacteria taxa with potential causal associations with appendicitis. Odds ratios (ORs) were employed to denote the relationship between increased gut bacteria abundance and the risk of appendicitis. The IVW analysis unveiled the following associations: ①At the class level, an increment in Deltaproteobacteria abundance (OR 0.87; 95% CI 0.77-0.98; p=0.028) exhibited a negative correlation with appendicitis risk. ②At the family level, augmented levels of Christensenellaceae (OR 0.88; 95% CI 0.79-0.98; p=0.016) and Desulfovibrionaceae (OR 0.86; 95% CI 0.75-0.98; p=0.026) were negatively associated with appendicitis risk, whereas Family XIII (OR 1.15; 95% CI 1.00-1.32; p=0.043) displayed a positive correlation with appendicitis risk. ③At the genus level, increased abundances of Eubacterium ruminantium group (OR 0.92; 95% CI 0.86-0.98; p=0.014), Lachnospiraceae NK4A136 group (OR 0.86; 95% CI 0.78-0.95; p=0.003), and Methanobrevibacter (OR 0.89; 95% CI 0.80-0.98; p=0.018) were protective against appendicitis. Conversely, elevated levels of Howardella (OR 1.13; 95% CI 1.05-1.22; p=0.001) and Veillonella (OR 1.12; 95% CI 1.00-1.26; p=0.045) posed a risk for appendicitis. ④At the order level, an increase in the abundance of Desulfovibrionales (OR 0.86; 95% CI 0.76-0.98; p=0.027) was negatively correlated with appendicitis. ⑤At the phylum level, an elevation in Euryarchaeota abundance (OR 0.91; 95% CI 0.86-0.97; p=0.004) was negatively associated with appendicitis (see Figure 2, Table 1).




Figure 2 | Associations of genetically gut microbiota with appendicitis risk using IVW methods SNPs, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval.




Table 1 | MR estimates for the association between gut microbiota and appendicitis (p<1×10-5).



The outcomes of additional analytical methods are presented in Table 1, and the scatter plot illustrates potential causal relationships between the gut microbiota and appendicitis. Differently colored lines signify various MR methodologies, including Inverse Variance Weighted (IVW), weighted median, MR-Egger, weighted mode, and simple mode, with each method estimating the causal effects of the gut microbiota on appendicitis (see Supplementary Figure 2). The slope value, equivalent to the b value calculated by the five methods, signifies the causal effect of the gut microbiota on appendicitis. A larger absolute slope value denotes a more substantial causal effect. A positive slope indicates exposure as a risk factor, while a negative slope conveys the opposite.

Through our MR analysis, we have successfully identified a total of 11 potential causal relationships between the gut microbiota and appendicitis. To ensure the reliability of our results, a comprehensive set of sensitivity analyses was meticulously carried out to evaluate the potential impact of heterogeneity and pleiotropy among the instrumental variables (IVs) on our findings.

To investigate potential heterogeneity, Cochran’s Q tests were conducted, with all resulting p-values exceeding 0.05. This signifies that no significant heterogeneity was detected among the selected instrumental variables (IVs). Furthermore, horizontal pleiotropy was rigorously assessed through both the MR-Egger intercept and MR-PRESSO global test, both of which returned p-values greater than 0.05, indicating the absence of significant horizontal pleiotropy (see Table 2).


Table 2 | Evaluation of heterogeneity and directional pleiotropy using different methods.



To further bolster the robustness of our results, we conducted additional analyses. Forest plots and leave-one-out analyses were performed, and they collectively demonstrated that no single SNP exerted a strong influence on our MR analysis, further affirming the resilience of our findings (refer to Supplementary Figure 3).




4 Discussion

In our Mendelian randomization (MR) investigation, we systematically assessed the potential causal association between the gut microbiota and the risk of appendicitis, employing summary statistics derived from established genome-wide association studies (GWAS) on both gut microbiota composition and appendicitis. Our rigorous analysis pinpointed 11 specific bacterial taxa that exhibit a causal link with appendicitis.

Our findings reveal that an augmentation in the abundance of Deltaproteobacteria, Christensenellaceae, Desulfovibrionaceae, Eubacterium ruminantium group, Lachnospiraceae NK4A136 group, Methanobrevibacter, Desulfovibrionales, and Euryarchaeota exerts a protective effect against appendicitis. Conversely, an increase in the abundance of Family XIII, Howardella, and Veillonella is associated with an elevated risk of developing appendicitis.

Our study underscores the notion that alterations in both the diversity and abundance of the gut microbiota may serve as one of the contributing factors to the onset of appendicitis.

Proteobacteria are present within the human gastrointestinal tract, and their prevalence has been observed to elevate notably in cases of severe acute malnutrition among children. Additionally, prior research has documented an escalation in Proteobacteria levels in instances of complicated appendicitis (The et al., 2019). Oh, S.J. et al. additionally proposed that, in comparison to individuals without appendicitis, there is an augmented relative abundance of Alphaproteobacteria and Epsilonproteobacteria, both of which fall under the phylum Proteobacteria, in cases of acute appendicitis. Furthermore, their findings suggest that Campylobacter jejuni could potentially serve as a significant etiological factor in the development of acute appendicitis (Oh et al., 2020). This underscores a significant correlation between specific bacteria within the Proteobacteria phylum and appendicitis, which aligns with our study’s findings. However, in contrast to our investigation, they did not establish a potential causal relationship between Alphaproteobacteria, Epsilonproteobacteria, Campylobacter jejuni, and appendicitis. These results suggest that the heightened abundance of Alphaproteobacteria, Epsilonproteobacteria, and Campylobacter jejuni may arise as a consequence rather than a causative factor in appendicitis. Conversely, the increased prevalence of Deltaproteobacteria, Desulfovibrionales, and Desulfovibrionaceae may serve as preventive factors against the development of appendicitis.

Previous studies have suggested a decrease in the abundance and diversity of Firmicutes in patients with appendicitis (Peeters et al., 2019), a pattern that aligns with our own research findings. However, it remains unresolved whether the reduction in Firmicutes abundance precedes the development of appendicitis or if appendicitis itself triggers a decline in Firmicutes abundance. Our Mendelian randomization (MR) analysis revealed a noteworthy inverse correlation between the heightened abundance of Christensenellaceae, Eubacterium ruminantium group, and Lachnospiraceae NK4A136 group, all constituents of the Clostridia class within the Firmicutes phylum, and the incidence of appendicitis. Particularly, the p-value associated with Lachnospiraceae NK4A136 group was less than 0.01, signifying a significant relationship between the decline in Lachnospiraceae NK4A136 group abundance and the onset of appendicitis. These outcomes strongly imply that the decrease in the abundance of these bacterial taxa may serve as a potential causative factor rather than a consequence of appendicitis. Consequently, augmenting the abundance of these bacteria holds promise as a preventive measure against appendicitis.

To date, there has been a dearth of evidence associating Euryarchaeota with appendicitis, with the exception of the detection of methanogens in periappendiceal abscesses as documented in the case report by K Djemai et al (Djemai et al., 2021). Methanogens, which fall under the Euryarchaeota phylum, encompass organisms such as Methanobrevibacter. This observation implies a plausible association between Euryarchaeota, particularly Methanobrevibacter, and appendicitis. Our study further extends these findings by demonstrating that an increase in the abundance of Euryarchaeota and Methanobrevibacter is linked to a reduced risk of appendicitis, indicating that a decline in the prevalence of these bacteria may indeed pose a risk factor for the development of appendicitis. Moreover, the p-value associated with Euryarchaeota was 0.004, significantly lower than 0.01, underscoring a strong and close causal relationship between Euryarchaeota and appendicitis.

Within our investigation, we also unearthed a positive correlation between Family XIII, classified under Bacteroidia in the Bacteroidetes phylum, and Veillonella, a member of Negativicutes within the Firmicutes phylum, in relation to appendicitis. Remarkably, as of now, no clinical studies have documented alterations in the abundance or diversity of these bacteria among appendicitis patients. Our study tentatively posits that an elevation in the prevalence of these bacteria might contribute to the development of appendicitis. Based on the outcomes of our research, there emerges a prospect of preventing and managing appendicitis through the manipulation of gut microbiota abundance and diversity. However, it is imperative to underscore that further extensive research is warranted in this regard.

This study represents the inaugural endeavor in employing Mendelian randomization (MR) analysis to probe the causal influence of gut microbiota on appendicitis. In contrast to conventional observational studies, which are susceptible to confounding factors and reverse causality, our investigation furnishes results of heightened reliability. The identification of bacteria with established causal links to appendicitis offers novel and invaluable strategies for the prevention and treatment of appendicitis mediated by the gut microbiota.

Furthermore, the gut microbiota-associated single nucleotide polymorphisms (SNPs) employed in this study stem from the most extensive genome-wide association study (GWAS) meta-analysis conducted to date, affirming the robustness of the instrumental variables (IVs) incorporated into our research. The substantial sample size, coupled with the application of diverse sensitivity analyses, ensures the resilience and validity of our study findings.

Nonetheless, it is imperative to acknowledge that, while our study identifies a causal relationship between the gut microbiota and appendicitis, the potential influence of appendicitis on the composition and diversity of the gut microbiota cannot be entirely discounted. Further research is necessitated to delve into the intricate interplay between these factors.

Furthermore, it is noteworthy that the gut microbiota GWAS data utilized in this study predominantly originate from individuals of European ancestry, with a limited representation of non-European ancestry data. Simultaneously, the appendicitis GWAS data exclusively consist of individuals of European ancestry. This demographic skew could introduce bias into our study and restrict the applicability of our findings to other populations.

While our investigation uncovers a plausible causal connection between the gut microbiota and appendicitis, it should be noted that direct mechanistic research is lacking to substantiate our study’s outcomes. Consequently, there exists a pressing need to embark on research elucidating the mechanistic impact of the gut microbiota on appendicitis, drawing from the findings concerning the 11 specific gut bacteria identified in this study. This endeavor holds promise for a more comprehensive understanding of the etiology of appendicitis and the development of innovative preventive and therapeutic strategies.




5 Conclusion

This pioneering study, employing Mendelian randomization (MR) analysis, furnishes genetic evidence substantiating the causal influence of gut microbiota on appendicitis. The discerned gut microbiota, whether beneficial or deleterious in the context of appendicitis, could potentially present novel and invaluable avenues for the prevention and treatment of appendicitis through interventions targeting the gut microbiota.
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Background

Clonorchis sinensis (C. sinensis) is a epidemiologically significant food-borne parasite, causing several hepatobiliary diseases. Biliary microbiota community structure might be influenced by infection with pathogens. However, the biliary microbiome of biliary obstruction patients infected with C. sinensis is still an unexplored aspect.





Methods

A total of 50 biliary obstruction patients were enrolled, including 24 infected with C. sinensis and 26 non-infected subjects. The bile samples were collected by Endoscopic Retrograde Cholangiopancretography. Biliary microbiota alteration was analyzed through high-throughput 16S ribosomal RNA (rRNA) gene sequencing.





Results

Our findings revealed that there was significant increase in both richness and diversity, as well as changes in the taxonomic composition of the biliary microbiota of C. sinensis infected patients. At the phylum level, C. sinensis infection induced Proteobacteria increased and Firmicutes reduced. At the genus level, the relative abundance of Pseudomonas and Staphylococcus increased significantly, while Enterococcus decreased prominently in infected groups (P < 0.05). The PICRUSt analysis further showed remarkably different metabolic pathways between the two groups.





Conclusion

C. sinensis infection could modify the biliary microbiota, increasing the abundance and changing the phylogenetic composition of bacterial in biliary obstruction patients. This study may help deepen the understanding of the host-biliary microbiota interplay with C. sinensis infection on the background of biliary obstruction and provide new insights into understanding the pathogenesis of clonorchiasis.
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Background

Clonorchis sinensis is an important foodborne parasite. Human infected through eating raw or undercooked fish contain C. sinensis metacercariae. C. sinensis adults parasitize in the intrahepatic bile duct and lead to clonorchiasis. Clonorchiasis seriously afflicts more than 35 million people globally and has become a serious public health in endemic regions (Lun et al., 2005). Although acute infection is usually asymptomatic, chronic clonorchiasis is related to many hepatobiliary diseases, such as cholecystitis, cholangitis, periductal fibrosis and even cholangiocarcinoma (CCA) (Tang et al., 2016; Brindley et al., 2021). Especially, the size of C. sinensis is similar to human bile duct, biliary obstruction with C. sinensis infection can cause bile stasis and biliary pressure increased, eventually promoting the development of CCA (Prueksapanich et al., 2018). CCA is an aggressive and heterogeneous malignancy of the biliary tree, which is considered arising from a complex interaction between host-specific genetic background and multiple risk factors including parasite infection (Khan et al., 2019). C. sinensis has been classified as group I biological carcinogen by the International Agency for Research on Cancer in 2009 (Bouvard et al., 2009). However, influence of C. sinensis infection on the biliary microbiome of biliary obstruction remains obscure.

The gut microbiota plays significant impacts on host metabolism, immunology and the behavior (Thaiss et al., 2016; Chen et al., 2017). The highthroughput sequencing method is a powerful tool for analyzing microbial community structure (Liu et al., 2020). To date, the gut microbiota has a potential influence on kinds of hepatobiliary diseases. The gut microbiota could participate in the enterohepatic bile acids recycling process, keeping the balance of complex bacterial communities and biliary system (Wang et al., 2017; Tripathi et al., 2018). Furthermore, microbial products have been identified to be possible triggers for chronic and acute inflammatory biliary illnesses (Negm et al., 2010; Sayin et al., 2013; Verdier et al., 2015; Albillos et al., 2020).

In a normal biliary system, bile has traditionally been considered to be sterile; while some studies confirmed the existence of biliary microbiota in healthy and diseased states (Choi et al., 2021). For instance, studies in pigs revealed that the gallbladder ecosystem contained bacteria including the Firmicutes, Bacteroidetes and Proteobacteria phyla (Jimenez et al., 2014). Based on 16S rRNA gene profiling, the Firmicutes, Bacteroidetes, and Actinobacteria phyla in human intact gallbladder bile has been verified (Molinero et al., 2019). Recently, biliary microbiota dysbiosis has been related to the development of hepatobiliary illnesses such as recurrent gallstones, primary sclerosing cholangitis and extrahepatic cholangiocarcinoma. For instance, compared with non-biliary stones, recurrent gallstones patients were identified with significantly lower bacterial diversity in the biliary system, as well as higher Proteobacteria phylum and lower Bacteroidetes, which indicating a substantial link between recurrent gallstones and biliary microbial dysbiosis (Ye et al., 2020). Streptococcus genus was identified to be positively linked with illness severity, playing a pathogenic role in the progression of primary sclerosing cholangitis (Pereira et al., 2017). There is increasing evidence supporting that biliary microbiota has potential influence on human physiology (Chen et al., 2020).

Adult C. sinensis inhabit the biliary and can cause the alterations of liver functions and the biliary environment and which, in turn, may modify the composition of the biliary microbiota (Qian et al., 2016). Indeed, the dynamic microbiome has been identified in fecal from human or rat’s models with C. sinensis infection. However, it is still unknown about the profiles of biliary microbiota in biliary obstruction patients with C. sinensis infection. Therefore, 16S rRNA gene sequencing was performed using bile samples from 24 C. sinensis infected and 26 non-infected patients with biliary obstruction, in order to characterize the biliary microbial community. Overall, our study first time explored the relationship between biliary microbiota profile and C. sinensis infection on the background of biliary obstruction. These results may be helpful for providing light on the underlying mechanisms of the host-biliary microbiota interplay with C. sinensis infection, deepening understanding of the pathogenesis of clonorchiasis.





Methods




Ethics statement

This study’s all protocols and procedures followed the ethical criteria specified in the 1975 Declaration of Helsinki, as indicated by a priori. All individuals provided written informed permission before participating in this study. Harbin Medical University’s Ethics Committee approved this study. All experiments were performed in compliance with the established guidelines and regulations.





Subjects enrollment and sample collection

A total of 45 diagnosed biliary obstruction patients with C. sinensis infection and 50 non-infected biliary obstruction patients in the first and fourth affiliated Hospital of Harbin Medical University (Harbin, China) were recruited in this study. The biliary obstruction patients were diagnosed according to the clinical typical symptoms, blood sample tests, B ultrasound, computed tomography (CT) or magnetic resonance cholangiography (MRCP), which were subsequently confirmed by endoscopic retrograde cholangiopancreatography (ERCP). The study inclusion criteria were as follows: (1) diagnosis of bile duct obstruction with evidence by abdominal imaging (B ultrasound, MRCP and ERCP; (2) the need for endoscopic retrograde cholangiopancreatography (ERCP) for bile duct decompression; (3) a naïve ampulla and (4) older than 20 years old.

The exclusion criteria included: (1) clinical data are incomplete, (2) stool inspection of eggs found other parasitic eggs, (3) malignant bile duct obstruction due to acute suppurative cholangitis, pancreatic cancer and cholangiocarcinoma etc., (4) antibiotic use in the prior 6 months, (5) long-term use of probiotics or prebiotics, (6) long-term probiotics or prebiotics use, (7) chronic hepatitis or liver disease with functional damage, (8) active viral, bacterial, or fungal infections, (9) additional illnesses like any kind of malignancy, or uncontrolled chronic conditions involving the heart, liver, kidney and lung. The detailed demographic characteristics and medical history (diabetes, hypertension, coronary heart disease, hypercholesterolemia, constipation, and diarrhea) were retrieved from hospital medical records.

After rigorous screening based on inclusion and exclusion criteria, and removal of low-quality samples, 24 biliary obstruction patients with C. sinensis infection and 26 sex, age, dietary pattern and rural life history similar patients with biliary obstruction alone were enrolled for biliary microbiota analysis. All patients were Han Chinese and born in Northeastern, with similar geographic areas and eating habits, without special dietary habits.

The bile samples from all patients were obtained after ERCP. A total of 5-10 ml bile was aspirated under sterile circumstances, 3-5 ml was distributed in a sterile tube, and the remainder was immediately sent to the laboratory. About 2 ml bile was centrifugal by 10, 000 g for 10 min at 4°C, and then the pellet and supernatant were both kept at -80°C for the study of the biliary microbiota.





Diagnosis of infection with C. sinensis

The detection of C. sinensis eggs in the microscopic inspection of the bile pellet could establish the infection. Firstly, 500 μL bile sample was centrifuged in eppendorf tube at 12, 000 rpm for 10 min, and then the supernatant was discarded, the bile sediment was re-suspended with 100 μL PBS. Next, 20 μL suspension was smeared and 4 smears were done for each specimen.





DNA extraction and PCR amplification

Microbial community genomic DNA was extracted from bile sediments samples using the E.Z.N.A.DNA Kit (Omega Bio-tek, Norcross, GA, U.S.) according to manufacturer’s instructions. The DNA extract was checked on 1% agarose gel, and DNA concentration and purity were determined with NanoDrop 2000 UV-vis spectrophotometer (Thermo Scientific, Wilmington, USA). To assess the bacterial community composition, the V3-V4 region of the bacterial 16S rRNA gene was amplified by PCR (3 min of denaturation at 95°C, 27 cycles of 30 s at 95°C, 30 s for annealing at 55°C, and 45 s for elongation at 72°C, and a final extension at 72°C for 10 min), using the universal primers forward 338F (5’-ACSOCCTACGGGAGGCAGCAG-3’) and reverse 806R (5’-GGACTACHVGGGTWSOCTAAT-3’) (Fadrosh et al., 2014). The PCR mixtures contain 5 × TransStart FastPfu buffer 4 μL, 2.5 mM dNTPs 2μL, forward primer (5 μM) 0.8μL, reverse primer (5μM) 0.8μL, TransStart FastPfu DNA Polymerase 0.4μL, template DNA 10 ng, and finally ddH2O up to 20μL. PCR reactions were performed in triplicate.





Illumina Miseq sequencing

The AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) was used to extract the PCR product from 2% agarose gel, purify it as directed by the manufacturer, and quantify it using a QuantusTM Fluorometer (Promega, USA). Majorbio Bio-Pharm Technology Co. Ltd. used an Illumina Miseq PE300 platform (Illumina, San Diego, USA) and followed industry standard procedures to pair-end sequencing (2x300) purified amplicons (Shanghai, China) (Ling et al., 2019; Liu et al., 2019).





Processing of sequencing data

The QIIME (v1.9.1) platform (http://qiime.org/install/index.html) was used to analyze 16S rRNA highthroughput sequencing data (http://qiime.org/install/index.html) (Caporaso et al., 2010), which could establish the 16S rRNA sequence with a similarity more than 97% as an operational taxonomic unit (OTU) and perform microbial diversity analysis (Edgar, 2010; McDonald et al., 2012). Usearch (v7.0) was used to identify and remove chimeric sequences (http://www.drive5.com/usearch/). Each 16S rRNA gene sequence’s taxonomy was analyzed by UCLUST against the Silva138 16S rRNA gene database using a 70% confidence threshold. Raw sequences were chosen based on their quality, sequence length, tag and primer. Low-quality sequences were deleted in the following manner: (1) the 300 bp readings were shortened at any location that got an average quality score of < 20 over a 50 bp sliding window, and reads shorter than 50 bp, as well as reads with unclear characters, were deleted; (2) overlapping sequences only longer than 10 bp were constructed according to their overlapped sequence. Overlap region’s maximum mismatch ratio is 0.2. Reads that could not be assembled were discarded; (3) Samples were separated based on the primers and barcode, with the sequence orientation changed, precise barcode matching and a 2 nucleotide discrepancy in primer matching.





Bioinformatics and statistical analysis

The Quantitative Insights Into Microbial Ecology (QIIME, v 1.9.1) and R packages (v 3.2.0) were used to analyze sequencing data. The Sobs index, Shannon index, Simpson index, Ace index, and Chao1 richness estimator were used to quantify alpha diversity (within-sample diversity) for both groups, and rarefaction curves and Good’s coverage were used to assess sequence coverage (Good, 1953; Schloss et al., 2009), whereas beta diversity (between-sample diversity) was quantified by principal coordinate analysis (PCoA) plots based on weighted UniFrac distance metrics (Lozupone and Knight, 2005). The relative abundances and changes in bacterial communities for bile samples from both groups were visualized using bar graphs. To identify microbial communities at several taxonomic levels, Linear discriminant analysis effect size (LEfSe) was used to find differentially abundant taxa between groups, and the cutoff logarithmic linear discriminant analysis (LDA) score was set at 3.5 (Segata et al., 2011). The Wilcoxon rank-sum test and Metagenomeseq differential analysis were performed; the threshold for statistical significance was established at p < 0.05.

To evaluate the model’s diagnostic capabilities, the operating characteristic curves (receiving operational curve, ROC) were constructed and the area under the curve (AUC) was determined using IBM SPSS Statistics V25 (IBM, Armonk, NY, USA). Additionally, in order to estimate the correlations between genera biliary microbiota, and the associations between genera microbiota and clinical indicators, Spearman’s correlation coefficients were calculated using the top 30 dominant genus biliary microbiota, and Cytoscape software was used for network construction and analysis (version 3.7) (Friedman and Alm, 2012).

Furthermore, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) tool was performed to predict the function of biliary microbiota (Langille et al., 2013), and the BugBase method was used for phenotype prediction of biliary microbiota (Ward et al., 2017), with statistical variance across groups examined using the Mann-Whitney-Wilcoxon test. Finally, a hierarchical clustering approach was performed using R software (version 3.5.1) to establish correlations between the biliary microbiota changes and differential metabolites.

To examine the normality of the data, the Kolmogorov-Smirnov or Shapiro-Wilk test was used. Mean and standard deviation (SD) were used to show continuous variables with normal distributions, whereas median was used to represent non-normal variables (interquartile range). A percentage was used to show categorical variables. Depending on the kind of dependent variable, binary or ordinal logistic regression was used to predict the value of biliary bacteria to clinical characteristics. Depending on the distribution of normality and the homogeneity of variance, a Student’s t-test, Welch’s t-test, or a nonparametric Wilcoxon rank-sum test was performed to determine statistical significance.






Results




Characteristics of patients

The demographic and clinical characteristics of all patients are shown in Table 1. There were no statistically significant variations with age, gender, rural life history, alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltranspeptidase (GGT) and alkaline phosphatase (ALP) between the two groups (P > 0.05). While direct bilirubin (DBIL) and total bilirubin (TBIL) were significantly lower, and indirect bilirubin (IBIL) was significantly higher in C. sinensis infected patients (P < 0.05) (Table 1).


Table 1 | Demographic characteristics of patients.







Altered overall structure of biliary microbiota

Almost 2,609,499 sequences were obtained from all bile samples, after size filtering, sequence processing and quality control. These sequences were clustered into the matching OTU with 97% sequence identity. In all, 1,687 species-level phylotypes from 44 phyla, 485 families and 974 genera of biliary microorganisms were annotated for subsequent analysis. Good’s coverage score was 99.93%, suggesting that the majority of bacterial phylotypes (3,609 OTUs) in the biliary microbiota had been detected. Intriguingly, alpha-diversity indices (Shannon’s and Simpson’s indices) differed considerably between the two groups. The richness indices Sobs, ACE, and Chao1 were also significantly higher in C. sinensis infected group (P < 0.01) (Table 2). Additionally, the chao rarefaction curves had approached the plateau phase, indicating that species representation in individual specimens had reached a saturation point for the number of the observed species (Figure 1A). Meanwhile, despite considerable inter-individual differences, the bray curtis PCoA still separated the two groups into distinct clusters (ANOSIM test: R = 0.3436, P < 0.01; Figure 1B). According to the alpha and beta-diversity analyses, the overall structure of biliary microbiota had changed significantly in the C. sinensis infection group.


Table 2 | Alpha diversity analysis of biliary microbiota in C. sinensis infected and non-infected patients.






Figure 1 | Changes in the biliary microbiota community composition and diversity of the two groups (patients infected with C. sinensis: n = 24; non-infected: n = 26). (A) Biliary microbiota rarefaction curve generated using Chao richness estimator in the two groups. (B) Principal coordinate analysis (PCoA) plot with Bray-Curtis distances in the two groups. The principal components PC1 and PC2 explained 24.94% and 17.53% of the variation, respectively. (C) The venn diagrams of OTUs between the two groups. (D) Circos analysis at the genus level revealed the matching abundance correlation among individual samples and microbial community structure.







Composition of biliary microbiota in two groups

Differences in the composition of biliary microbiota between C. sinensis infected and non-infected groups were further highlighted using the Venn and Circos plots. There were 754 of the total 3,646 OTUs shared by two groups in the Venn diagram. Notably, 2,347 of the 3,101 OTU were exclusive to the C. sinensis infected patients, which indicating more clustering of OTUs compared to non-infected subjects (Figure 1C). Furthermore, Circos analysis at the genus level revealed the matching abundance association between individual samples and microbial community structure (Figure 1D).

To observe the taxa composition, stacked bar plots (Figure 2) showed that the most abundant phylum were Firmicutes and Proteobacteria, while the Enterococcus, Enterobacteria, Streptococcus, Escherichi, Shigella and Pseudomonas dominated the biliary microbiota of the participants. The relative percentage of Streptococcus, Escherichia, Shigella and Pseudomonas composition were higher, while Enterococcus and Enterobacteria were lower in the C. sinensis infected group (Figure 2B). The top 30 dominant phylum and genera in all samples were selected to construct a hierarchical heatmap. Interestingly, commonly beneficial genera including Lactobacillus had substantially decreased, while pathogenic bacteria such as Staphylococcus significantly increased in the C. sinensis infected group (Supplementary Figure S1).




Figure 2 | Variation of bacterial community composition of the biliary microbiota in C. sinensis infected (n = 24) and non-infected patients (n = 26). (A) The phylum level. Relative abundance < 1% are classified as others. (B) The genus level. Relative abundance < 10% are classified as others.



Next, LEfSe analysis was used to further identify the specific communities and taxonomic differences associated with C. sinensis infection. A cladogra illustrated the dominating bacteria and microbiota structure in the two groups (Figure 3A). Based on an LDA score greater than 3.5, LEfSe analysis found 37 and 6 taxa enriched in C. sinensis infected and non-infected patients, respectively (P < 0.05) (Figure 3B).




Figure 3 | Bacterial taxa differed between C. sinensis infected (n = 24) and non-infected (n = 26) patients. (A) Taxonomic cladogram from LEfSe analysis. The size of the dots is positively correlated with the taxon’s abundance. (B) A histogram with linear discriminant analysis (LDA) scores based on LDA > 3.5. (C) Differences in bacterial taxa in the two groups at the phylum level by the Wilcoxon rank-sum test. (D) Difference in bacterial taxa in the two groups at the genus level by the Wilcoxon rank-sum test. Data were presented as the relative abundance (%) of phylum and genus in the two groups. Significant differences are represented by *P < 0.05, **P < 0.01, ***P < 0.001.



Additionally, we further compared the difference in specific microbial-rich taxa at phylum and genus levels by Wilcoxon rank-sum test analysis. The phyla Proteobacteria, Actinobacteriota and Bacteroidota were significantly increased, whereas Firmicutes was significantly decreased (P < 0.05) (Figure 3C); Pseudomonas and Acinetobacter genus were significantly increased, while Enterococcus was decreased in C. sinensis infected group (P < 0.01) (Figure 3D). The Metagenomeseq differential analysis found that there were 22 phylotypes differing between the two groups (P < 0.05). Higher abundance of most phylotypes was found in the C. sinensis infected subjects (i.e. absolute read counts). For example, the abundance of Burkholderia, Stenotrophomonas, and Turicibacter significantly elevated in C. sinensis infected subjects. Notablely, Dyella, Aerococcus, Actinobacillus and Aggregatibacter were only detected in C. sinensis infected participants (Supplementary Table S1).

Subsequently, theses significantly different bile microbiota at the genus level were further validated to be involved in biliary obstruction and C. sinensis infection. ROC analyses were employed to compare the diagnostic performance of the different biliary microbiome composition data as a biomarker for C. sinensis infection. As shown in Figure 4, Enterococcus and Carnobacterium alone as predictor gave an AUC of 0.82 (95% CI 0.70-0.95, P < 0.05) and 0.66 (95% CI 0.51-0.82, P < 0.05), respectively. Combination of 6 genera including Enterococcus, Carnobacterium, Vagococcus, Pyramidobacter, Alloscardovia, Monoglobus have an AUC of 0.86 (95% CI 0.74-0.97, P < 0.05).




Figure 4 | Receiver operating curve (ROC) analyses and area under the curve (AUC) of biliary microbiome data for predicting C.sinensis infection. (A) Enterococcus genus alone as predictor gave an AUC of 0.82 (95% CI 0.70-0.95, P < 0.05). (B) Carnobacterium genus alone as predictor gave an AUC of 0.66 (95% CI 0.51-0.82, P < 0.05). (C) Using the 6 genera differing between the two groups gave an AUC of 0.86 (95% CI 0.74-0.97, P < 0.05).



The structure of the bile microbiota could also be affected by dynamic interactions between these community members (Ling et al., 2020). The single factor correlation network diagram is used for the analysis of the correlation between the dominant species, which is convenient to understand the interaction between the dominant species. Therefore, correlation networks of the top 30 genera abundant microbial interaction within the groups was constructed using spearman’s analysis, respectively (Supplementary Table S2). Compared to C. sinensis infected group, non-infected group present a higher mean degree (11.33 vs. 6.90) and transitivity (0.725 vs. 0.615), indicating a more significant pairwise association between microbiota taxa of biliary aggregated (P < 0.05) (Figure 5). We found that Fusobacterium and Gemella genera have the strongest positive correlation in both two groups (r = 0.9456, P < 0.05), whereas Enterobacter and Enterococcus genera have the strongest negative correlation (r = -0.7444, P < 0.05) (Supplementary Table S2). A more a closer network of interactions in non-infected than that in the C. sinensis infected patients. These results indicate the structural dysbiosis of bile microbiota in the C. sinensis infected patients.




Figure 5 | The correlations among the top 30 abundant bacterial genera were analyzed by spearman’s correlation coefficient in C. sinensis infected (A) and non-infected (B) groups. The node size and color indicate the relative abundance of the biliary microbiota and heritability estimates, respectively. The red line means that two nodes are positively correlated, whereas the green line means that two nodes are negatively correlated. The breadth shows the correlation’s strength (P < 0.05).







Prediction of bacterial functional potential and microbiome phenotypes

The functional potential of the microbiota was predicted using PICRUSt based on 16S rRNA sequencing data. The results suggested that many KEGG level 2 pathways including amino acid metabolism, energy metabolism, carbohydrate metabolism and nucleotide metabolism (P < 0.05; Figure 6A); KEGG level 3 pathways including glyoxylate and dicarboxylate metabolism, fatty acid metabolism, oxidative phosphorylation, ABC transporters, glycolysis/gluconeogenesis (P < 0.05; Figure 6B) were significantly modulated in C. sinensis infected group.




Figure 6 | Prediction of bacterial functional potential and microbiome phenotypes in patients infected and non-infected with C. sinensis. (A) Comparative analysis of the KEGG  functional category at level 2 between the two groups. (B) At KEGG level 3, the top 30 metabolic pathways with the highest proportion and P < 0.05, Q < 0.05 were listed based on the Wilcoxon rank-sum test. (C) Comparative analysis of bacterial phenotypic results based on the Wilcoxon rank-sum test. Significant differences are represented by *P < 0.05, **P < 0.01, ***P < 0.001.



In addition, the results of BugBase’s microbial phenotype prediction revealed that seven of the nine predicted phenotypic functions differed significantly between the two groups, including aerobic, potentially pathogenic, stress tolerant, forms biofilms (P < 0.05). Nevertheless, there was no significant difference in facultative anaerobic and anaerobic function between the two groups (P > 0.05) (Figure 6C).





Associations between bacterial genera and differential metabolites

Our previous research had profiled differential metabolites based on LC-MS/MS-based metabolomics in the two groups (Zhang et al., 2023). To investigate analysis the associations between bacterial genera and differential metabolites in the host, we used Spearman’s correlation analysis to determine the covariation between the top 30 dominant biliary bacterial genera and 35 metabolites (VIP>2, P<0.05) in Supplementary Table S3, which was presented in a heatmap (Figure 7). Notably, the results revealed that the lower relative abundance of Enterococcus was positively correlated with Chondroitin D-glucuronate(r=0.63, p=0.00003) and Annuolide E (r=0.61, p=0.00001), while significantly negatively related to Ptelatoside B (r=-0.45, p=0.00016) in C. sinensis infected group (Supplementary Table S3). In general, these results indicate that changes in bile microbiome are related to changes in metabolites. However, we did not found some relation between the clinical indicators (TBIL, DBIL, IBIL, AST, ALT, ALP, GGT) and the microbial communities (|r| < 0.5) (Supplementary Table S4; Supplementary Figure S2).




Figure 7 | Correlations between the top 30 abundant bacterial genera and the altered 35 metabolites (VIP>2, P<0.05). The correlations are exhibited by colors; blue indicates a positive correlation, red indicates a negative correlation, and a darker color illustrates a stronger correlation (*p < 0.05, **p < 0.01, ***p < 0.001).








Discussion

Our results found that biliary microbiota in C. sinensis infected patients had greater α-diversity, β-diversity and more clustering of OTUs compared with the non-infected group. This finding is agree with previous research on the gut or biliary microbiota of patients infected with soil-transmitted helminths (Lee et al., 2014; Saltykova et al., 2016; Bao et al., 2018; Xu et al., 2018). However, the influence of helminth infection on the biliary microbial diversity remains controversial (Saltykova et al., 2018). In other studies, increasing of alpha diversity was not evident in patients infected with parasites (Cooper et al., 2013; Kim et al., 2019; Hu et al., 2020). These differences might be attributed to variances with geographical location, platform used, parasites infection state and sequencing depth (Xu et al., 2018). In addition, our findings also revealed considerable inter-individual variance in the biliary microbiota, which is consistent with previous research (Chen et al., 2019). It might been related to host lifestyles, age, disease status and dietary pattern, which influence the bacterial colonization or survival (Ye et al., 2016; Chen et al., 2019). In order to avoid the confounding factors influenced group discrimination, the variables of the two groups were generally matched in the study, and there were no statistically significant variations with the average age, similar lifestyle or dietary pattern in two groups. However, age, lifestyle or dietary pattern also influence the composition of biliary microbiome within groups, which induce the inter-individual variance.

Similar to previous studies on biliary microbiota (Saltykova et al., 2016; Ye et al., 2016; Liu et al., 2020; Han et al., 2021), our study also found the dominant phylum in bile samples including Proteobacteria, following with Firmicutes, Actinobacteria, Bacteroidetes, etc. Based on the bile microbiota from healthy individual, it seems that theses 3 to 4 phyla constitute the core population of healthy human bile using 16S rRNA gene profile analysis (Molinero et al., 2019). It is suggested that the impact of infection on microbial structure at phyla does not seem to be as significant on the background of biliary obstruction. However, Proteobacteria was found highly enriched C. sinensis infected patients. Proteobacteria, as a Gram-negative phylum, includes many important pathogens like Salmonella, Vibrio and Helicobacter, which can produce a variety of neurotoxins (Mladenova-Hristova et al., 2017; Yan et al., 2021). The abnormal increase of Proteobacteria is related to increased epithelial oxygen availability and considered as a biomarker of inflammation and epithelial dysfunction (Litvak et al., 2017). However, less is known about how the increased Proteobacteria links with the inflammation and morbidity after parasite infection. The role of Proteobacteria in biliary microbiota of C. sinensis infected patients needs further study.

At the genus level, the most dominant genus was Enterococcus, followed by Pseudomonas, Acinetobacter, Rhodococcus, Staphylococcus, etc., most of which belong to Proteobacteria and Firmicutes. Among them, the abundance of Pseudomonas and Staphylococcus genera were significantly increased in the C. sinensis infected group, which was observed in several hepatobiliary diseases (Grigor'eva and Romanova, 2020; Liu et al., 2020; Ye et al., 2020). Some subspecies of Staphylococcus have highly virulent pathogens and multiple antibiotic-resistance (Plata et al., 2009; Gardete and Tomasz, 2014). The role of increased pathogen genera of microbiota associated with clonorchiasis and associated hepatobiliary tract disorders can be expected to be informative with respect to fibrosis and carcinogenesis. Thus, we believe that the potential functional and prognostic role of Pseudomonas and Staphylococcus in the C. sinensis infected group should be studied in the intestine and the bile ducts in future studies. Enterococcus is part of the natural flora of the human gut, and also survive in bile-rich environments (Liu et al., 2020). It has maintaining gut flora balance, immune regulatory and anti-allergic properties function (Bodera and Chcialowski, 2009). The lower relative abundance of Enterococcus in the bile of C. sinensis-infected group might lead to a disruption of the inter-dependent balance of bile flora. Theses relevant differences at genera level between the two groups are depending on the specific physiological condition of the host, such as infection.

Further functional analysis showed that amino acid metabolism pathways was significantly enriched and changed in C. sinensis infected patients, as reported in other research on the Opisthorchis viverrini associated microbiota dysbiosis (Chng et al., 2016). We noticed that the function of the differential flora was similar with the metabolic pathway enriched by the differential metabolites. Some of the pathways were supported by subsequent LC/MS-based metabolomics analyses. The enrichment of Amino acid metabolism may lead to ammonia production increased as a side product (Saltykova et al., 2018). Increased of these potentially carcinogenic metabolite may promote the malignant transformation of clonorchiasis (Chng et al., 2016). Furthermore, our results revealed the decreased expression of ABC transporters and Lipopolysaccharide biosynthesis enhanced in C. sinensis-infected patients. The findings are consistent with research on these pathways implicated in inflammation and hepatobiliary disorders (Han et al., 2021; Hao et al., 2022). Bacterial ABC transporters can protect microorganisms from exogenous stress (Fath and Kolter, 1993). The apparent downregulation of ABC transporters might implicate a decreased antimicrobial pressure in the biliary environment (Wang et al., 2019). On the other hand, the enhanced of Lipopolysaccharide biosynthesis may drive biliary epithelial inflammation in C. sinensis-infected patients (Karrar et al., 2007). These results point a contribution of altered biliary microbiota to cholangiocyte and bile duct mucosal damage (Liwinski et al., 2020). Although we have done a combined analysis of microbiota and metabolism, we could not confidently assign individual metabolites to individual microbial species. Furthermore, other additional metabolite sources could not be rule out, which may also cause differ between patients infected with C. sinensis and non-infected patients. The metabolite changes might be microbiota dependent but not necessarily microbiota derived (Cheema and Pluznick, 2019). Taken together, alteration of biliary microbiota caused by C. sinensis infection may be involved in the alteration of host metabolism pathway. We speculate that the interaction of C. sinensis, Biliary Microbiota and related metabolites may be an important target for research on biliary obstruction.

This study provides new perspectives on the microbiological characteristic of biliary obstruction patients with C. sinensis infection. However, it also has several limitations. Firstly, due to ethical and technological challenges, it is difficulty to collected the bile from healthy subjects. Because of different amplified and sequenced area, some healthy individual biliary microbiota data cannot be compared with our s. Although some sequence data of bile from healthy individuals are provided in some research, it is more reasonable to obtain samples from Chinese patients, taking into account the factors such as diet and race (Han et al., 2021). Secondly, microbiome analysis was restricted to a single-center cohort of patients who had the same race and dietary habits in northern China. In the future, multicenter study cohorts should be considered to determine the stability of observed alterations in biliary microbiota. Thirdly, to reduce antibiotic interference with biliary microbiota, patients who did not receive antibiotics 6 months prior were selected. However, the antibiotic impact cannot be ruled out altogether. Further validation of differential pathways at the functional level using metagenomes and follow-up experiments for suggested pathways and the expression levels of crucial difference genes will be good evidence of what is happening in the biliary tract. Fourthly, because of many underlying causes of biliary obstruction, the biliary obstruction without infection patients might represent variations in their microbial content based on these underlying factors. These factors need to be considered. Finally, because it is difficult to evaluate the worm burden of the patients, the correlations between the worm burden and the dysbiosis of biliary microbiota were not evaluated. Even considering these limitations, our results establish the basis for future larger-scale studies on the relationship between bile microbiota, parasite infection and diseases.





Conclusion

In summary, biliary obstruction patients infected with C. sinensis modified the biliary microbiome, compared to non-infected subjects. The abundant beneficial bacteria genera such as Enterococcus decreased prominently, while abundant conditional pathogen genera, such as Pseudomonas, Acinetobacter, Rhodococcus, Staphylococcus, and Stenotrophomonas increased significantly in C. sinensis infected patients. These results could supply novel information for further understanding of the pathogenic mechanism of biliary injury following C. sinensis infection. Additionally, the pathogenic mechanism involved in biliary microbiota and clonorchiasis need to be further explored.
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Supplementary Figure 1 | Hierarchical clustering of biliary microbiota in C. sinensis infected (n = 24) and non-infected patients (n = 26). (A) The phylum level. (B) The genus level. Red, high abundance; blue, low abundance.

Supplementary Figure 2 | Correlation analysis between relative abundance of biliary microbiota and clinical parameters in C. sinensis infected (n = 24) and non-infected patients (n = 26) were performed by using Spearman’s correlation analysis. The color of the spots in the right panel represents R-value of Spearman’s correlation between the genera and clinical parameters; positive correlations are represented by red, negative correlations are represented by blue, and a darker color represents a stronger correlation. Significant differences are represented by *P < 0.05, **P < 0.01, ***P < 0.001. AST, aspartate aminotransferase, ALT, alanine aminotransferase, TBIL, total bilirubin, DBIL, direct bilirubin, IBIL, indirect bilirubin, ALP, alkaline phosphatase, GGT, γ-glutamyltranspeptidase.

Supplementary Table 1 | Numerous phylotypes of the biliary microbiota differed between in Cs-infected and Non-infected groups.

Supplementary Table 2 | The correlation coefficient matrix parameters among the top 30 abundant bacterial genera by Spearman’s analysis in Cs-infected and Non-infected groups, respectively.

Supplementary Table 3 | The correlation coefficient matrix between the top 30 abundant bacterial genera and the significant altered 35 metabolites (VIP>2, P<0.05) by Spearman's analysis in Cs-infected and Non-infected groups.

Supplementary Table 4 | The correlation coefficient matrix between bacterial genera and significantly different clinical parameters using Spearman’analysis in Cs-infected and Non-infected groups.
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Introduction

The gut microbiota (GM) play a significant role in the infectivity and severity of COVID-19 infection. However, the available literature primarily focuses on adult patients and it is known that the microbiota undergoes changes throughout the lifespan, with significant alterations occurring during infancy and subsequently stabilizing during adulthood. Moreover, children have exhibited milder symptoms of COVID-19 disease, which has been associated with the abundance of certain protective bacteria. Here, we examine the metaproteome of pediatric patients to uncover the biological mechanisms that underlie this protective effect of the GM.





Methods

We performed nanoliquid chromatography coupled with tandem mass spectrometry on a high resolution analytical platform, resulting in label free quantification of bacterial protein groups (PGs), along with functional annotations via COG and KEGG databases by MetaLab-MAG. Additionally, taxonomic assignment was possible through the use of the lowest common ancestor algorithm provided by Unipept software.





Results

A COVID-19 GM functional dissimilarity respect to healthy subjects was identified by univariate analysis. The alteration in COVID-19 GM function is primarily based on bacterial pathways that predominantly involve metabolic processes, such as those related to tryptophan, butanoate, fatty acid, and bile acid biosynthesis, as well as antibiotic resistance and virulence.





Discussion

These findings highlight the mechanisms by which the pediatric GM could contribute to protection against the more severe manifestations of the disease in children. Uncovering these mechanisms can, therefore, have important implications in the discovery of novel adjuvant therapies for severe COVID-19.
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1 Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 (Zhu et al., 2020); in 2020 the World Health Organization (WHO) declared a global emergency due to the severe public health effects. To date, more than 700 million cases and approximately 7 million deaths due to COVID-19 have been confirmed around the world (https://covid19.who.int, accessed on 14 June 2023). It is well known that the respiratory system is the main target of SARS-CoV-2 infection. However, while respiratory symptoms are present in a major part of cases (Wu and McGoogan, 2020), gastrointestinal (GI) symptoms, such as diarrhea, nausea or vomiting, and abdominal pain (Alimohamadi et al., 2020) have been reported up to 20% in patients with COVID-19 (Cheung et al., 2020; Huang et al., 2020; Wu and McGoogan, 2020).

The process of virus infection in host cells occurs through the binding of the spike (S) protein of SARS-CoV-2 to the host receptor of the angiotensin-converting enzyme 2 (ACE2) (Medina-Barandica et al., 2023). ACE2 is also expressed in epithelial cells of the digestive, renal and skin tracts, indicating that each of these could be a potential target for the virus (Jamshidi et al., 2021). In particular, up to 50% of adults and 30% children affected with COVID-19 had SARS-CoV-2 positive stool samples (De Ioris et al., 2020; Zuo et al., 2020).

Additionally, SARS-CoV-2 RNA was identified in stools or rectal swabs from patients with COVID-19, even when the virus was no longer present in the respiratory tract (Wu et al., 2020; Xiao et al., 2020), leading to the hypothesis that, in the intestine, there is not only a replication and activity but a greater permanence of the virus as well (Donati Zeppa et al., 2020). SARS-CoV-2 infection reduces the expression of ACE2 in the GI tract and the number of circulating angiogenic cells (CACs), thus affecting the gut endothelium, and, hence, triggering intestinal dysbiosis (Chhibber-Goel et al., 2021). It is noteworthy that the number of ACE-2 receptors in the duodenum increase with age, suggesting a potential entry mechanism for the SARS-CoV-2 (Vuille-dit-Bille et al., 2020). The above observations implicate an important role of host gut in the infectivity and severity of COVID-19 infection (Yang et al., 2020). Moreover, GI inflammatory conditions modify the multilayer barrier system and increase the expression of ACE2 in the intestinal epithelium, allowing SARS-CoV-2 to enter the intestinal epithelial cells (Kumar et al., 2020). Furthermore, the viscous mucus of the GI tract protects viral RNA and viral particles, allowing the virus to maintain its infectivity (Zhang et al., 2021). However, the GI tract is populated by the gut microbiota (GM), which plays multiple functions, including the maintenance of the intestinal epithelial barrier integrity, host immunomodulation, and the protection against pathogens. Indeed, evidence suggests that there is a three-sided connection between the composition of the GM, the human genome and COVID-19 (Tong et al., 2023).

Seeking to decipher this relationship, in a previous work, we have described the GM ecology in pediatric patients affected by SARS-CoV-2 using a targeted-metagenomic approach (Romani et al., 2022). The results showed that, in these patients, the GM actually exerted anti-inflammatory properties, conferring an advantage, compared to adult subjects, in reducing or preventing severe disease. Indeed, most children with COVID-19 are asymptomatic or show mild symptoms, most typically fever, cough, pharyngitis, GI symptoms and alterations in olfaction or taste (Romani et al., 2020; Zachariah et al., 2020; Zimmermann and Curtis, 2020; Zimmermann and Curtis, 2022).

In the current study, a subset of the patients enrolled by Romani et al., was analyzed in term of GM metaproteome at the onset of the disease, and compared with an age- and sex-matched healthy subject group, chosen as controls (CTRLs).

The metaproteomic approach herein reported, allowed us to provide a functional rationale for some trends in bacterial distribution and related metaproteins of the GM, in order to further elucidate the mechanisms by which the GM can function as a protective force against more severe manifestations of COVID-19.




2 Subjects and methods



2.1 Sample collection

A cohort of pediatric patients, with COVID-19 symptoms and tested positive for a nasopharyngeal swab, were enrolled after acceptance at the Emergency Department of Bambino Gesù Children’s Hospital (OPBG) in Rome, Italy, between March 1 and September 30, 2020 (Romani et al., 2022). Patient information including age, sex, and both clinical and routine laboratory data were collected. Patients diagnosed with COVID-19 were categorized according to disease severity using the WHO clinical progression scale (Lamontagne et al., 2020): i) “mild” without evidence of viral pneumonia or hypoxia; ii) “moderate” in presence of non-severe pneumonia (cough or difficulty breathing, fast breathing, and/or chest indrawing), and iii) “severe” in presence of pneumonia (cough or difficulty breathing) and at least one of the following: a) central cyanosis or SpO2 < 90%, severe respiratory distress, general danger sign of inability to breastfeed or drink, lethargy, unconsciousness, or convulsions; b) fast breathing. Stool samples were collected within 48–72 h since admission and stored at − 80°C, until processing.

Samples of healthy CTRLs, who were matched by age and sex, were chosen from the Microbiome Biobank of OPBG (Italian node of the Biobanking and Bio Molecular Resources Research Infrastructure), and the criteria for inclusion were as follows: normal weight, no GI disorders, and no use of antibiotics or probiotics within one month prior to sampling. The CTRL cohort was recruited by an epidemiological survey, conducted by the OPBG Human Microbiome Unit, to study pediatric gut microbiota programming, in accordance with the recommendations of the OPBG Ethics Committee (Protocols code 1113_OPBG_2016 and 2839_OPBG_2022).

The study protocol was performed in accordance with the Principles of Good Clinical Practice and Declaration of Helsinki, and approved by OPBG Ethical Committee (Protocol code 2083_OPBG_2020). Written informed consent for this study was signed by parents or legal representatives of children.




2.2 Sample preparation

The procedures for extracting bacterial proteins from feces, protein lysis and digestion were slightly modified from Levi Mortera et al. (Levi Mortera et al., 2022). Accordingly, after being slowly thawed 300 mg of material were dissolved in 6 ml of ice-cold phosphate buffer (DPBS; 200 mg/L KCl, 200 mg/L KH2PO4, 8,000 mg/L NaCl, 1,150 mg/L Na2HPO4), with 1% Triton X-100, a nonionic detergent to inactivate any presence of SARS-CoV-2 (Patterson et al., 2020). The samples were rapidly vortexed, shaken for 10 min and the slurry centrifuged 15 min at 402 x g and 4°C. The supernatant was collected, while the pellet was suspended in 6 mL of ice-cold DPBS. The procedure was repeated twice. All supernatants from each sample were centrifuged two more times at 402 x g for 15 min, 4°C, to remove debris and were then transferred into centrifuge tubes (Beckman Coulter, 29 x104 mm, 50 mL). After centrifuging at 16,000 x g, for 15 min, 4°C, the bacteria cell pellet was obtained and washed three times with ice-cold DPBS. After lysis, 50 µg of proteins were digested with Sequencing grade Trypsin (Promega, Milan, Italy) by filter-aided sample preparation (FASP) protocol (Levi Mortera et al., 2022).




2.3 Mass spectrometry analysis

Obtained peptides were quantified by spectrophotometer measures (NanoDrop 2000, Thermo Fisher Scientific), using a standard curve of MassPrep Escherichia coli digestion (Waters, Milford, Massachusetts, USA), and analyzed by nanoLiquid Chromatography-ElectroSpray Ionisation-tandem mass spectrometry (nanoLC-ESI-MS/MS), which was conducted on UltiMate3000 RSLCnano system, coupled to an Orbitrap Fusion Tribrid mass spectrometer with a nanoESI source [EASY-Spray NG (Thermo Fisher Scientific, Waltham, MA, USA)]. Peptides (2 μg) from each sample were first trapped on a μ-Precolumn C18 PepMap100 (5 µm particle size, 100 Å pore size, 300 µm i.d. x 5mm length, Thermo Fisher Scientific) at 10 μL/min, 3 minutes, with an aqueous solution of 2% Acetonitrile (ACN) and 0.1% Trifluoroacetic acid. Then, peptide elution was performed with an EASY spray column (75 μm x 50 cm, 2 μm particle size, Thermo Fisher Scientific) at a flow rate of 250 nL/min using a linear gradient of increasing organic solvent starting from 95% eluent A [0.1% Formic acid (FA) in water] to 25% eluent B (99.9% ACN, 0.1% FA) in 143 min, and total LC-run of 190 min and temperature of 40°C.

Orbitrap detection was used for data acquisition in both full scan, with a resolution of 120 K, in a range between 375 and 1,500 m/z, and data-dependent MS/MS analysis with a resolution of 15 K with a 3 s cycle-time, during which most abundant multiple-charged (2+ – 7+) precursor ions were isolated for activation after Quadrupole isolation with a 1.6 m/z isolation window and dynamic exclusion enabled for 30 s. The normalized collision energy was optimized at 30% for high-energy collisional dissociation (HCD). MS and MS/MS Automatic gain control (AGC) targets were set to standard mode with a maximum injection time of 50 ms and automatic, respectively. The intensity threshold for MS/MS was set to 50,000. For internal calibration, a lock mass of the polydimethylcyclosiloxane (445.12003 m/z) was used.

Two replicates were produced for each sample.




2.4 Bioinformatic analysis and statistics

NanoLC-ESI-MS/MS data were analyzed by MetaLab-MAG desktop version 1.0.2 (Cheng et al., 2023) setting carbamidomethylation of cysteine as fixed modification, protein N-terminal acetylation and oxidation of methionine as variable modification, maximum two missed cleavages. Databank searching was performed versus the Unified Human Gastrointestinal Genome (UHGG) v2.0.1 (Almeida et al., 2021) also including host UniProtKB/Swiss-Prot database (Homo sapiens). Peptide-Metaproteomic Analysis to extract taxonomic information by the Lowest Common Ancestor (LCA) algorithm was performed by Unipept Desktop version 2.0.0 (Verschaffelt et al., 2021).

The bioinformatic pipeline was performed by R version 4.3.1 ad hoc scripts including gtools, dplyr, vegan, mixOmics and ecodist as main packages. The output files from MetaLab-MAG and Unipept were collapsed to create a final comprehensive matrix. In details, Protein Group (PG) matrix was filtered, considering only PGs with a number of detected razor peptides ≥ 2. Hence, intensities of PGs of the two technical replicates were averaged. After Label Free Quantitation (LFQ) intensities of the PGs’ log10-transformation, the matrix was reduced to those PGs identified in at least 50% of the whole sample set. Imputation of missing values was performed by the K-nearest neighbors’ method using a neighborhood of √samples. The final matrix included PGs and their corresponding LFQ intensities, which were associated with both functional annotations [e.g., Clusters of Orthologous Groups (COG) (Galperin et al., 2021) name and category; Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa, 2019) pathways] and taxonomy based on LCA rank, with taxonomic assignment at all possible levels (Levi Mortera et al., 2022).

Multivariate Bray-Curtis β-diversity, Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA), were computed on the final LFQ intensities’ PG matrix. To test association between covariates and β-diversity, permutational multivariate analysis of variance (PERMANOVA, 9,999 permutations) was employed.

The hierarchical cluster analysis, visualized by a heat map, was based on the LFQ PGs intensity abundances applying a z-score transformation, computing the distance function by Pearson correlation and the linkage by Ward clustering method (R pheatmap package).

After conducting a Shapiro-Wilk test to investigate data distribution, univariate comparisons were performed using the t-test to identify differential individual PGs between the two groups based on the LFQ PGs intensity abundances. The values were filtered through log10(fold change) values ≥ 0.3 or ≤ -0.3, which represents the ratio of the mean intensity of COVID-19 PG to the mean intensity of CTRLs PG, and p-value ≤ 0.05. The Kruskal-Wallis test was utilized instead to establish whether there existed a statistically significant variation in the medians of more than two subgroups.

Differentially expressed KEGG pathways were computed taking into consideration the mean abundance of PGs intensity with the same KEGG pathways for each sample in each sample groups, applying a t-test or a Kruskal-Wallis test, and selecting terms with false discovery rate (FDR)-adjusted p-values (using Benjamini-Hochberg correction) of ≤ 0.05.

Spearman’s correlation was used to assess the correlation between clinical characteristics and intensities of KEGG pathways, which were determined by the mean abundance of PGs intensity with the same KEGG pathways for each sample. Only correlations that were statistically significant with FDR-adjusted p-values (using Benjamini-Hochberg correction) of ≤ 0.05 were chosen.

The Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatic Resource (https://david.ncifcrf.gov/home.jsp) (Sherman et al., 2022) was used for the identification of enriched processes from human PGs. The DAVID Functional Annotation Clustering provided a functional annotation tool to highlight the most relevant terms of DAVID Knowledgebase v2023q2 associated with the uploaded human PGs’ list and discover enriched functional-related terms.





3 Results



3.1 Subjects’ cohort and GM metaproteome’s identification

Metaproteomic profiling of the GM was performed to evaluate microbial and functional signatures of the GM from stool samples of 21 patients with COVID-19, ranging in age from 1 to 16 years (mean of 10 years ± 5 s.d, 10 males and 11 females, male sex frequency of 48%) and compared to the GM of 21 healthy subjects (CTRLs) of the same age-range (min 1 − max 16 years, mean of 10 years ± 4 years s.d., 10 males and 11 females) with an equal distribution of male and female individuals. The patients’ anthropometric, demographic, and clinical data were recorded at enrollment (Table 1; Supplementary file 1).


Table 1 | Demographic and clinical features of COVID-19 patients.



No statistically significant difference in age distribution and gender frequency was observed by comparing COVID-19 and CTRL groups (non-parametric Mann-Whitney test, p-value = 0.8102 and p-value =1.000, respectively). Moreover, the binomial two-tailed test revealed no statistically significant difference in gender proportions within each group (COVID-19, p-value = 1.000; CTRLs, p-value = 1.000).

Fecal samples were subjected to the metaproteomic workflow to detect and quantify bacterial proteins, as illustrated in Figure 1.




Figure 1 | Illustration of the workflow applied for the metaproteomic analysis starting from faces of COVID-19 patients and age-matched healthy control subjects.



Proteins from stool samples were extracted: 1,015 ± 576.7 µg (mean ± s.d.) and 1,021 ± 409.0 µg were obtained from patients and CTRLs, respectively (Supplementary Figure 1A). Upon enzymatic digestion of 50 µg of proteins, COVID-19 and CTRLs samples yielded 46.85 ± 13.58 µg and 52.69 ± 16.35 µg of peptides, respectively (Supplementary Figure 1B).

NanoLC-ESI-MS/MS procedure yielded a total of 48,735 PGs, along with 362,790 peptide sequences. On average, this procedure identified 31,280 ± 1,033 bacterial PGs and 509 ± 10 human PGs from each sample. After filtering out PGs that had fewer than 2 razor peptides, had common razor peptides across kingdom as determined by LCA algorithm through Unipept, and were identified in less than 50% of the entire sample set (Zhang et al., 2018), 34,422 PGs were retained. We then excluded PGs associated with viruses and archaea. As a result, we obtained a matrix consisting of 33,277 PGs of bacterial origin and 533 PGs of human origin.




3.2 Description of the GM metaproteome of COVID-19 patients



3.2.1 Multivariate analysis

Beta-diversity analysis applied to the abundance distribution of PGs in COVID-19 and CTRL samples did not reveal any significant differences when applied to the entire PGs’ matrix (p-value = 0.151) or only to bacterial PGs (p-value = 0.189). However, human PGs indicated dissimilarity between the two groups (p-value = 0.03) (Supplementary Figure 2A).

A PCA analysis was conducted on the LFQ final matrix and exhibited a slight separation between COVID-19 and CTRLs groups (Supplementary Figure 2B). In addition, the PLS-DA algorithm indicated a slight separation between the two groups, with Variable Importance in Projection (VIP) scores ≥ 2 including 1,614 PGs (Q2 = 0.423, p-value = 0.11) (Supplementary Figure 2C). PLS-DA was also carried out on separate datasets, each including only bacterial PGs (Q2 = 0.419, p-value = 0.128), with the VIP ≥ 2 associated to 1,598 PGs, and human PGs (Q2 = 0.502, p-value = 0.01), with the VIP ≥ 2 including 18 PGs, respectively (Supplementary Figure 2C).

Cluster analysis based on the PGs’ LFQ intensity abundances resulted in a heat map that did not provide any clear clustering, indicating a lack of good similarity amongst samples within each COVID-19 and CTRL groups (Supplementary Figure 3).




3.2.2 Univariate analysis

COVID-19s exhibited differential expression of 698 PGs in comparison to CTRLs (comprising of 675 bacterial PGs and 23 human PGs) (Supplementary File 2), whose clustering distinctly separates the two groups (Figure 2).




Figure 2 | Hierarchical clustering of the differentially expressed protein groups (PGs). A heat map based on LFQ PGs’ intensity abundances and subject to a z-score transformation was used to visualize color-coded hierarchical cluster analysis from stool samples of patients (COVID-19, red color) and age-matched healthy subjects (CTRL, green color). The analysis was performed for all PGs (A, 698 differentially expressed PGs), bacterial PGs (675 differentially expressed PGs, B), and human PGs (23 differentially expressed PGs, C).



Overall, 467 bacterial PGs were over-expressed and 208 were under-expressed in COVID-19 in respect of the CTRLs (Figure 3).




Figure 3 | Graphical representation of the differentially expressed bacterial protein groups (PGs) comparing COVID-19 to CTRLs. Dashed gray lines indicate the set limits of log10(abundances’ ratio value) ≥ |0.3| and statistically significance values (–log10p-value ≤ 0.05 established by t-test). Red and green circles indicate the changes for significant protein groups (over-expression and under-expression in COVID-19, respectively). Some PGs are highlighted by their acronym. For associations with the full name, protein group ID, as well as KEGG pathway and COG identifier, please refer to the Supplementary file 2 (i.e., tnaA, Tryptophanase 1, PG 3319, associated to tryptophan metabolism, COG3033).



Among the 675 differentially abundant bacterial PGs, 633 had an assigned COG name, 411 a KEGG pathway name, and 645 a taxonomic assignment (Supplementary File 2), resulting in a total of 368 different COG names, 21 COG categories (Figure 4), and 114 KEGG pathways (Supplementary Figure 4). In addition, the LCA algorithm defined 108 unique taxa (Table 2).




Figure 4 | Graphical representation of COG categories modulated in differentially expressed bacterial protein groups (PGs) comparing COVID-19 with CTRLs. The bars represent the frequency of differentially expressed bacterial PGs associated with their functional annotation. Over-expressed and under-expressed PGs in COVID-19 are denoted by the color coding of red and green, respectively.




Table 2 | Association of differentially expressed bacteria protein groups to taxonomy.



Five hundred and forty-six PGs (80.89%) of the differentially expressed bacterial PGs were assigned to the Bacillota phylum (formerly Firmicutes), with Oscillospiraceae (322 PGs), Lachnospiraceae (56 PGs), Eubacteriaceae (15 PGs), Veillonellaceae (13 PGs), and Clostridiaceae (12 PGs) families being prevalent. Actinomycetota or Actinobacteria accounted for 0.04% of the differentially expressed PGs (25 PGs), while Bacteroidota or Bacteroidetes accounted for 9.04% (61 PGs), Pseudomonadota (formerly Proteobacteria) accounted for 1.48% (10 PGs), and Spirochaetota or Spirochaetes and Verrucomicrobiota (formerly Verrucomicrobia), each accounted for 0.15% (1 PGs).

Considering the total number of PGs and their expression level, the most significant variations in the number of over- and under-expressed PGs were identified in the Bacillota phylum (391 over-expressed PGs vs. 155 under-expressed in COVID-19s), with special reference to the Oscillospiraceae family (280 over- vs. 42 under-expressed), and to the Faecalibacterium (48 over- vs. 10 under-expressed) and Ruminococcus (213 over- vs. 6 under-expressed) genera. Also, the Clostridiaceae family (9 vs. 3 PGs) and the Clostridium genus (8 vs. 3 PGs) showed a different regulation. Regarding the Actinomycetota phylum, the most important differences were observed for the Bifidobacteriaceae family (5 vs. 11 PGs) and for the Bifidobacterium genus (5 vs. 10 PGs). Lastly, Bacteroidota phylum showed remarkable difference for the Bacteroidaceae family and the Bacteroides genus (7 vs. 3 PGs).

Among the KEGG pathways associated with the differentially expressed bacterial PGs, statistically significant differences were found for 84 pathways, with 66 being over-expressed in COVID-19 group (Supplementary Figure 5). Among the others, the KEGGs were mostly associated with processes involving metabolic pathways as with antibiotic resistance and virulence. For the first group, 13 pathways were examined, in particular Butanoate metabolism; Fatty acid biosynthesis; Fatty acid degradation; Fatty acid metabolism; Glycerolipid metabolism; Phenylalanine, tyrosine and tryptophan biosynthesis; Primary bile acid biosynthesis; Propanoate metabolism; Pyruvate metabolism; Secondary bile acid biosynthesis; Sulfur metabolism; Taurine and hypotaurine metabolism; Tryptophan metabolism (Figure 5A). These pathways originated from 111 PGs, encompassing 32 distinct COG names among 8 COGs categories. The five most heavily populated categories were: Energy production and conversion [C] (55 PGs), Lipid transport and metabolism [I] (28 PGs), Carbohydrate transport and metabolism [G] (12 PGs), Amino Acid transport and metabolism [E] (9 PGs), Secondary metabolites biosyntesis, transport and catabolism [Q] (5 PGs).




Figure 5 | Graphical representation of the distribution of Lowest Common Ancestor (LCA) taxa within statistically over-expressed KEGG pathways in COVID-19. A selection of KEGG pathways belonging to metabolic pathways were displayed (A), as well as processes of bacterial antibiotic resistance and virulence (B).



Considering the taxonomic assignment, these 111 PGs were mainly associated with Bacillota (98 PGs, with 32% of them associated with Ruminococcus and 24% with Faecalibacterium genera) and Actinomycetota (8 PGs, with 50% of them belonging to the Bifidobacterium genus).

Within the second group of antibiotic resistance and virulence over-expressed KEGG pathways, 13 were reported, namely ABC transporters; Bacterial chemotaxis; β-Lactam resistance; Biofilm formation - Escherichia coli; Biosynthesis of ansamycins; Cationic antimicrobial peptide (CAMP) resistance; Legionellosis; Monobactam biosynthesis; Peptidoglycan biosynthesis; Phosphotransferase system (PTS); Protein export, Two-component system; and Vancomycin resistance (Figure 5B). These pathways corresponded to 81 PGs, with 32 different COG names across 13 COG categories. Amongst categories, the top five most heavily populated were Carbohydrate transport and metabolism [G] (27 PGs); Amino Acid transport and metabolism [E] (21 PGs); Cell wall/membrane/envelop biogenesis [M] (13 PGs); Energy production and conversion [C] (5 PGs); Cell motility [N] (5 PGs); and Intracellular trafficking, secretion and vesicular transport (5 PGs).

Linking these PGs to LCA taxonomy assignment, the phyla that contained the highest quantity of PGs resulted Bacillota (67 PGs, 45% of them associated to Ruminococcus and 15% to Faecalibacterium) and Actinomycetota (4 PGs, 50% of them Bifidobacterium genus) (Figure 5B).

Moreover, 3 differentially expressed pathways were associated with DNA repair and recombination systems. Both bacterial Nucleotide excision repair (NER) and Base excision repair (BER) KEGG pathways were detected in COVID-19 samples as under-expressed KEGG pathways (Benjamini-Hochberg adjusted p-value = 0.01 in both cases); while the Homologous recombination pathway was over-expressed (Benjamini-Hochberg adjusted p-value = 4.67 x 10-04).

Regarding human PGs, 23 were identified as differentially expressed, and all exhibited under-expression for COVID-19 set. Seventeen PGs had a matching KEGG name and were able to be linked to a total of 23 KEGG pathways. Carboxypeptidase A1 (P15085, CPA1), Carboxypeptidase B1 (P15086, CPB1), were mapped to Pancreatic secretion pathway; both PGs besides X-prolyl aminopeptidase 2 (O43895, XPNPEP2) were related to Protein digestion and absorption pathway. The Fibrinogen γ-chain (P02679, FGG), constituent of the coagulation pathways, was related to numerous KEGG pathways, including Complement and coagulation cascades; Neutrophil extracellular trap formation; Platelet activation; and Coronavirus disease. Moreover, 5 PGs were identified as regions of Immunoglobulins (4 regions of light chains and 1 region of heavy chains). As a consequence, the DAVID enrichment analysis yielded as primary term a cluster of Immunity and Adaptive Immunity UniProt biological processes (Supplementary File 3).





3.3 Description of the GM metaproteome of COVID-19 patients in relation to clinical features

Because three out of 21 patients (14%) received antibiotic treatment prior to fecal sample collection, two of them at admission time, within a window of 24 hours, and only one after a completed one weeks’ cycle, we assessed that this treatment did not affected overall the GM metaproteome of the gut microbiota. Indeed, no statistically significant differences were found between patients administered with antibiotics by β-diversity analysis (Bray-Curtis algorithm) when applied either to the entire PGs matrix (p-value = 0.1), or to the only bacterial or human PGs (p-value = 0.103 and 0.825, respectively) (Supplementary Figure 6). Therefore, the analysis of the COVID-19 cohort continued as a whole, without the exclusion of these three patients.

To examine the effect of patients’ clinical features (Table 1; Supplementary File 1) on the GM metaproteome, we evaluated the LFQ PGs distribution based on COVID-19 severity. We divided the sample set into asymptomatic, mild, and moderate disease categories. Nineteen percent of cases were asymptomatic, 71% were classified as “mild” and 10% had a “moderate” disease. None were classified as “severe”.

Univariate analysis revealed 1,181 bacterial and 6 human PGs differentially associated to the 3 subgroups, based on Kruskal-Wallis test comparison (Supplementary File 4). Of these bacterial PGs, 767 were associated with at least one KEGG pathway name, with a total of 117 different KEGG pathways identified. Among these, statistically significant differences were found for 63 pathways by computing a Krustal-Wallis test comparison, with a Benjamini-Hochberg adjusted p-value (Supplementary File 4). We decided to look more closely at the KEGG pathways that had already been identified as noteworthy in the comparisons between patients and CTRLs, i.e. metabolic pathways, antibiotic resistance and virulence processes, and DNA repair and recombination systems (Figure 6).




Figure 6 | Box plots of a selection of statistically significant differential KEGG pathways in COVID-19 patients, classified according to disease severity, based on Kruskal-Wallis test. (A) displays KEGG pathways related to metabolic pathways, (B) shows antibiotic resistance and virulence processes, and (C) shows the Mismatch repair pathway. Significance of pair-wise comparisons (Mann-Whitney test, Benjamini-Hochberg adjusted p-value) were displayed: * p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001; and ns, no statistical significance (p-value > 0.05).



For the metabolism, 5 pathways were examined, in particular Butanoate metabolism (44 PGs), Fatty acid degradation (11 PGs), Pyruvate metabolism (59 PGs), Sulfur metabolism (5 PGs), and Tryptophan metabolism (3 PGs) (Figure 6A). These pathways originated from 122 PGs, encompassing 30 distinct COG names among 7 COGs categories. The four most heavily populated categories were: Energy production and conversion [C] (80 PGs), Lipid transport and metabolism [I] (18 PGs), Carbohydrate transport and metabolism [G] (14 PGs), and Amino Acid transport and metabolism [E] (8 PGs). Considering the taxonomic assignment, these 122 PGs were mainly associated with Bacillota (92 PGs, with 13% of them associated with Eubacterium and 13% with Ruminococcus genus) and Actinomycetota (9 PGs, with 78% of them belonging to the Bifidobacterium genus).

Within the second group of antibiotic resistance and virulence KEGG pathways, 7 were analyzed, namely Biofilm formation - Escherichia coli, Biosynthesis of ansamycins, Cationic antimicrobial peptide (CAMP) resistance, Monobactam biosynthesis, Neomycin, kanamycin and gentamicin biosynthesis, Phosphotransferase system (PTS), and Protein export (Figure 6B). These pathways corresponded to 60 PGs, with 27 different COG names across 7 COG categories. Amongst categories, the four most heavily populated were Carbohydrate transport and metabolism [G] (41 PGs); Amino Acid transport and metabolism [E] (9 PGs); Intracellular trafficking, secretion, and vesicular transport [U] (7 PGs), and Cell wall/membrane/envelop biogenesis [M] (6 PGs). Considering the taxonomic assignment, these 60 PGs were mainly associated with Bacillota (49 PGs, with 10% of them associated with Faecalibacterium and 10% with Ruminococcus genera) and Actinomycetota (8 PGs, with 63% of them belonging to the Collinsella genus, Collinsella aerofaciens specie).

The Mismatch repair KEGG pathway was identified by nine bacterial PGs, all of which belong to the Replication, recombination, and repair [L] COG category and are associated with the Bacillota phylum (Figure 6C). Specifically, 78% of them were of the Eubacteriales order; two were of the Faecalibacterium prausnitzii genus and one was of the Roseburia faecis genus.

Six human PGs were identified as differentially expressed across the three subsets based on COVID-19 severity: Cytokeratin-4, ADP-ribosylation factor 4, Ig lambda chain V-I region HA, Protein S100-P, Sodium/glucose cotransporter 1, and Ig mu chain C region (Supplementary File 4).

To evaluate the relationship between hematological values, KEGG pathways and the GM metaproteome, we performed a correlation analysis. The majority of correlations were associated with the count of White Blood Cells (WBC), with 19 out of 21 KEGG pathways showing a negative correlation. In particular, the Lymphocyte (L) level displayed a negative correlation with 8 KEGG pathways (among them Biotin metabolism, Fatty acid metabolism, Lysine biosynthesis, Lysine degradation, Nicotinate and nicotinamide metabolism, Tryptophan metabolism, Valine, leucine and isoleucine degradation), while Neutrophils (N) count was associated to 6 KEGG pathways with a negative correlation (Glucosinolate biosynthesis, Nitrogen metabolism, Nonribosomal peptide structures, Sulfur metabolism, Thiamine metabolism, Valine, leucine and isoleucine biosynthesis) (Figure 7). Statistically significant negative correlations with C-reactive protein (CRP) level were found for only 2 KEGG pathways (Glycosphingolipid biosynthesis - globo and isoglobo series being one of them) (Figure 7).




Figure 7 | Heatmap showing Spearman’s correlations between KEGG pathways’ intensity and blood clinical features for the entire COVID-19 cohort. Red boxes indicate positive correlations, blue boxes show negative correlations. Benjamini-Hochberg adjusted p-value were displayed: * p-value ≤ 0.05 and ** p-value ≤ 0.01. KEGG pathways’ clusterization was computed by Euclidean distance. WBC, White Blood Cells; N, Neutrophils, L, Lymphocytes, and CRP, C-reactive protein.







4 Discussion

The gut contains numerous commensal species that perform crucial biological functions essential to human survival (Maciel-Fiuza et al., 2023). Additionally, these species inhabit a carefully balanced ecosystem. When this balance is upset, it can result in adverse effects on human health, a condition known as dysbiosis (Piazzesi and Putignani, 2022). Recently, there has been a growing interest in understanding how the non-bacterial components of the gut microbiota shape host physiology and immunity (Iorio et al., 2022). In this scenario, any perturbation, such as the emergence of a new virus that was not previously present, has implications for human health. Therefore, we decided to study how the presence of SARS-CoV-2 can modify the bacteriome - defined here as the GM - of pediatric patients by both a 16S rRNA-based metagenomics approach in a previous paper (Romani et al., 2022) and by a metaproteomic approach in the present study. Interactions among the host, microbiome members, and invading pathogens are complex and multidimensional, encompassing a wide range of organisms and variable factors. Research on these intricate interactions has been spurred by the availability of high-throughput metagenomic sequencing methods. However, it is important to note that certain predicted protein-coding genes derived from metagenomic data may not be expressed in a particular environment. Thus, relying solely on DNA sequencing data to predict the functional activities and interactions within microbial communities can lead to incomplete predictions. To better interpret these processes, it is necessary to study the abundance of transcripts, proteins, or metabolites (Salvato et al., 2021). Indeed, the metaproteomic approach allows us to understand the functional roles and interactions of the single components in the microbial community (Karaduta et al., 2021), therefore enriching the potential expression information acquired by metagenomics (Van Den Bossche et al., 2021). Hence, we chose to examine the GM of COVID-19 patients enlisted by Romani et al. also from a metaproteomic perspective. To our knowledge, this is the first metaproteomics study focused solely on pediatric patients. Only two previous metaproteomic studies have included pediatric cases in a larger cohort with varying ages (He et al., 2021; Sun et al., 2022), specifically 6 children out of 13 and 7 out of 63 individuals, respectively.

Another noteworthy aspect of the study presented in this paper is the young age of the subjects involved, specifically pediatric patients. Indeed, the microbiome undergoes modulation from birth to senescence, experiencing significant changes during early life, specifically during 1-3 years and after 3 years onwards (Stewart et al., 2018; Hill et al., 2021), and appearing to stabilize in healthy adults (Putignani et al., 2014; Lynch and Pedersen, 2016). So it is not possible to extrapolate GM data collected from a group of adult patients to children. Moreover, SARS-CoV-2 infection, in terms of disease severity, hospitalization and mortality, is a function of age (Zimmermann and Curtis, 2020; Zimmermann and Curtis, 2021). Therefore, our study may hold significance for further research in the field and may explain both the impact of SARS-CoV-2 virus on the GM and the differences in pathogenesis and clinical presentation between children and adults.

Our data demonstrated how SARS-CoV-2 infection affects the functionality of the GM at multiple levels. Specifically, it modifies metabolic pathways, mechanisms of antibiotic resistance and bacterial virulence, and DNA repair and recombination systems. Among the over-expressed metabolic pathways, those related to Phenylalanine, tyrosine and tryptophan biosynthesis and Tryptophan metabolism (Figure 5) may be a consequence also of the virus-dependent ACE2 reduction, since ACE2 is involved in tryptophan uptake (Zhou et al., 2022) acting as a chaperone of the amino acid transporter, B0AT1 in the small intestine (Takeshita and Yamamoto, 2022). The relationship among GM, host and ACE2 modulation by SARS-CoV-2 in modifying tryptophan pathways is complex: GM ecology is altered by a reduction in tryptophan absorption in ACE2 knockout mice, which in turn causes modification of tryptophan metabolites released by gut bacteria, which ultimately has an important impact on the host inflammatory response (Hashimoto et al., 2012; Zelante et al., 2013). The significance of ACE2 in gut function and biology is paramount also because it regulates the expression of antimicrobial peptides (Yu et al., 2021). Moreover, impaired tryptophan metabolism, resulting from decreased expression of corresponding genes, has been associated with critical SARS-CoV-2 infection compared to non-critical cases. It has been suggested that supplementing tryptophan or improving the tryptophan metabolic pathway could potentially mitigate severe COVID-19 outcomes (Yokoyama et al., 2022). In addition, tryptophanase 1, an enzyme that catalyzes the production of indole and pyruvate from L-tryptophan, was identified as one of the differentially expressed PGs. Tryptophan catabolites have been found to impact various physiological processes, which contributes to maintaining intestinal and systemic homeostasis in both human health and disease (Roager and Licht, 2018). Indeed, these metabolites activate the immune system by binding to the aryl hydrocarbon receptor, improve the intestinal epithelial barrier, stimulate gastrointestinal motility and hormone secretion, and exert varied effects such as anti-inflammatory, antioxidative, or toxic in the systemic circulation. As example, indole has a dual role, as it can both exhibit anti-inflammatory properties and exert a toxic effect due to one of its derivatives, indoxyl sulfate, which can cause nephrotoxicity and cardiovascular toxicity (Ye et al., 2022). Altogether, our results may show how the GM response may contribute to render the infection less severe in pediatric COVID-19 patients. Also the increased expression of sulfur metabolism in COVID-19 compared to CTRLs, as well as the decreasing trend of the associated PG observed by stratifying COVID-19 patients from asymptomatic to mild and severe infection, suggest an adaptive mechanism of the GM explaining the superior ability of pediatric GM to counteract the virus. Indeed, reactive sulfur compounds have demonstrated anti-inflammatory, antioxidant, and antiviral effects and have piqued interest for the treatment and prevention of the adverse effects diseases caused by SARS-CoV-2 (Iciek et al., 2022).

Regarding over-expressed bile acid pathways, a decrease in fecal secondary bile acid concentrations was found to be correlated with fatal outcomes of SARS-CoV-2 infection in adult patients (Stutz et al., 2022). Based on the findings of Stunz et al., it can be inferred that the increased expression of bile acid metabolism in our patients, as opposed to the CTRLs, signified the response of the GM, which has a positive effect on the host physiology and immune defense to overcome the infection. Indeed secondary bile acids affect differentiation of CD4 Th17 and Treg cells (Stutz et al., 2022). A similar hypothesis may be associated to the over-expression of Butanoate and Fatty acid metabolisms; indeed, short chain fatty acids (SCFAs, such as acetate, propionate and butyrate) family of compounds has recognized immunomodulatory and anti-inflammatory properties (Włodarczyk et al., 2022).

The over-expression of pathways related to antibiotic resistance and bacteria virulence may be viewed as a reaction to the SARS-CoV-2 virus. Indeed, bacteria modify their functions in response to interactions with the external environment. In a metagenomics study published by our collaborators, the PICRUSt algorithm identified predicted functional signatures mainly associated with bacterial virulence and antibiotic resistance (Laterza et al., 2023). It was found that KEGG orthologs modulated by the virus belonged to the two-component system, ATP-binding cassette proteins, and the PTS system, which were similar to those identified in our study. Regarding the involvement of ABC transporters, they have also been described, by metagenome and metatranscriptome sequencing, as in active expression in GM of COVID-19 patients along with beta-lactam resistance metabolic pathways (Zhou et al., 2022). This evidence led the authors to speculate on the presence of toxic stress after exposure to SARS-CoV-2. ABC transporters are involved in a variety of vital bacterial functions, such as importing nutrients, biosynthetic precursors, vitamins, metals, and exporting lipids, sterols, drugs, primary and secondary metabolites, all of which affect bacterial metabolism as well as bacterial pathogenesis and virulence. In fact, the xenobiotic efflux exerted by ABC transporters is involved in the development of antimicrobial resistance (Akhtar and Turner, 2022). To note, the Biosynthesis of ansamycins pathway was also found to be specific of the COVID-19 cohort in our previous targeted-metagenomic study (Romani et al., 2022). Indeed, the 21 stool samples examined in this study were from the same sample cohort as the 16S rRNA-based metagenomics study, which had the opportunity to analyze a considerably larger number of samples (68 patients). The comparisons were conducted using a group of 21 healthy subjects, of which 12 individuals overlapped with the CTRL metagenomics cohort (95 individuals). However, the results of the two studies did not completely overlap, not only due to the difference in the sample sizes but also because the approaches were different. Metagenomics provides a comprehensive overview of the genes present in a sample’s species, with greater accuracy in taxonomy assignments and ability to infer their function. Conversely, metaproteomics yields a fluid catalog of species and their expressed proteins, revealing active genes and species with specific functions that enable a clearer understanding of functional roles and interactions within microbial communities; however, the high homology of bacterial protein sequences limits its taxonomic resolution. Indeed, especially when dealing with complex microbial populations and lacking sample-specific shotgun metagenomics-derived databases, taxonomic outcomes between the two omic approaches may vary significantly. This stems from the fact that meta-omic disciplines employ distinct analytical techniques on various molecular species (Tanca et al., 2017).

Despite the low abundance of PGs associated with DNA repair and recombination systems, it is noteworthy that these pathways were downregulated in COVID-19 pediatric patients. Furthermore, the stratification of patients based on disease severity reveals a correlation between severity and under-expression of at least one pathway (Mismatch repair) associated to DNA repair and recombination systems: the greater the severity, the greater the lack of expression, ranging from asymptomatic to mild to moderate. Thus, the study suggests that SARS-CoV-2 has a negative impact on GM by hindering the functionality of excision repair systems. This leads to a decrease of these pathways from healthy controls to individuals with asymptomatic COVID-19 and those with mild to moderate symptoms. These repair systems are activated after damage occurs to one strand of DNA. All living organisms use at least three types of excision repair systems, namely mismatch repair, BER, and NER, to correct DNA damage to ensure their survival and that of their progeny (Ha and Bhagavan, 2023). There are clear examples of how direct and indirect interactions with eukaryotic viruses can affect bacterial biology and vice versa (Neu and Mainou, 2020); in this case, it is not easy to hypothesize a mechanism of action, but it may be related to the general state of stress that bacteria face in the inflammatory environment caused by SARS-CoV-2.

In order to further investigate which microbial pathways may be associated with disease severity, we performed a correlation analysis between the KEGG pathways that we found to be differentially regulated in our patients and clinical features such as WBC and CRP. Previous retrospective studies have indicated that WBC at admission and WBC fluctuation during hospitalization were correlated with COVID-19 progression, severity and even death (Chen et al., 2020; Lv et al., 2020; Qin et al., 2020; Zhu B. et al., 2021). Furthermore, neutrophil and lymphocyte counts specifically, as well as their ratio, were also uncovered as an important prognostic markers for COVID-19 (Chen et al., 2020; Lv et al., 2020; Qin et al., 2020).

In our dataset, we found 19 KEGG pathways to be negatively correlated with WBC, while 2 were positively correlated (Figure 7). Among those that are negatively correlated with WBC, Fatty acid biosynthesis was also found to be enriched in our pediatric patient cohort, indicating that this metabolic pathway may be one of the mechanisms by which the pediatric GM protects the host from more severe manifestations of COVID-19. Furthermore, the significantly enriched proteins in this pathway were associated with the Faecalibacterium and Ruminococcus genera. While taxonomic inferences from proteins are predictive and not as precise as metagenomics analysis, these results are consistent with previous reports of an enrichment of Faecalibacterium in the GM of pediatric COVID-19 patients (Romani et al., 2022). Taken together, these results suggest that members of the Faecalibacterium genus may also contribute to pediatric protection against severe COVID-19 via modulation of fatty acid metabolism.

Severe COVID-19 has been associated with a lower lymphocyte count coupled with a higher neutrophil count compared to patients with mild or asymptomatic forms of COVID-19 (Lv et al., 2020). Therefore, we decided to also investigate whether these parameters, specifically, were correlated with the KEGG pathways found in our analysis. All 6 of the significant pathways were negatively correlated with neutrophil count (Figure 7). Of these, 4 were in common with a negative association with WBC, namely Valine, leucine and isoleucine biosynthesis, Thiamine metabolism, Glucosinolate biosynthesis and Nonribosomal peptide structures. Interestingly thiamine, also known as vitamin B1, is known to boost antibody responses, reduce pro-inflammatory cytokines and, as such, has been proposed as a potential adjuvant therapy for COVID-19 patients (Shakoor et al., 2021). In fact, critically ill COVID-19 patients who received thiamine were less likely to suffer thrombosis and were more likely to survive the disease than those who did not (Al Sulaiman et al., 2021). Furthermore, hospitalized patients with COVID-19-induced encephalopathy showed significantly improved neurological function after receiving intravenous thiamine (Branco De Oliveira et al., 2021). In this context, our results suggest that GM-derived thiamine could also contribute to protection against severe COVID-19.

Interestingly, none of the pathways that were significantly correlated with WBC and neutrophils were also significantly correlated with lymphocyte counts. Instead, we found 7 interestingly different pathways that were negatively correlated with lymphocyte counts. Since lymphocyte counts are generally negatively correlated with COVID-19 severity, KEGG pathways that are negatively correlated with lymphocyte counts should, in principle, be positively correlated with COVID-19 severity. On the one hand, some of these pathways are consistent with those that are negatively correlated with neutrophil counts. For example, while Valine, leucine and isoleucine biosynthesis was negatively correlated with neutrophil counts, Valine, leucine and isoleucine degradation was negatively correlated with lymphocyte counts (Figure 7). Therefore, taken together, these results suggest that GM-derived branched amino acid metabolism is associated with these clinical markers of disease severity, as their synthesis is associated with lower neutrophil counts, while their degradation is associated with higher lymphocyte counts. However, on the other hand, our results are not entirely consistent with the principle of lower lymphocyte counts being a prognostic marker for more severe forms of COVID-19. For example, Tryptophan metabolism, which was significantly negatively correlated with lymphocyte counts, was also significantly reduced in children with moderate COVID-19 compared to children with either mild or asymptomatic manifestations of the disease. It is, however, important to note that, when it comes to children, the normal ranges of lymphocyte counts varies dramatically in function of their age bracket. Therefore, when observing a wide age range of pediatric patients, lymphocyte counts may be more difficult to associate with disease, as what is a “low” count for an older child is actually a “normal” count for a younger one. Given this substantial confounding factor, further studies on a much larger cohort of patients are necessary to determine if, and how, lymphocyte counts in children correlate with COVID-19 severity, and how GM-derived metabolites may influence these clinical parameters.

Finally, we also performed this correlative analysis with serum CRP levels. CRP is a protein produced by the liver in response to systemic inflammation, and was also found to be correlated with COVID-19 severity in adults (Lv et al., 2020; Al Sulaiman et al., 2021) and with multisystemic inflammatory syndrome in children (MIS-C) (Ozsurekci et al., 2021). In our dataset, Glycosphingolipid biosynthesis KEGG pathway was negatively correlated with serum CRP levels (Figure 7). Excessive Glycosphingolipid biosynthesis can precipitate the generation of pro-inflammatory cytokines and lead to tissue damage in general, and in COVID-19 in particular (Trivedi et al., 2022). These results suggest that the GM too can modulate the synthesis of glycosphingolipids in response to COVID-19, and that this modulation can in turn influence their pro-inflammatory properties.

Among the differentially expressed human PGs, we found a down-expression of the Fibrinogen γ-chain. Previous studies have shown an increased risk of prothrombotic coagulation abnormalities in COVID-19 patients, with higher disease severity and increased mortality rates associated with elevated blood levels of D-dimer, fibrinogen, and platelets (Cunningham et al., 2022; Shama et al., 2023). Our counter-evidence was based on fecal samples in a cohort of pediatric patients at the onset of COVID-19 who did not MIS-C. Therefore, this outcome can be attributed to the presence of a more efficient systemic inflammatory response that counters SARS-CoV-2 action, resulting in milder symptoms compared to adults.

Ideally, this study should have been conducted on a larger sample size. As a consequence, second limitation arose from the fact that we were not able to stratify patients based on different age range knowing that GM significantly changes during the time frame of 1-16 years. Therefore it will be crucial to validate the results on a larger cohort while also accounting for variations within age groups to better understand the protective role played by GM in protection against COVID-19.

To note, studies on the correlation between the GM and respiratory diseases in children are still scarce and the direction of this interaction remains unclear: do fluctuations (due to environmental, dietary, or genetic factors) in the GM increase or decrease the risk of respiratory tract infections, or do respiratory tract infections cause alterations in the gut microbiota? (Zhu W. et al., 2021). What is certain is that the microbiota has an impact on the pediatric immune system and it has been demonstrated that the GM plays a critical role in safeguarding against bacterial and viral respiratory infections by steering the innate and adaptive immune response (Wiertsema et al., 2021). As example, variations in young children GM composition were observed in relation to respiratory syncytial virus disease (RSV) severity (Harding et al., 2020), although it remains unclear whether these alterations were a cause or a result of RSV infection. Anyway, it has been shown that the modulation of intestinal bacteria can be an effective clinical treatment to prevent severe symptoms of respiratory diseases such as asthma (Liu A. et al., 2021).

Moreover, our observations of an overexpression of PGs associated with Faecalibacterium in COVID-19 samples and the hypothesis that this may contribute, among other factors, to the reduced severity of disease in children are consistent with the findings in adult patients. Numerous studies have documented the scarcity of this genus that produces butyrate in COVID-19; its presence, when combined with Roseburia, successfully differentiated between critical and mild forms of the illness (Reinold et al., 2021). Indeed, a recent systematic review has brought to light a distinctive microbial composition in adult COVID-19 patients: there is a reduction in SCFAs-producing bacteria, like Faecalibacterium, within their GM, which persists even after recovery (Simadibrata et al., 2023). Therefore, targeting GM as a therapeutic option or considering it as adjuvant therapy following SARS-CoV-2 infection is highly attractive.

Fecal microbiota transplantation (FTM) can then be considered (Wang et al., 2022). One study has been already been published demonstrating how targeting FMT has favorable effects on the patients’ GM and immune system after SARS-CoV-2 infection (Liu F. et al., 2021). Indeed, FMT may also provide benefits to patients experiencing post-acute COVID-19 syndrome (PACS, or long COVID-19), which is characterized by long-term complications and/or persistent symptoms after contracting COVID-19. GM of adult patients with PACS were described by being dysbiotic with lower levels of butyrate-producing bacteria, including F. prausnitzii (Liu et al., 2022; Norouzi Masir and Shirvaliloo, 2022). It is worth noting that adult patients, who previously were recovered and later suffered from long COVID, experienced GM dysbiosis even one year after being discharged from medical care (Zhang et al., 2023). Their GM showed reduced bacterial diversities and lower relative abundance of SCFAs-producing salutary symbionts, such as Eubacterium_hallii_group, Subdoligranulum, Ruminococcus, Dorea, Coprococcus, and Eubacterium_ventriosum_group (Zhang et al., 2023).

Taken together, our data obtained by the metaproteomics approach showed, as the GM of pediatric patients is modulated by COVID-19 infection, it can attenuate disease severity through multiple processes, such as modulation of various metabolic pathways, antibiotic resistance and virulence mechanisms. Some of the functional profiles enriched in children are in line with previous studies into promising adjuvant therapies for severe COVID-19 in adults. This further underscores the relevance of the pediatric GM in uncovering clinically relevant therapeutic strategies against SARS CoV-2 infection. Our findings have the potential to reveal additional, novel therapeutic strategies for future clinical studies.





Data availability statement

The datasets presented in this study can be found in an online repository. The name of the repository and accession number can be found below: MASSIVE (https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp), MSV000092639.





Ethics statement

This study involving humans was approved by Bambino Gesù Children’s Hospital Ethics Committee. (Protocol code 2083_OPBG_2020) and was conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation in this study was provided by the participants’ legal guardians/next of kin.





Author contributions

VM: Data curation, Formal Analysis, Investigation, Methodology, Visualization, Writing – original draft, Writing – review & editing. SLM: Investigation, Methodology, Writing – review & editing. CM: Formal Analysis, Investigation, Methodology, Visualization, Writing – review & editing. AP: Investigation, Writing – original draft, Writing – review & editing. FR: Formal Analysis, Investigation, Writing – original draft. SP: Investigation, Writing – review & editing. FDC: Investigation, Writing – review & editing. PV: Investigation, Writing – review & editing. LR: Data curation, Investigation, Writing – review & editing. AC: Investigation, Writing – review & editing. PP: Investigation, Writing – review & editing. LP: Conceptualization, Funding acquisition, Investigation, Methodology, Supervision, Writing – review & editing.





Group members of CACTUS Study Team

Stefania Bernardi, MD, Francesca Calò Carducci, MD, Caterina Cancrini, MD, PhD, Sara Chiurchiù, MD, Marta Ciofi degli Atti, MD, Nicola Cotugno, MD, Laura Cursi, MD, Renato Cutrera, MD, Carmen D’Amore, MD, Patrizia D’Argenio, MD, Maria A. De Ioris, MD, Maia De Luca, MD, Carlo Federico Perno, Prof., Andrea Finocchi, MD, PhD, Laura Lancella, MD, Giulia Linardos, PhD, Emma Concetta Manno MD, Elena Morrocchi, PhD, Paola Pansa, MD, Paolo Rossi, Prof., Libera Sessa, PhD, Alberto Villani, Prof., Paola Zangari, MD.





Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The Italian Ministry of Health provided “Current Research funds” to support this work.




Acknowledgments

The authors express their gratitude to Dr. Kai Cheng of the MetaLab team at the University of Ottawa in Canada for his assistance with resolving software setup and management problems. Furthermore, the authors would like to thank Dr. Matteo Scanu for his contribution in revising the manuscript.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.





Supplementary material

The Supplementary Files for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcimb.2023.1327889/full#supplementary-material




References

 Akhtar, A. A., and Turner, D. P. (2022). The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: Therapeutic and vaccine potential. Microb. Pathog. 171, 105734. doi: 10.1016/j.micpath.2022.105734

 Alimohamadi, Y., Sepandi, M., Taghdir, M., and Hosamirudsari, H. (2020). Determine the most common clinical symptoms in COVID-19 patients: a systematic review and meta-analysis. J. Prev. Med. Hyg 61, E304–E312. doi: 10.15167/2421-4248/jpmh2020.61.3.1530

 Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z. J., et al. (2021). A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114. doi: 10.1038/s41587-020-0603-3

 Al Sulaiman, K., Aljuhani, O., Al Dossari, M., Alshahrani, A., Alharbi, A., Algarni, R., et al. (2021). Evaluation of thiamine as adjunctive therapy in COVID-19 critically ill patients: a two-center propensity score matched study. Crit. Care 25, 223. doi: 10.1186/s13054-021-03648-9

 Branco De Oliveira, M. V., Irikura, S., Lourenço, F. H. D. B., Shinsato, M., Irikura, T. C. D. B., Irikura, R. B., et al. (2021). Encephalopathy responsive to thiamine in severe COVID-19 patients. Brain Behavior Immun. - Health 14, 100252. doi: 10.1016/j.bbih.2021.100252

 Chen, R., Sang, L., Jiang, M., Yang, Z., Jia, N., Fu, W., et al. (2020). Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J. Allergy Clin. Immunol. 146, 89–100. doi: 10.1016/j.jaci.2020.05.003

 Cheng, K., Ning, Z., Li, L., Zhang, X., Serrana, J. M., Mayne, J., et al. (2023). MetaLab-MAG: A metaproteomic data analysis platform for genome-level characterization of microbiomes from the metagenome-assembled genomes database. J. Proteome Res. 22, 387–398. doi: 10.1021/acs.jproteome.2c00554

 Cheung, K. S., Hung, I. F. N., Chan, P. P. Y., Lung, K. C., Tso, E., Liu, R., et al. (2020). Gastrointestinal manifestations of SARS-coV-2 infection and virus load in fecal samples from a hong kong cohort: systematic review and meta-analysis. Gastroenterology 159, 81–95. doi: 10.1053/j.gastro.2020.03.065

 Chhibber-Goel, J., Gopinathan, S., and Sharma, A. (2021). Interplay between severities of COVID-19 and the gut microbiome: implications of bacterial co-infections? Gut Pathog. 13, 14. doi: 10.1186/s13099-021-00407-7

 Cunningham, R. M., Johnson Moore, K. L., and Moore, J. S. (2022). Coagulopathy during COVID-19 infection: a brief review. Clin. Exp. Med. 23, 655–666. doi: 10.1007/s10238-022-00891-4

 De Ioris, M. A., Scarselli, A., Ciofi Degli Atti, M. L., Ravà, L., Smarrazzo, A., Concato, C., et al. (2020). Dynamic viral severe acute respiratory syndrome coronavirus 2 RNA shedding in children: preliminary data and clinical consideration from a italian regional center. J. Pediatr. Infect. Dis. Soc. 9, 366–369. doi: 10.1093/jpids/piaa065

 Donati Zeppa, S., Agostini, D., Piccoli, G., Stocchi, V., and Sestili, P. (2020). Gut microbiota status in COVID-19: an unrecognized player? Front. Cell. Infect. Microbiol. 10. doi: 10.3389/fcimb.2020.576551

 Galperin, M. Y., Wolf, Y. I., Makarova, K. S., Vera Alvarez, R., Landsman, D., and Koonin, E. V. (2021). COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 49, D274–D281. doi: 10.1093/nar/gkaa1018

 Ha, C. E., and Bhagavan, N. V. (2023). “Chapter 21 - DNA replication, repair, and mutagenesis,” in Essentials of medical biochemistry, 3rd ed. Eds.  C. E. Ha, and N. V. Bhagavan (San Diego: Academic Press), 477–496. doi: 10.1016/B978-0-323-88541-6.00029-6

 Harding, J. N., Siefker, D., Vu, L., You, D., DeVincenzo, J., Pierre, Jf., et al. (2020). Altered gut microbiota in infants is associated with respiratory syncytial virus disease severity. BMC Microbiol. 20, 140. doi: 10.1186/s12866-020-01816-5

 Hashimoto, T., Perlot, T., Rehman, A., Trichereau, J., Ishiguro, H., Paolino, M., et al. (2012). ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481. doi: 10.1038/nature11228

 He, F., Zhang, T., Xue, K., Fang, Z., Jiang, G., Huang, S., et al. (2021). Fecal multi-omics analysis reveals diverse molecular alterations of gut ecosystem in COVID-19 patients. Analytica Chimica Acta 1180, 338881. doi: 10.1016/j.aca.2021.338881

 Hill, L., Sharma, R., Hart, L., Popov, J., Moshkovich, M., and Paik, N. (2021). The neonatal microbiome in utero and beyond: perinatal influences and long-term impacts. J. Lab. Med. 45, 275–291. doi: 10.1515/labmed-2021-0131

 Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. doi: 10.1016/S0140-6736(20)30183-5

 Iciek, M., Bilska-Wilkosz, A., Kozdrowicki, M., and Górny, M. (2022). Reactive sulfur compounds in the fight against COVID-19. Antioxidants 11, 1053. doi: 10.3390/antiox11061053

 Iorio, A., Biazzo, M., Gardini, S., Muda, A. O., Perno, C. F., Dallapiccola, B., et al. (2022). Cross-correlation of virome-bacteriome-host-metabolome to study respiratory health. Trends Microbiol. 30, 34–46. doi: 10.1016/j.tim.2021.04.011

 Jamshidi, P., Hajikhani, B., Mirsaeidi, M., Vahidnezhad, H., Dadashi, M., and Nasiri, M. J. (2021). Skin manifestations in COVID-19 patients: are they indicators for disease severity? A Systematic Review. Front. Med. 8. doi: 10.3389/fmed.2021.634208

 Kanehisa, M. (2019). Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. doi: 10.1002/pro.3715

 Karaduta, O., Dvanajscak, Z., and Zybailov, B. (2021). Metaproteomics—An advantageous option in studies of host-microbiota interaction. Microorganisms 9, 980. doi: 10.3390/microorganisms9050980

 Kumar, A., Faiq, M. A., Pareek, V., Raza, K., Narayan, R. K., Prasoon, P., et al. (2020). Relevance of SARS-CoV-2 related factors ACE2 and TMPRSS2 expressions in gastrointestinal tissue with pathogenesis of digestive symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 patients. Med. Hypotheses 144, 110271. doi: 10.1016/j.mehy.2020.110271

 Lamontagne, F., Agarwal, A., Rochwerg, B., Siemieniuk, R. A., Agoritsas, T., Askie, L., et al. (2020). A living WHO guideline on drugs for covid-19. BMJ 370, m3379. doi: 10.1136/bmj.m3379

 Laterza, L., Putignani, L., Settanni, C. R., Petito, V., Varca, S., De Maio, F., et al. (2023). Ecology and machine learning-based classification models of gut microbiota and inflammatory markers may evaluate the effects of probiotic supplementation in patients recently recovered from COVID-19. IJMS 24, 6623. doi: 10.3390/ijms24076623

 Levi Mortera, S., Marzano, V., Vernocchi, P., Matteoli, M. C., Guarrasi, V., Gardini, S., et al. (2022). Functional and taxonomic traits of the gut microbiota in type 1 diabetes children at the onset: A metaproteomic study. IJMS 23, 15982. doi: 10.3390/ijms232415982

 Liu, A., Ma, T., Xu, N., Jin, H., Zhao, F., Kwok, L.-Y., et al. (2021). Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol. Spectr. 9, e00859–e00821. doi: 10.1128/Spectrum.00859-21

 Liu, Q., Mak, J. W. Y., Su, Q., Yeoh, Y. K., Lui, G. C.-Y., Ng, S. S. S., et al. (2022). Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 71, 544–552. doi: 10.1136/gutjnl-2021-325989

 Liu, F., Ye, S., Zhu, X., He, X., Wang, S., Lin, J., et al. (2021). Gastrointestinal disturbance and effect of fecal microbiota transplantation in discharged COVID-19 patients. J. Med. Case Rep. 15, 60. doi: 10.1186/s13256-020-02583-7

 Lv, Z., Cheng, S., Le, J., Huang, J., Feng, L., Zhang, B., et al. (2020). Clinical characteristics and co-infections of 354 hospitalized patients with COVID-19 in Wuhan, China: a retrospective cohort study. Microbes Infection 22, 195–199. doi: 10.1016/j.micinf.2020.05.007

 Lynch, S. V., and Pedersen, O. (2016). The human intestinal microbiome in health and disease. N Engl. J. Med. 375, 2369–2379. doi: 10.1056/NEJMra1600266

 Maciel-Fiuza, M. F., Muller, G. C., Campos, D. M. S., do Socorro Silva Costa, P., Peruzzo, J., Bonamigo, R. R., et al. (2023). Role of gut microbiota in infectious and inflammatory diseases. Front. Microbiol. 14. doi: 10.3389/fmicb.2023.1098386

 Medina-Barandica, J., Contreras-Puentes, N., Tarón-Dunoyer, A., Durán-Lengua, M., and Alviz-Amador, A. (2023). In-silico study for the identification of potential destabilizers between the spike protein of SARS-CoV-2 and human ACE-2. Inf. Med. Unlocked 40, 101278. doi: 10.1016/j.imu.2023.101278

 Neu, U., and Mainou, B. A. (2020). Virus interactions with bacteria: Partners in the infectious dance. PloS Pathog. 16, e1008234. doi: 10.1371/journal.ppat.1008234

 Norouzi Masir, M., and Shirvaliloo, M. (2022). Symptomatology and microbiology of the gastrointestinal tract in post-COVID conditions. JGH Open 6, 667–676. doi: 10.1002/jgh3.12811

 Ozsurekci, Y., Gürlevik, S., Kesici, S., Akca, U. K., Oygar, P. D., Aykac, K., et al. (2021). Multisystem inflammatory syndrome in children during the COVID-19 pandemic in Turkey: first report from the Eastern Mediterranean. Clin. Rheumatol 40, 3227–3237. doi: 10.1007/s10067-021-05631-9

 Patterson, E. I., Prince, T., Anderson, E. R., Casas-Sanchez, A., Smith, S. L., Cansado-Utrilla, C., et al. (2020). Methods of inactivation of SARS-coV-2 for downstream biological assays. J. Infect. Dis. 222, 1462–1467. doi: 10.1093/infdis/jiaa507

 Piazzesi, A., and Putignani, L. (2022). Extremely small and incredibly close: Gut microbes as modulators of inflammation and targets for therapeutic intervention. Front. Microbiol. 13. doi: 10.3389/fmicb.2022.958346

 Putignani, L., Del Chierico, F., Petrucca, A., Vernocchi, P., and Dallapiccola, B. (2014). The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr. Res. 76, 2–10. doi: 10.1038/pr.2014.49

 Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., et al. (2020). Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in wuhan, China. Clin. Infect. Dis. 71, 762–768. doi: 10.1093/cid/ciaa248

 Reinold, J., Farahpour, F., Fehring, C., Dolff, S., Konik, M., Korth, J., et al. (2021). A pro-inflammatory gut microbiome characterizes SARS-coV-2 infected patients and a reduction in the connectivity of an anti-inflammatory bacterial network associates with severe COVID-19. Front. Cell. Infect. Microbiol. 11. doi: 10.3389/fcimb.2021.747816

 Roager, H. M., and Licht, T. R. (2018). Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294. doi: 10.1038/s41467-018-05470-4

 Romani, L., Chiurchiù, S., Santilli, V., Bernardi, S., Haywood Lombardi, M., Scarselli, A., et al. (2020). COVID-19 in Italian paediatric patients: The experience of a tertiary children’s hospital. Acta Paediatr. 109, 2311–2312. doi: 10.1111/apa.15465

 Romani, L., Del Chierico, F., Macari, G., Pane, S., Ristori, M. V., Guarrasi, V., et al. (2022). The relationship between pediatric gut microbiota and SARS-coV-2 infection. Front. Cell. Infect. Microbiol. 12. doi: 10.3389/fcimb.2022.908492

 Salvato, F., Hettich, R. L., and Kleiner, M. (2021). Five key aspects of metaproteomics as a tool to understand functional interactions in host-associated microbiomes. PloS Pathog. 17, e1009245. doi: 10.1371/journal.ppat.1009245

 Shakoor, H., Feehan, J., Mikkelsen, K., Al Dhaheri, A. S., Ali, H. I., Platat, C., et al. (2021). Be well: A potential role for vitamin B in COVID-19. Maturitas 144, 108–111. doi: 10.1016/j.maturitas.2020.08.007

 Shama,, Mahmood, A., Mehmood, S., and Zhang, W. (2023). Pathological effects of SARS-coV-2 associated with hematological abnormalities. Curr. Issues Mol. Biol. 45, 7161–7182. doi: 10.3390/cimb45090453

 Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., et al. (2022). DAVID: a web server for functional enrichment analysis and functional annotation of gene list update). Nucleic Acids Res. 50, W216–W221. doi: 10.1093/nar/gkac194

 Simadibrata, D. M., Lesmana, E., Gunawan, J., Quigley, E. M., and Simadibrata, M. (2023). A systematic review of gut microbiota profile in COVID -19 patients and among those who have recovered from COVID -19. J. Digest Dis. 24, 244–261. doi: 10.1111/1751-2980.13195

 Stewart, C. J., Ajami, N. J., O’Brien, J. L., Hutchinson, D. S., Smith, D. P., Wong, M. C., et al. (2018). Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588. doi: 10.1038/s41586-018-0617-x

 Stutz, M. R., Dylla, N. P., Pearson, S. D., Lecompte-Osorio, P., Nayak, R., Khalid, M., et al. (2022). Immunomodulatory fecal metabolites are associated with mortality in COVID-19 patients with respiratory failure. Nat. Commun. 13, 6615. doi: 10.1038/s41467-022-34260-2

 Sun, Z., Song, Z.-G., Liu, C., Tan, S., Lin, S., Zhu, J., et al. (2022). Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Med. 20, 24. doi: 10.1186/s12916-021-02212-0

 Takeshita, H., and Yamamoto, K. (2022). Tryptophan metabolism and COVID-19-induced skeletal muscle damage: is ACE2 a key regulator? Front. Nutr. 9. doi: 10.3389/fnut.2022.868845

 Tanca, A., Manghina, V., Fraumene, C., Palomba, A., Abbondio, M., Deligios, M., et al. (2017). Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Front. Microbiol. 8. doi: 10.3389/fmicb.2017.00391

 Tong, J., Chen, Y., He, M., Wang, W., Wang, Y., Li, N., et al. (2023). The triangle relationship between human genome, gut microbiome, and COVID-19: opening of a Pandora’s box. Front. Microbiol. 14. doi: 10.3389/fmicb.2023.1190939

 Trivedi, V. S., Magnusen, A. F., Rani, R., Marsili, L., Slavotinek, A. M., Prows, D. R., et al. (2022). Targeting the complement–sphingolipid system in COVID-19 and gaucher diseases: evidence for a new treatment strategy. IJMS 23, 14340. doi: 10.3390/ijms232214340

 Van Den Bossche, T., Arntzen, M.Ø., Becher, D., Benndorf, D., Eijsink, V. G. H., Henry, C., et al. (2021). The Metaproteomics Initiative: a coordinated approach for propelling the functional characterization of microbiomes. Microbiome 9, 243. doi: 10.1186/s40168-021-01176-w

 Verschaffelt, P., Van Den Bossche, T., Martens, L., Dawyndt, P., and Mesuere, B. (2021). Unipept desktop: A faster, more powerful metaproteomics results analysis tool. J. Proteome Res. 20, 2005–2009. doi: 10.1021/acs.jproteome.0c00855

 Vuille-dit-Bille, R. N., Liechty, K. W., Verrey, F., and Guglielmetti, L. C. (2020). SARS-CoV-2 receptor ACE2 gene expression in small intestine correlates with age. Amino Acids 52, 1063–1065. doi: 10.1007/s00726-020-02870-z

 Wang, B., Wang, Y., Dai, T., Qin, Z., and Zhou, F. (2022). Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduct Target Ther. 7, 143. doi: 10.1038/s41392-022-00986-0

 Wiertsema, S. P., Van Bergenhenegouwen, J., Garssen, J., and Knippels, L. M. J. (2021). The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 13, 886. doi: 10.3390/nu13030886

 Włodarczyk, J., Czerwiński, B., and Fichna, J. (2022). Short-chain fatty acids–microbiota crosstalk in the coronavirus disease (COVID-19). Pharmacol. Rep. 74, 1198–1207. doi: 10.1007/s43440-022-00415-7

 Wu, Y., Guo, C., Tang, L., Hong, Z., Zhou, J., Dong, X., et al. (2020). Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 5, 434–435. doi: 10.1016/S2468-1253(20)30083-2

 Wu, Z., and McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the chinese center for disease control and prevention. JAMA 323, 1239. doi: 10.1001/jama.2020.2648

 Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., and Shan, H. (2020). Evidence for gastrointestinal infection of SARS-coV-2. Gastroenterology 158, 1831–1833.e3. doi: 10.1053/j.gastro.2020.02.055

 Yang, T., Chakraborty, S., Saha, P., Mell, B., Cheng, X., Yeo, J.-Y., et al. (2020). Gnotobiotic rats reveal that gut microbiota regulates colonic mRNA of ace2 , the receptor for SARS-coV-2 infectivity. Hypertension 76, e1-e3. doi: 10.1161/HYPERTENSIONAHA.120.15360

 Ye, X., Li, H., Anjum, K., Zhong, X., Miao, S., Zheng, G., et al. (2022). Dual role of indoles derived from intestinal microbiota on human health. Front. Immunol. 13. doi: 10.3389/fimmu.2022.903526

 Yokoyama, Y., Ichiki, T., Yamakawa, T., Tsuji, Y., Kuronuma, K., Takahashi, S., et al. (2022). Impaired tryptophan metabolism in the gastrointestinal tract of patients with critical coronavirus disease 2019. Front. Med. 9. doi: 10.3389/fmed.2022.941422

 Yu, Z., Yang, Z., Wang, Y., Zhou, F., Li, S., Li, C., et al. (2021). Recent advance of ACE2 and microbiota dysfunction in COVID-19 pathogenesis. Heliyon 7, e07548. doi: 10.1016/j.heliyon.2021.e07548

 Zachariah, P., Johnson, C. L., Halabi, K. C., Ahn, D., Sen, A. I., Fischer, A., et al. (2020). Epidemiology, clinical features, and disease severity in patients with coronavirus disease 2019 (COVID-19) in a children’s hospital in new york city, new york. JAMA Pediatr. 174, e202430. doi: 10.1001/jamapediatrics.2020.2430

 Zelante, T., Iannitti, R. G., Cunha, C., De Luca, A., Giovannini, G., Pieraccini, G., et al. (2013). Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385. doi: 10.1016/j.immuni.2013.08.003

 Zhang, X., Deeke, S. A., Ning, Z., Starr, A. E., Butcher, J., Li, J., et al. (2018). Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease. Nat. Commun. 9, 2873. doi: 10.1038/s41467-018-05357-4

 Zhang, H., Shao, B., Dang, Q., Chen, Z., Zhou, Q., Luo, H., et al. (2021). Pathogenesis and mechanism of gastrointestinal infection with COVID-19. Front. Immunol. 12. doi: 10.3389/fimmu.2021.674074

 Zhang, D., Zhou, Y., Ma, Y., Chen, P., Tang, J., Yang, B., et al. (2023). Gut microbiota dysbiosis correlates with long COVID-19 at one-year after discharge. J. Korean Med. Sci. 38, e120. doi: 10.3346/jkms.2023.38.e120

 Zhou, T., Wu, J., Zeng, Y., Li, J., Yan, J., Meng, W., et al. (20222020). SARS-CoV-2 triggered oxidative stress and abnormal energy metabolism in gut microbiota. MedComm 3, e112. doi: 10.1002/mco2.112

 Zhu, B., Feng, X., Jiang, C., Mi, S., Yang, L., Zhao, Z., et al. (2021). Correlation between white blood cell count at admission and mortality in COVID-19 patients: a retrospective study. BMC Infect. Dis. 21, 574. doi: 10.1186/s12879-021-06277-3

 Zhu, W., Wu, Y., Liu, H., Jiang, C., and Huo, L. (2021). Gut–lung axis: microbial crosstalk in pediatric respiratory tract infections. Front. Immunol. 12. doi: 10.3389/fimmu.2021.741233

 Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020). A novel coronavirus from patients with pneumonia in China 2019. N Engl. J. Med. 382, 727–733. doi: 10.1056/NEJMoa2001017

 Zimmermann, P., and Curtis, N. (2020). Coronavirus infections in children including COVID-19: an overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Pediatr. Infect. Dis. J. 39, 355–368. doi: 10.1097/INF.0000000000002660

 Zimmermann, P., and Curtis, N. (2021). Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. . Arch. Dis. Child 106, 429–439. doi: 10.1136/archdischild-2020-320338

 Zimmermann, P., and Curtis, N. (2022). Why does the severity of COVID-19 differ with age?: understanding the mechanisms underlying the age gradient in outcome following SARS-coV-2 infection. Pediatr. Infect. Dis. J. 41, e36–e45. doi: 10.1097/INF.0000000000003413

 Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A. Y. L., Zhan, H., et al. (2020). Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 159, 944–955.e8. doi: 10.1053/j.gastro.2020.05.048




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.


Copyright © 2023 Marzano, Mortera, Marangelo, Piazzesi, Rapisarda, Pane, Del Chierico, Vernocchi, Romani, Campana, Palma, Putignani and the CACTUS Study Team. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 15 January 2024

doi: 10.3389/fcimb.2023.1330087

[image: image2]


Dynamic changes in the migratory microbial components of colon tissue during different periods of sepsis in an LPS-induced rat model


Hao Xu 1,2†, Jia You 3†, Wenqin He 1,2, Lingpeng Pei 1,2, Yue Han 1,2, Xueer Wang 1,2, Zhigang Tian 4, Xiwei Zheng 4*, Enqi Wu 1,2* and Yaqin Ling 1,2*


1 School of Pharmacy, Minzu University of China, Beijing, China, 2 Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China, 3 Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China, 4 Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China




Edited by: 

Piyush Baindara, University of Missouri, United States

Reviewed by: 

Anil Kumar Vijjamarri, National Institutes of Health (NIH), United States

Varada Abhyankar, University of California, Los Angeles, United States

*Correspondence: 

Xiwei Zheng
 zhengxiwei1964@163.com 

Enqi Wu
 2012006@muc.edu.cn 

Yaqin Ling
 lingyq@lzu.edu.cn










†These authors share first authorship



Received: 30 October 2023

Accepted: 26 December 2023

Published: 15 January 2024

Citation:
Xu H, You J, He W, Pei L, Han Y, Wang X, Tian Z, Zheng X, Wu E and Ling Y (2024) Dynamic changes in the migratory microbial components of colon tissue during different periods of sepsis in an LPS-induced rat model. Front. Cell. Infect. Microbiol. 13:1330087. doi: 10.3389/fcimb.2023.1330087



Previous studies have shown that bacterial translocation may play an important role in worsening gastrointestinal injury during sepsis. However, the dynamics of specific microbiota components in intestinal tissues at different sepsis stages remain unclear. Rats receiving intraperitoneal lipopolysaccharide (LPS) were sacrificed at 12 h and 48 h post-injection. Routine blood, serum cytokines, and microbiota in colon tissue, colonic contents, and lung tissue at different time points were assessed. Migratory microbial components in colonic tissue at 12 h and 48 h post-LPS were identified using source tracking, characteristic component identification, and abundance difference analyses. Colonic tissue microbiota changed dynamically over time after LPS injection, involving translocation of microbial components from colon contents and lung tissue at different time points. Bacteria migrating to colon tissue at 12 h sepsis were mainly from colonic contents, while those at 48 h were predominantly from the lung tissue. The migratory microbial components in colon tissue were widely associated with blood indicators and colonizing genus abundance and microbiota functionality in colon tissue. In this study, the temporal dynamics of bacterial translocation from various sources into colon tissues at different sepsis progression stages were characterized for the first time, and the species composition of these migrating microbes was delineated. These bacterial migrants may contribute to the pathophysiological processes in sepsis through direct interactions or indirectly by modulating colonic microbiota community structure and function.
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Introduction

Sepsis, a condition in which the body responds improperly to infection, can result in life-threatening organ dysfunction (Singer et al., 2016). The United States Centers for Disease Control and Prevention (CDC) estimates that sepsis claims the lives of 270,000 of the 1.7 million adults in the US who develop the condition each year (Buchman et al., 2020). Li et al. estimated that 4.8–6.1 million hospitalized cases of sepsis occurred annually in China from 2017 to 2019 (Weng et al., 2023). With the aging of the population, clinical invasive surgery, mechanical ventilation, and other technologies are widely used, resulting in an increase in the incidence and mortality of severe sepsis year by year. Up to 45% of patients with septic shock will suffer from multiple organ dysfunction, and the mortality rate is close to 50% (Cuthbertson et al., 2013; Singer et al., 2016), making the treatment of sepsis patients a colossal challenge for both clinicians and researchers.

The gastrointestinal tract is the most easily and frequently damaged organ during sepsis (Zheng and Zhu, 2016; Lelubre and Vincent, 2018; Otani et al., 2020). The inflammatory response caused by bacterial translocation may be an important factor in the aggravation of gastrointestinal injury (Deitch, 2012; Assimakopoulos et al., 2018). On the one hand, the increase in intestinal permeability caused by various factors can lead to the translocation of pathogenic bacteria from the intestinal contents to the intestinal tissue. This, in turn, triggers the recruitment of inflammatory cells and the release of pro-inflammatory mediators, culminating in apoptosis of intestinal cells and worsening tissue injury (Bianchi, 2007; Hunninghake et al., 2010; Oliveira-Nascimento et al., 2012; Haussner et al., 2019). On the other hand, the entrance of pathogenic bacteria and their products in the blood system through intestinal lymphatic vessels and mesenteric lymph nodes could trigger systemic inflammatory reactions (Assimakopoulos et al., 2018; Ma et al., 2021). The release of a variety of inflammatory mediators can cause damage to the vascular endothelium and result in the formation of microthrombi in intestinal tissues, leading to intestinal mucosal erosion, bleeding, cell necrosis, and detachment, which further increases intestinal permeability, forming a vicious cycle (Chelazzi et al., 2015; Ince et al., 2016).

However, not much is known so far about the dynamics of specific components of the microbiota in intestinal tissues at different stages of sepsis. Intraperitoneal injection of Lipopolysaccharides (LPS) can rapidly induce systemic inflammatory responses commonly seen in early sepsis, such as fever, cytokine storm, and multiple organ dysfunction. Due to its simple operation and good reproducibility, it is commonly used to study the pathophysiological changes in sepsis (Korneev, 2019). In this study, we established a sepsis rat model by intraperitoneal injection of LPS. Considering that both the lungs and colon can directly communicate with the external environment and harbor their own resident microbiota, we analyzed the microbiota in colon tissue, colon content, and lung tissue at 12 and 48 hours after LPS injection to explore the dynamic changes in microbial components of colon tissue and the origin of migrating microbes during the development of sepsis.





Materials and methods




Experimental animals and ethical statement

Eighteen male, 8-week-old, specific pathogen-free Sprague-Dawley rats weighing 200 ± 20 g were obtained from SPF Biotechnology Co., Ltd. (Beijing, China). Rats were housed in standard polypropylene shoebox cages (42×20.5×20 cm) on hardwood chip bedding in a designated room with a 12/12-h light/dark cycle at 24–26°C and a relative humidity of 50%. They had free access to water and were fed a standard diet. All animal experiments were performed in accordance with the Animal Research: Reporting of Experiments in Vivo (ARRIVE) guidelines. The study protocol was approved by the Ethics Committee of the Minzu University of China (Beijing, China; No. ECMUC2023005AO).





Establishment of the sepsis model

The experiment was conducted with rats housed in a Specific Pathogen Free (SPF) level facility. Prior to grouping and treatment, both the model and control rats went through a one-week acclimatization period under identical conditions. Eighteen male Sprague-Dawley rats were randomly divided into three groups (n=6 per group) using a random number generator to ensure unbiased selection. Rats in the LPS12 and LPS48 groups received an intraperitoneal injection of LPS (Escherichia coli O55: B5; Cat. No. L2880, Sigma-Aldrich, St. Louis, MO, USA; 10 mg/kg body weight), dissolved in 0.9% NaCl solution, following the dosing strategy based on the protocol established in the study by Li T et al. (Li et al., 2013). The rats in these groups were sacrificed after 12 and 48 h, respectively. Rats in the control group received an intraperitoneal injection of 0.9% NaCl (Cat. No. G4702, Servicebio, Wuhan, China) solution and were sacrificed after 48 h.





Sample collection

For sample collection, all rats were anesthetized with isoflurane and blood was collected from the abdominal aorta. Whole blood was used for routine blood tests. Serum was collected by centrifuging the whole blood at 1000 g for 10 min and then stored at −80°C prior to cytokine assays. The colon was cut at 8–11 cm from the anus using a sterile instrument. Approximately 0.5 g of colon content was collected, and colon tissue sections (~1 cm) were cut, then washed three times with PBS (Cat. No. G4202, Servicebio, Wuhan, China). Subsequently, both the colon content and colon tissue sections were separately placed in sterile tubes containing a 4 M guanidine thiocyanate solution (Cat. No. 50983, Sigma-Aldrich, St. Louis, MO, USA) for microbiota analysis. The right middle lung lobe was harvested immediately by opening the chest with sterile scissors and placed in sterile tubes containing 4 M guanidine thiocyanate solution for microbiota analysis. All samples for microbiota analysis were stored at −80°C prior to DNA extraction.





Routine blood and serum cytokines testing

A total of 24 clinical hematological parameters were determined using an Automated Hematology Analyzer (Sysmex, Tokyo, Japan). The serum levels of four cytokines, including interleukin-1β (IL-1β), IL-6, IL-10, and tumor necrosis factor-α (TNF-α), were quantified using enzyme-linked immunosorbent assay (ELISA) kits (Cat. No. ml037361; Cat. No. ml064292; Cat. No. ml037371; Cat. No. ml002859; Shanghai Enzyme-linked Biotechnology Co., Ltd., Shanghai, China). The assay was conducted on 6 biological replicates per treatment group, with each measurement repeated 3 times (technical replicates).





Microbiota sequencing

Total bacterial DNA was extracted using a Power Soil DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA). Quality of the DNA samples was checked by calculating the ratios of absorbance at 260/280 nm and 260/230 nm. The V3–V4 hypervariable region of the bacterial 16S rRNA gene was amplified using the primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) combined with adapter and barcode sequences. Second-generation sequencing of purified pooled PCR products was performed on a HiSeq 2500 platform (Illumina, Inc., San Diego, CA, USA; 2×250 paired ends) at Biomarker Technologies Corporation (Beijing, China). The assay was conducted on 6 biological replicates per treatment group.





Bioinformatic analyses

Raw sequences were processed using the UNOISE pipeline of the Usearch v11.0.667linux64 program (www.drive5.com/usearch/). The high-quality sequences were classified as zero radius operational taxonomic units (ZOTU) and the classification information of each ZOTU sequence was annotated using the Ribosomal Database Project (RDP) classifier with a confidence threshold of 80%. The species-level taxonomic annotation of ZOTUs was accomplished by further aligning their unique sequences to the Ezbiocloud database (www.ezbiocloud.net). The ZOTU was randomly sampled (42,030 reads, the minimum number of reads in a sample) to obtain equal sequencing depth between samples. The Shannon, PD_whole_tree, and Observed_otus indices were calculated using the QIIME 1.91 pipeline. The Jaccard and Bray–Curtis distance matrices were calculated from the ZOTU table, and principal coordinate analysis (PCoA), distance-based redundancy analysis (db-RDA), and adonis tests were performed using the “vegan” package in R. Source tracking of the microbiota of colon tissue was conducted using the fast expectation-maximization microbial source tracking (“FEAST”) R package (Shenhav et al., 2019). To identify the characteristic microbial components of each sample group, the characteristic ZOTUs that were significantly distinct from other groups were predicted for each microbial community group based on the ZOTU abundance data using the “interspecies” package in R. The KEGG-based functional pathway profiles of the microbial communities were predicted using the “Tax4Fun” R package, based on ZOTU abundance data with taxonomy assigned using the SILVA Reference database (release 123) (Aßhauer et al., 2015). The “psych” R package was used to calculate correlation coefficients between variables while performing significance tests.





Statistical analyses

R software (version 3.52; R Foundation for Statistical Computing, Vienna, Austria) was used to perform all statistical analyses. A Shapiro–Wilk test was used to test for a normal distribution, and analysis of variance (ANOVA) or the Kruskal–Wallis test was used to evaluate differences in measured variables among the groups. Spearman’s ρ correlation analysis was performed to evaluate the associations between different variables. p-values were corrected for multiple tests using the false discovery rate (FDR) method.






Results




Dynamic changes in blood routine and serum cytokine indices at different time points after LPS injection

In the routine blood testing results, three indicators, namely platelet count (PLT), mean platelet volume (MPV), and red blood cell distribution width standard deviation (RBC-SD), showed different degrees of variation between different treatment groups (Figure 1A). Among them, PLT gradually decreased in the LPS12 and LPS48 groups compared with the control group, and there was a significant difference between the LPS48 group and the control group (P < 0.05). MPV was similar between the control group and the LPS12 group, while it significantly increased in the LPS48 group (P = 0.024). RBC-SD was higher in the LPS12 group than in the control group, and it was lower in the LPS48 group than in the LPS12 group, but these differences were not statistically significant.




Figure 1 | Changes in hematological parameters and serum cytokine levels at indicated time points after LPS injection. (A) Of the 24 hematological parameters examined, three, namely platelet count (PLT), mean platelet volume (MPV), and red blood cell distribution width standard deviation (RBC-SD), showed different degrees of variation between different treatment groups. (B) The serum levels of four cytokines—IL-1β, IL-6, IL-10, and TNF-α—varied among different treatment groups. Data shown represent the mean ± standard deviation of 6 biological replicates per group.



With respect to serum cytokines, dynamic changes in the levels of IL-1β, IL-6, IL-10, and TNF-α were observed over time following LPS administration. At 12h after LPS stimulation, the concentrations of all four cytokines were elevated to varying extents compared to the control group. However, at the 48h time point, the levels of the cytokines showed declining trends compared to the 12h data. Further statistical analyses shows that the changes in IL-6, IL-10 and TNF-α levels across the three experimental groups were statistically significant, whereas differences in IL-1β concentrations were not significant between groups. Specifically, serum IL-6 and TNF-α concentrations were markedly higher in the LPS12 group compared to the control group. Serum IL-10 levels were significantly increased in both LPS12 and LPS48 groups relative to the control (Figure 1B).





No significant change in α-diversity of colon tissue microbiota at different time points after LPS injection

We performed high-throughput sequencing analysis of the microbiomes of colon tissue, lung tissue, and colon content of 18 rats. A total of 3,063,842 clean reads were collected after trimming and filtering. A ZOTU table with 20,238 ZOTUs was ultimately generated and further used for data analysis. A total of 19,945 ZOTUs were successfully annotated by the RDP classifier, comprising 30 phyla, 67 classes, 123 orders, 224 families, and 443 genera.

Three α-diversity indices (PD_whole_tree, Observed_otus, and the Shannon index) were calculated for each of the samples. As expected, among the different sites, all three α-diversity indices differed significantly between colon tissue, lung tissue, and colon content, with the highest α-diversity in colon tissue, followed by lung tissue and then colon content. Within the same site, although indices of PD_whole_tree, Observed_otus and Shannon index exhibited a significantly decreased trend in the lung tissue microbiota of the LPS48h group, no significant differences were observed across these α-diversity indices between the different LPS injection time point groups for colon tissue and colon content samples (Figure 2A).




Figure 2 | Alpha- and beta-diversity analysis of the microbiota of three sampling sites in different treatment groups. (A) The PD_whole_tree, Observed_otus, and Shannon α-diversity indices were significantly different among the three sampling sites. Data shown represent the mean ± standard deviation of 6 biological replicates per group. (B) The PCoA diagrams of the Jaccard and Bray–Curtis distance matrices show that the samples of colon tissue, lung tissue, and colon content were all gathered in distinct positions. The db-RDA analysis (P = 0.001 and adjusted r2 = 0.301 for the Jaccard distance matrix; P = 0.001 and adjusted r2 = 0.366 for the Bray–Curtis distance matrix) and adonis analysis (P = 0.001 and r2 = 0.327 for the Jaccard distance matrix; P = 0.001 and r2 = 0.712 for the Bray–Curtis distance matrix) both confirmed the significant association between the different sample sites and bacterial community structures. Each point represents an individual sample, with 6 biological replicates included for each treatment group.







Colon tissue microbiota structure undergoes dynamic changes at different time points of LPS injection

To explore the changes of microbiota structure, the Jaccard distance matrix based on the presence or absence of data and the Bray–Curtis distance matrix based on the abundance data were calculated from the ZOTU tables of all samples. In the PCoA diagrams of both sets of distance matrices, samples of colon tissue, lung tissue, and colon content were all gathered in distinct positions (Figure 2B). The db-RDA analysis and adonis analysis both confirmed the significant association between the different sample sites and bacterial community structures (P = 0.001). It could be seen that the distance between colon tissue samples (dotted) and lung tissue samples (squares) is shorter than the distance between colon tissue samples and colon content (triangles) samples from both PCoA diagrams, indicating that the microbiota from colon tissue and lung tissue share a higher similarity than microbiota from colon content.

When further investigating the distribution of samples from different treatment groups at each sampling site, the trend of separation occurring in different treatment groups can also be seen. It is noteworthy that in the colon tissue samples (dotted), the samples in the LPS12 group (green line) were closer to the area of the colon content samples (triangles) and the samples in the LPS48 group (blue line) were closer to the lung tissue samples (squares), suggesting that the colon tissue in the LPS12 group may contain some bacteria that migrated from the colon content, while the colon tissue in the LPS48 group may contain some bacteria that migrated from the lung tissue.





Early colon tissue migrant microbes mainly derived from colon contents while late ones mainly derived from lung tissue in LPS-induced sepsis

To determine whether bacteria originating from colon content and lung tissue were present in colon tissue at different time points after LPS injection, we performed source tracking analysis on the colon tissue microbiome of the LPS12 and LPS48 groups, using the microbiome of colon tissue, lung tissue, and colon content of the control group as the normal reference sources of different sites in the input to FEAST. The results showed that the proportion of bacteria in colon tissue derived from normal colon contents (bacteria in colon content of control group) was significantly higher in the LPS12 group than in the LPS48 group, while the proportion of bacteria in colon tissue derived from normal lung tissue (bacteria in lung tissue of control group) was significantly higher in the LPS48 group than in the LPS12 group. The proportions of bacteria derived from normal colon tissue (bacteria in colon tissue of control group) and unknown sources were not significantly different between the two groups (Figure 3A).




Figure 3 | Source tracking analysis and abundance comparison of the characteristic microbial components of colon tissue at different time points after LPS injection. (A) Source tracking analysis of microbiota of colon tissue at different time points after LPS injection. (B) Intersection analysis of the characteristic microbial components of colon content and lung tissue of the control group with the characteristic microbial components of colon tissues of the LPS12 and LPS48 groups. (C) Comparison of the abundance (copy number) of representative colon content source characteristic ZOTUs in the control colon content, control colon tissue, and LPS12 colon tissue. (D) Comparison of the abundance of representative lung tissue source characteristic ZOTUs in the control lung tissue, control colon tissue, and LPS12 colon tissue. Data shown represent the mean ± standard deviation of 6 biological replicates per group.



To further identify the specific microbial components (ZOTU) migrating from other sites to colon tissue at different time points following LPS injection, we first compared the microbial components in colon tissue, lung tissue, and colon content of the control group with the interspecies package in R. It was found that 1,712 of the 12,443 ZOTUs in the colon content of the control group were characteristic microbial components that were different from the other two habitats, and 672 of the 13,898 ZOTUs in the lung tissue of the control group were characteristic microbial components that were different from the other two habitats (a detailed list of those ZOTUs and their exact sequences are provided in the Supplementary Table 1). Then, by comparing the colon tissue microbiota of the control, LPS12, and LPS48 groups, we found that 143 of the 17,220 ZOTUs in the colon tissue of the LPS12 group were characteristic microbial components different from the other two habitats, and 78 of the 16,115 ZOTUs in the colon tissue of the LPS48 group were characteristic microbial components different from the other two habitats. Finally, by performing intersection analysis of the characteristic microbial components of colon content and lung tissue of the control group (1712 and 672 ZOTUs, respectively)with the characteristic microbial components of colon tissues of the LPS12 and LPS48 groups(143 and 78 ZOTUs, respectively), we found that 57 ZOTUs in the characteristic microbial components of colon tissue in the LPS12 group were the characteristic microbial components of colon content in the control group (1712 ZOTUs), and 4 ZOTUs were the characteristic microbial components of lung tissue in the control group (672 ZOTUs) (Figure 3B). The chi-square test revealed a statistically significant difference in the proportions between these two groups (Supplementary Data Sheet 1). Among the characteristic microbial components of the colon tissue in the LPS48 group, 36 ZOTUs were characteristic microbial components of lung tissue in the control group (672 ZOTUs), and 7 ZOTUs were characteristic microbial components of the colon content in the control group (1712 ZOTUs). The chi-square test revealed a statistically significant difference in the proportions between these two groups (Supplementary Data Sheet 1). These data further suggest that the migrating microbial components in the colon tissue at 12 h after LPS injection were mainly derived from the colon contents, whereas the migrating microbial components in the colon tissue at 48 h after LPS injection were mainly derived from lung tissue.

In the comparison of the abundance (copy number) of the abovementioned intersection characteristic ZOTUs in different sites, it was confirmed that all 57 potential colon content source characteristic ZOTUs had high abundance in colon content in the control group, very low abundance in colon tissue in the control group, and significantly increased abundance in colon tissue in the LPS12 group (Figure 3C; Supplementary Data Sheet 2). Similarly, the 36 potential lung tissue source characteristic ZOTUs also conformed to the pattern of high abundance in the lung tissue of the control group, very low abundance in the colon tissue of the control group, and a significant increase in the abundance in the colon tissue of the LPS48 group (Figure 3D; Supplementary Data Sheet 2). These data further verified that the 57 characteristic ZOTUs of colon tissue in the LPS12 group were derived from colon content and 36 characteristic ZOTUs of colon tissue in the LPS48 group were derived from lung tissue.





Species annotation of temporal migrating microbial components

We uploaded the sequences of abovementioned characteristic ZOTUs derived from colon content and lung tissue to the EzBioCloud database for species annotation. The results showed that the 57 characteristic ZOTUs derived from colon contents were annotated to 26 species. Among those species, Roseburia cecicola and Oscillibacter PAC001185_s were the predominant species, accounting for 8 and 6 ZOTUs, respectively. For the characteristic microbial components derived from lung tissue, 36 characteristic ZOTUs were annotated to 19 species. Among them, Rouxiella silvae, Pantoea hericii, and Bifidobacterium panos were the predominant species, accounting for 8, 6, and 5 ZOTUs, respectively. Detailed information on species-specific annotations is shown in Table 1.


Table 1 | Summary of species annotation of the characteristic ZOTUs of different sources.







Migrating microbial components significantly associated with multiple blood indicators

To explore associations between those migrating microbial components and blood indicators, we analyzed the correlation of the abundance of these microbial components in colon tissue migrating from colon content and lung tissue with routine blood parameters and serum cytokines. Among the 57 ZOTUs migrated from colon contents 12 h after LPS injection, we found that the abundance of 4 ZOTUs (belonging to Agathobaculum AY239438_s, Oscillibacter PAC001185_s, Prevotella hominis, and Sporobacter PAC001257_s, respectively) has 6 significant correlations with 4 blood indicators, including IL-6, mean corpuscular hemoglobin content (MCH), mean corpuscular volume (MCV), and RBC-SD (Figure 4A). Among the 36 ZOTUs migrated from lung tissue 48 h after LPS injection, we found that the abundance of 8 ZOTUs (4 of them belonging to Bifidobacterium panos and the remaining 4 belonging to Pantoea hericii, Chlamydia ibidis, Sandaracinus amylolyticus, and Fannyhessea vaginae, respectively) has 26 significant correlations with 5 blood indicators, including IL-10, PLT, platelet pressure volume (PCT), MPV, and large platelet ratio (P-LCR) (Figure 4B).




Figure 4 | Correlations between the abundance of migrated microbial components in colon tissue and blood indicators and colonized genera of the colon tissue. (A) Correlation of the abundance of the microbial components in colon tissue migrating from colon content with blood indicators. (B) Correlation of the abundance of the microbial components in colon tissue migrating from lung tissue with blood indicators. (C) Correlation of the abundance of the microbial components in colon tissue migrating from colon content with colon tissue colonizing bacterial genera. (D) Correlation of the abundance of the microbial components in colon tissue migrating from lung tissue with colon tissue colonizing bacterial genera. Only statistically significant correlations with absolute values of the correlation coefficient greater than 0.85 were shown.



These results suggest that these migrating microbial components may be directly involved in the systemic pathophysiologic response of sepsis.





Migrating microbial components significantly associated with colonizing genera, and microbiota functionalities of colon tissue

As regards the correlation of the abundance of these microbial components in colon tissue migrating from colon content and lung tissue with colon tissue colonizing bacterial genera, we found that the abundance of 19 out of 57 ZOTUs that migrated from colon contents 12 h after LPS injection has 33 significant correlations with 20 colon tissue colonizing bacterial genera (Figure 4C). Among the 36 ZOTUs that migrated from lung tissue 48 h after LPS injection, we found that the abundance of 18 ZOTUs has 25 significant correlations with 18 colon tissue colonizing bacterial genera (Figure 4D).

Finally, we analyzed the correlation of the abundance of these microbial components in colon tissue migrating from colon content and lung tissue with the microbiota functionalities of colon tissue. Among the 57 ZOTUs that migrated from colon contents 12 h after LPS injection, we found that the abundance of 11 ZOTUs has 37 significant correlations with 24 microbiota functionalities of colon tissue, and among 36 ZOTUs that migrated from lung tissue 48 h after LPS injection, we found that the abundance of 8 ZOTUs has 38 significant correlations with 29 microbiota functionalities of colon tissue. These findings suggest that bacteria migrating from other sites to colon tissue after LPS injection may have a widespread impact on the abundance of multiple bacterial genera colonizing the colon tissue and the microbiota functionalities of colon tissue. Detailed information of the correlations between the abundance of microbial components and microbiota functionalities is shown in Figure 5.




Figure 5 | Correlations between the abundance of migrating microbial components and microbiota functionalities of colon tissue. (A) Correlation of the abundance of the microbial components in colon tissue migrating from colon content with microbiota functionalities of colon tissue. (B) Correlation of the abundance of the microbial components in colon tissue migrating from lung tissue with microbiota functionalities of colon tissue. Only statistically significant correlations with absolute values of the correlation coefficient greater than 0.85 were shown.








Discussion

The core finding of our study is that the microbiota of colon tissue changes dynamically with time after LPS injection, which involves the translocation of microbial components from colon content and lung tissue to colon tissue at different time points after LPS injection. Among them, multiple migrating microbial components were significantly associated with multiple blood indicators, colonizing genera, and microbiota functionalities of colon tissue (Figure 6). Our results suggest that these migrating microbial components may be involved in the systemic pathophysiologic response of sepsis either directly or indirectly by affecting the ecology of colon tissue microbiota.




Figure 6 | Schematic diagram depicting the dynamic changes of migratory microbial components in colon tissue at different time points during sepsis. After 12 hours of LPS injection, 57 characteristic microbial components of colon content translocated into colon tissue. Among them, Roseburia cecicola and Oscillibacter PAC001185_s were the predominant species among the translocated. 48 hours after LPS injection, 36 characteristic microbial components of lung tissue appeared in colon tissue. Among them, Rouxiella silvae, Pantoea hericii, and Bifidobacterium panos were the predominant species among the translocated. The migratory microbial components in colon tissue were significantly correlated with blood indicators as well as the colonizing genus abundance and microbiota functionality in colon tissue, suggesting that these migrating bacterial species may be directly or indirectly involved in the pathophysiological processes of sepsis by influencing the structure and function of the colonic microbiota. Created with BioRender.com.



The gastrointestinal tract is generally damaged during sepsis. Studies have shown that sepsis results in dysfunction and increased permeability of the intestinal barrier (Deitch, 2002; Fink, 2003; Yoseph et al., 2016; Wells et al., 2017). This theoretically prompts the possibility of bacterial translocation across habitats. Moreover, it can be speculated that the cross-habitat bacterial translocation can lead to further tissue damage by triggering inflammation in the host. In fact, several lines of evidence have shown that microbial components of the intestinal lumen contents can be translocated across the intestinal mucosa during sepsis and exacerbate the damage to the organism. O’Boyle et al. reported that complications of sepsis were significantly more prevalent in patients with bacterial translocation in surgical cases compared with patients without microorganisms found in the mesenteric lymph nodes at the time of dissection (O’Boyle et al., 1998; MacFie, 2004). Additional studies have also reported that bacterial translocation occurs in mouse models of fecal ligation and puncture-induced sepsis and that this is associated with higher mortality rates (Fredenburgh et al., 2011).

However, since the alteration of intestinal permeability and translocation of bacteria during the onset of sepsis is transient, the presence of bacteria in the blood or mesenteric lymph cannot be effectively detected by bacterial culture methods (Wiest and Rath, 2003; Dickson et al., 2016). Therefore, the dynamics of bacteria in colon tissues during the development of sepsis remain to be clarified. Sequencing-based approaches depend only on the presence of bacterial DNA and are much more sensitive than previous culture-based methods, so in this study, we utilized 16S rRNA to study the bacterial composition in colon tissue. Considering that sepsis has dynamic and temporally heterogeneous clinical and biological courses, we studied two time points, 12 and 48 h after LPS injection.

In the present study, by conducting microbial source tracking analysis, characteristic microbial component identification, and abundance difference analysis, we found that bacteria migrating to colon tissue at 12 h of LPS-induced sepsis were mainly derived from colon content, and bacteria migrating to colon tissue at 48 h of LPS-induced sepsis were mainly derived from lung tissue. According to Wang et al., an increase in intestinal permeability can occur as early as 4 hours after the onset of sepsis (Wang et al., 2001). Yoseph et al. also found that increased intestinal permeability can peak at 6–12 h during the onset of sepsis (Yoseph et al., 2016). Therefore, the presence of multiple bacteria originating from colon content in colon tissue in the early stage of sepsis (12 h after LPS injection) found in this study may be caused by the increased intestinal permeability and impaired intestinal mucosal barrier in the early stage of sepsis. Moreover, several papers have also reported that lung tissue damage can occur in the later stages of sepsis. Shanshan Cai et al. reported that lung injury, including hemorrhage, edema, alveolar wall thickening, and inflammatory cell infiltration, occurs 18–72 h after LPS injection in rats (Cai et al., 2009; Li et al., 2019). Similarly, Martínez-González et al. found that LPS-induced mice experienced marked pro-inflammatory alterations in the lungs, such as pulmonary vascular leakage, edema, and immune cell shedding, 48 h after endotoxin challenge (Martinez-Gonzalez et al., 2013). Furthermore, a recent study by Sze et al. suggested that bacteria are translocated from the lungs to the intestine through the blood within 24 h after acute lung injury (Sze et al., 2014). Based on these evidences, we speculate that the presence of multiple bacteria originating from the lung tissue in the colon tissue 48 hours after LPS injection found in this study may be associated with impaired respiratory membrane barrier function during the late stages of sepsis. In addition, when comparing the number of bacterial components that transiently migrated into the colon tissue at different time points, it is also interesting to observe that compared to 12h, there was a significant decrease (from 57 to 7) in the number of bacteria migrated from colon contents to colon tissue at 48h. This indicates that the bacteria that migrated to the colon tissue at 12h were unable to establish long-term colonization. We speculate this phenomenon may be related to the activation of local immunity in the colon tissues. That is, at 12h post LPS stimulation, intestinal mucosal injury occurs and allows a large number of colon content bacteria to migrate into the colon tissues. These bacteria are then gradually eliminated due to the activation of the local mucosal immune response. Taking together, the microbiome of colon tissues can change dynamically during the development of sepsis, where different stages of sepsis involve the translocation of bacteria from different parts of the organism.

In a taxonomic annotation of the microbial components of the colon content translocated into the colon tissue at 12 h after LPS injection, we found that 8 and 6 migrating ZOTUs belonged to Roseburia cecicola and Oscillibacter PAC001185_s, respectively, indicating that these two species were the main species translocated from the colon content to the colon tissue. Some studies have shown that the genera Roseburia and Oscillibacter are significantly associated with intestinal barrier damage in patients with sepsis. For example, Yang et al. found that elevated levels of intestinal Roseburia in patients with sepsis were significantly correlated with greater impairment of intestinal barrier function (Yang et al., 2021). Yan et al. found that an increase in the abundance of the genus Oscillibacter in mice led to an increase in intestinal permeability, and there was a negative correlation between Oscillibacter abundance in the colon and barrier function parameters (Lam et al., 2012).

In a correlation analysis between bacteria translocated 12 h after LPS injection and hematological parameters, we found a strong positive correlation between the abundance of zotu2880 (belonging to Oscillibacter PAC001185_s) in colon tissue and RBC-SD, a parameter related to a decrease in RBC deformability (Patel et al., 2013). In addition, the abundances of zotu1231 (belonging to Prevotella hominis) and zotu11711 (belonging to Sporobacter PAC001257_s) in colon tissue were strongly positively correlated with MPV and MCH, which are both related to a decrease in erythrocyte oxygen transport capacity (George-Gay and Parker, 2003). Many studies have reported that decreased RBC deformability and elevated RBC distribution width (RDW) are predictive factors of a worse prognosis of sepsis (Jo et al., 2013; Wang et al., 2018; Hu et al., 2020; Moreno-Torres et al., 2022). Our data suggest that the translocation of certain bacteria from the colon content that occurs in the colon tissue early in sepsis may cause alterations in the morphology of blood components, which may cause microcirculatory damage.

Moreover, some of these translocated bacteria were also associated with serum cytokine levels. We found a strong positive correlation between the abundance of zotu3155 (belonging to Agathobaculum AY239438_s) and the serum IL-6 level. It has been reported that the increase in serum IL-6 is an early marker for the diagnosis of neonatal sepsis (Ganesan et al., 2016; Shoukry et al., 2021). In the early stages of sepsis, a significant increase in IL-6 levels occurs as a surrogate marker of the pro-inflammatory response and is associated with increased intestinal permeability (Wang et al., 2001). These results suggest that the translocation of Agathobaculum AY239438_s to colon tissue in the early stages of sepsis may trigger local and systemic inflammatory responses and thus play a role in the elevated intestinal permeability.

Regarding the association of these microbial components that migrate early in sepsis with colon colonizing bacterial genera, we found that the abundance of zotu11152 (belonging to PAC001296_g AB626952_s) was strongly negatively correlated with the genus Akkermansia, and the abundance of zotu23 (belonging to Helicobacter rodentium) was strongly negatively correlated with the genus Faecalibaculum. The genus Akkermansia is a group of Gram-negative strictly anaerobic bacteria and has a role in maintaining the integrity of the mucosal barrier (Zhang et al., 2017; Peng et al., 2022). It was reported that an increase in the abundance of intestinal Akkermansia had a protective effect on the integrity of the intestinal mucosa (Huang et al., 2021), and oral administration of Akkermansia could significantly alleviate mucosal inflammation (Bian et al., 2019). Further studies in mouse models have shown that Akkermansia can reduce inflammation caused by metabolic endotoxemia by restoring the intestinal barrier (Wang et al., 2014; Fujisaka et al., 2020). The genus Faecalibaculum is a group of intestinal beneficial anaerobic bacteria that is considered one of the biomarkers of human health (Ferreira-Halder et al., 2017). It was reported that Faecalibaculum maintains the integrity of the colon wall by producing the energy needed for colon cells and also plays an important role in reducing inflammation by inhibiting the synthesis of pro-inflammatory cytokines such as IL-6 and IL-12 (Sokol et al., 2008; Sokol et al., 2009; Miquel et al., 2013). Based on these observations, we speculate that microbial components translocated from colon content into colon tissue early in sepsis may be indirectly involved in intestinal injury or exacerbation of sepsis symptoms by affecting colonizing bacterial genera in colon tissue.

In a taxonomic annotation of the microbial components of the lung tissue translocated into the colon tissue at 48 h after LPS injection, we found that Rouxiella silvae, Pantoea hericii, and Bifidobacterium panos were the predominant species translocated from the lung tissue to the colon tissue. Rouxiella silvae and Pantoea hericii are common bacteria in soil and water (Rong et al., 2016; Le Fleche-Mateos et al., 2017). A recent study on intestinal transplantation of Rouxiella bacteria found that it can regulate intestinal local immunity and intestinal motility (Yahfoufi et al., 2021). Other studies have shown that Pantoea bacteria can cause sepsis in infants when they enter the bloodstream (Mani and Nair, 2021). Bifidobacterium panos belongs to the genus Bifidobacterium. It is well known that Bifidobacterium is a common bacterial genus in the intestinal tract. However, in the analysis of the characteristic microbial components of the three habitats in this study, we found that Bifidobacterium panos was a characteristic bacterium of lung tissue. To resolve this confusion, we reviewed the literature and found only one report on Bifidobacterium panos, reporting it as a species first isolated from chimpanzee feces in the Czech Republic in 2020 (Neuzil-Bunesova et al., 2021), suggesting that this species is not a common bacterium in colon tissue. In fact, our results also demonstrated that the abundance of Bifidobacterium panos in both colon tissue and colon content was extremely low. There is no report on the physiological role of Bifidobacterium panos so far. At present, there are several reports discussing the translocation of intestinal bacteria to lung tissue during sepsis, but reports on the translocation of bacteria from lung tissue to intestinal tissue are very limited. To the best of our knowledge, the present study is the first to describe the specific species of lung tissue that migrate to colon tissue.

In the association analysis of the bacterial components that migrated from lung tissue to colon tissue 48 h after LPS injection with hematological parameters and serum cytokine levels, the abundance of 4 ZOTUs belonging to Bifidobacterium panos migrating to colon tissue was found to be significantly associated with 5 blood physiological indicators, including IL-10, PLT, PCT, MPV, and P-LCR. All of these blood physiological indicators were reported to be significantly associated with sepsis severity. For example, high levels of IL-10 have been shown to be a useful predictor of severity in septic shock and death and have been correlated with poor prognosis of sepsis in adults (Derkx et al., 1995; Gogos et al., 2000). Increased platelet volume and size reflects the existence of a thrombotic and inflammatory milieu, which has been used to predict poor clinical outcomes in patients with severe sepsis (Kim et al., 2015; Tajarernmuang et al., 2016; Lee et al., 2018). The development of thrombocytopenia during a septic episode is recognized as a significant event associated with multiple organ failure and increased mortality (Kaukonen et al., 2015). Moreover, we also found that the 3 ZOTUs belonging to Bifidobacterium panos were strongly correlated with multiple colonizing genera in colon tissue, such as Leuconostoc, Akkermansia, Mesomycoplasma, Aquirufa, and Polynucleobacter. Among them, the genera Leuconostoc, Akkermansia, and Polynucleobacter have been reported to play critical roles in the development of sepsis or bacteremia (Patel et al., 2012; Pavon-Delgado et al., 2015; Morowitz et al., 2017; Adelman et al., 2020; Wang et al., 2021). These results suggest that the migration of Bifidobacterium panos to colon tissue in late sepsis may be an important event in the progression of sepsis, which is worthy of further study.

We also analyzed the correlation between the microbial components migrating to the colon tissue in different stages of sepsis and the functionality of the colon microbiota. We found several significant correlations. Among those correlated microbiota functionalities, the pathways of ko04270 (vascular smooth muscle contraction), ko04722 (neurotrophic signaling pathway), ko05132 (Salmonella infection), ko03022 (basal transcription factors), ko04974 (protein digestion and absorption), ko04080 (neuroactive ligand–receptor interaction), ko04520 (adherens junction), ko04530 (tight junction), and ko04722 (neurotrophin signaling pathway) are involved in multiple functions such as the intestinal barrier, neurotrophin signaling, protein digestion and absorption, and vasoconstriction and participate in the regeneration and physiological function of intestinal tissues from different aspects (Arevalo and Wu, 2006; Akata, 2007; Zihni et al., 2016; Wemyss and Pearson, 2019). The discovery of these associations provides further insight into the biological significance of the migration of bacteria occurring at different stages of sepsis.

In summary, we analyzed the dynamic changes of microbiota and bacterial translocation in colon tissues at different stages of sepsis in this study, and found that translocation of bacteria from colon contents and lung tissue to colon tissue occurred during early and late sepsis. We obtained species-specific information about these migrating bacterial components and also found that they were broadly associated with blood indicators, colonizing genus abundance, and microbiota functionality in colon tissue, suggesting these migrating bacteria may be involved in the pathophysiological processes of sepsis either through direct action or indirectly by influencing the structure and function of colonic microbiota.

However, it is important to acknowledge certain limitations in our study. One limitation is the exclusive use of male rats, which was a decision based on avoiding the potential interference introduced by the estrous cycle in female rats (Lakbar et al., 2023). The study also had an observational nature without interventions to demonstrate the functional impact of microbial translocation. Future investigations with validation across genders, intervention studies, and mechanistic characterizations will help systematically elucidate the intricate roles of microbes during sepsis pathogenesis and translate the findings into clinical applications. Despite these limitations, as the first study providing species-specific information about these migrating bacteria and describing the temporal characteristics of bacterial translocation from different source sites, this work provides important insights into understanding the potential role of bacterial translocation in the pathogenesis of sepsis. Further studies on bacterial translocation between different habitats during sepsis could provide a more targeted approach to the prevention and treatment of sepsis.
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Introduction

The incidence of biliary system diseases has been continuously increasing in the past decade. Biliary system diseases bring a heavy burden to humanity and society. However, the specific etiology and pathogenesis are still unknown. The biliary system, as a bridge between the liver and intestine, plays an indispensable role in maintaining the physiological metabolism of the body. Therefore, prevention and treatment of biliary diseases are crucial. It is worth noting that the microorganisms participate in the lipid metabolism of the bile duct, especially the largest proportion of intestinal bacteria.





Methods

We systematically reviewed the intestinal microbiota in patients with gallstones (GS), non-calculous biliary inflammatory, and biliary tract cancer (BTC). And searched Pubmed, Embase and Web of science for research studies published up to November 2023.





Results

We found that the abundance of Faecalibacterium genus is decreased in GS, primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC) and BTC. Veillonella, Lactobacillus, Streptococcus and Enterococcus genus were significantly increased in PSC, PBC and BTC. Interestingly, we found that the relative abundance of Clostridium was generally reduced in GS, PBC and BTC. However, Clostridium was generally increased in PSC.





Discussion

The existing research mostly focuses on exploring the mechanisms of bacteria targeting a single disease. Lacking comparison of multiple diseases and changes in bacteria during the disease process. We hope to provide biomarkers forearly diagnosis of biliary system diseases and provide new directions for the mechanism of intestinal microbiota in biliary diseases.





Keywords: gallstones, primary sclerosing cholangitis, primary biliary cholangitis, biliary tract cancer, microbial community




1 Introduction

The biliary is a complete system with independent anatomical structures and physiological functions. It starts from the capillaries between liver cells until the end of the common bile duct opens at the main nipple of the duodenum. The biliary system is the excretory duct of the liver. It is able to transport bile, participate in metabolism, and regulate the internal environment (Schaub et al., 2018). The imbalance of the human immune system and metabolism can lead to the occurrence of biliary diseases, mainly gallstones (GS), biliary inflammation, and biliary tract cancer (BTC) (Maurer et al., 2009; Tazuma et al., 2013). For a long period of time, GS and complications have been extremely common in the biliary. The incidence of GS in domestic and international populations is constantly increasing (Wei et al., 2023). In China, the prevalence of GS has exceeded 12% (Hu et al., 2022). In Western countries, the prevalence of GS among adults is approximately 10%–20% (Morris-Stiff et al., 2023). More than 90% of GS are cholesterol stones and approximately 1:2 between men and women (Xia et al., 2023). There are several types of biliary inflammation, the main ones being cholecystitis and cholangitis. The onset of inflammation is mostly related to stones, which cause obstruction of bile flow, or is accompanied by biliary tract infections. BTC occurs in the canceration of the extrahepatic bile duct and the gallbladder wall. The incidence in men is 1.5 times that in women. Most patients are older than 65 years, and the incidence peaks after 80 years of age. With the development and application of imaging technology, the detection rate of BTC has been increasing year by year (Roa et al., 2022). At present, clinical doctors mostly focus on the symptomatic treatment of biliary tract diseases, but the issue of disease recurrence still needs to be addressed further. The most important challenge is to identify the causes of biliary diseases in order to determine effective prevention and treatment. Early studies have shown that the occurrence and development of biliary diseases are related to genetics and the environment. For example, the adenosine triphosphate binding cassette transporters G5 and G8 (ABCG5/G8) are responsible for the secretion of liver cholesterol, but their variants (ABCG5-R50 C and ABCG8-D19 H) are associated with GS (Lammert et al., 2016). Katsika et al. conducted a correlation analysis of 43,141 pairs of twins with GS and found genetic factors for susceptibility to GS (Katsika et al., 2005). Another study targeting the Indian population found that the ABCB1 and ABCB4 germline gene variants are associated with gallbladder cancer, and these variants have also been found in the Chilean and European populations (Gudbjartsson et al., 2015; Mhatre et al., 2017; Boekstegers et al., 2020; Roa et al., 2022). Moreover, a high-fat diet, medication, obesity, and adverse environmental factors contribute to increasing the risk of biliary diseases (Larsson et al., 2017). However, the specific pathogenesis is not yet clear.

There are approximately 100 trillion microorganisms living in the human intestine, which is a unique genome. Intestinal bacteria have been widely studied. The latest released genome map of the human intestinal microbiota has identified 1,952 species of human intestinal bacteria by reconstructing genomes from 11,850 individuals (Almeida et al., 2019). Based on the classification and identification of bacterial properties, 400 bacterial species were determined to belong to 11 phyla, mainly including Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria (Eckburg et al., 2005). Intestinal bacteria are closely associated with human health. When they harmoniously coexist with the human body, they coordinate with each other to maintain internal balance and promote human health. The intestinal microbiota plays an important role through the expression of microbiome genes or by indirectly participating in physiological functions (Tang et al., 2019; Shalon et al., 2023). On the contrary, when the balance between intestinal bacteria and the host is disrupted beyond the body’s regulatory capacity, the intestinal mucosal barrier is breached, consequently triggering inflammatory reactions and leading to various metabolic and immune disorders (Heeney et al., 2018; Round and Mazmanian, 2009; Liu et al., 2015a). With the application of 16S ribosomal RNA (rRNA) sequencing and high-throughput sequencing technology, there has been a more in-depth understanding of the intestinal microbiota. The intestinal microbiota is extensively recognized as a contributing factor to metabolic disorders, and biliary system diseases are generally closely related to metabolic disorders. Therefore, the intestinal microbiota could influence the progression of biliary diseases. It has been reported that approximately 80% of patients with common bile duct stones show coliform in the bile (Guman et al., 2022). Currently, there is no systematic review on the association of biliary system diseases and intestinal bacteria. In this article, we will systematically extract data and analyze research results on the relationship between intestinal bacteria and biliary system diseases over the past decade. Furthermore, we delve deeper into the effect of potential pathogenic bacteria on biliary diseases.




2 Methods

We searched PubMed, Embase, and Web of Science for research studies published up to November 2023. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart is shown in Figure 1. The inclusion criteria were as follows: 1) case–control or cross-sectional design; 2) patients diagnosed with biliary system diseases and healthy controls (HCs); 3) the study sequenced the intestinal microbiota and reported the relative abundance of the microbiota; and 4) research is reported in English. The exclusion criteria were as follows: case reports, conference abstracts, and animal studies.




Figure 1 | Flowchart of literature screening.






3 Insights into the biliary system and intestinal bacteria

The biliary system includes the gallbladder and bile ducts, with the latter being categorized into extrahepatic and intrahepatic bile ducts. Extrahepatic bile ducts include the common hepatic duct and the gallbladder duct (Björkström, 2022). The biliary system plays a critical role in the physiology of the host.

	1) It participates in the secretion of bile, which is a complex physiological process with the bile components having different secretion pathways. The composition of the bile includes water, inorganic electrolytes, and organic solutes [i.e., bile acids (BAs), cholesterol, phospholipids, and bilirubin]. The production of bile is mainly performed by liver cells, capillaries, and bile duct epithelial cells. Gender, fasting, bile duct pressure, and enterohepatic circulation have an effect on the composition of the bile (Hofmann, 1990; Boyer and Soroka, 2021).

	2) It is involved in the transport of bile, with bile production and transport controlled by liver secretion pressure and gallbladder contraction pressure. Once the host fasted, the gallbladder contracts and empties bile while the Oddi sphincter relaxes, resulting in bile being discharged into the duodenum through the gallbladder and common hepatic duct (Pstrpw, 1967). In addition, the gallbladder has concentration, acidification, and secretion functions. The concentration function relies on the reabsorption of water and electrolytes by the gallbladder mucosa (Klaassen and Aleksunes, 2010). The gallbladder bile salt concentration is over 10 times that of liver bile. As the concentration of bile salt increases, the pH of bile decreases. Research has found that the gallbladder mucosa epithelium secretes H+ and that bile acidification can inhibit calcified stones (Nakagaki et al., 1984).

	3) It participates in the enterohepatic circulation of bile lipid components (e.g., cholesterol, BA, and bilirubin). Cholesterol, BA, and bilirubin are secreted by the liver and are then drained through the biliary tract into the intestine to play physiological roles. After reabsorption in the intestinal wall, they enter the liver through the portal vein. The liver absorbs, binds, and secretes bile to complete the enterohepatic circulation (Hofmann, 1999; Ahmed, 2022). Enterohepatic circulation of the lipid components maintains the host bile concentration stability and avoids biliary system disease occurrence, particularly the formation of GS (Ridlon et al., 2006).



Presently, the microbiota communities in different parts of the mammalian gastrointestinal tract have been extensively studied. However, the characteristics of the microbiota in the bile duct are unclear. Jiménez et al. employed culture-dependent techniques and analysis based on 16S rRNA genes in the bile and gallbladder mucus of healthy pigs. They found that Proteobacteria, Firmicutes, and Bacteroidetes are the primary phyla in pigs (Jiménez et al., 2014). Researchers have also explored the characteristics of the biliary microbiota using bile samples from healthy dogs and rabbits. It was found that the genus Enterococcus was present in healthy dogs (Kook et al., 2010). Moreover, it was observed that Firmicutes, Bacteroidetes, and Proteobacteria were the primary phyla in rabbits (Xing et al., 2019). Molinero’s team reported that Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were present in the bile duct of the population without any liver or gallbladder diseases. Furthermore, compared with patients with GS, the abundance of Propionibacteriaceae was relatively higher in the population without any liver or gallbladder diseases (Molinero et al., 2019). The above-mentioned research studies suggest that there might be microorganisms in the healthy bile duct and that they maintain the balance with the host. Based on existing research findings, intestinal bacteria have an influence on BA metabolism. BAs can promote the emulsification and absorption of fats and activate receptors. Cholesterol in the liver is converted into primary BAs (e.g., cholic acid and chenodeoxycholic acid) by cholesterol 7α-hydroxylase (CYP7A1). In addition, it forms conjugated BAs with glycine or taurine in the liver, then secreted into the bile (Russell, 2003). A portion of the conjugated BAs are hydrolyzed into free BAs by bile salt hydrolase (BSH), which is produced by intestinal bacteria. The identified bacteria with BSH included Bacteroides, Clostridium, Bifidobacterium, Lactobacillus, and Enterococcus (O’Flaherty et al., 2018). Most of the free BAs are reabsorbed back into the liver, while a small portion undergoes dehydroxylation by the intestinal microbiota, forming secondary BAs such as deoxycholic acid and lithocholic acid (Jia et al., 2018). The reabsorption process of free BAs in the intestine activates the farnesoid X receptor (FXR) and promotes the production of fibroblast growth factor 19 (FGF19). After reaching the liver through portal vein circulation, FGF19 interacts with the fibroblast growth factor receptor 4 (FGF-R4) on the liver cell membrane, inhibiting the expression of CYP7A1, thereby reducing BA synthesis and maintaining BA metabolism dynamic balance (Sayin et al., 2013). However, opportunistic pathogens exist in the host’s intestine. These are contagious pathogens that typically coexist with humans and can colonize other parts of the body. To the best of our knowledge, Bacteroides fragilis is a bile-resistant microorganism and is an opportunistic pathogen. When the body’s immune system is weakened or during microbial disorders, B. fragilis can migrate from the intestine to the bile duct and induce infection (Figure 2) (Chung et al., 2018; Yang et al., 2022).




Figure 2 | Enterohepatic circulation of bile acids (BAs). (A) Primary BAs (CA and CDCA) are synthesized using cholesterol by CYP7A1 in hepatocytes and then are converted to conjugated BAs (GCA, TCA, GCDCA, and TCDCA) with glycine or taurine, which are secreted into the bile duct by translocators (MRP2 and BSEP). (B) BAs are hydrolyzed into CA, CDCA, LCA, and DCA by bacteria (i.e., Bacteroides, Clostridium, Bifidobacterium, Lactobacillus, and Enterococcus), which can produce bile salt hydrolase (BSH), with most of them being reabsorbed back into the liver. The reabsorption process activates the farnesoid X receptor (FXR) and produces fibroblast growth factor 19 (FGF19), which plays a key role in the maintenance of BA metabolism dynamic balance. CA, cholic acid; CDCA, chenodeoxycholic acid; GCA, glycocholic acid; TCA, taurocholic acid; GCDCA, glycochenodeoxycholic acid; TCDCA, taurochenodeoxycholic acid; LCA, lithocholic acid; DCA, deoxycholic acid; MRP2, multidrug resistance-associated protein 2; BSEP, bile salt export pump.






4 Gallstones and intestinal bacteria

There are many types of GS, but there is currently no classification standard. Many scholars have advocated classifying stones according to their chemical composition, generally divided into cholesterol stones and bile pigment stones. Cholesterol stones account for approximately 80% of GS in the European and American populations. Existing theories suggest that the formation of cholesterol stones is mainly caused by the supersaturation of cholesterol in the bile and that the cholesterol content is more than 60% (Van Erpecum, 2011; Lammert et al., 2016). The cholesterol content in bile pigment stones is lower than 40%–45%, which is mainly composed of “bilirubin calcium,” a product of calcium combined with bilirubin. Analysis of the primary components has great value in exploring the etiology of GS. The biliary tract downstream is connected to the intestine, which is a complex internal environment. Ding et al. collected fecal samples from 42 patients with GS and 20 HCs using the metagenomic next-generation sequencing method and found that, compared with that in the HC group, the phylum Bacteroidetes and the genera Bacteroides, Prevotella, Barnesiella, Odoribactor, and Tannerella had relatively higher abundance in GS (Ding et al., 2023). Song et al. also observed differences in the bacterial structure between patients with GS and HCs. The abundance of bacteria in patients with GS significantly increased, while the diversity of bacteria was decreased. At the phylum level, compared to HCs, the relative abundance of Firmicutes was increased, while Bacteroidetes and Proteobacteria were decreased in GS. At the genus level, the abundance of Sutterella, GCA-900066755, Butyricicoccus, unclassified_O_Lactobacillales, and Lachnospiraceae_ND3007_group was significantly reduced in GS. However, the abundance of Megamonas, Comamonas, Coprobacillus, Adlercreutzia, unclassified_P_Firmicutes, Morganella, and CHKCI002 Tyzzerella_4 was significantly increased in GS (Song et al., 2022). Hu et al. reported that the abundance of Bacteroidetes was also decreased in GS, while the relative abundance of Desulfovibrionales was increased (Hu et al., 2022). Wang’s team used a 16S rRNA gene sequencing method to analyze fecal sample DNAs between GS patients and HCs. The abundance of Firmicutes was significantly reduced in patients with GS, with the Firmicutes/Bacteroidetes ratio also reduced. On the other hand, the abundance of Rhododocus, Treponema_2, Wolbachia, Ochrobactrum, Rubus_Hybrid_Cultiva, Ruminicostridium_9, and Eisenbergiella was increased, but that of Faecalibacterium was decreased (Wang et al., 2020). Wu et al. also found that the abundance of Faecalibacterium was decreased in patients with GS (Wu et al., 2013). The above findings indicate that patients with GS have a phenomenon of intestinal bacteria disorder. For specific data, refer to the Supplementary material.

Moreover, numerous researchers have validated bacterial changes in GS using animal models and explored the potential mechanisms of pathogenic bacteria. A study on an animal model given a lithogenic diet observed that the bacterial richness and α diversity were decreased. The abundance of Firmicutes and the ratio of Firmicutes/Bacteroidetes were significantly decreased. At the genus level, the relative abundance of Akkermansia, Clostridium_XlVa, and Clostridium_XVIII was significantly increased. However, the abundance of Acetivibrio, Ruminococcus, and Lactobacillus was significantly decreased (Wang et al., 2017). Research also showed that free BAs are converted into secondary BAs by bacteria with 7α-dehydroxylase activity. It is known that the genera Clostridium, Trichinellidae, and Streptococcus possess 7α-dehydroxylase activity (Ridlon et al., 2016). Therefore, enrichment of Clostridium_XlVa and Clostridium_XVIII could lead to increasing the level of 7α-dehydroxylase, thereby increasing the level of secondary BAs. Finally, there is excessive inhibition of BA synthesis. Moreover, a decrease in the number of Lactobacillus was not conducive to reducing the levels of cholesterol (Cui et al., 2022). Another mouse experiment reported opposite results. Compared to the normal control group, the abundance of the phylum Firmicutes, the proportion of Firmicutes/Bacteroidetes, and the genus Desulfovibrio were significantly increased in a lithogenic mouse model. The relative abundance of Bacteroidetes and Prevotella was decreased (Li et al., 2023). Hu et al. found that Desulfovibrionales was enriched in patients with GS. When transplanted into GS-resistant mice intestines, it then induced the formation of GS. The study also found that enrichment with Desulfovibrionales contributed to improved levels of secondary BAs in the cecum and increased the hydrophobicity of BAs, which caused an increase in the reabsorption of cholesterol in the intestine. On the other hand, mice carrying Desulfovibrionales induced liver expression of the cholesterol transporter protein Abcg5/g8, promoting cholesterol secretion. Not only do bacteria play a crucial role in the development of GS, but bacterial metabolites have also been proven to be involved in GS. The metabolite H2S of Desulfovibrionales could induce liver FXR and inhibit the expression of CYP7A1, leading to BA synthesis increase and cholesterol supersaturation, thus facilitating the formation of stones (Figure 3) (Hu et al., 2022).




Figure 3 | Gallstones and the intestinal microbiota. (A) Bacterial dysbiosis in patients with gallstones. (B) Some possible mechanisms of gallstones resulting from dysbacteriosis.






5 Non-calculous cholangitis and intestinal microbiota

The risk factors for cholangitis include GS and bacterial, viral, and parasitic infections. In this article, we focused on non-calculous cholangitis [i.e., cholecystitis, primary sclerosing cholangitis (PSC), and primary biliary cholangitis (PBC)]. Acute cholecystitis (AC) leads to inflammatory lesions, with clinical manifestations including fever, right upper abdominal pain, and increased peripheral white blood cell count. Research has observed that bacterial infection activates the coagulation protein factor XII to produce arteritis, causing vascular damage. Factor XII produces bradykinin, which promotes the occurrence of AC (Poddighe and Sazonov, 2018; Hanabata et al., 2022). A study found that Escherichia coli accounted for approximately 73.7% of the bacterial cultures in the bile of patients with AC (Kujiraoka et al., 2017). Another study found a positive correlation of Enterobacteriaceae with the intestine and bile of patients with AC. Bile endotoxins were correlated with Enterobacteriaceae, particularly with the abundance of E. coli. The study also found that controlling the number of Enterobacteriaceae can reduce the risk of gallbladder infection (Liu et al., 2015b). Chronic cholecystitis is a long-term inflammation that contributes to fibrous thickening and mucosal hyperplasia. Bacterial infections and abnormal cholesterol metabolism can also contribute to the occurrence of chronic cholecystitis. Studies have shown that 20%–30% of patients with chronic cholecystitis are bile bacterial culture-positive. Researchers have proposed that bacterial infection may be transmitted through the portal vein system or the intestinal lymphatic system (Treem et al., 1989).

PSC and PBC are both chronic cholestatic liver diseases, and there is currently no precise treatment. However, there is a difference between PSC and PBC. PSC mainly involves the bold ducts inside and outside the liver. The relationship between PSC and the intestine has a history of over 50 years. Approximately 60%–80% of the Nordic PSC population suffer from inflammatory bowel disease (IBD) (Karlsen, 2016). PBC, on the other hand, mainly affects the small bile ducts in the liver and is not related to IBD. Further research found that, compared to HCs, the diversity of bacteria was decreased in individuals with PSC (Kummen et al., 2017; Liu et al., 2022). Moreover, patients with PSC have fewer bacterial genera (Kummen et al., 2021). An experiment on a PSC mouse model showed that the reduction of bacteria weakened the negative feedback regulation of BAs and then enhanced the accumulation of BAs in the liver. The decrease in bacteria also altered the composition of BAs (Schneider et al., 2021; Awoniyi et al., 2023). In addition, studies have shown that intestinal microbiota dysfunction plays an important role in the progression of PSC (Jin et al., 2022). For example, in PSC mouse models, researchers observed that intestinal microbiota dysfunction through NLRP3 promoted liver disease progression (Liao et al., 2019). In order to identify potential pathogenic bacteria, we summarized studies on the bacteria between PSC and HC groups (Supplementary Material). At the phylum level, two studies from different countries found that the abundance of Firmicutes was significantly decreased in PSC. The study by Sabino et al. showed a significant increase in the abundance of Bacteroidetes in PSC (Sabino et al., 2016). The study by Hole et al. showed a significant increase in the abundance of Proteobacteria in PSC (Hole et al., 2023). At the genus level, although the study populations were from different countries, multiple studies have reported a significant decrease in the abundance of Faecalibacterium, Eubacterium, and Coprococcus in PSC (Karlsen, 2016; Rühlemann et al., 2019; Lapidot et al., 2021). These three genera are important producers of butyric acid, which has anti-inflammatory effects and protects the digestive system from intestinal pathogens. In contrast, the abundance of Veillonella, Clostridium, Lactobacillus, Streptococcus, Enterococcus, and Blautia significantly increased in PSC (Sabino et al., 2016; Torres et al., 2016; Iwasawa et al., 2017; Kummen et al., 2017; Rühlemann et al., 2019; Kummen et al., 2021; Lapidot et al., 2021; Liu et al., 2022; Hole et al., 2023). Veillonella could enter the liver through intestinal lymphocytes. It has been proven to be associated with inflammation and progressive fibrosis (Molyneaux et al., 2014). Clostridium and Lactobacillus could improve the level of BSH and induce the increase of primary BAs. Streptococcus is a common bacterium that causes human purulent inflammation and toxic and hypersensitive diseases. Enterococcus secretes metalloproteinases to break down epithelial cadherin, thereby disrupting the intestinal barrier. Intestinal microorganisms or their products undergo translocation through the damaged intestinal epithelial barrier, thereby inducing the activation of immune cells in the liver (Gaca and Lemos, 2019). The activation of Kupffer and hepatic stellate cells results in the excessive production of pro-inflammatory cytokines and chemokines (such as tumor necrosis factor). This inflammatory response can cause chronic inflammation of the biliary tract and portal fibrosis, ultimately leading to PSC. Silva et al. found that an increase in Enterococcus was positively associated with serum alkaline phosphatase (ALP) levels and bile duct obstruction (Vieira-Silva et al., 2019). Due to the inherent resistance of Enterococcus, treatment is difficult. The genus Blautia participates in multiple sclerosis through immune regulation and pro-inflammatory pathways. It has an impact on the activation of antigen-presenting B and T cells and the upregulation of complement activation-related genes. Similar to the intestinal bacteria of patients with PSC, the diversity of the intestinal microbiota of patients with PBC was also significantly reduced compared to HCs (Zhou et al., 2023). A comparative study between 76 patients with PBC and 23 HCs observed that Clostridium was decreased in PBC, while Lactobacillus, Streptococcus, and Enterococcus were increased (Furukawa et al., 2020). Another study reported Pseudomonas to be significantly increased in PBC (Kitahata et al., 2021). Tang’s research team also observed Pseudomonas as increased in patients with PBC by using the same sequencing method. They found that the abundance of Veillonella, Clostridium, Lactobacillus, Haemophilus, Streptococcus, and Klebsiella was increased, while that of Sutterella, Faecalibacterium, and Oscillospira was decreased. The research results of Zhou et al. were consistent with those of Tang et al., that Faecalibacterium was significantly reduced in PBC. However, Acidimicrobium and Serratia significantly increased in PBC (Zhou et al., 2023). Therefore, the same potential pathogenic bacterial genera (i.e., Faecalibacterium, Veillonella, Clostridium, and Lactobacillus) were found to be common between PSC and PBC. The interaction between bacterial imbalance and BAs plays a promoting role in the pathogenesis of PBC. Research has shown a negative correlation between Veillonella and secondary BAs in PBC. In contrast, Faecalibacterium is positively correlated with secondary BAs in HCs (Figure 4) (Chen et al., 2020).




Figure 4 | Non-calculous cholangitis and the intestinal microbiota. (A) The intestinal barrier is disrupted by some gut microbiota in patients with non-calculous cholangitis. A number of intestinal microorganisms or their metabolites could translocate through the damaged intestinal epithelial barrier. (B) Bacterial dysbiosis influences bile acid (BA) metabolism, which causes changes in the bile composition, resulting in bile stasis and bile duct pressure increase. This will disrupt the lymphatic and vascular flow and lead to inflammation (A). Several translocated pathogenic bacteria and their metabolites destroy the cholangiocytes, resulting in inflammatory reactions (B). (C) Translocated pathogenic bacteria and their metabolites activate the liver immune cells, including Kupffer cells and hepatic stellate cells, excessively producing pro-inflammatory cytokines and chemokines such as TNF-α. This could recruit immune cells, promoting chronic inflammation of the biliary tract and portal fibrosis, ultimately leading to primary sclerosing cholangitis (PSC).



In summary, the impact of intestinal pathogenic bacteria on the development of non-calculous cholangitis was explored in three aspects, as follows:

	1) Pathogenic bacteria that directly ascend to the extrahepatic bile duct through the intestine. In healthy hosts, the normal drainage of bile makes it difficult for pathogenic bacteria to retrograde into the common bile duct. However, when bile stasis occurs, it is difficult to eliminate bacteria, which constitutes the basic condition for biliary tract infection.

	2) The hypothesis of “intestinal leakage” refers to the excessive production of pro-inflammatory cytokines and chemokines in the liver by pathogenic bacteria and their products (through the damaged intestinal barrier). This may lead to cholangitis. However, bacterial translocation to the liver can also promote the occurrence of bile duct inflammation (Ma et al., 2018; Xia et al., 2023).

	3) Due to the imbalance of bacteria involved in BA metabolism in a patient’s intestine, the intestinal hepatic circulation of BAs is affected, causing changes in the bile composition. The accumulated bile blocks the bile duct, causing bile stasis and increasing the pressure inside the bile duct. This will cause the bile duct wall to expand, ultimately disrupting the lymphatic and vascular flow and producing inflammatory reactions.






6 Biliary tract cancer and intestinal bacteria

BTC has an invisible onset and lacks early effective diagnostic measures. Once identified, the progression of the disease would have been at an aggressive stage and have a poor prognosis. More and more evidence has suggested that intestinal bacteria have an impact on the occurrence and development of various cancers (Saud Hussein et al., 2021). There is insufficient theoretical basis for the association between BTC and intestinal bacteria. We retrieved three articles exploring the characteristics of bacteria in BTC. The enriched genera in BTC mainly included Bacteroides, Lactobacillus, Gammaproteobacteria, Actinomyces, Alloscardovia, Muribaculum, and Alistipes. However, the abundance of Coprococcus, Clostridium, Faecalibacterium, and Ruminococcus_1 was decreased (Jia et al., 2020; Zhang et al., 2021b; Ito et al., 2022). The above findings reveal that the intestinal bacteria in patients with BTC are disrupted. Animal experiments have confirmed that the intestinal barrier function is reduced in a PSC mouse model, causing bacteria and lipopolysaccharides to appear in the liver. The expression of CXCL1 is induced through Toll-like receptor 4-dependent mechanisms in liver cells, and the accumulation of CXCR2+ polymorphonuclear myeloid-derived inhibitory cells promotes cancer (Zhang et al., 2021a). The research analysis by Song et al. showed that, during the progression of chronic cholecystitis to BTC, the dominant bacteria in the gallbladder were Peptostreptococcus stomatis, Fusobacterium mortiferum, Acinetobacter junii, and Enterococcus faecium. This hints that pathogenic bacteria may persist and endanger host health (Figure 5) (Song et al., 2020; Chagani and Kwong, 2021).




Figure 5 | Biliary tract cancer and the intestinal microbiota. Bacterial dysbiosis could promote cholangiocarcinoma formation by regulating the TLR4–CXCL1 axis.






7 Biomarkers and therapeutic prospects

We systematically analyzed the potential pathogenic bacteria in biliary system diseases, as shown in Table 1. It was found that the abundance of Faecalibacterium, Eubacterium, and Coprococcus was generally reduced. Particularly, Faecalibacterium was decreased in GS, PSC, PBC, and BTC, while Veillonella, Lactobacillus, Streptococcus, and Enterococcus were significantly increased. Lactobacillus showed an increase in PSC, PBC, and BTC. Interestingly, we found that the relative abundance of Clostridium was generally reduced in GS, PBC, and BTC. However, it was generally increased in PSC. These findings imply that intestinal bacterial changes could provide a basis for early diagnosis. For biliary tract diseases, symptomatic treatments are selected clinically. However, they cannot be cured in a timely manner. With in-depth research on intestinal bacteria, many scholars have proposed reconstructing the homeostasis of the intestinal microbiota, which has profound significance for disease prevention and treatment. Allegretti et al. performed fecal transplantation for the first time in 10 patients with PSC, which increased the diversity of the intestinal microbiota. Importantly, Odoribacter, Alistipes, and Erysipelotrichaceae incertae sedis were found to be correlated with decreased ALP levels in patients post-fecal microbiota transplantation (FMT) (Allegretti et al., 2019). At present, studies with larger sample sizes are needed to further understand the association between intestinal bacteria and biliary diseases. Animal experiments should be improved to verify the mechanisms of potential pathogenic bacteria and the effectiveness of targeted microbial therapy in order to improve the level of early diagnosis of diseases and provide more treatment directions for biliary diseases in the future.


Table 1 | Bacterial genera with significant changes in biliary diseases compared with healthy controls (N ≥ 3).
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25 10 15
Coriobacteriaceae 6 3 3 Collinsella
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Mean + s.d*

Variable

or frequency
Age (years) 21 10+5
Female sex 11 52%
Symptoms

Fever 14 67%

Cough 7 33%

Shortness of breath 2 10%

Diarrhea 2 10%
Disease severity

Asymptomatic 4 19%

Mild 15 71%

Moderate 2 10%
Blood result

Lymphopenia 7 33%

C reactive protein (mg/dL) 21 0.66 + 2.10
ili::(::icl:lox:i:xlts suggestive of 5 24%
Antibiotic treatment 3 14%
Comorbidities or coinfection 0 0%

*s.d., standard deviation.





OPS/images/fcimb.2023.1327889/fcimb-13-1327889-g007.jpg
. Glycosphingolipid biosynthesis - globo and isoglobo series B
Flavonoid biosynthesis 0.2
Stilbenoid, diarylheptanoid and gingerol biosynthesis 0
Fatty acid metabolism
Lysine biosynthesis
Tryptophan metabolism
Valine, leucine and isoleucine degradation 06
Lysine degradation

Biotin metabolism

02

04

Nicotinate and nicotinamide metabolism
Fatty acid biosynthesis

Flavone and flavonol biosynthesis
2-Oxocarboxylic acid metabolism
Vitamin B6 metabolism

Thiamine metabolism

Valine, leucine and isoleucine biosynthesis
Aminoacyl-tRNA biosynthesis

Galactose metabolism

Protein export

Isoquinoline alkaloid biosynthesis
Phenylalanine, tyrosine and tryptophan biosynthesis
RNA degradation

Tyrosine metabolism

Nitrogen metabolism

Sulfur metabolism

Nonribosomal peptide structures
C5-Branched dibasic acid metabolism

Glucosinolate biosynthesis

In/gv0lL O8M
In/evoL N
In/gvol 1

IP/Bw 4yO





OPS/images/fcimb.2023.1237500/table2.jpg
TOTAL DDDs Median (Q1, Q3) 13.31 (6.00, 22.57) 13.67 (8.00, 22.75) 0.572

DDDs ANAEROBE Median (Q1, Q3) 571 (2.17, 12.00) 879 (2.68, 11.90) 0.44
SULPHONAMIDE 18 (13.7%) 4(7.8%) 0273
QUINOLONES 42 (321%) 22 (43.1%) 0.16
RIFAMYCIN 11 (8.4%) 2 (3.9%) 0.292
CARBAPENEMS 43 (32.8%) 12 (23.5%) 022
GLUCOPEPTIDES 20 (15.3%) 3(5.9%) 0.087
1ST GENERATION CEPHALOSPORINS 13 (9.9%) 7 (13.7%) 0.461
2ND GENERATION CEPHALOSPORINS 6 (4.6%) 3 (5.9%) 0.716
3RD GENERATION CEPHALOSPORINS 44 (33.6%) 23 (45.1%) 0.148
4TH GENERATION CEPHALOSPORINS 6 (4.6%) 3 (5.9%) 0.716
5TH GENERATION CEPHALOSPORINS 3 (2.3%) 0 (0.0%) 0.276
PENICILLINS 55 (42.0%) 21 (41.2%) 0921
LIPOPEPTIDES 3 (23%) 1(2.0%) 0.892
AMINOGLYCOSIDES 6 (4.6%) 1(2.0%) 0.409
PHOSPHONATES 6 (4.6%) 2 (3.9%) 0.846
NITROIMIDAZOLE 16 (12.2%) 8 (15.7%) 0.534
MACROLIDES 8 (6.1%) 2 (3.9%) 0.561
OXAZOLIDINONES 11 (8.4%) 2 (3.9%) 0292
LINCOSAMIDES 1(0.8%) 3 (5.9%) 0.034
MONOBACTAMS 1(0.8%) 1(2.0%) 0.486
TETRACYCLINES 2 (1.5%) 0 (0.0%) 0375
CEPHALOSPORINS 67 (51.1%) 32 (62.7%) 0.158
BETALACTAMS 115 (87.8%) 44 (86.3%) 0.783
ANAEROBICS 95 (72.5%) 33 (64.7%) 03

Non-Rec, non-recurrent disease; Rec, recurrent disease; N-Miss, number of cases with no information. Q1, Q3, quartile 1, quartile 3. Significant p values (<0.05) are shown in bold.
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Rec (n=5 p value

ANTIFUNGAL TREATMENT 20 (13.8%) 5(9.3%) 0.391
N-Miss 1 0

ANTIBIOTIC TREATMENT 131 (89.7%) 51 (94.4%) 0.301

NUMBER OF ANTIBIOTICS Median (Q1, Q3) 3.00 (1.00, 4.00) 2.00 (1.00, 4.00) 0.753

PROTON PUMP INHIBITOR TREATMENT 121 (83.4%) 45 (83.3%) 0.985
N-Miss 1 0

NASOGASTRIC TUBE 25 (17.2%) 4 (7.4%) 0.08
N-Miss 1 0

MECHANICAL VENTILATION 31 (21.4%) 7 (13.0%) 0.179
N-Miss 1 0

SURGERY 39 (26.9%) 8 (14.8%) 0.074
N-Miss 1 0

NEUTROPENIA 23 (16.4%) 7 (13.2%) 0.581
N-Miss 6 1

RISK OF INFECTION NEUTROPENIA 16 (11.4%) 3 (5.7%) 0.23
N-Miss 6 1

CHEMOTHERAPY OR RADIOTHERAPY 30 (20.7%) 7 (13.0%) 0.213
N-Miss 1 0

DIALYSIS 10 (6.8%) 1(1.9%) 0.169

IMMUNOSUPPRESSIVE TREATMENT 50 (34.5%) 18 (33.3%) 0.879
N-Miss 1 0

Non-Rec, non-recurrent disease; Rec, recurrent disease; N-Miss, number of cases with no information.Q1, Q3, quartile 1, quartile 3.
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ec (n=146) Rec (n=54) p value
EPISODE TYPE 0.008
CA-CDI 32 (21.9%) 10 (18.5%) 0.6
CO-HCFA 26 (17.8%) 17 (31.5%) 0.037
HO-HCFA 84 (57.5%) 21 (38.9%) 0.020
Undetermined 4(2.7%) 6(11.1%) 0.016
TOXIN B PCR CYCLE Median (Q1, Q3) 26.10 (23.50, 29.90) 23.55 (21.80, 27.12) 0.003
N-Miss 5 0
TOXIN B PCR CYCLE 0.004
N-Miss 5 0
<23 29 (20.6%) 22 (40.7%)
>23 112 (79.4%) 32 (59.3%)
BINARY TOXIN 34 (23.9%) 10 (18.5%) 0416 ‘
N-Miss 4 0 ‘
HYPERVIRULENT RIBOTYPE 0.112 ‘
No hypervirulent 140 (95.9%) 50 (92.6%)
181 3(2.1%) 4 (7.4%)
027 3(2.1%) 0 (0.0%)
FEVER PREVIOUS 24 H 42 (28.8%) 13 (24.1%) 0.509
DAYS OF DIARROHEA Median (Q1, Q3) 4.00 (2.00, 7.00) 5.00 (4.00, 8.00) 0.018
N-Miss 4 0
ABDOMINAL PAIN 76 (52.1%) 24 (44.4%) 0.339
ABDOMINAL BLOATING 28 (19.4%) 7 (13.0%) 0.287
N-Miss 2 0
TOXIC MEGACOLON 2 (1.4%) 0 (0.0%) 0.387
PSEUDOMEMBRANOUS COLITIS 2 (1.4%) 0 (0.0%) 0.175
LEUCOCYTES Median (Q1, Q3) 8,500.00 (5,970.00, 12,500.00) 10,900.00 (7,110.00, 14,700.00) 0.181
N-Miss 11 3
NEUTROPHILS Median (Q1, Q3) 6,300.00 (3,500.00, 10,050.00) 7,500.00 (4,900.00, 12,600.00) 0213
N-Miss 11 3
ALBUMIN Median (Ql, Q3) 3.30 (3.00, 3.73) 3.40 (2.90, 4.00) 0472
N-Miss 74 29
Aspartate transaminase (AST) Median (Q1, Q3) 29.00 (18.75, 78.00) 43.00 (42.00, 50.00) 0.362
N-Miss 114 49
Alanine transaminase (ALT) Median (Q1, Q3) 19.00 (12.00, 33.25) 14.00 (9.50, 22.50) 0.025
N-Miss 24 7
CREATININE Median (Q1, Q3) 0.059
N-Miss 10 3
0.92 (0.62, 1.48) 1.23 (0.82, 1.67)
CREATININE 0.003
N-Miss 10 3
<1 76 (55.9%) 16 (31.4%)
>1 60 (44.1%) 35 (68.6%)
FAECAL CALPROTECTIN (ug/mg) Median (Q1, Q3) 0.01
N-Miss 18 3
92,91 (2.67, 172.25) 150.36 (57.11, 253.75)
FAECAL CALPROTECTIN 0.001
N-Miss 18 3
higher_185 27 (21.1%) 23 (45.1%)
lower_185 101 (78.9%) 28 (54.9%)
EPISODE SEVERITY 0.156
mild 96 (65.8%) 35 (64.8%) 0.901 ‘
severe 37 (25.3%) 18 (33.3%) 0.261 ‘
severe-complicated 13 (8.9%) 1 (1.9%) 0.083 ‘
OTHER CAUSE OF DIARRHOEA 138 (94.5%) 52 (96.3%) 0.609
CDI TREATMENT RECEIVED 142 (97.9%) 54 (100.0%) 0.287
N-Miss 1 0
METRONIDAZOLE TREATMENT 50 (34.2%) 14 (25.9%) 0.252
VANCOMYCIN TREATMENT 125 (85.6%) 48 (88.8%) 0.617
FIDAXOMYCIN TREATMENT 3(2.1%) 3 (5.6%) 0.201
EFMT 10 (6.8%) 4 (7.4%) 0.9
BEZLOTOXUMAB 9 (6.2%) 1 (1.9%) 0211

Non-Rec, non-recurrent disease; Rec, recurrent disease; CDI, Clostridioides difficile infection; N-Miss, number of cases with no information. Q1, Q3, quartile 1, quartile 3. Significant p values
(<0.05) are shown in bold.
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Rec 54) p value
ICU ADMISSION 6 (4.1%) 1(1.9%) 0.441
OUTCOME AT DISCHARGE 0.113
N-Miss 19 8
Dead 1 (0.8%) 2 (4.3%)
Healing 126 (99.2%) 44 (95.7%)
CDI-RELATED DEATH 0.194
Not related 1 (0.7%) 1 (1.9%)
Probably related 0 (0.0%) 1 (1.9%)
TREATMENT FAILURE 0 (0.0%) 1(1.9%) 0.103
N-Miss 3 0
30-DAY MORTALITY 0 (0.0%) 2(3.7%) 0.019

90-DAY MORTALITY 2 (1.4%) 6 (11.1%) 0.002

Non-Rec, non-recurrent disease; Rec, recurrent disease; CDI, Clostridioides difficile infection; N-Miss, number of cases with no information.

Probably CDI-related death: Death was considered CDI-related when there were no other attributable causes and/or it occurred within 10 days after the diagnosis of CDI and/or was due to
known complications of CDL

ICU, intensive care unit. Significant p values (<0.05) are shown in bold.
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46) Rec (n=54) p value
AGE Median (Q1, Q3) 67.00 (55.00, 79.00) 78.50 (70.25, 85.75) <0.001
SEX 0.013
Female 80 (54.8%) 40 (74.1%)
Male 66 (45.2%) 14 (25.9%)
ADMITTED PATIENT 106 (72.6%) 29 (53.7%) 0.011
INSTITUTIONALISED PATIENT 5 (3.4%) 7 (13.0%) 0.012
DAYS OF HOSPITAL STAY Median (Q1, Q3) 16.00 (9.00, 36.25) 13.00 (8.00, 27.00) 0222
HIV 6 (4.1%) 2 (3.7%) 0.897
SOLID ORGAN TRANSPLANT 20 (13.7%) 7 (13.0%) 0.892
MALIGNANCY 30 (20.5%) 13 (24.1%) 0.59
CARDIOLOGICAL DISEASE 97 (66.4%) 50 (92.6%) <0.001
PULMONARY DISEASE 32 (21.9%) 15 (27.8%) 0.386
GASTROINTESTINAL DISEASE 56 (38.4%) 19 (35.2%) 0.681
LIVER DISEASE 40 (27.4%) 8 (14.8%) 0064
HAEMATOLOGIC MALIGNANCY 31 (21.2%) 7 (13.0%) 0.186
ENDOCRINE DISEASE 60 (41.1%) 28 (51.9%) 0.174
METABOLIC DISEASE 64 (43.8%) 34 (63.0%) 0.016
INFECTIOUS DISEASE 18 (12.3%) 6 (11.1%) 0.814
ALLERGIC DISEASE 3(21%) 0 (0.0%) 0.289
RHEUMATIC DISEASE 29 (19.9%) 20 (37.0%) 0.012
NEUROLOGICAL DISEASE 40 (27.4%) 18 (33.3%) 0411
NEPHROUROLOGICAL DISEASE 53 (36.3%) 27 (50.0%) 0.079
IMMUNE-MEDIATED DISEASE 6 (4.1%) 3 (5.6%) 0.661
NUMBER OF DISEASES Median (Q1, Q3) 4.00 (3.00, 5.00) 5.00 (4.00, 7.00) <0.001
CHARLSON COMORBIDITY INDEX Median (Q1, Q3) 4.00 (2.00, 6.00) 3.50 (3.00, 6.00) 0.256
BMI Median (Q1, Q3) 25.23 (22.04, 28.36) 24.92 (23.03, 30.59) 0.117
SMOKER 23 (15.9%) 4(7.4%) 0.121
N-Miss 1 0
MICROBIOTA DYSBIOSIS-RELATED DISEASE 96 (65.8%) 41 (75.9%) 0.169
DIABETES MELLITUS 45 (46.9%) 20 (48.8%) 0.838
CHOLELITHIASIS 11 (11.5%) 5 (12.2%) 0.902
ISCHAEMIC HEART DISEASE 23 (24.0%) 11 (26.8%) 0722
AUTOIMMUNE DISEASE 5 (5.2%) 0 (0.0%) 0.137
ASTHMA 10 (10.4%) 5 (12.2%) 0.76
ATOPY 1(1.0%) 0 (0.0%) 0512
PSORIASIS 1(1.0%) 0 (0.0%) 0.512
GASTRIC LYMPHOMA OR CARCINOMA 1(1.0%) 0 (0.0%) 0512
COLORECTAL CARCINOMA 6 (6.2%) 3 (7.3%) 0.817
IRRITABLE BOWEL SYNDROME 5 (5.29%) 1 (24%) 0.468
INFLAMMATORY BOWEL DISEASE 13 (13.5%) 1(24%) 0.049
IDIOPATHIC THROMBOCYTOPENIC PURPURA 1(1.0%) 0 (0.0%) 0512
SKIN DISEASE 1(1.0%) 1(24%) 0532
PARKINSON DISEASE 6 (6.2%) 4(9.8%) 047
HEPATIC ENCEPHALOPATHY 2 (2.1%) 2 (4.9%) 0374
BEHAVIOURAL DISORDERS 1(1.0%) 1(24%) 0532
COELIAC DISEASE 0 (0.0%) 1 (24%) 0125
ARTHRITIS 3 (31%) 5 (12.2%) 0.038
IDIOPATHIC CONSTIPATION 1(1.0%) 0 (0.0%) 0512
NON-ALCOHOLIC FATTY LIVER 3 (3.1%) 1(24%) 0827
NUMBER OF MICROBIOTA DYSBIOSIS-RELATED DISEASES Median (Q1, Q3) 1.00 (1.00, 2.00) 1.00 (1.00, 2.00) 0575
ALCOHOL INTAKE > 50G/DAY 8 (5.5%) 1(19%) 0.269
N-Miss 1 0
COLECTOMY OR ILEOSTOMY 15 (103%) 5 (9.3%) 0832
CHOLECYSTECTOMY 18 (12.3%) 8 (14.8%) 0643
IMMUNOCOMPROMISED 53 (36.3%) 21 (38.9%) 0737

Non-Rec, non-recurrent disease; Rec, recurrent disease; N-Miss, number of cases with no information. Q1, Q3, quartile 1, quartile 3. BMI, body mass index. Significant p values (<0.05) are shown
in bold.
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Characteristics Cs-infected nfected t/F/z

Biliary obstruction u 26

Age, yr 55.9 9.9 565+ 143 0.167 0.868
Male 13 (54.2) 11 (423) 0.703 0402
Rural life history 10 (41.7) 8 (30.8) 0.643 0423
AST (U/L) 90.7 (35.5,282.2) 73 (42.0,115.3) -0.583 0.560
ALT (U/L) 97.1 (25.4,273.8) 55 (39.8,139.3) -0.874 0382
TBIL (umol/L) 23.0 (16.0,32.6) 66.5 (27.7,158.1) -3.962 <0.001*
DBIL (umol/L) 13.65 (3.843.6) 60 (17.4,132.6) -2.661 0.008*
IBIL (mol/L) 19.7 (12.0,33.2) 8.8 (5.6,15.8) -3515 <0.001*
ALP (U/L) 314.1 (162.9,1019.6) 247.0 (137.8,445.0) 1243 0214
GGT (U/L) 504.2 (142.4,988.6) 433.0 (266,773.5) 0272 0.786

Results are present as medians (range, min-max)/mean + standard deviation.
AST, aspartate aminotransferase, ALT, alanine aminotransferase, TBIL, total bilirubin, DBIL, direct bilirubin, IBIL, indirect bilirubin, ALP, alkaline phosphatase, GGT, y-glutamyltranspeptidase.

*Statistically significant results from Mann-Whitney U test.
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Age (month) 28429
Weight (kg) 4.6+1.8
Boys/girls 15/13
pulmonary artery pressure (mmHg) 59.8+10.1
NT-proBNP (pg/ml) 4218.743757.1

Feeding methods
Breastfeeding 9
Formula feeding 14

Mixed Feeding 5

Control group
26+17
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Microbiota Heterogeneity Horizontal pleiotropy

Cochran’s Q p MR-Egger intercept p MR-PRESSO global test p
family Enterobacteriaceae 0.313 0.237 0.357
Streptococcaceae 0.785 0.739 0.801
genus Butyricicoccus 0.401 0.314 0.351
CandidatusSoleaferrea 0.782 0.720 0.792
LachnospiraceaeNC2004group 0.744 0.660 0.737
LachnospiraceaeUCG010 0.900 0.982 0.899
Marvinbryantia 0.783 0.705 0.793
Peptococcus 0.264 0.239 0.270
Roseburia 0.359 0.441 0.362
Streptococcus 0.559 0.492 0.592
order Enterobacteriales 0313 0.237 0357
MollicutesRF9 0771 0.713 0.786

NBIn 0.659 0.612 0.678






OPS/images/fcimb.2023.1142578/fcimb-13-1142578-g007.jpg
Bifidobacterium spp.
Clostridium spp.
Bacteroides spp.

E. coli

Proteus spp.
Klebsiella spp.
Providencia spp.
Enterobacter spp.
Pseudomonas spp.
Citrobacter spp.
Enterococcus spp.
Staphylococcus spp.
Candida spp.
Lactobacillus spp.

CRP LoS

COVID-19 without T2D

1.0

0.5

-1.0

Bitidobacterium spp.
Clostridium spp.
Bacteroides spp.

E. coli

Proteus spp.
Klebsiella spp.
Providencia spp.
Enterobacter spp.
Pseudomonas spp.
Citrobacter spp.
Enterococcus spp.
Staphylococcus spp.
Candida spp.
Lactobacillus spp.

CRP LoS

COVID-19 with T2D

1.0

0.5

-1.0





OPS/images/fcimb.2023.1320992/crossmark.jpg
©

2

i

|





OPS/images/fcimb.2023.1142578/table1.jpg
Female, n (%)

Male, n (%)

All, n

Delta variant 56 51.75 - 60.00 17 (40.4%) 25 (59.6%) 42
Omicron variant 55 ‘ 51.00 - 60.25 39 (45.3%) 47 (54.7%) 86
Antibiotic-Treated group 56 52.00 - 60.25 25 (43.1%) 33 (56.9%) 58
Non-Antibiotic-Treated group 55 51.25 - 59.75 31 (44.2%) 39 (55.8%) 70
COVID-19 with T2D 56 49.5 - 60.00 24 (53.3%) 21 (46.7%) 45
COVID-19 without T2D 55 52.00 - 60.00 32 (38.5%) 51 (61.5%) 83
Metformin-treated patients with T2D and COVID-19 with antibiotic treatment 56 49.00 - 60.25 11 (50%) 11 (50%) 22
Metformin-treated patients with T2D and COVID-19 without antibiotic 58 51.00 - 60.75 7 (58.3%) 5 (41.6%) 12
treatment

Total 555 51.25 - 60.00 56 (43.8%) 72 (56.3%) 128
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Level Microbiota SNPs Bate OR(95%Cl) p value
family Enterobacteriaceae 11 MR Egger -0.26 0.77(0.22,2.71) 0.696
‘Weighted median -0.35 0.71(0.50,0.99) 0.043
Inverse variance weighted -0.29 0.75(0.58,0.97) 0.031
Simple mode -0.42 0.66(0.40,1.09) 0.136
Weighted mode -0.40 0.67(0.43,1.05) 0.114
family Streptococcaceae 17 MR Egger 0.13 1.14(0.55,2.35) 0.724
‘Weighted median 0.2 1.22(0.93,1.60) 0.153
Inverse variance weighted 0.29 1.34(1.09,1.63) 0.004
Simple mode 0.09 1.10(0.66,1.82) 0.721
Weighted mode 0.13 1.14(0.74,1.75) 0.566
genus Butyricicoccus 9 MR Egger -0.38 0.68(0.39,1.19) 0.223
‘Weighted median -0.10 0.91(0.63,1.31) 0.602
Inverse variance weighted -0.30 0.74(0.57,0.96) 0.024
Simple mode 0.04 1.04(0.54,2.01) 0.915
Weighted mode 0.05 1.05(0.50,2.19) 0.906
genus CandidatusSoleaferrea 16 MR Egger -0.17 0.84(0.46,1.54) 0.587
‘Weighted median -0.11 0.89(0.75,1.07) 0.215
Inverse variance weighted -0.13 0.88(0.77,1.00) 0.045
Simple mode -0.14 0.87(0.66,1.16) 0.367
Weighted mode -0.16 0.85(0.63,1.16) 0.331
genus LachnospiraceaeNC2004group 10 MR Egger -0.12 0.89(0.45,1.75) 0.735
Weighted median -0.25 0.78(0.62,0.97) 0.027
Inverse variance weighted -0.21 0.81(0.69,0.95) 0.012
Simple mode -0.32 0.72(0.51,1.02) 0.102
Weighted mode -0.32 0.73(0.50,1.07) 0.141
genus LachnospiraceaeUCG010 12 MR Egger -0.25 0.78(0.39,1.56) 0.495
Weighted median 0.36 1.43(1.07,1.90) 0.015
Inverse variance weighted 0.29 1.33(1.07,1.66) 0.011
Simple mode 0.38 1.47(0.89,2.42) 0.162
Weighted mode 0.38 1.47(0.90,2.40) 0.155
genus Marvinbryantia 11 MR Egger 0.18 1.19(0.52,2.76) 0.688
Weighted median 0.20 1.22(0.91,1.64) 0.193
Inverse variance weighted 0.24 1.27(1.01,1.58) 0.037
Simple mode 0.20 1.22(0.75,1.97) 0.439
Weighted mode 0.20 1.22(0.77,1.95) 0.415
genus Peptococcus 16 MR Egger -0.32 0.73(0.46,1.16) 0.204
‘Weighted median -0.10 0.91(0.77,1.07) 0.244
Inverse variance weighted -0.15 0.86(0.76,0.97) 0.018
Simple mode 0.01 1.01(0.75,1.35) 0.971
Weighted mode 0.03 1.03(0.78,1.35) 0.861
genus Roseburia 17 MR Egger 0.69 1.99(1.09,3.62) 0.040
‘Weighted median 0.17 1.18(0.86,1.62) 0.295
Inverse variance weighted 0.26 1.29(1.04,1.61) 0.021
Simple mode 0.01 1.01(0.55,1.86) 0.978
‘Weighted mode -0.01 0.99(0.58,1.69) 0.976
genus Streptococcus 16 MR Egger 0.11 1.12(0.51,2.45) 0.784
Weighted median 0.17 1.18(0.88,1.58) 0.268
Inverse variance weighted 0.24 1.28(1.03,1.57) 0.023
Simple mode 0.03 1.03(0.63,1.70) 0.909
Weighted mode 0.09 1.09(0.70,1.70) 0.711
order Enterobacteriales 1L MR Egger -0.26 0.77(0.22,2.71) 0.696
‘Weighted median -0.35 0.71(0.50,0.99) 0.042
Inverse variance weighted -0.29 0.75(0.58,0.97) 0.031
Simple mode -042 0.66(0.40,1.07) 0.125
Weighted mode -0.40 0.67(0.43,1.06) 0.117
order MollicutesRF9 16 MR Egger 0.16 1.17(0.70,1.97) 0.554
‘Weighted median 0.18 1.19(0.95,1.49) 0.127
Inverse variance weighted 0.23 1.26(1.07,1.48) 0.006
Simple mode 0.13 1.14(0.75,1.73) 0.543
Weighted mode 0.13 1.14(0.80,1.64) 0.484
order NBIn 15 MR Egger 0.03 1.03(0.60,1.76) 0.926
‘Weighted median 0.21 1.23(1.05,1.45) 0.011
Inverse variance weighted 0.19 1.21(1.07,1.36) 0.002
Simple mode 0.31 1.37(1.03,1.81) 0.047
Weighted mode 0.31 1.36(1.02,1.81) 0.051
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Higher than 185 ug/mg

Lower than 185 ug/mg (n=129)

(n=50)
AGE Median (Q1, Q3) ‘ 71.00 (58.00, 80.00) 74.00 (59.25, 84.75) 0.262
SEX ‘ 0.663
Fesile | 78 (60.5%) 32 (64.0%)
Male ‘ 51 (39.5%) 18 (36.0%)
TOXIN A/B POSITIVE (EIA) ‘ 73 (57.5%) 30 (60.0%) 0.76
N-Miss 2 0
TOXIN B PCR CYCLE Median (Q1, Q3) 25.60 (23.05, 29.55) 24.00 (22.20, 27.10) 0.034
N-Miss 2 1
BINARY TOXIN POSITIVE (PCR) 25 (19.5%) 14 (28.6%) 0.194
N-Miss 1 1
MICROBIOTA DYSBIOSIS-RELATED DISEASE 95 (73.6%) 32 (64.0%) 0.202
IMMUNOCOMPROMISED 57 (44.2%) 12 (24.0%) 0.013
NEUTROPENIA (< 600/mm’®) ‘ 16 (12.6%) 0 (0.0%) 0.012
N-Miss 2 4
DAYS OF DIARROHEA Median (Q1, Q3) 4.00 (2.00, 7.00) 5.00 (3.00, 9.00) 0.042
N-Miss 2 2
LEUCOCYTES Median (Q1, Q3) 8150.00 (5450.00, 11400.00) 11200.00 (7320.00, 16800.00) 0.006
N-Miss I 9 2
EPISODE SEVERITY < 0.001
Mild | 98 (76.0%) 23 (46.0%) < 0.001
Severe 23 (17.8%) 23 (46.0%) < 0.001
Severe-complicated 8 (6.2%) 4 (8.0%) 0.666
CDI RECURRENCE 28 (21.7%) 23 (46.0%) 0.001
TOXIN B PCR CYCLE ‘ 0.102
N-Miss ‘ 2 1
<23 ‘ 31 (24.4%) 18 (36.7%) 0.102
>23 96 (75.6%) 31 (63.3%) 0.102

CDI, Clostridioides difficile infection; N-Miss, Number of cases with no information. EIA, enzyme immunoassay. Q1, Q3, quartile 1, quartile 3. Significant p values (<0.05) are shown in bold.
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Immunosuppression
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>70

! OR, odds ratio; CI, confidence interval.

4.56
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Genus Coefficient Standard deviation p value q value

Senegalimassilia -2451 0.7983 0.0025 0.043
Bacteroides 3.136 0.6656 <0.001 <0.001
Coprobacter 1.756 0.4819 <0.001 0.013

Alistipes -1.723 0.5023 <0.001 0.020
Lactococcus -4.241 0.9881 <0.001 0.002
Finegoldia 2.760 0.5526 <0.001 <0.001

Blautia -2.854 0.7209 <0.001 0.005
Coprococcus -2219 0.6547 <0.001 0.022

Faecalibacterium -4.352 0.8891 <0.001 <0.001

Dialister 2.839 0.4885 <0.001 <0.001

Megasphaera 6.351 0.8040 <0.001 <0.001
Fusobacterium 2.141 0.5655 <0.001 0.009
Akkermansia -2.184 0.5800 <0.001 0.009

Bacterial genera positively or negatively associated with faecal calprotectin concentrations.
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P (CPC vs.

Indicator
DCPQ)
17(60.7%) 077 /
Male(%) 9(56%)
_ 5(62.5%) 12(60%) / 0952
indicators 5479 + 12.68 0.89 i
Age 5425+ 10,14
149,00 + 12.84 57.10 12,17 / 0257
Child-Pugh A 7 13
Child-Pugh grade Child-Pugh B 0 6 / / /
Child-Pugh C 1 1
WBC(*10A9/L) 3595 553+ 123 329+ 123 520 £ 126 0.009 <0.001
N(10A9/L) 1863 359(278,4.58) 168(1.352.41) * | 3.07 +086 0.106 0.001
N% 40.0-75.0 70.00(59.90,73.15) | 64.95(49.7872.50) | 59.04 £ 7.7 0075 0.309
Hb(g/L) 130-175 137.25 + 19.69 10555 £26.68* | 128.13 £ 6.23 0.022 0.005
125-350 100.50 60.50(46.50,86.75) | 179.94 =
PLT(*10A9/L, 0.001 0.004
¢ ) (92.00,161.75) * 2286 <
7.0-40.0 40.30
ALT(U/L) 20.30(15.0050.75) | 19.90 £ 9.32 0.045 0.170
(22.58,111.93)
AST(UIL) 130350 3285(27339265) | 3075(24385100) | 1738 + 487 <0.001 0,629
TBIL(ummol/l) 34-17.1 1465(8783410) | 1630(12.5024.83) | 861 + 321 <0.001 0593
DBIL I 060
(ﬁl)m"“’ 4.85(3.90,13.90) 6.50(483,1028) | 382136 <0.001 0576 ‘
Laboratory indicator
IBIL(ummol/l) 0111 1000(458,2020) | 1040(8.15,1520) 479 £ 1.96 <0.001 0.684 ‘
ALB(g/L) 40.0-55.0 39.58 + 6.76 3669 £ 6.1 46581 £ 385 <0.001 0282 \
GLO(g/L) 20.0-40.0 2868 + 5.34 34727.70 3238 £ 338 0218 0.054 |
TBA(ummol/l) 0-100 2940(538,5475) | 30.60(13535243) 380 +096 <0.001 0.666
CREMK"‘"“’V 4.0-1330 72.00(60.05,88.75) | 7430(53.10,87.35) | 57.13 £ 936 0.006 0819
BUN(mmol/L) 290-7.14 475(3.85,5.78) 1482(3.947.26) 452 100 0241 0576
Na(mmol/L) 137.0-1470 140.16 + 2.80 14047 £284 | 14188 +2.19 0072 0.800
PT(s) 100-140 1475 + 268 1459 + 191 1178 + 080 <0.001 0856
80.0-120.0 86.00 10006 +
PTA(% 71.35(68.00,80.10) 0.001 0525
(%) (63.43,103.90) ( ) 1032 S
INR 0.85-1.20 119 £ 025 123 £0.13 102 + 009 <0.001 0545

CPC, compensated cirrhosis; DCPC, decompensated cirrhosis; HC, healthy control; WBC, white blood cell count; N, neutrophil count; N%, neutrophil count over white blood cell count; LYM,
lymphocyte count; Hb, hemoglobin; PLT, platelet count; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin
ALB, blood albumin; GLO, globulin; TBA, bile acid; CREA, creatinine; BUN, urea nitrogen; Na, serum sodium ion concentration; PT, prothrombin time; PTA, prothrombin time percentage;
INR, international normalized ratio. * For comparison between CPC and DCPC (significant difference between groups, p<0.05).
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Nonprobiotic group

Gender
Male 37 40
Female 7 18
Age 55.00 + 12.74 51.52 + 13.50
Pathogenesis
Hepatitis 17 26
Alcoholic 10 9
Mixed Pathogenesis 8 8
unclassified 9 15
Child-pugh grade
A 4 16
B 25 28
C 15 14
Pretreatment Post-treatment Pretreatment Post-treatment
WBC 3.52(2.71-4.52) 3.57(2.49-4.60) 3.50(2.47-4.59) 3.35(2.48-4.35)
N% 63.03 £ 11.74 60.39 + 11.19* 63.21 +13.21 57.29 + 12.93*
Hb 110.8 + 21.28 109.77 + 21.86 103.81 + 24.98 102.21 + 24.22
PLT 66.50(41.00-99.75) 68(43.25-105.00) 64.00(45.75-108.00) 67.50(45.75-103.25)
ALT 31.85(26.55-45.95) 23.35(18.10-36.83)*+ 39.90(25.58-55.98) 33.70(21.75-53.78)*
AST 52.00(33.83-76.55) 41.10(25.65-53.53)* 57.85(41.20-77.45) 46.35(36.18-66.28)*
TBIL 39.90(28.80-59.00) 27.80(17.75-46.78)*+ 37.60(29.68-56.88) 34.90(26.08-49.13)*
TBA 49.40(23.98-94.75) 45.50(19.00-77.50)* 51.65(23.08-106.05) 44.60(24.83-76.83)*

*indicates a statistically significant difference between pre- and posttreatment (p < 0.05). +indicates a statistically significant difference between the probiotic and nonprobiotic groups

posttreatment (p < 0.05).
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Human genes

Forward primer (5'-3")

Reverse primer (5'-3")

IL-6 ATGAGGAGACTTGCCTGGTG GGCATTTGTGGTTGGGTCAG
IL-8 CACTGCGCCAACACAGAAAT AACTTCTCCACAACCCTCTGC
TNF-o TACTCCCAGGTCCTCTTCAAGG TTGATGGCAGAGAGGAGGTTG
GAPDH ACCCACTCCTCCACCTTTGA AAAGTGGTCGTTGAGGGCAA
Mouse genes
IL-1B CTGAACTCAACTGTGAAATGCC CTTGTTGATGTGCTGCTGCG
1L-6 ACAAAGCCAGAGTCCTTCAGAG CCACTCCTTCTGTGACTCCA
TNF-0. ACCCTCACACTCACAAACCAC TAGCAAATCGGCTGACGGTG
GAPDH CATGGCCTTCCGTGTTCCTA TACTTGGCAGGTTTCTCCAGG
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Interventions  Classification = Research Targets Results References

design
Nanoparticle- Acute Human studies; CCR, 1 Ly6C"'#" monocytes (Leuschner et al.,
encapsulated autoimmune In vivo, and in 2015)
siRNA myocarditis vitro, A/] mice
model
PSL-G Experimental In vivo and in Macrophages | Pro-inflammatory cytokines (e, IL-1at, (Toita et al., 2021)
autoimmune vitro, A/] mice IL-6, and TNF-0));
myocarditis ‘model 1 Anti-inflammatory cytokine IL-10;

1 Macrophage polarization: from the pro-
inflammatory M1 phenotype to the anti-
inflammatory M2 phenotype

Silencing of Viral In vivo and in SOCS1 1 M1 polarization of macrophages; (Zhang et al., 2021a)
microRNA-30a- myocarditis vitro, BALB/c
5p mice model
Anakinra Fulminant In vivo, patient  IL-1 receptor | Circulating neutrophils (Cavalli et al., 2016)
myocarditis
Fructus Amomi CVB3 In vivo and in Undisclosed | Enterovirus replication; (Lee et al,, 2016)
Cardamomi myocarditis vitro, mice IMyocarditis damage
Extract model
Lithium CVB3 In vivo and in Undisclosed | Virus-triggered inflammatory responses; (Zhao et al., 2020)
chloride myocarditis vitro, mice 1CVBS3 replication
model
Zinc finger CVB3 In vivo and in Viral RNA 1 Viral replication (Li et al, 2015)
antiviral protein  myocarditis vitro, BALB/c I Cardiac inflammatory cytokine production
mice model
Tripartite motif- ~ CVB3 In vivo and in Mitochondrial antiviral signaling 1CVBS3 replication (Zhang et al,, 2012;
containing 21 myocarditis vitro,BALB/c protein 1IFN-B Liu et al., 2018; Xue
mice model etal, 2018)
FMT Experimental In vivo, male Gut microbiota Rebalancing the microbiota composition; (Hu et al, 2019)
autoimmune BALB/c mice Inflammatory infiltration
myocarditis
Liraglutide Experimental In vivo, male Gut microbiota and immuse JTNF-, IL-1B, MCP-1 (Zhang Wenyong,
autoimmune BALB/c mice system 2019)
myocarditis
Leonurine LPS-induced In vivo and in NE-kB signaling pathway 1Cardiac function (Wang et al,, 2019b)
myocarditis vitro, C57BL/6 | Cardiomyocyte apoptosis
mice
Myricetin Experimental In vivo and in The autoimmune response ISerum anti-cardiac myosin antibody, IgG, (Nie et al,, 2023)
autoimmune vitro, male specific to myocardium and the IgM levels, and the Th17 cells.
myocarditis BALB/c mice expression of MCP-1 IMCP-1, phospho (p)-p65, p-c-Jun and
Act1/TRAF6/TAK1
1Tregs

CCRy, chemokine (C-C motif) receptor 2; PSL-G, phosphatidylserine liposomes conjugated with protein G; CVB3, coxsackievirus B3; EMT, fecal microbiota transplantation; IEN, interferon; Ig,
immunoglobulin; IL, interleukin; M1, M1 phenotype macrophages; MCP-1, monocyte chemoattractant protein-1; Th17 cells, T helper 17 cells; TNF, tumor necrosis factor; Tregs, regulatory T
cells; SOCSI, suppressor of cytokine signaling 1; si-RNA, small interfering RNA.
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Classifications

e Causative criteria

infectious
viruses
bacteria
spirochaete
protozoa etc.

non-infectious
ICI, sarcoidosis
SLE etc.

e Histological criteria
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Heterogeneity Horizontal pleiotropy

Microbiota
Cochran’s Q p MR-Egger intercept p MR-PRESSO global test p

Class Deltaproteobacteria 0.21 0.16 0.25
Family Christensenellaceae ‘ 0.54 0.45 0.60
‘ Family Desulfovibrionaceae 0.16 0.12 0.20
Family Family XIIT ‘ 0.38 0.30 0.40
Genus Eubacteriumruminantiumgroup 0.62 0.69 0.64
Genus Howardella 0.26 0.37 027
Genus Lachnospiraceae NK4A136 group ‘ 0.64 0.57 0.69
Genus Methanobrevibacter 0.17 0.14 0.20
Genus Veillonella 0.70 0.67 072
Order Desulfovibrionales 0.19 0.14 023
Phylum Euryarchaeota 0.60 0.52 0.63
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P

Level SNPs Methods (95% Cl) p value
MR Egger -0.12 0.89(0.62,1.26) 0.511
‘Weighted median -0.08 0.92(0.79,1.08) 0319
Class Deltaproteobacteria 14 Inverse variance weighted -0.14 0.87(0.77,0.98) 0.028
Simple mode -0.02 0.98(0.74,1.30) 0.891
‘Weighted mode -0.04 0.96(0.73,1.25) 0.759
MR Egger -0.12 0.88(0.72,1.08) 0.253
‘Weighted median -0.11 0.89(0.76,1.04) 0.143
Family Christensenellaceae 12 Inverse variance weighted -0.13 0.88(0.79,0.98) 0.016
Simple mode -0.15 0.86(0.70,1.06) 0.189
Weighted mode -0.11 0.90(0.76,1.06) 0.224
MR Egger -0.09 0.91(0.63,1.31) 0.829
Weighted median -0.08 0.92(0.78,1.09) 0.052
Family Desulfovibrionaceae 12 Inverse variance weighted -0.16 0.86(0.75,0.98) 0.013
Simple mode -0.02 0.98(0.73,1.31) 0.188
Weighted mode -0.06 0.94(0.73,1.20) 0.712
MR Egger 0.20 1.23(0.66,2.27) 0.532
Weighted median 0.18 1.20(0.99,1.45) 0.057
Family Family XIIT 12 Inverse variance weighted 0.14 1.15(1.00,1.32) 0.043
Simple mode 0.27 1.31(0.92,1.87) 0.169
‘Weighted mode 0.26 1.29(0.92,1.82) 0.171
MR Egger 0.07 1.07(0.86,1.33) 0.567
‘Weighted median -0.04 0.96(0.87,1.06) 0.395
Genus Eubacteriumruminantiumgroup 19
Inverse variance weighted -0.08 0.92(0.86,0.98) 0.014
Simple mode -0.01 0.99(0.84,1.18) 0.937
‘Weighted mode -0.01 0.99(0.85,1.16) 0.896
MR Egger 0.34 1.40(1.06,1.85) 0.045
Weighted median 0.13 1.14(1.04,1.25) 0.007
Genus Howardella 10 Inverse variance weighted 0.13 1.13(1.05,1.22) 0.001
Simple mode 0.06 1.06(0.89,1.25) 0.529
‘Weighted mode 0.14 1.15(0.98,1.36) 0.127
MR Egger 017 0.84(0.69,1.03) 0.115
Weighted median -0.12 0.88(0.77,1.01) 0.076
Genus Lachnospiraceae NK4A136 group 16 Inverse variance weighted -0.15 0.86(0.78,0.95) 0.003
Simple mode -0.01 0.99(0.77,1.26) 0.907
‘Weighted mode -0.14 0.87(0.72,1.04) 0.143
MR Egger -0.26 0.77(0.51,1.16) 0.256
Weighted median -0.11 0.89(0.80,1.00) 0.047
Genus Methanobrevibacter 8 Inverse variance weighted -0.12 0.89(0.80,0.98) 0.018
Simple mode -0.12 0.89(0.72,1.09) 0.287
‘Weighted mode -0.13 0.88(0.72,1.06) 0.215
MR Egger 0.55 1.73(0.58,5.14) 0.358
‘Weighted median 0.09 1.09(0.94,1.27) 0.268
Genus Veillonella 9 Inverse variance weighted 0.12 1.12(1.00,1.26) 0.045
Simple mode 0.02 1.02(0.80,1.31) 0.853
‘Weighted mode 0.03 1.03(0.81,1.30) 0.823
MR Egger -0.11 0.89(0.63,1.27) 0.535
‘Weighted median -0.08 0.93(0.79,1.09) 0.348
Order Desulfovibrionales 13 Inverse variance weighted -0.15 0.86(0.76,0.98) 0.027
Simple mode -0.01 0.99(0.75,1.30) 0.920
‘Weighted mode -0.04 0.96(0.74,1.24) 0.761
MR Egger -0.06 0.95(0.72,1.24) 0.695
Weighted median -0.10 0.91(0.83,0.99) 0.037
Phylum Euryarchaeota 13 Inverse variance weighted -0.09 0.91(0.86,0.97) 0.004
Simple mode -0.12 0.89(0.77,1.03) 0.142
Weighted mode -0.09 0.92(0.79,1.06) 0.276





OPS/images/fcimb.2023.1320992/fcimb-13-1320992-g002.jpg
Levels
class
family
family
family
genus
genus
genus
genus
genus
order

phylum

Gut.microbiota

Deltaproteobacteria

Christensenellaceae

Desulfovibrionaceae

FamilyXIll

Eubacteriumruminantiumgroup

Howardella

LachnospiraceaeNK4A136group

Methanobrevibacter

Veillonella

Desulfovibrionales

Euryarchaeota

nsnp pval

14 —e—i 0.0278630709
12 i 0.0159899517
12 -—o—c: 0.0260289210
12 F—e—  0.0432811480
19 -o-: 0.0135961508
10 : == 0.0007489986
16 =0 | 0.0029939334
8 -o-c: 0.0180484392
9 Il—o—c 0.0452347907
13 —o—i 0.0267755049
13 rom| 0.0035697186

05 1 1's

< >
protective factor risk factor

OR(95%Cl)

0.87(0.77 to 0.98)
0.88(0.79 to 0.98)
0.86(0.75 to 0.98)
1.15(1.00 to 1.32)
0.92(0.86 to 0.98)
1.13(1.05 to 1.22)
0.86(0.78 to 0.95)
0.89(0.80 to 0.98)
1.12(1.00 to 1.26)
0.86(0.76 to 0.98)
0.91(0.86 to 0.97)





OPS/images/fcimb.2023.1178714/fcimb-13-1178714-g003.jpg
>
@

3 3 @® Enriched
S § Pseudescherichia ® Depleted
o © Notsi
a 2] Ruthenibacteritim 29 g
3 Tisimenas 3 Ligilactobacillus
= $ % | Lactobacilus - Limosilactobacil
= B - = actobacillus - Limosilactobacillus
= Akkermansia Clostridium_ X\VAI 3
o1 o
S S
l T

0

-5 0 S -4 0 4
. log2 (fold Dchange) . log2 (fold change)
Akkermansia Ruthenibacterium Turicimonas Clostridium_XVIll
S
Q
£ 20 Group
= | Control
€10 :
2 [ DSS_Alive
3 0 B DSS_Dead
G

H |
Pseudescherichia Ligilactobacillus

*kk

Fk

— 30

o -

i b
— .

0

*kk

100

— 30

o

~
)]

20
10

N
[4)]

Relative abundance(%)
0
o

—_— 0

o






OPS/images/fcimb.2023.1178714/fcimb-13-1178714-g004.jpg
nodes=30 edges=52
®

Prevo’amassnlla ®

P ﬁ*\la

S o

N

Weighted degree

Control

! ’
(s

?‘4
o =9

Control

n.s.

DSS Alive DSS Dead

nodes=35 edges=40

e o
[ ] ®
(]
() ) ® °
®
Ne&c;a‘ o | ® (]
" Laws@hibacter@
® "o [ ]
° . o [ ] L
g ®
® °
L] 'Y °
DSS_Alive
Cc
n.s.
6
1]
%]
5
[S]
24
S
=}
8
s2
0

Control

DSS Alive DSS Dead

=]

Clustering coefficient

0.9

0.6

0.3

0.0

nodes=52 edges=85

DSS_Dead

Control DSS Alive DSS Dead





OPS/images/fcimb.2023.1157918/table4.jpg
Targeted therapies ism of action of Shared altered gut bacteria Mechanism of action of

DN e (SAGB) SAGB
Abatacept CTLA4-Ig fusion protein

SLE, MS, RA, Anakinra IL-1R antagonist

SS Tanalumab Anti-BAFF receptor mAb Streptococcus Autoantibody production
Rituximab Anti-CD20 mAb Streptococcus Autoantibody production
Klendiuzamab Anti-CD52 mAb
Atacicept BAFF and APRIL inhibitor Streptococcus Autoantibody production
Evobrutinib BTK (B cell development) Streptococcus Autoantibody production

S inhibitor

SLE, MS, RA Ocrelizumab Anti-CD20 mAb
Tabalumab . . .
Secukinumab Anti-BAFF mAb Streptococcus Autoantibody production
Fre— Anti-IL-17 mAb Streptococcus Autoantibody production

Anti-IL-12 and IL-23 mAb Eggerthella lenta, Prevotella spp. IL-17 production

Belimumab Anti-BAFF mAb Streptococcus Autoantibody production
Telitacicept BAFF and APRIL inhibitor Streptococcus Autoantibody production
Ftanercept TNFo. inhibitor

SLE, RA, SS Filgotinib JAK1 inhibitor
Iscalimab Anti-CD40 mAb Streptococcus Autoantibody production
Lanraplenib SYK-kinase inhibitor Streptococcus Autoantibody production
Omalizumab Anti-IgE mAb

A, 8 Baminercept LT beta receptor-Ig fusion

protein

mAb, monoclonal antibody; LT, Lymphotoxin.
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Diseases (Ref count/

Altered gut bacteria
count)

Enrichment

Depletion

Alistipes

Bacilli

Bacteroides (fragilis,
ovatus, uniformis,
vulgatus)

Clostridium (innocuum,
leptum)

Eggerthella (lenta)
Enterobacteriaceae
Escherichia (coli, shigella)
Klebsiella

(Guo et al., 2020; Chen et al.,
2021)

(Bellocchi et al., 2019; Li et al.,
2019)

(van der Meulen et al., 2019; Guo
et al,, 2020; Chen et al., 2021;
Zhang et al., 2021)

(Chen et al.,, 2021; Wen et al.,
2021)

(He et al,, 2016; Chen et al., 2021)
(Bellocchi et al., 2019; Wen et al.,

Bacteroides (cellulosilyticus,

eggerthii, intestinalis, plebeius,

salyersiae, uniformis)
Dialister

Faecalibacterium (prausnitzii)

Lachnospiraceae
Odoribacter

Roseburia
Ruminococcaceae
Ruminococcus (2, callidus,
lactaris, obeum)

(Azzouz et al., 2019; Chen et al,,
2021)

(He et al., 2016; Wen et al., 2021)
(Li et al., 2019; Chen et al., 2021;
Wen et al., 2021; Zhang et al,,
2021)

(Greiling et al., 2018; Chen et al.,
20215 Wen et al,, 2021; Zhang
etal,, 2021)

(Luo et al., 2018; Wen et al., 2021)
(Li et al, 2019 Chen et al., 2021)

Lactobacillaceae 2021) *Firmicutes/Bacteroidetes ratio (Greiling et al., 2018; Azzouz
Lactobacillus (mucosae, (He et al,, 2020; Chen et al., 2021; et al,, 2019; Wen et al,, 2021;
SLE salivarius) Wen et al,, 2021) Zhang et al., 2021)
(1322) Prevotella (He et al,, 2016; Wen et al., 2021; (Chen et al., 2021; Wen et al.,
Ruminococcus (gnavus, Zhang et al., 2021) 2021)
torques) (Bellocchi et al., 2019; Li et al., (Hevia et al, 2014; Greiling et al.,
Streptococcaceae 2019) 2018; van der Meulen et al., 2019)
Streptococcus (anginosus, (Bellocchi et al., 2019; Li et al.,
mutans, oligofermentans, 2019; Chen et al,, 2021)
parasanguinis) (He et al,, 2016; Guo et al., 2020)
(Azzouz et al,, 2019; Chen et al.,
2021; Wen et al,, 2021; Zhang
et al,, 2021)
(Li et al, 2019; Wen et al,, 2021;
Zhang et al., 2021)
(Bellocchi et al., 2019; Li et al.,
2019; Chen et al., 2021; Wen et al,,
2021)
Actinomyces (Cekanaviciute et al., 2017; Forbes | Bacteroides (coprocola, (Miyake et al., 2015; Tremlett
Akkermansia et al, 2018) coprophilus, stercoris) et al., 2016)
(muciniphila) (Jangi et al., 2016; Cekanaviciute Butyricimonas (Jangi et al,, 2016; Duscha et al.,
Clostridium (111, leptum) et al,, 2017; Takewaki et al., 2020) Clostridium (sp) 2020)
Eggerthella (lenta) (Forbes et al., 2018; Takewaki Eubacterium rectale (Miyake et al., 2015;
Streptococcus (anginosus, et al,, 2020) Faecalibacterium Cekanaviciute et al., 2017;
parasanguinis, salivarius/ (Miyake et al., 2015; Forbes et al., Lachnospira (pectinoschiza) Takewaki et al., 2020)
thermophilus) 2018) Lactobacillus (rogosae) (Miyake et al., 2015; Takewaki
Megamonas funiformis et al., 2020)
Parabacteroides (Miyake et al., 2015; Forbes et al.,
Prevotella (9, copri) 2018)
MS Sutterella (wadsworthensis) (Miyake et al., 2015; Tremlett
(9/16) et al., 2016; Forbes et al., 2018)
(Miyake et al., 2015; Chen et al.,
2016a)
(Miyake et al., 2015; Takewaki
et al., 2020)
(Chen et al., 2016a; Cekanaviciute
etal, 2017)
(Miyake et al., 2015; Jangi et al.,
2016; Cekanaviciute et al., 2017;
Zeng et al., 2019)
(Miyake et al., 2015; Jangi et al.,
2016)
Bacteroides (sartorii) (Rodrigues et al,, 2019; Sun et al., Ruminococcaceae (Forbes et al., 2018; Sun et al.,
Eggerthella 2019; Kishikawa et al., 2020) 2019)
Prevotella (amnii, copri, (Chen et al., 2016b; Forbes et al.,
RA corporis, denticola, disiens, 2018)
15) marshii) (Scher et al., 2013; Maeda et al.,
Streptococcus, 2016; Rodrigues et al., 2019;
Streptococcaceae Kishikawa et al., 2020)
(Chen et al., 2016b; Forbes et al.,
2018)
Prevotella (Cano-Ortiz et al., 2020; Mendez Bifidobacterium (Mandl et al., 2017; Cano-Ortiz
Streptococcus et al,, 2020) Blautia et al., 2020; Moon et al., 2020a)
Veillonella (Bellocchi et al., 2019; Cano-Ortiz Dorea (Cano-Ortiz et al., 2020; Moon
et al,, 2020) Faecalibacterium et al,, 2020a)
(Cano-Ortiz et al., 2020; Moon Lachnospira (Cano-Ortiz et al., 2020; Moon
ss et al., 2020a) *Firmicutes/Bacteroidetes ratio et al,, 2020a)
/%) (Cano-Ortiz et al., 2020; Mendez

et al,, 2020)

(Bellocchi et al., 2019; Cano-Ortiz
et al,, 2020)

(van der Meulen et al., 2019;
Cano-Ortiz et al., 2020; Moon

et al,, 2020a)

The microbiome data presented for each discase are based on the statistical significance of each paper (p < 0.05, q < 0.1, or FDR < 0.1). Parentheses indicate species, but species do not classify all
genera. Also, some species are not classified for abundance at the genus level. The microbiome analysis in each paper was performed using human fecal samples. *: No count.
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16S (n = 144) Metagenome (n = 47)

Control HRA Control HRA
Men (%) 36 (25) 41 (28.5) 10 (6.9) 15 (31.9) 12 (25.5) 2(4.3)
Women (%) 17 (11.8) 22 (15.3) 18 (12.5) 7 (14.9) 6 (12.7) 5 (10.6)
Telemark (%) 39 (27) 37 (25.7) 13 (9) 16 (34) 11 (23.4) 5(10.6)
Oslo (%) 14 (9.7) 26 (18) 15 (10.5) 6 (12.8) 7 (14.9) 2(43)
Age at sampling, median
(range) 57 (51-64) 57 (51-64) 60.5 (51-65) 57 (54-64) 58 (53-64) 61 (55-65)
Age at diagnosis, median
(range) - - 65.7 (54-77) - - 65.8 (61.1-74.3)
Time to diagnosis, median
(range) - - 7.4 (0-16) - - 4.8 (0-14)
Quality trimmed reads, 61,184 (10,261~ 48,014 (5,163- 48,314 (23,701- 7,356,487 (757,832 5,146,988 (998,978- 7,248,142 (1,757,061~
median (range) 416,286) 493,315) 510,589) 16,480,674) 20,095,193) 15,370,089)
Excluded 0 2 0 0 1 0

“One individual was excluded from 16 diversity analyses due to the rarefaction criterion of at least 9,000 reads.
*One individual was excluded from all the analyses (in both the 16S and metagenome datasets) because of an Escherichia coli infection.
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ASV taxonomy, n = 143

Control vs. CRC 41.37 1116 0.0072 Phascolarctobacterium uncultured bacterium
Control vs. CRC 61,410.72 0.63 0.0366 Firmicutes

Control vs. HRA 33.60 -4.10 0.0464 Azospirillum sp. 47_25

Control vs. HRA 303.86 -3.47 0.0498 Escherichia-Shigella

Control vs. HRA 662.44 -1.83 0.0028 Proteobacteria

Control vs. HRA 61,410.72 044 0.0374 Firmicutes

Control vs. HRA and
CRC 61,410.72 0.50 0.0131 Firmicutes

ASV pathways, n = 143

Control vs. HRA 181.995 -1.125 1.80E-05 CENTFERM-PWY: pyruvate fermentation to butanoate
Control vs. HRA 135426 -1.240 0.0002 FAO-PWY: fatty acid B-oxidation 1
Control vs. HRA 48.787 -1.325 0.0397 GALACTARDEG-PWY: D-galactarate degradation I

GLUCARGALACTSUPER-PWY: superpathway of D-glucarate and D-galactarate

Control vs. HRA 48.787 -1.325 0.0397 degradation
GLYCOL-GLYOXDEG-PWY: superpathway of glycol metabolism and
Control vs. HRA 45.812 -2.299 0.0165 degradation
Control vs. HRA 60.372 -2.383 0.0155 GLYOXYLATE-BYPASS: glyoxylate cycle
Control vs. HRA 179.086 -0.713 0.0318 HEMESYN2-PWY: heme biosynthesis II (anaerobic)
Control vs. HRA 94.118 -0.814 0.0155 PWY-5177: glutaryl-CoA degradation
Control vs. HRA 25.662 -2.439 0.0333 PWY-5747: 2-methylcitrate cycle I
Control vs. HRA 58.730 -2.176 0.0029 PWY-5855: ubiquinol-7 biosynthesis (prokaryotic)
Control vs. HRA 58.730 -2.176 0.0029 PWY-5856: ubiquinol-9 biosynthesis (prokaryotic)
Control vs. HRA 58.730 -2.176 0.0029 PWY-5857: ubiquinol-10 biosynthesis (prokaryotic)
Control vs. HRA 29.454 -1.915 0.0397 PWY-5920: superpathway of heme biosynthesis from glycine
Control vs. HRA 230.973 -1.105 1.80E-05 PWY-6590: superpathway of Clostridium acetobutylicum acidogenic fermentation
Control vs. HRA 58.730 -2.176 0.0029 PWY-6708: ubiquinol-8 biosynthesis (prokaryotic)
Control vs. HRA 60.697 -1.262 0.0165 PWY0-1415: superpathway of heme biosynthesis from uroporphyrinogen-III
Control vs. HRA 132.568 -1.063 0.0317 PWY0-1533: methylphosphonate degradation 1
Control vs. HRA 25.410 -2.461 0.0397 PWY0-42: 2-methylcitrate cycle I
Control vs. HRA 468.521 -0.711 0.0155 REDCITCYC: TCA cycle VIII (Helicobacter)
Control vs. HRA 56.227 -2.187 0.0029 UBISYN-PWY: superpathway of ubiquinol-8 biosynthesis (prokaryotic)

Control vs. HRA and
CRC 181.995 -0.965 0.0002 CENTFERM-PWY: pyruvate fermentation to butanoate

Control vs. HRA and
CRC 230.973 -0.949 0.0002 PWY-6590: superpathway of Clostridium acetobutylicum acidogenic fermentation

Metagenome taxonomy, n = 46

Control vs. CRC 3,436.272 -30 1.07E-09 Bacteroides finegoldii

Control vs. CRC 1,543.539 11.06101 3.12E-02 Lactobacillus rogosae

Control vs. CRC 3,173.952 -12.5276 4.94E-02 Monaglobus pectinilyticus
Control vs. CRC 80,657.51 6.196732 221E-03 Coprococcus eutactus
Control vs. CRC 4,742.03 -16.8273 2.57E-03 Roseburia sp. CAG:303
Control vs. CRC 1,160.284 13.24881 3.12E-02 Firmicutes bacterium CAG:95
Control vs. CRC 3,457.533 189179 4.59E-04 Acidaminococcus intestine
Control vs. CRC 19,999.34 20.45545 2.88E-05 Phascolarctobacterium succinatutens
Control vs. CRC 2,400.172 =30 1.35E-11 Veillonella parvula

Control vs. CRC 3,264.922 19.253 0.0001 Acidaminococcus

Control vs. HRA 511.8308 15.320 0.0002 Clostridium saccharolyticum
Control vs. HRA 1,584.142 =30.000 7.13E-19 Parasutterella

Control vs. HRA and
CRC 511.8308 1221184 0.0031 Clostridium saccharolyticum

Metagenome pathways, n = 46

Control vs. CRC 13.053 -24.231 5.64E-06 ENTBACSYN-PWY: enterobactin biosynthesis

Control vs. CRC 20312 -22480 2.46E-08 PWY-6285: superpathway of fatty acid biosynthesis (E. coli)
Control vs. CRC 5721 -20.822 6.05E-06 PWY-6992: 1.5-anhydrofructose degradation

Control vs. CRC 3.859 -24.204 6.05E-06 THREOCAT-PWY: superpathway of L-threonine metabolism

ASV taxonomy: time to CRC diagnosis, n = 28

Time 18.42315 1.251612 0.0008 Bifidobacterium
Time 19.47221 —-1.20951 0.0006 Lachnospiraceae
Time 11.94936 -1.47904 0.0001 Lachnospiraceae
Time 7.238016 -1.32495 0.0006 Lachnospiraceae
Time 13.97661 1.171725 0.0023 Lachnospiraceae

Log2FoldChange indicates the magnitude and direction of difference in abundance. Analyses were adjusted for sex and screening center. p-values were adjusted using FDR.
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