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Editorial on the Research Topic

Computational modeling and machine learning methods in
neurodevelopment and neurodegeneration: from basic research
to clinical applications

Computational models and machine-learning methods are increasingly valuable for

understanding how neural networks in the brain process information, and how this

information influences decision-making and behavior. Abnormalities in these networks

are linked to various brain disorders. Advances in brain simulation, machine learning,

and neuroimaging have helped bridge different brain scales and uncover the processes

underlying cognitive, motor and behavioral impairment in neurodevelopmental and

neurodegenerative disorders.

The effective application of computational approaches still faces several challenges,

including: the multiple spatial scales involved; the issue of interpretability of machine

learning models, hampering transferability to clinical practice; and the lack of robust

validation of non-invasive biomarkers of neural disorders. These challenges motivated us

to edit the Research Topic “Computational Modeling and Machine Learning Methods in

Neurodevelopment and Neurodegeneration: from Basic Research to Clinical Applications”,

culminating with the acceptance of 10 insightful papers that explore the subject from

diverse perspectives using various innovative tools.

The contributions covered a variety of themes, including disease diagnosis

(Ruppert-Junk et al., Turrisi et al., Fernández-Ruiz et al.), disease subtype or stage

classification (Chen et al., Zheng et al.), predictors of disease progression (Zhang et al.),

brain network simulation (Monteverdi et al., Moore et al.), lesion segmentation (Zaman

et al.), and clustering methods in medicine (Poulakis and Westman). Deep learning was
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widely present, and was explored from different perspectives, from

the proposal of novel model architectures (Zaman et al.) to an

analysis of validation and reproducibility issues (Turrisi et al.).

Although most papers focused on MRI data, other neuroimaging

modalities such as EEG (Zheng et al.) and speech (Fernández-Ruiz

et al.) were explored as well.

Computer-aided diagnosis, as well as disease subtype or stage

classification, are among the most frequently addressed tasks in

machine learning studies in healthcare (Chan et al., 2020). In

the present Research Topic, the study by Ruppert-Junk et al.

investigated the use of [18F]-FDG PET imaging to diagnose

Parkinson’s disease (PD) by focusing on midbrain metabolism,

particularly in the substantia nigra. A machine learning model

using random forest classification achieved high sensitivity and

accuracy in distinguishing PD patients from healthy controls.

Fernández-Ruiz et al. introduced a non-invasive method for

identifying Smith–Magenis syndrome using machine learning

techniques, focusing on cepstral peak prominence (CPP) from

voice samples. The study significantly contributes to the theme of

using computational methods for neurodevelopmental conditions

by offering a potential clinical application for early diagnosis? Chen

et al. explored the use of graph-based convolutional networks

(GCNs) to classify multiple sclerosis (MS) clinical forms based

on brain morphological connectivity from T1-weighted MRI

data. The authors show how the approach outperforms state-

of-the-art 3D Convolutional Neural Networks (CNNs) methods,

offering insights into how computational models can help

differentiate between MS subtypes.? Zheng et al. proposed a

novel framework for epilepsy diagnosis using a complexity-

based Graph Convolutional Neural Network (GCNN) to analyze

multi-channel EEG signals across normal, acute, and chronic

stages. By incorporating five complexity measures, their model

achieved high accuracy in distinguishing between these phases,

thus highlighting its potential in detecting chronic epilepsy

for more effective intervention. Zhang et al. studied gray and

white matter alterations in children affected by sensorineural

hearing loss (SNHL) based on their auditory brainstem response.

They identified independent predictive factors to study SNHL

progression in children, highlighting the value of quantitative T1

assessments in specific regions of interest and tracking white matter

and myelin volume and fraction parameters.

Automatic medical image segmentation tools are highly

required by the medical community, and several deep learning

techniques have been successfully applied in this field in recent

years (Ramesh et al., 2021). Zaman et al. presented the Adaptive

Feature Medical Segmentation Network (AFMS-Net) for 3D

brain lesion segmentation. The network uses novel encoder-

decoder structures for high-performance, computationally efficient

segmentation, significantly advancing clinical imaging applications

in scenarios requiring quick and efficient identification of key

lesion areas.

Computational simulations of brain network alterations linked

to neurological diseases can be a powerful and cost-effective

tool to indicate new directions in clinical research (D’Angelo

and Jirsa, 2022). Monteverdi et al. employed multiscale brain

modeling using The Virtual Brain (TVB) with MRI data to

simulate brain networks in patients with Alzheimer’s disease (AD)

and frontotemporal dementia (FTD). Their simulations revealed

distinct disease-specific alterations in connectivity and synaptic

transmission for each condition, which correlated with individual

clinical profiles. These insights enhance our understanding of

dementia mechanisms and may guide the development of

personalized therapeutic strategies. Moore et al. proposed a novel

deep learning approach to model neurodegeneration in the visual

cortex through progressive lesioning of a convolutional neural

network, also including a mechanism to simulate neuroplasticity

by allowing the model to adapt to new information even after

sustaining simulated damage. The authors show that incorporating

neuroplasticity resulted in a smoother and slower decline

in model performance, aligning with observed disease-related

cognitive decline patterns. Overall, findings suggest that integrating

neuroplasticity into deep learning models could enhance disease

understanding and support testing rehabilitation approaches.

Finally, the issue of validation and reproducibility of

computational techniques is raising growing interest (McDermott

et al., 2021). Poulakis and Westman contributed with a letter

elaborating on the applications and challenges of clustering for

studying heterogeneity in psychiatric and neurological disorders.

They emphasized the importance of careful methodological

selection, validation, and expert involvement to address the

limitations and improve the interpretation of clustering results

in high-dimensional datasets. Turrisi et al. highlighted the

importance of adhering to shared guidelines to ensure the

reliability, robustness, and reproducibility of ML in healthcare.

Using the challenging problem of Alzheimer’s disease detection

from MRI scans as a case study, the authors demonstrated

best practices in data handling, model design, and assessment,

while also revealing the susceptibility of prediction accuracy to

modeling choices.

We believe that this Research Topic will provide readers

with a stimulating overview of current themes in computational

modeling and machine learning as applied to neurodevelopment

and neurodegeneration. The contributions emphasize both the

potential and the challenges of these approaches, offering insights

that can inspire future research and ultimately support clinical

advancements in diagnosing and treating brain disorders.
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Introduction: Neural circuit alterations lay at the core of brain physiopathology,

and yet are hard to unveil in living subjects. The Virtual Brain (TVB) modeling,

by exploiting structural and functional magnetic resonance imaging (MRI), yields

mesoscopic parameters of connectivity and synaptic transmission.

Methods: We used TVB to simulate brain networks, which are key for human brain

function, in Alzheimer’s disease (AD) and frontotemporal dementia (FTD) patients,

whose connectivity and synaptic parameters remain largely unknown; we then

compared them to healthy controls, to reveal novel in vivo pathological hallmarks.

Results: The pattern of simulated parameter differed between AD and FTD,

shedding light on disease-specific alterations in brain networks. Individual

subjects displayed subtle differences in network parameter patterns that

significantly correlated with their individual neuropsychological, clinical, and

pharmacological profiles.

Discussion: These TVB simulations, by informing about a new personalized set

of networks parameters, open new perspectives for understanding dementias

mechanisms and design personalized therapeutic approaches.

KEYWORDS

virtual brain modeling, brain dynamics, excitatory/inhibitory balance, Alzheimer’s
disease, frontotemporal dementia, resting-state networks
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Background

The advent of advanced in human in vivo recordings of
brain signals from, e.g., magnetic resonance imaging (MRI),
has led to the identification of brain networks that subtend
specific functions (Smitha et al., 2017). The structural, metabolic
and/or functional alteration of such networks eventually leads
to the clinical manifestation of neurological diseases. In parallel,
mathematical modeling of cellular and microcircuit functions are
emerging, providing tools to link the micro- to the meso- and the
macro-scale properties of brain signals (D’Angelo and Jirsa, 2022).

Neurodegenerative dementias include several
neuropathological forms, primarily Alzheimer’s disease (AD)
and frontotemporal dementia (FTD). AD is associated with the
accumulation of amyloid-β plaques and neurofibrillary tangles,
which are widely recognized as typical biomarkers confirming the
disease diagnosis. Most AD cases present the typical amnesic form,
which reflects the accumulation of protein aggregates in medial
temporal lobe structures and evolves in multidomain dementia.
Dysfunctions outside the mesial temporal regions characterize
atypical AD variants, which present predominant visual, language,
executive, behavioral, or motor dysfunction (Graff-Radford et al.,
2021). FTD is a heterogeneous neurodegenerative disorder,
clinically characterized by behavioral abnormalities, language
deficit and motor symptoms. Focal frontal and temporal atrophy
are the main macroscopic evidence of FTD pathological changes
and distinct atrophy patterns can be associated with different
variants (Leyton and Hodges, 2010). Post-mortem histology and
in vivo functional MRI (fMRI) studies have suggested a differential
engagement of various brain networks in these diseases. However,
a comprehensive assessment of functional connectivity (FC)
changes in multiple networks in vivo to compare dementias
subtypes has been rarely performed (Castellazzi et al., 2014), in
favor of investigating specific networks, in particular the default
mode network (DMN) specifically in AD (Hohenfeld et al.,
2018). Increasing evidence underlines the need to expand the
investigation beyond the DMN, considering that widespread
increases and decreases in structural, functional and metabolic
connectivity have been observed in different brain areas of AD
patients (Arnemann et al., 2018; Stefanovski et al., 2021). Moreover,
the development of in vivo imaging biomarkers of brain function
becomes necessary to achieve efficient tailored diagnosis and
personalized treatment, especially in less frequent and more
heterogeneous conditions, such as atypical forms of AD or FTD
variants (Graff-Radford et al., 2021).

Advanced recording techniques, such as MRI and/or high-
density electroencephalography (hd-EEG), are mostly used to
study structural and functional brain networks properties and
their changes in pathological conditions, but they provide little
information about cellular properties such as spatio-temporal
dynamics of cellular communication, neuronal firing integrity or
synaptic transmission. Proton magnetic resonance spectroscopy

Abbreviations: expFC, experimental functional connectivity; expFCD,
experimental dynamic functional connectivity; FC, functional connectivity;
PCC, Pearson correlation coefficient; SC, structural connectivity; simFC,
simulated functional connectivity; simFCD, simulated dynamic functional
connectivity; TVB, The Virtual Brain; AD, Alzheimer’s disease; FTD,
frontotemporal dementia.

(MRS) provides a non-invasive technique to investigate the
biochemical properties of the brain and detect metabolic alterations
in dementia; aside the fact that acquiring MRS data would prolong
the scan time for patients, who are already difficult to image,
there is the consideration that most of the studies report extremely
heterogeneous results, making clinical application of MRS in AD
still limited (Maul et al., 2020). On the other hand, recent studies
have addressed FC in FDG-PET data, highlighting the presence of
specific metabolic patterns in neurodegenerative dementias, which
requires individual subjects’ analyses pipelines as appropriate for
clinical settings (Titov et al., 2017).

Therefore, very little is known about the cellular and synaptic
changes typical of different diseases, and even more so about
whether changes that have cascaded from cells to networks are
specific to individual patients.

Recent advances in multiscale brain modeling offer promising
tools to study the whole brain temporal dynamics, integrating
macroscopic information from structural and functional MRI
with mathematical mesoscale representations of the underlying
ensemble properties of cells and microcircuits. In particular, The
Virtual Brain (TVB) modeling workflow allows the non-invasive
investigation of brain features, such as network connectivity
strength and excitatory/inhibitory (E/I) balance (Stefanovski et al.,
2021; D’Angelo and Jirsa, 2022), which are relevant to brain
disease and can be determined for each patient. The E/I balance,
in turn, can be extracted at whole brain level or for specific
brain networks from parameters measuring excitatory coupling,
inhibitory coupling, and recurrent excitation inside network nodes
(Deco et al., 2014). Importantly, all neurological conditions
involve changes at multiple scales and can gain from the use of
TVB for understanding the impact of cellular and microcircuit
properties alterations on brain function. The promise for clinical
use of TVB has been already suggested in epilepsy surgery
(Jirsa et al., 2017), stroke (Falcon et al., 2016), brain tumors
(Aerts et al., 2018), Multiple Sclerosis (Marti-Juan et al., 2022),
and neurodegenerative conditions like dementia (Zimmermann
et al., 2018; Stefanovski et al., 2019; Monteverdi et al., 2022;
Triebkorn et al., 2022). Interestingly, the central position of an E/I
imbalance in the cascade of pathophysiological events in AD is
increasingly recognized (Maestú et al., 2021). However, very little
is known on how such network neurophysiology acts in concert
with structural and FC alterations to determine cognitive decline.
Retrieving E/I information, even if summarized in mesoscale
network parameters, is extremely important, as it will provide
new insights in neurodegenerative mechanisms of disease that will
eventually impact on finding effective treatments.

In this work, we applied TVB to enable the non-invasive
investigation of connectivity strength and E/I balance in a
heterogeneous cohort of dementia patients, including typical and
atypical AD and FTD variants. We explored the relationship
between neurophysiological parameters provided by TVB in
multiple brain networks and neuropsychological scores recorded
during patient examinations. TVB parameters differentiated
AD from FTD and proved to be sensitive to profiles of
cognitive performance and ongoing pharmacological treatment.
In aggregate, this study shows how TVB analysis can be used to
provide personalized fingerprints of dementia patients, opening
new perspectives for differential diagnosis and for tailoring
pharmacological and interventional workflows.
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Materials and methods

Subjects

Twenty-three patients affected by neurodegenerative diseases
were recruited at the IRCCS Mondino Foundation. The study
was approved by the Local Ethical Committee and carried
out in accordance with the Declaration of Helsinki. Written
informed consent was obtained from all subjects. The protocol
was approved by the Local Ethical Committee of the IRCCS
Mondino Foundation. Patients underwent a complete diagnostic
workup including clinical and neuropsychological assessment (see
section below) MRI, and, when available, cerebrospinal fluid (CSF)
biomarkers (amyloid-β and τ protein) assessment following the
harmonized protocol of the RIN network [Italian Network of
the Institutes (IRCCS) of Neuroscience and Neurorehabilitation]
(Nigri et al., 2022). Subjects were classified into two main
groups: 16 AD patients (13 females, 70 ± 8 years) and 7 FTD
patients (1 female, 69 ± 5 years), further classified into distinct
phenotypes. In particular, AD patients were additionally classified
into: typical AD (10 subjects; Dubois et al., 2014); AD logopenic
variant (2 subjects; Dubois et al., 2014); AD frontal variant
(ADfv, 1 subject; Dubois et al., 2014); AD posterior cortical
atrophy (ADpca, 1 subject; Dubois et al., 2014). One patient
was classified as having corticobasal syndrome (CBS, 1 subject;
Hassan et al., 2011), and one with dementia with Lewy bodies
(DLB, 1 subject; McKeith et al., 2017). On the other hand, FTD
patients were classified into: behavioral FTD (FTDbv, 5 subjects;
Rascovsky et al., 2011); Primary Progressive Aphasia non-fluent
variant (PPAnf, 1 subject; Gorno-Tempini et al., 2011), and
Primary Progressive Aphasia semantic variant (PPAsv, 1 subject;
Gorno-Tempini et al., 2011). Pharmacological therapy was also
recorded.

Ten healthy controls (HC, 6 females, 67 ± 3 years)
were enrolled on a voluntary basis as reference group. All
HC underwent clinical assessment to exclude any cognitive
impairment. For all subjects, exclusion criteria were: age >80 years,
a diagnosis of significant medical, neurological and psychiatric
disorder, pharmacologically treated delirium or hallucinations and
secondary causes of cognitive decline (e.g., vascular metabolic,
endocrine, toxic, and iatrogenic). Supplementary Table 1 shows
demographic, clinical, and neuropsychological data.

Neuropsychological assessment

All subjects underwent a neuropsychological examination
based on a standardized battery of tests to assess their global
cognitive status (Mini-Mental State Examination, MMSE) and
different cognitive domains: memory (verbal: Rey’s Auditory
Verbal Learning Test, RAVLT; visuo-spatial: Rey–Osterrieth
complex figure recall), phonemic and semantic fluency, visuo-
constructional abilities (Rey–Osterrieth complex figure copy),
attention (Trial Making Test part A, TMT-A) and executive
functions (Frontal Assessment Battery, FAB; Trial Making Test part
B and B-A; Stroop color-word test interference, time and errors;
Raven’s Colored Progressive Matrices, CPM47).

Raw scores were corrected for the effect of age, education, and
sex according to the reference norms for the Italian population.

Accordingly, corrected scores were classified into five Equivalent
Scores (ES), from 0 to 4, with an ES of 0 reflecting a pathological
performance, based on percentiles (Capitani and Laiacona, 1997).
Domain scores, calculated by averaging the ES of the single tests,
were obtained for memory, language-fluency, visuo-constructional
abilities, attention, and executive functions, respectively.

MRI acquisitions

All subjects underwent MRI examination using a 3T
Siemens Skyra scanner with a 32-channel head coil. The MRI
protocol was harmonized within the RIN network including
both diffusion weighted imaging (DWI) and resting-state
fMRI (rs-fMRI) (Nigri et al., 2022). For DWI data a two-shell
standard single-shot echo-planar imaging sequence (EPI) [voxel
size = 2.5 mm × 2.5 mm × 2.5 mm, TR/TE = 8,400/93 ms,
two shells with 30 isotropically distributed diffusion-weighted
directions, diffusion weightings of 1,000 and 2,000 s/mm2,
7 non-diffusion weighted b = 0 s/mm2 images (b0 images)
interleaved with diffusion-weighted volumes] was implemented,
and 3 non-diffusion weighted images with the reversed phase-
encoding acquisition were additionally acquired for distortion
correction. For the rs-fMRI data, GE-EPI sequence (voxel
size = 3 mm × 3 mm × 3 mm, TR/TE = 2,400/30 ms, 200
volumes) was set. For anatomical reference, the protocol included
a whole brain high-resolution 3D sagittal T1-weighted (3DT1)
scan (TR/TE = 2,300/2.96 ms, TI = 900 ms, flip angle = 9◦, voxel
size = 1 mm× 1 mm× 1 mm).

Preprocessing of DWI and fMRI data

Preprocessing of diffusion and fMRI data was performed
according to Monteverdi et al. (2022). Briefly, DWI data were
denoised, and corrected for motion and eddy currents distortions
(FMRIB Software Library and FSL)1 (Andersson and Sotiropoulos,
2016), then white matter, gray matter (GM), subcortical GM
and CSF were segmented from the co-registered 3DT1 volume
(MRtrix3)2 (Patenaude et al., 2011). 30 million streamlines
whole-brain anatomically constrained tractography (Smith
et al., 2012) was performed within MRtrix3, estimating fibers
orientation distribution with multi-shell multi-tissue constrained
spherical deconvolution (CSD) and using probabilistic streamline
tractography (Tournier et al., 2012). fMRI preprocessing was
carried out combining SPM123, FSL and MRtrix3 commands in
a custom MATLABR2019b script. Marchenko–Pastur principal
component analysis (MP-PCA) denoising (Ades-Aron et al.,
2020) was firstly performed, followed by slice-timing correction,
realignment, co-registration to the 3DT1 volume, polynomial
detrending, nuisance regression of 24 motion parameters (Friston
et al., 1996) and CSF temporal signal (Muschelli et al., 2014), and
temporal band-pass filtering (0.008–0.09 Hz).

1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

2 http://www.mrtrix.org

3 https://www.fil.ion.ucl.ac.uk/spm
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Structural and functional connectivity

An ad hoc anatomical atlas in MNI (Montreal Neurological
Institute) space was created combining 93 cerebral (AAL)
(including cortical/subcortical structures) and 33 cerebellar (SUIT)
labels (Diedrichsen et al., 2009). We then performed a mapping
between our ad hoc atlas and the Buckner and Yeo (Buckner
et al., 2011; Thomas Yeo et al., 2011) cerebral and cerebellar
functional atlases to select the gray matter anatomical nodes of
six networks known to support specific functions: (i) integrative
networks: DMN, frontoparietal network (FPN), limbic network
(LN), and attention network (AN); (ii) motor and sensory
networks: visual network (VN) and somatomotor network (SMN)
(Figure 1). For each subject, the gray matter parcellation of
our combined anatomical atlas was applied to the whole-brain
tractography to extract a whole-brain structural connectivity (SC)
matrix, with the normalized number of streamlines as edges and
cortical/subcortical/cerebellar areas as nodes. The subset of nodes
defining each network and their connections were extracted from
whole-brain SC obtaining specific network SC matrices, used as
input to TVB (as detailed below). In addition, both static and
dynamic experimental FC (expFC and expFCD, respectively) were
reconstructed from rs-fMRI data for each of the six brain networks,
to capture not only synchronous fluctuations of BOLD signals but
also their spatiotemporal-dynamics during resting-state (Hansen
et al., 2015). The expFC matrix was created by extracting the
time-course of BOLD signals for each node and computing the
Pearson’s correlation coefficient (PCC) of the time-course of pairs
of atlas-defined brain regions. Matrix elements were converted with
a Fisher’s z transformation and thresholded at 0.1206 (Palesi et al.,
2020). FCD is the dynamic representation of FC over the time
and reflects time-variant changes of resting state recordings. To
obtain expFCD, expFC was computed over a sliding window of
40 s (expFCsw), shifted incrementally by 1 repetition time, which
for our data it means to have 178 expFCsw (Battaglia et al., 2020).
Then, each expFCsw was vectorized by considering the upper
triangular entries and the vectorized expFCsw were correlated with
each other generating the expFCD. Thus, expFCD was calculated
as a time-versus-time matrix, containing the Pearson correlation
between each expFCsw and all expFCsw, centered at all other time
points along the total acquisition window, quantifying, therefore,
time-evolving dynamics.

Virtual brain modeling

The TVB workflow [reported in Monteverdi et al. (2022)
for the whole brain] was applied to each one of the six
selected brain networks (Figure 2). The Wong-Wang neural
mass model (Deco et al., 2014; Supplementary Figure 1),
implemented with an optimized C code (Schirner et al., 2022), was
chosen to simulate local microcircuits activity, resulting from two
populations of interconnected excitatory and inhibitory neurons
coupled through NMDA and GABA receptor types. In our TVB
simulations, this neural mass model was associated to each node
of the network, while the SC matrix was used for the nodes
interconnection. A set of parameters had to be tuned globally
for each network: the global coupling (G), which is a scaling

factor that represents the connections strength, and three synaptic
parameters, i.e., the excitatory (NMDA) synapses (JNMDA), the
inhibitory (GABA) synapses (Ji), and the recurrent excitation
(w+). The neural activity simulated with TVB was fed into the
Balloon-Windkessel hemodynamic model (Stephan et al., 2007)
to reconstruct resting-state BOLD fMRI time-courses over 8 min
length and compute simulated FC (simFC) and FCD (simFCD).
Parameters were adjusted iteratively using expFC and expFCD of
each network as targets to optimize model fitness and the validity
of the result was assessed by iterating the optimization using
different initial conditions (Supplementary Figure 2; Good et al.,
2022). For the simFC vs. expFC comparison, model parameters
were tuned until the PCC between experimental and simulated
data reached the highest value. For the simFCD vs. expFCD
comparison, differences between experimental and simulated FCD
were assessed using the Kolmogorov–Smirnov (KS) distance: lower
KS values corresponded to a lower distance of frame-by-frame FCD
properties, meaning that model and experimental matrices were
closest to each other. Thus, to achieve the optimal TVB simulation
it was necessary to find both the highest PCC and the lowest
KS values. To this aim, an overall cost function was defined as
(1 − PCC) + KS and lowest cost function values implied the best
fit both to static and dynamic functional data (Kong et al., 2021).

Statistical analysis

Statistical tests were performed using SPSS software version
21. Optimal TVB parameters derived for each subject and for
each network were tested for normality (Shapiro–Wilk) and
then two control tests were performed to assess: (i) whether
different networks presented a different E/I balance within the
same clinical group (i.e., evaluation of the inter-network E/I
balance); and (ii) whether inter-networks E/I balance changed in
healthy vs. pathological subjects. Two statistical tests were used:
(i) univariate general linear model followed by bias-corrected
accelerated Bootstrap (Pek et al., 2018) to correct for age and gender
differences in the groups and take into account non-Gaussian data
distributions; and (ii) multivariate general linear model between
the mean difference (i.e., the difference between the mean value) of
TVB parameters in each network compared to the other networks
in different clinical groups. Then, a multiple regression analysis
was performed to investigate the relationship between individual
scores of the 5 cognitive domains (memory, language-fluency,
visuo-constructional abilities, attention, and executive functions)
and the optimal TVB parameters. Neuropsychological scores in
each cognitive domain were considered as dependent variables
while model parameters derived for each network were used as
predictors in a backward approach. The regression algorithm
automatically removed one or more predictors to identify which of
them significantly (p < 0.05) explained neuropsychological scores
variance.

Meaningful TVB parameters were given as an input to
clustering analysis. To avoid overfitting in the study design, the
clustering algorithm first performed a feature selection reducing
the number of TVB parameters (i) through a semi-supervised
approach using LASSO regression model with TVB parameters
as independent variables and the diagnostic class as dependent

Frontiers in Aging Neuroscience 04 frontiersin.org11

https://doi.org/10.3389/fnagi.2023.1204134
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1204134 July 26, 2023 Time: 10:37 # 5

Monteverdi et al. 10.3389/fnagi.2023.1204134

FIGURE 1

Brain networks. The six networks considered for modeling brain dynamics with The Virtual Brain (TVB): default-mode (DMN), frontoparietal (FPN),
limbic (LN), attention (AN), visual (VN), and somatomotor (SMN) network. These networks were defined according to Buckner and Yeo atlases and
extracted from whole-brain structural connectivity matrices of each subject, choosing a subset of nodes and connections from the whole brain
parcellation. Nodes and edges considered for each network are differently colored.

variable; (ii) via PCC between the survived TVB parameters and the
diagnostic class; (iii) through Variant Inflation Factors to find out
just three meaningful but not correlated features. Then the number
of clusters was derived using Gap statistics and the K-means
algorithm was applied to label each subject into one cluster defining
a personalized fingerprint (Redolfi et al., 2020).

Code and data accessibility
All codes used for this study are open source. The optimized

TVB C code can be found at https://github.com/BrainModes/fast_
tvb. The dataset will be made available at 10.5281/zenodo.811392.

Results

E/I balance in brain networks

Model optimization was performed in each of the six
brain networks considered in this work. Global coupling (G)
and mesoscopic network parameters (Ji, JNMDA, and w+) were
adjusted iteratively to fit the experimental data. The reliability
of the procedure was assessed by an extensive exploration of
the parameter space and by iterating the optimization using
different initial conditions (Supplementary Figure 2; Good et al.,
2022). Model optimization yielded subject-specific sets of model
parameters describing connectivity and E/I balance in each

network. TVB parameters revealed differences between networks
of healthy and pathological subjects (Supplementary Figure 3 and
Supplementary Table 2) that will be further analyzed and explained
below.

Differences of E/I balance between
pathological groups

The mean difference of each network compared to the others
was computed in different clinical groups for all the TVB
parameters (i.e., G, Ji, JNMDA, and w+). Significant mean difference
changes were found both for the TVB parameters in several
networks (Figure 3) with network changes summarized in Figure 4.
In particular, both in AD and FTD, the connectivity strength (G)
decreased in LN and increased in DMN compared to HC; in FTD,
G of FPN was lower with respect to other networks. Considering
mesoscale synaptic parameters, both FTD and AD showed lower
excitatory coupling (JNMDA) in SMN compared to HC; in FTD,
JNMDA was lower in VN and higher in FPN; in AD, JNMDA in DMN
was higher with respect to other networks. Both in AD and FTD,
recurrent excitation (w+) increased in SMN compared to HC; in
FTD, w+ was lower in FPN; in AD w+ was lower in DMN with
respect to other networks. In FTD, inhibitory coupling (Ji) was
lower in FPN and higher in DMN; in AD, AN showed higher Ji
and LN lower Ji with respect to other networks.
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FIGURE 2

Analysis and modeling workflow. Schematic representation of MRI processing steps integrated in the modeling workflow. From top left, clockwise:
diffusion-weighted images after preprocessing and tractography, extraction of a network, structural connectivity (SC) matrix reconstruction for the
selected network, TVB simulation performed for the network, reconstruction of simulated static and dynamic (simFC and simFCD) functional
connectivity matrices of the same network, optimization of the simulation using model inversion with the experimental FC and FCD (expFC and
expFCD), derived from BOLD signals of nodes belonging to the network, as target. Optimal TVB simulation implies both the highest Pearson
correlation coefficient (PCC) for static functional data and the lowest Kolmogorov–Smirnov (KS) distance for dynamic functional data.

Clinical relevance of TVB parameters

To assess the significance of the observed mean difference
changes in TVB parameters, these were used in backward
regression to explain the variation of scores associated to different
neuropsychological domains assessed in patients. Network-specific
levels of global coupling, excitatory coupling, inhibitory coupling,
and recurrent excitation (predictors) significantly (p < 0.05)
explained a percentage of variance in the cognitive domains, in
which the network is involved (Table 1). The explained variance
ranged from∼20 to∼45%. Therefore, the mean difference changes
in TVB parameters were relevant to explain the neuropsychological
performance of patients.

Patients’ labeling according to network
properties

The TVB parameters that significantly explained the
neuropsychological performance were considered for patients’

labeling using machine learning strategies. From the nineteen
parameters identified with backward regression (Table 1) the
LASSO algorithm allowed to reduce them to six. Then, G of FPN
was excluded, presenting PCC <0.1, and after Variant Inflation
Factors three independent and not correlated variables were
considered as the most informative features to perform patient’s
labeling: Ji of AN, G of the LN and G of the DMN. Gap statistics
identified that seven homogeneous classes would be appropriate
and the K-means assigned each subject to one of the seven
clusters. Each of the identified clusters was characterized by a
specific composition of TVB network features (Figure 5A and
Supplementary Figure 4). Considering the biophysical meaning
of each parameter, they could be described as follows:

1. Cluster 0 and cluster 3 were mainly characterized by low
connectivity strength of LN, high connectivity strength of
DMN and hyperinhibition in AN;

2. Cluster 1 and cluster 4 were mainly characterized by high
connectivity strength of LN, low connectivity strength of
DMN and low inhibition in AN;
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FIGURE 3

Changes of inter-network relationship. Mean difference of TVB parameters in each given network (DMN, FPN, LN, AN, VN, and SMN) against the
others. Positive/negative values indicate a higher/lower TVB parameter mean in a network (on the x-axis) with respect to the TVB parameter mean in
the others (line at mean difference 0). Asterisks indicate significant differences (p < 0.05) between clinical groups (HC, FTD, and AD).

3. Cluster 5 and cluster 6 were mainly characterized by high
connectivity strength of LN, high connectivity strength of
DMN and low inhibition in AN;

4. Cluster 2 was mainly characterized by low connectivity of LN,
low connectivity strength of DMN and hyperinhibition in AN.

Clusters 0 and 3 were associated with the lowest mean
MMSE values (20.39 ± 5.21 and 18.57 ± 8.28, respectively)
while clusters 1 and 4 were associated with the highest mean
values (29.08 ± 1.14 and 29.33 ± 1.16, respectively) (Figure 5B
and Table 2). No HC was classified into clusters 0 or 3.
Moreover, different disease phenotypes were distributed amongst
the clusters (Figure 5B): typical AD subjects spread through
clusters supporting a heterogeneous distribution of connectivity
values in the LN and DMN networks and inhibition of the AN,
but no AD patient was found in cluster 1 and the single AD
patient belonging to cluster 4 presented a high MMSE score; on
the other hand, cluster 0 contained the DLB phenotype, cluster
1 both the non-amnesic variants of AD (ADlv and ADpca),
cluster 3 the logopenic variant and the CBS characterized by
low MMSE values and cluster 5 contained the frontal variant.
Considering the FTD group, FTDbv were heterogeneous and

distributed amongst different clusters, but no FTDbv were found
in cluster 3. On the other hand, cluster 0 contained PPAsv and
cluster 5 PPAnf. Finally, pharmacological assessment of subjects
belonging to different groups indicated that the majority of subjects
following an antidepressant or anxiolytic treatment belonged to
cluster 0 or 1 (Table 2). In particular, subjects belonging to cluster
0 were following an antidepressant therapy mainly with selective
serotonin reuptake inhibitors (SSRIs), with the exception of one
patient, treated with vortioxetine. Patients belonging to cluster 1,
instead, were taking antidepressant drugs different from SSRIs,
such as tricyclic antidepressants (e.g., amitriptyline) and serotonin-
norepinephrine reuptake inhibitors (e.g., duloxetine), apart from
one HC belonging to this group who was found to be on a SSRIs
treatment.

Discussion

In this work we have generated virtual brain models of
dementia patients and simulated neural dynamics of brain
networks. The main result is the emergence of specific patterns
of alteration in DMN, FPN, and LN, which allow to differentiate
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FIGURE 4

Pathological impact on inter-network relationships. Inter-network (DMN, FPN, LN, AN, VN, and SMN) relationship patterns related to
neurodegeneration are summarized in the tables. The increase (yellow) or decrease (blue) of network TVB parameters (G, global coupling; J_NMDA,
excitatory coupling; w+, recurrent synaptic excitation; Ji, inhibitory coupling) is indicated with colored arrows.

TABLE 1 Backward regressions results.

Networks Variable
(neuropsychology)

Predictors
(TVB-parameters)

Explained variance
(%)

Significance

Visual Memory J_NMDA 21.3 0.027

Language-fluency w+, Ji 30.1 0.028

Somatomotor Visuo-constructional Ji 21.3 0.030

Attention Memory w+, J_NMDA, Ji 33.4 0.047

Limbic Memory Ji 21.5 0.026

Attention w+, G, J_NMDA 42.0 0.030

Frontoparietal Visuo-constructional w+, G, J_NMDA, Ji 45.7 0.027

Executive function J_NMDA 21.3 0.027

DMN Language-fluency G, J_NMDA, Ji 39.1 0.022

The variance explained by the parameters used in backward regressions is calculated with theR2 index. Significant threshold is set at p< 0.05. For each cognitive domain a different combination
of features significantly explains a percentage of the variance (ANOVA).

AD from FTD. Inter-subject differences, matching the individual
neuropsychological profiles and pharmacological treatment,
suggest that this approach can generate personalized fingerprints
of the disease that could be used to set up future stratification and
interventional strategies.

Average model parameters in brain
networks of AD and FTD

In a first analysis, we compared AD and FTD for their
average network model parameters. Model parameters markedly
differentiated the mechanisms underlying brain networks

dynamics in AD and FTD, with the most typical changes being
concentrated in the DMN and LN of AD and in the FPN of FTD.

Integrative networks
Global coupling

In both pathologies, G increased in DMN and decreased in LN,
while it decreased in FPN in FTD only. It is worth noting that, in
these simulations, G represents the overall strength of connections
between nodes inside a specific brain network. Moreover, G derives
from dynamic TVB analysis and not from functional analysis on
fMRI data (Deco et al., 2012), providing new insights into brain
connectivity that do not necessarily compare to previously reported
connectivity alterations.
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FIGURE 5

Clustering analysis. (A) Visual representation of the seven clusters (in different colors) identified with K-means analysis using the most meaningful
TVB biophysical parameters as input variables. Cognitive network properties (Ji in AN, G in LN, and G in DMN) were considered as the most
informative features to perform patient labeling and each of the identified clusters was characterized by a combination of low and high TVB-derived
optimal parameters. Each dot represents a subject and lines connect subjects to their own cluster centroid. (B) Each subject was assigned to one of
the seven clusters (HC, healthy control; AD, typical Alzheimer’s disease; ADlv, AD logopenic variant; ADfv, AD frontal variant; ADpca, AD posterior
cortical atrophy; CBS, corticobasal syndrome; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; FTDbv, FTD behavioral; PPAnf,
primary progressive aphasia non-fluent variant; PPAsv, primary progressive aphasia semantic variant) identifying a personalized fingerprint based on
cognitive network properties. Each dot represents a subject and lines connect subjects to their own cluster centroid. The dot dimension
corresponds to the MMSE value.
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TABLE 2 Mini-mental state examination (mean, SDs) and ongoing pharmacological treatment.

Group Cluster MMSE Antidepressants Anxiolytics

PPA sv 0 20.35 (5.21) Vortioxetine + mirtazapine

FTD bv Fluoxetine

AD

DLB Citalopram + quetiapine Clonazepam

AD lv 1 29.08 (1.14) Duloxetine

FTD bv Vortioxetine

HC

HC

HC Fluvoxamine Lorazepam + lormetazepam + amisulpride

HC

ADpca Amitriptyline

AD 2 25.04 (2.84)

FTD bv

AD Venlafaxine

AD

AD lv 3 18.57 (8.28)

AD

AD cbs Alprazolam

AD 4 29.33 (1.16)

HC

HC

PPA nf 5 27.50 (3.43)

HC

HC

AD Bupropion + paroxetine

AD fv

FTD bv 6 24.40 (5.60)

AD

FTD bv

HC

HC

AD

AD

In late onset AD there is meta-analytic evidence for a
progressive decline of DMN FC, in particular in the posterior
component (precuneus, posterior cingulate cortex) (Jones et al.,
2016). Increased FC between the posterior DMN and high
connectivity hubs, mainly located in the frontal lobes, has been
reported in the prodromal stages (Jones et al., 2016). The present
observation of increased G in DMN reflects hyper synchronicity, a
state in which complexity is reduced along with mutual information
transfer among the nodes (Borst and Theunissen, 1999). This
concept, deriving from dynamic system theory, is clearly at odd
with the common belief that stronger connectivity might represent
compensation, leading to the conclusion that a phase-locked
hypersynchronous network can perform very limited computations

(Deco et al., 2012; Castellazzi et al., 2014). Consistent with
this hypothesis is the finding of diffused increase of spectral
power in the EEG delta band of AD patients (Babiloni et al.,
2015).

Decreased FC inside LN and from LN nodes to neighboring
regions has been associated with deterioration of memory and
emotional functions (Cai et al., 2017). In FTDbv, a functional
disconnection between frontal and limbic areas and an increased
FC between DMN regions have been proposed as the probable
correlates of apathy and stereotypic behavior (Zhou et al., 2010;
Reyes et al., 2018). The decreased G within LN and FPN may be
also very detrimental, leading to a reduction of computational states
(Deco et al., 2012; Zimmermann et al., 2018).
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Synaptic parameters

Another typical pattern differentiating AD from FTD emerged
from synaptic parameters. Akin with neuropathology, the major
AD changes were detected in DMN, while FTD changes mainly
occurred in FPN. DMN showed increased excitatory coupling
(JNMDA) and reduced recurrent excitation (w+) in AD, while it
showed increased inhibitory coupling (Ji) in FTD. FPN showed
no changes at all in AD but it showed a complex set of changes
in FTD, including increased JNMDA, reduced w+ and reduced Ji.
LN showed reduced Ji in AD. Therefore, the E/I balance, which
remarkably impacts on brain dynamics (Deco et al., 2014), was
altered in different brain networks, further differentiating AD and
FTD.

We can just speculate about the meaning of these changes
since information on synaptic parameters in AD and FTD
pathologies is sparse. The increased JNMDA in DMN may support
the hyperexcitability supposed to explain cognitive impairment
in AD (Palop and Mucke, 2016). Local hyperexcitability in the
DMN was observed in previous studies, despite a net decrease
in inhibitory and excitatory synaptic proteins (Lauterborn et al.,
2021; Tok et al., 2021). The reduced Ji of the LN may support the
limbic disinhibition reported in AD, which has been associated with
a loss of GABAergic receptors (Jiménez-Balado and Eich, 2021).
The reduced Ji of the FPN is consistent with the reduction of
GABA concentration reported in FTD, which has been associated
with behavioral disinhibition (Murley et al., 2021). Our simulations
also predict overinhibition in the DMN of FTD, which provides a
further differentiation with AD, where inhibition is not changed
while excitation is enhanced. DMN has recently been suggested to
take part in FTD pathophysiology (Pini et al., 2022). Therefore, the
patterns of synaptic changes captured by our study prompts for
further experimental and model analysis of synaptic alterations in
microcircuits of the AD and FTD brain.

Motor and sensory networks
Both in AD and FTD, the SMN showed reduced JNMDA

and increased w+. Although the impairment of GABAergic and
glutamatergic systems in the motor and sensory networks still
needs to be clarified, it should be noted that motor dysfunctions
are known to occur in both AD and FTD (Burrell et al., 2011;
Lorenzi et al., 2020). In AD, a reduced motor cortex excitability
has been reported in mild cognitive impairment (Ferreri et al.,
2021), suggesting that these parameters may change along the
evolution of the disease. In FTD, motor circuit abnormalities have
been suggested to depend on altered glutamatergic transmission
(Benussi et al., 2020). Interestingly, in FTD abnormalities of
oculomotor functions have been reported (Russell et al., 2021),
which might be linked not only to SMN impairment, but also to
a more extended involvement of VN, as supported by our results.

The relationship between network
neurophysiology and neuropsychology

Model parameters for individual subjects were correlated
with behavioral observations. Global coupling and synaptic
parameters of each network significantly contributed to explain
neuropsychological scores in specific cognitive domains: LN, AN,

and VN with memory; DMN and VN with language-fluency;
LN with attention; SMN and FPN with visuo-constructional
performance; FPN with executive functions. This evidence is in line
with several reports on the importance of motor regions in visuo-
constructional performance (Chen et al., 2016), the contribution
of AN and limbic areas in memory (Epelbaum et al., 2018),
the relevance of frontoparietal areas for executive and visuo-
constructional control (Melrose et al., 2013; Dixon et al., 2018),
the role of DMN integration for semantic fluency (Jockwitz et al.,
2017), and the involvement of visual structures in memory and
language-fluency (Kucewicz et al., 2019; Vonk et al., 2019).

Thus, the relationship between neurophysiological parameters
in brain networks and neuropsychological scores, which has not
been investigated before, provides new cues for understanding the
physiopathology of AD and FTD.

Toward personalized fingerprints of AD
and FTD patients

The most meaningful model biomarkers for patient’s labeling
were G in DMN, G in LN, Ji in AN, consistent with known
salient aspects of dementia affecting the ability of daydreaming
(DMN), emotional control (LN) and attention (AN). Subjects were
found to be distributed between seven different clusters revealing
correspondence with their cognitive status (assessed with MMSE)
and pharmacological treatment.

Patients with different MMSE scores tended to populate
different clusters (see Figure 5), broadly separating patients from
HC (MMSE >30), highlighting the importance of DMN, LN,
and AN connectivity strength and E/I balance to ensure healthy
cognitive function. Interestingly, high G between DMN nodes is
associated with a worse performance, being hence disruptive and
not compensatory. This analysis suggests that the heterogeneity of
subject-specific TVB parameters is able to identify AD “subtypes”
(Pini et al., 2021; Rauchmann et al., 2021) and FTD variants.
Indeed, subjects belonging to atypical forms of AD and FTD
variants were assigned to different clusters, capturing specific
aspects of these pathologies and mostly mapping clinical severity
assessed with MMSE. A finer grained analysis based on clinical
phenotypes is not currently possible, given the limited sample size.

Patients’ labeling based on TVB parameters correlated with
pharmacological treatment. Most subjects belonging to clusters
0 and 1 were on antidepressant or anxiolytic treatment (cf.
Table 2), which may influence the connectivity strength and the
E/I balance of cognitive networks. The effect of SSRIs on LN
and DMN FC is increasingly recognized (Van Wingen et al.,
2014; Li et al., 2021), while the effect of antidepressant treatment
with molecules different from SSRIs, such as vortioxetine, tricyclic
molecules or SNRIs (Pérez et al., 2018), as well as the influence
of antidepressants on GABA and glutamate levels needs further
assessment (Spurny et al., 2021). Considering that patients treated
with SSRIs belong to cluster 0 while patients treated with
other antidepressant classes belong to cluster 1, our results
pose a very intriguing question: is there an opposite impact
on cognitive networks exerted by antidepressants with different
mechanisms of action or does the cognitive networks profile
determine pharmacological treatment response? Future work
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should study TVB parameters longitudinally pre-post treatment
to answer this important question with major potential clinical
impact.

It should be noted that, in our cohort, patients were not treated
with NMDA receptor antagonists (like memantine) (Robinson and
Keating, 2006) or acetylcholinesterase inhibitors (like galantamine,
rivastigmine, and donepezil) (Marucci et al., 2021), which are also
known to act on AD pathophysiology. NMDA receptors are main
triggers of synaptic plasticity, also affected by excitotoxicity and
cholinergic receptors that, in turns, act on learning (Waxman
and Lynch, 2005; Hasselmo, 2006). Since in the Wong–Wang
neural mass model JNMDA is mostly related to slow synaptic
mechanisms driven by NMDA receptors (Deco et al., 2014)
and receptor density can be remapped onto TVB through
parameterization (Deco et al., 2021), an assessment of these
receptor-dependent properties could be an important development
in future studies.

Study considerations

The small sample size can be seen as a potential limitation in
the present study. However, the main aim of this investigation was
to assess the ability of TVB to provide a personalized fingerprint
of patients, potentially beyond known diagnosis. TVB modeling
provides a set of physiological features at single subject level,
otherwise not available from standard signal/image acquisition
and analysis. Thus, the small sample size does not impact on
the TVB ability of uncovering subject-specific features of FC,
and E/I profile. The high correlation of TVB parameters with
both cognitive performance and pharmacological treatment reveals
indeed its exquisite sensitivity to single-subject profiles and opens
a broad range of prospective for clinical applications. On the
other hand, the application of TVB to a larger cohort of patients
bears the potential of improving disease classification of disease
subtypes, critical for treatment stratification and for establishing
intervention workflows.

Conclusion

The present study demonstrates that brain networks can be
characterized in terms of a meaningful set of mesoscale parameters
at the single-subject level in humans in vivo. The identification
of network abnormalities in patients may be used to design
neuromodulation, neuropharmacological, and neuropsychological
paradigms capable of regulating circuit function and plasticity (Lin
and Wang, 2018), while the high correlation of TVB parameters
with both cognitive performance and pharmacological treatment
reveals an exquisite sensitivity to single-subject features. As a
corollary, it should be remembered that the small sample size
does not impact significantly on the TVB capacity of uncovering
subject-specific connectivity strength, and E/I profile. At present, it
is unclear whether network properties in this study are influenced
by therapy suggesting that future studies should systematically
address this issue. In aggregate, TVB parameters are shedding light
on the changes occurring inside the brain networks of AD and
FTD patients opening new perspectives for understanding disease

mechanisms and for designing personalized neuromodulation,
neuropharmacological and neuropsychological paradigms.
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Introduction: The automatic precision detection technology based on
electroencephalography (EEG) is essential in epilepsy studies. It can provide
objective proof for epilepsy diagnosis, treatment, and evaluation, thus helping
doctors improve treatment e�ciency. At present, the normal and acute phases of
epilepsy can be well identified through EEG analysis, but distinguishing between
the normal and chronic phases is still tricky.

Methods: In this paper, five popular complexity indicators of EEG signal, including
approximate entropy, sample entropy, permutation entropy, fuzzy entropy and
Kolmogorov complexity, are computed from rat hippocampi to characterize the
normal, acute, and chronic phases during epileptogenesis. Results of one-way
ANOVA and principal component analysis both show that utilizing complexity
features, we are able to easily identify di�erences between normal, acute, and
chronic phases. We also propose an innovative framework for epilepsy detection
based on graph convolutional neural network (GCNN) using multi-channel EEG
complexity as input.

Results: Combining information of five complexity measures at eight channels,
our GCNN model demonstrate superior ability in recognizing the normal, acute,
and chronic phases. Experiments results show that our GCNN model reached the
high prediction accuracy above 98% and F1 score above 97% among these three
phases for each individual rat.

Discussion: Our research practice based on real data shows that EEG complexity
characteristics are of great significance for recognizing di�erent stages of epilepsy.

KEYWORDS

EEG complexity measures, entropy, graph convolutional neural network, epilepsy

diagnosis, chronic stage

1. Introduction

Epilepsy is a neurological disorder defined as a transient occurrence of clinical features

produced by abnormal excessive or synchronous neuronal (Fisher et al., 2005). Worldwide,

more than 50 million people have epilepsy, affecting humans of all ages, ethnicity, and

society. It has been classified as one of the most highly challenging neural psychiatric diseases

that the World Health Organization (WHO) focuses on prevention and treatment (Saxena

and Li, 2017). Epilepsy is characterized by recurrent seizures caused by abnormal discharge

of brain neurons and an ongoing predisposition to recurrent seizures. The patients with
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epilepsy mainly include those with reflex seizures and those with

more than one unprovoked seizure after 24 h. In particular,

compared to the general population, the probability of having

recurrent seizures in the next 10 years for epileptic patients who

have had a single seizure is at least 60% (Fisher et al., 2005).

Therefore, the diagnosis and treatment of epilepsy are of great

significance for humans, while accurate prediction of epileptic

seizures is crucial for achieving precision treatments in epilepsy.

The rat pilocarpine (PILO) model of temporal lobe epilepsy (TLE)

is an animal model in which central cholinergic receptors are

activated to induce seizures by pilocarpine, a post-ganglionic

cholinergic drug that can produce quasi-cholinergic effects by

directly exciting M-cholinergic receptors (Song et al., 2016). Since

the damage and indications of the rat PILO model are comparable

to those of human TLE, it is a widely used animal epilepsy model of

TLE. This model exhibits three important phases (Song et al., 2016):

(1) the normal phase—1 day before status epilepticus (SE), (2) the

acute phase—the duration of SE and 6–24 h after SE, and (3) the

chronic phase—marked by occurrences of spontaneous recurrent

seizures (SRS) after SE.

As one of the most potent and economical tools to record

and monitor the brain’s electrical activity, in recent years,

electroencephalogram (EEG) analysis has become a hot topic

in epilepsy diagnosis, and related studies for both doctors and

researchers (Karlócai et al., 2011). Analyzing EEG recordings

can provide an objective reference for diagnosing epilepsy-related

diseases, such as the identification, prediction, focus location, or

treatment evaluation of epilepsy (Karlócai et al., 2011). Various

features extracted from EEG signals play essential roles in disease

diagnosis as they can help researchers to describe the characteristics

and mechanism of epileptic seizures. Basically, EEG signal features

are divided into four categories. Time-domain features analyze how

signal changes with time (Srinivasan et al., 2005; Sharmila and

Geethanjali, 2018; Wei et al., 2019), frequency-domain features

depict how signal lies within each frequency band (Srinivasan

et al., 2005; Faust et al., 2010; Wen and Zhang, 2017), time-

frequency domain features are characteristics consider both time

and frequency domain (Tzallas et al., 2009; Wang et al., 2017),

while nonlinear features regard the brain as a system to describe

its complexity and the amount of information (Yuan et al., 2011; Li

et al., 2017; Wang et al., 2017). Many previous studies have made

significant progress in epilepsy detection based on one or more

of these EEG signal features (Boonyakitanont et al., 2020). Since

EEG signal shows non-stationary and nonlinear dynamic behavior

when measuring the electrical activity of a brain (Natarajan et al.,

2004), EEG signal features based on nonlinear dynamic properties

may be better than the other three types of features in mining

and detecting the regular changes of EEG in different stages of

epileptogenesis. Recently, more and more researchers treated the

dynamic changes of brain activity as a complex nonlinear system to

study their complexity. Thus, some nonlinear complexitymeasures,

especially various entropy indices, have attracted the great attention

of researchers through their outperformance in characterizing EEG

signals by quantifying the complexity and amount of information

(Liang et al., 2015).

Most early studies achieved good performance for

applying complexity measures and one or more classifiers to

distinguish different stages of epilepsy by analyzing EEG signals.

Sharma et al. (2014) built epileptic seizure detection models

based on four complexity measures, including Shannon entropy,

Renyi entropy, approximate entropy (ApEn), and sample entropy

(SampEn), to classify the EEG signals during focal and non-focal

epilepsy and achieved 87% accuracy by the least squares support

vector machine (LS-SVM) classifier. To achieve auto-detection

of focal and non-focal EEG recordings, Arunkumar et al. (2017)

yielded the highest accuracy of 98% by feeding five different

entropy features to the non-nested generalized exemplars (NNge)

classifier after comparing with other four different classifiers,

including naıve bayes classifier (NBC), radial basis function

(RBF), support vector machines (SVM), and k nearest neighbor

(KNN). Xiang et al. (2015) trained SVM using fuzzy entropy

(FuzzEn) to detect epileptic seizures from normal groups and

reached a detection rate of 98.31 and 100% on two different

datasets, respectively.

However, most of these notable results were obtained from

distinguishing epileptic EEG signals in the acute stage of epilepsy

from normal. The study on EEG characteristics in the chronic

stage has seldom been mentioned. Due to the fact that epilepsy

patients are mostly in the chronic phase rather than the acute

phase, identifying the chronic phase of epilepsy is particularly

important for the timely diagnosis and treatment of epilepsy. It is

beneficial to study and predict the chronic phase of epilepsy: (1) the

pathophysiological mechanism of epilepsy and the effects and side

effects of long-term medication in epileptic patients can be better

understood; (2) and chronic seizures of epilepsy patients can be

intervened and treated in advance. Hence, the primary motivation

behind this work is to clarify the role of the complexity measures of

EEG signals during acute and chronic seizures from normal groups.

Further, it has been observed that most studies used traditional

machine learning algorithms, such as SVM, Decision Tree, and

KNN, to implement the classification tasks. Due to the simplistic

structure of these conventional machine learning algorithms, only a

single channel of EEG signals can be considered in the classification

tasks. Nevertheless, multi-channel EEG is widely used for diagnosis

and therapy in clinical practice because brain diseases are rarely

limited to a specific region (Bullmore and Sporns, 2009). This

prompted us to consider an advanced classifier that can integrate

multi-channel EEG for epileptic detection.

Graph convolutional neural network (GCNN) is a deep neural

network classification model capable of handling multichannel

EEG signal analysis (Craley et al., 2022). It is an improvement

of convolutional neural networks (CNN) and can preserve richer

connection information than 2D or 3D matrices by considering

EEG signals to be nodes in a topological graph and representing the

relationships between them using edges (Lian et al., 2020). GCNN

can describe the internal relationship between different graph’s

nodes, therefore providing a way to explore the relationship among

multiple EEG channels in the EEG-based classification (Song et al.,

2018). Thus, in recent years, GCNN has been applied and made

an enormous impact on EEG-based recognition, including emotion

recognition (Zhang et al., 2019), neurological disease diagnosis

(Wagh and Varatharajah, 2020), sleep stage classification (Jia et al.,

2020), epilepsy diagnosis (Covert et al., 2019; Li and Jung, 2021),

and brain motor imagery (Hou et al., 2022).

In this paper, we developed an automatic epileptic detection

system via GCNN using five complexity measures of EEG,
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TABLE 1 Electrode coordinates for areas of interest in the rat PILO model

of TLE during epileptogenesis.

Names of parts Coordinates

Cornu ammonis 1 (CA1) AP: 3.3–3.7 mm from Bregma, ML:

2.0–3.0 mm, and DV: 3.0–3.5 mm

from the surface of neocortex

Cornu ammonis 3 (CA3) AP: 3.3 mm, ML: 3.5–3.7 mm, and

DV: 3.0–3.5 mm

The surface of neocortex of the

bilateral parietal lobe (Reference

Electrode)

AP: 7.0 mm, ML: 6.0 mm

Dentate gyrus (DG) AP: 5.6 mm, ML: 4.0 mm, and DV:

6.0 mm

including approximate entropy, sample entropy, permutation

entropy, fuzzy entropy, and Kolmogorov complexity to monitor

dynamic changes and distinguish EEG recordings among normal,

acute, and chronic stage of epilepsy. Statistically significant

indicators are useful in indicating the difference between chronic

and normal stages, prompting doctors to intervene in advance.

2. Materials and methods

2.1. EEG recordings

The experimental data used in this paper was from a previous

study (Song et al., 2016), in which the rat PILOmodel of TLE is used

in this experiment (Song et al., 2016). In particular, the subject rats

were injected with pilocarpine to induce seizures and were stopped

by utilizing diazepam. The EEG signals were recorded during the

experiment by drilling holes in the skull at specific locations and

implanting microelectrodes. The coordinates for particular sites of

interest in the hippocampus in our study are shown in Table 1.

According to Song et al. (2016), each EEG recording has around

600,000 sampling points (10 min), and the original dataset could

be mainly divided into six stages, including normal (1 day before

SE), pre-seizure (30, 20, and 10 min before SE), acute [10 min

after SE, 10 min before, and after utilizing diazepam (i.e., DZP

injection)], stable (1, 2, and 3 h after the diazepam), latent (1, 3,

and 7 days after SE), chronic (7, 14, and 28 days after SE) stages.

Figure 1 describes and compares the 1 s waveforms (250–500 Hz)

selected randomly from normal, acute, and chronic phases for

representative rat (no.16) in channel CA1(R). Intuitively looking

from Figure 1, the EEG of the acute phase is far from that of the

normal and the chronic phases, with much wider amplitude and

some typical waveform, while the difference between the normal

phase and the chronic phase is not obvious.

2.2. Complexity measures

Five complexity metrics, including ApEn, SampEn, FuzzEn, PE,

and KC, have been computed to quantify the dynamic changes

of EEG signals during different stages of epileptogenesis. A brief

introduction to these metrics is given in this section.

2.2.1. Approximate entropy
Approximate Entropy (ApEn) was proposed by Pincus et al.

(1991) from the perspective of measuring the complexity of signal.

It is a non-linear dynamic measure that quantifies the incidence

of new information in the time series (Pincus et al., 1991). The

higher the probability of a new pattern being generated in this time

series, the higher the complexity of the sequence and the higher the

corresponding ApEn value.

The calculation of ApEn is calculating the degree of self-

similarity of a time series, that is, the difference between the

probability of mutual approximation of m points adjacent to the

sequence and the probability of mutual approximation of m + 1

points. Compared with the statistical characteristics such as mean

and variance, ApEn can better reflect the characteristics of signal

sequence in structural distribution.

2.2.2. Sample entropy
In order to reduce the estimation bias in the calculation

of ApEn by comparing it to its own data segment, Sample

Entropy (SampEn) was proposed by Richman and Moorman

(2000). Different from ApEn, SampEn eliminates self-matches

in the algorithm and computes the difference of logarithms of

the probabilities. Therefore, SampEn is more accurate, more

consistent, and not sensitive to the missing values.

2.2.3. Permutation entropy
Proposed by Bandt and Pompe (2002), Permutation Entropy

(PE) provides a quantification measure of the complexity of a time

series by capturing the order relations between reconstructed

subsequences. Computed from the extracted probability

distribution of the ordinal patterns (Henry and Judge, 2019),

the value of PE may account for the temporal ordering structure

(time causality) of a given time series. The PE approach is robust

to noise, computationally efficient, and invariant with respect to

non-linear monotonic transformations of the data.

2.2.4. Fuzzy entropy
Inspired by the concept of fuzzy set (Zadeh et al., 1996), Chen

et al. (2007) proposed a new measure of complexity for time series

in 2007, called Fuzzy Entropy (FuzzEn). Modified from ApEn and

SampEn, but unlike them, FuzzEn measures the similarity of two

vectors based on the idea of “fuzzy.” That is, the similarity is

no longer 1 or 0 determined by a single threshold but a fuzzy

membership function, thereby blurring the similarity measure.

2.2.5. Kolmogorov complexity
As an early complexity measure, Kolmogorov Complexity (KC)

was first proposed by Solomonoff (1960) and then developed by

Chaitin (1977). According to Li and Vitányi (2008), for a given

string or sequence, KC is defined as the size of the smallest

program that is needed to generate that string. It was also known

as “algorithmic complexity,” “Kolmogorov-Chaitin complexity,”

“shortest program length,” etc. Unlike Shannon’s information
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FIGURE 1

One second EEG waveforms in normal, acute, and chronic phases from rat no.16 in channel CA1(R), 250–500 Hz.

theory, KC is a measure of randomness or irregularity of individual

objects rather than the average information of a random source.

2.3. Classification

In order to integrate all these complexity metrics at different

channels, in this section, a GCNN-based classification framework

is proposed and implemented to automatically identify and detect

the acute and chronic stages of epilepsy.

2.3.1. Graph convolutional neural network
(GCNN)

Our automatic epileptic detection system is built on GCNN

proposed by Defferrard et al. (2016). GCNN is an extension

framework that combines classical convolutional neural networks

(CNN) and spectrum theory. Three main steps are involved to

generalize CNNs to graphs, including designing the localized

convolutional filters on graphs, clustering the similar vertices,

and transforming spatial resolution for higher filter resolution

(Defferrard et al., 2016). Thus, in addition to retaining the

advantages of CNN, GCNN can deal with homogeneous and

heterogeneous data (Such et al., 2017). In particular, it is capable

of extracting features from unstructured data, such as graph

representations, by performing convolutions on graph signals

(Raeisi et al., 2022). Meanwhile, using graph as the input, GCNN

provides a useful tool for processing signals frommultiple channels

simultaneously. Figure 2 shows a flow diagram of this automatic

epileptic detection system for distinguishing EEG signals during the

acute or chronic stage of epilepsy from normal.

2.3.1.1. Graph construction
As presented in Figure 2A, the inputs of our GCNN classifier

are constructed on graphs with complexity measures. After

collecting and preprocessing the 10-min 8-channel EEG as

mentioned in Section 2.1, five complexity characteristics were

extracted from each 1s-epoch EEG of each channel. To construct

graphs, the sets of features are organized as a matrix. In particular,

each feature matrix for a 1s-epoch EEG has eight rows and five

columns, representing five extracted features at eight channels.

Then, graphs representing five kinds of complexity at eight

channels were generated and labeled with their specific stage (i.e.,

normal/acute/chronic). In this case, we notice that the connectivity

pattern between channels may exist some kind of similarity in three

stages of epilepsy. Therefore, to reduce potential interference due

to this continuity between the three different stages, we construct

each complete graph with eight nodes and all edges equal to 1, as

the input to GCNN.

2.3.1.2. GCNN classification model
To achieve epileptic detection tasks, the constructed graphs

were inputted to the classifier for training and validation to find

the best GCNN model in identifying the specific stages (i.e.,

normal/acute/chronic) of current EEG fragments. As presented in

Figure 2B, this GCNN network comprises two graph convolution

blocks, two fully connected (FC) layers, and a softmax output

layer. Each convolution block consists of a graph convolution layer,

a max-pooling layer, and a Rectified Linear Unit (ReLU) active

function. Specifically, the purpose of the convolution layer is to

capture the features from the input graphs and learn the features

that would be useful for the classification tasks. The max-pooling

layer is a down-sample operation, which reduces the computation

and avoids overfitting by decreasing the number of parameters to

learn. Afterward, the ReLu layer will replace the input with zero

if it is negative; otherwise, it will retain the original value. It is

expressed by:

ReLu(x) = max(0, x), (1)
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FIGURE 2

The architecture of the three-stage epileptic detection using complexity-GCNN classifier. (A) Graph construction for five complexity measures at
eight channels. (B) epileptic detection GCNN classification model.

After a repeated graph convolution block, two FC layers

followed. In particular, between these two FC layers, a ReLu layer

was used, and a regularization technique called dropout was applied

to avoid overfitting. Finally, the softmax activation function was

used for three-stage epileptic detection tasks to obtain the result.

The detailed configuration of this GCNN classification model is

shown in Table 2.

2.3.2. Evaluation metrics
Three typical assessment methods: confusion matrix,

accuracy and F1 score are employed to evaluate the

classification performance of the GCNN model constructed

on complexity measures.

2.3.2.1. Confusion matrix
It is a 3 × 3 matrix that tells us the rate of true positives and

false positives when the sampled signal is from normal, acute, and

chronic stages, respectively.

2.3.2.2. Accuracy
The overall accuracy is a classifier’s ability to correctly predict

the classes and is defined as:

Accuracy =
Correct Predictions

Total Predictions
× 100%. (2)

2.3.2.3. F1 score
The F1 score refers to a balanced measure between two other

metrics: precision and recall, where precision is the ability of the

TABLE 2 The configuration of the GCNN-based classifier.

Layer Output size (Tensor)

Input [6∗ , 1, 8, 5]

GconvBlock1 Graph convolution

Pool

ReLU [6, 10, 4, 3]

GconvBlock2 Graph convolution

Pool

ReLU [6, 20, 2, 1]

Flatten [6, 40]

FC1 Fully connected

ReLU [6, 15]

Dropout [6, 15]

FC2 Fully connected [6, 3]

Prediction Softmax [6, 3]

∗The batch size of training is six and the result will contain six training units.

classifier to identify the positive class with accuracy, and recall is

the ability of a model to predict each of the positive observations

within a data set correctly. It is expressed as:

F1 score =
2× Precision× Recall

Precision+ Recall
× 100%. (3)
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FIGURE 3

Dynamic changes of the complexity at 15 successive time slots of PILO modeling.

TABLE 3 Results of one-way ANOVA for distinguishing normal, acute, and chronic phases.

Complexity measure Mean di�erence in multiple comparisons F-test p-value

Normal-acute (p-value) Normal-chronic (p-value)

ApEn 0.7710 (5.1e-9) 0.0961 (5.4e-9) 1660.3 1.3e-215

SampEn 1.4203 (5.1e-9) 0.0858 (8.8e-8) 5502.9 0

PE 0.0310 (5.1e-9) 0.0200 (5.1e-9) 302.4 1.5e-85

FuzzEn 0.6199 (5.1e-9) 0.1011 (5.1e-9) 1711.6 2.2e-218

KC 0.1014 (5.1e-9) 0.0125 (8.2e-9) 1493.2 4.5e-206

3. Results and discussion

This section demonstrates the main results of EEG complexity

analysis and three-stage epileptic detection.

The procedures of EEG processing and feature extraction

were carried out using MATLAB R2022a. Statistical analyses

were performed using SPSS 25.0, and the GCNN-based

three-stage epileptic classification was conducted using

Python 3.9.12.

During data processing, each 10-min EEG recording

sample with 600,000 data points was divided into non-

overlapping 1s epochs, resulting in 600 epochs and

1,000 data points in each epoch. Then, EEG signals

were decomposed by wavelet transform based on

the Haar wavelet and extracted a specific frequency

band spanning 250–500 Hz (Fast Ripples). Following

the data pre-processing, five complexity measures,

including ApEn, SampEn, PE, FuzzEn, and KC, are

calculated on each EEG epoch of the eight channels for

further analysis.

3.1. Dynamic changes in complexity

To demonstrate the dynamic changes of the complexity for all

stages mentioned in Section 2.1, a boxplot of the PE distributions

at 15 successive stages of the channel CA1(L) of representative rat

(no.16) is given in Figure 3. It was found that in the normal period

(1 day before SE), the PE values are at a relatively high level, and

the EEG shows a large randomness. The complexity starts to drop

30 min before SE, then continues to fall sharply until the DZP is

injected. The decreasing of the complexity suggests that with the

onset of epilepsy, EEG gradually presents some regular rhythms,

which reduces the complexity. Afterward, from 10 min after DZP

injection, PE values continue rising and recover to normal by 3 h

after DZP injection. However, after the effect of DZP subsides, it is

found that the values of PE begin to decline to a certain extent in

the chronic stage. This indicates the appearance of SRSs. Using PE

as a representative of EEG complexity clearly shows the dynamic

changes of the brain’s electrical activity before and after SE, in

the process of seizure and DZP injection, and the chronic phase

(Figure 3).
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FIGURE 4

The line charts with error bars (95% CI) of each of the complexity measures in three epileptic stages for representative rat (no.16) (A–E).

TABLE 4 The hyperparameter settings of the GCNN-based classifier for

classification.

Hyperparameter Values

For individual
subject

Across all
subjects

Learning rate 0.001 0.001

Epochs 3 50

Batch size (Train) 6 6

Batch size (Test) 2,175 540

Momentum 0.5 0.5

Log interval 10 10

Activation function ReLU ReLU

3.2. Statistical significance

EEG Complexity metrics at normal, acute, and chronic stages

were compared through one-way ANOVA. The F-test statistics and

the two-tailed p-values were presented in Table 3. Tukey’s test was

performed for pairwise comparison for the complexity between any

two of the stages, and the mean differences (p-values) for normal

and acute stages, normal and chronic stages were also given in

Table 3. In this part, three 10-min EEG recordings, including “1

day before SE,” “10 min before DZP injection,” and “28 days after

SE” were selected to represent normal, acute epilepsy, and chronic

epilepsy, respectively. Each 10-min EEG recording was divided

into 20 equal-length epochs. So, the number of each computed

complexity measure for normal, acute, and chronic groups in

one-way ANOVA is 160, including epochs from eight channels.

Through the results of one-way ANOVA, we found that using

complexity as a feature can well reflect the differences between

normal, acute, and chronic phases. Regardless of the type of

complexity, the p-values of the F-tests are close to zero. In the

pairwise comparisons using Tukey post-hoc testing, there is also

a significant difference in complexity between normal and acute

phases, as well as between normal and chronic phases, with p-values

all below 10−7. These results indicate that complexity measures are

beneficial features in distinguishing different stages of epilepsy.

In fact, the difference between normal and chronic stages is

rarely mentioned in literature. Song et al. (2016) tried to detect

and quantify different phases of epileptogenesis by implementing

average and peak spectral power of high-frequency oscillations

(HFOs). They successfully found the dynamic changes between

the acute and normal stages but failed to show statistical

significance for differences between the chronic and normal

stages using spectral power, the characteristic based on linear

theories. Meanwhile, line charts of means and their 95% confidence

intervals (CI) are presented to visualize the differences for all the

five complexity measures in acute, normal, and chronic phases

(Figure 4). Lines with eight colors represent eight EEG signal

channels, including two reference channels (Ref 1 and Ref 2).

It is clear from Figure 4 that different complexity measures

reflect similar laws, that is, the mean complexity of EEG is at a

relatively high value in the normal period, while in the acute phase

of epilepsy, the mean complexity has a significant decline, which

confirms that during epilepsy, EEG will continue to appear some

particular waveforms and become regular. In the chronic period,

entropy will rise again, even returning to a level close to the normal
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FIGURE 5

The confusion matrices of GCNN-based classifier for three-stage epileptic detection based on (A) rat no.16, (B) rat no.19, (C) rat no.22, and (D) rat
no.23, respectively.

TABLE 5 Classification performance of GCNN based on complexity

measures.

Subject Accuracy (%) F1 score (%)

Normal Acute Chronic

Rat no.16 0.9944 1.0000 0.9917 0.9916

Rat no.19 0.9981 0.9972 0.9972 1.0000

Rat no.22 0.9926 0.9917 0.9972 0.9888

Rat no.23 0.9833 0.9862 0.9863 0.9773

Combined 0.8782 0.9725 0.8603 0.7927

phase but slightly lower than the normal phase. In particular, for

PE, the gap between the normal and chronic phases is relatively

apparent. Another noteworthy point is that two reference channels

(Ref 1 and Ref 2) are also included in this comparison. However, it

is interesting to see from the line charts listed in Figure 4 that these

two reference channels (Ref 1 and Ref 2) express similar complexity

during the main stages of PILO modeling.

3.3. Classification performance

To evaluate the performance of complexity indicators in

classifying the normal, acute, and chronic stages of epilepsy, we

conduct GCNN-based classification with hyperparameter settings

listed in Table 4 for each individual rat, and across all rats. The

data was split into training, validation and testing sets, with a

50–20–30% partition. Figure 5 includes four confusion matrices

obtained for four rats, where the detection rates of the three

phases are calculated. Other useful evaluation indicators of model

classification such as accuracy and F1 score are also listed in Table 5.

From the confusion matrices shown in Figure 5, the probability

of being detected (i.e., sensitivity) for acute and normal phases

is relatively high, reaching between 99.45 and 100%, while the

detection rate of chronic phase is slightly lower, but still more than

95%. The classification performance across all subjects is shown in

the last row of Table 5. It can be seen that when the measures of the

four rats were merged, the effectiveness of classification decreased

considerably due to the heterogeneity among individual rats.

To demonstrate the superiority of complexity metrics in

differentiating chronic phases of epilepsy, we calculated two sets

of EEG characteristics: one includes five complexity measures,
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FIGURE 6

The principal component analysis (PCA) score plots of (A) general features and (B) complexity features.

and another has five general features: mean, variance, maximum,

minimum, and skewness. Taking representative rat (no.16) as an

example, the principal component (PC) method is applied to the

two normalized five-dimensional characteristic data matrices to

compress them to two-dimensional metrics. Figure 6 are 2-PC plots

obtained from these two sets of features.

From Figure 6, the normal and acute phases can be well

distinguished under either set of features. However, general

indicators and complexity measures differ in their ability to

distinguish normal and chronic phases. As shown in Figure 6A,

there is a significant overlap between the yellow (i.e., chronic

phase) and blue points (i.e., normal phase), so the general

indicators mix these two phases. Nevertheless, the points of

normal and chronic phases can be easily recognized using

complexity measures (Figure 6B). Thus, the comparison in

Figure 6 gives us a preliminary impression that complexity

measurement can effectively identify the chronic phase

of epilepsy.

4. Conclusion

In this paper, the differences in EEG between normal and

chronic phases of epilepsy for rats were studied in depth for

the first time. By calculating five commonly used complexity

measures: ApEn, SampEn, PE, FuzzEn, and KC, the dynamic

changes in brain waves during seizures can be perfectly displayed.

Results of one-way ANOVA and PCA score plots show that

complexity features can well reflect the differences between

normal, acute, and chronic phases with extremely small p-

values. In particular, among with these complexity metrics, PE

exhibits the greatest discrepancy between normal and chronic

stages. In order to integrate five complexity measures at eight

channels, an automatic epileptic detection system via GCNN

is developed. Our model reaches high performance in epilepsy

detection that the recognition rate of each individual rat can

achieve more than 98%, even 100%, including normal and chronic

stages. In our case study, a comparison between modeling based

on each individual subject and modeling across all subjects

highlighted the non-negligible heterogeneity among individual

rats. Modeling across all subjects may inadequately account

for these individual differences, thus diminishing the model’s

fit to individual data. In contrast, modeling based on each

individual subject can provide highly personalized models for

each individual, significantly enhancing model accuracy, especially

when the chronic phase is considered. This underscores the

necessity of employing modeling based on each individual

subject for personalized treatment recommendations in practical

epilepsy management, ensuring better alignment with patients’

unique needs.

While the above experiments yielded promising results in

the classification of three epilepsy stages, our investigation was

limited to the effectiveness of this framework solely in rat data

and for just one type of epilepsy. In future work, we intend

to extend the application of this framework to human EEG

datasets. Concurrently, we will make adjustments to both graph

representations and model parameters to elucidate the distinct

characteristics of human EEG data, thus enhancing the model’s

generalization capabilities.
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The increasing interest in identifying disease biomarkers to understand psychiatric

and neurological conditions has led to large patient registries and cohorts. Traditionally,

clinically defined labels (e.g., disease vs. control group) were associated statistically with

potential biomarkers to draw useful information about brain function related to a disease

(supervised analysis) (Deo, 2015). However, the observed biomarker variability and the

presence of clinical disease subtypes have sparked interest in quantitatively exploring

heterogeneity (Feczko et al., 2019; Ferreira et al., 2020). The unsupervised1 exploration of

a disease population (without any clinical labels) through a selected sample is a demanding

task that differs from supervised analysis by definition (Habes et al., 2020). However, in

research the differences between the two are often overlooked. Therefore, we want to

highlight the applications and challenges of clustering, where supervised analysis principles

are sometimes misapplied. We also demonstrate how such practices can negatively impact

clustering results.

Some common challenges in clustering methods include selecting relevant features to

describe data heterogeneity, preprocessing to remove biases, choosing appropriate similarity

measures to summarize critical information, selecting a suitable method for meaningful

clustering, tuning clustering model parameters (such as cluster size) without ground truth,

and validating clustering results (Halkidi et al., 2001; Hennig et al., 2015).

The most common clustering applications in medicine (Halkidi et al., 2001):

• Data reduction (Hennig et al., 2015). When dealing with large datasets, like genomics,

proteomics, or medical imaging data, clustering can condense the information into

representative vectors or filter out uninformative features.

• Generate new hypotheses. Discovering specific disease subtypes can lead to the

development of new hypotheses, altering existing theories.

• Hypothesis testing (Thrun and Ultsch, 2021). Clustering can be used for hypothesis

testing. For example, it can assess whether clinical observations align with biological

data in diseases with known subtypes without forcing the association between biological

data and clinical labels (supervised approach).

• Prediction in new patients (Wu et al., 2019). Clustering can identify disease subtypes

and scientific theories that investigators can use to create supervised classification

models for grouping new patients. This new classification is valuable for personalized

medicine and future patient treatment, among other applications.

1 For the needs of this text, unsupervised analysis refers to clustering only, association analysis is not

covered.
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When working with unsupervised methods, it’s crucial to

understand their limitations and nuances. Clustering encompasses

a wide range of techniques which handle population structures

and characteristics differently. Understanding the idiosyncrasies

of a dataset is essential for applying clustering successfully.

Questions about how clustering results generalize to the disease

population, which are the optimal model parameters, and why

results change with slight dataset modifications often emerge

during study design, model optimization, interpretation, and peer

review. One intriguing approach that combines automatic machine

learning with expert knowledge from the field is the ’human-in-

the-loop’ method (Holzinger, 2016). This approach is particularly

effective in neurological applications and can help address the

abovementioned questions.

Regarding cluster size and type, we may know in advance

whether there is excess variation in a disease population, some

heterogeneous disease features, and even subtype proportions. This

knowledge is vital in the model selection process so that we can sort

out methods that are wrong methodological fits for the population

of interest. For example, k-means, one of the most popular

clustering methods, tends to produce convex-shaped clusters (it

tends to equalize the spatial variance) that are spherical and often

become similar in size (Celebi et al., 2013). Therefore, if in a specific

disease population, we are aware of rare disease subtypes that may

also exist in our sample, we may want to avoid k-means. Instead,

we should focus on clustering methods to identify outliers/outlier

clusters (Campello et al., 2015). Further, the more variables we use

in a clustering method, the more the dimensionality of the dataset

increases. A good practice is to use methods that either pretreat

data to reduce the dimensionality and then apply regular clustering

to them or select a method that can cope with high dimensional

datasets (Babu et al., 2011; Thrun, 2021). While the gold standard

in machine learning, some studies fail to utilize suitable models for

high-dimensional data (Noh et al., 2014; Hwang et al., 2016; Jeon

et al., 2019; Levin et al., 2021), limiting our ability to assess the

success of clustering.

Further, all clustering methods cannot cope with all types

of data (ordinal/nominal categorical, numerical) (Halkidi et al.,

2001).When we binarize continuous variables to utilize a clustering

algorithm for binary data only, the reduction of information due to

data transformation must be at least considered when interpreting

the results (Zhang et al., 2016). Some algorithms use mixed data

types and should be preferred when mixed data distributions

are present (Szepannek, 2019). If not accounted for, data biases

may render a clustering result misleading. For example, we may

be interested in understanding the heterogeneity of a particular

biological process during aging. Understanding and adjusting the

data to consider the participants’ age variability results in clusters

of participants that are not driven by age differences but by

differences in the biological process under investigation if those

exist (given that other biases are not present). However, due to

complex data/aging relationships, these effects may persist even

after statistical accounting for aging. Other sampling features that

can drive clustering results are sex, disease stage, comorbidities,

medication exposure, and geographical position. For example, it

is known that the disease stage may contribute to the observed

heterogeneity in Alzheimer’s disease (AD) (Ferreira et al., 2020), we

have only recently started accounting for this or trying to assess its

contribution (Young et al., 2017; Vogel et al., 2021; Yang et al., 2021;

Poulakis et al., 2022) while in previous studies (Noh et al., 2014;

Dong et al., 2016; Hwang et al., 2016; Zhang et al., 2016; Park et al.,

2017; Poulakis et al., 2018; ten Kate et al., 2018) we did not assess or

account for this effect.

Clustering results must generalize well to the population, which

makes validation a central topic. Traditionally, cross-validation

(CV), bootstrapping, external data testing (training, validating, and

testing), and careful sample selection have been some of the most

popular approaches in supervised analysis. However, validation

in clustering is not straightforward since no ground truth exists.

The adaptation of training and testing a clustering model using

independent datasets can sometimes mislead us. For example, three

subtypes are present in a hypothetical disease population N (s1, s2,

and s3). One is the most prevalent (s1) (typical presentation), the

second subtype (s2) has half of the prevalence of the first one (ns2
=

1
2ns1), and the third subtype has a low prevalence (one-tenth of

the first subtype, ns3 =
1
10ns1) (s3). The disease population N equals

n1 + n2 + n3. A perfectly representative random sample of 100

patients from the disease population will include approximately 63

patients from s1, 31 from s2, and six from s3. A clustering model

can then be trained on 70% (70 patients) and tested using 30% (30

patients). Suppose the data in the training set perfectly represent the

population, a rare phenomenon, and clustering accurately identifies

the subtypes. In that case, 44 patients will end up in Cluster 1,

22 in Cluster 2, and 4 in Cluster 3. The test set should have 19

patients in s1, 9 in s2, and 2 in s3. Clustering can then be applied

to identify subtypes s1, s2, and s3. Since the actual data labels are

unknown, which is what clustering should discover, the test set

results will be compared to the training set. The problem arises with

rare subtypes, such as the hypothetical s3 subtype (six patients in

the sample, four in the training set, and two in the test set). Patients

of such subtypes may end up in larger clusters when the overall

dataset is split into small segments for the needs of the analysis.

Unfortunately, the most interesting heterogeneous characteristics

will enrich another cluster’s greater information pool, especially in

high-dimensional datasets. In the best-case scenario, those patients

will be single outliers (if the algorithm can recognize outlier

clusters) (Campello et al., 2015). Understanding their features is

pivotal for the assessment of heterogeneity in the disease.

To the best of our knowledge, cross-validation has been

successfully combined with clustering in two studies to assess

the consistency of observations within the same cluster and to

determine the optimal model solution (Varol et al., 2017; Yang

et al., 2021). On the other hand, leave 10% of patients out-CV (a

semi-supervised application where a control group is contrasted

to a disease group) to decide the optimal clustering (Dong et al.,

2016, 2017), may reveal the dominant patterns in the dataset. An

interesting question is whether clusters of low/very low prevalence

can survive this process. In AD, genetic mutations account for

<1% of all AD (2020) cases, while early-onset AD accounts

for 4%−6% (Mendez, 2017). Another evaluation approach is

to compare clustering agreement after application of the same

algorithm in different cohorts. We do not suggest that these results

are wrong, but they may be misleading if different clustering

findings in different cohorts are interpreted as a methodological
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failure, while convergence of findings between cohorts is the aim

(ten Kate et al., 2018; Vogel et al., 2021). Sometimes, it is a

requirement that clustering should be repeated cohort-wise to

prove model robustness (Poulakis et al., 2018, 2022). Instead of

reducing data variability in clustering by splitting the available

data into segments, we should acknowledge that cluster-cohort

agreement-based evaluation criteria can potentially interrupt the

discovery of rare data patterns. Another issue with the cohort-

wise analysis is the potential sample imbalance between cohorts

that may render one cohort solution less reliable than another.

Of note, cohort-wise analysis is reasonable when cohorts have

different feature sets or systematic differences (Marinescu et al.,

2019; Tijms et al., 2020). Prior knowledge (subtype prevalence or

number of subtypes) is essential when formulating a clustering

experimental design (Halkidi et al., 2001, 2002). Another example,

hypothetically, two separate clusters of patients may be formed

because a clustering validation criterion gives marginally better

scores instead of grouping the patients in one cluster. Field

experts and not only clustering internal evaluation criteria should

conclude whether differences between clusters are essential enough

to suggest heterogeneity (Halkidi et al., 2002; Dolnicar and

Leisch, 2010). It is also often observed that clustering algorithms

optimally select two-cluster solutions. This finding may not

provide any insight of the disease process when it only reveals

biomarker severity differences of no clinical interest (Poulakis

et al., 2021; Yang et al., 2021). Based on the above, we believe

that as large datasets as possible should be used when training a

clustering model. In contrast, datasets should not be divided for

validation purposes if the focus is on revealing heterogeneity in

a population.

Clustering is a valuable approach to understand heterogeneity

in brain disorders and healthy aging. The machine learning

community has invested a great deal of research in addressing the

methodological issues discussed above. As with every statistical

tool, these methods should be carefully applied, and understanding

their properties and limitations is essential.
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The aim of this work was to enhance the biological feasibility of a deep 
convolutional neural network-based in-silico model of neurodegeneration of 
the visual system by equipping it with a mechanism to simulate neuroplasticity. 
Therefore, deep convolutional networks of multiple sizes were trained for object 
recognition tasks and progressively lesioned to simulate neurodegeneration of the 
visual cortex. More specifically, the injured parts of the network remained injured 
while we investigated how the added retraining steps were able to recover some 
of the model’s object recognition baseline performance. The results showed with 
retraining, model object recognition abilities are subject to a smoother and more 
gradual decline with increasing injury levels than without retraining and, therefore, 
more similar to the longitudinal cognition impairments of patients diagnosed with 
Alzheimer’s disease (AD). Moreover, with retraining, the injured model exhibits 
internal activation patterns similar to those of the healthy baseline model when 
compared to the injured model without retraining. Furthermore, we conducted this 
analysis on a network that had been extensively pruned, resulting in an optimized 
number of parameters or synapses. Our findings show that this network exhibited 
remarkably similar capability to recover task performance with decreasingly 
viable pathways through the network. In conclusion, adding a retraining step to 
the in-silico setup that simulates neuroplasticity improves the model’s biological 
feasibility considerably and could prove valuable to test different rehabilitation 
approaches in-silico.

KEYWORDS

deep neural networks, neurodegeneration, Alzheimer’s disease, in-silico, cognitive 
computational neuroscience

1 Introduction

Machine learning models have emerged as essential tools for solving complex data-driven 
classification and regression problems in various domains, and healthcare is no exception. Many 
machine learning models have been developed and evaluated in the past that, for example, aim 
to classify if patients have neurological diseases, or aim to predict disease progression and 
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outcomes based on clinical, imaging, and other assessment data (Lo 
Vercio et al., 2020; Pinto et al., 2020; James et al., 2021; Rajashekar et al., 
2022). Despite their high value for computer-aided diagnosis, these 
machine learning models cannot be used naively as computational 
disease models, even when using approaches from the explainable 
artificial intelligence domain (Linardatos et al., 2020). However, in a 
more neuroscientific-inspired branch of research, deep learning 
models are being increasingly investigated as potential tools for 
modeling how the brain processes information (Kubilius et al., 2016; 
Yamins and DiCarlo, 2016; Lake et al., 2017; Richards et al., 2019; 
Lindsay, 2021). These deep neural networks are trained to mimic 
human behavior and function (Saxe et al., 2021). Although model 
architectures and training procedures are not identical to biological 
systems, for example by using backpropagation to learn, deep neural 
networks remain to be  some of the best models of human-level 
cognition, which may provide a valuable basis for in-silico models of 
neurological diseases (Güçlü and van Gerven, 2014; Khaligh-Razavi 
and Kriegeskorte, 2014; Kaiser et al., 2017; Cichy and Kaiser, 2019; 
Perconti and Plebe, 2020). Establishing an in-silico model of 
neurological disease would, for example, allow us to obtain a better 
understanding of the effects of axonal and neuronal damage, and other 
pathological processes such as tau deposition on essential brain 
functions. Here, the term “in-silico” refers to the usage of computer 
methods for understanding biological processes in the living organism 
(Winder et al., 2021). Deep convolutional neural networks (CNNs), a 
deep learning model architecture specifically designed for solving 
computer vision problems such as object recognition, were originally 
inspired by the structure of neurons and synapses found in the 
mammalian visual cortex (Rawat and Wang, 2017). The concepts used 
to inspire CNNs date back to early models of the visual system, 
postulated by Hubel and Wiesel (1962, 1968). An emerging field that 
is gaining momentum recently involves using deep learning models as 
an abstraction of a healthy human brain, which can then be utilized as 
a basis for simulating neurodegenerative diseases (Tuladhar et al., 2021; 
Moore et al., 2022). Since CNNs were specifically designed for vision 
tasks and were modeled after information processing patterns in the 
mammalian brain, they can be used to model neuronal injuries that 
occur in the visual cortex, as for example the case in posterior cortical 
atrophy (PCA). PCA is characterized by the rapid deterioration and 
thinning of visual cortical areas such as V1, V2, V3, and V4, leading to 
a loss of visual recognition abilities in patients (Crutch et al., 2012; 
Maia da Silva et al., 2017). PCA is usually a variant of AD, caused by 
the same protienopathies. Previous research has established parallels 
between synaptic and neuronal pruning in CNNs and in silico models 
and the onset of posterior cortical atrophy (Moore et al., 2022). In this 
work, we compared the effects of applying either progressive neuronal 
or synaptic injury using an established CNN architecture (VGG19) as 
an initially cognitively healthy model. The CNN was trained to perform 
object recognition on 2D images, akin to the Boston Naming Test 
(BNT) or other similar neuropsychological assessments testing visual 
function (Williams et al., 1989). During the BNT, patients are presented 
with stimuli in the form of line drawings of items of 60 categories and 
are asked to identify the objects. Therefore, it may be possible to draw 
parallels between object recognition tasks of the CNN and cognitive 
assessments such as the BNT.

However, a shortcoming of this work was the method in which 
injury was applied to the network, which was not biologically realistic. 
Specifically, injury was progressively and statically imposed, without 

allowing the model to update weights or be  exposed to any new 
training data. Thus, the aim of the present study was to expand upon 
and improve Moore et al.’s (2022) work by adding the crucial 
mechanism of simulated neuroplasticity via retraining as shown in 
Figure 1. In the present study, synapses are specifically set to zero to 
simulate full synaptic death in the visual cortex. While other 
pathological mechanisms may precede synaptic death and lead to a 
functional decline in synapses over time, synaptic death is the ultimate 
effect of any dementia disease. The ability of the human brain to 
develop new synapses is very limited in adults so that the remaining 
synapses need to be retrained to account for the loss and as a means of 
neuroplasticity. Thus, in this study, we froze the injured weights to 
prevent them from being subjected to the retraining process to simulate 
disease effects in humans where dead synapses cannot be  simply 
replaced by new ones (John and Reddy, 2021). Furthermore, one could 
argue that a standard VGG19 network is overparameterized, and thus 
has too much reserve capacity as compared to human cognitive reserve, 
to be a biologically realistic in-silico model when studying injuries. 
Therefore, in the present study, we investigate two different models as 
a baseline for cognitively healthy object recognition. The analysis was 
performed using a full VGG19 model as well as using a highly pruned 
version of the VGG19 to examine the effects of plasticity as a function 
of imposed injury and number of model parameters or synapses.

While model compression and pruning are active branches of 
deep learning research, our paradigm of ‘injury’ does not follow 
typical pruning methods, which aim to reduce the number of 
parameters in a model while retaining full function (Choudhary et al., 
2020). In contrast, we use progressive random pruning followed by 
retraining to simulate the cognitive effects of a neurodegenerative 
disease as a function of abnormal levels of atrophy. We find that by 
adding iterative retraining with every pruning step of synaptic 
ablation, the decline of visual cognition is much smoother and more 
similar to what is seen in patients with Alzheimer’s disease (AD) 
(Mattsson et al., 2017).

2 Materials and methods

2.1 Models and data

The basis for the cognitively healthy object recognition model is a 
VGG19-like model with batch normalization trained on the CIFAR10 
dataset (Russakovsky et  al., 2015). CIFAR10 is a commonly used 
dataset for computer vision research, which consists of 60,000 32 × 32 
natural color images. The dataset consists of 10 classes: plane, car, bird, 
cat, deer, dog, frog, horse, ship, and truck, with 6,000 images in each 
class. The train/test split used is 50,000 and 10,000 images, respectively. 
This dataset was chosen due to the relative simplicity and ease of 
computational load. The model architecture used in this work is 
comprised of five convolutional blocks, each followed by a batch 
normalization layer, ending with four max-pooling layers, and finally, 
a Softmax activation with 10 nodes corresponding to the 10 classes in 
the dataset. Our model was pretrained on ImageNet and fine-tuned 
on CIFAR10 for 100 epochs with a learning rate of 0.001, using a batch 
size of 128, and a stochastic gradient descent optimizer with 
momentum 0.9. After training, the full model achieves an accuracy of 
93.74% on the test set of images. A VGG19 model was chosen for this 
research as it has been to have high correlation with mammalian 
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neuronal activation data and is widely accepted as a SOTA baseline 
model in computer vision tasks.

Previous research has shown that VGG19 models may be largely 
overparameterized, especially for classifying CIFAR10, due to their 
retention of high levels of accuracy when subjected to optimized 
pruning techniques (Frankle and Carbin, 2018; Ayinde et al., 2019). 
More specifically, they likely have learned unnecessary or redundant 
pathways due to the enormous number of synapses and neurons they 
are equipped with. The brain has also been shown to 
be overparameterized, but is likely much more constrained by energy 
usage and physical space (Drachman, 2005; Mizusaki and O’Donnell, 
2021). Thus, to investigate potential spurious results that are driven by 
overparameterization, rather than model plasticity abilities, and to 
perform experiments in a more physically constrained setting, we also 
investigated a considerably more optimized compressed model. To 
this end, we performed structured model pruning on the trained full 
VGG19 model. Model compression was informed by graph 
dependencies using methods developed and described in Li et al. 
(2016) and Fang et al. (2023). Filters and associated weights were 
removed simultaneously based on their L1 norm until the model 
inference speed, in terms of floating-point operations (FLOP), was 
increased by a user-defined amount. To probe the amount of 
structured pruning the model could tolerate before significant declines 
in accuracy, we performed model compression multiple times. The 
compression resulted in models that had been sped up 2x, 3x, and 4x 
from the original inference speed while maintaining similar, high 
accuracies. We found that increasing FLOP by three times with respect 
to the original VGG19 model resulted in a compressed model with 
only 8.54% of the original weights. Despite this considerable reduction 

of weights, this compressed model retained an accuracy of 93.3% on 
the test set. All model injury and retraining experiments described 
below were performed on both the full VGG19 and this compressed 
version. Experiments were conducted using Pytorch 1.13 on an 
NVIDIA GeForce RTX 3090 GPU with 24GB of memory.

2.2 Synaptic ablation and retraining

Synaptic ablation was imposed on the network in a uniformly 
disperse and progressive manner as originally proposed in Moore 
et al. (2022). This ‘injury’ type was implemented by setting weights 
from convolutional layers and dense layers in the network to zero, 
effectively severing the connections between nodes. This approach is 
akin to progression of synaptic damage seen in neurological diseases 
that accelerate atrophy rates in the brain, such as posterior cortical 
atrophy. It should be noted that this synaptic injury and retraining is 
not the same as optimized model pruning, and thus is more 
biologically reasonable as an in-silico paradigm. We imposed random 
synaptic ablation at a step rate of 1 1− −( )γ n  where γ is the relative 
fraction of weights being ablated to the remaining uninjured weights 
in the network, and n  is the number of iterations of injury. Once a 
synapse is ablated, it can no longer be  used by the model and is 
excluded from the retraining process.

In our experiments, γ was set to 0.2 (20% of weights ablated) and 
n  was set to 15 iterations as this was found to be representative of 
injury resolution while maintaining reasonable computational 
requirements. Following each iteration of injury, we retrained the 
model on the training split of data using the same initial training 

FIGURE 1

Pipeline of progressive synaptic injury with the added mechanism of neuroplasticity. After each iteration of synaptic damage, the model is retrained on 
the original training split of data and evaluated. Ablated synaptic weights are shown in grey.
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parameters for three epochs to investigate how model performance 
could be  regained. With each retraining step, the optimizer was 
reinitialized while the injured weights remained set to zero so that the 
model had to find alternative pathways to regain test performance. We 
performed this analysis ten times to reduce the risk that biasing effects 
related to the order in which synapses were randomly ablated are 
affecting the results.

2.3 Representational dissimilarity matrices

Representational dissimilarity matrices (RDMs) were computed 
to examine the changes in internal activations and representations of 
categorized data of both the injured and retrained networks when 
compared to the respective baseline, healthy networks. RDMs are 
routinely used to quantitatively correlate brain-activity, behavioral 
measurement, and computational modeling (Kriegeskorte et al., 2008; 
Khaligh-Razavi and Kriegeskorte, 2014; Mehrer et al., 2020). RDMs 
measure the representational distance between two sets of model 
activations given different inputs and can be  used to visualize 
representational space. RDMs were generated by pairwise comparison 
between activations of the network’s penultimate layer for all test set 
images using Pearson’s correlation coefficient. We constructed RDMs 
for each iteration of both network ablation and retraining, and then 
compared them to the healthy network’s RDM using Kendall’s tau 
correlation coefficient. This approach effectively enabled us to quantify 
the effects of both injury and retraining on internal activations of the 
networks. Comparison of RDMs of the model as it is progressively 
injured and retrained allows for the examination of how the relative 
structure of representational space is affected and reconstructed with 
injury and retraining.

2.4 Brain-score

The Brain-Score is a widely used metric that has been developed to 
analyze how the CNN model activations are correlated and predictive 
of mammalian neural activation data (Schrimpf et al., 2018, 2020). 
Within this context, VGG19 has been found to be a relatively highly 
ranked model in terms of neural predictivity. We wanted to investigate 
how imposing injury to a ‘healthy’ VGG19 model affected its Brain-
Score. Therefore, we created our baseline Brain-Scores by following the 
methods outlined by Schrimpf et  al. (2018) and used the publicly 
available neural recording benchmarks for visual areas V1, V2, V4, and 
IT (Freeman et al., 2013; Majaj et al., 2015). The neural recordings 
dataset contains macaque monkey neural responses to 2,560 naturalistic 
images. More detail on this data and the methods we used to calculate 
Brain-Score can be found in the publicly available code from Schrimpf 
et al. We used the neural benchmarks to establish how well the internal 
representations of our CNN models matched internal representations 
of mammals. In computing the Brain-Score, we compute a composite 
measure of neural predictivity scores for all aforementioned visual 
areas. Neural predictivity is evaluated on how well the responses, or 
internal activity in our CNNs predicted the neural activity in the 
biological neural recordings. Consistent with the literature, 
we performed this analysis using principal components analysis to 
reduce the dimensionality of model activations to 1,000 components, 
and then used partial least squares regression with 25 components to 

correlate the CNN model activation to mammalian neural activations. 
Correlation coefficients were calculated for each of the publicly 
available benchmarks and then averaged to calculate an average Brain-
Score. Brain-Score values were analyzed for progressive iterations of 
injury and retraining in the models. It should be  noted that only 
publicly available, neural benchmark datasets were used in our Brain-
Score calculations so there were disparities between our ‘healthy’ 
VGG19 Brain-Score and that reported on the Brain-Score leaderboard.

3 Results

3.1 Accuracy

Baseline model accuracies were 93.7 and 93.3% for the full VGG19 
and compressed VGG19, respectively. The results showed that model 
performance was immediately affected by the first application of 
random synaptic injury (20% of synapses randomly deleted), leading 
to a large drop in object recognition accuracy in both the full and 
compressed models across all classes of the test split of the CIFAR10 
benchmark dataset. Quantitatively, after the first iteration of injury, 
the full model’s accuracy on the test set suffered a drop from 93.7% to 
a mere 10.0%, essentially chance level. Interestingly, the accuracy was 
substantially restored to 92.4% ± 0.001% after three epochs of the 
retraining iteration. With each iteration of injury, this pattern of large 
accuracy drops continued to repeat, with the model again tending to 
perform only at chance level (10% accuracy). However, retraining 
continued to improve model accuracy by a large margin, even until 
96.5% of initial synapses had been removed. After this point, the 
model could only regain accuracy levels of 77.6% ± 0.010% with 
retraining. These effects are shown in Figure 2A. Similar to the full 
model, the compressed model also proved to be largely affected by 
introducing plasticity to the injury paradigm. With each iteration of 
synaptic injury, the compressed model accuracy plummeted to chance 
level accuracy. Remarkably, even with the initial healthy network 
containing a mere 8.54% of the size of the full VGG19, on average the 
compressed model was able to regain high levels of object recognition 
accuracy after retraining. Even after 48.8% of synapses were injured, 
the compressed model recovered 89.6% ± 0.005% accuracy with the 
retraining iteration. At injury levels of 83% and higher, the compressed 
model exhibited large standard deviations in accuracy over the ten 
trials that were performed (~ ± 20%) (Figure 2B). This may be due to 
the extreme synaptic sparsity that is associated with high injury levels. 
If a highly salient pathway in the model with limited synapses is 
ablated, the model may not be able to recover accuracy with retraining.

To further investigate the relationship between model size and 
recovery with retraining, we examined accuracy levels based on the 
total number of parameters within the full and compressed models. 
We  inspected the point in the injury progression where, after 
retraining, the two models displayed close to identical levels of 
accuracy, and after which the retrained accuracies no longer displayed 
similar levels of accuracy. This point was found after the full model 
(20.04 million parameters) had been injured so that 83.2% of synapses 
had been removed, leaving the model with 3.36 million parameters. 
After retraining, the full model showed accuracy levels of 
87.4% ± 0.003% on the test set. The point at which the compressed 
model showed similar levels of accuracy (87.0% ± 0.011%) was after 
67.2% of its original synapses had been injured. This level of injury left 
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the compressed model with a mere 0.560 million parameters. 
Furthermore, we  assessed accuracy levels when the two models 
contained a similar number of parameters. This occurred when the 
full model had been injured by 96.5%, and thus had 0.705 million 
parameters, and when the compressed model had been injured by 
59.0% and had 0.700 million parameters. The accuracy levels were 
significantly different, at 77.6% ± 0.010 and 88.1% ± 0.010%, 
respectively. These results indicate that model size and 
overparameterization are not the sole contributing factors to the 
impact adding plasticity has on the degenerative in-silico paradigm.

3.2 Representational dissimilarity matrices

In line with the results of the model accuracy evaluation, the 
internal representations of the models were able to regenerate and 
recover with retraining after injury. In the first iteration of injury and 
retraining (20% of synapses ablated) on the injured full model, the 
correlation to the healthy RDM revealed a Kendall’s tau of 0.25 ± 0.05. 
After retraining for three epochs, the model was able to reconstruct 
activations more similar to those of the healthy model, resulting in a 
Kendall’s tau value of 0.78 ± 0.01. Comparatively, the compressed 
model’s internal activations also degraded after the first iteration of 
damage and showed a Kendall’ tau value of 0.22 ± 0.04. Upon 
retraining, the internal activations displayed an increased correlation 
to the healthy activations that resulted in a Kendall’s tau of 0.76 ± 0.02. 
Figures  3C,D show how retraining after each injury step led to 
regaining category-distinguishable activations and a smooth cognitive 
decline. A qualitative examination also reveals how the network 
activations were affected through injury and retraining. As seen in 
Figures 3A,B, the uninjured networks initially had clearly defined 
activations grouped according to object classes in the CIFAR10 
dataset. Upon injury, the networks lost this categorical representation 
and the RDMs became noisy. After retraining, however, categorical 
structure between the classes was regained. This trend continued 
progressively as injury and retraining steps were applied to the full 
network, but at high levels of injury, there came a point where there 

was no longer a difference in Kendall’s tau correlation between injured 
and retrained RDMs (e.g., at injury levels higher than 95%).

3.3 Brain-score assessment

The Brain-Score was computed for progressive steps of injury 
and retraining for both models (Table 1). Brain-Scores are reported 
as the mean Brain-Score of the four brain regions (V1, V2, V4, and 
inferior temporal (IT) cortices) that were used in the correlation 
analysis. The averages are reported with the standard deviations. 
Overall, it was found that Brain-Scores decreased in value as 
synaptic injury increased. Thus, the injured models tended to be less 
‘brain-like’ than both of the healthy models (i.e., the uninjured full 
and compressed models) according to the scores. Following 
retraining, the models regained a level of Brain-Score comparable 
to healthy models. These finding indicate that adding retraining 
allows models to retain ‘brain-like’ features in terms of internal 
activations, while still exhibiting functional deficits (i.e., loss of 
object recognition abilities).

4 Discussion

4.1 Main findings

The proposed framework for in-silico modeling of visual 
impairments associated with neurological diseases and retraining to 
model neuroplasticity may lead to improved disease understanding. 
With further development, we may establish more biologically realistic 
computer models that can be  injured in different ways, instead of 
having to collect data from hundreds of patients with different disease 
patterns to obtain similar information. Furthermore, the development 
of this branch of research may also enable us to investigate the benefit 
of potential interventions to re-learn specific brain functions, for 
example, cognitive rehabilitation therapies. This work specifically 
enhances the feasibility of these models by including neuroplasticity 

FIGURE 2

Model accuracies as a function of progressive injury and retraining. (A) Model accuracy and standard deviations as a function of progressive synaptic 
damage and retraining for the full VGG19 model. The standard deviations in accuracy of the full model are extremely low (~  ± 0.005%). The model 
immediately has a substantial drop in accuracy after 20% of the synapses are removed but regains close to complete function after retraining on the 
training set. Substantial levels of accuracy are regained with the addition of retraining, even at extremely high levels of injury. (B) Compressed model 
accuracy as a function of synaptic damage. Retraining leads to large gains in accuracy until injury levels of 85% and higher, at which point the model 
shows a steeper decline in accuracy even with retraining.
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in the simulated disease progression. It was found that this approach 
leads to a more biologically relevant pattern of cognitive decline with 
respect to the load of injury. The human brain has remarkable abilities 

to reorganize pathways, develop new connections, and arguably even 
create new neurons, typically referred to as neuroplasticity or as the 
neurocognitive reserve (Esiri and Chance, 2012). Simply damaging a 

FIGURE 3

Representational dissimilarity matrices with injury and retraining, as described in Section 2.3. (A) A qualitative examination of representational 
dissimilarity matrices as an initial iteration and a later iteration of injury and retraining are completed in the full model and (B) in the compressed model. 
Before injury, both models have distinct activations for each of the 10 different classes in CIFAR10. (C) Kendall’s tau correlation as a function of synaptic 
injury in the full model. As injury and retraining are imposed, the activations first lose their categorical nature, but are able to recover some of it with 
retraining. (D) Kendall’s tau correlation as a function of synaptic injury for the compressed model. A similar trend is seen to that in the full model albeit 
there is larger variance in correlation values with higher levels of injury.

TABLE 1  Brain-Scores are reported for the injury and retraining steps as injury level increases.

Full network

Injury amount
0%

(healthy)

20% 48.8% 67.2% 79.0% 86.6% 91.4% 94.5% 96.5%

Brain score 

(injured)

0.342

(± 0.028)

0.335

(± 0.021)

0.329

(± 0.024)

0.318

(± 0.025)

0.309

(± 0.021)

0.312

(± 0.021)

0.320

(± 0.020)

0.244

(± 0.017)

0.278

(± 0.021)

Brain score 

(retrained)

0.341

(± 0.027)

0.345

(± 0.028)

0.348

(± 0.027)

0.341

(0.024)

0.336

(± 0.023)

0.349

(± 0.024)

0.338

(± 0.024)

0.342

(± 0.025)

Compressed network

Brain score 

(injured)

0.343

(±0.028)

0.291

(± 0.025)

0.290

(± 0.024)

0.276

(± 0.018)

0.279

(± 0.018)

0.314

(± 0.020)

0.258

(± 0.020)

0.267

(± 0.020)

0.266

(± 0.017)

Brain score 

(retrained)

0.348

(± 0.026)

0.342

(± 0.023)

0.343

(± 0.022)

0.346

(0.026)

0.342

(± 0.025)

0.335

(± 0.025)

0.320

(± 0.024)

0.300

(± 0.020)

The Brain-Score values tend to decrease as injury is progressively applied, but become comparable to the healthy models’ Brain-Scores with retraining.
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network all at once without allowing it to retrain in between or during 
injury ignores this important ability of the human brain. Previous 
works using CNNs to model neurodegenerative diseases used a static 
injury paradigm that led to extreme loss of object recognition abilities 
even with low levels (i.e., 15–20%) of synapses injured (Lusch et al., 
2018; Tuladhar et al., 2021; Moore et al., 2022).

The main finding of the current study is that with the 
incorporation of retraining to simulate neuroplasticity after the 
progression of injury, the models’ object recognition abilities 
progressively decline at a much smoother and slower rate than without 
retraining. This slow decline is more akin to the degradation of 
cognitive abilities seen in patients with AD and it’s PCA variant 
(Hodges et al., 1995; Fox et al., 1999; Jefferson et al., 2006) than the 
decline patterns previously observed. Expanding upon this previous 
research simulating statically imposed injury, here we developed a 
framework that is able to simulate irreversible injury, while the 
unaffected filters and weights were subjected to ‘re-learning’ processes 
to stimulate reorganization of the information flow that makes use of 
existing reserve capacities in the injured model. We found that the 
retrained models were able to compensate for the damaged pathways 
(synapses) and reconstruct the original activation patterns of the 
healthy models to a large extent when presented with images in the 
test set. Additionally, in this work we validate that this ability was not 
a direct function of initial model size. Generally, it is reasonable to 
expect that after being injured, an overparameterized model may 
exhibit large gains in task performance with retraining. However, here 
we show that a model that is much more compressed, and thus highly 
optimized in terms of number of parameters, displays remarkably 
similar abilities to re-gain task performance using increasingly 
minimal available pathways through the network, which is more 
similar to the human brain. Thus, we believe that the introduction of 
the biologically important concept of neuroplasticity, which equips 
our CNNs with a retraining mechanism, can be seen as an important 
step toward developing biologically more meaningful in-silico models 
of neurodegenerative diseases and other injuries of the human brain.

4.2 Limitations and future work

One important limitation of this work is related to the notable 
differences in information processing between CNNs and the 
biological visual system (Lonnqvist et al., 2021) (e.g., convolutional 
filters are global in a CNN while the human visual system also has 
filtering units that are responsible for certain parts of the receptive 
field). However, while this remains to be true, the object recognition 
performance of CNNs is comparable to that of humans, and CNNs 
have the ability to predict neural activation in the primate visual 
cortex better than any other computational model to date (Cadieu 
et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 
2014). While a CNN works very differently at the neural level, the 
general organization is broadly representative of a visual network 
with a hierarchy of connections. We see this work as utilizing the 
similarities between CNNs and the visual cortex to further develop 
the feasibility of using deep learning models as an in-silico model for 
neurodegenerative diseases. The success of convolutional neural 
networks for predicting neural activity in the visual cortex makes 
them excellent models for modelling visual cognition. In theory, the 
setup presented in this work can be extended to other brain regions 

and cognitive or motor functions. For example, language models 
could be used to investigate how lesions in the auditory and frontal 
cortex affect language function. However, it should be noted that 
more research is probably needed first to investigate how similar 
other deep learning models for other tasks are to the human brain 
akin to the comparably extensive research investigating the biological 
feasibility of CNNs. Furthermore, while CNNs are well accepted 
models of the human visual system, there may be opportunities to 
increase the similarities to the human brain even more (Lake et al., 
2015). Future work may be extended to simulate different neural 
damage, such as more localized lesions to model conditions like 
cerebral stroke or multiple sclerosis.

As previously mentioned, patients with AD often undergo 
cognitive assessments that probe visual object recognition abilities and 
recall (i.e., the Boston Naming Test). Such visual assessments together 
with longitudinal, high-resolution MRI data to assess atrophy could 
be  used in future to optimize and validate the proposed in-silico 
model of AD but is outside the scope of this work.

Crucial future directions for this work will be to further investigate 
the details surrounding the iterative retraining process, as well as more 
realistically represent disease progression. Such investigation will 
allow for the exploration of rehabilitation strategies in terms of what 
methods of retraining enable in-silico models to regain the most 
function. Additionally, we can provide models with training data that 
are directly related to the types of errors the models begin to make 
with initial injury. This could be  compared against re-training 
strategies that would simply re-use all initial training data. In addition, 
it may be important to evaluate the effects of other variables such as 
training the network on new data rather than previously seen data, or 
adjusting the number of epochs used in one iteration of retraining. 
Some studies have identified that specific task-oriented cognitive 
training strategies (i.e., face recognition practice) show higher 
memory related brain activity and task performance for patients with 
Alzheimer’s disease (Cotelli et al., 2006; Choi and Twamley, 2013). 
Notably, it may be possible to model different pathological processes 
of AD by gradually decaying weight values to zero rather than fully 
removing synapses in a single iteration. This could, for example, 
be used to simulate the accumulation of hyperphosphorylated tau, 
which is often assumed to precede synaptic death.

By probing these types of differences in network plasticity and 
recovery, it may be possible to identify optimal intervention strategies 
and relate these findings to rehabilitation techniques used in patients 
with dementia. This study lays further groundwork toward using deep 
learning models to effectively simulate disease progression, with 
(bright) potential to develop cutting edge in-silico models.
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Multiple Sclerosis (MS) is an autoimmune disease that combines chronic
inflammatory and neurodegenerative processes underlying di�erent clinical forms
of evolution, such as relapsing-remitting, secondary progressive, or primary
progressive MS. This identification is usually performed by clinical evaluation at
the diagnosis or during the course of the disease for the secondary progressive
phase. In parallel, magnetic resonance imaging (MRI) analysis is a mandatory
diagnostic complement. Identifying the clinical form from MR images is therefore
a helpful and challenging task. Here, we propose a new approach for the automatic
classification of MS forms based on conventional MRI (i.e., T1-weighted images)
that are commonly used in clinical context. For this purpose, we investigated
the morphological connectome features using graph based convolutional neural
network. Our results obtained from the longitudinal study of 91 MS patients
highlight the performance (F1-score) of this approach that is better than state-
of-the-art as 3D convolutional neural networks. These results open the way for
clinical applications such as disability correlation only using T1-weighted images.

KEYWORDS

multiple sclerosis, graph convolutional network, CNN, classification, brainmorphological

connectivity, gray matter thickness

1 Introduction

Multiple sclerosis (MS) is a chronic autoimmune inflammatory and demyelinating

disease of the central nervous system. While its etiology is still unknown (Polman et al.,

2011), MS is the first cause of non-traumatic neurological disability in young adults, affecting

about 2.8 million people worldwide (Goodin, 2014). Often starting with a preliminary

clinical isolated syndrome (CIS) involving a large heterogeneity of clinical symptoms such as

weak limbs, blurred vision, dizziness, fatigue, or tingling sensations, the disease may evolve

along twomain clinical courses. In 85% of patients, the disease starts as a relapsing-remitting

course (RRMS, noted RR), with the occurrence of relapses. These RRMS patients can evolve

over time into a non-systematic secondary-progressive course (SPMS, noted SP). In the 15%

remaining patients, the disease evolves as primary-progressive MS (PPMS, noted PP) which

corresponds to a steadily worsening of symptoms over time without any relapses (Lublin

et al., 2014). The current McDonald diagnostic criteria for MS combine clinical assessment,

imaging, and laboratory findings (Thompson et al., 2018). Despite such clinical classification,

the status and the evolution of each patient could be very different from one to another,

leading more and more to individual therapeutic approaches. Thus, to propose personalized
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medical care and therapy, the neurologist needs to better predict the

disease evolution based on early clinical, biological, and imaging

markers available from disease onset.

Magnetic Resonance Imaging (MRI) is the most effective tool

for the diagnosis of MS and for monitoring the disease modifying

treatment. Conventional MRI provides T1-weighted (T1w), T2-

weighted (T2w) and FLAIR images allowing the detection and

follow-up of white matter (WM) lesions for clinical care (Mure

et al., 2016). These conventional sequences allow the quantification

of whole brain, WM or gray matter (GM) atrophy using dedicated

software. More advanced MRI sequences such as diffusion-

weighted imaging (DWI) and diffusion tensor imaging (DTI)

have been developed to provide more sensitive markers of the

inflammation processes occurring in WM and leading to T1- and

T2-lesions. Several metrics of DTI such as the fractional anisotropy

and the mean diffusion enable the detection of micro-architectural

alterations in WM lesions as well as in normal-appearing WM

(Jutten et al., 2019).

More recently, graph theory methods have been used to

model brain network organization (Rubinov and Sporns, 2010;

Guo et al., 2017). These graph models consist of nodes, based

on the parcellation of brain GM regions, and edges, determined

by the underlying links between the network nodes. In brain

structural connectivity, these links are defined by the extraction

of WM fibers using DTI tractography (Hagmann et al., 2007).

Previously, Kocevar et al. (2016) have demonstrated an interest

of such approaches for the classification of MS clinical profiles

usingMachine Learning (ML)methods, whileMarzullo et al. (2019)

improved the classification performance by a first approach using a

Deep Learning (DL) model.

However, DTI data used for structural connectivity modeling

require long acquisition time and complex processing techniques,

which limits its applicability in clinical practice. Nevertheless,

brain connectivity can also be obtained from conventional

MRI by measuring morphological metrics of the GM on T1w

images (Raamana and Strother, 2018). Indeed, several imaging

investigations have shown that GM atrophy is present early in

MS (Durand-Dubief et al., 2012; Eshaghi et al., 2018). Narayana

et al. (2013) has found significant cortical thinning in RRMS

patients compared to healthy subjects. Hence, the GMdegeneration

used in brain morphological connectivity models could provide a

sensitive marker of the disease evolution. In such graphs, nodes

represent GM areas obtained from the GM tissue parcellation,

while edges represent a degree of (dis-)similarity between nodes

features like GM thickness or curvature (MacDonald et al.,

2000). Such approach has been recently used in Alzheimer’s

Disease (AD), showing that GM network measures predicted

hippocampal atrophy rates in preclinical AD, in contrast to other

AD biomarkers (Dicks et al., 2020). Also, Mahjoub et al. (2018)

proposed to use morphological connectivity to discriminate late

mild cognitive impairment from AD patients. Several studies

of GM morphological network were used in Autism Spectrum

Disorder (ASD) patients. Kong et al. (2019) proposed an auto-

encoder-based deep neural network to identify ASD patients from

typical controls, while Corps and Rekik (2019) used morphological

networks to estimate the ASD patients’ age and deduce the

age-related cortical regions. In MS, Muthuraman et al. (2016)

analyzed morphological GM thickness networks to classify CIS

and RRMS patients using the Support Vector Machine model,

obtaining a good level of accuracy. Meanwhile, several studies

used graph metrics of GM networks to characterize MS patients.

Hawkins et al. (2020) found reduced global efficiency and a more

random network in RRMS subjects with cognitive impairment.

Likewise, lower node degree and connectivity density were found

by Rimkus et al. (2019) in MS patients with cognitive impairment.

Rocca et al. (2021) combined functional connectivity and GM

network to predict clinical worsening in MS, confirming that

GM atrophy is an important predictor for the conversion from

RRMS to SPMS. By using the source-based morphometry approach

to decompose the cortical thickness map into different patterns,

Steenwijk et al. (2016) have further shown that several anatomical

patterns are strongly associated with clinical dysfunction in MS

patients. Meanwhile, several studies also addressed the problem of

age/gender and cortical thickness correlation, and removed their

effects before further analysis. Eshaghi et al. (2016) fitted the linear

regression between age and GM measurements and took only

the residual part to classify MS cohort from neuromyelitis optical

patients. Given the graph nature of brain connectivity, the use of

graph neural network (GNN) to process such data is an evitable

path. GNN allows us to deal with the heterogeneity of input data

by capturing the message passing across nodes (Bronstein et al.,

2021). More specifically, graph convolutional network (GCN),

a reimplementation of convolution concept on GNN, is now

ubiquitous in solving problems on non-euclidean data.

In the meantime, the application of convolutional neural

network (CNN) has proven its strong ability in computer vision,

especially in the biomedical image processing field. Leclerc et al.

(2019) has successfully delineated cardiac structure on ultrasound

images through an encoder-decoder-based model. 3D-CNN, a

particular type of CNN, has been widely used in medical context

since a huge amount of medical images were acquired and

reconstructed in 3 dimensions. Various studies have focused

on disease detection from anatomical neuroimaging (Wargnier-

Dauchelle et al., 2023). Huang et al. (2019) have built a VGG-like

CNN to adapt 3D image challenge for the purpose of Alzheimer’s

Disease (AD) classification using both T1w-MRI and FDG-PET

modalities for a better outcome. Folego et al. (2020) have adapted

LeNet, VGGNet, GoogLeNet, and ResNet in 3D domain to the aim

of AD detection. Flaus et al. (2022) has proposed a 3D sequential

ResNet to enhance PET images for better visualization of brain

lesions. A transparent CNN framework proposed by Eitel et al.

(2019) has revealed the decision process of CNN in the diagnosis of

MS and pointed out more disease-relevant features in MR images.

Optic nerve lesions, one of the first manifestations of MS, can

be detected by the 3D-CNN model designed by Marti-Juan et al.

(2022).

In this study, we proposed to use GCN for the classification

of MS clinical forms based only on the measurement of GM

morphological feature (thickness) obtained from T1w-MRI. The

impacts of different methodological parameters such as the spatial

resolution of the GM parcellation atlases and the level of different

graph thresholds were compared. Finally, in order to demonstrate

the interest of GCN for MS clinical forms classification, we

compared the GCN with a classic 3D-CNN approach.
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TABLE 1 MS cohort description of 660 scans including

relapsing-remitting (RRMS), primary-progressive (PPMS), and

secondary-progressive (SPMS) patients.

RRMS PPMS SPMS

Number of patients

(F/M)

42 (30/12) 21 (12/9) 28 (11/17)

Number of scans 299 143 218

Mean age at disease

onset

28.5 35.0 27.6

Mean age at each

scan (range)

35.4 (20.5–53.1) 43.0 (27.8–51.6) 42.9 (28.9–52.2)

Mean disease

duration at first

scan

4.9 5.6 13.4

Mean disease

duration at each

scan

7.3 7.5 15.1

EDSS median

(range)

2 (0–5.5) 4 (2–7.5) 5.5 (3–8.5)

2 Materials and methods

Our method was divided into three steps: (i) cortical feature

extraction using FreeSurfer (Fischl, 2012); (ii) generation of brain

morphological graphs using distance computation and threshold;

and (iii) clinical forms classification using GCN.

2.1 MRI acquisition and data

TheMS patient group (AMSEP) consists of 42 RR, 28 SP, and 21

PP participants included in a longitudinal MRI study. CIS patients

(n = 12) were included in the RR patient group, in accordance

with our clinical expert. Patients (n = 3) with change in clinical

forms have been removed from the MS group. The patients

underwent MR scans on a 1.5T Siemens Sonata system using

an 8-channel head-coil at the Lyon CERMEP imaging platform,

including a sagittal millimetric 3D-T1 MPRAGE (magnetization

prepared rapid gradient echo-MPRAGE) sequence [(TR/TE/TI) =

1970/3.93/1100 ms, flip angle = 15◦, field of view (FOV) = 256 ×

256mm, slice thickness = 1mm, voxel size = 1× 1× 1mm]. Table 1

provides information on the clinical data in further detail. During

the first 3 years, MRI exams were performed every 6 months, and

every year during the following years. These make up a MS patient

dataset of 660 scans in total as detailed in Table 1. A healthy control

(HC) group of 21 subjects following the AMSEP protocol was

included in this study.

Another HC group of 314 scans from the IXI dataset

(http://brain-development.org/ixi-dataset/) was introduced for the

training process (noted IXI). These healthy subjects underwent

MR scans on a 1.5T Philips Gyroscan Intera system using a T1w

sequence (TR/TE = 9813/4603 ms, flip angle = 8◦, 192 phase

encoding steps, reconstruction diameter = 240 mm). These make

up a HC dataset of 335 scans in total as detailed in Table 2.

TABLE 2 Healthy controls cohort description of 335 T1-weighted MRI

including 21 healthy controls (HC-AMSEP) acquired with the same

protocol as MS cohort and 314 healthy controls (HC-IXI) obtained from

the open-access IXI dataset.

HC HC-AMSEP HC-IXI

Number of subject (F/M) 21 (14/7) 314 (175/139)

Number of scans 21 314

Mean age at scan 42.9 (21.6–56.5) 50.8 (20.1–86.2)

2.2 Classification using graph-based
convolutional network

As we explore the ability of cortical anatomical changes to

identify MS forms, we extract features related to the shape of

cortical regions.With such features, we then build a graph reflecting

shape similarities between cortical regions and use the graphmatrix

to train the GCN. The full pipeline of the proposed network is

shown in Figure 1.

2.2.1 Feature extraction
In order to obtain features of cortical regions, the brain GM

was first segmented (Figure 1), the cortical surface was parcellated

intoN regions using a dedicated brain atlas. Morphological features

of each region can thus be calculated and represented as a vector

of values.

Automatic segmentation of GM and cortical surface

reconstruction were performed on all T1w-MRI using FreeSurfer

v6.0.0 image analysis suite (Fischl, 2012), a neuroimaging toolkit

for human brain analysis. This includes 31 preprocessing steps

such as motion correction, intensity normalization, skull stripping

and non-linear registration. All FreeSurfer processing steps were

done on the Virtual Imaging Platform (Glatard et al., 2013), the

1,001 images were processed simultaneously and it took 6 h per

image on average. The input T1w-MRI brain was resampled onto

an average brain (fsaverage) generated from 40 subjects using

the Buckner dataset. The Buckner dataset is a subset of a large

structural dataset created by the Buckner Lab, it was specifically

selected for the intermediate processing step of FreeSurfer. The

obtained cortical surface consists of a mesh with 163842 vertices.

All outputs were smoothed at full-width/half-max (FWHM) value

of 10 mm.

These smoothed outputs are then parcellated. In order to study

the impact of the number of cortical regions N, three different

atlases were used for brain parcellation and graph generation,

namely the Desikan-Killiany (Desikan et al., 2006) with N = 68

regions, Destrieux (Destrieux et al., 2010) with N = 148 regions

and Glasser (Glasser et al., 2016) with N = 360 regions. The

cortex parcellation of the average template brain is demonstrated

in Figure 2.

More specifically, a region number i (with i = 1 . . .N) was

assigned to each vertex according to the atlas chosen by registering

the patient’s brain mesh to the template brain. As mainly used in

brain connectivity studies (reference), the cortical thickness was

chosen as the morphological feature and calculated for each region.
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FIGURE 1

Proposed pipeline for GCN classification. The upper steps illustrate the cortical gray matter regions segmentation from T1w-MRI and parcellation
using three atlases, the region feature extraction (thickness) and its vector values. The bottom steps describe the graph construction followed by the
GCN classification network. Four threshold levels are applied on graphs (0, 60, 70, 80%), leading to four graphs per atlas. In summary, 12 networks are
trained separately (3 atlases, 4 threshold levels) on 660 scans.

FIGURE 2

Representation of the cortical parcellation of the three atlases: (A) Desikan-Killiany; (B) Destrieux; (C) Glasser.

Since each region feature is a vector of thousands of

elements on average, we summarize the distribution of the

thickness values within one region i by a vector xi ∈

R
4 containing the mean value, the standard deviation, the

skewness, and the kurtosis: xi = (µi, σi, γi, ki). We called

the feature matrix X ∈ R
N×4 the combination of the

N vectors xi.

2.2.2 Age and gender normalization
Since women and men have different cortical atrophy

manifestations with age (Narayana et al., 2013), we proposed two

methods to normalize xi: a proportional normalization and a

residual normalization. For the proportional normalization, we first

calculated the average cortical thickness of the whole brain of all

MS patients and healthy subjects from the IXI dataset. Then, we
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performed a linear regression between age and cortical thickness

as:

Cth = a ∗ age+ b

where Cth is the average cortical thickness of one person. Two

different sets of coefficients (af , bf ) and (am, bm) were calculated

for healthy women and men respectively. If the slope represents the

normal aging effect, we applied this slope to the MS patients group

to correct the effect of age and sex. All MS patients’ measurements

were brought to the age of 20. Thus, the corrected thickness Cth20
of a patient can be expressed as:

Cth20 = a ∗ 20+ b′ = a ∗ 20+ Cth− a ∗ age

Therefore, the adjusted feature vector x′i of each region with

proportional correction with coefficient α =
Cth20
Cth

can be

represented as: x′i = (αµi,ασi, γi, ki). The modified vectors were

then used to calculate the new proportional normalized graphs

following the same procedure as described above.

Inspired by the work of Eshaghi et al. (2016), we also proposed

to adjust each cortical region for the effect of age and gender.

For every brain region i of the healthy cohort, we fitted a linear

regression where age was the regressor and the four attributes of

the region were dependent variables. Therefore, for the four values

of the feature vector, we have:

µi = a
(µ)
i ∗ age+ b

(µ)
i

σi = a
(σ )
i ∗ age+ b

(σ )
i

γ (i)
= a

(γ )
i ∗ age+ b

(γ )
i

ki = a
(k)
i ∗ age+ b

(k)
i

We then estimated the residual of each variable that was

inexplicable by the healthy linear regression model: r
(µ)
i = µ̂i −

µi = a
(µ)
i ∗ age + b

(µ)
i − µi for example in the case of average

cortical thickness measure. The residual feature vector of one

region became: ri = (r
(µ)
i , r

(σ )
i , r

(γ )
i , r

(k)
i ). The residual vectors were

also used to calculate the residual graphs that were further used in

the GCN classification. Notice that these regressions are performed

for both males and females separately.

2.2.3 Graph generation
A graph G is a mathematical representation of a complex

system and is defined by a collection of nodes V and edges E

between pairs of nodes with the possibility to assign a weighted

value w for each edge:

G = (V ,E,w)

Therefore, a brain can be described as a graph, with each brain

region being represented by a node xi, or x
′

i and ri in case of

normalization. Here, we associate four attributes (mean value µ,

standard deviation σ , skewness γ , and kurtosis k) to each node.

The graph representation of brain morphological connectivity was

defined as the dissimilarity across brain regions. We propose to

compare two distances to calculate the region-wise connections.

The first one is the Mahalanobis distance dM :

dM(xi, xj) =
(

(xi − xj)
TS−1(xi − xj)

)1/2

with S the covariance matrix of samples xi and xj.

The second studied distance is the Taxicab (or Manhattan)

distance dT :

dT(xi, xj) =

4
∑

k=1

|xki − xkj |

where xki is the kth dimension of the vector xi.

The adjacent matrix A ∈ R
N×N is computed for all distances

between xi and xj: A(i, j)X = d(xi, xj).

Using both X and A, we generate weighted and undirected

graphs. The edge weights are given by the adjacent matrix.

Thresholds were used to counteract the impact of the

redundant information given by the brain adjacent matrix. A fixed

rejection quantile τ is used as a threshold value to remove the

lowest distances and thus maintains the same graph density for

each subject.

For graph availability, the reader can refer to Section 5.

2.2.4 GCN classification
Graph convolutional networks were used as they exploit input

data through graph structure. As a dimension reduction tool,

graph representation can largely reduce input data size from 12

MB to 130 KB on average in our case. Intuitively speaking, brain

network topology is an alternative method of image analysis.

Sporns (2018) have confirmed the importance of graph theory for

the understanding of brain structure. Based on our previous results

using brain structural graph analysis (Marzullo et al., 2019), we

explore a new approach using brain morphological graph.

For the graph G = (V ,E,w), the algorithm takes the adjacent

matrix A and the associated node features matrix X as input. The

layer-wise propagation rule is defined as follows (Kipf andWelling,

2017):

H(l+1)
= σ (D̃−

1
2 ÃD̃−

1
2H(l)W(l))

Where Ã is the sum of A with the identity matrix I, D̃ is the

corresponding diagonal degree matrix and the adjacent matrix is

normalized by the step D̃−
1
2 ÃD̃−

1
2 . W l represents the trainable

weight over each layer. The RELU activation function σ (x) =

max(0, x) is chosen for σ .

2.2.5 GCN architecture
The proposed GCN classification model was composed of 3

GCN layers followed by a global mean pool layer with a dropout

rate of 0.3 to prevent overfitting. The proposed structure is shown

in Figure 3. This led to 8835 trainable parameters.
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FIGURE 3

The overall structure of the proposed graph-based convolutional network. N is the number of regions according to the atlas chosen. Four represents
the four elements of the feature vector per region. Input of the network consists of one adjacency matrix (N*N) and one feature matrix (N*4) per
patient. The network starts with three graph convolutional layers of 64 filters each, then gathered into a vector using a global mean pooling. Two fully
connected layers are used to obtain the classification into three classes (RR, PP, SP).

2.3 Classification using 3D convolutional
neural network

To validate our GCN against classically used CNN

architectures, we implemented a 3D-CNN architecture using

a similar architecture by replacing graph convolutional layers

with classical convolutional layers. The output of a filter of a 3D

convolutional layer with kernel W of size (fhxfwxfdxfc) can be

expressed as follows:

zi,j,k = b+

fh−1
∑

p=0

fw−1
∑

q=0

fd−1
∑

r=0

fc−1
∑

c=0

xi′ ,j′ ,k′ ,c.Wp,q,r,c

with

i′ = i+ p−
⌊

fh/2
⌋

and j′ = j+ q−
⌊

fw/2
⌋

and

k′ = k+ r −
⌊

fd/2
⌋

Therefore, a 3D-CNN model was constituted of three 3D

convolutional layer sets, including a 3D convolutional layer (kernel

of 3× 3× 3), followed by a max pooling layer (subsampling spatial

support by 2 × 2 × 2) and then a batch normalization layer. The

tensor is then flattened and used as input of two consecutive fully

connected layers of 128 and 2 neurons, respectively. These made up

of 22,548,122 trainable parameters of the CNN network.

Before using a deep neural network to classify the 3D MRI, all

scans were pre-processed using the brain extraction tool (BET) of

FMRIB Software Library in order to eliminate non-brain structures.

Then, the 3D-CNN image classification network predicts the class

(RR, SP, or PP) of the T1w image of a patient’s brain used as input.

The architecture used is summarized in Figure 4. To prevent over-

fitting, a dropout (Srivastava et al., 2014) rate of 0.3 is applied after

the flattening layer.

As it is known that CNN classification needs numerous data to

perform well, we compared its performance with the classification

results using a graph-based neural network.

2.4 Experimental settings

According to our previous study using brain morphological

connectivity (Barile et al., 2022), 4 threshold levels τ ∈

{0, 0.6, 0.7, 0.8}were applied to the adjacent matrix computed using

the 3 atlases and the 2 distances. Thus, each GCN classification is

carried out in 72 different ways, and one for CNN.

For both network architectures, the MS images were divided

into two datasets: approximately 80% of scans used for training

and 20% of the scans used only for testing, i.e., to evaluate the

performance of networks. To avoid the impacts of repetition of the

same patient, we carefully grouped all time points of one patient in

the same train or test set using the stratified group k-fold technique.

The exams of the same patient won’t be in the train set and test

set simultaneously.

The precision, recall, and the F1-score were used to assess both

algorithms’ effectiveness. To provide a more thorough assessment

of the two models, cross-validation using five-folds was performed.

From hyperparameters manual optimization, we use the Adam

optimizer with a learning rate of 0.001 for GCN and the

Stochastic Gradient Descent optimizer with a learning rate of 0.001

for 3D-CNN.

GCN was trained on one GPU (NVIDIA GeForce RTX 3060),

and CNNwas trained on oneNVIDIARTXA5000. All experiments

were done using PyTorch.

For code availability, the reader can refer to Section 5.

3 Results

In this section, we first present the GCN classification tasks and

then the results without age and gender normalization to allow the

comparison with 3D-CNN classification results. Second, the GCN

classification results with age and sex normalization are presented.

3.1 Clinical forms classification tasks

Six classification tasks related to clinical needs were

implemented: (1) RR vs. PP; (2) RR vs. SP; (3) PP vs. SP; (4)

RR vs. PP+SP; (5) RR vs. PP vs. SP; (6) MS vs. HC. For this last task,

the train set consists of 619 MS scans and 290 randomly selected

scans from the IXI dataset. For the test set, 42 scans were selected

from the MS group (24 RRMS, 10 PPMS, 8 SPMS) along with the

21 HC-AMSEP scans from the same study and 24 HC-IXI scans

from the IXI dataset. For the other tasks, only the MS patients
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FIGURE 4

The overall structure of the proposed 3D-CNN network. It starts with three convolutional layers of 16, 32, and 64 filters respectively, each
convolution layer followed by a max pooling layer. The tensor is then flattened and two fully connected layers are used to obtain the classification
into three classes (RR, PP, SP).

dataset was used. A five-fold stratified cross-validation scheme was

applied for all tasks.

3.2 GCN classification

3.2.1 Without normalization
F1-score of the three atlases (Desikan-Killiany, Destrieux,

Glasser), four rejection rates and two distance calculation

approaches were compared as shown in Tables 3, 4. Precision and

Recall measures of corresponding experiments were included in

Supplementary material.

Comparing classification results task by task, the best result

was always found using Mahalanobis instead of Taxicab distance

for the dissimilarity measurement. The classification of RR vs. PP

gave the best result when an 80% rejection rate was applied to the

Destrieux atlas with an F1-score of 72.5%. The separation between

RR and SP patients provides an F1-score of 72.2% using an 80%

rejection rate on the Glasser atlas. By grouping the PP and SP in a

neurodegenerative group, the binary classification of RR vs. PP+SP

reached an F1-score of 68.9%. The best three classes classification

was obtained using an 80% rejection rate on the Glasser atlas with

an F1-score of 64.2%. The optimal PP/SP splitting leading to an F1-

score of 53.1% was obtained using the Glasser atlas and a rejection

rate of 70%. Finally, all GCN classification networks can achieve a

great result on MS vs. HC task (100% F1-score on the predefined

unseen test dataset). Atlas-wise speaking, for Mahalanobis distance

measurement, a 60% rejection rate gave the best result on the

Desikan-Killiany atlas, while an 80% rejection rate yielded the

best outcome on both Destrieux and Glasser atlases. For Taxicab

distance measurement, a 70% rejection rate gave the best result on

the Desikan-Killiany atlas, the graph without rejection generated

the best on the Destrieux atlas, and a 60% rejection rate achieved

the best performance on the Glasser atlas.

3.2.2 With normalization
In order to correct for age and gender, two normalization

methods have been carried out. The results obtained using three

atlases and two distance methods are shown in Tables 5–8. The best

RR/PP separation can be found when the residual normalization

was carried out to the Desikan-Killiany atlas with a threshold

of 80%. The proportional normalization method applied to the

Glasser atlas with an 80% rejection rate generated the best results of

RR vs. SP, RR vs. PP+SP, and RR vs. PP vs. SP with F1-scores 71.1,

67.8, and 62.1% respectively. The best result of PP/SP classification

can be found in residual normalization on the Desikan-Killiany

atlas (rejection rate = 0) with an F1-score of 64.2%. For the

proportional normalization method, the best overall result can be

found using the Glasser atlas with 80% threshold. The best overall

result for the residual normalization method was carried out by the

same atlas with 60% threshold.

3.3 Comparing CNN and GCN

The results of the comparison between 3D-CNN classification

and GCN without normalization are shown in Table 9. Comparing

RR individually with PP and SP, 3D-CNN returned an F1-score of

72.1% and 69.7% respectively, which are slightly lower than GCN

results. The separation between the RR and PP+SP groups on the

F1-score was greater than that of the GCN technique at 70.7%.

The 3D-CNN method generated a similar result on the multi-

class classification task with an F1-score of 63.9%. Finally, 3D-CNN

achieved a lower result than GCN for the PP vs. SP partition with a

49.5% F1-score. Overall, the best results were obtained using GCN

over 3D-CNN while implementing an 80% rejection rate on the

Glasser atlas and the Mahalanobis distance.

4 Discussion

Graph Convolutional Network is an innovative approach for

the classification of clinical forms in multiple sclerosis. While

functional and structural connectivities were previously used

and provided good results (Ktena et al., 2018; Marzullo et al.,

2019), they were constrained by the small size of the database

available in clinical routine. To overcome this limitation, one

approach is to develop a morphological connectivity method

requiring only anatomical T1w MRI for brain studies. In order

to test such a hypothesis, we developed a complete pipeline using

morphological connectivity and graph convolutional networks. To
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TABLE 3 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Mahalanobis graph for three parcellation

atlases and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.701± 0.076 0.698± 0.068 0.706 ± 0.056 0.703± 0.052

RR vs. SP 0.684± 0.064 0.7 ± 0.077 0.684± 0.061 0.674± 0.08

RR vs. PP + SP 0.654 ± 0.088 0.648± 0.081 0.647± 0.081 0.638± 0.071

RR vs. PP vs. SP 0.594± 0.047 0.593± 0.059 0.603 ± 0.037 0.567± 0.043

PP vs. SP 0.438± 0.092 0.475 ± 0.073 0.466± 0.064 0.465± 0.101

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.72± 0.103 0.721± 0.089 0.721± 0.088 0.725 ± 0.085

RR vs. SP 0.684± 0.065 0.679± 0.066 0.666± 0.055 0.686 ± 0.07

RR vs. PP + SP 0.649± 0.074 0.657 ± 0.061 0.656± 0.058 0.642± 0.071

RR vs. PP vs. SP 0.569± 0.037 0.588± 0.059 0.587± 0.057 0.596 ± 0.066

PP vs. SP 0.485 ± 0.05 0.45± 0.054 0.479± 0.058 0.466± 0.073

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.702± 0.096 0.722 ± 0.102 0.711± 0.099 0.714± 0.079

RR vs. SP 0.711± 0.062 0.71± 0.059 0.694± 0.071 0.722 ± 0.067

RR vs. PP + SP 0.627± 0.085 0.681± 0.085 0.687± 0.084 0.689 ± 0.095

RR vs. PP vs. SP 0.609± 0.038 0.634± 0.055 0.62± 0.066 0.642 ± 0.063

PP vs. SP 0.495± 0.076 0.479± 0.076 0.531 ± 0.115 0.471± 0.077

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.

TABLE 4 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Taxicab graph for three parcellation atlases

and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.701± 0.075 0.709 ± 0.065 0.706± 0.056 0.693± 0.097

RR vs. SP 0.682± 0.061 0.671± 0.063 0.684 ± 0.061 0.671± 0.052

RR vs. PP + SP 0.654± 0.087 0.662± 0.08 0.667 ± 0.073 0.646± 0.078

RR vs. PP vs. SP 0.596± 0.047 0.601± 0.04 0.603 ± 0.037 0.571± 0.033

PP vs. SP 0.437± 0.092 0.458± 0.07 0.466± 0.064 0.471 ± 0.07

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.721± 0.103 0.719± 0.097 0.721 ± 0.088 0.709± 0.075

RR vs. SP 0.683 ± 0.064 0.674± 0.054 0.666± 0.055 0.649± 0.064

RR vs. PP + SP 0.65 ± 0.075 0.647± 0.074 0.649± 0.066 0.648± 0.064

RR vs. PP vs. SP 0.569± 0.037 0.587 ± 0.055 0.587± 0.057 0.58± 0.057

PP vs. SP 0.481± 0.05 0.476± 0.057 0.479± 0.058 0.493 ± 0.043

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.701± 0.095 0.722 ± 0.096 0.711± 0.099 0.696± 0.099

RR vs. SP 0.711 ± 0.063 0.708± 0.069 0.694± 0.071 0.672± 0.035

RR vs. PP + SP 0.628± 0.086 0.656 ± 0.09 0.653± 0.096 0.63± 0.09

RR vs. PP vs. SP 0.609± 0.039 0.629 ± 0.068 0.62± 0.066 0.593± 0.065

PP vs. SP 0.494± 0.073 0.513± 0.089 0.531 ± 0.115 0.526± 0.09

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.
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TABLE 5 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Mahalanobis age-gender proportional

adjusted graph for three parcellation atlases and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.582± 0.091 0.581± 0.111 0.616 ± 0.091 0.611± 0.096

RR vs. SP 0.613 ± 0.08 0.609± 0.07 0.6± 0.066 0.591± 0.065

RR vs. PP + SP 0.615± 0.058 0.622± 0.044 0.625 ± 0.047 0.592± 0.048

RR vs. PP vs. SP 0.545 ± 0.049 0.551± 0.069 0.535± 0.068 0.529± 0.049

PP vs. SP 0.428± 0.044 0.491 ± 0.056 0.45± 0.043 0.463± 0.083

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.629± 0.118 0.635 ± 0.115 0.625± 0.115 0.605± 0.127

RR vs. SP 0.63± 0.076 0.634± 0.076 0.632± 0.102 0.647 ± 0.105

RR vs. PP + SP 0.608 ± 0.068 0.601± 0.05 0.602± 0.069 0.589± 0.054

RR vs. PP vs. SP 0.546± 0.043 0.548± 0.056 0.558± 0.061 0.58 ± 0.073

PP vs. SP 0.476± 0.044 0.471± 0.055 0.494 ± 0.058 0.49± 0.066

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.635± 0.146 0.668± 0.124 0.669± 0.122 0.671 ± 0.117

RR vs. SP 0.638± 0.092 0.679± 0.117 0.692± 0.114 0.711 ± 0.107

RR vs. PP + SP 0.619± 0.063 0.643± 0.071 0.657± 0.075 0.678 ± 0.063

RR vs. PP vs. SP 0.578± 0.077 0.582± 0.065 0.6± 0.044 0.621 ± 0.032

PP vs. SP 0.592 ± 0.086 0.569± 0.097 0.525± 0.09 0.533± 0.116

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.

TABLE 6 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Taxicab age-gender proportional adjusted

graph for three parcellation atlases and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.588± 0.089 0.581± 0.111 0.615 ± 0.092 0.611± 0.096

RR vs. SP 0.607± 0.08 0.609 ± 0.071 0.6± 0.066 0.591± 0.063

RR vs. PP + SP 0.615± 0.06 0.622± 0.045 0.626 ± 0.047 0.592± 0.047

RR vs. PP vs. SP 0.542 ± 0.049 0.55± 0.069 0.535± 0.068 0.529± 0.046

PP vs. SP 0.427± 0.044 0.49 ± 0.053 0.451± 0.042 0.462± 0.083

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.632± 0.119 0.636 ± 0.116 0.631± 0.111 0.605± 0.128

RR vs. SP 0.637± 0.075 0.633± 0.09 0.631± 0.101 0.647 ± 0.105

RR vs. PP + SP 0.609 ± 0.067 0.601± 0.051 0.601± 0.07 0.588± 0.054

RR vs. PP vs. SP 0.546± 0.042 0.549± 0.056 0.558± 0.061 0.58 ± 0.074

PP vs. SP 0.48± 0.045 0.473± 0.057 0.493 ± 0.057 0.489± 0.067

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.618± 0.12 0.645± 0.098 0.63± 0.117 0.655 ± 0.085

RR vs. SP 0.627± 0.092 0.669± 0.11 0.686± 0.106 0.7 ± 0.096

RR vs. PP + SP 0.606± 0.055 0.0.632± 0.069 0.649± 0.069 0.67 ± 0.059

RR vs. PP vs. SP 0.567± 0.068 0.572± 0.057 0.594± 0.039 0.611 ± 0.029

PP vs. SP 0.6 ± 0.094 0.576± 0.097 0.538± 0.096 0.51± 0.101

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.
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TABLE 7 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Mahalanobis age-gender residual adjusted

graph for three parcellation atlases and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.7± 0.097 0.681± 0.097 0.679± 0.085 0.715 ± 0.069

RR vs. SP 0.578± 0.105 0.577± 0.109 0.579± 0.114 0.581 ± 0.126

RR vs. PP + SP 0.612± 0.055 0.618 ± 0.064 0.603± 0.069 0.61± 0.068

RR vs. PP vs. SP 0.525 ± 0.065 0.484± 0.042 0.488± 0.066 0.503± 0.055

PP vs. SP 0.635 ± 0.079 0.601± 0.09 0.595± 0.098 0.563± 0.118

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.709 ± 0.102 0.693± 0.105 0.697± 0.107 0.696± 0.11

RR vs. SP 0.58± 0.103 0.579± 0.11 0.599± 0.115 0.603 ± 0.124

RR vs. PP + SP 0.558 ± 0.035 0.557± 0.015 0.547± 0.008 0.538± 0.025

RR vs. PP vs. SP 0.483± 0.074 0.476± 0.092 0.481± 0.099 0.49 ± 0.101

PP vs. SP 0.481± 0.105 0.498± 0.094 0.505± 0.083 0.528 ± 0.077

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.711 ± 0.087 0.707± 0.098 0.705± 0.096 0.644± 0.153

RR vs. SP 0.595± 0.132 0.612± 0.131 0.619± 0.138 0.637 ± 0.127

RR vs. PP + SP 0.588± 0.08 0.617 ± 0.083 0.607± 0.088 0.608± 0.094

RR vs. PP vs. SP 0.51± 0.068 0.54 ± 0.082 0.537± 0.083 0.527± 0.066

PP vs. SP 0.566 ± 0.149 0.509± 0.096 0.523± 0.093 0.561± 0.097

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.

TABLE 8 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Taxicab age-gender residual adjusted graph

for three parcellation atlases and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.7± 0.097 0.681± 0.097 0.678± 0.085 0.715 ± 0.072

RR vs. SP 0.579± 0.111 0.58± 0.106 0.583 ± 0.113 0.575± 0.12

RR vs. PP + SP 0.611± 0.055 0.617 ± 0.062 0.607± 0.067 0.609± 0.067

RR vs. PP vs. SP 0.525 ± 0.065 0.485± 0.042 0.482± 0.062 0.503± 0.056

PP vs. SP 0.642 ± 0.079 0.604± 0.088 0.593± 0.101 0.567± 0.124

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.711 ± 0.101 0.693± 0.105 0.694± 0.112 0.696± 0.112

RR vs. SP 0.582± 0.105 0.579± 0.112 0.597± 0.122 0.598 ± 0.123

RR vs. PP + SP 0.553± 0.036 0.56 ± 0.015 0.533± 0.025 0.531± 0.032

RR vs. PP vs. SP 0.491 ± 0.073 0.476± 0.092 0.479± 0.098 0.48± 0.1

PP vs. SP 0.48± 0.106 0.497± 0.091 0.526± 0.076 0.527 ± 0.074

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.713 ± 0.088 0.707± 0.098 0.705± 0.096 0.645± 0.155

RR vs. SP 0.589± 0.126 0.611± 0.131 0.618± 0.135 0.637 ± 0.128

RR vs. PP + SP 0.592± 0.086 0.618 ± 0.084 0.607± 0.088 0.608± 0.09

RR vs. PP vs. SP 0.508± 0.067 0.542 ± 0.083 0.537± 0.081 0.523± 0.062

PP vs. SP 0.567 ± 0.126 0.509± 0.095 0.529± 0.095 0.55± 0.088

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.
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TABLE 9 Best F1-scores (mean value ± standard deviation) of clinical

forms classification using 3D-CNN and GCN [three datasets:

non-normalized (NN) graph, proportional normalized (PN) graph, and

residual normalized (RN) graph].

Tasks 3D-CNN NN GCN PN GCN RN GCN

RR vs.

PP

0.697± 0.124 0.725 ± 0.085 0.671± 0.117 0.715± 0.069

RR vs.

SP

0.721± 0.081 0.722 ± 0.067 0.711± 0.107 0.637± 0.128

RR vs.

PP + SP

0.707 ± 0.066 0.689± 0.095 0.678± 0.063 0.618± 0.084

RR vs.

PP vs. SP

0.639± 0.036 0.642 ± 0.063 0.621± 0.032 0.542± 0.083

PP vs. SP 0.495± 0.06 0.531± 0.115 0.6± 0.094 0.642 ± 0.079

The best F1-scores for each classification task are in bold.

our knowledge, this is the first attempt to use this approach for the

classification of MS clinical forms. Brain graphs were established

based on Desikan-Killiany, Destrieux, and Glasser atlases, for GM

parcellation. Rejection rates of 60, 70, and 80% were applied to

connectivity graphs to preserve solely main differences across brain

regions. Morphological connectivity data were fed into GCN while

3D brain images were loaded in 3D-CNN to compare the two

classification approaches.

First, non-normalized GCN was compared to 3D-CNN, which

was unable to normalize age or gender based on image data.

Generally speaking, GCN has outperformed 3D-CNN on 4 out of 5

predefined tasks when the threshold/atlas pair was carefully chosen.

For the task RR vs. PP+SP, the F1-score generated by GCN was

slightly weaker than the result of 3D-CNN with a 1.8 percentage

point. However, it requires more computation resources to train a

simple 3 convolutional layers network. In our case, GCN only took

5 h for network training while achieving a better result than 3D-

CNN which took more than a week on the same computer. The

proposed pipeline has gained in computation time thanks to its

dimension-reduction ability. Instead of working on 256 × 256 ×

256 volumetric images, the graph approach allowed us to use the

adjacent matrix of size 360× 360 in the most complex case.

The comparison of the two classification networks has also

given us insights into the medical image processing field. In

general, clinical image classification tasks can be easily affected

by acquisition changes (manufacturers, centers, MR field, etc.). In

particular, CNNs are sensitive to intensity changes with the use of

convolution layers. To address this problem, CNN classification

networks must be trained on a large number of images that

represent both the variability of the acquisition process and the

diversity of the patients. Since most medical datasets are composed

of a small number of patients, CNN doesn’t usually generate

well due to its data-thirsty characteristic. In contrast, GCN

can be trained on brain graph features that are less sensitive to

image intensity changes. Indeed, cortical thinning is an important

biomarker of the MS neurodegenerative process that is visible

in T1w images (Narayana et al., 2013). With a brain graph

generated from cortical thickness, these small changes in the brain

were well-captured by the proposed GCN pipeline. Our pipeline

returns a clearer relation between brain atrophy and clinical forms,

compared to the 3D-CNN approach, which could be improved by

using Grad-CAM (Selvaraju et al., 2020) or similar methods.

Second, normalized GCN was used to classify MS clinical

forms. This is essential for clinical forms classification. Binary

and multi-class classifications were performed between the three

clinical forms (RR, PP, SP). The result of normalized GCN showed

that GCN can return satisfactory results on binary classification

between MS clinical courses. More specifically, the automatic

separation of inflammatory forms from neurodegenerative forms,

RR vs. SP and PP groups, has been carried out. The best F1-score

was found when separating RR from PP patients, and a good result

was also obtained in the RR/SP classification task. On one hand,

RR patients present relapses corresponding to focal inflammatory

processes. On the other hand, SP and PP patients share the

experience of progressive clinical evolution, associated or not with

inflammatory activity, resulting from degenerative phenomena

of the gray matter. Thus, by grouping SP and PP patients,

an adequate result was found when the finest atlas (Glasser)

was applied.

The three-class classification is a difficult multi-class

categorization task which is further worsened by the imbalanced

data distribution. Nevertheless, a promising result was obtained

using the Glasser parcellation atlas with a high rejection rate,

indicating the advantage of dimension reduction when facing

complex brain data such as our case.

Classification of SP and PP was the hardest binary classification

task to be accomplished. this is partially due to the small amount

of PP cases. Indeed, SP and PP are two neurodegenerative forms

sharing similar pathological processes. Moreover, PP is a starting

clinical form that can be divided into subclasses depending on the

level of disability. With an EDSS score ranging from 2 to 7.5, our PP

population is composed of both early and late stages of the disease.

The latter ones are more relevant and probably more similar to

SP patients as shown in the disease duration at scan. This large

variability of disability scores reflects different progressions of the

disease and thus different stages of brain alterations. Thus, the SP

and some PP patients may share MRI phenotypes which makes the

classification difficult, and perhaps even unnecessary.

Achieving good results, the binary classification of HC vs. MS

patients was not our primary goal. In general, MS patients can

be easily distinguished from healthy subjects in both clinical and

imaging ways. In our experience, an F1-score of 100%was observed

in all GCN outputs, meaning that all combinations of atlases and

thresholds provided enough information for the classification task.

Similar results were obtained in the previous work ofMarzullo et al.

(2019) on brain structural connectivity. Marzullo et al. (2019) has

performed the test of HC vs. CIS+RR (24/253) and the test of HC

vs. SP+PP (24/325) and achieved the best result (F-measure = 1),

demonstrating an evident difference between HC and MS brain

morphological and structural networks, respectively.

To further compare our work with other studies, we analyzed

the results obtained from Marzullo et al. (2019) and Barile et al.

(2022). Apart from the binary classification of HC vs. MS patients,

Marzullo et al. (2019) have also tested the separation between

early and progressive forms of MS (CIS+RR vs. SP+PP: 253/325)

obtaining the highest F-measure at 0.99. Since CIS subjects are

included in the RR group in our study, we can compare the

previous result with our classification task of RR vs. SP+PP

(299/361), leading to an F1-score of 0.678. This strong difference

in performance demonstrates that white matter inflammation

introduced significant information that facilitates the classification
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of clinical forms in MS. In contrast, the work of Barile et al.

(2022) was performed on GM morphological connectivity. Three

similar tasks were reported: (1) CIS+RR vs. PP; (2) CIS+RR vs. SP;

(3) CIS+RR vs. SP+PP. By employing the same pipeline of graph

generation and atlas (Glasser) and an ensemble of machine learning

methods, they have obtained an F1-score of 0.661 (0.12), 0.654

(0.12), 0.648 (0.11) for the three tasks, respectively. In our study,

we obtained better F1 scores of 0.671 (0.117), 0.711 (0.107), 0.678

(0.063) for the same tasks. This gain in performance (higher F1-

score and reduced standard deviation) demonstrated the interest of

brain graph convolutional networks.

Taxicab distance is an L1-norm metric that is generally

preferred over Euclidean distance for high-dimension data analysis

(Aggarwal et al., 2001). However, since every dimension (mean,

standard deviation, skewness, kurtosis) has the same attribution

in the calculation of Taxicab distance, our feature vector of four

dimensions could not have the same impact on the final value

due to the difference in magnitude. In such cases, Mahalanobis

distance can overcome the problem while removing redundant

information from correlated variables. Since distance measurement

was included as edge weight in the input data of GCN, the choice

can surely affect the final result. Thus, it is not surprising to

observe a better result with Mahalanobis distance supporting the

graph generation.

Finally, this work presents several methodological limitations.

First the classification results were biased by the class imbalance

of the database and the insufficient number of patients. Since

the current database consists of a series of multiple MR scans

per patient, it does not cover enough variability of the disease,

meaning a lack of global vision of the disease. Hence, even if we

carefully stop the network training before overfitting, it is hard to

extract sufficient features of each MS clinical course to classify an

unseen patient by the proposed network, resulting in bad output

in some cases. Nevertheless, our cohort study had no bias related

to the protocol acquisition, which is unique, guaranteeing the

homogeneity of the data. In contrast, a multi-center study is more

variable and therefore requires a precise study and corrections

of bias.

5 Conclusion

Although studies on MS mainly focus on white matter and

lesion analysis, morphological change in gray matter is a non-

negligible aspect of the disease. A full pipeline was proposed in

this study for the classification of MS clinical forms. It starts from

automatic GM segmentation and surface parcellation, followed

by GM thickness analysis using three different granularity of

atlases, two different distance measurements, and two different

age-gender normalization methods. Thus, a brain resulted in

a morphological connectivity graph accompanied by a feature

matrix per graph. Four rejection rates corresponding to noise

elimination were applied to the graph. A graph convolutional

network was performed on these graphs to exploit the hidden

information behind GM morphological features. In parallel, a

classic 3D convolutional neural network was applied to the brain

MRI directly for comparison. The best results were generated

by proportional GCN that trained on Glasser parcellation-based

graphs with Mahalanobis distance measurement and 80% rejection

rate. In future studies, to fully exploit its capacity for clinical image

analysis, our method can be implemented on a larger database

to predict patients’ disease evolution and obtain the correlation

between images’ information and patients’ disability. However, to

work with such a heterogeneous study will require developingmore

advanced graph networks (i.e., with attention) to limit biases such

as gender, age and acquisition systems.
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Random forest analysis of
midbrain hypometabolism using
[18F]-FDG PET identifies
Parkinson’s disease at the
subject-level

Marina C. Ruppert-Junck1,2,3*, Gunter Kräling2, Andrea Greuel4,
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Behavior, Philipps-University of Marburg and Justus-Liebig University Gießen, Marburg, Germany,
4Department of Psychiatry, Psychotherapy and Psychosomatics, Vivantes Hospital Neukölln, Berlin,
Germany, 5Max Planck Institute for Metabolism Research, Cologne, Germany, 6Cluster of Excellence in
Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany, 7Cognitive Neuroscience,
Institute of Neuroscience and Medicine (INM-2), Research Center Jülich, Jülich, Germany, 8Multimodal
Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty, University Hospital Cologne,
Cologne, Germany, 9Department of Neurology, Knappschaftskrankenhaus Bottrop, Bottrop, Germany

Parkinson’s disease (PD) is currently diagnosed largely on the basis of expert
judgement with neuroimaging serving only as a supportive tool. In a recent
study, we identified a hypometabolic midbrain cluster, which includes parts
of the substantia nigra, as the best di�erentiating metabolic feature for PD-
patients based on group comparison of [18F]-fluorodeoxyglucose ([18F]-FDG)
PET scans. Longitudinal analyses confirmed progressive metabolic changes
in this region and, an independent study showed great potential of nigral
metabolism for diagnostic workup of parkinsonian syndromes. In this study, we
applied amachine learning approach to evaluatemidbrainmetabolismmeasured
by [18F]-FDG PET as a diagnostic marker for PD. In total, 51 mid-stage PD-
patients and 16 healthy control subjects underwent high-resolution [18F]-FDG
PET. Normalized tracer update values of the midbrain cluster identified by
between-group comparison were extracted voxel-wise from individuals’ scans.
Extracted uptake values were subjected to a random forest feature classification
algorithm. An adapted leave-one-out cross validation approach was applied
for testing robustness of the model for di�erentiating between patients and
controls. Performance of the model across all runs was evaluated by calculating
sensitivity, specificity and model accuracy for the validation data set and the
percentage of correctly categorized subjects for test data sets. The random forest
feature classification of voxel-based uptake values from the midbrain cluster
identified patients in the validation data set with an average sensitivity of 0.91
(Min: 0.82, Max: 0.94). For all 67 runs, in which each of the individuals was
treated once as test data set, the test data set was correctly categorized by
our model. The applied feature importance extraction consistently identified a
subset of voxels within the midbrain cluster with highest importance across all
runs which spatially converged with the left substantia nigra. Our data suggest
midbrain metabolism measured by [18F]-FDG PET as a promising diagnostic
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imaging tool for PD. Given its close relationship to PD pathophysiology and very
high discriminatory accuracy, this approach could help to objectify PD diagnosis
and enable more accurate classification in relation to clinical trials, which could
also be applicable to patients with prodromal disease.

KEYWORDS

Parkinson’s disease, imaging biomarker, machine learning, random forest, metabolic

imaging

1 Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disorder (Lau and de Breteler, 2006) and

characterized by a spread of α-synuclein containing Lewy bodies

and the loss of neuromelanin pigmented neurons in the substantia

nigra. The consequential depletion of dopaminergic transmission

to lateral nigral projection areas (Kish et al., 1988), and primarily

the posterior putamen, results in aberrant striato-thalamo-cortical

information processing causing motor symptoms like bradykinesia

or rigidity (Albin et al., 1989; DeLong, 1990). Diagnosing the

condition can yet be a challenge for physicians, as no reliable

biomarker is currently available and only clinical criteria can

be used (Postuma et al., 2015). Especially at early stages, when

symptoms were present for <5 years, a diagnostic accuracy of

only 53% in PD patients has been reported (Adler, 2014). Not

only does this limit disease management, but it also underlies

the dilemma that neuroprotective therapies are likely to fail if

used too late. Therefore, one of the main goals of PD research is

to find biomarkers that can be applied easily and early and are

as objective as possible (Adler, 2014). Future-oriented concepts

claim a biological staging system for PD continuum, whereby

degeneration of midbrain dopaminergic neurons represents a

crucial, universal feature of the disease.

Currently, there is no causative therapy for PD, but significant

efforts have been directed at neuroprotective therapies targeting

molecular pathways before disease onset. Nigral neurons are

highly energy consuming neural populations relying on effective

mitochondria which makes them vulnerable to exhaustion possibly

contributing to neurodegeneration (Braak et al., 2006b; Seibyl et al.,

2012). When patients experience motor symptoms, typically up to

70% of nigral neurons have already been depleted. Due to lack of

applicable α-synuclein tracers, no possibility exists to date for in

vivo examination of α-synuclein load (Fearnley and Lees, 1991).

However, there are indirect measures of nigral dopaminergic cell

loss, particularly in the field of molecular imaging. As a surrogate

marker for presynaptic dopaminergic activity, semiquantitative

Abbreviations: [18F]-FDG PET, [18F]-fluorodeoxyglucose positron emission

tomography; DD, disease duration; FWE, family-wise error; FWHM, full-

width at half-maxium; LEDD, levodopa equivalent daily dose; PD, Parkinson’s

disease; MMSE, Mini-Mental state examination; MNI, Montreal Neurological

Institute; SNpc, substantia nigra pars compacts; SNpr, substantia nigra pars

reticulata; UPDRS, unified Parkinson’s disease rating scale; VTA, ventral

tegmental area.

analysis of [123I]-FP-CIT-SPECT regularly serves as supportive

diagnostic tool. To enable diagnosis from a pathophysiological

rather than clinical perspective and demonstrate prospects for

reducing disease progression through interventions, indicators of

biological processes that are immediately applicable and show a

strong correlation with established neuropathological markers are

urgently needed, especially at early disease stages (Höglinger et al.,

2023).

Molecular imaging has been proposed to trace ongoing

disease-related processes and subclinical changes. In a recent

study applying [18F]-fluorodeoxyglucose PET([18F]-FDG

PET), which uses a labeled glucose analogon, we identified

a hypometabolic midbrain cluster as the best differentiating

metabolic feature for PD-patients compared to healthy controls

(Ruppert et al., 2020). The level of individual hypometabolism

was found to match contralateral motor symptoms. Subsequent

examinations of a subset of these patients over the course of

the disease confirmed progressive metabolic changes in this

region which were accompanied by worsened motor symptoms

(Steidel et al., 2022). An independent study reported nigral

metabolism in PD based on non-high-resolution [18F]-FDG PET

and demonstrated the great potential of nigral metabolism for

differential diagnostics of parkinsonian syndromes (Schröter

et al., 2022). Nigral hypometabolism was worse in entities

associated with most severe nigrostriatal pathology (Schröter et al.,

2022).

Hence, there is a growing body of evidence for the midbrain

as an important region to differentiate PD patients from healthy

controls based on metabolic group comparisons. Nevertheless,

for applications as diagnostic marker, the informative value of

the measure for the individual needs to be verified. In this

context, machine learning approaches are increasingly applied

to evaluate the discriminative accuracy of measures under

consideration. Several studies have conducted region-of-interest

wise machine learning analysis of [18F]-Desmethoxyfallypride

PET data extracted from either striatal structures or whole-

brain and revealed an accuracy of 59.7% or of about 70% for

differentiating between PD patients and atypical parkinsonism

(Segovia et al., 2015, 2017a). Studies focusing on [18F]-FDG

PET as diagnostic marker have rarely been carried out and

focused on whole brain scans, or an atlas-based parcellation

but did not include the midbrain region despite its crucial

role in neuropathology (Wu et al., 2019). In this study, we

evaluated midbrain metabolism derived by high-resolution [18F]-

FDG PET as a diagnostic marker for PD using random

forest analysis.
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2 Materials and methods

2.1 Participants

All participants provided informed consent to their data

analyses in conformation with the Declaration of Helsinki. The

study was confirmed by the local ethics committee (EK12-

265) and the Federal Bureau for Radiation Protection. In total,

25 healthy control subjects and 60 patients with clinically

established PD were enrolled. Patient recruitment was carried out

at the University Hospital of Cologne and affiliated neurology

practices, whereas healthy control participants were recruited via

advertising. Exclusion criteria were age < 40 years, suspected

atypical parkinsonian syndromes, advanced parkinsonism, i.e.,

Hoehn and Yahr stages >3 (Hoehn and Yahr, 1967), dementia,

neurological diseases other than PD, and any safety concerns

for MRI scanning. In order to exclude patients with dementia,

criteria published by the Movement Disorder Society including

a neuropsychological test battery and an assessment of the

patient’s ability to manage daily life (Emre et al., 2007) were

applied. The Mini-Mental State Examination (MMSE) was used

as cognitive screening tool (Folstein et al., 1975). Clinical

examination and functional imaging were conducted at the

Max Planck institute for Metabolism Research Cologne and the

University Hospital Cologne, Department of Neurology. Patients

were examined in the OFF state, defined as a 12-h period without

dopaminergic medication (Langston et al., 1992) (72 h in cases

of dopamine agonists). Levodopa-equivalent daily dose (LEDD)

was calculated for total antiparkinsonian medication based on

standard conventions (Tomlinson et al., 2010). Disease severity

was quantified by the Unified Parkinson’s Disease Rating Scale

(UPDRS) part III (Fahn et al., 1987).

Statistical analysis of demographical, clinical and behavioral

data was performed in R (R-project for statistical computing,

Vienna, Austria). Depending on the assumptions met, parametric

or non-parametric tests were performed. Results were considered

significant if p < 0.05.

2.2 [18F]-FDG PET acquisition and
preprocessing

All PET scans were acquired on an ECAT HRRT-PET-Scanner

(CTI) at the Max-Planck-Institute for Metabolism Research in

Cologne after overnight fasting andOFF dopaminergic medication.

Under standardized conditions (dimmed light, closed eyes, quiet

room) subjects were positioned along the kantho-meatal line.

Following a transmission scan, 185 MBq of the radioligand was

injected intravenously and tomographic images were acquired in

dynamic PET scans (60min). Using camera-specific filters, PET

data were corrected for attenuation and scattered radiation, and

reconstructed to 207 slices with a 256 × 256 matrix and 1.22mm

voxel size, creating one frame per 10min. Frames were realigned

for motion correction by rigid-body transformation and frames

numbered three to six were averaged into one static image for

further analysis. The data set used in the presented analysis has

been analyzed in previous publications from different research

perspectives (Greuel et al., 2020; Ruppert et al., 2020, 2021;

Steidel et al., 2022) and once in context of machine learning but

with a whole brain approach and in specific combination with

metabolomic data (Glaab et al., 2019).

Static PET scans were spatially normalized into

Montreal Neurological Institute (MNI) space in SPM12

(www.fil.ion.ucl.ac.uk/spm/software/spm12, Wellcome Trust

Center for Human Imaging, London) using an [18F]-FDG PET

template for elderly subjects (Della Rosa et al., 2014) and smoothed

with a Gaussian kernel of 6mm full-width at half-maximum

(FWHM). The midbrain cluster, reflecting hypometabolic regions

in our PD cohort and defining our regions of interest in the

current analysis, was derived by a voxel-wise group comparison

as specified in our previous work (Ruppert et al., 2020), with

the number of included subjects referring to all subjects with

[18F]-FDG-PET scans here (PD = 51, healthy controls = 16). PET

data were proportionally scaled with reference to the global mean

as implemented in SPM. Group comparisons were carried out via a

general linear model in SPM12. Results were considered significant

when p < 0.05 after family-wise error (FWE) rate correction at

cluster level (Figure 1).

Voxel-wise normalized (proportional scaling) uptake values

were extracted from the obtained midbrain cluster (Figure 1) for all

subjects with the region of interest toolbox Marsbar (Brett et al.,

2002). A class label column was added for supervised machine

learning with 0 for healthy control and 1 for PD class. To check

whether the approach also performs with a not data-driven region,

which would enable easier transferability to independent data sets,

we repeated the machine learning analysis with uptake measures

from an atlas-based midbrain region (Talairach-Daemon atlas,

WFU PickAtlas, RRID:SCR_007378) and with a whole brain gray

matter mask [ICBM 2009c non-linear symmetric, FSL (Collins

et al., 1999)].

2.3 Machine learning analysis

Extracted uptake values were subjected to machine learning

analyses, applying different feature classification algorithms. An

adapted leave-one-out cross validation approach with reassignment

of the training and validation test set (70:30) at every step was

applied for testing robustness of the model for differentiating

between patients and controls. First, we compared performance

of the most commonly applied machine learning classification

algorithms in our data set using PyCaret tool (https://pycaret.

org/) in python. Specifically, the following algorithms were tested:

Extra Tree Classifier, Naive Bayes, K Neighbors Classifier, Random

Forest Classifier, Logistic Regression, Ada Boost Classifier, Light

Gradient Boosting Machine, Dummy Classifier, Decision Tree

Classifier, Ridge Classifier, Linear Discriminant Analysis, Gradient

Boosting Classifier, Support-Vector-Machine—Linear Kernel, and

Quadratic Discriminant Analysis. The random forest ensemble

algorithm is one of the most widely applied machine learning

techniques for classification problems. It is an ensemble learning

method, which used a combination of decision trees to make

predictions. Each decision tree is trained based on a subset

of the data generated by Bootstrap-sampling. A prediction is
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FIGURE 1

Data-driven region of interest used for voxel-wise uptake extraction. Sagittal, coronal and axial view of the midbrain region of interest obtained by
voxel-wise group comparison of [18F]-FDG PET scans from 16 healthy controls and 51 PD patients (p < 0.01 after FWE cluster level correction, t =
6.46, cluster size = 376 voxels).

offered by every decision tree and the final prediction of the

model is driven by the majority of votes on the predictions

(cf. Figure 2). For hyperparameter tuning, the default option

in PyCaret was used which applies a random grid search.

Robustness and discriminatory performance of the model across

all runs was evaluated in four ways: (1) for model evaluation

we averaged performance measures across 67 runs with one

of the 67 subjects left out and dividing the remaining 66 in

respective training and validation data sets (70:30), (2) in each

of these runs a 10-fold nested cross-validation was performed

on the training data set with 1-fold serving as validation and 9-

fold serving as training data set per one of the 10 validations,

(3) in each of the 67 runs, an independent validation data

set was used to evaluate model performance by calculating

sensitivity and specificity for the resulting confusion matrix,

and (4) the percentage of correctly categorized subjects for test

data sets (the one not considered in training and validation

per run) with reference to movement disorder expert opinion.

Included subjects per training and validation data set can be

found on our GitHub repository (https://github.com/ruppertm/

Midbrain-FDG-PD.git). An evaluation of potential between-group

differences in clinical and demographic variables is reported in the

Supplementary material.

Feature importance reflects the relevance an individual feature

has for correct classification. Feature importance for individual

voxels was calculated according to the default settings implemented

in PyCaret which refers to the method in the scikit-learn library

(mean decrease impurity). Each voxel’s coordinates (in all three

axes) derived by Marsbar were transformed into MNI-space

coordinates using the provided transformation matrix. 3D displays

were created in MRIcroGL using the Marsbar coordinates and

feature importance values derived via the feature importance

analysis above. Spatial colocalization with dopaminergic midbrain

nuclei was verified using the Automated Anatomical Labeling

version 3 (AALv3) atlas. The code generated to analyze all

data is freely available on GitHub (https://github.com/ruppertm/

Midbrain-FDG-PD.git).

3 Results

3.1 Cohort characteristics

[18F]-FDG PET scans were available for 51 patients with

MRI (66.45 ± 8.53 years, 18 female) and 16 control subjects

(64.63 ± 8.33, 9 female) with no significant differences in terms

of age, sex and general cognitive performance (cf. Table 1).

The included patients were moderately affected with an average

UPDRS-III of 25.10 ± 9.54 points and 453.88 ± 244.72mg

LEDD. Detailed information on included participants (mean

± standard deviation) can be found in Table 1. Across all

runs, there were no between-group differences in terms of

age or motor severity between training and validation data set

(Supplementary material).

3.2 Random forest analysis

3.2.1 Classification based on midbrain [18F]-FDG
uptake

Across all runs, the random forest algorithm performed

best in most cases. Therefore, random forest classifier analysis

was applied to evaluate the diagnostic potential of midbrain

metabolism in our study. The random forest feature classification

of voxel-based uptake values from the 376 voxels spanning

midbrain cluster distinguished between the groups with an average

sensitivity of 0.91 (Min: 0.82, Max: 0.94) in the validation

data set (Table 2). For all 67 runs, in which each of the

individuals was treated once as test data set, the test data

set was correctly categorized by our model. The separately

performed analyses with uptake values from the midbrain atlas

region showed slightly lower sensitivity measures, and lower

specificity and accuracy (Table 2). Whole-brain analysis revealed

a slightly better sensitivity, but worse specificity and accuracy

(Table 2).
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FIGURE 2

Schematic representation of the data extraction process and random forest analysis. The subcortical region of interest was defined by a
between-group comparison of [18F]-FDG PET scans (middle top). Voxel-wise uptake values were extracted from that region for every subject from
normalized [18F]-FDG PET scans (top right) and subjected to random forest analysis using PyCaret. After importing the data, random forest model
was conducted on the data from all but one subject (each subject was left out once) with 10-fold cross-validation. The data set was splitted into a
training and validation data set (70:30) to derivate accuracy measures and the class of the removed subject was predicted based on that model. The
model’s accuracy measures, and each voxel’s feature importance were averaged across all runs and reassigned to voxel coordinates to enable 3D
representation of voxels with highest importance for class decision.

TABLE 1 Demographic, clinical and behavioral characteristics of the

[18F]-FDG PET cohort including all PD patients and healthy controls.

Groups HC (n = 16) PD (n = 51) Statistics p-value

Age (in years) 64.63± 8.33 66.45± 8.53 t = 0.75 0.455

Female (%) 9 (56.25%) 18 (35.29%) X2
= 1.44 0.231

DD (in years) - 4.56± 3.29 - -

UPDRS III total - 25.10± 9.54 - -

LEDD (in mg) - 453.88± 244.72 - -

MMSE 28.94± 1.00 28.37± 1.82 W = 351.5 0.392

Between-group comparison of numeric variables was performed via t-tests or Mann-Whitney

U tests. Dichotomous variables were compared via chi-square test. DD, disease duration; HC,

healthy control subjects; Levodopa equivalent daily dose; PD, Parkinson’s disease; MMSE,

Mini-Mental Status Examination.

3.2.2 Feature importance
Since our region of interest is closely related to PD

pathophysiology and we included individual voxels as features in

our model, the spatial location of features with greatest importance

for the class decision was of great interest. The applied feature

importance extraction consistently identified a subset of voxels

within themidbrain cluster with highest importance across all runs.

Among the top voxels with highest importance across all runs were

TABLE 2 Accuracy measures of the random forest classifier model based

on [18F]-FDG PET uptake for the data-driven region of interest, midbrain

atlas region, and whole brain gray matter.

Model
performance
(mean ± SD)

Accuracy Sensitivity Specificity

Midbrain

(data-driven)

0.83± 0.06 0.91± 0.03 0.67± 0.14

Midbrain (atlas) 0.82± 0.04 0.88± 0.05 0.63± 0.15

Whole brain

gray matter mask

0.76± 0.04 0.98± 0.03 0.10± 0.11

SD, standard deviation.

V70 (0.029, MNI: x = −8, y = −20, z = −22) and V148 (0.021,

MNI: x = 14, y = −18, z = −20, see Supplementary Table 1 for all

values). The two voxels with highest importance were localized in

the left ventrolateral tier of the midbrain cluster and next to the

atlas region substantia nigra pars compacts (SNpc) from AALv3

atlas (cf. Figure 3 top, Supplementary Figure S1). As indicated by

overlay plots in Supplementary Figure S1, there is a spatial overlap

between midbrain voxels with high importance and dopaminergic

midbrain nuclei. Among the nuclei with a spatial convergence were:

left SNpc, left substantia nigra pars reticulata (SNpr), left ventral

tegmental areas (VTA), right SNpc, right SNpr, and right VTA.
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The left SNpc was the atlas region that had the greatest spatial

overlap with left-sided voxels of highest importance (dark orange-

to-red color) (cf. Figure 3 top, Supplementary Figure S1). Voxels

with a feature importance above 0.008 overlapped exclusively with

the left SNpc. Right-sided voxels with highest importance were

localized more laterally. The separate analysis performed with an

atlas-based midbrain region revealed nearly identical coordinates

for voxels with highest feature importance (V332 MNI: x = −6,

y = −22, z = −20, see Supplementary Figure S2). Including whole

brain graymatter [18F]-FDG uptake per voxel in a separate analysis,

also indicated that our defined region is the most important region

for classification (cf. Supplementary Figure S3).

4 Discussion

In this study, we demonstrate the diagnostic potential of

midbrain [18F]-FDG uptake for PD. In a cohort of well-

characterized mild-to-moderately affected patients, we showed

that it may differentiate between patients and controls with high

precision. The presented analyses were motivated by the previous

description of the cohort, highlighting the hypometabolic midbrain

cluster as the region that exhibited the highest deficit in PD that

correlated with contralateral clinical severity (Ruppert et al., 2020)

and showed disease-related decline over time (Steidel et al., 2022).

In order to evaluate the informative value of [18F]-FDG uptake

within that region for the individual’s classification, a random forest

feature classification algorithm was applied with an adapted leave-

one-out cross validation approach. Across all runs, the individual

test data set was correctly categorized by our model. The applied

feature importance extraction consistently identified a subset of

voxels within themidbrain cluster with highest importance for class

decision across all runs, which spatially overlapped with the left

substantia nigra pars compacta. Our results confirm that [18F]-FDG

uptake in the midbrain is a promising neuroimaging feature with

spatial convergence to known pathophysiology that is feasible in

the individual patient and can be similarly applied to independent

cohorts using midbrain atlas regions.

The loss of dopaminergic cells in the midbrain is a

histopathological hallmark of PD and serves as neurobiological

correlate of its progression (Damier et al., 1999). However, the

significant denervation in the lateral substantia nigra prior to

the onset of symptoms in those affected has not been clinically

utilized due to a lack of suitable in-vivo examination techniques.

Notably, particular voxels within our region of interest hold

significant importance from a neurobiological viewpoint. There

is a spatial overlap of voxels with a feature importance above

0.008 located in the left SNpc, substantiating the hypothesis that

the observed hypometabolism might indicate a relationship to

degenerating nigral cells or lowered metabolic activity in these

naturally energy-demanding cells (Braak et al., 2006a; Seibyl et al.,

2012). Corresponding to our earlier analyses, a higher count of

voxels with increasing significance for class decision were located

in the left midbrain. Our results complement the previous studies

in the sense that exactly this region is suitable for the classification

of an individual with high precision.

Machine learning techniques are used to identify elusive

patterns that are difficult to detect using conventional statistical

methods and to test their predictive power at individual level (Peng

et al., 2020). Notably, despite certain efforts to apply machine

learning to [18F]-FDG-uptake for identifying-PD patients (Shen

et al., 2019; Wu et al., 2019), none have targeted the midbrain

region specifically. Another study has reported the identification of

critical diagnostic features in the midbrain based on deep-learning,

and claimed that this region, despite its crucial involvement in PD

pathophysiology, has not been considered in conventional [18F]-

FDG PET studies (Zhao et al., 2019). Yet, several parallels might be

drawn to previous attempts of applying machine learning to PET

data of PD cohorts. Wu et al. (2019) extracted radiomic features

from PET images using atlas regions excluding the midbrain (Wu

et al., 2019). Shen et al. (2019) followed an approach with Group

Lasso Sparse Deep Belief Network (GLS-DBN) for identifying PD

based on [18F]-FDG PET scans. Both studies report a diagnostic

accuracy comparable to our results (Shen et al., 2019; Wu et al.,

2019), but do not elaborate the importance of a specific subcortical

region that has a close association with the known pathology as

our results do. Another study has conducted a machine learning

analysis with the here presented [18F]-FDG PET data set but

focused on whole brain uptake for PD diagnosis. Our region

of interest-based approach revealed higher accuracy for the PET

modality (Glaab et al., 2019). In line with our findings, Segovia

and colleagues also reported a higher diagnostic accuracy with a

focus on specific disease-related regions of interest rather than

whole brain analysis in a dopaminergic PET study (Segovia et al.,

2015, 2017b). A combination of multiple imaging modalities,

supported by a specific focus on disease-related regions as in

the presented approach, could increase model performance and

could be crucial for tracking disease progression. Particularly, our

results may be of relevance for efforts of establishing objective

markers for a purely biological-based staging system for the

disease spectrum, as recently proposed and already established for

other neurodegenerative disorders (Chahine et al., 2023; Höglinger

et al., 2023). In the latter conceptual framework, degeneration of

dopaminergic neurons in the midbrain is a crucial feature evident

universally in PD syndromes (Chahine et al., 2023) and present

in both presumed retro- and anterograde spreading subtypes. This

fact and the recognized significance of FDG-PET patterns in PD

(Höglinger et al., 2023) lends our target an important status with

potential applicability within the framework.

Based on Schröter et al. (2022)’s findings, our approach may

additionally serve to distinguish between atypical Parkinson’s

syndromes and PD. The fact that the latter study reported

similar evidence for midbrain hypometabolism based on not high-

resolution PET data suggests that the presented approach is likely

to be replicated with standard clinical PET data and therefore easily

integrable into clinical practice.

4.1 Limitations

One limitation of this study is the small sample size, especially

in the healthy control group, which especially contributes to very

unbalanced validation data sets. The limited number of controls

was a deliberate decision in line with the specifications of the

Federal Office for Radiation Protection to include as few healthy
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FIGURE 3

Voxel-wise feature importance for the midbrain region of interest. Feature importance revealed by random forest classifier is shown in color scaled
3D representation for every voxel in the midbrain region of interest. Yellow color indicates minor feature importance; red color indicates high voxel
importance for class decision based on random forest classifier.

subjects as possible. The presence of unbalanced data and a

rather small sample size warrants some caution on generalizable

conclusions. In particular, unbalanced data may aid in more precise

identification of PD patients compared to healthy control subjects’

categorization since the individual model was likely trained on

a higher number of patients compared to controls. Subsequent

studies should therefore include larger sample sizes and equally

sized groups. However, the present study reveals initial implications

for the approach by applying an appropriate model for unbalanced

data. In addition, appropriate techniques like conducting an

ensemble of random forest analyses and evaluating the variability

of model performance across runs, internal 10-fold cross validation

and model evaluation based on respective validation data sets and

prediction for one independent subject were taken into account.

As a logical consequence of the preliminary work, however, the

study provides initial indications, and an interesting proximity to

neuropathology with accessibility on subject level, which could also

be applicable to patients with prodromal disease in future studies.

A major limitation of the present study is the absence of testing

the model on an external cohort, which would supplement the

generalizability of the results. We conducted the analysis with

high-resolution HRRT PET data to enable tracing back effects

on smallest midbrain structures in terms of pathophysiological

relevance. We have not tested our approach in an independent

sample, as there is no large public dataset of high-resolution PET

data. However, a more widespread availability of higher resolution

scanners in the future and amulticenter initiative for collecting data

may foster possibilities for an independent data set. In addition,

future projects could focus on the comparability with lower

resolution data as recent studies suggest that our approachmight be

feasible in non-high-resolution data that are more widely available.

Furthermore, our implementation of supervised learning relied on

the subjective evaluations of two independent clinical experts in

movement disorders, which may not always reflect the ground

truth, and should be supported bymore objective diagnostic criteria

as proposed by biological PD models, including molecular CSF

markers, evidence of rapid eye movement sleep behavior disorder

(RBD) and dopaminergic imaging, especially in prodromal stages.

4.2 Future perspectives

Similar to other studies using machine learning techniques,

there is a question about scalability or applicability of this relatively

simple measures in independent cohorts. Future studies could

validate the approach presented here in early or prodromal stages

of the disease, such as patients with RBD, as differences could

be expected according to the longitudinally observed midbrain

hypometabolism (Steidel et al., 2022). As recent studies highlight

a pivotal role for evidence of nigrostriatal degeneration also

in the pre-motor phase of the disease, our results may have

direct implications for the emerging field of early diagnostics

and identifying at-risk persons. The application of such kind of

in-vivo accessible, objective biomarkers is of greatest interest in

context of new therapeutic treatment strategies and paralleled

by the development of disease-modifying agents. As longitudinal

midbrain changes were demonstrated in mid-stage patients, future

studies should verify if midbrain hypometabolism can be identified

in prodromal stages like RBD-patients with high-resolution PET.

Identifying prodromal biomarkers may be helpful for identifying
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early disease stages, a crucial element for clinical trials of potential

neuroprotective drugs, antibody studies or cell-based therapies.

5 Conclusion

Midbrain metabolism measured by [18F]-FDG PET is a

promising imaging tool for detecting PD-related midbrain

degeneration on subject-level. Given its close relationship to PD

pathophysiology and very high sensitivity, this approach can

index midbrain degeneration and help to establish neurobiological

staging systems, addressing the nigrostriatal system.
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This research work introduces a novel, nonintrusive method for the automatic 
identification of Smith–Magenis syndrome, traditionally studied through genetic 
markers. The method utilizes cepstral peak prominence and various machine 
learning techniques, relying on a single metric computed by the research group. 
The performance of these techniques is evaluated across two case studies, each 
employing a unique data preprocessing approach. A proprietary data “windowing” 
technique is also developed to derive a more representative dataset. To address 
class imbalance in the dataset, the synthetic minority oversampling technique 
(SMOTE) is applied for data augmentation. The application of these preprocessing 
techniques has yielded promising results from a limited initial dataset. The study 
concludes that the k-nearest neighbors and linear discriminant analysis perform 
best, and that cepstral peak prominence is a promising measure for identifying 
Smith–Magenis syndrome.

KEYWORDS

Smith–Magenis syndrome, machine learning, cepstral peak prominence, acoustics, 
children

1 Introduction

Over time, artificial intelligence (AI) has experienced substantial growth in a variety of 
scientific areas and disciplines (Górriz et al., 2020, 2023). In the medical field, AI has been used 
for disease diagnosis and treatment (Rother et al., 2015; Shen et al., 2017; Jia et al., 2018; Li 
et al., 2019; Zhang et al., 2019; Spiga et al., 2020), as well as for new drug research, since, in 
scientific research, AI accelerates data analysis and complex phenomena monitoring (Cifci 
and Hussain, 2018; Firouzi et al., 2018). The versatility and transformative potential of AI offers 
new possibilities in disease diagnosis. The origins of AI date back to the 1950s, with the 
development of the first neural network (machine learning), although its roots can be traced 
even further back in time, considering previous approaches such as Bayesian statistics or 
Markov chains, which share similar concepts. In the case of Parkinson’s disease, the authors of 
Ali et al. (2019) worked on phonation in combination with ML. The results were applicable to 
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other diseases that, due to their low incidence in the population, are 
understudied and, consequently, underdiagnosed.

Patients face considerable challenges with dealing with 
underdiagnosed pathologies. The lack of early detection and limited 
information deprives them of timely, pathology-specific care, which 
is especially important for young patients. The use of AI techniques 
for early disease detection is an ongoing challenge. In this study, the 
focus is on determining the discriminatory as well as pathological 
characteristics of young patients’ voices. Acoustic phonation studies 
provide relevant speaker information that can be used to detect 
diseases such as Alzheimer’s dementia, Parkinson’s, and 
amyotrophic lateral sclerosis, among others, based on the 
biomechanical uniqueness of each individual. Such uniqueness is 
evident in the EWA-DB dataset, which focuses on Slovak speakers 
with Alzheimer’s and Parkinson’s diseases (Rusko et al., 2023), and 
a dataset that focuses on Spanish native speakers with Parkinson’s 
disease (Orozco-Arroyave et al., 2014), as well as recent acoustic 
studies on Alzheimer’s (Cai et al., 2023; Zolnoori et al., 2023) and 
Parkinson’s (Warule et al., 2023) diseases. In the 2021 study by Lee 
(2021), two types of neural network models were developed for 
dysphonia detection: a Feedforward Neural Network (FNN) and a 
Convolutional Neural Network (CNN). These models were 
designed to utilize Mel Frequency Cepstral Coefficients (MFCCs) 
for the detection process.

The determined laryngeal biomechanics, elastin deficiency in 
Williams syndrome (WS) or excess laryngeal tension in the case of 
Smith–Magenis syndrome (SMS) (Watts et  al., 2008; Moore and 
Thibeault, 2012; Hidalgo-De la Guía et al., 2021b) discriminate these 
syndromes from others caused by neurological pathologies based on 
genetics (Antonell et al., 2006; Albertini et al., 2010; Hidalgo et al., 
2018; Jeffery et al., 2018; Hidalgo-De la Guía et al., 2021a). Specifically, 
the voice profile of an SMS patient is determined by excess laryngeal 
and acute tension f0. These patients may also have a certain degree of 
dysphonia, which is observed in both children and adults. Likewise, 
there are studies that suggest that certain syndromes present 
characteristic alterations in the voice that give rise to specific vocal 
phenotypes (Edelman et  al., 2007; Brendal et  al., 2017; Linders 
et al., 2023).

SMS is a genetic disease that affects neurological development 
from the embryonic stage, specifically due to the alteration of the 
RAI1 gene, which is considered responsible for most of the clinical 
abnormalities observed in SMS individuals (Slager et  al., 2003; 
Vlangos et al., 2003). Given its prevalence, i.e., 1:15,000–25,000 
births (Greenberg et al., 1996; Elsea and Girirajan, 2008; Girirajan 
et  al., 2009), SMS is considered a rare disease and, therefore, 
is underdetected.

It is more common to approach the problem of rare disease 
detection from areas other than genetics, where the fundamental 
focus has been on characterization. ML techniques have recently 

been implemented in rare disease research, including 
SMS. Bozhilova et al. (2023) identified different profiles of autism 
characteristics in genetic syndromes associated with some 
intellectual disability. SMS was among the 13 syndromes studied. 
The Social Communication Questionnaire was used to train a 
support vector machine (SVM) that achieved an overall precision 
of 55%. The main limitations of this work were that only social 
communication skill metrics were used and imbalanced sample 
sizes across groups. One of the main results seems to indicate that 
autistic individuals with genetic syndromes have different 
characteristics than those without any genetic syndrome. In 
Frassineti et  al. (2021) different ML models were proposed to 
allow the automatic identification of four different diseases, 
including SMS. They made recordings of subjects and extracted 
34 acoustic characteristics with Praat and 24 with BioVoice. The 
cepstral peak prominence (CPP) was not among the extracted 
characteristics. After the results achieved by BioVoice for SMS 
(true positive rate of 55.6% and false-negative rate of 44.4%), the 
authors suggested that the vowel /a/ is not sufficient for the 
definition of phenotypes. In an extension of their previous work, 
the same authors (Calà et al., 2023) incorporated the vowels /a/, 
/I/, and /u/, and introduced a new control group of normative 
individuals. Utilizing BioVoice, they extracted 77 acoustic 
features, excluding CPP, and organized the subjects into three 
distinct groups: pediatric subjects (age < 12), adult females, and 
adult males. Each group was treated independently, with a unique 
Machine Learning model generated for each. The results, obtained 
through a 10-fold cross validation, are presented as mean accuracy 
along with the standard deviation. The pediatric group achieved 
an accuracy of 87 ± 9%, adult women achieved 77 ± 19%, and men 
achieved 84 ± 17%. However, the outcomes appear inconclusive 
due to the high variability in measures such as precision, recall, 
and f-score.

This work compares different Machine Learning techniques for 
the detection of SMS in young people using audio samples, from 
which only the CPP is computed and extracted. In addition, a novel 
windowing method is proposed to improve the performance of the 
models. In addition, the SMOTE technique is used, aiming outcomes 
in precision rates above 85%. This approach proposes a non-invasive, 
low-cost, and rapid detection method with only one acoustic 
parameter, which contrasts with methods based on genetic techniques.

Unfortunately, it is difficult to compare medical research works, 
which used genetic techniques, with non-invasive SMS detection. 
Likewise, mathematical and computational approaches to this 
syndrome use acoustical features such as formants, shimmer, and 
jitter, among others. However, this study case aims to open the 
exploration of new ways to identify SMS individuals. The fact to use 
only one feature (CPP) allows faster models with lower computational 
performance. Therefore, the ultimate goal is to detect the syndrome 
early using this single feature.

This article is organized as follows. In the following section, the 
methods and materials are explained, the dataset structure and the 
“window” method are highlighted, and the ML methods used are 
briefly explained from a theoretical perspective. In Section 3, the 
results are included, and the model training and validation, as well as 
the approach and results of the case studies, are detailed. Next, in 
Section 4, the obtained results are discussed, and finally, the 
conclusions and future lines of work are proposed.

Abbreviations: AI, artificial intelligence; CPP, cepstral peak prominence; FISH, 

fluorescent in situ hybridization; FFT, fast Fourier transform; GMM, Gaussian 

mixture model; IFFT, inverse fast Fourier transform; KNN, k-nearest neighbors; 

LDA, linear discriminant analysis; LOO, leave one out; MFCC, mel frequency 

cepstral coefficients; ML, machine learning; RF, random forest; SMOTE, synthetic 

minority oversampling technique; SMS, Smith–Magenis syndrome; SVM, support 

vector machine; WS, Williams syndrome.
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2 Materials and methods

2.1 Cepstral peak prominence

This research work is based on the use of the CPP as a discriminant 
measure for the identification of SMS (nonnormotypic) individuals 
compared to a control group of normotypic individuals. The CPP is an 
acoustic parameter that allows determining the degree of periodicity 
of a voice, showing the prominence of a cepstral peak that varies 
according to the periodicity of phonation. The more pronounced the 
peak is, the more harmonic a voice (Hidalgo-De la Guía et al., 2021b).

In the past decade, it has been found that the CPP presents a 
strong correlation with the degree of voice dysphonia (Peterson et al., 
2013; Brinca et al., 2014). In fact, higher correlations were found 
between the CPP, and dysphonic voices compared to those of typical 
distortion parameters (Moers et  al., 2012). Currently, the CPP is 
considered one of the best acoustic parameters for estimating the 
degree of vocal pathology. In addition, it has been found that the CPP 
in SMS individuals is low, which could be  related to a possible 
relationship between the syndrome and laryngeal biomechanics 
(Hidalgo-De la Guía et al., 2021b).

In SMS, a dysphonic voice is one of the characteristics with the 
highest rate of appearance (Linders et  al., 2023), and to achieve 
dysphonic voice detection in this study, the CPP is used. The CPP is 
calculated as follows.

	1. The signal is segmented into overlapping fragments (1,024 
samples 87.5% overlap). Each fragment is multiplied by a Hamming 
window function, and the fast Fourier transform (FFT) is calculated. 
Based on this calculated signal, the absolute value is found, and its 
logarithm is calculated. Finally, the inverse fast Fourier transform 
(IFFT) is performed on the previous result, and the real part is 
obtained. Thus, a set of frames is created in the cepstral domain.

	
c real IFFT abs FFT x w= ×( )( )( )( )( )log .

where c is the cepstrum vector, x the input signal vector, w is a 
vector with a Hamming window function and the operation × 
represents the sample-to-sample product of both vectors.

	2. A smoothing filter (smoothing in the cepstral direction) is applied 
to each of the frames obtained in the cepstral domain. This filter is applied 
to eliminate spurious signal values while preserving the true cepstral 
peaks, thus avoiding cepstral peak detection errors.

	
c n a c n if
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=

−
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where cf. is the value of the smoothed cepstrum, ai are the 
coefficients of the filter, and l = 7 is the length of the filter 
in samples.

3. The cepstrum is then limited between the quefrency values 
corresponding to the minimum (22 samples) and maximum (400 
samples) fundamental periods expected for the range of vocal 
frequencies of the study population.

4. The maximum value of the previous signal (cepstral peak) 
is calculated, and the CPP is obtained as the difference between 
this maximum and the average of the rest of the signal.
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5. A vector is formed with the CPP values thus obtained (CPP[n]), 
which is smoothed by a filter with a 56 ms window (smoothing in the 
temporal direction). This smoothing operation reduces the noise of 
the signal obtained while preserving large variations in the CPP value, 
which can be present in dysphonic voices.

	
CPP n a CPP n if

i

m
i[ ] = −[ ]

=

−

∑
0

1

with a filter length m = 7 for a displacement of 128 samples and 
16,000 Hz of sampling frequency, and where ai are the coefficients of 
the filter (following a hamming window function), and CPPf the 
smoothed CPP.

2.2 Dataset

Most rare disease databases, such as those for SMS, are private, 
and accessing these databases is difficult. In the specific case of 
databases in Spanish, the Orphanet website (Orphanet, 2023) offers 
genetic biobank searches. Such searches were carried out, and three 
results were obtained: Basque Biobank, CIBERER Biobank, and the 
National Biobank for Rare Diseases (BioNer). However, two of the 
three results do not have information about SMS, and the one that 
does contain genetic information.

The difficulty of obtaining this type of data is well known. Given 
that the number of subjects suffering from these syndromes is small 
and heterogeneous, the datasets are strongly unbalanced. 
Consequently, this situation requires synthetic data augmentation 
methods to be applied. These techniques have been widely used in 
the field of image processing since the appearance of convolutional 
neural networks (CNNs) in 2012 (Shorten and Khoshgoftaar, 2019). 
Likewise, to process data such as those mentioned above, 
oversampling techniques such as the synthetic minority oversampling 
technique (SMOTE) and its variants are used. As described by Alabi 
et al. (2020), these techniques can be used to increase of amount of 
data in early tongue cancer detection. In Joloudari et al. (2023), the 
effectiveness of different solutions to data imbalance in Deep Neural 
Networks and CNNs is verified. The best result is obtained by 
combining SMOTE with a CNN plus a normalization process 
between both stages, achieving an accuracy of 99.08% across 24 
imbalanced datasets.

In this study, the dataset contains voice quality information from 
normotypic and nonnormotypic individuals for comparison. To create 
this dataset, we worked with a total of 22 individuals between the ages 
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of 5 and 33 who belong to the Smith–Magenis Spain Association 
(ASME), comprising 20% of the Spanish population diagnosed with 
this syndrome. The diagnosis of all the individuals with SMS was 
obtained by means of the fluorescent in situ hybridization (FISH) 
technique. Samples were collected from subjects through recordings 
in which they had to hold the vowel /a/ for a few seconds (minimum 
500 ms of phonation). The recording quality was guaranteed by ruling 
out comorbidity of associated vocal pathology, such as vocal fold 
nodules or any other additional vocal problem. Likewise, the recording 
context was addressed as follows: the rooms were completely silent 
(some soundproofed), only of the researcher and the diagnosed 
person were in the room, and a cardioid lapel microphone was used. 
From all the audio, the CPP information, an acoustic voice quality 
measure and one of the best dysphonia metrics (vocal timbre 
alteration), as described by Heman-Ackah et al. (2003), was extracted.

In this study, a subset of these data was used, consisting of 12 
individuals SMS, all of whom were between the ages of 5 and 12 years. 
These individuals were used because we  wanted to verify the 
possibility of developing a system that allows early disease 
identification, since a late diagnosis leads to a worse quality of life. The 
group of 12 individuals with SMS is made up of two subgroups: a 
group of young children aged 5 to 7 years and another group of older 
children aged 8 to 12 years. Both subgroups had 3 boys and 3 girls.

To complete the dataset, 12 recordings of participants with typical 
development were added. Sample collection from normotypic 
individuals was the same as that used for SMS individuals, and the 
same age distribution as that of the SMS individuals was followed.

The dataset in the study contains 2,685 CPP values extracted from 
audio from the 24 participants (12 normotypic and 12 nonnormotypic 
participants). The number of CPP values per participant varied in 
relation to the number of voice samples obtained and their duration. 
Each entry in the dataset has the following fields defined: subject 
identifier, sex, age, CPP value, as well as whether the participant 
suffers from SMS and whether they belong to the “younger” or 
“older” group.

A descriptive analysis of the CPP stored in the database was 
prepared as presented in Figure 1, where the X-axis represents the 
CPP values, and the Y-axis represents the data divided by sex. The 
orange boxplots represent the SMS group, and the blue boxplots 

represent the normative group. It is observed that the SMS group has 
much lower CPP values than those of the normative group. Likewise, 
it can be observed that the range of values for normative boys and girls 
is very similar. However, the range of values for SMS boys is slightly 
more dispersed than that of SMS girls. Finally, in Figure  1, it is 
observed that the boxplot of SMS girls is slightly larger, and the 
whiskers are somewhat longer than those of normotypic girls.

Given the importance of age and sex and to improve the 
explainability of the results, the aforementioned information was 
segmented by “young children” (5–7 years) and “older children” 
(8–12 years). The results are reflected in Figure 2. From the generated 
histograms, it is observed that in the group of girls between 8 and 
12 years old and that of boys between 5 and 7, there is a greater 
differentiation in the CPP values between normotypic and SMS 
individuals. However, in the other two groups (girls between 5 and 
7 years old and boys between 8 and 12 years old), there is a greater 
overlap between the data of both groups. Specifically, the overlap is 
greater in girls between 5 and 7 years old than in the group of boys 
between 8 and 12 years old.

It is important to point out some of the potential research gaps in 
this research work. A larger number of individuals with SMS could 
be enriching and it could avoid lead to biases by gender, age, or other 
characteristics. The second issue is the lack of exploration of different 
alternatives to SMOTE. There are different variants of this technique 
and other oversampling methods that could be  implemented and 
could lead to better solutions. Finally, other ML methods could also 
be  searched. All four methods used in this research work have a 
multitude of variants that may improve the performance of the 
baseline method. Regarding the problem of the number of individuals, 
as previously mentioned, it has been decided to use a subset of the data 
as a first approach due to the number of patients who suffer from 
this syndrome.

2.3 Preprocessing and data augmentation

When working with machine learning models, the data must have 
adequate structure that guarantees correct training. It should be noted 
that group the information by speaker does not require that all 
individuals have the same number of samples (the number of voice 
recordings). It is also unlikely that the recordings will have the same 
duration. However, to directly apply one or more of the extracted 
features, the problem of comparing patterns of different sizes must 
be  solved. Therefore, a proprietary “window” algorithm was 
developed, and to explain its operation, Figure 3 is used as a reference.

Although there are several subgroups that belong to the same 
person, they should not be treated independently within the dataset. 
Consequently, they should be  assigned exclusively to either the 
validation set or the training set, but never simultaneously. Though 
CPP is not an efficient acoustic measure for speaker identification, 
compared to others such as Mel Frequency Cepstral Coefficients 
(MFCC) (Ayvaz et  al., 2022), it is preferred to avoid mixing 
subgroups of the same person in the validation and training sets to 
pre-vent possible data leakage. Table 1 illustrates the result of the 
windowing process by means of a dataframe, where each row 
represents a sample in the dataset. With this process, a usable data 
structure was achieved to train the different ML models, as detailed 
in the following section.

FIGURE 1

Representation of CPP values by sex, comparing normative vs. 
nonnormative groups.
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In addition to the problem indicated above, there is a second 
problem, i.e., the imbalance between the classes to be predicted (246 
entries from SMS individuals and 100 entries from normotypic 
individuals). This fact directly affects the performance of models that 
tend to overfit. To solve this problem, various solutions have been 
explored, e.g., assigning a higher weight to the minority class during 
the training or eliminating majority class samples. Finally, it was 
decided to use the SMOTE technique (Chawla et  al., 2002), an 
oversampling technique based on the creation of synthetic examples 
of the minority class. With SMOTE, new samples are introduced along 
the segments that join the k nearest neighbors of the minority class. 
The number of k neighbors selected depends on the number of 
samples generated samples required. As the number of samples 
increases, the number of neighbors employed decreases. The great 
advantage of this technique is that it allows the generation of synthetic 
samples instead of resorting to oversampling, where samples of the 
minority class are reintroduced into the dataset, which tends to lead 
to overfitting.

2.4 ML techniques

In this work, both supervised and unsupervised methods were 
considered to compare the different techniques and create combined 
models. Among unsupervised methods, the Gaussian mixture model 
(GMM) (Rasmussen, 1999) and K-means clustering (Sinaga and Yang, 
2020) were used. In addition, the following supervised methods were 

used: SVM, random forest (RF), linear discriminant analysis (LDA) 
and k-nearest neighbors (KNN).

Unsupervised methods were not included in this work as they do 
not offer results that contribute any new research knowledge. These 
techniques generated clusters based on the sex and age of the 
individuals, ignoring the CPP. Therefore, the experiment was repeated 
after eliminating these two variables. However, the clusters did not 
provide any new information.

Because supervised techniques are well known, only a brief 
description of the methods is given. The SVM (Jakkula, 2006) builds 
hyperplanes that allow an optimal separation of the data, and the 
power of this method resides in the kernel trick, allowing data transfer 
to spaces of greater dimensionality in an optimal manner. Depending 
on the kernel used, the shape of the decision boundary varies; in 
Figure 4, the influence of the different types of kernels is observed.

The RF (Pachange et al., 2015) is an assembly method, where 
multiple decision trees are combined to generate predictions. This 
method is based on building decision trees, where data are divided 
using the problem variables, applying some criterion that evaluates 
and maximizes the gain of information. LDA searches for a linear 
combination of the characteristics that generates the greatest variance 
between classes and minimizes it within each class (Izenman, 2008). 
KNN allows for the prediction of a class of data based on its k closest 
neighbors (Uddin et al., 2022). The way in which the influence of each 
neighbor is determined in the final prediction can vary according to 
the technique used. For example, if the weight of each neighbor in the 
final decision is “uniform,” all neighbors have an equal influence on 

FIGURE 2

Normotypic vs. nonnormotypic CPP decomposition by sex and group.
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the vote; on the other hand, if each neighbor is “weighted,” the closest 
neighbors will have a greater influence on the final decision.

2.5 Wilcoxon rank sum test

The Wilcoxon rank-sum test, also called the Mann–Whitney U 
test, is a powerful tool for comparing two sets of data without relying 

on specific assumptions about their distribution (unlike some other 
tests). It works by ranking the observations in each set instead of using 
their raw values. This makes it especially useful when the data might 
be skewed or non-normally distributed.

The goal of the Wilcoxon rank-sum test is to assess whether the 
medians of two populations differ significantly. This is particularly 
helpful when the precise shape of the data distribution is unknown.

To calculate the test statistic, the formula is shown as follows:

FIGURE 3

Windowing example. (A) All the CPP values stored in the database are grouped for each speaker. In the illustrated example, the first speaker has 14 CPP 
values, the second has 21 and the third has 24. (B) The speaker with the lowest number of samples (14 in this case) is identified (nmin). (C) All prime 
numbers between 3 and nmin  (14) are stored in a list (list prime). (D) For each value stored in list prime, the number of samples that would be lost when 
dividing the sampling into groups of that size is calculated. This calculation is equivalent to determining the modulus of the group size between that 
value. Suppose that in the example described above that a value of three is used. Since the first speaker has 14 samples, it is possible to generate four 
new groups of size three and lose two samples; for the second speaker, no samples would be lost, and for the third speaker, three samples would 
be lost. Therefore, if a size of three is used to generate the new groups, a total of five samples would be lost. For this reason, an nprime value is sought 
that minimizes the number of lost samples. (E) The samples grouped by speaker are divided into groups of size nprime. Each subgroup generated from 
the same individual has a number added to the end of the identifier to distinguish them. In the case of the above example, the number of samples of 
speaker SMS3 is 24, and nprime is equal to 7. Therefore, three new groups of size 7 are obtained (SMS3.1, SMS3.2, and SMS3.3), and the remaining three 
samples are lost.

TABLE 1  Dataframe generated after windowing when nprime = 7.

Name CPP1 CPP2 CPP3 CPP4 CPP5 CPP6 CPP7 Target Sex Group

10APG.1 0.0488 0.0502 0.5050 0.0501 0.0494 0.0481 0.0476 N Female Older

10APG.2 0.0490 0.0508 0.0467 0.0483 0.0457 0.0458 0.0466 N Female Older

... ... ... ... ... ... ... ... ... ... ...

SMS3.3 0.0477 0.0475 0.480 0.0511 0.055 0.058 0.058 SMS Male Young
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Where:

	•	 U: The test statistic
	•	 n₁: Size of the first sample
	•	 n₂: Size of the second sample
	•	 ΣR₁: Sum of the ranks in the first sample
	•	 m₂: Median of the second sample

3 Results

3.1 Training and validation

The consistency of this study lies in its data, as well as the 
techniques and methods used. Therefore, it was decided to apply the 
methodical procedure described in Figure  5 to the data. This 
procedure is summarized in four fundamental phases: windowing, 
Leave One Out, SMOTE, ML methods.

1. Windowing: Each sample is composed of seven CPP values, sex, 
and group. Therefore, nprime = 7.

2. Leave One Out (LOO): It is used to implement a training and 
validation model that ensured that different subgroups of the same 
person do not end up in different datasets. To do this, all subgroups of 
the same person are extracted to be used as a validation set, while the 
rest of the samples are used in the training phase. This process is 
repeated for each of the 24 people in the study.

3. SMOTE: It is used to generate new synthetic samples of the 
minority class (normotypic). The objective is to avoid creating biased 
models that tend to over-identify the dominant class (SMS). Although 
the number of SMS and normative individuals in the training set is 
always 11 versus 12, depending on which group is used for validation, 
the number of SMS subgroups (248) is higher than that of normative 
subgroups (131). It should be noted that this technique is only applied 
to the training set. The SMOTE technique is not suitable for the 

validation set. In such a way that the two groups are separated and do 
not mix and therefore data leakage is avoided.

4. ML methods: Once the training and validation sets are 
obtained, the different ML models are trained. Previously, exhaustive 
tests were carried out with different hyperparameters to identify the 
most effective combinations. It should be  noted that, for each 
validation set, not only one but ten iterations are carried out. An 
augmented training set is generated in each iteration by using the 
SMOTE technique. Then, the performance of the used model is 
evaluated on the validation set. This process is repeated ten times, 
generating new training sets with SMOTE and training a new model 
in each iteration. The aim is to obtain a robust and accurate estimate 
of the model’s performance over iterations. This process consists of a 
Leave One Out Cross Validation.

To statistically compare the performance of the different models 
on each individual, the following process will be  followed: the 10 
values obtained in the LOO for each subject in each method will 
be  recorded. Then, all the results of each method for the same 
individual will be compared one by one using the Wilcoxon Rank Sum 
Test (Boslaugh, 2012), in order to obtain the p-values of and thus 
determine the statistical significance of the methods. The results are 
reflected in Tables 2, 3.

3.2 Results

Two different case studies were established in order to evaluate the 
behavior and quality of the predictions in the models.

1. The first case study (CE1) applies the windowing process but 
does not use SMOTE, resulting in an unbalanced training set in favor 
of the SMS class. Each training/validation sample contains seven CPP 
values used to predict whether it belongs to the SMS or normative class.

2. The second case study (CE2) involves the data passing through 
the windowing process and subsequently applying SMOTE to the 
training set. The data maintains the same structure as in the 
previous case.

Each case relates to the four ML techniques proposed in Section 
2.4. Each figure (Figures 6–13) groups individuals by their age, sex, 
and study case, corresponding to the subgroups identified in Section 
2.2. Each figure is divided into tables which share the same column 
structure: the first identifies the speaker, the second shows the number 
of samples per person obtained after the windowing process. The next 
ten columns represent the values obtained using leave-one-out (LOO) 
cross-validation, with the samples treated as the validation group, 
these ten values reflect the repetitions of the process. The last column 
is the average value of the ten iterations plus the standard deviation. 
Every table displays three normative (blue) and the non-normative 
(orange) individuals. In each iteration of the Leave-One-Out (LOO) 
cross-validation, all samples belonging to a single individual are 
consistently used as the validation set. This means we  exclude all 
samples from a particular subject and test the model on them in 
each iteration.

Importantly, the tables associated with CE2 (Figures  10–13) 
exhibit higher standard deviations and different results on the score 
columns compared to those of CE1 (Figures 6–9). This issue occurs 

FIGURE 4

Hyperplanes generated according to the kernel used.
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because, in CE2, each iteration augments the training set with 
SMOTE, generating new synthetic data, making each training set 
different from the others. Furthermore, significant variation between 
iterations for the same subject is possible due to the limited size of the 
individual validation sets (i.e., 15 samples). If the algorithm fails or 
hits two samples of the available data during a specific iteration, the 
resulting value for that iteration can fluctuate significantly across 
different runs.

3.2.1 Case study 1
The results of CE1 are elaborated in Figures 6–9. It is noteworthy 

that the subgroups of Female Old and Male Young (Figures 6A–9A, 
6C–9C) do not exhibit exceptionally low detection rates. However, a 
stark contrast is observed in the Female Young subgroup (Figures 6B–
9B), where the three normative individuals display significantly lower 
results compared to the SMS group. In the final subgroup, Male Old 
(Figures 6D–9D), both normative and SMS individuals demonstrate 
low detection rates.

When individuals are evaluated independently, it is observed that 
several normative subjects, such as 10AGPC, 11OADS, 517A, 612A, 
637A, and 842O, exhibit low precision rates across various methods. 
Some of these subjects achieve low rates on the order of 0.1%. Within 
the SMS group, only SMS7 and SMS9 display significantly low 
detection rates. SMS11 also has a low rate, albeit higher than the 
previous two speakers. These results align with the tendencies of a 
biased model, which tends to over-identify the majority groups. In this 
scenario, the dominant class (SMS) demonstrates better detection 
than the minority class (normative).

3.2.2 Case study 2
Figures 10–13 depict the outputs of CE2. In Figures 10A–13A, 

there is a noticeable enhancement in the detection of 10AGPC 
compared to the previous case, notwithstanding with a minor decline 
for SMS11. In the Female Young subgroup (Figures  10B–13B), 
detection rates for subjects 517A and 637A have increased, but 
performance for patient SMS06 has decreased. In the Male Old 

FIGURE 5

Data preprocessing and obtained results.
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subgroup (Figures  10D–13D), all normative subjects exhibit 
improvements in their detection rates, despite a minor decrease for 
subjects SMS07 and SMS08. Lastly, the Male Young subgroup 
(Figures 10C–13C) mirrors the Male Old, with improved detection for 
all normative individuals and a slight decrease for SMS.

Highlighting some individual cases, it is significant to note that 
subjects 10AGPC and 842O from the normative set have seen 
substantial improvements in their detection compared to the previous 
case. The individual 11OADS depicts a considerable increase in SVM 
detection from 0 to 0.815 (Figures 8D vs. 12D) and an increase from 
0 to 0.577 in LDA (Figures 9D vs. 13D). For 637A (Female Young), 
there is a global enhancement in detection across methods, with both 
SVM and LDA (Figures 12B, 13B) yielding favorable results. However, 
no significant improvement is observed for subjects 517A and 612A 
(Female Young). Conversely, the SMS group results indicate a marked 
decrease in performance, especially for individuals SMS6 (Female 
Young) and SMS11 (Female Old), which achieved identification rates 
below 0.5. SMS7 (Male Old) and SMS9 (Male Old) present 
identification rates comparable to the previous case. Lastly, the 
SMOTE technique boosts the precision rates of the minority class, 
albeit at a slight detriment to the majority class.

4 Discussion

In this work, we propose the development of ML models that 
allow for the identification of SMS versus normotypic individuals. 
One clinical feature of the SMS pathology is voice hoarseness (Elsea 
and Girirajan, 2008), as described in previous studies (Hidalgo-De la 
Guía et al., 2021b), it has been demonstrated that by utilizing the CPP 
values of SMS and normotypic individuals, it is possible to create 
divisions into highly differentiated subgroups. This differentiation is 
primarily due to the hoarseness present in individuals with this 
genetic pathology. These types of studies are necessary to improve 
early disease detection. Currently, the average SMS diagnosis age is 
approximately seven years (Hidalgo-De la Guía et al., 2021b), leading 
to problems for these patients. Problem arises because SMS requires 
specific therapies that, when implemented late, cause different kinds 
of delays. As presented in this research work, the voice is a versatile, 
inexpensive, and minimally invasive medium that helps to 
discriminate possible pathologies (Jeffery et al., 2018; Lee, 2021; Calà 
et al., 2023).

The initial data were not suitable for ML model training. The main 
problem was sample imbalance between groups. Two techniques were 

TABLE 2  Summary and comparison of the four ML methods, providing average and pairwise precision rates using the Wilcoxon Rank Sum Test for CE1.

Average accuracy Comparison Wilcoxon Test (p-value)

RF KNN SVM LDA Speaker RF_vs_
SVM

RF_vs_
KNN

RF_vs_
LDA

SVM_
vs_KNN

SVM_
vs_LDA

KNN_
vs_LDA

59.23% 53.85% 46.15% 61.54% 10AGPC 0.002 0.011 0.149 0.002 0.002 0.002

99.23% 92.31% 100.00% 100.00% 11AAZM 1 0.003 1 0.002 NA 0.002

23.08% 15.38% 0.00% 0.00% 11OADS 0.002 0.005 0.002 0.002 NA 0.002

88.33% 91.67% 75.00% 75.00% 511O 0.002 0.072 0.002 0.002 NA 0.002

16.67% 16.67% 16.67% 16.67% 517A NA NA NA NA NA NA

5.83% 0.00% 0.00% 0.00% 612A 0.011 0.011 0.011 NA NA NA

87.14% 71.43% 71.43% 71.43% 618O 0.002 0.002 0.002 NA NA NA

49.00% 40.00% 40.00% 40.00% 637A 0.008 0.008 0.008 NA NA NA

85.71% 85.71% 85.71% 85.71% 743O NA NA NA NA NA NA

87.06% 94.12% 82.35% 94.12% 819O 0.018 0.012 0.012 0.002 0.002 NA

67.33% 66.67% 46.67% 66.67% 842O 0.002 0.783 0.783 0.002 0.002 NA

95.00% 100.00% 100.00% 100.00% 12109A 0.149 0.149 0.149 NA NA NA

99.64% 100.00% 100.00% 100.00% SMS1 1.000 1.000 1.000 NA NA NA

100.00% 100.00% 100.00% 100.00% SMS2 NA NA NA NA NA NA

86.15% 92.31% 92.31% 92.31% SMS3 0.006 0.006 0.006 NA NA NA

100.00% 100.00% 100.00% 100.00% SMS4 NA NA NA NA NA NA

77.50% 87.50% 100.00% 100.00% SMS5 0.002 0.006 0.002 0.002 NA 0.002

68.46% 76.92% 84.62% 84.62% SMS6 0.002 0.010 0.002 0.002 NA 0.002

29.23% 46.15% 38.46% 38.46% SMS7 0.007 0.002 0.007 0.002 NA 0.002

90.61% 87.88% 93.94% 93.94% SMS8 0.002 0.003 0.002 0.002 NA 0.002

36.15% 15.38% 7.69% 0.00% SMS9 0.002 0.002 0.002 0.002 0.002 0.002

100.00% 100.00% 100.00% 100.00% SMS10 NA NA NA NA NA NA

62.88% 65.38% 65.38% 61.54% SMS11 0.026 0.026 0.104 NA 0.002 0.002

91.76% 94.12% 100.00% 100.00% SMS12 0.002 0.006 0.002 0.002 NA 0.002

71.1% 70.6% 68.6% 70.1%
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proposed to solve this problem. The first technique is CPP sample 
“windowing,” a novel approach. In Section 2.3, it was explained that 
“windowing” consists of grouping the samples by speaker and making 
new subgroups of the same size to solve the sample imbalance 
problem. The second technique is the application of SMOTE, with 
which new synthetic samples of the minority class are generated until 
a balance between the two classes is achieved. The authors maintain 
that, with the combination of the “windowing” and SMOTE methods, 
the dataset is improved. To demonstrate how the yields of the models 
vary according to the applied techniques, two different case studies 
were proposed.

The LOO technique was implemented to prevent the inclusion of 
subgroups of the same person in the validation and training sets, 
avoiding the risk of data leakage. This technique is especially beneficial 
in small datasets because it allows the use of all n-1 available data for 
training. It should be noted that training involves the 23 individuals 
present in the dataset, while the remaining person is reserved for 
validation. This validation and training process is iterated ten times 
for each speaker. This iterative approach contributes to obtaining 
robust results, reducing the possibility of achieving biased or 
circumstance-influenced performances. The different models tend to 

over-identify the dominant group (SMS) in CE1. In contrast, in CE2, 
the SMOTE technique was implemented in the training dataset to 
address the class imbalance. It should be  highlighted that the 
application of SMOTE was limited to the training set to prevent 
possible data leakage.

This approach increased the identification of the normative group 
and led to an overall improved performance but reduced slightly the 
identification of the SMS speakers. To evaluate the ML techniques 
against each other, it has been decided to give the arithmetic median 
obtained in the SMS and normative classes, as it is not affected by 
outsider high or low performances in certain individuals. Firstly, SVM 
offered the worst results, especially in CE1, since it was necessary to 
use models with a hyperparameter configuration that tends to overfit 
the model due to its inability to detect the normative class. This led to 
labeling all results as SMS, obtaining an average of 0.59 and 0.97 for 
the normative and SMS classes. However, in CE2, a model that does 
not depend on hyperparameters is obtained, with a median of 0.99 for 
normative and 0.75 for SMS. In this second case study, its high 
detection rate in the normative group stands out. Individual 11OADS 
is far superior to the rest of the methods. Nonetheless, it is not able to 
achieve such good generalization in the SMS group.

TABLE 3  Summary and comparison of the four ML methods, providing average and pairwise precision rates using the Wilcoxon Rank Sum Test for CE2.

Average accuracy Comparison Wilcoxon test (p-value)

RF KNN SVM LDA Speaker RF_vs_
SVM

RF_vs_
KNN

RF_vs_
LDA

SVM_
vs_KNN

SVM_
vs_LDA

KNN_
vs_LDA

72.30% 90.00% 99.23% 89.23% 10AGPC 0.002 0.002 0.002 0.008 0.008 0.679

100.00% 100.00% 100.00% 100.00% 11AAZM NA NA NA NA NA NA

33.80% 33.85% 81.54% 57.69% 11OADS 0.002 1.000 0.002 0.002 0.002 0.002

93.30% 100.00% 100.00% 95.83% 511O 0.006 0.006 0.299 NA 0.037 0.037

21.70% 55.00% 50.00% 35.00% 517A 0.002 0.002 0.015 0.149 0.003 0.002

9.20% 10.00% 8.33% 0.00% 612A 0.414 0.679 0.006 0.186 0.002 0.007

92.90% 100.00% 100.00% 100.00% 618O 0.037 0.037 0.037 NA NA NA

56.00% 65.00% 70.00% 88.00% 637A 0.002 0.058 0.002 0.240 0.002 0.002

85.71% 91.43% 100.00% 100.00% 743O 0.002 0.072 0.002 0.020 NA 0.020

84.12% 100.00% 100.00% 100.00% 819O 0.002 0.002 0.002 NA NA NA

73.33% 74.00% 98.00% 96.00% 842O 0.002 1.000 0.002 0.002 0.149 0.002

100.00% 100.00% 100.00% 100.00% 12109A NA NA NA NA NA NA

99.64% 98.21% 92.86% 98.93% SMS1 0.002 0.129 0.424 0.002 0.002 0.484

92.94% 91.18% 94.12% 94.12% SMS2 0.186 0.322 0.186 0.037 NA 0.037

86.15% 85.38% 76.92% 73.08% SMS3 0.002 0.408 0.002 0.012 0.037 0.008

100.00% 100.00% 100.00% 100.00% SMS4 NA NA NA NA NA NA

75.00% 70.00% 75.00% 97.50% SMS5 1.000 0.129 0.002 0.072 0.002 0.002

43.85% 37.69% 27.69% 30.00% SMS6 0.002 0.098 0.002 0.034 0.149 0.033

14.62% 21.54% 7.69% 23.08% SMS7 0.048 0.090 0.026 0.002 0.002 0.186

84.24% 77.58% 67.27% 86.67% SMS8 0.002 0.006 0.229 0.009 0.002 0.002

30.77% 13.08% 0.00% 0.00% SMS9 0.002 0.002 0.002 0.002 NA 0.002

100.00% 100.00% 100.00% 100.00% SMS10 NA NA NA NA NA NA

56.15% 46.15% 34.62% 44.23% SMS11 0.002 0.009 0.009 0.002 0.002 0.322

88.53% 88.82% 80.59% 98.24% SMS12 0.002 1.000 0.002 0.002 0.002 0.002

70.6% 72.9% 73.5% 75.3%

79

https://doi.org/10.3389/fncom.2024.1357607
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fernández-Ruiz et al.� 10.3389/fncom.2024.1357607

Frontiers in Computational Neuroscience 11 frontiersin.org

The second model discussed in this study is RF. Acceptable 
performance is achieved with medians of 0.765 for normative and 
0.884 in SMS at CE1. However, practically identical performance is 
observed to the previous case in CE2. Medians are between 0.787 and 
0.852 for normative and SMS. It is crucial to say that the use of 
SMOTE does not always guarantee an improvement in model 
performance. In fact, it can become a problem by generating noise in 
situations of high dimensionality. Nevertheless, it does not rule out the 
possibility that the combination of the SMOTE technique with RF can 
improve results with other datasets. For example, in Abdar et  al. 
(2019) four variants of DTs are proposed to predict coronary artery 

disease. The article proposes a multi-filtering approach based on 
supervised and unsupervised methods to modify the weights of the 
attributes, leading to a 20–30% improvement in the methods.

The two final models analyzed in this study exhibit relevant high 
performances. Firstly, the KNN’s performance experiences a 
significant improvement: from medians of 0.69 and 0.9 in CE1 to 0.90 
and 0.81 for normative and SMS in CE2. This improvement can 
be attributed to the data arrangement, as shown in Figure 2, where 
three out of four clusters present adequate separation. Consequently, 
this technique is better than the others because if the closest samples 
are selected then higher recognition rate are obtained. Finally, the 

FIGURE 6

Summary of the results for the CE1, using RF. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.

FIGURE 7

Summary of the results for the CE1, using KNN. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.
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model that yields the best results is LDA, with medians of 0.690 and 
0.970 for CE1 in normative and SMS, respectively. It is accomplished 
medians between 0.95 and 0.90 in CE2, making it the model with the 
most outstanding results throughout the research work.

Tables 2, 3 present a statistical comparison using the Wilcoxon 
Rank Sum test to evaluate the performance of the four employed ML 
methods which present the following structure. Each table is divided 
into three concepts. On the left side, the authors detail the accuracy 
rates for every ML method (RF, KNN, SVM and LDA) for each 
subject. The next column provides the speaker identifier. Finally, on 
the right-hand side, the authors detail the comparisons, contrasting 
the results obtained in the ten iterations (e.g., RFscore1 … RFScore10) of 
each method against the ten iterations (e.g., LDAscore1 … LDAScore10) of 
another method for the same subject. The last six columns display 

p-values from the Wilcoxon test. A p-value less than or equal to 0.05 
indicates statistically significant differences in accuracy rates between 
methods, leading to rejection of the null hypothesis that they are 
equal. The table occasionally shows “Not Applicable (NA)” values. 
This occurs when the Wilcoxon test cannot calculate a p-value because 
the distance between all elements of the two input methods is zero. 
Such scenarios mostly arise when both methods achieve 100% or 0% 
accuracy (particularly in Table 3) but can also occur with other values. 
It is likely due to the relatively small dataset size (6–13 samples per 
subject), which increases the chance of different models achieving 
identical performance.

Upon comparing the two Tables 2, 3, a disparity is observed in the 
number of NA values. Table 2 records 59 NA values (29 in normotypic 
group and 30 in non-normotypic group). Indeed, the Table 3 shows 

FIGURE 8

Summary of the results for the CE1, using SVM. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.

FIGURE 9

Summary of the results for the CE1, using LDA. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.
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34 NA values (20 in normotypic group and 14 in non-normotypic 
group). This difference can be  attributed to the limitation of the 
training dataset in CE1 (without SMOTE), which leads to the models 
generating identical results due to data bias. However, when SMOTE 
is applied, the different models can produce diverse results due to data 
augmentation process and the correction of bias during training. 
Analyzing the results reveals that some speakers, like 11AAZM and 
SMS04, are highly identifiable across all methods, achieving 100% 
accuracy and received “Not Applicable” (NA) values in all one-to-one 
Wilcoxon comparisons. Likewise, while most comparisons yield 
p-valuess below 0.05, indicating statistically significant differences, the 
RF vs. KNN comparison shows 12 non-significant results. This 
suggests similar performance for these methods, potentially making 
them less effective than the others. Conversely, SVM and LDA 

generally exhibit more statistically significant values, implying 
stronger distinctions in their performance compared to the other 
ML methods.

Another point of debate is whether the SMOTE technique can 
affect the performance of the different models. In Blagus and Lusa 
(2013), the authors applied this technique to high-dimensionality 
cases. However, here, it is addressed a single dimension (the CPP). The 
obtained results agree with those of the previously referenced work. 
First, the authors noted that for low-dimensionality cases, SMOTE 
usually represents an improvement (e.g., the RF, SVM and KNN cases) 
or equates the results to those of other undersampling techniques (e.g., 
the LDA case). These results agree with those achieved in the current 
study, i.e., for the four ML techniques used, the results were improved 
with the application of the SMOTE technique. There are techniques 

FIGURE 10

Summary of the results for the CE2, using RF. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.

FIGURE 11

Summary of the results for the CE2, using KNN. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.
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that can be regarded as more beneficial than others while others may 
be  less beneficial (e.g., high-dimensionality cases). For example, a 
secondary effect of SMOTE is that the new samples from the minority 
class exhibit variances one-third smaller than those of the original 
distribution. This result implies that this technique is not as effective 
in methods that use variance as an indicator, such as the LDA. RF, 
SVM, and KNN are the methods that offer better results in cases of 
low dimensionality. In the case of SVM, it has meant an improvement, 
but it has not quite reached the expected performance. The reason for 
this behavior may be due to the combination of the increase in the 
dimensionality of the SVM itself along with the use of 
SMOTE. Likewise, the interaction between LDA and KNN methods 
with SMOTE is negligible, since the Euclidean distance between the 

classes is the same, before and after the use of SMOTE with low 
dimensionality, as demonstrated by Blagus and Lusa (2013).

Interestingly, in this research work, the average accuracy across 
ML methods is similar for every single method. In CE1 (without 
applied SMOTE technique – see Table 2), all methods achieved values: 
RF (71.1%), KNN (70.6%), SVM (68.6%), and LDA (70.1%). Notably, 
RF performed best with 71.1% accuracy.

For CE2 (with SMOTE technique – see Table 3), average accuracy 
increased across all methods compared to CE1, reaching 70.6% for RF, 
72.9% for KNN, 73.5% for SVM, and 75.3% for LDA. Notably, LDA 
emerged as the best performer in CE2 with an average accuracy of 
75.3%. This finding suggests that the data augmentation techniques 
used in CE2 led to overall improved performance.

FIGURE 12

Summary of the results for the CE2, using SVM. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.

FIGURE 13

Summary of the results for the CE2, using LDA. (A) Detailed performance for the old female subgroup. (B) Detailed performance for the young female 
subgroup. (C) Detailed performance for the young male subgroup. (D) Detailed performance for the old male subgroup.
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5 Conclusion

Two objectives have been achieved in the work. The first 
objective showed that, due to the application of correct data 
preprocessing, the performance of the models can be improved, as 
demonstrated through different case studies. Furthermore, the 
outcomes of CE2 are more reliable and robust compared to the 
results of CE1, owing to the application of data augmentation 
techniques. While it may appear that CE1 has a superior 
classification rate, this is primarily due to the class imbalance, with 
a greater number of SMS samples compared to normotypical ones. 
The second goal of the work was to study whether the CPP is a 
suitable metric for the identification of SMS vs. normotypic 
individuals, and, according to the results obtained in the last case 
study, it can be confirmed that this metric fulfils this function. The 
main limitation of the study is the number of individuals with SMS 
currently available. However, this situation opens the opportunity 
to explore different data augmentation methods and compare their 
performance to find the most suitable one for the study context. A 
similar process will be  carried out with the machine learning 
algorithms, using different variants of them. Another interesting 
approach would be the inclusion of cost-sensitive algorithms. As 
explained in Figure 14, individuals with outlier values have been 
identified compared to their respective groups. Therefore, it may 
be beneficial to implement counterfactual methods to decrease the 
biased caused by those outliers.

Regarding the supervised learning models used, no attempts were 
made to identify the ideal iteration that would yield a very high result. 
This is because when such a model is applied in a real-world context, 
it tends to underperform due to its adaptation to a specific data 

combination for achieving the results. As a result, the initial case study 
reveals models that are biased toward the target class (SMS), while the 
final case study presents models with less bias and a high precision 
rate. The results also indicate that performance improves following a 
series of transformations on complex initial data. However, to enhance 
and solidify these results, it is essential to obtain samples from 
new subjects.

Furthermore, it is important to highlight the presence of certain 
individuals who show significantly low detection rates in most models, 
considering CE2 as a reference. These individuals include 11OADS, 
517A, 612A, 637A (the latter shows good performance in LDA and 
SVM, but not in the rest), as well as SMS6, SMS7, SMS9, and SMS11. 
Figure 14 presents the average CPP value for everyone stored in the 
database, remembering that the normative group should exhibit higher 
CPP values, while the non-normative group should show lower values. 
The bars marked in pink correspond to the individuals mentioned 
above, showing how they present higher or lower values than their 
respective groups. In other words, these individuals constitute the 
decision boundary of the problem. This finding raises possible future 
approaches, such as the application of synthetic data augmentation 
methods on the decision boundary, assigning weights to the problem 
samples, opening new possibilities to improve model performance.

Finally, two potential avenues of research are proposed. The first 
involves replicating the same machine learning procedures with other 
rare diseases, such as WS. The goal would be to compare performance 
and potentially conduct a case study where different models are 
trained to distinguish between SW and SMS individuals, thereby 
extracting the similarities and differences between both pathologies. 
The second avenue of research would focus on the application of deep 
learning techniques. However, to develop more robust models, it 
would first be necessary to increase the number of SMS samples. It 

FIGURE 14

CPP average by subject.
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should be noted that authors explore several new methods based on 
SMOTE techniques and data augmentation methods in future 
research works.
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Introduction: In neurological diagnostics, accurate detection and segmentation 
of brain lesions is crucial. Identifying these lesions is challenging due to its 
complex morphology, especially when using traditional methods. Conventional 
methods are either computationally demanding with a marginal impact/
enhancement or sacrifice fine details for computational efficiency. Therefore, 
balancing performance and precision in compute-intensive medical imaging 
remains a hot research topic.

Methods: We introduce a novel encoder-decoder network architecture 
named the Adaptive Feature Medical Segmentation Network (AFMS-Net) with 
two encoder variants: the Single Adaptive Encoder Block (SAEB) and the Dual 
Adaptive Encoder Block (DAEB). A squeeze-and-excite mechanism is employed 
in SAEB to identify significant data while disregarding peripheral details. This 
approach is best suited for scenarios requiring quick and efficient segmentation, 
with an emphasis on identifying key lesion areas. In contrast, the DAEB utilizes 
an advanced channel spatial attention strategy for fine-grained delineation 
and multiple-class classifications. Additionally, both architectures incorporate 
a Segmentation Path (SegPath) module between the encoder and decoder, 
refining segmentation, enhancing feature extraction, and improving model 
performance and stability.

Results: AFMS-Net demonstrates exceptional performance across several 
notable datasets, including BRATs 2021, ATLAS 2021, and ISLES 2022. Its design 
aims to construct a lightweight architecture capable of handling complex 
segmentation challenges with high precision.

Discussion: The proposed AFMS-Net addresses the critical balance issue 
between performance and computational efficiency in the segmentation of 
brain lesions. By introducing two tailored encoder variants, the network adapts to 
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varying requirements of speed and feature. This approach not only advances the 
state-of-the-art in lesion segmentation but also provides a scalable framework 
for future research in medical image processing.

KEYWORDS

medical image analysis, brain lesion segmentation, adaptive feature extraction, 
attention mechanism, encoder-decoder architecture, computer-aided diagnosis, deep 
learning, neurological diagnostics

1 Introduction

Artificial intelligence (AI) in medical imaging has led to a new era 
in the healthcare system (Hassan et  al., 2022). AI-based medical 
imaging diagnosis facilitates doctors to detect abnormalities earlier, 
allowing for early control of diseases (Yang and Yu, 2021). One 
example is the various imaging modalities, such as magnetic resonance 
imaging (MRI), computed tomography (CT), and ultrasound 
machines, which enable detailed visualization of structures within the 
body (Hurlock et al., 2009). To fully utilize these abilities, the detailed 
medical image segmentation (MIS) process requires careful marking 
of organs and lesions, slice by slice. This step is essential in radiology, 
particularly for identifying and monitoring disease conditions. It is a 
big challenge due to the varied nature of brain lesions and stroke data, 
the complex structure of the brain itself, as well as significant amounts 
of MRI and CT scans (Siuly and Zhang, 2016). The precision of 
segmentation has an impact on diagnosing, treating, and combating 
nervous system disorders, which account for many deaths around the 
world (Stoyanov et al., 2018). In recent years, Deep Learning (DL) 
techniques have greatly simplified medical segmentation. 
Consequently, there is more research into automating brain lesion 
detection and segmentation (Wang et  al., 2022; Ma et  al., 2023). 
Because of such technological progress, manual and semi-manual are 
greatly improved. These improved experiences resulted in earlier 
interventions and better patient results.

Advances in DL approaches have greatly improved the 
segmentation of medical images, providing significant performance 
and adaptability to different medical image applications (Greenspan 
et al., 2023). However, using these methodologies can also pose several 
challenges. Due to most DL networks’ intricate layers and parameters, 
training takes a long processing time and computational cost. 
Additionally, consider applying these approaches in a specific imaging 
situation, such as a brain lesion with split pixel imbalances and 
complex structures. The segmentation process becomes more complex 
and less efficient (Shatnawi et al., 2018). Considering these minor 
errors can significantly affect the performance of these techniques, 
designing and configuring them for specific problems needs a high 
level of expertise (Li et al., 2020). Image modalities, imagine size, voxel 
spacing, and class ratio can all have a substantial impact on 3D 
medical imaging performance (Vedaei et al., 2023). In addition, to 
effectively use these approaches, memory requirements, processing 
capability, and task-specific expertise must be  addressed (Celaya 
et al., 2022).

To address these issues in 3D medical images, we propose the 
Adaptive Feature Medical Segmentation Network (AFMS-Net). 
AFMS-Net consists of two encoder modules: Single Adaptive Encoder 

Block (SAEB) and Dual Adaptive Encoder Block (DAEB). Both 
versions aim to improve feature extraction and model interpretation. 
SAEB uses a squeeze-and-excite technique to improve feature 
representation while reducing model parameters. It is ideal for initial 
screenings and applications where computational efficiency is a 
priority. Conversely, DAEB integrates advanced attention mechanisms 
to capture local and global features, resulting in a comprehensive and 
precise representation of feature information. The DAEB is designed 
to address multi-class segmentation challenges datasets such as 
BRATS, where accurate segmentation with fine-grained and multiple-
class labels is essential. This module is particularly useful in cases 
involving multi-class lesions, where the size, shape, and location of 
each lesion may significantly influence the diagnosis and treatment 
plan. Then, incorporate a novel SegPath module between the encoder 
and the decoder to eliminate the semantic gap and boost feature 
refinement. The AFMS-decoder utilizes simple convolutional layers 
and transpose layers to illustrate the respective encoder’s features. The 
proposed AFMS-Net strikes the stability between computational 
efficiency and segmentation performance, demonstrating impressive 
findings across three diverse medical datasets in single and multiclass 
segmentation tasks. Therefore, the suggested segmentation framework 
shows a significant benchmark for future research in medical 
image diagnosis.

The key contributions of our research are summarized as follows:

	 1	 We designed an encoder-decoder framework called the 
Adaptive Feature Medical Segmentation Network (AFMS-Net) 
framework for brain lesion segmentation.

	 2	 We propose two different encoder modules, a Single Adaptive 
Encoder Block (SAEB) and a Dual Adaptive Encoder Block 
(DAEB). SAEB, designed for efficiency, employs a Squeeze-
and-Excitation mechanism to capture sufficient primary 
features from the input images. In contrast, DAEB, is embedded 
in our AFMS-Net targeting complex cases like BRATS, uses a 
detailed attention mechanism that considers advanced 
channel-wise and spatial data.

	 3	 The strategic placement of the new SegPath between the 
network’s encoder-decoder modules addresses the problem of 
gradient vanishing, boosting feature refinement, and 
aggregation for enhanced segmentation features. The 
introduction of an AFMS decoder illustrates the respective 
encoder’s features.

	 4	 Comprehensive experimental analysis was conducted across 
three standard MIS datasets (BraTS, ALTAS, and ISLES), and 
seven different state-of-the-art approaches were compared. 
Our findings show that the AFMS-Net’s robust performance 
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and generalization capability across different datasets 
emphasize its potential as a new benchmark for segmenting 
medical images based on standard evaluation metrics.

2 Related work

2.1 Brain lesion segmentation

There has been significant progress in brain lesion segmentation 
and advanced imaging techniques in recent years. However, accurate 
segmentation still poses a challenge. Traditional approaches mainly 
incorporate model-driven techniques, which rely on handcrafted 
features such as intensity distributions, gradients, morphological 
attributes, and texture characteristics. Using a voxel probability 
estimation approach, Anbeek et al. (2004) segmented white matter 
lesions from brain MRI images. Furthermore, Gooya et al. (2012) 
combined multi-channel MRI with probabilistic models to show the 
adaptability of conventional techniques. Moreover, Islam et al. (2013) 
presented an advanced method of brain tumor segmentation based on 
spatial and intensity characteristics.

Recently, deep learning has made a significant contribution to 
brain lesion segmentation. Numerous automated techniques have 
been proposed, including fully-supervised, supervised unsupervised, 
and atlas-based methods. So far, convolutional neural network 
(CNN) based deep learning techniques have demonstrated 
exceptional performance in medical imaging. The U-Net 
(Ronneberger et  al., 2015) model’s efficient encoder-decoder 
structure has become a starting point for many advanced medical 
segmentation methodologies. Çiçek et al. (2016) expanded the U-Net 
architecture into 3D to handle the volumetric data. Based on U-Net, 
Zhou et  al. (2018) developed nested U-Net (Unet++), which 
minimizes the loss of semantic information between the encoder and 
decoder. During the 2018 BRATS challenge, Myronenko (2019) 
proposed a densely connected convolutional blocks auto-encoder 
model for enhanced brain tumor segmentation. Huang et al. (2020) 
introduced a full-scale skip connection method through the 
integration of high-resolution and low-resolution data at various 
scales. In the Double U-Net network (Guo et al., 2021), two U-Net 
networks are sequentially organized, in which an Atrous Spatial 
Pyramid Pooling (ASPP) is placed after every down sample layer in 
the encoder. In the evaluation, Double U-Net segments nuclei and 
lesion boundaries well. A gradient vanishing problem has been 
observed during the converging process of deeper networks. To 
overcome this problem, Limonova et  al. (2021) developed the 
ResNet-like architecture model. As a contribution to this growing 
research, Isensee et al. (2021) developed nnU-Net, a self-configuring 
method for medical image segmentation that adapts based on the 
provided dataset. According to Rashid et al. (2021) deep learning can 
automatically segment cerebral microbleeds from structural brain 
MRI scans. Furthermore, Kermi et al. (2022) developed a multi-view 
CNN combining the advantages of 2D and 3D networks for glioma 
segmentation. These findings highlight the various and constantly 
developing uses of deep learning for medical image segmentation. 
This research aims to gradually increase segmentation performance, 
boost efficiency, and address specific issues related to lesion patterns 
across various illnesses.

Despite all of the advancements made, some issues still need to 
be  resolved in this field. Precisely identifying lesion boundaries 
remains a challenge for appropriate diagnosis and treatment planning. 
Secondly, the class imbalance issue often leads to suboptimal model 
performance in medical imaging datasets, where lesions are 
considerably smaller than the non-lesion areas. In addition, multi-
class lesions, where a single brain scan might reveal several different 
types of lesions that must be segmented concurrently, remain an open 
issue. The aim should be to overcome these challenges to design more 
accurate, effective, and reliable techniques for brain lesion 
segmentation. The proposed framework addresses these issues using 
an advanced attention-based deep-learning approach.

2.2 3D attention mechanism in medical 
imaging data

Attention mechanisms recently gained popularity in computer 
vision, particularly in medical image segmentation (Gao et al., 2023). 
This technique, which is well-known for its precise feature selection, 
enhances the effectiveness of CNNs for a wide range of complex tasks, 
including detection and classification problems. Squeeze-and-
Excitation Network (SENet) (Hu et  al., 2018) is a well-illustrated 
example of an attention mechanism. In SENet, Squeeze-and-
Excitation modules determine how feature map channels interact to 
gather global spatial information. Inspired by SENet, Oktay et  al. 
(2018) designed attention U-Net architecture. This approach reduced 
the need for extra computational resources or model parameters by 
accurately targeting regions and highlighting valuable features using 
a novel bottom-up attention gate. As the field progressed, more 
sophisticated models began to emerge. Wang et al. (2019) introduced 
the Volumetric Attention (VA) mechanism, capable of creating 3D 
enhanced attention maps across spatial and channel dimensions, 
specifically targeting areas of interest like liver tumors in CT scans. 
Taking a different approach, Zhang et al. (2020) developed employing 
attention guidance to enhance segmentation decoders’ ability to 
perceive 3D contexts. Mou et  al. (2021) proposed self-attention 
mechanism, particularly effective in segmenting curved structures 
such as nerves and blood vessels. This proposal opened new avenues 
for future research and advancements in the field. In the most recent 
developments, Zeng et al. (2023) introduced the Multi-Scale Reverse 
Attention modules (MSRAM) to capture fine-grained features in 3D 
brain vessel images at different scales. Several promising methods (Nie 
et al., 2022; Mehrani and Tsotsos, 2023) have developed due to the 
advancement of attention mechanisms in 3D medical image 
segmentation. As the field progresses, we optimize existing attention 
architectures and propose a lightweight, enhanced attention-based 
model to segment 3D medical images precisely.

3 Methodology

3.1 Overall architecture

We introduced two versions of AFMS-Net for segmenting brain 
lesions using the proposed SAEB, DAEB, SegPath, and decoder, as 
demonstrated in Figure 1. Different encoders (SAEB/DAEB) are used 
in each version, allowing for capturing global and local feature 
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information, enhancing the network’s representative ability and 
feature extraction process. Both versions follow the encoder-decoder 
structural design illustrated in Figure 2. The SAEB encoder block first 
uses the Squeeze-and-Excitation (SE) block to extract low-level 
features. It achieves this by recalibrating channel responses, thereby 
highlighting crucial details. Additionally, the fusion of 3 × 3 × 3 
convolutional along with 1 × 1 × 1 convolutions serves to synthesize 
these features, further refining the high-level feature understanding. 
The DAEB module applies a dual-attention mechanism that 
emphasizes meaningful semantic features.

Initially, channel-wise attention is achieved through Global 
Average Pooling (GAP), reshaping, and convolutional layers. This 
approach enables the network to highlight features in specific 
channels selectively. The network then learns to focus on essential 
spatial regions by processing max-pooled and average-pooled 
information through a convolutional layer. Combining these two 
attention mechanisms results in a more focused and relevant feature 
map highlighting channel-specific and spatial information. Each 
SAEB and DAEB is followed by a 3 × 3 × 3 max pooling with stride 2 
for a down-sampling operation. The SegPath module is strategically 

FIGURE 1

Overview of the AFMS-Net. (A) Encoder-decoder with SAEB. (B) Encoder-decoder with DAEB.

FIGURE 2

Proposed brain lesion segmentation pipeline. Adaptive encoder, SegPath and decoder.
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placed between the encoder and decoder, addressing gradient 
vanishing and increasing feature refining and aggregation for 
improved segmentation features. The AFMS-Net decoder gradually 
up samples the feature maps obtained by the encoder to correspond 
with the resolution of the input image. The final output of the 
AFMS-Net is a segmentation probability map obtained from a 3D 
convolutional layer followed by a softmax activation function, 
accurately identifying brain lesions. The distinguishing feature of 
AFMS-Net is its dynamic feature refinement, ensuring superior 
model results while maintaining computational efficiency. The two 
versions of the model allow us to evaluate and compare the efficiency 
and effectiveness of SAEB and DAEB in brain lesion segmentation. 
More detailed information about the components and operations of 
AFMS-Net are provided in the subsequent sections.

3.2 AFMS-Net encoder

3.2.1 Single Adaptive Encoder Block
Medical image analysis presents unique challenges that require 

efficient and robust network architectures. While several network 
architectures like MobileNet (Howard et al., 2017), EfficientNet (Tan 
and Le, 2019), and PocketNet (Celaya et al., 2022) have contributed 
valuable approaches to handling complex features, they often grapple 
with a trade-off between performance and computational efficiency. 
Such as, Deeplabv3 (Yurtkulu et al., 2019) captures complex image 
features that demand significant computational resources. Deeplabv3 
parallel convolutional pathways handle multi-scale features but at the 
cost of a complex architecture and high parameters count. MobileNet 
and EfficientNet introduced solutions used depth-wise separable 
convolutions and compound scaling. However, the goal for optimal 
efficiency and real-time processing continues.

In response to these challenges, proposed network balance 
computational efficiency with the capacity for effective feature 
extraction in medical image analysis. Inspired by the Squeeze-and-
Excitation (SE) mechanism, SAEB begins the feature extraction 
process with a single 3D convolution layer. This approach initiates the 

feature extraction process with a single 3D convolution layer. An 
intermediate GAP operation follows, leading to the application of two 
1 1 1× ×  convolution layers. These layers act as channel-wise 
transformation agents within the SE mechanism, effectively managing 
dimensionality reduction and restoration. Figure  3 illustrates the 
transformations and operations performed within the SAEB, which 
are especially useful when interpreting complex patterns, such as 
segmenting brain lesions. The integration of 3 3 3× ×  and 1 1 1× ×  
convolutions synthesizes and refines features, enhancing the model’s 
high-level feature understanding and representative ability.

For instance, we initiate this discussion with the examination of 
the 3D convolution layer which allows the model to handle the 
width, height, and depth dimensions of the input data, which is 
crucial in medical image analysis. Mathematically, the convolution 
operation involves an input tensor X H W D C∈ × × ×( )  and 
filter F H W D C∈ × × ×( ) , where each position i j k, ,( ) in the output 
feature map Y H W D C∈ ′ ′ ′ ′× × ×( )  is computed as follows.
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In Eq. 1, Y i j k c, , , ′( ) represents the value at the position i j k c, , , ′( )  
in the output tensor Y . The four nested summations are indexed by 
variable a b c, ,  and d iterate over the ranges 0 1 0 1 0 1, , ,h w d−[ ] −[ ] −[ ] 
and 0 1,C −[ ] respectively. These indices correspond to the spatial 
dimensions and channels of the input tensor X . The 
X i a j b k c d+ + +( ), , ,  represents the value at the position 
i a j b k c d+ + +( ), , ,  in the input tensor X  and F a b c d c, , , , ′( ) describes 

the learnable parameters of the convolutional filter, where ′c  denotes 
the output channel index. The SAEB incorporates a Batch 
Normalization (BN) operation to ensure model stability and efficient 
training. BN normalizes the input feature maps, mitigating the issue 
of internal covariate shift and improving model stability and 
performance. The BN operation calculates the batch mean E Y( ) , 
variance Var Y( ) and utilizes learnable scale γ( ) and shift β( ) 

FIGURE 3

An illustration of the proposed SAEB module, the yellow rectangles representing low-level features and the blue rectangles representing high-level 
features.
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parameters to produce batch-normalized output YBN. The following 
combined equation can represent the BN operation.

	
Y

Y E Y
Y

BN

Var

= ×
− ( )
( )+∈












+γ β

	
(2)

In Eq. 2, initially, the batch mean E Y( ) is calculated as the mean 
of the input tensor across the mini-batch for each channel, ensuring 
the normalization process considers the distribution of inputs, as 
formalized in Eq. 3
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(3)

Following the computation of the E Y( ) , the batch variance 
Var Y( ) is calculated as the average of the squared differences between 
each element in the mini-batch and the batch mean, as described 
by Eq. 4.
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(4)

Eq. 5, describes how the normalized output ŷ is obtained by 
subtracting the batch mean from the input tensor Y  and dividing 
it by the square root of the batch variance plus a small constant 
∈ for numerical stability.
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The final batch-normalized output YBN is obtained by scaling the 
normalized output ŷ with the learnable scale β( ) and shift parameters 
as depicted in Eq. 6. This step customizes the normalization to the 
specifics of the data being processed.

	
Y YBN = ×
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




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(6)

following the BN, the SAEB applies a GAP operation to the batch-
normalized output YBN as encapsulated in Eq. 7, which summarizes 
the presence of each feature across the spatial dimensions, resulting in 
a tensor ( )1 1 1 cS × × ′×∈  that captures the global information of the 
feature maps. The cth( ) element of S can be expressed as:
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(7)

The GAP operation provides a global summary of each channel, 
capturing the overall presence of features across the spatial 
dimensions. Following the GAP operation, the SAEB applies a reshape 
operation to transform the GAP output into a suitable shape for 
subsequent operations. It is then passed through two 1 × 1 × 1 

convolutions to perform channel-wise transformations. The first 1 × 
1 × 1 convolution reduces the number of channels, while the second 
1 × 1 × 1 convolution restores the original number of channels. The 
softmax activation operation is then applied to generate attention 
weights A c[ ] that represent the importance assigned to each channel. 
This operation calculates a probability distribution across the channel 
dimension, yielding attention weights A c[ ] given as follows:

	

A c
S c
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C[ ] = ( )( )

( )( )=
−∑
exp

exp
'

0

1

	

(8)

In Eq. 8, S d( ) denotes the value of the GAP output at the dth( ) 
channel. These attention weights A c[ ] derived from S d( ) are pivotal 
for recalibrating the feature responses. As illustrated in Eq. 9, these 
weights are applied by element-wise multiplying with the batch-
normalized output feature maps YBN, resulting in the recalibrated 
feature map ZBN . This step is crucial for enhancing the network’s 
focus on pertinent features within the data.

	 Z i j k c A c Y i j k cBN BN, , , , , ,[ ] = [ ]× [ ]	 (9)

Subsequent to recalibration, the SAEB’s final output V  is generated 
by applying an activation function ReLU  to the recalibrated feature 
map ZBN , as formulated in Eq. 10. This transformation introduces 
non-linearity, enabling the extraction of complex patterns from the 
recalibrated feature map and preparing the model for further 
processing layers.

	 V i j k c Z i j k c, , , , , , ,BN[ ] = [ ]( )max 0 	 (10)

The SAEB final output V  is a recalibrated version of the initial 
input feature map based on channel-wise attention mechanism. This 
process allows the model to focus on the more relevant features of the 
task at hand. The model is then used as the final output as the input to 
the next layer. SAEB recalibrates its output feature maps by using 
attention weights. This technique allows the model to focus on areas 
of interest and provide contextually relevant information. In time-
sensitive clinical settings or with limited computing resources, this 
model excels at doing rapid initial screenings.

3.2.2 Dual Adaptive Encoder Block
In 3D data processing, Deep learning algorithms present 

substantial challenges in 3D data processing, such as extracting 
prominent spatial and channel dimension features. Primarily, CNN 
models relied heavily on typical convolution operations and 
activation functions, which frequently fail to highlight the most 
critical regions of interest within the data. Attention approaches have 
emerged as practical solutions that focus on more significant features 
dynamically. Among these attention methods, Hu et  al. (2018) 
introduced Squeeze-and-Excitation (SE) attention, which plays a 
critical role in recalibrating channel-wise elements of data. This 
technique is effective but overlooks the spatial dependencies within 
feature maps. To address this problem, Woo et al. (2018) proposed 
spatial attention mechanisms, further refined by Li et  al. (2020). 
However, these approaches largely neglect the interaction between 
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channel-wise dependencies. This oversight reveals a compelling 
opportunity: by integrating both channel-wise and spatial 
dependencies, model performance could be significantly enhanced. 
Recognizing this potential, we introduced the DAEB as a proposed 
solution. The DAEB presents a dual-attention mechanism that 
significantly extends the suggested network’s capability to highlight 
fine-grain semantic features. By applying channel-specific and spatial 
attention mechanisms, the DAEB module offers a comprehensive 
approach to feature refinement. This dual attention is achieved 
through the integration of global average-pooled information and 
subsequent convolutional layer processing, which ensure a more 
focused and relevant feature map. A visual representation of the 
DAEB and its operations is shown in Figure 4.

We start by applying a 3D convolution operation, denoted by the 
function F , to the input tensor X , whereX H W D C∈ × × ×( )  and H , W , 
D, and C represent the height, width, depth, and channel dimensions 
of the tensor, respectively. This operation transforms X  into an 
intermediate tensor T , and the transformation can be denoted as:

	

T i j k c
W i j k c c X i i j j k k

i j k k
n n n

n n n

′ ′ ′ ′
′ ′ ′ ′

( ) =
( )× + + +∑∑∑∑

, , ,
, , , , , , ,,c( )

	
(11)

In Eq. 11, the variables ′ ′ ′ ′( )i j k c, , ,  represent coordinates in the new 
tensor T , and the non-primed ones i j k c, , ,( ) represent coordinates in 
the original tensor X . The variables i j kn n n, ,( ) iterate over the kernel 
dimensions and W  represents the kernel weights. This operation 
extracts localized features from the input tensor X  based on the filter 
weights. Subsequently, we introduce a channel-wise focus through the 
GAP mechanism, which is applied to the tensor T . This yields the 
global descriptor CA∈ ′RC , where ′C  representing the channels in the 
transformed tensor:

	
CA , , ,′

′ ′ ′
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× ×( )



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


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(12)

FIGURE 4

The architecture of the proposed DAEB.
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In Eq. 12, ( ′H , ′W , ′D ) represents the height, width, and depth 
dimensions of T , respectively. The global descriptor CA  gives 
importance to informative channels and suppresses the less relevant 
ones in tensor T . Then, two-step transformation process is 
implemented on the global descriptor CA , yielding a new 
descriptor CA′ :

	

CA , , ,

, , , , CA ,

′ ′ ′ ′ ′′
′ ′ ′′ ′ ′

( ) =
( )× + +∑∑∑∑

i j k c
W i j k c c i i j j

i j k k
n

n n n

nn nk k c, ,′ ′+( )
	
(13)

In Eq. 13, ′W  represents the transformation weights, and the ′′c  
term denotes the channels in the newly transformed descriptor. This 
transformation helps to highlight channel-wise dependencies in the 
global descriptor CA .

	
CA , , , CA , , ,′ ′ ′ ′′ ′ ′ ′ ′′( ) = ( )( )i j k c i j k cσ ′

	 (14)

The transformation process is further refined by applying a 
sigmoid activation function σ( )  to the descriptor CA′ , which 
generates the channel-wise attention map CA  as detailed in Eq. 14, 
effectively scaling each channel’s values within the interval [0, 1]. This 
step is essential for determining the significance of each channel in 
terms of the spatial features of the input tensor. After obtaining the 
channel-wise attention map CA , reweight the tensor T  through an 
element-wise multiplication operation, yielding tensor TCA

	 T i j k c T i j k c i j k cCA , , , , , , CA , , ,′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′′( ) = ( )× ( )	 (15)

Eq. 15 describes the application of the channel-wise attention map 
CA , where the recalibrated tensor TCA  is produced by an element-
wise multiplication with the tensor T . This operation enables the 
model to adaptively emphasize informative features and suppress 
irrelevant ones in the tensor T . Then, we compute the spatial attention 
map ( )2H W DSA ′× × ×′ ′∈  as illustrated in Eq. 16, by concatenating 
the maximum and average pooling maps derived from T .

	 SA MaxPool AvgPool= ( )⊕ ( ) T T 	 (16)

This step captures spatial dependencies in the feature maps. The 
spatial attention map SA is then transformed through a 3D 
convolution operation denoted by Conv.

	 SA Conv SA= ( )	 (17)

In Eq.  17, the spatial attention map SA  undergoes a 3D 
convolution transformation, which enhances the model’s capability to 
capture spatial dependencies within the feature maps. This convolution 
operation consolidates the various spatial features into a more 
coherent structure that is crucial for accurate segmentation.

 Following this convolution, Eq.  18, details how the spatial 
attention map SA  scaled by a sigmoid activation function, assigning 
a value between 0 and 1 to each position. This scaling effectively ranks 

the spatial features by their relevance. The resulting map is then 
utilized to modulate the tensor T , with an element-wise multiplication 
producing the reweighted tensor TSA.

	 T TSA SA= ⊗ 	 (18)

The process, affiliated with channel-wise reweighting, allows the 
model to emphasize informative features and suppress irrelevant ones 
adaptively. Finally, we combine the outputs of the channel-wise and 
spatial attention mechanisms applied separately to the input tensor. 
The resultant tensors (not the attention maps) are fused to generate 
the final output tensor Y :

	 Y T T= ⊕CA SA	 (19)

Eq.  19 represents the fusion of the channel-wise and spatial 
attention mechanisms, resulting in the new output tensor Y . The 
model leverages informative channels and spatially relevant regions 
by integrating these outputs, thereby effectively understanding and 
classifying complex multi-dimensional data. The DAEB’s dual-
attention mechanism addresses the need for extracting prominent 
features across both spatial and channel dimensions, effectively 
overcoming the limitations of traditional CNN models that may 
overlook critical regions of interest within the data. By implementing 
the DAEB, it is anticipated that models can learn more effectively from 
3D data, potentially leading to enhanced performance across various 
tasks and domains. The DAEB consistently outperformed existing 
models through rigorous experimental analysis, solidifying its 
standing as an optimized solution for 3D data segmentation.

3.3 SegPath

Semantic segmentation has various approaches for enhancing the 
connectivity between encoders and decoders. In this regard, the skip 
connection is an outstanding solution that has gained recognition, 
particularly in architectures such as U-Net. This method enables 
encoder features to be directly associated with corresponding decoder 
layers, thereby ensuring the preservation and recovery of spatial 
details, which is vital for accurate segmentation. Merging the encoder 
features (low-level features) with decoder features (high-level features) 
results in a semantic gap.

In recent research on connectivity strategies, the ResPath architecture 
emerged, integrating residual connections reminiscent of the ResNet 
strategy within the skip pathways. This fusion improves the model’s ability 
to learn refined residual feature representations. Moreover, Mubashar 
et al. (2022) combines dense and skip connections in a significant way. 
This architecture ensures that all feature maps are densely connected via 
a skip connection structure. Drawing from these improvements, 
we present the SegPath module, a sophisticated modification to the skip 
connection structure, as shown in Figure  5. SegPath enhances 
segmentation performance through two fundamental processes: adaptive 
feature accumulation and the integration of multi-scale contextual 
information. Adaptive feature accumulation works by iteratively 
accumulating enhanced feature maps through element-wise addition, 
enabling SegPath to form a comprehensive representation of the input 
data. This process allows for the adaptive refinement of feature maps, 
customized to meet the specific requirements of the segmentation task. 
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Concurrently, SegPath employs parallel transformations to capture a wide 
range of aspects from the input feature map, including detailed textures 
and broader contextual information. These transformations involve 
convolving the input feature map with filters of different sizes (1 × 1 × 1 
and 3 × 3 × 3), followed by batch normalization and ReLU activation. It 
incorporates a series of parallel transformations to capture various aspects 
of the input feature map X . In the first transformation, X  undergoes a 
1 × 1 × 1 convolution with a filter F1, resulting in a tensor X1. This operation 
can be formulated as shown in Eq. 20,

	
X i j k l X i j k m F m

m
1 1 111, , , , , , , , ,( ) = ( )× ( )∑

	
(20)

In Eq. 20, i, jand, k  are spatial locations in the 3D feature maps 
and 1 denotes the feature channel at each spatial location. The index 
m is used to iterate over the feature channels in the input feature map 
X  and the convolution filter F1. Simultaneously, X is convolved with 
a 3 3 3× ×  filter F2, leading to tensor X2, as expressed in Eq. 21.

X i j k l X i a j b k c m

F a b
m a k x
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1 1 1

2

1 1 1

2

= ( ) = + + +( )

× + +

∑ ∑ ∑ ∑
=− =− =−

, , , , , ,

, 22 2, ,c m+( ) 	
(21)

where a ,b, c used to traverse the 3D convolution filter’s spatial 
extent during the convolution operation, ranging from −1 to 1 to 
cover the 3 3 3× ×  spatial extent of the filter F2. After each convolution, 
batch normalization is applied to normalize the tensor, creating X1 
normalized and X2 normalized tensors. Following the normalization 
step, the ReLU activation function is applied element-wise to X1 and 
X2 normalized, resulting in tensors Y1 and Y2, respectively, detailed in 
Eq. 22 and Eq. 23.

	 Y i j k l X i j k1 10 1, , , , Norm , , ,( ) = ( )( )max 	 (22)

and,

	 Y i j k l X i j k2 20 1, , , , Norm , , ,( ) = ( )( )max 	 (23)

These enhanced feature maps Y1 and Y2 are accumulated through 
element-wise addition to create an enhanced representation Yi for each 
iteration i, as outlined in Eq. 24.

	 Y i j k l Y i j k Y i j ki , , , , , , , , ,( ) = ( ) + ( )1 21 1 	 (24)

This step is repeated n times, where i n= …[ ]1 2, , ,  and the outputs 
are summed together to obtain the final output tensor Z , encapsulated 
in Eq. 25.

	
Z Y

i

n
i=

=
∑

1 	
(25)

The accumulation of adaptive features enriches the information 
carried by the final output tensor, Z  allowing for better capture of 
complex patterns and variations in the input data. This is particularly 
crucial in medical image analysis tasks, where detailed and accurate 
feature extraction is key to successful segmentation. This approach 
ensures a general understanding of the samples, significantly 
improving segmentation outcomes by using the strengths of both 
detailed and contextual information processing within the model. The 
adaptive feature accumulation of the SegPath block allows for learning 
more critical features for the specific task, thus enhancing its 
representative capacity. Furthermore, it provides an additional path 
for gradient flow through the adaptive features, improving the 
mitigation of the vanishing gradient problem.

4 Materials and experimental setup

4.1 Materials

To demonstrate the broad utility and effectiveness of our proposed 
model, AFMS-Net, we have used three appreciated, publicly accessible 
datasets, each supporting a distinct medical image segmentation task. 
The details of these datasets are summarized in Table 1. Specifically, 
the Brain Tumor Segmentation BRATS2021 dataset (Baid et al., 2021), 
facilitates brain tumor segmentation. For ischemic stroke lesion 
identification and tracing of lesions after a stroke, we have employed 

FIGURE 5

The framework of SegPath.
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the Anatomical Tracings of Lesions after Stroke (ATLAS v2.0) 2021 
datasets (Liew et  al., 2017), and the Ischemic Stroke Lesion 
Segmentation (ISLES) 2022 datasets (Hernandez Petzsche et al., 2022), 
respectively. In addition, we  used rigid registration and affine 
transformation techniques to register ISLES datasets according to the 
standard Montreal Neurological Institute (MNI) space (Chau and 
McIntosh, 2005).

4.1.1 Brain tumor segmentation datasets
The Proposed framework utilized the BraTS-2021 benchmark 

dataset, which includes a training set comprising 1,251 patients with 
both High-Grade Gliomas (HGG) and Low-Grade Gliomas (LGG). 
Each patient dataset consists of four MRI sequences: T1-weighted 
(T1), contrast-enhanced T1-weighted (T1ce), T2-weighted (T2), and 
fluid-attenuated inversion recovery (FLAIR). These sequences offer a 
detailed and multidimensional view of the tumor, aiding in more 
precise segmentation. Images in the dataset were collected following 
various clinical guidelines, using MRI machines of differing 
specifications and magnetic intensities, contributing to its 
heterogeneity. The image preprocessing steps were critical in ensuring 
data consistency across all datasets. It included co-registration of each 
patient’s MRI modalities, skull stripping, and voxel resampling to a 
1 mm3 isotropic resolution, resulting in a uniform MRI volume size of 
155 × 240 × 240. The ground truth segmentation for each MRI volume 
was categorized into four segments: background, Necrotic and 
Non-enhancing Tumor (NCR), Peritumoral Edema (ED), and 
Enhancing Tumor (ET). However, for evaluation, the three nested 

sub-regions, namely enhancing tumor (ET), tumor core (TC—i.e., the 
union of ED and NCR/NET), and whole tumor (WT), are used (see 
the sample ground truths in Figure  6). In order to enhance 
computational efficiency and concentrate the suggested model’s 
attention on the most pertinent areas, resized the original volume to 
dimensions of 128 × 128 × 128.

Moreover, we fused the FLAIR, T1ce, and T2 modalities into a 
single multi-channel image, which provided proposed framework 
with the most comprehensive information about each tumor’s 
characteristics. In data preprocessing step, we implemented a filtering 
mechanism to disregard less informative samples. Specifically, any 
volume where less than 1% of labels were non-zero (indicative of 
tumor presence) was deemed “useless” and discarded. This helped 
reduce noise in the training data, thereby enhancing the learning 
efficiency of our model. For a comprehensive model evaluation, 
we  systematically divided the data by allocating 80% for model 
training, allowing the model to learn from diverse information. The 
remaining 20% was equally divided into validation and test sets. The 
validation set helped fine-tune our model’s hyper-parameters. In 
contrast, the test set assessed our model’s performance on unseen data, 
providing a more reliable evaluation of its effectiveness.

4.1.2 ATLAS v2.0 dataset
The ATLAS v2.0 dataset, a meticulously composed repository of MRI 

scans and lesion segmentation masks, has been methodically organized 
into three subsets: training, testing, and a holdout set. The training subset 
comprises 655 T1-weighted MRI scans from multiple cohorts, each linked 

TABLE 1  Details of the medical segmentation datasets used in our experiments.

Dataset Images Voxel size Input size Train Valid Test

BraTS 2021 1,151 1 × 1 × 1 128 × 128 × 128 874 115 162

ATLAS v2.0 655 1 × 1 × 1 160 × 160 × 160 458 105 092

ISLES 2022 246 2 × 2 × 2 128 × 128 × 128 196 024 026

FIGURE 6

Illustrative examples highlighting diverse challenges in the BraTS Dataset. The set of samples is organized from left to right as follows: the original input 
image, the associated ground truth, and the segmentation outputs generated by our models (SAEB and DAEB), U-Net, Unet++, Attention U-Net, 
ResUNet++, Multi-ResUnet, CS2-Net, and ER-Net. Four distinct samples demonstrate specific challenges: boundary delineation, fine-grained analysis, 
and lesion variability. This comprehensive comparison aims to underscore each segmentation technique’s relative strengths and limitations in 
addressing these challenges.
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with its corresponding lesion segmentation mask. The test subset includes 
300 T1-weighted MRI scans drawn from the same cohorts, with their 
respective lesion segmentation masks intentionally hidden. The holdout 
test set encapsulates 316 entirely obscured T1-weighted MRI scans and 
lesion segmentation masks, each originating from an independent set. 
This dataset was utilized strategically through a comprehensive 
preprocessing pipeline in the experimental process. The initial step 
involved performing a central cropping operation on the image data to a 
size of 160 × 160 × 160 voxels. Focusing on the region of interest reduced 
superfluous peripheral information, thereby enhancing computational 
efficiency. Standardizing voxel size across the dataset involved resampling 
the cropped image data, contributing to consistent and reliable outcomes 
in subsequent machine-learning tasks. The image data was normalized to 
diminish the impact of intensity variations across different MRI scans. 
Gaussian smoothing was implemented to mitigate the influence of noise 
on the MRI scans. This technique not only reduced noise but also 
augmented the visibility of the lesions, thereby improving detection 
accuracy. Simultaneously, lesion segmentation masks were resampled to 
match the size of the corresponding image and converted into a one-hot 
encoded format, facilitating their integration into subsequent machine-
learning tasks. The 655 T1-weighted MRI scans were then divided into 
training, validation, and testing sub-sets, comprising approximately 70, 
16, and 14% samples, respectively. This stratified splitting strategy 
balanced the representation of different lesion sizes across all subsets, 
circumventing potential bias in the model training phase. This rigorous 
approach guarantees the validity and robustness of the 
experimental procedures.

4.1.3 ISLES 2022 dataset
The ISLES dataset is designed to evaluate automated acute and 

subacute stroke lesion segmentation methods in 3D multi-modal MRI 
data. For our experiments, we used a series of preprocessing steps. The 
dataset consists of DWI, ADC, and FLAIR images. The FLAIR image was 
registered to the standard Montreal Neurological Institute (MNI) space 
(Chau and McIntosh, 2005) using an affine transformation, creating a 
transformation matrix. This transformation matrix was then used to 
register the DWI and ADC images first to the original FLAIR images and 
then to the standard MNI space. In other words, the FLAIR image was 
registered to the DWI space utilizing rigid registration and affine 
transformation techniques. After registration, the ADC, DWI, and FLAIR 
data were consolidated into a multi-channel image. Each image was 
cropped to a size of 128 × 128 × 128, improving computational efficiency 
by removing non-essential regions. The dataset encompasses a total of 246 
samples. To ensure an unbiased evaluation of our developed model, 
we randomized the data and divided it into training, validation, and 
testing sets, adhering to an 80-10-10 split.

4.2 Experimental setup

The proposed approach was implemented and trained using the 
TensorFlow and Keras frameworks, and all experiments conducted 
on NVIDIA RTX A5000 GPUs. This setup offered the computational 
power necessary for handling the intensive demands of training deep 
learning models on complex medical image datasets. The choice of 
hardware reflects a balance between computational efficiency and the 
capability to process large volumes of data, characteristic of medical 
imaging tasks.

4.2.1 Model optimization and hyperparameter 
selection

Our experimental strategy employment the Adam optimizer, 
chosen for its effectiveness in handling sparse gradients and 
adaptively adjusting learning rates, which is crucial for deep 
learning applications in medical imaging. We set the learning rate 
to a modest 0.0001, a decision informed by preliminary trials that 
indicated it as optimal for balancing training speed with 
convergence stability. Similarly, a weight decay of 0.0005 was 
applied as a regularization measure to mitigate the risk of 
overfitting—a common challenge in deep learning models. This 
weight decay introduces a minor penalty to the loss function, 
proportional to the L2 norm of the model weights, encouraging the 
model to learn more generalizable features.

4.2.2 Computational resources and model 
complexity

Training the AFMS-Net required significant computational resources. 
Specifically, the training process was executed over approximately 8–16 h 
on NVIDIA RTX A5000 GPUs, utilizing around 16GB of GPU memory 
per model instance. These figures highlight the computational demands 
of training AFMS-Net, emphasizing the need for powerful hardware to 
achieve optimal performance. To provide a comparative insight into 
AFMS-Net’s model complexity versus traditional segmentation networks, 
we reference Figure 7, which illustrates the computational performance 
trade-offs by comparing mIoU with the number of parameters. This 
comparison reveals that AFMS-Net achieves a commendable balance 
between model complexity and segmentation performance. Unlike 
traditional segmentation networks such as U-Net and its variants, 
AFMS-Net demonstrates enhanced computational efficiency, achieving 
competitive or superior performance metrics with a reduced number of 
parameters. This efficiency is pivotal for deploying advanced segmentation 
models in real-world medical imaging scenarios, where computational 
resources might be limited.

4.2.3 Custom loss function
A distinctive feature of our experimental setup is the 

incorporation of a custom loss function that combines dice loss and 
categorical focal loss. This approach was designed to address the 
challenges of class imbalance and ensure accurate segmentation 
across varying medical image characteristics. The Dice loss, 
formulated in Eq. 26, is particularly effective in promoting overlap 
between the predicted segmentation maps and the ground truth, 
thereby enhancing the model’s precision in delineating 
lesion boundaries.

	
L G P

w G P

w G w P
c i c ci ci

c i c ci c i c ci
Dice ,( ) = −

( )+∈
+( )+∈

∑ ∑
∑ ∑ ∑ ∑

1

2

	
(26)

In Eq. 26, G  and P are the ground truth and predicted probability 
map, c denotes each class, i stands for individual voxels, wc refers to 
the weight of each class, and ∈ is a small constant used to prevent 
division by zero.

Further refining the model’s predictive accuracy, the categorical 
focal loss—described in Eq. 27, adjusts the model’s focus towards 
difficult-to-classify examples, thereby improving overall 
classification accuracy.
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γ

	
(27)

where Pci  represents the model’s estimated probability for the true 
class, γ  is a tuning parameter (typically set at 1.0), and the sum is 
calculated over all classes. Each class was assigned an equal weight for dice 
loss calculation. 

Ultimately, the total loss utilized for training the model is computed 
as the sum of the Dice loss and the categorical focal loss, as shown in 
Eq.  28. This combined loss function leverages the strengths of both 
components to provide a balanced optimization criterion.

	 L G P L G P L G Ptotal Dice focal, , ,( ) = ( ) + ( )	 (28)

4.3 Evaluation metrics

This section outlines the key metrics used to assess the model’s 
effectiveness comprehensively. The proposed brain lesion 
segmentation model is rigorously evaluated using a comprehensive 
set of metrics, all at a threshold of 0.5, to provide a thorough 
understanding of its performance. Accuracy is calculated as the 
proportion of true predictions, both correct lesion identifications 
(true positives) and correct non-lesion identifications (true 
negatives), over the total number of cases, as specified in Eq. 29.

	
Accuracy

TP TN

TP TN FP FN
=

+
+ + + 	

(29)

where TP  are true positives, TP  are true negatives, FP  are false 
positives, and FN  are false negatives. Precision, defined as the ratio of true 
positives to the sum of true positives and false positives, reflects the model’s 
accuracy in predicting lesion instancesinstances, outlined in Eq. 30.

	
Precision

TP

TP FP
=

+ 	
(30)

Meanwhile, Recall measures the model’s ability to identify all 
actual lesion cases, calculated as the ratio of true positives to the sum 
of true positives and false negatives, as depicted in Eq. 31.

	
Recall

TP

TP FN
=

+ 	
(31)

The Dice Score (DSC) expressed in Eq. 32, is used to measure the 
similarity between the predicted segmentation and the ground truth. 
It is particularly useful for evaluating models where the class 
distribution is imbalanced. The DSC is calculated as:

	
DSC

TP

TP FP FN
=

+ +
2

2 	
(32)

Intersection over Union (IoU), presented in Eq. 33, also known as 
the Jaccard index, measures the overlap between the predicted 
segmentation and the ground truth. It is defined as:

	
IoU

TP

TP FP FN
=

+ + 	
(33)

The average Hausdorff distance (AHD), uniquely considering 
voxel location and defined as:

	
AHD , ,= ( ) + ( )
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(34)

In Eq. 34, P represents the point set of segmentation results, and 
L denotes the point set of labels, enabling reflection on the edge error 
of segmentation results. These metrics provide a balanced and 
comprehensive assessment of the efficacy of the suggested framework 
in brain lesion segmentation.

5 Experimental results

5.1 Comparative segmentation 
performance on diverse datasets

In this section, we present a thorough comparison between seven 
different state-of-the-art 3D MIS techniques and our suggested 
approach for brain lesion segmentation. We compare our approach 
with U-Net, Unet++ (Zhou et al., 2019), AttentionU-Net, ResUNet++ 

FIGURE 7

Computational performance trade-offs illustrated by mIoU versus the number of parameters of various models across multiple datasets. (A) BraTS 
2021, (B) ATLAS, and (C) ISLES 2022.
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(Jha et  al., 2019), Multi-ResUNet (Ibtehaz and Rahman, 2020), 
CS2-Net (Mou et al., 2021) and ER-Net (Xia et al., 2022). We follow a 
uniform protocol across all methodologies to ensure a fair and 
comprehensive comparison. Every baseline model follows the default 
settings specified by their respective original authors. The structure of 
each model is based either on the associated codes available on GitHub 
or descriptions provided by the original authors. We also maintain 
consistency in preprocessing and post-processing steps across all 
models. This standardization eliminates potential bias, ensuring the 
comparative results accurately reflect the performance of each method.

5.1.1 Qualitative and quantitative results on BraTS 
2021 dataset

In this section, we evaluate the performance of SAEB and DAEB 
models on the BraTS 2021 dataset. The qualitative results, illustrated in 
Figure  6, offer visual insights into the performance of various 
segmentation methods—the first-row centers on the model’s proficiency 
in edge detection within tumors. Certainly, most approaches perform 
similarly well in distinguishing important regions of enhancing tumor 
(ET), tumor core (TC), and whole tumor (WT). However, differences 
become noticeable when defining the edges of the tumor. Selected 
comparison methods, such as U-Net, Unet++, Attention U-Net, 
ResUnet++, Multi-ResUnet, CS2-Net, and ER-Net, effectively detect 
larger tumor structures but falter when identifying precise edges. This 
results in noticeable under-segmentation or over-segmentation. In 
comparison, The SAEB and DAEB models precisely outline the tumor 
edges. The blue-red, dotted rectangles and their magnified views highlight 
the differences. The second row demonstrates the proficiency of SAEB 
and DAEB in recognizing intricate tumor sub-structures. In contrast, 
notable methods like U-Net and its variants misrepresent subtle elements 
such as necrosis or non-enhancing tumor cores. The third row of Figure 6 
illustrates the ability of the SAEB and DAEB to emphasize the uniformity 
of regions within the tumor while simultaneously identifying subtle 
variations in texture. In the fourth row, we  address the fine-grained 
analysis problem. Interestingly, all the baseline approaches failed to 
identify these tiny features. However, the suggested framework can 
identify minute structures and lesions. The visualizations demonstrate the 
proposed models’ adaptability and precision, highlighting their ability to 
tackle the intricate challenges presented by the BraTS dataset. For the 
detailed quantitative analysis, this work is divided into two main sections: 
overall segmentation performance, presented in Table 2, and segmentation 
by tumor regions, illustrated in Table  3; this comprehensive analysis 
evaluates the proposed framework’s effectiveness. The evaluation metrics 

in Table 2 reinforce the superior performance of our proposed models. 
Our AFMS-DAEB registers impressive results with an accuracy of 
99.01%, precision of 90.80%, recall of 89.06%, DSC of 90.20%, mIoU of 
82.23%, and an AHD value of 6.079, respectively. These metrics indicate 
an approximate 1% enhancement in DSC and mIoU over the AFMS-
SAEB model.

When benchmarked against state-of-the-art models, our models 
exhibit a considerable edge. While U-Net, with its 86.7% DSC and 
76.7% mIoU, is commendable, it’s surpassed by AFMS-DAEB, 
particularly in DSC and mIoU. Unet++ shows room for improvement, 
especially with its 81.2% DSC. Attention U-Net and ResUNet++ 
deliver DSC values around 85%, yet are outperformed by our models. 
Similarly, despite their respective merits, Multi-ResUNet, C2Net, and 
ErNet fall short compared to AFMS-DAEB’s segmentation efficacy. In 
principle, AFMS-DAEB not only refines the capabilities of AFMS-
SAEB but also delineates itself as a potent tool among established 
segmentation techniques, showcasing its aptitude for nuanced medical 
image segmentation. Further examining the segmentation 
performance across models, we assess three critical tumor categories: 
WT, TC, and ET, as detailed in Table 3. In the WT segmentation, our 
AFMS-SAEB model emerges as a front-runner, boasting an accuracy 
of 98.9%, a precision of 91.3%, a DSC of 88.4%, and mIoU of 79.2%. 
These metrics showcase the superiority of some models over others. 
For instance, U-Net achieved a DSC of 87.4% and a mIoU of 77.7%.

On the other hand, Unet++ is behind with a DSC of 45.4%, while 
AttentionU-Net and ResUNet++ have better results, with mIoU scores of 
73.2 and 73.5%. The mIoU score of SAEB is 79.2%, which matches closely 
with the ground truths. For TC, DAEB has an excellent performance. Its 
accuracy is 99%, precision is 88.6% and DSC score reaches up to 87.5% 
and mIoU value of around 77%. For the ET, AFMS-DAEB showcases a 
commendable DSC of 85.1% and a mIoU score of 74%. Compared to 
other base models, ER-Net and MultiResUNet demonstrate promising 
results. In conclusion, based on evaluation metrics, SAEB and DAEB 
show promising tumor segmentation capabilities. The combination of 
insights from both tables provides a comprehensive evaluation of each 
model’s segmentation performance and specialization inside various 
tumor locations.

5.1.2 Qualitative and quantitative results on 
ATLAS R2.0 dataset

Precise lesion segmentation can significantly aid stroke diagnosis and 
treatment. Our proposed method demonstrates this precision across four 
diverse stroke cases, which are visually presented in Figure 8. These cases 

TABLE 2  Performance metrics of various methods evaluated on 1,251 cases from the Brats 2021 dataset.

Method Accuracy Precision Recall DSC mIoU AHD

U-Net 0.988 ± 0.003 0.870 ± 0.101 0.865 ± 0.178 0.867 ± 0.123 0.767 ± 0.165 7.010

Unet++ 0.927 ± 0.031 0.747 ± 0.187 0.891 ± 0.165 0.812 ± 0.157 0.685 ± 0.176 12.146

AttentionU-net 0.986 ± 0.022 0.899 ± 0.153 0.883 ± 0.127 0.860 ± 0.179 0.758 ± 0.181 8.725

ResUNet++ 0.988 ± 0.020 0.882 ± 0.148 0.889 ± 0.186 0.869 ± 0.158 0.774 ± 0.161 6.916

MultiResUNet 0.985 ± 0.025 0.848 ± 0.183 0.868 ± 0.121 0.856 ± 0.153 0.752 ± 0.158 9.125

CS2-Net 0.985 ± 0.033 0.853 ± 0.141 0.858 ± 0.116 0.855 ± 0.172 0.748 ± 0.187 10.165

ER-Net 0.987 ± 0.025 0.860 ± 0.161 0.866 ± 0.194 0.861 ± 0.145 0.761 ± 0.209 8.126

SAEB (Our) 0.989 ± 0.026 0.913 ± 0.118 0.885 ± 0.171 0.894 ± 0.123 0.806 ± 0.117 6.266

DAEB (Our) 0.990 ± 0.031 0.908 ± 0.189 0.896 ± 0.132 0.902 ± 0.151 0.813 ± 0.195 6.079
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vary in lesion location, shape, and size within the brain, highlighting the 
adaptability of our approach. In the first row, the lesion is located in the 
anterior limb and genu of the internal capsule. AFMS-DAEB and AFMS-
SAEB, predict almost the entire lesion completely, achieving a remarkable 
advantage over the benchmark models. While U-Net, Attention U-Net, 
ResUNet++, and Multi-ResUNet manage to identify most of the lesions, 
but they tend to over-segment the affected area.

On the other hand, Unet++, C2Net, and ER-Net only delineate a 
small fraction of the lesion. The second row examine a lesion in the 
internal capsule’s posterior limb. Here, Unet++ and ER-Net struggle 
to mark the lesion accurately. U-Net and AttentionU-Net identify only 
portions of it. Although closer to the mark, ResUNet++, Multi-
ResUNet, and CS2-Net present evident over-segmentations. However, 
the proposed framework captures this lesion clearly, highlighting its 
adeptness at processing boundary information. In the third row, the 
lesion, with its regular shape and precise location, presents a more 
straightforward segmentation target. Both AFMS-Net variants 
demonstrate superior performance in delineating the lesion accurately.

Among the benchmark models, AttentionU-Net stands out as the 
most effective for this particular case. Conversely, ResUNet++ and 
Multi-ResUNet exhibit over-segmentation issues, while the other 
models tend to under-segment the designated region. The lesion in the 
fourth row is large and irregular and located near the junction of the 
central and superior temporal sulcus. Only AFMS-Net adeptly captures 
previously overlooked regions of all models, ensuring a thorough and 
accurate segmentation. Meanwhile, the benchmark methods vary, with 
some showing marked over-segmentation or under-segmentation 
tendencies. Across all scenarios, Unet++ and ER-Net consistently lean 
towards conservative segmentations, resulting in substantial under-
segmentation. Conversely, ResUNet++ and U-Net tend to produce 
aggressive segmentation, often mistakenly classifying cerebrospinal 
fluid in the lateral ventricles as target lesions. While ResUNet++ and 
Multi-ResUNet demonstrate commendable consistency regarding 
region similarity and boundary delineation, they do not surpass the 
benchmark models in all aspects. However, our proposed AFMS-Net 
excels in identifying areas that benchmark methods either 

TABLE 3  Comparative performance metrics for whole tumor (WT), tumor core (TC), and enhancing tumor (ET) in 1,251 cases from the Brats 2021 
dataset.

Model Whole tumor Tumor core Enhancing tumor

ACC PRE REC DSC IoU ACC PRE REC DSC IoU ACC PRE REC DSC IoU

U-Net 0.98 0.89 0.85 0.87 0.77 0.98 0.81 0.84 0.85 0.74 0.98 0.86 0.71 0.79 0.66

Unet++ 0.92 0.84 0.81 0.82 0.70 0.92 0.29 0.55 0.45 0.29 0.92 0.83 0.69 0.75 0.60

AttentionU-Net 0.98 0.74 0.87 0.80 0.67 0.98 0.83 0.85 0.84 0.73 0.98 0.86 0.79 0.82 0.70

ResUNet++ 0.98 0.85 0.87 0.86 0.76 0.98 0.79 0.83 0.84 0.73 0.98 0.90 0.74 0.81 0.68

MultiResUnet 0.98 0.81 0.84 0.83 0.71 0.98 0.73 0.87 0.81 0.68 0.98 0.82 0.79 0.81 0.68

CS2-Net 0.98 0.89 0.84 0.86 0.76 0.98 0.80 0.84 0.84 0.73 0.98 0.83 0.71 0.78 0.65

ER-Net 0.98 0.89 0.85 0.87 0.77 0.98 0.81 0.84 0.85 0.74 0.98 0.85 0.74 0.79 0.66

SAEB (Our) 0.98 0.91 0.85 0.88 0.79 0.98 0.86 0.85 0.85 0.75 0.98 0.87 0.78 0.83 0.71

DAEB (Our) 0.99 0.84 0.91 0.87 0.78 0.99 0.88 0.86 0.87 0.77 0.99 0.87 0.83 0.85 0.74

FIGURE 8

Visual comparison of segmentation challenges in four representative samples from the ATLAS R2.0 dataset. Arranged from left to right are: The original 
input image, the ground truth, followed by outputs from our models (DAEB, SAEB), U-Net, Unet++, Attention U-Net, ResUNet++, Multi-ResUNet, CS2-
Net, and ER-Net. The samples are chosen to highlight distinct challenges inherent to the ATLAS dataset.
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under-segmented or over-segmented, ensuring improved region 
alignment and enhanced boundary precision. While visual analysis 
provides insights into segmentation performance, a comprehensive 
quantitative assessment is essential for conclusive determinations. 
Accordingly, we  subjected our proposed AFMS-Net and other 
prominent methods to rigorous evaluation metrics, with the detailed 
outcomes reported in Table 4. In a comparative assessment against 
prevailing methods, the proposed AFMS-DAEB distinctively achieves 
an impressive DSC of 78.20% and a mIoU of 63.60%. When 
benchmarked in mIoU scores, AFMS-DAEB consistently outperforms-
surpassing U-Net by 8%, Unet++ by 19%, Attention U-Net by 4.4%, 
etc. This noticeable edge emphasizes our model’s finesse in lesion 
segmentation and its proficiency in differentiating lesions from the 
intricate background noise typically found in medical imaging. In 
evaluating Precision and Recall, apparent differences emerge among 
the methods. Unet++ performs notably well in precision, with a score 
of 86.6%, reflecting its accuracy in detecting true positives.

On the other hand, our AFMS-DAEB leads in the recall, scoring 
73.60%, highlighting its ability to detect most lesions effectively. 

Additionally, the DSC metric, essential for assessing the spatial overlap 
accuracy between the predicted segmentation and the ground truth, 
highlights the superior performance of AFMS-DAEB. Specifically, it 
leads by a 4–5% margin compared to the top benchmark model. 
Conclusively, these quantitative analyses demonstrate the excellent 
performance of our proposed network and highlight AFMS-DAEB’s 
adeptness in complex tasks, notably boundaries and edge detection, a 
consistent challenge in medical image segmentation.

5.1.3 Qualitative and quantitative results on ISLES 
2022 dataset

Similarly to section 5.2, we used the ISLES’22 dataset to evaluate our 
proposed variants further. This rigorous assessment emphasizes our 
model’s efficacy (presented in Figure  9). This figure comprises four 
distinct rows, each corresponding to a specific stroke patient case. These 
cases encompass a range of complexities, from large infarct lesions to 
multiple embolic and cortical infarcts, which vary remarkably in location, 
size, and shape. In the first row, an apparent large lesion is accompanied 
by a smaller one. A group of benchmark models, specifically U-Net, 

TABLE 4  Performance metrics of various segmentation methods evaluated on 655 cases from the ATLAS dataset.

Method Accuracy Precision Recall DSC mIoU AHD

U-Net 0.996 ± 0.014 0.727 ± 0.134 0.718 ± 0.154 0.721 ± 0.153 0.565 ± 0.171 11.850

Unet++ 0.996 ± 0.025 0.866 ± 0.032 0.460 ± 0.018 0.602 ± 0.014 0.431 ± 0.017 13.798

AttentionU-Net 0.997 ± 0.026 0.782 ± 0.156 0.709 ± 0.123 0.742 ± 0.021 0.592 ± 0.165 11.407

ResUNet++ 0.995 ± 0.027 0.769 ± 0.143 0.711 ± 0.154 0.738 ± 0.176 0.587 ± 0.169 12.232

MultiResUNet 0.993 ± 0.027 0.770 ± 0.176 0.713 ± 0.121 0.740 ± 0.153 0.588 ± 0.146 11.621

CS2-Net 0.997 ± 0.028 0.650 ± 0.137 0.692 ± 0.123 0.670 ± 0.175 0.504 ± 0.189 12.950

ER-Net 0.997 ± 0.025 0.716 ± 0.162 0.597 ± 0.175 0.653 ± 0.137 0.483 ± 0.212 13.396

SAEB (Our) 0.997 ± 0.028 0.820 ± 0.117 0.732 ± 0.165 0.772 ± 0.135 0.624 ± 0.102 10.642

DAEB (Our) 0.997 ± 0.034 0.839 ± 0.145 0.736 ± 0.131 0.782 ± 0.136 0.636 ± 0.175 10.416

FIGURE 9

Visual examination of segmentation challenges in four selected samples from the ISLES 2022 Dataset. The arrangement from left to right comprises 
the original input image, the ground truth, and the segmentation outputs from our models (SAEB, DAEB), U-Net, U-Net++, Attention U-Net, 
ResUNet++, Multi-ResUnet, CS2-Net, and ER-Net. The samples are specifically chosen to clarify unique challenges such as multiple lesions, small 
lesions, and varying lesion sizes (median and large).
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Unet++, AttentionUnet, ResUnet++, Multi-ResUnet, and ER-Net, failed 
to accurately segment the minor lesion. However, ER-net and ResUnet++ 
tended to over-segment, whereas Unet++ could not segment both lesions 
effectively. The delineated regions of interest are highlighted using a 
dotted rectangular line, and a zoomed view is provided for enhanced 
clarity. Ground truths are distinctly represented in white, our proposed 
models in blue, and benchmark models in red. The second row 
demonstrates that all segmentation methods identified the lesion’s 
location. However, some inconsistencies were noted among the 
benchmark models. U-Net, AttentionUnet, and ResUnet showed 
tendencies of over-segmentation.

On the contrary, Unet++ and Er-Net leaned towards under-
segmentation. In this context, our AFMS-Net demonstrated superior 
accuracy in delineating the lesion’s shape, achieving remarkable regional 
overlap. The third and fourth rows present additional challenges, 
especially concerning smaller lesions. The benchmark models— U-Net, 
UNet++, AttentionUnet, ResUnet++, Multi-ResUnet, and ER-Net—all 
struggled with accurately segmenting the minor lesion. In stark contrast, 
our AFMS-Net showcased its competency by confidently segmenting all 
lesions, highlighting its distinct advantage in handling diverse lesion 
types. Quantitative analysis offers an objective perspective on the efficacy 
of segmentation models. Our evaluation of the ISLES’22 dataset, 
presented in Table  5, outlines the performance of AFMS-SAEB and 
AFMS-DAEB compared to other prominent models.

Most models demonstrate an impressive accuracy of around 
99.5%, indicating a generally consistent segmentation accuracy across 
the board. In terms of precision, AFMS-DAEB achieves an outstanding 
86.0%, outstripping all other models. Close behind is the Multi-
ResUNet, with 84.3%. U-Net and Unet++ demonstrate 82.8 and 80.6% 
precision scores, respectively. When evaluating recall, the proposed 
AFMS-SAEB leads with a score of 78.0%. ResUNet++ and 
AttentionU-Net follow closely with 77.1 and 76.8% recalls, 
respectively. AFMS-DAEB further asserts its robustness with a recall 
of 76.1%. The DSC offers a holistic perspective on the overlap between 
the segmented output and the ground truth. AFMS-SAEB scores 
81.8% in DSC, ResUNet++ has a DSC of 78.9%, and AFMS-DAEB 
reaches up to 80.2%. Regarding mIoU, AFMS-SAEB, which scores 
68.0%, AFMS-DAEB closely follows this at 67.3%, and the competing 
models ResUNet++ and Multi-ResUNet are in the 66% range. In 
conclusion, each model has its strengths in specific domains. The 
proposed framework demonstrate an adept balance across all key 
metrics. This broad examination highlights the proficiency and 
capabilities of the proposed approach in medical image processing.

5.1.4 Generalizability across different imaging 
modalities and datasets

Our study mainly focuses on MRI datasets, which are crucial for 
brain lesion segmentation due to their high resolution and contrast 
between different brain tissues. We  acknowledge the importance of 
assessing our model’s generalizability across different imaging modalities 
to ensure its applicability in diverse clinical settings. However, our current 
investigation is confined to MRI data, considering its relevance and 
specificity to brain lesion analysis. The datasets utilized in our study 
encompass a range of MRI images with varying voxel sizes, which are as 
follows: BraTS 2021 and ATLAS v2.0 datasets have a voxel size of 
1 × 1 × 1 mm, providing high-resolution images for precise segmentation. 
Conversely, the ISLES 2022 dataset has a larger voxel size of 2 × 2 × 2 mm, 
demonstrating our model’s adaptability to images with lower resolution 
and potentially different characteristics. By evaluating AFMS-Net across 
these datasets, we aim to demonstrate its robustness not only to different 
lesion types but also to variations in image resolution, which is a step 
toward generalizability. However, we recognize that further studies are 
necessary to evaluate the model’s performance across other imaging 
modalities, such as computed tomography (CT) scans or positron 
emission tomography (PET) images. Future work will involve extending 
our framework to include these modalities, thereby enhancing its 
diagnostic versatility and clinical utility.

5.2 Ablation studies

In this study, we  introduce two encoder modules, SAEB and 
DAEB, in addition to a SegPath. We propose two different encoders 
to balance performance efficiency and computational cost. While 
SAEB offers competitive performance with fewer parameters, DAEB, 
although computationally more demanding, delivers slightly superior 
results. To evaluate the effectiveness of these components, 
we performed ablation studies using one brain tumor dataset and 
two-stroke datasets, specifically the BraTS 2021, ATLAS R2.0, and 
ISLES 2022 datasets. Initially, we evaluated the performance impact 
of substituting the original encoder in the 3D U-Net with our 
proposed SAEB encoder, resulting in the modified model termed 
AFMS-SAEB. This adaptation led to incremental gains in DSC and 
IoU by 0.36 and 0.09% for the BraTS 2021, 0.66 and 0.75% for the 
ATLAS, and 0.66 and 0.75% for the ISLES 2022. These results can 
be  referenced in Table  6. Motivated by these initial findings, 
we  explored the DAEB encoder as an alternative, creating the 

TABLE 5  A comprehensive evaluation of segmentation performance metrics for various methods across 246 cases in the ISLES 2022 dataset.

Method Accuracy Precision Recall DSC mIoU AHD

U-Net 0.994 ± 0.021 0.828 ± 0.130 0.704 ± 0.132 0.761 ± 0.123 0.614 ± 0.193 11.514

Unet++ 0.994 ± 0.023 0.806 ± 0.021 0.680 ± 0.014 0.724 ± 0.013 0.584 ± 0.160 15.130

AttentionU-Net 0.995 ± 0.015 0.798 ± 0.130 0.768 ± 0.132 0.778 ± 0.021 0.650 ± 0.224 11.961

ResUNet++ 0.995 ± 0.032 0.814 ± 0.132 0.771 ± 0.128 0.789 ± 0.152 0.663 ± 0.213 11.386

MultiResUNet 0.995 ± 0.026 0.843 ± 0.124 0.749 ± 0.121 0.787 ± 0.101 0.662 ± 0.195 12.534

CS2-Net 0.995 ± 0.022 0.775 ± 0.132 0.722 ± 0.123 0.733 ± 0.121 0.593 ± 0.190 13.312

ER-Net 0.995 ± 0.023 0.776 ± 0.136 0.755 ± 0.143 0.760 ± 0.139 0.623 ± 0.240 12.403

SAEB (Our) 0.995 ± 0.025 0.839 ± 0.132 0.780 ± 0.148 0.818 ± 0.136 0.680 ± 0.202 9.855

DAEB (Our) 0.995 ± 0.029 0.860 ± 0.139 0.761 ± 0.138 0.802 ± 0.129 0.673 ± 0.158 10.041
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AFMS-DAEB model. The DAEB encoder exhibited superior 
performance, boosting DSC and IoU by 0.96 and 1% on the BraTS 
2021, 1.3 and 1.5% on the ATLAS, and 1.5 and 2.7% on the ISLES 
2022 dataset. These enhancements are also detailed in Table 6. Aside 
from qualitative improvements in segmentation, we also examined 
the computational performance of our proposed models. A 
comparative analysis between mIoU and the number of parameters 
for AFMS-SAEB and AFMS-DAEB and benchmark models has been 
depicted in Figure 7. This figure provides a balanced perspective on 
performance versus computational complexity.

In summary, our ablation studies, built on the baseline 3D U-Net 
model, attest to the efficacy of our proposed encoders. The 
summarized results and conclusions can be  found in Table  6. By 
offering these two encoder alternatives, we  allow users to choose 
between SAEB’s computational efficiency or DAEB’s slightly superior 
performance, depending on their specific requirements.

5.2.1 Ablation study for SAEB
We have conducted a comprehensive ablation study to evaluate the 

impact of integrating the Single Adaptive Encoder Block (SAEB) with the 
SegPath module. As seen in the results presented in Table 6, the fusion of 
SAEB with SegPath, as summarized by the AFMS-SAEB configuration, 
demonstrates substantial improvements across all examined datasets. 
Reviewing the BraTS 2021 dataset shows a marked enhancement in DSC 
and IoU metrics by integrating the SAEB and SegPath modules. In 
particular, the IoU increased from 76.7 to 81.6%, and the DSC score 
increased from the starting value of 86.7 to 89.4%. Same for ISLES 2022 
and ATLAS R2.0 datasets. The outcomes show that the AFMS-SAEB 

model can accurately represent the edges of lesions and other small 
features, which are critical for medical image segmentation. The AFMS-
SAEB’s precise ability results from the SAEB module’s feature extraction 
power and SegPath’s capability in contextual capture, which precisely 
detects intricate anatomical and clinical characteristics. To sum up, 
Table 6 presents compelling evidence about the efficacy of SAEB and 
SegPath’s combined competence inside the AFMS-SAEB model. Our 
ablation research demonstrates that AFMS-SAEB has considerable 
efficiency in fine-grain identification and segmentation and enhances the 
accuracy of image segmentation.

5.2.2 Ablation study for DAEB
The AFMS-DAEB is designed for the Dual-Dimension Attention 

mechanism purpose by the strategic integration of DAEB, SegPath, and 
decoder module (Table  6), demonstrates the performance and 
robustness of AFMS-DAEB for complex anatomical and pathological 
structures across various medical imaging datasets. For the Brats 
dataset, the proposed AFMS-DAEB significantly improved over the 
baseline method in DSC and IoU, from 86 to 90% and 76 to 81%, 
respectively. Due to the dual attention mechanism, the DAEB module 
can detect subtle lesions that most models may overlook. Improvements 
in the ATLAS R2.0 and ISLES 2022 datasets further validate the model’s 
efficacy. The AFMS-DAEB emphasizes the importance of extracting 
details-oriented features. DAEB and SegPath modules, ensures that the 
model preserves and maintains a holistic understanding of a spatial 
context while extracting finer details, edges, and complex contrasts. 
Because of the DAEB’s robustness, the model can extract the most 
contextual information from medical images, which helps it overcome 
the difficulties presented by subtle variances in medical imaging. In the 
meantime, the SegPath improves this by supporting the processing and 
hierarchical structuring of the learned features.

5.2.3 Ablation study for SegPath
To evaluate the effectiveness of SegPaths, we integrate the SegPaths 

with the base model U-Net to conduct quantitative analysis. The results 
are shown in Table 6. All three datasets had an improvement in DSC 
scores; BraTS, ATLAS, and ISLES registered scores of 87.1, 73.6, and 
77.1%, respectively. In the Baseline + SAEB versus Baseline + SAEB + 
SegPath (AFMS-SAEB) comparison, the combination of SAEB and 
SegPath performed better. The DSC score increased from 88.7 to 89.4%, 
and the IoU score increased from 80.8 to 81.6% for the BraTS 2021. 
Notable improvements were also observed in the ATLAS and ISLES 2022 
datasets, demonstrating the cooperative effect of the SAEB and SegPath. 
The model with Baseline + DAEB + SegPath (AFMS-SAEB) showed 
remarkable results at the end of our investigation, particularly when 
compared to the Baseline + DAEB. For example, the BraTS 2021 
outperformed all previous architectures with DSC and IoU ratings of 90.2 
and 82.3%, respectively. In Summary, SegPath dramatically improves the 
model’s capacity for feature refinement.

6 Conclusion and future work

Deep learning models must effectively capture local and global 
features to perform accurate and efficient brain lesion segmentation. 
Previously, many state-of-the-art methods such as U-Net, VGG-Net, 
ResNet, and DenseNet have set the foundation. However, these methods 
may fail in precisely segmenting brain lesions due to the brain’s complex 
structure. Moreover, these methods could face computational overload. 

TABLE 6  Ablation study assessing the incremental impact of SAEB and 
DAEB encoders and SegPath on segmentation metrics (DSC, IOU, AHD) 
across BRATS 2021, ATLAS R2.0, and ISLES 2022 datasets.

Network DSC IoU AHD

Brats 2021 dataset

Baseline (U-Net) 0.86 0.76 7.01

Baseline + SegPath 0.87 0.76 6.99

Baseline + SAEB 0.87 0.78 6.65

Baseline + SAEB + SegPath 0.89 0.80 6.26

Baseline + DAEB 0.88 0.80 6.35

Baseline + DAEB + SegPath 0.90 0.81 6.07

ATLAS R2.0 Dataset

Baseline (U-Net) 0.72 0.56 11.8

Baseline + SegPath 0.73 0.57 11.6

Baseline + SAEB 0.75 0.60 11.2

Baseline + SAEB + SegPath 0.77 0.62 10.6

Baseline + DAEB 0.76 0.61 11.0

Baseline + DAEB + SegPath 0.78 0.63 10.4

ISLES 2022 Dataset

Baseline (U-Net) 0.76 0.61 11.51

Baseline + SegPath 0.77 0.61 11.23

Baseline + SAEB 0.79 0.66 10.24

Baseline + SAEB + SegPath 0.81 0.68 9.855

Baseline + DAEB 0.79 0.65 10.25

Baseline + DAEB + SegPath 0.80 0.67 10.04
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Thus, we introduce a novel network AFMS-Net to optimize segmentation 
accuracy and computational efficiency. Our proposed network has an 
encoder-decoder-like architecture that includes SAEB and DAEB 
modules. These encoder structures represent a notable shift in feature 
extraction, enhanced by techniques such as squeeze-and-excite and 
channel-spatial attention. The SAEB and DAEB utilized SegPath by 
combining residual and traditional skip connections for adaptive feature 
accumulation, which is further responsible for capturing and enhancing 
detailed features and multi-scale context for improved segmentation 
outcomes. Thus, it is suitable for limited computational resources, or the 
primary target is identifying and segmenting the most prominent 
features. SAEB is ideal for fast and efficient segmentation in scenarios 
prioritizing speed, unsuitable for complex, detailed analysis. DAEB excels 
in precise, intricate segmentation tasks, especially with multi-class 
lesions, not recommended for rapid, less detailed screenings.

The experimental findings of the AFMS-SAEB module demonstrated 
impressive performance in terms of Dice and IoU scores. For the BraTS 
dataset, 89.4% of Dice and 80.6% of IoU scores were achieved. The ATLAS 
scores were recorded as 77.2 and 62.4%, while on the ISLES dataset, the 
Dice and IoU scores were 81.8 and 68.0%, respectively. Compared to other 
models, it achieved a 2.7% improvement in Dice and 3.9% in IoU 
compared to U-Net, surpassing Attention U-Net by 3.4 and 4.8%, 
ResUNet++ by 2.5 and 3.2%, Multi-ResUNet by 3.8 and 5.4%, CS2-Net by 
3.9 and 5.8%, and ER-Net by 3.3 and 4.5% on BRATS. Conversely, the 
proposed AFMS-DAEB module is suitable for fine-grained and complex 
segmentation tasks that utilize GAP, channel spatial, and weighted channel 
attention. It emphasizes information channels and integrates spatial 
attention to identify and classify various lesion types. AFMS-DAEB’s 
effectiveness is validated through rigorous experiments on several datasets. 
On BraTS, it achieved remarkable Dice and IoU scores of 90.2% and 
0.81.3%, respectively, showcasing its capability in handling complex brain 
tumor segmentation tasks. For ATLAS and ISLES, it achieved 78.2 and 
80.2% (Dice scores) and 63.6 and 67.3% (IoU scores), supporting the 
model’s robustness and versatility across different medical imaging 
challenges. Results across all datasets show that AFMS-DAEB performs 
better than the baseline U-Net model. Regarding Dice and IoU, it 
improved by 3.5 and 4.6% on BraTS, respectively. Performances were 
considerably greater on ATLAS, with an increase of 7% in IoU and 6.1% 
in Dice. The model demonstrated outstanding results: a rise of 5.9% in IoU 
and 4.1% in Dice on the ISLES dataset.

Furthermore, our study has some limitations because it only used 
high-resolution MRI scans, which may not accurately reflect the range 
of clinical circumstances that are seen in real-world settings. To 
be more specific, the performance of the AFMS-Net on datasets such 
as BraTS 2021, ATLAS v2.0, and ISLES 2022, which have voxel sizes 
of 1 × 1 × 1 mm and 2 × 2 × 2 mm respectively, demonstrates its ability 
in high-resolution context setting. When applied to lower-resolution 
images or other imaging modalities, which are often used in a variety 
of diagnostic contexts, this approach may raise concerns regarding the 
model’s efficacy and flexibility. This limitation highlights the possibility 
of bias in the model towards the high-resolution features included in 
the datasets that were utilized, and it may raise the possibility of a 
compromise in the generalizability of the model. In order to overcome 
these issues, future research will focus on AFMS-Net’s usefulness 
across various imaging modalities in addition to evaluating and 
improving its ability to adapt to images of various resolutions.

We will also refine our approach to parameter tuning and explore 
the potential of leveraging unsupervised learning for 3D medical 

image segmentation. In our forthcoming work, we aim to expand 
interdisciplinary collaborations that will augment the clinical 
applicability of our models. Through these collaborative efforts, 
we  anticipate that AFMS-Net will profoundly influence clinical 
decision-making by facilitating precise and efficient lesion 
segmentation. In conclusion, AFMS-Net represents a significant 
advancement in medical image segmentation.
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Introduction: Sensorineural hearing loss (SNHL) can arise from a diverse range of
congenital and acquired factors. Detecting it early is pivotal for nurturing speech,
language, and cognitive development in children with SNHL. In our study, we
utilized synthetic magnetic resonance imaging (SyMRI) to assess alterations in
both gray and white matter within the brains of children a�ected by SNHL.

Methods: The study encompassed both children diagnosed with SNHL and
a control group of children with normal hearing {1.5-month-olds (n = 52)
and 3-month-olds (n = 78)}. Participants were categorized based on their
auditory brainstem response (ABR) threshold, delineated into normal, mild,
moderate, and severe subgroups.Clinical parameterswere included and assessed
the correlation with SNHL. Quantitative analysis of brain morphology was
conducted using SyMRI scans, yielding data on brain segmentation and
relaxation time.Through both univariate and multivariate analyses, independent
factors predictive of SNHL were identified. The e�cacy of the prediction
model was evaluated using receiver operating characteristic (ROC) curves, with
visualization facilitated through the utilization of a nomogram. It’s important to
note that due to the constraints of our research, weworkedwith a relatively small
sample size.

Results: Neonatal hyperbilirubinemia (NH) and children with inner ear
malformation (IEM) were associated with the onset of SNHL both at 1.5 and
3-month groups. At 3-month group, the moderate and severe subgroups
exhibited elevated quantitative T1 values in the inferior colliculus (IC), lateral
lemniscus (LL), and middle cerebellar peduncle (MCP) compared to the normal
group. Additionally, WMV, WMF, MYF, and MYVwere significantly reduced relative
to the normal group. Additionally, SNHL-children with IEM had high T1 values
in IC, and LL and reduced WMV, WMF, MYV and MYF values as compared with
SNHL-childrenwithout IEM at 3-month group. LL-T1 andWMFwere independent
risk factors associated with SNHL. Consequently, a predictionmodel was devised
based on LL-T1 and WMF. ROC for training set, validation set and external set
were 0.865, 0.806, and 0.736, respectively.

Conclusion: The integration of T1 quantitative values and brain volume
segmentation o�ers a valuable tool for tracking brain development in children
a�ected by SNHL and assessing the progression of the condition’s severity.
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sensorineural hearing loss, white matter, synthetic MRI, magnetic resonance imaging,

brain volume
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Introduction

Congenital sensorineural hearing loss (SNHL) denotes

deafness occurring before language development, typically during

pregnancy, impacting auditory neural pathways. Approximately

1.2–1.7 cases per 1,000 live births lead to permanent childhood

hearing loss due to SNHL (Korver et al., 2010). Delayed diagnosis

in infants and young children with SNHL can profoundly hinder

learning, affecting language acquisition, memory formation, and

cognitive development (Surprenant and Didonato, 2014; Slade

et al., 2020; Johnson et al., 2021; Shende and Mudar, 2023).

While the auditory brainstem response (ABR) test is commonly

utilized for hearing screening in newborns, more quantitative and

sensitive measures are necessary for early and precise diagnosis.

Magnetic resonance imaging (MRI) is pivotal in diagnosing and

monitoring disease progression and treatment responses (Van Der

Weijden et al., 2023). Techniques such as Diffusion Tensor Imaging

(DTI), Diffusion Kurtosis Imaging (DKI), and Functional Magnetic

Resonance Imaging (fMRI) have been instrumental in diagnosing

SNHL and studying brain development in affected infants (Wang

et al., 2019). However, conventional MRI methods (T1WI, T2WI)

lack the ability for quantitative analysis of brain region changes.

Moreover, most studies involve subjects older than 2 years (Wang

et al., 2023), potentially limiting the efficacy of interventions aimed

at improving language discrimination abilities. While techniques

like DTI, DKI, and fMRI offer quantitative analysis, they often

necessitate longer scan durations.

Synthetic Magnetic Resonance Imaging (SyMRI) is an

innovative technology for relaxation quantification imaging,

delivering T1 and T2 relaxation times along with proton density

(PD) in a single scan within clinically acceptable acquisition times

(Chari and Chan, 2017; Goncalves et al., 2018). This approach

offers absolute measurements of tissue microstructure, enhancing

the objectivity of disease assessment. Unlike traditional methods,

SyMRI allows adjustments of parameters like repetition time, echo

time, and inversion time based on mathematical calculations rather

than predefined settings (Gulani et al., 2004; Ji et al., 2022). This

advancement reduces brain diagnostic study durations to ∼5min

with SyMRI, potentially enhancing throughput and minimizing

the need for rescans, while delivering valuable quantitative

data (Warntjes et al., 2008). SyMRI software, such as Synthetic

MR from Linköping, Sweden, streamlines the generation of

synthetic quantitative images. It offers fully automated volumetric

parameters based on anticipated quantitative values for various

brain tissue types (West et al., 2012). Integrated into radiology

picture archiving and communication systems, this software

enables rapid brain volume analysis in under 1min (Granberg

et al., 2016; Vanderhasselt et al., 2020).

Utilizing SyMRI technology, each voxel within an MRI

scan can be categorized into four components: white matter

(WM), gray matter (GM), cerebrospinal fluid (CSF), and non-

WM/GM/CSF (NON). The measurement of SyMRI volume

has been extensively investigated in both pediatric and adult

populations. Previous case reports have highlighted the efficacy

of SyMRI in diagnosing conditions like Sturge-Weber syndrome

(Andica et al., 2016). Moreover, SyMRI enables the synthesis of

Gd-enhanced FLAIR images post-acquisition, while Gd-enhanced

synthetic Double Inversion Recovery (DIR) can aid in accentuating

subtle meningeal enhancements (Andica et al., 2017). SyMRI scans

have demonstrated superior plaque detection in multiple sclerosis

(MS) compared to conventional MRI (Granberg et al., 2016).

Additionally, the utilization of synthetic DIR and Phase-Sensitive

Inversion Recovery (PSIR) images may facilitate the identification

of intra-cortical or mixed WM-GM lesions (Miller et al., 1998).

Studies by Vagberg et al. (2013) have validated SyMRI volumetric

analysis as a reliable method for determining brain parenchymal

fraction (BPF) inMS, showing that BPF is notably lower in pediatric

MS cases, primarily due to GM loss (Yeh et al., 2009). These

quantitative values are invaluable in evaluating brain tumors, aiding

in differentiation between glioblastomas and metastases (Badve

et al., 2017), as well as revealing the internal structure of tumors

and lesions in MS (Granberg et al., 2016; Chen et al., 2021; Nunez-

Gonzalez et al., 2022). While research on brain relaxation time in

SNHL, particularly in children within the first year, is lacking, the

potential for SyMRI in exploring this area remains untapped.

In our study, we employed SyMRI to examine the quantitative

T1, T2, and PD values across 10 brain regions and 12 brain

segmentations in children with SNHL at 1.5 and 3 months of age.

Our results offer significant insights for clinical diagnosis and early

developmental research in children affected by SNHL.

Materials and methods

Participants and clinical assessments

The study received approval from the local ethics committee. A

discovery cohort of 80 children diagnosed with SNHL participated

and 33 children have normal ABR threshold, in which 52 children

tested at 1.5 months and 61 tested at 3 months. An external

cohort included 17 children tested at 3 months, comprising nine

children diagnosed with SNHL and eight children were normal.

All participants underwent ABR testing to determine their hearing

thresholds. The severity of hearing loss was categorized as mild

(31–50 dB), moderate (51–70 dB), or severe (>70 dB) for each ear.

Inclusion criteria encompassed right-handed children with

SNHL identified through hearing screening tests at 1.5 and 3

months post-birth, with bilateral ABR thresholds exceeding 30

dB. Exclusion criteria involved the presence of severe neurological

disorders such as epilepsy and congenital leukodystrophy, cognitive

impairments like autism and severe hyperactivity syndrome, and a

history of treatment for ear-related infections.

Imaging examinations

SyMRI was conducted on a 3.0 T scanner (SIGNA Pioneer; GE

Healthcare, Waukesha,WI, USA) equipped with a 21-channel head

coil for all participants. Prior to scanning, children were sedated

with midazolam (intramuscular or intravenous administration:

0.05–0.1 mg/kg/time via slow injection for 5min) and immobilized

using a MedVac vacuum device (CFI Medical Solutions, Fenton,

Michigan). Ear protection was ensured with neonatal earmuffs

covered by headphones. Parental consent was obtained before
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TABLE 1 Summary of participant characteristics in the 1.5-month group.

Normal (n =14) Mild (n = 16) Moderate (n =13) Severe (n = 9) p-value

Sex (female, male) 6, 8 8, 8 6, 7 3, 6 0.96

Birth method (natural

delivery, cesarean

section)

8, 6 10, 6 9, 4 5, 4 0.868

Birth weight (g) 3,325 (3,112.5, 3,662.5) 3,050 (2,900,

3,512.5)

3,200 (3,000, 3,800) 3,175 (3,075, 3,487.5) 0.559

Gestational age at birth

(weeks)

39.29 (38.25, 40.75) 39.93 (39, 40.21) 39.43 (37.86, 40.43) 39.43 (38.79, 40.29) 0.651

dB hearing loss: left ear \ 43.75± 6.191 63.85± 6.50 92.22± 8.33 <0.001

dB hearing loss: right ear \ 45.63± 5.12 64.62± 6.60 94.44± 5.27 <0.001

TABLE 2 Summary of participant characteristics in the 3-month group.

Normal (n =19) Mild (n = 15) Moderate (n =19) Severe (n = 8) p-value

Sex (female, male) 10, 9 7, 8 11, 8 6, 2 0.655

Birth method (natural

delivery, cesarean

section)

9, 10 9, 6 9, 10 4, 4 0.871

Birth weight (g) 3,286.84± 421.26 3,265.67± 542.65 3,323.68± 390.29 3,481.25± 465.17 0.953

Gestational age at birth

(weeks)

39.71 (38.64, 40) 39.57 (38.86, 39.93) 39.29 (38.29, 40) 39.29 (38.79, 40.18) 0.719

dB hearing loss: left ear \ 44.00± 6.33 62.11± 7.13 87.50± 10.35 <0.001

dB hearing loss: right ear \ 45.33± 5.16 62.11± 7.13 93.75± 7.44 <0.001

MRI and sedation. The sequence parameters for SyMRI were

set as follows: Field of View (FOV) = 200mm, slice thickness

= 3mm, slice gap = 0.5mm, number of slices = 36, TR/TE

= 4,230/20.4ms, NEX=1, with an acquisition time of 5min

and 8 s. Quantification maps (T1, T2, and PD) were generated

using the vendor-provided program (SyMRI 8.0; SyntheticMR,

Linköping, Sweden).

Measurements of quantitative values

Following the scans, two neurology specialists meticulously

reviewed all scan sequences to eliminate any macroscopic

pathology. The SyMRI sequence image guide supplier’s program

(SyMRI 8.0, Synthetic MR, Linköping, Sweden) was employed to

automatically generate T1 and T2 mapping diagrams. The regions

of interest (ROIs) for this study were primarily delineated by

the co-first author, possessing 7 and 6 years of experience in

imaging diagnosis, respectively. All findings underwent thorough

review and verification by the corresponding authors and

imaging instructors of this study, each with 20 years of

imaging diagnosis expertise. For manual operations on T1

and T2 mapping diagrams, the ITK-SNAP 3.8.0 software was

utilized. Ten ROIs were sketched, including the semioval

center (SC), frontal lobe (FL), posterior limb of the internal

capsule (PLIC), genu of the corpus callosum (GCC), splenium

of the corpus callosum (SCC), caudate nucleus (CN), globus

pallidus (GP), inferior colliculus (IC), lateral lemniscus (LL), and

middle cerebellar peduncle (MCP). Each ROI was meticulously

placed to ensure precise anatomical positioning, minimizing

interference from cerebrospinal fluid and surrounding anatomical

structures. T1 and T2 values for each ROI were measured

thrice, and their averages were computed. Subsequently, the mean

values of symmetrical parts from both brain hemispheres were

calculated post-measurement.

MR volumetric calculations

The raw data obtained from SyMRI underwent further

processing with the SyMRI 8.0 post-processing software to derive

brain segmentation volume and relaxation values. This included

parameters such as white matter volume (WMV), gray matter

volume (GMV), cerebrospinal fluid volume (CSF), myelin volume

(MYV), brain parenchymal volume (BPV), intracranial volume

(ICV), non-WM/GM/CSF (NON), white matter fraction (WMF

= WMV/BPV), myelin fraction (MYF = MYV/BPV), gray

matter fraction (GMF = GMV/BPV), NONF = NON/BPV, and

cerebrospinal fluid fraction (CSFF= CSF/ICV).

Construction and validation of the
prediction model

Parameters including IC-T1, LL-T1, MCP-T1, WMV,

WMF, MYV, and MYF were chosen for children examined at
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TABLE 3 Correlation of clinical parameters and SNHL at 1.5-month group.

Clinical
parameters

Total
(n = 52)

Normal
(n = 14)

SNHL
(n = 38)

p

Premature

birth, n (%)

1

No 36 (69) 10 (71) 26 (68)

Yes 16 (31) 4 (29) 12 (32)

NH, n (%) 0.03

No 30 (58) 12 (86) 18 (47)

Yes 22 (42) 2 (14) 20 (53)

GDM, n (%) 0.746

No 34 (65) 10 (71) 24 (63)

Yes 18 (35) 4 (29) 14 (37)

HDP, n (%) 1

No 42 (81) 11 (79) 31 (82)

Yes 10 (19) 3 (21) 7 (18)

CMV infection,

n (%)

0.729

No 39 (75) 10 (71) 29 (76)

Yes 13 (25) 4 (29) 9 (24)

IEM, n (%) 0.002

No 36 (69) 14 (100) 22 (58)

Yes 16 (31) 0 (0) 16 (42)

NH, neonatal hyperbilirubinemia; HDP, pregnancy-induced hypertension; GDM, gestational

diabetes mellitus; CMV, cytomegalovirus; IEM, inner ear malformation.

3 months. The discovery cohort of 61 samples was randomly

divided into training and validation sets in a ratio of 55–

45%, respectively. The external validation set contained 17

samples, including eight normal samples and nine SNHL

samples. Univariate analysis was conducted, and variables

with p-values < 0.05 were included for multivariate analysis

using the bidirectional stepwise regression method in training

set. A generalized linear model was then employed to build

the prediction model. Evaluation of the model’s efficacy

was performed using a ROC curve, and visualization of a

nomogram was facilitated using the R packages “pROC”

and “regplot”.

Statistical analysis

Data analysis was conducted utilizing R software (version

4.0.1). Analysis of variance (ANOVA) was employed to

assess differences among variables across the normal,

mild, moderate, and severe groups. The Wilcoxon test

was utilized for non-normally distributed data to compare

differences between two groups, while the Student’s t-test

was applied for normally distributed data. A significance

level of p < 0.05 was considered statistically significant for

all analyses.

TABLE 4 Correlation of clinical parameters and SNHL at 3-month group.

Clinical
parameters

Total
(n = 52)

Normal
(n = 14)

SNHL
(n = 38)

p

Premature

birth, n (%)

0.803

No 42 (69) 14 (74) 28 (67)

Yes 19 (31) 5 (26) 14 (33)

NH, n (%) 0.022

No 30 (49) 14 (74) 16 (38)

Yes 31 (51) 5 (26) 26 (62)

GDM, n (%) 0.436

No 39 (64) 14 (74) 25 (60)

Yes 22 (36) 5 (26) 17 (40)

HDP, n (%) 1

No 47 (77) 15 (79) 32 (76)

Yes 14 (23) 4 (21) 10 (24)

CMV infection,

n (%)

0.707

No 52 (85) 17 (89) 35 (83)

Yes 9 (15) 2 (11) 7 (17)

IEM, n (%) 0.003

No 47 (77) 19 (100) 28 (67)

Yes 14 (23) 0 (0) 14 (33)

NH, neonatal hyperbilirubinemia; HDP, pregnancy-induced hypertension; GDM, gestational

diabetes mellitus; CMV, cytomegalovirus; IEM, inner ear malformation.

Results

Correlation of clinical parameters and
onset of SNHL

To assess the diagnostic efficacy of SyMRI for SNHL, we

conducted evaluations on a cohort of 52 children at 1.5 months

and 61 children at 3 months. The sample was categorized

into four groups based on disease severity: normal, mild,

moderate, and severe. Tables 1, 2 provide comprehensive clinical

details of these children. Notably, no significant differences

were detected in age, birth method, birth weight, or sex across

the normal, mild, moderate, and severe subgroups. Next, we

evaluated the correlation of clinical complications of newborns

and pregnant women and onset of SNHL. Results demonstrated

that neonatal hyperbilirubinemia (NH) and children with inner ear

malformation (IEM) were associated with high incidence of SNHL

(Tables 3, 4) both at 1.5 and 3-month group. Next, we used SyMRI

to calculate the T1, T2 and PD values as well as automatic whole-

brain volume segmentation. Our analysis focused on 10 ROIs,

including SC, FL, PLIC, GCC, SCC, CN, GP, IC, LL, and MCP

(Figures 1A–D). Additionally, Figures 1E, F depict representative

T1 and T2 quantitative maps, respectively.
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FIGURE 1

Representative image of male infant brain at 3 months with delineation of ROIs on T1 image. (A) Semioval center (SC). (B) Frontal lobe (FL), posterior
limb of the internal capsule (PLIC), genu of the corpus callosum (GCC), splenium of the corpus callosum (SCC), caudate nucleus (CN), globus pallidus
(GP). (C) Inferior colliculus (IC), lateral lemniscus (LL). (D) Middle cerebellar peduncle (MCP). (E) T1 map. (F) T2 map.

Measurements of quantitative parameters
correlated with SNHL

Initially, we conducted an analysis of T1, T2, and PD values

in the brains of children tested at 1.5- and 3-month groups

across normal, mild, moderate, and severe subgroups. At 1.5-

month group, no significant changes were observed in T1, T2,

and PD values across the four subgroups (Table 5). However, at

3-month group, significant differences were noted in T1 values

within the IC, LL, and MCP regions across the four subgroups,

while T2 and PD values remained relatively stable (Table 6).

Subsequent pairwise comparisons of T1 values within IC, LL,

and MCP between the groups at 1.5 and 3 months revealed

no significant differences at 1.5 month-group (Figures 2A–C).

However, at 3 month-group, while no significant change in T1

values was observed between the normal and mild subgroups

in IC, LL, and MCP, there was a notable progressive increase

in T1 values from moderate to severe subgroups compared

to the normal subgroup in IC and LL, with a similar trend

observed in MCP, albeit only significantly in the severe group

(Figures 2D–F). These findings underscore the potential of T1

values to serve as a more sensitive indicator of SNHL progression

by 3 months.

Detection of brain volume segmentation
correlated with SNHL

Subsequently, we examined 12 brain segmentation parameters,

comprising WMV, GMV, CSF, BPV, ICV, MYV, NON, WMF,

GMF, CSFF, NONF, and MYF, across the normal, mild, moderate,

and severe subgroups at 1.5 and 3 months. In line with the

T1, T2, and PD findings, at 1.5 month-group, these parameters

exhibited no significant differences among the four subgroups
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TABLE 5 T1, T2, and PD values in di�erent regions of the brain in the 1.5-month group.

Variables Total (n = 52) Normal (n = 14) Mild (n = 16) Moderate
(n = 13)

Severe
(n = 9)

p-value

SCC-T1 2,217 (2,159, 2,343.25) 2,206 (2,163, 2,310) 2,182 (2,136.75, 2,368.25) 2,203 (2,164, 2,338) 2,294 (2,218, 2,295) 0.487

SCC-T2 278.56± 16.04 278.71± 14.52 285.06± 14.88 269.23± 17.21 280.22± 14.47 0.063

SCC-PD 108.26± 2.83 108.43± 2.93 106.99± 2.77 108.97± 3.02 109.23± 1.99 0.16

GCC-T1 2,865 (2,749, 2,912) 2,867.5 (2,814, 2,902) 2,793.5 (2,662, 2,873.25) 2,877 (2,783, 2,912) 2,832 (2,774, 3,000) 0.397

GCC-T2 211 (204, 227) 214 (204, 230.75) 211.5 (205, 229.75) 205 (204, 221) 208 (203, 211) 0.517

GCC-PD 128.85 (127.07, 130.57) 128.05 (124.82, 129) 128.5 (127.6, 129.82) 129.7 (129, 131.3) 128.7 (128.2, 131) 0.271

IC-T1 1,905.79± 149.91 1,935± 130.07 1,887± 122.25 1,841.69± 150.92 1,986.33± 193.43 0.121

IC-T2 163.35± 9.84 167.21± 7.94 163.62± 10.61 159.92± 10.13 161.78± 10.1 0.269

IC-PD 115.73± 4.27 115.65± 5.36 116.18± 4.64 114.97± 3.92 116.14± 2.2 0.885

LL-T1 1,552.56± 93.02 1,557.36± 107.49 1,544.88± 78.77 1,556.38± 71.93 1,553.22± 129.65 0.984

LL-T2 158.19± 8.67 158.71± 8.19 160.44± 7.96 155.46± 9.84 157.33± 9.07 0.486

LL-PD 161.97± 7.46 161.84± 8.24 159.89± 6.68 164.18± 7.09 162.66± 8.28 0.495

PLIC-T1 2,437 (2,343.5, 2,571.5) 2,546 (2,404.5, 2,698.5) 2,397.5 (2,295, 2,494.5) 2,404 (2,349, 2,472) 2,523 (2,364, 2,614) 0.252

PLIC-T2 179.6± 12.17 183± 14.1 177.44± 10.34 179.31± 13.24 178.56± 11.26 0.656

PLIC-PD 108.89± 4.71 109.9± 5.51 106.81± 3.82 110.03± 4.86 109.37± 4.04 0.203

FL-T1 3,687.5 (3,524.75, 3,868) 3,777.5 (3,587.5, 3,909.5) 3,630 (3,377.75, 3,810.75) 3,646 (3,535, 3,836) 3,696 (3,529, 4,313) 0.376

FL-T2 282 (258.5, 316.75) 301.5 (275.25, 326) 279 (255.25, 313.75) 282 (259, 316) 276 (257, 343) 0.628

FL-PD 135.7 (134, 136.6) 136.5 (135.45, 137.2) 135.1 (133.18, 136.27) 135.6 (133.4, 136.5) 136.5 (135.6, 136.8) 0.183

CN-T1 2,417.85± 164.97 2,476.14± 162.35 2,354.88± 170.53 2,403.62± 129.14 2,459.67± 186.98 0.191

CN-T2 194.27± 16.56 202.14± 18.81 188.62± 13.76 190.54± 15.92 197.44± 15.21 0.108

CN-PD 140.15 (137.85, 142.12) 141.05 (139.22, 141.9) 139.65 (136.8, 141.9) 141.4 (139, 143.1) 140.2 (139.4, 141.1) 0.584

GP-T1 1,885.69± 107.65 1,907.64± 95.52 1,837.69± 113.88 1,875.77± 90.19 1,951.22± 109.95 0.06

GP-T2 229± 21.93 239.14± 17.16 217.94± 24.54 230.46± 24.02 230.78± 12.66 0.061

GP-PD 119.05± 2.16 118.86± 1.13 118.83± 1.68 119.94± 2.46 118.46± 3.38 0.376

SC–T1 2,279 (2,044.75, 2,499.5) 2,344 (2,164.5, 2,551.25) 2,236.5 (1,992, 2,525.5) 2,207 (1,979, 2,269) 2,421 (2,048, 2,632) 0.064

SC-T2 232.17± 28.67 243.43± 27.34 228.62± 24.44 227.31± 22.03 228± 43.28 0.406

SC-PD 103.53± 4.19 104.96± 3.92 103.21± 4.3 101.73± 3.58 104.44± 4.8 0.209

MCP-T1 2,165.9± 217.62 2,191.21± 250.66 2,126.38± 166.23 2,155.62± 242.58 2,211.67± 230.11 0.777

MCP-T2 173 (160, 189.25) 182.5 (165.25, 190.75) 164 (159.75, 185.25) 176 (162, 180) 164 (159, 184) 0.482

MCP-PD 101.66± 6.07 104.62± 3.94 100.66± 6.37 100.36± 6.76 100.72± 6.62 0.207

SCC, splenium of the corpus callosum; GCC, genu of the corpus callosum; IC, inferior colliculus; LL, lateral lemniscus; PLIC, posterior limb of the internal capsule; FL, frontal lobe; CN, caudate

nucleus; GP, globus pallidus; SC, semioval center; MCP, middle cerebellar peduncle.

(Table 7). However, at 3 months, WMV, WMF, MYV, and

MYF displayed distinctions among the four subgroups (Table 8).

Subsequent pairwise comparisons of these parameters between

each pair of groups at 1.5 and 3 months revealed that in

line with above findings, at 1.5-month group, there were no

significant difference across these subgroups (Figures 3A–D).

At 3 -month group, WMV, MYV, and MYF demonstrated

no variance between the normal and mild subgroups, whereas

WMF decreased in the mild subgroup. Additionally, at 3

months, WMV, WMF, MYV, and MYF decreased in the

moderate and severe subgroups compared to the normal subgroup

(Figures 3E–H).

Correlation of inner ear malformations and
SyMRI parameters

Above findings we found NH and children with IEM were

associated with SNHL. Next, we explored the correlation of
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TABLE 6 T1, T2, and PD values in di�erent regions of the brain in the 3-month group.

Variables Total (n = 61) Normal
(n = 19)

Mild (n = 15) Moderate
(n = 19)

Severe (n = 8) p-value

SCC-T1 1,739 (1,673, 1,860) 1,704(1,667.5, 1,794.5) 1,702 (1,664, 1,881) 1,747 (1,683, 1,851) 1,780.5 (1,715, 1,828) 0.608

SCC-T2 171.82± 14.31 165.37± 10.72 176.33± 11 173.37± 18.4 175± 13.08 0.11

SCC-PD 83.9 (83, 85.9) 83.8 (83.3, 86.3) 83 (82.3, 84.5) 85.2 (83.4, 86.8) 84.1 (83.6, 84.78) 0.173

GCC-T1 1,639 (1,596, 1,662) 1,626 (1,599, 1,653) 1,638 (1,553, 1,662.5) 1,647 (1,613, 1,677) 1,634.5 (1,599.75, 1,654.5) 0.666

GCC-T2 145 (142, 155) 145 (142, 157) 147 (143, 158) 142 (137, 155) 143.5 (142.75, 148) 0.366

GCC-PD 82.8 (81.2, 83.7) 82.7 (80.9, 83.45) 82.8 (82, 83.6) 83 (82.1, 83.95) 82.85 (81.2, 83.42) 0.903

IC-T1 1,301 (1,248, 1,386) 1,251 (1,200, 1,294) 1,301 (1,244, 1,346) 1,314 (1,273, 1,441) 1,515.5 (1,403.5, 1,572.25) < 0.001

IC-T2 119 (116, 124) 119 (117, 121) 119 (115, 120) 121 (116.5, 126) 118.5 (112.75, 130.25) 0.887

IC-PD 80.05± 3.08 81.02± 3.05 80.99± 3.07 78.88± 2.99 78.72± 2.37 0.053

LL-T1 1,272.8± 87.74 1,230.89± 87.53 1,246.07± 46.54 1,303.37± 84.85 1,349.88± 88.39 0.001

LL-T2 118.33± 7.53 117.68± 7.52 120.33± 5.95 119.05± 9.46 114.38± 3.29 0.316

LL-PD 81.08± 3.31 81.14± 3.35 79.73± 3.29 82.01± 3.35 81.28± 2.87 0.265

PLIC -T1 950 (900, 1,024) 966 (928, 1,012.5) 965 (904, 1,005.5) 969 (918, 1,058.5) 891 (885, 900) 0.137

PLIC -T2 106.28± 9.05 108.42± 8.08 107.87± 7 105.64± 11.51 99.75± 5.37 0.12

PLIC -PD 71 (69, 73.2) 72.2 (69.35, 74.35) 70.3 (69.1, 72.95) 71.4 (69.4, 72.65) 68.85 (68.4, 69.55) 0.286

FL-T1 1,886 (1,772, 1,997) 1,924 (1,837, 2,008.5) 1,886 (1,723.5, 1,958) 1,887 (1,803.5, 2,012) 1,776 (1,760, 1,830.5) 0.126

FL-T2 185 (172, 207) 196 (178.5, 215) 187 (171.5, 205) 183 (179, 207) 169 (164.5, 176) 0.085

FL-PD 86.7 (85.9, 87.3) 87 (85.95, 87.35) 86.5 (85.9, 87.35) 86.5 (85.3, 87.2) 86.8 (86.62, 87.62) 0.695

CN-T1 1,523.51± 112.33 1,548.37± 100.55 1,506.93± 125.6 1,544.53± 119.27 1,445.62± 60.33 0.121

CN-T2 139 (128, 148) 145 (129.5, 150) 133 (130, 143.5) 139 (127, 149.5) 129 (125, 134.25) 0.372

CN-PD 83.1 (81.3, 84.1) 83.3 (82.7, 83.9) 82.5 (81, 84.3) 81.6 (81.15, 84.35) 82.2 (81.6, 83.3) 0.463

GP-T1 1,453 (1,397, 1,520) 1,450 (1,393, 1,514.5) 1,450 (1,393, 1,524) 1,502 (1,406, 1,564.5) 1,438.5

(1,413.75, 1,453.25)

0.335

GP-T2 134.48± 13.67 136.95± 11.12 128.93± 14.46 138.74± 15.03 128.88± 10.8 0.096

GP-PD 84.09± 1.57 83.85± 1.17 84.21± 1.3 84.35± 2.06 83.81± 1.67 0.735

SC–T1 1,435 (1,307, 1,643) 1,435 (1,330, 1,540) 1,456 (1,307, 1,665.5) 1,405 (1,272, 1,567.5) 1,452.5 (1,252.5, 1,829.5) 0.975

SC-T2 151 (138, 163) 150 (144, 154.5) 150 (140.5, 162.5) 153 (131.5, 168.5) 163 (150.5, 170.25) 0.632

SC-PD 81.86± 3.48 82.32± 3.04 82.01± 3.4 81.52± 4.28 81.3± 2.89 0.868

MCP-T1 1,361.95± 127.27 1,323.79± 135.16 1,327.93± 136.38 1,383.95± 59.91 1,464.12± 160.52 0.032

MCP-T2 121 (112, 134) 124 (111.5, 135.5) 116 (111, 132) 124 (115, 134.5) 113.5 (110.25, 114) 0.252

MCP-D 79.05± 4.28 79.77± 4.03 78.89± 5.29 78.65± 4.18 78.61± 3.49 0.854

SCC, splenium of the corpus callosum; GCC, genu of the corpus callosum; IC, inferior colliculus; LL, lateral lemniscus; PLIC, posterior limb of the internal capsule; FL, frontal lobe; CN, caudate

nucleus; GP, globus pallidus; SC, semioval center; MCP, middle cerebellar peduncle.

these two risk factors with SyMRI parameters, including IC-T1,

LL-T1, MCP-T1, WMV, WMF, MYV, and MYF. Children were

subgrouped according to whether they have this etiology, denoted

as Normal-NH, Normal-Non-NH (Non-IEM), SNHL-NH (IEM),

and SNHL-Non-NH (Non-IEM). Results demonstrated that both

at 1.5 and 3-month groups, there was no significant difference

in these parameters between Normal-NH and Normal-Non-NH

(Supplementary Figures 1, 2). Instead, we found that SNHL-IEM

showed high T1 values in IC and LL, while had low values of

WMV, WMF, MYV, and MYF at 3 months, as compared with

SNHL-Non-IEM, although there was no difference at 1.5-month

group (Figures 4, 5).

Construction and validation of the
prediction model

Based on the aforementioned findings, we identified seven

parameters (IC-T1, LL-T1, MCP-T1, WMV, MYV, MYF, and
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FIGURE 2

Comparison of T1 values in the inferior colliculus (IC), lateral lemniscus (LL), and middle cerebellar peduncle (MCP) among four groups of children at
1.5 and 3 months. (A–C) Comparison of T1 values among normal, mild, moderate, and severe subgroups at 1.5 months. (D–F) Comparison of T1
values among normal, mild, moderate, and severe subgroups at 3 months. T1 values are presented in milliseconds.

TABLE 7 Summary of brain segmentation in the 1.5-month group.

Variables Total (n = 52) Normal
(n = 14)

Mild (n = 16) Moderate
(n = 13)

Severe
(n = 9)

p-value

WMV 15.89± 3.95 16.63± 4.01 16± 5.08 15.62± 3.07 14.92± 2.97 0.788

GMV 507.65

(474.32, 540.88)

497.8

(481.33, 512.25)

507.65

(473.72, 521.68)

502.9 (444.3, 536.2) 548.8 (530.9, 558) 0.269

CSF 61.15 (55.88, 67.38) 61.25 (56.47, 63.08) 60.7 (56.7, 65.2) 61.2 (55.8, 68.5) 66.2 (52, 72.6) 0.986

NON 2.45 (2.08, 3) 2.6 (2.4, 2.88) 2.15 (1.8, 3.52) 2.2 (2.1, 3.3) 2.5 (2.1, 2.8) 0.62

MYV 2.86± 1.06 3.03± 1.06 2.88± 1.24 2.77± 1.16 2.68± 0.54 0.875

WMF 3.5 (2.8, 4.03) 3.3 (2.85, 4.18) 3.35 (2.9, 3.9) 3.7 (2.9, 4) 2.9 (2.6, 3.9) 0.734

GMF 95.5 (92.38, 96.8) 95.5 (94.15, 96.65) 95.5 (92.25, 96.8) 96.1 (92.4, 96.9) 95.2 (91.6, 96.8) 0.965

CSFF 10.6± 2.56 10.89± 1.52 10.69± 3.32 10.55± 2.78 10.03± 2.27 0.893

NONF 0.6 (0.5, 0.69) 0.6 (0.5, 0.69) 0.62 (0.55, 0.69) 0.6 (0.58, 0.61) 0.6 (0.5, 0.7) 0.939

MYF 0.6 (0.5, 0.7) 0.6 (0.5, 0.64) 0.6 (0.42, 0.79) 0.6 (0.4, 0.71) 0.6 (0.5, 0.63) 0.982

WMV, volume of white matter; GMV, volume of gray matter; CSF, cerebrospinal fluid; NON, non-WM/GM/CSF; MYV, myelination volume; WMF, white matter fraction; GMF, gray matter

fraction; CSFF, cerebrospinal fluid fraction; NONF, NON fraction; MYF, myelin fraction.
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TABLE 8 Summary of brain segmentation in the 3-month group.

Variables Total (n = 61) Normal
(n = 19)

Mild (n = 15) Moderate
(n = 19)

Severe
(n = 8)

p-value

WMV 32.9 (30.8, 34.6) 34.5 (32.05, 35.1) 34.2 (33.4, 34.8) 31.5 (29.2, 33.45) 29.15 (28.38, 30.35) <0.001

GMV 607.26± 29.72 607.94± 44.2 607.96± 16.14 606.55± 24.85 606.01± 20.87 0.998

CSF 124.61± 22.52 114.48± 20.29 124.79± 14.03 128.93± 25.89 138.07± 25.14 0.056

NON 4.79± 1.05 4.85± 1.48 4.82± 0.65 4.81± 0.85 4.54± 0.98 0.912

MYV 8.3 (6.5, 8.9) 8.7 (6.8, 9.8) 8.6 (8.5, 9.4) 7.5 (6.6, 8.25) 5.05 (4.35, 6.25) <0.001

WMF 5.2 (4.8, 5.9) 5.8 (5.25, 6.4) 5.2 (5.1, 5.6) 4.9 (4.7, 5.3) 4.45 (4.27, 4.65) <0.001

GMF 93.08± 1.55 93.26± 1.78 93.07± 1.33 92.92± 1.5 93.03± 1.71 0.929

CSFF 13 (9.9, 14.2) 12.8 (10.5, 14) 12.1 (9.9, 14.3) 13.2 (9.55, 14.15) 12.2 (8.43, 14.93) 0.992

NONF 0.72 (0.65, 0.82) 0.8 (0.61, 1) 0.72 (0.7, 0.8) 0.76 (0.68, 0.84) 0.73 (0.68, 0.8) 0.889

MYF 1.1 (0.9, 1.4) 1.3 (1.1, 1.4) 1.21 (1.11, 1.4) 1 (0.9, 1.2) 0.8 (0.78, 0.83) <0.001

WMV, volume of white matter; GMV, volume of gray matter; CSF, cerebrospinal fluid; NON, non-WM/GM/CSF; MYV, myelination volume; WMF, white matter fraction; GMF, gray matter

fraction; CSFF, cerebrospinal fluid fraction; NONF, NON fraction; MYF, myelin fraction.

FIGURE 3

Comparison of white matter volume (WMV), white matter fraction (WMF), myelin volume (MYV), and myelin fraction (MYF) among normal, mild,
moderate, and severe subgroups at 1.5 and 3 months. (A–D) Comparison at 1.5 months. (E–H) Comparison at 3 months.
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FIGURE 4

Comparison of T1 values in the inferior colliculus (IC), lateral lemniscus (LL), and middle cerebellar peduncle (MCP) among three groups of children
at 1.5 and 3 months. (A–C) Comparison of T1 values among Normal-Non-IEM, SNHL-IEM, and SNHL-Non-IEM, subgroups at 1.5 months. (D–F)
Comparison of T1 values among Normal-Non-IEM, SNHL-IEM, and SNHL-Non-IEM, subgroups at 3 months. T1 values are presented in milliseconds.

WMF) correlated with SNHL. Subsequently, we evaluated the

predictive value of these parameters for SNHL. To achieve

this, we randomly divided 61 samples at 3-month group into

training and validation sets. Through univariate and multivariate

analysis, we identified two independent risk factors, LL-T1 and

WMF (Table 9). We then assessed the predictive performance

of LL-T1 and WMF, resulting in respective AUCs of 0.620

and 0.800, respectively (Figures 6A, B). Next, we combined LL-

T1 and WMF to construct a model, yielding AUCs of 0.865

and 0.806 for the training and validation sets, respectively

(Figure 6C), indicating favorable performance. To further access

the performance of the model, we conducted an external set. The

AUC for external set was 0.736 (Figure 6D). To facilitate clinical

application, we developed a nomogram for visualizing the model,

enabling doctors to calculate predicted scores based on LL-T1

and WMF values and thereby predict the probability of SNHL

(Figure 6E).

Discussion

SNHL manifests before language acquisition, potentially

impeding linguistic development. The absence of auditory stimuli

from birth in SNHL children may disrupt language learning

and alter the formation of neural pathways, leading to structural

changes in the brain (Chari and Chan, 2017). Late detection of

hearing impairment in infants and young children with SNHL

can result in profound learning and developmental challenges.

Some studies have shown that high risk factors that correlated

with onset of SNHL, including preterm birth, low birth weight

infants, hyperbilirubinemia, cytomegalovirus infection, inner ear

abnormalities, etc. (Wroblewska-Seniuk et al., 2018; Alhazmi,

2023). Our research results indicated that NH and IEM are high-

risk factors for SNHL, possibly due to our analysis being not

performed in the general population but in one tertiary care

hospital, where there is a big neurological intensive.
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FIGURE 5

Comparison of white matter volume (WMV), white matter fraction (WMF), myelin volume (MYV), and myelin fraction (MYF) among Normal-Non-IEM,
SNHL-IEM, and SNHL-Non-IEM, subgroups at 1.5 and 3 months. (A–D) Comparison at 1.5 months. (E–H) Comparison at 3 months.

TABLE 9 Univariate and multivariate analysis of parameters correlated with SNHL.

Univariate analysis Multivariate analysis

Variables OR (95%CI) P-value OR (95%CI) P-value

WMV 0.63 (0.41–0.95) 0.029

MYV 0.62 (0.36–1.05) 0.076

WMF 0.17 (0.05–0.62) 0.007 0.12 (0.03–0.54) 0.006

MYF 0.02 (0.00–0.73) 0.033

IC-T1 1.01 (1.00–1.01) 0.121

LL-T1 1.01 (1.00–1.02) 0.129 1.01 (1.00–1.02) 0.070

MCP-T1 1.00 (1.00–1.01) 0.203

WMV, volume of white matter; MYV, myelination volume; WMF, white matter fraction; MYF, myelin fraction; IC, inferior colliculus; LL, lateral lemniscus; MCP, middle cerebellar peduncle.

Previous investigations into macrostructural disparities

between deaf individuals and those without hearing loss revealed

diminished WMV but preserved gray matter volume in the

auditory cortex, particularly in Heschl’s gyrus (HG) and the

adjacent temporal lobe. However, WMV exhibited inconsistent

patterns across left and right brain hemispheres, with the most

significant differences observed in the right posterior superior

temporal gyrus (Hribar et al., 2014; Karns et al., 2017). Moreover,

microstructural changes in white matter have been documented

in individuals with hearing loss during various stages of life

(Miao et al., 2013; Park et al., 2018; Kim et al., 2021). Yet,

limited knowledge exists regarding white matter microstructural

properties in children with SNHL. Research suggests that the

gray matter volume of the right hemisphere, alongside white

matter volume, is more susceptible to impairment compared to

the left hemisphere (Manno et al., 2021). In our study, we found

that quantitative T1 values were higher in children with SNHL

than in their normally hearing counterparts. These discrepancies

were observed in multiple brain regions, including the IC, LL,

and MCP. Elevated quantitative T1 values signify alterations

in myelin microstructure. Notably, our investigation is the first

to report differences in T1 values among children with SNHL
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FIGURE 6

Construction and validation of the prediction model. (A, B) Area under the curve (AUC) for lateral lemniscus T1 value (LL-T1) and white matter
fraction (WMF). (C) AUC for the training and validation sets. (D) AUC for the external set. (E) Nomogram illustrating the model for clinical application.

within the first 3 months of life. Analysis of whole brain volume

revealed lower values of WMV, WMF, MYV, and MYF in children

born with SNHL. Additionally, these parameters displayed a

positive correlation with age. Compared to the control group,

children with SNHL exhibited reduced WMV, WMF, MYV,

and MYF.

Brain development follows a sequential pattern, with myelin

sheath formation initiating around the fifth month of fetal

development and progressing alongside central nervous system

myelination, continuing throughout life (Mukherjee et al., 2001).

White matter myelination typically commences between 6 and

8 months, with most white matter achieving maturity in myelin

sheath formation by 18 months (Mukherjee et al., 2001; Barkovich,

2005; Lebel and Deoni, 2018). The observed increase in T1 values

could be attributed to hearing impairment, which may impede

the normal pace of development and maturation in these regions.

Literature suggests that white matter development in infants

follows a trajectory from dorsal to ventral, caudal to cephalic,

and from central to peripheral regions (Shi et al., 2019). Early

developmental activity is notable in areas such as the IC, LL,

and MCP.

Assessing myelination plays a pivotal role in evaluating

neurological development (Khelfaoui et al., 2024). SyMRI offers

enhanced capabilities in detecting MS plaques compared to

conventional MRI methods (Miller et al., 1998; Granberg et al.,

2016; Hagiwara et al., 2017). Utilizing synthetic DIR and PSIR

images can facilitate the identification of intra-cortical or mixed

white matter-gray matter lesions (Miller et al., 1998). Vagberg

et al. demonstrated the validity and reproducibility of SyMRI

volumetric analysis in determining BPF in MS (Vagberg et al.,

2013, 2016). In pediatric MS, BPF is notably lower compared

to adult MS, primarily attributed to gray matter loss (Vagberg

et al., 2013). Notably, our study found no significant differences

in brain segmentation-related indices between the control and

SNHL groups at 1.5 months, suggesting a relatively minor impact

of SNHL on brain development at this early age. However, by

3 months, we observed no significant differences between the

control and mild SNHL groups, indicating a minor effect of

mild SNHL on brain development. In contrast, the moderate and

severe SNHL groups exhibited significant reductions in WMV

and myelination-related measures, indicating distinct structural

alterations with increasing severity of SNHL. This corroborates
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previous research; Smith et al. (2011) observed decreased white

matter in the anterior Heschl’s gyrus in individuals with hearing

loss using whole-brain voxel-based morphometry. Notably, our

study focused on children as young as 3 months, utilizing SyMRI

to detect subtle changes in brain development associated with

SNHL, underscoring the impact of early hearing abnormalities on

neurological development.

Kim et al. (2017) identified that the myelin volume percentage

automatically generated by SyMRI within the brain substance

volume closely adhered to the established myelin maturation

Gompertz model and exhibited strong correlations with R1 and R2

relaxation rates. The quantification of myelin using SyMRI presents

a promising avenue for assessing brain development in children. In

a study utilizing VBM, Hribar et al. (2020) observed a significant

decrease inWM volume within the left medial frontal gyrus and the

right suboccipital gyrus in deaf patients, with no notable difference

in gray matter volume, aligning with our findings. Notably, our

study unveils differences in white matter occurring before language

development, particularly in subjects around 3 months old with

moderate-to-severe SNHL, a phenomenon not documented in

existing literature. These findings suggest potential neuroplastic

changes linked to brain reorganization following early hearing

deprivation in SNHL infants.

A nomogram is a graphical tool which is commonly used to

estimate prognosis in oncology and medicine. With the ability to

generate an individual numerical probability of a clinical event by

integrating diverse prognostic and determinant variables. Rapid

computation through user friendly digital interfaces, together with

increased accuracy, and more easily understood prognoses, allow

for seamless incorporation of nomogram derived prognosis to

aid in clinical decision making. This has led to the ubiquitous

appearance of nomogram in clinical use (Ohori Tatsuo et al., 2009;

Balachandran et al., 2015; Gandaglia et al., 2019). This study we

constructed a prediction model based on two factors key SyMRI

quantitative parameters LL-T1 andWMF, for distinguishing SNHL.

This is easy for clinical doctors to calculate quantitative values of

LL-T1 and WMF and arrange them horizontally on the column

chart with scaled line segments in their respective proportions. By

calculating the total score values corresponding to each parameter

and finding the corresponding predicted risk values below the

total score scale, we can quickly obtain the prediction probability

for SNHL.

The molecular mechanisms through which sensorineural

hearing loss (SNHL) impacts brain development are still not fully

understood. Traditionally, it was believed that SNHL primarily

targets hair cells, with cochlear nerve loss considered secondary

to hair cell degeneration. However, in cases of noise-induced

hearing loss, even reversible threshold shifts (without hair cell

loss) can result in permanent loss of over 50% of cochlear

nerve/hair cell synapses. Similarly, in age-related hearing loss, the

degeneration of cochlear synapses precedes both hair cell loss

and threshold elevation (Kujawa and Liberman, 2015). There are

reports indicating the possibility of spontaneous re-innervation

(Puel, 1995; Pujol and Puel, 1999; Sun et al., 2001), or that

some immediate synapse loss may be reversible (Liu et al., 2012;

Shi et al., 2013, 2015, 2016). However, how these molecular

changes manifest in SyMRI imaging remains unclear. Ongoing

research aims to delve deeper into this phenomenon, elucidate its

underlying mechanisms, and evaluate the potential effectiveness of

therapeutic interventions.

This study is subject to certain limitations. Firstly, the sample

size was relatively small, potentially impacting the statistical power

and the generalizability of the research findings. Secondly, there

was no follow-up conducted to assess the long-term intellectual

and behavioral development of the SNHL patient group. Long-

term follow-up could shed light on the impact of SNHL on various

aspects such as language proficiency, motor skills, and learning

abilities across different age groups, highlighting the necessity for

further investigation. Thirdly, due to our hospital being a provincial

key maternal and child health hospital, there may be bias in

sample selection.

Conclusion

In conclusion, T1 values, coupled with measurements of

WMV, MYV, WMF, and MYF, hold promise as potential

indicators for early detection of brain development anomalies

in children with SNHL. Quantitative assessments in areas

such as the IC, LL, and MCP could assist in distinguishing

patients with moderate to severe SNHL. Moreover, observed

reductions in WMV and myelin levels may serve as predictive

factors for the progression of moderate and severe SNHL in

pediatric populations.
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SUPPLEMENTARY FIGURE 1

Comparison of T1 values in the inferior colliculus (IC), lateral lemniscus (LL),
and middle cerebellar peduncle (MCP) among four groups of children at 1.5
and 3 months. (A–C) Comparison of T1 values among Normal-NH,
Normal-Non-NH, SNHL-NH, and SNHL-Non-NH, subgroups at 1.5 months.
(D–F) Comparison of T1 values among Normal-NH, Normal-Non-NH,
SNHL-NH, and SNHL-Non-NH, subgroups at 3 months. T1 values are
presented in milliseconds.

SUPPLEMENTARY FIGURE 2

Comparison of white matter volume (WMV), white matter fraction (WMF),
myelin volume (MYV), and myelin fraction (MYF) among Normal-NH,
Normal-Non-NH, SNHL-NH, and SNHL-Non-NH, subgroups at 1.5 and 3
months. (A–D) Comparison at 1.5 months. (E–H) Comparison at 3 months.
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Introduction: Machine Learning (ML) has emerged as a promising approach
in healthcare, outperforming traditional statistical techniques. However, to
establish ML as a reliable tool in clinical practice, adherence to best practices
in data handling, and modeling design and assessment is crucial. In this work,
we summarize and strictly adhere to such practices to ensure reproducible
and reliable ML. Specifically, we focus on Alzheimer’s Disease (AD) detection,
a challenging problem in healthcare. Additionally, we investigate the impact of
modeling choices, including di�erent data augmentation techniques and model
complexity, on overall performance.

Methods: We utilize Magnetic Resonance Imaging (MRI) data from the ADNI
corpus to address a binary classification problem using 3D Convolutional
Neural Networks (CNNs). Data processing and modeling are specifically
tailored to address data scarcity and minimize computational overhead. Within
this framework, we train 15 predictive models, considering three di�erent
data augmentation strategies and five distinct 3D CNN architectures with
varying convolutional layers counts. The augmentation strategies involve a�ne
transformations, such as zoom, shift, and rotation, applied either concurrently
or separately.

Results: The combined e�ect of data augmentation and model complexity
results in up to 10% variation in prediction accuracy. Notably, when a�ne
transformation are applied separately, the model achieves higher accuracy,
regardless the chosen architecture. Across all strategies, the model accuracy
exhibits a concave behavior as the number of convolutional layers increases,
peaking at an intermediate value. The best model reaches excellent performance
both on the internal and additional external testing set.

Discussions: Our work underscores the critical importance of adhering to
rigorous experimental practices in the field of ML applied to healthcare. The
results clearly demonstrate how data augmentation and model depth—often
overlooked factors– can dramatically impact final performance if not thoroughly
investigated. This highlights both the necessity of exploring neglected modeling
aspects and the need to comprehensively report all modeling choices to ensure
reproducibility and facilitate meaningful comparisons across studies.
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deep learning, Alzheimer’s disease, data augmentation, model depth, reproducibility
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1 Introduction

Advanced Machine Learning (ML) techniques have proven

to be highly effective in healthcare applications, such as cancer

detection and prognosis (Cruz and Wishart, 2006; Sajda, 2006;

Kourou et al., 2015; Shen et al., 2019; Chaunzwa et al., 2021),

heart diseases prediction (Mohan et al., 2019; Palaniappan and

Awang, 2008), and neurodegenerative diseases’ diagnosis (Pereira

et al., 2016; Montolío et al., 2021). However, it is still premature

to assert that ML is ready to be employed as a standard in

clinical practice. For instance, in Roberts et al. (2021), the authors

reviewed thousands of papers on the use of ML to detect COVID-

19 and found that none achieved the robustness and reproducibility

required for medical use. This issue is not specific to ML methods

for COVID-19 detection but involves the entire ML community

(Ioannidis, 2005; Pineau et al., 2021), particularly the field of ML

in healthcare (Stupple et al., 2019; Beam et al., 2020; Heil et al.,

2021). To address this issue, Luo et al. (2016) asked 11 researchers

with expertise in biomedical ML to produce a set of rules ensuring

that ML models within clinical settings are sufficiently reported.

These rules mainly relate to paper writing, providing a checklist

for each article section. Although Luo et al. (2016) offers a useful

tool for checking final manuscripts, it does not identify specific

practices for developingMLmethods in healthcare and is often very

general when it comes to report ML model details (e.g., identifying

if the study is retrospective/prospective and if the prediction task is

regression/classification).

In our manuscript, we identify an essential set of practical

guidelines, and we highlight the importance of fully adhering to

them. To demonstrate this, we present a practical application ofML

in healthcare by following these guidelines and demonstrating the

impact of modeling choices on the final performance. Specifically,

we focus on Deep Learning (DL) for Alzheimer’s Disease (AD)

diagnosis. AD is the most common type of dementia, impacting

over 30 million individuals globally. It is characterized by (i) a

pre-symptomatic stage where pathological molecular changes and

neuronal dysfunctions occur at brain level, (ii) a prodromal stage

identified as mild cognitive impairment (MCI) syndrome; (iii)

an early-stage where cognitive symptoms of AD become more

evident; (iv) a late stage with overt dementia. This progressive

neurodegenerative disorder leads to cognitive and functional

decline, impairing daily activities and eventually resulting in death.

Hence, timely and accurate diagnosis of AD is crucial for effective

treatments. Structural Magnetic Resonance Imaging (MRI) has

proven to be a powerful tool for predicting AD due to its ability to

visualize detailed brain structures and identify changes associated

with the disease, such as hippocampal atrophy (Jack et al., 2000;

Van De Pol et al., 2006), cortical thinning (Du et al., 2007), and

brain volume loss (Pini et al., 2016).

In this study, we leverage low-resolution MRI scans and

address the challenge of discriminating patients with AD from

Abbreviations: ML, Machine Learning; DL, Deep Learning; CNN,

Convolutional Neural Network; CL, Convolutional Layers; AD, Alzheimer’s

Disease; MCI, Mild Cognitive Impairment; CN, Cognitive Normal; ADNI,

Alzheimer’s Disease NEuroimaging Initiative; MRI, Magnetic Resonance

Imaging; D, Data handling; M, Model design and assessment.

Cognitively Normal (CN) subjects using a 3D-Convolutional

Neural Network (CNN) (LeCun et al., 1995). We combine different

data augmentation strategies and CNN depths, creating a total of

15 DL models. We show that these modeling choices can lead

to significant variations in prediction accuracy, up to 10%. The

best model demonstrates excellent accuracy on the testing set and

good properties of generalization to an external dataset. It is worth

noting that the proposed approach can be readily extended to other

modeling choices and healthcare applications.

The paper is structured as follows. The Materials and

Methods section includes the guidelines for ML reliability and

reproducibility, and introduces state-of-the-art studies in the AD

field. Then, it details data handling and the experimental setup,

including modeling challenges and choices made. The Results

section evaluates the effect of the modeling choices, comparing

augmentation strategies and architectures. The Discussion

section relates findings to state-of-the-art studies and illustrates

future perspectives.

2 Materials and methods

2.1 Guidelines

To begin, we summarize the general guidelines for reliable and

reproducible ML pertaining to two key aspects: data handling, and

model design and assessment.

Data handling (D)

1. Data collection/selection should align with the scientific

problem at hand (e.g., utilizing cross-sectional data for

diagnostic confirmation or longitudinal data for prognostic

purposes), avoiding bias and information leakage (Saravanan

et al., 2018).

2. Data quality should be assessed by identifying missing values

and inconsistencies, and improved by applying appropriate

imputation and cleaning methods (Lin and Tsai, 2020).

3. Data harmonization can be used to compensate for

heterogeneous data from different acquisition techniques

(Kourou et al., 2018).

4. Data augmentation can be employed as a solution for small

sample size or unbalanced samples per class, a common case in

the biomedical field.

5. The whole data handling process should be described in details

in order to ensure reproducibility.

Model design and assessment (M)

1. The versioned code used for conducting the experiments should

be publicly shared to ensure transparency and reproducibility.

2. Every decision in the design of the predictive model should

be justified, with recognition of uncontrollable factors (Haibe-

Kains et al., 2020).

3. Details about the samples used in the training/testing split

should be disclosed to guarantee benchmarking.

4. A well-designed experiment should avoid assessing results

on a non-representative testing set. To this aim, resampling

strategies (Batista et al., 2004) such as k-fold cross-validation

or boosting can be utilized to comprehensively assess the

model’s performance. Further, models based on randomweights
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initialization should be repeated for different trials in order to

assess their stability.

5. The performance metrics should be chosen according to the

specific scientific objectives of the study (Sokolova and Lapalme,

2009; Chicco and Jurman, 2020).

6. Testing the model on external datasets is ideal to evaluate its

generalization properties (Basaia et al., 2019).

These guidelines are followed throughout the rest of the paper

and referenced within the text whenever a rule is applied in

the experiments.

2.2 State of the art

AD is a neurodegenerative disease and the most common

form of dementia globally, characterized by progressive

neurodegeneration, leading to cognitive and functional decline,

impaired daily activities, and eventually, death (Wu et al., 2017;

Dubois et al., 2016). Brain imaging, particularly MRI scans, plays a

crucial role in diagnosing AD by providing detailed insights into

the structural brain changes associated with the disease. In recent

years, ML models have shown significant potential in utilizing

imaging data to improve automated AD diagnosis (Yu et al., 2022)

and predict AD-related brain abnormality (Zong et al., 2024). For

instance, Zuo et al. (2024) use multiple brain image modalities

with an adversarial learning strategy for AD progression prediction

and to identify abnormal brain connections. Similarly, Pan et al.

(2024) proposes a generative adversarial network with a decoupling

module to detect abnormal neural circuits.

As reported in Arya et al. (2023), the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset (Mueller et al., 2005) is the

most frequently employed dataset in AD studies based on ML and

DL approaches. ADNI comprises heterogeneous datasets collected

during different temporal phases (ADNI1, ADNI/GO, ADNI2, and

ADNI3), each characterized by varying MRI acquisition protocols.

ADNI1 includes longitudinal acquisitions on 1.5T and 3T scanners

with T1- and T2-weighted sequences; ADNI-GO/ADNI2 contains

imaging data acquired at 3T with similar T1-weighted parameters

to ADNI1; ADNI3 exclusively utilizes MRI obtained from 3T

scanners. Further, within a temporal phase, multiple acquisitions

are done at different time steps (e.g., baseline, screening, follow up).

The heterogeneity of ADNI allowed for many experimental

setups in the literature, with varying results depending on sample

size [ranging from hundreds (Liu et al., 2014; Alinsaif and Lang,

2021; Long et al., 2017; Korolev et al., 2017) to thousands (Salehi

et al., 2020; Basaia et al., 2019)], images resolution, or sequence type.

However, this variability and the lack of a universally recognized

benchmark have hindered fair comparisons of published models.

Another consequence is that AD studies are more susceptible to

information leakage. In Wen et al. (2020), the authors reviewed

32 studies using CNN models for AD diagnosis and found that

about 50% of them reported biased results due to data leakage.

These factors underscore the essential need for carefully selecting

the dataset (D1), reporting details on data processing (D5, M3),

taking into account the dataset size (D4, M3, M4) and choosing

the model (M2) and the evaluation metrics accordingly (M5). In

the rest of the section, we discuss state of the art (SOTA) studies

on MRI-based AD classification using ADNI and describe their

experimental approaches in relation to the criteria D and M. We

emphasize that a systematic review is behind the purpose of this

work, which has the scope of highlighting good and bad practices

in ML for healthcare.

We considered the studies reported in a recent PRISMA-based

review (Arya et al., 2023), selecting 8 articles that used solely MRI

scans fromADNI dataset (Mehmood et al., 2021; Li and Yang, 2021;

Pan et al., 2020; Alickovic et al., 2020; Korolev et al., 2017; Yue et al.,

2019; Xiao et al., 2017; Tong et al., 2014). To increase the sample

of DL-based articles, we further considered three SOTA articles

(Salehi et al., 2020; Basaia et al., 2019; Ghaffari et al., 2022), for a

total of 11 articles. We found that none of them fully adhered to the

guidelines listed in the previous section. In particular:

• D1: 73% of studies did not report the ADNI phase, and

91% did not specify the time step (e.g., baseline, follow-

up). This information is crucial to ensure that baseline and

follow-up data are not mixed, thereby preventing data leakage.

Additionally, 27% of studies did not provide information

about MRI resolution (i.e., 1.5T or 3T).

• D4: Data augmentation is applied in only 4 papers (Mehmood

et al., 2021; Pan et al., 2020; Basaia et al., 2019; Ghaffari

et al., 2022). These papers lack important details, such as

transformation parameters and the size of the final training set.

• M1: Only the authors in Korolev et al. (2017) provided the

code used for data processing and modeling.

• M2: Only 27% of the works considered different model

architectures. Additionally, none of the DL approaches

explored model depth as a hyperparameter.

• M3: Three articles split the dataset into training/testing

following previous work, whereas the remaining ones did not

detail the samples in the splits, preventing benchmarking.

• M4: Resampling strategies were not used in 45% of

experiments. Furthermore, no DL-based methods tested

model robustness to random weight initialization.

• M5: 91% of studies adopted multiple evaluation metrics.

However, standard deviation for resampling strategies was

reported in only three papers.

• M6: Generalization across datasets was tested and reported in

only two articles.

Note that D2 and D3 are not evaluated here as data quality is

ensured by ADNI experts and none of the considered studies rely

on different acquisition techniques.

The literature review reveals that none of the considered SOTA

studies are fully reproducible due to the absence of available

validated code, insufficient details about data processing and

augmentation, and lack of information about dataset splits and

experimental specifics. Furthermore, the reliability of these works

is sometimes limited by unrepresentative testing sets and the lack

of evaluation on external datasets. It is also interesting to note that

the number of employed samples varies from 170 to 1,662, with

a median of 433, a mean of 653, and a standard deviation of 495.

This, along with the variability in MRI resolution, makes model

comparisons unfeasible. Finally, we noted that model depth and

data augmentation strategy (in terms of the number of augmented

samples and types of transformations) were completely neglected

factors. This led us to investigate whether and to what extent these

two modeling choices impact the classification task.
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TABLE 1 ADNI1 demographic description.

1.5T CN AD

Subjects 307 243

Age 75.2± 7.6 75.9± 5.0

Sex (M/F) 159/148 130/113

3T CN AD

Subjects 47 33

Age 75.1± 3.9 74.0± 8.1

Sex (M/F) 18/29 11/22

1.5 and 3T datasets.

2.3 Data

For our experiments, we adopted the ADNI dataset (Mueller

et al., 2005) considering T1-weighted 1.5T MRI scans from the

ADNI1 data collected during screening, which is the baseline

exam. This includes 550 MRI exams from 307 CN subjects and

243 AD patients. Additionally, we used an ADNI1 subset of

80 3T MRI exams as an external testing set, to evaluate the

best model in a domain shift setting (Buchanan et al., 2021).

Table 1 reports demographic details about the two datasets (D1).

We recall that MRI exams are three-dimensional data describing

the structure of the brain. Figure 1 displays a 2D projection

of brain images captured from a CN subject (first row) and

an AD patient (second row) on the sagittal, coronal, and axial

planes. All data were preprocessed by ADNI experts, ensuring

data quality and harmonization (D2, D3; more information in

Supplementary Section 1).

2.3.1 Data augmentation (D4)
Data augmentation is a common procedure that

simultaneously addresses data scarcity and creates a model

invariant to a given set of transformations (Shorten and

Khoshgoftaar, 2019). Different augmentation strategies can

result in varied training sets, affecting model performance

and computational cost. In this study, the original set is

augmented by applying, separately or simultaneously, zoom,

shift, and rotation transformations, as shown in Figure 2 (see

Supplementary Section 1.3 for details on the transformation

parameters). To study the effect of different transformations and

sample sizes on model performance, we compared the following

three data augmentation strategies:

• Strategy (A). To each image, we simultaneously apply all the

transformations (i.e., a zoom by a random factor, a random

shift, and a rotation by a random angle). The size of the

augmented data will match the number of training samples N.

• Strategy (B). To each image, we separately apply each

transformation, generating three different distorted images.

The size of the augmented data will be three times the number

of training samples, 3N.

• Strategy (C). To each image, we simultaneously apply all the

transformations, as in strategy A. We repeat the process three

times so that the number of augmented samples matches the

one of strategy B (3N).

Therefore, strategies (A) and (C) rely on the same procedure,

while strategies (B) and (C) generate the same number of

samples. Although other augmentation techniques (e.g., color

transformation, adding noise, and random erasing) may be

beneficial, a comprehensive study of data augmentation is beyond

the scope of this work. Instead, our goal is to investigate whether

and how slight variations in data augmentation choices, often

underestimated, impact model performance. In order to avoid data

leakage (Wen et al., 2020), data augmentation is performed only on

the training set after dataset split, leaving validation and testing sets

at the original sample size.

2.3.2 Data processing (D5)
As already noted, ADNI images were collected with different

protocols and scanning systems, hence they are very heterogeneous

in size, see Table 2. To enable the use of MLmethods, it is necessary

to select a common volume size. This choice, often left unexplained

in literature, defines fundamental characteristics of the pipeline,

such as the amount of information contained in the image and the

input space dimension, on which model choice and computational

burden depend.

In our experiments, images are downsized to 96×96×73. The

principle guiding this choice derives from computational issues.

We first reduced the image dimension, rescaling the image by 50%

along all dimensions, and we then resized images to match the

smallest one. An alternative strategy may be zero-padding to match

the biggest image, but this would increase memory requirements.

Finally, intensity normalization was applied omitting the zero

intensity voxels from the calculation of the mean. This procedure

allows having homogeneous data with a fixed size. Note that we do

not select any Region Of Interest (ROI) (Long et al., 2017) within

the images. Although this setup challenges the classification task,

it eliminates the typically laborious and time-consuming feature

engineering process.

2.4 Experimental setup

2.4.1 Guide to the model choice (M2)
Choosing the optimal DL model is not straightforward, as the

vast numbers of network and training parameters makes a “brute-

force” model selection approach unfeasible. Here, we illustrate the

model choices made a priori based on the issues posed by the

examined task.

2.4.1.1 Type of data
Working with 3D images presents computational and memory

challenges. As a solution, several studies in the literature adopt

three 2D projections of the MRI. Nevertheless, this approach

requires three separate models, leading to increased overall wall-

clock time. Moreover, extracting features from the 2D projections

may result in the loss of crucial volumetric information and a

simplified representation of the studied phenomenon. In this work,

we adopted a 3D CNN that directly extracts volumetric features.

Frontiers inComputationalNeuroscience 04 frontiersin.org125

https://doi.org/10.3389/fncom.2024.1360095
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Turrisi et al. 10.3389/fncom.2024.1360095

FIGURE 1

2D visualization of 3D MRI scans. Axial, coronal and sagittal planes of two brain images from ADNI dataset.

2.4.1.2 Limited amount of data
To overcome the limited dataset size, we implemented the

following strategies aimed at controlling model complexity and

preventing overfitting: data augmentation; adding an ℓ2 penalty;

and limiting the number of filters per layer. The latter method

resulted in a substantial parameter reduction across the network.

For instance, in a 2-layer CNN with 3×3×3 filters, reducing the

number of filters to 32 to 8 in the first layer and from 64 to 16 in

the second layer (25% of the initial values) leads to a considerable

reduction of 93% in the number of learnable parameters (from

56,256 to 3,696).

2.4.1.3 Memory capacity
3D models usually require a huge amount of memory capacity,

that depends both on the input dimension and the model size. To

reduce the required memory: i) we re-scaled the images to halve the

data dimension; ii) we used stochastic gradient descent with a batch

size that balances the memory cost while retaining a representative

subset; iii) we balanced the number of filters and the batch size to

reduce the computational burden of the activation layer.

2.4.2 Model details
We report experiments on the CN/AD binary classification. A

preliminary analysis, performed on 1.5T MRI data with a standard

training/validation/test split (75%/15%/10%), denoted a very high

variance due to the limited sample size of the testing set. For this

reason, to guarantee a correct assessment of model performance

and stability, we set up a stratified-K-fold cross-validation loop. We

set K = 7, from Fold 0 to Fold 6 (training/validation/test, with a

proportion of 70%/15%/15%), that ensures having enough data for

the learning phase (M4). All folds were fully balanced, except for

Fold 6 which had an unbalanced ratio between AD and CN samples

as the total amount of samples per class do not match exactly.

We further tested our model on the external dataset of 3T MRI

scans (M6). Note that this task is particularly challenging because:

i) the evaluation is subject to the domain shift problem, and ii)

the training MRI scans have half the resolution of the external

MRI exams.

We adopted as baseline network an architecture with 4

Convolutional Layers (CL) followed by a fully-connected layer,

as depicted in Figure 3. We will refer to this architecture as 4

CL model. To investigate the optimal CNN depth, we inserted

additional convolutional layers without pooling operations so

that the number of layers is the only factor impacting in the

model. Specifically, we added 2, 4, 6 and 8 convolutional layers in

correspondence to the arrows of Figure 3. We refer to these models

as 6 CL, 8 CL, 10 CL, and 12 CL. For instance, in the 10 CL

architecture 6 convolutional layers are added to the 4 CL baseline:

two layers are inserted in correspondence of the first and second

arrows, and one layer in correspondence of the third and fourth

arrows. Additional details on network and training parameters can

be found in the Supplementary Section 2. In order to test model

stability to initial random weights, each model was run 10 times
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FIGURE 2

Original and transformed MRI image. 2D projections of the original MRI image (first row) and the augmented image obtained by applying zoom

(second row), shift (third row), and rotation (last row) transformations.

(M4). Model selection was performed based on accuracy. The best

one is further analyzed based on Confusion Matrix, Precision,

Recall, F1-score, AUC and AUCPRC (M5).

All the experiments were conducted using Python version

3.8 and PyTorch 1.12.1, running on a Tesla K40c GPU. Samples

identifiers and the Python code necessary to reproduce the

experiments are available on GitHub (M1, M3).

3 Results

In the following, we compare 15models obtained by combining

different augmentation strategies with varying network depths,

then we illustrate in detail the results of the best model. Results

based on not-augmented data are not reported, as they were

substantially worse than the ones obtained by using augmentation.

3.1 Architecture and augmentation choice

We assessed the optimal architecture and augmentation

strategy based on the accuracy on the validation set, which is

shown in Figure 4. To verify the impact of these factors on

the classification task, we performed a statistical analysis of the

results obtained by the different models. Initially, we used the

Shapiro-Wilk test (Shapiro and Wilk, 1965) to assess the normality

of our data, which revealed that the data were not normally

distributed. Consequently, we adopted a non-parametric approach
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to determine significant differences in models’ performance.

Specifically, we applied the Kruskal-Wallis test (Kruskal andWallis,

1952) to compare performance across the 15 models. This analysis

yielded a statistically significant difference (p-value = 7.45e-07),

indicating that the classification task varies significantly among

models with different augmentation strategies and network depth.

3.1.1 Data augmentation
Strategy (A) (in yellow) considerably underperforms Strategy

(B) (in green), regardless of the CNN architecture used. This can

be attributed to the lower number of samples in the augmented

data. Surprisingly, Strategies (A) and (C) (in fuchsia) achieve

very similar accuracy for a higher number of layers. Finally,

TABLE 2 1.5 T1-weighted MRI scans.

MRI size CN AD Total

256× 256× 184 8 8 16

256× 256× 170 40 34 74

256× 256× 160 4 0 4

256× 256× 166 97 82 179

256× 256× 162 0 1 1

192× 192× 160 117 86 203

256× 256× 146 1 0 1

256× 256× 161 2 0 2

256× 256× 180 38 32 70

Number of CN and ADMRI scans grouped by size.

although Strategies (B) and (C) generate the same amount of

data, Strategy (B) outperforms Strategy (C) across all network

depths. To validate these findings, we repeated the Kruskal-

Wallis test comparing models using strategy (A), (B), and (C),

for each architecture. All tests resulted in p-values less than

0.05, confirming significant differences in performance across

different augmentation strategies. Furthermore, as Strategy (B)

resulted in the most effective data augmentation approach, we

conducted additional statistical analysis on it. Specifically, we used

the Conover-Iman test (Conover and Iman, 1979) for pairwise

comparison between models based on strategy (B) and those

employing different data augmentation strategies. Results revealed

a significant difference between strategy (B) and strategy (A) for all

network depth, and between strategy (B) and strategy (C) for the

8 CL, 10 CL, and 12 CL architectures. These outcomes underscore

the superiority of strategy (B) across all tested architectures, and

demonstrate that applying affine transformations separately is more

effective than applying them simultaneously.

3.1.2 Network depth
The accuracy curves for all augmentation methods show a

similar pattern: the best results are obtained for intermediate

amounts of layers, while accuracy decreases for higher numbers

of convolutional layers. The same behavior can be observed

in Figure 5 where we report for each cross-validation fold the

distribution of accuracy in the 10 trials. Using the Kruskal-Wallis

test, we found that these differences across architectures were

significant when using strategies (A) and (B).

The 8 CL model with strategy (B) emerges as the

best-performing combination, exhibiting greater stability within

FIGURE 3

3D-CNN architecture. Architecture of the 4 CL baseline network, composed by four blocks of a convolutional and pooling layers, followed by a fully
connected (FC) layer. The total number of features (8 ∗ i) in the i-th convolutional layer is reported above each layer, whereas the filter dimension is
reported below. In the experiments, we consider other four extended versions of the baseline architecture (6CL, 8CL, 10CL, 12CL) duplicating once
or twice the convolutional layer preceding the arrows.
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FIGURE 4

Models accuracy at varying of architecture depth and augmentation strategies. Comparison among the proposed CNN-based architectures with the
three augmentation strategies, in terms of median accuracy on the validation set. The y-axis reports the model accuracy distribution on the 10 trials
(%) and the x-axis presents varying augmentation strategies (A), (B), and (C) in 5 blocks—one for each CNN architecture.

FIGURE 5

Model’s performance and stability across folds. Multiple plots for the comparison of the validation accuracy for all architectures (A–C) and
augmentation strategies (4CL, 6CL, 8CL, 10CL, 12CL). Each subplot reports the model accuracy on all 7-fold splits. Specifically, the y-axis reports the
accuracy distribution on the 10 trials (%) for each fold (x-axis). The best model [8 CL, (B)] is highlighted with a red border.

and across folds compared to the other combinations. Further

details and specific results of the statistical analysis are available in

the Supplementary material.

3.2 Best model performance and insight

The combination of a CNN with 8 convolutional layers and the

(B) augmentation strategy [8 CL, (B)] turned out to be the best

model, reaching an accuracy of 87.21± 0.88% on the validation set

and 81.95± 1.26% on the testing set.

A complete evaluation of this model is reported in Figure 6:

left panel reports mean and standard deviation for Precision,

Recall, F1-score, AUC and AUCPRC of CN and AD classes

over the 7 folds; right panel shows the Confusion matrix

obtained by counting True Positive, True Negative, False Positive,

and False Negative scores over the 7 folds. Figure 7 gives an

insight on the layers behavior and how they are learning the

optimal model. The Left Panel displays the learned filters of

every convolutional layer for one AD patient on the three

considered median planes, i.e., sagittal, coronal and axial. It

is clear that the filters capture more abstract features at

increasing depth values. Panel (b) presents, for each convolutional
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FIGURE 6

Evaluation of the [8 CL, (B)] model on the testing set. (Left) Complete evaluation of the model on CN and AD classes averaged over the 7 folds.
(Right) Confusion matrix of the classification results counted over the 7 folds.

FIGURE 7

(Left) Illustration of the learned filters by the best model for one of the AD samples. Columns show filters for the three median planes, and rows show
the filters for the input (raw data) and the convolutional layers at increasing depth. (Right) Training and test embeddings for each convolutional layer
of the [8 CL, (B)] model projected by t-SNE. For increasing depth, AD (green) and CN (yellow) samples are better clustered.

layer, the layer outputs (embeddings) of training and test

samples projected on a two-dimensional plane through t-

distributed Stochastic Neighbor Embedding (t-SNE) (Van der

Maaten and Hinton, 2008). Both projections show that the

embeddings are more evidently clustered as the number of

layers increases.
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To further understand the properties and limits of

the (8 CL, (B)) model, we assessed the effect of dropout,

finding that it does not improve its performance (details in

Supplementary Section 3.2). Also, we tested the model on an

external dataset of 3T MRI scans, obtaining an accuracy of 71%

and an AUC of 0.76 (a complete evaluation can be found in

Supplementary Section 3.3).

4 Discussion

In this paper, we summarized a list of 5 items concerning

data handling (D) and 6 items on model design and assessment

(M), outlining the criteria that should be adhered to in order

to ensure reliability, robustness, and reproducibility in ML for

healthcare. Based on these criteria, we constructed an experimental

pipeline for MRI-based binary classification of AD vs. CN subjects.

Specifically, the experiments were conducted on a pre-processed

subset of the ADNI dataset, consisting of 1.5T MRI scans collected

during the screening ADNI1 phase (D1). This subset, previously

pre-processed by ADNI experts, ensures high data quality (D2) and

harmonization (D3). Although the dataset is balanced, its size is

limited. To address potential overfitting and ensure reliable results,

data augmentation (D4), model complexity reduction (M2), and

resampling (M4) strategies were employed. All these aspects are

thoroughly discussed (D5). The list of selected samples was made

publicly available to enable benchmarking in further studies (M3),

along with the Python code (M1).

Additionally, we thoroughly investigated the combined impact

of data augmentation strategies (by varying the number of

augmented data and the application of transformations) and

architecture depth (M2), resulting in a total of 15 models. As

reported in Section 2.2, these factors are often neglected in the

literature, which typically aims to generate the largest possible

number of augmented data and use state-of-the-art architectures

(even when very large). Our findings demonstrate that improper

settings for these experimental aspects can drastically hamper

model performance, reducing accuracy by up to 10 points. Results

showed that, independently of the adopted architecture, Strategy

(B) always outperformed the others. As strategies (B) and (C)

leverage the same amount of training samples, these results suggest

that applying the affine transformations separately may help the

model build invariance to each of them. Interestingly, strategies

(A) and (C) show similar performances for intermediate-to-large

models, even though strategy (A) relies on only one-third of the

samples generated by strategy (C). We recall that Strategy (A)

adopts the same combination of transformations as Strategy (B).

This may indicate that the way transformations are combined and

applied to the original data has a greater impact than the augmented

dataset size itself. Future work will extend this investigation to

other data augmentation strategies, including different types of

transformation (e.g., color space transformations, Kernel filters,

random erasing).

For all augmentation approaches, we found that the curve of

the model accuracy at increasing depths tends to be a concave

function, reaching the maximum for an intermediate depth value.

Although the widespread notion for which deeper neural networks

better generalize in a general framework, this result is in line with

other studies (Zhang et al., 2021; Vento and Fanfarillo, 2019) in

which authors showed that smaller models perform better when

only a limited amount of data is available, as they are less subject

to overfitting. Although we did not test them, this observation may

extend to other SOTA architectures. Indeed, our 8 CL CNN has

220k trainable parameters, while SOTA architectures are typically

much larger. For example, ResNet18, ResNet50, and ResNet101

(He et al., 2016) consist of 11.7M, 25.6M, and 44.5M parameters,

respectively. The smallest Vision Transformer model (ViT-Base)

(Dosovitskiy et al., 2020) includes 86M parameters. EfficientNet-

B1 (Tan and Le, 2019) and MobileNetV2 (Sandler et al., 2018),

considered among the smallest SOTA architectures, have 7.8M and

3.5M parameters, respectively. Using larger SOTA models may

be more effective when pre-trained to leverage transfer learning.

However, it is important to note that the vast majority of pre-

trained models have been trained on natural 2D images, and they

are not immediately usable in the context of medical 3D scans.

Future work will delve into these aspects.

The best model we identified is the combination of a CNN with

8 convolutional layers and the (B) augmentation strategy [8 CL,

(B)]. The model accuracy in validation and testing is 87.21± 0.88%

and 81.95± 1.26%, respectively, which is 4.2% increase in accuracy

with respect to [4 CL, (B)] model. Also, Figure 5 shows how [8

CL, (B)] is more stable than all other models with respect to both

cross-validation folds and training trials. These results appear in

line with current SOTA studies relying on similar datasets. For

instance, Pan et al. (2020) reach 84% of accuracy by using 499 1.5T

MRI scans, and Xiao et al. (2017) obtain 85.7% using a dataset

of 654 1.5T MRI images. Similarly to our work, Korolev et al.

(2017) train a 3D-CNN model on 231 samples, showing 79% of

accuracy. Nonetheless, we argue that a true comparison is not

completely feasible as other works employ different datasets and

data types, the number of samples varies both in training and

testing sets, experimental designs are very heterogeneous and, most

importantly, performance is always assessed on one trial, without

any variability estimation. As an additional evaluation, we tested

the best model in a domain shift context (M6), i.e., on 3TMRI data,

reaching 71% of accuracy. We remark that this is a very challenging

task as the image resolution deeply differs from the one in the

training set.

To the best of our knowledge, this is the first

work in the AD domain to delve into these modeling

aspects and quantify their impact on performance

estimation. Future work will extend this analysis to other

architectures, different data augmentation transformations,

and to a multi-class classification setting that includes

MCI subjects.
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