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Cycle skipping problem caused by the absent of low frequencies and inaccurate initial model makes full waveform inversion (FWI) deviate from the true model. A novel method is proposed to mitigate cycle skipping phenomenon by dynamic data matching which improves the matching of synthetic and observed events to regulate the updating of initial model in a correct direction. 1-dimentional (1-D) Gaussian convolutional kernels with different lengths are used to extract features of each time sample in each trace which represents the integrated properties of wavefield at different time ranges centered on each time sample. According to the minimum Euclidean distance of the features, the optimally matched pairs of time samples in the observed and synthetic trace can be found. A constraint evaluates the reliability of dynamic matching by attenuating the amplitude of synthetic data according to the values of traveltime differences between each pairs of optimally matched time samples is proposed to improve the accuracy of data matching. In addition, Gaussian kernels have the capability to extract features of time samples contaminated by strong noises accurately to improve the robustness of the propose method further. The selection scheme of optimal parameters is discussed and concluded to ensure the convergence of the proposed method. Numerical tests on Marmousi model verify the feasibility of the propose method. The proposed method provides a new approach to tackle the convergence problem of FWI when using the field seismic data.
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1 INTRODUCTION
Full waveform inversion (FWI) suffers from the cycle skipping problem, which leads FWI to converge to the local minima (Virieux and Operto, 2009). Sufficiently low frequencies in observed data and a suitable initial model are important for FWI to overcome cycle skipping (Bunks et al., 1995). However, it is difficult to provide a good initial model for FWI without sufficient prior information, with low frequency components usually absent from seismic field data. Therefore, many researchers have devoted much to solving the cycle skipping phenomenon from different perspectives. There are three main approaches to addressing this issue.
First, artificial low frequencies, which are similar to the low-frequency components of the intact observed data that conveys long wavelength information of subsurface media, can be introduced into FWI. Chi et al. (2014) utilized the differences between the envelopes of both observed and calculated data as a misfit function to provide the long-wavelength components of the subsurface velocity for standard FWI. Liu et al. (2018) fitted the intensity of the observed and synthetic data and found that sufficiently low frequencies in intensity data can help FWI avoid cycle skipping. Sun and Demanet (2018) extrapolated low frequencies from the band-limited signals by a one-dimensional (1-D) convolutional neural network (CNN), which learns non-linear mapping between training sets and labels. Yang et al. (2022) developed a deep learning-based approach for low frequency reconstruction in which high frequencies are transformed into low frequencies by training an end-to-end three-dimensional (3D) CNN.
Second, waveform-matching techniques can be used to avoid cycle skipping. Wang et al. (2016) used dynamic time warping (DTW), which can detect the travel-time difference between synthetic and observed data to help FWI avoid cycle skipping. Dong S. et al., 2020 proposed a local travel time correction approach to decrease travel-time differences between waveforms to improve waveform matching. Chen et al. (2022) proposed a penalized differential DTW misfit function to further identify the travel-time difference between observed and synthetic data.
Third, data (or model, acquisition) extension and measurement of the differences between the observed and synthetic data in the transformation domain improves the convexity of misfit functions. Zhu and Fomel (2016) proposed adaptive matching filtering-based FWI which measures time-varying phase differences between the observed and predicted data. Huang et al. (2017) proposed the regularized formulation of source-receiver extended inversion to recover reasonably good velocity models from synthetic transmission and reflection data. Barnier et al. (2018) introduced model extension to FWI by adding a correcting term to ensure phase matching between the observed and predicted data. Huang et al. (2021) used the time-warping function as the extension in the data space to solve the velocity model and time-warping extension in a single optimization problem by the alternate direction method. Some other solutions, such as gradient sampling (Yang et al., 2020), wavefield reconstruction (Rizzuti et al., 2021), Bayesian non-linear inversion (Guo et al., 2020), wide-angle seismic acquisition (Guo et al., 2022), and global optimization (Mojica and Kukreja, 2019), can also mitigate cycle skipping.
In addition, field seismic data are usually contaminated by noise (both random and coherent), which also causes FWI to deviate from the correct direction of convergence. Conventional denoising methods (e.g., f-x deconvolution, EMD, SVD, and wavelet transform) are usually based on theoretical model assumptions and rely on a priori information, which has difficulty handling complex noises and low computational efficiency (Han and Van, 2015; Liu and Zheng, 2022). Data-driven-based denoising methods can establish a strong non-linear mapping between noise-contained and pure data, which is currently a hot research topic in seismic denoising. Dong et al. (2019) and Dong X. et al. (2020) used DnCNNs to predict noise in field desert data acquired from the Tarim region in China. Zhang et al. (2021) used a UNet structure to suppress surface-related multiple labels with synthetic primary labels. Dong et al. (2022a) proposed a multiscale spatial attention network to suppress strong noises and recover weak reflections. Dong et al. (2022b) proposed a novel strategy to generate sufficient real noise by a generative adversarial network (GAN), which compensates for the lack of real noise data.
There is a weak similarity between observed and the synthetic data, especially when the initial model is inaccurate, which indicates different travel times between the observed and synthetic traces existing in different pairs of events. Inspired by the ideas from the features extraction of CNN and dynamic data matching of DTW, we propose a novel approach to achieve global-searching-based dynamic data matching by the similarity of features of each time sample in the observed and synthetic traces. We use 1-D Gaussian convolutional kernels to extract features of each time sample in a single seismic trace, with the features representing the integrated properties of wavefield (amplitude, phase and travel time, etc.). In order to highlight the representation of convolution-based features for each time sample, we use Gaussian kernels with different lengths to extract the features at different time ranges centered on each time sample; this is the same way in which CNN extracts features of different scales from images through convolutional kernels of different receptive fields. According to the minimum Euclidean distance of the features, only the time sample in the observed data that optimally matches the time sample in the synthetic data of the same trace number can be found. Synthetic time samples are time-shifted to align the optimally matched observed time samples to accomplish dynamic data matching. However, not every observed event can be optimally matched to a synthetic event. Thus, it is necessary to introduce a constraint to evaluate the reliability of each dynamic matching pair. We propose that the amplitude of the synthetic time sample after dynamic matching attenuate as the absolute value of shifted time increases, which means that a pair of optimally matched time samples with large time differences will be more likely regarded as mismatched, and we attenuate these data artificially to mitigate their interference to the gradient. After the steps introduced previously, intermediate synthetic data can be generated by dynamic data matching, which regulates the model to update in correct directions. Meanwhile, although denoising methods improve the signal to noise ratio (SNR) of the observed data, effective seismic signals will also experience some damage. Gaussian kernels have a strong ability to extract accurate features from noised-contained seismic traces without an extra denoising process, thus ensuring that the extracted features do not experience interference from other objective factors. Furthermore, the proposed novel method can be combined with encoded multi-source to accelerate the iterations of FWI. Numerical tests have demonstrated the feasibility of our method.
2 METHODS
2.1 Feature extraction
Features from the input data were extracted by the convolutional kernels of CNN. Based on this function of convolution, we used 1-D Gaussian kernels to extract features of the synthetic and observed data trace by trace. We regarded the convolution value as the feature of each time sample when the kernel's center was aligned with each time sample. Thus, the length of each utilized convolution kernel was odd. In order to obtain more features of each time sample with different time ranges to make dynamic matching more accurate—similar to the way in which CNN extracts features with different receptive fields—we applied multiple lengths of Gaussian kernels to each trace. The kernel can be expressed as
[image: The formula shown is \( k_g(n, l) = \exp\left(-\frac{1}{2} \left(\frac{n - n_m}{n_m}\right)^2\right) \), where \( n \) belongs to the interval \([0, l]\).]
where kg represents the Gaussian kernel, l represents the length of kg, and nm represents the middle element of kg. The convolution of the synthetic and observed trace with Gaussian kernels can be expressed as
[image: Equations display discrete functions for synthetic and observed data, \( f_{\text{syn}}^{h,i,w}(t) \) and \( f_{\text{obs}}^{h,i,w}(t) \), each defined as products of norms of variables \( k_{g}^{h,w}(n, l^w) \) and \( d_{syn}^{h,i}(t) \) or \( d_{obs}^{h,i}(t) \). Parameters \( w, l, h, i, j, t \) are defined in their respective ranges.]
where * denotes the operator of convolution and [image: The image shows the mathematical expression \( d_{\text{sym}}^{ij} \).] and [image: Mathematical notation with the character "d" subscript "obs" and superscripts "i" and "j".] are the synthetic and observed trace for the ith shot and jth receiver for data with ns shots and nr receivers, respectively. t and T represent the time variable and the maximal number of time samples, respectively. [image: Mathematical expression showing \( f^{i,j,w}_{\text{sym}} \).] and [image: The image shows a mathematical expression: "f" with superscripts "i, j, u" and subscript "obs".] represent the features of the synthetic and observed trace extracted by the wth length of the Gaussian kernel, respectively. nw represents the total number of Gaussian kernels used for feature extraction. The value of l monotonically increases from l1 to lnw. We took the absolute value of each trace to enhance the features extracted by different lengths of kernels in case the differences among features extracted by different kernels were not obvious due to the destructive interference of positive and negative amplitudes during the convolution process. norm(∙) denotes the operator of normalization. We normalized each pair of synthetic and observed traces to reduce the differences between the features of each pair of trace caused by excessive amplitude. Finally, we operated the second normalization to balance the value of features extracted by different kernels, which made the contribution to dynamic data matching of each kernel equivalent. Figure 1A shows an observed and a synthetic trace. The cycle skipping phenomenon with different travel-time differences occurred between the first two events of the traces; there was no event in the observed trace matching the third event in the synthetic trace. Figures 1B, C show the feature map of the traces. The illumination of the feature map is centered on each event, which demonstrates the ability for the features to extract convolutional kernels to the seismic events; different features extracted by different lengths of kernels represent wavefield properties in different time ranges.
[image: Panel A shows a graph with time on the x-axis and amplitude on the y-axis, comparing observed (blue) and synthetic (red) traces. Panels B and C display heatmaps with time on the x-axis and kernel length/width on the y-axis, using a color scale from blue to yellow to indicate intensity levels. Both heatmaps show a triangular pattern with peaks of intensity around 0.5 and 1.5 seconds.]FIGURE 1 | Features extracted by different lengths of Gaussian kernels. (A) Observed and synthetic trace. Feature map of the (B) observed trace and (C) synthetic trace with nw = 80 and lnw = 401 ms.
2.2 Dynamic data matching and reliability constraint
After extracting the features, a feature vector consisting of the multiple features of each time sample can be expressed as
[image: \( \left\{ \begin{array}{c} F^{i}_{syn}(t) = \left\{ f^{i,1}_{syn}(t), f^{i,2}_{syn}(t), \ldots, f^{i,nw}_{syn}(t) \right\} , \\ F^{i}_{obs}(t) = \left\{ f^{i,1}_{obs}(t), f^{i,2}_{obs}(t), \ldots, f^{i,nw}_{obs}(t) \right\} , \end{array} \right. \) equation (3).]
where [image: Formula depicting F with superscripts i and j, and subscript sym.] and [image: Mathematical expression of \( F_{\text{obs}}^{i,j} \) with subscripts "obs" and superscripts "i" and "j".] represent the feature vector of a time sample. Calculating the Euclidean distance between the features of each time sample in the observed trace and all time samples in the corresponding synthetic trace, the only time sample in the synthetic data that optimally matches the time sample in the observed data of the same trace number can be determined according to the minimal Euclidean distance:
[image: Mathematical expression for optimizing \( t_o \): \( t_o = \text{argmin}_t \sum_{mw} \left[ \left( F_{\text{obs}}^{ij}(t_r) - F_{\text{syn}}^{ij}(t) \right)^2 \right]^{1/2}, \) where \( (t_s, t_o) = 1, 2, \ldots, T \). Equation labeled as (4).]
Thus, [image: Mathematical expression showing \(d_{\text{syn}}^{i,j}(t_0)\), where \(i\) and \(j\) are superscripts and \(t_0\) is a subscript.] and [image: Mathematical expression showing the observed value of \( d \) with superscript \( i, j \) and subscript \( \text{obs} \), as a function of \( t_s \).] are the optimally matched pairs of time samples, where ts and to can be equal or unequal. An optimal travel-time difference of dynamic data matching can be defined:
[image: Equation showing the change in time: delta T equals T subscript f minus T subscript o, where T subscript f is the final time and T subscript o is the original time.]
where [image: \(|\Delta t| = 1, 2, \ldots, T\).].
Figure 2 shows the feature distances between the traces shown in Figure 1A. The minimal feature distances of the first two events between the synthetic and observed trace are located at the time range of the first two events in the observed trace (red box in Figure 2), indicating that the synthetic events that are cycle-skipped to the observed events have been correctly determined. Incorrect matching occurs between the third event of the synthetic trace and the second event of the observed trace (yellow box in Figure 2). Thus, a constraint that evaluates the reliability of dynamic matching was needed. We constrained the dynamic matching by attenuating the amplitude of synthetic time samples according to |Δt|. Therefore, the intermediate synthetic data generated from the original synthetic data after dynamic data matching and reliability evaluation can be expressed as
[image: Equation representing a mathematical model: \(\tilde{d}_{ij}^{k}(t) = d_{ij}^{s}(t_0 + \Delta t) \cdot \exp\left(-\frac{|\Delta t| \gamma}{T}\right)\), denoted as equation (6).]
where [image: Mathematical notation showing "d subscript s y n raised to the power of i j".] denotes the intermediate synthetic data and γ denotes the attenuation factor.
[image: Heatmap depicting the correlation between synthetic and observed traces over time. The x-axis is labeled "Time of Synthetic Trace (s)" and ranges from 0 to 2 seconds, while the y-axis is labeled "Time of Observed Trace (s)" and ranges from 0 to 2 seconds. The color scale from dark blue to yellow, indicates correlation values from 1 to 9. Red boxes highlight specific areas of interest.]FIGURE 2 | Feature distances of the traces shown in Figure 1A.
Figure 3 indicates that the larger the value of |Δt|, the lower the reliability of dynamic matching; the larger the value of γ, the stronger the amplitude attenuation of [image: Mathematical expression showing "d subscript sym" with superscripts i and j.] with the same |Δt|. After dynamic matching, the first two events of the synthetic trace were matched correctly with the first two events of the observed trace, and the third event of the synthetic trace which was matched incorrectly to the second event of the observed trace was almost completely attenuated (Figure 4A). Although the first two events of the synthetic trace were matched correctly by DTW, the third event still existed and was positioned incorrectly (Figure 4B). Our method made the cycle-skipped events with small travel-time differences match correctly, and the cycle-skipped events with large travel-time differences can be completely attenuated to mitigate their interference on the gradient, ensuring the correct updating direction of the velocity model. As FWI iterates, |Δt| will gradually decrease, and more time samples in the intermediate synthetic trace will not be over-attenuated, so that more synthetic events can be used to update the velocity model.
[image: Plot showing decay curves for different gamma values over time in seconds. The lines represent gamma equals five (blue), gamma equals ten (red), gamma equals fifteen (yellow), and gamma equals twenty (green). All curves decrease rapidly, flattening out as time progresses.]FIGURE 3 | Curves of amplitude attenuation to the synthetic time samples with different γ and |Δt|.
[image: Two comparative line graphs labeled A and B show seismic traces over time. Graph A displays observed, synthetic, and ensemble synthetic traces. Graph B contrasts observed, synthetic, and synthetic traces after dynamic time warping (DTW), with notable alignment improvements circled in the second graph. Each graph has traces marked in blue, red, and magenta.]FIGURE 4 | Comparison of convolution-based dynamic matching and DTW. The result for (A) convolution-based dynamic matching (γ = 5) and (B) DTW of the waveforms shown in Figure 1A.
2.3 DCFWI
After dynamic matching, the amplitude of some of the time samples in the intermediate synthetic trace were attenuated artificially, which caused the amplitude information of the intermediate synthetic data to be incorrect. In order to weaken the interference of incorrect amplitude and emphasize that the phase information is non-linearly, weaker FWI based on dynamic data matching of convolutional wavefields (DCFWI) uses the global-correlation misfit function as an alternative to the least-squares misfit function (Choi and Alkhalifah, 2012):
[image: Equation 7 shows a formula for \( J \). It is the negative double summation from \( n = 1 \) to \( n_s \) and \( j = 1 \) to \( n_r \) of the integral of \( \tilde{d}_{ij}^{s} \cdot d_{ij}^{o} \) with respect to \( dt \), divided by the square root of the integral of \( (\tilde{d}_{ij}^{s})^2 \) times the integral of \( (d_{ij}^{o})^2 \), both with respect to \( dt \).]
where J denotes the misfit function. According to the adjoint state method, the gradient can be expressed as
[image: Equation showing partial derivative of \( I \) with respect to \( v \) equals the sum of the integral of the partial derivative of \( \tilde{x}_{sym}^j \) with respect to \( v \), multiplied by \( \lambda \), over \( dt \), denoted as Equation (8).]
where v denotes the velocity of the subsurface media. λ represents the adjoint source and is expressed as
[image: The image contains a mathematical formula for lambda (λ). The formula is a ratio of integrals involving time (t) and terms \( d_{sym}^{ij} \) and \( d_{obs}^{ij} \). The numerator consists of the integral of \( d_{sym}^{ij} \cdot d_{obs}^{ij} \) multiplied by \( d_{sym}^{ij} \), subtracted by the square of \( d_{obs}^{ij} \). The denominator is the product of three integrals: the cube of the integral of the square of \( d_{sym}^{ij} \), the integral of the square of \( d_{obs}^{ij} \), and their square roots, each with respect to time. The equation is labeled with (9).]
Therefore, the gradient in the time domain can be simplified to
[image: Partial derivative equation with respect to v: ∂I/∂v = 2/v³ multiplied by the sum over r of the integral with respect to t of (∂²uₑ/∂v²) multiplied by u̇ₑλ dt, referenced as equation (10).]
where [image: Lowercase letter "u" with a subscript "f".] and [image: It seems there is an issue with displaying the image. Please upload the image file or provide a URL so I can help create the alt text.] denote the forward-propagated and adjoint wavefield, respectively.
For a preliminary comparison of DCFWI and standard FWI, we designed two horizontal layered velocity models as the true (Figure 5A) and initial (Figure 5B) models, respectively. The model size was 200 × 200, with a space interval in each direction (distance and depth) of 10 m. Each grid point at surface acts as a receiver. The dominant Ricker wavelet frequency was 20 Hz, and the frequencies below 10 Hz were filtered out to generate data lacking low frequencies. An encoded multi-source containing 15 single shots was used as the source. Figure 6A shows that the waveforms of the observed and synthetic trace are much more complex than the traces shown in Figure 1A, and that the convolution-based dynamic matching methods still move the synthetic events to successfully match the correct observed event under the complex situation. Figures 6B, C show the feature maps of the traces shown in Figure 6A. The illumination of the feature maps shows that the direct and reflection waves were accurately captured by convolutional kernels. The distances between the trace shown in Figure 6A was plotted (Figure 6D) to search for the optimally matched pairs of events. Figure 7A shows the gradient calculated by standard FWI. Due to incorrect matching of waveforms, the velocity from 0.5 to 1.0 km in depth could not be updated. Figure 7B shows the gradient calculated by DCFWI. The velocity from 0 to 1.0 km in depth could be updated more evenly after matching the correct events and attenuating the mismatched synthetic events. Thus, this numerical test preliminarily verified the feasibility of DCFWI. This numerical test aims to demonstrate the ability to mitigate the interference of cycle-skipped events on gradients by DCFWI. However, the velocity variation in depth direction of the model shown in Figure 5 is violent. In order to update this initial model and obtain a desired final inverted result, a method-like reflection waveform inversion (RWI) was needed to remove the high-frequency migration components from the sensitivity kernel and construct a model with low wavenumber for standard FWI. However, this is beyond the scope of this paper.
[image: Two seismic velocity models illustrating velocity variations with depth and distance. Model A shows two layers: 2.5 km/s top layer and 3.0 km/s bottom layer. Model B shows three layers: 1.2 km/s top layer, 2.2 km/s middle layer, and 3.0 km/s bottom layer. Velocity scale bar ranges from less than 2.0 km/s to more than 3.5 km/s. Color gradient indicates velocity changes.]FIGURE 5 | Designed velocity model for comparing standard FWI and DCFWI. (A) True and (B) initial velocity model.
[image: A multi-panel image depicts seismic data analysis. Panel A shows a graph with observed, synthetic, and intermediate synthetic traces over time. Panels B and C display heatmaps of frequency content over time with intensity indicated by color gradients from blue to yellow. Panel D is a two-dimensional plot with time of observed traces versus time of synthetic traces, showing symmetrical patterns. Color bars on the side provide scale for intensity in all heatmaps.]FIGURE 6 | Feature maps and distances of complex traces. (A) Comparison of complex traces from encoded multi-source based on the model shown in Figure 5. Feature maps of the (B) observed and (C) synthetic trace. (D) Distances of the traces shown in (A).
[image: Two panels, A and B, depict seismic velocity models, both spanning 2 kilometers in distance and depth. Panel A shows a predominantly yellow gradient indicating higher velocities. Panel B reveals a more detailed gradient with variations in red, orange, and yellow, suggesting differences in subsurface structure. Both panels feature color bars representing velocity scales.]FIGURE 7 | Gradient comparison based on the velocity model shown in Figure 5. Gradient of (A) standard FWI and (B) DCFWI.
2.4 Convergence and optimal parameter selection of DCFWI
To demonstrate the improved convergence of DCFWI to standard FWI and discuss the optimal parameter selection scheme, we compared the curves of the misfit function derived from a designed velocity model (Figure 8A). The model size was 69 × 192 with a space interval in each direction (distance and depth) of 10 m. The background velocity increased linearly when the minimal velocity was 1.5 km/s and the maximal velocity was 4.0 km/s, and a rectangle-shaped body located in the middle of the model at a velocity of 4.0 km/s. We linearly changed the maximal velocity from 2.5 km/s to 8.0 km/s of the background model to produce a group of initial models to plot the misfit function curves. Two sources with Ricker wavelets were located at the first and end grid points at a depth of 0 km, and 192 receivers were distributed evenly with a space interval of 10 m at a depth of 0 km. The dominant frequency of the Ricker wavelets was 20 Hz, and frequencies below 10 Hz were filtered out to generate data without low frequencies. Standard FWI was performed with the correlation-based misfit function. Figure 8B shows the curve of standard FWI; there were three local minima except for the global minimum— two local minima near the global minimum especially indicated that standard FWI requires an accurate initial model to obtain good inverted results.
[image: Panel image with twelve figures labeled A to L. Figure A shows a color gradient plot representing data across travel time and distance, marked with a black rectangle. Figures B to L display graphs of maximal velocity versus minimal velocity, each with various points highlighted by red circles. The graphs vary slightly in shape and data distribution.]FIGURE 8 | Curves of standard FWI and DCFWI with different combinations of parameters based on a designed velocity model, where red circles indicate local minima. (A) Designed velocity model. Curves of (B) standard FWI and DCFWI with (C) nw = 20, ln w= 21 ms, γ = 20; (D) nw = 20, lnw = 101 ms, γ=20; (E) nw = 20, lnw = 201 ms, γ = 20; (F) nw = 20, lnw = 401 ms, γ = 20; (G) nw = 2, lnw = 401 ms, γ = 20; (H) nw = 10, lnw = 401 ms, γ = 20; (I) nw = 40, lnw = 401 ms, γ = 20; (J) nw = 20, lnw = 401 ms, γ = 5; (K) nw = 20, lnw = 401 ms, γ = 10; (L) nw = 20, lnw = 401 ms, γ = 15.
Figures 8C–F show the curve of DCFWI with nw = 20, γ = 20, and lnw = 21 ms, 101 ms, 201 ms, and 401 ms, respectively. Despite its convexity, the curve shown in Figure 8C was better than the curve shown in Figure 8B in the near global minimum regions. Five local minima still appeared where there were large differences between the initial and actual velocity model. However, the curves shown in Figures 8D–F are smooth, which indicates better convergence. The curves of DCFWI with the same nw, γ, and different lnw show that we selected the larger lnw we selected behaved better than a smaller lnw in convergence. The larger lnw extracted features for each time sample in a larger time range, which improved the dynamic matching between two cycle-skipped events in large travel-time differences. Thus, the selection of parameter lnw should at least be larger than the time lapse of a wavelet.
Figures 8F–I show the curve of DCFWI with lnw = 401 ms, γ = 20, and nw = 2, 10, 20, and 40, respectively. Although the convexity of the curve shown in Figure 8G is better than that of the curve shown in Figure 8B in the near global minimum regions, three local minima still appear where there are large differences between the initial and actual velocity model. However, the curves shown in Figures 8F, H, I are smooth, indicating better convergence. The curves of DCFWI with the same lnw, γ, and different nw show that the larger nw we selected behaved better than a smaller nw in convergence. The larger nw indicated that we used more Gaussian kernels for feature extraction. The more kernels we used, the more accurate was the dynamic matching, especially for complex seismic signals. Thus, the selection of parameter nw should be large. In addition, if we use too many kernels to extract features, the accuracy of dynamic matching will not further improve and the computational cost will increase significantly.
Figures 8F, J–L show the DCFWI curve with lnw = 401 ms, nw = 20, and γ = 5, 10, 15, and 20, respectively. Although the convexity of the curve shown in Figure 8J is better than that of the curve shown in Figure 8B in the near global minimum regions, two local minima still appear where there are large differences between the initial and actual velocity model. However, the curves shown in Figures 8F, K, L are smooth, indicating better convergence. The curves of DCFWI with the same lnw and nw and different γ show that the larger γ we selected behaved better than a smaller γ in convergence. The larger γ indicates a stricter constraint for the reliability of dynamic matching, and that some synthetic events that are cycle-skipped to the observed events with large travel-time differences will be completely attenuated to reduce the interference on the gradient of these mismatched events. Thus, the selection of parameter γ should be large. In addition, if we choose too large a value for γ, it indicates an extremely strict constraint for dynamic matching. Some synthetic and observed events with small travel-time differences will also be completely attenuated, causing FWI to lack sufficient valid data to update the initial model.
3 NUMERICAL TESTS
We tested DCFWI on the Marmousi model (Figure 9A). The grid dimensions were 138 × 384, and the grid spacing in each dimension was 24 m. Each grid point on the surface acted as a receiver, and 50 sources were evenly distributed on the surface. The Ricker wavelet with a peak frequency of 8 Hz was used as a source; to simulate the situation when the observed data lacked low frequencies, a 4 Hz high-pass filter was applied to the wavelet. The total recording time was 6 s with a sampling rate of 0.002 s. The finite-difference method for the acoustic wave equation with PML absorbing boundary was used for seismic wavefield modeling. The L-BFGS optimal algorithm was used for iterating models. The gradient calculated by Eq. 10 was not preconditioned during the inversion process. The velocity of the initial model linearly increased (Figure 9B). We performed standard FWI and DCFWI with multi-scale strategy. The number of iterations in both low frequency (0–7 Hz) and high frequency bands (above 7 Hz) was 350. Although the inversion in the low frequency band was the first step, the lack of sufficiently low frequencies in the observed data caused cycle skipping, resulting in obvious artifacts in the shallow layers of standard FWI (Figure 9C). DCFWI behaved better, correctly recovering the long-wavelength components of the true model (Figure 9D). However, DCFWI artificially attenuated the amplitude of some events in synthetic data, which caused part of the information for further improving the inverted precision to always be absent from the synthetic data. Therefore, DCFWI provided an accurate initial model for standard FWI to obtain the final high precision inverted result. The final inverted model of standard FWI started from the initial model shown in Figure 9C is much deviated from the true model, and the artifacts accumulated during standard FWI (Figure 9E). The final inverted model started from the initial model provided by DCFWI is close to the true model (Figure 9F).
[image: Six seismic tomography images labeled A to F display variations in seismic wave speeds with respect to depth in meters and distance in kilometers. Each image uses a color scale from blue to red, indicating changes in velocity, with blue representing lower velocities and red representing higher velocities. Images highlight different wave patterns and structures, revealing subsurface geological features.]FIGURE 9 | Inversion tests. (A) Marmousi model. (B) Initial model (background model); inverted model of (C) standard FWI and (D) DCFWI (nw = 20, lnw = 401 ms, and γ = 20) in a low-frequency band. Final inverted model (E) starts from the velocity shown in (C) and (F) starts from the velocity shown in (D).
The Marmousi model can be divided into a background model (Figure 9B) and a perturbation model (Figure 10A). By continuously changing the maximal velocity of the former and the percentage of the latter, a series of new models can be produced. After calculating the misfit function of FWI on these models, a contour indicating the convergence of FWI can be plotted (Luo and Wu, 2015). The global minimum appears when the percentage of the perturbation model is 100% and the maximal velocity of the background model is 4.0 km/s. Standard FWI cannot tackle the influence of cycle-skipping and will result in incorrect inverted models (local minima) compared to the true velocity model, especially when the initial models differed greatly from the true velocity model (Figure 10B). Figure 10C shows the contour of DCFWI. Although the low frequencies of observed data are filtered out, and some of the initial models are much more different from the true model, DCFWI still has a strong capability for converging and obtaining a correct inverted result (global minimum).
[image: Panel A shows a velocity profile with varying colors indicating velocity in kilometers per second over depth and distance. Panel B is a contour plot of perturbation versus maximal background velocity, with a color scale from blue to red. Panel C presents a similar contour plot to Panel B but with different contour shapes, illustrating alterations in perturbations.]FIGURE 10 | Convergence comparison between standard FWI and DCFWI. (A) Perturbation model. Contour of (B) standard FWI and (C) DCFWI.
The random noise-contained observed data with a SNR of −2.6 was used for anti-noise testing of DCFWI. The features extracted by Gaussian convolutional kernels suppress random noise in signals, so that relatively accurate features can be obtained. In addition, the global-correlation misfit function has the ability to decrease the impact of noise. Therefore, a relatively accurate inverted model was obtained by DCFWI, when the observed data lacked low frequencies and was also contaminated by noise (Figure 11).
[image: Seismic wave velocity profile with distance on the x-axis in kilometers and depth on the y-axis in kilometers. Colors range from blue to red, indicating lower to higher velocities. Wave patterns and variations are visible across different depths and distances.]FIGURE 11 | Inverted model of DCFWI from noise-contained observed data.
4 CONCLUSION
In this paper, we propose that features of each time sample extracted by different convolutional kernels can be used to dynamically match synthetic events with the correct observed event. The use of multiple lengths of Gaussian kernels to obtain the features centered on each time sample can improve the accuracy of dynamic matching. Amplitude attenuation according to travel-time differences is an effective constraint for evaluating the reliability of dynamic matching, which produces the intermediate synthetic data that regulates inversion in correct directions. We discuss and conclude the optimal selections of the parameters when DCFWI is performed. Numerical tests on the Marmousi model demonstrate the feasibility of DCFWI for solving the cycle skipping problem and mitigating noise interference. In the future, we will test the application effect of the DCFWI method in field marine seismic data.
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To evaluate the effectiveness of using airguns as seismic sources in inland waters to detect the regional crustal structure, a mobile large-capacity airgun excitation experiment was conducted in October 2015 in the Anhui section of the middle–lower Yangtze metallogenic belt. In this study, we extracted 1,957 first-arrival phases (Pg) and 2,179 Moho reflection phases (PmP) from the airgun seismic signals, and performed joint inversion of the traveltimes. The inversion results reveal the P-wave high-velocity anomalies above 7 km depth in the upper crust beneath the ore clustering areas, suggesting the source of mineralized materials. The crustal velocity structure characteristics substantially differed above and below a depth of 7 km, indicating the existence of a regional basement detachment surface. The velocity structure in the middle–lower crust, especially in the lower crust show lateral uniformity characteristic, which could be related to that the middle–lower Yangtze metallogenic belt had undergone a MASH metallization process. The Moho is 30–36 km deep, and its uplift zone extends from southwest to northeast in a “V” shape, which is consistent with the planar spreading characteristics of the metallogenic belt, indicating that the asthenosphere uplift and crustal thinning have had a controlling effect on the formation of the metallogenic belt. This study suggests the present-day crust in the region along the Yangtze River in Anhui retains the traces of lithosphere delamination-thinning and basaltic magma underplating during the Yanshan period. Our results indicates that airgun source detection in inland waters can effectively determine the continental crustal structure.
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1 INTRODUCTION
Active seismic source detection is an effective method to obtain high-precision crustal structures (Chen et al., 2017a). In marine seismic surveys, airguns are typically used as seismic sources, whereas large-tonnage explosive sources are more widely used on land. However, the high cost and destructiveness of explosive sources limit the application of active source detection on land (Chen et al., 2007). Therefore, researchers have sought alternative terrestrial seismic sources (Chen et al., 2004; Ge et al., 2006; Chang et al., 2008; Tang et al., 2008). In coastal or island areas, airguns can be used in combined land and sea surveys to elucidate the structure of the crust and upper mantle (Okaya et al., 2003; Rawlinson and Urvoy, 2006a; Harm et al., 2016; Kuo et al., 2016). To test whether airguns could be used to detect continental crustal structure in inland waters, a series of fixed-point high-capacity airgun firing experiments were carried out in Chinese inland waters (Chen et al., 2007; Wang et al., 2010). These experiments showed that the dominant frequency of the airgun seismic signal is 2–8 Hz, and multiple groups of seismic waves from the deep crust and Moho discontinuity were observed by superimposing repeated airgun signals, which indicates that the airgun can be used as an effective source for continental wide-angle seismic detection (Lin et al., 2008; Wang et al., 2012; Wang et al., 2015; Wei et al., 2016; Chen et al., 2017a).
In October 2015, a team led by Chen Yong, a member of the Chinese Academy of Sciences, conducted an excitation experiment using a mobile high-capacity airgun in the middle and lower reaches of the Yangtze River in Anhui Province, known as the “Geoscience Yangtze Project”. Airgun excitation was conducted in the Yangtze River waterway, and a mobile array consisting of short-period seismometers was installed along both sides of the Yangtze River to form a 3D active source array together with the surrounding regional seismic stations, covering an area of approximately 40,000 km2 in Anhui Province, China. The middle and lower reaches of the Yangtze River are important polymetallic mineral resource bases in eastern China, where strong tectonic magmatism and mineralization occurred during the Yanshan period, leading to the formation of a north-east-oriented volcanic–magmatic belt and the accumulation of various metallic minerals. To reveal the deep dynamics of mineralization and the mechanism of large-scale magmatic activities, geophysicists have conducted multi-scale integrated geophysical explorations of the deep structure in this region. The crustal structure at the scale of metallogenic belt and ore clustering district was detected by 2D method, including deep seismic reflection profiles (Lü et al., 2003; Lü et al., 2013; Liang et al., 2014; Lü et al., 2015a; Shao et al., 2015), deep seismic sounding profiles (Xü et al., 2014), Magnetotelluric profiles (Tang et al., 2013; Zhang et al., 2014a; Qiang et al., 2014; Xiao et al., 2014), gravity profiles (Zhang et al., 2014b), and broadband seismic profiles (Shi et al., 2012), which have revealed the 2D crust–mantle velocity structure, reflection structure, electrical structure, and density structure of the metallogenic belt and ore clustering district. The research on the crustal structure at the 3D regional-scale included teleseismic tomography (Jiang et al., 2014), background noise imaging (Luo et al., 2019), teleseismic receiver function imaging (Wei et al., 2018), and gravity data inversion and calculation (Yan et al., 2011; Chen et al., 2017b). However, because of inherent characters in research method, these results have insufficient constraints on the crust and need to be improved. The “Geoscience Yangtze Project” provides a possibility to establish a regional-scale 3D high-precision crustal model using active sources.
According to the airgun seismic records obtained from the mobile array, the first-arrival waves (Pg) and Moho-reflected waves (PmP) are clearly visible in most records. Tian et al. (2018) inverted the velocity structure of the upper crust using the Pg traveltimes recorded by the mobile array; Zhang et al. (2020) inverted the 3D crustal velocity structure in and around the Tan–Lu Fault using the Pg traveltimes recorded by the mobile array and a regional seismic network in combination with the P-wave first-arrivals of local earthquakes recorded by the regional network. These results validated the use of mobile airgun seismic data in inland waters for body wave tomography but only used the Pg and did not include the PmP or Moho. As the most active and variable interface in the process of continental geodynamic evolution, the Moho retains the dynamic information on continental evolution. Thus, imaging the Moho can illustrate the deep dynamic history of mineralization. In this study, we analyzed airgun seismic records, identified seismic phases, and then performed joint inversion of the traveltimes of multiple seismic phases (Pg and PmP) to reconstruct 3D images of the crustal velocity structure and the Moho for the middle and lower reaches of the Yangtze River in Anhui Province. We then evaluated the resolution of the solution model using the checkerboard model recovery test. Finally, we compare the inversion results with other geophysical findings in the study area and discuss the characteristics and tectonic implications of the crustal structure revealed by our model.
2 GEOLOGICAL OUTLINE
The study area is located in the middle–lower Yangtze metallogenic belt within Anhui Province, China (Figure 1). The metallogenic belt is part of the northeastern margin of the South China Plate and is wedged between the Tan–Lu and Yangxin–Changzhou faults, with a near northeast strike. It is a V-shaped zone which is narrow in the southwest and wide in the northeast (Chang et al., 1991) and is famous for rich deposits of copper, iron, and other metals.
[image: Map illustrating tectonic features between the North and South China Plates, highlighting the Dabie Mountains. It shows active tectonic zones, mobile seismic areas, and locations of recent earthquakes. A legend provides symbols for different geological features, and an inset map shows the location within China.]FIGURE 1 | Map showing the distribution of the airgun array, major faults, and metallic deposit fields in the middle–lower Yangtze in Anhui Province [red ovals on the map indicate the approximate locations of the deposits, derived from Zhou et al. (2008)]. TLF: Tan–Lu Fault; CJF: Yangtze River Fault; YCF: Yangxin–Changzhou Fault; M1: Luzong ore clustering district; M2: Guichi ore clustering district; M3: Tongling ore clustering district; M4: Ningwu ore clustering district.
The basement of the middle–lower Yangtze metallogenic belt is located at the junction of two pre-Sinian period basements, on which a unified cover after Sinian has been developed, forming a pattern of “one cover and two basement” (Chang et al., 1991; Chang et al., 1996). The mineralized zone is dominated by sedimentary cover, with very little metamorphic basement exposed (Chang et al., 2012). From the Nanhua Period through the entire Paleozoic (excluding the period of the Silurian Mao Shan Formation to the Early-Middle Devonian) to the Early and Middle Triassic, this area was in a period of cover deposition dominated by marine sedimentation. Except for the influence of the Caledonian movement, the whole area was relatively stable, and two complete sets of transgression–regression sequences have been deposited, namely, Nanhua–Silurian and Late Devonian–Middle Triassic, forming two sets of platform-type substratigraphic sedimentary cover. The Indosinian movement, which began in the Middle Triassic, changed the original tectonic features of the area. The cover was strongly reformed by folds and faults. At this point, a unified land mass was formed in China, and the area entered a phase of intra-land deformation. From the Jurassic to the Cretaceous period, strong faulting activity led to disruptive cutting and differential vertical movement, resulting in a series of faulted basins of different scales in the area. In addition, intense volcanic and magmatic activities were a major geological event in the area, and intrusive rocks were intermediate-acid rock. During the late Yanshan and early Himalayan movements, the differential vertical movement reached its peak and deposited a very thick red-rock stratum, with a corresponding reduction in magmatic activity (Chang et al., 2019).
Many studies have shown that the formation of the middle–lower Yangtze metallogenic belt is closely related to the tectonic transition and magmatic activity in East Asia continent during the Yanshan period (Zhai et al., 1992; Tang et al., 1998; Dong et al., 2011). Mineralization occurred in the transitional stage that regional tectonic dynamic mechanism changed from compression to extension after the transformation of the Paleo-Tethys tectonic system into the Pacific system (Chang et al., 2012). At the stage, the intra-land extension and large-scale lithospheric thinning associated with the mantle uplift led to strong tectonic magmatism along the aforementioned basement junction zone, forming the present-day north-east-oriented rock-controlling and mineral-controlling tectonic zone, and large-scale metal ore accumulation in several tectonic sites.
3 DATA ACQUISITION AND PROCESSING
The large-capacity airgun experimental observation layout of the “Geoscience Yangtze Project” includes 20 fixed airgun source points and six surveying lines consisting of mobile stations (Figure 1). A Ship with airgun firing devices sailed from Ma’anshan to Anqing (a distance of approximately 330 km), with the airgun source comprising a combination of four airguns with a capacity of 2,000 in3 each. The airgun source spacing is approximately 10 km, and 100–150 times of continuous firing are conducted at each source. Among the six surveying lines, Lx0 was placed on the bank of Yangtze River, with Lx1, Lx2, Lx3, and Lx4 on both sides of Lx0 and parallel to it; the distance between adjacent lines was approximately 40 km, and line Ly0 intersected the above five lines. The interval between receiving points on each line was approximately 3–4 km. A total of 350 sets of three-component portable seismometers with a dominant frequency of 2.5–80 Hz were used, and the seismometers recorded continuously the airgun seismic signal with a sampling interval of 5 ms. The observation layout covered an area of approximately 40,000 km2, and there were 12 regional seismic stations in the area (Figure 1).
We intercepted the seismic records of the P wave with a duration of 60 s from the time of airgun firing, and then performed linear superposition (Zheng et al., 2017). After 100–150 superimpositions and 2–8 Hz filtering, Pg and PmP were visible in the seismic records (Figure 2). Seismic phase identification and traveltime picking were performed on the reduced time–distance graph. The formula for calculating the reduced traveltime is as follows:
[image: Equation for reduced time: \( T_{\text{red}} = t - x / V_{\text{ref}} \).]
where t is the observed traveltime; x is offset; and Vred is reduced velocity, typically taken at 6 km/s.
[image: Geospatial map and graphs related to genetic data. Panel A features a geospatial map with red stars and blue triangles. Panels B to F display graphs plotting various genetic loci along specific distances, marked with red dashed lines and labeled loci such as Pm3 and Sp129. Graphs show differing data distributions with varying densities and highlighted areas in red.]FIGURE 2 | Seismic records of airgun signals acquired by mobile arrays. Positive distance indicates that the receivers are located to the northeast of the sources; negative distance indicates that the receivers are located to the southwest of the sources. (A)Location of airgun sources and seismometer stations; (B)signals generated by Sp04 recorded along the Lx0 line; (C)signals generated by Sp17 recorded along the Lx0 line; (D)signals generated by Sp08 recorded along the Lx4 line; (E)signals generated by Sp03 recorded along the Ly0 line; (F)signals generated by Sp13 recorded along the Lx3 line.
The Pg, also known as refraction waves in the upper crust, generally appear as the first break within 100 km from shotpoint and are characterized by strong energy, clear phase, and easy identification. In the positive velocity gradient layer, the apparent velocity of Pg gradually increases with the penetration depth, and the time–distance curve gradually bends toward the horizontal axis (distance axis). When the apparent velocity is approximately 6 km/s, the time–distance curve is nearly parallel to the horizontal axis (distance axis). Unlike near-vertical reflections, the reflections in the deep seismic sounding records appear at the wide-angle end, and their energy reaches the maximum at the critical distance. Especially for the Moho reflection PmP, it’s amplitude is even more than that of the first break because of the large velocity difference between crust and mantle; thus, PmP can be easily identified in the seismic records. The seismic phase identification and traveltime picking of in-lines were verified by the “traveltimes reciprocity” principle, whereas the seismic phase identification and traveltime picking of broadside-lines should conform to the rule that the traveltime at the intersection of different lines of the same gun is consistent. In addition, we superimposed the airgun signals recorded at 12 regional stations and picked the Pg traveltimes for the seismic records with higher signal-to-noise ratios (Figure 3). The uncertainties of the picked traveltimes were estimated by the signal-to-noise ratios (Zelt and Forsyth, 1994). Finally, we obtained a total of 1,947 Pg and 2,179 PmP traveltimes. The uncertainties of the Pg and PmP traveltimes were 100 ms and 150 ms, respectively. Plotting all the Pg and PmP traveltimes on the same time–distance graph showed that the morphological characteristics of the Pg and PmP time–distance curves are close to that of theoretical time–distance curves of the 1D crustal model (Figure 4), indicating that the phase identification and traveltime picking are reliable.
[image: Panel A shows four seismograph readings labeled with distances: 5.1, 37.6, 80.0, and 91.2 kilometers, all with visible wave patterns over time. Panel B is a map with latitude and longitude axes, depicting three permanent seismic stations as blue triangles and an airgun source as a red star.]FIGURE 3 | (A)Airgun waveform data recorded by permanent seismic stations; (B)Location of airgun sources and seismic stations.
[image: A scatter plot shows two groups of data points in red and black. The x-axis represents offset in kilometers, ranging from 0 to 250. The y-axis represents time-reduced B in seconds, ranging from negative 2 to 6. The red points trend upward, while the black points remain relatively flat.]FIGURE 4 | Picked traveltimes plotted with reduced velocity of 6.0 km/s. Black crosses represent Pg and red crosses represent PmP.
4 TOMOGRAPHIC INVERSION SCHEME
In this study, we adopted a tomographic inversion scheme designed for the integration of multiple classes of body wave datasets. The central innovation of the scheme is its use of a multi-stage fast marching method (FMM) based eikonal solver to solve the forward problem of traveltime prediction in 3D heterogeneous layered media (Rawlinson and Sambridge, 2004a; Rawlinson and Sambridge, 2004b; de Kool et al., 2006). Unlike the standard FMM (Sethian, 1996), which only identifies first arrivals, this multi-stage approach can track those later-arriving phases explicitly caused by the presence of discontinuities. We treated each layer in which the wavefront enters as an independent computational domain. Thus, a wavefront propagates through a layer until it impinges on all points of an interface. At this stage, FMM is halted, and we are left with a narrow band of traveltime values defined along the interface. From here, a refracted branch can be tracked by reinitializing FMM from the narrow band into the adjacent layer, and a reflected branch can be obtained by reinitializing FMM in the incident layer (Rawlinson and Sambridge, 2004b). As the multi-stage FMM allows phases comprising refraction and reflection branches, or a combination of these, to be tracked, the velocity and interface depth can be obtained simultaneously using these phases for joint inversion.
The first step in performing tomographic inversion is to specify how the model structure is to be represented (i.e., model parameterization). In this inversion scheme, the velocity field within each layer was independently described by a regular grid of nodes in spherical coordinates, which means that the grid spacing of each layer can be different from that of other layers. These nodes were used as the control vertices of a mosaic of cubic B-spline volume elements, which define the continuum. Layer interfaces were described by a regular mesh in latitude and longitude, with a mosaic of cubic B-spline surface patches to describe the complete interface (Rawlinson et al., 2006b).
The inverse problem can be solved by specifying an objective function S(m), where m represents the model parameters. Here, we use an objective function of the following form (Rawlinson et al., 2006c):
[image: \(S(m) = (g(m) - d_{\text{obs}})^{\top} C_{d}^{-1} (g(m) - d_{\text{obs}}) + \epsilon (m - m_{0})^{\top} C_{m}^{-1} (m - m_{0}) + \mu m^{\top} D^{\top} D m\).]
The first term on the RHS of the above equation is the data residual term, and the last two terms are regularization terms, where g(m) is the predicted traveltime, dobs is the observed traveltime, Cd is the a priori data covariance matrix, m0 is the starting model, Cm is the a priori model covariance matrix, and D is a second derivative smoothing operator. ε and η are the damping factor and smoothing factor, respectively, which govern the trade-off between how well the solution satisfies the data, the proximity of the solution model to the starting model, and the smoothness of the solution model. In our case, the unknowns comprise the grid of vertices that control the patterns of the B-spline velocity field and the Moho discontinuity.
We used an iterative nonlinear approach to minimize the objective function S(m), which applies a subspace inversion method (Kennett et al., 1988; Rawlinson and Sambridge, 2003) to solve the linearized inverse problem. The subspace inversion method is a gradient-based technique, which works by projecting the quadratic approximation of S(m) onto an n-dimensional subspace of model space. S(m) minimization is simultaneously conducted along several search directions that together span a subspace of the model space. The subspace method provides a natural way of dealing with multiple parameter classes, such as velocity parameters and interface depth parameters, that are to be inverted for simultaneously (Rawlinson and Sambridge, 2003).
5 RESULTS
We defined a two-layer model in spherical coordinates. Both layers were independently defined using velocity grids with a node separation of 1 km in depth and 0.1° in both latitude and longitude. However, as the ray coverage in this study was limited within the crust containing the Moho, the second layer under the Moho was not inverted. The interface grid, which describes the spatial variations of the Moho, was defined with a node separation of 0.1° in latitude and longitude. The initial velocity model was derived from six 1D velocity–depth curves obtained from the Yixing–Lixin DSS profile (Xü et al., 2014). According to the Moho depth results of this profile, we set the initial Moho as a horizontal interface with a depth of 32.5 km.
In total, 1,957 Pg and 2,179 PmP traveltimes were used as input data for the inversion. Error estimates of Pg and PmP were used in the diagonal elements of Cd to weight the relative importance of each traveltime in the inversion. The a priori model uncertainty associated with each node in the model, which was used to form the diagonal elements of Cm, was set to 0.3 km/s for velocities and 3 km for the Moho.
The complete inversion procedure was performed using six iterations of a 20-dimensional subspace inversion routine with ε = 1 and η = 0.5. The forward problem was solved between each iteration to obtain new traveltimes, ray paths, and Fréchet derivatives.
The damping factor ε and smoothing factor η govern the trade-off between fitting the data and satisfying the regularization constraints. If ε and η are too small, the solution model may overfit the observation data, so that the error in the observation data will be introduced into the final model; if ε and η are too large, the solution model may be too dependent on the reference model and too smooth. The appropriate trade-off between the data residual term and the model regularization terms was obtained by running the complete inversion process several times with different values of ε and η. In our case, we first set the damping factor to ε = 2 and varied η. Figure 5A shows a plot of the resultant trade-off between the data variance and roughness of the solution model for different values of η in each parameter class (velocity and interface). From this curve, η = 0.5 provides the best trade-off between minimizing the data misfit and producing the smoothest solution model. In the next step, the smoothing factor was set to η = 0.5 and ε was varied. The trade-off curve generated from this process (Figure 5B) suggests that ε = 1 provides the best trade-off between minimizing the data misfit and minimizing model perturbation. Finally, as ε and η both affect model variance and roughness, the first step was repeated with ε = 1. The resulting trade-off curve (Figure 5C) shows that η = 0.5 is still a good choice of smoothing parameter, making further iterations of this process unnecessary.
[image: Three graphs labeled A, B, and C show variations in model complexity against degrees of freedom. Graph A varies the smoothing parameter \( \eta \) from \( 0.1 \) to \( 2 \). Graph B adjusts the damping parameter \( \eta \) between \( 0.5 \) and \( 10 \). Graph C varies the smoothing parameter \( \tau \) from \( 0.02 \) to \( 10 \). In each graph, different curves represent different values of the parameter, each annotated with corresponding \( q \) values. The x-axes denote model complexity, while the y-axes represent degrees of freedom.]FIGURE 5 | Scheme used to estimate optimum damping and smoothing parameters for joint inversion of velocity (dashed line) and the Moho (dotted line). (A)Smoothing parameter is varied while fixing the damping parameter at ε = 2. In this case, η = 0.5 is chosen from the curve; (B) Damping parameter is varied while fixing the smoothing parameter at η = 0.5. ε = 1 is chosen as the optimum; (C) η is varied while fixing the damping parameter at the new value of ε = 1. The value η = 0.5 still appears to be an acceptable choice.
The final solution model reduces the data misfit variance by 75.4%, from 0.09807s2 to 0.0241s2, which corresponds to an RMS reduction of 313.12 ms–155.23 ms.
5.1 Model recovery test
According to the observation layout (Figure 1), the airgun source is linearly distributed along the Yangtze River channel. The Lx0-Lx4 lines are parallel to each other with a distance of approximately 40 km (∼0.4°) between adjacent lines, and the Ly0 lines intersect with Lx0-Lx4. The minimum distance between stations on the broadside lines and the airgun source is approximately 40 km (except for a few stations on the Ly0 line). According to the seismic ray distribution (Figure 6), the Pg rays are primarily distributed at depths above 10 km and very sparse below this depth, with the distribution dominated by PmP rays.
[image: A four-panel image displaying oceanographic data. Panels A and B are 3D graphs showing sea surface height with longitude and latitude axes, featuring blue trajectory lines. Panels C and D are contour plots depicting velocity across a longitudinal section, with a color bar indicating velocity ranges. Panel C shows a gradient from blue to yellow, while panel D primarily uses black shading. Each panel includes latitude and longitude labels, enhancing geographic context.]FIGURE 6 | Seismic ray distribution charts. (A) and (C) 3D distribution of Pg rays and their projection on 117.5°E, respectively; (B) and (D) 3D distribution of PmP rays and their projection on 117.5°E, respectively.
To investigate the robustness of our solution model and assess its resolution, a model recovery test was performed using synthetic checkerboard. The synthetic models were defined by alternating regions of high and low velocity (between ± 0.4 km/s) and deep and shallow Moho (between 29 and 36 km depth). The traveltime residuals for the given structure were predicted using identical sources, receivers, and phase types to the observational dataset. Gaussian noise with a standard deviation of 100 ms was added to the synthetic datasets to simulate the noise content of the observed data. Inversion was then performed using the tomographic inversion method outlined above, the initial model and constraint parameters are the same as those used in the inversion of the observed data. The difference between the synthetic and recovered models gives an indication of which regions of the model are well or weakly constrained by the data. Regions in which the checkerboard patterns are clearly recovered can be considered well resolved.
According to the source–receiver geometry, we set the lateral scales of both the velocity checkerboard and the Moho checkerboard to 0.4° × 0.4°; based on this, we selected the velocity checkerboard vertical scales from large to small and conducted several model recovery tests. The results show that the velocity anomaly of 0.4° × 0.4° × 4 km in size can be recovered in most regions above 10 km depth (Figures 7A–C). Under 10 km depth, recovery of the velocity anomaly of 0.4° × 0.4° × 4 km was unsuccessful (Figure 7C); however, the velocity anomaly of 0.4° × 0.4° × 10 km can be recovered (Figure 7D). The Moho checkerboard model of 0.4° × 0.4° can be well recovered (Figure 7E).
[image: Series of five panels labeled A to E. Panels A, B, and E show two side-by-side graphics, depicting topography and deformation with a grid of colors ranging from blue to red, representing variations in strain and displacement. Panels C and D present line graphs, illustrating amplitude and phase shifts. The images include scale bars and axis labels for reference.]FIGURE 7 | Model recovery test results. (A) and (B) Horizontal velocity slices at 3 and 7 km depth at a resolution of 0.4° × 0.4° × 4 km; (C) vertical velocity slice along 31°N at a resolution of 0.4° × 0.4° × 4 km; (D) vertical velocity slice along 31°N at a resolution of 0.4° × 0.4° × 10 km; (E) Moho recovery result at a resolution of 0.4° × 0.4°.
The model recovery test results show that the resolution scale of the velocity structure was basically up to 0.4° × 0.4° × 4 km above a depth of 10 km and 0.4° × 0.4° × 10 km below this depth. The resolution scale of the Moho discontinuity was 0.4° × 0.4°.
The checkerboard results are influenced by various factors, such as simplification of the forward problem, the noise level of data, model parameterization, the size of anomalies in the checkerboard, and coupling style between velocity checkerboard patterns and interface patterns (Rawlinson and Urvoy, 2006a; Rawlinson and Spakman, 2016). Thus, the results of the checkerboard test are a reference for evaluating the reliability of the solution model, but do not fully represent the real resolution of the model. An explicit geological interpretation of the solution model can also assist in verifying the reliability of the inversion results.
5.2 3D crustal velocity structure and moho morphology
Cross sections through the solution model obtained by the inversion of the airgun array dataset, which are shown in Figure 7, reveal a number of significant structural features. The horizontal slice at a depth of 1 km (Figure 8A) indicates that high velocity is present at four ore clustering districts in Luzong (M1), Guichi (M2), Tongling (M3), and Ningwu (M4). The Yangtze River waterway in the southwest of Tongling (M3) shows a NE–SW low-velocity strip, whereas the waterway in the northeast of Tongling (M3) shows high-velocity in some parts, which may be influenced by the ore clustering districts. At 3 km depth, the high-velocity area enlarges significantly, the high-velocity feature of the ore clustering districts is more obvious, and the low-velocity area and amplitude of the Yangtze River waterway decreases significantly (Figure 8B). At a depth of 5 km, the high-velocity area starts to reduce, but the ore clustering districts still show obvious high-velocity. The Yangtze River waterway still corresponds to the NE–SW low-velocity strip (Figure 8C). At a depth of 7 km, the high-velocity area further reduces, and the high-velocity areas in Tongling (M3) and Guichi (M2) ore clustering districts reduce obviously, thus, the velocity structure in the study area is on the whole characterized by sheet-like low-velocity distribution with a velocity value of approximately 5.8–6.0 km/s (Figure 8D). At a depth of 11 km, the velocity characteristic with sheet-like low-velocity disappears in the study area (Figure 8E). As the depth deepens, the velocity structure overall exhibits a relative high-velocity distribution and gradually tends to be lateral uniform. (Figures 8F–H).
[image: Series of eight contour maps labeled A to H, each displaying data points in varying densities with color gradients from dark green to yellow. Red circles highlight specific regions on each map. Graph axes are labeled in numerical intervals for latitude and longitude. Color bars on the bottom indicate the density scale. Maps appear to track changes in specific geographic data.]FIGURE 8 | (A–H) are the horizontal cross sections of crustal velocities at different depths of 1 km,3 km, 5 km, 7 km, 11 km, 15 km, 20 km and 25 km. TLF: Tan-Lu Fault; CJF: Yangtze River Fault; YCF: Yangxin-Changzhou Fault. M1: Luzong ore clustering district; M2: Guichi ore clustering district; M3: Tongling ore clustering district; M4: Ningwu ore clustering district.
To sum up, the velocity structure above a depth of 7 km is characterized by high-velocity in the ore clustering districts and a low-velocity strip in the Yangtze River waterway; below a depth of 7 km, the velocity structure gradually tends to be lateral uniform as the depth increasing, and is more pronounced below a depth of 20 km. The difference in velocity structure above and below 7 km depth suggests that there may be a crustal deformation decoupling surface near this depth. Furthermore, the ray distribution (Figures 6C) indicates that most of Pg waves were refracted above a depth of 7–8 km, and the dense refraction of Pg waves at 7–8 km depth indicates the existence of velocity discontinuity near this depth.
The depth of the Moho discontinuity varies between 30 km and 36 km (Figure 9). Among the four ore clustering districts, Guichi (M2) has the deepest Moho discontinuity at 33–36 km, which is also the location of Jiuhua Mountain. The Moho discontinuity in Luzong (M1) and Tongling (M3) is 31–33 km deep. At the northeastern end of the study area, Ningwu (M4) has too few PmP samples for a reliable analysis. Roughly along the Yangxin–Changzhou Fault, the depths of the Moho on both sides of the fault are different.
[image: Seismic activity map showing regions in China with intensity variations. Areas M1, M3, M4, and Maanshan are circled in red. Colors range from red (shallow) to blue (deep), indicating depth variation. Latitude and longitude coordinates are marked on the edges.]FIGURE 9 | Moho structure. TLF: Tan–Lu Fault; CJF: Yangtze River Fault; YCF: Yangxin–Changzhou Fault. M1: Luzong ore clustering district; M2: Guichi ore clustering district; M3: Tongling ore clustering district; M4: Ningwu ore clustering district.
6 DISCUSSION
6.1 Comparison with existing studies
This study shows that above 7 km depth, the general characteristics of the velocity structure are that the ore clustering districts exhibit high-velocity anomalies and the Yangtze River waterway exhibits a strip-shaped low-velocity distribution. Some scholars have also used the sounding data from this air gun experiment to study the crustal velocity structure. For example, She et al. (2018) used airgun surface-wave data recorded by the mobile array to invert the S-wave velocity structure at a depth above 1 km in the study area. Tian et al. (2018) used the Pg traveltimes to invert the 3D P-wave velocity structure of the upper crust. Furthermore, Zhang et al. (2020) inferred the 3D crustal velocity structure of the middle–lower Yangtze metallogenic belt and adjacent areas using airgun Pg traveltimes recorded by mobile and regional stations combined with local earthquake first-arrivals in the region. These study results all show that the upper crust of the metallic ore clustering districts exhibits high velocities. At a depth of 0–1 km, the P-wave velocity values obtained in this study are the same as those obtained by Zhang et al. (2020), i.e., approximately 5.3 km/s. At a depth of 5–10 km, the velocity values obtained by this study are about 5.7–6.0 km/s in the low-velocity area, and about 6.2–6.3 km/s in the high-velocity area beneath the ore clustering districts, which are similar to the results of Zhang et al. (2020) and Tian et al. (2018). This study shows that the low-velocity strip corresponding to the Yangtze River waterway extends downwards to a depth of 7 km. Zhang et al. (2020) also observed a low-velocity anomaly zone corresponding to the Yangtze River waterway that extended to approximately 9 km in depth and interpreted it as a junctional zone of the metallic ore clustering districts.
This study found that the depth of the Moho in the study area varies between 30 and 36 km. The Moho depth in both Luzong and Tongling ore clustering districts is 31–33 km, and the Moho depth of Guichi ore clustering districts is 33–36 km. Wei et al. (2018) used the teleseismic receiver function recorded by the airgun mobile array and regional seismic network to infer a Moho depth of approximately 30–35 km in an area overlapping our study area, which is approximately consistent with the results of this study. Deep seismic reflection profiles yielded crustal thicknesses of 30–32 km in the Luzong ore clustering districts (Lü et al., 2013), 33–36 km in Guichi (Shao et al., 2015), and 30–32 km in Tongling (Lü et al., 2003). The Moho depths of each ore clustering district obtained in this study are basically consistent with the reflection seismic results. The Moho is depressed in Guichi ore clustering district, which may indicate the effect of crustal equilibrium in the Jiuhua Mountain area.
6.2 Tectonic implications of the crustal structure
The upper crust beneath the ore clustering districts exhibit high-velocity anomalies, which has been confirmed by numerous deep exploration studies (Shi et al., 2004; Liu et al., 2012; Lü et al., 2014; She et al., 2018; Tian et al., 2018; Zhang et al., 2020). The middle–lower Yangtze metallogenic belt is located within the Yangtze plate and is the product of volcanic activity under the regime of intracontinental orogeny (compression) and subsequent extensional tectonics during Yanshanian. A large amount of hydrothermal fluid carried by large-scale magmatic intrusion gradually cooled and mineralized in the Cretaceous, Jurassic, and Triassic strata of the upper crust, with weak metamorphism. This environment is conducive to the migration and metasomatism of various metal ions (Qiang et al., 2014). Liu et al. (2012) compared five shallow crustal velocity profiles in Luzong with the results of gravity, aeromagnetic surveys, and geochemical profiles, which showed that the development zone of intrusive body generally presents high anomaly of the metal contents and high elastic wave velocity. Numerous studies have also confirmed that the occurrence location of metallic deposits in the study area is related to the location of hidden intrusive rock bodies (Tang et al., 2010; Du and Chang, 2011). Therefore, the high-velocity anomalies in the upper crust beneath the ore clustering districts may suggest the source of mineralized materials.
The several results of deep seismic reflection profiles show that the upper crust of the middle–lower Yangtze metallogenic belt has been subjected to intense compression and deformation, and the deformation at different scales was generally developed above the basement detachment surface, which was located at a two-way traveltime of 2.0–4.0 s, with a depth of 6–12 km (Liang et al., 2014; Lü et al., 2015b; Shao et al., 2015). According to the velocity structure obtained in this study, the velocity characteristics above and below 7 km depth are obviously different, which indicates that the crustal deformation above and below 7 km is decoupled. Therefore, this study infers that there might have been a basement detachment surface determined by deep reflection near a depth of 7 km.
The basement detachment surface may be important for the migration and retention of magma-hydrothermal fluid and their eventual emplacement and mineralization in the upper crust. In the brittle upper crust, regional tectonic deformation and faults control magma separation, migration, and emplacement (Vigneresse, 1995). The research results of the mineralization system in the middle–lower Yangtze metallogenic belt indicates that, during the Yanshan period intracontinental orogeny, the basement detachment surface and other tectonics in the upper crust might have also become “the channels” of the metallogenic system. Meanwhile, as a sedimentary surface or interlayer detachment surface in the upper crust, the basement detachment surface, like many other sedimentary surfaces in the overburden, might rupture and slip during tectonic movement because of a difference in physical properties. Together with fault zones, these surfaces formed complex spatial networks that became the sites of mineralizing fluids and mineral precipitation (Lü et al., 2019).
The velocity structure in the middle–lower crust obtained in this study shows high-velocity and lateral uniformity characteristics, with a resolution scale of 0.4° × 0.4° × 10 km. Luo et al. (2019) obtained the 3D crustal S-wave velocity structure with a resolution of 0.5° × 0.5° × (15–20 km) in the middle–lower Yangtze metallogenic belt and its surrounding areas using the background noise data recorded by the regional network. From velocity vertical slices, the S-wave velocity of the middle–lower crust in the Anhui section of the middle–lower Yangtze metallogenic belt are higher than those of its surrounding area, with smaller internal lateral variation.
Previous studies have pointed out that the present-day lower crust of the middle–lower Yangtze metallogenic belt may be a part of the multi-level magma chamber system that underwent metallogenesis in the Mesozoic (chang et al., 1991), that the ore-forming rock bodies in the middle–lower Yangtze metallogenic belt are similar to Adakite, and it is inferred that the lower crust of the metallogenic belt had undergone a process similar to MASH mineralization (melting-assimilation-storage- homogenisation) (Wang et al., 2001; Xü et al., 2001; Xü et al., 2002). The results of P-wave receiver function suggest that large-scale magma melting and flow might have occurred in the lower crust of the middle–lower Yangtze metallogenic belt during Yanshanian, and the metallogenic belt may be the product of the MASH metallization process (Shi et al., 2012). Therefore, the velocity structure in the middle–lower crust, especially in the lower crust observed by this study show lateral uniformity characteristics, which could be related to that the middle–lower Yangtze metallogenic belt had undergone a MASH metallization process. On the surface, the middle–lower Yangtze metallogenic belt is wedged between the Tan–Lu Fault and the Yangxin–Changzhou Fault and is in a “V” shaped narrow in the southwest and wide in the northeast (Chang et al., 1991). Some studies have suggested that a mantle uplift zone with a trumpet shape is observed beneath the regions along the Yangtze River in Anhui Province (Chang et al., 1991; Tang et al., 1998). The research from regional gravity data has shown that the Moho beneath the middle–lower Yangtze metallogenic belt has shown a “V” shaped uplift belt along the SW-NE strike, with a depth of about 30–33 km (Figure 10A) (Yan et al., 2011). In this airgun experiment, because the offset of PmP waves in NW–SE direction is not enough, this study is insufficient to conclude that the Moho beneath the metallogenic belt is uplifted. However, our results indicate that the Moho within the area overlapped with Yan et al.’s image (2011) is about 30–33 km depth, and the area with relatively shallow Moho also shows a “V” shape extending from southwest to northeast (Figure 10B). Altogether, the Moho beneath the metallogenic belt along Yangtze River in Anhui is uplifted than those of its surrounding area, and its planeform corresponds to the “V” shape of the metallogenic belt, indicating that the region along Yangtze River in Anhui might have experienced a more intense crustal thinning process, that the mantle uplift zone is the dominant factor controlling the formation of the diagenetic and metallogenic belt in this area (Wu et al., 1999).
[image: Two maps compare regional seismic activity. Map A shows localities with color-coded depth points ranging from shallow (negative values) to deep (positive values). Map B focuses on specific seismic zones (M1, M2, M3, M4) outlined with red circles and highlights depth variations using a similar scale. Black dashed lines demarcate significant geological features.]FIGURE 10 | Moho comparison chart. (A) Moho image obtained by regional gravity data (Yan et al., 2011); (B) Moho image from our research. M1: Luzong ore clustering district; M2: Guichi ore clustering district; M3: Tongling ore clustering district; M4: Ningwu ore clustering district.
In conclusion, the high-velocity anomalies in the upper crust beneath the ore clustering districts in the area along the Yangtze River in Anhui result from hidden intrusive rocks; the basement detachment surface near a depth of 7 km may be channel and site for the migration and retention of crust-mantle magma; The Moho uplift zone, which is distributed in a “V” shaped pattern from southwest to northeast, controlled the formation of the metallogenic belt; the lateral uniform velocity structure in the middle–lower crust could be related to that the metallogenic belt had experienced a MASH metallization process.
Numerous studies have shown that the middle–lower Yangtze metallogenic belt underwent the process of lithosphere thickening, delamination thinning, and basaltic magma underplating during the Yanshan period (Yan et al., 2011; Shi et al., 2012; Lü et al.,2013; Jiang et al., 2014; Xü et al., 2014; Xü et al., 2015). Our study results support this opinion. The regional extension in the late Yanshan period led to the delamination of the thickened lithospheric mantle and lower crust, and the uplift of the asthenosphere, which resulted in large-scale magmatic intrusion. The mantle-derived magma underplated the lower crust, caused uplifted Moho; the hot materials from the asthenosphere led to large-scale magma melting in the lower crust, and the crust–mantle magma experienced the process of mixing, assimilation, and homogenization, resulted in the lateral uniform velocity structure in the lower crust; the crust-mantle magma migrated upwards through tectonic weak sites such as faults and basement detachment surfaces, and ultimately formed metal ore accumulation in several tectonic sites in the upper crust above the mantle uplift zone.
7 CONCLUSION
In this study, the upper crustal refraction wave (Pg) and Moho reflection wave (PmP) were identified from airgun seismic records of the “Geoscience Yangtze Project”. Joint inversion of the Pg and PmP traveltimes was conducted to reconstruct the 3D crustal velocity structure and Moho discontinuity for the middle–lower Yangtze metallogenic belt in Anhui Province. The characteristics of the solution model are consistent with existing geophysical results. The present-day crust in the study area retains the traces of lithosphere delamination-thinning and basaltic magma underplating during the Yanshan period. This study suggest that airgun excitation in inland waters is an effective method for detecting continental crustal structure to obtain the velocity and velocity discontinuity.
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Microseismic noise suppression is widely used in the exploration of unconventional oil and gas resources. The effective microseismic downhole signals have extremely weak energy and are contaminated by strong interference, making data processing and interpretation difficult. The need for high-frequency effective signal reservation presents a basic problem in the design of noise suppression methods. The effective signals represent as the continuous reflection event and have more concentrated features in the transform domain, which can be used to tell the signal from the irregular microseismic noise. However, the high-frequency signal and extremely complex noise bring difficulty in accurately separating them by a single threshold. In this study, we propose a novel denoising method called Shearlet-polarization filtering to effectively suppress the microseismic noise. In general, Shearlet-polarization filtering is the combination of polarization filtering and conventional Shearlet transform. Specifically, the Shearlet transform can decompose the microseismic data into multi-directional and multi-scale information, providing a solid foundation for the separation of effective signals and background noise. From this basis, polarization filtering achieves signal reservation and noise attenuation by making full use of the three-dimensional information. To evaluate the performance, we also compare the proposed method with conventional Shearlet threshold filtering and polarization filtering. Experimental results both in synthetic and field data processing indicate that the Shearlet-polarization filtering is superior to the competing methods because it can significantly improve the continuity and smoothness of the microseismic events, even in low SNR conditions.

Keywords: microseismic denoising, three-dimensional signal, shearlet transformation, polarization filtering, seismic data processing

1 INTRODUCTION
Microseismic is a technique used in the oil and gas industry to monitor the propagation of fractures in subsurface rock formations. It involves recording very small seismic events caused by the fracturing of the rock during hydraulic fracturing or other activities. The recorded data can provide valuable insights into the extent and direction of the fractures, which can be used to explore unconventional oil and gas resources (Lu et al., 2018), (Liu et al., 2022), (Negi et al., 2021). In general, the effective signals in the microseismic records are often represented as the high-frequency reflection events with weak energy and short duration (Maxwell and Urbanic, 2001), (Shemeta and Anderson, 2010). Meanwhile, the recorded data is always contaminated by the intense background noise, bringing difficulty in extracting meaningful information (Yu et al., 2015), (Yu et al., 2016). Therefore, telling the desired signals from the unwanted noise has great significance in the microseismic data processing.
Over the past few decades, microseismic noise suppression has been extensively discussed, and numerous denoising methods have been proposed. Non-stationary signal processing techniques, such as wavelet and time-frequency analysis, have established a solid theoretical foundation for microseismic denoising (Wang and Gao, 2014), (Mousavi et al., 2016). Nonetheless, they also showed limited effects when confronted with complex microseismic data. Matched filtering recovers the desired signal with the need for the given reflection events as a reference, so the low SNR condition restricts its filtering effect (Han and Van Der Baan, 2015), (Kakhki et al., 2020). F-K filtering makes use of the apparent velocity distinction between the microseismic signal and complex noise. This distinction in the time-space domain is quite apparent, while it suffers from effectual signal distortion and still needs further improvement (Li et al., 2016). Interference suppression in the τ-p domain is proposed in the microseismic signal processing, and the propagation direction is used to extract the desired signal. However, weak energy and high frequency may cause the overlapped phenomenon between the signal and noise in the τ-p domain (Wail and Abdullatif, 2012). Sparse representation filtering and hyperbolic Radon domain filtering share similar problems in separating the desired signals (Rodriguez et al., 2012), (Sabbione et al., 2013). As a result, threshold filtering in the transform domain needs further improvement.
Compared with the above methods, multi-scale wavelet transform (such as Curvelet transform and Contourlet transform) meets the microseismic signal processing requirements and shows more potential (Castro de Matos et al., 2007). Shearlet transform is a new type of multi-directional and multi-scale geometric analysis that combines the advantages of Curvelet and Contourlet transforms (Guo and Labate, 2007). It offers a directional multiscale framework with the ability to precisely analyze the optimal representations in terms of their directional information (Lim, 2010). Specifically, Shearlet transform can capture additional information about the geometry of the singularity set, which can be precisely described with a variation of the scale parameters (Houska, 2012). Consequently, it presents a more significant difference between the signal and noise relative to the time domain, frequency domain, and some other time-space domains. In contrast, noise and signal often share the high-frequency bands, and the amplitudes of effective signals may be attenuated when using pure threshold filtering (part of the high-frequency signals are also filtered out with the noise) (Zhao et al., 2016). A lot of effort is being spent on improving these weaknesses, and an efficient and effective method is still needed simultaneously.
In this paper, we concentrate on the background noise attenuation in downhole microseismic data through a novel Shearlet-polarization filtering, combing the Shearlet transform with polarization filtering. The Shearlet transformation has good locality, directionality and sparsity, the method can generally convert the three-dimensional microshock data into different scales and direction information, but the selection of the threshold is difficult to use the corresponding characteristics of effective signal, leading to a mixed superposition of the desired signal and unwanted noise (Wang et al., 2021).
As we know, polarization filtering is a spatial filtering technology that weakens the noise interference according to the polarization feature difference between signal and noise (Du et al., 2000). It can offer a satisfying filtering result with a single direction in the transform domain (Benhama et al., 1988). But the expected direction of the filter factor of the polarization filter method is fixed. For the more complex wave field, the waveform of the effective signal will distort because the wave vector deviates from the fixed component, making the in-phase axis discontinuous. Therefore, polarization filtering combining Shearlet transform could effectively retain the effective high-frequency signal, suppress the intense background noise, and avoid the false axis at the maximum limit, overcoming the limitation of the simplex direction in polarization filtering method, as well the simplex threshold criterion in Shearlet threshold filtering method. The performance of this proposed approach is explained and discussed thoroughly in the synthetic model and real field data. The results show that Shearlet-polarization filtering can significantly suppress the complex noise and effectively preserves the desired microseismic signal. The rest of this paper is organized as follows: Section 2, for one thing, describes the definition and optimal sparse approximation properties of shearlets, and for another, illustrates the principle of polarization filtering based on the shearlet transform in detail. The validity of the proposed method is tested on the synthetic records and field data in sections Ⅲ. Finally, Section 4 concludes the paper.
2 MODEL BUILDING
2.1 Shearlet transfom
Shearlet transform is a novel approach for capturing the geometric information associated with the singularity sets of bivariate functions and distributions (Han and Van Der Baan, 2015). This multiscale method provides a precise and straightforward metric characterization for signal analysis, such as rotation, translation, and scale. In addition, Shearlet transform not only has the same optimal approximation order as the Curvelet transform but also shows better performance in frequency separation (Lim, 2010). In this section, the basic principle is briefly introduced.
A continuous affine system (Zhao et al., 2016) with composite dilation [image: Mathematical notation for the space of square-integrable functions on \(\mathbb{R}^2\), denoted as \(L^2(\mathbb{R}^2)\).] is a functions collection:
[image: Mathematical expression depicting a tuple \( (T, D, N, w, t \in \mathbb{R}^2, M \in G) \).]
where [image: The mathematical expression shows the symbol psi belonging to the function space L squared of R squared.] and [image: Please upload the image or provide a URL so I can create the alternate text for it.] is a translation, described as follows:
[image: Mathematical equation describing a function transformation: \( T_t f(x) = f(x-t) \), where \( t \) belongs to the set of real numbers \( \mathbb{R} \). ]
Moreover, the dilation matrix [image: It seems like you've provided a text snippet rather than an image. If you would like to receive alt text for an image, please upload the image file or provide a URL to it.] (for any [image: "Mathematical expression showing M is an element of G."]) is defined by:
[image: Mathematical equation showing \( D_M f(x) = |\text{det} M|^{-1/2} f(M^{-1} x) \).]
Additionally, the matrix [image: The image shows a mathematical expression with the uppercase letter "M" followed by the subscript "as."] is the composition of the shear matrix [image: Matrix equation showing \( S_s = \begin{pmatrix} 1 & -s \\ 0 & 1 \end{pmatrix} \).] and the anisotropic dilation matrix [image: Matrix equation \( A_a = \begin{pmatrix} a & 0 \\ 0 & \sqrt{a} \end{pmatrix} \), where \( a \) is a variable and \(\sqrt{a}\) denotes the square root of \( a \).]. Accordingly, G is defined as the 2-parameter dilation group:
[image: \( G = \left\{ M_{a,s} = \begin{pmatrix} a & -\sqrt{as} \\ 0 & \sqrt{a} \end{pmatrix} : (a,s) \in \mathbb{R}^* \times \mathbb{R} \right\}. \) Equation number (4).]
As a result, the continuous shearlet transform is defined as the function
[image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL. If you like, you can also include a caption for additional context.]
where [image: Mathematical notation showing "SH" with a subscript psi symbol and an argument represented by a dot in parentheses.] represents Shearlet transform, and [image: Sure, please upload the image or provide a URL so that I can help create the alternative text.] defines the inner product. Moreover, [image: Ψ is an element of \(L^2(\mathbb{R}^2)\).] is defined as:
[image: Equation six represents a mathematical expression for wavelet transformation: \( \Psi_{\text{axt}}(x) = T_t D_s A_a \Psi = a^{-3/4} \Psi(A_a^{-1} S_s^{-1} (x - t)) \), where \( a \in \mathbb{R} \), \( s \in \mathbb{R}_t \), \( t \in \mathbb{R} \).]
Shearlet transform is onto the functions [image: The image shows the Greek letter psi with a subscript "ast".] at location t, orientation s and scales a (Zhao et al., 2016). The above equations show that these calculations involve mathematical operations in the Fourier domain and space domain at the same time.
And the inverse Shearlet transform [image: Mathematical notation showing "SH" raised to the power of negative one, followed by a dot in parentheses.] is shown as follows:
[image: The image shows a mathematical equation for a function \( f \). It involves the inverse shearlet transform \( SH^{-1}_\phi \) and the shearlet transform \( SH_\phi(f_{a,s,t}) \). The integral is over \( \mathbb{R}^2 \times \mathbb{R}^+ \), involving \( \langle f, \psi_{a,s,t} \rangle \psi_{a,s,t} \), with the differential \(\frac{da}{a^3} ds dt\). It states \( a \in \mathbb{R}^+ \), \( s \in \mathbb{R} \), \( t \in \mathbb{R}^2 \), with equation number (7).]
Afterward, the discrete Shearlet transform is introduced by Kutyniok and Labate as:
[image: Mathematical expression for wavelet function: \(\psi_{jkm}(x) = |\text{det} A_j|^{-1/2} \psi(S^k A_j^{-T} x - m)\), where \(j, k \in \mathbb{Z}\) and \(m \in \mathbb{Z}^2\).]
Compared with the continuous Shearlet transform in Eq. 6, the discrete one samples the parameters a, s and t into a discrete set. Respectively, these parameters are substituted for the sequence: the scales parameter [image: \( a_j = 4^j \)], the orientation parameter [image: The formula shown is \( s_{jk} = k2^j \), where \( s_{jk} \) represents a variable defined as \( k \) multiplied by 2 raised to the power of \( j \).], and the location parameter [image: Equation with subscript and superscript: \( t_{jkm} = S_{k2} A_{4j} m \).] (where [image: If you have an image you'd like me to describe, please upload it or provide a URL. However, if this is related to a mathematical expression,  "a > 0" indicates that variable \( a \) is greater than zero.], [image: The symbol "s" belongs to the set of real numbers, denoted by the character ℝ.], [image: The expression "t ∈ ℝ²" represents a variable \( t \) that belongs to the two-dimensional real coordinate space.], and [image: \( j, k \in \mathbb{Z} \) indicates that j and k are elements of the set of integers.], [image: The expression shows "m ∈ ℤ²", indicating that m is an element of the two-dimensional integer lattice.]). So the relationship between the continuous and discrete transform can be described as:
[image: Mathematical formula displaying a set expression. The set is defined as \((a_{j}, s_{j,k}, t_{j,m}) = (4, k2, S_{a_{j} A_{j,m}})\), with conditions \(j, k \in \mathbb{Z}\) and \(m \in \mathbb{Z}^{2}\). Equation labeled with number nine.]
[image: The equation shown is: \(\psi_{a,s,f,m}(x) = D_{a,N_s,f} T_{m} \psi(x)\).]
In Figure 1, a sub-image within the red borders is set as an example for the Shearlet domain. In the figure, we can observe the energy distribution of different records based on the direction and energy. Specifically, [image: Letter "A" in uppercase next to letter "a" in lowercase, both in italic serif font.] controls the scale by a dilation factor along the two axes, while [image: Please upload the image or provide the URL so I can help create the alternate text for it.] dominates the orientation. It is essential to emphasize that the transform has strong potential in image denoising, edge extraction and fine-structure approximation (Houska, 2012).
[image: Diagram illustrating four concentric scales labeled from one to four, starting from the innermost dark gray square (Scale 1) to the outermost lighter areas (Scale 3). An arrow points to a section labeled "A subimage."]FIGURE 1 | A shearlet sketch map with the subimage distribution depended on the parameters a and s.
2.2 Shearlet-polarization filtering method
A three-dimensional noisy downhole microseismic record can be described as follows:
[image: It appears the input is mathematical rather than an image. If you intended to upload an image, please try again. If you need assistance with something specific in your mathematical expression, feel free to ask!]
where G represents the noisy record, while F and N denote the pure desired signal and complex microseismic noise, respectively. At the same time, t and d indicate the time samples and trace number. Moreover, i is the dimensional index (described as x, y, and z). The specific procedures of Shearlet-polarization filtering could be concluded as:
First, the three-dimensional microseismic record is transformed into a Shearlet domain with each direction. In addition, Shearlet transform is a linear transform; as a result, the Shearlet coefficients of the noisy form can be expressed as:
[image: Equation showing sound intensity levels: \( SH_{G(d,d)} = SH_{F(d,d)} + SH_{N(d,d)} \), labeled as equation (12).]
the coefficients of the noisy record comply with the sparse representation theory, where the desired signal and noise components respectively correspond to the significant and small coefficients, especially in the high-frequency bands. The distinction is obvious in separating the desired signal from the noise in the Shearlet domain. However, threshold filtering has a simplex criterion and suffers from the confusion between the signal and noise. In other words, the desired downhole microseismic data is relatively concentrated in the high-frequency scales, while the noise may distribute in the similar bands, bringing difficulty for the denoising task. Additionally, the weak signal and strong noise worsen the situation. Compared with the disordered noise, the desired signals often share similar propagation characteristics and show relevant polarization properties. Therefore, Shearlet-polarization filtering is proposed by leveraging the differences between the signals and background noise in polarization properties, aiming to accurately suppress the background noise with the consideration of signal reservation.
Secondly, Shearlet-polarization filtering makes use of the polarization property of the downhole microseismic data, and the polarization filter with spatial orientation features is applied. The modulating function is described as follows:
[image: Mathematical equation representing a function \( f(SH_{GL_{td1}}) \) as \( T^r(SH_{GL_{td1}}) \cdot \cos^q \theta(SH_{GL_{td1}}) \), labeled as equation (13).]
where [image: Mathematical expression displaying \( T(SH_{G_{(t,d,i)}}) \).] denotes the polarization coefficient, [image: Greek letter theta followed by an expression in parentheses: uppercase S, uppercase H, subscript G with subscripts t, d, i.] is the included angle between the three-dimensional coordinate axis and the direction of the principal eigenvector [image: The image shows the mathematical expression: V(SHG), with the letter S in smaller font size within the parentheses.]. The sketch map of the filter and each parameter is shown in Figure 2. And, [image: Please upload the image or provide a URL for it, and I can help create the alternate text. If you have additional context or a caption for the image, feel free to include that as well.] and [image: Please upload the image or provide a URL for it, and I can help create the alt text for you.] stand for the degree and weighted value of the polarization direction, respectively. Generally, the value range of [image: It seems there was an issue with uploading the image or providing a URL. Please try uploading the image again or provide a link to it, and I will help you with the alternate text.] is set to [image: Text depicting a mathematical interval notation: open bracket zero comma two close parenthesis, indicating the set of all real numbers between zero and two, including zero but not two.], and the signal under the shearlet domain becomes linearly polarized, thus having little effect on the filtering. Meanwhile, the scope of q can be expressed as [image: The mathematical expression depicts "q" is an element of the interval from zero to four, including zero but not four.]. Moreover, the larger the value always indicates the smaller the passband and the stronger the effect of suppressing performance. The filtering result in the Shearlet domain [image: The mathematical expression shows "SH" followed by a subscript "F" with a hat on top, and a subscript of "t, d, i" in parentheses.] is generated with the aforementioned processing strategy.
[image: Coordinate system graph with axes labeled \( SH \) with coordinates \( G(0, A, A) \) on the vertical, \( G(d, 0, 0) \) on the horizontal. A vector \( V(SH_g) \) extends from origin \( O \), with angle \( \theta(SH_{d, A}) \) between the vector and the horizontal axis.]FIGURE 2 | The sketch map of the Shearlet-polarization filtering and corresponding parameters.
Notably, the polarization coefficient [image: Mathematical expression with italicized characters representing a function or transformation: T, applied to a subscripted group SH with parameters t, d, and i in parentheses.] and the main eigenvector [image: The text "V(SH_G)" in a serif font, with "SH_G" in parentheses.] are calculated from the noisy microseismic records. With a given window length [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.], the covariance matrix [image: If you have an image you'd like to upload, please do so, and I can help generate alt text for it.] is generated as follows:
[image: Equation representing a matrix \( M_c \) as \( \frac{1}{N} \) times a three-by-three matrix with elements: \(\sum SH_x^2\), \(\sum SH_x SH_y\), \(\sum SH_x SH_z\); \(\sum SH_y SH_x\), \(\sum SH_y^2\), \(\sum SH_y SH_z\); \(\sum SH_z SH_x\), \(\sum SH_z SH_y\), \(\sum SH_z^2\).]
where [image: Mathematical formula showing SH subscript i equals SH subscript G with parameters t, d, and i, minus the fraction one over N times the summation of SH subscript G with parameters t, d, and i.] denotes the removing mean value. The main eigenvector [image: Text depicting a mathematical expression: V(SHG).] is [image: It seems there was an error with the image upload. Please try uploading the image again or provide a description or URL if possible.], where [image: It seems there is no image uploaded. Please upload the image or provide a URL for me to give the alternate text.], [image: I'm sorry, but I can't view the image you've referenced. Please upload the image or provide more context so I can help create appropriate alt text.] and [image: The Greek letter lambda followed by the subscript three.] [image: Mathematical notation showing three variables: lambda sub one is greater than or equal to lambda sub two, which is greater than or equal to lambda sub three.] are the eigenvalues of a matrix [image: It seems like there might have been an error, as the text provided appears to be a mathematical notation rather than an image. If you meant to describe an image, please upload the image file or provide a URL.]. Then, the polarization coefficient [image: Mathematical expression showing the function \( T(SH_{G(t,d,i)}) \).] is calculated as follows:
[image: The equation shown is:   \[ T(SH_{G(d, \Delta)}) = \frac{(1 - e_{1}^{2})^{2} + (1 - e_{3}^{2})^{2} + (e_{2}^{2} - e_{1}^{2})^{2}}{2 \left(1 + e_{1}^{2} + e_{3}^{2}\right)^{2}} \]  The equation is labeled as equation (15).]
where [image: Equation showing \( e_{21} = \sqrt{\lambda_2 / \lambda_1} \).] and [image: The mathematical expression shows \( e_{31} = \sqrt{\lambda_3 / \lambda_1} \).].
Finally, the filtering result [image: Mathematical notation displaying a function 𝐹̂ with variables t, d, and i enclosed in parentheses.] is acquired by the inverse transformation (shown in Eq. 7) of [image: Mathematical expression displaying "S H" followed by a subscript with a hat over "F", and the variables "t, d, i" in parentheses.]. Figure 3 shows the schematic diagram of the Shearlet-polarization filtering for a clearer understanding.
[image: Flowchart depicting a sequence of processes starting with functions \( G(u_1, u_2) \) transforming through \( SH \) and \( SIF^{-1} \). Arrows indicate progression through stages labeled "Polarization Filtering," resulting in outputs \( f(u_1, u_2) \).]FIGURE 3 | The schematic diagram of the Shearlet-polarization filtering algorithm.
3 APPLICATION TO THE SEISMIC RECORDS
3.1 Synthetic seismic records
To verify the feasibility and effectiveness of the proposed filtering method, we have selected a synthetic downhole microseismic record with 36 traces (namely, x-, y-, z-components, each component having 12 traces). In addition, the stratum depth and corresponding apparent velocities are 100 m (1500 m/s), 350 m (2000 m/s), 100 m (3000 m/s), and 100 m (4,500 m/s), respectively. The focal depth is 205 m. Meanwhile, the horizontal distance between the focus and detectors is 150 m, and the first downhole detector depth is 283 m with a vertical length of 8 m (12 sensors in total). The dominant frequency f is 200 Hz, and the sampling frequency is 1,000 Hz. The expression of the Ricker wavelet x(t) is expressed as follows:
[image: The image shows a mathematical expression: \( x(t) = (1 - 2\pi t f^2 t^2) e^{-\pi^2 f^2 t^2} \), labeled as equation sixteen.]
to quantitatively evaluate the denoising performance, the signal-to-noise ratio (SNR) is selected as the indicator, as shown in the following equation:
[image: Formula for Signal-to-Noise Ratio (SNR) shown as: SNR equals ten times the logarithm of the sum from i equals one to N of the square of F(t,d) divided by the square of the difference between F(t,d) and F-hat(t,d), with equation reference number seventeen.]
where N denotes the data length, while [image: The italicized mathematical notation "F(t, d)" represents a function of two variables, t and d.] and [image: Mathematical expression showing F hat of t and d in italics, where F is a function of variables t and d with a hat symbol above F.] are the clean signals and predicted results, respectively.
The clean synthetic record is shown in Figure 4A. Here, we use white Gaussian noise to simulate the microseismic background noise, and a noisy record with a signal-to-noise ratio (SNR) of -3 dB (Figure 4B) is used as the processing data. Notably, the desired signals are corrupted in the intense noise, and the reflection events are weak and intersect with each other, making it difficult to extract them, especially for the small amplitude ones in some directions. From the basis, we use the Shearlet threshold filtering method, the polarization filtering and the proposed Shearlet-polarization filtering to attenuate the background noise in the noisy synthetic record. The detailed comparison results and filtered noise for different filtering methods are shown in Figures 4C–H. We also select two areas of interest for detailed comparisons, as the red and green blocks indicated. After being filtered by the three methods, the filtering results are all differently improved relative to the noise-containing recording, and the same-phase axis is clearer. However, the polarization filtering shows a weakness in high-frequency and multi-directional signal recovery, and the effective signal of some seismic channels is easy to be removed as noise, leading to excessive removal of the effective signal, as shown in Figure 4C. It is almost impossible to keep the weakest signal among the three directions. This is because high-frequency signals have a small length in the time domain, and the effective signal duration is short, meanwhile, the waveform changes too drastically, making it hard to distinguish between multiple directions. Similarly, the Shearlet threshold filtering (Figures 4E, F) is limited by the simplex criterion and confuses the weak signal with the intense noise, falling short of expectation in intense noise suppression, such as the signals in the deep strata (marked by the green blocks). This is because the selection of threshold can only show a certain scale, more concentrated energy signal, signals in microseismic wells in low SNR environments, too small a threshold will retain more random noise, too large a threshold will suppress more effective signals. Due to the large amplitude gap in the same-phase axis, effective recordings and partial random noise with larger amplitude are retained, while valid records with smaller amplitude are annihilated. In contrast, the Shearlet-polarization filtering method in Figure 4G has a better denoising effect than the competing methods. For a certain scale and direction, the Shearlet coefficients meet the limitation of the polarization property and increase accuracy by using three-dimensional information. The noise removal in Figure 4H is more thorough, such as the contents shown in the blue blocks. Meanwhile, the event recovery is more prominent (no conspicuous signal leakage in the filtered noise), and the intersecting portions have less distortion.
[image: Eight panels labeled A to H show visual representations of matrices with varying density and distribution patterns. Panels A and B show sparse diagonal stripes. C and E highlight areas with red and green rectangles, while G highlights similar areas with denser patterns. D, F, and H show dense data with blue rectangles emphasizing areas. Axes are labeled time and frequency across matrices.]FIGURE 4 | Results of a synthetic microseismic record. (A) Pure record. (B) Noisy record. (C) Result of polarization filtering in time domain. (D) Differences between noisy and recovered data by polarization filtering in time domain. (E) Result of Shearlet threshold filtering. (F) Differences between noisy and recovered data by Shearlet threshold filtering. (G) Result of Shearlet-polarization filtering. (H) Differences between noisy and recovered data by Shearlet-polarization filtering.
To perform intensive analysis, we choose the 32nd trace record for a detailed comparison, whereas the corresponding results are shown in Figure 5. By observing the results, from the two dimensions of amplitude retention degree and noise suppression, we can find that Shearlet threshold filtering reserves more wave crests than polarization filtering, and polarization filtering performs better in noise suppression. Both methods have their corresponding benefits and drawbacks. In contrast, the Shearlet-polarization filtering method shows advantages in both aspects, compared with the competing methods. In specific, the denoising result is closer to the noise-free signal on the wave crest component, and the noise component is almost completely attenuated. From the basis, the quantitative analysis in SNR, root mean square error (RMSE) and amplitude preservation is conducted, and the results are listed in Table 1. The algorithm mentioned in this paper substantially maintains the amplitude by more than 70%, and only the peak amplitude at the 101 ms position recovers 69%, and the gap is not very large, meanwhile the recovery results for the other two methods are less than 56%, so the results obtained by the Shearlet-polarization filtering methodthis method are relatively good. The other two algorithms are deficient in amplitude retention because they do not take full advantage of the corresponding properties of valid signals when processing high-frequency recordings with low signal-to-noise ratios. It is shown that the proposed method achieves the most significant improved SNR of 16.76 dB, which is over 7 dB increment over the competing methods. And it has minimal RMSE, reflecting the advantages of this method in terms of signal preservation ability. In addition, Shearlet-polarization filtering method also represents the most excellent performance in signal-amplitude preservation. Thus, theoretical analysis and synthetic microseismic model processing results show that the Shearlet-polarization filtering method can effectively remove the background noise and improve the SNR without severe amplitude loss.
[image: Three line graphs labeled A, B, and C compare different interpolation methods. Each chart shows original and synthetic data plotted against samples or threshold values. Legends indicate various methods: Original, Pre-stack, NMO stack, and Parameterization. Graphs display differences in data representation across methods, highlighting variations in peaks and trends.]FIGURE 5 | Waveform Preservation of the three methods in the 32nd trace. (A) The 1st wavelet with the dominant frequency of 200 Hz. (B) The 2nd wavelet with the dominant frequency of 200 Hz. (C) The 3rd and 4th wavelets with the dominant frequency of 200 Hz.
TABLE 1 | SNR, RMSE and Amplitude preservation of differrent methods.
[image: Table showing signal-to-noise ratio (SNR), root mean square error (RMSE), and amplitude preservation for different filtering methods. Before filtering: SNR -3 dB, RMSE 0.1394, amplitude 100% at all points. After polarization filtering: SNR 6.6017 dB, RMSE 0.0583, amplitude 64.70% (51st), 44.31% (101st), 47.04% (138th), 56.22% (143rd). After Shearlet threshold filtering: SNR 0.5349 dB, RMSE 0.0789, amplitude 61.40% (51st), 55.17% (101st), 62.67% (138th), 82.62% (143rd). After Shearlet-polarization filtering: SNR 13.7623 dB, RMSE 0.0407, amplitude 75.12% (51st), 69.00% (101st), 70.01% (138th), 78.93% (143rd).]3.2 Field data processing
To verify the practical application of the proposed Shearlet-polarization filtering method, a field downhole microseismic record with 15 traces acquired in certain areas of China has been processed. The aforementioned methods are used to process the field microseismic data, and the results are shown in Figure 6. Figure 6A displays the three-dimensional field microseismic record that contains 15 traces in total (x-, y-, and z-component have 5 traces each), and the dominant frequency of the desired signals ranges from 100 to 300 Hz. It can be seen that in the actual seismic recording, the effective signal is drowned in random noise, and it can be found that it is difficult to identify the effective signals of the X component and the Y component, and it is necessary to rely on the Z component with strong energy for auxiliary analysis. The waveform of the desired signal is similar to the noise and changes intensely. As a result, the polarization filtering retains all three component effective signals, but the waveform has certain distortion in the filter results, and the recovered filter results are not smooth enough, mainly because the extraction process of time domain signal is greatly affected by noise, as shown in Figure 6B. The Shearlet transform recovers the effective signal of the Z component well, and the effective signal recovery degree for the X component and the Y component is at a low degree, especially the X component recording with a small signal amplitude, due to the low signal-to-noise ratio of this part, the effective signal in the filtering result is almost completely suppressed, as shown in Figure 6D. On the other hand, the result obtained by the Shearlet-polarization filtering method (shown in Figure 6F) is better in background noise attenuation and signal preservation. Meanwhile, the recovered events are in great continuity and smoothness with a clean background (especially the parts labeled by the rectangle boxes). The corresponding results demonstrate that the proposed method outperforms the competing algorithms in weak signal recovery and intense noise suppression. Thus, we can get the point safely that Shearlet-polarization filtering is competent in denoising the complex microseismic data and represents great ability in amplitude preservation, even for the desired signals buried in the intense background noise.
[image: Seven line graphs labeled A to G display pressure versus time data. Each graph features a highlighted rectangular area in either red or blue. Graphs A, B, D, and F have red rectangles, while C, E, and G have blue rectangles.]FIGURE 6 | Results of a set of field data by the three methods. (A) Real downhole microseismic record. (B) Denoising results of polarization filtering in time domain method. (C) Differences between noisy and recovered data by polarization filtering in time domain method. (D) Result of Shearlet threshold filtering method. (E) Result of Shearlet threshold filtering method. (F) Denoising results of Shearlet-polarization filtering method. (G) Differences between noisy and recovered data by the Shearlet-polarization filtering method.
4 CONCLUSION
As for the denoising of downhole microseismic data, the Shearlet-polarization filtering method, viewed as the modification of the polarization filtering and Shearlet threshold method is proposed in this study. The polarization filtering proved to be limited in application because it demands single directivity and an appropriate window. Meanwhile, the Shearlet threshold method suffers from a restraint in the simplex criterion for the complex microseismic environment. On this basis, the Shearlet transform provides a multiscale and multi-directional condition for polarization filtering, which fully uses the microseismic signal’s three-dimensional polarization feature for filtering. It shows that in the process of the filtering method, the corresponding characteristics of the effective signal and the analysis of the properties of the effective signal can be analyzed and processed in a targeted manner. The SNR comparison results indicate that Shearlet-polarization filtering can accurately recover the weak signals with an SNR increment over 17 dB, reflecting its effectiveness in complex microseismic data processing. Meanwhile, the experimental results on synthetic and microseismic field data also demonstrate that the Shearlet-polarization filtering method can achieve better performance in high-frequency signal preservation and noise attenuation when compared to the competing methods. Therefore, the Shearlet-polarization filtering method has application prospects, which is of certain significance for accurately judging and identifying the geological information contained in seismic data. Although the proposed method have achieved impressive performance, the denoising accuracy may degrade when confronted with microseismic data having a low SNR. All the same, the proposed method still can provide a reference for the designing of denoising methods.
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Incorporating anisotropy is crucial for accurately modeling seismic wave propagation. However, numerical solutions are susceptible to dispersion artifacts, and they often require considerable computational resources. Moreover, their accuracy is dependent on the size of discretization, which is a function of the operating frequency. Physics informed neural networks (PINNs) have demonstrated the potential to tackle long-standing challenges in seismic modeling and inversion, addressing the associated computational bottleneck and numerical dispersion artifacts. Despite progress, PINNs exhibit spectral bias, resulting in a stronger capability to learn low-frequency features over high-frequency ones. This paper proposes the use of a simple fully-connected PINN model, and evaluates its potential to interpolate and extrapolate scattered wavefields that correspond to the acoustic VTI wave equation across multiple frequencies. The issue of spectral bias is tackled by incorporating the Kronecker neural network architecture with composite activation function formed using the inverse tangent (atan), exponential linear unit (elu), locally adaptive sine (l-sin), and locally adaptive cosine (l-cos) activation functions. This allows the construction of an effectively wider neural network with a minimal increase in the number of trainable parameters. The proposed scheme keeps the network size fixed for multiple frequencies and does not require repeated training at each frequency. Numerical results demonstrate the efficacy of the proposed approach in fast and accurate, anisotropic multi-frequency wavefield modeling.
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1 INTRODUCTION
Although solving the wave equation in time-domain is often computationally efficient and intuitive to our understanding of the wave phenomena, there has been a growing interest in frequency-domain solutions, particularly for applications like migration and full waveform inversion (Pratt, 1999). Frequency-domain wavefield solvers offer reduced dimensionality, but they face computational challenges when inverting the stiffness matrixof the Helmholtz wave equation, especially for large 3-D models or when modeling high-frequency or complex wave physics.
Incorporating anisotropy is crucial for accurately modeling seismic wavefields since a simplistic isotropic assumption of the Earth can yield unsatisfactory outcomes (Brossier et al., 2009), which further exacerbates the imaging challenges. Seismic anisotropy’s influence on wave propagation has been recognized for over 50 years (Postma, 1955; Vander Stoep, 1966). However, it was only in the past 2 decades that it was considered in seismic imaging and inversion due to advancements in computing and data quality. While these improvements make seismic anisotropy more visible, fully accounting for it in the elastic wave equation remains computationally challenging for large models. The transversely isotropic model, introduced byTsvankin (2012), is widely employed to depict the layered structure of the Earth. It assumes that anisotropy is predominantly induced by the gravity-dependent sedimentation process, thereby suggesting a higher likelihood of a vertical axis of symmetry.
To improve the computational efficiency, Alkhalifah (2000) formulated an acoustic wave equation for transversely isotropic media with a vertical symmetry axis (VTI) by utilizing an acoustic dispersion relation that assumes a vertical shear wave velocity of zero (Alkhalifah, 1998). Later, (Zhou et al., 2006), introduced an auxiliary wavefield function and proposed a set of second-order wave equations to simplify the original fourth-order differential equation for VTI media. This new acoustic VTI wave equation (Song and Alkhalifah, 2020), offers enhanced ease of solving and applying waveform inversions compared to the original fourth-order formula. It was noted that solving this equation using the finite-difference method (FD) in the frequency domain is eight times more computationally expensive compared to the isotropic case, placing a significant strain on computing resources (Alkhalifah, 1998).
Accurate and efficient numerical solutions are continuously being sought (Moseley et al., 2020; Dorn and Wu, 2021; Sandhu et al., 2021). Conventional numerical methods have matured over the years, but the progress has been relatively slow. There exists a range of numerical methods, each with its own advantages and suitability for a given problem; however, efforts are continuously in progress to address a multitude of challenges, including but not limited to integrating multi-physics phenomenon, for instance, enhancing the computational efficiency, and/or deriving equivalent simplified mathematical formulations for ease of implementation. Despite their ease of implementation, commonly used conventional methods such as the FD based solvers exhibit reduced accuracy when modeling complex topography. Moreover, FD solvers are susceptible to numerical dispersion artifacts, which result from a slower traveling wave inherent in the solution of the acoustic anisotropic wave equation (Alkhalifah, 2000; Song and Alkhalifah, 2013). While finite-element and spectral-element methods are advantageous over finite-difference schemes, particularly when modeling complex topography, they often require considerable computational resources, and their accuracy is dependent on the quality of meshing (Virieux et al., 2011). Therefore, it is crucial to search for alternative approaches to obtaining wavefield solutions, especially for anisotropic media.
The combination of recent advancements in deep learning theory, substantial improvements in computational power, and the efficient implementation of graph-based algorithms with automatic differentiation (Baydin et al., 2018) has sparked a renewed interest in utilizing neural networks for approximating solutions to partial differential equations (PDEs) (Ovcharenko et al., 2019; Siahkoohi et al., 2019; Moseley et al., 2020). Early contributions exploited supervised learning governed models (Yang and Ma, 2019; Dong et al., 2022; Wang et al., 2023), which often require a large amount of training data, and their reliability is observed to be very dependent on the training set. The recent advent of physics-informed neural network (PINN) (Raissi et al., 2019) has paved new directions in efficiently solving partial differential equations. PINNs offer a meshless framework and restricts the space of admissible solutions by enforcing the physical laws in the loss function instead of pure data-mapping objectives. Integrating structured information into a learning algorithm magnifies the data’s information content, which empowers the algorithm to swiftly converge towards the correct solution and exhibit strong generalization abilities, even when the training dataset is small.
PINNs have demonstrated the potential to tackle long-standing challenges in seismic modeling and inversion (Alkhalifah et al., 2021a; Song and Alkhalifah, 2021; Waheed et al., 2021; Rasht-Behesht et al., 2022). These networks learn to map input spatial locations to corresponding wavefield values that adhere to the Helmholtz equation within an isotropic propagation medium. To overcome the computational bottleneck and numerical dispersion artifacts that arise while modeling wave propagation in an anisotropic medium, an intelligent PINN framework (Song et al., 2021), operating at a single frequency is trained to predict the scattered pressure wavefield instead of the total pressure wavefield. This is because the latter poses convergence issues due to the presence of a point-source singularity. Recently, Wu et al. (2023) also incorporated the scattered field formulation of the acoustic and visco-acoustic wave equation for the treatment of point-source singularity, and identified the challenges posed by non-smooth velocity models in producing accurate wavefields when no boundary conditions are implemented in the loss function. The authors addressed this problem by i) integrating the perfectly matched layers into the loss function, and ii) replacing the affine functions in the argument of the activation function with quadratic functions to improve the estimation of the complex scattered wavefield. It is also demonstrated that pretraining can significantly mitigate the computational cost of PINNs after model alteration.
It is well known that PINN models do well in representing low-frequency features in the wavefield solution while they struggle to approximate high-frequency wavefields. This is due to the well-known “spectral bias” issue (Rahaman et al., 2019). Alkhalifah et al. (2021b) show that by adding frequency as an additional input to the neural network (NN), the same approach could be used to model multi-frequency wavefields simultaneously. This is a significant advantage over conventional numerical solvers, which necessitate the inversion of a separate impedance matrix for each frequency. Although the idea served as a pivotal point, it was noticed that the shallow depths with more energy were predicted better than the deeper parts.
Song and Wang (2023) proposed to use Fourier features in PINN training (Tancik et al., 2020) to simulate multi-frequency wavefields in an isotropic layered model. They demonstrated that Fourier feature PINN could achieve training convergence faster in comparison to the vanilla PINN (which could not resolve multi-frequency wavefields at all); however, its accuracy is shown to be sensitive to the sampling of wavenumbers in the Fourier basis. It is further shown that if the wavenumbers are sampled from a narrower or wider range than the proposed theoretical range, the resolution of the solution at higher frequencies becomes erroneous, causing the training optimization to converge at a higher loss. Another approach by Song and Wang (2022) divides the model into several small pieces, building a mapping between the low and high-frequency wavefields to train a Fourier neural operator. It is then used to predict small pieces of high-frequency wavefields, which are then merged together to generate wavefields for large models. The correlation coefficients between the predictions of the proposed framework and the solutions of the finite difference method yielded discrepancies with an increase in the frequency of interest.
Recently, Waheed (2022) addressed the issue of spectral bias, and encouraged using a Kronecker neural network (KNN) formed by combining different activation functions with sine and cosine activation functions. KNN uses the Kronecker product in the construction of the weight matrices, which allows to construct an effectively wider network than a regular feed-forward neural network with a minor increase in the number of trainable parameters. Numerical results demonstrated that even with a shallow architecture, the proposed approach achieved the desired accuracy for the PINN-based Helmholtz solver compared with using a regular feed-forward NN with a standard activation function. To accurately predict high-frequency wavefields, a recent approach (Huang and Alkhalifah, 2022), called PINNup, was proposed to train a small NN at first to learn the wavefield at a low frequency, and then the neurons are split (producing offspring) to train a larger model for high-frequency wavefield starting with the lower frequency NN parameters. An empirical formula that relates the neuron splitting to the frequency upscaling allows for better accuracy and fast convergence was also presented. Albeit the PINNup approach exhibited superiority compared to the commonly used PINN with the random initialization, the approach requires i) repeated training and utilization of trained weights to initialize the next split-up NN in line, over a range of frequencies until the target frequency is approached; else, a regular large network and training would be required to predict higher frequencies, ii) the model size, as well as the number of training samples from the spatial grid, shall roughly increase by four times as the frequency is doubled, iii) for higher frequencies, the sampling grid has to be much finer than before to generate solutions free of numerical dispersion, and iv) more complex lateral variations in the velocity model might require to split the neurons even more, directly increasing the computational cost.
While PINNs have their own set of challenges, the inherent features make them an efficient and reliable alternative to the aforementioned challenges faced by conventional solvers. Since their introduction, PINNs have been continuously refined and applied to a wide range of aforementioned problems. Taking the growing literature on PINN-based wavefield solvers forward, in this article, we develop a PINN-based algorithm to solve multi-frequency wavefields for the acoustic VTI wave equation. We use a KNN model as developed by Waheed (2022) and explore its ability to interpolate and extrapolate scattered wave fields corresponding to the acoustic VTI wave equation over multiple frequencies. This is the first attempt known to the author at the multi-frequency PINN training for anisotropic media that comes with its own set of challenges. The background wavefield solution used in the scattered acoustic VTI wave equation can be obtained analytically, corresponding to an infinite homogeneous velocity model. The loss function is a sum of the partial differential equation (PDE) misfit and the data misfit (known solutions at two frequencies used while training). The KNN architecture with a composite activation function is incorporated to tackle the spectral bias issue. The proposed scheme keeps the network size fixed for multiple frequencies and does not require repeated training on each frequency.
2 FORMULATION
2.1 The acoustic VTI wave equation
The anisotropic acoustic wave equation serves as a mathematical model that describes the propagation of waves in an anisotropic medium. The equation is widely used in seismic imaging, reverse-time migration, and full-waveform inversion. When working in the frequency domain and assuming a constant density that is parametrized using the normal move-out (NMO) velocity vn and the anisotropic parameters δ and η, the acoustic VTI wavefields, in two dimensions (2D), can be solved for using a coupled system of second-order PDEs (Zhou et al., 2006):
[image: Equations depict two mathematical expressions. The first is \(\omega^2 m_n p + \frac{\partial^2 (p+q)}{\partial x^2} + \frac{1}{(1+2\delta)} \frac{\partial^2 p}{\partial z^2} = s\). The second is \(\omega^2 m_n q + 2\eta \frac{\partial^2 (p+q)}{\partial x^2} = 0\). Each variable is defined in context. Total set numbered as equation (1).]
where ω is the angular frequency, [image: Mathematical expression showing \(m_n = \frac{1}{v_n^2}\), where \(m_n\) is equal to the reciprocal of the square of \(v_n\).] denotes the NMO squared slowness, p represents the pressure wavefield, q is the auxiliary perturbation wavefield associated with the anisotropic parameter perturbations, s is the source function, and a spatial point inside the domain of interest has coordinates (x, z). Our objective is to solve for the scattered pressure wavefield δp = p − p0, where p0 is taken to be the background wavefield satisfying the isotropic wave equation:
[image: Equation expressing wave function: \(\omega^2 m_{\text{tot}} p_0 + \frac{\partial^2 p_0}{\partial x^2} + \frac{\partial^2 p_0}{\partial z^2} = s\), where \(m_{\text{tot}}\) and \(s\) are constants.]
where [image: The equation shown is \( m_{n0}p_0 = 1/v_{n0}^2 \).] represents the squared slowness in an infinite isotropic homogeneous background medium, wherein the anisotropic parameters η0 = δ0 = 0. In an isotropic acoustic medium, the auxiliary function q = 0. Assuming a constant velocity and a line source excitation, the isotropic acoustic wave equation admits an analytical solution: [image: \( p_0(x) = \frac{1}{4} H_0^{(1)} \left( \omega \sqrt{m_{n_0}} \lvert \mathbf{x} - \mathbf{x}_s \rvert \right) \).] where [image: Mathematical notation showing \(H_0^{(1)}\), which typically represents the zeroth-order Hankel function of the first kind in mathematical expressions.] is the Hankel function of the first kind and order 0, x = {x, z} represents the spatial coordinates in the Euclidean space, and xs is the location of the line source. Substituting p = p0 + δp in Eq. 1, we obtain a relation between p0, δp and q which follows:
[image: Equation showing \( s = \frac{\partial^2 (p_0 + \delta p + q)}{\partial x^2} + \frac{1}{(1 + 2\delta)} \frac{\partial^2 (p_0 + \delta p)}{\partial x^2} + \omega^2 m_s (p_0 + \delta p) \).]
Defining the squared slowness perturbation [image: The formula shows \(\delta m_n = \frac{1}{v_n^2} - \frac{1}{v_0^2}\).], and subtracting 2) from the first equation in system 3), the scattered wavefield δp satisfies:
[image: Equations involving second partial derivatives. The first equation has terms: ω squared times m sub n times δp, plus second derivative of (δp + q) with respect to x squared, plus fraction 1 over (1 plus 2δ) times second derivative of δp with respect to z squared, equals negative ω squared δm sub n p sub zero, minus fraction (1 over 1 plus 2δ minus 1) times second derivative of p sub zero with respect to z squared. The second equation: ω squared m sub n q, plus 2η times second derivative of (δp + q) with respect to x squared, equals negative 2η times second derivative of p sub zero with respect to x squared.]
It can be observed that the right-hand side source function is now related to the model perturbation and the background wavefield, acting as a secondary source. This is the Lippmann Schwinger form of the acoustic VTI wave equation (Lippmann and Schwinger, 1950), without any further approximations introduced.
2.2 The PINNs
To solve Eq. 4 using a PINN model, a fully connected deep NN with three inputs corresponding to the spatial coordinates of the solution domain and the range of frequencies {x, z, ω}. There are also four target output values corresponding to the real and imaginary parts of the complex scattered wavefield δp (x, z, ω) and auxiliary wavefield q (x, z, ω) corresponding to (4).
PINN-based wavefield computation often requires deep and wide neural networks with standard activation functions, leading to a large computational burden. Instead, the KNN architecture that uses the Kronecker product in the construction of weight matrices is employed here. This enables the creation of a wider network with a minor increase in trainable parameters compared to a regular feed-forward NN, without the need for explicit computation of the Kronecker products. The KNN is instead implemented using a standard feed-forward NN with composite activation functions formed by a combination of inverse tangent (atan), exponential linear unit (elu), locally adaptive sine (l-sin), and locally adaptive cosine (l-cos) activation functions (Waheed, 2022). This allows us to get rid of saturation regions from the output of every layer in the NN and improve the training dynamics. Training the network seeks to minimize the following loss function:
[image: A complex mathematical equation involving summations, derivatives, and powers. It includes terms with subscripts, superscripts, fractions, and Greek letters like omega (ω) and delta (δ). Parameters such as \(N_t\), \(m_n\), \(p_0\), and derivatives like \(\partial^2/\partial x^2\) are present, indicating advanced mathematical or physical modeling. The equation is labeled as (5) at the bottom right.]
A few comments about the loss function in Eq. 5 are in order: i) the first two terms represent the mean squared error in approximating the PDE, ii) since it is difficult for PINNs to learn high-frequency wavefields, the KNN predicted wavefields δp are enforced to match the FD based true wavefields ξp at two frequencies (Nf = 2) included in the training process, which range between 3 Hz and 7 Hz. These two frequencies are chosen to be 3 Hz and 4 Hz while training the KNN to extrapolate, and 3 Hz and 7 Hz while training the KNN to interpolate wavefields across all the frequencies. The indices corresponding to these two frequencies from the input data set {x, z, ω} are predetermined such that only these indices contribute to the third term in the loss function.
Here Nt represents the number of random training samples. The anisotropic parameters η, δ, the background wavefield p0, and the model information, are implicit variables and their ordering must be consistent with the input coordinates. The loss function 5) is initially optimized using the Adam optimizer with a stochastic gradient descent method, and then using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm. A full-batch gradient is utilized, with a learning rate of 0.001. Once the KNN is trained, the scattered wavefields are predicted on a regular grid. The PINN model is implemented using the SciANN package (Haghighat and Juanes, 2021)—a high level Tensorflow wrapper for scientific computing.
3 NUMERICAL RESULTS
In this section, the proposed idea is tested on a layered velocity model extracted from the left side of the anisotropic Marmousi model and slightly smoothed and shown along with δ and η profiles in Figure 1. A shallow, isotropic water layer is set up on the top of the model, and the source is placed at the surface at 1.25 km. The model is discretized using 101 × 101 cells of length 25m in both the vertical and horizontal directions.
[image: Three side-by-side heat maps each depict different variables over a distance range of 0 to 2.5 km with altitude up to 3 km. The variables displayed are υ, η, and δ, with color bars showing different measured ranges. The maps exhibit gradients from blue to red, indicating varying intensities.]FIGURE 1 | The layered velocity model and associated profiles for anisotropic parameters δ and η. The background has a constant velocity of 1.5 km−1.
The background wavefield is computed analytically, considering a homogeneous velocity of 1.5 km s−1. The PINNs are trained for a range of frequencies, with a step size of 1 Hz between 3 Hz and 7 Hz. The proposed PINN comprises four layers with 100 neurons each, where the output of each layer is subject to a composite activation function, wherein atan, elu, l–sin, and l–cos functions are incorporated, Figure 2, with a learnable scaling parameter to avoid the need for problem–specific selection. The network is initially trained for 100,000 epochs using the Adam optimizer, with a learning rate of 0.001, followed by 15,000 epochs of the LBFGS optimizer. This is to break the stagnant training region or when the optimizer gets stuck in local minima. The training loss curve is shown in Figure 3.
[image: Diagram of a neural network with two dense layers. Inputs \(x\), \(z\), \(\omega\) are connected to the first layer with activations \(\text{atan}\), \(\text{elu}\), \(\text{t-sin}\), \(\text{t-cos}\). Outputs from the first layer connect to the second layer with similar activations. Final outputs \(\delta_{\phi}\), \(\delta_{\psi}\), \(q_r\), \(q_{\tau}\).]FIGURE 2 | The KNN architecture employed in this work.
[image: Line graph showing training loss over 100,000 epochs with four models. Loss_ex shows a significant decrease, stabilizing near the end. Loss_f retains higher values and fluctuates more. Logs on both axes.]FIGURE 3 | Training loss for the proposed network: real and imaginary parts of the data misfit variables, [image: The image shows the mathematical notation for loss, represented as "Loss" with subscript delta and subscript p sub r.], [image: The formula "Loss subscript delta p subscript i" is shown.], [image: Mathematical expression showing "Loss" with the subscript "q" and superscript "r".], and [image: Mathematical expression showing "Loss" with a subscript "q_i".].
Figure 4 plots the resulting wavefield for interpolation and extrapolation tests. In the first case, 3 Hz and 7 Hz wavefield solutions are provided as training data, while the (4–6) Hz scattered wavefields are learned through the PDE training in the loss function. We observe that the residuals are generally small and we are able to recover the scattered wavefield to a good approximation except for some mild scattering details.
[image: Series of color-coded contour plots arranged in a grid, displaying wave patterns over time. Each plot is labeled with different time frames: thirty milliseconds, forty milliseconds, fifty milliseconds, sixty milliseconds, and seventy milliseconds. Axes represent spatial dimensions, with color bar indicating amplitude variations from blue to red. Patterns evolve from dense concentric circles to wider, less defined waves.]FIGURE 4 | Outcomes of testing the interpolation and extrapolation ability of the proposed KNN model. The images corresponds to the real components of the anisotropic wavefields for frequencies ranging from 3Hz to 7 Hz. Firstrow: interpolated scattered wavefields δpr using the KNN model. Secondrow: Difference between δpr in the first row and ξpr i.e., the FD computed wavefields. Thirdrow: extrapolation scattered wavefields δpr using the KNN model, and Fourthrow: difference between δpr in the third row and ξpr i.e., the FD computed wavefields.
However, more importantly, we also show the results in which 3 Hz and 4 Hz wavefields are used as training data while (4–7) Hz wavefields are learned through the PDE term in PINN training. We observe similar accuracy for the extrapolation case as before. This is important because the cost of computing high-frequency wavefields using conventional methods is higher than the lower frequencies. Therefore, one can generate low-frequency solutions using conventional methods and then use PINNs for higher frequencies. This hybrid approach can result in a better accuracy-speed tradeoff.
4 DISCUSSION AND CONCLUSION
We addressed the multi-frequency wavefield modeling of the anisotropic acoustic wave equation using a feed-forward NN, where the spectral bias is tackled by incorporating the KNN framework, which allows for constructing an effectively wider NN with a minimal increase in the number of trainable parameters. Numerical tests demonstrate that the proposed approach can successfully interpolate and extrapolate wavefields within a specified frequency range. To solve for even higher frequencies in a computationally tractable manner, the proposed approach can be combined with the frequency scaling and neuron splitting method (Huang and Alkhalifah, 2022). Furthermore, the network can be trained for rapid wavefield computation for any source–receiver pair in the computational domain.
Through extrapolation tests, we show that by feeding wavefield solutions from low frequencies, the high-frequency wavefields can be accurately predicted, harnessing the PDE in the loss function. Based on our experience and the existing PINN literature, relying solely on the PDE for the training of wavefield can be computationally intractable. Therefore, we condition the PINN model to converge faster to the correct solution by providing wavefield solutions for low frequencies. These ideas are also validated in a very recent contribution by Wu et al. (2023). Such an approach is likely to yield the best accuracy-speed tradeoff for PINN-based modeling schemes that are often criticized for their lack of computational efficiency. To further enhance the accuracy of our approach, we envision integrating ideas from the work of Wu et al. (2023). This integration would provide an exciting avenue for future research and development.
In the context of our investigation, an often cited challenge for PINNs based solvers is their potential convergence to a trivial solution. This could render the solution inaccurate even though the loss curve may show convergence. However, our approach mitigates this issue by incorporating the solution for low frequencies as data in the training of the PINN. This inclusion of low-frequency data supplies the network with additional, rich contextual information, which averts the risk of the solver gravitating towards a trivial solution. Therefore, our method not only enhances the robustness of the PINN model but also ensures its viability in dealing with complex problem landscapes.
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The total organic carbon (TOC) is an important parameter for shale gas reservoir exploration. Currently, predicting TOC using seismic elastic properties is challenging and of great uncertainty. The inverse relationship, which acts as a bridge between TOC and elastic properties, is required to be established correctly. Machine learning especially for Random Forests (RF) provides a new potential. The RF-based supervised method is limited in the prediction of TOC because it requires large amounts of feature variables and is very onerous and experience-dependent to derive effective feature variables from real seismic data. To address this issue, we propose to use the extended elastic impedance to automatically generate 222 extended elastic properties as the feature variables for RF predictor training. In addition, the synthetic minority oversampling technique is used to overcome the problem of RF training with imbalanced samples. With the help of variable importance measures, the feature variables that are important for TOC prediction can be preferentially selected and the redundancy of the input data can be reduced. The RF predictor is finally trained well for TOC prediction. The method is applied to a real dataset acquired over a shale gas study area located in southwest China. Examples illustrate the role of extended variables on improving TOC prediction and increasing the generalization of RF in prediction of other petrophysical properties.
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1 INTRODUCTION
As one of important “sweet spot” properties of shale gas reservoir, total organic carbon (TOC) is used to evaluate reservoir quality and hydrocarbon potential (Sachsenhofer et al., 2010). TOC can be measured on core data directly in a laboratory and can also be estimated using well logs with different methods (Sondergeld et al., 2010; Yu et al., 2023). At present, a large number of TOC logging interpretation methods or models have been proposed (Yin et al., 2023). However, there are few seismic interpretation methods for TOC. For conventional gas reservoirs, elastic properties (e.g., density, P-wave impedance, Poisson’s ratio) derived from seismic data can be effectively used to describe the spatial distribution of petrophysical properties (e.g., porosity, gas saturation and mineral content, etc.) based on rock-physics relationships between petrophysical properties and elastic properties (Gui et al., 2015; Grana et al., 2022). For shale gas reservoirs, there is also usually a certain relationship between TOC and elastic properties (Chopra et al., 2013; Zhao et al., 2016; Wilson et al., 2017). The approaches to expose such relationships is mainly model-driven or data-driven. Due to the poor physical properties and strong heterogeneity of TOC, modeling the rock-physics relationship between TOC and elastic properties is highly uncertain (Bandyopadhyay et al., 2012; Kumar et al., 2016). Most data-driven methods usually obtain a deterministic formula between TOC and elastic properties through statistical fitting. For research areas with simple geological backgrounds, such fitting formulas can also achieve good results. However, with the increasing complexity of exploration objects, it is difficult to obtain a suitable fitting formula in most cases. Machine learning algorithms (MLAs) have powerful ability to uncover the complex statistical relationship by learning a favorable predictor (Bandura et al., 2018; Jiang et al., 2020; Li et al., 2023; Sang et al., 2023). Ouadfeul and Aliouane. (2016) used 3D seismic data to calculate TOC based on the multilayer perceptron neural network. Verma et al. (2016) used probabilistic neural network with Gaussian weighting functions to predict TOC volume. Amosu and Sun. (2019) developed a robust support vector machine (SVM) learning approach to identify high TOC formations. Among different supervised learning strategies, the Random Forests (RF) has been increasingly applied in the field of geophysics (Cracknell and Reading, 2014; Kim et al., 2018; Lubo-Robles et al., 2022). The RF is an ensemble learning algorithm, which combines the idea of bagging ensemble and random feature selection, and the prediction result is determined by voting with multiple weak classifiers (Breiman, 2001). Cracknell and Reading (2014) compared RF with four other MLAs: SVM, Naive Bayes, K-nearest neighbours and Artificial Neural Networks; as applied in geological mapping using remote sensing data. In their study, RF marginally outperformed other MLAs and it is demonstrated that RF was able to produce accurate results with simpler input parameters and at less computational cost than other algorithms evaluated. The current applications of RF in the field of geophysics is mainly used for lithology or fluid classification, and there is little research on the regression application, especially the regression application of shale gas “sweet spot” properties. In fact, for regression application, the RF is still subjected to insufficient feature variables and imbalanced training samples. In general, regression application requires more feature variables to participate in training than classification application to avoid overfitting. What’s more, for shale gas reservoirs, “sweet spots” are often developed in a large set of background lithology, and the number of samples belong to “sweet spot” in the overall training set is relatively small, and the imbalance of the sample set is prominent.
In this study, the use of RF is suggested to predict the TOC of shale gas reservoir. We propose an automatic feature variable extension strategy for the problem of dependence on the number of feature variables in TOC regression. We also note the imbalanced behavior of TOC samples and use the synthetic minority oversampling technology to eliminate the impact of this behavior on RF training. The proposed method is demonstrated through applications of the RF workflow to real field data, with the goal of assessing the quantitative prediction capability for TOC of a shale gas reservoir.
2 METHODOLOGY
RF is formed by combining multiple decision trees, which is equivalent to combining many nonlinear relationships to form more complex nonlinear relationships, and has the advantages of high prediction accuracy and high tolerance for outliers and noisy data, and has been widely used in many fields such as finance, biology, genetics, image recognition, and medicine. As a statistical method, RF uses Bootstrap resampling to extract multiple sample sets from the original sample set, and performs decision tree modeling for each sample set separately, so that each decision tree obtained from the construction is different, and can simulate multiple nonlinear relationships to form a complex forest mode. The decision tree construction algorithm uses the CART method proposed by Breiman in 1984 (Breiman et al., 1984). The basic steps of the random forest algorithm are divided into four steps: 1) Random sampling to train the decision tree. 2) Randomly select features as node splitting features. 3) Repeat step 2 until it cannot split again. 4) Build a large number of decision trees to form a forest. The obvious difference between RF and neural networks and SVM lies in its non-parametric nature, which means that there are no parameters such as weights that affect the sample data. If only the sample space is divided, even if the order of magnitude of different feature variable is quite different, there can be no standardization or normalization preprocessing, and the most original information can be reserved for nonlinear prediction. Given the advantages of RF, we attempt to use RF for TOC prediction of shale gas reservoir and propose a workflow for the problems encountered in the application, as shown in Figure 1. Firstly, the labels are generated from interpreted TOC logging curves and the fundamental feature variables are obtained from the borehole-side traces of elastic properties volumes inverted by pre-stack seismic data. Secondly, we dealt with the problem of sampling imbalance in the training set by synthesizing minority class samples. Thirdly, considering that the real feature variables are always insufficient, we propose a feature variable extension strategy using extended elastic impedance with different angle. Fourthly, the importance of the variables is measured by pre-training, and the feature variables with the highest importance are preferred. Finally, the decision trees are trained with reducing the redundant feature variables to obtain an optimal regressor.
[image: Flowchart depicting a process involving TOC well curves and borehole-side traces leading to ISMOTE and variable extending. This branches into RF pre-training and optimization. Simultaneously, pre-stack seismic volume undergoes inversion, generating volumes of P-wave velocity, S-wave velocity, and density. This information proceeds to regression, RF training, and results in TOC volume output.]FIGURE 1 | Workflow of the proposed approach.
2.1 Feature variables extension
The principles of classification and regression for RF are basically the same, with the difference being that classification outputs categorical labels and regression outputs numerical variables. For the classification problem, the prediction of RF is decided by a minority-majority voting method. For the regression problem, the average of all the regression decision tree output values is used as the prediction of the forest. Previous work in geophysics has shown that for RF classification, such as lithology and fluid identification, using several target-sensitive elastic properties obtained by pre-stack seismic inversion as input feature variables can yield good classification results (Kim et al., 2018; Lubo-Robles et al., 2022). However, for the regression of continuous numerical variable such as TOC, the influence of the number of elastic properties on the prediction results is not clear enough.
In general, the greater the number of feature variables involved in training, the richer the information carried will be and the training results may be more accurate and generalized. Alvarez et al. (2015) mathematically transformed 11 common elastic properties to obtain a large number of extended elastic properties as the base dataset for linear regression of petrophysical properties, which can achieve better application results. However, this approach is still influenced by subjective factors, e.g., the number of common elastic properties is much more than 11 and the target-sensitive elastic properties might be missed. In addition, the extraction of a large number of target-sensitive elastic properties is a time-consuming and expert-knowledge-requiring. Each elastic property needs to be obtained based on pre-stack seismic inversion or different transformation formulas, which is less automated and has the risk of error accumulation and amplification during the transformation process, especially for unconventional reservoirs whose elastic properties are anisotropic. To overcome the problems in the preparation of feature variables for RF training, we propose to automatically generate a series of elastic properties as feature variables using extended elastic impedance (EEI).
Whitcombe et al. (2002) proposed the expression of EEI based on the Connolly’s elastic impedance equation:
[image: The image shows a mathematical equation: EEI(χ) = Vₚ₀ρ₀[(Vₚ/Vₚ₀)²(Vₛ/Vₛ₀)⁴(ρ/ρ₀)ⁿ], labeled as equation (1).]
where [image: The equation is represented as \( p = (\cos \chi + \sin \chi) \).], [image: The mathematical expression shows \( q = -8k \sin x \).], [image: The formula shows \( r = (\cos \chi - 4k \sin \chi) \).]; [image: Please upload the image so I can provide the alternate text for it.] represents the angle value that varies between −90°and +90°; [image: Please upload the image or provide a URL for me to create the alternate text.], [image: Please upload the image or provide a URL so that I can create the alternate text for you.] and [image: It seems like there's a mistake in uploading the image. Please try again by ensuring you correctly upload the image file or provide a URL. After that, I can help create the alt text for you.] represent the P-wave velocity, S-wave velocity and density, respectively; [image: Mathematical notation showing "V" with a subscript of "p" and a superscript of "0".], [image: A mathematical expression with the letter "V" and a subscript "s0".] and [image: Please upload the image or provide a URL for me to generate the appropriate alt text.] represent the mean values of P-wave velocity, S-wave velocity and density of the target layer, respectively.
In Eq. 1, the EEI is calculated from the three fundamental elastic properties: [image: Please upload the image or provide a URL so I can help create the appropriate alt text for it.], [image: It seems there's no image attached. Please upload the image or provide a URL, and I will help create the alt text.] and [image: It seems like there's a symbol instead of an image. If you want to upload an image, please do so, and I can help with the alt text!]. The EEI is tuned using different [image: Please upload the image or provide a URL so I can help you create the appropriate alt text.] values to be approximately proportional to a number of elastic properties for lithology or fluid identification (Whitcombe et al., 2002). Moreover, the EEI provides a good approximation of common logging properties (e.g., resistivity, gamma) (Neves, 2004). It is easy to obtain these fundamental elastic properties volumes through pre-stack seismic inversion technology (Russell et al., 2011; Yuan et al., 2019). We proposed to use EEI at different [image: Please provide the image or a URL for me to generate the alt text. You can upload it directly here.] to replace the common elastic properties as the feature variables. Firstly, since there are some errors in the elastic properties obtained from the prestack seismic inversion, we use the noisy elastic properties for training to directly establish the relationship between the noisy properties and TOC, instead of considering the effect of errors separately. The borehole-side traces are extracted from the prestack seismic inversion volumes of [image: Please upload the image or provide a URL to it so I can help create the appropriate alt text.], [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: It seems there was an issue with the image upload. Please try uploading the image again, and make sure to include a caption if you have additional context to provide.] as the fundamental curves. The mean value [image: Mathematical notation showing the variable "V" with a subscript "p" and superscript "0".], [image: Equation showing the letter "V" with a subscript "s" and "0".] and [image: It seems there was no image provided. Please upload the image or provide a URL for it, and I will help create the alternate text.] of the target layer can be statistically obtained from the fundamental curves. Since they only serve to standardize the magnitude of EEI with different angles, the correctness of their values does not affect the sensitivity of the EEI. Secondly, a series of EEI curves at different [image: Please upload the image or provide a URL so I can generate the alternate text for you.] are calculated according to Eq. 1. In this study, we set the change step of [image: Please upload the image, and I will help you create the alternate text for it.] to 5° (the step can be set smaller in order not to miss the potential target-sensitive elastic properties). Thirdly, 222 feature variables are extended according to the mathematical transformation ideal of Alvarez et al. (2015), as shown in Table 1. Theoretically, other mathematical operations can also be used for transformation and may yield better results, which can be set according to specific conditions. Finally, the extended feature variable traces and the corresponding TOC logging curves are used as the training set.
TABLE 1 | Feature variables. x represents the angle-dependent extended elastic impedance. Each number represents a single variable, which is obtained after applying the mathematical operation shown in the leftmost column to the variable show in the uppermost row.
[image: Table displaying EEI values for different mathematical functions at angles from -90 degrees to 90 degrees. Functions include x, natural log of x, exponential of x, reciprocal of x, x squared, and x to the negative two, with corresponding values listed under each angle.]2.2 Performing balanced sampling
The original training set is resampled using the Bootstrap sampling to randomly generate k sub-training sets [image: Mathematical expression displaying a sequence of elements: S sub one, S sub two, continuing to S sub k.] (Breiman, 2001). The elements included in each sub-training set sampled by Bootstrap sampling are not all the same, ensuring the diversity of the decision tree, which is one of the advantages of the RF. However, all samples are sampled with the same probability each time in Bootstrap sampling process, which means that when training on sample sets with widely different numbers of samples from different classes, the results is often biased toward the majority class samples, and the minority class samples cannot obtain the desired results. In the past few years, the problem of classifying imbalanced data in machine learning has received increasing attention (Zhang et al., 2018). Here, “imbalanced data” means that the number of samples corresponding to each class is different and the number of differences is large. Although the imbalanced data problem is mainly focused on classification, its impact on regression cannot be ignored. For shale gas in southwest China, the “sweet spot” layer is usually thinly developed in large sets of shale. When the number of training samples belong to the “sweet spot” layers with higher TOC is small and the number of training samples belong to the non-“sweet spot” layers with lower TOC is large, the training of RF regressor may be biased to the non-“sweet spot” layers, which may affect the accuracy of TOC prediction in the “sweet spot” layers. The number of samples belong to “sweet spot” layers and non-“sweet spot” layers are needed to be balanced, forming a large balanced dataset.
There are two general methods for handling imbalanced data: oversampling and undersampling. Oversampling is to increase the size of a minority class sample by replicating a minority class sample. Undersampling, on the other hand, removes some majority class samples at random. Considering that machine learning relies mainly on logging data as training samples, which are expensive to obtain and often precious in small quantities. Therefore, we suggest the oversampling method is used to deal with the minority class samples. A more representative oversampling technique is the Synthetic Minority Oversampling Technique (SMOTE). The SMOTE algorithm analyzes a small number of samples, synthesizes new samples manually, and adds the new samples to the dataset. The specific procedure of this algorithm is as follows (Chawla et al., 2002):
	(1) For each sample in the minority class (“sweet spot” layers with high TOC), we calculate its distance from all the samples in the minority set by using the Eucli-dean distance and obtain its m nearest neighbors;
	(2) According to the imbalance class ratio, we set sampling ratio to determine the sampling magnification N. For sample x in the minority class, we randomly select several samples from its m nearest neighbors. For each randomly selected neighbor y, we construct a new sample z with the original sample x according to the equation:

[image: Mathematical formula showing \( z = x + \text{rand}(0,1) \times |y - x| \), labeled as equation 2.]
where [image: Text showing "rand(0, 1)" in a mathematical notation, indicating a random function that generates a number between zero and one, inclusive.] represents the random number between 0 and 1;
(3) Repeat steps (1)-(2) until the number of samples in the minority set increases to the pre-set value N.
The SMOTE algorithm may cause overlap between samples, generate some samples that do not provide effective information, and reduce the classification/regression performance. To further improve the generalization of the RF regressor for TOC prediction, we used the Borderline Synthetic Minority Oversampling Technique (BSMOTE) (Han et al., 2005) to take oversampling, which was improved based on the SMOTE. The BSMOTE algorithm only uses a minority of samples on the border to synthesize new samples, thereby improving the category distribution of the samples. The oversampling process of BSMOTE is basically the same as SMOTE, with the difference being that the BSMOTE further categorizes the minority samples into three categories: “Safe”, “Danger” and “Noise”. “Safe” category means that more than half of the samples are minority samples; “Danger” category means that more than half of the samples are majority samples, which are regarded as samples on the boundary; “Noise” category means that the samples are surrounded by the majority samples, which are regarded as noise. Finally, only the minority samples denoted as “Danger” are oversampled (Liu and Liu, 2022).
2.3 Optimal predictor training
RF is a bagging ensemble of many uncorrelated decision trees. The CART algorithm is applied to sub-training set [image: Mathematical notation showing a sequence of elements labeled \( S_1, S_2, \ldots, S_k \), indicating a series from the first element to the k-th element.] separately for decision tree modeling (Breiman, 2001). The partition criterion in CART for regression is the minimum mean squared error which is used to choose the feature for node partition. For each partition, the input space is split into two subspaces. After fully grown, the decision trees are constructed. Even with the same training samples, the features corresponding to each node on the decision tree are different due to the random selection of features, which makes the decision tree more diverse and improves the performance of the whole forest. Each decision tree can give a predicted TOC value, and the average of the predicted values of all k decision trees is used as the output value of TOC.
According to the proposed feature variable expansion method, 222 feature variables can be generated from the [image: The image shows the mathematical notation "V" with a subscript "p".], [image: It seems there might have been a mistake with the image upload. Please try uploading the image again or provide a description of the image for assistance.] and [image: It seems there might be an issue with the image file or the input provided. Please upload the image or provide a URL for the image you want described. Optionally, you can add a caption for additional context.] volumes inverted by pre-stack seismic as the input data for the RF predictor. However, a large number of feature variables may bring too much redundant information and calculation consumption. Some feature variables may be extremely sensitive to TOC, while others may contain little valid information. Selecting the feature variables that contribute most to the target regression can speed up the process and improve the accuracy of prediction. Another advantage of RF is that it can provide a variable importance measure (VIM), which ranks feature variables according to their predictive power. In RF, there are Gini importance and permutation accuracy importance (Strobl et al., 2007). For regression problems like TOC, it is appropriate to use permutation accuracy importance to calculate the VIM. For Bootstrap sampling, each decision tree has its own out-of-bag samples, which are not used in the construction process. For Bootstrap sampling, each decision tree has its own out-of-bag data samples that are not used in the tree construction process and can be used to calculate the VIM.
There are three main steps in the VIM calculation of permutation accuracy importance. First, the predictive accuracy of the out-of-bag sample is measured. Second, the feature variables were randomly permuted, and the other feature variables were left unchanged. Finally, the prediction accuracy after random permutation is measured. For the ith tree, the VIM of the jth feature variable Xj is:
[image: Formula for \( V_{ij} \) showing a subtraction between two terms. The first term is a summation divided by \( K_{\text{out}} \) from \( l=1 \) to \( K_{\text{out}} \) of \((y_l - \hat{y}_l(X_i))^2\). The second term is a summation divided by \( K_{\text{out}} \) from \( l=1 \) to \( K_{\text{out}} \) of \((y_l - \bar{y}_l)^2\).]
where [image: Mathematical notation of a variable, \( K \) with a subscript \( oob \), possibly indicating a specific context or variable in scientific or mathematical equations.] is the number of out-of-bag samples, [image: The image shows the mathematical notation "y" with a subscript "i".] is the actual value, [image: A mathematical notation showing a letter "y" with a tilde on top and the subscript "i".] is the predicted value, and [image: Mathematical expression showing \(\tilde{y}_i(X_j)\), where \(i\) and \(j\) are subscripts, and \(X\) is a variable.] is the predicted value of variable Xj after random permutation.
The average VIM of all trees is taken as the final VIM of Xj. Based on the VIM, the top-ranked feature variables are preferred as the final input feature variables for RF predictor training.
3 EXAMPLES
A shale gas reservoir study area in Southwest China is used as an example to discuss the effectiveness of the new method. The shale in this study area is buried deep (>3,500 m) and widely distributed with large thickness. The early deployed exploratory wells obtained high production gas flow, showing the huge resource potential of deep shale gas in the area. However, as more exploratory wells are deployed, significant lateral changes in production capacity have been observed, resulting in significant exploration risks. Therefore, the spatial distribution of high-quality “sweet spot” needs to be finely delineated. Drilling data show that the high quality “sweet spot” layer in this study area has high TOC with various types of pore space including inorganic mineral and organic pores. The relationship between TOC and elastic properties is affected by the complex lithofacies and pore structures, as well as temperature and pressure, which makes it difficult to accurately establish rock-physics models, resulting in low inversion accuracy of TOC based on model driven methods. Therefore, it is necessary to try to obtain high accuracy TOC distribution information based on data-driven approach.
Figure 2 shows the borehole-side curves extracted from the prestack seismic inversion volumes of [image: If you have an image you'd like me to generate alt text for, please upload it or provide more context.], [image: It seems there is a misunderstanding. The text provided appears to be a mathematical symbol or notation rather than an image. If you have an image you'd like to get alt text for, please upload it, and I'll help create the description.] and [image: Certainly! Please provide the image by uploading it here, and I will create the appropriate alt text for you.], and the corresponding TOC well logging interpretation curve of a key well in this study area. We can observe that TOC curve is not directly related to curves of [image: The image displays the mathematical notation "V" with a subscript "p".], [image: Please upload the image or provide a URL so I can create the alternate text for you.] and [image: Certainly! Please upload the image or provide a URL, and I will create the alt text for you.]. Figure 3 shows the EEI curves of different angles and Lamé impedance (λρ) curve calculated by [image: It seems there was an error in uploading the image. Please try again and ensure the image file is correctly attached or provide a URL.], [image: Please upload the image or provide a URL so I can help create the alternate text.] and [image: It appears there is an error or typo in your request, as no image was uploaded. Please upload the image so I can help create the appropriate alternate text.] shown in Figure 2. The result of λρ is commonly used as an properties that responds to changes in rock rigidity or an indicator of fluid identification (Goodway et al., 1997). We observe that there are some differences between the EEI curves with different angles. When the angle is 15°, EEI (15°) is very similar to the λρ curve, with a Pearson correlation coefficient of 0.98, which indicates that the EEI can be indeed used as a substitute for some common elastic properties.
[image: Four line graphs labeled A to D show various properties against sampling depth. Graph A plots \( V_p \) in meters per second; Graph B shows \( V_s \) in meters per second; Graph C displays density in kilograms per cubic meter; Graph D represents TOC in percentage. Each graph indicates changes in these properties with depth, ranging from zero to one thousand meters.]FIGURE 2 | Well logging curves. (A) P-wave velocity, (B) S-wave velocity, (C) density, (D) TOC.
[image: Four line graphs labeled A, B, C, and D depict the variation of EX (m2/s3) at different sampling points from 0 to 100. Each graph shows a unique pattern, suggesting different data distributions or fluctuations in energy levels across the samples.]FIGURE 3 | Elastic properties curves. (A) EEI (5°), (B) EEI (15°), (C) EEI (45°), (D) λρ.
As for which feature variable is more important it still has to be selected based on the specific study area and the VIM ranking. According to the generation way shown in Table 1, 222 extended variables are obtained for VIM ranking as shown in Figure 4. For this case, we observe that not every variable is important for TOC prediction, and the 206th variable ([image: The text "EEI (10°)^{-2}" is shown, with "10°" raised to the power of negative two.]) has the highest importance. The curves of the highest importance variable and the lowest importance variable ([image: The text "EEI (80 degrees) squared" is displayed, representing a mathematical expression with degree notation and an exponent.]) is shown in the Figure 5. We can see that the trend of the highest importance variable can roughly reflect the change of TOC curve, while the trend of the lowest importance variable looks unrelated to the TOC curve. With this extension strategy, not all common elastic properties can be covered, but potential TOC-sensitive parameters can be obtained unconsciously.
[image: Bar chart displaying frequencies of variable residues across a sequence range from 10 to 220. Peaks are visible at positions 39, 100, 137, and 196. The x-axis represents variable residue, and the y-axis represents frequency. The chart compares two data sets: DSM and CARMA.]FIGURE 4 | VIM of feature variables.
[image: Three line graphs labeled A, B, and C show depth profiles from 0 to 100. Graph A and B x-axes represent \( \Sigma EX_{Br}^{-2} \) in varying powers of \( \times 10^{14} \), while graph C's x-axis represents \( VOC \) in percentage. Each graph exhibits fluctuating lines depicting changes over depth.]FIGURE 5 | Curves comparison. (A) Variable with highest VIM, (B) Variable with highest VIM, (C) TOC.
From Figure 4, we also can see that many variables have very low VIM, which indicates the existence of information redundancy. The variables are added to the RF training sequentially according to the ranking from highest to lowest VIM, and changes in corresponding Pearson correlation coefficient between the predicted TOC curve and the true TOC curve with the number of variables are shown in Figure 6. We observe that the Pearson correlation coefficient shows an upward trend with the increase of the number of feature variables, and then tends to be flat when the number reaches about 40. Therefore, we conclude that in this example, only the VIM top 40 feature variables are required to meet the requirements.
[image: Line graph showing the cumulative cost explained ratio plotted against the number of variables. The ratio increases sharply at first and stabilizes around 0.05. A point is marked at 40 variables with a ratio of 0.935.]FIGURE 6 | Pearson correlation coefficient changes with the number of feature variables.
Figure 7 shows the TOC curves predicted using all 222 variables, only the VIM top 40 variables and 11 common elastic properties (P-wave impedance, S-wave impedance, P-to-S velocity ratio, density*Lamé’s parameters and subtraction of the two, density*shear modulus, Poisson’s ratio, density*Young’s modulus, density*bulk modulus, Poisson dampening factor) as the input feature variables. We see that the predicted curves of all 222 variables and the VIM top 40 variables are almost coincident on the whole, which are both better than the predicted result of the common 11 elastic properties. However, in Figure 7, we also observe that even the prediction result of 222 variables deviates significantly in the high TOC interval (as shown by the arrow). Our analysis suggests that the proportion of high TOC intervals in the entire curve is relative very small, resulting in the training of the RF regressor leaning towards low TOC samples. As shown in the histogram in Figure 8, the high TOC samples accounts for a small proportion in the whole sample set. Therefore, it is necessary to balance the samples participating in the training. We used BSMOTE to increase the number of samples in the high TOC interval. As shown in Figure 9, it can be seen that after BSMOTE processing, the number of samples with low TOC in the original sample did not change, while the number of samples with high TOC significantly increased and the values were more diverse. The number of samples with high and low TOC reached a rough balance. The prediction result of the VIM top 40 variables after BSMOTE processing is shown in Figure 10. By comparing Figure 7 and Figure 10, it can be observed that the prediction results for high TOC intervals are significantly improved, with the correlation coefficient increasing to 0.98 from the previous 0.95, which indicates that the issue of sample balance cannot be ignored for the RF prediction of imbalanced data. Figure 11 shows the predicted TOC of another well in the study area that did not participate in training as a blind well. It can be seen that although this well did not participate in the training, the prediction result is still in good agreement with the logging curve, with a correlation coefficient of 0.96, which also verifies the effectiveness of the proposed method.
[image: Line graph displaying total organic carbon (TOC) percentages against sampling points. Four lines represent different variables: black for the real data, blue for 222 variables, green for 11 common variables, and red for VIM top 40 variables. The graph spans a TOC range from 0 to 6 percent and sampling points from 0 to 100.]FIGURE 7 | Comparison of prediction curves. The black, green, blue, and red curves represent the real TOC well logging interpretation curve, predicted curve by the common 11 elastic properties and predicted curve by the all 222 feature variables, predicted curve by the VIM top 40 feature variables, respectively.
[image: Histogram showing the distribution of the percentage of total organic carbon (TOC) across samples. The x-axis represents TOC percentages ranging from 0 to 4, while the y-axis shows the number of samples, peaking at 21 for lower TOC percentages.]FIGURE 8 | Histogram of TOC before BSMOTE processing.
[image: Bar graph showing the distribution of Total Organic Carbon (TOC) percentages among samples. The x-axis represents TOC percentage ranging from 0 to 4, and the y-axis indicates the number of samples up to 25. Peaks occur around 0.5, 1.5, and 3.5 percent TOC.]FIGURE 9 | Histogram of TOC after BSMOTE processing.
[image: Line graph showing the Total Organic Carbon (TOC) percentage against sampling points. The x-axis represents TOC percentage from zero to five, and the y-axis represents sampling points from zero to one hundred. Two lines are plotted: a red line for VIM Top 40 variables and a black line for Real data.]FIGURE 10 | Comparison of prediction curves. The black and red curves represent the real TOC well logging interpretation curve and the predicted curve by the VIM top 40 feature variables, respectively.
[image: Line graph showing TOC percentage against sampling point depth ranging from 3720 to 3900. The graph compares two lines: a red line representing VIM Top 40 variables and a black line for real data. Both lines fluctuate similarly, with some divergence, indicating differences in data representation.]FIGURE 11 | Comparison of prediction curves of a validation well. The black and red curves represent the real TOC well logging interpretation curve and the predicted curve by the proposed approach.
The seismic data in this area have been rigorously processed and quality controlled to meet the requirements for pre-stack seismic inversion. Figure 12 show a pre-stack seismic inversion section of three fundamental elastic properties in the target area. From the values presented by the P-wave velocity, S-wave velocity, and density sections, there is no intuitive and unified pattern to help us identify favorable “sweet spots”. Further conversion of the elastic properties to TOC is required. Based on three fundamental elastic properties, the TOC section was predicted using the common 11 elastic properties and VIM top 40 variables after BSMOTE processing as input feature variables, respectively, as shown in Figure 13. It can be observed that there is a significant difference in the relative high TOC development area predicted by the common method and the proposed approach (shown by the red dashed lines). The relative high TOC (about 4.2%) development interval predicted by the proposed approach is below the relative high TOC development interval predicted by the common method, which has obvious anomaly and good continuity compared with the surrounding strata. Subsequent horizontal drilling confirmed the development of a continuous high-quality shale gas reservoir in this layer with TOC averaging around 4%, which verifies the effectiveness of the proposed method. Although the results of common method also exhibit locally high TOC values (about 3.5%) in this interval (shown by the red arrow), the continuity is poor and can easily be misinterpreted as a reservoir with low commercial exploration value.
[image: Three graphs labeled A, B, and C display seismic data over time. Graphs A and B, measured in meters per second (m/s), show variations in wave velocity, with color gradients from blue to red indicating different speeds. Graph C, measured in kilograms per cubic meter (kg/m³), represents density variations. Time axes are consistent across graphs, highlighting changes in geological layers.]FIGURE 12 | Elastic properties section. (A) P-wave velocity, (B) S-wave velocity, (C)Density.
[image: Seismic data visualization with two panels, A and B, displaying colorful wave patterns over time. Both panels feature a color scale from blue to red, indicating varying amplitudes. Time is labeled on the vertical axis.]FIGURE 13 | Comparison of TOC prediction sections. (A) Predicted by the common 11 elastic properties, (B) Predicted by the proposed approach.
4 CONCLUSION
In gas reservoir research areas with complex geological environments or lack of rock-physics experimental analysis data, it is difficult to accurately establish rock-physics models between petrophysical properties and seismic or their derived elastic properties, resulting in insufficient theoretical basis for model-driven approaches. Data-driven approaches, with their powerful ability to uncover the complex statistical relationship by learning a favorable predictor, provide a new way to break this situation. For continuous numerical regression problems such as TOC, data-driven approaches require a large number of feature variables as training sets in order to achieve the best performance. However, extracting valid feature variables from seismic data is a very tedious and experience-dependent task. In addition, for the describing of thin reservoirs developed in a large set of background lithology, the issue of imbalanced samples cannot be ignored. To address the challenges of data-driven approach in the application of TOC prediction, we first propose to use extended elastic impedance to automatically generate 222 extended elastic properties as the training set for machine learning, and introduce the RF algorithm to optimize the training of the regressor. Then, taking the advantage that RF can rank the importance of feature variables, the feature variables with higher importance for TOC prediction are preferentially selected to participate in the final training to reduce the redundancy of information. The BSMOTE is used to improve the problem of RF training with imbalanced samples. Both the analysis of well-logging data and the field data application demonstrate the superiority and validity of the proposed method for TOC prediction. Furthermore, the applications of the proposed method are not limited to predict TOC. It also can be easily extended to perform predictions of other petrophysical properties such as porosity, gas content and even stress, brittleness, etc. In addition, the proposed method is also suitable for other machine learning algorithms. Because preparing sufficient feature variables is the primary problem faced by all supervised machine learning algorithms for geophysical applications and the problem of data imbalance is very common in the field of geophysics.
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To clarify the tectonic evolution of M15 block in the Andaman Sea, we perform a delicate study of fault geometry and dynamics using a 3D seismic data. The data reveal eight sequence interfaces from the Early Oligocene to the Quaternary, large scale and multi angle extensional strike-slip faults, and a series of normal faults. The two large scale faults F1 and F2 start in the Eocene and end in the Quaternary, controlling the regional structure. The NNE-SSW strike-slip F1 fault belongs to the South Sagaing fault and the NNE-SSW strike-slip F2 is the eastern Andaman fault, the strike-slip movement of which are controlled by the impact of the collision between the Indian plate and the Eurasian plate. Through the analysis of the fault development history by the method of the ancient drop and the growth index, we find that most of the large or secondary scale faults reach the maximum drop and growth index in the Miocene, indicating that the Miocene is a significant period of plate collision enhancing and faults generating. The regional stress field is dominated by E-W tension. The continental crust has expanded rapidly from the Oligocene to the Miocene which results in the rapid subsidence of the crust. This regional stress intensity becomes weak after the Miocene. The activities of the faults caused a large difference in terrain height between the west and the east in the study area, forming a pattern of the western depression and the eastern terrace. Many NNE-SSW, NE-SW or NEE-SWW trend strike-slip faults and minor faults develop in the Miocene. It echoes the event that the convergence and subduction of the Indian plate from SW to NE direction led to the right rotation and N-NNE strike-slip of the West Myanmar block in the Miocene, thus forming a regional large strike-slip fault. All of the faults affect the structure of the region.
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1 INTRODUCTION
The Andaman Sea has always been considered as a region of Cenozoic extensional and strike-slip activities and is related to the Himalayan compression event. Since the Cenozoic, due to the solid tectonic movement, the geomorphic pattern of the whole Southeast Asia and even the global geomorphology has undergone dramatic changes, especially the orogeny represented by the uplift of the Qinghai Tibet Plateau has a significant impact on the changes of the global environment and climate (Zachos et al., 2001; Hall, 2002; Yin, 2010). The Andaman Sea is located at the intersection of the Indian and Eurasian plates. Influenced by plate movement, it has complex structural characteristics, multiple fault patterns and wide distribution, forming a typical “trench arc basin” system (Diehl et al., 2013).
Controlled by the closure of the New Tethys Ocean Basin at 60–50 Ma, the collision between the Indian plate and the European plate (Garzanti and Gaetani, 2002; Najman, 2010; Wu et al., 2014), and the rifting and back-arc pull apart spreading of Andaman to the east of the Sunda subduction zone, multistage faults are widely distributed in the region (Khan and Chakraborty, 2005; Khan et al., 2017). The Sagaing fault extends southward from the Myanmar land to the Andaman Sea area. It is divided into several secondary faults at the sea inlet of the Ayeyarwaddy Delta and connected with the central expansion area. As a back-arc spreading center formed in a typical extensional environment in the Andaman Sea, the leading regional strike-slip faults are the West Andaman Fault, the Sagaing Fault and the Sumatra Fault from west to east. The characteristics of the faults in the sea area are related to the onshore area. The West Andaman fault separates the western accretion wedge zone, forearc depression zone and western highland uplift zone from the center back-arc basin. The Sumatra fault passes through the northern Sumatra basin and the southern back-arc basin from south to north, while the Sagaing fault runs through the entire eastern basin.
The strike-slip fault is the main feature of fault in the study area. With the convergence and subduction of plates, the dip angle will change and the angle near the subduction center will be smaller (Fitch, 1972; McCaffrey, 1992; Philippon and Corti, 2016; Schütt and Whipp, 2020; Yang et al., 2021; Okuwaki and Fan, 2022). This will result in large strike-slip faults with a length of hundreds of kilometers or longer, which mostly on the overriding plate and close to volcanic arcs (Manaker et al., 2008), such as the Alpine fault in New Zealand (Norris and Cooper, 2001), the Great Sumatra Fault in Sunda (McCaffrey, 2009) and the Enriquillo Plaintain Garden Fault (EPGF) in Caribbean (Calais et al., 1992; Mann et al., 1995). Due to the strike-slip faults are prone to large earthquakes, many people have conducted research on this issue (Sylvester, 1988; Schmittbuhl et al., 2006; Melgar et al., 2015; Chu et al., 2021; Hu et al., 2021). The relationship between different fault attributes (such as length displacement) is very important for understanding and predicting its mechanical, hydraulic, topographic and seismological characteristics (Kim and Sanderson, 2005; Gutscher and Lallemand, 2010; Ul-Hadi et al., 2013; Fossen and Rotevatn, 2016; Zhang et al., 2020; Yuan et al., 2022; Cheng et al., 2023). The change of strike-slip fault geometry is easy to observe on the surface and is often used to study the geometry of dip-slip faults (Barka and Kadinsky-Cade, 1988; Zhang and Sagiya, 2018; Zuza and Carlson, 2018). The degree of fault deformation may vary with geometric complexity of the faults (Dolan and Haravitch, 2014; Milliner et al., 2016). Strike-slip faults include both small-scale millimeter scale faults and large-scale faults that run through the entire crust (Segall and Pollard, 1983; Martel and Pollard, 1989; Dickinson, 1996; Singh et al., 2013). Its sliding distribution are commonly determined by correlating offset stream channels and offset channels are formed by the interplay of tectonic and geomorphic processes (Papaleo et al., 2017; Reitman et al., 2019). To study the distribution and features of the strike-slip faults is significant to understanding the migration and accumulation of hydrocarbon resources (Qiu et al., 2019; Tian et al., 2022).
Predecessors have also done some work on the Andaman Sea. Polachan and Racey (1994) studied the geological situation and tectonic evolution of Mergui Basin, located in the south of the back-arc basin area. Good progress has also been made in the research on the tectonic evolution of the Alcock rise and Sewell rises in the middle of the back-arc basin and the central expansion zone (Morley and Alvey, 2015; Morley, 2017; Curray, 2005; Curray et al., 1979; Curray et al., 1982; Raju et al., 2004; Diehl et al., 2013; Morley, 2013; Mahattanachai et al., 2021). However, few studies have been conducted on the Mergui platform area centered on the M15 block and penetrated by the Sagaing fault. The tectonic evolution of the study area has not been reported yet. The development and distribution of faults play a controlling role in the regional tectonic evolution. Therefore, we study and analyze the fault structural characteristics of the M15 block in the Andaman Sea, so that make the tectonic evolution of the area clear and provide a guidance for understanding the migration and storage of petroleum.
2 GEOLOGICAL SETTING
The Andaman Sea is located in the eastern part of the Bay of Bengal, at the intersection of the Eurasian and Indian Ocean plates (Curray, 2005). The area is about 7.98×104 km2, 1200 km from north to south, and a width of 645 km from east to west. The average water depth is about 1000 m, but the water depth in the central area (about 5% of the sea area) exceeds 3000 m, and water depths very locally exceed 4000 m (Morley, 2017). As a marginal sea in Southeast Asia, it is a convergent continental margin (Luan et al., 2021) (Figure 1), stretching from the Malay Peninsula in the east to the Bay of Bengal in the west, from southern Myanmar in the north to northern Sumatra Island in the south (Curray, 2005; Srisuriyon and Morley, 2014). The study area, block M15 (Figure 1), is located in the eastern part of the Andaman Sea, with a latitude range of 11°40′00″-12°19′07″and a longitude range of 96°23′15″-97°01′48″. The temporal sampling rate of seismic data is 2 m, and the area of 3D survey data is about 4000 km2. The Andaman Sea is a Cenozoic Ocean basin, and the regional sedimentary strata are mainly Cenozoic strata (Table 1).
[image: Geological map illustrating the tectonic features of Southeast Asia, including Myanmar and Thailand. Various colors denote different geological formations, with red lines indicating fault lines. An inset map in the top left corner shows a regional view. A legend on the right labels features like accretionary wedges, volcanic arcs, and sedimentary basins. The map includes notations for AR: Alcock rise, SR: Sprott rise, and M: Mergui terrace.]FIGURE 1 | Map showing major geomorphologic features along the Andaman Sea. The study area is marked by the rectangle with the outline.
TABLE 1 | Regional sedimentary structures.
[image: Table outlining depositional environments, reflection geometry, and horizon data across geological epochs. Quaternary details basin fill under tectonics, with reflection geometry ranging from wavy to S-shaped, and amplitudes from low to moderate, showing varying continuity. Miocene includes mass transport deposition and sigmoidal progradation. Oligocene indicates sand deposits and onlap fill, with reflection geometry as moderately wavy and high amplitude.]3 DATA AND METHODS
The survey area is about 200 km from the Mergui port in Myanmar, with a depth of more than 100 m. The maximum depth of the western boundary of the survey area is about 1500 m. The depth gradually deepens and varies significantly from eastern to western boundaries. The data acquisition was completed by the COSL seismic exploration vessel HAIYANGSHIYOU 721 (abbreviated as HYSY721). The seismic sampling rate is 2 m, and the 3D survey data area is about 4000 km2 consisting of 117 prime sail lines with an average sail line length of 75.725 km HYSY721 uses twelve 7050 m streamers and two alternately fired 4030 cubic inch air gun arrays in configuration-acquired data.
We use well-imaged high-resolution 3D seismic data to study the fault system in the region. Firstly, the sequence of the M15 block is divided by seismic interpretation profile and relevant geological data in the study area. Secondly, the six significant faults in the region are quantitatively analyzed by the ancient drop method and growth index method. Then, the dynamic origin of the faults is analyzed, and its influence on the regional tectonic evolution is analyzed.
4 SEISMIC STRATIGRAPHY
Referring to the relevant stratigraphic sequence division (Ye et al., 2022; Chen et al., 2023), we divided the stratigraphic sequence in more detail and identified seven stratigraphic sequences (from old to new) in the seismic data profiles: the Early Oligocene, the Late Oligocene, the Early Miocene, the Middle Miocene, the Late Miocene, the Pliocene and the Quaternary, which are defined by eight sequence interfaces named Tg, T6, T5, T4, T3, T2, T1 and SF, respectively. We also identified six large strike-slip faults and secondary faults, named F1, F2, F3, F4, F5 and F6, respectively. The distribution of them is shown in Figure 2. The color of Figure 2 represents the time of T6 horizon. In order to clearly show the faults development history, we select three seismic profiles (Figure 3A; Figure 3B; Figure 3C), the position of which are shown in Figure 2, the yellow lines named line1, line2 and line3. From Figure 3A, we can see that there is a very bit fault named F1 passing through the basement Tg until SF. It is easy to see that the F1 fault was active before the Oligocene. Through analysis, we know that the F1 fault is the known South Sagaing fault. It is the Sagaing fault that controls the tectonic movement in the area, and the Sagaing fault was formed by plate movement before the Eocene. After the Eocene, the Andaman Sea suffered from land and land subduction, and the Myanmar microplate collided with the Indian plate, resulting in the counterclockwise rotation of the Indian plate, while the Myanmar microplate further moved northward, eventually coupling with the Indian plate boundary. Although there is no sufficient evidence to prove that the F1 fault belongs to the same fault as the Sagaing fault, we still call it the South Sagaing fault because it has the same strike as the dextral strike slip Sagaing fault. Besides, in the process of fault analysis for the seismic profiles, it is found that the F1 fault is obviously connected with the South Sagaing fault in the north and south of the study area, which further proves that the F1 fault belongs to the South Sagaing fault. The activity of the fault caused a large difference in terrain height between the east and the west in the study area, forming a pattern of the separation of the western depression, the eastern slope zone and the eastern terrace.
[image: Topographic map showing elevation variations with a color gradient from green to yellow. Black contour lines and two highlighted areas are outlined in red and blue rectangles. An arrow indicates the north direction.]FIGURE 2 | The distribution of Fault F1-F6 on T6 horizon. The three yellow lines on the map mark the location of three seismic profiles, respectively.
[image: Geological cross-sections labeled A, B, and C show sedimentary layers with varying colors representing different strata. Each panel includes topographical lines and annotations indicating horizons. The sections are illustrated with depth scales to measure the vertical extent. Panel B contains a specific label, "the casualty horizon."]FIGURE 3 | Stratigraphic sequences and faults in the study area. (A) Seismic profile of line1 (the up map) and the interpreted stratigraphic sequences (the down map). Fault F1 and F6 are shown on the map. (B) Seismic profile of line2 (the up map) and the interpreted stratigraphic sequences (the down map) and Fault F2, F4 and F5 are shown on the map. (C) Seismic profile of line3 (the up map) and the interpreted stratigraphic sequences (the down map) and Fault F2, F3 and F5 are shown on the map.
The F2 fault (Figure 3B; Figure 3C) we call it the eastern Andaman fault separates the Mergui Ridge from the eastern platform. Affected by the F2 fault, the Oligocene strata on the right side of F2 were uplifted and received some denudation, leading to the thickness decreased significantly. Moreover, the strike-slip and rifting in the north of Mergui Basin further increased the thickness difference between the east and west sides of the fault (Luan et al., 2023). In the Early Miocene and middle Miocene, rifting and strike-slip occurred in the northern part of the Mergui Basin and the degree of back-arc expansion increased. At the same time, there was a large-scale eruption of volcanic magma, coupled with the uplift of the volcanic island arc, and thus the regional terrain difference also increased. From Figure 3B and Figure 3C, we can also see that the changes of the strata (T3-SF) were not so obvious after Miocene. It is due to the activities of the faults attenuated.
NNE-SSW strike-slip faults and several NEE-SWW secondary faults (such as F3-F6 faults in Figures 3A–C) control the structural development in the region. A series of normal faults are also developed in M15 block of Andaman Sea. In order to clearly show the trend of the faults, we extract the coherence attributes of T6 horizon in the red rectangle area (Figure 4A) and the blue rectangle area (Figure 4B) of Figure 2. From Figure 4, we can clearly see the F1 fault, the F2 fault and other secondary or smaller faults. The faults mostly are distributed in NNE-SSW, NE-SW or NEE-SWW directions. The secondary faults, mainly showing extensional displacement, are very closely distributed in the basin and tend to form arrays with dominant dip or conjugate fault groups. The NNE-SSW trending Sagaing fault in the study area is consistent with the further northward trending Sagaing fault. These faults interact with each other to form the current tectonic structure.
[image: Two grayscale geological maps labeled A and B, each with a fault line marked in red. Map A displays fault F1 and map B shows fault F2. Both include vertical grayscale bars for scale reference.]FIGURE 4 | Faults distribution in the study area. (A) The coherence attribute slice of T6 horizon in the red rectangle area of Figure 2. (B) The coherence attribute slice of T6 horizon in the blue rectangle area of Figure 2.
5 DISCUSSION
5.1 Fault families around study area
Faults developed in the study area comprise four fault families based on their geometry, orientation, distribution and relationship with main structures (Figure 5).
[image: Three panels labeled A, B, and C each contain sedimentary layer cross-sections. The top images display brown strata, while the bottom images show colored, stratified geological layers with contour lines. Each panel includes vertical depth scales.]FIGURE 5 | Geological sections and faults across the M15 block of Andaman Sea ((A–C) is the profile of the study area from south to north).
The study area has produced large-scale and multi-angle extensional strike-slip faults. Through refined interpretation of seismic profiles and identification of faults in the study area, it is believed that the area mainly includes negative flower shaped faults, “Y" type composite faults, domino-type fault zones and graben horst structural combination styles, which are widely distributed in the whole study area.
	1) The negative flower structure is associated with the strike-slip fault under the tensile and torsional stress field conditions (Figure 5A; Figure 5C). The fault forms a syncline structure above the strike-slip fault. The flower structure is dominated by positive slip distance, and the cross-section is steep and gentle. The stratum between the faults is a graben structure. The folds and faults derived simultaneously on the flank are arranged in the echelon.
	2) Domino fault zone: a series of faults with a consistent or nearly consistent dip in the profile and parallel or nearly parallel strike in the plane from the domino structural style (Figure 5B).
	3) “Y" type fault is often developed in an extensional fault depression basin (Figure 5A). The intersection of the main fault and the reverse dipping secondary fault presents a “Y" shape. The main fault is significant in scale and has been developed for a long time. The fault usually passes through the lower sedimentary layer, which is generally a basin-controlling or belt-controlling fault, and controls the depression and boundary of the region. The secondary fault is generally located in the shallow section of the stratigraphic depression side, opposite the tilt direction of the main fault.

4) Graben and horst: the two sides of the graben are surrounded by faults, and the middle is a falling fault block common in fault basins. The horst is opposite to the graben; the middle part is a rising fault block, and the fault blocks on both sides are relatively falling. Graben is more developed in the areas where the crust is stretched, and graben horsts are often associated with development, which occurs alternately under the control of faults. A representative horst combination can be found in Block M15 (Figure 5C).
5.2 Quantitative analysis
In this section, we select six representative faults from the four fault families to compile. These data are used to evaluate the growth history of faults.
The fault system is divided into two levels. The first level fault mainly controls the slope break zone boundary between the eastern Andaman Sea platform and the western depression or eastern slope zone. It controls the formation and evolution of oil and gas in the region. The secondary fault mainly controls the characteristics of the secondary depression and graben horst in the area, leading to the uplift and subsidence of the stratum. The secondary fault significantly restricts oil and gas accumulation and storage. In the study area, faults have an important influence on the sedimentation and distribution of provenance.
The F1 and F2 faults are the primary boundary significant faults controlling the eastern part of the Andaman Sea. They extend long and have a large scale. The profile shows that they penetrate the T6 reflector downward. The quantitative analysis of the F1-F6 faults in the study area is carried out by using the method of ancient fall and growth index to study the characteristics of fault activity in the area (Figure 6).
[image: Six line graphs labeled A to F display growth index against drop size in nanometers. Each graph shows two lines, red for "Drops" and black for "Growth index", illustrating varying trends in data across different graphs, such as linear and non-linear patterns.]FIGURE 6 | Analysis of the ancient drop and the growth index of F1–F6 faults ((A–F) correspond to F1–F6 respectively).
F1 is the Sagaing fault. It controls the regional structure. We can see from Figure 6A that the fault began in the Eocene and then started to grow. In the Oligocene, it reached the maximum ancient drop, 1456.17 m with the maximum growth index,5.87. After the Oligocene, the ancient drop and growth index showed a decreasing trend as a whole. This is because the strata in the west of the fault had been in subsidence and the degree of subsidence was severe in the Oligocene, leading to the maximum growth index and ancient drop. After that, the subsidence became slowly.
F2 is the East Andaman Fault. The fault trend in the region is NNE-SSW; The west of F2 is the eastern platform, where the traps are relatively well-defined. The east side of F2 is Mergui Ridge. Figure 6B shows the ancient drop and growth index change dramatically before the Miocene, illustrating that a significant difference in strata drop and thickness before and after the Miocene. The reason is that the F2 fault was more active before the Miocene than after it, characterized by higher localized basement and thinner strata due to denudation.
It can be seen from the figures (Figures 6C–F) that the faults ancient drop and growth index are generally represented as one activity peak in the Middle Miocene. Since the Late Oligocene, the faults ancient drop and growth index in the study area have gradually increased, indicating that the faults activities have gradually increased; In the Early Miocene, the faults ancient drop and growth index reached the maximum, indicating that the faults activities reached the peak, which was the most active period of tectonic activity; After the Early Miocene, the faults ancient drop and growth index decreased, indicating that the activity rate of faults and tectonic decreased gradually.
Since the Oligocene, the fault ancient drop and growth index trend tend to be consistent. The fault ancient drop and growth index reached the maximum in the Early Miocene, indicating that the fault activity reached the maximum in this period. At this time, due to the collision between the Indian Plate and the Myanmar microplate, the Sagaing fault started to dextral strike-slip, the Myanmar Basin experienced tension and fracture, the Andaman Sea expanded, and the Mergui basin was formed. At the same time, large-scale marine transgression began to occur, characterized by progressive sedimentation of sandstone and mudstone from river facies and delta facies to shallow sea facies, leading to an increase in the thickness difference between the hanging wall and footwall of the fault. The reason for the thinning of the hanging wall of the fault may be due to the effects of ocean current scouring, seawater erosion, etc. Therefore, the fault growth index increase may be caused by the combined effects of sedimentation and seabed erosion. After that, the ancient drop and growth index decreased. In the Late Miocene, the ancient drop and growth index reached the lowest, and the fault activity gradually weakened. This indicates that a large-scale strike-slip pull-apart movement along the Sagaing fault was from the Early Miocene to the Early Pliocene. The East Andaman Sea Basin gradually developed, and the Mergui Basin then turned into a depression stage.
From the Early Pliocene to the present, the Myanmar microplate continued to move northward and collided with the Himalayan fault of the Eurasian plate. Due to the blocking effect of the Himalayan fault, the region underwent structural inversion. A series of negative flower structures, “Y" type faults and other structural styles were produced by torsional compression and extrusion and the region is in an east-west torsional compression tectonic stress environment. During this period, the Andaman Sea was in the stage of regression.
5.3 Regional dynamics of growth faults
It can be seen from the above analysis that a large number of NNE-SSW, NE-SW and NEE-SWW trending faults were developed during the Late Oligocene and the Early Miocene. During the Oligocene, the growth index and ancient fall of the study area were both at low values, indicating that the collision between the Indian plate and the Eurasian plate was a soft collision at this time, and the fault gradually began to form. The characteristics of the primary and secondary faults have yet to appear. The Sagaing fault started to dextral strike-slip and the Mergui basin was formed. At this time, the study area (red rectangle in Figure 7) belongs to a continental crust environment (Figure 7D). The continental crust began to expand, resulting in rapid subsidence of the stratum, which lasted until the Early Miocene, and then the subsidence slowed down, and Graben and half-graben almost filled the sea level (Curray, 2005). The Miocene is an important period of fault development in the study area, and the plate movement at that time is relatively active. During this period, the plate collision gradually strengthened, and the volcanic arc was uplifted, and the fore-arc and back-arc basins in Andaman Sea areas began to take initial shape, and the strike-slip fault extended southward to the north of the Mergui basin (Figure 7C). The back-arc basin affected the formation of the study area. With the change in the extension direction of the fault, the strike-slip fault developed to the Mergui basin. This change promoted regional tension deformation, and the growth index and ancient fall gradually increased during this period, reaching the peak in the Middle Miocene (Figure 6). The coupling effect between Indian and Australian plates has a significant influence on the fault activities in the study area, which is the main reason for the development of faults; The accelerated uplift of the volcanic island arc leads to the gradual increase of the thickness difference of the stratum in the Andaman Sea area (Figure 7B). In the Late Miocene, with the coupling of the Indian plate and the West Myanmar block, the Sagaing fault began to move, and large-scale strike-slip pull apart movement occurred along the Sagaing fault, and the “trench-arc-basin” system of the Andaman Sea gradually developed. Now, the study area is in marine environment (Figure 7A).
[image: Four-panel geological map series showing the tectonic evolution of Southeast Asia from 5 million years ago (Panel A) to 25 million years ago (Panel D). Each panel illustrates the positions of various geological features such as trenches, faults, basins, and continental platforms. The legend on the right details symbols and colors representing subduction zones, faults, land, deep sea, and other geological features. The progression shows significant changes in the positioning and interaction of tectonic plates and geological structures over time.]FIGURE 7 | Structural evolution model of Andaman Sea (According to the revision of literature (The age of (A–D) is from new to old) (Srisuriyon and Morley, 2014)).
The development of faults controls the discharge of fluids and the migration of oil and gas. The strike-slip form of the Sagaing fault in the back-arc depression of the study area determines the direction of E-W and NNE-SSW tensile stress (Singha et al., 2019). The tension in the E-W direction has led to the occurrence of strike-slip movements and N-S trending Sagaing fault, resulting in the formation of central extension zones and near N-S trending regional faults. When the local formation pressure gradually increases and finally reaches the formation fracture pressure, the formation will break. At this time, due to the occurrence of the fracture, the fluid will start to release upward through the fracture (Mohan et al., 2006).
6 CONCLUSION
From the detailed analysis of seismic data, we reach the following conclusions:
	1) It is found that a series of NNE-SSW strike-slip faults and NE-SW or NEE-SWW faults are mainly developed in the study area. Strike-slip faults control the depression and uplift in this area, forming a geomorphic morphology of high east and low west, which echoes the collision between the Indian plate and the Eurasian plate.
	2) The fault mainly developed between the Late Oligocene and the Early Miocene. Since the Late Oligocene, the collision between the Indian and Eurasian plates has become more robust. At the same time, the coupling between the Indian plate and the Myanmar microplate has led to a significant dextral strike-slip movement of the Sagaing fault. F1 Sagaing fault and F2 East Andaman fault developed before the Oligocene. The continuous activities of the primary and secondary faults until the Early Miocene promoted the formation of the tectonic framework in the study area.
	3) The regional stress field affects the fault’s development. The stress field in the region is dominated by E-W tension. The continental crust has expanded rapidly since the Oligocene, resulting in rapid subsidence, which lasted until the Early Miocene and then slowed down. This regional stress intensity was significantly greater from the Late Oligocene to the Early Miocene than that after the Early Miocene, so many near NNE-SSW growth normal faults were developed in the study area before the Early Miocene.
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Elastic full waveform inversion (EFWI) is a powerful technique. However, its strong non-linearity makes it susceptible to converging towards local extremes during the iterative process due to various factors like insufficient low-frequency information or an inadequate initial model. The existing elastic envelope inversion can offer a promising initial model for EFWI when low-frequency information is unavailable, reducing the dependence on both the initial model and low-frequency data. However, its accuracy is affected by the quality of the source wavelet, potentially causing the EFWI to run in the wrong direction if there is a discrepancy between the simulated wavelet and the field wavelet. To address these issues and enhance the reconstruction of large-scale information in the model, we propose a novel approach called source-independent elastic envelope inversion, employing the convolution method. By combining this method with source-independent multiscale EFWI, we effectively establish P- and S-wave velocity models even in situations with inaccurate wavelet information. The results of testing on a portion of the Marmousi2 model demonstrate the effectiveness of this technique for both full-band and low-frequency missing data scenarios.
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1 INTRODUCTION
In multicomponent seismic exploration, establishing depth domain interval velocity models for compressional waves (P-wave) and shear waves (S-wave) is a key step in data imaging processing and inversion. Compared to techniques such as tomography and migration velocity analysis that only use travel time to obtain velocity information, elastic wave full waveform inversion (EFWI) utilizes information such as travel time, phase, and amplitude of elastic waves to establish P- and S-wave velocity models by minimizing the residual between the observed multicomponent data and simulated multicomponent seismic data of a specific velocity model. Therefore, EFWI has the potential to reveal structural details and lithology in complex geological backgrounds, and theoretically can obtain high-resolution depth domain P- and S-wave velocity models.
The idea of full waveform inversion (FWI) of seismic waves was first proposed by Lailly (1983) and Tarantola (1984). Under the theoretical framework of generalized least squares, FWI calculates the gradient by correlating the simulated wave field and the reverse wave field of the residual record between simulated and observed seismic data, and then updates the parameter model through continuous iteration. Since FWI can make full use of the kinematic and dynamic information of seismic waves to estimate the propagation speed of seismic waves and theoretically can obtain a higher resolution velocity model, the idea of FWI has received extensive research interest since it was proposed and research progress has been made in the objective function optimization (Datta et al., 2016; Zhu et al., 2016), multi-scale inversion (Bunks et al., 1995; Boonyasiriwat et al., 2009; Xu et al., 2014), mixed domain inversion (Kim et al., 2013; Jun et al., 2014; Xu et al., 2014), envelope inversion (Wu et al., 2013; Wu et al., 2014; Ao et al., 2015), source wavelet inversion (Tarantola, 1984; Song et al., 1995; Hu et al., 2017), and inversion efficiency improvement (Krebs et al., 2009; Wang et al., 2011) of FWI. Currently, FWI has been widely used in field seismic data imaging and many application examples have significantly improved the imaging quality of seismic data (Sirgue et al., 2010; Lewis et al., 2014; Liu et al., 2014; Zhong et al., 2017).
Tarantola (1986) and Pratt (1990) extended the compressional wave FWI to EFWI. Although some ideas and techniques in longitudinal wave FWI can be extended or even directly applied in EFWI, the non-linearity of inversion is further exacerbated by the inclusion of more inversion parameters in EFWI, and due to the presence of various types of noise in seismic data, EFWI based on three-component waveform matching is very sensitive to these noises, and the inversion is easily affected by these noises and falls into local extrema. At the same time, if the minimum available frequency in the three-component seismic data is too high, it will greatly enhance the dependence of EFWI on the initial model, and it is difficult to obtain good inversion results when the accuracy of the initial model is low. In addition, when the source wavelet is inaccurate, there is a significant difference between the synthetic data obtained from the erroneous source wavelet and observed data, which often leads to the wrong direction of EFWI and increases the difficulty of its application.
The lack of low-frequency information in observed three-component seismic data is one of the key factors leading to a decrease in the accuracy of EFWI. Baeten et al. (2013) pointed out that the low-frequency information of 1.5∼2 Hz in seismic records is particularly important for alleviating the “cycle skipping” phenomenon in FWI. The key to solving this problem is how to provide an accurate initial model for FWI when low-frequency information is missing. Envelope inversion is often used to construct the initial model of FWI. Bozdağ et al. (2011) pointed out that the seismic envelope contains rich low-frequency information and using the envelope as input data for FWI inversion can establish a more accurate initial model. The research of Huang et al. (2015) indicates that envelope inversion can significantly improve the accuracy of the inversion of the compressional and shear wave velocity model when seismic data lack low-frequency information. Wu and Chen (2017, 2018, 2020) proposed the direct envelope Fréchet derivative and the direct envelope inversion (DEI) method, which can map the ultra-low frequency envelope data perturbation to the velocity perturbation directly and can invert the large scale strong-scattering velocity model without low-frequency information in original common shot gathers. Chen et al. (2018) combined the DEI method with the wavefield direction decomposition method and proposed a reflection DEI method, which can improve the inversion effects of the velocity structures in the strong-scattering shielding area. However, traditional envelope inversion is based on the accurate source wavelet assumption. When the source wavelet is inaccurate, envelope inversion cannot construct a reasonable initial model. Therefore, Ao et al. (2015) proposed a convolutional envelope objective function based on the compressional equation, which can eliminate the impact of wavelet inaccuracy on the accuracy of compressional envelope inversion.
We extend the source-independent FWI (Choi et al., 2005) to EFWI to improve the accuracy of envelope inversion when the source wavelet is inaccurate. On the basis of previous research, a misfit function for the elastic wave convolution envelope was established, and corresponding gradient and adjoint source formulas were derived. Applying these methods to mixed domain EFWI can improve the inversion accuracy of compressional and shear wave velocity models in cases of wavelet inaccuracy and missing low-frequency information.
2 SOURCE INDEPENDENT EFWI BASED ON CONVOLVED ELASTIC WAVEFIELDS
The misfit function of EFWI in the time domain can be written as (Tarantola, 1986; Prat, 1990):
[image: The equation shows the expression for \( E(\mathbf{m}) \), which is equal to \(\frac{1}{2}\) times the double sum from \( i=1 \) to \( N_r \) and \( j=1 \) to \( N_f \) of the integral from zero to \([ (u_{ij} - d_{ij})^2 ] dt\).]
where [image: Mathematical equation displaying a vector \( \mathbf{m} = (v_p, v_s) \), where \( v_p \) and \( v_s \) are variables or components of the vector.], [image: It seems like you provided a mathematical expression rather than an image. If you have an image to describe, please upload it or provide a URL.] is the compression wave velocity, [image: Please upload the image or provide the URL so I can help create the alt text for it.] is the shear wave velocity, [image: Please upload the image or provide a URL so I can help create the alt text for it.] and [image: It seems there is no image visible. Please upload the image or provide a URL for me to create the alt text.] are the shot number and receiver number per shot, respectively, and [image: Please upload the image or provide a URL so I can create the alt text for you.] and [image: It seems like there is no image provided. Please upload the image or provide a URL for me to create the alt text.] are the modeled and observed three-component vector wave fields, respectively.
For each shot gather, select [image: The image contains the LaTeX-styled mathematical notation "u sub i, k", representing a variable or element within a sequence or matrix, with "i" and "k" as subscripts.] and [image: The image shows a mathematical notation \( \mathbf{d}_{i,k} \), representing a bold lowercase letter "d" with subscripts "i" and "k".] as the reference traces of the modeled and the observed data, respectively, and [image: It seems there is no image attached. Please try uploading the image again or provide a URL. If you would like to add any context, please include it as well.] as the channel number of the reference trace. Convolve the simulated traces with the reference traces of observed wavefields to obtain the modeled wavefields, and convolve the observed traces with the reference traces of simulated wavefields to obtain the modeled wavefields. So Eq. 1 becomes a new convolution misfit function:
[image: Mathematical notation showing an equation for error energy. The equation is: \(E_{\text{cv}}(\mathbf{m}) = \frac{1}{2}\sum_{i=1}^{N_l}\sum_{j=1}^{N_t}\int_{0}^{T} \left[(u_{i,j}^*d_{i,k} - d_{i,j}^*u_{i,k})^2\right] dt\).]
since the seismic traces of any components in the three-component seismic data can be regarded as Green’s function and source wavelet convolution, that is:
[image: It seems like you've provided a piece of mathematical text rather than an image. The equation is: \(d(t) = g(t) \ast s(t)\).]
where [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] is a certain component in the three-component data, [image: Please upload the image or provide a URL so I can help create the alternate text for it.] is the Green’s function, and [image: Please upload the image or provide a URL so I can help create the alt text for you.] is the source wavelet.
Equation 2 can be expressed as:
[image: A mathematical equation describing a double summation for energy, \( E_{cr}(m) \), involving parameters such as \( N_r \), \( g_{ik} \), \( s^d_k \), and \( s^e_i \), with integral limits from zero to one, and mathematical operations including products and differences, followed by a squared term and integration with respect to \( t \).]
where [image: Lowercase letter "g" with a superscript "u" on the top right.] is the Green’s function of modeled three-component data, [image: Lowercase letters "g" and "d" are displayed in black, with "g" situated below "d", showing a serif typeface, indicating differences in font height and design.] is the Green’s function of observed three-component data, and [image: The image shows the chemical notation "s" with a superscript "u" next to it.] and [image: I'm unable to view the image directly. Please upload the image or provide a URL so I can assist you further.] are the source wavelet of modeled and observed three-component data, respectively.
From Eq. 4, we can see that for a shot gather, two terms in the time integration contain the same form of source [image: Expression showing \( s_i^{d^*} u_i \).]; therefore, we can use the convolution misfit function in EFWI to eliminate the influence of the source wavelet. This is the basic principle of the time domain convolution method to eliminate the influence of wavelets.
For frequency domain EFWI, since the time domain convolution operation is equivalent to the frequency domain multiplication operation, the source free misfit function of EFWI in the frequency domain in the two-dimensional case can be expressed as:
[image: Mathematical equation labeled as equation five. It shows a complex expression for \( E_{cv}^{\text{r}}(\mathbf{m}) \), including a double summation over indices \( i \) and \( j \). The expression involves matrix products and differences of terms \( U_{ik}^U D_{kj}^U \) and \( D_{ik}^U U_{kj}^U \), enclosed in real part notation.]
where [image: Mathematical notation showing \( U^{x}_{i,j} \).], [image: Mathematical notation showing "U" with superscript "z" and subscripts "i, j".], [image: Mathematical expression \( D_{ij}^{x} \) with subscript \( ij \) and superscript \( x \).], and [image: Mathematical expression with a capital D subscripted by i and j and superscripted by z.] are the X and Z components of the modeled wavefields and observed wavefields in the frequency domain, respectively, [image: Mathematical expression depicting \( U^{x}_{i,k} \).], [image: Mathematical expression showing \( U^{z}_{i,k} \).], [image: Mathematical notation showing "D" with subscripts "i" and "k" and superscript "x".], and [image: Mathematical notation with a capital D subscript i k and superscript z.] are the X and Z components of reference traces of modeled wavefields and observed wavefields in the frequency domain, respectively, the superscript [image: Please upload the image or provide a URL so I can assist you in creating alternate text.] is the transpose operator, the superscript [image: Sure, please upload the image you want me to describe.] is the conjugate operator, and [image: Blackletter-style letter "R" with elaborate design, featuring curved strokes and decorative elements.] is the real part operator.
The seismic wave in the frequency domain can also be regarded as the product of Green’s function and the source wavelet, so there are:
[image: Mathematical expression depicting an equation where \( D(\omega) = G(\omega) S(\omega) \) followed by the equation number in parentheses, equation six.]
where [image: It seems there is no image uploaded. Please try uploading the image again or provide a URL. If you have additional context or a caption, feel free to include it.] is the frequency domain seismic wave, [image: It seems like there might have been an issue with uploading the image. Please try again, making sure the file is attached. Optionally, you can add a caption for additional context.] is the frequency domain Green’s function, [image: Please upload the image so I can help generate the alternate text for it.] is the source wavelet in the frequency domain, and [image: Please upload the image or provide a URL, and I will help you create the alt text.] is the angular frequency.
According to Eq. 6, Eq. 5 can be expressed as:
[image: Mathematical equation expressing \( E_{\text{cyl}}(m) \) as a sum involving complex conjugates and differences of complex matrices \( G \), labeled with indices and superscripts \( U \) and \( D \), multiplied by matrices \( S \) and \( S' \).]
where [image: Mathematical notation showing \( G^x_{i,j} \), where \( G \) is indexed by \( i,j \) with a superscript \( x \).] and [image: Mathematical expression showing \( G_{i,j}^{U^z} \), with \( i \) and \( j \) as subscripts and \( U^z \) as a power superscript.] are the Green’s functions of modeled X and Z components in the frequency domain, respectively, [image: Mathematical expression showing \( G_{i,j}^{d^x} \).] and [image: Mathematical expression showing "G" with subscript "i, j" and superscript "x, y".] are the Green’s functions of observed X and Z components in the frequency domain, respectively, [image: Mathematical notation representing the sum of values x subscript i j.] and [image: Mathematical expression showing a variable with subscripts and superscripts: uppercase S with subscripts i and j, and superscripts y and z.] are the source wavelets of modeled X and Z components in the frequency domain, respectively, and [image: Mathematical expression of \( s_{ij}^{Dx} \).] and [image: Mathematical expression showing the symbol \(S_{ij}^{D}\).] are the source wavelets of observed X and Z components in the frequency domain, respectively.
From Eq. 7, it can be seen that both sides of each minus have the same form of source terms. By using this misfit function, the influence of wavelet differences between simulated and observed records is eliminated, which is the basic principle of eliminating the influence of wavelets in frequency domain EFWI.
Make [image: \( R_{i,j}^{x} = U_{i,k}^{x} D_{i,j}^{x} - D_{i,k}^{x} U_{i,j}^{x} \).] and [image: Mathematical equation displaying \( R_{i,j}^{xz} = U_{i,k}^{xz} D_{i,j}^{xz} - D_{i,k}^{xz} U_{j,k}^{xz} \).], Eq. 7 can be expressed as:
[image: Mathematical equation representing \( E_{ov}(\mathbf{m}) = \frac{1}{2} \Re \sum_{i=1}^{N_\mathrm{s}} \sum_{j=1}^{N_\mathrm{r}} \begin{bmatrix} R^x_{ij} \\ R^y_{ij} \end{bmatrix}^{\intercal} \begin{bmatrix} R^{x\star}_{ij} \\ R^{y\star}_{ij} \end{bmatrix} \). Equation is labeled as number 8.]
By taking the partial derivative of [image: Uppercase letter "M" in a bold, black serif font on a white background.] on both sides of the above equation and using the elastic wave equation to obtain [image: Mathematical expression showing the symbol "R" with subscript "i, j" and superscript "x".] and [image: Mathematical expression showing \( R_{i,j}^{z} \).], the gradient formula in the frequency domain can be obtained:
[image: The equation shows the partial derivative of \( E_{Cr}(\mathbf{m}) \) with respect to \(\mathbf{m}\), involving matrices and vectors. It includes the real part of a summation from \( i = 1 \) to \( N_s \), with matrices \(\mathbf{U}\), \(\mathbf{A}\), and vectors \(\mathbf{\alpha}\), \(\mathbf{\beta}\), and involves matrix transpose and inverse operations. Equation (9) is noted to the side.]
where:
[image: Matrix A is a three-by-three matrix with the following elements: First row: \(v_s^2\), \(v_p^2\), 0. Second row: 0, \(v_s^2 - v_p^2\), \(\omega^2\). Third row: 0, 0, \(\omega^2\).]
[image: Matrix U consisting of partial derivatives and variables, with elements: partial U_x over partial x squared, partial U_x over partial z squared, partial squared U_z over partial x squared, partial squared U_z over partial z squared, partial squared U_x over partial x partial z, partial squared U_z over partial x partial z, U_x, and U_z.]
[image: Mathematical expression showing a sequence of terms organized in a specific pattern. The expression is enclosed by braces and includes indices and superscripts to differentiate elements.]
[image: A mathematical equation representing a vector \( \beta \), where each element inside the brackets is a series of zeros surrounding a sum. The sum is from \( j = 1 \) to \( N_r \) of \( d_{i_k}^t R_{i_j}^* \). The expression is transposed.]
It can be seen that the gradient of source-independent frequency-domain EFWI is consistent with that of conventional frequency domain EFWI. For the calculation of the frequency domain wave field, DFT operation can be inserted while calculating the time domain wave field to convert the time domain wave field into the frequency domain, thereby achieving source-independent mixed domain EFWI.
3 ELASTIC WAVE ENVELOPE INVERSION BASED ON HILBERT TRANSFORM
The envelope inversion based on Hilbert transform continuously fits the Hilbert envelope of modeled data and the Hilbert envelope of observed data, and takes the velocity corresponding to the smallest fitting difference between the two as the optimal velocity model.
The analytic signal based on Hilbert transform can be expressed as:
[image: A mathematical expression showing \(\tilde{d}(t) = d(t) + iH(d(t))\), labeled equation (10).]
where [image: Equation showing the function \( d(t) \), where \( d \) is a function dependent on the variable \( t \).] is the seismic signal, [image: The formula shows a time-dependent function \(\tilde{d}(t)\) with a tilde over the variable \(d\), indicating a transformed or modified version of the function \(d\) of time \(t\).] is the analytical seismic signal, [image: The mathematical expression shows \(i\) equals the square root of negative one, representing the imaginary unit in complex numbers.], and [image: Illustration of a stylized letter 'H'. The letter is bold and symmetrical, with clean, straight lines forming its structure. The background is white, highlighting the letter's dark color.] is the Hilbert transform, which is defined as follows:
[image: The formula represents the Hilbert transform of \(d(t)\), expressed as \( H(d(t)) = -\frac{1}{\pi} K \int_{-\infty}^{\infty} \frac{d(\tau)}{t - \tau} \, d\tau \), labeled as equation (11).]
where [image: Please upload the image or provide a URL for me to generate the alt text.] is the Cauchy principal value.
The envelope of the signal can be expressed as:
[image: The image shows a mathematical equation: \( D(t) = \sqrt{d^2(t) + [H(d(t))]^2} \). The equation number is (12).]
By obtaining the envelope of each trace, the envelope spectrum of the shot gather can be obtained. Figure 1 shows the X-component and its envelope spectrum of a shot gather; we can see that the waveform of the seismic record envelope spectrum is smoother, with fewer details in the waveform. The normalized spectrum is shown in Figure 2. It is found that the frequency of the original seismic data is concentrated near the main frequency, while the frequency of the envelope is mainly concentrated in the low-frequency parts below 5 Hz. Therefore, using envelopes containing rich low-frequency information for inversion is beneficial for establishing a better initial model and reducing the probability of EFWI falling into local extrema.
[image: Seismic data visualizations show two panels. Panel A features a gray-scale plot with linear wave patterns, and Panel B displays a similar plot in black and white with enhanced contrast, highlighting wave structures. Both plots are labeled with time in seconds on the vertical axis and distance in kilometers on the horizontal axis.]FIGURE 1 | A shot gather of X-component and its envelope. (A) X-component of a shot gather. (B) The envelope of (A).
[image: Line graph showing normalized amplitude vs. frequency (Hz). The blue line represents the original trace peaking around 10 Hz, while the red dashed line shows the triazic envelope decreasing gradually.]FIGURE 2 | Normalized spectrum of Figures 1A, B.
In order to verify the low-frequency information extraction ability of the seismic data envelope, low-frequency components below 3 Hz were filtered out from seismic data, and the normalized spectra of low-frequency missing seismic data and their envelopes were obtained, as shown in Figure 3.
[image: Graph showing normalized amplitude versus frequency in Hertz. A blue line represents the low-frequency missing trace, peaking sharply around 10 Hertz and tapering off. A red dashed line indicates the low-frequency missing trace envelope, gradually decreasing as frequency increases.]FIGURE 3 | Normalized spectrum of low-frequency missing seismic data and their envelopes.
From Figure 3, it can be seen that although low-frequency information is missing from the seismic data, their envelope still contains rich low-frequency components. Therefore, seismic data envelopes based on Hilbert transform have the ability to extract low-frequency information.
Furthermore, the misfit function of elastic wave envelope inversion based on Hilbert transform can be defined as:
[image: The image shows a mathematical expression for \( J_d(\mathbf{m}) \) defined as the sum from \( i = 1 \) to \( N_s \) and \( j = 1 \) to \( N_r \) of the integral from 0 to \( t_{\text{max}} \) of the squared difference between \( D_{u,ij}^{\text{p}} \) and \( D_{d,ij}^{\text{p}} \), over \( dt \), labeled as equation (13).]
where [image: Please upload the image or provide a URL for the image you want me to describe.] is the record length and [image: Mathematical notation showing an uppercase D with subscript "u, j" and superscript "p".] and [image: Mathematical notation showing the symbol "D" with superscript "p" and subscript "d, j".] are the pth power of the vector envelope of the modeled and observed data, respectively.
In the two-dimensional case, there are:
[image: Equation represents a mathematical expression involving derivatives and functions. \(D_{ni}^{p}\) equals the fourth root of the sum of the square of \(u_{li}^{n}\) and the square of its function \(H(u_{li}^{n})\), where \(n\) equals \(x\) or \(z\), labeled as equation (14a).]
[image: The equation shows \( (D_{tn})^{p} = \left\{ (d_{tn}^{x})^{2} + \left[ H(d_{tn}^{x}) \right]^{2} \right\}^{\frac{1}{2}} \{n = x, z\}, \) labeled as (14b).]
where [image: Mathematical notation of capital D with subscript letters u and v, and superscript letter x.] and [image: Mathematical notation showing the symbol "D" with subscript "u" and additional subscripts "i" and "j", both in smaller font sizes. A tilde is placed above the "u".] are the envelope of the X and Z components of the modeled data, respectively, [image: Mathematical expression featuring an uppercase D, with subscript k, j and superscript x.] and [image: Mathematical expression showing \(D\) with superscripts \(d\) and \(t\), and subscripts \(i\) and \(j\).] are the envelope of the X and Z components of the observed data, respectively, [image: Mathematical expression showing the term \( u_{i,j}^{x} \).] and [image: Mathematical expression featuring \( u_{ij}^{z} \) where \( z \) is a superscript, and \( i, j \) are subscripts.] are the X and Z components of the modeled data, respectively, [image: Mathematical expression showing "d subscript i j superscript x".] and [image: Mathematical expression displaying \(d_{ij}^z\), with the subscript \(ij\) and superscript \(z\).] are the X and Z components of the observed data, respectively, [image: The image depicts the imaginary unit "i" in mathematical notation, represented by a lowercase "i" with an overdot, commonly used in complex number calculations.] is the shot index number, and [image: Please upload the image or provide a URL, and I will help you create the alternate text.] is the channel index number.
It should be noted that the value of p has a significant impact on the accuracy of envelope inversion. Chi et al. (2014) compared and analyzed the results of envelope inversion under different p-values, and their analysis results showed that a decrease in p-values would weaken the energy of deep reflected waves, thereby increasing the envelope inversion error of deep stratum. We study the first and second envelope inversion methods for elastic waves when p is taken as 1 and 2, respectively.
The gradient of the misfit function [image: Mathematical expression representing \( J_{el} \), indicating a variable or parameter typically used in scientific or engineering contexts.] over the model parameter [image: Black lowercase letter "m" in a bold, sans-serif font style.] can be expressed as:
[image: Mathematical formula expressing the partial derivative of \(d_l\) with respect to \(m\), involving a sum over indices \(i\) and \(\mu\), integration over \(t\), differential operators \(D^\rho_w\), \(D^\rho_u\), a kernel \(H\), and terms involving the function \(u_{\mu,j}\). Numbered as equation (15).]
In order to compare the formal similarities and differences between the gradient formula of elastic wave envelope inversion and the gradient formula of full waveform elastic wave inversion in the conventional time domain, the partial derivative of Eq. 1 with respect to model parameter [image: A lowercase letter "m" in a bold, serif font on a white background.] can be obtained as follows:
[image: Partial derivative equation labeled as equation sixteen. It shows the partial derivative of E with respect to m as the double summation over i and j. The integral from zero to T of the product of the difference between u sub i j and d sub i over the partial derivative of u sub i j with respect to m, with respect to time, t.]
Comparing Eq. 15 and Eq. 16, it can be seen that the gradient of elastic wave envelope inversion is consistent in form with the gradient of conventional time domain elastic wave full waveform inversion. Therefore, envelope inversion can be carried out according to the process of time domain EFWI. The difference between the two is that the accompanying source of elastic wave envelope inversion is a function related to the seismic data envelope (Eq. 17), Therefore, it is only necessary to replace the accompanying source of the FWI of elastic waves in the conventional time domain to achieve elastic wave envelope inversion.
[image: Mathematical equation showing c_ij^e equals β times the expression in square brackets, which includes D_w^e minus D_ω, multiplied by D_w^2 times u_ij, minus H multiplied by another expression in curly brackets, involving D_w^e minus D_ω, D_w^2, and H applied to u_ij. Equation number 17.]
where [image: The formula shown is \( \mathbf{f}_{i,j}^{el} \), which likely represents an element of a matrix or vector with indices \(i\) and \(j\), and a superscript \(el\).] is the accompanying source vector of the ith shot and the jth channel. In the two-dimensional case, there are:
[image: Mathematical equation showing a function involving variables \(L_{ij}^{d(x)}\), \(D_{x_i}\), and \(u_{x_i}\). The expression also includes parameters \(p\) and \(H\), with exponents and operations in a nested format. Equation number is 18a.]
[image: Mathematical equation displaying \(f_{ij}^{(e)}\) equals \(P\) times the difference of expressions involving \(D_{x_i}\), \(D_{x_j}\), and \(u_{x,ij}\), minus \(H\) times a similar expression with \(H(u_{x,ij})\) and set in braces. Equation number 18b.]
where [image: Mathematical notation showing \( f^{el}(x) \) with subscripts \( i, j \).] and [image: Mathematical expression displaying \( f_{i,j}^{el}(z) \).] are the X and Z components of [image: Mathematical notation representing the vector \( \mathbf{r}^{e l}_{i, j} \).].
4 SOURCE-INDEPENDENT ELASTIC WAVE ENVELOPE INVERSION
The elastic wave envelope inversion provided above is derived based on the assumption of accurate source wavelets, without considering the different effects of wavelets used in modeled wave fields and observed wave fields. In order to eliminate the influence of source wavelets on elastic wave envelope inversion, we extend the source-independent envelope inversion method to the field of elastic waves, so that the elastic wave envelope inversion can still establish a reliable initial model when the source wavelet is not accurate.
The misfit function of source-independent elastic wave envelope inversion can be expressed as:
[image: Equation showing the cost function for model evaluation: \(J_{\text{eval}}(\mathbf{m}) = \frac{1}{2} \sum_{i=1}^{N_s} \sum_{j=1}^{N_r} \int_{0}^{T} \left( E^w_{\text{cr}}(t_{ij}) - E^d_{\text{cr}}(t_{ij}) \right)^2 \, dt\), denoted as equation (19).]
where [image: Mathematical expression showing "E" with a superscript "u" and a subscript "cv" followed by "(i,j)".] and [image: Mathematical expression showing "E subscript c v, parentheses i comma j, superscript d".] are the envelope vectors of the modeled convolutional wave field and the observed convolutional wave field of the ith shot and the jth channel, respectively.
In the two-dimensional case, Eq. 19 can be written as:
[image: Equation for \(E_{\text{cv}}^{\text{exp}}\) of \(u_i\) is equal to the square root of \( (u_i^* \cdot \bar{d}_{ik})^2 + [H(u_i^* \cdot \bar{d}_{ik})]^2 \), labeled as equation (20a).]
[image: The equation shows \( E_{\text{cv}}^{e^x} (u_i) = \sqrt{(u_{i,j}^t \cdot d_{i,k})^2 + \left[ H(u_{i,j}^t \cdot d_{i,k}) \right]^2} \), labeled as equation (20b).]
[image: The image shows a mathematical equation: \(E^{x}_{\text{cv}}(u_{i}) = \sqrt{\left(d_{x_{i}, u_{k}}\right)^2 + \left[H\left(d_{x_{i}, u_{k}}\right)\right]^2}\).]
[image: Equation showing \( E_{cv}^{\ast}(u_i) = \sqrt{(d_{xi} \cdot u_{ik})^2 + \left[H(\hat{d}_{xi} \cdot \hat{u}_{ik})\right]^2} \). Labeled as equation 20d.]
It can be seen that the misfit function is composed of the sum of squares of the envelope residuals of the convolution wave fields in the x and z directions. Taking Eq. 20a and Eq. 20c as examples, the seismic wave field in the formula can be expressed in the form of Green’s function and source wavelet convolution, so Eq. 20a and Eq. 20c can be expressed as:
[image: The formula displayed is for \( E_{\text{cv}}^{\text{rx}}(i,i) \). It is a ratio of two square root expressions. The numerator is \( \sqrt{(u_{i,j}^* d_{i,k}^*)^2 + [H(u_{i,j}^* d_{i,k}^*)]^2} \). The denominator is \( \sqrt{(g_{i,j}^* g_{i,k}^* s_{i}^* s_{j}^* s_{k}^*)^2 + [H(g_{i,j}^* g_{i,k}^* s_{i}^* s_{j}^* s_{k}^*)]^2} \). It is labeled as equation (20e).]
[image: The equation E^{ext}_{cv}(i,i) equals the square root of (d_{xi}^* \cdot u_{ik}^*)^2 plus [H(d_{xi}^* \cdot u_{ik}^*)]^2, divided by the square root of (g_{fi}^* g_{ik}^* s_{fi}^* s_{xi}^*)^2 plus [H(g_{fi}^* g_{ik}^* s_{fi}^* s_{xi}^*)]^2.]
In equations Eq. 20e and Eq. 20f, the simulated convolutional wave field envelope [image: Mathematical expression with variables E, c, v, and superscript u, and subscript x.] and the observed convolutional wave field envelope [image: Mathematical expression showing "E" with superscript "d" and subscript "cv", followed by "x".] have the same source wavelet [image: Mathematical expression showing \( s_i^{d^x} \star s_i^{l^x} \).]. Similarly, both [image: Mathematical expression showing "E subscript c superscript u v subscript".] and [image: Mathematical expression showing "E" with superscript "d" and subscript "cv" and additional subscript "a".] have the same source wavelet [image: Mathematical expression showing \( s_i^{d^z} \star s_i^{1/z} \).]. Therefore, inversion based on the objective function [image: It seems there is an error in displaying the image. Please upload the image directly or provide a URL so I can assist you with generating the appropriate alt text.] can eliminate the influence of source wavelets on elastic wave envelope inversion.
The derivative of the misfit function [image: Mathematical expression with the letter "J" followed by the subscript "cvl".] over the model parameter [image: A white lowercase "m" in a bold serif font on a black background.] can be expressed as:
[image: Mathematical equation showing the partial derivative of d over partial derivative of m equals the double summation from i equals one to n sub s and j equals one to n sub r, of the integral from zero to t, of E superscript u subscript cv at i,j minus E superscript d subscript cv at i,j times the partial derivative of E superscript u subscript cv at i,j over partial derivative of m minus the partial derivative of E superscript d subscript cv at i,j over partial derivative of m, integrated with respect to t. Equation numbered as twenty-one.]
Since the observed convolution wave field contains the modeled reference trace wave field, its partial derivative to the model parameters is not zero, so Eq. 21 can be expanded to:
[image: A mathematical equation expressing the partial derivative of a function with respect to the variable \( m \), involving multiple summations, integrals, and variables such as \( u_i \), \( d_k \), and \( E \). The equation is labeled as equation 22.]
According to Born’s approximation and convolution theorem (Choi et al., 2011), Eq. 22 can be transformed into:
[image: Mathematical equation for the partial derivative of C subscript v one with respect to m. It involves nested summations, integrals, and product terms with variables W, g, and f, over specified ranges. Numbered as equation twenty-three.]
where subscript [image: It appears there is no image provided. Please upload an image or provide a URL for me to generate the alt text.] is the spatial position vector, [image: Mathematical expression displaying a capital "W" with superscript "u" and subscript "i, x".] is the simulated multi-component wavefield of the ith shot, [image: Mathematical expression showing \( g_{xj}^{11} \).] is the Green’s function of the up-going wave, [image: Mathematical notation showing a vector \( \mathbf{f}_{i,j} = (f^x_{i,j}, f^z_{i,j}) \), where \( \mathbf{f}_{i,j} \) is a function of indices \( i \) and \( j \), with components \( f^x_{i,j} \) and \( f^z_{i,j} \).] is the adjoint source vector of the ith shot and the jth channel, and [image: Mathematical expression showing vector \( \mathbf{f}_{i,k} = (f^x_{i,k}, f^z_{i,k}) \), indicating a two-dimensional function with components in the x and z directions.] is the adjoint source vector of the ith shot and the kth channel. Their calculation formula is as follows:
[image: Mathematical equation displaying a series of expressions for variables f_ij, f_il, f_ie, and f_ix. Each expression is equated to a product involving E_{cv}(ω) terms, functions H, and variables x_{k}^{tri} and d_{k}, all within defined operations.]
where [image: Please upload the image or provide a detailed description so I can create the alt text for you.] is the cross correlation operator, [image: Integral from zero to T of g subscript x, j superscript u of tau minus t times f subscript i, j of tau, with respect to tau.] and [image: An integral from zero to T of g sub x comma k superscript u of tau minus t multiplied by f sub i comma k of tau with respect to tau.] are the adjoint wavefield of the jth channel obtained through [image: It seems like there is an issue with uploading the image or providing a URL. Please try uploading the image again or share a link to it, and I will be happy to help with the alt text.] backpropagation and the adjoint wavefield of the reference channel obtained through [image: Mathematical symbol showing lowercase letter "f" with subscripts "i" and "k".] backpropagation, respectively.
Eq. 23 and Eq. 24 show that the partial derivative of the misfit function [image: Please upload the image or provide a URL so I can create the alt text for you.] with respect to the model parameter [image: Black lowercase letter "m" in serif font on a white background.] is still the cross correlation between the forward wavefield and the adjoint wavefield, which is consistent with the gradient formula of the EFWI in the time domain in form. Therefore, in actual inversion, only the adjoint source of the time domain EFWI needs to be replaced by Eq. 24 to obtain the reverse-time propagation wave field, then a zero delay cross correlation can be performed between the reverse-time propagation wavefield and the forward wavefield according to Eq. 19 to obtain the corresponding gradient.
Similarly, the misfit function of source-independent second-order elastic wave envelope inversion can be defined as:
[image: The image shows a mathematical equation: \( J_{x2}(\mathbf{m}) = \frac{1}{2} \sum_{i=1}^{N_x} \sum_{j=1}^{N_r} \int_{0}^{T} \left[ \left( \mathbb{E}^{\nu}_{cv(i,j)} \right)^2 - \left( \mathbb{E}^{d}_{cv(i,j)} \right)^2 \right]^2 \, dt \). It is labeled as equation (25).]
The derivative of [image: It seems there was an error with the image upload. Please try uploading the image again or provide the URL to the image. If you have any additional context or a caption, you can include that as well.] with respect to [image: Black lowercase letter "m" in a bold serif font.] can be expressed as:
[image: Mathematical expression depicting a complex equation with partial derivative notation. It involves summations over variables, matrix and vector multiplications, and integration, relating to a specific numbered equation (26).]
assuming that the adjoint source vectors of misfit function [image: Please upload the image or provide a URL for me to generate the alt text.] at receiver point j and reference channel k are [image: Mathematical notation showing "f" with a prime symbol above, and subscript indices "i" and "j".] and [image: Italic lowercase letter "f" subscripted with "i, k" and followed by a prime symbol.], respectively. The adjoint source expression in vector form is as follows:
[image: The mathematical expression describes \( f_{i,j} = \mathbf{d}_{i,k} \otimes \left\{ 2 \left[ \left( E_{CV}^e \right)^2 - \left( E_{CV}^c \right)^2 \right] \cdot \left( \mathbf{u}_{i,j}^\ast \mathbf{d}_{i,k} \right) \right. - 2H \left[ \left. \left( E_{CV}^e \right)^2 - \left( E_{CV}^c \right)^2 \right] \cdot H \left( \mathbf{u}_{i,j}^\ast \mathbf{d}_{i,k} \right) \right\} \), labeled as equation 27a.]
[image: The equation shows an expression for \( f_{\mu} \) involving components \( d_{ij} \), \( E_{cv} \), \( \mathbf{u}_k \), and \( H \). It includes a factor of 2 multiplying the difference of squared terms \((E_{cv})^2\) and \((E_{cv}^d)^2\) multiplied by \( \cdot (d_{ij} \cdot \mathbf{u}_k) \), minus two times \( H \) with a similar structure. The equation is labeled as (27b).]
So far, the gradient and adjoint source formulas for the first and second-order envelope inversion of elastic waves independent of wavelets have been obtained.
In terms of inversion strategy, Wang et al. (2016) proposed a multi-step multi-scale strategy for the reconstruction of high-accuracy P- and S-wave velocities, which uses envelope-based EFWI as the first step to obtain the long wavelength components of P- and S-wave velocities, and then uses the above velocities as initial models to obtain the final inversion results through multi-scale inversion. Due to the more natural multi-scale framework of mixed domain EFWI, we combine source-independent elastic wave envelope inversion with source-independent mixed domain EFWI to form a step-by-step multiscale inversion strategy when the source wavelet is inaccurate. The specific process is as follows: firstly, the low-frequency model is obtained by using the first or second-order source-independent elastic wave envelope inversion; then, the above low-frequency mode is used to perform a mixed domain source-independent multi-scale EFWI, and the final inversion results of P- and S-wave velocities are obtained. Theoretically, the strategy can not only avoid the influence of wavelet inaccuracy on the conventional mixed domain EFWI but, on the other hand, using source-independent elastic wave envelope inversion to provide an initial model is beneficial for reducing the probability of EFWI falling into local extrema.
5 SYNTHETIC EXAMPLES
5.1 Source-independent first-order envelope inversion test
We tested the performance of conventional envelope inversion and source-independent envelope inversion when the wavelet is inaccurate. Firstly, we used an incorrect wavelet to perform envelope inversion using both the above methods to obtain the low-frequency components of the P-and S-wave velocities; then, we used the source-independent EFWI to reconstruct the detailed information in the P- and S-wave velocity model.
The dataset used for testing was a two-component dataset obtained by a finite difference scheme of elastic wave equations on the model shown in Figures 4A, B, and the source wavelet used for simulation was a Ricker wavelet with a dominant frequency of 8 Hz. The model parameters and geometry of simulation were as follows: the space size of the model was 9,000 m × 3,500 m, and the grid size for simulation was 20 m × 20 m; the shot spacing was 200 m, the starting position of the first shot was 0 m, and a total of 45 shots were received in a full array; a total of 45 two-component shot gathers were simulated; all receivers were fixed and stationary, with 450 receivers uniformly placed on the surface, with a time sampling interval of 2 m and a recording length of 8s.
[image: Four grouped graphs labeled A, B, C, and D show velocity distribution with depth and distance. Graphs A and B display complex patterns with varying colors, indicating diverse velocity changes. Graphs C and D show more uniform coloration, indicating consistent velocity and simpler patterns. Each graph includes a color gradient scale representing velocity ranges.]FIGURE 4 | The real velocity model used for generating synthetic gathers and the initial velocity model used for envelope inversion. (A) Real P-wave velocity; (B) real S-wave velocity; (C) initial P-wave velocity; (D) initial S-wave velocity.
The wavelet used in the envelope inversion was the Ricker wavelet with a dominant frequency of 3 Hz. Before envelope inversion, a high-pass filtering of 0–5 Hz was performed on the two-component data to remove the low-frequency components in the input shot gathers, and the number of iterations in both the conventional envelope inversion and source-independent envelope inversion was 30. The initial velocity model used for envelope inversion is shown in Figures 5C, D. In the second stage, the source-independent EFWI adopts the frequency group configuration shown in Table 1, with a maximum of 20 iterations per frequency group. The source-independent inversion method selects the minimum offset trace of each shot as the reference channel.
[image: Four contour plots labeled A, B, C, and D show variations in depth versus distance in kilometers. Plots A and B depict symmetrical red and yellow patterns indicating high-density areas centered horizontally. Plots C and D display irregular shapes with more scattered patterns of red and yellow across different depths, indicating less uniform density distribution. Each plot uses a color gradient from blue to red, with red representing the highest density.]FIGURE 5 | Gradient obtained from first-order envelope inversion based on an incorrect wavelet. (A) Gradient of P-wave velocity obtained from conventional envelope inversion; (B) gradient of S-wave velocity obtained from conventional envelope inversion; (C) gradient of P-wave velocity obtained from the source-independent envelope inversion; (D) gradient of S-wave velocity obtained from the source-independent envelope inversion.
TABLE 1 | Frequency group configuration for multi-scale EFWI.
[image: Table displaying frequency data. It has three columns: "Index number," "Frequency range (Hz)," and "Frequency interval (Hz)." Rows list index numbers from 1 to 4. The frequency ranges are 0.5–2.25 Hz, 2.25–4.0 Hz, 4.0–7.5 Hz, and 7.5–14.5 Hz. The corresponding frequency intervals are 0.25, 0.25, 0.5, and 1.0 Hz.]In the iterative process of EFWI, it is first necessary to obtain the gradient, then use optimization algorithms to optimize the gradient, and finally achieve model update iteration with appropriate update steps. This indicates that whether the gradient can be correctly calculated directly determines the quality of the full waveform inversion results. Figure 5 shows the gradients obtained from conventional envelope inversion and source-independent envelope inversion when using incorrect wavelets. It is not difficult to see that the conventional envelope inversion shown in Figures 5A, B resulted in an error in obtaining the gradient in the case of incorrect wavelets. The use of this gradient for iterative model updates ultimately led to inversion failure (as shown in Figures 6A, B), while the gradient of the source-independent envelope inversion shown in Figures 5C, D correctly reflected the gradient information of large-scale structures. Therefore, it is possible to stably iterate and update the large-scale structures in the model (as shown in Figures 6C, D).
[image: Four panel diagrams (A, B, C, D) show velocity models with depth and distance axes. Each panel displays variations in velocity using a color gradient from blue to red, with different maximum values. Panel A ranges up to 4500 m/s, Panel B up to 3000 m/s, Panel C up to 3500 m/s, and Panel D up to 2000 m/s, illustrating variations in subsurface structures.]FIGURE 6 | First-order envelope inversion results based on error wavelet. (A) P-wave velocity model obtained from conventional first-order envelope inversion; (B) S-wave velocity model obtained from conventional first-order envelope inversion; (C) P-wave velocity model obtained from source-independent first-order envelope inversion; (D) S-wave velocity model obtained from source-independent first-order envelope inversion.
From the inversion results shown in Figure 6, it can be seen that conventional envelope inversion is affected by incorrect wavelets and cannot accurately reconstruct the structural information of the model; the source-independent first-order envelope inversion eliminates the influence of wavelet differences through the convolution method, and the large-scale construction in the model is effectively restored. Figure 7 shows the decline curves of the normalized misfit function values for 30 iterations of two envelope inversion methods. It can be seen that the normalized misfit function values of conventional envelope inversion have almost no change when wavelet is inaccurate, while the misfit function values of source-independent envelope inversion decrease significantly. This indicates that source-independent envelope inversion can converge normally when wavelet errors occur, proving the correctness and effectiveness of the algorithm.
[image: Line graph comparing first-order envelope inversion and source-independent first-order envelope inversion over 30 iterations. The blue line (first-order) remains stable near 1, while the red dashed line (source-independent) decreases steadily from 1 to -0.4.]FIGURE 7 | Comparison of normalized misfit function values for different inversion methods when the wavelet is inaccurate.
Furthermore, the source-independent EFWI was performed using the inversion results shown in Figures 6A–D, respectively. The results obtained are shown in Figures 8A–D.
[image: Four seismic velocity models labeled A, B, C, and D, each showing depth in kilometers versus distance in kilometers. Color gradients represent velocity in meters per second, with red indicating higher velocities and blue lower. Each model shows variations in subsurface structures with differing velocity scales, indicating changes in geophysical properties.]FIGURE 8 | Source-independent EFWI results under two initial model conditions. (A) P-wave velocity model obtained from source-independent EFWI using Figures 6A, B as the initial model; (B) S-wave velocity model obtained from source-independent EFWI using Figures 6A, B as the initial model; (C) P-wave velocity model obtained from source-independent EFWI using Figures 6C, D as the initial model; (D) S-wave velocity model obtained from source-independent EFWI using Figures 6C, D as the initial model.
From Figure 8, it can be seen that when the wavelet is inaccurate, if the conventional first-order envelope inversion result is used as the initial model, the source-independent EFWI cannot obtain accurate inversion results. This is because the error information in the conventional first-order envelope inversion result causes the source-independent EFWI fall into local extrema, leading to inversion failure. While using the first-order source-independent envelope inversion result as the initial model for source-independent EFWI, the final inversion result shows clearer stratigraphic information and significantly better overall performance than the former. This indicates that when the wavelet is inaccurate, the first-order source-independent envelope inversion can accurately construct the long wavelength components in the P- and S-wave velocity model, thus aiding the full waveform inversion of elastic waves to obtain high-precision P- and S-wave velocity models.
5.2 Source-independent second-order envelope inversion test
The following tests were conducted for conventional and source-independent second-order envelope inversion when the wavelet is inaccurate. Figure 9 shows the gradient obtained through one iteration of conventional and source-independent second-order envelope inversion when the source wavelet is inaccurate.
[image: Four contour plots labeled A, B, C, and D display distributions of data with depth in kilometers on the y-axis and distance in kilometers on the x-axis. Plots A and B show a symmetrical red and yellow region centered horizontally. Plots C and D exhibit irregular red and yellow patterns with multiple peaks and variations in depth.  ]FIGURE 9 | Gradient obtained from second-order envelope inversion based on error wavelet. (A) Gradient of P-wave velocity obtained from conventional second-order envelope inversion; (B) gradient of S-wave velocity obtained from conventional second-order envelope inversion; (C) gradient of P-wave velocity obtained from source-independent second-order envelope inversion; (D) gradient of S-wave velocity obtained from source-independent second-order envelope inversion.
Figure 9 shows that conventional second-order envelope inversion also experiences gradient estimation errors when wavelet errors occur, while source-independent second-order envelope inversion can correctly obtain gradient information of large-scale structures.
Figure 10 shows the conventional and source-independent second-order envelope inversion results when the inversion wavelet is inconsistent with the accurate wavelet. Figures 10A, B indicate that the conventional second-order envelope inversion results cannot reconstruct accurate initial velocity models of P- and S-waves when wavelet errors occur. On the contrary, the source-independent second-order envelope inversion has successfully constructed a low-frequency model containing large-scale information. Figure 11 shows the normalized misfit function values of conventional second-order envelope inversion and source-independent second-order envelope inversion when the source wavelet is inaccurate. We can see that the normalized misfit function values of conventional second-order envelope inversion have almost no change, indicating that the algorithm cannot converge normally, while the normalized misfit function values of source-independent second-order envelope inversion have significantly decreased, indicating that the algorithm can converge normally and proving the correctness and effectiveness of the algorithm proposed in this paper.
[image: Four models labeled A, B, C, and D show velocity distributions with color gradients from blue to red, representing increasing velocity in meters per second. Each model plots velocity against distance in kilometers and depth in kilometers. The velocity scale ranges from 1500 to 4000 meters per second, with variations in patterns and intensity across the models.]FIGURE 10 | Second-order envelope inversion results based on error wavelet. (A) P-wave velocity model obtained from conventional second-order envelope inversion; (B) S-wave velocity model obtained from conventional second-order envelope inversion; (C) P-wave velocity model obtained from source-independent second-order envelope inversion; (D) S-wave velocity model obtained from source-independent second-order envelope inversion.
[image: Line graph showing normalized error over 30 iterations. A blue solid line represents second-order envelope inversion, remaining constant at zero. A red dashed line shows source-independent second-order envelope inversion, decreasing sharply.]FIGURE 11 | Comparison of normalized misfit function values for different inversion methods when the wavelet is inaccurate.
Using Figures 10A–D as initial models for source-independent EFWI, the results obtained are shown in Figure 12.
[image: Four panels (A, B, C, D) show color-coded velocity models with depth (km) on the y-axis and distance (km) on the x-axis. Velocity values range from 1000 to 4500 meters per second, with colors from blue to red indicating increasing velocity. Each panel displays variations in velocity distribution across the depth and distance.]FIGURE 12 | Source-independent EFWI results under different models. (A) P-wave velocity model obtained from source-independent EFWI using Figures 11A, B as initial model; (B) S-wave velocity model obtained from source-independent EFWI using Figures 11A, B as initial model; (C) P-wave velocity model obtained from source-independent EFWI using Figures 11C, D as initial model; (D) S-wave velocity model obtained from source-independent EFWI using Figures 11C, D as initial model.
From Figures 12A, B, it can be seen that when the wavelet is inaccurate, using the conventional second-order envelope inversion result as the initial velocity model for source-independent EFWI, there is almost no available structural information in the inversion results, so the inversion has failed. Using the source-independent second-order envelope inversion results shown in Figure 12C and Figure 12D as the initial model, and then conducting source-independent EFWI, the overall structure in the inversion results was well reconstructed, and the stratigraphic interface was depicted more clearly. This indicates that when the wavelet is inaccurate, source-independent second-order envelope inversion can effectively recover the long wavelength components of the model, helping to obtain high-precision P- and S-wave velocity models for EFWI.
5.3 Source-independent elastic wave envelope inversion test for low-frequency missing data
The following analysis shows the performance of source-independent elastic wave envelope inversion in cases of wavelet errors and missing low-frequency information. The low-frequency part of 0∼3 Hz from the two components shot gathers are filtered out to obtain low-frequency missing seismic records. Taking the X-component as an example, one of the seismic gather and its spectra before and after filtering are shown in Figure 13 and Figure 14, respectively. It can be clearly seen from Figure 14 that the low-frequency components of 0∼3 Hz in the seismic data have been filtered out.
[image: Two seismic wave simulation graphs labeled A and B are shown. Both graphs plot time in seconds on the vertical axis and distance in kilometers on the horizontal axis. Graph A displays a triangular wave pattern with less pronounced lines, while graph B shows more pronounced and sharper lines in the same pattern.]FIGURE 13 | One of the X-component shot gather before and after filtering. (A) Original X-component shot gather; (B) X-component shot gather after a high pass filter.
[image: Graph showing amplitude against frequency in hertz. The original trace is in blue, peaking sharply around 3 hertz, then tapering off. A red dashed line shows the trace without low-frequency information, following a similar pattern with less intensity.]FIGURE 14 | Spectra of X-component shot gather before and after high pass filtering.
Due to frequency band limitations, the starting frequency for mixed domain multiscale EFWI is 3 Hz. The specific frequency group configuration is shown in Table 2, and the maximum number of iterations for each frequency group is 20. The theoretical wavelet used in the test is a Ricker wavelet with a dominant frequency of 8 Hz. The error wavelet is a Ricker wavelet with a dominant frequency of 3 Hz.
TABLE 2 | Frequency group configuration for multi-scale EFWI for low-frequency missing data.
[image: Table displaying frequency data with three columns: Index number, Frequency range (in Hertz), and Frequency interval (in Hertz). Index 1 ranges 3.0–4.0 with an interval of 0.25. Index 2 ranges 4.0–5.0 with an interval of 0.25. Index 3 ranges 5.0–7.0 with an interval of 0.5. Index 4 ranges 7.0–9.0 with an interval of 0.5. Index 5 ranges 9.0–13.0 with an interval of 1.0. Index 6 ranges 13.0–17.0 with an interval of 1.0.]Firstly, conventional multiscale EFWI was performed, and the final results are shown in Figure 15. It can be seen that in the case of wavelet errors and missing low-frequency information, conventional EFWI cannot reconstruct the structural information of the model accurately, so inversion is unsuccessful.
[image: Two contour maps labeled A and B show velocity variations with depth and distance in kilometers. Map A ranges from one thousand to four thousand meters per second, while Map B ranges from one thousand to two thousand meters per second. Both maps display a gradient from blue to red, indicating varying velocities.]FIGURE 15 | Conventional EFWI inversion results in cases of wavelet errors and missing low-frequency data. (A) P-wave velocity obtain form conventional EFWI; (B) S-wave velocity obtain form conventional EFWI.
Next, a source-independent EFWI test was conducted, and the results obtained are shown in Figure 16. It can be seen that the inversion accuracy of source-independent EFWI is improved compared to conventional EFWI. This is because source-independent EFWI uses the convolution method to eliminate the influence of incorrect wavelets, thus enabling stable inversion. However, for low-frequency missing data, the source-independent EFWI still shows a strong dependence on the initial model, with obvious velocity misestimation appearing in the red dashed area, and inversion falling into local minima.
[image: Two comparative heat maps labeled A and B depict depth versus distance, with velocity indicated by color gradients. Map A ranges from 2000 to 4500 meters per second, while map B ranges from 1000 to 2500 meters per second. Both maps show a red dashed rectangle highlighting a specific region. Colors transition from blue to red, representing low to high velocities, with prominent features in the marked area.]FIGURE 16 | Source-independent EFWI results in cases of wavelet errors and missing low-frequency data. (A) P-wave velocity; (B) S-wave velocity.
To reduce inversion errors, we used source-independent first-order envelope inversion to establish a low-frequency initial model. The number of iterations for envelope inversion was 30, and the minimum offset trace of each shot was selected as the reference trace. Figure 17 shows the results of first-order source-independent envelope inversion. The inversion results show that the large-scale structure of the model has been correctly reconstructed, indicating that the method proposed in this paper can establish a good initial model in the absence of low-frequency data and inaccurate wavelets.
[image: Two side-by-side seismic velocity models labeled A and B. Both graphs depict depth (kilometers) on the vertical axis and distance (kilometers) on the horizontal axis. Color gradients indicate velocity in meters per second, with blue representing lower velocities and red representing higher velocities. Model A ranges from 1500 to 4000 meters per second, while Model B ranges from 1000 to 2000 meters per second.]FIGURE 17 | Source-independent first-order envelope inversion results in cases of wavelet errors and missing low-frequency data. (A) P-wave velocity; (B) S-wave velocity.
Using Figure 17 as the initial models for source-independent EFWI, the maximum number of iterations for each frequency group was set at 20, and the minimum offset trace of each shot was selected as the reference trace. Figure 18 shows the inversion results. It can be seen that there is no velocity estimation error in the red dashed box, which indicates that the initial model provided by the source-independent first-order envelope inversion alleviates the phenomenon of “cycle skipping".
[image: Two seismic velocity models labeled A and B display depth in kilometers on the vertical axis and distance in kilometers on the horizontal axis. Model A has velocity values ranging from 2000 to 4000 meters per second, shown by a color gradient from red to blue. Model B has a similar layout with velocity values from 1000 to 2500 meters per second. Both models feature a red dashed rectangle highlighting a specific region within the graphs.]FIGURE 18 | Results of source-independent EFWI using Figure 17 as the initial models. (A) P-wave velocity; (B) S-wave velocity.
Based on the same two-component low-frequency missing shot gathers, source-independent second-order envelope inversion was performed, and the inversion results were used as the initial model for source-independent EFWI. Figure 19 shows the initial model obtained from source-independent second-order envelope inversion. From Figure 19, it can be seen that the large-scale construction in the inversion results has also been effectively restored. Using Figure 19 as the initial model for source-independent EFWI, the final result is shown in Figure 20.
[image: Two heat maps labeled A and B show depth versus distance in kilometers. Both maps display velocity in meters per second with a color gradient from red (higher velocity) to blue (lower velocity). Map A's scale ranges from 1500 to 4000 m/s, and map B's scale ranges from 1000 to 3000 m/s.]FIGURE 19 | Source-independent second-order envelope inversion results in cases of wavelet errors and missing low-frequency data. (A) P-wave velocity; (B) S-wave velocity.
[image: Two color-coded velocity models show seismic data. Panel A ranges from 2000 to 4000 meters per second, and Panel B from 1000 to 2500 meters per second. Both graphs illustrate depth against distance with a marked red rectangle indicating a specific area of interest.]FIGURE 20 | Results of source-independent EFWI using Figure 19 as the initial models. (A) P-wave velocity; (B) S-wave velocity.
Comparing Figure 16 and Figure 20 show that, compared to only performing source-independent EFWI, there are no velocity errors in the combined inversion results of source-independent second-order envelope inversion and source-independent EFWI. This indicates that the initial model provided by source-independent second-order envelope inversion can also alleviate the impact of the “cycle skipping” phenomenon. In addition, it should also be noted that the inversion accuracy of deep strata in the inversion results is relatively low, which will be a further research direction in the future.
6 DISCUSSION
Our goal is to develop a depth domain P- and S-wave interval velocity models building method utilizing common shot gathers of multi-component seismic data. However, it is important to note that our current tests were conducted solely on synthetic data. Given the substantial disparities between synthetic and field data, it is crucial to exercise caution when applying this algorithm to real-world scenarios to address practical problems. The following data processing should be considered when working with field data:
	(1) Preprocessing of multi-component seismic data (including denoising and surface consistency processing). The assumption in the algorithm we proposed assumes that the input multi-component seismic data do not contain noise and satisfy the assumption of surface consistency, while field data often do not meet above assumptions. Therefore, before using these algorithms for inversion of field data, it is necessary to perform noise suppression and surface consistency processing on the multi-component shot gathers to ensure that the input data are as close as possible to the above assumptions.
	(2) Regularized reconstruction of multi-component seismic data in common shot domain. Due to factors such as acquisition cost, acquisition environment, and other acquisition conditions, the distribution of receivers in multi-component seismic exploration is often uneven and irregular; especially in ocean bottom multi-component seismic exploration, the distribution of receivers is often very sparse, so such data do not meet the requirements of the continuous receiver wave field required by the method in the paper. At the same time, since we use the finite difference method for wave propagation, which requires that each receiver must be located on the corresponding grid point, but the field data often does not meet this requirement, it is necessary to reconstruct the shot gathers before inversion to ensure that the spatial sampling rate of the input data and the spatial distribution of the receivers meet the implicit assumptions of our algorithm.

Usually, preprocessed multi-component seismic gathers often lack low-frequency information, which is one of the reasons for the failure of existing EFWI. Therefore, we use Hilbert transform to compensate for the low-frequency information in multi-component seismic data. But we emphasize that the Hilbert transform does not create low-frequency information out of thin air, but rather utilizes existing high-frequency information to predict and supplement low-frequency components. Through Hilbert envelope transformation, we can extract phase information from the observed high-frequency signals and use this phase information to synthesize a complex signal that can fully describe the spectral characteristics of the original signal (including the missing low-frequency components in the original signal). This supplementary low-frequency information is not completely new; it is inferred and restored from existing high-frequency signals through mathematical methods such as frequency domain analysis and phase correction. Therefore, Hilbert envelope transform is a mathematical method that effectively utilizes existing information to infer missing signal components.
7 CONCLUSION
When low-frequency time-domain FWI of information is missing in the multi-component seismic data, the EFWI strongly relies on an accurate initial model. When the initial model is poor, the inversion is easily trapped in local extrema. Elastic wave envelope inversion can establish a good initial model when low-frequency information is missing, but when the wavelet is not accurate, elastic wave envelope inversion cannot perform normal velocity model construction. We introduce the convolution-based source-independent method in the field of acoustic FWI into the elastic wave envelope inversion. We derived the gradient and adjoint source formulas for the source-independent elastic wave envelope inversion, and formed a step-by-step inversion strategy by combining the source-independent elastic wave envelope inversion and the source-independent mixed domain EFWI. The model testing results indicate that the source-independent elastic wave envelope inversion method we proposed can establish a good low-frequency model for P- and S-waves when seismic data lacks low-frequency information and the source wavelet is not accurate. Using the low-frequency models as the initial models for source-independent EFWI can effectively alleviate the impact of the “cycle skipping” phenomenon on the accuracy of EFWI.
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Carbonate reservoirs exhibit complex pore structure, which significantly affects the elastic properties and seismic response, as well as the prediction of physical parameters. As one of the main factors impacting fluid prediction, pore structure parameter directly involves in few inversion methods. In order to directly predict pore structure parameter in inversion, a novel quantitative reflection coefficient formula is proposed, that integrate Russell's poroelasticity theory with Sun's petrophysical model. This formula separates fluid bulk modulus from porosity and pore structure parameter, allowing for accurate determination of pore-fluid distribution through Bayesian framework. Both theoretical model analysis and multi-component digital core experiments of carbonates validate the importance of pore structure parameter on fluid identification. The practical application of carbonate reservoirs in Sichuan Basin demonstrates that the proposed fluid factor, eliminating the prediction illusion caused by heterogeneity in porosity and pore structure parameter within strata, provides more precise and reliable predictions compared to the Russell fluid factor. Furthermore, the similarity between the Russell fluid factor obtained directly from the Russell approximation and the Russell fluid factor calculated indirectly from the proposed method confirms the stability and accuracy of the new reflection coefficient formula.
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1 INTRODUCTION
With the advancement of exploration and development technology, the targets of exploration and development are becoming increasingly intricate. There has been a decline in reserves and grades of both oil and gas, with a growing proportion of low porosity and low permeability. In terms of carbonate reservoirs, predicting reservoirs is much challenging due to their deep burial depth and weak seismic responses. Moreover, they exhibit strong heterogeneity and significant variations in physical properties and thickness over short distances, as well as complex pore types. All these characteristics contribute to heightened difficulty in identifying oil and gas within them. Therefore, one of the current challenges in geophysics lies in effectively identifying fluids within target reservoirs with complex porous media.
The effect of porosity and pore types on the effective elastic properties of reservoirs is very critical in hydrocarbon prediction. A study conducted by Sun et al. (1997) showed that the variations in the pore aspect ratio can lead to changes in wave velocity exceeding 2000 m/s or more. Currently, significant advancements have been achieved in the research of pore structure parameters. For example, Zimmerman (1986) and Kachanov et al. (1994) examined the influence of two- and three-dimensional pore shape on elastic properties, respectively. Berryman (1999) derived approximate analytical expressions for the elastic parameters of dry/saturated fractured rock based on DEM theory. Jiang et al. (2012) proposed a new petrophysical modeling method using the Gassmann equation and Eshelby–Walsh ellipsoidal fracture theory to extract a parameter characterizing variations in the pore structure, thereby demonstrating its profound influence on the elastic properties of the rock. Deng et al. (2015) provided an analytical expression for the initial minimum aspect ratio of soft pores based on poroelasticity theory and extended the “squirt flow” model based on the characteristic aspect ratio by adding soft pores iteratively to analyze the influence of complex pore distribution on the squirt flow and its possible velocity dispersion characteristics. Wang et al. (2016) established a pore-scale numerical simulation method for elastic wave propagation in porous media based on the extraction of the pore structure parameter from digital core images in view of the complex pore structure and significant heterogeneity of carbonate rocks, verified its reliability with natural core data, and quantitatively analyzed the effect of carbonate pore structures on the propagation velocity and the scattering attenuation of elastic waves. He et al. (2012) proposed a unified expression by consolidating various petrophysical models for porous media, including Pride, Geertsma, and Keys-Xu, aiming to establish a more universal application across different rock types. Subsequently, He et al. (2018) further emphasized the significance of the pore aspect ratio as a fundamental benchmark due to the ambiguous physical definition and inconsistent quantitative representation of the pore structure parameter. These studies collectively indicate that the current research on the pore structure parameter primarily focuses on small-scale cores and logs but lacks applicability for fluid prediction at the seismic scale.
In the past few decades, there has been significant advancement in the fluid identification technology of seismic reservoirs, from a “qualitative” approach based on seismic amplitude anomaly in the 1980s to a “quantitative” method relying on the fluid factor in the present stage. With the development of a prestack seismic inversion, the fluid sensitive terms have evolved from assessing the relative variation in elastic parameters to presently recognizing physical parameters with distinct petrophysical significance. Biot (1941) and Gassmann (1951) both proposed the construction methods of the fluid factor for porous fluid-saturated rocks. Russell et al. (2003) and Russell et al. (2011) used the Biot–Gassmann theory to refine the Aki–Richards approximation under saturated fluid conditions and introduced the fluid factor, which can be directly involved in seismic fluid detection. Yin et al., (2014) derived a seismic reflection coefficient formula that incorporates porosity by combining the Russell approximation with the Nur model. Du et al. (2019) then extended this formula to PP–PS joint inversions, which further improves the fluid prediction in heterogeneous reservoirs but does not consider the pore structure parameter. Zong et al. (2012) and Zong et al. (2015) established a direct relationship among fluid factors and P- and S-wave moduli based on the petrophysical model of porous elastic media to obtain a new Zoeppritz approximation formula based on the P- and S-wave moduli, which circumvents the issue related to accurately determining density fluid factor calculation and has been successfully applied in an exploration area in eastern China. Sun, et al. (2015) proposed a novel fracture fluid factor that can simultaneously detect fracture development and fluid properties by combining P-wave anisotropic fracture prediction and Russell fluid factor into the Cartesian coordinate system in order to address the challenge of fluid identification in anisotropy, which achieved promising application in igneous areas. Sun et al. (2016) employed sequential Gaussian simulation and Metropolis sampling algorithm based on Bayesian’s theoretical framework to directly estimate the Russell fluid factor, which enhanced the accuracy of fluid factor identification. Although substantial developments have been made in recent years regarding the algorithms of fluid prediction, the issue of fluid prediction under non-homogeneous conditions still faces challenges such as strong multi-solution and less precise prediction. This can be attributed to the omission of pore structure parameters in the widely used Gassmann fluid equation for bidirectional media containing fluid, making it complicated and challenging to accurately quantify the impact of pore structure. Fan et al. (2019) and Zong et al. (2019) introduced the squirt flow model into an inversion, along with the relevant parameters of the pore structure, making an initial step toward integrating the pore structure parameter in seismic reservoir prediction. Li et al. (2021) also proposed a new method combining the pore structure with the Bayesian non-linear simultaneous inversion of physical parameters, further improving the importance and involvement of the pore structure in the reservoir prediction. However, the aforementioned methods including pore structures can only be obtained in an indirect way. In other words, traditional physical parameters are first calculated, and then, specific petrophysical theories are employed to derive the pore structure and other fluid parameters. This approach does not directly incorporate the pore structure parameter as the factor in the inversion process of seismic reflection coefficient. Therefore, it is imperative to further study the inversion method of the pore structure from indirect to direct inversions in order to streamline the procedure, while improving the inversion accuracy.
In order to mitigate the impact of complex pore structure on fluid prediction in carbonate reservoirs, a novel inversion method is proposed that integrates Sun’s petrophysical model and Russell’s poroelasticity theory to derive a decoupled reflection coefficient formula for fluid bulk modulus [image: Sorry, I am unable to process mathematical symbols or expressions not represented as images. If you have an image you'd like me to describe, you can upload it directly.], porosity [image: A lowercase phi symbol, which is a circular letter with a vertical line through the center. It is commonly used in mathematics and physics to represent angles and phases.], and pore structure parameter [image: It seems there might have been an issue with the image upload. Please try uploading the image again, and I will be glad to help you with the alt text.]. A two-layer theoretical geological model is used for forward modeling simulation to verify the accuracy of the newly derived formula and assess the impact of porosity [image: It seems there was an issue uploading the image. Please try uploading the image file again, or provide a URL if it's online.] and the pore structure parameter [image: Please upload the image or provide a URL, and I can help create the alternate text for it.] on the seismic response. Then, an improved decorrelation method is employed to eliminate correlations between multiple parameters, ensuring stability and robustness during the inversion process. In the practical application in a specific exploration area within the Sichuan Basin, this study first demonstrates through digital core experiments that the pore structure parameter [image: It seems there might be an error in your request as I do not see an image attached. Please try uploading the image again or provide a URL. If you want, you can also include a caption for additional context.] has great influence on elastic moduli. Furthermore, the results based on the actual data show that the fluid bulk modulus [image: The text "K" with a subscript "f".] as the proposed fluid indicator eliminates the interference of the pore structure ([image: Please upload the image or provide a URL, and I will help you create the alt text.] and [image: It seems there was an issue with the image upload. Please try uploading the image again, and I'll be happy to help with the alternate text.]) and can provide more accurate and reliable fluid distribution than Russell’s fluid factor [image: Please upload the image or provide a URL, and I can help generate the alt text for it.].
2 METHODS
Establishing a direct mathematical relationship between theoretical or empirical petrophysical models and expressions of seismic reflection coefficients is the key to quantitative characterization of fluid prediction involving the pore structure.
2.1 Poroelasticity theory
First, one of the widely used quantitative formulas of seismic response for fluid identification is Biot–Gassmann theory (Krief et al., 1990), which elucidates the pore/fluid interaction in homogeneous porous media and defines the functional relationship between seismic velocity and fluid. Its corresponding formula is shown as follows:
[image: Equation showing the formula for \( K_{\text{sat}} \): \( K_{\text{sat}} = K_{\text{dry}} + \beta^{P} M \), labeled as equation (1).]
[image: Equation showing μ_subscript stat equals μ_subscript kary equals μ_subscript b, followed by the number two in parentheses.]
where [image: Mathematical expression showing \( K_{\text{sat}} \), typically denoting saturated hydraulic conductivity in environmental science and soil physics contexts.] and [image: The image shows the mathematical expression "K" subscripted with "d" and "r" and followed by "y".] represent the bulk moduli for the saturated and dry porous rocks, [image: The image shows the Greek letter "mu" with the subscript "sat".] and [image: The image contains the mathematical symbol for \( \mu_{\text{dry}} \).] denote the shear moduli for the saturated and dry porous rocks, [image: Please upload the image or provide a URL for me to generate the alt text.] represents the Biot coefficient, and [image: Please upload the image or provide a URL, and I will help you create alt text for it.] signifies the modulus of pressure that drives water into strata without changing its volume. Russell et al. (2003) derived the Gassmann formula based on the pore-elasticity theory and found that the fluid/porosity term [image: Please upload the image or provide a link so I can generate the alt text for you.] was related to multiple petrophysical parameters, including porosity, which could be quantitatively characterized by saturated elastic parameters:
[image: Mathematical equation showing \( f = \beta^2 M = \frac{\left[1 - (K_{\text{dry}} / K_s)\right]^2}{\left\{ (\phi / K_f) + \left[(1 - \phi) / K_s\right] - K_{\text{dry}} / K_s^2 \right\}} \).]
where [image: It seems you're referring to a mathematical formula or expression involving "K" and a subscript "f." If there's an image you'd like me to describe or if you need more specific assistance, please upload the image or provide additional context.] and [image: Mathematical expression showing the symbol "K" with a subscript "s".] denote the bulk moduli of the fluid and saturated rock frame and [image: It looks like the text you provided isn't displaying an image. If you have an image file you would like an alt text for, please upload it or provide a URL.] represents the porosity. Therefore, formula (2) can be reformulated as follows:
[image: Equation showing \( K_{\text{wet}} = K_{\text{dry}} + f \).]
In addition, by substituting the fluid factor [image: Please upload the image, and I'll be happy to help with the alternate text.] into Aki–Richard approximation, Russell proposed a formula for the seismic response that can directly obtain [image: Please upload the image or provide a URL, and I will be happy to help create the alt text for it.] by inversion (Russell et al., 2011) as follows:
[image: The image shows a mathematical equation for \( R_{pp}(\theta) \). It includes several terms with fractions and trigonometric functions like \(\sec^2 \theta\) and \(\sin^2 \theta\). It incorporates variables such as \(c_{dry}\), \(c_{sat}\), \(\Delta f\), \(f\), \(\Delta \rho\), \(\rho\), \(\Delta \mu\), and \(\mu\). The formula also involves operations like addition, multiplication, and division, with constants \(\frac{1}{4}\) and \(\frac{1}{2}\).]
where [image: It seems there's a misconception. I cannot generate alt text without an actual image file or URL. Please upload the image or provide a link to it for assistance.] denotes the incidence angle, [image: It seems there might be an issue with the image upload. Please try uploading the image again or provide a URL if it's online. You can also add a caption for additional context.] signifies the density, and [image: Mathematical expression: c subscript "sat" squared.] and [image: The expression "c d r y squared" in a stylized font.] represent the velocity ratios of P and S wave in saturated and dry rocks, respectively.
2.2 Reflection coefficient formula for decoupling porosity and pore structure parameter
Second, in terms of petrophysics, Sun (2000) proposed a petrophysical model based on Biot theory, introducing the pore structure parameter [image: Greek lowercase letter gamma, commonly used in mathematics and science to represent various constants or variables.] to effectively depict the effect of the pore shape on seismic velocity. Given its inclusion of both the pore structure parameter [image: It seems there is no image attached. Please try uploading the image again or provide a URL.] and porosity [image: Greek lowercase letter phi, used in mathematics and science to represent concepts such as the golden ratio or magnetic flux. Presented in a stylized serif font.], Sun’s model exhibits superior applicability for characterizing reservoirs with a complex pore structure compared to conventional petrophysical models:
[image: Equation showing \( K_{\text{eff}} = (1 - F_t \phi)K_s + F_t \phi K_f \) with a reference to equation (6).]
[image: Mathematical expression for equation seven: \( F_k = \frac{1 - (1 - \phi)^v}{[1 - (1 - \phi)^v]^{\frac{K}{K_c}} + \left(1 - \frac{K}{K_c}\right)\phi} \).]
[image: Equation showing \( u_{\text{out}} = u_{\text{c}} (1 - \Phi)^{\nu} \), labeled as equation eight.]
It is worth noting that the pore structure parameter [image: Greek lowercase letter gamma, 𝛾.] represents the pore shape, particularly the aspect ratio [image: Please upload the image or provide a URL to it, and I will help create the alt text.], which does not fall within a numerical range from 0 to 1. Through digital core simulation, Zhao et al. (2021a), Zhao et al. (2021b) clarified their non-linear relationship: [image: Alpha is less than 0.08.] when [image: Mathematical expression showing the Greek letter gamma greater than eight.] and [image: The text displays an inequality where the variable alpha is greater than 0.3 and less than 1.] when [image: The image shows the mathematical inequality \(2 < \gamma < 3\).].
According to the derivation by Han et al. (2004), it can be concluded that [image: The image shows the mathematical expression \(K_s \gg K_f\).] when [image: Please upload the image or provide a URL, and I can help create the alt text for it.] is extremely small ([image: The image contains a mathematical expression: phi is less than fifteen percent.]). Additionally, in tight sandstone or carbonate with low porosity, [image: Please upload the image you would like described, and I will help you with the alternate text.] exhibits a significant influence on the seismic response, which greatly contributes to heterogeneity. Therefore, formula (6) can be simplified as follows:
[image: The equation \( K_{\text{sat}} = (1 - \phi)^N K_s + [1 - (1 - \phi)^N] K_f \) is shown, labeled as equation (9).]
It can be found by comparing formula 9, 4that
[image: Mathematical formula for f is displayed as f equals open bracket one minus open bracket one minus phi close bracket to the power c close bracket multiplied by K sub phi, labeled as equation ten.]
[image: Equation showing \( K_{\text{dry}} = (1 - \phi)^n K_{\text{c}} \), labeled as equation (11).]
The exponential term in formula 10 poses challenges for numerical analysis, and therefore, it can be expanded by the Taylor series as follows:
[image: Mathematical expression shown as: \( f = \left\{1 - \left[1 - \psi \phi + \frac{1}{2} (\psi - 1) \phi^2 - \cdots \right] \right\} K_f \).]
The selection of different orders in approximation (12) can be tailored to meet different accuracy requirements. To achieve the decoupling of [image: Mathematical expression showing the symbol "K" with a subscript "f," typically used to denote a specific property or constant related to freezing or another scientific context.] from [image: The URL appears to be broken or missing the image. Please upload the image file directly or provide a valid URL so I can help create the alt text.] and [image: It seems there is a technical issue with the image upload. Please try uploading the image again, making sure to attach the correct file or provide a URL. If you have any additional context for the image, feel free to include it.] by direct inversion, formula 12 in the first-order approximation is substituted into formula 5 to obtain a novel fluid prediction formula as follows:
[image: Mathematical equation showing \( R_{pp}(\theta) \) as a function of \( \theta \). It includes terms with secant and sine functions, fractions, and variables related to \( c_{\text{dry}} \), \( c_{\text{sat}} \), \( \Delta K_f \), \( K_f \), \( \Delta \phi \), \( \phi \), \( \Delta \gamma \), \( \gamma \), \( \Delta f_m \), \( f_m \), \( \Delta f_s \), \( f_s \). This equation is labeled as equation (13).]
where [image: The equation shows \( f_m = \phi \mu \), where \( f_m \) is equal to the product of \( \phi \) and \( \mu \).] represents the dry rock matrix term (Yin et al., 2014) and [image: The formula \( f_s = \gamma \rho \) is displayed, where \( f_s \) represents a variable equal to the product of \( \gamma \) and \( \rho \).] denotes the structural density term.
3 ACCURACY ANALYSIS
For verifying the rationality of the proposed reflection coefficient in formula 13 for decoupling the pore structure parameter [image: It appears there was an issue with uploading the image. Please try uploading the image again or provide a URL for it. If you have any specific details or context about the image, feel free to include that as well.] and porosity [image: It seems there was an issue displaying the image. Please upload the image file or provide a URL so I can help create the alt text for it.] simultaneously, a two-layer geological model based on the logging data from carbonate reservoirs is designed to analyze its accuracy. The model parameters are shown in Table 1. The exact Zoeppritz formula, Aki–Richards approximation, and the proposed formula are used to calculate the reflection coefficient, and their comparison is shown in Figure 1. The reflection coefficient obtained from the new formula exhibits good agreement with that from the exact Zoeppritz formula for incidence angle below 35°, while maintaining similar accuracy to the A&K approximation for incidence angle above 35°. Therefore, Figure 1 shows that there is no loss of computational accuracy in the proposed formula of separating the pore structure despite the increase in input parameters.
TABLE 1 | Parameters of the two-layer strata model.
[image: Table comparing properties of two layers. Layer 1: \(K_f\) = 42.5 GPa, \(\mu\) = 13.5 GPa, \(V_p\) = 4000 m/s, \(V_s\) = 2350 m/s, \(\rho\) = 2450 kg/m\(^3\), \(\phi\) = 6%, \(\gamma\) = 3. Layer 2: \(K_f\) = 18 GPa, \(\mu\) = 14.5 GPa, \(V_p\) = 4175 m/s, \(V_s\) = 2420 m/s, \(\rho\) = 2460 kg/m\(^3\), \(\phi\) = 8%, \(\gamma\) = 6.5. Definitions included for symbols.][image: Graph showing reflection coefficient versus incident angle in degrees. Three datasets are compared: Zoeppritz equations, Aki-Richards equations, and Porosity Structure Decoupled. The reflection coefficient generally increases with angle, with Porosity Structure Decoupled showing distinct behavior.]FIGURE 1 | Accuracy comparison of reflection coefficients among the Zoeppritz formula (×), Aki–Richard formula (+), and proposed formula of decoupling the pore structure (○).
4 IMPORTANCE OF THE PORE STRUCTURE
It should be noted that there are five terms to be solved in the proposed approximation (13), including porosity [image: A mathematical symbol representing a lowercase phi, commonly used in mathematics and science.] and the pore structure parameter [image: It seems there was an error in uploading your image. Please try uploading the image file again, and I will be happy to assist with the alt text.]. Since these two parameters are not commonly used in a seismic inversion, it is necessary to confirm their considerable influence on the AVO reflection coefficient.
A two-layer model with the same basic elastic parameters ([image: Equation showing P-wave velocity as \( V_p = 4000 \, \text{m/s} \).]; [image: Equation showing the speed of sound, \( V_s = 2350 \) meters per second.]; [image: The image shows the equation for density, represented as the Greek letter rho equals two thousand four hundred fifty kilograms per cubic meter.]) is built to reveal the effect of the pore structure on the reflection coefficient by varying only [image: Please upload the image or provide a URL so I can generate the alt text for you.] or [image: Please provide the image by uploading it or sharing a URL, and I will help you create the alt text for it.], as shown in Figure 2. Figure 2A shows that when [image: Mathematical symbol gamma in black font.] is fixed at 5 and [image: An italic lowercase phi symbol, represented by a circle with a vertical line through it.] changes from 1% to 10%, the reflection coefficient exhibits significant changes. Similarly, in Figure 2B, when [image: It seems there was an error in your image upload. Please try uploading the image file again or provide a URL if available.] is fixed at 6% and [image: It seems like there is no image provided. Please upload the image or provide a URL, and I can help create alt text for it.] changes from 2 to 8, corresponding to the transition from micro-fractures to vugular pores in pore types, noticeable variations in the reflection coefficient are observed. The forward simulation results indicate that both [image: The image is of the Greek letter phi, represented in a serif font with a stylized vertical stroke crossing a circular loop.] and [image: Mathematical symbol representing the lowercase Greek letter gamma, often used in scientific and mathematical contexts.] have a considerable impact on the seismic response, akin to conventional elastic parameters. Upon comparing Figure 2A with (b), it is observed that at low values of [image: Please upload the image or provide a URL so I can assist you further.], the seismic response of [image: It seems there is an issue with the display. Please upload the image file directly or provide a URL.] shows similarities with that of [image: The symbol phi (ϕ) is depicted, representing a lowercase Greek letter often used in mathematics and science for various concepts, such as angles or the golden ratio.]. The consistent variation trend of reflection coefficient in both figures suggests that an increase in the complexity of the pore structure leads to a more pronounced seismic response. Therefore, the influence of [image: Please upload the image you would like described, and I will create the alternate text for it.] on the variation of seismic reflection should not be neglected, necessitating the consideration of both [image: It appears there was an issue with displaying the image. Please upload the image file directly or provide a URL so I can help generate the alternate text.] and [image: It seems there's an issue with the image upload. Please try uploading the image again, and I’ll be happy to help with the alt text.] as pivotal factors in fluid prediction.
[image: Two line charts showing reflection coefficient versus incident angle. Chart A displays lines for φ values ranging from 1% to 10%, highlighting γ = 5. Chart B shows lines for γ values from 2 to 8, highlighting φ = 6%. Each line represents varying parameters affecting the reflection coefficient as the incident angle increases.]FIGURE 2 | Contribution of porosity [image: A Greek lowercase letter phi (φ) in plain text.] and pore structure parameter [image: Please upload the image or provide a URL for it.] to seismic reflection coefficients. (A) Effect of variation in [image: Mathematical symbol phi, represented as a lowercase Greek letter, used in mathematics and science.] on reflection coefficients when [image: Equation "y equals five" is displayed, indicating a horizontal line graph in a coordinate plane where the value of y remains constant at five.]; (B) Effect of variation in [image: Please upload the image or provide a URL for me to generate the alt text.] on reflection coefficients when [image: Phi equals six percent.].
5 INVERSION FOR DECOUPLING THE PORE STRUCTURE
5.1 Bayesian framework
The solution of the proposed method, as indicated by formula 13, involves five parameters to be solved for. This places higher demands on the stability and accuracy of the inversion compared to the traditional AVO method, which typically require only three parameters. The proposed formula requires the association of [image: It seems like there might have been an error in uploading your image. Please try uploading the image again or provide a URL. If you have any specific context or description, feel free to share that as well!] (where [image: It seems there was an error in your message. Please upload the image or provide a URL, and I'll help you create the alt text.] takes an integer greater than or equal to five) equations, with each equation corresponding to an incidence angle. Assuming that each seismic trace has [image: It seems you're referring to an image, but I can't view or access it. Could you please upload the image file or provide a URL?] incidence angles and [image: It seems like there is no image attached. Please upload the image or provide a URL for me to generate the alt text.] sampling points, let [image: Equation depicting the formula for \( R_{K_f} \) as the ratio of \(\Delta K_f\) to \(\overline{K_f}\).], [image: The image shows the equation \( R_{\phi} = \Delta \phi / \overline{\phi} \).], [image: Equation showing \( R_{\gamma} = \Delta \gamma' / \overline{\gamma} \).], [image: The formula \( R_{f_m} = \frac{\Delta f_m}{f_m} \) is shown, where \( R_{f_m} \) represents a ratio or rate of change, \(\Delta f_m\) represents the change in frequency, and \( f_m \) represents the original frequency.], and [image: \( R_{f_s} = \Delta f_s / \overline{f_s} \)]; consequently, formula 13 can be rewritten as follows:
[image: Matrix equation showing a relationship between multiple parameters and functions. The left matrix has blocks with elements: A_pp, B_pp, C_pp, D_pp, E_pp, all dependent on theta values. The right matrix consists of elements: R_kf, R_phi, R_y, R_y/m, R_fs. The left side of the equation equals a column vector with repeated R_pp dependent on theta. Equation is labeled as (14).]
where [image: Equation for \(A_{pp}(\theta_i)\) as a function of \(\theta_i\), equals \(\sec^2 \theta\) times the quantity \(\frac{1}{4} - \frac{c_{dry}^2}{4c_{sat}^2}\), multiplied by \(I_{N \times N}\).], [image: Mathematical equation of the spectral matrix \( B_{pp}(\theta_i) \) equal to the product of a matrix expression and the identity matrix \( I_{N \times N} \). The expression is \(\left( \frac{\sec^2\theta}{4} - \frac{c_{dry}^2}{2c_{sat}^2}\sec^2\theta + \frac{2}{c_{sat}^2}\sin^2\theta \right)\).], [image: The mathematical expression shows \( C_{pp}(\theta_i) = \left(\frac{1}{2} \sec^2 \theta - \frac{1}{2} - \frac{c_{\text{dry}}}{4 c_{\text{sat}}} \sec^2 \theta \right) \cdot I_{N \times N} \).], [image: Mathematical equation for \( D_{\text{pp}}(\theta_i) \) equals the product of a term in parentheses and \( I_{N \times N} \). The term in parentheses is \( \left(\frac{c_{\text{dry}}^2}{4c_{\text{sat}}^2} \sec^2 \theta - \frac{2}{c_{\text{sat}}^2} \sin^2 \theta \right) \).], [image: The equation depicts \( E_{pp}(\theta_i) = \left(\frac{1}{2} - \frac{1}{4} \sec^2 \theta\right) \cdot I_{N \times N} \), where \( E_{pp} \) is a function of \( \theta_i \), involving the secant squared of theta and an identity matrix \( I \) of dimensions \( N \times N \).], and [image: An equation showing the identity matrix \(I\) with dimensions \(N \times N\).] denotes a unit matrix of [image: It seems there was an error in displaying the image. Please upload the image file directly or provide a URL, and I will help create the alternate text for it.].
For simplicity of expression, formula 14 can be reformulated as follows:
[image: Mathematical equation showing \( G_{pp} m = d_{pp} \) with reference number fifteen.]
where [image: Matrix equation labeled \( G_{pp} \) with five columns labeled \( A_{pp}(\theta_1) \) through \( E_{pp}(\theta_1) \) for the first row, \( A_{pp}(\theta_2) \) through \( E_{pp}(\theta_2) \) for the second, continuing with ellipses, and ending with \( A_{pp}(\theta_M) \) through \( E_{pp}(\theta_M) \) for the last row.], [image: The formula shows a vector \( m \) as a column matrix with elements \( R_{K_f} \), \( R_{\phi} \), \( R_{\gamma} \), \( R_{f_m} \), and \( R_{f_s} \).], and [image: Mathematical expression representing a vector \(d_{pp}\) as the transpose of a matrix with components \(R_{pp}(\theta_1), R_{pp}(\theta_2), \ldots, R_{pp}(\theta_M)\).].
The solution of formula 15 provides the five parameters; however, it suffers from severe ill-posedness in practical applications. Therefore, based on the Bayesian framework, the issue of well-posedness can be effectively improved by introducing the prior information of the model parameters into the regularization of inversion. Thus, the posterior probability density distribution of model parameters [image: Mathematical expression displaying the conditional probability \( P(m \mid d_{pp}) \).] is
[image: Bayes' theorem formula: \( P(m | d_{pp}) = \frac{P(m)P(d_{pp} | m)}{P(d_{pp})} \), labeled equation (16).]
where [image: Mathematical expression "P of m" in italics, indicating a probability function or polynomial dependent on the variable \( m \).] signifies the prior distribution of the model parameters, [image: Mathematical expression: \( P(m) P(d_{pp} \vert m) \).] represents the likelihood function that characterizes the noise distribution of seismic gathers, and [image: The mathematical notation \( P(d_{pp}) \).] denotes a constant that can be ignored if the posterior probability distribution function remains unchanged.
The prestack seismic gathers in actual data contain a certain level of noise. Assuming that the noise is uncorrelated with a mean value of 0, following the likelihood function of the Gaussian distribution, thus, the likelihood function of noise can be expressed as follows:
[image: Probability density function equation, \( P(d_{pp} | m) \), is shown. It equals \([ (2\pi)^{LN} | C_{pp} | ]^{-1/2}\) multiplied by an exponential function. The exponent is \(-1/2\) times the transpose of \((d_{pp} - G_{pp,m})\) times the inverse of matrix \(C_{pp}\) times \((d_{pp} - G_{pp,m})\). Equation is numbered (17).]
where [image: Mathematical formula showing \( C_{np} = \sigma^2_{np} I \).] and [image: Mathematical notation for the variance of a portfolio, represented as the Greek letter sigma squared, followed by subscript "rp."] represent the covariance and the mean square error of P-wave noise, respectively.
The prior distribution of the model parameters can be either univariate or multivariate. Considering that five involved parameters, which have certain correlation, need to be obtained by the proposed method, the selection of multivariate distribution can effectively mitigate the ill-conditioning issue. While Gaussian distribution only provides consistent weighting coefficients, which may impact the sparsity of inversion results, Cauchy distribution can yield non-consistent weighting coefficients with sparsity effects and greater geological significance. Therefore, the multivariate Cauchy distribution is adopted as the prior distribution for the model parameters, with its specific formula given as follows:
[image: Probability function \( P(m) \) equals the product from \( i = 1 \) to \( N \) of \(\frac{2|\psi|^2}{\pi^2 (1 + m^T \Phi_i m)^2}\). \(\Phi_i\) equals \( D_i^T \psi^{-1} D_i \). Labeled as equation (18).]
where [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to assist you with the alternate text.] signifies the correlation matrix, which can be obtained by maximum expectation estimation. [image: Mathematical notation \( D_i \) in a serif font.] denotes the matrix of [image: To provide alt text, please upload the image or provide a URL.], and its expression is as follows:
[image: Mathematical equation displaying conditions for \(D_{i,xy}\). Equals one if \(x = 1\) and \(y = i\), \(y = i + N\), \(y = i + 2N\), \(y = i + 3N\), or \(y = i + 4N\). Otherwise, zero.]
By substituting formulas 17, 18 into Formula 16, the posterior probability density of model parameters can be obtained as follows:
[image: Mathematical equation showing the probability of \( p(m | d_{pp}) \) proportional to a product and exponential expression. The numerator contains \(|\psi|^2\) and the denominator includes a product over \( i \) from \( 1 \) to \( N \) with terms \( \pi^2 (1 + m^T \Phi_i m)^2 \). It also includes an exponential term with \(-\frac{1}{2}(d_{pp} - G_{pp}m)^T C_{np}^{-1} (d_{pp} - G_{pp}m)\). Equation is labeled as equation (20).]
After the algebraic transformation of Formula 20, the objective function [image: Mathematical notation showing "F" followed by the letter "m" in parentheses, representing a function F applied to the variable m.] should be as follows:
[image: The image shows a mathematical equation: F(m) = (d_pp - G_pp m)^T (d_pp - G_pp m) + r sum from i=1 to N of ln(1 + m^T Φ_φ m).]
where [image: Please upload the image you'd like me to describe.] determines the sparsity of inversion results, with larger values leading to sparser outcomes. Conversely, if [image: Please upload the image you would like me to describe, and I will provide the alternate text for it.] is set too small, it may result in a distorted inversion.
5.2 Decorrelation method
The statistical correlation between elastic parameters is widely recognized as a major factor contributing to the instability of the prestack inversion. The proposed method involves five parameters, out of which three parameters (fluid bulk modulus [image: Please upload the image or provide a URL, and I will help you create the alt text. If you want to add any additional context, please include that too.], porosity [image: It seems like there is an issue with the image upload. Please try uploading the image again or provide a URL for me to access it. Optionally, you can add a caption for more context.], and pore structure parameter [image: It seems like there might have been an issue with the image upload. Please try uploading the image again or provide additional context or a description for me to assist you better.]) are further decomposed by the fluid factor [image: Please upload the image for which you need the alternate text.], resulting in a closer relationship among them, thus leading to a substantial increase in inversion instability. Evidently, relying solely on the prior probability distribution scheme is insufficient for eliminating the parameter correlations. To address this issue, an improved decorrelation method (Wang et al., 2017) is adopted to obtain parameters with the lowest possible correlation, which uses the variance matrix and two linear transformations based on Chen’s previous work (Chen et al., 2007) to convert relevant data into “white data.”
The decorrelation method is illustrated using a three-parameter dataset as an example, since it involves five parameters in the proposed inversion, which is not convenient for figuring. As shown in Figure 3A, the sequences x, y, and z exhibit significant correlation, and their covariance matrix is expressed as follows:
[image: A three-by-three matrix labeled Sigma. The first row contains sigma squared sub x, sigma sub xy, and sigma sub xz. The second row contains sigma sub xy, sigma squared sub y, and sigma sub yz. The third row contains sigma sub xz, sigma sub yz, and sigma squared sub z, followed by the number 22.]
where [image: Variance symbol for variable x, denoted as sigma squared sub x.], [image: Mathematical notation showing the symbol for variance of a variable, represented as sigma squared with a subscript y.], and [image: Mathematical notation showing a lowercase sigma squared subscript z, representing the variance of a variable z.] represent the variance of [image: Please upload the image or provide a URL so I can generate the alt text for you.], [image: Please upload an image or provide a URL so I can generate the alt text for you.], and [image: Please upload the image you'd like me to describe, and I'll provide the alt text for you.], respectively, and [image: Lowercase Greek sigma followed by the subscript "xy".], [image: The image shows the mathematical symbol for shear stress, represented by the Greek letter sigma with subscripts x and z.], and [image: Greek letter sigma with subscripts y and z.] denote the covariance of the three parameters. The singular value decomposition of the covariance matrix is
[image: Mathematical equation depicting the formula for Σ equals ν times L over ν raised to the power of r, followed by the number twenty-three in parentheses.]
where [image: If you have an image you would like me to describe, please upload it or provide a URL.] signifies the eigenvector matrix and [image: Please upload the image or provide a URL to it, and I will help create alt text for you.] denotes the eigenvalue matrix. Upon applying [image: The expression shows the lowercase letter "v" with a superscript negative one, representing the inverse of "v" in mathematical notation.] to [image: The image shows a mathematical expression: \( d = \begin{bmatrix} x, y, z \end{bmatrix}^T \).], the resulting sequences [image: The image shows the variables x prime, y prime, z prime, written in mathematical notation with prime symbols.] are shown in Figure 3B. However, despite this transformation, the newly obtained data [image: \( d' = [x', y', z']^T \) represents a column vector with components \( x' \), \( y' \), and \( z' \) transposed.] still have a weak correlation. To achieve further decorrelation, we apply [image: The equation shows \( s^{-1} = \sqrt{L^{-1}} \).] to [image: An uppercase italicized letter "d" followed by a prime symbol, suggesting a mathematical or scientific notation.], resulting in [image: The equation \( d'' = s^{-1} d' \) is shown.]. Figure 3C shows that [image: Vector notation showing d double prime equals the transpose of a column vector with elements x double prime, y double prime, and z double prime.] can be referred to as “white data,” where [image: Variables \( x'', y'', z'' \) with double prime notation, typically indicating second derivatives or iterations.] are almost completely unrelated.
[image: Three 3D scatter plots labeled A, B, and C show data distribution: Plot A features a distinct positive linear trend; Plot B displays a horizontal linear trend; Plot C appears randomly scattered without a clear trend. All plots have axes labeled x, y, and z.]FIGURE 3 | Decorrelation example: (A) original data with correlation, (B) data with weak correlation, and (C) white data.
According to the aforementioned method, one of the covariance matrices [image: Please upload the image or provide a URL, and optionally add a caption for additional context. I'll then create the alt text for you.] of [image: Mathematical notation showing the symbol "R" with the subscript "K" and additional subscript "f".], [image: Mathematical notation depicting the symbol "R" with a subscript phi (φ), often representing a resistor value in equations or circuit diagrams involving angular measurements or rotations.], [image: Please upload the image or provide a URL to the image you would like me to describe.], [image: Mathematical expression showing "R" with a subscript of "fm".], and [image: Mathematical notation displaying the symbol \( R_f \).] can be decomposed as
[image: The image contains a mathematical equation showing \( Cr = nuuV^\gamma \) with a reference number (24) on the right.]
The covariance matrix can be extended to two [image: Certainly! Please upload the image, and I can create an alt text description for it.] sparse eigenvector matrix [image: Please upload the image or provide a URL so I can generate the alt text for it.] and eigenvalues matrix [image: Please upload the image or provide a URL so I can assist you in creating the alternate text.] by considering [image: It appears there is a formatting issue or the image is not visible. Please upload the image or provide a URL for me to generate the alternate text.] time samples. Therefore, the transformation observed in Eq. 21 can be represented as follows:
[image: The image shows a mathematical formula labeled equation (25): \( F(m) = (d_{pp} - G_{pp} m')^T (d_{pp} - G_{pp} m') + \tau \sum_{n=1}^{N} \ln(1 + m'^T \Phi_{n} m') \).]
where [image: Mathematical expression showing \( G' = GVU \).] and [image: The equation shows m prime equals U inverse times V inverse times m.]. The reflection coefficients of [image: Mathematical notation showing "K" with a subscript "f" in italics.], [image: I'm sorry, I cannot view the image directly. Please upload the image file or provide a description for assistance.], [image: If you have an image you'd like me to provide alt text for, please upload it or provide a URL.], [image: Italic lowercase letter "f" followed by a subscript lowercase "m".], and [image: If you would like to provide an image for alt text generation, please upload the image or provide a URL. Additionally, you can add a caption for context.] can be obtained by using the iterative reweighed least-squares to solve the objective function (25), followed by obtaining the five parameters through the trace integral.
6 SYNTHETIC DATA TEST
The proposed inversion of decoupling porosity [image: Please provide the image or its URL for me to generate the alt text. If you have any specific details about the image, feel free to add them for context.] and pore structure parameter [image: Please upload an image or provide a URL so I can help generate the alt text for you.] involves a total of five parameters, and thus, it is imperative to verify its feasibility and anti-noise capabilities. A set of well data from carbonates in the actual working area of the Sichuan Basin was selected for testing purposes. First, prior to inversion, the measured data underwent the Backus averaging process (Backus et al., 1968) which transformed the data from log scale to seismic scale, followed by time–depth conversion to convert it from depth domain to time domain. Second, the reflection coefficients of the well data at various sampling times and angles (5°–60°) are obtained by forward simulation based on the exact Zoeppritz equation, subsequently convolved with a 30 Hz Ricker wavelet to generate synthetic seismic data, as shown in Figure 4A. Third, Gaussian random noise with the signal-to-noise ratio (S/N) of 2 was added to the synthetic record, as shown in Figure 4B.
[image: Two seismic waveform plots labeled A and B demonstrate changes in waveforms with varying incidence angles. Both plots feature time on the vertical axis (ranging from 1800 to 2100 milliseconds) and incidence angle on the horizontal axis (ranging from 0 to 60 degrees). Differences in waveform patterns between plots are visible.]FIGURE 4 | Synthetic seismic gathers without noise (A) and with noise of S/N=2 (B).
Figures 5A, B show the inversion results without and with noise, respectively, displaying the three direct inversion parameters of fluid bulk modulus [image: The expression "K sub f" is shown, representing a variable or constant in a formula, with "K" as the main variable and "f" as the subscript.], which characterize reservoirs, porosity [image: It seems there was an issue with the image upload. Please try uploading the image again, ensuring the correct file format, or provide a URL. You can also add a caption for additional context if needed.], and pore structure parameter [image: Please upload the image or provide a URL so I can help create the alt text for it.]. Additionally, the Russell fluid factor [image: Please upload the image you would like me to describe.] is calculated indirectly using formula 10 or (12) following the proposed inversion. In the absence of noise, both the direct and indirect inversions yield consistent results with well curves. However, due to a weaker seismic response than the fluid bulk modulus [image: The image shows the mathematical notation "K sub f" in italics, frequently used to denote a constant or variable in scientific and engineering contexts.], porosity [image: Greek lowercase letter phi in italic script.], and pore structure parameter [image: Lowercase Greek letter gamma, resembling a curvy lowercase "y".] exhibit slightly lower resolution. At S/N = 2, the direct inversion results ([image: The image shows the formula \(K_f\) in italics, commonly representing the freezing point depression constant in chemistry.], [image: It seems there was an error in displaying the image. Please upload the image file directly or provide a link to it so I can help create the alt text.], and [image: It seems there is no image uploaded. Please provide the image by uploading it or share the URL. If you have a caption for context, you can include that as well.]) show a slight decrease in accuracy compared to noise-free conditions, while errors became more apparent in indirect inversion’s [image: I can't see or interpret images directly. Please upload the image or provide a URL for me to help with the alt text.] due to error accumulation from indirect calculation. Nevertheless, even with added noise during the inversion process, the inversion results still maintain a similar trend as observed in the well data, indicating a good stability of the proposed method for practical applications.
[image: Graphs A and B display four columns of line plots each, representing variables \( f \) (GPa), \( K_s \) (GPa), \( \phi \) (%), and \( \gamma \). Vertical axes indicate time in milliseconds from 1800 to 2150. Each column has colored lines, showing variations over time.]FIGURE 5 | Inversion results from the synthetic data without noise (A) and with noise of S/N=2 (B) (the green line indicates the low-frequency data, the blue line indicates the model data, and the red line indicates the inversion data).
7 ACTUAL DATA APPLICATION
The well data from an exploration area in the Sichuan Basin is utilized to validate the feasibility and applicability of the proposed prestack inversion technique for decoupling both pore structure parameter [image: Greek lowercase letter gamma, resembling a stylized "y" with a curved tail, typically used in mathematics and scientific notations.] and porosity [image: Greek lowercase letter phi, often used in mathematics and physics to represent a variety of concepts such as angles and phases.] simultaneously. The target reservoir comprises dolomitic gas-bearing carbonate with low porosity but an intricate pore structure, which constitutes one of the influential factors affecting fluid prediction.
7.1 Digital core analysis
Before fluid detection, component analysis and simulation of different pore shapes were conducted on a total of seven cores from three wells in various formations to construct multi-component digital core models for evaluating the influence of the pore structure in this working area. Figure 6A shows a gray-scale slice obtained through a CT scan depicting the actual core. Based on the analysis of the actual core, the multi-component digital core was constructed, as shown in Figure 6B. The digital core comprised two dominant minerals: dolomite (light-colored) and quartz (dark-colored), and the dark-colored component also containing 7% kaolinite. As numerous previous studies have demonstrated the effect of porosity [image: It seems there is a problem with the image upload. Please try uploading the image again or provide a URL so I can help create the alt text.] on elastic parameters, such as those by Han et al. (2004) and Yin et al. (2014), the effect of the pore structure parameter [image: Please upload the image or provide a URL to the image that you want described.] on elastic parameters within different components in the digital cores is solely focused on being discussed. The relationship between pore structure parameter [image: The Greek letter gamma in a serif font.] and saturated bulk modulus [image: Please upload the image or provide a URL so I can help create the alt text for it.] or shear modulus [image: It seems there's no image uploaded. Please upload an image or provide a URL, and I can help create the alt text for it.] of the digital core is shown in Figures 7A, B. The [image: It seems like there was an error while attempting to upload the image. Please try uploading the image again or provide a URL so I can help you generate the alternate text.] of each mineral component is greatly affected by [image: Kindly upload the image or provide a URL so I can generate the appropriate alternate text for it.] when [image: Inequality expression: y is greater than 4.], with the [image: Certainly! Please upload the image or provide a link to it, and I can help create the alt text for you.] of dolomite experiencing a change of over 40% and quartz approximately 32%, in particular. However, the effect of [image: Please upload the image or provide a URL so I can help create the alternate text for it.] on [image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL. Optionally, you can add a caption for additional context.] is negligible and can be disregarded, as all three mineral components vary by less than 10% when [image: The image shows the mathematical inequality "y is greater than seven".]. However, in the simulation of filling oil or gas, the measured fluid bulk modulus [image: Mathematical notation for "K" with a subscript "f" in italic font.] remains constant regardless of variations in the three mineral components or changes in the pore structure parameter [image: It seems there was an issue with the image upload. Please try uploading the image again, and I’ll be happy to help with the alt text!]. Therefore, if fluid identification does not take the impact of the pore structure parameter [image: Please upload the image or provide a URL for me to generate the alt text. Optionally, you can add a caption for additional context.] into account, its prediction results will exhibit significant multi-solution possibilities and uncertainties.
[image: Two grayscale images of sediment cores. Image A shows a circular cross-section with varied textures and tones. Image B displays a cylindrical view with similar textures and a central vertical line. Both images highlight sediment composition differences.]FIGURE 6 | Core analysis. (A) Gray-scale slice of core using a CT scan; (B) digital core image (he light-colored component is dolomite, and the dark-colored component is 93% quartz and 7% kaolinite).
[image: Graphs A and B show bulk and shear moduli (GPa) variations for kaolinite, quartz, and dolomite as functions of the pore structure parameter (γ). Graph A displays bulk modulus values, with kaolinite showing the lowest and dolomite the highest values. Graph B shows shear modulus, with similar trends for each mineral.]FIGURE 7 | Impact of the pore structure parameter [image: Please upload the image or provide a URL so I can help create the alt text for it.] on bulk modulus [image: Please upload the image or provide a link so I can create the alternate text for you.] (A) and shear modulus [image: If you could provide an image or a URL linking to it, I would be able to help create an alt text for it.] (B) of different mineral components.
7.2 Fluid prediction
Reservoir analysis is initially performed on the well data, using the same well in the anti-noise experiment, as shown in Figure 8. Among the three logged carbonate gas-bearing reservoirs (highlighted by red and blue boxes in Figure 8), Russell fluid factor [image: It seems like there might be a mistake in your request. Could you please provide the image or clarify what you need help with? You can upload the image directly or provide a URL along with any context or details for more specific assistance.] exhibited conspicuous manifestation solely within the second reservoir, and fluid bulk modulus [image: Mathematical notation of "K" with subscript "f" in italic font.] demonstrated consistent characteristics in all the three reservoirs. According to Eqs 3, 10, Russell fluid factor [image: Please upload the image so I can provide the appropriate alt text for it. If you need help with uploading, let me know!] serves as an integrated indicator of fluid within the saturated porous rock, whereas fluid bulk modulus [image: It appears that you're referencing a fragment of an image containing mathematical notation. For a complete and accurate alt text, please upload the entire image or provide a detailed description.] acts as a fluid indicator independent of porosity [image: It looks like there was a mistake in your message. Please upload the image or provide a description of it so I can help create the alternate text.] and pore structure parameter [image: It seems like there was an issue with the image upload. Please try uploading the image again or provide a URL. If you have a caption or any additional context, feel free to include that as well.]. Therefore, by analyzing the curves of [image: It seems like you've tried to include an image, but it did not come through. Please try uploading the image again, or provide a URL, and I can help you create the alt text.] and [image: It seems there's an issue with the image upload. Please try uploading the image again or provide a URL. Optionally, you can add a caption for more context.], it becomes discernible as to which factor affects the prediction outcomes: The red-boxed reservoir is primarily influenced by [image: I'm sorry, but I cannot see the image you are referring to. Please upload the image or provide additional context so I can help create appropriate alt text.], whereas the blue-boxed one is affected by [image: Please upload the image or provide a URL so I can help generate the alt text.]. Notably, the third reservoir represents a thinly interbedded formation controlled by both [image: Please upload the image or provide a URL to generate the alt text.] and [image: It seems there was an error in your request. Please upload the image file directly, and I can help create the alt text for it.], thereby indicating its highly heterogeneous nature.
[image: Four line graphs display f (GPa), Kf (GPa), φ (%), and γ across depth in milliseconds. Each graph has black lines indicating variable changes, with red and blue shaded rectangles highlighting specific data ranges within individual graphs.]FIGURE 8 | Factor analysis of affecting reservoir identification (reservoirs in the red boxes are controlled by porosity [image: Greek letter phi, a symbol often used in mathematics and science.], and those in blues ones are controlled by the pore structure parameter [image: Please upload the image or provide a URL so I can help create the alt text for it.]).
Second, both the proposed inversion and Russell’s [image: Please upload the image or provide a link to it, and I will help you create the alt text.] inversion are calculated for fluid prediction. Additionally, [image: Please upload the image or provide a link so I can help create the alt text for it.] indirectly obtained from the results of the proposed inversion by formula 10 is also obtained for comparison, as shown in Figure 9. The outcomes of fluid bulk modulus [image: The text shows "K" with a subscript "f", representing a scientific or mathematical notation, potentially indicating a specific constant or factor.] (Figure 9A), porosity [image: It seems there is an issue with the image upload. Please try uploading the image again, ensuring the file is attached properly. If you have a caption or additional context, feel free to include it.] (Figure 9B), and pore structure parameter [image: It seems there's no image uploaded. Please try uploading the image again, and I can help with the alternate text.] (Figure 9C) closely match the data from the test well. Moreover, the profile of direct [image: Please upload the image or provide a URL so I can assist you with generating the alt text.] (Figure 9E) coincides with that of indirect [image: It seems there is no image provided. Please upload an image or provide a URL so I can assist with creating alternate text.] (Figure 9D), indicating the stability and reliability of the proposed inversion. The result of [image: Mathematical expression showing the letter "K" with a subscript "f".] (Figure 9A), which is decoupled from [image: The image shows the Greek letter phi ϕ, commonly used in mathematics and science to represent the golden ratio or angles in polar coordinates.] and [image: Please upload the image or provide a URL, and I can help create the alt text for you.], exhibits a more pronounced distribution pattern in reservoirs compared to that of [image: Please upload the image or provide a URL so I can assist you in creating the alternate text.]. Notably, between them, there exists a significant disparity in fluid prediction for the third reservoir—the thin interbedded gas-bearing formation. By magnifying the red box near the well in Figures 9A, E,as shown in Figure 10, it can be observed that [image: Mathematical notation showing the letter "K" with a subscript "f".] (Figure 10A) displays better consistency with verified gas production tests within the thin interbedded gas reservoirs than [image: Please upload the image or provide a URL so that I can create the alternate text for it.] does (Figure 10B), which shows that after eliminating the influence of [image: It seems like there was an issue with displaying the image. If you can upload the image directly, I can help generate the alt text for it.] and [image: It appears there is no image uploaded. Please provide the image by uploading it, or share a URL if that's more convenient.] through inversion, the prediction of [image: It seems like you provided a mathematical expression. If there is an image associated with it, please upload the image file or provide a URL for the image.] accurately reflects reservoir distribution.
[image: Five panels (A to E) display seismic data with color-coded attributes over time. Each panel shows variations, indicated by legends on the right. The attributes include Young’s modulus, porosity, density, dynamic shear modulus, and dynamic bulk modulus, each varying with depth and time. Color gradients represent numerical values for each attribute, with scales specified in the legends.]FIGURE 9 | Inversion profile of fluid bulk modulus [image: Text displaying "K" with a subscript "f".] (A), porosity [image: The Greek letter phi, displayed in a serif font, typically represents concepts such as the golden ratio in mathematics.] (B), pore structure parameter [image: It seems like there might have been an error in uploading the image. Please try uploading the image again or provide additional context so that I can assist you better.] (C), and Russell fluid factor [image: Please upload the image or provide a URL for me to generate the alt text.] indirectly (D) and directly (E).
[image: Seismic data images labeled A and B show color-coded pressure variations. Image A represents \(K_t\) ranging from 0 to 50 GPa, while image B represents \(\mu\) ranging from 1 to 7 GPa. Both images include a marked "Gas" section.]FIGURE 10 | Magnified partial profiles of fluid bulk modulus [image: The image shows the symbol "K" with a subscript "f", often representing the freezing point depression constant in chemistry.] (A) from Figure 9A and Russell fluid factor [image: Please upload the image or provide a URL for me to generate the alternate text.] (B) from Figure 9E.
8 CONCLUSION
The pore structure parameter [image: It seems like you attempted to add an image, but it is not visible. Please upload the image file or provide a URL so I can help you with the alternate text.], like porosity [image: If you upload an image or provide a URL, I can help create the alt text for it.], is one of the dominant factors affecting fluid prediction in heterogeneous reservoirs. By combining Russell’s poroelasticity theory and Sun’s petrophysical model, a new reflection coefficient formula is proposed, which decouples fluid bulk modulus [image: Text depicting the symbol \( K_f \), with "K" in uppercase and "f" in subscript, suggesting a notation often used in scientific or mathematical contexts.] from porosity [image: It seems you attempted to upload an image, but it did not come through. Please try uploading the image again or provide a URL.] and pore structure parameter [image: Please upload the image or provide a URL so I can generate the alt text for you.], thus eliminating the interference of the pore-related factors on reservoir prediction. Theoretical experiments demonstrate that the proposed inversion retains comparable computational accuracy to the conventional A&K approximation and has good anti-noise ability under the condition of five involved parameters. Both theoretical model and digital core analyses reveal that the pore structure parameter [image: It seems there is no image attached. Please upload the image or provide a URL, and if possible, include a caption for additional context.] can have a significant impact on the prediction of heterogeneous reservoirs with low porosity. In the example from the Sichuan Basin, compared with Russell fluid factor [image: Please upload the image or provide a URL so I can help create the alt text for it.], fluid bulk modulus [image: The formula "K sub f".] from the proposed inversion method provides more accurate and distinct reservoir distribution in carbonate gas-bearing strata. However, there are still two prerequisites for the application of the proposed inversion. First, as a less commonly used parameter, the pore structure parameter [image: It seems there is no image uploaded. Please upload an image or provide a URL, and I will be happy to help you with the alternate text.] needs to be obtained from sufficient logging data in the working area under generally industrial process. The method used to obtain the pore structure parameter [image: It seems that there's a formatting issue with the image upload. Please try uploading the image again, or provide a URL if it's hosted online. If you have a caption or context, feel free to include that as well for more accurate alt text.] in this paper is the empirical method proposed by Zhang et al. (2018a), Zhang et al. (2018b), which is still inadequate in terms of efficiency and verifiability. Second, in order to ensure the robustness of the proposed inversion method with five parameters, high-quality seismic data are also indispensable.
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The accurate simulation of anisotropic media is critical in seismic imaging and inversion. In recent years, some scholars have dedicated efforts to the study of precise elastic waves in anisotropic media; however, it is easy to separate P-wave and S-wave from elastic wave fields in isotropic media but difficult to separate them in anisotropic media. To address this issue, others have proposed pseudo-pure-wave equations based on the theory of wave-mode separation, but shear wave interference still exists. Therefore, we derived the first-order pure quasi-P-wave equation with no shear wave component in orthorhombic anisotropic media (ORT) which is common in the Earth’s crust and has very important research value. The presence of a pseudodifferential operator in the equation poses a challenge for solving. In order to solve the pure wave equation, we decomposed the original pseudodifferential operator into an elliptic differential operator and a scalar operator, both of which are easily solvable. In addition, we extended the equation from ORT media to tilted ORT (TORT) media. The example results indicate that our pure quasi-P-wave equation can yield a more stable and accurate P-wave field. The pure wave equation we propose can be applied in reverse time migration (RTM), the least squares RTM (LSRTM), and even the full waveform inversion (FWI).

Keywords: orthorhombic anisotropic media (ORT), quasi-P-waves, differential operator, anisotropic, forward

1 INTRODUCTION
With the growing complexity of targets in oil and gas exploration, precise high-resolution imaging technology has emerged as a vital tool, offering robust technical support and emphasizing the significance of accounting for underground media anisotropy (Chen et al., 2010; Fowler et al., 2010; Du et al., 2015). Various migration and inversion imaging methods have been developed based on anisotropic media, including Vertical Transverse Isotropy media (VTI) (S. Sun et al., 2022), (C. Luo et al., 2022), (R. Bloot et al., 2012), tilted TI (TTI) media (Han Q et al., 2022), and orthorhombic anisotropic media (ORT) media. However, certain challenges emerge when using the original elastic wave equation for forward numerical simulations. This may result in a complex algorithm and significant computational costs, especially given the current hardware limitations (Du and Qin, 2009; Cheng J B et al., 2013). Furthermore, the separation of elastic wave fields using wavefield separation techniques faces several challenges in anisotropic media (Dellinger J and Etgen J, 1990; Cheng J and Fomel S, 2014). As a result, scholars from various countries have recently devoted themselves to the study of single-mode wave propagation, such as the quasi-P-wave. Broadly speaking, anisotropic numerical simulations of single-mode waves can be categorized into two main types of methods. The first approach is based on the acoustic approximation proposed by Alkhalifah T (1998), and the core idea of this acoustic approximation is to set the shear wave velocity along each anisotropic symmetry axis to zero. Subsequently, he (Alkhalifah T, 2000) derived a fourth-order wave equation for TI media within the framework of the acoustic approximation and this equation was proven to be challenging to solve. Following this, other researchers decomposed this high-order linear partial differential equation into lower-order forms that are more easily solvable. Applying these simplified equations to wavefield simulation and RTM can enhance computational efficiency (Zhou H et al., 2006; Du X et al., 2008; Fowler PJ et al., 2010). However, when using these simplified equations for numerical simulations, several issues may arise, including potential wavefield interference caused by pseudo-shear waves (Grechka et al., 2004) and the possibility of numerical instability when the anisotropic symmetry axis undergoes abrupt changes (Fletcher et al., 2009; Duveneck and Bakker, 2011; Zhang et al., 2011). The second method is based on the pure P-wave equation, thereby fundamentally eliminating interference from shear waves. In this regard, Klie and Toro (2001) employed a previous version of the acoustic equation to eliminate an analytical artifact in Alkhalifah’s solution. Pestana et al. (2011) and Chu et al. (2013) introduced a new equation that contains intricate pseudo-differential operators, with all of its model parameters being separable. This equation can be solved using the pseudospectral method, but computational efficiency decreases when dealing with complex anisotropic parameters. The dispersion relation for decoupled qP and qSV waves was introduced under the assumption of the acoustic approximation in VTI media (Liu et al., 2009). This approach has proven to be effective in solving the equation when the anisotropic parameter model remains relatively stable. Cheng et al. (2013) derived a pseudo-pure wave equation based on the theory of elastic wave separation. By isolating the scalar-mode wave from pseudo-pure-mode wave equations, residual shear wave components were successfully eliminated (Cheng et al., 2014). Section 3.1 (Example 1) showcases the results of forward wave field simulations using the pseudo-pure P-wave equation in ORT. Based on different theories, Sheng and Zhou (2014) derived a new pure qP wave equation applicable to TTI media. Their approach presents a broadly adaptable solution for handling pseudo-differential operators.
To simplify the algorithms for numerical simulation in anisotropic media, approximations for the phase and group velocities of qP waves have found widespread use. Many approximate algorithms have been introduced previously to meet the numerical simulation requirements for various purposes. Dellinger and Etgen (1990) presented two consecutive continuous scalar anisotropic approximations expressed directly as rational polynomials. Alkhalifah and Tsvankin (1995) recommended performing velocity analysis by inversely deducing the dependency of P-wave moveout velocities on the ray parameter in TI media. Tsvankin (1996) examined the p-wave velocity and summarized its sign in TI media. Fomel (2004) and Fomel et al. (2013) put forward the approximation approach for three-dimensional anisotropic media on the basis of previous studies. Qi et al. (2014) and Qi et al. (2015) simplified the P-wave phase velocity by an elliptic approximation and they further elucidated the correlation between elastic coefficients and Thomsen-type parameters of ORT media. Zhang et al. (2022) systematically clarified the approximation of P-, S1- and S2- wave reflection coefficients in ORT. Guo et al. (2019), Guo et al. (2021), and Li et al. (2023) proposed theoretical models for rock effective elastic properties in the TI media, and these models provide the basis to link fracture properties to seismic attributes.
In this article, we have derived the dispersion equation for pure qP waves in ORT media. Instead of employing the exact dispersion relation presented by Tsvankin (1997), we utilized the phase velocity equation for pure qP waves introduced by Qi and Stovas (2016) to simplify the expression of the equation. This choice was driven by the goal of significantly decreasing the computational workload in ORT media. Importantly, the simplified phase velocity approximation remains highly accurate for acoustic or elastic ORT media characterized by strong anisotropy. After that, we deconstruct the pseudo-differential operator in the aforementioned dispersion equation into an elliptic differential operator and a scalar operator. This equation became easy to solve using this method and the wave field simulated in this way will have more balanced amplitudes, as demonstrated in the work by Sheng et al. (2015). Notably, when the differential operator is substituted with a Laplacian operator, following the approach by Sheng and Zhou (2014), the equation exhibits an improved tolerance to directional errors. Lastly, we extend the equation from ORT media to TORT media, to better simulate real geological stratum media.
2 MATERIALS AND METHODS
To reduce algorithm complexity, we start from the last of the three formulas: the GMA-type approximate formula, the Fomel approximation, and the simplified Fomel approximation for ORT media proposed by Qi and Stovas (2016). All the formulas are accurate for elastic or acoustic orthorhombic media with strong anisotropy and the simplified one reduces the steps of the algorithm but has no effect on the final result. The simplified phase velocity in ORT media has the following form:
[image: Mathematical expression for \( V_{\rho}^{p}(\theta, \varphi) \), indicating an equation involving trigonometric functions and parameters. It includes terms with cosine squared theta, alpha of phi times sine squared theta, and a square root encompassing similar trigonometric expressions and beta of phi.]
[image: Mathematical formula for alpha of phi, α(φ), equals one-half times parentheses r₂ξ₂ squared cos squared φ plus r₁ξ₁ squared sin squared φ, plus one-half times the square root of parentheses r₂ξ₂ squared cos squared φ plus r₁ξ₁ squared sin squared φ squared, plus one over ξ₃ squared, times r₁r₂ξ₁ squaredξ₂ squared sin squared 2φ. This is labeled as equation two.]
[image: Mathematical expression showing beta of phi equals r sub one sine squared phi plus r sub two cosine squared phi minus alpha of phi, labeled as equation three.]
And all the parameters are defined as:
[image: Mathematical expressions showing several equations involving variables \( r_1 \), \( r_2 \), \( \xi_1 \), \( \xi_2 \), \( \xi_3 \), \( \eta^{(2)} \), and \( \eta^{(3)} \). The equations make use of square roots, fractions, and exponents, denoted by \( \delta^{(i)} \) and \( \epsilon^{(i)} \), with references to first, second, and third cases or iterations. Each equation is separated by a comma.]
where [image: It seems you're referring to a symbol, not an image. The symbol 𝜃 (theta) is a character from the Greek alphabet commonly used in mathematics and physics to represent angles.] is phase angle measured from the vertical axis ([image: Text showing the mathematical term "z-axis" in a stylized serif font.]) ranges from [image: It seems there is an issue with the image upload. Please try uploading the image again and I will be happy to help with the alternate text!] to [image: Please upload the image or provide a URL so I can create the appropriate alt text for you.] and [image: It appears there was an error in the image upload. Please try uploading the image again, and I will assist you with the alt text.] is azimuthal angles measured from the [image: Text showing the words "x-axis".] between 0 and [image: The image shows the mathematical expression "2π", representing two times pi, commonly used in trigonometry and geometry related to circles.], [image: Please upload the image or provide a URL for me to generate the alt text.] is the p-wave phase velocity along the axis of symmetry, [image: Symbols representing variables: epsilon sub one, epsilon sub two, delta sub one, delta sub two, delta sub three, each in parentheses, written in a mathematical style.] are Thomsen (1986) anisotropic parameters.
We bring the following relationship function into Eq. 1,
[image: Spherical trigonometric equations are shown: sin(theta) cos(phi) equals v subscript p(theta, phi) k subscript x over omega; sin(theta) sin(phi) equals v subscript p(theta, phi) k subscript y over omega; cos(theta) equals v subscript p(theta, phi) k subscript z over omega. Equation 5.]
So we get the dispersion equation in ORT media as:
[image: The equation shows \(\omega^{2} = \frac{1}{2 r_{\infty}^{2} \rho_{0}} \left[ M(k) + \sqrt{M^{2}(k) + P(k)} \right]\), labeled as equation (6).]
Where [image: Mathematical equation depicting a wave vector \( k \) as a combination of components \( (k_x, k_y, k_z) \). The function \( M(k) \) equals \( k_z^2 \) plus another function \( Q(k_x, k_y) \).]
[image: The equation displays \( P(k) = 4 \left[ r_1 k_y^2 + r_2 k_x^2 - Q(k_x, k_y) \right] k_z^2 \).]
[image: Mathematical equation displaying \( Q(k_x, k_y) = \frac{1}{2} \left[ r_1 \xi_x^2 k_x^2 + r_1 \xi_y^2 k_y^2 + \left( \sqrt{r_2 \xi_x^2 + r_1 \xi_y^2} \right)^2 + \frac{4}{\xi} r_1 \xi_x^2 \xi_y^2 k_x^2 k_y^2 \right] \).]
Where [image: Mathematical notation showing the variables k subscript x, k subscript y, and k subscript z.] denotes the P-wave wavenumber in their axis ([image: "x-axis" in stylized math text.]; [image: The text "y-axis" in a serif font.]; [image: The text "z-axis" is represented in a stylized font.]) and [image: Please upload the image so I can provide the appropriate alternative text.] denotes angular frequency. [image: The image shows the expression "v" with subscript "p0" in an italic font.] is vertical velocity.
At this time, the dispersion equation is still hard to solve. We use the elliptic differential operator method proposed by Sheng et al. (2015) to solve the equation. First, we rewrite Eq. 5 into the format:
[image: Equation displaying three forms of a mathematical expression involving variables \(\omega^2\), \(v_0^2\), \(M(k)\), and \(P(k)\). The expression is labeled as equation (8).]
We define [image: The formula shows \( S_e = \frac{1}{2} \left[ 1 + \sqrt{1 + \frac{P(k)}{M^2(k)}} \right] \).] and [image: Please upload the image or provide a URL so I can help you create the alt text.] is the elliptic scalar. In order to further solve the equation, we bring Eq. 4 into Eq. 8:
[image: The image shows a complex mathematical equation for \(\omega\). It reads: \(\omega = v^{2}_{p0}\left[k^{2}_{z} + Q(k_x, k_y)\right]S_e = v^{2}_{p0}\left[k^{2}_{z} + \frac{1}{2}\left[r_2\xi^{2}_{x}k^{2}_{x} + r_1\xi^{2}_{y}k^{2}_{y}\right] + \sqrt{\left(r_2\xi^{2}_{x}k^{2}_{x} + r_1\xi^{2}_{y}k^{2}_{y}\right)^2 + \frac{4}{\xi^2_3}r_{12}\xi^{2}_{x}\xi^{2}_{y}k^{2}_{x}k^{2}_{y}}\right]S_e\). This is labeled as equation (9).]
Then we rewrite Eq. 9 into the first order form, and the first order pure qP-wave equation of ORT media can be defined as:
[image: Differential equation with partial derivatives. It involves variables \(p_x\), \(p_y\), \(p_z\), and parameters \(r_1\), \(r_2\), and \(\xi\) with subscripts. The equation includes square and square root terms, multiplications, and a fraction inside a bracketed section. A note defines \(\partial_{p_k}\) and ends with equation number (10).]
In order to ensure the stability of the equation, we introduce the self-conjugate differential operator in the rotating coordinate system according to Zhang et al. (2011) and Bube et al. (2012) in tilted media. Finally, the first-order pure qP-wave equation of TORT media can be derived as
[image: Partial derivative equation with respect to time, showing a complex expression involving functions \(G_i\), variables \(p_x\), \(p_y\), functions of \(p_y\), and terms involving constants \(r_i\), \(\xi_i\). Followed by a condition: \(\mathcal{S}\delta_1p_x = G_i u, \delta p_y = G_y u, \delta p_z = G_z u\). Equation labeled as (11).]
Where 
[image: Mathematical expressions for \( G_x \), involving trigonometric functions \(\cos\) and \(\sin\) of angles \(\phi\), \(\theta\), and \(\alpha\). Partial derivatives \( \frac{\partial}{\partial x} \), \( \frac{\partial}{\partial y} \), and \( \frac{\partial}{\partial z} \) are present. Equations include \(-G^{T}_x, -G^{T}_y, -G^{T}_z\), illustrating transformations using these derivatives.]
3 NUMERICAL TESTS
3.1 Example 1
In order to verify the correctness of the pure qP wave equation derived in this paper of ORT and TORT anisotropic media. Firstly, we extend the pseudo-pure P-wave equation of Cheng et al. (2013) to ORT media and remove residual shear wave components in wavefields, then compared these results with ours’. All three models’ parameters are shown in Table 1. Model 1 is used by the pseudo-pure wave simulation. The parameters [image: Mathematical symbol for the Greek letter theta typically used to represent an angle or a variable in equations.], [image: It seems there was an error with uploading the image. Please try uploading the image again or provide a URL if available. Additionally, you can include a brief description or context for the image to assist further.], [image: Please upload the image or provide a URL so I can help create the alt text for it.] are set as 0, and [image: Mathematical notation showing "y" with a superscript "(1)".] and [image: The mathematical expression shows the Greek letter gamma raised to the power of two, enclosed in parentheses.] are anisotropy parameters of shear waves in model 1. Figures 1A–C are the three components of pseudo-pure qP-wave fields, where X, Y, and Z represent inline, crossline, and depth slices of the snapshots in each picture. The outermost wave corresponds to the qP wave, the innermost wave corresponds to the qSH wave and the middle corresponds to the qSV wave. As can be seen in the first three Figures, the shear wave energy is also strong when the shear wave anisotropy is strong in each component. The fourth picture represents the summation of three components, obviously, the qP-wave energy is highlighted and the qS-wave energy is eliminated from each other, but there is still residual qS-wave energy. Figures 2A–C respectively are two horizontal and vertical components of divergence, polarization projection and deviation operators in the wavenumber domain of ORT media. Figure 2D shows the separated qP wavefield snapshots after correction of the polarization deviations. Comparing Figures 1D, 2D, it can be seen that the qS-wave component is almost completely eliminated in the corrected qP-wave fields, leaving only a little energy which may be due to the complexity of orthogonal anisotropy or the selection of anisotropy parameters. The pure qP-waves field snapshots of ORT and TORT anisotropic media are shown in Figure 3. Figure 3A uses model 2 and Figure 3B uses model 3. The distinction between Model 1 and Model 2 and 3 lies in the fact that, in Model 2 and 3, all three parameters [image: It seems you've provided a snippet of code or formula ("Vs₀"). If you intended to upload an image, please try again. If you need help with a specific visual element, let me know how I can assist!], [image: Mathematical notation showing the Greek letter gamma with a superscripted number one in parentheses.], and [image: The mathematical expression depicts the variable "y" raised to the power of two, denoted as a superscript in parentheses.], representing shear waves, were set to 0. The shape of each component of qP-wave in Figures 2D, 3A is completely consistent which also verifies the correctness of the equation we derived indirectly, moreover, there is no shear wave energy at all and the amplitude is relatively balanced in Figure 3A. We can see that the wave field value does not appear unstable or wrong and there is no obvious dispersion in Figure 3B, although we designed a large dip angle parameter in model 3. Eq. 11 in tilted medium can also simulate the results well and the algorithm is stable and reliable. Comparing the two figures, it can be found that the wave field of the x-z plane is the most sensitive to the large dip parameter, and the other two planes have less influence.
TABLE 1 | Orthotropic parameter values in Thomsen form.
[image: A table comparing three models with parameters such as \( V_{p0} \), \( V_{s0} \), \( \varepsilon^{(1)} \), \( \varepsilon^{(2)} \), \( \delta^{(1)} \), \( \delta^{(2)} \), \( \delta^{(3)} \), \( \gamma^{(1)} \), \( \gamma^{(2)} \), \( \theta \), \( \varphi \), and \( \alpha \). Model 1 has values like 3,200, 1,500, and 0.1 across parameters. Model 2 matches Model 1 except for zeros in \( V_{s0} \) and other parameters. Model 3 has zeros similar to Model 2 but different \( \theta \), \( \varphi \), and \( \alpha \) values: 43, 33, and 23, respectively.][image: Four 3D plots labeled A, B, C, and D depict data on a Z-axis versus X and Y axes in kilometers. Plots A, B, and C show similarly distributed data, forming an L-shape. Plot D includes additional circular patterns, suggesting a variation in data distribution. Each plot maintains the same L-shaped format, differing primarily in data details and circular features in Plot D.]FIGURE 1 | Wavefield modeling in ORT media. (A–C) are two horizontal and one vertical component of pseudo-pure qP-wave fields. (D) is the summation of three components.
[image: Four-panel figure showing different data visualizations. Panel A: Colorful pattern with gradient from red to blue over kx and ky axes. Panel B: Similar pattern with warmer colors predominantly yellow and red. Panel C: Mostly blue pattern with some green, similar axes. Panel D: Grey-scale map with outlines of circular patterns over X and Y axes.]FIGURE 2 | Wavenumber domain divergence, polarization projection, and deviation operators in ORT [image: Copyright symbol enclosed in parentheses.] media and the separated qP wavefield snapshots. (A) represents two horizontal and vertical components of the divergence operator. (B) is two horizontal and vertical components of the polarization projection operator. (C) represents two horizontal and vertical components of the projection deviation operator. (D) is the separated qP wavefield snapshots after correction of the polarization deviations.
[image: Two contour plots labeled A and B, each showing three circular patterns within a gray L-shaped area. Axes are marked X, Y, and Z in kilometers, suggesting spatial dimensions.]FIGURE 3 | The pure qP-waves fields snapshots in ORT and TORT anisotropic media. (A) represents two horizontal and vertical components of snapshots in ORT. (B) is two horizontal and vertical components of snapshots in TORT.
The length, width, and height of all the models contain 300 sampling points, and the sampling interval is 25. The source wavelet is Rick wavelet, with a dominant frequency of 25 Hz. The source point is located in the center of the model. All wavefield snapshots are at the time t = 500ms.
3.2 Example 2
In order to test the applicability of the algorithm, we used the modified actual anisotropic parameter fields for numerical simulation. Because each parameter field is constant and does not change in Example 1, the anisotropic parameter field is variable in space in the actual seismic data processing or simulation, so just completing Example 1 is not enough to prove the reliability of the method. Figures 4A–I shows nine anisotropic parameter fields. The inline has 1,220 sampling points, the crossline has 195 sampling points, and the z-axis contains 1,510 sampling points. The x-axis and y-axis have the same sampling interval is 25, and the z-axis is 10. The source wavelet is Rick wavelet, with a dominant frequency of 25 Hz. The source point is in the surface of the model. Figure 4J shows the wavefield snapshots of the real model at the time t = 2,500 ms. Figure 4K represents a three-dimensional shot record and the length of record t is 2,000 ms. Figures 4J, K have relatively clear wave fields, and it can be seen that the wave field changes with the change of space in the anisotropic parameters.
[image: A series of labeled panels (A to K) displaying various heatmap and contour plots. Panels A to I show heatmaps with red and blue gradients, indicating different data scales. Panels J and K display contour lines and grayscale variations. Colors and patterns represent varying intensities or frequencies in each layout. Axes are labeled with “Detection” and “Wavenumber”, or “X-ray” and “Y-axis”, providing context for the data visualized.]FIGURE 4 | The pure qP-waves forward simulation with the modified actual anisotropic parameter field in ORT media. (A–I) respectively are [image: Mathematical notation showing the symbol V subscript p zero.], [image: Greek letter delta with a superscript one in parentheses.], [image: It seems there might have been an error in uploading the image or describing it properly. Please try uploading the image again or provide more details so I can help create appropriate alt text for it.], [image: Greek lowercase letter delta with a superscript three in parentheses.], [image: The image shows the mathematical expression "epsilon superscript one" in parentheses, written as \( \varepsilon^{(1)} \).], [image: A mathematical expression showing the letter epsilon, written in italics, raised to the power of two, enclosed in parentheses.], [image: It seems there is no image provided. Please upload an image or provide a URL, and I can help create the alt text for it.], [image: A lowercase Greek letter alpha symbol, resembling a script "a" with a looped tail.  ], and [image: Greek lowercase letter phi, typically used in mathematics and physics to represent a specific variable or function, displayed in a serif font style.]. (J) represents two horizontal and vertical components of snapshots at 2,500 ms. (K) is the shot record and the length is 2,000 ms.
4 CONCLUSION
We derived a first-order pure qP-wave equation of ORT and extended the equation to TORT media. The problem of solving pseudo-differential operators is solved by using anelliptic approximation method. The differential operator is replaced by an elliptic differential operator instead of a Laplacian operator, so the pure qP-wave equation could simulate a more stable and balanced amplitude P-wave field. It can be seen from Example 1 that the equation we derived is correct, furthermore, there is no shear wave energy and Eq. 11 can also simulate a stable wave field under a large dip angle. The accuracy of our equation is relatively high and meets the accuracy of the current actual production based on the results in Example 2. In subsequent research, we are going to apply the equation to the RTM and simulate seismic wave fields using equations without approximation in orthotropic media.
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Gravity exploration method is one of the important methods for deep mineral resource exploration, but gravity data inversion has limited resolution ability in the vertical direction. In order to improve the vertical resolution of gravity data inversion, we propose a binary structure constrained gravity inversion method based on seismic first arrival travel time data. This method effectively reconstructs a density model with high vertical resolution by transferring the structural information of a high-resolution velocity model reconstructed by seismic data inversion to gravity data inversion through the binary structure constrained technique. This strategy eliminates the need to integrate both gravity and seismic methods into a single inversion framework, avoiding both the difference in convergence speeds between the two methods, as well as getting rid of the complexity associated with calculating structural coupling terms. Theoretical simulations show that the fuzzy c-means cluster analysis technique can accurately extract the target region of the velocity model reconstructed by seismic data inversion. Under the constraint of seismic structural information, the resolution of reconstructed density model is much higher than that of separate gravity data inversion, which proves that high resolution seismic information can improve the vertical resolution of gravity data inversion. Compared with the traditional cross-gradient joint inversion, the binary structure constrained gravity inversion method can further improve the resolution of the density model, especially in the reconstruction of the anomaly interface, which verifies that the method has certain effectiveness.
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1 INTRODUCTION
Gravity exploration is characterized by great depth, low cost and high efficiency, and has been widely used in the study of the internal structure of the earth’s crust and the exploration of the distribution of deep minerals and oil and gas resources (Guillen and Menichetti, 1984; Li and Oldenburg, 1998; Nabighian et al., 2005; Nabighian et al., 2010; Afshar et al., 2018; Yan et al., 2020; Ming et al., 2021). Gravity anomaly information is a comprehensive reflection of all density information of the stratum from top to bottom, so much so that the vertical resolution is not high, and only by stripping away the influence of the surface and shallow layers can the information of the specified destination layer be obtained. However, seismic data have high vertical resolution, which enables good stratification and provides reliable stratigraphic information. Therefore, high resolution seismic method can provide more accurate vertical structural information for gravity methods and reduce the multi-resolution of gravity data inversion. However, how to incorporate these high precision structural information into gravity data inversion has been a challenging task for geophysicists.
In recent years, in order to improve the density resolution of gravity inversion, a large number of joint inversion studies of gravity data and other geophysical data have been carried out, and at present the joint inversion methods are mainly classified into two main categories, one of which is the structural coupling method, and the structural coupling joint inversion aims to improve the structural similarity between different models by defining the metrics of the model structure and minimizing the structural differences between the two models. The joint inversion results obtained based on the structural coupling method show high structural consistency, and the cross-gradient is a representative of this type of method, which has been widely used in the joint inversion of gravity and other geophysical data (Fregoso and Gallardo, 2009; Moorkamp et al., 2011; Pak et al., 2017; Gross, 2019; Zhang et al., 2020; Tavakoli et al., 2021). Subsequently, the structural coupling method was further improved, structural coupling functions such as Gramian determinant (Zhdanov et al., 2012), dot product function (Molodtsov et al., 2011) and cosine dot product gradient function (Zhang et al., 2022) are proposed. The idea of the above functions is to obtain a subsurface model with higher structural consistency, but the constraint effect of this coupling method is relatively weak (Lelievre et al., 2012).
The other is the rock physical coupling method, which is used to improve the linear or nonlinear correlation between different physical parameters by incorporating some statistical rock physical information into the deterministic inversion. When there is a physical parameter relationship, the relationship can be used to constrain different physical parameter inversion methods, and the strength of this constraint is much higher than that of the structural coupling method (Niwlawn and Jacobsen, 2000; Afnimar et al., 2002; Moorkamp et al., 2011; Heincke et al., 2017). When the relationship equation of physical property parameters does not exist, the statistical petrophysical information can also be integrated into the deterministic inversion objective function through the fuzzy clustering related function, and the known statistical petrophysical information can be used to infer the physical properties of the unknown region (Lelievre et al., 2009; Carter McAuslan et al., 2015; Sun and Li, 2016; Rongzhe et al., 2023). This type of coupling has stronger constraints than structural coupling, but is weaker than the case where physical parameter relationships exist. The petrophysical-based coupling method is totally dependent on the completeness and accuracy of the petrophysical information, which shows some limitations.
The above coupling-based joint inversion method can improve the vertical resolution of the density model to a certain extent. However, the implementation of this strategy needs to consider the integration of different methods, and there is bound to be the problem of inconsistent data convergence rate of different methods, which directly affects the constraints on the model parameters, and the results of the joint inversion reconstruction may not be in line with the expectations. At the same time, it is also necessary to consider the relative weights between different data sets, the size of the weights may depend on the quality of different data and the sensitivity of the model parameters, etc. Only by adjusting the appropriate weight factors to balance the relationship between the various items can ensure that the joint inversion of the convergence of the stability. In addition, it is also necessary to consider the effect of the order of magnitude difference of different model parameters, different model parameters have different order of magnitude, if they are coupled directly, it will affect the coupling effect of different model parameters and the inversion results. Therefore, the synchronized joint inversion is a relatively complicated inversion algorithm.
How to quickly reconstruct a high-precision density model, we utilize the velocity model reconstructed from seismic data as the spatial constraint information to constrain the gravity inversion, and propose a new binary structure constrained gravity inversion method based on seismic data, and this method does not need to fuse seismic and gravity into a joint inversion framework. First, the subsurface velocity model was obtained by inverting the seismic first arrivals travel time data; Secondly, the velocity model is divided into target and background regions by fuzzy c-means analysis technique to form a binary constraint model, where all the cells in the target region are set as 1 and all the cells in the background region are set as 0. Then, under the constraint of binary constraint model, the Gaussian Newton method is used to optimize the objective function of gravity data inversion. Finally, we verify the effectiveness and accuracy of the new algorithm by theoretical simulation.
The remainder of the paper is organized in the following order. Section 2 introduces the traditional inversion principle and the gravity inversion principle based on binary constraints. Section 3 analyzes the effectiveness of the binary structure constraint gravity inversion method and compares it with the cross-gradient structure constraint. Finally, Section 4 concludes the paper.
2 INVERSION METHODS
2.1 Single inversion algorithm
The inversion problem can be understood as the search for a physical parameter model that matches the actual subsurface conditions while satisfying the data misfit requirements. In order to avoid problems such as instability and multiple solutions caused by solving pathological inverse problems, the inverse equations are usually solved by the Tikhonov and Arsenin. (1977) regularization method. First, we construct the gravity and seismic first arrival travel time inversion objective functions containing the data misfit term and the model constraint term, respectively, with the following expressions:
[image: Mathematical equation for an objective function, \(\Phi(\mathbf{m})\), combining a weighted data misfit, \(|\mathbf{W_d}(\mathbf{d_1} - \mathbf{f_1}(\mathbf{m}))|^2\), and a model norm term, \(\alpha_1 \cdot |\mathbf{W_{m1}}(\mathbf{m_1} - \mathbf{m_{ref}})|^2\).]
[image: Mathematical equation: Φ₂(m₂) equals the norm of Wₙ₂ times the difference between d₂ and function f₂ of m₂, squared, plus α₂ times the norm of Wₘ₂ times the difference between m₂ and m_ref, squared. It is equation number two.]
Where, [image: Mathematical expression displaying lowercase "f" with a subscript "1," followed by a function of "m" enclosed in parentheses.] and [image: Mathematical notation, \( f_2(m_2) \), representing a function \( f_2 \) with an argument \( m_2 \).] represent the gravity and seismic forward response, respectively; [image: It appears there is no image provided. Please upload the image or provide a URL for me to assist you with the alt text.] and [image: Lowercase letter "m" followed by subscript "2", likely indicating square meters as a unit of measurement.] represent density and velocity models, respectively; [image: Lowercase letter "d" followed by a subscript "1".] and [image: The image shows a lowercase letter "d" followed by a subscript number "2" in a serif font.] represent observational data for gravity and seismic, respectively; [image: Bold letter "W" with subscript "d1" in a serif font.] and [image: Equation showing a bold capital W followed by a subscript d2.] represent the diagonal inverse matrices of gravity and seismic data noise errors, respectively; [image: The image displays the mathematical notation "W" with the subscript "m1".] and [image: The image shows the mathematical expression "W" subscripted with "m2".] represent the gravity and seismic model smoothing matrices, respectively; [image: Stylized mathematical notation of "m sub ref" in a bold, italic font.] and [image: Mathematical expression showing "m" in bold, subscript "2," and "ref" in italics.] represent reference models for density and velocity models, respectively; [image: Mathematical notation showing the Greek letter alpha, subscript one.] and [image: Greek letter alpha with subscript two in a stylized font.] represent the regularization factors for gravity and seismic methods, respectively.
For the gravity method (Singh, 2002), the forward response expression is a linear equation which can be expressed as:
[image: The mathematical expression shows \( f_i(\mathbf{m}_i^{k+1}) = \Lambda_i \cdot \mathbf{m}_i^{k+1} \), followed by the equation number (3) on the right.]
For the seismic first arrival travel time method (Vidale, 1988), the forward response expression is a nonlinear equation, and the nonlinear problem needs to be transformed into a linear problem in the inverse solution process.
[image: The image shows a mathematical equation: \( f(m_{2}^{k+1}) \approx f(m_{2}^{k}) + A_{2}^{k}(m_{2}^{k+1} - m_{2}^{k}) \).]
Where, A1 and A2 represent the Jacobi matrices for gravity and seismic methods, respectively. k represents the number of inversion iterations.
By taking the extremes of the inverse objective function Eq. 1 and Eq. 2 respectively. We are able to obtain the expression of the Gaussian Newton method model for the k+1 iteration.
For the gravity method, the model expression for the Gaussian Newton method for the k+1 iteration is given below:
[image: Equation showing an iterative update formula for \( \mathbf{m}^{k+1} \). It includes terms \( \mathbf{m}^k \), matrices \( \mathbf{A}_1 \), \( \mathbf{W}_{di} \), \( \mathbf{W}_{a1} \), constants \( \alpha_1 \), and vectors \( \mathbf{d}_1 \), \( \mathbf{m}^k \), and \( \mathbf{m}_{\text{ref}}^k \), with matrix multiplications and inverses. It is labeled as equation (5).]
For the seismic first arrival travel time method, the model expression for the Gaussian Newton method for the k+1 iteration is given below:
[image: Equation showing an iterative method. \( \mathbf{m}_2^{k+1} = \mathbf{m}_2^k + \left[ \left( \mathbf{A}_d^k \right)^T \mathbf{W}_{d2}^T \mathbf{W}_{d2} \mathbf{A}_d^k + \alpha_2 \cdot \mathbf{W}_{m2}^T \mathbf{W}_{m2} \right]^{-1} \times \left[ \left( \mathbf{A}_d^k \right)^T \mathbf{W}_{d2}^T \mathbf{W}_{d2} \left( \mathbf{d}_2 - \mathbf{A}_d^k \mathbf{m}_2^k \right) + \alpha_1 \cdot \mathbf{W}_{m2}^T \mathbf{W}_{m2} \left( \mathbf{m}_2^k - \mathbf{m}_{\text{ref}}^k \right) \right] \). Indexed as equation (6).]
Gravity inversion usually produces skinning effect, which leads to the phenomenon that inverted anomalies are concentrated at the surface, in order to ameliorate the effect of skinning effect, we add a depth-weighted matrix to the smoothing constraint matrix (Li and Oldenburg, 1996).
2.2 The binary structure constrained gravity inversion base on seismic data
We firstly execute the seismic first arrival travel time inversion, and obtain the velocity model by solving the Gaussian Newton optimization of the objective function using Eq 6. The velocity model reconstructed from the seismic inversion is used as the guided model, and the fuzzy c-means clustering technique (Windham, 1982) is utilized for the extraction of target regions from the guided model. The extraction process is as follows:
We give the expression for the FCM objective function as follows:
[image: Equation 7 depicts the Fuzzy C-Means objective function, denoted as Φ_FCM. It is the double summation over i from 1 to M and j from 1 to C of u_ij raised to the power q, multiplied by the squared L2 norm of the difference between vectors m_i and v_j.]
[image: Please upload the image or provide a URL so I can help create the alt text for it.]
[image: Summation from \(i = 1\) to \(C\) of \(u_{ij} = 1\), labeled as equation (9).]
Where, [image: The image shows the mathematical expression "m sub i," representing the variable \( m \) with a subscript \( i \).] indicates the i model cell, M indicates the number of model cells, C indicates the number of clusters, [image: Please upload the image or provide a URL, and I will help create the alternate text for it.] indicates the clustering center of the jth cluster, q indicates fuzzy coefficients, usually set to 2, [image: The image shows the mathematical notation "u" with subscripts "i" and "j".] indicates the class affiliation of the i model cell to class j clusters, the membership is between [0, 1].
In Eq 7, the model cell mi is known, we need to find the membership matrix ui and the clustering centers vij. Take the partial derivatives of the FCM objective function with respect to the membership and the clustering center respectively, i.e. [image: Partial derivative equation showing the derivative of Phi subscript ECM with respect to v subscript j equals zero.], [image: ∂Φ_subscript(ECM)/∂u_subscript(ij) equals zero.], the final membership and clustering center can be obtained by the iterative form, which is expressed as follows:
[image: Equation representing \( u_{ij} \), which is the squared Euclidean distance \(\|m_i - v_j\|^2\) divided by the sum of squared Euclidean distances \(\sum_{k=1}^{C} \|m_i - v_k\|^2\), labeled as equation (10).]
[image: \[ v_{j} = \frac{\sum_{i=1}^{M} u_{ij}^{a} x_{i}}{\sum_{i=1}^{M} u_{ij}^{a}} \quad (11) \]  Mathematical formula for \( v_{j} \) using weighted sums with power \( a \) applied to the weights \( u_{ij} \) and values \( x_{i} \).]
[image: Three mathematical expressions are shown. The first is a column vector \(\mathbf{m}\) with elements \(m_1\) to \(m_M\), with dimensions \(M \times 1\). The second is a matrix \(\mathbf{u_j}\) with elements \(u^q_{1j}\) to \(u^q_{Mj}\), with dimensions \(M \times M\). The third is a column vector \(\mathbf{v_j}\) with identical elements \(v_j\), with dimensions \(M \times 1\). Equation number 13.]
In summary, the solution process of the FCM technique can be summarized in the following steps:
	1) Initialize the membership matrix u with a random number between 0 and 1 such that it satisfies Eq 8 and initialize the cluster centers v;
	2) Calculate the objective function Eq 7, if the objective function is less than the preset threshold, then end the clustering iteration; if it is greater than the threshold, then continue the iteration;
	3) Calculate the membership matrix u Eq 10 and the clustering center v Eq 11, then return to step 2) to continue the iteration.

The above FCM technique extracts the classification of the speed model to obtain the clustering center [image: Mathematical notation showing a lowercase italic "v" with a subscript "j".], and then calculates the absolute value of the difference between the clustering center [image: Lowercase letter "v" with a subscript "j".] and the background value of the speed model m2b ((| [image: It seems there's a misunderstanding. I do not have access to the image you are referring to. Please upload the image, and I will help you create alt text for it.]-m2b|), and takes the minimum value as the threshold ξ. Then, when | [image: The image shows the mathematical notation "m" with a subscript "i", likely representing an indexed variable or element in a sequence.]-m2b| < ξ (i = 1, 2,···, M), set Qi = 0, and the others set Qi = 1, here Q is called the binary constrained model matrix, and it is a matrix consisting of only 0 and 1, [image: Matrix Q is defined as a column vector consisting of components Q1, Q2, through QM, with dimensions M by 1.].
Finally, under the binary constraint, the gravity inversion calculation involves only the model parameters corresponding to the target region, and the model cells of other regions can be directly populated by the background model parameters, and the density model update equation after the binary constraint can be obtained by using the Gaussian Newton method to optimize the solution of the inversion objective function of the gravity data (Eq 1):
[image: Mathematical equation showing an update formula for \( \mathbf{m}^{k+1}_{l} \). The equation includes terms with transposed matrices, matrix multiplications, inverses, summations, and scalar multiplications. It is labeled as equation (14).]
[image: The equation shows \( \mathbf{m}_{i+1}^{k+1} = \text{diag}(\mathbf{Q}) \cdot \mathbf{m}_i^{k+1} \), labeled as equation \( (15) \).]
The density model is subjected to binary constraints at each iteration until the data misfit meets the desired value or the number of iterations is maximized, thus ending the computation and obtaining the inversion results.
3 NUMERICAL EXAMPLES
3.1 Analysis of the effectiveness of a binary structure constrained gravity inversion method based on seismic data
In this section, we perform separate gravity inversion and gravity inversion with binary structure constraints based on seismic data to verify the accuracy of the proposed algorithm through comparative analysis. We design a combined model, which consists of three anomalies of different sizes, the real velocity and density models are shown in Figure 1.
[image: Two panels show geological data. Panel A depicts density variations in g/cm³ with colors ranging from red to blue, indicating density from higher to lower. Panel B shows seismic velocity in m/s, with colors from red to green, indicating speed variations. Both panels use depth (km) and distance (km) as axes.]FIGURE 1 | The first synthetic model including three targets with different size and burial depths. (A) The real density model; (B) The real velocity model.
The theoretical model has a background area of 6 km × 3 km, a background velocity of 4000 m/s, and a background density of 0 g/cm3. The shallow anomalies located in the upper left and upper right of the model are both 2 km × 0.6 km, with velocities of 3000 m/s and densities of −0.3 g/cm3, while the deep anomalies located in the lower part of the model are 6 km × 2.2 km, with velocities of 5000 m/s and densities of 1 g/cm3. The seismic method is to bury the seismic sources at a depth of 50 m below the ground, with a total of 9 sources, and place two sets of equipment containing 15 receivers in the left and right wells at 1.5 km and 4.5 km, respectively, with a spacing of 200 m. The gravity has a total of 30 observation points, which are uniformly distributed on the survey line from 0 to 6 km. The number of subsurface grid sections is 70 × 30 for both seismic and gravity methods.
Two strategies are used for the reconstruction of the density model, one is the separate gravity inversion and the other is the gravity inversion based on the binary structural constraints of the seismic data. The initial velocity and density models set in the inversion calculation are both background models.
Firstly, the separate gravity inversion (Grv_sep) is performed, and the inversion is stopped after 10 iterations, and the reconstructed density model is shown in Figure 2A. The reconstructed density model from the separate gravity inversion has only a general outline, and shows large deviations in the anomaly ranges in both the deep and shallow parts, especially in the density physical values. Despite the good convergence performance of the inversion, the anomaly shape and boundary are poorly recovered and the vertical resolution is more limited. Secondly, we perform gravity inversion based on binary structure constraints (Grv_bs_joint). The velocity model obtained from seismic inversion is divided into target region and background region by FCM technique to form a binary constraint model, where all the model cells in the target region are set to 1 and all the model cells in the background region are set to 0. Then, under the constraints of the binary constraint model, the objective function of the gravity data inversion is optimized and solved using Gaussian Newton method. The seismic inversion is stopped after 8 iterations and the velocity model obtained is shown in Figure 2B. The binary constraint model obtained based on the extraction of the target region by FCM technique is shown in Figure 2C. The gravity inversion with binary structure constraints is stopped after 10 iterations and the density model obtained is shown in Figure 2D.
[image: Four color-coded diagrams showing subsurface properties across distance and depth. Diagram A and D depict values in grams per cubic centimeter, while B shows meters per second and C in a contrasting color scale. Each plot spans zero to six kilometers horizontally and a varying depth range vertically, with distinct color gradations representing different measurements.]FIGURE 2 | The reconstruction density model of different methods for the first synthetic model. (A) Separate gravity inversion results; (B) Separate seismic inversion results; (C) Binary constraint model; (D) Binary structured constrained gravity inversion results.
In Figure 2B, the seismic inversion results show strong vertical resolution ability, which can effectively distinguish deep and shallow anomalous areas. It is more reliable to take the velocity model as the a priori information. In Figure 2C, the target area extraction results based on the FCM technique are also more accurate, and the size range of the target area matches the seismic inversion results. In Figure 2D, the gravity inversion with binary structure constraints has a better match with the real model in terms of the shape size and density value of the anomalies, and the boundary of the anomalous body is more clearly portrayed, with a greater improvement in the resolution in the vertical direction.
We also determine the quality of the reconstructed inversion model by introducing the model root-mean-square error (RMSE), defined as:
[image: Equation for Root Mean Square Error (RMSE): RMSE equals the square root of the sum from i equals one to M of the squared difference between \( m_i^{\text{true}} \) and \( m_i^{\text{inv}} \), divided by M. Equation number sixteen.]
Where, [image: Mathematical expression showing m sub i raised to the power of "ture".] is the real model physical property value of the ith cell; [image: Mathematical expression showing \( m \) with subscript \( i \) and superscript \( \text{inv} \).] is the inversion model physical property value of the ith cell.
We calculated the root-mean-square error between the reconstructed density model and the real density model as shown in Table 1. From these values, it can be seen that the root-mean-square error of the model obtained by the binary structure constrained gravity inversion algorithm is smaller than that obtained by separate gravity inversion method. This indicates that the resolution of the density model reconstructed by the binary structure constrained gravity inversion algorithm is higher than separate gravity inversion method.
TABLE 1 | Root-mean-square errors between reconstructed and real models for different gravity inversion algorithms(RMSE).
[image: Table comparing RMSE values for Grv_sep and Grv_bs_joint. Grv_sep has an RMSE of 0.334, while Grv_bs_joint has an RMSE of 0.183.]3.2 Comparative analysis of binary constraints and cross-gradient structural constraints
In this section, we verify the effectiveness of the proposed algorithm by comparing and analyzing the reconstruction ability of binary structure constraints and cross-gradient structure constraints on the density model. We design a rectangular combination of two rectangular bodies of different sizes, the real density model is shown in Figure 3A, and the real velocity model is shown in Figure 3B.
[image: Diagram with two side-by-side plots labeled A and B. Plot A shows a depth versus distance graph with density in grams per cubic centimeter, featuring color-coded rectangles. Plot B displays similar axes with velocity in meters per second, also color-coded. Both plots range from 0 to 8 kilometers distance and have depth from 0 to 20 kilometers.]FIGURE 3 | The second synthetic model including two targets with different size and burial depths. (A) The real density model; (B) The real velocity model.
The background region has a size of 8 km × 3 km and background velocities and densities of 4000 m/s and 0 g/cm3, respectively. The target region contains two rectangular anomalies, the upper rectangle has a size of 2 km × 0.5 km and velocities and densities of 3000 m/s and 0.7 g/cm3, respectively. The size of the lower rectangle is 4 km × 0.7 km, and the velocities and densities are 5000 m/s and 1 g/cm3, respectively. The gravity has a total of 29 observation points, which are uniformly distributed on the survey line of 0–8 km. We dissect the model into 80×30 horizontal and vertical cells, each of size 100×100 m.
We directly use the real velocity model as the a priori structural information, and then reconstruct the density model by separate inversion, cross-gradient joint inversion, and binary structure constrained inversion. In all inversion methods, the initial density model is the background density model.
We first perform a separate gravity data inversion. The separate inversion is stopped after 5 iterations and the reconstructed density model is shown in Figure 5A. The final misfit of gravity data is 0.624, as shown by the red solid line in Figure 6. As expected, the reconstructed density model does not clarify the location and geometry of the target, and the anomaly boundaries are not clear enough to distinguish the upper and lower anomalies, which is usually due to the limited vertical resolution of the gravity data. In the iteration of the cross-gradient joint inversion algorithm, we fixed the velocity model in each iteration and structured the constrained density model by the cross-gradient function (Grv_cs_joint). The algorithm was stopped after 5 iterations, which took about 21.4 s. The reconstructed density model is shown in Figure 5B. The final misfit of gravity data is 0.699, as shown by the blue solid line in Figure 6. We find that the density model obtains a structural constraint effect at the boundary of the velocity model anomalies and can recover the sharp boundary of the two rectangular anomalies, but the structural constraint effect is poor outside the target region, mainly due to the fact that there is no gradient change of the velocity value of the velocity model outside the target region, and the value of the cross-gradient in the region is always zero, which leads to the cross-gradient function not acting as structural constraints, and thus a pseudoanomaly occurs outside the rectangular anomalies. Therefore, there is a false anomaly outside the rectangular anomaly, which is structurally different from the real density model. This phenomenon also shows that the cross-gradient joint inversion algorithm should be used with caution when there is a big difference in the convergence speed of different geophysical methods.
In the binary structure constrained gravity inversion algorithm, we abandon the traditional threshold method to distinguish the background region and the target region, but through the FCM clustering technique to extract the target region of the real velocity model, we set the number of clusters C = 2, and constantly update the clustering center, and finally the target region and the background region are divided into two categories, the red region is the target region, and the blue region is the background region, as shown in Figure 4. We use the acquired target region as the a priori structural information for the gravity inversion. Meanwhile, the gravity inversion is computed only in the target domain, and the background domain is kept unchanged. The algorithm stops after 8 iterations and takes about 11.9 s. The reconstructed density model is shown in Figure 5C. The final misfit of gravity data is 0.873, as shown by the black solid line in Figure 6. We find that the reduction of the inversion solution space reduces the gravity inversion multiplicity, resulting in a reconstructed density model that is closer to the real model. Compared with the cross-gradient constrained joint inversion algorithm, more accurate values of spatial geometry and physical parameters of the anomalies are obtained, which improves the vertical resolution of the gravity inversion. Meanwhile, the computation time is reduced because of the lower dimensionality of the reconstructed parameters and the elimination of the structural coupling terms between different model parameters.
[image: Heatmap illustrating subsurface structure, with horizontal red zones indicating varying properties against a blue background. Depth on the y-axis ranges from zero to three kilometers, and distance on the x-axis ranges from zero to eight kilometers. A color bar on the right displays values from zero to one.]FIGURE 4 | The binary constraint model obtained based on the extraction of the target region by FCM technique.
[image: Three heat maps labeled A, B, and C show variation in density (grams per cubic centimeter) with depth and distance in kilometers. Each map has a distinct color gradient from blue (low density) to red (high density). Maps A and B depict similar triangular patterns, while C shows two separate rectangular sections. Legends on the right indicate density values.]FIGURE 5 | The reconstruction density model of different methods for the second synthetic model. (A) Separate gravity inversion results; (B) Cross-gradient joint inversion results; (C) Binary structured constrained gravity inversion results.
[image: Line graph showing RMS versus iteration for three datasets: Grv_sep (red), Grv_es_joint (blue), and Grv_bs_joint (black). RMS decreases with iterations, with Grv_es_joint and Grv_bs_joint converging more quickly than Grv_sep.]FIGURE 6 | Gravity data inversion data misfit iteration curves.
We also determine the quality of the reconstructed inversion image by introducing the model root-mean-square error. We calculated the root-mean-square error between the reconstructed density model and the real density model as shown in Table 2. From these values, it can be seen that the root-mean-square error of the model obtained by the binary structure constrained gravity inversion algorithm is smaller than that obtained by other algorithms. This indicates that the resolution of the density model reconstructed by the binary structure constrained gravity inversion algorithm is higher than that of other conventional methods.
TABLE 2 | Root-mean-square errors between reconstructed and real models for different gravity inversion algorithms(RMSE).
[image: Table showing RMSE values for three models: Grv_sep with 0.288, Grv_cs_joint with 0.286, and Grv_bs_joint with 0.043.]4 CONCLUSION
We develop a binary structure constrained gravity inversion algorithm based on seismic first arrival travel time data. The fuzzy c-means clustering technique is used to extract the target region of the velocity guided model, and the obtained target region is used as the gravity inversion region. Two synthetic examples are used to analyze the accuracy and effectiveness of the binary structure constrained gravity inversion method. Our results show that the cross-gradient structurally constrained joint inversion does not reconstruct the density model well when the reference model is fixed, and the method is more suitable for joint inversion calculations of two geophysical methods with similar convergence speeds to try to avoid too large a difference in convergence speeds. The binary structure constrained gravity inversion only performs the inversion calculation in the target region, which effectively reduces the dimension of the inversion solution space, and thus reduces the inversion multisolution. Compared with the separate gravity inversion and the cross-gradient joint inversion, the proposed method obtains more accurate values of spatial geometry and physical parameters of the anomalies, which further improves the vertical resolution of gravity inversion. The algorithm proposed in this paper is not only applicable to gravity method, but also can be extended to magnetic and electromagnetic methods, which can effectively improve the resolution of magnetization and resistivity model reconstruction.
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As the difficulty of oil and gas field exploration and development increases both domestically and internationally, onshore exploration targets have gradually shifted from the shallow to the deep and from conventional oil and gas reservoirs to unconventional ones. Particularly in the exploration and development of unconventional oil and gas horizontal wells, there is an increasing demand for higher precision and quality of seismic data to better identify formation lithology, rock fractures, and improve the characterization of reservoirs, reservoir positioning, and connectivity. Wide-azimuth seismic exploration possesses significant technical advantages in addressing exploration challenges such as lithologic exploration, small fault imaging, and detailed characterization of oil and gas reservoirs. Wide azimuth seismic data reduces blind spots in seismic acquisition and improves the imaging accuracy of small faults. Notably, there exist distinct anisotropic characteristics in fault areas and fractured reservoirs. Wide azimuth seismic data is particularly advantageous for studying amplitude variation with variations in amplitude with offset (AVO), incident angle (AVA), or azimuth (AVAZ), as well as velocity with azimuth (VVA). These variations aid in identifying faults, fractures, and changes in formation lithology. As the focus of oil and gas exploration gradually shifts to complex lithological reservoirs and unconventional oil and gas reservoirs, narrow azimuth seismic exploration has been gradually replaced by wide azimuth exploration. However, as observation azimuth increases, challenges related to velocity variations with azimuth, azimuth-related traveltime differences, and azimuth-related anisotropy arise. Based on wide-azimuth seismic data from tight gas reservoirs in western China, this study conducted wide-azimuth anisotropic velocity analysis, OVT domain data regularization processing, OVT domain prestack time/depth migration, and horizontally transverse isotropy (HTI) azimuth anisotropy correction techniques. After applying specialized processing to the wide-azimuth seismic data, significant improvements were observed in the S/N and resolution of the target layer. The delineation of fractures related to hydrocarbon sources also became more distinct. These advancements not only provided high-quality results for high-fidelity, high-resolution imaging of tight gas reservoirs but also provided azimuth volume corresponding to fast and slow wave velocities for seismic data interpretation, facilitating velocity variation with azimuth (VVAZ) fracture detection and AVO analysis research.

Keywords: wide azimuth, offset vector tile, data regularization, horizontal transverse isotropy, amplitude variation with offset

1 INTRODUCTION
Unconventional reservoirs, influenced by the inherent anisotropy of subsurface media, exhibit variations in seismic attributes such as amplitude, velocity, and polarization direction as seismic waves propagate through the formations. The seismic response characteristics of fracture-type reservoirs differ among different azimuthal observation systems, showcasing azimuthal anisotropy (Thomsen, 1986; Rüger and Tsvankin, 1995; Rüger, 1998). Parallel fractures and interbedded thin layers can generate transversely isotropic (TI) properties. Parallel fractures often align nearly vertically, with their symmetry axis being horizontal, and are thus referred to as horizontally transverse isotropy (HTI). Interbedded thin layers are commonly oriented horizontally, with their symmetry axis in the vertical direction, giving rise to vertically TI (VTI). The combination of parallel fractures and interbedded thin layers results in orthorhombic media. Both HTI media and orthorhombic anisotropic media belong to azimuthal anisotropy (AA) (Rüger, 1997).
For unconventional reservoirs with high angle fractures, such as shale oil and gas as well as tight oil and gas formations, they can be effectively considered as HTI media with a horizontal symmetry axis. The seismic exploration data of fractured reservoirs often exhibit the influence of HTI anisotropy, which is primarily manifested in variations of seismic wave amplitude, velocity, and phase with changes in the azimuth of the survey lines (Rüger, 1998; Yuan and Wang, 2020). In fractured reservoirs, there are vertical fractures present above the target layer due to the existence of formation pressure. These approximately vertical fractures introduce anisotropic characteristics in the propagation of seismic waves. Such formations with these characteristics are referred to as HTI media, exhibiting distinct HTI azimuthal anisotropy. This anisotropy causes periodic changes in seismic wave amplitude, impedance, velocity, and travel time with variations in the azimuth of the survey lines (Thomsen, 2010). Additionally, it results in AVO characteristics that increase or decrease with the incidence angle. The AVO features are important for the characterization of fine channels and the detection of gas and serve as crucial factors in the exploration of gas-bearing tight reservoirs within channel sand bodies.
Wide-azimuth seismic data can be used to detect underground fractures that exhibit directional alignment. In an anisotropic medium, both parallel and perpendicular fractures display amplitude variations with azimuthal angle, allowing for the prediction of fractures through the study of amplitude variations (Thomsen, 1988). When seismic waves propagate through HTI anisotropic media, the travel time is shortest and the energy is strongest when the compressional waves propagate along the direction of the fractures. As the angle between the seismic wave propagation direction and the fracture orientation increases, the travel time becomes longer and the energy weakens. The longest travel time and weakest energy occur when seismic waves propagate perpendicular to the fracture direction. Due to the azimuthal anisotropy of HTI media, seismic attributes such as amplitude, impedance, velocity, and travel time exhibit periodic changes with azimuth. Additionally, AVO can increase or decrease with the incidence angle (Swan, 2012). If the issue of velocity variation with azimuth is not addressed, and only a single average velocity is used for normal moveout (NMO) correction, it becomes challenging to flatten all gathers across the range of azimuth angles, and the objective of coherent stacking cannot be achieved (Davison et al., 2011; Tsvankin, 1997a; Tsvankin, 1997b). Therefore, an analysis of velocity considering anisotropy and HTI anisotropy correction is crucial.
In the study of HTI azimuthal anisotropy, Tsvankin and Thomsen (1994) provided NMO velocity expressions for horizontal reflection planes of P and S waves within the symmetric plane of HTI media. Building upon the similarity between the seismic velocity equations in the symmetric plane of HTI media and the velocity equations in VTI media, Rüger and Tsvankin (1995) extended Thomsen’s anisotropy parameters to HTI media. They derived precise expressions for NMO velocity of horizontal interface reflections under arbitrary anisotropy strengths and conducted parameter inversion, establishing relationships between NMO velocity and the principal axis direction, vertical velocity, and anisotropy parameters. If rocks can be approximated as horizontally homogeneous media when subjected to horizontal and vertical stress fields, Gray and Head (2000) used the prestack seismic amplitudes with incidence angle and azimuth (AVAZ) analysis method to solve the Ruger equation and estimate the azimuthal anisotropy parameters that lead to azimuthal variations of AVAZ. This method was applied for fracture orientation and fracture density detection. Based on the analysis of the sensitivity of AVO to NMO velocity errors, Swan (2001) proposed a velocity picking method to mitigate the influence of NMO stretch distortion.
The Offset Vector Tile (OVT) concept was initially proposed by Vermeer (1998) based on a cross-shaped arrangement. In 1999, Cary introduced the concept of Common Offset Vector (COV) into the three-dimensional domain, extending the idea of grouping 2D common offset traces. In 2000, Vermeer discussed the processing method based on the OVT domain, leading to the gradual development of OVT domain processing research (Vermeer, 2000). Calvert et al. (1949), Schapper et al. (2009). Anisotropy velocities and offset vector tile prestack-migration processing of the Durham Ranch 3D, northwest Colorado. The Leading Edge, 28 (11):1,352–1,361) analyzed data processed in the OVT domain and found that it effectively preserved azimuthal information, providing azimuthal attributes for subsequent interpretation. Stein et al. (2010) conducted OVT domain processing analysis on wide-azimuth data and suggested that the processed data could be utilized for better fracture prediction in reservoirs. Schapper et al. (2009) demonstrated the improved capability of OVT-domain prestack time migration in analyzing anisotropic velocities using processed 3D field data.
Acquisition of seismic data with wide azimuth will not only multiply the acquisition cost, but also change the linear characteristics of the shot regular noise of the far array due to the increase of the number of traces in the middle and far offset, showing an approximate hyperbolic characteristic distribution, which is not conducive to the suppression of regular noise of wide azimuth seismic data. Although it is beneficial for velocity analysis and multiple suppression, due to the influence of anisotropy, the frequency and resolution of the stack data are reduced, which is not conducive to high-resolution imaging of thin reservoirs and small fractures.
Based on wide-azimuth seismic data acquired from tight gas reservoirs in western China, this study conducted wide-azimuth anisotropic velocity analysis, OVT domain data regularization processing, OVT domain prestack time/depth migration, and HTI azimuth anisotropy correction techniques. The comprehensive technique effectively addressed the issues of gather distortion, non-linearity, and incoherent stacking caused by azimuthal anisotropy. Additionally, the processing approach provided azimuth volumes corresponding to fast and slow wave velocities, which facilitated interpretations such as VVAZ fracture detection and AVO analysis.
2 THEORY AND METHOD
2.1 Anisotropic velocity analysis of wide azimuth seismic data
The term anisotropy in seismic exploration typically refers to velocity anisotropy, which refers to the variation of seismic wave velocities with angle. Traditional velocity analysis methods are generally based on the assumption of hyperbolic events. However, due to the presence of anisotropy, the travel time of reflected waves no longer satisfy the hyperbolic condition. Conventional velocity analysis methods are not suitable for meeting the accuracy requirements of wide-azimuth velocity analysis (Lu et al., 1998). Therefore, it is necessary to use velocity analysis that considers anisotropy to process and interpret seismic data (Alkhalifah and Tsvankin, 1995).
Compared to isotropic media, the travel time curve in HTI media is no longer a standard hyperbola (Alkhalifah, 1997). If we still calculate travel time in HTI media based on conventional hyperbolic assumptions, errors will occur, particularly at large offsets (Berryman, 1979). This deviation caused by the choice of travel time curve will have a greater impact and affect the accuracy of velocity analysis. In the process of generating velocity spectra, the absence of accurate travel time information from far-offset traces will lead to a decrease in the accuracy of the spectra for the available traces. This deviation discussed here precisely reflects the velocity azimuthal anisotropy characteristic of HTI media. Significant HTI anisotropy characteristics exist in fault zones and fractured reservoirs. Conventional (narrow-azimuth) exploration may weaken or overlook the effectiveness of exploration parallel to the fractures. On the other hand, wide-azimuth exploration significantly improves the ability to identify fracture development zones.
Tsvankin (1995) and Bakulin et al. (2000) deduced a formula for calculating the P-wave NMO velocity in HTI media at any azimuth angle as follow:
[image: Equation for V squared minimum equals V squared vertical times the fraction of one plus A over one plus A sine squared alpha. Labeled equation one.]
where, [image: Please upload the image, and I will provide appropriate alternate text for it.] is the P-wave velocity when seismic waves propagate vertically downward, [image: It seems you’ve referenced a specific image file (considered as "α"), but I am unable to view or interpret it. Please upload the image directly here or provide a more detailed description, and I can help create alt text for it.] is the angle between the seismic wave propagation path and the crack, [image: It seems like there is no image provided. Please upload the image or provide a URL, and I will help you create the alternate text.] is anisotropic parameter of HTI media, and [image: A equals two delta to the power of v.].
When the seismic wave propagation path is parallel to the crack, i.e., [image: The text shows the Greek letter alpha, followed by an equal sign, and zero degrees, represented as \( \alpha = 0^\circ \).], the P-wave NMO velocity can be expressed as:
[image: Equation showing V sub num squared equals V sub var squared times the quantity one plus A, with the equation labeled as number two.]
When the seismic wave propagation path is parallel to the crack, i.e., [image: The image shows the mathematical expression alpha equals ninety degrees.], the P-wave NMO velocity can be simplified into:
[image: Equation showing \( V_{\text{rms}}^2 = V_{\text{ref}}^2 \) divided by \( V_{\text{offset}} \), labeled as equation (3).]
Therefore, Eq. 1 can be converted into
[image: Equation showing V squared sub rms as equal to V squared sub rms1 times V squared sub rms2 over the sum of V squared sub rms1 times sine squared alpha and V squared sub rms2 times cosine squared alpha.]
The above equation can be written in an elliptical form:
[image: Equation showing trigonometric identity as a sum of two fractions: \( \frac{V_{\text{rms0}}^2 \cos^2 \alpha}{V_{\text{rms1}}^2} + \frac{V_{\text{rms0}}^2 \sin^2 \alpha}{V_{\text{rms2}}^2} = 1 \).]
where, [image: The expression "V subscript m s u l" is shown, likely representing a variable in a scientific or mathematical context.] is the NMO correction velocity parallel to the fracture, and [image: The expression "V subscript m m o superscript 2" is displayed, indicating a mathematical or scientific notation with "V" as the main variable, "mmo" in subscript, and "2" as the exponent.] is the NMO correction velocity perpendicular to the fracture. From Eq. 5, it can be observed that it represents the polar form of an elliptical equation, indicating that the NMO velocity of compressional waves exhibits an elliptical distribution with respect to the observation azimuth. This allows for the prediction of compressional wave azimuthal anisotropy for fracture detection. Additionally, by utilizing the characteristics of wide-azimuth data in 3D seismic surveys, the compressional wave NMO velocities can be extracted for different azimuths. Based on the attribute values, an ellipse can be fitted, where the ratio of the major and minor axes represents the magnitude of the azimuthal anisotropy intensity and the density of fractures at the sampling point. The direction of fracture development is indicated by the major axis (or minor axis) of the ellipse, which can be determined through imaging logging and coring in real data. The azimuthal anisotropy gradient exhibits a cosine (or elliptical) variation pattern with respect to the azimuth, and as the anisotropy intensity increases, the eccentricity of the ellipse also increases. Therefore, by analyzing the variation characteristics of azimuthal AVO gradients, it is possible to predict the intensity and direction of fracture development.
2.2 OVT domain processing technology based on wide azimuth data
Wide-azimuth data forms the basis for OVT domain processing, which was developed to meet the research requirements of wide-azimuth seismic data (Cary, 1999). OVT is a subset of data in a crossline and inline arrangement, divided into small rectangular sections based on equal shot and receiver distances. Each of these small rectangles is an OVT offset vector tile. Through OVT domain processing, the migrated data retains azimuthal information, providing a solid foundation for prestack inversion and the study of anisotropy. It offers significant advantages in fracture prediction, characterization of reservoir heterogeneity, fluid identification, and other aspects. Figure 1 illustrates the workflow of OVT domain processing for wide-azimuth seismic data.
[image: Flowchart illustrating a seismic data processing workflow. It starts with OVT data extraction, noise suppression, and residual amplitude compensation. Moves to data regularization, pre-stack migration, and azimuth anisotropy correction. Ends with three branches: divided incident angle processing (leading to prestack inversion), full azimuth stack (leading to reservoir description), and azimuth dividing processing (leading to crack detection).]FIGURE 1 | OVT domain processing flow of wide azimuth data.
OVT domain data processing technology provides high-quality seismic data with rich information for structural interpretation. Currently, this technology has been successfully applied in multiple blocks, yielding favorable results. The following aspects demonstrate its effectiveness:
	1) By conducting azimuthal stacking on OVT domain gathers, multiple azimuthal data volumes are obtained. Through analysis and comparison of these volumes, the azimuthal stack with the highest sensitivity to fractures in different orientations is selected, enabling precise identification and characterization of fracture sets.
	2) When the propagation direction is perpendicular to the fracture strike, the amplitude is minimized. This amplitude difference increases with larger offset distances. The amplitude attribute varies with azimuth, with stronger amplitudes indicating the direction of fracture strikes and weaker amplitudes indicating vertical fracture orientations. The ratio of amplitude differences in these two directions reflects the density of fractures. A higher ratio indicates greater fracture density, while a lower ratio indicates lower fracture density.
	3) As seismic waves propagate in an anisotropic medium, P-waves travel along the direction of fracture development, resulting in the shortest travel time and strongest energy. As the propagation direction deviates from the fracture strike angle, the travel time increases, and the energy weakens. When P-waves propagate perpendicular to the fracture direction, the energy is weakest. Travel time azimuthal anisotropy can be utilized for fracture prediction.
	4) When seismic waves propagate parallel to the fracture medium, no dispersion phenomena are observed. However, dispersion phenomena can be observed when waves propagate in the vertical fracture direction. Frequency azimuthal anisotropy can be utilized for fracture prediction.

2.2.1 Data regularization processing technology in OVT domain based on wide azimuth data
Wide-azimuth data serves as the foundation for OVT domain processing. OVT refers to a subset of data in a cross-line arrangement, divided based on source-receiver offset distances. Due to the irregular distribution of source and receiver locations during acquisition, the azimuthal distribution within each data unit is uneven, resulting in non-uniform spatial coverage, irregular sampling, and migration noise issues. These factors degrade the imaging quality. Conventional data regularization techniques typically interpolate data in the common offset domain, using seismic data from different azimuths to compute interpolation factors. This method generally yields satisfactory results for areas with minor azimuthal anisotropy or narrow-azimuth data. However, for wide-azimuth data with significant structural dip or strong azimuthal anisotropy, the interpolation results are often unsatisfactory. Compared to common offset gathers, the OVT domain gathers have inherent advantages that make them more suitable for data regularization techniques. Within the OVT domain, the seismic data used for interpolation factors have fixed source-receiver offset ranges and azimuths. As a result, they exhibit better data similarity, allowing for more accurate interpolation factor determination and achieving superior interpolation results.
Based on the traditional matching pursuit Fourier interpolation (MPFI) method, this paper utilizes the advantages of wide-azimuth OVT domain data to propose an improved MPFI method. The improved method incorporates low-frequency information without spurious frequencies as a constraint, effectively suppressing spurious frequency components in high frequencies. As a result, both frequency leakage and spurious frequency issues are simultaneously addressed, effectively mitigating the impact of data irregularities. The proposed method significantly improves the signal-to-noise ratio (S/N) of seismic data and achieves higher fidelity compared to traditional regularization methods.
The basic idea of the MPFI algorithm is to estimate the unknown frequency spectrum in the Fourier domain using the known non-uniform spatial sampling information in the space-time domain, and then use the conventional inverse Fourier transform to transform the estimated frequency spectrum back to the corresponding space-time domain of a given regular grid, thereby completing the reconstruction process of seismic data. The principle of non-uniform discrete Fourier transform can be expressed as follow (Xu and Zhang, 2005; Xu and Zhang, 2010):
The continuous one-dimensional spatial Fourier forward transform can be expressed as:
[image: The equation shows the Fourier transform: \( \hat{P}(k, \omega) = \int_{-\infty}^{\infty} P(x, \omega) e^{ikx} \, dx \) marked as equation 6.]
where, [image: Please upload the image you would like me to provide alternate text for.] is spatial variable, [image: It seems there is an issue with the image upload or the description provided. Please try uploading the image again or provide a URL to the image for assistance.] is spatial frequency, [image: Please upload the image or provide a URL for me to create the alt text.] is instantaneous angular frequency, [image: The image shows the mathematical notation \(P(x, \omega)\), where \(P\) is a function or probability, \(x\) is a variable, and \(\omega\) represents a parameter or event.] and [image: Mathematical expression of a bar over the letter P, indicating a function or variable P of k and ω.] are spatial domain data and spatial frequency domain data. The inverse transformation of the above formula can be obtained as:
[image: The equation shows \( P(x, \omega) = \int_{-\infty}^{\infty} \overline{P}(k, \omega) e^{ikx} \, dk \), labeled as equation (7).]
The discrete Fourier transform of Eq. 6 can be expressed as:
[image: Mathematical formula: \( \bar{P}(k, \omega) = \sum_{n=0}^{N-1} P(n \Delta x, \omega) e^{j k n \Delta x} \Delta x \). Equation labeled as (8).]
For irregular sampling data, the following formula can be used to obtain spatial Fourier transform data:
[image: Equation for \( \bar{P}(k, \omega) \), representing a summation from \( n = 0 \) to \( N-1 \) of \( P(x_n, \omega) \cdot e^{j k_n x_n} \Delta x_n \), labeled as equation (9).]
where, [image: Δxₙ = (xₙ₊₁ - xₙ₋₁) / 2.], and [image: It seems like there might have been an error with the image upload. Please upload the image again, and I will be happy to help you generate alternative text for it.] is the sampling point of data.
The algorithm principle for Fourier reconstruction data regularization under irregular sampling grid conditions can be expressed as follows:
For time-frequency slices [image: Mathematical notation representing the function \( f(x) \), indicating a function of the variable \( x \).], there are [image: It seems like there was an issue with the image upload. Please try uploading the image again or provide a URL. If you want, you can also add a caption for more context.] spatial points, and a total of [image: Please upload the image or provide a URL to it, and I will help you create the alternate text.] wavenumber coefficients, defined as:
[image: Matrix equation illustrating \(\Phi_{M \times N}\), comprising elements \(e^{j k_1 x_1}\) to \(e^{j k_N x_M}\) arranged in rows and columns. It equals a horizontal vector \([\phi_1 \cdots \phi_N]\). Equation number (10) is on the right.]
The Fourier transform can be expressed as:
[image: The image contains mathematical equations for transformations. It shows \( f = \Phi F \) and \( F = \Phi^H f \), labeled as equation (11).]
Assume [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL. If you have any additional context or caption, feel free to include that as well.] represents the number of iterations, the spectrum estimation process can be expressed as:
[image: Mathematical equation showing \( F'(p) = \max_{-NQ \leq s \leq NQ} (f^j, \phi_k^{dt}) \) with the number 12 in parentheses on the right.]
[image: The image shows a mathematical equation: \( F^{n+1} = F^n - F'(p) \Phi^n \Phi_p \), labeled as equation (13). It involves functions and derivatives represented by \( F \), \( F' \), and \( \Phi \).]
When dealing with irregular sampling, frequency leakage occurs due to the violation of the orthogonality condition. It can be observed that the basic idea of this method is to reduce the energy leakage between different wave numbers. The specific approach is to iteratively apply discrete Fourier transform (DFT) and its inverse transform, extracting the maximum energy for each frequency in each iteration to reconstruct the Fourier coefficients without leakage. Then, based on the estimated discrete Fourier transform, interpolation is performed to the desired output positions, gradually minimizing the spectral leakage during the reconstruction of the orthogonal basis.
The improved MPFI method is based on the original anti leakage Fourier interpolation algorithm mentioned above. Before selecting the component with the maximum energy, it applies a smaller weight to the Fourier spectrum of the higher frequency band, and applies a larger weight to the real signal to achieve the purpose of anti aliasing. This is also the advantage of the improved MPFI compared to previous methods.
The specific implementation steps of the improved MPFI regularization method are as follows:
	1) Perform DFT on seismic data;
	2) Calculate the weight (a priori value) for the Fourier spectrum and apply the weight to the full frequency band of the spectrum;
	3) Select the Fourier spectral component with the weighted maximum energy;
	4) Add the Fourier spectral component (unweighted) to the “estimated spectrum”;
	5) Perform inverse Fourier transform on the Fourier spectral component (unweighted), and outputting the iterative result according to the input position;
	6) Subtract the iteration result from the original input data;
	7) Repeat steps 1) to 6) until the set number of iterations is reached or Eq. 3 reaches the set value;
	8) Figure 2 is the seismic stack section before and after the improved MPFI regularization, we can also clearly see that after the MPFI 5-D regularization processing, the co-phase axis continuity is enhanced, the diffraction characteristics of tight sand are clearer, the signal-to-noise ratio and resolution have been greatly improved and the missing data acquisition part has been significantly improved.

[image: Two seismic reflection profiles labeled A and B show wave patterns overlaid with red rectangles highlighting specific areas. Both profiles display horizontal striations indicating subsurface structures with time on the vertical axis and trace number on the horizontal axis.]FIGURE 2 | (A) The Stack section before MPFI, (B) the Stack section after improved MPFI.
2.2.2 OVT domain prestack time/depth migration technology based on wide azimuth
At present, the commonly used pre-stack migration method is common-offset domain migration. Due to the influence of the acquisition system, the coverage of different offset distances within each common midpoint (CMP) bin is uneven. Near and far offsets have lower coverage, while middle-offsets have higher coverage. In actual seismic data, there are often noticeable gaps in common-offset gathers for near and far offsets. This situation often results in an amplitude imbalance phenomenon in the migrated common reflection point (CRP) gathers, which cannot accurately reflect the subsurface geological conditions.
Wide-azimuth data forms the basis for OVT domain processing. The OVT is a natural extension of the crossline gathers and represents a subset of data in a work area. Each OVT tile is a single coverage profile, similar to a three-dimensional post-stack data volume. It is obtained by dividing the crossline gathers into equal intervals based on the offset and receiver line distances. Through OVT domain processing, the pre-stack migrated gather data retains azimuthal information, and the energy distribution is more consistent for near and far offsets. This not only provides a solid data foundation for pre-stack inversion but also establishes a basis for the study of anisotropy and AVO analysis. It offers significant advantages in predicting fractures, characterizing reservoir heterogeneity, and identifying fluid properties (Schapper et al., 2009).
The advantages of OVT domain pre-stack migration over conventional migration are as follows: 1) Each subset in the OVT domain is assigned a unique index based on its position relative to the center of the crossline gathers. Subsets with the same index represent OVT bodies with the same range of offset and azimuth. This forms a COV (Common Offset Vector) volume. The migrated gather data retains azimuth and offset information, which is crucial for azimuthal and AVO analysis (Rüger, 1996; Rüger, 2002). 2) Within each OVT domain gather, the seismic traces have approximately the same offset and azimuth. Pre-stack migration is performed for each OVT element within the near, middle, and far offset ranges (Swapper et al., 2009; Su et al., 2021). The consistency of energy distribution across the offset ranges ensures that the gathered data retains its quality and avoids the “noise” characteristics associated with azimuthal anisotropy in traditional common-offset domains. This significantly improves the imaging accuracy of fractures and weak interbed reflections. 3) The regularization and noise suppression processing in the OVT domain ensure uniform coverage and centralization of the elements. This theoretically reduces the problem of curved traveltime/depth in pre-stack migration and preserves the amplitude relationships of common reflection point gathers. It facilitates reservoir prediction and fracture detection related to azimuth on common reflection point gathers.
Figure 3 is the conventional pre-stack migration CRP gathers and OVT-domain pre-stack migration spiral gathers. It can be seen that after OVT migration, the near-mid-far offset energy relationship is more consistent and the fidelity is better. It contains azimuth information, which is conducive to the research of AVAZ inversion. The azimuthal anisotropy is more obvious, which is conducive to the study of fracture prediction.
[image: Two seismic trace plots labeled A and B display changes over time in seconds. Plot A shows a triangular pattern with increasing density, while plot B depicts a zigzag pattern with horizontal lines. Both plots are bounded by red lines at the top, with trace numbers from 0 to 130 on the x-axis and time from 0 to 2.5 seconds on the y-axis.]FIGURE 3 | Comparison of conventional migration prestack CRP gather (A) and OVT domain prestack migration spiral gather (B).
Figure 4 shows a comparison of OVT-domain pre-stack time migrated profiles for different reflection angles. It can be observed that the profiles enable better analysis of AVO response characteristics of sand bodies and identification of fracture features for different reflection angles.
[image: Three seismic reflection profiles labeled A, B, and C display variations in geological layers over time, marked on the vertical axis from 0.5 to 2.0 seconds. Each profile is mapped horizontally over trace numbers ranging from 500 to 1100, showing differences in signal patterns and lines.]FIGURE 4 | Comparison of prestack time migration profile in OVT domain (A) Angle of reflection 0–12°,(B) Angle of reflection 10–22°,(C) Angle of reflection 20–36°.
2.3 HTI media azimuth anisotropy correction technology
Obvious azimuth anisotropy often exists in fractured and unconventional reservoirs. Due to the existence of anisotropy, the amplitude, wave impedance, velocity and travel time of seismic elastic wave change periodically with the change of azimuth of measured line, and also increase or decrease with the increase of incident Angle (depending on different formation conditions), which is known as AVO characteristics. Therefore, the characteristics of P-wave velocity, travel time, amplitude and wave impedance in HTI media changing with the azimuth of the survey line and changing with the incident angle are studied. By fitting the ellipse, the development intensity (elliptic curvature) and direction (elliptic symmetry axis direction) of cracks are predicted. The existence of fractures will cause abnormal seismic amplitude, which is the physical mechanism of AVO technology (Grechka and Tsvankin, 1998; Xu and Tsvankin, 2007; Canning and Malkin, 2008).
The existence of fractures will cause abnormal seismic amplitude, which is the physical mechanism of AVO technology (Jenner, 2002; Zeng et al., 2021). The seismic exploration technology of lithologic oil and gas reservoirs is analyzed and identified by using the variation characteristics of amplitude with shot-receiver distance. According to the meaning and correlation of AVO attributes, intersection analysis is carried out to achieve the purpose of bright spot identification, oil and gas detection, fracture prediction and lithologic identification (Su et al., 2020; Zeng et al., 2022). Shuey (1985) proposed a simplified reflection coefficient equation under the premise of isotropic media and small percentage change in elastic properties, as following:
[image: Mathematical equation: \( R(\theta) \approx R(0) + \left[A_0 R(0) + \frac{\Delta \sigma}{(1 - \sigma)^2}\right] \sin^2 \theta + \frac{\Delta V_p}{2 V_p} (tg^2 \theta - \sin^2 \theta) \). Labeled as equation (14).]
Where,
[image: Formulas are shown with the following expressions: \( A_0 = B - 2(1 + B) - \frac{1 - 2\sigma}{1 - \sigma} \), \( B = \frac{\Delta V_P / V_P}{\Delta V_P / V_P + \Delta \rho / \rho} \), and \( R(0) = \frac{1}{2}(\Delta V_P / V_P + \Delta \rho / \rho) \).]
[image: If you have an image you'd like to provide for me to create alt text, please upload it or provide a URL.], [image: It looks like you've provided a text fragment rather than an image. If you'd like alt text for an image, please upload the image file or provide a URL.], [image: It seems there was an issue with uploading the image. Please try uploading the image again or provide a URL if it's online.], [image: The image shows the Greek letter Delta followed by the Greek letter rho, symbolizing a change in density.], [image: A lowercase Greek letter sigma.], [image: Greek letters delta and sigma, often used in mathematical and scientific contexts to represent change or a difference in sigma.] are the average and difference of the P-wave velocity, density and poisson ratio of the upper and lower media.
When there is azimuthal anisotropy, the AVO response varies with the source-detector azimuth and the equation in HTI media can be expressed as (Wang, 1999):
[image: Mathematical equation for reflection coefficient: \( R(\theta, \phi) = R(0) + \frac{1}{2} \left\{ \frac{\Delta V_p}{V_p} - \left( \frac{2V_s}{V_p} \right)^2 \frac{\Delta G}{G} \left[ \Delta \gamma + 2 \left( \frac{2V_s}{V_p} \right)^2 \Delta \omega \right] \right\} \cos^2 \phi \sin^2 \theta \), labeled as equation 15.]
Where, [image: Equation for G equals rho times V subscript s squared.], [image: Greek capital letter delta followed by a capital letter G, representing the symbol for Gibbs free energy change.] is the difference between the average vertical shear modulus of the upper and lower media, and [image: Delta omega, represented as a mathematical symbol, indicating a change in angular frequency.] and [image: Mathematical symbol showing a capital delta (Δ) followed by a lowercase gamma (γ).] are the difference between the shear wave splitting parameter and the Thomsen anisotropy coefficient, respectively. It can be seen that if there is no azimuthal anisotropy, the AVO response in all directions should be the same. When azimuthal anisotropy exists, the AVO response will change with the variation of the source-detector azimuth. For anisotropic media, the direct expression of the AVO gradient will depend on the azimuth. In other words, the intercept P related to a small incident angle is hardly affected by azimuthal anisotropy, while the gradient G at a large incident angle will vary with the angle between the fracture and the observed azimuth.
According to Rüger (1997), when [image: Angle \( \theta \) is less than 25 degrees.] for HTI media, a simplified reflection coefficient can be approximated as
[image: The image shows the equation \( R(\theta, \phi) = P + G(\phi, \beta) \sin^2 \theta \) labeled as equation 16.]
Where, [image: It seems like there's an issue with the image upload. Please try uploading the image again, and feel free to add a caption for more context if needed.] is the reflection angle, [image: It seems there was an error or missing image in your request. Please try uploading the image again or provide a URL. Let me know if you need help with the process!] is azimuth angle, [image: Please upload the image or provide a URL so I can create the alt text for you.] is the intercept, [image: It appears there was an error or missing image in your request. Please upload an image or provide a URL so I can assist you further.] is the fracture orientation angle, and [image: It seems there was a problem with the image upload. Please try uploading the image again, and I'll be happy to help with the alternate text.] is the gradient which is effected by [image: Greek letter delta followed by the Greek letter sigma.].
Theoretically, [image: If you can upload the image or provide a URL, I can help create the alt text for it.] is composed of two parts: isotropic part [image: The image shows the mathematical notation "G" with a subscript "iso," indicating isotropy in a given context. The text is styled in italicized serif font.] and anisotropic part [image: Text showing "G" in a stylized serif font, followed by "aniso" in an italicized serif font.].
Then assuming [image: Mathematical expression showing \( G_1 = G_{\text{iso}} \).], [image: The equation \( G_2 = G_{\text{aniso}} + G_1 \) is presented.]
[image: Mathematical equation shown: \( R(\theta, \phi) = P + \left[ G_1 \sin^2(\phi - \beta) + G_2 \cos^2(\phi - \beta) \right] \sin^2 \theta \). Equation labeled as number 17.]
According to Grechka and Tsvankin (1998), Grechka and Tsvankin (1999), Bakulin et al. (2000), Grechka and Tsvankin (1999), in HTI media, the gradient is equivalent to the NMO velocity as expressed:
[image: The equation displays the reciprocal squared refractive index as a function of phi, with cosine squared and sine squared terms involving phi minus beta. It is labeled as equation eighteen.]
Where [image: Greek letter lambda with a subscript one.] and [image: Greek letter lambda with subscript two, often used in mathematical or scientific contexts to denote a specific variable or parameter.] are slowness along the major axes of symmetry.
And according to Swan (2012), the relative NMO velocity error can be expressed as follow:
[image: The mathematical equation shows the relationship: Δv/v(φ) = Δv/v₁ cos²(φ - β) + Δv/v₂ sin²(φ - β), labeled equation (19).]
The two components [image: The image contains a mathematical expression showing the ratio of the change in frequency, denoted as delta nu, to the original frequency, nu subscript one.], [image: Greek letter Delta followed by the Greek letter nu divided by nu subscript two.] are along the fractures and perpendicular to the fractures, respectively.
The workflow of the automatic residual anisotropic velocity analysis technique can be expressed as follow:
	1) Perform automatic residual velocity analysis on the OVT gathers that acquired by prestack depth migration, and pick up the velocity of each sample in the depth domain.
	2) According to the picked velocity, we can obtain the anisotropy parameters and calculate the value of [image: Equation with Delta nu over nu subscript one.] and [image: Delta nu over nu sub two, a mathematical expression often used in scientific contexts.].
	3) Smooth [image: Mathematical expression showing the ratio of the change in frequency, represented by the Greek letter Delta nu, to the original frequency nu subscript one (ν₁).] and [image: Mathematical expression showing the ratio of change in frequency, represented as delta nu, over nu sub two.] to avoid the abnormal value in the velocity field.
	4) Calculate the residual moveout in the depth domain or the time domain.
	5) Apply residual anisotropic NMO correction and finally we can obtain flatten gathers and a high-resolution profile.

Figure 5 (a) is the profile of [image: Delta nu over nu two minus delta nu over nu one.] , (b) is the azimuth profile of slow wave, (c) is the profile of [image: Delta nu over nu sub two, a mathematical expression often used in physics to represent a fractional change in frequency.] slow wave. Tight gas reservoirs in channel sand, with strong heterogeneity, developed small faults and oil-source faults. HTI anisotropy technique can be used to flatten the gather which is useful to the analysis of AVO and also can be used for high-fidelity and amplitude-preserving processing of seismic data. As shown in Figures 6, 7, after azimuthal anisotropy correction, the event is flatter and the velocity focusing is better, the in-phase stacking makes the seismic resolution greatly improved, and at the same time, the weakly reflected energy between layers is further strengthened. By this way, seismic data is more effective to reflect the abnormal reflection of the shallow channel. The internal small faults are clear and the AVO response characteristics of the prestack gather are obvious and reliable, which provides a good foundation for later characterization of the river channel and gas detection.
[image: Three seismic data spectrums labeled A, B, and C, showing variations in amplitude over trace numbers and depths. A is predominantly red, B features a mix of blue, green, and yellow, and C displays a blend of bright colors indicating different amplitudes. Each has a color bar for amplitude reference.]FIGURE 5 | (A) The profile of [image: Δv divided by v subscript 1 equals negative Δv divided by v subscript 2.], (B) is the azimuth profile of slow wave, (C) is the profile of [image: Delta v divided by v subscript 2.] slow wave. It can be seen from the figure that where cracks and fractures develop, the difference will appear obvious anomalies.
[image: Comparison of two seismic data plots, labeled A and B. Both show depth from 0 to 4500 meters on the vertical axis, with velocity in meters per second on the x-axis. The left sections show colored velocity models, with variations from red to blue. The right sections display seismic traces with gray linear patterns.]FIGURE 6 | (A) Before azimuthal anisotropy correction. (B) After azimuthal anisotropy correction. After azimuthal anisotropy correction, the event is flatter and the velocity focusing is better.
[image: Two seismic reflection images labeled A and B show subsurface stratigraphy with trace numbers on top and depth in meters along the side. Both images have a red dashed circle highlighting a particular feature around the same depth and trace area.]FIGURE 7 | (A) PSTM before azimuthal anisotropy correction. (B) PSTM after azimuthal anisotropy correction. After HTI anisotropy correction, the in-phase stacking makes the seismic resolution greatly improved.
3 EXAMPLES
The northern slope of the central Sichuan uplift is the main favorable exploration fields. The S-Y research work area in the Sichuan Basin has a full coverage area of 2052.1 km2, and belongs to low hilly and mountainous landform. The terrain fluctuates slightly and the relative elevation is small, but the local elevation changes greatly. The altitude is generally around 350–720 m. As shown in Figure 8, the low-lying areas of the work area are mostly along the banks of the Fujiang River and Zijiang River, and the terrain in the north of the work area is relatively high. The structural location of the S-Y work area in the Sichuan Basin is located in the Yilong tectonic group in the gentle uplift structural area of the central Sichuan Basin. The faults and fractures in this area are relatively developed, and two types of hydrocarbon source faults are developed. Normal faults are developed in the Shaximiao Formation, with small fault spacing and short extension distance. The pressure of gas reservoirs is controlled by the development degree of hydrocarbon source faults. With the development of hydrocarbon source faults in the Xujiahe Formation, the higher the pressure of the gas reservoir, the higher the pressure of the lower sand body where the same fault communicates.
[image: Panel A shows a color-coded topographic map with a range of elevations indicated by a gradient from blue to red. Panel B displays a circular offset chart with concentric colored bands and labeled axes, illustrating data distribution in a radial format.]FIGURE 8 | (A) The surface elevation map of the work area. (B) Rose diagram of observation system. The elevation of S-Y block is generally about 350–720 m and the local elevation changes greatly. It can be seen from the rose diagram that the work area belongs to wide azimuth acquisition.
The formation and enrichment of tight sandstone gas reservoirs in Shaximiao Formation in S-Y 3D working area are mainly controlled by high-quality hydrocarbon sources, high-quality channel sand bodies and source faults. In the research area, the lithology of the Jurassic Shaximiao Formation is dominated by purplish red mudstone with light gray lumps of fine-medium sandstone, with a thickness of 800–2200 m. The fluvial-lake sedimentary system is mainly developed, and the meander river delta plain and front fluvial-facies are mainly microfacies. The bottom-up sedimentation has a certain inheritance, and the provenance is mainly from the north section of Longmen Mountain and Micang-Daba. The development of source rocks, the development of small high-angle faults in the Jurassic and the complex relationship between faults and sand body are favorable areas for exploration and development of tight sandstone gas reservoirs. The 23 stage channel sand bodies in Shaximiao Formation are longitudinally superimposed, the reservoir is highly heterogeneous, the wave impedance difference between the thin channel sand bodies and the surrounding rocks is small, the seismic response characteristics of the reservoirs are not obvious, and the seismic prediction of the reservoirs and hydrocarbons is difficult. Therefore, it is necessary to carry out research on high-fidelity and high-resolution imaging of channel sand body, high-precision imaging and prediction of fault, fault distribution characteristics and the relationship between sand body configuration.
As can be seen from Figure 9, the signal to noise ratio of the section processed for tight sandstone gas reservoirs in narrow channels is higher. The seismic response characteristics of gas bearing sand bodies have been further highlighted, and the imaging of small faults is clearer and more reliable. High-quality processed data is provided for fine interpretation of sand bodies, fracture prediction, AVO analysis, and oil and gas detection.
[image: Two seismic reflection profiles labeled A and B, displaying similar horizontal layering and varying trace numbers. Both have time in seconds on the vertical axis and trace number on the horizontal axis. The amplitudes show distinct dark and light patterns indicating subsurface structures.]FIGURE 9 | (A) Is the conventional processing prestack time migration profile. (B) is the wide azimuth data OVT domain prestack time migration profile. After OVT domain processing and HTI anisotropic correction, the signal-to-noise ratio and resolution of seismic profile have been significantly improved, the boundary of tight sand body is clearer, and the small fractures are more clearly characterized.
Figure 10 (a) shows the root mean square amplitude attribute map of the original processing data, and (b) shows the root mean square amplitude attribute map of the new processed data. It can be seen that the new processed data is more clear and reliable in terms of fine portrayal of river channels, with a higher fidelity.
[image: Two grayscale density plots labeled A and B show patterns over time, with lines indicating trends. Each plot is marked with two dashed ovals: one red near the top and one blue near the bottom. A gradient bar on the right represents amplitude, ranging from negative (dark) to positive (light).]FIGURE 10 | (A) shows the root mean square amplitude plane attribute map of the original processing result data, and (B) shows the root mean square amplitude plane attribute map of the new processed data.
Figure 11 (a) shows the coherent attribute map of the original processed data, and (b) shows the coherent attribute map of the wide-azimuth processing data. It can be seen that the faults are clearer and more continuous after the wide-azimuth data processing, making it easier for the fine interpretation of the faults.
[image: Comparison of two grayscale coherence maps, labeled A and B. Both maps depict geological features with varying coherence levels, indicated by a vertical gradient scale on the right, ranging from 0 to 0.96. The maps are rotated, and axes are labeled with units in pixels for inline and crossline directions.]FIGURE 11 | (A) shows the coherent attribute map of the original processed data, and (B) shows the coherent attribute map of the wide-azimuth processing data.
4 CONCLUSION
A comprehensive technologies including anisotropic velocity analysis, data extraction in the OVT domain data regularization processing, prestack time/depth migration in OVT domain, and HTI correction, have been developed. The resolution of thin tight gas sand reservoir in the newly processed profile is higher, and the faults are clearer, which well demonstrate the advantages of wide azimuth seismic data processing technology.
On the basis of wide azimuth seismic data, OVT prestack migration gathers preserve azimuth information, which can better detect azimuth anisotropy in the data. Conducting HTI correction effectively solves the problem of different phase stacking caused by azimuth anisotropy, and greatly improves resolution and interlayer weak reflection energy.
Wide azimuth seismic data is more conducive to studying AVO, AVA, AVAZ, VVA, and the identification of faults, fractures. The integrated technology of wide azimuth seismic acquisition, processing, and interpretation is one of the directions for the exploration development of thin layers, fractures, and unconventional oil and gas reservoirs.
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Data reconstruction is the most essential step in seismic data processing. Although the compressed sensing (CS) theory breaks through the Nyquist sampling theorem, we previously proved that the CS-based reconstruction of spatially irregular seismic data could not fully meet the theoretical requirements, resulting in low reconstruction accuracy. Although deep learning (DL) has great potential in mining features from data and accelerating the process, it faces challenges in earth science such as limited labels and poor generalizability. To improve the generalizability of deep neural network (DNN) in reconstructing seismic data in the actual situation of limited labeling, this paper proposes a method called CSDNN that combines model-driven CS and data-driven DNN to reconstruct the spatially irregular seismic data. By physically constraining neural networks, this method increases the generalizability of the network and improves the insufficient reconstruction caused by the inability to sample randomly in the whole data definition domain. Experiments on the synthetic and field seismic data show that the CSDNN reconstruction method achieves better performance compared with the conventional CS method and DNN method, including those with low sampling rates, which verifies the feasibility, effectiveness and generalizability of this approach.
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1 INTRODUCTION
With the gradually complex targets of petroleum exploration and development, as well as the promotion of the wide-band, wide-azimuth and high-density seismic acquisition technologies, research has been increasingly focusing on efficient and low-cost acquisition technology. In addition, due to the acquisition environment and economic factors constrains in exploration, the obtained spatially irregular and incomplete seismic data usually cannot satisfy the Nyquist–Shannon sampling theorem. Such missing trace data seriously affects the subsequent seismic data processing, which in turn impairs the reliability of the final interpretation. Thus, effective reconstruction is meaningful for seismic data processing to accurately depict complex geological structures and provide more effective instructions and assistance for petroleum exploration.
Currently, the major ap proaches used to reconstruct spatially irregularly distributed seismic data include model-driven methods based on the knowledge of mathematical equations or time-space variation characteristics, and data-driven methods based on deep learning (DL) from big data.
Model-driven methods mainly encompass predictive filtering methods (Spitz, 1991), wave equation methods (Ronen, 1987; Trad, 2003; Zhao et al., 2021), sparse-transform methods (Zwartjes and Gisolf, 2006; Herrmann and Hennenfent, 2008; Mousavi et al., 2016) and low-rank approximation methods (Oropeza and Sacchi, 2011; Wang et al., 2017; Innocent Oboué et al., 2021). Among them, the sparse-transform and low-rank promotion methods are closely related to the compressed sensing (CS) method (Donoho, 2006a), which treats reconstruction as an underdetermined linear inversion problem solved using the sparsity constraint in the transform domain. Compared with the method based on predictive filtering, the CS-based method involves the sparsity and the spatiotemporal variation characteristics of data, which also does not require prior knowledge of the geological model needed by wave equation methods.
The existing research around the CS method mainly focuses on sparse transformation and reconstruction algorithms, with sparse transformations such as Fourier (Naghizadeh and Innanen, 2011), Curvelet (Hennenfent et al., 2010), Dreamlet (Wang et al., 2015), Radon (Ibrahim et al., 2018), Framelet (Pan et al., 2023), etc. To solve sparse optimization problems, regularization algorithms are commonly used, such as [image: A lowercase "L" and a subscript zero form a symbol often used in mathematics or physics, potentially representing a metric or specific type of norm.] norm (Chen et al., 2013), [image: Please upload the image you would like me to create alt text for.] norm (Yin et al., 2015), non-convex [image: It looks like there was an error displaying the image. Please upload the image directly or provide a URL for me to help with the alt text.] norm (Zhong et al., 2015), etc. According to the CS theory, the data sparsity domain and the acquisition matrix must have the same definition domain. Seismic data controlled by second-order partial differential equation has sparsity in the time-space domain, but spatially irregular data is obtained by compressed acquisition only in spatial domain, so the compressed acquisition domain is inconsistent with the data sparsity domain used in reconstruction. In other words, there is a theoretical defect in the application process, hence the reconstruction of the CS-based method for spatially irregular seismic data is difficult to meet the production requirements, especially for low sampling rates.
In the past decade, data-driven artificial intelligence (AI) has been highly valued in seismic exploration, and the rise of DL has greatly promoted the research of intelligent seismic data processing, inversion, interpretation, and other fields. For seismic data reconstruction, various deep neural network (DNN) structures have been increasingly used for this research topic, such as convolutional neural networks (CNN), ResNet (Wang et al., 2019), 3D denoising convolutional neural network (3-D-DnCNN) (Liu et al., 2020), U-Net (Chai et al., 2020), prediction-error filters network (PEFNet) ((Fang et al., 2021a)), multi-dimensional adversarial GAN (MDA GAN) (Dou et al., 2023), etc. The deepening and complexity of the network structure not only increases the amount of computation but also brings gradient instability, network degradation, and the model being over-parameterized; it becomes difficult for the trained model to stably generalize to new missing data with different distributions. Moreover, most of the existing DL-based methods refer to the concept of computer vision completion, and the difference between image processing and seismic data reconstruction should be considered in further research, that is, incorporating richer characteristics of the seismic data (Luo et al., 2023).
During the research process, we can see that it has been difficult to achieve the goal of AI seismic exploration with a single route or paradigm. Wu et al. (Wu et al., 2023) concluded that domain knowledge constraints can be applied to deep neural networks to improve those with weak generalization ability, low interpretability and poor physical consistency, such as physics-driven intelligent seismic processing (Pham and Li, 2022), impedance inversion (Yuan et al., 2022), porosity prediction (Sang et al., 2023), designing prior-constraint network architectures for seismic waveform inversion (Sun et al., 2020) and exploring the physics-informed neural network (PINN) for solving geophysical forward modeling (Song and Wang, 2023). From these studies, we conclude that a more reasonable direction to deal with reconstruction problems can be the combination of data-driven model and mechanism model.
In light of the shortcomings of conventional DL seismic data reconstruction, we propose a strategy for reconstructing spatially irregular data by integrating CS and DL methodologies, called CSDNN. First, we prove the theoretical flaw in the CS-based reconstruction of spatially irregularly acquired seismic data. Second, we present the DL method to reconstruct seismic data with DnCNN and analyze its pros and cons. Thirdly, we combine data-driven and model-driven models and refer to the sequential strategy used in the joint inversion of multiple geophysical data to establish the optimal objective function, and adopt a step-by-step optimization algorithm to achieve high-precision and high signal-to-noise ratio (SNR) reestablishment. Numerical experiments demonstrate the efficiency and the improvement in the generalizability of the suggested strategy, even for low-sampling-rate data.
2 METHODOLOGY
2.1 Reconstruction using CS
2.1.1 Irregular seismic data acquisition based on CS
Seismic data acquisition is conducted by adhering to the spatiotemporal variation law of the wavefield [image: The expression "u(x, y, t; xₛ, yₛ)" represents a function of variables x, y, and t, parameterized by xₛ and yₛ.] and utilizing the Nyquist–Shannon sampling theorem to regularly perform equidistant discretization in the five dimensions of [image: Please upload the image or provide a URL so I can generate the alt text for you.], [image: Please upload the image so I can help create the alt text for it.], [image: Please upload the image or provide a link so I can help you create the alt text.], [image: Please upload the image or provide a URL, and I can create an alt text for you. If you have any specific context or details you want included, feel free to add them.] and [image: Please upload the image or provide a URL for me to give you the alternate text.], as shown in (Eq. 1):
[image: Mathematical equation with multiple summations and delta functions. It includes variables \(x_i, y_j, t_k, x_s, y_{sm}\), several nested summation symbols, and delta functions \(\delta\). The equation also references a function \(u\) with parameters \(x, y, t, x_s, y_s\). Labeled as equation (1).]
where [image: Mathematical expression for a function: \( u(x_i, y_j, t_k; x_{sl}, y_{sm}) \).] represents the obtained spatiotemporal domain discretized data, [image: Mathematical expression showing \( x_i = i \Delta x \).], [image: The image contains equations: \( y_j = j \Delta y \), \( t_k = k \Delta t \), \( x_s = l \Delta x \).] and [image: The equation reads \( y_{sm} = m \Delta y_{s} \).]. In this context, [image: Please upload the image or provide a URL so I can help create the appropriate alt text.] and [image: Please upload the image or provide a URL so I can help you create the alt text.] denote the coordinates of the receiving points; [image: Please upload the image you'd like me to describe. You can use the upload button to add the file.] and [image: Please upload the image or provide a URL so I can help create the alt text for it.] denote the coordinates of the shot points, and [image: Please upload the image or provide a URL for it. You can also include a caption if you wish to provide additional context.] is the number of time variable. [image: It seems you've included a text snippet rather than an image. Please upload the image file or provide a link to it so I can create the appropriate alt text.], [image: Please upload the image or provide the URL so I can help create the alt text for you.], [image: It seems like you're referring to an image, but I can't see it directly. Could you please upload the image or provide more details so I can help create the alternate text for it?], [image: Please upload the image or provide a URL to it so I can assist you with the alternate text.] and [image: Please upload an image or provide a URL so I can help create the alternate text. If you have any specific details or context you'd like to include, let me know!] represent the number of shot lines, the number of shots per shot line, the number of time samples, the number of receiver lines, and the number of receivers per line, respectively. [image: Greek letter delta followed by a function notation \( f \) in parentheses.] is the Dirac delta function (Piela, 2014).
The CS theory states that if the signal [image: Please upload the image or provide a URL so I can help create the alt text for it.] is sparse or sparse in a transform domain, it can be projected from the high-dimensional space to the low-dimensional space through the sampling matrix [image: My apologies, I need the image to provide the alt text. Please upload the image or provide a URL.], which is uncorrelated with the basis function of sparse transform, to obtain an observed signal [image: Sure, please upload the image you want me to describe.] that is much smaller than the original signal length. Then, the original signal [image: Please upload the image or provide a URL, and I will help you create the alternate text for it.] can be recovered by the reconstruction algorithm (Donoho, 2006b; Candès et al., 2006). If incomplete data [image: Please upload the image or provide a URL for me to generate the alt text.] can reconstruct complete data [image: Please upload the image you'd like me to describe, or provide a URL where I can access it.], then [image: It seems like there might have been an error as no image was uploaded. Please try uploading the image again, and I will help create the alt text for it.] can be regarded as the compressed sample data of [image: Please upload the image so I can provide the appropriate alt text.], where the linear mapping of [image: Please upload the image or provide a URL so I can generate the alt text for you.] to [image: Please upload the image so I can provide the appropriate alt text.] is formulated as follows:
[image: The image shows a mathematical equation: \( \mathbf{d}^{M \times 1} = \mathbf{W}^{M \times N} \mathbf{u}^{N \times 1} \). It represents a matrix multiplication where a matrix \(\mathbf{W}\) of dimensions \(M \times N\) multiplies a vector \(\mathbf{u}\) of dimensions \(N \times 1\) to produce a vector \(\mathbf{d}\) of dimensions \(M \times 1\). The equation is labeled "(2)".]
where [image: It seems there was an error with the image upload. Please try uploading the image again, and I'll be happy to help provide alternative text for it.] and [image: It seems like there is no image uploaded. Please upload the image or provide a URL to generate the alternate text.] denote the number of irregular and regular sampling points, respectively, with [image: Mathematical expression showing "M much less than N" with symbols M, double less than sign, and N.] ; the incomplete data [image: The mathematical expression shows a variable \( d \) belonging to the set of real numbers denoted as \(\mathbb{R}^{M \times 1}\), indicating a column vector of size M.] can be regarded as an [image: It seems there is no image uploaded. Please try uploading the image again or provide a URL. If you have a specific caption or context for the image, feel free to include it.] column matrix, where [image: Mathematical symbol representing the set of real numbers, denoted by a bold, serif-styled capital letter R.] means the field of real numbers; the complete data [image: The mathematical expression shows "u" belongs to the set of real numbers raised to the power of N by 1.] is a regular equidistant vector with sparsity, and [image: Please upload the image you'd like me to describe.] also can be regarded as an [image: It seems like the provided content is a mathematical expression rather than an image. If you have an image to describe, please upload it, and I will provide you with the appropriate alt text.] column matrix; [image: \( W \in \mathbb{R}^{M \times N} \)] is a random sampling matrix composed of 0 and 1, and there are [image: Please upload the image or provide a URL for me to generate the alternate text.] elements with a value of 1. If the complete data [image: Please upload the image or provide a URL for me to generate the alt text.] comprises the regular discrete data sequence [image: Mathematical expression of a function \( u(x_i, y_j, t_k; x_{sl}, y_{sm}) \), representing a variable \( u \) that depends on spatial coordinates \( x_i, y_j \), time \( t_k \), and other spatial parameters \( x_{sl}, y_{sm} \).] in (Eq. 1), then the compressed sampling of [image: It looks like there is no image uploaded. Please provide an image or a URL, and I can create the alt text for you.] can break the sampling interval limitation in the Nyquist theorem, where [image: Mathematical expression showing the formula: N equals M subscript s times L subscript s times K times J times I.], and [image: It looks like there is an issue with the image upload. Please try uploading the image again, and I can help you with the alt text.] should have the same definition domain as [image: Please upload the image you would like me to describe.].
Although high-dimensional data can make better use of the spatial correlation, for a theoretically concise demonstration, we simplify the problem to 2D seismic data but the conclusions obtained can be extended to 5D. By sampling [image: Mathematical expression of function \( u(x_i, y_j, t_k; x_{sl}, y_{sm}) \).] regularly in the 2D spatiotemporal domain, the discrete sampling Equation 1 can be abbreviated as:
[image: Mathematical equation showing u(x_i, t_i, x_j) as a double summation over t and x. The equation involves delta functions \(\delta(t-t_k)\) and \(\delta(x-x_j)\) applied to u(x, t, x).]
The CS theory provides a conceptual foundation for the sparse acquisition of seismic data, which could greatly improve efficiency and reduce costs in fieldwork. According to the CS-based sparse sampling in Eq. 2) and ignoring the shot point coordinates [image: Please upload the image or provide a URL for me to create the alternate text.] in (Eq. 3), the irregular sampling for 2D seismic data in the definition domain can be written as:
[image: Mathematical equation showing \( u(x_i, t_k) \) as the sum over \( r \) from \( 0 \) to \( N-1 \) of the product of delta functions \( \delta(t_r - t_k) \delta(x_r - x_i) \) with \( u(x_i, t_r) \), denoted as equation (4).]
where [image: The image contains a mathematical expression showing coordinates \((x_{ri}, t_{rk})\), where \(x_{ri}\) and \(t_{rk}\) likely represent specific variables or parameters within a given context.] represents the spatiotemporal location of [image: Please upload the image or provide a URL so I can help generate the alt text for it.] randomly selected sampling points [image: Pair of mathematical variables, \(x_i\) and \(t_k\), enclosed in parentheses, commonly used to represent coordinates or parameters in an equation or function.] from [image: N equals I times K.] regularly equally spaced sampling points of [image: Mathematical expression of a function \( u \) with variables \( x_i \) and \( t_k \).]. Among the [image: It seems there might have been an issue with uploading the image. Please try again by clicking the image upload button, and I'll be happy to help with the alt text.] elements in each row of the sampling matrix [image: If you upload or provide a URL for the image, I can help create alt text for it.], the value is 1 only in one random position while all other element values are zero, so [image: If you can upload the image or provide a URL, I can help create the alt text for it.] is a random sampling matrix in the whole data definition domain. Compared with the Nyquist acquisition (Eq. 1), compressed acquisition (Eq. 4) can greatly reduce the amount of collected data. However, the sampling points are randomly and irregularly distributed, so compressed acquisition (Eq. 4) neither reduces the cost (except for data storage and transmission) nor improves the acquisition efficiency.
In seismic exploration, three main factors cause the acquired data to be spatially irregular. Firstly, the complicated exploration environment and human geographic factors in the work area lead to irregular distribution of shot and receiver positions. Secondly, the recording geometry is affected by nature resulting in changes. For example, due to waves, currents and tides in the ocean, the receiver points deviate from the preset position. Thirdly, when applying CS acquisition techniques while reducing the cost and improve the acquisition efficiency, irregular sparse sampling points are only randomly collected in the spatial dimensions of the data, and Nyquist sampling is followed in the temporal dimension (only this case is considered in this paper). Then, the high-efficiency acquisition of temporally regular and spatially irregular sampling can be written as:
[image: Mathematical equations involving summations and delta functions. The first equation is \( u(x_{i}, t_{k}) = \sum_{k'=0}^{k-1}\sum_{i'=0}^{i-1}\delta(t_{k'}-t_{k}) \). The second equation is \( \delta(x_{i'}-x_{i})u(x_{i}, t_{k}) = \sum_{i'=0}^{i-1}\delta(x_{i'}-x_{i})u(x_{i'}, t_{k}) \). The equation is labeled as (5).]
where [image: The text "x subscript r i" is shown in a mathematical notation.] denotes the location of [image: Sure, please upload the image or provide a URL to it, and I can help create the alt text.] traces randomly selected from [image: Please upload the image or provide a URL for me to generate the alt text. If you have a caption or any context, feel free to include that as well.] regular equidistant seismic traces [image: A mathematical expression showing a lowercase "x" subscripted by "i".]. For the sampling matrix [image: Please upload the image or provide a URL, and I will be happy to help create alt text for it.], the [image: It seems like you've referenced something about an image, but I cannot see it. Please upload the image or give a direct description, and I'll be happy to help with the alt text.] elements with value 1 in [image: It looks like there was an issue with the image upload. Please try uploading the image again or provide a URL, and I will help create the alt text for you.] correspond to the locations of [image: It looks like there is an issue with the image upload. Please try uploading the image again, and I will be glad to help with the alternate text.] regular time sampling points of [image: It seems there was an issue with uploading the image. Please try uploading it again or provide a description or URL if available.] traces randomly selected from [image: Please upload the image or provide a URL so I can help create the alt text for it.] regular distributed seismic traces, thus [image: Please upload the image or provide a URL so I can help create the alt text for it.] in (Eq. 5) is not random sampling in the whole definitional domain of data. Clearly, in the acquisition of spatially irregular data, random sampling in the time dimension can decrease the number of time samples but cannot reduce the total time or the time cost. Therefore, the CS acquisition method is not used in the time dimension. Compared with (Eq. 1), compressed acquisition (Eq. 5) greatly reduces the number of seismic traces or the same number of traces can cover a wider area, eventually lowering the cost and increasing the acquisition efficiency.
For Eq. 5, it can be seen that the acquisition of spatially irregular seismic data is not compressive sampling that fully satisfies the CS theory, and the number of shot-detection points is far less than the conventional regular shot-detection grid. Therefore, this is a high-efficiency and low-cost acquisition method based on the concept of CS (data sparsity and irregular sampling).
2.1.2 Theoretical defect of CS-based reconstruction for spatially irregular seismic data
It is well known that CS is not only a high-efficiency signal sampling method but also a high-resolution data reconstruction method. The three important prerequisites for CS include: (i) the complete signal satisfies sparsity or compressibility; (ii) the sampling matrix should be a random matrix in the data definition domain, which is independent of the signal; and (iii) a suitable high-precision reconstruction algorithm that promotes sparsity.
The CS theory-based reconstruction strategy is the process that satisfies all of the above three conditions, and then recovers the original data [image: It seems there's no image attached. Please upload the image or provide a URL, and I can help with the alt text.] from the sampling matrix [image: Sure, please upload the image or provide a URL so I can help create the alternate text for it.] and the observation data [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to provide the alt text for it.] by finding the minimum norm solution of the underdetermined system of equations, as follows:
[image: Mathematical expression showing an optimization problem: minimize the norm of \(d-Scl\) squared, subject to the constraint that the norm of \(c\) is less than or equal to \(\sigma\), labeled equation \(6\).]
where [image: Mathematical notation representing Big O notation with a constant time complexity, denoted as O of c.] denotes the optimization objective function with [image: It seems there's no image uploaded. Please try uploading the image again or provide a URL.] as a variable; c is the sparse transform coefficient of data [image: Please upload the image you'd like me to describe.] to be reconstructed, with [image: Mathematical equation: \( c = \Phi u \).], [image: Equation showing \( u = \Phi^{-1} c \), where \(\Phi^{-1}\) denotes the inverse of the function \(\Phi\), and \(c\) is a constant or variable.]; [image: A mysterious symbol, resembling a phi character, drawn in black on a white background, with symmetrical vertical lines crossing a circular shape.] and [image: Inverse of the Greek letter phi symbol, represented as "Φ" with a superscript negative one.] represent the sparse transformation and inverse transformation applicable to [image: Please upload the image or provide a URL for me to generate the alt text.], respectively; [image: Please upload the image or provide a URL, and I will help you create the alt text.] denotes the sensing matrix, with [image: The equation depicts \( S = W\Phi^{-1} \), where \( S \) is equal to the product of \( W \) and the inverse of \( \Phi \).] ; [image: A Greek letter sigma (σ) symbol is shown in black on a white background.] is a quantity that measures the sparsity of [image: Please upload the image you would like me to describe.].
The constrained optimization problem in (Eq. 6) can also be converted into the following unconstrained optimization problem:
[image: Mathematical expression showing the optimization function O of u, defined as the minimum of the norm of d minus Wu squared, plus lambda times the absolute value of Phi of u, labeled as equation (7).]
where [image: Please upload the image or provide a URL for me to view it.] is a regularization parameter. There are many algorithms for solving optimization problems (Eqs. 6, 7). The common CS reconstruction algorithms have been applied in seismic data reconstruction, such as the Projection onto Convex Set (POCS) algorithm (Abma and Kabir, 2006), Iterative Soft Thresholding (IST) algorithm (Hennenfent et al., 2010) and Orthogonal Matching Pursuit (OMP) algorithm (Sun et al., 2018). Eqs. 6, 7 are recognized as model-driven methods for reconstruction because they are generated through the mathematical representation (Eq. 5) of seismic data and the prior knowledge of spatiotemporal variation (i.e., sparsity).
Due to the sampling matrix directly affecting the quality of the compressed information, certain constraints need to be met when constructing this matrix, such as null space, constrained equidistant properties and incoherence. However, in the CS-based reconstruction for spatially irregular seismic data, the sampling matrix [image: Please upload the image or provide a URL, and I will be happy to create the alternate text for you.] in (Eq. 5) is irregularly random sampling only in the spatial dimension of seismic data but not in the time dimension, which does not satisfy the CS precondition that the sampling matrix should be random in the whole data domain. Therefore, there is a theoretical flaw in the CS-based reconstruction method commonly used in this case, making it difficult to obtain high SNR reconstruction, especially for data with low sampling rate.
Although the collection corresponding to (Eq. 4) satisfies the CS theoretical requirements, it cannot improve efficiency, or save time and economic cost in actual production. Therefore, we propose a pseudo-CS acquisition, that is, pseudo-spatiotemporally irregular acquisition, where the seismic traces are randomly sampled at the sampling rate [image: It seems there is an issue with displaying the image. Please upload the image again, and I will help you create the alternate text for it.], then the extracted traces are randomly sampled in the spatiotemporal domain at the sampling rate [image: Mathematical expression representing \( r^2 \), with "r" as a variable and "2" as an exponent, indicating the square of the variable "r".], so the total sampling rate is [image: The image displays the mathematical expression "r subscript 1, r subscript 2".]. We use a 2D synthetic seismic data [image: The text is a mathematical notation with the letter "u" followed by the subscript "1".] with 512 traces, 512 samples in each trace, and a sampling interval of 2 ms as the complete data. Irregular sampling is performed in spatial [image: The image shows a lowercase italicized letter "d" followed by a subscript "x".] (Figures 1A, D), pseudo-spatiotemporal [image: Mathematical expression showing a lowercase "d" with subscript "p, x, t".] (Figures 1G, J), and spatiotemporal domain [image: Stylized mathematical notation showing a lowercase letter "d" with subscript variables "x" and "t".] (Figures 1M, P). We abbreviate the sampling rate as SR. The SR of each sampling method is 30% (Figures 1A, G, M) and 50% (Figures 1D, J, P). Under the same SR, the number of points collected is consistent.
[image: Series of seismic data panels labeled A to R, showing waveforms with varying signal-to-noise ratios (SNR). Each panel depicts offsets and deep measurements. Darker curves contrast with lighter backgrounds indicating noise levels. SNR values are provided below each panel, showing differences in data clarity.]FIGURE 1 | Irregularly sampled data and corresponding reconstructions and residuals for synthetic seismic data [image: Mathematical notation displaying the variable "u" with a subscript of "1," indicating it is the first element in a sequence or set.]. (A) [image: Lowercase letter "d" followed by a subscript "x" in lowercase, likely representing a mathematical differential or variable.] (SR = 30%); (B) [image: Italic lowercase letter "u" with subscript "x".] of (A); (C) difference between [image: The image shows a stylized lowercase letter "u" followed by a subscript "1".] and (B); (D) [image: Lowercase letter "d" followed by a subscript "x" in bold italic typeface.] (SR=50%); (E) [image: The image shows the letter "u" followed by a subscript "x", indicating a mathematical variable or function notation.] of (D); (F) difference between [image: The image shows a mathematical notation, "u" with a subscript "1", often representing the first element in a sequence or vector in mathematical contexts.] and (C); (G) [image: Text displaying the mathematical expression "d subscript px t" in italics.] (SR = 30%); (H) [image: Lowercase letter 'u' followed by subscript 'x'.] of (G); (I) difference between [image: Mathematical notation showing a lowercase italicized "u" followed by a subscript "1," often representing a vector or a component in mathematical or scientific contexts.] and (H); (J) [image: Stylized lowercase letter "d" followed by subscript "pxt" in italics.] (SR = 50%); (K) [image: A lowercase letter "u" followed by a subscript lowercase letter "x", representing a mathematical variable or expression.] of (J); (L) difference between [image: The symbol "u" followed by a subscript "1" in a stylized italic font, typically used in mathematical or scientific contexts to denote a variable or specific element in a sequence.] and (K); (M) [image: The image shows the mathematical notation "d" with subscripts "x" and "t", often used in equations related to differential calculus, representing a small change or differential operator.] (SR = 30%); (N) [image: The image shows the mathematical notation "u" with a subscript "x".] of (M); (O) difference between [image: Unable to provide a description for the image. Please upload the image file or provide additional context for assistance.] and (N); (P) [image: Mathematical expression displaying "d" subscripted with "xt".] (SR = 50%); (Q) [image: Italic lowercase letter "u" followed by a lowercase subscript "x".] of (P); (R) difference between [image: The symbol is a lowercase italic "u" followed by a subscript "1".] and (O).
We take the discrete cosine transform (DCT) as the sparse transformation and use the IST algorithm to obtain the final CS reconstruction [image: Stylized letter "u" followed by a subscript "x".], [image: Italicized lowercase "u" with subscript "pxt".] and [image: Mathematical expression showing the variable \( u_{xt} \).], as shown in Figure 1. By comparison, the reconstruction result [image: The image shows the mathematical notation "u" with subscript "x" and "t".] is significantly better than [image: Mathematical notation showing the variable "u" with a subscript "x".] and [image: Italic lowercase letter "u" subscripted with "pxt".] at each same SR. When the SR is lower, the deficiency of [image: Italicized variable "u" with subscript "x".] is more obvious, indicating that the CS-based spatially irregular reconstruction is acceptable when the SR is relatively high. This also explains the rationality of the current widely used spatially irregular CS in the study of seismic data reconstruction, but in the presence of the aforementioned theoretical defect, insufficient reconstruction would be obvious under a low SR. As a trade-off scheme between the acquisition efficiency and the randomness of the sampling matrix, the sampling points of pseudo-CS acquisition are carried out in the spatiotemporal domain of the collected traces. In Figure 1G, we set the SR of seismic traces to be consistent with the SR of the space-time, so that the total sampling rate is 30%, but the sampling matrix is closer to the randomness of whole data definition domain, and more traces are collected than Figure 1A. Figure 1H is obviously different from Figure 1B, which corroborates our reasoning and reflects the importance of the randomness in the data definition domain. Comparing the reconstruction of the three acquisition forms, we prove that irregular data will have better a CS reconstruction when it is closer to the randomness of the whole domain.
Although CS-based irregular spatiotemporal acquisition offers more accurate reconstruction, the efficiency and cost of acquisition cannot be improved in actual exploration. On the other hand, spatially irregular acquisition is effective and economical, but the reconstruction is poor especially under a low SR. Therefore, it is urgent to interpolate the irregular missing seismic trace with high precision and SNR.
2.2 Reconstruction by supervised learning
Reconstructing seismic data using traditional methods can be both computationally expensive and susceptible to various human factors. By utilizing supervised learning, the missing traces can be recovered by learning the mapping between input and label from a vast quantity of data. These data-driven approaches do not account for the irregularity, spatiotemporal variation or the impact of sparse transformation of seismic data. The DL-based seismic data reconstruction usually assumes that there is a nonlinear mapping relationship [image: It seems there was an issue with displaying the image. Please try uploading the image again, and I can help create alternate text for it.] between the known regular seismic data [image: Please upload the image or provide a URL so I can help create the alternate text.] and its corresponding spatially irregular seismic data [image: It seems there was an error in uploading the image. Please try uploading the image again, and I will help you create the alternate text.], which can be represented by a DNN model as follows:
[image: Equation showing \( u = \text{Net}(d, \theta) \), labeled as equation (8).]
where [image: Please upload an image or provide a URL, and I will help you create the alternate text.] represents the parameters that constitute the network.
We record the existing complete data as the label [image: Italicized text displaying "uLab".] and the existing spatially irregular data as the training data [image: It seems there was an issue with your image upload. Please try uploading it again, ensuring the file is correctly attached. Let me know if you need further assistance!]. The following optimization algorithm is usually solved to obtain the [image: The image shows the Greek letter theta with a hat symbol above it, often used to denote an estimated parameter in statistics.] corresponding to the minimum of [image: Mathematical notation showing the Big O notation, used in computer science to describe the performance or complexity of an algorithm, specifically O notation with a symbol in the parenthesis.]:
[image: Mathematical equation depicting an optimization problem: \( O(\theta) = \min (|\text{Net}(d, \theta) - u_{\text{adv}}|^2) \). The equation is labeled as equation nine.]
Based on the trained parameters [image: A mathematical symbol displaying the Greek letter theta with a hat accent, commonly used to denote an estimated parameter in statistics or mathematics.], we take the spatially irregular data [image: It seems there's an issue with the image upload or reference. Could you please try uploading the image again or provide a clear URL? Let me know if you need help with this process.] outside the training set to obtain the corresponding reconstruction [image: I'm unable to view images directly. Please upload the image or provide a URL for it, and I'll help you create the alternate text.]. This process is the generalization of (Eq. 9) and can be expressed in (Eq. 10):
[image: Equation showing \( \hat{u} = \text{Net}(d, \hat{\theta}) \), labeled as equation (10).]
The reconstruction performance of (Eq. 10) largely depends on the generalizability of the network model represented by [image: Statistical notation of a theta symbol with a hat, representing an estimator or estimated value in mathematics or statistics.]. Using the network model with excellent generalizability can better recover data; otherwise, it is difficult to guarantee the reconstruction in network promotion.
For DL training, we adopt the DnCNN architecture depicted in Figure 2, whose residual learning mode focuses the mapping connection on the distinction between labels and input data instead of directly learning the mapping between them. This network is simpler to optimize and effectively avoids the gradient dispersion problem during training because most of the residuals are small. The DnCNN comprises 17 convolutional layers, with the first layer consisting of convolution (Conv) and rectified linear unit (ReLU), the second through 16th layers consisting of Conv, Batch normalization (BN) and ReLU, and the 17th layer is a Conv.
[image: Diagram illustrating a denoising convolutional neural network (DnCNN) workflow for reconstructing data. It shows the process from inputting spatially irregular and complete data, through multiple layers including the first, intermediate, and last layers, to obtaining residual and reconstructed data. Arrows indicate the flow of data from left to right.]FIGURE 2 | Architecture of DnCNN.
The benefits of DL-based methods, such as nonlinear mapping and automatic feature extraction, are valuable for reconstructing seismic data, while challenges persist such as limited training data sets, uncertainty and poor generalization. On the one hand, the spatial characteristics of seismic data learned by the network may have difficulty correctly interpolating in a large missing ratio; many studies only showed the reconstruction when fewer traces were missing ([image: The letters "SR" in a stylized font.] more than 50%) (Fang et al., 2021b). On the other hand, the trained models may fail to generalize well on new samples with different distributions. In Wang’s DNN-based residual learning method for seismic reconstruction, as the feature disparity between the test field data and the training data set grows, the interpolation deviation becomes more obvious (Wang et al., 2019).
The application impact of DL-based method depends on the generalizability of the network, making it challenging to implement in actual production. The main determinants affecting the performance of network models include the network structure, the optimization algorithm, the size and feature diversity of the dataset used for training, the computer processing capability, etc. The following methods can be used to improve the network generalizability: (i) training more data with a wider range of features; (ii) modifying or reshaping the network architecture to incorporate mathematical and physical operators; (iii) adjusting the objective function by adding the constraints of the mathematical expression and prior knowledge about the data.
However, it is not easy to measure how much data is obtained with a larger number and higher diversity of characteristics, which may bring some practical difficulties. In terms of incorporating mathematical, physical and prior data knowledge into the goal function (Eq. 10), although some methods have been proposed recently and certain progress has been made, these are still in the process of exploration (Mousavi and Beroza, 2022). Such methods imply that under the condition of the limited training dataset, constructing a network with excellent generalizability is a difficult task, and this method also has challenges regarding research and application for the reconstruction of spatially irregular seismic data.
2.3 Data and model dual-driven seismic data reconstruction
In statistical learning theory, the complexity of hypothesis space [image: Please upload an image or provide a URL so I can create alt text for you.], which includes the set of all possible mapping relations of the learning algorithm, is a key factor to analyze the generalization ability of network models (Vapnik, 1999; Wu and Zhang, 2017). For common regression problems, the complexity of the mapping relationship between label and data is sometimes difficult to quantify and characterize. However, for seismic data reconstruction, the label is the complete seismic record, the input data is a spatially irregular seismic record, and labels and data are essentially the same kind of data, with the difference degree corresponding to the complexity of the relationship between them. Therefore, for fitting the desired mapping between [image: Please upload the image you'd like me to describe.] and [image: It seems like the image was not uploaded correctly. Please try uploading the image again, and I will help provide the alternate text for it.] in (Eq. 8), reducing the difference between the two is equivalent to weakening the complexity of mapping relationship, thereby narrowing the dimension of hypothesis space. In this way, the learned parametric model can approximate the true model with greater probability, thus increasing the network generalization ability.
Moreover, the seismic record comprises spatiotemporal data that satisfies the wave equation; hence, the process of CS searching for suitable sparse transformation to obtain few coefficients to represent the data is actually controlled by mathematical physics, which is a kind of mode knowledge. Based on the above discussion, we propose a method for reconstructing the spatially irregular seismic data that combines CS and DL. Firstly, using CS for preliminary reconstruction to obtain the input data of DnCNN, we reduce the difference between [image: It seems there was an issue with the image upload. Please try re-uploading the image or providing a URL. If you have any additional context or a caption, feel free to include it as well.] and [image: It seems there's no image uploaded. Please try uploading the image file or provide a URL so I can help create the alt text.] in the sample set and lower the complexity and nonlinearity of network training, which is carried out to enhance the generalization of the network model by incorporating prior knowledge into DL. Then, the reconstruction is carried out by data-driven iteration. We refer to this method as CSDNN for short, with its structure shown in Figure 3.
[image: Flowchart showing a process for seismic data reconstruction. The top row illustrates transformation from an original seismic dataset to a sampled dataset, leading to rough reconstruction by compressed sensing. Below, a diagram of a 15-layer DnCNN network processes training and testing sets, outputting a reconstructed dataset. The bottom visual demonstrates applying the trained DeCNN model to spatially irregular seismic data, achieving rough representation, residual error, and final reconstructed seismic data.]FIGURE 3 | CSDNN: the proposed architecture for spatially irregular seismic data reconstruction.
In the training dataset, the spatially irregular seismic data [image: It seems there is an issue with the image upload. Please try again by uploading the image or providing a URL, and I will help you with the alt text.] is used as input data and the corresponding complete data [image: Italicized text displaying the mathematical variable "u" followed by the subscript "lab".] is used as the label. The objective function of our data and model dual-driven method CSDNN can be written as:
[image: Optimization equation is shown: \( O(u, \theta) = \min \left( \|d - Wu\|_2^2 + \lambda \|\Phi u\|_1 \right) + \alpha \|u_{lab} - \text{Net}(d, \theta)\|_2^2 + \beta \|u - \text{Net}(d, \theta)\|_2^2 = O_1(u) + \alpha O_2(\theta) + \beta O_3(u) \). Labeled as equation (11).]
where [image: Mathematical notation displaying the function \( O(u, \theta) \).] is the objective function, with [image: It seems you mentioned an image, but there is no image uploaded. Please upload the image you want me to describe, and I'll provide the alternate text for it.] and the network model parameter [image: Please upload the image or provide a URL for me to generate the alt text.] as its dependent variable, aiming to find [image: It seems there was an issue with displaying the image. Please try uploading the image again or provide a description or URL if possible.] with the greatest generalizability and achieve the best possible data reconstruction effect. The parameters [image: It seems there might be an issue with the image upload. Please try uploading the image again, or you can provide a URL if it is hosted online. You can also add a caption for more context if you wish.] and [image: Kindly upload the image or provide a URL for me to generate the alt text.] are the weighting coefficients of different metrics. [image: Mathematical expression: \( O_1(u) = \min(\|d - Wu\|_2^2 + \lambda \|\Phi u\|_1) \).] denotes the objective function corresponding to the preliminary reconstruction by CS, [image: Equation displaying \( O_2(\theta) = \min(\| u_{\text{lab}} - \text{Net}(d, \theta) \|_2^2) \).] corresponds to supervised learning, and [image: The formula \( O_3(u) = \min(\|u - \text{Net}(d, \theta)\|_2^2) \) is displayed, representing an optimization problem involving the minimization of the squared Euclidean norm between \( u \) and a neural network function \(\text{Net}\) with parameters \( d \) and \(\theta\).] represents the expectation of neural network with strong generalizability (best potential for application).
In general, prior constraints are applied to DNNS to improve the generalizability, interpretability and physical consistency of the model, including three general strategies: imposing constraints on data, fusing constraints into network architecture, and integrating constraints into loss functions (Wu et al., 2023). As an objective function related to network parameters, Eq. 11 is constrained by the mathematical knowledge of CS, which is equivalent to restricting the solution space of DL, a large-scale non-convex optimization problem, to physically reasonable solutions, so as to enhance their out-of-distribution generalization.
Even though objective function (Eq. 11) formally integrates model-driven and data-driven methodologies, it is challenging to acquire the optimum parameters with strong network generalization while achieving the optimal CS reconstruction at the same time. We thus propose the following step-by-step optimization solution for (Eq. 11), referring to the concept of sequential inversion in the combined inversion of multiple geophysical data. In the first step, we optimize [image: Equation image showing the expression "O subscript 1, left parenthesis u right parenthesis".], which preliminarily reconstructs the data of missing traces [image: It seems there's an issue with displaying the image. Please upload the image directly or provide a URL so I can help you create the alt text.] with CS to produce a rough reconstruction [image: The image shows the mathematical notation "d" followed by a superscript "c" and "s".].
In the second step, we optimize [image: The image shows the mathematical expression "O subscript 2, parenthesis theta parenthesis," indicating a function or notation involving the variable theta.], which involves training the parameter [image: Please upload the image or provide a URL for me to create the alt text. You can also add a caption for additional context if you like.] for DnCNN, but the input data is [image: It looks like you're referring to a mathematical expression. If you have an image to upload or a URL, please provide it for a detailed description.], so the objective function [image: Text "O2(θ)" in italicized font.] is rewritten as:
[image: An equation shown as \( O_{\lambda}(\theta) = \text{min}(\| u_{\text{adb}} - \text{Net}(d^*, \theta) \|_2^2) \), labeled as equation (12).]
where utilizing the CS-based reconstruction results to train the network could be regarded as improving the data-driven approach via mathematics and previous knowledge.
The third step is to optimize [image: Text displaying a mathematical expression: \(O_3(\theta)\).], which is the application to trained network models obtained by Eq. 12. For the rough reconstruction [image: Mathematical notation "d" with a superscript "cs".] of [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL for it.], applying the trained DnCNN can be written as [image: The equation shows \( \mathbf{u} = \text{Net}(\mathbf{d}^{cs}, \hat{\mathbf{\theta}}) \).], to obtain an interpolation with high precision and high SNR.
Through the above steps, the distance between [image: It seems there's no image provided. Please upload the image or provide a URL so I can help you with the alternate text.] and [image: Text reads "u" with a subscript "lab" in italic font.] used for DnCNN in the second step is reduced compared with the distance between the original [image: It seems there was a mistake in uploading the image. Please try uploading the image again, and I will be happy to help you with the alternate text.] and [image: Italicized letter "u" followed by the subscript "lab".] in the preceding step by preliminary reconstruction, which will weaken the degree of nonlinearity between the input and the label. This will bring a higher possibility of training a DnCNN with strong generalization and enable the more effective reconstruction of spatially irregular seismic data.
3 NUMERICAL EXPERIMENTS
In order to evaluate the effect of seismic data reconstruction from multiple perspectives, we select SNR, peak signal-to-noise ratio (PSNR), structural similarity index method (SSIM), and mean square error (MSE) as evaluation metrics to assess the relationship between complete data [image: Please upload the image or provide a URL so I can help create an alt text for it.] and reconstruction data [image: It seems there was an error with the image upload. Please try uploading the image again, and I will be happy to help with the alternate text.]. This selection is based on our experience in the field of seismic data reconstruction and the evaluation system of computer vision super-resolution. The four evaluation metrics can be written as:
[image: Signal-to-noise ratio in decibels is defined as twenty times the logarithm base ten of the ratio of the L2 norm of vector u to the L2 norm of the difference between vectors u and u hat, equation thirteen.]
[image: The formula represents the Peak Signal-to-Noise Ratio (PSNR) in decibels. It is given as PSNR(dB) equals ten times the logarithm (base ten) of the square of "Max" divided by the Mean Squared Error (MSE).]
[image: Formula for the Structural Similarity Index Measure (SSIM): SSIM of u and u-hat equals the product of two fractions. First fraction: two times mean of u times mean of u-hat plus constant C1, over the sum of squared means of u and u-hat plus C1. Second fraction: two times covariance of u and u-hat plus C2, over the sum of variances of u and u-hat plus C2. Labeled as equation 15.]
[image: The formula represents the Mean Squared Error (MSE): MSE equals 1 divided by L times the sum from one to L of the squared difference between u and u-hat. The equation is labeled as equation sixteen.]
where [image: Text displaying "Max" with a subscript "u" in a stylized font.] represents the maximum value of [image: Please upload the image or provide a URL, and I will create the alt text for you.]; [image: The Greek letter "mu" with a subscript "u" in italics.] and [image: The LaTeX expression represents "mu" with a hat over "u", commonly denoting a statistical or mathematical variable with an estimate symbol.] denote the average of [image: It seems there is no image provided. Please upload the image or provide a URL so I can create the alternate text for you.] and [image: Mathematical notation showing a lowercase letter "u" with a circumflex accent above it.], respectively; [image: Greek letter sigma with a subscript lowercase letter u.] and [image: Mathematical notation depicting the Greek letter sigma (σ) followed by a subscript "u" and a hat symbol over the subscript.] denote the variance of [image: It looks like you tried to upload an image, but it was unsuccessful. Please try uploading the image again, and I will help you with the alternate text.] and [image: It seems like there's no image uploaded. Please try uploading the image again or provide a URL. If there's a specific context or description you need, feel free to mention it!], respectively; [image: The Greek letter sigma followed by the variable "u" with subscripts "ii".] denotes the covariance between [image: Please upload the image or provide a URL for me to create the alt text.] and [image: It looks like you included a symbol, but I need more context or a complete image to provide effective alternative text. Please upload the image or provide a URL.]; [image: Please provide the image or a URL so that I can generate the appropriate alt text for you.] and [image: The mathematical expression depicts "C" with a subscript "2".] are constants to avoid fluctuations when the mean approaches zero. SSIM evaluates the similarity between two images and MSE reflects how different the estimator is from the estimated one. For seismic data, higher SNR, PSNR, and SSIM values indicate better reconstruction, while MSE values closer to zero are better.
3.1 Synthetic data experiments
We select four datasets including the Hess VTI migration benchmark, 1994 BP statics benchmark model, 1997 BP 2.5D migration benchmark model, and 2007 BP Anisotropic Velocity Benchmark, and sort out their synthetic pre-stack seismic data for experiments. Then, the amplitudes of all the data are normalized. Following the above CSDNN process flow, we randomly sample 50% of the traces in each complete data, then use the CS method to reconstruct these spatially irregular data preliminarily to obtain the input data for DnCNN. In this paper, when the CS method is used, the selected sparse transform is DCT, and the reconstruction algorithm is IST. Next, the complete labels and the corresponding input data are all cut into [image: It seems there's an issue with the image upload. Please try uploading the image again, and I will help you generate the alternate text for it.] patches to train the DnCNN. During the training process, the MSE is employed as the loss function to evaluate the difference between the network prediction and the truth, and the Adaptive Moment Estimation (Adam) algorithm is implemented to optimize the network parameters.
The numerical test is based on the synthetic complete seismic record outside the training dataset, which is shown in Figure 4A, with 500 traces and 1,000 samples in each trace. It is randomly sampled in the spatial dimension with sampling rates of 70% (Figure 4B), 50% (Figure 4C) and 30% (Figure 4D). To verify the superiority of our method compared with the traditional methods, different reconstructing strategies, including CS, DnCNN and our CSDNN, are tested separately on these missing data, as shown in Figures 5–7. For the same complete data, spatially random sampling with different sampling rates from 5% to 95% is carried out with a step size of 5%, then the four evaluation metrics curves of the above reconstruction methods are calculated by Eqs. 13–16, the evaluation index curves as shown in Figure 8.
[image: Four seismic data plots labeled A, B, C, and D show trace number versus travel time. Each plot includes specific travel time picks with labels, represented in shades of purple. A color bar on the right indicates amplitude values from negative (red) to positive (blue).]FIGURE 4 | Experimental synthetic seismic data. (A) Complete seismic data. Spatially irregular data with sampling rates of (B) 70%, (C) 50% and (D) 30%.
[image: Six panels labeled A to F show seismic data visualizations. Panels A, B, and C display similar patterns with distinctive arcs and colors grading from red to blue, indicating amplitude. Panels D, E, and F show less prominent or sparser patterns, mostly in lighter shades. A color scale on the right ranges from red to blue, representing amplitude values. All panels share axes labeled "Trace number" and "Time(ms)."]FIGURE 5 | Reconstructed results and residual errors for the data (SR = 70%) in Figure 4C. The reconstruction results with (A) CS, (B) DnCNN and (C) CSDNN. (D–F) are the residual errors between the complete synthetic data in Figure 4A and panels (A–C) of this figure.
[image: Six-panel figure showing seismic trace plots labeled A to F. Panels A, B, and C display more defined seismic activity with curves, while panels D, E, and F show less pronounced activity. The horizontal axis represents trace numbers, and the vertical axis shows time in milliseconds. An amplitude color scale on the right ranges from blue (low) to red (high).]FIGURE 6 | Reconstructed results and residual errors for the data (SR =50%) in Figure 4C. The reconstruction results with (A) CS, (B) DnCNN and (C) CSDNN. (D–F) are the residual errors between the complete synthetic data in Figure 4A and panels (A–C) of this figure.
[image: Six seismic data plots labeled A to F show amplitude variation over trace number and time index. Darker lines indicate stronger signals. Plots exhibit different signal intensities and patterns, with corresponding signal-to-noise ratio values listed above. A color scale on the right indicates amplitude, ranging from blue (negative) to red (positive).]FIGURE 7 | Reconstructed results and residual errors for the data (SR=30%) in Figure 4D. The reconstruction results with (A) CS, (B) DnCNN and (C) CSDNN. (D–F) are the residual errors between the complete synthetic data in Figure 4A and panels (A–C) of this figure.
[image: Four line graphs labeled A to D compare different reconstruction methods against sampling rate. Graphs A and B show increasing SNR and PSNR values respectively, where CSDNN and DrCNN outperform other methods. Graphs C and D display SSR and MSE values, with CSDNN and DrCNN consistently performing better. Each graph includes a legend for sampled data, CS, DrCNN, and CSDNN reconstructions.]FIGURE 8 | The curve of (A) SNR, (B) PSNR, (C) SSIM, and (D) MSE of the reconstruction effect.
From the reconstruction and residual profiles in Figures 5–7, the above three methods can effectively recover the information in few missing traces (SR=70%). As the SR gets lower, the CS-based reconstruction is the worst, and the SNR drops from 17.78 dB in Figure 5A to 5.34 dB in Figure 7A, which constitutes a decrease of 53%. It can be seen that the inadaptability of the CS method to low SR and spatially irregular data is obviously enhanced, which verifies the theoretical defect of the CS method in this case. The DnCNN-based reconstruction with SR = 50% (Figure 6B, SNR = 16.78 dB) is similar to the CS-based reconstruction with SR = 70% (Figure 5A, SNR = 17.78 dB), so the effect of DL method represented by DnCNN is better than CS. With more missing traces, the reconstruction SNR of the DnCNN drops from 18.50 dB in Figure 5B to 11.42 dB in Figure 7B, equivalent to a drop of 38%. This shows that when the difference between training data and labels is larger, the generalizability of the trained network model is weaker. Our CSDNN method indicates the best reconstruction performance at each SR, from 20.76 dB in Figure 5C to 14.29 dB in Figure 7C, equivalent to a decrease of 31%. Thus, CSDNN is more adaptable to the reconstruction of spatially irregular seismic data with low SR.
Figure 8 shows that when the SR is higher than 75%, the CS-based reconstruction has better SNR and PSNR than CSDNN. The reason is that the underdetermined degree of the objective function is low when the amount of data is large, which explains the rationality of obtaining credible CS reconstruction results for spatially irregular data under high SR even if it does not meet the requirements of CS theory. Another reason is that in the two methods related to learning, the SR used in the training data is 50%, which means that when the SR of the data to be reconstructed is very different from the training data, there will be a significant inadaptation, but the reconstruction of CSDNN is still better than DnCNN in this case. In other cases, CSDNN reconstruction has the highest SNR, PSNR, SSIM and the lowest MSE among the three methods. In fact, we usually focus on reconstruction with relatively low SR, so the result also verifies the effectiveness of reducing the difference between the training data and its labels for improving network generalizability.
3.2 Field data experiments
In order to further verify the generalizability of our method, the real marine seismic data (Figure 9A, with 430 traces, 512 samples in each trace, spatial interval is 12.5 m), is also randomly sampled in the spatial dimension with SR of 70% (Figure 9B), 50% (Figure 9C) and 30% (Figure 9D). Then, we reconstruct them using the above three methods, and the results and residuals are shown in Figures 10–12. The DnCNN and CSDNN methods here use the two network models trained in the above synthetic data experiment.
[image: Four line plots labeled A, B, C, and D depict data comparisons with varying line densities and patterns. Temperature is indicated in the far left bar, ranging from blue (low) to red (high). Plots show values on x-axis as "Pair number" and on y-axis as "B-value", with different SMN and RMSD values listed on each plot.]FIGURE 9 | Field seismic data. (A) Complete field seismic data. Spatially irregular data with SR of (B) 70%, (C) 50% and (D) 30%.
[image: Set of six correlation matrix plots labeled A to F, showing seismic trace analysis. Plots A, B, and C display distinct seismic patterns with prominent red and blue lines indicating correlation coefficients. Plots D, E, and F show faded patterns with less distinct correlations. Each plot includes axis labels for trace number and frequency along with color bars indicating correlation strength, ranging from negative (blue) to positive (red) values.]FIGURE 10 | Reconstructed results and residual errors for the field data (SR =70%) in Figure 9B. The reconstruction results with (A) CS, (B) DnCNN and (C) CSDNN. (D–F) are the residual errors between the complete synthetic data in Figure 9A and panels (A–C) of this figure.
[image: Six plots labeled A to F display correlation matrices of trace numbers against time units. Each plot shows varying densities of red and blue colors, indicating positive and negative correlations, respectively. The plots in the top row (A, B, C) depict noticeable patterns of descending arcs, while the plots in the bottom row (D, E, F) have less defined patterns with lighter coloration. Numerical indicators above each plot provide statistical details like SRM, FSRM, and SER values. A color bar on the side signifies the correlation range from negative (blue) to positive (red).]FIGURE 11 | Reconstructed results and residual errors for the field data (SR=50%) in Figure 9C. The reconstruction results with (A) CS, (B) DnCNN and (C) CSDNN. (D–F) are the residual errors between the complete synthetic data in Figure 9A and panels (A–C) of this figure.
[image: Six scatter plots labeled A to F display trace numbers against face numbers with color gradations indicating correlation. Plots A to C have visible correlation patterns in shades of red and blue, with B featuring a red box highlighting a specific area. Plots D to F show weaker patterns, predominantly in blue. A color bar on the right shows correlation values from negative to positive.]FIGURE 12 | Reconstructed results and residual errors for the field data (SR = 30%) in Figure 9D. The reconstruction results with (A) CS, (B) DnCNN and (C) CSDNN. (D–F) are the residual errors between the complete synthetic data in Figure 9A and panels (A–C) of this figure.
When the field data misses few traces (SR = 70%), the CS reconstruction (Figure 10A, SNR=11.04 dB) is close to DnCNN (Figure 10B, SNR=11.84 dB). All three methods can reconstruct the field data well, but the CSDNN reconstruction result has the highest SNR (14.86 dB), PSNR (36.57 dB), SSIM (0.988), the lowest MSE (2.20e-04), and the strongest horizontal continuity, and can recover many small features. With lower SR, the CS reconstruction (Figure 11A, SNR = 6.18 dB; Figure 12A, SNR = 2.59 dB) shows event discontinuity and the noise is more obvious; the DnCNN reconstruction (Figure 11B, SNR = 7.48 dB; Figure 12B, SNR = 3.77 dB) is better than CS, but there is an apparent error in the reconstructed event at the continuous missing traces position (red mark in Figure 12B); CSDNN (Figure 11C, SNR=10.88 dB; Figure 12C, SNR=7.09 dB) combines the model-driven prior knowledge on the DnCNN, better guarantees the event continuity and correctness, and the reconstruction SNR is the highest. The inveracious reconstruction shown in Figure 12B does not meet the spatiotemporal variation rules of seismic data and also indicates the necessity of adding knowledge constraints to DL. The performance of our CSDNN method on the field data further proves its generalizability.
4 DISCUSSIONS
Aimed at the reconstruction of spatially irregularly acquired seismic data, in this work, we considered it separately from the perspectives of the traditional and AI methods. On the one hand, we pointed out the theoretical flaw of CS reconstruction for such data and explained the reason why CS is difficult to obtain satisfactory reconstruction. On the other hand, we highlighted that the generalizability of DL under limited datasets is a crucial aspect that must be significantly enhanced before this method can be implemented in industrial applications. By summarizing the discussion about network complexity and generalization in statistical learning theory, and combining it with the nature of the seismic data reconstruction problem, our inference is that the approach for DL to train neural networks with excellent generalizability should be to minimize the difference between training data and labels.
Based on this reasoning, the proposed CSDNN method reduces this difference through the CS-based preliminary reconstruction, and takes DL to alleviate the reconstruction deficiency caused by the defect of applying CS theory, with the sparsity of the data as the domain knowledge. Tests conducted on both synthetic and field seismic data revealed that the CSDNN outperforms traditional CS and DNN methods. This superiority holds even at low sampling rates, affirming the viability, efficiency, and versatility of this approach.
Due to the fact that CSDNN method requires more processing to reconstruct based on CS than typical DL methods, one of its disadvantages are in terms of computational efficiency and amount. Another disadvantage is that we simply use the cascade connection to combine CS and DNN, and there is no further discussion of integrating domain knowledge into neural networks. We designed this form of tandem CS and DnCNN just to validate the inference that reducing the differences between labels and input data can improve the generalization ability. In fact, future research can be done on designing more flexible models that incorporate more domain knowledge and more fully and deeply into neural networks. Besides, the main limitation of this method is that supervised learning requires a large amount of completed data in network training, but it is difficult to obtain a large amount of field label data. Our next research will also focus on using unsupervised or weakly supervised methods to obtain better reconstruction results.
The strategy outlined in this paper is equivalent to feeding the network additional feature and constraint information during training, compacting the solution space to a more reasonable range and increasing the accuracy of data reconstruction at low sampling rates. Subsequent research endeavors will foster a closer integration between model-driven and data-driven methodologies.
5 CONCLUSION
According to the notion that imposing prior knowledge constraint in data-driven models may effectively improve the generalizability of DL, we proposed a CSDNN method combining the model-driven CS and the data-driven DnCNN method for spatially irregular seismic data reconstruction, and a step-by-step optimization algorithm was put forward by synthesizing their objective functions. The domain knowledge here is the sparsity of seismic data, which is governed by the wave equation and has a regular spatiotemporal variation. Based on this, a suitable sparse basis can be found for preliminary reconstruction with CS. Experiments proved that preliminary implementation of the data and model dual drive in the form of concatenation produced positive findings, which backed up our theory regarding the link between dataset differences and network generalizability. The direction of future research is to analyze the quantitative relationship among the complexity of the network model, the variation between training data and labels, and the network generalizability.
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The stress background and rock fractures are essential factors affecting the stability of mines. In order to better understand the in situ stress background and rock fractures in the Guangdong Fankou Mine, we use ultrasonic borehole television scanning to measure rock fractures. The results indicate that rock fractures are intensively distributed at depths of −360 m to −450 m below the surface, suggesting the effect of intensive mining activities. The present maximum horizontal principal stress direction is NWW, which is consistent with the regional tectonic stress field direction. Systematic measurement of rock fractures is fundamental for further three-dimensional geological modeling and is significant for mining engineering.
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1 INTRODUCTION
The various fractures in a rock mass and their spatial distribution and occurrence form the structure of the rock mass. Structural planes are the product of the tectonic movement of rocks in a long geological period. Many studies have shown that their formation relationship and spatial combination often have a specific regularity within a certain geological period. The specific manifestations are both discrete, and they also have the characteristics of group development. The development degree and scale of each dominant fracture are often related to tectonic movement.
The Fankou mining area is located on the northern edge of the Qujiang structural basin and is composed of sedimentary rocks. The Cambrian Bacun Group in the north and the Early Tertiary Danxia Group in the south are distributed over a large area from east to west. The Early Jurassic strata in the west and the Middle Jurassic Maziping Group in the east are exposed in a narrow strip extending from north to south, making the Fankou area a rectangular region centered on Dongtang and composed of Upper Paleozoic strata (Figure 1A). The Renhua Danxia Mountain near the Fankou Lead-Zinc Mine is a special landform formed by the development of red sandstone and sandy conglomerate from the Cretaceous to the Paleogene, and it is also the naming place of the Danxia landform (Li et al., 1990).
[image: Geological map and core sample images. The map shows various geological formations and fault lines with color coding for different rock types. Labels denote specific areas and structures. Below, two core sample images display rock layers, annotated with the depths 66-67 meters and 78-79 meters.]FIGURE 1 | The tectonic setting around the Fankou Mine Area and the drill hole −209 FK1 core diagram. (A) Tectonic setting around the Fankou Mine Area (ϵb: Cambrian Bacun Group; D1-2GT: Devonian Laurel Group; D2d: Devonian Donggangling Formation; D3t: Devonian Tianziling Formation; D3m: Devonian Hat Peak Formation; C2-3HT: Carboniferous Hutian Group; P1q: Permian Qixia Formation; P2l: Permian Longtan Formation; C1ym: Carboniferous Gongao Formation; C1dc: Carboniferous Ceshui Section; Drill hole: –209FK1). (B) The drill hole −209 FK1 core diagram.
Traditional mining and geotechnical engineering design and construction are often carried out based on experience. When excavation activities are carried out on a small scale and close to the surface, the method of analogy by experience is often effective. However, as the scale of the excavation continues to expand and develop toward deeper depths, especially with the development of large underground mines, dams, tunnels, and high and steep slopes, the method of analogy by experience is increasingly losing its function. Excavation construction based on experience often leads to various instabilities, collapses, and/or destruction of rock engineering, making normal operations impossible, and it can lead to serious engineering accidents, causing major property losses and casualties.
The mining depth of the Fankou Mine ranges from +50 m to −750 m, and the average elevation of the mining area is +98 m. As the mining has developed toward deeper depths, due to changes in the structural environment, the mining operation environment has undergone tremendous changes, facing a series of problems such as rock bursts, collapses, roof falls, geothermal, and roadway support (Li et al., 1990). In particular, in the deep part of the mining area, as the in situ stress gradually increases, the rock strata develop, the ground pressure activity becomes more and more obvious, and the underground support engineering volume continues to increase. Therefore, how to address the complex geological mechanics conditions of deep mining and the various technical problems involved in mining is a major issue (Chen et al., 1990; Martin, 1990; Chen et al., 1998).
2 GEOLOGIC BACKGROUND
2.1 Tectonic setting
The Fankou lead–Zinc ore deposit is located in the middle section of Nanling, the eastern side of the Guangxi–Hunan–Guangdong depression in the South China fold system, and the tilting end of the Fankou Plunging Syncline on the northern edge of the Qujiang–Renhua Tectonic Basin in northern Guangdong, and the main outcrops in the basin are composed of Upper Paleozoic, Mesozoic, and Cenozoic strata. The tectonics are complex, with alternating uplifts and depressions, and coastal facies, shallow sea facies clastic rock construction, and carbonate rock construction are widely developed (Luo et al., 2013).
2.2 Stratigraphy and lithology of the Fankou Mine
The stratigraphy of the outcrops in the ore district from bottom to top is described below.
Cambrian Bacun Group (ϵbc): It is composed of epimetamorphic interlayers of sandstones and shales, with a thickness of more than 1500 m.
Middle Devonian Guitou Group (D2gt): It consists of a suite of terrestrial-littoral facies terrigenous clastic formations, which represents the bottom of a transgressive series. The bottom is composed of conglomerate; the lower part is composed of sandy conglomerate and quartzose sandstone intercalated with siltstones; and the upper part is composed of purple-colored silty shales intercalated with siltstone, with a thickness of 120–130 m. Regionally, the group unconformably overlies the Cambrian Bacun Group.
Middle Devonian Donggangling Stage (D2d): It conformably covers the underlying strata. This stage is divided into two substages based on the lithology. The lower substage (D2da, corresponding to the Qizhiqiao Fm.) consists of deep grey muddy silty shales, as well as siltstones intercalated with dolomites, with a thickness of approximately 50 m. The upper substage (D2db, corresponding to the Dongping Fm.) consists of deep grey limestones and dolomitic limestones, which are characterized by the appearance of stromatolithic limestones in the middle and laminated dolomitic siltstones in the top, with a thickness of approximately 70–120 m.
Upper Devonian Tianziling Fm. (D3t): It conformably covers the underlying strata. This formation can be divided into three subformations based on the lithology. The lower subformation (D3ta) consists of deep grey oolithic bioclastic limestones intercalated with nodular and banded limestone and thinly bedded marl, medium-to thickly bedded oolitic limestone, which are marked by the appearance of stromatoporoid limestone in the top and spheric stromatoporoid limestone in the bottom, with a thickness of approximately 90–115 m. The middle subformation (D3tb) consists of greyish-black banded and nodular limestone, which is marked by the presence of oncolite limestone in the bottom and dotted to massive pyrite-bearing banded limestones in the middle, with a thickness of approximately 110–150 m. The upper subformation (D3tc) consists of deep grey thickly bedded granophyric limestones and granophyric banded and nodular limestones, which are marked by the intercalation of marl, with a thickness of approximately 50–105 m.
Upper Devonian Maozifeng Fm. (D3m): It conformably covers the underlying strata. The formation can be divided into two parts. The lower part consists of banded siltstones and quartzose sandstones intercalated with thinly bedded dolomites. The upper part consists of silty shales and muddy shales intercalated with siltstones, with a thickness of approximately 110–140 m. This formation completely outcrops on the east and west sides of the ore district but is mostly missing within the mining area.
Lower Carboniferous Series (C1): It unconformably covers the underlying strata. The lower part consists of dolomitic limestones, and the upper part consist of light grey silty shales intercalated with sandstones. The stratum is completely developed in the eastern part of the ore district, but it thins in the mining area, where its thickness is only 10–17 m, and it is even missing locally. In the western part of the ore district, the series is completely missing.
Middle-Upper Carboniferous Series Hutian Group (C2+3ht): The lower part consists of massive to thickly bedded dolomites. The upper part consists of thickly bedded dolomitic limestones or limestones, with a thickness of approximately 400 m. This group slightly unconformably covers the underlying strata. The overlap of the stratum on the Devonian System can be seen in the ore district.
Permian System (P): The lower series consists of limestones. The upper series consists of sandy shales and siliceous shales. It belongs to the coal measures strata and conformably covers the underlying strata. This stratum is only present in the southeast corner of the ore district.
The ore-bearing layer in the mining area is mainly composed of shallow sea facies carbonate rock sedimentation. The ore-bearing layer is mainly composed of the strata of the Middle Devonian Donggangling Group to the base of the Middle-Upper Carboniferous Hutian Group. The main ore-bearing strata are the Devonian strata, followed by the Carboniferous strata. The periphery of the Fankou mining area is a product of Caledonian, Hercynian, Indosinian, and Yanshanian magmatic activities. In particular, the Yanshanian magmatic intrusion activity was very strong and formed large-scale magmatic rock belts near the northern and peripheral areas of the Fankou mining area in a nearly east–west direction. The magmatic activity in the mining area was weak (Yuan et al., 2019).
The area contains intense folds and well-developed faults, which control the production of the large deposits in the mining area. The directions of the tectonic lines include east–west, northeast to north–northeast, north–south, and northwest. Nearly north–south and east–west trending arc faults are developed locally. The structure of the mining area is the dominant factor controlling the ore. These structures not only control the output space of the ore body but also have a decisive effect on the formation of the ore deposit (Figure 1B) (Luo et al., 2018; Yuan et al., 2019).
2.3 Fault distribution in the Fankou Mine
The fault structures mainly trend north–northeast, are generally inclined to the east, and have dip angles of 60°–87°. The maximum fault displacement can reach 400 m. The faults have undergone multiple periods of activity, and a large amount of post-mineralization breccia has been generated. The ore body is controlled by the strata and faults, and the morphology of the main and secondary ore bodies in the mineralization complex is mostly vesicular, irregular lens-shaped, and pseudo-layered, with a few are irregular vein-shaped areas. In the profile, multiple layers of ore often form irregular feather-like structures through the north–eastward and north–northeastward main faults (Yuan, 2016).
The strike-slip reverse fault in the mining area formed in the Indosinian and Early Yanshanian; and the strike-slip normal fault was formed in the Late Yanshanian (the same group of faults cut through the Middle Jurassic strata west of Renhua). Some of the major faults may be the result of the reactivation of previous structures. These two groups of faults formed before the mineralization (there are ore bodies in the F4 and F12 fault zones), but they were reactivated later. In addition, in the tunnel, there are often north–northwest to northwest trending strike-slip faults, which are inclined to the east or west and have steep dip angles. The fault displacements (1–6 m) and scales are small, they cut through the ore body, and they are post-mineralization faults. At the contacts between the different lithologies, interlayer misalignment or small-scale interlayer fracture zones are often observed.
Shiling is the main mining area in the Fankou Lead–Zinc Mine. In the deep section of Shiling, fault structures are developed, among which the most important structure is F3. F3 is a pressure-twisting fault structure, and the accompanying small secondary structures are shear-type structures. The main fault parameters of the mine area are listed in Table 1.
TABLE 1 | The main fault parameters of the mine area.
[image: Table listing geological fault characteristics: faults F3, F4, F5, F203, F111, F112 with measured lengths in meters, separation, strike, dip direction, and dip angle. Values vary per fault.]Fault F3 is a right-lateral parallel reverse fault, and it mainly controls the ore in this block. It strikes 253°–23°, and dips 105°–115°, with dip angles of 65°–85°. The fracture zone is 0.1–2.5 m wide, and in some sections, it even exceeds 10 m. The fracture zone is filled with a large amount of ore rubble, surrounding rock rubble, and calcite rubble, which have different sizes, were squeezed to form tectonic lenses, cataclasite, and mylonite, are bonded by muddy material, with a poor bonding strength and intense foliation. Traction folds are often present in the upper and lower plate rock layers of the fault. In addition, there is a larger-scale branch structure in the lower plate of F3, which is compounded with fault F3 on the −650 m level. Its structural properties and dip and strike are similar to those of F3.
3 METHODS
The information about the strata occurrence is an important technical parameter in engineering investigations. The development of downhole television imaging technology has provided a new development direction for extracting the occurrence information about rock formations. Ultrasonic television imaging logging uses high-frequency pulses to scan the wellbore in 360° to display the wellbore wall in all directions, and it provide information for achieve qualitative and quantitative interpretation (Wang Shuli et al., 2008). In engineering investigations, television imaging is used to determine the occurrence of structural planes of a rock mass (strike, inclination, and inclination angle of strata layers).
The testing uses the ABI40 integrated acoustic borehole imaging system developed by Mount Sopris in the United States. This system is a highly intelligent integrated logging system that combines various borehole measurement probes. A variety of borehole measurement probes, such as diameter–depth–inclination measurement probes and ultrasonic imaging probes, can be mounted on a single-core coaxial cable. It is suitable for small-diameter wellbore measurements, and the winch system is used to measure the borehole. The depth error range is ±5 cm per 100 m, which is at the leading level in China and abroad. The system can be divided into two parts: hardware (i.e., a winch, host control system, and acoustic TV probe) and software (i.e., system control software, probe control software, and WellCAD software for data interpretation and processing). The main instrument used for ultrasonic downhole television scanning is shown in Figure 2.
[image: Diagram showing three components of a system. A: 4WNA-1000 Winch System with a cable spool and protective casing. B: MGX-II Host Control System featuring a yellow control box with various connectors. C: Probe schematic highlighting parts such as the inclinometer (APS544), main pressure chamber, stabilizer, motor, and acoustic head with bellows.]FIGURE 2 | Framework of the ultrasonic downhole TV. (A) 4WNA-1000 winch system. (B) MGX-II host control system. (C) Schematic diagram of the structure of the ultrasonic downhole TV probe.
Borehole measurement is one of the primary methods of obtaining the current stress field. After core retrieval in a borehole, the structural stress concentration along the wellbore can cause rock mass fracturing and induce failure phenomena, which can reliably reveal the directions of one of the horizontal principal stresses (Zoback et al., 2003; Davatzes and Hickman, 2005). In shallow borehole stress environments, the tensile strength (T0) of the rocks is typically low, which often leads to the formation of tensional fractures in the borehole wall. Therefore, the direction of the stress field can be determined by accurately identifying induced fractures. One principal stress is assumed to be parallel to the axis of the vertical borehole, SV, and it is equal to the weight of the overburden (Hubbert and Willis, 1957). The formation of induced fractures is related to the rock strength, the directions of the horizontal principal stresses, and the magnitudes of the principal stresses. The relationship among these three factors is as follows:
[image: Equation showing stress transformation: \(\sigma_{\varphi\varphi} = S_{H} + S_{h} - 2(S_{H} - S_{h}) \cos 2\varphi\), where \(\sigma_{\varphi\varphi}\) is the stress component and \(\varphi\) is the angle.]
where [image: The image shows the Greek letter sigma, σ, followed by the subscript ϕϕ.] is the tangential stress on the borehole wall, [image: Please upload the image or provide a URL, and I can help create the alternate text for it.] is the angle between the [image: The image shows the symbol for radial stress, represented by a lowercase sigma with "r r" as subscripts.]-direction and the SH-direction, [image: To provide alt text, please upload the image or provide a description of it.] is the maximum horizontal principal stress, and [image: It seems there's no image attached. Please upload the image and provide any additional context if necessary.] is the minimum horizontal principal stress.
The minimum value of [image: Greek letter sigma subscript phi phi, in a mathematical or scientific context.] is located at azimuths [image: A black and white Greek letter phi symbol, which resembles a circle bisected by a vertical line.] = 0 and [image: A Greek letter pi symbol, represented as a stylized, italicized character resembling a combination of an uppercase "P" and lowercase "n," often used to denote the mathematical constant approximately equal to 3.14159.] (i.e., cos 2 [image: It seems there is no image provided. Please upload the image or provide a URL, and I will be happy to help with the alt text.] = 1), and is expressed as follows:
[image: The formula shows: sigma sub phi-phi superscript min equals three times S sub h minus S sub H.]
It is a tangential tensile stress (negative) when 0 > [image: Mathematical expression showing "three S sub h minus S sub H".]. If [image: Mathematical expression showing the symbol sigma with subscript "ϕϕ" and superscript "min".] is equal to the tensile strength [image: It seems there was an error in displaying the image. Please try uploading the image again, and I will help you create the alt text.] of the rock mass, a radial tensile fracture develops at the borehole wall and propagates bilaterally along azimuths 0° and 180°, which are parallel to the [image: It seems there is an issue with displaying the image. Please try uploading the image file directly or provide a URL, and I will help create the alt text for you.] direction of the pre-existing original far-field stress (Zang and Stephansson, 2010). That is, induced fractures occur in the direction of the minimum circumferential stress, and induced fractures serve as important indicators for determining the orientation of the maximum horizontal principal stress (Figures 3A, B).
[image: Diagram illustrating fracture patterns. Panel A shows a vertical fissure with lines along a 0° to 360° scale. Panel B is a schematic showing stress vectors around a circular object. Panel C depicts a typical fracture pattern, similar to Panel A. Panel D combines a cylindrical representation with a sinusoidal graph, indicating amplitude variation along the circumference.]FIGURE 3 | Schematic diagram of the downhole TV method and principle analysis diagram of the vertical induced fractures and typical structural fractures. (A) Geometry of hydraulic fracture visualized in a 2-D cut of a circular borehole. (B) Diagram of a typical vertical fissure. (C) Diagram of a typical inclined joint fracture. (D) Schematic diagram of logging fracture imaging and calculation.
From the perspective of the fracture formation factors, in addition to the induced fractures mentioned above, there are also natural structural fractures. Natural fractures often exhibit relatively complete sinusoidal curve profiles, while smaller fractures may exhibit partial sinusoidal curve profiles. Based on these sinusoidal curve profiles, the dip angle and dip direction of the fractures can be directly read.
The imaging log response is unwrapped along the true north direction, and the fracture imaging log exhibits a sinusoidal waveform. The dip direction of the fracture corresponds to the azimuth of the lowest point W. The wellbore diameter is calculated by dividing the circumference S by 2π, i.e., R = S/(2π). The dipping angle is determined by taking the arctangent of the sinusoidal waveform amplitude H divided by the wellbore diameter R, i.e., θ = arctan (R/H) (Figures 3C, D) (Yong et al., 1996).
4 RESULTS
4.1 Determination of principal stress direction
The direction of the principal stress of the −209FK1 borehole was imaged using ultrasonic borehole television method. Four images acquired at various depths (i.e., 139.85–141.56 m, 196.4–198.07 m, 334.9–336.51 m, and 512.97–514.57 m) are shown in Figure 4. These images reveal the induced fractures surrounding the wall of the borehole. The curve shape is typical, indicating that the rock in the measured section is relatively complete and the logging test results are reliable. The ultrasonic drilling TV logging images show that the rupture surface is parallel to the axis of the borehole, and the determined directions of the maximum horizontal principal stress (SH) are N77°W, N83°W, N88°W, and N60°W from shallow to deep. Its dominant position is N77°W.
[image: Four color gradient graphs labeled A, B, C, and D, display vertical patterns with varying colors transitioning from red to yellow. Each graph includes white wavy lines and grid markings indicating depth in meters.]FIGURE 4 | Images of induced cracks at different depths: (A) 139.85–141.56 m, (B) 196.40–198.07 m, (C) 334.96–336.51 m, and (D) 512.97–514.57 m.
4.2 Features of the imaged fractures
Nearly 2000 fractures were measured in borehole −209FK1 using the ultrasonic television scanning method. The dip directions and dip angles of these fractures were further analyzed using the WellCAD software. We plotted the rose diagrams and pole diagrams to show the variations in fractures with depth (Figures 5, 6). On the rose diagram (Figure 5A), the angle represents the dip direction of the fractures (with a space interval of 10°), while the radius indicates the number of fractures (with a space interval of 5). On the pole diagram (Figure 5B), the angle still represents the dip direction of the fractures; however, the radius represents the dip angles of the fractures. Thus, the dip angle of each fracture is explicitly displayed in the pole diagram.
[image: Two circular graphs labeled A and B illustrate geological data. Graph A shows black bars extending outward from the center, indicating fracture frequency. Graph B displays numerous black dots, depicting data points related to dipping angles. Both graphs include red arrows and text, describing a clockwise rotation from zero to 360 degrees, with radial lines indicating degrees and circles showing incremental measurements.]FIGURE 5 | Rose and pole diagrams for all of the fractures. (A) Rose diagram; and (B) Pole diagram.
[image: Seven paired radar plots labeled A to G show directional data at various distances. Each pair includes a black circular bar plot on the left and a scatter plot on the right, with notable angles labeled in red. The distance range increases from panel A, 52.30 to 150.00 meters, to panel G, 650.00 to 754.78 meters. Each plot reveals variations in data distribution across distances.]FIGURE 6 | Rose and pole diagrams of fractures in-depth segments: (A) 52.30–150.00 m, (B) 150.00–250.00 m, (C) 250.00–350.00 m, (D) 350.00–450.00 m, (E) 450.00–550.00 m, and (F) 550.00–650.00 m.
First, we plotted all of the fractures on the same rose and pole diagrams (Figure 5). The distribution of the fractures is scattered and is characterized by large variations in the dip direction and angle. However, the dominant dip direction and angle of all of the fractures can be identified. The dominant dip direction is southeast (approximately 80°–190°), and the dominant dip angles are mainly concentrated in the range of 30°–80° (Figure 5).
Second, we plotted the dip direction and angle of the fractures in more detail by dividing the rose and pole diagrams into seven segments with a thickness of 100 m (Figure 6). The dominant dip direction of each segment is further summarized in Table 2. Both Figure 6; Table 2 show a remarkable feature of fracture concentration in the 350–450 m segment. The dominant dip direction of the fractures in this segment is southeast, and the dominant dip angles are 30°–80°, which are consistent with the trend of all of the fractures described above.
TABLE 2 | Dip direction statistics of fracture changes with depth.
[image: Table displaying segment depths in meters, dominant dip directions in degrees, and number of fractures. Depths range from 52.30 to 754.78 meters. Corresponding fractures range from 168 to 582.]Furthermore, we analyzed the vertical variation in the dip angle of the fractures (Figure 7). The total number of fractures were plotted as the dip angle versus depth (Figure 7A). The most concentrated depth segment (350–450 m) and the dominant dip angles, which were determined via the following analysis, are labeled in Figures 7B–D. The dip angles were categorized into four groups, i.e., low dip angles (0°–20°), intermediate dip angles (20°–45°), steeply dip angles (45°–70°), and extremely steep dip angles (70°–90°). The percentage of each group is plotted in Figure 7B, and the dominant group is the steep dip angle (45°–70°), which accounts for more than half of the total number of fractures. The most densely distributed fractures are in the 350–450 m depth segment (nearly 600), and nearly 500 fractures are in the 50°–60° dip angle interval (Figures 7C, D).
[image: Four graphs analyzing fracture distribution: A) Scatter plot showing dense fracture distribution at 350-450m depth and 30-70° dipping angle. B) Line graph with percentage ratios of dipping angles, peaking at 53.53%. C) Histogram of fractures versus dipping angles, peaking between 30-70°. D) Line graph of fractures versus depth segments, peaking at 350-450m.]FIGURE 7 | Dip angle variation at different depths. (A) Plot of dip angle of fractures versus depth. (B) Statistical histogram of the dip angles of the fractures (low dip angles: 0°–20°, intermediate dip angles: 20° < α ≦ 45°, steep dip angles: 45° < α ≦ 70°, and extremely steep dip angles: 70° < α ≦ 90°). (C) Plot of dip angles versus the number of fractures. (D) Plot of depth segment versus the number of fractures.
The distribution of the dip directions of the total number of fractures with depth is shown in Figure 8. The dip direction of the fractures varies greatly in space (Figure 8A), from 0° (north) to 360° (north). The dominant dip direction is southeast (ranging from 80° to 190°) (Figure 8B). The most dense fracture distribution occurs in the 350–450 m depth segment.
[image: A composite image shows three panels. Panel A is a scatter plot highlighting a dense fracture distribution between 160 and 200 degrees of dipping direction and depths of 350 to 450 meters. Panel B is a line graph showing the number of fractures peaking within the same dipping direction range, marked with dashed red lines. Panel C displays a bar graph representing the number of fractures per ten meters across various depths. The data emphasizes the concentration of fractures in specific directions and depths.]FIGURE 8 | Dip direction variations in the different depth intervals and the density of the fractures with depth. (A) Plot of fractures in dip directions versus depth. (B) Plot of dip direction versus the number of fractures. (C) Bar graph of the fracture density with depth.
Another factor that can be quantified is the number of fracture joints, which are the intersection lines of two fractures (Figure 8C). This plot may indicate the density of the fractures. We plotted the fracture joints every 10 m. The segment with the greatest joint density is still 350–450 m. More specifically, the 420–430 m depth segment has the largest density (>8.1 lines/m), and the second largest density (∼7.1 lines/m) occurs in the 360–370 m depth segment.
5 DISCUSSIONS
Kang et al. (2008) used 137 focal mechanism solutions from Guangdong Province and neighboring regions to invert the stress field and obtained the tectonic stress tensor data in 12 locations. Their results show that the directions of the average maximum and minimum principal stresses are 112° and 17°, respectively. Xie et al. (2004) divided the modern tectonic stress field in mainland China and neighboring areas, and their project area was located in the A201 South China main stress area. The overall regional stress field direction of this area is NWW (∼290°). Jiang and Li, (1992) also analyzed the stress field in the South China region using more than 200 small earthquake focal mechanism solutions and subdivided the stress field in the South China region into nine areas. The project area is located in area VI. The main compressive stress axis direction of this area is 292°, and the dominant direction of the main compressive stress is NWW.
The Mainland China Crustal Stress Environment Basic Database includes various types of stress data for mainland China and surrounding areas (Xie Furen et al., 2007; Hu et al., 2017), and 51 types of stress data for the research area and surrounding areas were queried from the database. These include 25 pieces of focal mechanism data, three pieces of fault slip data, six pieces of hydraulic fracturing data, and 17 pieces of stress relief data (Figure 9). Using the distance-weighted inversion of historical focal mechanism solutions around the epicenter, it was found that the tilt angle of the maximum principal stress axis in the regional tectonic stress field is high, indicating a strike-slip stress structure, and the principal stress axis is in the northwest to southeast direction.
[image: Map showing the Fankou Lead-Zinc Mine marked in red, with geological features such as faults and fractures. Various symbols indicate stress regimes: red for thrust faulting, blue for normal faulting, and black for unknown stress. Terrain features and locations are labeled.]FIGURE 9 | The direction of the stress field around Fankou Mine based on multiple stress data.
The regional stress fields inferred from our ultra-sonic measurements are highly consistent with previous studies (Luo et al., 1990; Guo, 1991; Sun et al., 1991). On a large scale, we suspect that the stress field of the Fankou Lead–Zinc mine is mainly controlled by the large regional tectonic stress field. On a regional scale, the stress field in the Fankou Lead–Zinc mine varies largely in space, and the 350–450 m depth segment is unique, differing from the overlain and underlain layers.
The 350–450 m depth segment was further analyzed (Figures 10A, B), by comparing it to field observations in the mining roadways on a larger scale (Figure 10). The field observations show the intensively distributed fractures, and disasters such as collapse and roof falls are prone to occur (Figure 10C). If groundwater is involved, it is likely that water storage will occur in this depth segment, reducing the overall stability. The degree and frequency of disasters will increase significantly, and thus, future research should focus on this depth segment.
[image: Diagram featuring three sections. A: Circular plot with black dots representing orientation and depth between 350 and 450 meters. B: Scatter plot showing dipping angle against depth with a demarcation at 380 meters. C: Three rock fracture images, labeled "fracture," captured below the surface, highlighting geological features.]FIGURE 10 | Detailed fracture distribution at depth. of 350.00–450.00 m (A) Pole diagram of the 350.00–450.00 m section below the borehole. (B) Distribution diagram of the dip angle of the borehole wall fracture with depth. (C) Diagram of the project at a depth of 380 m downhole.
In summary, ultra-sonic television scanning of the −209FK1 borehole revealed the spatial distribution of the fractures, suggesting large vertical variations in the dip direction and dip angle. A remarkable depth segment, i.e., 350–450 m, was identified, and it is characterized by a dense fracture distribution. The dominant dip direction of the fractures in the 350–450 m depth segment is southeast, and the dominant dip angles are 30°–80°. Future studies need to understand the nature of the 350–450 m depth segment.
Mineral mining areas have a complex tectonic history and are mostly high-stress environments. Only on-site drilling detection can accurately reveal the real underground structure in the project area. The multi-stress data’s stress field direction information around Fankou Mine verifies the accuracy of the ultrasonic underground television method. In addition, some researchers have utilized the orientation data of vertical fractures in pore walls to analyze the characteristics of the stress field in natural fault zones (Wang et al., 2020). Ultrasonic underground TV scanning can provide detailed measurement information for the identification of underground structural features. Based on detailed structural plane data, characteristics such as the principal stress directions and fracture concentration areas can be analyzed to optimize the mine’s exploration strategy and resource mining plan. We should focus on monitoring areas where cracks are concentrated and minimize operational risks. This line of analysis can be applied to similar data for other mines and regions around the world. Therefore, for underground mining projects in a certain area, precise structural plane identification in boreholes yield obtain accurate stress direction data and the spatial distribution of cracks, providing a reference for the project.
6 CONCLUSION
We conducted a systematic study to investigate the interaction between the spatial distribution of fractures, principal stress direction, and geological disaster revelation using ultrasonic borehole television scanning. The main conclusions are presented below.
	1) The dominant direction of the maximum horizontal principal stress (SH) determined via ultrasonic drilling television scanning in the Fankou Lead–Zinc Mine is N77°W, which is in agreement with the regional stress field. When excavating tunnels and arranging caverns, it is appropriate to arrange the tunnel orientation or cavern axial direction as close as possible to the maximum principal stress direction.
	2) Ultrasonic television scanning of the −209FK1 borehole revealed the spatial distribution of the fractures, and a remarkable depth segment, i.e., 350–450 m, was identified. This segment is characterized by a dense fracture distribution. The concentrated fractures in the 350–450 m depth segment may indicate a large risk of disasters such as collapse and roof falls. This depth segment should be given attention in the future production of the Fankou Lead–Zinc Mine.
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The wave characteristics of fractured-porous media can be utilized for permeability identification; however, further research is necessary to enhance the accuracy of this identification. A novel wave equation for fractured-porous media is formulated, and theoretical analysis suggests its effectiveness in accurately identifying reservoir permeability. The proposed methodology establishes a wave equation for fractured-porous media using the volume averaging method and employs finite difference method on staggered grids to calculate wave field dispersion and attenuation, exploring the influence of fracture network structure and confining pressure on the solution of the wave equation. By analyzing the wave equation under various aspect ratios and confining pressure of fractures, it is observed that these factors significantly affect velocity and attenuation, providing valuable insights into seismic response in fractured-porous media. Furthermore, the research findings reveal promising potential in utilizing the new wave equations specific to fractured-porous media for permeability identification purposes. By constructing a three-dimensional fractured-porous network model, the wave equation for permeability identification can examine the correlation between the parameters of the equation and permeability, and establishes an association between fracture parameters and permeability, paving the way for a novel approach to permeability identification.
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1 INTRODUCTION
The permeability is one of the crucial parameters for evaluating reservoir storage performance. Previous research has demonstrated that analyzing wave behavior in fractured-porous media can improve the accuracy of identifying reservoir permeability. The prediction of reservoir permeability using the wave equation in fractured-porous media can be categorized into three distinct stages. In the initial stage, Biot (1956a, b), based on the homogeneous porous media model and discovered that variations in permeability can lead to frequency dispersion and attenuation of seismic wave, resulting in changes in seismic velocity, which provided the foundation for subsequent related studies. In the subsequent stage, Numerous fractured-porous media models (Schoenberg, 1980; Schoenberg, 1983; Schoenberg and Douma, 1988; Schoenberg and Sayers, 1995; Gurevich et al., 2009; Tang, 2011; Tang et al., 2012) on Biot’s theory have been developed to investigate the relationship between permeability and seismic velocity in fractured-porous media. For instance, Chapman (Chapman et al., 2002; Chapman et al., 2016) established a microscale porous model, yet failed to provide an expression for the permeability of the porous media. Chichinina (Chichinina et al., 2007; Chichinina et al., 2009) proposed an anisotropic model for horizontally layered fractures that focused on P/S wave attenuation but did not address the permeability in fracture system. Gurevich (Gurevich et al., 2009), using a constructed fractured-porous media model, observed significant variations in velocity due to changes in the structures of pore and fracture, while changes in permeability resulted in relatively minor alterations in wavefield velocity. However, these studies did not explicitly explore the relationship between velocity and microstructure or permeability of fractured-porous media due to limitations in computer technology at that time. In the third stage, researchers initiated the construction of fractured-porous models incorporating microstructure, studying the relationship between fractures and wavefield velocity as well as reservoir permeability. For example, Du et al. (2011) studied an equivalent media model for fractured porous rocks. Fractures are modeled by constitutive relationship in terms of fracture-induced anisotropy. Guo et al. (2018) used the branch function method to construct finite-thickness fractures and examined the dispersion and attenuation of P-wave propagation perpendicular to the fracture surface. Lissa et al. (2019) explored the impact of fractures with varying widths on seismic attenuation and velocity dispersion. Song et al. (2020) investigated dispersion and attenuation of P-wave in heterogenous porous media containing oriented fractures, revealing that factors such as mechanical form of fractures and fluid flow properties significantly influence attenuation sensitivity. Wei et al. (2021) conducted research on a 3D fractured-porous network model, presenting a calculation approach for permeability while uncovering notable influences of aspect ratio on P-wave velocity and characteristic frequency. Wang et al. (2022) studied the propagation law for complex fractures in two-phase media through linear slip theory.
The prediction of reservoir permeability in fractured-porous media using the wave equation still encounters numerous challenges and difficulties. Firstly, it is imperative to enhance the microstructure and multiscale characteristics of fractured-porous media (Bai et al., 2021). Secondly, it is crucial to investigate the influences of factors such as fractures, confining pressure, permeability, and porosity on velocity as well as explore their interactions in fractured-porous media. Only through these efforts can we elucidate the relationship between wave properties and permeability in fractured-porous media.
The present work proposes a novel fractured-porous model and derives its wave equation based on volume averaging method, investigating the influence of fracture network structure on the solution of the wave equation and the relationship between fracture aspect ratio and wave velocity as well as permeability. This research possesses several distinctive features compared to previous studies: firstly, the solutions of the wave equation under different fracture aspect ratios and confining pressure conditions are studied; secondly, by analyzing various parameter combinations, such as velocity and attenuation, significant effects of fracture aspect ratio and confining pressure on wave behavior are revealed; thirdly, a proposed permeability identification method based on the curves of velocity-fracture parameters and velocity-permeability establishes correlations between fracture parameters and permeability.
2 ELLIPTIC CYLINDRICAL FRACTURE MODEL AND ITS FLUID MOTION EQUATION
Fractures exhibit a predominant extension direction, thus the elliptic cylindrical model can be used to describe their extensibility. The aspect ratio, defined as the ratio between the short and long radii of the elliptical cylinder cross-section, governs the structure of this model. As the aspect ratio approaches unity, it degenerates into a conventional porous model; whereas for very small values of aspect ratio, it accentuates more features of fracture structures. This flexible elliptical cylinder model enables us to depict various characteristics of fractures in reservoirs under different aspect ratios and provides insights into fracture structures with varying extensibility.
The derivation of the fluid motion equations in elliptic cylindrical fracture structure is presented below. The incompressible Newtonian fluid within the microtubule space of the elliptical cylinder satisfies the following equations (Landau and Lifshitz, 1987).
The equation of fluid mass conservation:
[image: Partial differential equation representing fluid flow continuity: partial derivative of fluid density with respect to time plus the divergence of the product of fluid density and velocity vector equals zero, labeled as equation one.]
The equation of fluid momentum conservation:
[image: The equation shows: divergence of vector s equals density times partial derivative of U with respect to time t plus gradient of pressure p. Equation number two.]
Constitutive relationship of fluid mechanics:
[image: The formula represents the stress tensor \( s \) in fluid dynamics. It includes the viscosity \( \eta \), the velocity gradient \( \nabla \mathbf{u} \), its transpose, and a term involving the divergence of velocity \( \nabla \cdot \mathbf{u} \). The equation is labeled as equation (3).]
where [image: The image shows the Greek letter rho (ρ) followed by the subscript letter f.] represents the fluid density, [image: It seems there is no image here. Please upload an image or provide a URL for which you need alt text.] denotes the fluid stress tensor, and [image: Please upload the image or provide a URL so I can help create the alt text for it.] signifies the fluid pressure, [image: Sure, please upload the image you'd like me to create alternate text for.] is the displacement of fluid, [image: Illustration of the letter "U" with a diaeresis above it, resembling "Ü". The character is in dark, serif font on a light background.] represents the flow velocity, [image: Lowercase Greek letter eta, represented in a cursive style.] stands for the fluid viscosity coefficient, and [image: Italicized mathematical expression showing DÜ over Dt.] corresponds to the material derivative of fluid velocity field with respect to time. Divergence is taken on both sides of the fluid constitutive relation equation to obtain the fluid dynamic equation: By applying divergence operator on both sides of the constitutive equation for fluid, the equation of fluid dynamics is yielded:
[image: Equation showing fluid mechanics: \(\rho_f \frac{DU}{Dt} = -\nabla p + \eta \left( \nabla^2 \mathbf{U} + \frac{1}{3} \nabla (\nabla \cdot \mathbf{U}) \right)\), labeled as equation (4).]
The fluid velocity field is expressed as the combination of steady-state and unsteady-state fields:
[image: Equation representing a vector function \( \mathbf{\tilde{U}}(x, y, t) = \mathbf{\tilde{U}}_0(x, y, z) + \mathbf{\tilde{U}}_1(x, y, z, t) \), labeled as equation (5).]
Under low-speed flow conditions, the compressibility of pore fluid can be neglected when subjected to elastic waves (denoted as [image: Equation depicting the divergence of a velocity vector field \( \nabla \cdot \mathbf{U} = 0 \).]). Considering that the only non-zero velocity component is along the axis of the elliptical cylinder and the flow velocity depends solely on radial coordinate, therefore, [image: Equation showing \( DU̇/Dt = \partial U̇/\partial t \).] is obtained.
The fluid dynamics equations mentioned above can be solved by the series expansion of Mathieu function in the elliptic cylindrical coordinate system, thereby obtaining the velocity field and flow rate in elliptic cylindrical space (Xiong et al., 2021). The expression for the steady-state flow rate at both ends of the elliptical cylinder is:
[image: Equations for \( Q_U \) and \( Q_D \) are shown. Both involve the variables \( R \), \( \rho_f \), \( c \), \( P_U \), \( P_D \), \( \omega \), \( L \), \( K \), Bessel functions \( I_1(KR) \) and \( I_0(KR) \). The expression is divided into two main parts by multiplication and subtraction. Each equation is labeled with \( (6) \).]
The expression describing the flow rate of the pulsating flow field is as follows:
[image: Mathematical equations for Q factors labeled Q_{U,e} and Q_{D,e} are shown. Both have similar structures involving variables and parameters: a, n, R, ρf, c, PU, PD, ω, L, K, the Bessel functions J_1 and J_0, and division by squared terms. Italicized symbols and curly brackets are used, with equation number (7) at the bottom.]
The flow rate of the elliptic cylindrical fractures is observed to be dependent on various factors, including the length [image: Please upload the image you would like to have alt text for. If you have any specific context or details to include in the description, feel free to mention them.] of the elliptical cylinder, pressures [image: It seems like there's no image attached. Please upload the image or provide a URL so I can help create the alt text.] and [image: Please upload the image or provide a URL for it. Without the image, I cannot create an alternate text.] at both ends, major radius [image: I can't view images directly. Please upload the image file or provide a URL for me to create the alt text.] and aspect ratio [image: Please upload the image or provide a URL to it so I can help generate an accurate alt text.] of the elliptical cross-section, characteristic frequency [image: Please upload the image you would like me to describe by using the image upload function.] of non-steady flow field, and fluid density [image: Greek letter rho with subscript f, often used in scientific and mathematical contexts to denote a specific variable or parameter, such as density or resistivity, for a fluid or specific component.]. In Equation 7, [image: Please upload the image or provide a URL so I can help you create the alternate text. If needed, you can also provide additional context for the image.] and [image: Please upload the image or provide a URL, and I'll assist with creating the alt text for it.] represent zero- and first-order Bessel functions respectively, [image: Equation showing \( K = \sqrt{\frac{i \omega \rho_f}{\eta}} \).], and [image: Please upload the image or provide a URL for me to generate the alt text.] denotes the wave velocity in fluid.
The elliptical curve representation is inadequate for accurately depicting the tip of a genuine fracture. In order to precisely depict the variation in the major axis direction radius [image: It seems there was an error with the image upload. Please try uploading the image again or provide a URL so I can help create the alt text for it.] of actual fracture under confining pressure, an improved method for calculating the fracture permeability that not only considers the deformation of wedge-shaped fractures under confining pressure (Mavko and Nur, 1978), but also incorporates the relationship between fracture radius and confining pressure (Xiong et al., 2021), thereby reflecting the variation in flow rate of wedge-shaped fractures with changing confining pressure.
Confining pressure signifies the force exerted by overlying geological materials on a specific point within the Earth’s crust. This pressure significantly affects permeability and elasticity of porous media. Firstly, under elevated confining pressure, the closure of pores and fractures within porous media leads to a significant reduction in permeability, diminishing the capacity for fluid flow. Secondly, confining pressure alters the elasticity of the porous material, specifically impacting its bulk modulus. This shift in elasticity has ramifications for the mechanical behavior of the material and the propagation of stress-related phenomena, including seismic waves.
In this study, it is assumed that flow conservation holds for each node in the fractured-porous network, ensuring that inflow equals outflow at every node. A flow conservation equation is formulated for each node, resulting in a system of linear equations with unknown variables representing the pressures at individual nodes. The pressures at the inlet and outlet are considered as non-homogeneous terms. By solving this system of equations to determine the pressures at each node, the flow within the 3D porous network can be accurately calculated. Furthermore, by incorporating Darcy’s law, dynamic permeability prediction for the 3D microtubule network in porous media can be effectively conducted (Xiong et al., 2021).
3 WAVE EQUATION FOR FRACTURED-POROUS MEDIA
The volume averaging theorem, established by researchers like Whitaker (Whitaker, 1966; Whitaker, 1967), Slattery (1967), and Gray and Lee (1977), plays a pivotal role in connecting microscale parameters to macroscale behaviors within porous media. It has been widely applied in fields ranging from hydrogeology to geophysics, providing a consistent framework for modeling complex porous media systems. This theorem’s mathematical rigor and practical relevance have been extensively validated through real-world applications, underlining its significance. The use of the volume averaging theorem is firmly grounded in this well-established foundation of literature and research, reinforcing its vital role in this work and aligning with the reviewer’s emphasis on its importance. By introducing the volume average theorem, a connection between the macroscopic behavior of fractured-porous media and the microscopic parameters of the media is established, which derives a macroscopic wave equation that describes the wave behavior based on this theorem.
3.1 Volume average theorem of porous media
The unit cell region [image: Greek capital letter Omega symbol in bold.], filled with fluid in the porous media, is considered. Its position [image: It seems there's an issue with uploading the image. Please try uploading the image again, and I will help you create the alternate text for it.] represents the “center” or “centroid”. In the fluid-filled porous media of the 3D elliptical microtubule network, the characteristic length of region [image: Uppercase Greek letter Omega symbol in bold.] is denoted as [image: Mathematical notation showing "H" with a subscript "h".], the micro and macro characteristic length are represented by [image: It seems you meant to upload an image. Please try uploading the image again so I can help generate the alternate text for you.] and [image: It seems like there is an issue with the image upload. Please try uploading the image again or provide a URL where I can view it. If you have a caption or context, feel free to include that as well.], respectively. These three lengths are governed by the following equation.
[image: Mathematical equation showing a relationship: \( l \ll H_1 \ll H \) followed by equation number \( (8) \).]
Here, the micro characteristic length [image: Sure, please upload the image or provide a URL so I can create the alternate text for you.] signifies the scale of mineral grains or solid constituents within porous media, typically in the micrometer range or smaller. Conversely, the macro characteristic length [image: It seems there is no image uploaded. Please upload the image or provide a URL, and I will help create alt text for it.] represents larger-scale features, often on the order of hundreds of meters, and it characterizes the wavelength scale. This hierarchical relationship, grounded in multiscale analysis principles, allows us to effectively link micro-scale properties to macro-scale behavior, forming a foundational element in our modeling of fluid flow in porous media.
The volume of the unit cell [image: Greek letter Omega in black, symbolizing ohms, a unit of electrical resistance.] is denoted as [image: Please upload the image or provide a URL for which you need the alternate text.]. The pore space comprises two components: the volume [image: If you have an image to describe, please upload it or provide its URL, along with any captions or additional context you would like included.] of the solid skeleton and the volume [image: The text "V" with a subscript "f" in italicized font.] of fluid in porous media (i.e., the volume of the pore space). Thus, [image: Equation showing V equals V subscript s plus V subscript f.]. Let [image: The symbol "ψ" followed by a subscript "f".] represent a physical quantity associated with fluid in porous media, with its value outside of the fluid defined as 0. The volume averaging method is applied to [image: The image shows the lowercase Greek letter psi with the subscript "f".] within the entire region [image: Greek capital letter Omega symbol.], as illustrated below.
[image: The mathematical equation represents the average value of the function psi with subscript f, denoted by angle brackets around psi sub f, equal to one over V times the integral over volume Ω of psi sub f of x with respect to volume V, labeled as equation nine.]
where [image: \( \langle \psi_f \rangle \)] is characterized by the smoothness with respect to the centroid [image: I can’t view the image you are referring to. Please upload the image or provide a link, and I will help you with the alt text.] of region [image: Greek uppercase letter Omega symbol, resembling an inverted "U" with curved feet.]. Another variable related to the volume average is the volume-averaging eigenvalue, defined as follows:
[image: Equation showing the mean value of a function: \(\bar{\psi}_f = \frac{1}{V_f} \int_{\Omega} \psi_f(x) \, dV\), labeled as equation (10).]
According to the above definition, there is [image: Equation showing phi equals the average of psi sub f divided by psi-bar sub f.].
According to the research conducted by Slattery (Slattery, 1967) and Whitaker (Whitaker, 1966) on the volume average theorem, considering the physical variable [image: The image shows the Greek letter psi, denoted by 𝜓, with a subscript f.] as an illustrative example, the volume average term including the spatial derivative is as follows:
[image: Triple integral over the volume \(\Omega\) of \(\nabla \psi_f \, dV\) equals the divergence of the triple integral over \(\Omega\) of \(\psi_f \, dV\) plus the surface integral over \(\Sigma\) of \(\psi_f \cdot \mathbf{n} \, dS\). Equation numbered eleven.]
The volume average term including time derivative is as follows:
[image: Equation showing the relationship between volume integrals and surface integral. The expression is the integral over domain omega of the partial derivative of psi with respect to time, dV, equals the partial derivative with respect to time of the integral over omega of psi, dV, minus the surface integral over sigma of psi gamma w dot product with n, dS. Equation number twelve.]
where [image: Mathematical symbol for summation, represented by a large Greek letter sigma.] represents the interface where solid and fluid come into contact within the region Ω. It is typically specified that the normal vector [image: Please upload the image or provide a URL for the image you're referring to, and I'll be happy to help create the alt text for it.] points outward from fluid, and [image: The letter "w" in a bold, black font against a white background.] denotes the velocity vector of the interface between solid and fluid, which is generally taken as zero vector.
3.2 Microscopic equation for fractured-porous media
Assuming the skeleton is initially static and satisfies the assumptions of linear elasticity and isotropy, its equation of microscale momentum conservation can be expressed as follows.
[image: The equation shows \(\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \nabla \cdot \boldsymbol{\sigma}\), labeled as equation (13).]
where [image: It seems like there's been a mistake; the input looks like a special character or equation, not an image. Please upload the image or provide a URL for the description.] denotes the mass density of solid skeleton, and [image: Please upload the image or provide a URL for me to create the alt text.] represents the displacement of solid skeleton, [image: It seems like there was an error or the image did not upload correctly. Please try uploading the image again or provide a URL if available. You can also add a caption for additional context.] refers to time and [image: A lowercase Greek letter sigma, represented in a bold serif font.] signifies solid stress tensor.
The microscopic constitutive equation of solid is:
[image: The equation represents a mathematical expression for stress, \( \sigma \), in a material, where \( \sigma = K e \cdot \mathbf{I} + G \left[ \nabla \mathbf{u} + (\nabla \mathbf{u})^{\top} - \frac{2}{3} e \cdot \mathbf{I} \right] \). The equation is labeled as equation 14.]
where [image: A mathematical expression showing the letter 'K' with a subscript 's'.] stands for the bulk modulus of solid particle, [image: The letter "G" is depicted in a serif font style, typically characterized by small projecting features at the ends of strokes. It appears bold and clear against a plain background.] refers to the shear modulus of solid skeleton, [image: It seems there was an error. Please upload the image or provide a URL, and I will help create the alternate text for it.] denotes the first strain invariant, and superscript [image: It seems there might have been an issue with uploading the image. Please ensure the image is correctly uploaded or provide a URL so I can assist with creating the alt text.] indicates transpose.
The previous sections present the mass conservation equation, the momentum conservation equation and the constitutive equation of fluid. The equation of fluid state is expressed in the following form:
[image: Mathematical equation showing one over \( K_f \) times the derivative of \( p \) with respect to \( t \) equals one over \( \rho_f \) times the derivative of \( \phi_f \) with respect to \( t \). Labeled as equation fifteen.]
where [image: It seems there was an error with displaying the image. Please try uploading the image again or provide the URL, and I will assist you with the alt text.] represents fluid pressure and [image: Mathematical notation "K" with a subscript "f" in italicized font, commonly used in scientific or mathematical equations.] signifies the fluid bulk modulus. By combining the continuity equation and the state equation of fluid, the expression of pressure term is obtained:
[image: The equation displayed is: negative pressure equals permeability coefficient times the divergence of velocity, equation sixteen.]
Assuming the presence of a porous media comprising a solid skeleton and a fluid, with only one existing interface denoted as [image: No image was provided. Please upload the image or provide a URL so I can assist you with creating alternate text.], which represents the contact between the fluid and the solid skeleton. The boundary conditions employed to describe this interface include the no-slip condition and fluid-solid equilibrium condition of normal force, expressed as follows:
[image: Equation seventeen displays two formulas: "U dot n equals u dot n" and "-p dot n plus s dot n equals sigma dot n".]
where [image: Please upload the image or provide a URL so I can help generate the appropriate alt text.] denotes the outward normal vector of contact interface, and s is the deviatoric stress in fluid.
3.3 Macroscopic integral equation of fractured-porous media
Based on the volume integral theorem, the macroscopic equation can be obtained by averaging the microscopic momentum conservation equation for fluids over the entire volume:
[image: The equation shows the partial derivative of density, \(\rho\), and velocity, \(U\), with respect to time, \(t\), set equal to the negative gradient of pressure, \(p\), plus the gradient of a variable, \(s\), plus the product of average density, \(\bar{\rho}\), and potential, \( \varphi \), minus the product of viscosity, \(\eta\), potential squared, \(\varphi^2\), over permeability, \(\kappa\), times the difference of averages, \(\overline{U} - \overline{u}\). Equation number \(18\).]
where [image: Lowercase Greek letter kappa, resembling a curved line with two connecting arms at the top, widely used in mathematical and scientific contexts.] represents the permeability of porous media. Since fluid does not undergo shear deformation, the fluid stress is equivalent to the normal stress [image: A stylized black letter "S" with a glossy texture and shadow effect on a white background.]. By volume-averaging the solid momentum conservation equation and integrating it with the fluid-solid equilibrium condition at boundaries, it is obtained as follows:
[image: Equation involving partial derivative: d²/dt² of the product of ρ and u equals negative divergence of σ minus the product of density ρ and gradient of φ, plus ηφ² over κ times the difference between U̅ and ṳ. Equation number 19.]
The stress [image: It seems like the image didn't upload properly. Please try uploading the image again or provide a URL, and I’ll be glad to help with the alt text!] of solid skeleton can be decomposed into two components: normal stress [image: A stylized lowercase Greek letter sigma followed by a subscript lowercase "s".] and shear stress [image: Greek letter sigma with subscript lowercase e.]. In terms of the normal stress component of solid skeleton, Tuncay and Corapcioglu (1996), Tuncay and Corapcioglu (1997) investigated the constitutive relationship associated with volume change (solely induced by compressive deformation), and derived the equations of solid normal stress and fluid stress:
[image: Mathematical equation showing σₐ as equal to negative one minus φ times P̅̅ₜ, equating to a₁₁ times the divergence of u plus a₁₂ times the divergence of U, labeled as equation twenty.]
[image: Equation showing a mathematical expression with variables and partial derivatives: \( s = -\varphi \dot{p} = a_{11} \nabla \dot{\mathbf{u}} + a_{12} \nabla \dot{\mathbf{U}} \). It is labeled as equation (21).]
where [image: It seems there might have been an error with the image upload. Please try uploading the image again or provide a URL. If there's any additional context or details you want included, feel free to add them.] represents the applied confining pressure on porous media, and the respective equations for each constant in this expression are provided below:
[image: Mathematical equation showing the expression for \(a_{11}\), which is equal to negative \(\frac{(1-\phi)^2 K_f}{\phi L_1} - \frac{(1-\phi)^2 K_f}{L_1 [(1-\phi) K_s - K_f]}\). The equation is labeled as equation number 22.]
[image: The equation \( a_{12} = -\frac{(1 - \phi) K_f}{L_1} \) is labeled as equation (23).]
[image: The equation shows \( a_{q1} = -\frac{\phi K_s}{L_2} + \frac{\phi K_b}{(1-\phi)L_2} \) labeled as equation 24.]
[image: The equation \( a_{22} = -\frac{\varphi^3 K_s}{(1-\varphi)L_2} \) is followed by the number 25 in parentheses.]
[image: The equation shows \( L_i = -\frac{{(1-\varphi)K_f}}{{\varphi K_s}} - \frac{{(1-\varphi)K_s}}{{(1-\varphi)K_s - K_b}} \) labeled as equation \( (26) \).]
[image: Equation for \( L_z \) shown as: \( L_z = -\frac{\phi K_t}{(1-\phi)K_f} - 1 + \frac{K_b}{(1-\phi)K_s} \), numbered as 27 on the right.]
where [image: It appears you uploaded a mathematical expression, "K sub b". Let me know if you need help with a different image or topic!] denotes the bulk modulus of dry skeleton.
The equivalent bulk modulus of the porous unit with [image: It seems like there was an issue with uploading the image. Please try uploading the image again, and I will be happy to help with the alternate text.] fractures, volume [image: Please upload an image or provide a URL for me to assist you in creating alt text.], and Poisson’s ratio [image: Greek lowercase letter nu, represented by the symbol "ν", often used in mathematics and science.] can be determined (Mavko and Nur, 1978):
[image: Equation showing \( \frac{1}{K'} = \frac{1}{K_t} \left[ 1 + \frac{2\pi}{3} \frac{(1 - r^2)}{(1 - 2v)} \sum_{i=1}^{N} \frac{R_i^2 d_i}{V} \right] \), labeled as equation 28.]
where [image: Mathematical notation with the letter "R" followed by a subscript "1,i".] refers to the radius of the elliptical principal axis of the [image: Stylized representation of the mathematical notation for the "i-th" term, with the letter "i" italicized followed by a hyphen and the letters "th" in regular script.] fracture, and [image: It seems there has been a mistake or missing image file. Please upload the image or provide the URL, and I will help create the alternate text for it.] stands for fracture extension length. In a cubic unit cell with side length [image: Please upload the image you want me to describe, and I'll provide the appropriate alt text for it.], let [image: It seems there was an error in the image upload. Please try uploading the image again or provide a URL. If the image has specific features, please describe them for more accurate alt text.] represent the spatial dimensions of the fracture network, where [image: Please upload the image or provide a URL, and optionally add a caption for additional context.] fractures are distributed in the [image: Please provide the image by uploading it or sharing a URL, and I will help you create the alt text.] direction, [image: If you'd like me to help with alt text, please upload the image or provide a URL.] fractures in the [image: It seems there is no image attached. Please upload the image or provide a URL, and I can help create the alt text for it.] direction and [image: It appears there was an issue with uploading the image. Please try uploading it again, and I will assist you with creating the alt text.] fractures in the [image: It seems like there's a mix-up or missing image. Please upload the image or provide a URL, and I'll be happy to help with the alt text.] direction. The relationship among the main radius of fracture network model, porosity [image: Looks like the image did not come through. Please try uploading the image again or provide a description or URL.], aspect ratio of fractures [image: Please upload the image or provide a URL so I can assist you in creating the alternate text.], network scale and sample side length shows as follows (Xiong et al., 2021):
[image: Equation depicting \( R_{1} = \sqrt{\frac{(MN + NL + ML) \phi l^{2}}{n a}} \), labeled as equation 29.]
Assuming that the shear stress in the porous media is solely borne by the solid skeleton, disregarding any fluid-induced shear deformation:
[image: The equation depicts tensor \(\sigma\) equal to \(G\) multiplied by the sum of \(\nabla \mathbf{u}\) and its transpose, minus two-thirds of the divergence of \(\mathbf{u}\) multiplied by identity matrix \(\mathbf{I}\).]
Where [image: Please upload the image or provide a URL so I can create the alt text for it.] denotes the shear modulus of solid skeleton and [image: A young child is sitting on an adult's shoulders in a park. The child is reaching up, appearing happy and playful. Trees with green leaves are in the background under a clear blue sky.] represents the unit tensor. In the context of momentum transfer between phases, it is essential to consider the fluid’s viscosity due to its contribution to energy dissipation within the system. While fluids exhibit viscosity, the mechanical shear response of porous media primarily arises from the solid matrix.
In conclusion, the constitutive relationship between solid and fluid can be summarized as follows:
[image: Mathematical equations describing stress and strain tensors. The first equation relates the stress tensor, σ, to velocity gradients and deformation coefficients. The second equation relates the strain tensor, s, to similar terms.]
The final form of the wave equation is derived by combining the constitutive equation with the volume-averaged momentum conservation equation:
[image: Mathematical equations with parameters \(\rho, a_{11}, a_{12}, \nabla, \nabla^2, \mathbf{C}, \mathbf{U}, \mathbf{\dot{u}}\), and \(\mathbf{\ddot{u}}\). The equations involve terms with operators like gradient \(\nabla\) and Laplacian \(\nabla^2\), showing relationships in dynamics.]
where, [image: The equation "C equals eta phi squared over kappa" is displayed.], [image: \( a_1' = a_1 + \frac{4G}{3} \)], [image: Please upload the image or provide a URL so I can help create alt text for it.] is the skeleton shear modulus.
The system of equations above represents the wave propagation control equation for porous media saturated with single fluid at low frequencies, wherein the unknowns are the displacements of solid and fluid particles denoted as [image: It seems there is no image provided. Please upload the image you want the alt text for, or provide a URL to the image.] and [image: It seems like there is no image to provide alt text for. Please upload the image or provide a URL, and I will assist you in creating the alt text.]. These equations exhibit hyperbolic characteristics with dissipative terms due to momentum transfer.
By applying the divergence operator to both sides of the wave Eq. 32 and introducing [image: The mathematical equation shown is \( \mathbf{u}_p = \nabla \cdot \mathbf{u} \), where \(\mathbf{u}_p\) is a vector, and \(\nabla \cdot \mathbf{u}\) represents the divergence of the vector \(\mathbf{u}\).] and [image: Mathematical expression showing \( U_P = \nabla \cdot U \).], the P-wave equations is obtained:
[image: Two mathematical equations in curly braces. The first equation is a differential equation involving \(\langle \rho_{p} \rangle\), second derivatives of \(U_{p}\), gradient terms, and a constant \(C\). The equation includes terms with partial derivatives of \(U_{p}\) with respect to \(t\). The second equation involves \(\langle \rho_{p} \rangle\), similar terms, but with different coefficients and signs. Equation number 33 is on the right.]
By applying the curl operator to both sides of the wave Eq. 32 and introducing [image: The equation depicts \(\mathbf{u}_S = \nabla \times \mathbf{u}\).] and [image: The equation shows \( \mathbf{U}_\text{S} = \nabla \times \mathbf{U} \).], the s-wave equations is derived:
[image: Equations showing the relationships involving the second derivative with respect to time of \( u_s \) and \( U_s \). The first equation is \(\langle \rho_s \rangle \frac{\partial^2 u_s}{\partial t^2} = G \nabla^2 u_s + C \left( \frac{\partial U_s}{\partial t} - \frac{\partial u_s}{\partial t} \right)\). The second equation is \(\langle \rho_f \rangle \frac{\partial^2 U_s}{\partial t^2} = -C \left( \frac{\partial U_s}{\partial t} - \frac{\partial u_s}{\partial t} \right)\). Equation number 34 is shown.]
The propagation of elastic waves in isotropic porous media is characterized by uniformity in all directions. Let the solution of the wave equation be expressed in the following prescribed form:
[image: Equations describing wave functions: \( \mathbf{u}_p = \mathbf{U}_P e^{i(\omega t - k x)} \) and \( \mathbf{U}_p = \mathbf{U}_{P0} e^{i(\omega t - k x)} \). Equation numbered thirty-five.]
where [image: The text "uₚ₀" is presented, with "u" in a bold or distinct font and the subscript "p₀" in a smaller size.] and [image: It seems like the content provided is mathematical notation rather than an image. If you have an image to describe, please upload it or provide a URL, and I can assist with creating alt text for it.] refer to P-wave amplitude, and [image: Sure, please upload the image you would like me to describe.] denotes wave number, which is typically a complex quantity in nature; [image: Please upload the image or provide a URL for it, and I’ll be happy to help create alt text for you.] signifies circular frequency, and [image: Please upload the image you would like me to describe, and I will be happy to help with the alt text.] represents imaginary unit. After substituting the above equations into the P-wave equation, the subsequent expression can be derived:
[image: A mathematical expression with a matrix equation. The left side features a 2x2 matrix multiplied by another 2x2 matrix, summing to a third 2x2 matrix, and then multiplied by a column vector with elements \(u_{p0}\) and \(U_{p0}\). The matrix components include terms like \(-\omega^2 \langle \rho_i \rangle\), \(k^2 a_{11}\), and others with constants \(-C\) and \(C\). The equation equals a zero column vector, labeled as Equation (36).]
The system of equations will have non-zero solutions only if the determinant of the coefficient matrix is equal to zero, resulting in the dispersion equation:
[image: Quadratic equation represented as \( Z_1 X^2 + Z_2 X + Z_3 = 0 \), labeled as equation (37).]
[image: \( Z_1 = \left( \langle \varphi_{1} \rangle + \frac{iC}{\omega} \right) \left( \langle \varphi_{2} \rangle + \frac{iC}{\omega} \right) + \frac{C^2}{\omega^2} \) (equation 38).]
[image: Equation labeled 39 shows \( Z_z = -a_{11}\langle \phi_r \rangle - a_{22}\langle \phi_s \rangle - \frac{iC(a_{11} + a_{12} + a_{21} + a_{22})}{\omega} \).]
[image: The image shows the mathematical expression: \( Z_j = a_{11}a_{22} - a_{12}a_{21} \), labeled as equation 40.]
where [image: The formula \( X = \omega^2 / k^2 \) is shown.]. The analytical expression for P-wave velocity can be obtained by solving the above equations:
[image: Mathematical equation representing \( V_p = V_p^R + iV_p^I \), labeled as equation (41).]
[image: Mathematical expression: \( V_{p}^{R} = (E^{2} + F^{2})^{1/4} \cdot \text{sign}(\cos \frac{\alpha}{2}) \cdot \sqrt{\frac{1}{2} + \frac{E}{2\sqrt{E^{2} + F^{2}}}} \). Labeled equation 42.]
[image: Mathematical equation showing \( V'_p = (E^2 + F^2)^{1/4} \cdot \text{sign}\left(\sin \frac{\alpha}{2}\right) \cdot \sqrt{\frac{1}{2} - \frac{E}{2\sqrt{E^2 + F^2}}} \). Equation number 43.]
[image: The equation shown is: tangent of alpha equals F divided by E, labeled as equation forty-four.]
where the coefficients [image: It appears there was an issue with uploading the image. Please try uploading the image again or provide a URL. If you have any specific context or details to add, please include them as well.] and [image: It seems there was an issue with the image upload. Please try uploading the image file again or provide the URL if it's available. If you have any additional context or caption, feel free to include that as well.] are
[image: The image shows a mathematical formula for variable \(E\) expressed as a fraction. The numerator is \(2(a_{11}r_{2} + a_{12})r_{1}r_{2} + 2(a_{11} + a_{12} + a_{21} + a_{22})(r_{2} + r_{1})\frac{\Sigma \xi + 2\rho r_{1} \Delta t(2\rho + r_{1})\frac{\Sigma E}{B}}\). The denominator is \(4q_{1}r_{2}^{2} \xi + (r_{2} + r_{1})\frac{\Sigma \xi}{B}\). Below the formula is the number 45 in parentheses.]
[image: Equation labeled (46) includes a complex mathematical expression involving variables \(a_i, a_0, a_1, a_2, \rho, B, \varepsilon, \hat{p}\), and functions such as \(\epsilon_0\). The equation features fractions, summations, and powers within the numerator and denominator.]
[image: Mathematical equation displaying Lambda equals the expression in parentheses x squared plus y squared, raised to the power of one-half, times the sign of cosine of theta divided by two, times the square root of one-half plus x over two times the square root of x squared plus y squared. This is labeled as equation forty-seven.]
[image: Equation for \( B \) is shown as: \( B = (x^2 + y^2)^{\frac{1}{4}} \cdot \text{sign}\left(\sin\frac{\theta}{2}\right) \cdot \sqrt{\frac{1}{2} - \frac{x}{2\sqrt{x^2 + y^2}}} \), labeled as equation 48.]
[image: The formula shows the tangent of theta equals y divided by x, with a number forty-nine in parentheses on the right side.]
[image: Equation showing a formula for \( x \), involving variables and constants: \( (a_{11}\bar{\rho}_f + a_{22}\bar{\rho}_s)^2 - 4(a_{11}a_{22} - a_{12}a_{21})\bar{\rho}_f\bar{\rho}_s - (a_{11} + a_{12} + a_{21} + a_{22}) \frac{s C^2}{\omega^2} \).]
[image: The image shows a mathematical equation for \( y \). It is given as:  \[  y = 2(a_{11}\bar{\rho}_f + a_{22}\bar{\rho}_s)(a_{11} + a_{12} + a_{21} + a_{22})\frac{C}{\omega} \]  subtracting  \[  4(a_{11}a_{22} - a_{12}a_{21})(\bar{\rho}_f + \bar{\rho}_s)\frac{C}{\omega} \]  Equation number (51) is shown to the right.]
where [image: The image contains the mathematical notation "sign(x)".] refers to the application of the sign of [image: Please upload the image or provide a URL to the image for which you need alternate text.], and [image: Mean density of an object, denoted by an overlined \(\rho_s\), is equal to the average density, represented as \(\langle \rho_s \rangle\).], [image: Mathematical expression showing the average of a variable. The variable \(\rho_f\) is equal to its average, denoted by brackets.].
In general, for a given frequency [image: Please upload the image or provide a URL so I can generate the alt text for you.], Eq. 37 yields two complex roots (for wave number [image: Please upload the image or provide a URL so I can help create the alt text for it.] there are four roots, but only two possess physical significance due to the requirement of continuous decrease in wave amplitude during propagation; thus, the imaginary part of [image: Please upload the image or provide a URL so that I can help you create the alt text.] must be greater than 0), which implies that within a porous elastic media containing two immiscible fluids, two types of P-waves will propagate.
According to the method of plane wave analysis, the plane harmonic S-wave propagating along the [image: It seems like there might be an issue with the image upload. Please try uploading the image again or provide a description or context if you'd like me to help with the alt text.]-direction can be expressed as:
[image: Mathematical expressions with curly brackets: \( \mathbf{u}_S = \mathbf{u}_{S0} e^{j(\omega t - kx)} \) and \( \mathbf{U}_S = \mathbf{U}_{S0} e^{j(\omega t - kx)} \), labeled as equation (52).]
where [image: Text "u" followed by a subscript "s0".] and [image: It seems like there was an issue with your image upload. Please try uploading the image again or check the file format and size.] refer to S-wave amplitude. After substituting the above equations into the S-wave equation, the subsequent expression can be derived:
[image: A mathematical equation representing a matrix operation. The equation involves matrices with variables such as omega squared, k squared, G, C, and i. It results in a vector with zero elements.]
The system of equations will have non-zero solutions only if the determinant of the coefficient matrix is equal to zero, resulting in the dispersion equation:
[image: I'm unable to view or process images directly. Please upload the image or provide a URL, and I can help with an alt text description.]
[image: \( Y_{1} = (\rho_{i} \angle \varphi_{i}) - \frac{jC}{\omega} (\rho_{i} + \varphi_{i}) \quad (55) \)]
[image: Mathematical equation: \( Y_{1} = -\left(\frac{C}{\omega} - \langle \rho_{f} \rangle \right) G \) with the equation number (56) on the right.]
where [image: Equation showing X equals omega squared divided by k squared.]. Thus the analytical expression for S-wave velocity can be solved as:
[image: Mathematical expression showing \( X = E + Fi \), with equation number fifty-seven.]
[image: Mathematical equation showing E prime equals negative rho s prime rho f prime G plus ksi squared over omega squared times quantity rho bar s plus rho bar f times G over the quantity rho bar s rho f bar squared plus ksi squared over omega squared times quantity rho bar s plus rho bar f squared, labeled equation 58.]
[image: Equation representing F prime equals the difference of product of rho prime rho sub s and G, and rho bar sub s times the sum of rho bar sub s and rho bar sub f, multiplied by G and C over omega, all divided by the squared sum of rho bar sub s and rho bar sub f, plus C squared divided by omega squared times the sum of rho sub s and rho bar sub f, followed by equation number fifty-nine.]
In general, for a given frequency [image: Please provide the image or a URL to the image you want me to describe. You can also include a caption for context if needed.], Eq. 54 yields only one complex root (for wave number [image: Please upload the image or provide a URL, and I will help you create the alternate text.] there are two roots, but only one possess physical significance due to the requirement of continuous decrease in wave amplitude during propagation; thus, the imaginary part of [image: It seems there is no image attached. Please upload the image or provide a URL, and I will generate alt text for it.] must be greater than 0), which implies that the single S-wave form will propagate within porous elastic media containing a single fluid.
4 FINITE DIFFERENCE NUMERICAL METHOD FOR WAVE EQUATION OF FRACTURED-POROUS MEDIA
4.1 Staggered grid difference method for the first-order wave equation
Firstly, the wave equation in terms of displacement is transformed into the velocity-stress formulation. Subsequently, finite difference scheme is implemented on the staggered grid. Finally, by considering seismic source and boundary conditions, snapshots of wave field in porous media with non-uniform saturation distribution are computed.
By using [image: The equation shows \( \mathbf{v}^f = \dot{\bar{\mathbf{U}}} \), where \(\mathbf{v}^f\) is a vector with superscript \(f\), and \(\dot{\bar{\mathbf{U}}}\) is a vector with a dot and bar above it.] and [image: \( \mathbf{v}^s = \overline{\mathbf{u}} \)], the macroscopic equation for fluids and solid are rewritten as
[image: The equation shown is: \(\langle \rho_f \rangle \dot{v}^f = \nabla \cdot (s) - \frac{\eta \varphi^2}{\kappa} (v^f - v^s)\), labeled as equation (60).]
[image: The image shows a mathematical equation labelled as equation sixty-one. It is ρ subscript J, V dot equals nabla dot sigma plus eta phi squared over k times the quantity V superscript f minus V superscript s.]
In the equation provided above, the brackets in [image: Please upload an image or provide a URL for me to create the alt text.] denoting the volume average is omitted in the macro-scale equations for the sake of simplicity. Thus, the wave equation in velocity-stress format is:
[image: Mathematical equations for velocity in solid and fluid media. The equations are enclosed in braces and labeled (62). The first equation defines the velocity in solid medium using variables: velocity of solid \( \dot{v}^s \), solid density \( \rho_s \), stress gradient \( \nabla \sigma \), coefficient \( C \), and velocity difference between fluid and solid \( (v^f - v^s) \). The second equation defines the velocity in fluid medium using fluid density \( \rho_f \), stress gradient \( \nabla s \), and the same velocity difference.]
Here [image: Equation showing \( C = \frac{\eta \phi^2}{\kappa} \).]. By applying the time derivative to both sides of the constitutive equation, the governing equation for the fractured-porous model can be obtained:
[image: Mathematical expressions with indices: \(\hat{\sigma}_{ij} = (a_{11} \dot{\varepsilon} + a_{12} \dot{\xi}) \delta_{ij} + 2G (\hat{\varepsilon}_{ij} - \frac{1}{3} \dot{\varepsilon} \cdot \delta_{ij})\) and \(\hat{s}_{ij} = (a_{21} \dot{\varepsilon} + a_{22} \dot{\xi}) \delta_{ij}\), labeled as equation (63).]
It should be noted that the stress tensor exhibits symmetry, resulting in a total of 9 unknowns, namely, [image: The image shows the Greek letter sigma (σ) followed by the subscript "x x," representing stress in the x-direction in material mechanics or physics.], [image: Mathematical notation showing the symbol for shear stress, with sigma subscript x y.], [image: Greek letter sigma with subscript xz.], [image: The Greek letter sigma with subscript "yy."], [image: The symbol \(\sigma_{yz}\) represents the shear stress component acting on the yz-plane in a Cartesian coordinate system.], [image: Greek letter sigma with subscript "zz".], [image: Please upload the image or provide a URL, and I will help create the alt text for it.], [image: Formula displaying \( s_{yy} \).] and [image: It looks like there's no image provided. Please upload the image, and I would be happy to help with the alt text.], which are all associated with stress and therefore necessitate updates using constitutive relations. In the case of fluids, it satisfies the condition of [image: Equation showing \( s_{xx} = s_{yy} = s_{zz} \), indicating equal components in a symmetric three-dimensional stress tensor.], thereby reducing the number of unknowns to 7. Henceforth, the components of fluid stress will no longer be differentiated, and [image: Please upload the image and I will help you create the alt text for it.] is employed to represent [image: Please upload the image or provide a URL so I can create the alternate text for you.], [image: No image was uploaded. Please upload the image or provide a URL to receive the alt text. If you have a caption or additional context, feel free to include that as well.] and [image: It seems like you've included some text rather than an image. Please upload an image or provide a URL so I can help create alt text for it.] instead.
The wave equation is represented in its component form by a set of 6 equations, while the constitutive equation is expressed through 7 equations, resulting in a total of 13 equations that correspond to the number of unknowns. It is assumed that both stress and velocity are initialized as zero at t=0. In the Cartesian coordinates, set [image: Mathematical equation showing \( x = i \Delta x \), where \( x \) equals the product of \( i \) and \( \Delta x \).], [image: Mathematical equation: \( y = j \Delta y \).], [image: The equation \( z = k \Delta z \) is displayed, where \( z \) is equal to \( k \) times the change in \( z \).] and [image: Equation depicting time as a function of intervals: \( t = n \Delta t \), where \( t \) is time, \( n \) is the number of intervals, and \( \Delta t \) is the duration of each interval.], where [image: Delta symbol followed by the letter x, representing a change or difference in the variable x.], [image: The Greek letter Delta followed by the lowercase letter y, representing the change in the variable y.] and [image: Delta z symbol in italic font, representing the change in the variable z in mathematical or scientific contexts.] denote spatial step lengths and [image: Greek letter delta, followed by the letter t, representing a change in time (Δt).] represents the time step length. As depicted in Figure 1, the staggered grid configuration is utilized wherein [image: Mathematical notation showing the symbol "v" with superscript "s" and subscript "x".] and [image: The mathematical expression depicts the symbol for final velocity in the x-direction, denoted as "v sub x" with a superscript "f".] represent the [image: It appears there was no image uploaded or URL provided. Please upload the image or provide a link, and I will help create the alt text for you.]-direction velocity components for solid and fluid particles respectively, with analogous formulations for the [image: Please upload the image or provide a URL so I can generate appropriate alt text for you.] and [image: Please upload the image you would like to have alternate text for.] direction components.
[image: Diagram of a three-dimensional grid representing a rectangular coordinate system with labeled axes X, Y, and Z. Points on the grid are marked with coordinates (i, j, k) and variations like (i+1, j, k). A key indicates different symbols for variables like velocity components \( V^x, V^y, V^z \), and stress components \( \sigma_{xx}, \sigma_{yy}, \sigma_{zz} \).]FIGURE 1 | The schematic diagram of finite difference staggered grid.
The staggered grid differencing operators, denoted as [image: Mathematical expression of the letter "D" with the subscript "h."] in space and [image: A mathematical expression featuring the letter "D" with a subscript "t" in italics, commonly used to denote a variable or parameter in equations.] in time, are introduced as follows: (Sun, 2009):
[image: Equation depicting a finite difference formula for approximating a derivative. It shows \(D_h f_{i+1/2,j,k} = \frac{\theta_1 f_{i+1,j,k} - \theta_5 f_{i,j,k} + \theta_3 f_{i+2,j,k} - \theta_4 f_{i-1,j,k}}{\Delta h}\).]
[image: Equation showing the finite difference approximation of a derivative. \(D_j f_{i,j,k}^{n+\frac{1}{2}} = \frac{f_{i,j,k}^{n+1} - f_{i,j,k}^{n}}{\Delta t}\). It is labeled as equation 65.]
Here, the notation [image: Mathematical expression depicting \( f^n_{i,j,k} \).] represents the function to be discretized at spatial grid points [image: Mathematical symbols \(i\), \(j\), and \(k\) written in italic font.] and time grid [image: It seems there's no image attached. Please upload the image or provide a URL, and I'll help create the alt text for it.]. [image: The Greek letter theta with a subscript i, often used in mathematical equations and formulas to denote angles or variables in a sequence.] ([image: The equation "i = \(\pm \sqrt{-1}\)" represents the imaginary unit, which is a fundamental concept in complex numbers used to describe the square root of negative one.] 1,2,3,4) are the coefficients. [image: Please upload the image or provide a URL so I can create the alt text for it. You can also add a caption for additional context if you'd like.] and [image: Delta t, the symbol for a time interval, represented by the Greek letter delta (Δ) followed by a lowercase t.] represent the spatial and time grid sizes, respectively. For uniformly spaced grid, [image: Delta x equals delta y equals delta z equals delta h.], [image: Mathematical equation showing theta one equals theta two equals nine-eighths.], [image: Equation displaying theta sub three equals theta sub four equals negative one over twenty-four.], and thus the difference format with fourth-order accuracy in space and second-order accuracy in time is obtained.
Utilizing the staggered-grid finite difference, the discretization of unknown variables in the first-order velocity-stress equation occurs at distinct grid points, leading to the subsequent finite difference equations for velocity update:
[image: Equation 66 shows a fluid dynamics formula. The variable \( D_{v,x_{i+1/2,j+1/2,k}}^{n+1/2} \) is expressed in terms of parameters \( \rho_s \), \( D_x \), \( D_y \), \( D_z \), stress tensors \( \sigma \), and a term involving a difference of \( v \) terms and constant \( C \).]
[image: Mathematical equation labeled 67 showing a complex differential expression. The components include terms with variables \(D_x\), \(D_y\), \(D_z\), \(\sigma\), and \(\rho_s\), with subscripts and superscripts indicating indices and powers. Additionally, there are terms involving \(C\) and differences of \(v\) raised to different powers.]
[image: Mathematical equation displaying a formula for a variable \( D_{v, i+1/2, j+1/2, k+1/2}^{n+1/2} \) involving terms with indices \( i, j, \) and \( k \), and variables \( \sigma, \omega, v, \rho_s, \) and constants. The equation is labeled with number 68 in parentheses at the end.]
[image: Mathematical equation showing fluid dynamics: D subscript v x evaluated at half-time step equals the fraction one over ρ subscript f times D subscript s evaluated at half-time step minus C over ρ subscript f times the difference between v to the power of half at x plus half, y, and z plus k, and v to the power of half at x minus half, y, and z plus k. The equation is numbered sixty-nine.]
[image: Mathematical equation showing the expression for fluid dynamics. The equation includes terms like \(D_v^{n+1/2}\), \(\rho_f\), \(B_z\), \(D_z\), and \(C\), with various subscripts and superscripts, arranged to describe a specific dynamic behavior or calculation. The equation is labeled as equation 70.]
[image: Mathematical equation: \( D_{\nu_{z_{i+1/2}, j+1/2, k+1/2}}^{n+1/2} = \frac{1}{\rho_f} D_{z_{i+1/2, j+1/2, k+1}}^n - \frac{C}{\rho_f} \left( v_{z_{i+1/2, j+1/2, k+1/2}}^{n+1/2} - v_{z_{i+1/2, j+1/2, k+1/2}}^{n-1/2} \right) \).  Equation number 71.]
The finite difference equations for stress update are as follows:
[image: Mathematical expression showing derivatives and coefficients. The equation is \(D_{\sigma_{xx}}^{n} = a_{11} D_x v_x^{*n+ 1/2} + a_{11} D_y v_y^{*n+1/2} + a_{11} D_z v_z^{*n+1/2}\) plus additional terms involving derivatives with respect to \(x\), \(y\), and \(z\) at various intervals, along with coefficients \(a_{11}\) and \(a_{12}\). Concludes with equation number 72.]
[image: Equation showing a summation of terms: \( D_t \sigma_{y^{n+1/2},j,2/k} = a_{11} D_x v_{x^{m+1/2},j,2/k} + a_{11} D_y v_{y^{m+1/2},j,2/k} + a_{11} D_z v_{z^{m+1/2},j,2/k} + a_{12} (D_x v_{x^{m+1/2},j,1/2k} + D_y v_{y^{m+1/2},j,1/2k} + D_z v_{z^{m+1/2},j,1/2k}) \), with sequence number 73.]
[image: Mathematical expression involving partial derivatives with terms indexed as follows: \(D_{x}^{m+1/2,\,i+1/2,j,k}\) equals \(a_{11}D_{x}v_{x}^{m+1/2}\) plus \(a_{11}D_{y}\) of \(v_{y}^{m+1/2}\) plus \(a_{11}D_{z}\) of \(v_{z}^{m+1/2}\), plus further terms involving \(a_{12}\) and derivatives \(D_{x}\), \(D_{y}\), and \(D_{z}\), each acting on different indexed terms of \(v_{x}\), \(v_{y}\), and \(v_{z}\). Labeled as equation 74.]
[image: Mathematical equation showing \( D_x \sigma_{x,y,j,k}^n = \mathcal{G} \left( D_y v_{x,j+1/2,k}^{n+1/2} + D_k v_{y,n+1/2,j,1/2,k} \right) \) with equation number (75).]
[image: Equation displaying \( D_{\alpha x}^{n + 1/2, l + 1/2} = \mathcal{G} \left( D_{1,x}^{n + 1/2, l} x_{j + 1/2, k + 1} + D_{2,y}^{n + 1/2, l + 1/2} x_{j + 1/2, k + 1/2} \right) \) with reference (76).]
[image: Mathematical equation displaying a derivative operation: \(D_\sigma \sigma_{i+1/2,j,k+1/2}^{n+1} = \mathcal{G} \left( D_x V_{i+1/2,j+1/2,k+1}^{n+1/2} + D_y V_{i+1/2,j+1/2,k+1/2}^{n+1/2} \right)\). Labeled as equation seventy-seven.]
[image: Mathematical equation with variables and coefficients: \( D_{1,x+\frac{1}{2},j+\frac{1}{2},k} \) equals \( a_{21} D_{x,i+\frac{1}{2},j+\frac{1}{2},k} \) plus \( a_{21} D_{y,i,j+\frac{1}{2},k} \) plus \( a_{31} D_{z,i,j+\frac{1}{2},k+\frac{1}{2}} \), plus \( a_{22} \) multiplied by the sum of \( D_{x,i+1,j+\frac{1}{2},k} \), \( D_{y,i,j+\frac{1}{2},k} \), and \( D_{z,i,j+\frac{1}{2},k+\frac{1}{2}} \). Equation number 78.]
where [image: \( a_{11}^* = a_{11} - \frac{2G}{3} \)], [image: The equation shows \( a_1' = a_1 + \frac{4G}{3} \).].The notations [image: Mathematical notation showing \(\sigma\) with subscript \(xx, i, j, k\) and superscript \(n\).], [image: Mathematical notation depicting the symbol sigma with superscript n and subscript y, y, followed by the subscript i, j, k.], [image: Mathematical notation displaying lowercase sigma with subscript letters "zzi,j,k" and superscript "n".], [image: Mathematical notation showing the symbol sigma with subscripts x, y, and superscript n. Subscripts i, j, k are indicated.], [image: Mathematical notation showing a tensor component, sigma superscript n with subscripts i, j, k and yz.], [image: Mathematical notation showing the variable sigma (σ) with subscripts x, z, and i, j, k, and a superscript n.] represent the solid stress at spatial grid points [image: The image shows the lowercase letters i, j, k in italics.] and time grid [image: Please upload the image or provide a URL for me to generate the alternate text.]. [image: Mathematical notation representing the element \(s\) subscripted with \(i, j, k\) and superscripted with \(n\).] is the discretized fluid stress. [image: Mathematical notation showing a variable: "v" with superscript "s" and "n" and subscript "x", "i", "j", "k".], [image: Mathematical expression showing \( y_{i,j,k}^{s,n} \).], [image: Mathematical expression showing \( v^{sn}_{z_{i,j,k}} \).] are discretized solid velocity. [image: Mathematical notation showing \( v_{x,i,j,k}^{f,n} \), with a lowercase v as the base, featuring superscript f and n, and subscript x, i, j, k.], [image: Mathematical expression depicting \( y_{i,j,k}^{f,n} \).], [image: Mathematical expression displaying a variable \( v \) with superscript \( f^n \) and subscript \( z \) and \( i, j, k \) as additional subscripts.] are discretized fluid velocity.
The selection of spatial step size should be based on the dispersion curve in order to determine the propagation velocity of seismic waves at a specific frequency. By calculating different types of wavelengths given the frequency, it is necessary to have at least 2–4 spatial grids within each wavelength, thus determining the appropriate spatial step size. The time step size should be determined by starting from the stability condition of the difference scheme and selecting a relatively small value to ensure that an unstable solution does not occur.
The seismic source is applied to the principal stresses [image: Greek letter sigma with subscript x x, representing a component of stress in mechanics.], [image: The Greek letter sigma followed by the subscript "yy".] and [image: The image shows the Greek letter sigma, denoted as \(\sigma\), followed by the subscript letters "zz", typically representing a component of a stress tensor in the field of mechanics or material science.] in three directions of the solid phase, as well as the fluid stress [image: Please upload the image or provide a link, and I'll help create the alternate text for it.]. The source function is based on Gaussian curve:
[image: The equation f(t) equals negative two K times the quantity one minus two T squared, close quantity, times e to the power of negative c T squared. Equation number seventy-nine.]
where [image: Equation displaying the variable xi equals F sub zero squared divided by 0.1512.] represents pulse width, [image: The equation represents \( T = t - t_s \), where \( T \) is defined as the difference between \( t \) and \( t_s \).] serves as time-shift parameter and [image: Mathematical expression displaying the formula for \( t_s = \frac{1.5}{F_0} \).]. The Higdon absorbing boundary conditions (Higdon, 1986; Higdon, 1987) are employed as the boundary conditions. Taking the second-order Higdon absorbing boundary condition as an illustration, the wave field at the boundary satisfies the following equation:
[image: Mathematical equation showing a product from j equals one to two. The product of cosine alpha times partial derivative with respect to t minus c times partial derivative with respect to x, applied to u, equals zero. Numbered as equation eighty.]
where [image: It seems there might have been an error since no image was uploaded. Please try uploading the image again, and I will be happy to help with the alternate text.] denotes the incident angle of absorption, and [image: It seems like there was an error and no image was uploaded. Please try again, ensuring to attach the image file or provide a URL. If applicable, you can also include a caption for context.] refers to the propagation velocity of incident wave. The above formula is capable of effectively attenuating incident waves with angle of [image: Plus or minus alpha subscript j.]. Following discretization on the difference grid, the differential operator form of the absorbing boundary condition is presented as follows:
[image: Mathematical expression showing \( B(E_{x}, E_{x}', ) = \prod_{j=1}^{n} \beta \left( \frac{-E_{x}}{\Delta t} \right) \left[ (1-a)t + aE_{x-1} \right] - c \left( \frac{E_{x}-1}{\Delta x} \right) \left[ (1-b)t + bE_{x-1} \right] \) with equation number (81).]
where [image: Beta sub j equals cosine alpha sub j.] represents a positive number, and [image: Greek letter delta followed by the letter x, representing a change or difference in the variable x.] signifies the spatial step size in the [image: Please upload the image or provide a URL so I can create the appropriate alt text for it.] direction on the boundary grid, and [image: Please upload the image or provide a URL for me to generate the alt text.] denotes the identity operator, and [image: Equation stating \( E_x I = E_x \).], [image: Mathematical equation showing "a" raised to the power of "l" equals "a".]. The parameters [image: It seems like there's an error in your request, as I cannot see or process the image. Please try uploading the image again or provide a URL.] and [image: It looks like there might be an issue with the image upload. Please try uploading the image again or provide a URL. If you have any additional context or a caption, feel free to include that as well.] represent the weighted average coefficients for spatial and temporal dimensions, respectively. Different values of [image: Please upload the image or provide a URL, and I will help you create the alt text.] and [image: Please upload the image you would like to have alt text for, or provide a URL to the image.] correspond to distinct differential weighting methods.
Taking the left boundary as an example, [image: Mathematical notation displaying \( f_{i,j,k}^{n} \).] represents the physical variable of the wave field at the time [image: The equation depicts time \( t \) as the product of \( n \) and \(\Delta t\), where \(\Delta t\) represents a time increment.] and at the point [image: The formula shows \( x = i \Delta x \).] and [image: Mathematical expression showing "i equals zero", representing the initial index value in a sequence or loop.] (i.e., the left boundary in the [image: Please upload the image or provide the URL so I can help create the alt text for it.] direction). Upon implementation of the boundary processing, it must satisfy the condition of zero reflection for the reflected wave, thereby enabling calculation of [image: Mathematical expression: \( f_{i,j,k}^{n} \).] through utilization of the absorption boundary difference formula:
[image: Equation showing a function \( f_{i,j,k} \) expressed as a linear combination of functions \( f \) with different subscripts, involving coefficients \( B_1, B_2, B_3, B_4, B_5, B_6, B_7 \), divided by \( B_8 \), indexed by \( i, j, k \).]
Given the initial conditions, the wavefield’s physical variables at each node are known at time [image: Please upload the image or provide the URL so I can generate the alternate text for you.]. Since only the wave field values of two time steps are available, first-order absorbing boundary conditions can be employed to address the boundary reflection at time [image: Equation showing \( t = \Delta t \), with the letter "t" equal to the Greek letter delta (\( \Delta \)) followed by "t".]. Following simplification, the solution can be obtained
[image: Equation showing \( f_{i,j,k}^n = -\frac{1}{A_i^1} \left( A_1^1 f_{i-1,j,k}^{n+1} + A_2^1 f_{i,j-1,k}^{n+1} + A_3^1 f_{i+1,j,k}^{n+1} \right) \), labeled as equation 83.]
where each coefficient refers to as follows:
[image: Mathematical expressions consisting of equations involving variables \( p_j \), \( A_i \), and \( B_i \). The equations use operations like addition, subtraction, multiplication, and are set in a sequence, defining relationships between these variables.]
Therefore, the calculation of the wavefield value at the node [image: Equation showing \( x = i \Delta x \).] and [image: Mathematical expression showing "i equals zero."] (i.e., the left boundary in the [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if possible. If you have a caption or specific details, feel free to include them for additional context.] direction) with first-order absorbing boundary requires three layers of data: the wavefield value [image: \( F_1 = f^{n=0}_{i=0} k \)] of the previous time step’s boundary layer (i.e., [image: It seems there was an error in uploading or linking to the image. Please try uploading the image again or provide a URL. If you add a caption, it can help with additional context.] and [image: It seems there was an error in displaying the image. Could you please upload the image again or provide a URL? Also, you can add a caption for additional context if needed.]); the wavefield value [image: Mathematical equation displaying: F subscript 2 equals the product from i equals one to k of f raised to the power n equals zero.] of the first layer inside the previous time step’s boundary (i.e., [image: Please upload the image or provide a URL so I can create the alt text for you.] and [image: Equation showing "x equals delta x".]); and the wavefield value [image: Mathematical expression showing \( F_3 = \prod_{i=1}^{n=1} f_i^k \).] of the first layer inside the current time step’s boundary (i.e., [image: Equation showing "t equals delta t", where "t" represents time and "delta t" represents a change in time.] and [image: Equation showing "x equals delta x".]).
The proposed method can be employed to implement absorbing boundary processing for other physical variables on boundaries within the wavefield region. Due to the directional nature of wave velocity on different boundaries, the wave velocity [image: Please upload the image or provide the URL so I can help create the alt text for it.] in the absorbing boundary operator can have either a positive or negative sign. For instance, on the left and upper boundaries, reflected waves propagate in the positive direction along the coordinate axis, thus requiring a positive sign for [image: Please upload the image or provide a URL, and I will create the alt text for it.]; otherwise, it necessitates a negative sign.
4.2 Comparison of wave velocity and attenuation between finite difference and plane wave analysis
To validate the effectiveness of the finite difference method for the wave equation in fractured-porous network, the core sample saturated oil shown in Table 1 is selected. Based on the finite difference in the staggered grid, the numerical solutions of the wave equation is obtained to generate wavefield snapshots, followed by the analysis of wavefield velocity and attenuation.
TABLE 1 | Parameter table of porous media.
[image: Table displaying various parameters with values. It includes porosity (0.284), confining pressure (30 MPa), solid particle modulus (36 GPa), Poisson's ratio (0.25), and Young's modulus (20 GPa). Also listed are the number of network nodes (m, n, l) as 5 each, and unit size as 3.0 × 10^-3 meters.]The parameters of the differential grid are presented in Table 2.
TABLE 2 | Parameter table of finite difference simulation.
[image: Table displaying grid parameters and their values: Spatial step in each direction \( \Delta h \) is 2.5 meters, Time step is 2.0 x 10⁻⁶ seconds, Calculated spatial steps 100, Calculated time steps 27,500, Center frequency 100 Hz.]The calculation space range is [image: Please upload the image or provide a URL so I can help generate the alt text for you.], and the wave propagation time is measured to be 0.055 s. The seismic source is positioned at the center of the calculation area. Figure 2 displays the calculated snapshot of solid particle velocity, with spatial coordinates representing its extent. The analysis findings reveal distinct fast P-wave within this snapshot. Moreover, due to waves propagating in various directions, a phase reversal in velocity occurs at the midpoint of the wavefield. Additionally, faint outlines of S-wave are discernible but exhibit weaker amplitude; however, slow P-wave are challenging to observe due to significant dissipation.
[image: Greyscale image of a circular interference pattern with concentric rings. The image includes a gradient scale on the right, ranging from black to white, labeled from negative point two to point eight.]FIGURE 2 | The wave field snapshot of oil-bearing fractured-porous media (The velocity of solid particle).
Wavefield information is computed using parameters corresponding to various aspect ratios, and the obtained results are compared with the dispersion and attenuation outcomes derived from plane wave analysis. The aspect ratio “a” ranges from 0.1 to 1.0 in increments of 0.1, resulting in a total of 10 values. In this study, the proposed method is employed to calculate the dry skeleton modulus and permeability (under steady flow conditions), which are subsequently substituted into both the numerical solution of the wave equation and the analytical solution of the plane wave analysis. The values of dry skeleton modulus and permeability for different aspect ratios are shown in Figure 3.
[image: Two graphs display data with horizontal axes labeled "a" ranging from 0 to 1. Graph A plots \( K_b \) in gigapascals (GPa), showing an increase from 5 to 30 GPa. Graph B plots \( κ \) in unspecified units, increasing from 1 to 5. Both graphs indicate an upward trend as "a" increases.]FIGURE 3 | Dry skeleton modulus (Kb) and permeability (κ) corresponding to different aspect ratios (a).
The procedure for computing the dispersion and attenuation of fast P-wave based on seismic data is outlined as follows: Firstly, in the calculation process of the wave field snapshot, two receivers are strategically positioned to measure particle velocity and stress amplitude at distinct locations. Let [image: The image shows the mathematical expression A(x1), where A is a function of x1.] denote the recorded amplitude value at position [image: Please upload the image or provide a URL, and I will help create the alternate text for it.], while [image: Mathematical expression showing capital letter A followed by \( (x_2) \), with \( x_2 \) in subscript, enclosed in parentheses.] represents the corresponding value at position [image: The image displays a mathematical variable symbol "x" with a subscript "2", indicating it is the second variable in a series.]. The separation between these receivers is denoted as [image: Delta s equals the absolute value of x sub two minus x sub one.]. Secondly, obtain multiple sets of waveform graphs, correlate the waveforms at these two positions, determine the time difference [image: Delta t, represented by the Greek letter delta (Δ) followed by a lowercase t, symbolizes a change or interval in time.], and thereby derive the velocity value [image: Equation displaying velocity as \( v = \Delta s / \Delta t \), representing the change in position over the change in time.]. Additionally, the quality factor [image: Formula for Q: capital pi times f times the fraction of x2 minus x1 over nu, multiplied by the inverse of the natural logarithm of the fraction A of x1 over A of x2.] is determined by employing the amplitude attenuation method (Gong, et al., 2009), which calculates by the ratio of amplitudes at two different distances (or different times), where [image: Please upload the image or provide a URL, and I can help create the alt text for you.] represents the source frequency. The two receivers in this example are positioned horizontally at the same elevation as the seismic source. The first receiver is located 25 m to the left of the source, with a separation distance of 10 grid cells or 25 m between them.
The theoretical solutions of dispersion and attenuation, along with the numerical results obtained from the finite difference method, are compared in Figures 4, 5. It can be observed from these figures that the fast P-wave velocity calculated using the proposed finite difference scheme exhibits excellent agreement with the theoretical solution based on plane wave analysis. Additionally, a consistent trend is observed for the inverse quality factor. These computational findings provide validation for the efficacy of the proposed method.
[image: Graph showing fast P-wave velocity in meters per second plotted against aspect ratio. The curve demonstrates an increase in velocity as the aspect ratio increases. The legend indicates a solid line represents the theoretical solution, and circles denote numerical solutions. Velocity values range from 1500 to 4000 meters per second, with aspect ratios from 0 to 1.]FIGURE 4 | Comparison between theoretical solution and numerical solution of fast P-wave velocity under different aspect ratios.
[image: Line graph showing inverse quality factor \(g(1/Q)\) versus aspect ratio. The curve represents the theoretical solution, and circular markers denote the numerical solution. The graph shows a rapid increase initially, stabilizing around an aspect ratio of 0.5.]FIGURE 5 | Comparison between theoretical solution and numerical solution of fast P-wave attenuation under different aspect ratios.
4.3 Influence of confining pressure on P-wave velocity
The confining pressure exerted on the porous media has a direct impact on [image: Mathematical notation of "K" in italic with a subscript "b".], thereby influencing the values of wave velocity. For quantitatively investigating the influence of confining pressure on wave velocity, the rock physics parameters used in the calculation are the same as those in Table 1, in which the seismic wave frequency is fixed at 100 Hz, the aspect ratio is 0.15, the confining pressure changes from 103 Pa to 109 Pa. The seismic velocities can be obtained by substituting the corresponding [image: Mathematical expression displaying the symbol K subscript b, often used to represent the base dissociation constant in chemistry.] under different confining pressures, and the results show in Figures 6, 7.
[image: Graph showing the relationship between confining pressure and fast P-wave velocity. The x-axis represents confining pressure (up to \(10^4\)) and the y-axis shows fast P-wave velocity in meters per second (from 2550 to 2950 m/s). The graph depicts a positive correlation.]FIGURE 6 | Variation of fast P wave velocity with confining pressure.
[image: Line graph showing the relationship between confining pressure (x-axis) and slow P-wave velocity in meters per second (y-axis). The line trends upward from approximately 50.4 m/s to 51.6 m/s as confining pressure increases from 1,000 to 10,000 units.]FIGURE 7 | Variation of slow P wave velocity with confining pressure.
The calculation results demonstrate that the wave velocity increases with the applied confining pressure, owing to the concurrent rise in dry skeleton modulus [image: Mathematical notation depicting the symbol \( K_b \), where \( K \) is a capital letter and \( b \) is a subscript lowercase letter.]. Additionally, a similar relationship is observed between wave velocity and confining pressure, as well as between dry skeleton modulus [image: Mathematical notation displaying "K" with a subscript "b".] and confining pressure, with their respective curves exhibiting analogous trends. Moreover, the changing trend of slow P-wave is similar to that of fast P-wave. The crucial point to emphasize here is that the frequency of seismic waves exerts minimal influence on the relationship curve between confining pressure [image: I’m unable to view or describe images directly. Please upload the image or provide a URL, and I can help create alt text for it.] and wave velocity, particularly within the relatively low-frequency range, as exemplified by this case where the frequency is set at 100 Hz. If any value within the frequency range of 100–104 Hz is considered, it can be observed that the curves remain the same, which can be inferred from the dispersion curve maintaining a horizontal shape in the low frequency range.
Based on this case study, it can be inferred that the velocities of fast P-waves and slow P-waves exhibit a gradual increase as the confining pressure increases. This observed trend remains consistent across different frequencies of seismic waves, particularly at relatively low frequencies (<104 Hz).
5 PERMEABILITY PREDICTION BASED ON WAVE EQUATION OF FRACTURED-POROUS MEDIA
The propagation of waves in porous media containing fluids gives rise to phenomena such as dispersion and attenuation, wherein both the wave velocity and amplitude exhibit frequency-dependent changes. The dispersion and attenuation curves of the wavefield are influenced by rock physical properties including porosity, permeability, fluid properties, and solid skeleton bulk modulus. Among these factors, we specifically investigated the sensitivity of dispersion and attenuation curves to variations in permeability. If alterations in permeability can be discerned on dispersion/attenuation curves, it becomes feasible to estimate these changes through observation and calculation of these curves or even determination of numerical values for permeability using a template method.
5.1 Permeability prediction of permeability based on dispersion and attenuation
According to the wave equation and plane wave analysis, expressions for dispersion/attenuation of the wave field has been yielded. The dispersion and attenuation curves of the wave field are then calculated based on rock physics parameters under different permeability. A set of solid skeleton parameters and fluid parameters is selected as presented in Table 3 (Johnson, 2001; Lo, et al., 2005).
TABLE 3 | Rock physical parameters.
[image: Table listing various parameters and their values. Parameters on the left include porosity \( \phi = 0.284 \), confining pressure \( p_c = 30 \) MPa, solid particle modulus \( K_s = 36 \) GPa, Poisson's ratio \( \nu = 0.25 \), Young's modulus \( E = 20 \) GPa, skeleton density \( \rho_s = 2650 \) kg/m\(^3\), fluid density \( \rho_f = 762 \) kg/m\(^3\), and fluid bulk modulus \( K_f = 0.57 \) GPa. On the right, number of nodes \( m = 5 \), \( n = 5 \), \( l = 5 \), unit size \( = 3.0 \times 10^{-3} \) m, aspect ratio of fracture \( a = 0.15 \), solid shear modulus \( G = 1.74 \) GPa, and fluid viscosity \( \eta = 0.00144 \) Pa s.]The calculated dispersion/attenuation curves are depicted in Figures 8, 9.
[image: Graph showing the relationship between frequency (Hz) and \( V_p \) (m/s) for different conditions. Five curves labeled with stiffness ratios (e.g., \( x = 3.5080D \), \( x = 0.22417D \)) depict how \( V_p \) changes significantly between frequencies of 10^5 and 10^6 Hz. Each curve corresponds to different mesh sizes (4x4x4, 7x7x7, etc.) as indicated in the legend. The graph illustrates a steep transition in \( V_p \) values centered around these frequencies.]FIGURE 8 | Variation of fast P-wave dispersion curves with permeability.
[image: Log-log plot showing various curves representing the relationship between negative imaginary impedance (\(-\text{Im}(Z)\)) and frequency (Hz). Each curve corresponds to different parameter sets: \(\alpha = 3.9569\), \(\alpha = 1.4691\), \(\alpha = 0.70847\), \(\alpha = 0.38242\), \(\alpha = 0.22417\), with respective detailing in parentheses. Frequencies range from \(10^0\) to \(10^{10}\) Hz, and \(-\text{Im}(Z)\) ranges from \(-8\) to \(2\).]FIGURE 9 | Variation of fast P-wave attenuation curves with permeability.
In the example, various porous network structures of different scales ([image: Certainly! Please upload the image you need the alt text for.], [image: Please upload the image or provide a URL so I can create the appropriate alt text for you.], [image: Please upload the image or provide a URL for me to create the alt text for you. If there is a specific caption or context you want to add, feel free to include it.], [image: Mathematical expression showing "7 times 7 times 7".] and [image: To provide alt text, please upload the image or provide a URL. Additionally, you can add a caption for more context if needed.]) were employed within a unit cube with a side length of [image: Please upload the image or provide a URL so I can assist with creating alternate text.]. As the density of fractures and pores increased, the connectivity between pores became denser, leading to a gradual reduction in permeability (from 3.5888 to 0.22417 Darcy). Different permeability corresponded to distinct shapes of fast P-wave dispersion curves for diverse-scale porous network structures. Figure 8 demonstrates that as permeability changes, the dispersion curves shift, with a discrepancy in P-wave velocity reaching up to 40 m/s at identical frequency in this case study. Figure 9 illustrates how fast P-waves’ attenuation curve varies with permeability, indicating an observable shift in the position of attenuation peaks.
In conclusion, the permeability can be modified by adjusting the porous network structure (pore density), based on rock physical parameters such as porosity, fluid parameters, and solid skeleton bulk modulus. Different permeability conditions result in noticeable and regular changes in the wavefield curves of dispersion and attenuation. Therefore, it is possible to calculate the variation pattern of dispersion and attenuation with respect to permeability when rock physical parameters are known. Consequently, changes in permeability can be inferred by measuring the movement of dispersion/attenuation curves.
5.2 Influence of fracture aspect ratio on permeability
By utilizing the curves of permeability and bulk modulus for different fracture aspect ratios within a fully saturated elastic model, dispersion curves for P- and S-wave velocities, along with prediction for attenuation, are successfully derived. Subsequently, by obtaining the permeability and P/S-wave velocities in porous media with varying fracture aspect ratios, the plot can be drawn, illustrating the relationship between P/S-wave velocity and permeability.
The graphical analysis of seismic attributes is presented in Figure 10, illustrating the calculation results. For sandstone, the calculated parameters are as follows: density of 2,650 kg/m3, bulk modulus of 37 GPa, shear modulus of 44 GPa, Poisson’s ratio of 0.08, and Young’s modulus of 94.5 GPa. When determining wave velocity, a fixed frequency of 30 Hz is employed.
[image: Graph displaying \(V_P^{min}/V_P^S\) versus \(Z\) in a sandstone-water medium. The \(y\)-axis ranges from 1.6 to 1.9, and the \(x\)-axis spans 1.05 to 1.35 on a scale of 10^7. Various symbols represent different parameter values, as indicated in the legend. Dotted lines mark data points.]FIGURE 10 | Relationship between P-wave velocity and permeability of 3D water-bearing fracture network.
The permeability gradually decreases as the aspect ratio of fractures decreases under a given porosity condition, as observed from Figure 10. The data points on the graph move from bottom right to top left, and with approaching zero aspect ratio, there is a rapid increase in the distance between data points.
From the calculation results, it is evident that there exists a significant variation in the velocity ratio of P- and S-wave under different fracture/pore aspect ratios, indicating a substantial impact of aspect ratio on this velocity ratio. The influence of aspect ratio on the velocity ratio arises from two aspects: 1) the effect of varying aspect ratios on the bulk modulus of rock skeleton; 2) the effect of varying aspect ratios on permeability. These two influences are closely intertwined, and when assessing the feasibility of predicting permeability using seismic attributes, both aspects need to be simultaneously considered rather than isolating one-sided effects.
5.3 Identification of permeability change based on velocity ratio-impedance template
As aspect ratio have effects on both bulk modulus and permeability, their contributions to the velocity ratio are intertwined, making it impossible to separately examine the influence of permeability on wave velocity. To further analyze the relationship between wave velocity ratio and permeability, the fracture aspect ratio parameter is held constant while varying only the numerical value of permeability, then calculate data for the velocity ratio-impedance template.
To facilitate comparison with previous examples, the aspect ratio is standardized to 1 and the corresponding permeability values from those examples (1.2 [image: Please upload the image or provide a URL so I can help create the alt text for it.] D, 1.8 [image: Multiplication symbol followed by ten raised to the power of negative four.] D, 0.036D, 0.2D, 0.47D) are adopted. Figure 11 illustrates the velocity ratio-impedance template.
[image: Scatter plot of V1/V2 as a function of Z for sandstone-water. The horizontal axis represents Z in kilograms per meter squared per second, with values around 1.34451115 times ten to the power of seven. The vertical axis shows V1/V2 values close to 1.6342413. Different data points correspond to various a and kappa parameters. The plot includes a legend with five levels indicating different alpha (a) and kappa zero (kappa₀) values.]FIGURE 11 | Variation of velocity ratio with impedance in 3D water-bearing fracture network.
From Figure 11, it is evident that when the aspect ratio remains constant (in this case, 1) and only the permeability varies, there is a significant reduction in the range of variation observed in the velocity ratio. Simultaneously, there is also a substantial decrease in the range of impedance changes. Within the same range of permeability variations as considered in previous calculations, discerning changes in permeability solely from the velocity ratio becomes nearly impossible. Hence, it can be concluded that alterations in bulk modulus resulting from variations in aspect ratio are primarily responsible for considerable changes observed in velocity ratio, while modifications in permeability due to changes in aspect ratio have relatively minor impacts on velocity ratio.
In order to ascertain the extent of permeability changes that can be discerned in the velocity ratio-impedance template, the variation pattern of velocity ratio as permeability ranged from 1 millidarcy to 100 darcies has been investigated. Figure 12 illustrates that when permeability exhibits a wide range of variability (0.001–100 Darcy), there is a significant amplification in the magnitude of impedance (from 0.32 to 130,000 kg/s.m2). Hence, during substantial fluctuations in permeability, corresponding variations in impedance become more pronounced. However, it should be noted that the numerical value for velocity ratio change remains exceedingly small (0.00041), rendering it inadequate for independently distinguishing alterations in permeability.
[image: Scatter plot showing (vW/vVi) for different values of alpha and kappa against Z values, ranging from 1.3440 to 1.3448 on the x-axis and 1.6339 to 1.6344 on the y-axis. Different markers represent various alpha and kappa values, as indicated in the legend.]FIGURE 12 | Variation of velocity ratio with impedance in 3D water-bearing fracture network (the permeability changing from 0.001 to 100 Darcy and the aspect ratio of 1).
The following analysis investigates the patterns observed under different aspect ratios, replicating the aforementioned calculations for aspect ratios of 0.5 and 0.05. Figures 13, 14 demonstrate that as the aspect ratio decreases, there is a significant reduction in the range of variation in wave impedance, decreasing from 130,000 kg/s.m2 at [image: Please upload the image or provide a URL so I can generate the alternate text for it.] to 11 kg/s.m2 at [image: It seems like you've included a mathematical expression instead of an image. Please upload the image or provide a URL, and I will create the alt text for you.]. However, concurrently with the decrease in aspect ratio, there is a continuous increase in the wave velocity ratio, escalating from 0.00041 to 0.0023.
[image: Graph showing \( \frac{V}{V_m} \) versus \( Z \, \text{kg} \, \text{m}^{-2}/\text{s} \) for various \( a = 0.5 \) conditions. Different symbols represent different \( k_g \) values: circle for \( 0.001 \, \text{D} \), diamond for \( 25 \, \text{D} \), triangle for \( 50 \, \text{D} \), square for \( 75 \, \text{D} \), and star for \( 1 \times 10^2 \, \text{D} \). Data ranges between \( 1.6372 \) and \( 1.638 \) on the y-axis and \( 1.312 \) to \( 1.313 \times 10^7 \) on the x-axis.]FIGURE 13 | Variation of velocity ratio with impedance in 3D water-bearing fracture network (the permeability changing from 0.001 to 100 Darcy and the aspect ratio of 0.5).
[image: Graph showing the relationship between \(Z\) in kg·m\(^2\)/s (\(6Z + 11\)) and \(V_s^3/V^3\) for standard seawater with \(s = 0.05\). Data points are marked with varying symbols representing different \(\alpha\) values: squares for \(0.001D\), circles for \(25D\), triangles for \(50D\), diamonds for \(75D\), and stars for \(0.02D\). The graph's key is positioned within the top right, with each marker placed along a linear pattern near \(1.873\).]FIGURE 14 | Variation of velocity ratio with impedance in 3D water-bearing fracture network (the permeability changing from 0.001 to 100 Darcy and the aspect ratio of 0.05).
From the analysis of the calculation results above, it is evident that when considering rocks with identical physical parameters and varying only in permeability, there is minimal variations observed in the velocity ratio of P- to S-wave at the frequency of 30 Hz. Consequently, identifying changes in permeability becomes exceedingly challenging. In scenarios where there exists a significant alteration in permeability (e.g., from 1 millidarcy to 100 Darcy), porous networks with the large aspect ratio exhibit a relatively extensive range of impedance variation. However, even within low porosity and low permeability rocks, the dispersion degree of data points on the velocity ratio-impedance template remains insufficient for isolating the impact of permeability changes, thereby presenting substantial challenges.
5.4 Identification of permeability change based on attenuation-young’s modulus
The variation patterns of P-wave attenuation and Young’s modulus in relation to different permeability have been carried out, revealing a significant range of relative changes in attenuation. Figure 15 illustrates the variations in P-wave attenuation-Young’s modulus resulting from alterations in permeability within water-bearing porous sandstone.
[image: A scatter plot showing \(Q^{-1}\) values for sandstone-water versus \(E\) in kilopascals. The graph indicates data points with different symbols representing varying \(\alpha\) and \(r_0/D\) values. The plot has labeled axes and a legend.]FIGURE 15 | Template of P-wave velocity attenuation-Young’s modulus in 3D water-bearing fracture network (The permeability changing from 0.001 to 100 Darcy and the aspect ratio of 1.
The following conclusions can be inferred from the attenuation-Young’s modulus template:
	(1) The relative change in P-wave attenuation is quite noticeable. As the permeability increases, the attenuation value gradually increases, exhibiting an approximately linear growth trend.
	(2) With the increase in permeability, Young’s modulus also gradually increases, and it grows more rapidly at higher permeability.
	(3) If accurate data on P-wave attenuation can be obtained, the velocity attenuation-Young’s modulus template can be utilized to analyze and identify changes in permeability within reservoir when permeability changes significantly in a wide range.
	(4) In cases of low porosity and low permeability where there is limited variation in permeability, the distribution range of data points on the velocity attenuation-Young’s modulus template is also narrow, posing challenges for identifying changes in permeability.

5.5 Sensitivity analysis of seismic parameters changing with permeability
In order to identify seismic attributes that exhibit high sensitivity to variations in permeability, the comprehensive sensitivity analysis on various seismic attribute parameters has been conducted. During the calculations, five permeability values were uniformly selected ranging from 0.001 Darcy to 100 Darcy, while keeping other rock physics parameters constant. The individual sensitivities of the velocity ratio of P- to S-wave, P-wave impedance, wave velocity, shear modulus, Young’s modulus, and attenuation of P- and S-wave velocities towards changes in permeability were separately evaluated. The parameters investigated in our study have distinct physical meanings in the context of fractured-porous media. The velocity ratio of P- to S-wave (Vp/Vs) serves as an indicator of fluid-filled zone. P-wave impedance (Z) and wave velocities (Vp and Vs) provide insights into rock density and elastic properties. Shear modulus (μ) and Young’s modulus (E) are mechanical properties that describe rock resistance to deformation, with lower values indicating increased deformability under stress. Lastly, attenuation parameters (Qp and Qs) quantify the energy loss of seismic waves, with higher permeability associated with greater attenuation, crucial for detecting fluid-saturated zones. These parameters collectively help in characterizing subsurface formations, fluid dynamics, and rock behavior in fractured-porous media, aiding in hydrocarbon exploration and reservoir assessment.
Herein, the sensitivity [image: Please upload the image or provide a URL for me to give an appropriate alt text.] is defined as [image: The formula shown is \( s(x) = (x_{\text{max}} - x_{\text{min}}) / \bar{x} \), where \( s(x) \) represents a scaled value based on the difference between the maximum and minimum values of \( x \), divided by the mean of \( x \).] , [image: The image displays the mathematical expression \( x^{\text{max}} \).] and [image: The LaTeX expression shows "x" with a subscript "min".] represent the maximum and minimum calculated values of the seismic attributes respectively, while [image: Please upload the image or provide a URL so I can help create the alternate text for you.] denotes their average value. Figures 16–18 present comparative charts illustrating the sensitivity of each attribute for sandstone containing water, oil or gas.
[image: Bar chart showing sensitivity (normalized) on a logarithmic scale from \(10^{-5}\) to \(10^{-1}\) for different variables: \(V_F\), \(Z\), \(V_p\), \(\rho\), \(P\), \(E_D\), \(Q_S\), with \(E_D\) and \(Q_S\) having the highest values. Data pertains to a sandstone-water scenario.]FIGURE 16 | Sensitivity comparison of seismic attributes changing with permeability in 3D water-bearing fracture network (The permeability changing from 0.001 to 100 Darcy, the aspect ratio of 1 and the frequency of 30 Hz).
[image: Bar chart showing sensitivity indices for different parameters in a sandstone-oil model. Parameters \(V_p/V_s\), \(Z\), \(V_p\), \(V_s\), \(\rho\), and \(E\) have low sensitivities, while \(Q_p\) and \(Q_s\) have high sensitivities. Vertical axis is logarithmic.]FIGURE 17 | Sensitivity comparison of seismic attributes changing with permeability in 3D oil-bearing fracture network (The permeability changing from 0.001 to 100 Darcy, the aspect ratio of 1 and the frequency of 30 Hz).
[image: Bar chart titled "Sensitivity (normalized): Sandstone-Gas" showing sensitivity values in decibels per second (dB/dec) for various variables: \(V_M\), \(N\), \(Z\), \(V_H\), \(V_F\), \(E\), \(Q_o\), and \(Q_S\). \(E\), \(Q_o\), and \(Q_S\) have higher values compared to others, with \(Q_o\) and \(Q_S\) having the highest bars.]FIGURE 18 | Sensitivity comparison of seismic attributes changing with permeability in 3D gas-bearing fracture network (The permeability changing from 0.001 to 100 Darcy, the aspect ratio of 1 and the frequency of 30 Hz).
The comparative analysis reveals that the sensitivity of seismic attributes, such as velocity ratio, P-wave impedance, wave velocity, shear modulus, and Young’s modulus, to changes in permeability is relatively low. Conversely, the attenuation of P-wave and S-wave velocities exhibits a comparatively high sensitivity. The additional calculation and analysis for the aspect ratio of 0.5 are conducted, finding that the sensitivity of seismic attributes to changes in permeability remains consistent with the case where the aspect ratio is 1.
6 CONCLUSION
In this paper, an improved wave equation of fractured-porous media is proposed. Through this research, the significant influence of fracture aspect ratio and confining pressure on wave properties is unveiled, and a novel method for permeability identification based on the curves of velocity-fracture parameters and velocity-permeability is proposed, while numerical simulation methods are refined. The research findings demonstrate that fracture aspect ratio and confining pressure exert a substantial impact on wave properties such as velocity and attenuation; there exists a correlation between fracture parameters and permeability, which can be utilized to predict permeability by utilizing the curves of either velocity-fracture parameters or velocity-permeability. These discoveries offer fresh insights into the wave behavior of fractured-porous media, providing a theoretical foundation and innovative approaches for permeability prediction. Moreover, the methodologies and concepts presented in this study can also be applied to seismic rock physics research in various fields, thereby further advancing related areas’ development. Nevertheless, certain limitations persist in this study including the complexity of fluid flow within porous media as well as challenges associated with accurately describing the actual motion state of pore fluid. In future research, these challenges will continue to be addressed to enhance models and methods, enhancing accuracy and applicability in permeability identification.
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The compressed sensing (CS) method, commonly utilized for restructuring sparse signals, has been extensively used to attenuate the random noise in seismic data. An important basis of CS-based methods is the sparsity of sparse coefficients. In this method, the sparse coefficient vector is acquired by minimizing the [image: A lowercase 'L' and the number '1' are placed next to each other, resembling similar shapes, but with distinct differences in their design.] norm as a substitute for the [image: A black lowercase "b" is rotated 180 degrees, resembling a lowercase "q" or a partially incomplete loop.] norm. Many efforts have been made to minimize the [image: The image shows a lowercase "l" and a lowercase "p" forming a stylized logo. The letters are joined, with the "l" extending downward and the "p" almost resembling a loop. The design is simple and minimalistic.] norm (0 < p < 1) to obtain a more desirable sparse coefficient representation. Despite the improved performance that is achieved by minimizing the [image: Logo featuring a stylized lowercase 'l' and 'p' combined into a single symbol, with the 'l' forming a curve that flows into the 'p' on a transparent background.] norm with 0 < p < 1, the related sparse coefficient vector is still suboptimal since the parameter p is greater than 0 rather than infinitely approaching 0 [image: \( (p \rightarrow 0^+) \)]. Therefore, the CS method with the limit [image: Letter "p" followed by a right arrow pointing to "0" with a superscript plus sign.] is proposed to enhance the sparse performance and thus generate better denoised results in this paper. Our proposed method is referred to as the CS-LHR method because the solving process for minimizing [image: The image shows the letter "p" followed by a right arrow pointing to the number zero with a superscript plus sign.] is the log-sum heuristic recovery (LHR). Furthermore, to improve the computational efficiency, we incorporate the majorization-minimization (MM) algorithm in this CS-LHR method. Experimental results of synthetic and real seismic records demonstrate the remarkable performance of CS-LHR in random noise suppression.

Keywords: compressed sensing, log-sum heuristic recovery, seismic denoising, lp norm, the log-sum heuristic recovery (LHR)

1 INTRODUCTION
Random noise is frequently present in raw seismic data, which disrupts the continuity of seismic events and reduces the signal-to-noise ratio (SNR) of seismic data. Low SNR and discontinuous seismic events can blur the stratigraphic information in seismic profiles, reduce the interpretability of seismic data, and lead to incorrect identification of subsurface targets. Hence, it is essential to perform seismic noise separation and attenuation during both prestack and poststack seismic data processing (Wu et al., 2019; Dong et al., 2022a; 2022b; Liu et al., 2022a; Liu et al., 2022b; Wu B Y et al., 2022; Zhong et al., 2022; Zhong et al., 2023).
In recent years, numerous signal processing methods have emerged for the separation and suppression of seismic noise (Yuan et al., 2012; Li et al., 2014; 2022; Zhang et al., 2021; Ni et al., 2022; Sun et al., 2022; Wu H et al., 2022). These methods include singular spectrum analysis (Oropeza and Sacchi, 2011), empirical mode decomposition-based techniques (Bekara and Baan, 2009), wavelet transform (Yang et al., 2018), and curvelet transform (Qu et al., 2016). Most of these methods are typically developed based on the distinguishing characteristics of seismic signals and specific types of noise in transform domains. Notably, sparse representation-based techniques have gained significant popularity (Candès et al., 2006; Chen et al., 2017; Wu B Y et al., 2022). While seismic data is not inherently sparse, it can be effectively transformed into a sparse signal by sparse transformation (Siahsar et al., 2016). Random noise cannot be transformed into a sparse signal due to lacking sparsity. Then, during sparse transformation, the noisy seismic signal is separated into a sparse signal and random noise. Subsequently, the denoised seismic signal is reconstructed using the sparse signal, thereby the separation of the seismic signal and random noise is achieved by sparse transformation and sparse signal reconstruction. In practical applications, the denoising effectiveness of sparse transformation is linked to the sparsity of the resulting sparse signal. Greater sparsity leads to improved denoising performance. Thus, enhancing the sparsity of sparse transformation is crucial for its denoising applications (Wu H et al., 2022).
Compressed sensing (CS) is a well-established method that combines sparse transformation and signal reconstruction (Donoho, 2006). In contrast to the conventional Nyquist–Shannon sampling theory, the CS method can reconstruct signals without higher sampling rates and has received significant attention and been widely applied in separating random noise. Regrettably, obtaining sparse signals through the [image: It seems there's a placeholder or error in your message. To provide alternate text, please upload the image or ensure the text describes the image accurately.] norm minimization in the CS method is an NP-hard problem (Candès and Wakin, 2008; Yang et al., 2022). As such, the minimization of [image: Please upload the image or provide a URL for me to access it. If you have a caption or context for the image, feel free to include that as well.] norm and [image: It seems like there might be an issue with the image upload. Please try uploading the image again, and I will gladly help create the alt text for it.] norm (0<p<1) are often adopted as replacements for the minimization of [image: Please provide the image or specify a source URL so I can help generate the alternate text.] norm in some improved CS methods (Yang et al., 2009; Liu et al., 2023a). And the [image: It seems there was an error, as no image was uploaded or linked. Please upload the image or provide a URL for me to create the alt text.] norm (0<p<1) minimization has been demonstrated as having superior sparsity capabilities compared to [image: Sure, please upload the image or provide a URL to it so I can help create the alt text.] norm minimization (Wu B Y et al., 2022; Liu et al., 2023b). Although the aforementioned methods for tackling NP-hard problems can enhance the convergence and effectiveness of the solution process, they also diminish the sparsity of the sparse signal; their sparse performance can still be further enhanced by incorporating the limiting form [image: The image shows the mathematical expression "P approaches zero from the positive side," represented as "P arrow 0 superscript plus."].
Thus, a novel algorithm leveraging norm minimization with [image: Letter "P" followed by a right arrow pointing to "Zero" with a superscript plus sign.] in the CS method is proposed in this paper; it can enhance the sparsity of sparse signals, achieve proficient signal reconstruction, and effectively suppress seismic noise. The minimization utilizing the limiting form [image: The expression shows the letter 'P' followed by a rightward arrow pointing to '0' with a superscripted plus sign.] is referred to as log-sum heuristic recovery (LHR) because the expansion of the limiting form norm is a logarithmic sum (Zou and Hastie, 2015). Therefore, we also call the proposed algorithm the CS-LHR method. In our approach, the minimization with [image: Letter "p" followed by a right arrow pointing to "0" with a superscript plus sign.] poses a non-convex problem, making its solution process more intricate than that of convex problems. Encouragingly, significant progress has been achieved in addressing non-convex problems, and the majorization-minimization (MM) iterative optimization algorithm is one effective method for solving such problems. The MM algorithm substitutes a complex optimization problem with a series of simpler ones, thus approximating the objective function that encompasses non-differentiable and non-convex traits with a differentiable and convex surrogate function to facilitate optimal solution retrieval (Fazel et al., 2003; Foo et al., 2009). To ensure good convergence rates, our workflow incorporates the majorization-minimization (MM) algorithm.
In the subsequent sections of this article, we provide a detailed description of the proposed workflow. Subsequently, a synthetic dataset and a field dataset containing noise are utilized to demonstrate the effectiveness of the approach. The results show that our method can suppress noise from seismic reflections effectively and results in a seismic profile with good continuity of seismic events and high resolution.
2 COMPRESSED SENSING WITH THE LIMIT FORM [image: The text "p" followed by a right arrow pointing to "0" with a superscript plus sign.] (CS-LHR)
Compressed sensing (CS), which challenges the traditional Nyquist–Shannon sampling theory, has emerged as a hot topic in the field of signal processing (Donoho, 2006.). Although many studies on the applications of CS have been conducted, there is still value in exploring how to enhance its performance (Candès and Wakin, 2008; Yang et al., 2009). In this paper, we will explore how to enhance the sparsity of sparse signals in the CS method and apply the related research to seismic signal denoising.
If a signal [image: Mathematical expression showing "X" belonging to the set of N-dimensional real numbers, denoted as \( X \in \mathbb{R}^N \).] can be sparsely represented, it can be written as
[image: An equation is shown as X equals the product of Ψ, Y, and Θ, labeled as equation number one.]
where the matrix [image: The Greek letter Psi symbol, resembling a trident with a central vertical line and two curved lines extending from the top.] consists of a set of sparse basis vectors, and the vector [image: Please upload the image or provide a URL for me to create the alt text.] represents a sparse signal within the space defined by these basis vectors in matrix [image: The image shows the Greek letter Psi, which resembles a trident with three prongs, commonly used to represent psychology and various scientific fields.]. In the CS method, the sparse signal [image: Certainly! Please upload the image or provide a URL, and I can help create the alternate text for it.] can be obtained by minimizing the norm as [image: Optimization expression involving minimizing the L-zero norm of theta (θ) with respect to θ.] and should satisfy the constraint as
[image: Equation showing \( Y = \Phi \Psi \theta \), labeled as equation (2).]
In Eq. 2 [image: Greek letter phi symbol, often used in mathematics and science.] is referred to as the sensing matrix, and [image: Please upload the image you'd like me to describe, and I'll provide the alternate text for it.] is the sampled data of [image: Please upload the image or provide a URL, and I can create the alt text for you.] obtained by the sensing matrix [image: I'm unable to give a description of the image as there is no image visible. Please upload the image or provide a URL, and I will be happy to help.].
Then, the CS theory can be described by
[image: Equation minimizing the L0 norm of theta subject to the constraint Y equals ΦΨθ, labeled as equation three.]
In practice, the matrix [image: The Greek letter Psi, depicted as a symbol resembling a trident with a central vertical line and two curved lines extending from the middle.] and the sensing matrix [image: I'm unable to view the image. Please upload the image file or provide a URL for me to generate the alt text.] are pre-determined. As the description by Eq. 1 and Eq. 3, the sparse signal [image: Please upload the image or provide a URL so that I can help create the appropriate alt text for it.], when acquired, allows for the reconstruction of X utilizing [image: Mathematical equation: X equals Psi times Theta.].
Eq. 3 presented above is an NP-hard problem that is challenging to solve. To overcome this NP-hard problem, the optimization of [image: Please upload the image or provide a URL so I can help you with the alt text.] norm in Eq. 3 can be replaced with a convex optimization of [image: Please upload the image or provide a URL so I can generate the alt text for you.] norm which is the convex approximation of the [image: Please upload the image or provide a URL for me to generate the alt text.] norm, and easier to solve. Then, the related CS method with the [image: Please upload the image so I can provide accurate alt text for it.] norm is (Candès and Wakin, 2008)
[image: Minimize the one-norm of theta, where Y equals the product of matrices Phi, Psi, and theta, as shown in equation four.]
where [image: A mathematical expression showing a vertical bar notation with a dot in the middle, suggesting vector or matrix norms or determinants.] represents the [image: Please upload the image or provide a URL, and I can help generate the alt text for you.] norm.
Although the convex relaxation in Eq. 4 reduces the complexity of the original NP-hard problem, it unfortunately yields a solution [image: Please upload the image or provide a URL for me to generate the alt text.] with suboptimal sparsity due to the [image: Please upload the image or provide a URL, and I will help you with the alt text.] norm deviating significantly from the [image: It seems there was an error in your request. Please provide an image by uploading it or describing it in detail so that I can create the alt text for you.] norm. To address this issue, the [image: Please upload the image you want described, and I will create the alt text for you.] norm is introduced (Candès et al., 2006). Subsequently, the optimization problem described by Eq. 4 with the [image: It seems like there was an issue with the image upload. Please try uploading the image again, and I will be happy to help with the alt text!] norm can be written as
[image: Minimization problem notation showing the expression: "minimize over theta, f sub p of theta, subject to Y equals Phi times Psi times theta." Equation number five is displayed on the right.]
In which [image: Mathematical expression showing \( f_p(\theta) = \|\theta\|_p^p \), where \( f_p \) of theta equals the p-norm of theta raised to the power of p.] and p [image: It seems like there was an error with the image upload. Please try uploading the image again and I'll be happy to help with the alt text.] (0,1]. For [image: Mathematical expression with a universal quantifier: for all \( p > 0 \).], [image: Minimize with respect to \(\theta\) the function \(f_p(\theta)\).] is equivalent to
[image: Optimization equation showing minimization with respect to theta: minimum of (1 over p) times [f sub p of theta minus N] equals minimum of a sum from i equals 1 to N of the absolute value of theta sub i minus 1, all over p.]
in Eq. 6 N is the length of the sparse signal [image: Please upload the image or provide a URL for me to generate the alt text.] and [image: Multicolored round candies scattered across a white surface. Candies are red, blue, green, yellow, and orange, with a glossy appearance.] denotes the element of [image: Please upload the image or provide a URL so I can generate the alt text for you.] (Caiafa and Cichocki, 2013).
Presented above corresponds to a non-convex optimization and exhibits superior sparsity performance compared to the [image: Please provide the image or specify a URL for me to generate the alternate text.] norm minimization. Although the advantages of CS method with the [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL. If you have a caption or additional context, feel free to include it.] p [image: If you upload the image or provide a URL, I can create alt text for it. Let me know if you need any assistance with this!] (0,1] norm shown as Eq. 5 have been demonstrated, the CS method with limit [image: Mathematical expression showing "P" approaches zero from the positive direction, denoted as \(P \rightarrow 0^+\).] has not been studied. It is important that the [image: It looks like there's an issue displaying the image. Please upload the image file or provide a URL to it, and I'll help you create the alt text.] norm minimization based on [image: The expression shows "P" followed by a right arrow pointing to "0" with a superscript plus sign.] differs from other p values in p [image: If you provide the image by uploading it or sharing a URL, I can help create the alternate text for it.] (0,1]; it possesses greater sparse capability (Deng et al., 2012). Additionally, the [image: It seems there might have been an error in uploading the image. Please try uploading the image again and I can help you with the alternate text.] norm minimization based on [image: Mathematical expression showing "P" approaching zero from the positive side, denoted by a right arrow and a superscript plus sign.] also differs from [image: It appears there was an issue with uploading the image. Please try uploading the image again or provide a URL. Optionally, you can add a caption for additional context.] (p=0) that yields an NP-hard problem; it is solvable. Thus, in order to acquire a sparse signal [image: Please upload the image you would like me to provide alternate text for.] with high sparsity, we propose a novel approach that combines the optimization of the limit norm with the CS method to enhance the sparsity of [image: If you have an image to provide, please upload it so I can help create the alt text for you. Alternatively, you can provide a URL to the image.], described as
[image: Optimization equation with two parts. Minimize theta of the limit as p approaches negative infinity of f sub p of theta. Subject to the condition Y equals Phi Psi theta. Equation number seven.]
According to L’Hôspital’s rule (Caiafa and Cichocki, 2013), [image: Limit as p approaches zero from the positive side of f sub p of theta.] in Eq. 7 can be expressed as
[image: Limit equation showing \(\lim_{\delta \to 0^+} f_{p} (\theta) = \lim_{p \to \infty} \sum_{i=1}^{N} \frac{|\theta_{i}|^{-1} - 1}{p} = \sum_{i=1}^{N} \log (|\theta_{i}| + \delta)\).]
where [image: Mathematical expression showing delta greater than zero (\(\delta > 0\)).] is a small positive number to guarantee the stability of the algorithm. In practice, [image: It seems there might be an issue with the image or its reference. Could you please upload the image or provide more context for an accurate description?] should be set to a value slightly smaller than the expected non-zero element [image: A small black number nine with an italic style, positioned above a faint baseline, resembling a mathematical exponent or notation.]. Typically, the solve process of Eq. 8 is robust enough to tolerate different choices of [image: Please upload the image or provide a URL for it, and I can help create the alt text for you.]. Therefore, combined with Eq. 8, 7 can be rewritten as
[image: Mathematical expression for an optimization problem. It involves minimizing the sum from i equals one to N of log of the absolute value of theta sub i plus delta. Subject to the condition Y equals phi psi theta. An additional condition is that the sum equals f sub L of theta. Equation is labeled as equation nine.]
in which the logarithmic sum [image: Summation from i equals 1 to N of the logarithm of the absolute value of theta sub i plus delta.] is denoted as [image: Mathematical expression representing \( f_L(\theta) \), where the function \( f_L \) is dependent on the variable \( \theta \).], and [image: Minimize over θ the sum from i equals 1 to N of the logarithm of the absolute value of θ sub i plus δ.] is the log-sum heuristic recovery (LHR) model. Therefore, the improved method described by Eq. 9 is named as the CS-LHR method by us because it is the composition of the CS and the LHR. In contrast to the traditional CS methods, the CS-LHR method can attain a best sparse signal [image: If you upload an image or provide a URL, I can help create alt text for it. If you do, you can also add a caption for more context.] that exhibits the optimal sparsity.
Note that Eq. 9 is non-convex due to the non-convexity of its log-sum. According to recent progress in non-convex optimization, the non-convex problem can be solved efficiently. In this paper, we incorporate the alternating direction method of the majorization-minimization (MM) algorithm into our workflow to ensure faster convergence (Fazel et al., 2003; Foo et al., 2009). The MM algorithm transforms the original non-differentiable, non-convex function into a differentiable and convex surrogate function, facilitating the retrieval of optimal solutions. Then, Eq. 9 can be equivalently expressed as Eq. 10 based on the MM algorithm as
[image: Minimization problem equation with the objective to minimize the L1 norm of the element-wise product of W and theta, subject to Y equals A times theta, labeled as equation ten.]
where [image: Mathematical expression showing A equals Phi times Psi, with A, Phi, and Psi represented in bold Greek letters.] [image: Please upload an image for me to provide alternate text.] represents the vector of weighted parameters with each element [image: Mathematical expression showing the equation \( w_i = (|\vartheta_i + \delta|)^{-1} \).]. Eq. 10 demonstrates that the log-sum penalty function performs the re-weighted [image: Please upload the image or provide the URL so I can help you create the alt text.] minimization, which promotes sparsity more effectively compared to the [image: Please upload the image or provide a URL to the image for which you need alt text. You can also add a caption for additional context if needed.] norm (0<p<1) minimization. Moreover, each iteration of the MM algorithm for solving Eq. 10 corresponds to a convex optimization that can be easily solved.
Eq. 10 can also be rewritten as
[image: The image shows an optimization equation: minimize with respect to θ, represented as \( \min_{\theta} ||Y - A \theta||_p + \lambda ||W \odot \theta||_1 \). It is labeled as equation (11).]
in Eq. 11 [image: Please provide the image by uploading it or sharing a URL, and I can then help create the alt text for you.] is the positive weighting parameter. Once the solution [image: Mathematical symbol theta (\(\theta\)) followed by an asterisk, often used to denote an optimal or special value in mathematics or scientific contexts.] of Eq. 10 is obtained, the signal [image: Equation with variables: X-star equals Psi multiplied by theta-star.] can be recovered.
3 SEISMIC DENOISING BY THE CS-LHR
Section 2 suggests that the CS-LHR can achieve the optimal sparse signal through the limit norm minimization. The resulting optimal sparse signal complies with the constraints and is well-suited for signal reconstruction. This paper focuses on the application of the CS-LHR method to seismic signal denoising. A general form of an observed seismic signal [image: The expression "Y(n)" is depicted in stylized mathematical font.] that is contaminated by noise can be expressed as
[image: Mathematical expressions are depicted:   1. Y(n) equals A times theta(n) plus E(n). 2. A equals Phi times Psi. 3. X(n) equals Psi times theta(n).  Equation number twelve is noted.]
in Eq. 12 [image: Mathematical notation showing theta of n, represented as θ(n), indicating the asymptotic tight bound of a function in computational complexity.] is a sparse signal, [image: The image shows a mathematical expression "E(n)" written in italics, where "E" is a function of "n".] represents the noise term that can either be stochastic or deterministic, and [image: Mathematical expression showing "n" as an element of the interval from one to "N".] represents the index of time sampling point. Assuming that [image: A metallic sculpture resembling the Greek letter Phi (Φ), set against a blurred background. The artwork appears polished, with its reflective surface catching light.] and [image: The Greek letter Psi, depicted in a bold serif font.] represent the sensing and sparse basis matrices, and are independent as the CS theory, it becomes feasible to separate the noise [image: Mathematical expression showing the capital letter E followed by parentheses containing a lowercase n, representing a function or equation involving E and n.] from the observed seismic signal [image: Mathematical expression showing the letter Y followed by the variable n in parentheses, typically representing a function or sequence Y of n.]. Subsequently, the denoised result [image: Mathematical expression of the function X of n, where X is a variable and n represents a parameter or input.] can be reconstructed by [image: Mathematical notation showing theta of n, represented as θ(n).]. Moreover, the effectiveness of denoising is associated with the sparsity of [image: Mathematical notation displaying theta of n, represented as \(\theta(n)\).]. Greater sparsity leads to improved noise separation. Based on the foregoing analysis, the CS-LHR, utilizing limit norm optimization, yields an optimally sparse signal [image: Mathematical notation depicting Big Theta of n, represented as θ of n, indicating a function with a growth rate bounded both above and below by the function n.].
According to the CS theory, the sparse basis matrix [image: Greek letter Psi, commonly used to represent the wave function in quantum mechanics. It features a pitchfork-like shape with a central vertical line flanked by two curved lines.] and the sensing matrix [image: It seems you attempted to reference or upload an image, but it did not come through. Please try uploading the image again or provide a URL to the image.] should be irrelevant (Donoho, 2006). However, achieving complete independence between [image: Greek letter Psi symbol.] and [image: It seems you tried to upload an image, but it's not visible. Please try uploading the image again or provide a URL. If you have a caption or context, feel free to include that as well.] in practical applications is challenging. Then, some special matrices are chosen as [image: It seems there is an issue with the image upload. Please try uploading the image again, or provide a URL or description for assistance.] to ensure a certain degree of independence with the sparse basis matrix [image: The Greek letter Psi, symbolized by a shape resembling a three-pronged fork with a long central stem and two shorter curved arms on either side.]. In this study, a Gaussian random matrix is chosen as sensing matrix [image: I don’t have an actual image to view. Please upload the image or provide a URL for me to generate the alt text.] due to its excellent characteristic of having minimal correlation with other matrices. Additionally, since a seismic signal is non-stationary, the sparse basis matrix [image: The Greek letter Psi, displayed in bold, representing concepts such as psychology or wave functions in physics.] should be provided by an algorithm which facilitates the analysis of non-stationary signals. To obtain a sparse basis matrix [image: The Greek letter Psi, represented as a symbol resembling a trident with a vertical line down the center and two horizontal lines on either side at the top.] for non-stationary signals, the sparse S-transform is introduced (Wang et al., 2016). Furthermore, as the log-sum penalty term in Eq. 8 is non-convex, a suitable starting point for iterative computation is necessary. Consequently, we initialize [image: Please upload the image or provide its URL, so I can help create the alt text. Optionally, you can include a caption for context.] with the solution of Eq. 3 with the [image: Text displaying "L one norm minimization" written in a mathematical style.]. The proposed workflow is summarized in Algorithm 1 (Table 1):
TABLE 1 | The workflow of seismic denoising by CS-LHR.
[image: Workflow of seismic denoising by CS-LHR algorithm. It includes: Input: observed seismic data, sensing matrix, sparse basis, and a positive parameter. Initialization: set initial values and determine weights. Repeat: update and determine weights until convergence. Output: sparse coefficient vector. End: recover free-noise data.]4 SYNTHETIC AND REAL DATA EXAMPLES
In order to illustrate the effectiveness of the proposed CS-LHR method, we initially apply it to synthetic seismic data with different levels of signal noise ratios (SNRs). Then, the proposed method is utilized for field data denoising. Figure 1 displays a 2-D synthetic seismic trace without noise. Figure 2 shows the 2-D synthetic trace with different SNRs (5dB, 5dB, -3dB, and 3 dB). Figure 3 exhibits a 3-D noisy field data acquired over the Scotian shelf, offshore Canada, and termed Penobscot. For comparison, the traditional CS method based on [image: It seems there is an issue with the content provided. Please upload the image directly, or provide a URL or description so I can give you the appropriate alt text.] norm (0<p<1) is utilized as an alternative method.
[image: Line graph showing fluctuations in amplitude over time. The x-axis represents time in milliseconds from 0 to 400, and the y-axis represents amplitude from -0.25 to 0.25. The graph displays a series of peaks and troughs labeled as "Original."]FIGURE 1 | A 2-D synthetic seismic trace without noise.
[image: Two line graphs labeled A and B display data over time in milliseconds on the x-axis, with amplitude on the y-axis. Graph A has red and blue lines representing MuSH and Sub, while Graph B has blue and red lines for Sub and Sub, respectively. Both graphs show fluctuating amplitude patterns, with legends in the upper right corners.]FIGURE 2 | (A) The 2-D synthetic seismic trace with SNRs −3dB, 3dB. (B) The 2-D synthetic seismic trace with SNRs −5dB, 5dB.
[image: Seismic cube data visualization showing three-dimensional amplitude variations. The figure includes inline and crossline sections with color gradients from blue to red indicating amplitude changes. Arrows highlight specific features, with time in milliseconds labeled on the left axis.]FIGURE 3 | A 3-D noise-contaminated field data acquired over the Scotian shelf, offshore Canada, comprised 401 inlines and 401 crosslines, with a time sampling interval of 4 ms. Discontinuous seismic events are indicated by black arrows, seismic artifacts caused by random noises are represented by green arrows. The green lines correspond to the location of X-line 1273.
4.1 Seismic signal enhancement with different SNRs
The denoising results for noisy 2-D synthetic data using the traditional CS method are depicted in Figures 4A,B, while those obtained from the CS-LHR method are presented in Figures 5A,B. It is clear that the traditional CS method can effectively attenuate noise in smooth areas of noisy synthetic data; however, it introduces artifacts and exhibits a poor denoising effect in the oscillatory areas marked by black ellipses. Although the traditional CS method based on [image: It seems there was no image uploaded. Please provide an image or a URL, and I will help you create the alternate text for it.] norm (0<p<1) exhibits greater effect on noise attenuation compared to that based on [image: Please upload the image you would like me to describe, and I will provide the alt text for you.] norm, its sparse signal [image: Mathematical notation showing the function theta of n, represented as \(\theta(n)\).] exhibits varying reconstruction capabilities across different regions of the signals. During noise separation using sparse transformation in the traditional CS method, the suboptimal sparsity of the sparse signal leads to the inclusion of some noise characteristics in the sparse signal, which become apparent in the reconstructed original signal. While the sparse signal [image: Mathematical expression of Theta notation, represented as theta of n, often used in computer science to describe the asymptotic behavior of algorithms.] effectively captures the primary information within smooth areas of the signal, it also incorporates some noise features in oscillatory regions. To enhance the denoising performance across all areas of the noisy signal, it is crucial that the sparsity of the sparse signal is increased to enhance the reconstruction effectiveness of the original signal. Consequently, this paper introduces the CS-LHR method which can achieve the best sparse reconstruction ability due to the norm minimization based on [image: "Letter P followed by an arrow pointing right towards the number zero, which is superscripted with a plus sign."]. The denoising results shown in Figure 5 illustrate the random noises are successfully removed while the seismic events are preserved well. Notably, the proposed method demonstrates exceptional noise filtering capabilities, even under low signal-to-noise ratio (SNR) conditions.
[image: Two line graphs (A and B) showing amplitude over time in milliseconds. Each graph includes three lines representing different datasets: 5 dB, 2 dB, and Original, colored blue, green, and red respectively. Graph A shows variations between datasets from 0 to 350 ms, particularly noticeable between 150 and 250 ms. Graph B displays similar patterns, with differences between 100 and 250 ms. Each graph includes a legend at the top right.]FIGURE 4 | The denoising results of 2-D synthetic seismic traces by the traditional CS model with 0<p<1. (A) The denoising results for SNRs −3dB and 3dB. (B) The denoising results for SNRs −5dB and 5dB. From these results, we can see that the traditional CS model with 0<p<1 effectively attenuates noise in smooth areas of noisy synthetic data; however, it introduces artifacts and exhibits a poor denoising effect in oscillatory areas marked by black ellipses.
[image: Chart showing amplitude over timeslots with two panels labeled A and B. Both panels display three lines: original (red), S3F (green), and S6F (blue). Panel A highlights differences with ellipses around specific wave variations. Panel B shows similar comparisons without ellipses.]FIGURE 5 | The denoising results of 2-D synthetic seismic trace by the CS-LHR method. (A) The denoising results for SNRs −3dB and 3dB. (B) The denoising results for SNRs −5dB and 5dB. Compared to Figure 4, Figure 5 illustrates the random noises are successfully removed while the seismic events are preserved well.
4.2 Field data applications
To verify the effectiveness of the proposed method, 3-D noise-contaminated field data obtained from the Scotian shelf, offshore Canada, referred to as Penobscot, are shown in Figure 3. The 3-D field data comprise 401 inlines and 401 crosslines, with a time sampling interval of 4 ms.
In Figure 3, black arrows indicate discontinuous seismic events, while green arrows represent seismic artifacts caused by random noise. The green lines correspond to the location of X-line 1273, as depicted in Figure 6A. Obviously, this seismic volume contains significant random noises which hinder subsequent seismic data processing and interpretation. Our method’s denoising result is shown in Figure 6B, where the improved resolution and well-preserved reflection events are evident. Regions marked by the black ellipses demonstrate efficient attenuation of random noise, enhanced continuity, and resolution of seismic events. Additionally, the seismic fault structures indicated by black arrows are preserved well. Further, Figure 6C shows no useful information in the difference profile.
[image: Image panel shows three sections labeled A, B, and C. Panels A and B display layered structures with alternating red and blue lines, indicating a complex pattern. Arrows in panel B point to highlighted areas. Panel C shows a mostly white area with faint color markings.]FIGURE 6 | (A) The noise-contaminated field section, which is marked by green lines in 3-D field data, contains significant random noises. (B) From the denoising result by CS-LHR, we can see that the improved resolution and well-preserved reflection events are evident. (C) The difference profile between Figures 6A, B; there is no useful information in this difference profile.
To further demonstrate the effectiveness of our method, we compare it with the traditional CS method with 0<p<1 on the same field data. The corresponding results are presented in Figure 7. Figure 7A shows the denoising result, and Figure 7B represents the related difference profile. We can observe that valid seismic events are generally preserved in Figure 7A. However, compared to the CS-LHR result, the fault structures and seismic events, indicated by black arrows and black ellipses in Figure 7A, respectively, are less subtle. Additionally, some valuable information that can improve the resolution of the denoising result is contained in the difference profile Figure 7B.
[image: Panel A shows a seismic section with distinct horizontal layers in red and blue hues, featuring marked circles and arrows indicating specific points. Panel B displays a similar section but appears significantly blurred or noise-filled, with faint colors and less defined layers.]FIGURE 7 | (A) Denoising result of Figure 6A by CS with [image: Please upload the image or provide a URL so I can create the alternate text for it.] norm (0<p<1); the fault structures and seismic events, indicated by black arrows and black ellipses, respectively, are less subtle. (B) The difference profile between Figure 6A; Figure 7A; it contains some valuable information.
5 CONCLUSION
This paper proposes the CS-LHR method, a novel method for seismic noise attenuation. Compared to the traditional CS methods with 0<p [image: Please upload the image file or provide a URL to the image so that I can help create alt text for it.] 1, the CS-LHR method with the limit [image: The formula depicts a limit expression: "p approaches zero from the positive side", denoted by an arrow pointing from "p" to "zero superscript plus".] provides enhanced sparse representation ability and denoising performance. Testing results on field data demonstrate that our workflow efficiently recovers noise-free signals. Additionally, we implement the MM algorithm to improve calculation efficiency.
The CS method can be used for denoising, but its primary contribution to the scientific domain lies in accomplishing the compression and reconstruction of original signals via sparse signal representation. This process facilitates the reduction of data acquisition and transmission costs while preserving data quality, essential for diverse applications including medical imaging, remote diagnosis, earth observation, and wireless transmission. The CS-LHR method introduced in this paper can achieve the optimal sparsity of the sparse signal, leading to additional reductions in storage and transmission costs. This holds particular significance for industrial applications driven by cost considerations.
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Seismic facies analysis is important for oil and gas exploration. The conventional seismic facies recognition methods are implemented manually with high workload and low accuracy. Therefore, how to obtain seismic facies characteristics quickly, efficiently, and accurately is an urgent requirement in seismic facies research. To alleviate this issue, we propose a novel seismic facies recognition method based on the region growing algorithm with expert knowledge constraint. The processes of this algorithm are as follows: firstly, we select high-density 3D seismic data in the target area for seismic facies identification. Then, we utilize expert knowledge to define the priori geological constraint for regional growing algorithm. Finally, the region growing algorithm is used to pick up and divide different 3D seismic facies boundaries in the study area. The verification of known geological knowledge proves that the results are reasonable and reliable. The accuracy and efficiency of the proposed seismic facies identification method based on region growing are significantly improved.
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1 INTRODUCTION
Sedimentary facies analysis is a fundamental work in hydrocarbon exploration, and its reliability directly determines the success or failure of petroleum exploration (Wang et al., 2002; Bao et al., 2005; Yang et al., 2010; Wu et al., 2011). Seismic facies can be explained as the sum of sedimentary facies expressed in seismic information, that is, seismic facies are seismic features formed by the sedimentary environment (Sloss, 1962; Xu et al., 1990). Therefore, the spatial distribution characteristics of sedimentary facies can be established by seismic facies analysis, combined with drilling, provenance direction, and other information (Zhang et al., 2001; Zhu et al., 2009).
With the widespread use of three-dimensional (3D) seismic data, the overall understanding of regional sedimentary facies is no longer limited to well data alone but is more often obtained through the analysis and conversion of seismic facies based on the calibration of well data. Thus, it is necessary for geologists to acquire seismic facies features faster and with higher accuracy. Several scholars have tried to explore seismic facies through seismic attributes (Zhang et al., 2010; Tang et al., 2011), waveform clustering (Deng et al., 2008; Li et al., 2017; Liu et al., 2020), shallow neural network similarity (Saggaf et al., 2003; Marroquín et al., 2009; Dramsch and Lüthje, 2018), deep learning (Wrona et al., 2018; Duan et al., 2019; Yan et al., 2020; He et al., 2022; Sang et al., 2023), and many other methods, and have achieved certain results. For example, He et al. (2022) used semi-supervised learning for intelligent seismic facies identification and obtained good results with improved estimation accuracy. Sang et al. used semi-supervised learning for porosity prediction and reduced the prediction uncertainty compared to conventional methods. The methods based on deep learning may encounter a common challenge, that is, deep networks trained for one region may be difficult to apply to other regions.
With the increasing precision and depth of exploration, the correlation between sedimentary facies models and geophysical data such as seismic and well logging becomes more and more complicated. It is difficult to identify the above complex relationships by only interpreting sedimentary facies patterns manually, and the accuracy and efficiency of manual interpretation cannot meet the current needs of efficient exploration in the oilfield. Therefore, it is necessary to introduce new seismic facies identification techniques to realize efficient and accurate recognition of 3D seismic facies.
Image segmentation is one of the fundamental and key aspects in the field of computer vision. Region growing is proposed under this background and has been widely used in the field of automatic image segmentation. Its biggest advantage is the integration of a priori expert knowledge, which is suitable for the recognition and division of equally complex seismic images (Zhu et al., 1996; Zhou et al., 2017). Herein, based on the region growing algorithm, we can obtain the sensitive attributes of seismic facies through optimization, and define the seed points, growth criteria, and growth cut-off conditions for regional growth based on a priori geological understanding of the isochronous slice of the Wheeler domain. Then, we can recognize the seismic facies layer by layer, and synthesize the final 3D seismic facies identification results by interpolation in 3D space, which greatly improves the accuracy and efficiency of seismic facies recognition.
2 MATERIALS AND METHODS
Region growing is a method of aggregating pixel points according to the similarity of pixels within the same zone. Starting from an initial area, such as a single pixel, the region is gradually grown by subsuming adjacent pixels with the same properties until there are no more points to be grouped (Meyer, 1990; Adams et al., 1994; Mehnert and Jackway, 1997). Herein, the general process of implementing the region growing algorithm can be carried out according to the following steps:
	(1) In one image, non-edge or smooth points are manually or automatically selected as seed points, and each seed region is labeled using an agreed different value. Meanwhile, the mean value of each seed area is calculated, and then the value of the pixel points is replaced with the mean value.
	(2) the non-edge and unmarked pixel point is located, marked as Point Q, and the distance between the Point Q and the region where the eight-neighbor pixel is situated further calculated, which means the minimum distance can be obtained. The distance mentioned above is given by Eq. 1:

[image: Formula for calculating color difference, delta E, represented as d equals the square root of the sum of squared differences between L-star and L-star sub-i, a-star and a-star sub-i, and b-star and b-star sub-i.]
where (L*, a*, b*) denotes the values of unlabeled pixel points on the three components of L*, a*, b*, respectively, and [image: The image shows the formula: \( \overline{L_i}^*, \overline{a_i}^*, \overline{b_i}^* \).] represent the mean values of neighboring region i (i = 1, 2,..., 8) on the three components of L*, a*, b*, respectively.
The calculation allows Point Q to be assigned to the region where the minimum distance neighborhood point is located, and then further update the mean value of the region and the value of the pixel. The above steps should be repeated until all pixel points excluding edge points are marked.
	(3) In order to maintain the distinct edges between large regions, it is necessary to mark the edge points after non-edge points. Specifically, this means finding the pixel points of edge point mapping EM (i, j) = 1 in the complex wavelet domain, and contining to repeat step (2) until all edge pixel points are labeled.
	(4) In order to solve the over-segmentation problem caused by too many seed points and to obtain better results for human senses, it is necessary to perform region merging based on the following two merging criteria:

a. The distance among adjacent regions is taken as the base, and the Euclidean distance between the mean value of the region to be merged and the adjacent region is calculated by Eq. 2:
[image: Equation showing the formula for \(d\) as the ratio of \(D((L_i - L_k^*), (\bar{a}^* - \bar{a}_k^*), (\bar{b}^* - \bar{b}_k^*))\) divided by the minimum of \(D(L_i^*, a_i^*, b_i^*)\) and \(D(L_k^*, a_k^*, b_k^*)\). It is labeled as equation two.]
where [image: Mathematical formula representing the distance function: \( D(a, b, c) = \sqrt{a^2 + b^2 + c^2} \).], [image: Variables \( \left( \overline{L_i^*}, \overline{a_i^*}, \overline{b_i^*} \right) \) and \( \left( \overline{L_k^*}, \overline{a_k^*}, \overline{b_k^*} \right) \) with overlines and asterisks, indicating a mathematical expression.] respectively represent the mean values of L*, a* and b* components of two adjacent regions l and k.
If the d is less than the threshold δ, the two regions are combined and the mean value of the regions is recalculated.
b. If the ratio of the region size to the image size is less than the preset ratio threshold μ, the calculated region is merged with the neighboring region with the smallest surrounding color distance.
	(5) Through the optimization of similar regions by multiple iterations, we achieve the image segmentation.

3 RESULTS
In seismic interpretation, seismic facies recognition is usually done by initially filtering out sensitive seismic attribute slices and then manually mapping different seismic facies on seismic attribute slices. This traditional method is very laborious, and it is easy to ignore the characteristics of the image itself and add too much subjective judgment. The region growing algorithm can fully utilize the searching and processing capability of the computer to extract more potential information in the image and achieve fast and accurate segmentation of seismic facies image, thereby greatly improving the accuracy and efficiency of seismic facies analysis.
However, the seismic facies images have multiple interpretations compared to conventional images. For example, two regions with the same color but not connected may belong to different types of sedimentary facies, or regions with different colors may belong to the same types of sedimentary facies. Therefore, when using the region growing algorithm to segment seismic facies images, there is a high possibility of over-segmentation or under-segmentation, which will reduce the geological significance of the results.
In this paper, we select high-density 3D seismic data in the Moxizhuang area in the Junggar Basin for 3D seismic facies identification with the regional growing algorithm. Based on expert knowledge to define initial seed points, regional growing criteria, and vertical cut-off condition as a priori geological constraint, the region growing algorithm is used to pick up and divide different 3D seismic facies boundaries in the study area to solve over-segmentation or under-segmentation problems in seismic facies analysis.
3.1 Extraction of stratigraphic domain slices
To obtain the results of 3D seismic facies identification in the study area, we firstly carried out the seismic phase boundary classification and identification by using a computer to slice layer by layer at a vertical resolution. Figure 1 shows the N-S-direction seismic profile and horizontal time slice in the study area. In this profile, the diachroneity is very obvious on the contemporaneous horizontal slice. The seismic facies has rapidly variable lateral phase changes and cannot establish an accurate relationship with the actual sedimentary interface. Therefore, it is difficult to identify seismic facies boundaries from isochronous slices of original seismic data using the region growing algorithm, and the accuracy is relatively low.
[image: Seismic data visualization displaying multiple horizontal, wavy lines in various colors such as red, green, purple, and blue, representing different geological layers. Labels "Zhuang105", "Zhuang104", and "Zhuang102" appear in red at the top, with dashed vertical lines pointing to specific sections.]FIGURE 1 | Near N-S-direction seismic profile in the time domain through wells Zhuang105-Zhuang104-Zhuang102.
To better solve the diachronous problem, we transformed the seismic data volume or sensitive attribute volume in the time domain to that in the Wheeler domain (relative geologic age domain), and then identified the seismic facies boundary on the slices of the Wheeler domain. On the basis of detailed identification of seismic isochronous interface, we built a sedimentary model that is more consistent with the actual geological conditions, and developed Wheeler domain transformation that is more consistent with the actual geological significance (Tan, 2013; Forte et al., 2016; Yin et al., 2018). Under certain resolution conditions, the transformed seismic syncphase axis is nearly horizontal and has better isochronism. The stratigraphic cyclicity is clearer, which can better reveal the spatial relationship among sedimentary elements (Figure 2).
[image: Seismic data image showing layered patterns in red, black, and white. The layers are wavy and appear stacked horizontally, illustrating subsurface geological formations and variations in seismic reflections.]FIGURE 2 | Local scale of the near N-S-direction seismic profile in the Wheeler domain through wells Zhuang105-Zhuang104-Zhuang102, Lower Jurassic Sangonghe Formation.
Next, the extraction of densely sampled isochronous slices is achieved by extracting slices from the sampled points of the Wheeler domain seismic data volume or sensitive attribute data volume of the vertical seismic profile. The geological significance of each slice is relatively clear, with better correspondence with sedimentary facies. This facilitates the identification of seismic facies boundary by using region growing, and then transforms to sedimentary facies boundary to achieve geologically meaningful 3D seismic facies recognition.
3.2 Introduction of a priori geological constraints
Since the multi-solution of seismic interpretation leads to more complex segmentation and recognition of seismic phase images, a recognition algorithm with human-computer interaction for improving accuracy is needed. The region growing algorithm selects pixels with similar features and merges them into regions. There are three major factors affecting the algorithm: the initial seed points, the region growing criteria, and the vertical cutoff conditions. The optimal determination of these three elements using expert knowledge can better introduce the a priori geological knowledge into the seismic facies identification.
3.2.1 Selection of the initial seed point
The initial seed point is the pixel that can represent most of the pixels in the target region, and its accuracy has a great influence on the recognition result of the region growing algorithm. Generally, there are two methods of seed point selection: (1) automatic selection of the seed point based on non-edge and smooth points, and (2) Manual selection of the seed point based on expert knowledge. The former can save a lot of manpower and time by automatically selecting the seed point through considering edge and pixel information of color images. However, there are also a series of problems such as over-selection and atypical selection, especially when facing complex images such as a seismic facies diagram. It is not only difficult to select appropriate initial seed points, but also to introduce the existing geological understanding into the segmentation calculation. Therefore, in this paper, the initial seed points are manually selected based on expert knowledge. Although the cost of labor and time is slightly increased, this method can better offset the false segmentation of seismic phase generated by seismic multi-solution and is more consistent with geological understanding.
In this paper, the manual selection of the initial seed points is mainly based on the following two principles:
	(1) The well point on each slice must be selected as the initial seed point. Geologists interpret well logging facies according to logging, coring, and other existing geological data to ensure maximum reliability of the geological results. With the detailed well-seismic calibration, the logging phase of a single well can be precisely corresponded to the seismic traces beside the well. On this basis, the well logging facies can assign sedimentary facies’ geological significance to the 3D seismic facies picked up near the well, thus achieving the hard constraints on the geological conclusions of the well logging during the regional growth.
	(2) Non-well points screened by geologists that can reflect the typical morphology of the sedimentary facies can also be used as initial seed points. Based on the correspondence between existing sedimentary models and seismic attributes, and combined with the understanding of existing sedimentary characteristics, geologists can identify the typical attribute distribution characteristics of different sedimentary facies in sensitive attribute slices. This kind of non-well point can be used as initial seed points for non-well stations, thus making up for the fact that some logging facies types at well sites are scarce.

In the actual calculation process, we set different influence weights for manually selecting initial seed points. For example, the target layer in the region is mainly shallow delta front subfacies, and the weight of seed points involving shallow delta front subfacies in this layer segment will be set higher than that of coastal shallow lake subfacies. The specific weight ratio is given based on existing geological knowledge. This is also a control strategy based on expert knowledge (prior geological understanding).
3.2.2 Determination of the region growing criteria
Another key point in the region growing process is the selection of appropriate growth criteria. Region growing criteria can be developed based on different principles, and different growth criteria can result in different regional growth process. It has two major methods for setting region growing criteria, that is, the range of seismic attribute values and the correlation with seed points.
	(1) Region growing criteria using the range of seismic attribute value. The geologists should prefer seismic attributes that can better reflect the sedimentary facies. After obtaining a range of seismic attribute values corresponding to different sediments using geophysical analysis, we then adjust the range of different attribute values to control the region growing of different seismic facies boundaries. This method has low requirements on initial seed points and is suitable for picking up multiple seismic facies boundaries simultaneously by using attribute value range constraints. However, it requires multiple seismic phases in the plane corresponding to the same sedimentary facies type.
	(2) The region growing criteria by correlation with the seed point. The geologists also need to first select the seismic attribute that can better reflect the sedimentary facies, and then determine the initial seed points and calculate the average of the attributes for one or more seed points. The region growing condition is based on the correlation between the surrounding attribute values and the average of the seed point attributes, which has the minimum growth value corresponding to the lower limit of the correlation. This method relies on the selection of initial seed points by the geologist and enables controlled pickup of a single specific seismic phase boundary.

We identified and compared the seismic facies using the above two methods for amplitude attribute slices in the relative chronostratigraphic domain (Figure 3A). The results show that the seismic phase ranges identified using the attribute value range method are coarser, and it is easier to identify the non-seed point identification regions, which results in the under-segmentation of the seismic phases (Figure 3B). In contrast, the seismic phase range identified by the correlation with seed points method are narrower and the results had better correlation with the seed points (Figure 3C).
[image: Three-panel graphic showing maps with color gradients. Panel A displays varying red and blue shades, representing different data intensities, with specific locations marked. Panels B and C highlight data sections in red against a blue background, showing similar patterns with slight variations.]FIGURE 3 | Comparison of the boundary range of seismic phase identified by two methods. (A) amplitude attribute slice in the relative chronostratigraphic domain; (B) attribute value method with picking up boundary range from15000 to 18,000; (C) correlation method with seed points with correlation coefficient 0.8.
Considering the advantages and limitations of the above two methods, the correlation with seed points is more suitable as a criterion for region growing. This is because the latter method provides more accurate identification and classification of seismic facies by manually preferring the initial seed points of different geological significance.
3.2.3 Determination of the vertical cut-off conditions
After determining the regional growth criteria, strata slices can be selected layer by layer for seismic facies identification and division. However, the cut-off conditions for the growing region in the vertical direction is still unclear. The initial seed point has a good representation of the seismic facies around it in one strata slice which can be approximated as an isochronous plane. Thus, it is reasonable to take the lower value of the correlation degree with the initial seed point as the cut-off condition for region growing. When another strata slice is vertically transformed, the corresponding sedimentary microfacies on the well may have changed significantly, although the change in properties may be minor. In this case, the correlation with the initial seed point can no longer fully express the change of geological significance of seismic facies, so it is necessary to further add an external hard constraint condition to correct this error.
The above problem can be solved by introducing the sedimentary facies information of a single well. The precise correspondence between the sedimentary microfacies on the well and the seismic traces beside the well can be established by using the fine well seismic calibration. Furthermore, the depth range of different sedimentary facies at the well point can be taken as the cut-off conditions for vertical growth of different seismic facies. Figure 4 shows the synthetic seismic records and logging facies of the Well Zhuang 3 in the study area. We took the underwater distributary channel at 3132 ms–3140 ms as an example. In the strata slices in the vertical range from 3132 ms to 3140 ms, the attribute scope near the initial seed point of the Well Zhuang 3 with its correlation degree greater than 0.8 can be identified as the underwater distributary channel. Meanwhile, the attribute scope near the initial seed point of the Well Zhuang 3 with its correlation degree greater than 0.8 in the strata slices from 3140 ms to 3146 ms should be described as channel bar microfacies.
[image: Seismic reflection profile showing time-depth conversion with layers of sedimentary facies. The red and black wavy lines represent varying acoustic impedances. Facies include channel sandstone, mudstone, and beach sandstone. Depth is marked from 4720 to 4820 meters, and time ranges from 3020 to 3036 milliseconds.]FIGURE 4 | Fine calibration between the in-well sedimentary facies of the Well Zhuang 3 and well-side seismic trace.
3.3 Acquisition of 3D seismic facies
In order to further break through the 2D seismic facies analysis and realize the 3D seismic facies modeling, we can extract dense strata slices at the interval of seismic vertical sampling rates from the seismic attribute data volume in the relative geological age domain (Wheeler domain). Then, we can identify and divide the seismic facies of the strata slices based on the regional growth algorithm and combine and smooth the recognition results of each slice within the three-dimensional space, so as to obtain the 3D seismic facies identification results.
4 FIELD DATA APPLICATION
In the previous exploration, a total of 20 exploratory wells were completed in the Jurassic strata in the Moxizhuang area and hinterland of the Junggar Basin, of which 5 wells were drilled and encountered oil flow, showing a great exploration potential. However, there were also some problems, such as the large buried depth of the target formation, poor correspondence between the reservoir and the seismic, and difficulty in accurately determining the distribution characteristics of sedimentary facies. In this study, the initial seed point, regional growth criteria, and vertical cut-off conditions were determined through expert knowledge to introduce geological constraints. On this basis, different 3D seismic facies boundaries were picked and divided by the regional growth algorithm to construct the 3D seismic facies model of the study area. Based on the interpretation of logging facies from real drilling, we have carried out a detailed description of sedimentary development characteristics in the study area.
The Jurassic Member 2 of Sangonghe Formation (J1s2) in the study area is vertically divided into five sandbed groups (from 1 to 5), among which 1, 2, 3, and 4 sandbodies are developed. From the thickness statistics of the J1s2 and the sandbodies from1 to 4, the shallow water delta frontal subfacies sedimentary system from the northern provenance is mainly developed in the study area during this period. Typical shallow water deltaic markers such as large amounts of carbon debris and vertical biological boreholes are also visible in the rock cores. The paleolandscape slope is gentle, at only about 0.3˚-1.4˚. The water depth is shallow, about 10–30 m, but with the deepening of the water body, the sandbodies presented the characteristics of multi-stage development and positive superposition. Through the optimization of seismic attributes by geologists, the root mean square amplitude is taken as the sensitive data body for seismic facies analysis, and isochronous strata slices are extracted at intervals of vertical seismic sampling rate for the root mean square amplitude attribute body in the Wheeler domain. Then, the regional growth algorithm can carry out the identification and division of different seismic facies in each strata slice. Finally, the results of seismic facies division in all strata slices are synthesized into 3D seismic facies recognition results in space. The whole process took about 5 h.
Figure 5 shows the near north-south seismic connecting-well profile of the Zhuang 103-Zhuang 2-Zhuang 1-Zhuang 104-Zhuang 101-Zhuang 107-Zhuang 3-Zhuang 301 wells extracted from the 3D seismic facies identification results. The sand content of the J1S2 2 formation is relatively low and the lithology is mainly sand-mud interbedded, in which the sand body is thin and laterally discontinuous, showing a shore shallow lake and delta front sedimentary facies. The sand content of the J1S1 2 formation is relatively high, with large sand body thickness and good lateral continuity, mainly manifesting as a shallow water delta front subfacies. The river channel migrated rapidly laterally, and the sedimentary microfacies dominated by the river channel sand bar changed rapidly longitudinally and laterally. The macroscopic sedimentary pattern shown in the seismic connecting-well profile is basically consistent with the existing geological understanding, and the description of different seismic facies is more refined. Figure 6 shows Logging facies profile of the connecting-well profile. Through comparison with the sedimentary facies profiles of the over-connected well, it is considered that the seismic facies identification results show more natural distribution characteristics of different facies zones with a certain vertical resolution and have good comparability with the actual sedimentary development characteristics.
[image: Seismic data visualization showing layered geological formations with varying colors indicating depth and composition. The image is annotated with "fault" and "break" labels, highlighting structural features within the subsurface.]FIGURE 5 | Seismic connecting-well profile of the Zhuang 103-Zhuang 2-Zhuang 1-Zhuang 104-Zhuang 101-Zhuang 107-Zhuang 3-Zhuang 301 wells.
[image: Geological cross-section diagram showing various stratified layers with different colors, representing different rock types. Lines and labels indicating borehole locations are marked as Zhuang103 to Zhuang301. The legend includes blue for upper member mudstone, yellow for middle member mudstone, orange for upper sandstone, and pink for middle sandstone.]FIGURE 6 | Logging facies profile of the Zhuang 103-Zhuang 2-Zhuang 1-Zhuang 104-Zhuang 101-Zhuang 107-Zhuang 3-Zhuang 301 wells.
The seismic facies map extracted from Sandbed Group 1 and Sandbed Group2 of the J1s1 2 strata are compared with the sedimentary facies diagram drawn by the geologists through the combination of well data and seismic data (Figures 7, 8). The results show that the automatic identification of seismic facies based on region growing was basically consistent with the distribution characteristics of different seismic facies in the original seismic data. The results also show that the automatic identification of seismic phases based on region growing is consistent with the spreading characteristics of different phases in the original seismic data. The results also show that it has a better effect on the mapping of different subfacies at the front edge of the shallow water delta in the study area, and the lateral distribution characteristics of different sedimentary facies zones are more refined and consistent with the geological deposition pattern. The seismic facies predicted by the proposed method are controlled by the category of seed points. For example, the seed points have been assigned five microfacies that belong to two different sedimentary subfacies. The predicted microfacies will not exceed the number of types given by the seed points. In summary, this has a good guiding significance for the understanding of sedimentary facies in the area.
[image: Two adjacent maps with distinct color-coded sections. Panel A shows geological facies with colors like orange, green, and purple, accompanied by a legend for interpretation. Panel B presents a colorful seismic facies map, with a legend indicating colors from red to blue, representing different seismic facies such as frontal and lakeside.]FIGURE 7 | Sedimentary facies versus seismic facies for Sandbed Group 1 of the J1s1 2 strata. (A) Sedimentary facies diagram of Sandbed Group 1 of the J1s1 2 strata; (B) Seismic facies diagram of Sandbed Group 1 of the J1s1 2 strata.
[image: Two panels comparing seismic facies maps. Panel A shows various color-coded regions with contour lines and numbers. Panel B presents a heat map with colors ranging from red to blue, indicating different seismic facies. A legend identifies the colors: red for frontal, yellow for intermediate, green for lakeside, and blue for another type of seismic facies.]FIGURE 8 | Sedimentary facies versus seismic facies for Sandbed Group 2 of the J1s1 2 strata. (A) Sedimentary facies diagram of Sandbed Group 2 of the J1s1 2 strata; (B) Seismic facies diagram of Sandbed Group 2 of the J1s1 2 strata.
Figure 9 shows the 3D display of seismic facies identification results from the bottom of J1S2 2 formation to the bottom of J1S1 2 formation in the study area relative to the chronostratigraphic domain restored to the temporal domain. Combined with the logging facies interpreted by real drilling, it can be found that the bottom of J1S2 2 formation is dominated by cold-toned shore-shallow lake seismic facies, but the local area also developed warm-toned front seismic facies from the northern provenance. The J1S2 2 formation generally showed a water-continent connection facies, and its lithology was dominated by sandstone-mudstone interbed. The J1S1 2 formation has an overall development of warm-toned frontal seismic facies, and its lithology was mainly sandstone, which is basically consistent with the actual geological understanding.
[image: Three-dimensional block diagram illustrating seismic facies with a color gradient from red to blue, indicating elevation or depth variations. The legend identifies frontal seismic facies in warm colors and lakeside seismic facies in cooler colors.]FIGURE 9 | Seismic facies identification results of Jurassic Sangonghe Formation (time domain).
5 CONCLUSION

	(1) The region growth algorithm based on the facet model can fully utilize the powerful processing ability of the computer to extract more potential information from sensitive attribute slices, effectively avoid over-segmentation, and realize the rapid and accurate segmentation of seismic facies images, which greatly improves the accuracy and efficiency of seismic facies analysis.
	(2) Considering the three key elements of region growing, namely, initial seed point, regional growth criteria, and vertical cut-off conditions, a specific implementation strategy based on expert knowledge is innovatively proposed to introduce the priori geological knowledge into the specific seismic facies identification calculation through human-computer interaction, and more accurate seismic facies segmentation results can be obtained.
	(3) This method has achieved good application results in the Moxizhuang area. The 3D seismic facies pickup results showed that the Jurassic Sangonghe Formation as a whole is dominated by northern provenance, and the bottom of J1S2 2 formation is dominated by shore-shallow lake facies. The front subfacies are developed in the local area, which is generally characterized by a water-continent connection facies with low sandstone ratio, and the lithology is dominated by sandstone-mudstone interbed, while the J1S1 2 formation is dominated by a shallow water delta front subfacies, and the river quickly migrated laterally with a high sandstone ratio, and the lithology is mainly sandstone (Su-Mei et al., 2022).
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During the propagation of seismic waves underground, the high-frequency seismic response of thin reservoir is absorbed and attenuated, which poses a challenge in seismic thin reservoir prediction. The high-resolution processing techniques have the capability to significantly expand the frequency range of the seismic data, so it becomes a key technique for thin reservoir prediction. Most of these techniques necessitate the extraction of seismic wavelets. However, the spatial and temporal variations of seismic data result in multiple solutions for wavelet extraction. Simultaneously, the majority of techniques fail to consider the influence of spatial tectonic features on the high-resolution processing. In this paper, we propose a novel solution to address these two fundamental challenges by utilizing seismic spectral expansion, sparse reflection coefficients, and spatial continuity constraints. First, we propose an innovative spectral fitting method that aims to expand the frequency bandwidth while adhering to the desired wavelet constraints. This method allows us to fully utilize the effective frequency information. It not only obtains broadband seismic data but also captures precise wavelets. Then, sparse deconvolution is employed to further extend the frequency range by utilizing the accurately expected wavelet and obtaining a high-resolution reflection coefficient. Finally, the Hessian matrix regularization is employed to constrain the spatial continuity of the reflection coefficient. This method is validated in both the model and real seismic data. Compared to traditional sparse deconvolution and spectral modeling deconvolution with spatial constraints, this method not only expands the frequency bandwidth and enhances seismic resolution but also preserves operational frequency information and improves the spatial continuity of seismic data. It has been verified that this approach can be used to forecast thin reservoir and reconstruct spatial tectonic characteristics.

Keywords: high-resolution processing, Hessian matrix regularization, spectral fitting, sparse deconvolution, spatial continuity constraint

1 INTRODUCTION
In the field of petroleum seismic exploration, it is essential to have high-quality seismic data to carry out tasks like detecting weak seismic signals, forecasting thin reservoirs, identifying minor faults, and precisely dividing sequences. Domestic and foreign scholars have conducted numerous studies on seismic high-resolution processing, including deconvolution, spectral whitening, inverse Q filtering, sparse optimization, wavelet decomposition, deep learning, and other technologies. These technologies and methods have significantly contributed to the development of seismic high-resolution processing. However, they also have their advantages and disadvantages.
The principle of deconvolution involves the compression of the seismic wavelet in order to improve the resolution of seismic data. The integration of sparse constraints into the deconvolution process was initially introduced, resulting in a notably efficient technique. (Taylor et al., 1979). Many scholars have focused on optimizing this theory, and their research is divided into two main aspects: the accurate acquisition of seismic wavelets and the application of various constraints. Extracting accurate seismic wavelet is critical (Baziw and Ulrych, 2006; Mirko and pham, 2008; Sacchi, 2010; Nasser and Mauricio, 2014; Macedo et al., 2016; Cabrera et al., 2020). These researchers analyzed and optimized seismic wavelets and proposed various methods for sparse deconvolution. Numerous scholars have studied optimization methods for seismic inverse problems, including sparse constraints, impedance constraints, and algorithm optimization (Velis, 2008; Gholami and Sacchi, 2012; Chen and Zong, 2022). These methods have been investigated for addressing geophysical inverse problems. Different constraints are integrated into the procedure of addressing the inverse problem to improve the precision of seismic forecasting outcomes. Meanwhile, it can be noted that there is consistency between seismic data and the principles of underground geology. Throughout the process of deposition, sediments display stratified characteristics, and the seismic data indicate the fluctuations in the stratums of rock. This should also be evident as a continuous trait. Many scholars have conducted extensive research in this area (Heimer and Cohen, 2009; Gholami and Sacchi, 2012; Gholami and Sacchi, 2013; Li et al., 2013; Yuan et al., 2016; Du et al., 2018; Ma et al., 2020). The focus of these studies has mainly been on the spatial continuity of seismic data. These studies have led to the development of high-resolution seismic data processing. Nevertheless, the constraints associated with these approaches, particularly the challenges in accurately estimating wavelets, result in inconsistent outcomes when applied.
Compressing seismic wavelets and enhancing seismic resolution can be accomplished by employing frequency domain computations, particularly through the utilization of spectral modeling techniques. It improves the resolution of seismic data by fitting the spectrum of seismic records, extracting a smooth wavelet amplitude spectrum and expanding it to increase the frequency range. The spectral modeling method also suffers from the challenge of accurately obtaining the spectrum of the seismic wavelet. The construction of the wavelet spectrum is primarily accomplished by smoothly fitting seismic data (Rosa and Ulrych, 1991). Some scholars have also noticed that the wavelet spectrum is, in fact, the low-frequency component of the amplitude spectrum of seismic records. As a result, the concept of the quadratic spectrum was proposed (Tang et al., 2010). Other scholars have also discovered that seismic wavelets are time-varying, which leads to a modification of seismic spectral characteristics. They have proposed a method for constructing a time-varying wavelet spectrum (Guo et al., 2015; Wang et al., 2017; Yuan et al., 2017). In the construction of the spectral modeling method, challenges arise not only in relation to the wavelet spectrum but also in regard to the three-dimensional spatial configuration. Therefore, a spectral modeling method based on the constraint of spatial continuity is proposed (Guo et al., 2022). These methods have been studied from the perspectives of frequency domain wavelet extraction, time-frequency characteristic patterns, and constraint optimization algorithms and have yielded improved results.
The method presented in this paper is based on the concept of seismic spectrum modeling deconvolution. This method assumes that the seismic wavelet is zero-phase. Firstly, the process of broadening the spectrum is achieved through the application of the seismic frequency division fusion technique, with limitations imposed by the desired wavelet. It not only expands the bandwidth but also provides an accurate estimation of the wavelet spectrum of seismic data. Secondly, the objective function in the time domain is augmented with the L1 regularization sparse constraint, which is based on the seismic record and the expected seismic wavelet. This augmentation allows for the estimation of the seismic reflection coefficient. Finally, the Hessian matrix regularization constraint is employed to control the spatial coherence of the seismic reflection coefficient, taking into account the spatial coherence of geological strata. The proposed method does not require the extraction of seismic wavelets. The simultaneous implementation of spectrum expansion and sparse optimization leads to enhanced resolution and preservation of high fidelity in seismic data. The high-resolution seismic data processed by this method have higher confidence for subsequent seismic interpretation and reservoir prediction.
2 THEORIES AND METHODS
2.1 Spectrum expansion
According to the seismic convolution model, the seismic signal is generated by the convolution of the seismic reflection coefficient with the seismic wavelet in the time domain. In the frequency domain, the seismic signal spectrum is calculated by multiplying the amplitude spectrum and the phase spectrum of the seismic signal as follows:
[image: Equation showing the relationship between time and frequency domains: \(s = j \omega\) in the time domain corresponds to \(S = A_1 e^{-j \text{Arg}}\) in the frequency domain.]
where the left side of the equivalent is defined as Eqs 1-1, and [image: Sure, please upload the image or provide a URL for it.] is seismic wavelet. In this paper, it is assumed that the seismic wavelets are zero-phase, and [image: Please upload the image or provide a URL, and I would be happy to help with the alt text.] is a seismic reflection coefficient, which is sparse. [image: Please upload the image you'd like me to provide alt text for.] is a seismic record. The right side of the equivalent is defined as Eqs 1-2, and [image: Please upload the image, and I will help you create the alt text for it.] is the spectrum of the seismic record. [image: The letter "A" displayed in a serif font style in black.] is the amplitude spectrum of the seismic record. [image: The expression shows \( e^{-i \times \text{Ang}} \), representing a complex exponential function involving an angle denoted as "Ang".] is the phase spectrum of the seismic record and, [image: Stylized typographic representation of the word "Ang" in a serif font, with the "A" in uppercase and "n" and "g" in lowercase, italicized.] is the phase.
According to Eq. 1, the deconvolution procedure entails the compression of the seismic wavelet, leading to an expansion of the seismic frequency band in the frequency domain. Therefore, determining the range of frequency broadening is very important. The technique of seismic record spectrum scanning can help determine the effective frequency bandwidth. The limited band information is 4–64 Hz, as shown in Figure 1. In practical applications, it is advisable to use a narrower scanning interval band. Then, the distribution of effective information within the band can be more accurately determined.
[image: Six seismic waveform images display data filtered at different frequencies: seismic trace, and from two hertz to one hundred twenty hertz in specific increments. Each image shows varying levels of detail and amplitude changes.]FIGURE 1 | Practical seismic record and different frequency division scanning sections.
According to the results of the spectrum scanning, the spectrum fitting method is employed to expand the frequency range within the effective frequency band. Then, the octave can be increased to enhance seismic resolution. In this paper, the spectral fitting method adopts a frequency division weighted superposition approach. At first, Gaussian functions are constructed in different frequency bands. These functions are subsequently employed for frequency division processing, as depicted in Figure 2A. The Gaussian functions of different frequency bands are expressed as [image: Please upload the image or provide a URL, and I will help you create the alternate text for it.] , where [image: It seems there was an issue with the image upload. Please try again by uploading the image file directly, and I will help you create the alt text.] is the frequency and its number is the total number in the effective frequency bandwidth. The size of [image: Please upload the image or provide a URL to generate the alt text.] is typically approximately 10 Hz in bandwidth and its number is the same as that of [image: It seems like the image didn't upload correctly. Please try uploading it again or provide a URL. Optionally, you can add a caption for additional context.]. Figure 2B shows the amplitude spectrum of a real seismic record.
[image: Panel A shows a graph of amplitude versus frequency from 0 to 80 Hz, with several sinusoidal waves depicted. Panel B compares seismic and wavelet spectra, with seismic spectrum in black showing high peaks at lower frequencies and the wavelet spectrum in red showing a smoother curve.]FIGURE 2 | (A) Gaussian frequency division curve and (B) Amplitude spectrum and wavelet spectrum of the seismic record.
Gaussian functions with different frequencies are employed to limit the amplitude spectrum of the seismic record, leading to the acquisition of seismic frequency division amplitude spectra (illustrated by the colored line in Figure 3A). According to the results of spectrum scanning, the desired range of wavelet amplitude spectrum can be determined accordingly. The amplitude spectra of the frequency division are weighted and superimposed, and the expansion of the spectrum is performed while adhering to the constraints of the desired wavelet amplitude spectrum, as below:
[image: The equation shows an optimization problem. It states that Freq(α) equals the argument that minimizes over \(a_i\) of the sum of squared L2 norms: \(\sum_i || A \, \text{diag}(f_i)a_t - W ||^2_2 \). This is further simplified as the argument that minimizes \( || A_t \alpha_t - W ||^2_2 \) with equation number (2) on the right.]
where [image: Please upload the image you would like described, and I'll provide the alternate text for it.] is the weight coefficient of the frequency division amplitude spectrum, which is a vector. [image: Mathematical expression showing alpha sub i with i ranging from one to N.] are the elements of [image: If you have an image you need alt text for, please upload it or provide a URL.]. [image: Please upload the image or provide a URL for me to generate the alternate text.] is the expected wavelet spectrum, which is determined by the effective frequency bandwidth, as shown by the blue dashed line in Figure 3A. [image: Mathematical expression showing \( \mathbf{A}_{\mathbf{f}} = \{ A \cdot \text{diag}(f_i) \}_{i=1,2,\ldots,N} \).] is the matrix constructed by different frequency division amplitude spectra. Within the confines of the expected wavelet amplitude spectrum, the amplitude spectra of various frequency bands are amalgamated through the utilization of weight coefficients. This effectively expands the frequency range of the seismic record. Simultaneously, this method effectively maintains the attributes of the seismic spectrum curve, as shown in Figure 3B. In short, the spectral fitting method maintains the seismic spectrum pattern by superimposing and dividing frequencies, while also upholding the desired wavelet constraint.
[image: Graph A shows frequency division spectra in shades of orange, yellow, and purple compared to a blue desired wavelet spectrum. Graph B displays an expanded red spectrum against the same blue wavelet spectrum. Both graphs plot frequency in Hertz on the x-axis and amplitude on the y-axis.]FIGURE 3 | (A) Gaussian frequency division spectra and (B) Wide spectrum constrained by expected wavelet spectrum.
2.2 Sparse optimization
Following the acquisition of high-resolution seismic data and wavelets through the spectral fitting method, it is possible to conduct sparse deconvolution. The conventional method for sparse deconvolution involves constructing a sparse objective function when the wavelet is known. This can be done as follows:
[image: Mathematical formula showing \( I(r) = \| Wr - s \|_1^2 + \lambda \| r \|_1 \), labeled as equation \( (3) \).]
where [image: Sure, please upload the image you need the alternate text for.] is the seismic wavelet matrix. [image: Please upload the image or provide a URL so I can help create the alternate text.] is the seismic reflection coefficient, [image: Please upload the image you would like me to describe, and I will provide the alternate text for it.] is the seismic record, and [image: Please upload the image or provide a URL for me to generate the alt text.] is the scale coefficient. Sparse deconvolution requires an accurate seismic wavelet. Figures 4A,B show the results of sparse deconvolution. Evidently, the sparse deconvolution method yields superior spectral recovery within the effective band. However, there is a significant discrepancy in the spectrum between 100 and 200 Hz outside the frequency range (as depicted in Figure 4B), resulting in a substantial difference between the calculated reflection coefficient and the true seismic reflection coefficient (as illustrated in Figure 4A). The primary factor is that the seismic spectral energy in high frequencies is diminished, leading to reduced accuracy in the recovery of this portion through sparse deconvolution.
[image: Side-by-side graphs show seismic data. Graphs (a) and (c) display amplitude over time with solid and dotted lines representing coefficients. Graphs (b) and (d) illustrate frequency spectra, with various colored lines indicating original and expected seismic wavelet spectra.]FIGURE 4 | Comparison of the effects of traditional sparse deconvolution and the sparse deconvolution method proposed in this paper. (A) The reflection coefficient by traditional spare deconvolution; (B) The spectra of the true reflection coefficient (blue line) and sparse deconvolution reflection coefficient (red line); (C) The reflection coefficient by the proposed method; (D) The spectra of the true reflection coefficient (blue line) and the reflection coefficient by the proposed method (red line).
In order to achieve a precise sparse reflection coefficient, it is essential to capture accurate spectral properties of high-frequency signals. According to Eq. 2 and Eq. 1, it is easy to establish a relationship between the seismic spectrum and the seismic reflection coefficient.
[image: Mathematical equation labeled as equation four, showing a formula: s equals W multiplied by r, composed with F inversely, subscript capital A, acting on t raised to the power of negative Arg.]
Where [image: Mathematical notation of an inverse function denoted as F superscript negative one.] is the Fourier inverse matrix. According to Eq. 2, [image: Please upload the image or provide a URL, and I will help create the alternate text for it.] is the wavelet matrix, and the wavelet spectrum can be accurately set. So, [image: Please provide the image by uploading it or linking to it, and I will create the appropriate alt text for you.] is deterministic. Thus, Eq. 4 can be derived as a formula for the reflection coefficient.
[image: Mathematical equation showing a transformation formula: \( \tau = W^{-1}F^{-1}A\alpha \text{-avg} \).]
Where [image: Capital letter W followed by a superscript negative one, representing the inverse of matrix W.] is the inverse matrix of [image: It seems like the image didn't upload. Please try again by clicking the image icon and selecting your file. If there's a specific detail or context you want included, feel free to add that in your message.]. According to Eqs 3, 5, a new form of sparse deconvolution objective function can be constructed.
[image: Mathematical equation showing the frequency \( Freq_{L_1}(\alpha) = \| A \alpha - W b \|_2^2 + \lambda \| W^{-1} F^{-1} A F e^{-\alpha} \|_1 \).]
After obtaining the weight coefficient [image: Please upload the image you'd like described, and I'll provide the alternate text for it.], the seismic reflection coefficient can be obtained according to Eq. 5.
The recently developed objective function offers two benefits in comparison to conventional sparse deconvolution techniques. The initial point to consider is the elimination of the necessity to extract the wavelet, thereby mitigating potential errors in the extraction of the seismic wavelet. The second point is that the expected wavelet encompasses a wider spectrum of frequencies, resulting in a more accurate restoration of spectral characteristics. Compared with Figures 4A,C, the two sparse deconvolution methods show significant differences in the reflection coefficient. Figure 4C depicts the outcome of the application of the proposed method, demonstrating a significantly improved accuracy in the estimation of the inverted reflection coefficient. The primary factor is that the conventional sparse deconvolution method cannot effectively handle the spectral characteristics of high-frequency seismic records (green curve in Figure 4B). This results in a notable disparity between the calculated reflection coefficient and the true value. The sparse deconvolution method proposed in this paper is closer to the true seismic reflection coefficient because it can more effectively restore the spectral characteristics of high-frequency seismic signals (as depicted by the green curve in Figure 4D). This demonstrates the effectiveness of the objective function in this paper.
2.3 Spatial continuity constraints
There are differences in the reflection coefficients obtained by the sparse deconvolution method in different seismic channels, encompassing discrepancies in time bias and amplitude fluctuations. These differences contradict the expected gradual lateral transition of geological features. So, the spatial continuity constraints are essential for achieving sparse solving while maintaining constructive control.
The first-order differential matrix, commonly referred to as total variation (TV) regularization, lead to a step-like effect that is not appropriate for spatial control constraints. The second-order differential matrix possesses smooth characteristics, enabling it to preserve the surface of three-dimensional data and ensure the spatial continuity of seismic data. In this paper, the method of regularizing the Hessian matrix is used to impose spatial continuity constraints. The Hessian matrix is composed of multiple second-order differential matrices. Assuming the three-dimensional seismic data is [image: Please upload the image or provide a URL so I can help create the alt text for it.], then its Hessian matrix is:
[image: Matrix equation denoting \( \textbf{H} \) with a three-by-four matrix. The first row is \( L_x^2, L_x L_y, L_x L_t \). The second row is \( L_x L_y, L_y^2, L_y L_t \). The third row is \( L_x L_t, L_y L_t, L_t^2 \). A reference number (7) follows the matrix.]
where [image: I'm unable to view the image. Please upload the image or provide a URL, and I can help you create alt text for it.] is the Hessian matrix. [image: Mathematical expression showing \( L_{ij}^{s} := \frac{\partial s}{\partial i \partial j} = D_{ij} \otimes s \), where \( \frac{\partial s}{\partial i \partial j} \) is a partial derivative and \( \otimes \) represents the tensor product.] , [image: A matrix element symbol, \(D_{ij}\), with the letter "D" followed by subscripts "i" and "j".] is the differential filter. [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to help create alt text for it.] are the three different directions of the 3D seismic data—the direction of the survey line, the survey trace, and the time.
The regularization of the Hessian matrix can be expressed as:
[image: Equation labeled as eight depicts the formula for \( U_s \), presented as a summation. The first expression is the sum over indices \( i, j \) belonging to the set \( E \) of the squared Euclidean norm of \( l_{ij} \). The second expression is similarly a sum over the same indices of the squared Euclidean norm of \( l_{ij} \circ s \).]
where [image: Please upload the image or provide a URL for me to create the alternate text.] are second-order differential operators in different directions (Gholami and Sacchi, 2013). The regularization of the Hessian matrix is computed for the 3D geological model data, as depicted in Figure 5. The figure demonstrates that the Hessian matrix exhibits surface smoothing characteristics. Therefore, it can be employed to limit the spatial coherence of the seismic reflection coefficient.
[image: Panel A shows a 3D surface plot with colored regions: blue, red, and green, indicating different value ranges on a grid. Panel B displays a 3D plot with two intersecting semi-transparent curved surfaces in blue and red, set against axes labeled with numerical values.]FIGURE 5 | (A) 3D geological model with two stratigraphic interfaces and (B) The Hessian Frobenius norm shows the smooth interface.
In order to be able to optimize the solution for seismic data [image: \( = \mathbf{F}^{-1} \mathbf{A_f} a e^{-i \cdot Ang} \).] , the convolution operation of Hessian in Eq. 8 should be changed to a matrix operation (Guo et al., 2022).
[image: Equation for score calculation: \( u_s = \sum_{i,j \in V(A,y)} \| l_{ij}^s \|_2^2 = \sum_{i,j \in V(A, Y)} \| P(l_{ij}) \cdot s \|_2^2 \). Labeled as equation (9).]
where [image: Mathematical notation displaying \( P(l_{ij}) \).] is the matrix form of the differential operators.
Combine Eqs 6, 9 to get the final objective function:
[image: Mathematical expression for a function \(F(\alpha)\) outlined as follows: \(F(\alpha) = \|A \alpha - W\|_2^2 + \lambda \|r\|_1 + \gamma \sum_{i,j \in \text{Edata}} \|P(l_{ij}) \cdot r\|_2^2\), equation ten.]
where [image: The image shows a mathematical formula: \( r = \mathbf{W}^{-1}\mathbf{F}^{-1}\mathbf{A}_{\rho} e^{-i \cdot \text{Ang} \alpha} \).]. [image: Please upload the image or provide a URL so I can create the alt text for you.] and [image: Please upload the image or provide a URL for me to create the alt text.] are the scale factors, which can be preferentially determined by model testing. The objective function (Eq. 10) is solved using the Split Bregman algorithm (Guo et al., 2022). The weight coefficient [image: It seems there is no image provided. Please upload the image or provide a URL so I can generate the alternate text for you.] can be obtained by solving the objective function. Then, the high-resolution seismic record and the seismic reflection coefficient can be obtained through Eq. 11, respectively.
[image: Mathematical equations showing two expressions: ξ_s equals F⁻¹ A_q e⁻^(Λ_n τ) α, and Γ_x equals W⁻¹ F⁻¹ A_q e⁻^(Λ_n τ) α, labeled as equation eleven.]
Where, [image: Please upload the image or provide a URL for me to generate the alternate text.] is the high-resolution seismic record. [image: The image shows a lowercase italic letter 'r' followed by a lowercase 'g', both in stylized serif font.] is the seismic reflection coefficient.
3 MODEL VALIDATION
To confirm the advantages of the method proposed in this paper, a geological model is constructed (Figure 6A). The geological model includes three sets of thin reservoirs with a thickness range of 0–15 m. These reservoirs are utilized for evaluating the effectiveness of various methods in thin reservoir prediction, as depicted in Figure 6A (①②③). The synthetic seismic record was generated by convolving a seismic wavelet with a reflection coefficient obtained from the geological model (Figure 6B). The seismic wavelet is a Ricker wavelet with a main frequency of 25 Hz. Gaussian noise (S/N=3) was added to the synthetic seismic record to simulate the noisy seismic record (Figure 6C). The S/N is the ratio of the amplitude of the true seismic signal to that of the noise.
[image: Three-panel image showing geological and seismic data. Panel A displays a colorful stratigraphic cross-section with depth annotations. Panel B shows a seismic profile with wave patterns in varying colors, highlighting geological features. Panel C presents a similar seismic profile with enhanced detailing, focusing on subsurface structures.]FIGURE 6 | (A) Geological model with three sets of thin reservoir shown as ①②③; (B) Synthetic seismic record convolved with Ricker wavelet of main frequency 25Hz; (C) Synthetic seismic record with Gaussian noise of S/N=3.
Different methods are employed for the analysis of the seismic data containing noise as depicted in Figure 6C. Since the proposed method can obtain both the seismic reflection coefficient and high-resolution seismic records, this paper compares it with various conventional methods. Firstly, Figure 7 shows the application effect of the proposed method and the sparse deconvolution method. Figure 7A represents the actual seismic reflection coefficient. Figure 7B illustrates the seismic reflection coefficient that has been computed through the utilization of sparse deconvolution. Figure 7C shows the seismic reflection coefficient computed utilizing the method in this paper. The method presented in this paper is more accurate for recovering the reflection coefficient. The main reason is that the proposed method incorporates a spatial continuity constraint, resulting in improved interface continuity of the solved seismic reflection coefficient compared to the conventional sparse deconvolution method. Meanwhile, the spectral fitting method is more accurate in recovering seismic spectrum features. The inversion of high-frequency information in seismic signals provides more accurate and detailed information. It also improves the precision of thin reservoir responses, as indicated by the arrow in the figure. Additionally, it improves the high-resolution fidelity of seismic data.
[image: Three seismic reflection profiles labeled A, B, and C show subsurface structures with varying depths in milliseconds. The profiles display layered patterns and highlighted areas marked by orange arrows, indicating significant features.]FIGURE 7 | (A) True seismic reflection coefficient; (B) The solved reflection coefficient by sparse deconvolution; (C) The solved reflection coefficient by the proposed method.
In practical use, obtaining seismic data with high resolution is essential for subsequent attribute analysis and seismic inversion. Figure 8A shows a seismic record containing Gaussian noise. Figure 8B is a high-resolution seismic section processed using spectral modeling deconvolution with spatial continuity constraints. Figure 8C is a high-resolution seismic section processed using the proposed method. The process of spectral fitting exists in both methods, so the overall spectral range is basically the same, and the range has been extended from the initial 5–45 Hz to approximately 5–65 Hz. The difference between Figures 8B,C is the variation in spatial continuity. The spatial continuity refers to the characteristics of the seismic waveform in Figure 8B and the seismic reflection coefficient in Figure 8C. It can be seen that the high-resolution seismic results, constrained by the seismic reflection coefficient (Figure 8C), demonstrate superior noise cancellation compared to those depicted in Figure 8B. Meanwhile, the proposed method provides more accurate spatial constraints for thin reservoir information.
[image: Three side-by-side seismic reflection images labeled A, B, and C. Each image displays wavy layers with varying colors, including black, red, and gray. The vertical axis represents twtt (two-way travel time) in milliseconds. Small blue arrows highlight certain features in the images. The background and layers include shades of green.]FIGURE 8 | (A) Noise-containing seismic record; (B) High-resolution section by spectral modeling method; (C) High-resolution section by the proposed method.
4 EXAMPLE
4.1 Applications in thin reservoir and microstructure recovery
For testing, 3D seismic data from the GST area of the Sichuan Basin was utilized. The targeted stratum is the Qixia Formation, and its thickness remains relatively stable at approximately 110 m. The depth of the targeted stratum is 4,500–4,700 m. The reservoir type is a dolomite pore reservoir, characterized by low porosity and low permeability. The physical parameters of the reservoir are very similar to those of the surrounding rock. The reservoir thickness is thin, with each group of reservoirs ranging from 6 to 10 m in thickness. The dominant frequency of the seismic data is 25 Hz. The response of the reservoir within the Qixia Formation is disrupted by the strong reflection from the upper and lower boundaries of the targeted stratum. Low-resolution seismic data in the Sichuan Basin presents two primary challenges: firstly, it results in unclear seismic structural characteristics, and secondly, it obscures thin reservoir responses.
The reservoir of the Qixia Formation in the GST area of the Sichuan Basin is predominantly situated within the central portion of the targeted stratum. The forward geological model is designed to depend on reservoir characteristics, as shown in Figure 9A. The arrow points to the dolomite reservoir, which has a designed thickness of 10 m. The position of the reservoir gradually shifts from the left to the right, moving toward the center of the targeted stratum. The seismic forward data is shown in Figure 9B. The forward simulation process (from the geological model to the seismic record) uses the theory of the Zoeppritz equation. The dominant frequency of the seismic wavelet is 35 Hz. It can be observed that the reservoir exhibits a strong bright spot response when it is located near the center of the targeted stratum. The bright spot response of the reservoir gradually weakens as it approaches the upper boundary of the targeted stratum. The forward model test shows that the presence of a reservoir leads to a bright spot response within the targeted stratum. However, in practice, the bright spot response of thin reservoirs may not be readily apparent due to limitations in the resolution and signal-to-noise ratio of seismic data. High-resolution seismic data is essential for accurately predicting the presence of thin reservoirs.
[image: Seismic model image with two panels. Panel A shows a depth section with color layers indicating different velocities, labeled with a velocity scale. A green line suggests a path, and an arrow marks a feature. Panel B is a time section with black and white oscillating waveforms, showing an anomalous feature indicated by an arrow. Both panels are labeled A and B.]FIGURE 9 | Seismic forward simulation. (A) Designed geological model with the reservoir in the middle of targeted stratum; (B) Seismic forward section by the Zoeppritz equation.
Figure 10 illustrates a comparison of the efficacy of different methods on real seismic data. Figure 10A shows the original seismic section. There are two industrial gas wells named Well 1 and Well 2, but there is no bright spot response from the reservoir at Well 1. This is primarily due to the scarcity of seismic data, leading to an extended duration of the wavelet. The identification of the reservoir is challenging due to the obstruction caused by the side lobes of the seismic-reflected wavelets at the top and bottom. Simultaneously, the stratum contact (P1m) consists of low-speed argillaceous limestone above and high-speed limestone below. It is observed as a peak response on the seismic section. Nevertheless, the presence of seismic noise and constraints in frequency ranges, combined with the impact of intricate lithological formations in the upper section of the targeted stratum, result in the overlapping of seismic wavelets from different reflection interfaces. Consequently, it is not feasible to precisely track the position of the stratum. Hence, the interpretation of the P1m strata (as shown in Figure 10A, at position ③) presents a challenging task. Two methods are employed to improve the resolution of seismic data in order to address this issue. Figure 10B shows the effects of spectral modeling deconvolution with spatial continuity constraints. It can be seen that the resolution of seismic data is effectively improved, particularly in the vicinity of the reservoir (Figure 10B, at positions ① and ②). The bright spot response of the reservoir is very clear. However, there is a sudden increase or decrease in the energy level at the upper boundary of the targeted stratum (P1m), and the continuity of the stratum deteriorates, as shown at the circled position in Figure 10B (③). The primary factor is that the upper part of the targeted stratum contains a complex combination of lithologies. Furthermore, a flaw exists in the approach employed to retrieve the energy of the reflection interface, leading to an impact on the seismic reflection within the upper portion of the targeted stratum and causing a disruption in the energy convergence of P1m. Figure 10C shows the application effect of the proposed method. The reservoir is also clearly highlighted, and the bright spot response corresponds more accurately to the industrial gas wells. The convergence of the formation interface (P1m) energy and the interpretation of the structure becomes easier. The interpretation results are consistent with the principles of geology and logging.
[image: Three seismic sections labeled A, B, and C, showing subsurface reflections with wavy black and white patterns. Each section includes red and blue lines indicating different geological features. Wells 1 and 2 are marked with vertical lines and labels in yellow and orange boxes. Red dashed boxes highlight areas of interest near Well 2, showing variations between sections.]FIGURE 10 | Sections comparison of different methods. (A) Original seismic section; (B) Seismic section by spectral modeling deconvolution with spatial continuity constraints; (C) Seismic section by the proposed method.
To confirm the precision of the high-resolution data, synthetic records from the two wells depicted in Figure 10 were utilized to compare with the processed data near the same wells. Figure 11A shows the logging data from Well 1 and its synthetic seismic record with a wavelet of dominant frequency 35 Hz. The high-resolution data obtained through the conventional spectral modeling approach and the novel method introduced in this paper were extracted in close proximity to the well in order to be compared with the synthetic seismic record, as shown in Figure 11A (3) and (4), respectively. The waveforms of both methods closely resemble the synthetic record at the targeted stratum position, and both methods exhibit a strong response from the reservoir. However, in the upper portion of the targeted stratum, the spectral modeling method does not match well with the synthetic record in terms of the time-shift and amplitude bias. The correlation coefficient of the method proposed in this paper is 0.71. While the waveform recovery method in this paper is more accurate and better matched with the synthetic record, and its correlation coefficient reaches 0.85. Figure 11B shows the synthetic record of Well 2 and the comparison of high-resolution seismic data near the well. It can be observed that the waveform generated by the traditional method in the targeted stratum poorly matches the synthetic seismic record, especially in stratum contact (P1m) where a significant time shift is evident. While the method described in this paper can accurately capture the reservoir information. The seismic stratum and the interpreted logging stratum correspond better.
[image: Two graphs labeled A and B compare seismic data. Each graph shows three columns: Vp(m/s), Density (g/cm³), and Seismic traces. Notable features, such as "Bright spot" and "Receiver," are highlighted. Different line styles represent synthetic records, spectral modeling recovered records, and method-specific recovered records. Arrows indicate specific seismic events.  ]FIGURE 11 | Well-to-seismic comparison. (A) P-wave velocity of Well 1 (1), density of Well 1 (2), synthetic seismic record with a wavelet of dominant frequency 35 Hz (black line in (3) (4)), high-resolution seismic trace by the traditional spectral modeling (pink line in (3)), and high-resolution seismic trace by the method in this paper (red line in (4)); (B) P-wave velocity of Well 2 (1), density of Well 2 (2), synthetic seismic record with a wavelet of dominant frequency 35 Hz (black line in (3) (4)), high-resolution seismic trace by the conventional spectral modeling (pink line in (3)), and high-resolution seismic trace by the method in this paper (red line in (4)).
According to the correspondence of the bright spot response to the reservoir, seismic bright spot responses indicate the presence of reservoirs. We selected a time window of 8 milliseconds below the upper boundary and 8 milliseconds above the lower boundary of the targeted stratum in Figure 10. The maximum peak amplitude in the time window is then extracted from various seismic data, as shown in Figure 12. Figure 12A shows the amplitude property extracted from the original seismic data. The bright spot response is not visible at Well 1, and there is a weak bright spot response at Well 2. In Figure 12B, the amplitude property extracted using the spectral modeling method with a spatial continuity constraint is shown. The bright spot response at Well 1 is enhanced, and a new bright spot appears at Well 2. But in the southern area (indicated by the white dashed line), there is a structural interpretation error caused by the absence of energy convergence at the upper boundary of the targeted stratum. This error leads to the occurrence of false bright spots and an unclear pattern. Figure 12C shows the amplitude property extracted from the data processed using the method described in this paper. The bright spot response is observed in Well 1 and Well 2, which is consistent with the forward analysis and logging interpretation. The explanation of the lower right corner of the figure is accurate, and the regularity of the highlighted amplitude is stronger.
[image: Three maps labeled A, B, and C display well locations within color-coded grids. Each grid has varied sections in blue, gray, and orange, denoting different data values, with wells marked as "Well 1" and "Well 2". A color scale is at the bottom right.]FIGURE 12 | Maximum peak amplitude inside the targeted stratum extracted from different data. (A) Amplitude property from original seismic data; (B) Amplitude property from the data processed by the spectral modeling method with spatial continuity constraint; (C) Amplitude property from the data processed by the proposed method.
4.2 Applications in minor fault identification
High-resolution seismic data also contributes positively to the detection of minor faults. To assess the effectiveness of this approach in identifying minor defects, a particular area within the SN district in the Sichuan Basin was chosen for evaluation. The work area is characterized by a syncline structure, with the east and west wings exhibiting upturned formations and faults. Reservoirs primarily consist of lithological formations and are located in the central part of the syncline. Minor faults in this area have significant implications for reservoir reconstruction. The characterization of minor faults provide a foundation for accurate reservoir prediction, but its imaging is blurred due to the low resolution of the seismic data. The dominant frequency of seismic data is approximately 26 Hz, which makes it difficult to detect minor faults. Figure 13A shows the original seismic section, which demonstrates poor seismic resolution. So, minor faults and micro-tectonic morphology are similar, making it difficult to accurately identify them, especially in the y1 area. Figure 13B shows the seismic section processed using the method described in this paper. The figure shows the internal section of the syncline. The minor fault shown in Figure 13B is precisely delineated, with clear indication of the fault’s orientation and angle of inclination. Currently, seismic data has identifiable minor fault breaks of approximately 8 milliseconds. Based on the velocity of around 4,000 m/s here, the identifiable minor fault break is approximately 16 m. This confirms the accurate identification ability of the proposed method.
[image: Two seismic profile sections labeled A and B, displaying stratified geological layers with varying colors. Section A shows more continuous, aligned layers, while section B has slight discontinuities. Both sections exhibit red and black bands against a beige background, indicating different subsurface structures.]FIGURE 13 | Seismic section comparison about minor fault. (A) Original seismic data with small obscure fault; (B) The high-resolution seismic section processed by the proposed method.
In light of these insights, the coherence property along the stratum interface was extracted, as shown in Figure 14. The faults on both sides of the work area developed, but the reservoir was primarily located in the syncline. So, the characterization of faults within the syncline was more significant, while micro-faults were indistinct within the syncline. Figure 14A shows the coherence map extracted from the original seismic data. The wells y1 and y2 in the work area are industrial gas wells, and the imaging logging shows that both wells have faults. There are faults in well y2, but no faults in well y1 on the original seismic coherence map. Figure 14B shows the coherence property of high-resolution data processed using the proposed method. The two wing faults can be clearly described, and the smaller faults are more visible within the syncline. The development of micro-faults can be clearly identified at well y1, which confirms the effectiveness of the proposed method in characterizing micro-faults.
[image: Two grayscale images labeled A and B show geological features with red annotations marking specific points and lines. Both images have similar structures featuring diagonal lines, and accompanying scale bars indicate size or intensity.]FIGURE 14 | Coherence map of the targeted stratum comparison from different data. (A) Coherence map extracted from original seismic data; (B) Coherence map extracted from high-resolution seismic data processed by the proposed method.
5 CONCLUSION
In this paper, we propose a novel solution for extracting fine wavelets and recovering spatial structures through seismic spectral expansion, sparse reflection coefficient, and spatial continuity constraints. We conducted model trial calculations and processed actual data to validate the effectiveness and accuracy of the proposed method. Our findings indicate that the proposed method outperforms traditional methods such as spectral modeling deconvolution and sparse deconvolution. This study has led to significant conclusions and insights.
	(1) In this paper, we construct the expected wavelet using spectrum scanning analysis and employ the frequency division fitting method. Then, by effectively expanding the frequency bandwidth, increasing the octave range, and improving the resolution of seismic data, we can achieve these enhancements while still adhering to the expected wavelet constraint. So, a precise wavelet and its corresponding high-resolution seismic data are accessible.
	(2) The objective function for sparse deconvolution is formulated based on high-resolution seismic data and the expected wavelet. The seismic reflection coefficient can then be obtained. Meanwhile, the Hessian matrix regularization is used to constrain the spatial continuity of the seismic reflection coefficients. This method of regularization serves to safeguard the signal-to-noise ratio and accuracy of the seismic data.
	(3) The final objective function is formulated by combining constraints on frequency expansion, sparsity, and spatial continuity. The high-resolution seismic data can be obtained without extracting the seismic wavelet. The proposed method is compared with traditional sparse deconvolution and spectral modeling deconvolution methods. The proposed method outperforms traditional methods in terms of noise suppression and enhancing the resolution capability of thin reservoirs.
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Seismic surface and body wave analyses are powerful tools for the geotechnical characterization of sites. The use of landstreamers facilitates the acquisition of dense data sets over large areas. However, efficient processing workflows are needed to estimate 3D velocity models from these massive data sets. For surface wave analysis, the manual picking of dispersion curves (DCs) of large data sets is very time-consuming, whereas the accuracy can be biased by operator choices. We apply a semi-automatic workflow for the analysis, processing, and interpretation of a large-scale landstreamer data set acquired for engineering purposes in the Middle East. The workflow involves the application of a validated automatic DC picking algorithm, and the transformation of the DCs into S- and P-wave velocity models through the wavelength-depth technique. The method has a high level of automation, is data driven and does not require extensive data inversion. Another remarkable benefit is that the auto-picking is more than 1,000 times more efficient than standard manual picking and the estimated velocities are in good agreement with available geotechnical and geophysical information. We conclude that the semi-automatic approach may represent a fast and straightforward method suitable for both research and industrial projects, thus enhancing further collaborations and developments.
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1 INTRODUCTION
Seismic methods are of pivotal importance in providing the needed geo-data for near-surface characterization such as lateral variation detection, stratigraphic mapping, determination of geotechnical properties, and reservoir target location. Multichannel Analysis of Surface Waves (MASW) is the largely dominant survey method to retrieve the shear-wave velocity (Vs) model of the subsurface down to some tens of meters. The most established approach to process and interpret MASW data encompasses survey design, acquisition, processing to retrieve the experimental dispersion curves (DC) and inversion to obtain Vs profiles via local or global search methods (Foti et al., 2018). In recent years (Van Der Veen et al., 2001; Malehmir et al., 2017) the use of landstreamers has made the acquisition of dense and large data sets very efficient, with an acquisition rate of around 1 km of line per day (Hjelm et al., 2023). The cost-effective availability of large data sets opens the possibility of extensive, dense and high-resolution velocity model estimations. The bottleneck of the exploration workflow lies then in the estimation of the large number of DCs and in their inversion.
Although several attempts of making the DC picking fully automatic using either knowledge based (Zhu and Beroza, 2018) or machine learning (Cano et al., 2021; Wang et al., 2021) methods, the picking is standardly carried out with a software-aided “manual” approach that requires an expert operator to decide what should be picked over the spectral images. A recent work has introduced a new method of automatic DC extraction or auto-picking of the DCs (Papadopoulou, 2021; Papadopoulou et al., 2021). This auto-picking method does not require any data preconditioning or operator intervention, also avoiding subjective decision of the user (Zargar et al., 2023). The algorithm has been applied to some case studies, but never to large-scale landstreamer data sets.
As far as inversion is concerned, researchers have proposed a number of methods to directly transform the DCs into local Vs models (McMechan and Yedlin, 1981; Bergamo et al., 2012). One example is the wavelength-depth transform (from now on, W/D transform) (Socco and Comina, 2017; Socco et al., 2017; Khosro Anjom, 2021). This data driven method relies on the knowledge of a limited number of reference models within the data set and uses them to estimate a rescaling function that represents the surface wave (SW) skin depth and that allows to directly transform the DCs into Vs models. The method is computationally fast and retrieves Vs and P-wave velocity (Vp) models thanks to the sensitivity of the W/D relationship to Poisson’s ratio (Socco and Comina, 2017). The estimation of Vp in addition to Vs models provides a more comprehensive description of the mechanical properties of the near surface without the need of associating P-wave tomography to MASW and thus saving the time required for first-break picking and refraction inversion. So far, there have been few applications of the W/D transform to the estimation of Vp models from surface waves (Wang et al., 2024). This indicates there is a need to unveil the benefits of this innovative methodology to both industrial and academic applications.
This study presents the first application of the auto-picking and W/D transform methods to a large-scale landstreamer data set which is suitable for 3D interpretation. The auto-picking and W/D transform methods are illustrated and condensed in their main tenets taken from the original published works. The objective of this field case is to show the feasibility and effectiveness of the combination of two recent methods that provide a cost effective and robust characterization of the shallow subsurface with a high level of automation. The results of the proposed workflow are compared with those of standard MASW and P-wave tomography methods. The benefits of the workflow proposed are outlined in terms of validity of the results and competitiveness of the time required for data processing.
The data set was acquired in the Middle East for land site characterization of an engineering project. Several examples of near surface characterization using SW have been provided for deep exploration projects in the Middle East (e.g., Colombo et al., 2017; Alyousuf et al., 2018). In our case, the geophysical acquisition was performed on purpose for near surface characterization for infrastructure development. The seismic landstreamer data used in this study are complemented by electrical resistivity tomography (ERT) data.
The ensuing sections are organized as follows. The second section will describe the methodology adopted in this study, in particular, the auto-picking and the W/D procedures. The third section will give an overview of the case study, i.e., the large seismic landstreamer data set. The fourth section is concerned with the results and the comparison between auto- and manual picking. Finally, the discussion arising from the research findings is presented.
2 METHODS
The method we applied can be graphically described with the workflow of Figure 1 and is composed of the following steps:
	1. Automatic DC extraction or auto-picking,
	2. Velocity estimation:
	A. DCs clustering,
	B. W/D transform,
	C. Final estimation of the interval velocities.

[image: Flowchart depicting a data processing workflow divided into three main sections. The first section involves auto-picking, which includes spatial windowing, dispersion image, picking the maxima, and cleaning. The second section (2A) describes clustering dispersion curves (DCs) into clusters and outliers. The third section (2B) involves inverting for reference velocities and establishing various relationships, with steps for velocity and Poisson ratio estimation over clusters. Finally, section (2C) consolidates all velocities and ratios, applies regularization, and performs one-dimensional velocity estimations.]FIGURE 1 | Workflow of the complete procedure of auto-picking and W/D transform. After the automatic DC extraction (1), the auto-picked DCs are grouped into clusters (2A). Then, for each cluster, the W/D method is applied (2B). Finally, (2C) the models of interval velocity Vs and Vp are estimated (modified from Khosro Anjom et al. (2019)).
Details are given below.
2.1 Automatic DC extraction
The auto-picking method used is based on the seminal work of Papadopoulou et al. (2021) with further developments aimed at improving the robustness and broadening the bandwidth of the extracted DCs (Zargar et al., 2023). The processing code is fully automatic and virtually applicable directly in the field.
The processing scheme is based on the definition of an appropriate spatial moving window that spans the seismic lines and computes the dispersion images based on the phase shift method (Park et al., 1998) at each position of the moving window and for several shot gathers in the same window (Papadopoulou et al., 2021; Zargar et al., 2023). The dispersion images of the different shots are stacked to improve S/N ratio and the DCs are automatically picked on each stacked spectrum. The auto-picking itself is based on the method developed by Papadopoulou (2021), which, after a preliminary picking, automatically selects the reliable branch of DCs on the basis of The DC is then automatically extended by picking additional points outside the main branch thanks to a series of quality controls (QCs). The required inputs beside the seismic records are the length of the moving window, the minimum and maximum source-receiver offset, and the shift of the moving window along the line. In the present processing scheme, a specific frequency band for the initial search of the maxima has to be set up by the operator.
2.2 Velocity estimation
We used the W/D method to directly transform the DCs into Vs and Vp models (Socco and Comina, 2017; Socco et al., 2017; Khosro Anjom et al., 2019; Khosro Anjom, 2021). The method is based on the strong correlation between DC in wavelength domain and time-average Vs (Vs,z) (Socco et al., 2017). The Vs,z at a certain depth [image: Please upload the image or provide a link to it, so I can assist you with creating appropriate alt text.] is the weighted average velocity of the media from this depth up to the surface, which can be computed from the parameters of a layered Vs model using:
[image: Mathematical equation: \( V_{s,z}(z) = \dfrac{\sum \limits_{i} h_i}{\sum \limits_{n} \dfrac{h_n}{V_{s}}} \). Equation number (1).]
where [image: The formula represents "V" subscripted by "Si," likely denoting a variable or value related to silicon.] and [image: Mathematical expression showing the variable \( h_i \), typically denoting an element in a series or sequence, where \( i \) indicates the index or position.] are the velocity and thickness of the [image: Please upload the image or provide a link to it, and I will help you create the alternate text.] th layer, respectively. The W/D relationship is based on the search for the wavelength at which the SW phase velocity is equal to the time-average velocity (Vs,z) at a certain depth. The W/D pairs define a relationship that represents the SW skin depth and that can be directly used to transform the DCs into Vs,z models. Since the skin depth of SW depends on the Poisson’s ratio (Pelekis and Athanasopoulos, 2011), Socco and Comina (2017) developed a method based on the sensitivity of the W/D relationship to estimate the time-average Vp (Vp,z) in addition to Vs,z. Based on the W/D data transform, Khosro Anjom et al. (2019) created a workflow to estimate interval Vs and Vp models that can be applied to laterally varying sites. The workflow for the estimation of Vs and Vp can be divided into three main steps (see Figure 1, blocks 2A, 2B, and 2C, respectively):
	A. DCs clustering: the DCs of the seismic data set are grouped into clusters of homogenous sets by means of a hierarchical agglomerative clustering algorithm. The Euclidean distance is used as the metric to measure the dissimilarity of each two DCs, and average distance linkage criterion is considered to compute the distance between clusters (Khosro Anjom et al., 2019). Hierarchical clustering does not require information regarding lateral variation. The clusters can be obtained from the dendrogram plot or a distance threshold. The W/D transform is carried out separately for each cluster.
	B. W/D transform: for each cluster, a reference DC based on the QC of Karimpour (2018) is selected. The reference DCs (one per cluster) are inverted using a Monte Carlo algorithm (Socco and Boiero, 2008) to estimate the reference Vs,z model (one per cluster). The reference Vs,z model and the reference DC are used to retrieve the reference experimental W/D relationship, which is used to transform the other DCs belonging to the same cluster. Then, from the W/D relationship of each cluster, a reference apparent Poisson’s ratio [image: The image shows the mathematical expression \( v(z) \).] is deduced (one per cluster). An apparent Poisson’s ratio is a property that relates the Vs,z and Vp,z models according to the following Eq. 2 (Socco and Comina, 2017):

[image: The image shows a mathematical equation: \( g(z) = \frac{1}{2} \left[ \frac{\left(\frac{V_{\text{ph}}(z)}{V_{\text{max}}(z)}\right)^{2} - 2}{\left(\frac{V_{\text{ph}}(z)}{V_{\text{max}}(z)}\right)^{2} - 1} \right] \).]
The reference W/D relationship is applied to all DCs of the clusters to estimate the corresponding Vs,z models. Then, the estimated Vs,z models are transformed into Vp,z models thanks to the reference apparent Poisson’s ratio of the cluster.
	C. Estimation of the interval velocities: the estimated Vs,z and Vp,z are transformed into interval Vs and Vp models using a DIX-type formula [i.e., inverse of Eq. (1)] (Dix, 1955). The DIX-type equation is sensitive to noise. To reduce the impact of the noise in the estimated Vs and Vp models, we impose the total variation regularization in the DIX-type equation (Khosro Anjom et al., 2019).

3 THE CASE STUDY
The investigated area is located in the Middle East, United Arab Emirates. The survey area is 300 m west away from the coastline, but the exact location of the survey area is kept confidential as requested by the data owner. On a geological standpoint, the survey area lies on the Cretaceous unit, as reported in the USGS geologic map (Pollastro et al., 1999). The geologic USGS province is called “Oman mountains”. The topography of the area is quite flat, and the ground surface is characterized by sand and gravel.
The data acquisition was carried out in 2020 for infrastructure development. The geophysical data set is composed of 5 m-spaced 45 parallel lines of seismic landstreamer and ERT data. The ERT data are not considered in this work.
The landstreamer data were acquired with a sledgehammer and plate as the source. The receiver was a 48-channel streamer with 1 m geophone spacing and a geophone frequency of 4.5 Hz. Each line was composed of 24 shot gathers (except for few lines with 22 shot gathers). The offset between the source and the 1st geophone was 5 m and the streamer was shifted 5 m at every shot (between 2 and 5 stacks). The total length of the seismic line was 162 m for a total of 7.29 km for all 45 lines. The seismic acquisition layout is illustrated in Figure 2. The acquisition direction was from east (first geophone) to west (last geophone) and from south (first line L0) to north (last line L220). The profiles are oriented N80°W with respect to the geographical north. The area was also investigated with 8 cone penetration tests (CPTs) and 16 boreholes, whose locations are plotted in Figure 2.
[image: Map showing seismic lines and testing points marked as circles, squares, and diamonds, representing CPT, boreholes, and seismic lines respectively. Includes a north compass and acquisition direction arrow. Scale bar indicates distance.]FIGURE 2 | Overview of survey area: the 45 seismic landstreamer lines, the 8 CPTs and 16 boreholes. The acquisition direction was from east (first geophone) to west (last geophone) and from south (L0) to north (L220). The geographical coordinates are omitted on purpose as confidential.
The analysis of the 16 boreholes reveals the main geologic units of the area. The upper units are represented by gravelly, silty or shelly sand, while the deepest layers of the boreholes include breccia or gabbro, and sometimes calcarenite or sandstone. It is worth noting that below the geologic formation of (gravelly/silty/shelly) sand, the units of gabbro or breccia represent the outcropping bedrock. This clear discontinuity appears at a mean depth of 15 m from the top of the borehole, with a minimum depth of 8 m and a maximum depth of 23.5 m. Five out of 16 boreholes do not find the gabbro or breccia units, even though their well bottom is at a depth of around 20 m.
A representative example of the data set is shown in Figure 3, which represents a record for line L55, shot 4. This line was chosen as representative for the whole site and is shown later as it is close to CPT-02 and borehole TBH-02.
[image: Seismograph displaying wave patterns over time, with black and red lines oscillating vertically. The x-axis shows position in meters from 80 to 120, and the y-axis shows time in seconds from 0 to 1. The top indicates northwest to southeast orientation.]FIGURE 3 | The data set. An example of recordings from line L55, shot 4.
4 RESULTS
4.1 Auto-picking and comparison with manual picking
While the manual picking of landstreamer data is standardly carried out using the whole streamer (48 receivers and 47 m) and single source, for the auto-picking it is possible to select a smaller window, thus increasing the lateral resolution, and exploit several shots, thus increasing the S/N ratio. Moreover, the manual picking retrieves a DC every 5 m (which is the shift between neighboring positions of the shots), while for the auto-picking, thanks to its efficiency, a smaller shift of the window can be selected, down to the receiver spacing (1 m in this case). This provides a much denser DC data set. For the processing of the data, we chose a moving window of 24 receivers with a shift of 1 receiver (1 m) and stacking of 10 shots (offset from 5 to 50 m).
The manual and the auto-picking were carried out in Matlab proprietary codes using the phase shift method to compute the velocity spectra.
An example of the computed dispersion images for line L55 is depicted in Figures 4A, B with the picked DCs from the auto-picking code and manual approaches, respectively. Even though the general trends of the picked DCs are in good agreement, there are some differences. For instance, there are some discontinuities in the picked curve from the manual picking at around 40 Hz (Figure 4B) that are not present in the auto-picking method (Figure 4A). A possible reason for this slight discrepancy is that the dispersion images result from a different amount of input traces due to the moving window of the auto-picking method, which considered the traces coming from different shots.
[image: Two color-coded spectrograms labeled A and B display phase velocity in milliseconds on the y-axis and frequency in Hertz on the x-axis. Both graphs exhibit variations in color gradients, with notable transitions from blue to red, indicating changes in amplitude or intensity. Black markers highlight specific data points across the frequency ranges.]FIGURE 4 | An example of DC extraction and the computed spectrum for line L55 from (A) the auto-picking code at the midpoint of around 30 m and from (B) the manual picking (shot 19, whose midpoint is 25.5 m). The red in the velocity spectrum means high amplitude, the blue means low amplitude.
The auto-picking method was applied to all 45 lines and more than 5,700 DCs were obtained, as shown in the pseudo-3D volume in Figure 5. The highest values of the phase velocity can be observed at large wavelength in the northwestern sector of the investigated area. The automatic DC extraction lasted less than 15 min with no need for any kind of user intervention. Figure 6 displays the extracted DCs from both auto-picking and manual picking as a function of wavelength for a representative line, L55. The data are represented with the horizontal axis of the receiver positions in descending order, while the direction of the acquisition goes from geographical southeast to northwest, as indicated in Figure 2. The extracted DCs from the auto-picking (Figure 6A) are denser in space since the spatial window moved every 1 m (i.e., the receiver spacing), while the DCs from the manual picking (Figure 6B) were estimated every 5 m (i.e., the shot spacing). Furthermore, the investigation depth of the DCs from the auto-picking (Figure 6A) is often higher than that from manual picking (Figure 6B), as can be observed from the wavelengths larger than 20 m.
[image: Three-dimensional plot showing phase velocity distribution. The axes represent position (meters), wavelength (meters), and line number. Colors range from blue to red, indicating phase velocity values from 200 to 500 meters per second.]FIGURE 5 | Pseudo-3D volume of the dispersion curves extracted with the auto-picking code.
[image: Two graphs showing phase velocity data with respect to position and wavelength. Graph A displays a dense, multicolored pattern indicating varying velocities, with higher values at the top. Graph B shows a sparser distribution of data points. Both graphs have phase velocity color scales ranging from blue (200 m/s) to red (500 m/s).]FIGURE 6 | Pseudo-section of DCs obtained from auto-picking (A) and manual picking (B) for line L55.
The misfit between the DCs data points obtained from automatic and manual picking was calculated for all the lines. Given that the auto-picked DCs were more numerous than the manually picked DCs, the misfit was calculated for only the common frequency band of the DCs that had the same position. The average misfit for all the lines was −0.18%. The misfit distribution for line L55 is shown in Figure 7 as a bar chart. The average misfit is almost zero (−0.5%) and the standard deviation is 5.3%. The red curve represents the gaussian curve that fits the data.
[image: Histogram with a bell curve overlay displaying data distribution. The x-axis measures "Misfit %" ranging from -40 to 40, and the y-axis shows "Occurrence." The mean is -0.5% and standard deviation is 5.3%.]FIGURE 7 | Distribution of the misfit between the DCs data points obtained from automatic and manual picking for line L55. The average of this distribution (µ) is −0.5% and the standard deviation (σ) is 5.3%. The red curve represents the gaussian that fits the bar chart of the data.
4.2 The final velocity models
The clustering of the estimated DCs through the auto-picking algorithm revealed three clusters (Figure 8). For each cluster, a reference DC was selected based on the QC and then inverted using the Monte Carlo algorithm to obtain the reference Vs,z model required for the W/D relationship. In Figure 9, we show the results of the Monte Carlo inversion, in which the three rows of plots refer to clusters 1, 2 and 3, respectively. The Vs and Vs,z models plotted in Figures 9B, C, E, F, H and I are depicted depending on the final misfit value, which is dimensionless: from the lowest misfit (purple lines) to the highest misfit (green lines). The reference DC of cluster 3 (Figure 9G) lacks low frequency data compared to the reference DC of clusters 1 and 2 (Figures 9A,D). As a result, the estimated W/D relationship and apparent Poisson’s ratio of cluster 1 and 2 cover more depth from the subsurface than cluster 3, as presented in Figure 10. The main reason behind this contrast in the investigation depth is the known outcropping hard rock formation in the western region of the site (cluster 3 in Figure 8). This outcrop formation guides the SWs to the shallow near-surface and prevents deep propagation, at least with the current acquisition settings.
[image: Horizontal bar chart showing position distribution of three clusters: Cluster 1 in red, Cluster 2 in green, and Cluster 3 in blue. Clusters spread along positions from 0 to 120 meters, with elevations from 0 to 220 meters. A compass rose indicates orientation.]FIGURE 8 | Map view of the spatial distribution of the auto-picked DCs and their clustering into three groups. The seismic lines are oriented N80°W.
[image: Three rows of graphs, labeled A to I, show velocity analyses. Graphs A, D, and G depict velocity versus frequency. Graphs B, E, and H show misfit values and depth versus velocity. Graphs C, F, and I illustrate depth versus another velocity parameter. A color scale below each row indicates varying values.]FIGURE 9 | Results from MCI for the three reference DCs: (A) the reference dispersion curve for cluster 1, (B) the accepted Vs model for cluster 1, (C) time average Vs for cluster 1, (D) the reference dispersion curve for cluster 2, (E) the accepted Vs model for cluster 2, (F) time average Vs for cluster 2, (G) the reference dispersion curve for cluster 3, (H) the accepted Vs model for cluster 3, (I) time average Vs for cluster 3. The misfit value is dimensionless.
[image: Panel A shows a graph with depth in meters on the x-axis and wavelength in meters on the y-axis, displaying three clusters: red, blue, and green, each increasing linearly. Panel B shows a graph with depth on the y-axis and apparent Poisson's ratio on the x-axis, with three lines representing clusters one, two, and three in red, blue, and green, indicating variance with depth.]FIGURE 10 | (A) The estimated W/D relationships for cluster 1 (red curve), cluster 2 (blue curve) and cluster 3 (green curve), (B) apparent Poisson’s ratio (ν) for the three clusters.
The estimated 1D Vs and Vp models from the W/D transform for all the DCs were merged and interpolated. In Figures 11A–C we show, respectively, a pseudo-3D volume of Vs, Vp, and Poisson’s ratio computed from the estimated models. The Poisson’s ratio shows high values above 0.4 at shallow depth in the northwestern region, in agreement with the known shallow water table at the site. The null Poisson’s ratios in Figure 11C are outliers, that are quite common in data transform and can be removed in a post-processing step.
[image: Three 3D models represent subsurface velocity data. Panel A shows S-wave velocity, Panel B shows P-wave velocity, and Panel C illustrates the Vp/Vs ratio. Each model displays a gradient from blue to red, indicating changes in velocity from low to high. Axes are labeled with depth and position, ranging northwest to southeast. Color scales are provided below each panel to interpret the velocity values in meters per second or as a ratio.]FIGURE 11 | Pseudo-3D volume estimated using the W/D method: (A) Vs, (B) Vp, (C) Poisson’s ratio (ν).
5 DISCUSSION
As regards the automatic extraction of the DCs, the results provide compelling evidence that the proposed method is valid and competitive. It is valid because the automatically picked DCs are highly comparable with the manually picked ones (see Figure 6), while it is competitive due to the exceptional time saving. In fact, the manual picking of the DCs would approximately require 2 h per line for a total of 90 h to retrieve around 1,000 DCs. This means around 5 min per DC, which can vary depending on the expertise level of the user. The auto-picking required 15 min to retrieve around 5,700 DCs, which means around 0.2 s per DC. This achievement may represent a major asset for both research and industrial projects dealing with large data sets and/or tight deadlines.
Thanks to the availability of CPTs and boreholes it was possible to assess the W/D method results.
The eight CPT soundings (see Figure 2) were used as benchmarks for the Vs models. As an example, we selected line L55 and CPT-02, which lies at around 72 m on the horizontal distance. Figure 12A shows the 2D section of the interval Vs superimposed on 1D Vs calculated from CPT data using the geotechnical parameters of the CPT (Robertson, 2009): [image: The equation shows the shear wave velocity, \( V_s = \left[ \frac{\alpha_{v_s} (q_t - \sigma_v)}{p_a} \right]^{0.5} \), where \( \alpha_{v_s} \) is a constant, \( q_t \) is the total vertical stress, \( \sigma_v \) is the vertical effective stress, and \( p_a \) is atmospheric pressure.], where [image: It seems like you tried to attach an image but it didn't come through. Please try uploading the image again so I can help you with the alt text.] is the Vs cone factor (dimensionless), [image: Please upload the image so I can help create the alt text for it.] is the total cone resistance (MPa), [image: The Greek letter sigma with a subscript v, representing a variable or parameter in a mathematical or scientific context.] is the in situ total vertical stress (MPa), [image: It appears you've included a mathematical or typographical symbol rather than an image file. Please upload the image or provide a URL for it, and I will be happy to assist with the alternate text.] is atmospheric pressure (MPa). In Figure 12, we compare the estimated Vs models from the W/D method and CPT. In Figure 12B, the solid black line is the interval Vs extracted at the correspondence of the location of CPT-02, while the dashed black line is the calculated Vs from CPT-02, that is, the same 1D Vs superimposed on the pseudo-section in Figure 12A. As a further validation, we compared the Vs trend with the available geological information from borehole TBH-02, which lies on line L55, only 22 m from CPT-02 (see Figure 2). We found that there is a geological discontinuity at a depth of 17.36 m (from ground surface), as can be seen from the stratigraphy depicted on the right of Figure 12B. The analysis of the lithology from TBH-02 revealed the presence of “medium dense, brown, silty, fine to medium sand” above the discontinuity. At depth 17.36–18 m there is “weak, grey to dark grey, thickly bedded, partially weathered gabbro”. At depth 18–19.4 m there is “light yellowish brown, matrix supported breccia”. Up to the borehole bottom of 20 m, there is “weak grey, weathered gabbro”. The depth of this geological discontinuity (17.36 m) approximately occurs in the depth range where the Vs approaches 1,500 m/s. This velocity value is in line with typical values of Vs for gabbro (Kearey et al., 2009). The lateral variation of Vs that can be observed from Figures 11A, 12A may have a major impact on the design of any engineering infrastructures, such as foundations.
[image: Diagram A shows a color-coded cross-section of S-wave velocities at different depths, ranging from 500 to 2500 meters per second, at various positions. Diagram B is a line graph depicting the S-wave velocity profile compared with two methods: V_s from W-D and V_s from CPT, highlighting different soil layers.]FIGURE 12 | (A) Estimated interval Vs model (interpolated) for line L55 superimposed on the calculated Vs from CPT-02 (position ≈ 72 m); (B) comparison between the calculated Vs from CPT-02 (dashed black line) and the interval Vs extracted from the shot at the correspondence of CPT-02 (solid black line). On the right, the stratigraphy from borehole TBH-02.
The Vp obtained with the W/D method at line L55 was compared with the Vp model obtained through P-wave travel time tomography (Figure 13). Travel time data were inverted using the open-source Python package pyGIMLi (Rücker et al., 2017; Doyoro et al., 2022). The 2D refraction inversion is based on the shortest path method (Moser, 1991), includes topography and triangular mesh. The inversion of L55 ended after 8 iterations (around 10 min of total computation time). The initial chi-squared was 649, then it decreased to 10.4 after 8 iterations. The final relative root-mean-square error was 9.7% between the observed data and the calculated response.
[image: Graphical illustration with two panels depicting P-wave velocity data in meters per second. Panel A shows a vertical profile with color gradients from blue to red, indicating varying elevations. Panel B displays P-wave velocity contours with similar color ranges, mapping subsurface structures. The legend below indicates P-wave velocity scale from 500 to 5000 meters per second.]FIGURE 13 | (A) Final interval Vp for one representative line (L55) after W/D method and (B) the Vp tomography after 2D travel time refraction inversion performed in pyGIML.i.
Figure 13A shows, for line L55, the 2D section of the interval Vp after W/D transform (interpolated), while Figure 13B plots the 2D model of Vp as computed in pyGIMLi. The models are not exactly compatible because pyGIMLi considers the true elevation of the receivers and the totality of the first breaks, while the W/D method considers the midpoints of the DCs, with topography added after the data transform to ease the comparison. However, both models show a significant increase in velocity (up to 5,000 m/s) at a distance between 70 and 100 m and at a depth from top of around 25 m (which is around −20 m of elevation in Figure 13). Moreover, at a distance of 80 m, the models show the same shape of the highest velocity deep interface related to the outcropping hard rock formation towards the northwest (right side of the graph). Finally, the Vp model obtained from the W/D method presents an investigation depth larger than that from travel time tomography.
We have demonstrated that the velocity models estimated with the W/D method are largely in agreement with available benchmarks from other methods, i.e., geotechnical data for the validation of Vs and geophysical inversion for the validation of Vp.
Regarding the time spent for the estimation of velocity models, this large data set required 1 workday for the estimation of reference W/D relationships and apparent Poisson’s ratios (steps 2A and 2B of the workflow in Figure 1) and around 30 min for the final estimation of Vs and Vp models (step 2C of Figure 1). A traditional DC inversion, for example, the laterally constrained inversion, would have required several days (up to a couple of weeks) to handle all the 5,700 DCs of our data set with powerful computational resources (Khosro Anjom et al., 2024) to produce Vs models. The first-break picking and the inversion in pyGIMLi (including topography and data formatting) to obtain Vp models took approximately half a workday per line, meaning around three working weeks for the whole data set.
6 CONCLUSION
We have presented a novel application of a semiautomatic approach to the analysis and processing of a large-scale landstreamer data set. The proposed workflow enables a fast estimation of the interval velocities Vs and Vp by means of automatic DC extraction (auto-picking), DCs clustering and W/D transform. It has been demonstrated that the combination of the auto-picking and W/D methods can be applied to fast seismic data processing and velocity estimation without the need for time-consuming data processing and inversion. What is further relevant is that the W/D transform allows the estimation of Vp models from surface waves with no need for first break picking and refraction inversion. We have demonstrated that the outcome from the proposed workflow is highly comparable with that from standard P-wave travel time tomography.
A crucial achievement was that the auto-picking of the DCs was more than 1,000 times faster than the standard manual picking. Moreover, the obtained models were supported by a dense data coverage and showed deeper investigation depth with respect to Vs obtained by manual DC picking and Vp obtained by travel time tomography.
This study represents the first application of such methodology to a data set which is composed of landstreamer data suitable for 3D interpretation. Automation and no need for inversion are the main benefits of the proposed workflow and truly represent a competitive asset in academic and company projects dealing with rapid deliverables of large amount of data. Besides, the short time required for data processing contributes to the added value of the work.
One possible limitation of the method adopted is that as W/D is a data transformation, the results are fully dependent on the data. The investigation depth depends on the retrieved wavelength of SW data and Poisson’s ratio.
The codes of the workflow are not available at this stage owing to further ongoing developments, but the workflow is clearly illustrated so that any researchers may have the opportunity code it.
Future work will consider further developments of the auto-picking method to enhance the level of automation and accuracy in the data processing. We expect the proposed method to open up research collaborations between academia and industry focusing on the robust and cost-effective processing of large seismic data sets.
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The H shale gas block in the Yangtze plate of China has undergone multistage tectonic evolution, which has resulted in the development of faults and natural fractures that are multistage, multi-scale, multi-type, and multi-strike in nature. To precisely characterize the natural fractures, this study used the seismic attribute analysis method to conduct a multi-scale prediction and natural fracture modelling. Initially, manual fault interpretation and the conventional seismic attributes including variance attribute, curvature and edge detection are used to interpret large-to medium-scale faults. Subsequently, the ant-tracking attribute based on the divided-frequency seismic cubes is used to predict and quantitatively interpret the mid- and small-scale fractures; The third step is to quantitatively divide the ant-tracking attribute value into multiple scales and convert them linearly into fracture intensity. The fourth step is to establish a multi-scale fracture model. This approach has established a comprehensive prediction workflow, progressing from large-scale to small-scale analysis, and shifting from qualitative to quantitative assessment. Compared with traditional fracture prediction and modeling methods, this method not only enhances the accuracy, but also satisfies the engineering requirements of multi-scale modeling. By applying the method in the H shale gas block, we gained a microscopic understanding of the fractures, which are predominantly NW, NE, and nearly NS trending, with a minimal occurrence of nearly EW trending faults/fractures. This method can be effectively applied to characterize multi-scale fractures in areas similar to the geological background of the H shale gas block.
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1 INTRODUCTION
Shale gas exploration and development level in China’s terrestrial facies and marine-terrestrial transitional facies is at a low level. Significant uncertainties in resource evaluation hinder effective shale gas development on a large scale (Sun and Liu, 2018; Li, 2023a). Yangtze plate of China has widely developed shale formations with marine, marine-terrestrial transitional, and terrestrial facies. Shales in the Upper Ordovician Wufeng formation-Lower Silurian Longmaxi formation of the marine deepwater shelf facies are widely distributed and rich in shale gas resources, serving as vital shale gas-producing formations in southern China (He et al., 2022; Zhou et al., 2022). Due to the drastic modification of multi-period and strong tectonic movements, the shale reservoirs in the Longmaxi-Wufeng formation in the Yangtze plate has developed a complex natural fracture system (Shi et al., 2019; Li, 2023b; Fan et al., 2024), which is a distinctive geological trait of marine shale gas reservoirs in China. The highly developed natural fractures within shale reservoirs are both storage spaces and seepage channels, thereby impacting shale gas’s preservation conditions (Xu et al., 2019; Shan et al., 2021; Wang J. et al., 2021). However, fractures intersecting the wellbore can lead to drilling risks such as mud leakage, blocking, and jamming. When fracturing, fractures can also easily cause fracturing fluid filtration loss and sand plugging, affecting the fracturing treatment’s efficacy. Therefore, accurately characterizing the spatial distribution of the natural fracture system within the shale reservoir, as an important link in the integration of geological engineering, is essential for optimizing shale gas sweet spot selection, horizontal well deployment, drilling, and fracturing engineering (Shi et al., 2019).
Currently, there are 2 main challenges in the description of shale gas fractures. Firstly, the prediction accuracy of natural fractures is still insufficient. Three-dimensional seismic data have the advantages of large coverage and high lateral resolution. For large-to medium-scale faults, manual interpretation can directly identify them, and conventional seismic attributes show various degrees of response. For the identification of medium-to small-scale natural fractures, methods and techniques that can reflect the abrupt change (discontinuity) of seismic reflection waveform are mainly used to carry out the work. However, limited by the quality and resolution of seismic data, there are challenges for more subtle fracture prediction. For fine- and micro-scale fractures, they can only be identified by core, imaging logging, conventional logging and other data. Obtaining such data is often costly and limited in quantity, making it challenging to perform three-dimensional description and prediction of micro-scale natural fractures. Therefore, how to make full use of 3D seismic data to improve the prediction accuracy of natural fractures has become a challenge. Secondly, there is currently no unified standard for the scale division for natural fractures. Classifications have been based on different perspectives depending on research needs. In geological research, faults/fractures are typically categorized into five grades based on their extension scale, depth, and location, taking into account structural control and sedimentation, namely, Grade I to Grade IV (Zhao et al., 2023). In geophysics, fractures are typically categorized as large, medium, or small based on their relationship with seismic wavelength (Wang et al., 2018; Chen et al., 2016). In shale fracture research, some scholars classify it according to measurement method and fracture size into three scales: large, medium and small, while others divide it into five scales: large, medium, small, fine and micro (Wu et al., 2015; Lyu et al., 2021; Zeng et al., 2021). The impact of faults/natural fractures on shale gas preservation and exploitation, as well as fracturing and construction, varies depending on their scale. Therefore, it is crucial to classify the fractures appropriately based on various engineering requirements and actual data.
Seismic prediction techniques for faults/natural fractures can be broadly divided into two categories: pre-stack prediction and post-stack prediction (Liang, 2019; Zhu, 2019; Xie et al., 2022). The former mainly utilizes difference in fast and slow transverse waves or the azimuthal anisotropy of longitudinal waves to predict the orientation, development and even the effectiveness of the fractures (Jiang et al., 2020; Zhou et al., 2020; Wang L. et al., 2021; Cui et al., 2022). It requires expensive 3D seismic acquisition and processing techniques, such as multi-wave and multi-component seismic data, as well as high-density and azimuth seismic data. The latter mainly utilizes post-stack 3D seismic attributes for fracture identification and prediction. However, due to the acquisition environments and cost limitations, the seismic data are mostly acquired in narrow azimuth. And ellipse fitting is not possible in narrow azimuth, making it challenging to perform pre-stack fracture prediction based on split azimuth. In general, the current seismic prediction methods for faults/natural fractures mainly rely on post-stack seismic data. For the identification of relatively larger scale faults, the commonly used seismic attributes include amplitude, coherence, variance, curvature, azimuth, instantaneous phase, Hilbert transform attribute and other attributes (Qi et al., 2017; Wen, 2020; Ojha et al., 2023). Additionally, there is increasing research using image recognition methods to enhance fault edge and identify faults, achieving good results (Hosseini-Fard et al., 2022; Mousavi et al., 2022). However, these attributes cannot quantitatively identify the development density and orientation of faults/fractures. Moreover, the identification ability of relatively smaller faults/fractures is more limited. The more sophisticated fracture prediction mainly relies on the edge enhancement detection technologies such as ant tracking. Ant tracking can not only predict relatively small-scale fractures, but also quantitatively analyze the development density and orientation of fractures, providing a solid data basement for fracture modeling. Conventional ant tracking is often based on full-frequency seismic data. As the requirement for fracture prediction accuracy increases, more and more researchers began to explore improved ant tracking technology, such as combining spectrum decomposition technique with ant tracking algorithm, and achieved better results (Huang et al., 2021; Yu et al., 2021; Wei et al., 2023).
In order to characterize the spatial distribution of natural fracture system in shale reservoirs, improve the accuracy of fracture prediction, and reasonably divide the scale of the natural fractures, multi-scale fracture prediction and multi-scale fracture modelling were carried out by using seismic attribute analysis techniques taking the H shale gas block of the Yangtze Plate as the research object. First, the relatively larger-scale faults were qualitatively interpreted using optimized seismic multi-attributes combined with manual interpretation, to establish a macroscopic understanding of regional tectonics. Secondly, the finer faults/fractures were predicted and quantitatively interpreted by ant-tracking attribute, to establish a microscopic understanding of regional fractures. Thirdly, the scales of ant tracking anomalies value are divided according to the comparison of ant tracking and discontinuity features of seismic sections. Finally, the divided ant tracking anomalies value is linearly converted into multi-scale fracture intensity. Based on this, the multi-scale discrete fracture modeling is carried out.
2 MATERIALS AND METHODS
The assumption of the following methods is amplitude preservation processing of the seismic data. The noise suppression processing should meet the requirements of maintaining relatively amplitude, waveform, frequency, and phase. The amplitude compensation processing should also meet the requirement of maintaining relatively amplitude. For example, the amplitude curve before and after spherical diffusion compensation should maintain the corresponding amplitude relationship in the vertical direction.
2.1 Variance
The fundamental theory of variance error analysis employs local discontinuities between adjacent seismic traces to depict the lateral non-uniformity of stratigraphy, lithology, etc. It is particularly effective in identifying large-scale or large-fault-displacement faults. When faults exist in the subsurface, the reflection characteristics of these geological anomalies deviate from those in nearby seismic traces, resulting in local discontinuities in the traces. By scrutinizing the variance between seismic traces, it becomes feasible to detect faults or other anomalies (Li, et al., 2017; Wang et al., 2022a).
The algorithm of the variance body is is outlined as follows: Initially, the variance value for each sample point is computed, Subsequently, the required variance value is derived through weighted normalization with a specified. The variance volume is then calculated by utilizing the following equation, which yields the variance value for a sampling point (Eqs 1–6). Notably, the larger the variance, the smaller the similarity between adjacent traces.
[image: The formula represents the calculation of \( x_{k} \), where \( x_{k} \) equals the sum of \( x_{m,k} \) from \( m = 1 \) to \( N \), divided by \( N \). It is labeled as equation (1).]
[image: Mathematical equation showing \( A_{i,j} = \sum_{k=j-t}^{j+t} \sum_{m=1}^{N} (x_{m,k} - x_{k})^2 \), labeled as equation (2).]
[image: The image shows a mathematical equation: \( B_{i,j} = \sum_{k=i-j+1}^{i+j-1} \sum_{m=1}^{N} x^2_{m,k} \).]
[image: Mathematical formula displaying \( D_{i,j} = \frac{A}{B} \).]
[image: Mathematical equation representing a convolution operation: \( v_{i,j} = \sum_{k=j-\frac{t-1}{2}}^{j+\frac{t-1}{2}} w_k \times D_{i,k} \), labeled as equation (5).]
[image: It looks like there was a misunderstanding. To provide alt text, please upload the image or provide a link to it. If you have any other questions or need further assistance, feel free to let me know!]
In the formula, [image: A hand-drawn graph from the webcomic XKCD titled "Field Knowledge," with two axes: "Number of Things You Know" and "Quality of Understanding." A curve on the graph illustrates that as the number of things you know increases, your quality of understanding initially rises sharply, then flattens, humorously suggesting limited understanding despite increasing knowledge.] represents the average amplitude of all traces at time k. [image: Mathematical expression with italics: capital letter A with subscript letters i and j separated by a comma.] and [image: No image was uploaded. Please try uploading the image again or provide a URL to the image you want to describe.] are the intermediate transition variable. [image: It looks like you're asking about an expression involving "D sub i,j" but seem to have forgotten to upload the image. Please upload the image or provide a URL, and I’ll be happy to help with the alt text!] indicates the variance value of the [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL to it. You can also add a caption for additional context if needed.] th sampling point of the [image: It seems there was an issue with displaying the image. Could you please try uploading it again or provide a URL?] th trace. [image: Greek letter sigma with superscript i and subscript j.] represents the weighted variance value of the [image: It seems there was an error with the image upload. Please try uploading the image again, and I'll be happy to help with the alternative text.] th sampling point of the [image: Certainly! Please upload the image you'd like me to describe, and I will provide the alternative text for it.] th track. [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to help with the alt text.] is the seismic amplitude value. L is the time window length of variance (e.g., L = 3, 5, 7, 9, 13, etc.). N is the number of adjacent traces needed to calculate the variance value of a point (for example, N = 5, 9, etc.). W is the trigonometric weighting function of a sampling point in the time window, with the range 0∼1.
The variance value of each sampling point throughout the whole 3D seismic data body is calculated according to the aforementioned formula, ultimately yielding a new 3D variance attribute body.
2.2 Curvature
Curvature attribute is used to describe the degree of bending at a point on a curve or surface, whose mathematical definition is the ratio of angle to arc length change rate. It can be expressed using the second derivative of the point (Eq 7) (Cheng, 2020; Zhang et al., 2021).
[image: The equation depicts the curvature \(K\) as the derivative of angle \(\alpha\) with respect to arc length \(s\). It is expressed as \(K = \frac{d\alpha}{ds} = \frac{d^2y/dx^2}{[1 + (dy/dx)^2]^{3/2}}\), labeled as equation (7).]
For curvature calculations, least squares are typically used to fit a quadratic surface [image: Mathematical notation displaying the function \( u(x,y) \).] to obtain the surface and then the curvature attribute can be calculated as Eq 8.
[image: The mathematical formula displayed is a quadratic equation in two variables: \( ax^2 + by^2 + cxy + dx + ey + f \).]
Curvature attributes are applied to evaluate the pattern distribution of geological bodies in geometric space, enabling the effective identification of geometric structures such as faults, fractures, bends and folds (Yang et al., 2015; Zheng et al., 2019). Curvature has clear geological implications, as shown in Figure 1. When the stratum is horizontal or obliquely flat, the normal vectors of the stratum are parallel to each other and the curvature is zero. When the stratum is an anticline or uplifted, the normal vectors are divergent and the curvature is defined as positive. When the stratum is synclinal, the normal vectors are convergent and the curvature is defined as negative. The absolute value of curvature is small when the occurrence of seismic events is wide and gentle. On the contrary, it is large when the stratum occurrence changes dramatically. Currently, the curvature attribute has been widely recognized for its effectiveness in fault detection, tectonic morphology identification and fracture prediction. Curvature attributes mainly include minimum curvature, maximum curvature, principal curvature, most-positive curvature, most-negative curvature, dip curvature, strike curvature, curvedness and shape index.
[image: Diagram illustrating curvature with a wavy line. Arrows point outward from the line, labeled as positive, negative, and zero curvature. A circle labeled "R" represents a section of zero curvature.]FIGURE 1 | Geological meaning of curvature attribute.
2.3 Edge detection
From an image processing perspective, an edge corresponds to a reflection of the grayscale discontinuity of the image pixel. It is therefore defined as the pixel set, whose surrounding pixels have step changes or roof changes in grayscale. Image edges carry rich in information and serve as crucial feature parameters for geo-target recognition and image interpretation. The essence of edge detection lies in calculating and extracting the demarcation line between targets, as well as between targets and backgrounds by mathematical algorithms. The discontinuous features of seismic response, such as small fractures and lenticular body edges, are manifested in the image as edge features. Therefore, by employing edge detection technology, it becomes easier to discover and identify geological features, aiding geological interpretation.
The classical edge detection method typically uses the gradient operators. These operators detect the edge points based on the maximum of the first derivative or zero crossing of the second derivative, which has led to various differential operators, such as Sobel operator, Robert operator, Prewitt operator, and LOG operator. The Sobel operator is usually directional, meaning it can only detect vertical or horizontal edges, or both. The Prewitt operator is a directional operator (Zhang et al., 2018; Liu et al., 2019; Liu et al., 2022). When filtered with different directions of the Prewitt operator, it can produce edges with different directional. The LOG operator uses a Gaussian operator to smooth the original image before applying a Laplace operator. However, its detected zero-crossing does not always correspond to the edges one by one, leading to the possibility of pseudo-edges. The Robert edge detection operator uses local differences to identify edges, making it a typical operator for gradient edge detection. Its mathematical expression can be found in Eqs 9–11.
[image: Mathematical equation depicting a calculation for \( G_{x} \). The formula is \( G_{x} = 1 \cdot f(x, y) + 0 \cdot f(x+1, y) + 0 \cdot f(x, y+1) + (-1) \cdot f(x+1, y+1) \). Simplified, it is \( G_{x} = f(x, y) - f(x+1, y+1) \), labeled as equation (9).]
[image: Mathematical equation showing the Sobel operator for image processing. The equation defines \( G_y \) as a function of pixel values: \( G_y = 0 \cdot f(x, y) + 1 \cdot f(x, y+1) + (-1) \cdot f(x, y+1) + 0 \cdot f(x+1, y+1) \). Simplified, it equals \( f(x+1, y) - f(x, y+1) \).]
[image: Mathematical expression showing \( G(x, y) = \sqrt{G_x^2 + G_y^2} \), where \( G_x = [f(x, y) - f(x+1, y) + f(x, y+1) - f(x+1, y+1)] \).]
Where [image: The mathematical expression "f(x, y)" represents a function with variables x and y.], [image: Mathematical expression displaying the function \( f(x, y + 1) \).], [image: Mathematical expression displaying a function in two variables: f of x plus one, y.], [image: Mathematical expression showing the function \( f(x+1, y+1) \).] are the coordinate value functions of the four local neighborhoods, respectively. [image: I'm sorry, I can't provide a detailed description of the image. Could you please upload the image or provide a description of it?] represent the difference at coordinate x along the x-direction. Similarly, [image: Stylized letters "Gy" with a serif font style, featuring a noticeable slant and decorative curls on the characters.] is the difference at coordinate y along the y-direction, and [image: The image shows the mathematical expression \( G(x, y) \), which likely represents a function of two variables, x and y.] is the difference at coordinate (x, y) along the diagonal direction. The Robert operator is easy to compute and the physical meaning is relatively clear. It detects edges by applying the difference operator of the original data and can suppress the effect of noise to some extent (Liu et al., 2022).
2.4 Ant tracking
The ant algorithm, first proposed by Italian scholar Colorni et al. (1992) in the early 1990s, is a heuristic bionic evolutionary algorithm based on population, which simulates the collective foraging behavior of ants in nature. To illustrate this principle, Colorni provided an example of an artificial ant algorithm, as shown in Figure 2. Point A represents the nest, point E represents the physical source, and HC represents the obstacle. The ants proceed from the nest to point B. Then, they can either pass through H or C to reach point D before finally reaching the food source. The distance from point B to point H is twice the distance from point B to point C, which is denoted as d. The ants will leave pheromones along their path. At the initial moment (t = 0), the ants will randomly choose a path to forage. From a statistical perspective, the number of ants on both paths is equal. However, after a certain time (t = 1), since the distance of path BHD is twice the distance of path BCD, the number of round trips of ants on path BCD is twice the number of round trips of ants on path BHD. Consequently, the amount of pheromones left behind is also twice. As a result, the number of ants choosing path BCD afterward will be twice the number of ants on BHD. Over time, an increasing number of ants will choose the path BCD to forage, thus achieving the objective of foraging in the shortest time.
[image: Three diagrams of kite structures, each labeled with angles and points A, B, C, D, E, and H. The first diagram shows angles labeled as \(d=1\) and \(d=0.5\). The second diagram has all angles at \(15^\circ\), labeled \(\psi=0\). The third diagram has angles \(10^\circ\) and \(20^\circ\), labeled \(\psi=1\).]FIGURE 2 | Schematic diagram of ant colony foraging.
SLB then applied “ant tracking” algorithm to the seismic attribute analysis in Petrel platfom. The ant tracking technique, utilizing this algorithm, automatically analyzes and identifies fracture systems, resulting in the generation of an ant-tracking attribute with clear fracture traces.
2.5 Attribute fusion
Although there are many seismic attributes conducive to fault edge enhancement, there are limitations. Each seismic attribute has its unique parameter characteristics and provides faults information from different perspectives, resulting in varying fault recognition effects in the same area. Additionally, seismic attributes are still facing a common problem in seismic interpretation known as multiplicity. To address the limitations and multiplicity of seismic attributes, the interpretation accuracy of seismic attributes can be improved through seismic attribute fusion technology (Li et al., 2017; Wang J. et al., 2021; Yue et al., 2022). The attribute fusion technology combines two or more attribute data using mathematical proportion operation, enabling the fused data to simultaneously display the characteristics and key information of different attributes at the same time. This approach avoids the limitations and multiplicity associated with single attribute interpretation (Chen et al., 2022), thereby enhancing the ability to extract geological information. Attribute fusion technology is generally categorized into linear fusion, nonlinear fusion, and color fusion. In this study, the attribute fusion method employed involves linear proportional fusion. The specific approach is as follows: first, select relatively sensitive seismic attributes; Next, through multiple attribute fusion experiments, determine the optimal linear fusion proportion; Finally, fuse the selected attributes by setting appropriate proportions.
3 APPLICATION
Shale gas area block H is located in the Yangtze plate of China. After the formation of the Jinning movement, the Yangtze plate has successively undergone the transformation of Caledonian, Hercynian, Indosinian, Yanshanian and Himalayan tectonic movements, with multiple tectonic evolution stages such as passive continental margin basin, foreland basin and cratonic basin. During the late Ordovician and early Silurian, the convergence of the Cathaysian plate and the Yangtze plate was strengthened by the Caledonian movement, forming a series of ancient uplifts around the Yangtze block, such as Xuefeng uplift, central Sichuan uplift and central Guizhou uplift. With the exposure of sea level, the Yangtze area changed from a shallow shelf in the Middle Ordovician to a post-uplift detention basin surrounded by uplift. Between the alternation of Ordovician and Silurian, two large-scale global transgressions and multi-period volcanic activities occurred. The rise of sea level caused the formation of under-compensated and anoxic water environment, and the deposition of thick organic-rich shale (Chen et al., 2020; Wang et al., 2022b).
The existing cores and outcrops show that the thickness of the organic-rich black shale (TOC>2%) in H block is about 20 m, mainly located in the middle and upper part of the Wufeng formation and the bottom of the first member of the Longmaxi formation. The Wufeng formation mainly develops black siliceous shale, and thin dark gray shale at the bottom; The Longmaxi formation mainly develops black siliceous shale, gray mudstone and dark gray siltstone. They have high organic carbon content (3.2% on average) and good gas content (3.5 m3/t on average), which are the main target of shale gas exploration in the study area (Xu, 2020; Li et al., 2022). By well-seismic calibration, it was determined that the Longmaxi-Wufeng formation displayed as a set of relatively continuous strong seismic events on seismic data.
Previous studies have confirmed that the fractures in Yangtze area have the characteristics of multi-stage, multi-scale, multi-type and multi-strike (Xie et al., 2021; Chen et al., 2022; Xie et al., 2022). In order to clarify the fracture development of Block H, we applied the multi-scale fracture prediction workflow shown in Figure 3. All methods in the workflow are implemented on Petrel, which is a comprehensive geophysical and geological research platform. Longmaxi-Wufeng formation is the target formation.
[image: Flowchart detailing the process from full-frequency seismic data to multiscale fracture modeling. It involves seismic attributes calculation, optimization, and fusion, manual fault interpretation, and tracks large to small-scale faults. Structural smoothing, edge detection, and ant tracking are part of the multiscale division, leading to four groups contributing to the final fracture modeling.]FIGURE 3 | Workflow proposed in this study for multi-scale fracture prediction.
3.1 Manual fault interpretation using traditional seismic attributes
3.1.1 Seismic attribute calculation
During the fault interpretation stage, various seismic attributes such as the RMS attribute, frequency attribute, variance attribute, maximum curvature attribute, and edge detection attribute are extracted along the layers to analyze and determine the developmental characteristics of medium- and large-scale faults in the study area.
The variance attribute can only reflect the development of some large-scale faults. Compared to other seismic attributes, it fails to capture certain fault responses by variance attribute. For example, near east-west trending fault group No. 1, whose imaging is unclear, making it difficult to discern the intersection relationship of the faults (Figure 4). On the other hand, the edge detection attribute and curvature are particularly responsive to faults. Such as faults No. 2, No. 3, and No. 4. In the variance attribute, these faults manifest as discontinuous breakpoints with unclear extension directions (Figure 4A). However, in edge detection attribute and curvature, these faults are clearly visible, greatly reducing the complexity of interpretation (Figure 4). However, the curvature attribute is very sensitive to small changes in seismic events, leading to many non-fault/fracture responses and a large amount of background noise (as shown in the noise area in Figure 4B). Edge detection attribute can produce a color thickening effect at the edge of the fault (as shown in the thickening area in Figure 4C), making faults appear less crisp and potentially misleading interpreters. Given the distinct characteristics and differences between these two attributes, their sensitivity to faults varies. Compared with the curvature attribute, some fault responses are more linear on the edge detection attribute plane, such as faults 2 and 3. While, some faults are more crisp in curvature, such as fault 4.
[image: Four-panel image showing different visualizations of a landscape. Panel A displays a black and red map indicating surface ruptures. Panel B uses a blue to yellow color gradient for topographic features. Panel C presents elevation data with a green to red spectrum, and Panel D features erosion depth with a similar color scheme. Each panel includes a scale of 2 kilometers and directional arrows pointing north.]FIGURE 4 | Various seismic attributes along Longmaxi-Wufeng formation. (A) Variance attribute. (B) Max curvature. (C) Edge detection attribute. (D) Fusion map combining max curvature and edge detection attribute.
3.1.2 Seismic attributes fusion
After comprehensively considering the advantages and disadvantages of each attribute, the curvature and edge detection attributes were selected for attribute fusion as they are more effective in fault identification. By fusing these attributes, the result (Figure 4D) are obtained that combines the advantages of both attributes. For example, No. 2, No. 3, and No. 4 faults are more clearly displayed, reducing noise of curvature and the fault-thickening effect of edge detection attribute.
3.1.3 Manual interpretation
The fused seismic attributes effectively provide a macroscopic understanding of the faults in the area, indicating the fault orientation and the intersection relationship between the faults for fault interpreters. By combining seismic sections for manual fault interpretation, we effectively reduced the multiplicity of fault interpretation.
According to commonly used fracture scale division rules (Wu et al., 2015; Lyu et al., 2021) and different fault controlling effect in the study area, we divided the interpreted faults into three levels. Figure 5 shows the manually interpreted fault polygons of the high-quality shale in the Longmaxi-Wufeng formation of the study area. In the figure, red fault polygons indicate large-scale faults with extensions greater than 3 km and fault displacement greater than 40 m, with strong seismic reflection strength. They are the main controlling faults in the study area. Blue fault polygons indicate faults with an extension length of hundreds of meters to a few kilometers and fault displacement greater than 10 m. They are secondary-order faults. Green fault polygons indicate faults with an extension length of tens to hundreds of meters and no obvious fault displacement, but small faults with apparently reduced torsion or amplitude in the same seismic events are visible (Table 1). It can be observed that the main fault strikes are NW and NE, and some of them are near EW and near NS.
[image: Two geospatial maps labeled A and B. Map A shows topography with colored elevation and red lines indicating faults. Map B presents a simplified line drawing, highlighting large-scale, medium-scale, and small-scale faults in red, blue, and pink respectively. Both maps include a scale bar of two kilometers and a directional arrow indicating north.]FIGURE 5 | Manual fault polygons along Longmaxi-Wufeng formation. (A) Overlayed map with Fusion map by Max curvature and edge detection attribute. (B) Manual fault polygons.
TABLE 1 | Manual multi-scale fault interpretation table.
[image: Table showing geological fault characteristics based on polygon color. Red indicates large-scale faults over three kilometers in length and over forty meters displacement, with main controlling effects. Blue represents medium-scale faults, hundreds of meters to a few kilometers long, with over ten meters displacement and secondary-order controlling effects. Pink denotes small-scale fractures with no obvious displacement, tens to hundreds of meters long, with tertiary-order controlling effects.]3.2 High accuracy fracture prediction
3.2.1 Ant tracking calculation
The ant tracking method used in the study is based on a published paper (Xie et al., 2022), which has been demonstrated to effectively enhance the accuracy of fracture identification. Unlike the traditional ant tracking based on full-frequency seismic volume, the method utilizes frequency-division seismic data. Through experimentation, we have found that dividing the frequency into four or more parts not only increases the workload significantly but also leads to the loss of a considerable amount of effective fracture information due to the excessively narrow frequency bands. Therefore, we believe that dividing the frequency into low, medium, and high components using a step size of 15 Hz aligns with our work experience and avoids both the loss of valuable information and excessive workload. Therefore, the full-frequency seismic volume was divided into low-frequency (0–15 HZ), medium-frequency (15–30 Hz), and high-frequency (30–45 Hz) cubes. Ant tracking calculations were then conducted on the frequency-division data and full-frequency data, respectively. The better ant tracking results were selected through a comparative analysis. Finally, they were fused to obtain the final fracture prediction result. Using the method, more continuous, sharper, and smaller-scale fractures were detected, effectively improving the fracture prediction.
It is important to acknowledge that the detection direction of fractures and faults is crucial, as it can impact the accuracy and reliability of the prediction. Based on existing research and the results of manual fault interpretation, we found that the majority of fractures and faults in this area are highly dipping, exceeding 45°. We also observed that the strike includes northwest, north-northwest, northeast, and near-south-north directions, with a wide range of strike distribution. Therefore, when performing ant tracking, we excluded dip angles between 0°–30° but did not make any additional exclusions for strike direction. The specific direction of fracture detection is presented in Figure 6.
[image: Polar plot with concentric circles and angular lines, divided into 360 degrees. Two red arrows indicate directions: one labeled "Azimuth" around 60 degrees, and another labeled "Dip" around 180 degrees. Axes are marked as Inline and Xline.]FIGURE 6 | Stereonet of ant tracking for Orientation Filter (Black-gray represents exclusion, and white represents participation in the calculation).
Compared to the ant tracking result obtained from the full-frequency data (Figure 7A), the ant tracking outcomes derived from medium- and high-frequency (Figures 7B, C) demonstrate greater continuity and effectiveness in locating little fractures (as exemplified by the fracture marked by the red arrow). After fusing the ant tracking results from both medium- and high-frequency, a more comprehensive and precise fracture detection was achieved (Figure 7D).
[image: Four seismic interpretational diagrams labeled A, B, C, and D display subsurface formations with highlighted faults. The panels compare enhanced versus non-enhanced data variations. A color scale indicates amplitude differences, from blue to red, highlighting formations like the Longmaxi-Wufeng. A scale bar is included for reference.]FIGURE 7 | Ant tracking result superimposed on seismic section (modified from Xie et al., 2022). (A) Full frequency. (B) 15–30 Hz. (C) 30–45 Hz (D) fused by 15–30 Hz and 30–45 Hz.
Figure 8B illustrates the attribute distribution of the fused ant tracking along the Longmaxi-Wufeng formation. Compared with to the full-frequency ant tracking in Figure 8A, the implementation of the divided-frequency ant tracking reveals a higher number of fractures. Additionally, certain fractures identified through this method exhibit longer extension lengths, sharper edges and better continuity compared to those detected using the original full-frequency ant tracking. To verify the accuracy of fracture predictions obtained through ant tracking, fracture information from the only well drilled in the area was employed. Analysis of this data reveals that the predicted fracture trend around the H1 well primarily aligns in the NE and NW directions, which is consistent with the fracture orientations observed in the well data (Figure 9). This consistency serves as robust validation of the accuracy and reliability of the ant tracking technique in predicting fracture orientations.
[image: Two maps labeled A and B show ant tracking paths in a terrain. Both maps are outlined with blue lines indicating ant routes. A black arrow points north. Scale bar shows two kilometers. A color bar on the right indicates tracking intensity from blue to black.]FIGURE 8 | Ant tracking slices along Longmaxi-Wufeng formation. (A) Full frequency. (B) Fused 15–30 Hz and 30–45 Hz.
[image: Map labeled "A" showing waterways with a red dot and the letter "H". Next to it, chart labeled "B" features a wind rose diagram with blue segments showing wind direction and frequency. Red arrows indicate movement direction.]FIGURE 9 | Fracture information of Wufeng formation around H1. (A) Ant tracking. (B) Rose diagram of H1.
3.2.2 Comparison of ant tracking results and manual interpretation of fracture
To establish a correspondence between the fault/fracture scale and ant tracking attributes’ abnormal value, a comparison between the ant tracking attribute and the manual fault interpretation was conducted. The specific approach involved overlaying the ant tracking attribute with the seismic sections (Figure 10)., as well as overlaying the ant tracking attribute extracted along the Longmaxi-Wufeng formation with the manually interpreted faults for display (Figure 11).
[image: Three panels labeled A, B, and C show seismic data with colored horizontal layers. Panel A highlights a turquoise fault line crossing various layers. Panel B shows a similar fault with less emphasis. Panel C has no fault line highlighted, displaying only the layers.]FIGURE 10 | Superimposed display of ant tracking and seismic data. (A) Strong ant tracking: big fault with obvious fault displacement. (B) Medium-strong ant tracking: medium fault/fracture belt with small fault displacement. (C) Weak ant tracking: possible fracture belt or small-scale fracture.
[image: Geological map and seismic sections illustrating faults. The left panel shows a map with red, blue, and purple lines representing manually interpreted faults of various scales. The right panels (A, C, E) display vertical seismic sections with color overlays indicating fault attributes.]FIGURE 11 | Superimposed map of ant tracking slice and manually interpreted faults along Longmaxi-Wufeng formation The (A,B) seismic section demonstrates large-scale fault (red) with large ant tracking anomaly value, medium-large displacement, and long planar extension. The (C,D) seismic section shows medium-scale faults (blue) with medium-strong ant tracking anomaly value, medium displacement, and moderate planar extensions. The (E,F) seismic section demonstrates small-scale faults (pink) with small ant tracking anomaly value, almost no displacement, and short planar extensions.
It can be seen that, due to the limitation of seismic data resolution, it is challenging to identify individual faults or microfracture of 1–10 m fault displacement on the seismic section. However, there is a distinct impedance interface with good continuity between the Wufeng high-quality shale section and the underlying limestone, there are still changes in reflection energy, abrupt dip, curvature, and instantaneous phase. Therefore, fault or fracture belt with fault displacement below 10 m doesn’t cause the dislocation of seismic events, but are generally weakly distributed in the ant tracking (Figure 10A). For faults with a fault displacement of more than 10 m, they often show relatively strong abnormal values on ant tracking (Figures 10B, C).
Comparing ant tracking anomalies with seismic interpreted faults, we observed that the ant-tracking result shows 3 levels of intensity and continuity. Firstly, strong anomalies with strong continuity generally correspond to manually interpreted large-scale faults (depicted by red line in Figures 10A, 11). Secondly, strong to medium anomalies with strong to medium continuity correspond to manually interpreted medium-scale faults (depicted by blue line in Figures 10B, 11). Thirdly, weak anomalies with weak continuity generally correspond to small fractures, fracture belts or zones of stratigraphic dip changes (depicted by pink line in Figures 10C, 11). The characteristics of the ant tracking anomalies were summarized in Table 2.
TABLE 2 | The characteristics of the ant tracking anomalies.
[image: Table detailing ant tracking anomalies by strength (strong, medium, weak). It describes characteristics: length on plane (>3 km to tens of meters), plane characteristics (continuous to irregular), geological characteristics (large to small-scale faults), and seismic reflection characteristics (event break to slight distortion).]3.3 Multi-scale fracture modeling
The discrete fracture network model establishes fracture slices with varying sizes, orientations and shapes to more accurately represent the actual size and distribution of fractures in a high-resolution, unstructured manner. The focus of discrete fracture network modeling is to build models of different scales of faults, natural fracture belts, small-scale fractures, etc. The required input data include fracture intensity, orientation, dip angle, extension length and height (Zhang et al., 2016; Dong et al., 2018; Liu et al., 2018).
3.3.1 Fracture intensity of different scales
In the previous section, by combining ant tracking and faults interpretation, it was observed that the size of ant tracking abnormal value corresponded to different natural fracture scales (Table 2). In this study, the ant tracking body was taken as the input data and transformed into an attribute body with comparable fracture intensity through a linear transformation. Subsequently, based on the relationship of Table 2, as well as combined with the distribution characteristics of ant tracing value (Figure 12), considering the distribution range of ant tracking, fault distribution patterns, and seismic response magnitude, the ant tracking value was further divided into four groups (Table 3).
	Group 1 corresponds to large-to medium-scale faults. Controlled by regional tectonic movement, they can extend for several kilometers. In the seismic sections, one or more seismic events are interrupted, making them easy to judge and interpret manually. They generally have a destructive effect on shale reservoirs and are not conducive to the preservation of shale gas, thus should be avoided as much as possible during well placement.
	Group 2 corresponds to the small-scale faults, extending from a few tens to hundreds of meters in the plane. In the seismic sections, the seismic events show a change in occurrence (distortion) or amplitude (weakening). They can be visible but easily overlooked, becoming more evident after ant tracking than the original seismic sections. These small-scale faults including fracture belts have an important influence on shale gas engineering construction. Firstly, their presence affects the stability of the wellbore. When drilling and geological steering are carried out, wellbore collapse or mud losses may occur if shear slip occurs in the small-scale faults or the fracture belts. Secondly, during the process of fracturing reconstruction, small-scale faults or the fracture belts will affect the efficiency of fracturing and the fractures expansion of hydraulic fracturing, leading to casing deformation risk, difficulty in sand addition and other issues.
	Group 3 corresponds to fine-scale fault or extension of fracture belts, controlled by faults and small folds, with length about tens meters. They are not visible on seismic data, but can be observed in imaging log data and core data.
	Group 4 corresponds to micro-scale fractures with length of a few meters. These features are difficult to manually distinguish manually on seismic data. They can increase the storage space for shale gas and are beneficial for increasing shale gas production. Their spatial distribution is difficult to detect, which can be characterized by stochastic modeling when modelling.

[image: Bar chart depicting the distribution of ant tracking values on the x-axis with percentages on the y-axis. Bars decrease from left to right, starting at 18 percent and tapering to nearly zero. Vertical red dashed lines divide the chart into regions labeled 4, 3, 2, and 1.]FIGURE 12 | Ant tracking value histogram.
TABLE 3 | The characteristics of the ant tracking anomalies.
[image: Table displaying geological groups with columns for group number, ant tracking value, fracture intensity, length on the plane, geological characteristics, and modeling method. Group 1 has high values indicating large faults with deterministic modeling. Group 2 shows moderate values indicating small-scale faults with deterministic modeling. Group 3 indicates fine-scale faults with deterministic modeling. Group 4 has low values showing micro-scale fractures with stochastic modeling.]3.3.2 Fracture modeling parameters setting
Through statistics (Figure 13A), based on the fault orientation derived from seismic attributes, manually interpreted fault orientation and natural fracture orientation observed through ant-tracking attributes (Figure 11), the main orientation of natural fractures in the study area is NW, NE and NS, with a small proportion of EW orientation. The main dip angle ranges between 45–90°, with the majority exceeding 60° (Figure 13B). The measurement of the fracture extension length in the outcrop area reveals that most fractures extend for less than 100 m (Mu et al., 2009). Therefore, in the discrete fracture network, the length of fracture slices was set to range from 0 to 100 m to meet the requirements of the simulation, with an average length of 50 m (Figure 13C) and a ratio of fracture slice length to height of 2:1.
[image: A composite image showing three graphs. A: Polar plot with sectors colored in purple, indicating azimuth and dip angles. B: Bar chart depicting percentages of dip angles ranging from 40 to 90 degrees. C: Bar chart showing percentages of fracture lengths from zero to 100 meters.]FIGURE 13 | Fracture statistical chart. (A) Dip azimuth stereogram; (B) Dip histogram; (C) Fracture length histogram.
3.3.3 Multi-scale fracture modeling
When performing multi-scale fracture modeling, four groups of fracture intensity listed in Table 3 were utilized as spatial constraints. Based on the general experience in the industry (Dong et al., 2018), the shape of the fracture slice was represented by a rectangular shape and the size was described by a normal distribution. Group 1, 2, and 3 were modeled by using deterministic modeling, while the group 4 was modeled by using stochastic modeling. Ultimately, four separate discrete fracture networks were modeled at different scales (Figure 14). Figure 14A represents the fracture model for group1, corresponding to large-to medium-scale faults. Figure 14B corresponds fracture model for group 2, representing small-scale faults or fracture belts. Figure 14C represents fracture model for group 3, corresponding to fine-scale fault or extension of fracture belts. Figure 14D is fracture model for group 4, corresponding to micro-scale fractures. Figure 14E displays the DFN with multi-scale fractures.
[image: Five-panel composite image showing geological features: Panel A shows red veining patterns, Panel B displays blue lines, Panel C features green dots, Panel D depicts grayscale textures, and Panel E presents a 3D view combining elements from all panels. Each panel is labeled and includes scale bars.]FIGURE 14 | Multi-scale fracture modelling for Longmaxi-Wufeng formation. (A) Fracture model for Group 1. (B) Fracture model for Group 2. (C) Fracture model for Group 3. (D) Fracture model for Group 4. (E) Fracture model of multi-scale fractures for Longmaxi-Wufeng formation.
4 DISCUSSION
4.1 Significance of multi-scale description
There hasn’t been a unified multi-scale division standard on multi-scale fracture prediction. The method used in this paper is a combination of manual fault interpretation, seismic multi-attribute extraction and fusion technique, improved ant tracking technique and multi-scale fracture modeling. This approach has established a comprehensive prediction workflow, progressing from large-scale to small-scale analysis, and shifting from qualitative to quantitative assessment. The innovation of this paper lies in the quantitative multi-scale division of fracture using ant tracking value, which is different from other papers and provides a solid data basis for fracture modeling. The significance of refined fault/fracture description in the form of multi-scale is shown in two aspects.
4.1.1 Multi-scale fracture prediction
First of all, traditional seismic attributes are used to represent the development of large-scale faults. Combined with manual fault interpretation, we can easily gain a macro understanding of structural development. Subsequently, the ant tracking attribute is effective in refining small-scale fault/fractures and fracture belts. Finally, image logging, core slice, or electron microscopy (if available) is employed to describe micro-scale fractures. Refined fault/fracture description in the form of multi-scale realizes the progressive understanding of fracture from macro to micro.
4.1.2 Multi-scale fracture modeling
The establishment of natural fracture models with different scales utilizes mutually independent fracture groups. The mechanical properties of fractures at different scales vary, thus their impacts on drilling and completion engineering are also distinct, which can be applied in independently different scenarios. For instance, due to the large fault displacement of group 1 and 2, horizontal wells should not directly cross them during well location arrangement and construction. Fracture groups 3 and 4 may pose risks to drilling and completion engineering. During the engineering implementation, attention should be paid to determining the risk control plan in advance to avoid wellbore collapse, mud leakage, casing deformation risks, complexities in sand addition, and other problems.
Although each group of fracture models is independent, they form an integral whole and can be used together. The collective model can be utilized for subsequent geomechanical modeling, predicting the stability of natural fractures, studying the impact of natural fractures on hydraulic fracturing, and simulating the relationship between natural fractures and hydraulic fracturing fractures.
4.2 Relationship between traditional seismic attributes and ant tracking attribute
The relationship between traditional seismic attributes and ant tracking attributes is closely related. It is mainly shown in the following two aspects.
4.2.1 The input data of ant tracking is the optimized seismic attribute
The conventional workflow can be divided into 3 main activities: 1) Seismic conditioning. Typically, the original full-band seismic data is processed or conditioned using techniques such as structural smoothing, with the fault edge preservation option; 2) Edge detection attribute. Attributes like variance cube, chaos, curvature or others are generated to highlight the discontinuities. 3) Edge enhancement. The ant tracking algorithm utilizes optimized seismic attributes to generate an enhanced ant cube This enhanced cube is then used for further analysis or visualization. The third point shows the input data for ant tracking is from the optimized seismic attributes. When comparing the seismic attributes like variance volume, maximum curvature and edge detection mentioned in the study, it was found that the latter two attributes provide more detailed fault information, they also contain a significant amount of unfiltered noises and pseudo fault information. Therefore, the input data of ant tracking in this study is variance attribute volume (Xie et al., 2022).
4.2.2 There is a progressive relationship between the faults/fractures reflected by the ant tracking attribute and the one by the traditional seismic attribute
From the superimposed map with ant tracking and variance attribute (Figure 15), it was observed that there is a commonality between the abnormal values of variance attribute and ant tracking attribute. Firstly, they can basically coincide. Secondly, where the abnormal value of variance attribute is strong, the value of ant tracking is also strong. Similarly, weak values are synchronized. However, the fractures detected by the ant tracking attribute appear to be more linear and sharper than those detected by the variance attribute, and the intersection relationship between the fractures is clearer. Furthermore, the number of fractures reflected by ant tracking is far greater than that detected by the variance attribute.
[image: Map with red and black lines indicating a network of roads and pathways, possibly representing a geographic or urban area. A scale bar reads two kilometers, and a north arrow is shown.]FIGURE 15 | Superimposed map of ant tracking slice and variance attribute along Longmaxi-Wufeng formation.
4.3 Limitations of the method
4.3.1 Limitation 1: lack of clear quantitative standard for scale division
One of the main limitations is the lack of a clear quantitative standard for scale division. The thresholds of ant tracking value were semi-quantitatively determined by the fracture morphology, length, distribution, and other conditions, which were used to further divide the fracture scales. Howerver, there is no clear quantitative division standard. To address this limitation, future research should focus on exploring clear quantitative standards for scale division.
4.3.2 Limitation 2: lack of sufficient well data to verify the accuracy
Another limitation of the ant tracking method is the lack of sufficient well data to calibrate and verify the accuracy. The accuracy of this method requires calibration and verification with more well data, otherwise there is a risk of false detection or misinterpretation of fracture patterns. If there is more well data, it is more conducive to improving the accuracy of fracture predicting.
4.3.3 Limitation 3: relying on personal experience
A third limitation is the reliance on personal experience in completing the entire method. The completion of the entire method relies on the experience of geophysical researchers, which is highly subjective. For example, in the step of edge detection, multiple attributes need to be optimized, which requires researchers to have a good understanding of seismic attributes and fracture morphology.
5 CONCLUSION
In this study, the multi-scale fracture description method using seismic attributes was applied to predict and model multi-scale fractures in the study area. Four conclusion are listed below.
	(1) Firstly, considering the varying impacts of fractures at different scales on drilling and completion engineering, it is necessary to identify a method to classify fractures at different scales. Therefore, we utilized ant tracking values to classify fractures across multiple scales and subsequently performed multi-scale modeling. Secondly, in order to classify fractures at different scales, we needed to identify a method with high prediction accuracy. Hence, we chose the ant tracking method for fracture prediction. Compared to fracture prediction using variance attribute, curvature, edge detection attribute, and other attributes, this method enhances the prediction accuracy of medium-small scale fractures and detects more fractures. Furthermore, compared to traditional single-group fracture modeling, this method divides fractures into four groups for separate fracture modeling, which is more aligned with engineering needs.
	(2) The strike of faults/fractures in the area primarily trends NW, NE and nearly NS, with a small amount of nearly EW trending faults/fractures are also present. Among them, the NW-trending major faults run through the entire study area. With the NW-trending major faults as the boundary, NW and NE trending faults are primarily developed on the eastern side, and nearly EW and nearly NS trending faults are mainly developed on the western side.
	(3) This study has established a well-ordered and stepwise multi-scale refined fracture description process. Initially, the traditional seismic attributes were utilized to identify large-scale faults and establish a macro structural understanding. Subsequently, the ant tracking attribute was utilized to track and identify relatively small-scale faults/fractures, rendering faults/fractures more linear and precise. Finally, the ant tracking attribute values were grouped into four categories, and the discrete fracture modeling was carried out by multi-scale.
	(4) An improved ant tracking method based on frequency-filtering seismic data was proposed to enhance the accuracy of fracture detection. More continuous, sharper. This method allowed for the detection of more continuous, sharper, and smaller-scale fractures compared to those detected using traditional full-band seismic data.
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As one of the main seismic imaging methods, conventional reverse time migration (RTM) may not produce high-quality images in areas with non-flat surfaces and anisotropy because the complex surfaces have a great impact on seismic wave simulation, resulting in strong scattering waves. In addition, in isotropic acoustic (ISO) RTM, the neglection of the anisotropic effects will lead to incorrect travel times during source and receiver wavefield extrapolation. To overcome these problems, we develop a topographic pseudo-acoustic vertical transverse isotropic (VTI) RTM algorithm based on the body-fitted grid. In this method, we first derive anisotropic pseudo-acoustic wave equations in the curvilinear coordinate system. Then, the Lebedev grid finite-difference scheme is used to update these equations to simulate wavefields. Finally, we use the source-normalized cross-correlation imaging condition to realize RTM. Numerical tests are performed to evaluate the feasibility and applicability of the proposed method. The imaging results show that the proposed method can remove the effect of surface topography and anisotropy on seismic wave propagation and improve migration imaging precision.
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1 INTRODUCTION
The reverse time migration (RTM) algorithm (Baysal et al., 1983; McMechan, 1983), which is based on a two-way wave equation, has advantages in accurately imaging complex structures, compared to ray-based migration and one-way wave equation migration. It can deal with large lateral velocity variations and has no dip limitations on the images. Therefore, it has become an important seismic imaging method in the industry. However, non-flat surface topography introduces numerical problems for migration algorithms that are based on flat surface assumption (Reshef, 1991). Berryhill (1979) first used wave-equation datuming to reduce surface topography’s influence on migration results. Beasley and Lynn (1992) introduced the “zero-velocity layer” concept, which is an elegant technique for the error caused by the elevation-static correction. However, this technique cannot be applied to the computationally attractive phase-shift algorithms because it includes the non-physical characteristic of zero velocity (Bevc, 1997). Alternatively, without any datuming or elevation static corrections, some wave-equation-based methods that can directly simulate seismic wavefields and image seismic data recorded on an irregular topographic surface have been proposed. One method is to use smaller grid elements to approximate irregular surfaces (Robertsson, 1996; Ohminato and Chouet, 1997). However, staircase approximation leads to artificial scattering waves, which may affect the physical scattering waves or multiple reflection waves (Zhang and Chen, 2006). To avoid the artifacts caused by this staircase approximation, the other method employs vertical grid mapping to match the computational grid with surface topography (Tessmer et al., 1992; Hestholm and Ruud, 1994; Tarrass et al., 2011; Qu et al., 2017). It is effective for relatively smooth topography but has limitations for steep topography (Hayashi et al., 2001). In recent years, some researchers used the numerical simulation algorithm based on the body-fitted grid to tackle the undulating surface problem and obtained good results (Fornberg, 1988; Zhang and Chen, 2006; Appelö and Petersson, 2009). Then, the RTM based on this numerical simulation algorithm in the curvilinear coordinate was realized by Lan et al. (2014) and Qu and Li (2019). The body-fitted grid is conforming to the rugged surface, which can avoid artificial scattering waves. This is a coordinate transformation method, which maps the physical points with the curvilinear grid to the calculational points with the rectangular grid. In curvilinear coordinates, the partial differential wave equations are numerically updated by an optimized non-staggered finite-difference scheme, such as the DRP/opt MacCormack scheme (Zhang and Chen, 2006). Although the DRP/opt MacCormack scheme can essentially eliminate lattice oscillations, it needs a smaller grid length to achieve the same accuracy as the staggered grid scheme, which greatly increases the computational cost. To avoid wavefield interpolation using the standard-staggered grid (SSG) approach (Virieux, 1986), de la Puente et al. (2014), Konuk and Shragge (2021), and Sethi et al. (2022) used the Lebedev grid (LG, also known as the fully staggered grid) scheme (Lebedev, 1964) to accurately simulate wavefields on the curved grid.
Many rock-physics experiments and field measurements show that anisotropy is widely present in the subsurface media (Thomsen, 1986). The anisotropy mainly refers to velocity anisotropy, which will make seismic waves propagate at different speeds in different directions. If the anisotropic effect is ignored in seismic data processing, it will result in misplaced images and low resolution of the target during seismic migration and inversion. Although seismic anisotropy by nature is an elastic phenomenon, most anisotropic RTM implementations do not use the full elastic anisotropic wave equation because of the high computational cost involved (Chu et al., 2011). Then, many researchers derived simpler wave equations that can be solved efficiently to perform acoustic anisotropic RTM. Alkhalifah (1998) and Alkhalifah (2000) proposed the acoustic assumption approximation for transversely isotropic media with a vertical symmetry axis by setting the shear velocity along the axis of the symmetry to zero and developed a coupled pseudo-acoustic wave equation with the fourth-order partial derivatives of the wavefield in the time and space domain. Subsequently, some researchers implemented acoustic vertical transverse isotropic (VTI) modeling and migration based on various coupled second-order wave equations derived from Alkhalifah’s dispersion relation (Zhou et al., 2006a; Fletcher et al., 2009; Fowler et al., 2010). Duveneck et al. (2008), Duveneck and Bakker (2011) and Zhang et al. (2011) derived a stable pseudo-acoustic wave equation based on first principles (Hooke’s law and the equations of motion) without introducing any assumptions and successfully realized the RTM. Meanwhile, the decoupled pure qP-wave equations expressed by the pseudo-differential operator were proposed to implement forward modeling and imaging (Liu et al., 2009; Chu et al., 2011; Zhan et al., 2012; Mu et al., 2020a; Mu et al., 2020b). Although the pure qP-wave equations are free from shear wave artifacts and can achieve stable numerical modeling, the computation of the pseudo-differential operator in these equations requires higher computation costs than the finite-difference method (Mu et al., 2022; Mu et al., 2023). The coupled pseudo-acoustic wave equation is more accurate with no other approximations except the acoustic VTI approximation and can be solved by the finite-difference method.
For pseudo-acoustic VTI media with complex surface topography, we present a pseudo-acoustic VTI RTM algorithm based on the body-fitted grid and first-order velocity–stress equation. First, the orthogonal body-fitted grid was generated to conform to the irregular surface to avoid artificial scattering waves. Then, the first-order velocity–stress partial differential equations (Duveneck et al., 2008) were derived in the curvilinear coordinate system by utilizing the mapping relationship between the Cartesian coordinate and curvilinear coordinate. After that, the LG finite-difference scheme was used to update these equations for wavefield extrapolation and RTM. Finally, three numerical experiments were used to examine the accuracy and suitability of the proposed RTM algorithm in the pseudo-acoustic VTI media with surface topography.
2 THEORY
2.1 Body-fitted grid generation and coordinate transformation
When surface topography is present, the discrete grid must conform to the rugged surface to avoid artificial scattering waves (Zhang and Chen, 2006). Such a grid is named as the body-fitted grid, which has interior smoothness and local orthogonality at the boundary. Once the irregular surface topography is given, we choose the Poisson equation method, which is one of the elliptic partial differential methods, to generate a body-fitted grid. During the numerical solution of the Poisson equation, we control the trend of the grid lines through the iteration algorithm, which can ensure the interior smoothness and local orthogonality of the generated grid. This method can control the grid quality more flexibly and conveniently by adjusting the shape, sparsity, and orthogonality of the grid. The essence of body-fitted grid generation is to transform the irregular surface in the physical space [image: Mathematical equation representing \( x = x(x, z) \).] into a flat surface in the computational space [image: Mathematical notation depicting a function: \(X\) equals \(X(\xi, \eta)\), where \(X\) is a function of the variables \(\xi\) and \(\eta\).], as shown in Figure 1.
[image: A transformation of a grid from a distorted XY plane to a regular rectangular grid on the ξη plane. The image shows an arrow indicating the transformation between the two coordinate systems.]FIGURE 1 | Mapping between the body-fitted grid in the physical domain and the uniform grid in the computational domain.
After the body-fitted grid has been generated, the Cartesian coordinate of each discrete grid points can be determined. Then, the mapping from the curvilinear coordinate to the Cartesian coordinate is 
[image: Mathematical expressions showing two equations: x equals x of xi and eta, and z equals z of xi and eta, labeled as equation 1.]
By taking the partial derivatives of x and y in Equation 1, respectively, we can obtain
[image: A set of equations involving partial derivatives is shown: the partial derivative of x with respect to ξ plus the partial derivative of η with respect to x equals one, the partial derivative of x with respect to ζ plus the partial derivative of η with respect to z equals zero, the partial derivative of z with respect to ξ plus the partial derivative of η with respect to x equals zero, and the partial derivative of z with respect to ζ plus the partial derivative of η with respect to z equals one.]
From Equation 2, we can derive the coefficients of coordinate transformation [image: Partial derivatives of two variables are shown: partial derivative of xi with respect to x, partial derivative of xi with respect to z, partial derivative of eta with respect to x, and partial derivative of eta with respect to z.]:
[image: Partial differential equations showing transformations involving variables \(\xi\), \(\eta\), and \(z\). The Jacobian \(J\) is defined as the determinant of a matrix with partial derivatives: \(\frac{\partial \xi}{\partial x}\), \(\frac{\partial \xi}{\partial y}\), \(\frac{\partial \eta}{\partial x}\), and \(\frac{\partial \eta}{\partial y}\).]
where J is the Jacobian of the transformation and is a non-zero value.
2.2 First-order velocity–stress equations in the curvilinear coordinate
In the pseudo-acoustic VTI media, the first-order velocity–stress pseudo-acoustic wave equation based on first principles is derived by Duveneck et al. (2008):
[image: Partial differential equations are shown. They describe the rates of change for variables \(u\), \(w\), \(p\), and \(q\) with respect to time and spatial variables \(x\) and \(z\). The equations involve derivatives of \(\phi\), \(\rho\), and terms including \(1 + 2 \epsilon\) and \(\sqrt{1 + 2\delta}\), indicating dependence on parameters \(\epsilon\) and \(\delta\).]
where [image: Blurred text showing lowercase letters "u" and "w" separated by a comma.] are components of the particle velocity vector and [image: Please upload the image or provide a URL to it, and I can help you create the alternate text.] are the horizontal and vertical stress components, respectively; [image: I'm sorry, I cannot see or process an image directly from your message. Please upload the image or provide a URL, and I can help generate alt text for it.] is the density, [image: Greek lowercase letters epsilon (ε) and delta (δ).] are the Thomsen parameters (Thomsen, 1986); and [image: Please upload the image or provide a URL so I can help create the alt text. If there is additional context or a caption, feel free to include it.] is the media velocity. These equations can easily be discretized into finite-difference equations on staggered grids. As they have been derived with the acoustic VTI approximation, Equation 4 is kinematically equivalent to acoustic VTI equations derived by Alkhalifah (2000). In addition, one of the advantages of this formulation is the natural handling of variable density.
When the body-fitted grid is applied, Equation 4 should be transformed from the Cartesian coordinate into the curvilinear coordinate. Applying the chain rule, the wave equation in the curvilinear coordinate can be obtained as
[image: Partial differential equations expressing fluid dynamics conditions, showing time derivatives of velocity (u and w) and pressure (p), in terms of spatial derivatives and interactions between density (ρ) and velocity potentials (V₀²), with factors like ξ, η, and ε affecting the flow.]
where the coefficients of coordinate transformation can be calculated by Equation 3.
2.3 Lebedev grid finite-difference method
In this section, we describe the finite-difference scheme to update Equation 5. The SSG (Virieux, 1986) is widely used to discrete the first-order velocity–stress equation because of its increased stability and ability to suppress numerical dispersion compared with the collocated grid method. However, the velocity and stress in Equation 5 cannot be defined in the staggered-grid points because each variable requires the computation of spatial derivatives in x- and z-directions on the same lattice point. If solving the wave equations using the SSG scheme, some variables need to be calculated by the complex interpolation method, resulting in error and instability. Therefore, we use the LG scheme (Lebedev, 1964) to discretize Equation 5. The way to define LG is shown in Figure 2. The main idea of this grid is that we define different components of velocity (rectangles in Figure 2) and stress (circles in Figure 2) staggered at the same grid points.
[image: Grid diagram showing nine squares with labeled coordinates. Horizontal and vertical lines intersect at grid points: \(i-1\), \(i-1/2\), \(i\), \(i+1/2\), \(i+1\) on the x-axis and \(j-1\), \(j-1/2\), \(j\), \(j+1/2\), \(j+1\) on the y-axis. Points \(p, q\) are marked by dots, and \(u, w\) by squares.]FIGURE 2 | Schematic diagram of the Lebedev grid scheme.
From Figure 2, we can find that the same variable is defined on different locations of the same grid. In addition, every variable requires the computation of spatial derivatives in x- and z-directions on the same grid point. Hence, each variable needs to be calculated separately to update the equation. Taking variableu as an example, we can obtain its discrete form as
[image: Mathematical expressions arranged in a vertical format. The first equation shows the update of velocity \(u_{i+\frac{1}{2},j}^{n+1}\) using current and past information, including terms \(\xi\), \(\eta\), and force components \(F^{op}\). The second and third equations describe force updates, containing summations over index \(m\), with differences in pressure terms \(p_{i+\frac{1}{2},j}^{m}\) and scaling factors \(\Delta\xi\) and \(\Delta \eta\). The equations are labeled as equation (6).]
[image: Equations showing numerical methods for fluid dynamics. The top equation updates the momentum \( u \) at time \( n+1 \) using values from time \( n \) and flux terms involving \( F_x \) and \( F_y \). The next two equations define the flux terms \( F_x \) and \( F_y \) as sums over grid points with coefficients \( c_m \) and differences in discrete pressure terms \( P \).]
where Equation 6 is used to update variable u defined on the grid point (i + 1/2, j) and Equation 7 is used to update variable u defined on the grid point (i, j + 1/2); [image: The image displays the symbol Delta t, which represents the change in time.] is the time sampling interval, [image: Delta symbol followed by the Greek letter xi, indicating a change in the variable xi.], [image: Delta eta symbol, representing a change in the variable eta.] is the space sampling interval, and [image: It seems there was a mistake in your request since no image was uploaded. Please upload the image or provide a URL along with any additional context for accurate alt text creation.] is the finite difference coefficient.
Other variables can be updated by the same way, and then, we can use those discrete equations to simulate wavefields and images. In order to eliminate reflections from the artificial boundary, the sponge absorption boundary condition (Cerjan et al., 1985) is used on the sides and surfaces on top.
2.4 Reverse time migration theory
The realization of the RTM includes three steps. First, the forward propagation of the source wavefield is implemented based on the estimated model parameters, source wavelet, and seismic wave propagation equation. Second, the back propagation of the recorded data at the receiver location used time-reversed wavefield extrapolation operators. Third, the final imaging results are obtained by applying a suitable imaging condition.
The image is formed by multiplying (a zero-lag cross-correlation) the two wavefields at each time step (Claerbout Jon, 1971):
[image: Mathematical equation showing the function Image of \(x\) and \(z\) is defined as the sum of \(S_k(x, z, t)\) multiplied by \(R_k(x, z, t)\), with indices starting from \(k\).]
where Image, Ss, and Rs represent the imaging result, the wavefield of source, and the wavefield of the receiver, respectively. x and z denote horizontal and depth coordinates, respectively, and t is the time.
The image unit in Equation 8 is amplitude squared; thus, the image magnitude has arbitrary scaling that depends on the source strength and so has no physical interpretation as a reflection coefficient (Chattopadhyay and Mcmechan, 2008).
When compared to the cross-correlation imaging condition, the source-normalized cross-correlation imaging condition yields better imaging amplitudes (Claerbout Jon, 1971; Kaelin and Guitton, 2006). Therefore, we use the source-normalized cross-correlation imaging condition in the form of Equation 9:
[image: Formula for Image(x, z) as a fraction. The numerator is a double summation over t and k of S of x, z multiplied by Delta R of k, x, z, t. The denominator is a double summation over t and k of S of x, z multiplied by Delta S of k, x, z, t. Equation number 9.]
The detail steps of our pseudo-acoustic VTI RTM with surface topography are given in Table 1.
TABLE 1 | Procedural steps for realizing the pseudo-acoustic VTI RTM.
[image: Steps for computational imaging are outlined alongside their corresponding equations. Steps include meshing parameter models on a body-fitted grid, transforming coordinates, inputting models and data, calculating forward and back-propagating wavefields, applying cross-correlation imaging, and inverse transforming the image. Equations used are numbered as one, five, and nine, with some steps having no specific equation listed.]3 NUMERICAL EXAMPLES
We demonstrate the feasibility of pseudo-acoustic VTI RTM based on the body-fitted grid with synthetic data. The numerical examples are for three models with complex surface topography: 1) a sub-sag model, 2) a modified Hess VTI model, and 3) a modified overthrust VTI model. Forward modeling is the basis of imaging. For better imaging, we suppress shear wave artifacts by a small smoothly tapered circular region with [image: It seems there was an issue with the image upload. Please try uploading the image again, or provide a URL if it's available online.] set equal to [image: It seems there is an error with the image upload. Please try uploading the image again or provide a description or URL of the image so I can assist you with the alt text.] around the source when simulating the wavefield propagation process (Duveneck et al., 2008).
3.1 A sub-sag model
First, we use a sub-sag model with surface topography to examine the accuracy and suitability of the proposed method. The surface of this model is generated with the sinusoidal function: [image: Graph of the function \( y = 50 \sin\left(\frac{2\pi}{100} \cdot x\right) + 60 \). The sine wave oscillates vertically between 10 and 110, with a period of 100 units along the x-axis and a midpoint at y equals 60.]. After the body-fitted grid has been generated, the Cartesian coordinate of each discrete grid points and the mapping of coordinate transformation can be used to transform parameter models from the physical domain to the computational domain. Figure 3 shows the model parameters in the physical domain (Figures 3A, C, E) and the computational domain (Figures 3B, D, F). The size of the velocity field was 6,000 m × 3,000 m, with a vertical and horizontal spatial spacing of 10 m. We choose a Ricker wavelet with a 20-Hz peak frequency, and 60 shots are equally distributed at a depth of 10 m, with the distance of 100 m. Each shot has 601 receivers, with an interval of 10 m. The record length is 3.2 s, with a 0.8-ms time sampling interval. From Figures 4A, B, we can see that the generated grid not only has good orthogonality at the boundaries but also maintains good smoothness of the internal grid. This body-fitted grid provides a good basis for the wavefield simulations. Wavefield snapshots at different time steps in the computational domain and the physical domain are shown in Figure 5. As illustrated by the red rectangular box in Figures 5A, C, E, respectively, the shape of the wavefield becomes distorted due to the effects of the undulating surface. In addition, the reflected-wave events in shot records are also distorted, as shown in Figure 6. After transforming the wavefield in the computational to the physical domain (Figures 5B, D, F), the shape of the wavefield is back to normal. All of the snapshots have no numerical dispersion and artificial scattering wave, and the shear wave artifacts are effectively suppressed by loading the source loop. The numerical simulations confirm the accuracy of the LG finite-difference method based on the body-fitted grid. Figure 7 shows the conventional pseudo-acoustic VTI RTM results based on the rectangular grid and the pseudo-acoustic VTI RTM results based on the body-fitted grid. From Figure 7A, we can find that the irregular surface has a serious impact on imaging results. The flat seismic events become distorted, and the tilted seismic events fail to be clearly imaged. In addition, in the shallow region, the imaging results suffer from scattering noise. After considering the influence of subsurface topography in the pseudo-acoustic VTI RTM based on the body-fitted grid, the seismic events are accurately imaged, and the scattering noise is effectively eliminated, as shown in Figure 7B. The results validate that the proposed RTM method has good suitability for the models with complex topographic surfaces.
[image: Six panels (A-F) display colored contour plots showing variations of a parameter \( q_{{\text{xy}}} \) across distances from zero to six kilometers and depths from zero to four kilometers. The color scale on the right ranges from red to blue, indicating parameter values from zero to four thousand, with each panel depicting different distribution patterns.]FIGURE 3 | Sub-sag model. (A) Velocity model in the physical domain, (B) velocity model in the computational domain, (C) [image: Please upload the image or provide a URL for me to generate the alt text.] model in the physical domain, (D) [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if it's hosted online.] model in the computational domain, (E) [image: It seems there was an error, and no actual image was uploaded. Please upload the image you want me to describe, and I will provide the alternate text for it.] model in the physical domain, and (F) [image: Mathematical symbol for lowercase delta, represented by a curved shape resembling an elongated 's' with a loop at the top.] model in the computational domain.
[image: Two graphs labeled A and B show depth in meters versus distance in meters. Graph A has a flat, regular wave pattern, while Graph B shows more pronounced undulations, indicating varying depth levels across the same distance span. Both graphs feature red grid lines overlaid on the blue contour.]FIGURE 4 | Body-fitted grid. (A) In the physical domain, (B) zoomed views of (A).
[image: Seismic wave images labeled A to F, each showing a cross-sectional view of geological layers with varying wave patterns. Red rectangles highlight specific regions in images A, C, and E. X-axis indicates distance in kilometers, and Y-axis indicates depth in kilometers.]FIGURE 5 | Wavefield snapshots at different time steps. (A,C,E) t = 800 ms, t = 1,120 ms, and t = 1,440 ms, respectively, in the computational domain; (B,D,F) t = 800 ms, t = 1,120 ms, and t = 1,440 ms, respectively, in the physical domain.
[image: Graph showing a plot with distance in kilometers on the x-axis and time in seconds on the y-axis. A prominent V-shaped curve peaks at 3 kilometers and dips at time intervals of 0.5 seconds from the start. The graph demonstrates variations in data over time across a spatial distance.]FIGURE 6 | 30th shot records.
[image: Two seismic reflection profiles labeled A and B. Both display subsurface layers with distance in kilometers on the x-axis and depth in kilometers on the y-axis. Profile A shows three horizontal lines, while profile B has two horizontal lines and a central curved line indicating a structure.]FIGURE 7 | RTM imaging results in the physical domain. (A) Conventional pseudo-acoustic VTI RTM based on the rectangular grid and (B) pseudo-acoustic VTI RTM based on the body-fitted grid.
3.2 A modified Hess VTI model
We use the modified Hess VTI model with complex surfaces for imaging to verify the reliability of our pseudo-acoustic VTI RTM algorithm in complex models. Figure 8 shows the velocity and the anisotropic parameters of the Hess model in the physical domain (Figures 8A, C, E) and computational domain (Figures 8B, D, F). The model has a high-speed salt dome structure and a fault structure, and it has a strong anisotropic characteristic. The surface of this model is generated by the function: [image: Graph of the function \(y = 75 \sin \left( \frac{2\pi}{150} \times x \right) + 100\) showing a sinusoidal wave. The amplitude is 75, period is 150 units, and the wave is vertically shifted up by 100 units.]. The grid size of the model is 901 × 425, with a vertical and horizontal spatial spacing of 10 m. The time sampling interval of numerical simulation is 0.8 ms, and the total record length is 4.0 s. A Ricker wavelet with a 20-Hz dominant frequency is excited as the source wavelet. There are 90 shots at a depth of 10 m with a 100-m spacing interval and 901 receivers with a 10-m spacing interval. From the wavefield snapshots (Figures 9A, B) and the shot records (Figures 10A, B), we conclude that the seismic waves simulated with our method can propagate stably in complex media with complex subsurface topography. We perform the conventional pseudo-acoustic VTI RTM based on the rectangular grid, the ISO RTM, and the pseudo-acoustic VTI RTM based on the body-fitted grid on the synthetic dataset, and the obtained imaging results are shown in Figure 11. From Figure 11A, it is clear that the seismic events in the shallow region are hard to be recognized because they are covered by scattering noise. In addition, the seismic events in other regions have poor contiguity. Compared with Figure 11A, the results in Figure 11C show that the proposed RTM method can effectively suppress scattering noise and produce clearer and more accurate images than conventional pseudo-acoustic VTI RTM based on the rectangular grid. As shown in the black rectangular box in Figure 11B, there is an obvious non-convergence of diffracted waves in the area of strong anisotropy because the anisotropy is ignored in ISO RTM. The same region in Figure 11C is well-imaged after considering the effect of the anisotropy. In addition, diffraction waves generated by the fault plane do not converge well, which is denoted by the red ellipse box in Figure 11B, while the fault plane in Figure 11C is well-imaged. In general, the seismic events are more detailed and clearer, and the total resolution is significantly improved in the pseudo-acoustic VTI RTM results. This experiment demonstrates that the pseudo-acoustic VTI RTM based on the body-fitted grid produces more accurate and higher-resolution imaging results.
[image: Seismic wave model diagrams labeled A to F showcasing variations in properties like wave speed and attenuation across different distances and depths. Distinct color gradients represent different values in kilometers and quality factor (Q) or attenuation, with significant color variations indicating changes in geological characteristics. Each graph reflects unique seismic data over a similar range, highlighting differences in subsurface properties.]FIGURE 8 | Modified Hess VTI model. (A) Velocity model in the physical domain, (B) velocity model in the computational domain, (C) [image: Please upload the image or provide a URL so I can create the alt text for you.] model in the physical domain, (D) [image: It seems like there was an error in uploading the image. Please try uploading the image again so I can help create the alternate text for it.] model in the computational domain, (E) [image: It looks like there was an error in uploading the image. Please try uploading the image again or provide a URL if available.] model in the physical domain, and (F) [image: It appears there's no image provided. Please upload the image or provide a URL.] model in the computational domain.
[image: Two grayscale seismic images labeled A and B depict subsurface structures. Both images show curved, branching features resembling antlers, spanning depths of zero to four kilometers and distances of zero to nine kilometers. Image A has a uniform top, while image B has a wavy pattern at the top.]FIGURE 9 | Wavefield snapshots at 1,600 ms. (A) Snapshots in the computational domain and (B) snapshots in the physical domain.
[image: Seismic data visualizations depict two graphs labeled A and B. Each graph shows time in seconds on the vertical axis from 0 to 4 and distance in kilometers on the horizontal axis from 0 to 9. White lines represent seismic activity patterns on gray backgrounds.]FIGURE 10 | Shot records. (A) 45th shot records and (B) 60th shot records.
[image: Three seismic reflection images labeled A, B, and C show subsurface layers across a 0 to 9-kilometer distance and 0 to 4-kilometer depth. Image A has no markings. Images B and C have a dashed black rectangle and a red dashed oval marking specific areas of interest within the subsurface layers.]FIGURE 11 | RTM imaging results in the physical domain. (A) Conventional pseudo-acoustic VTI RTM based on the rectangular grid, (B) ISO RTM based on the body-fitted grid, and (C) pseudo-acoustic VTI RTM based on the body-fitted grid.
3.3 A modified overthrust VTI model
To further validate the applicability of our method to complex models, we modified the overthrust VTI model. The velocity and the anisotropic parameters of the modified overthrust model in the physical domain (Figures 12A, C, E) and computational domain (Figures 12B, D, F) are shown in Figure 12. The model has a lot of overthrust faults and high-steep structures, which have a strongly anisotropic characteristic. The irregular subsurface is generated according to the first-layer interface of the model, which is more general in nature. The grid size of the model is 751 × 371, with a vertical and horizontal spatial spacing of 10 m. The time sampling interval of numerical simulation is 0.5 ms, and the total record length is 3.0 s. A Ricker wavelet with a 25-Hz dominant frequency is excited as the source wavelet. There are 75 shots at a depth of 10 m with a 100-m spacing interval and 751 receivers with a 10-m spacing interval. As shown by the yellow arrows in Figure 13A, there is an obvious non-convergence of diffracted waves, which results in the failure to image the deep fold structure because the anisotropy is ignored in ISO RTM. The same region shown in Figure 13B is well-imaged after considering the effect of the anisotropy. In addition, diffraction waves generated by the overthrust fault plane do not converge well, which is denoted by the red arrows, as shown in Figure 13A, while the fault plane, as shown in Figure 13B, is well-imaged. In general, the imaging results, as shown in Figure 13B, have higher signal-to-noise ratios and higher resolution.
[image: Six color-coded contour plots labeled A to F, showing depth in kilometers versus distance in kilometers. Plots A and B depict velocity ranges, indicated by a color gradient from red to blue, with legends on the right. Plots C to F display other parameters with a different color gradient, focusing on variations across depth and distance, with separate legends. Each plot is marked by specific distance and depth increments for detailed comparison.]FIGURE 12 | Modified overthrust VTI model. (A) Velocity model in the physical domain, (B) velocity model in the computational domain, (C) [image: It looks like there was an issue with the image upload. Please try uploading the image again or provide a description or URL if possible.] model in the physical domain, (D) [image: It seems there was an issue with your image upload. Please try uploading the image again or provide a URL if it's available online.] model in the computational domain, (E) [image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL so I can help create the alternate text.] model in the physical domain, and (F) [image: It looks like there was an error in providing the image. Please try uploading the image again or share the URL, and I will help you with the alt text.] model in the computational domain.
[image: Two seismic profile images labeled A and B depict subsurface structures. Both images show geological layers with varying depths and distances marked in kilometers. Red and yellow arrows indicate specific features within the layers. Each profile covers a distance from 0 to 7 kilometers and a depth from 0 to 3 kilometers.]FIGURE 13 | RTM imaging results in the physical domain. (A) ISO RTM based on the body-fitted grid and (B) pseudo-acoustic VTI RTM based on the body-fitted grid.
4 DISCUSSION
To avoid the artificial scattering waves due to the staircase discretization of the irregular surface, we use the body-fitted grid to discretize the computational domain. This grid has interior smoothness and local orthogonality at the boundary, as shown in Figure 4, and it can easily conform to the irregular surface. Since the finite difference scheme is implemented in the curvilinear coordinate, the standard-staggered grid (SSG) finite difference scheme is no longer applicable, so we use the LG scheme (Lebedev, 1964) to update Equation 5. The numerical simulations in the sub-sag model and the Hess VTI model validate the accuracy of the LG finite difference method based on the body-fitted grid.
To validate the applicability of the proposed RTM method, we use three numerical tests on the models with different irregular surfaces. Although the third model includes a dramatically undulating surface, all correct imaging results of the models validate the advantages of the proposed method for dealing with various undulating surfaces. In addition, we use the ISO RTM and pseudo-acoustic VTI RTM methods to process the simulated dataset. All these results indicate that the pseudo-acoustic VTI RTM based on the body-fitted grid can solve the effect of anisotropy and complex surface topography on seismic wave propagation and get clearer and more accurate subsurface images.
When comparing Equation 4 and Equation 5, we can find that the equations in the curvilinear coordinate include additional derivative terms that are not present in the Cartesian coordinate. Although the finite difference scheme based on the body-fitted grid in the curvilinear coordinate has better simulation accuracy, it requires more computation costs and memory overhead, which will also lead to a decrease in imaging efficiency. Therefore, further improvement of this method is to provide a reasonable balance between numerical accuracy and computational efficiency.
5 CONCLUSION
We develop a pseudo-acoustic VTI RTM method based on the body-fitted grid for anisotropic shot data with complex surface topography. The orthogonal body-fitted grid can well fit the irregular surface, which can avoid artificial scattering waves in the propagation of the wavefield. Based on the coordinate transformation, we derive a first-order velocity–stress pseudo-acoustic wave equation in the curvilinear coordinate system. The LG finite-difference method is used to solve the first-order equation, which can avoid complex interpolation calculations and improve the accuracy and stability of the simulation. After considering the impact of the non-flat surface and anisotropy, the proposed RTM method can produce correct travel times during source and receiver wavefield extrapolation and obtain accurate and high-quality imaging results. Numerical examples demonstrate the feasibility and robustness of the proposed method for the pseudo-acoustic VTI media with complex surface topography.
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The Qilian orogenic belt (QOB) located in the northeast margin of the Tibetan Plateau is featured by remarkable crustal thrusting and shortening, providing a key natural example to understand the lithospheric deformation of the Tibetan Plateau. Two types of continental collision are observed in the QOB: lithosphere subduction beneath Southern Qilian and crust underthrusting of Alxa terrain along the North Border Thrust (NBT). Deep seismic reflection profiles reveal complex stress field evolution, including compressional deformation in the lower crust, extensional deformation in the upper crust, and detachment deformation in the middle crust. In this study, we use 2D numerical modeling to investigate the dynamics of these two different collision types and the evolution of Qilian uplift. Model results suggest three patterns of continental collision, i.e., crust underthrusting follows lithosphere subduction, lithosphere subduction and the failed underthrusting/subduction. The key factors that may influence model evolution, including crustal rheology, convergence direction and rate, are systematically investigated. Our model results are further compared to observations, suggesting that lower convergence rate and crust underthrusting along NBT likely control the uplift and crust stress stratification of the QOB.
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1 INTRODUCTION
The Qilian orogenic belt (QOB) located in the northeastern margin of the Tibetan Plateau, far from the continental plate margins, is a typical intracontinental orogenic belt. Its geological history can be divided into three main stages: Paleozoic orogeny, Mesozoic peneplanation, and Cenozoic re-uplift. The Cenozoic uplift of the QOB is primarily attributed to the collision between the Indian and Eurasian plates. This continuous convergence with the northward indentation of the Indian plate drives the outward expansion of the Tibetan Plateau (Zhang et al., 2004; Wang et al., 2014; Zheng et al., 2017). The India-Eurasia collision initiated the early deformation in the Qilian Mountains (Yin et al., 2002; Yuan et al., 2013; Cheng et al., 2019; He, 2020), followed by the second collisional event at 20–8 Ma representing the latest crustal shortening and thickening of the Tibetan Plateau (Jolivet et al., 2001; Craddock et al., 2011; Duvall et al., 2013; Wang et al., 2016; 2017; Zheng et al., 2017; Li et al., 2019; Pang et al., 2019). Understanding the lithospheric structures and tectonic evolution of the QOB is essential for understanding the dynamics of the Tibetan Plateau.
High-resolution deep seismic reflection profiles across the Qilian Mountain have demonstrated multi-staged lithospheric structures. Previous studies have presented two significant deep seismic reflection profiles (Figure 1A). The first seismic profile (Figure 1B, MM') located in the Northwestern Qilian Mountain and the Hexi Corridor Basin reveals that the Alxa terrain southward underthrusts along the North Boundary Thrust (NBT) under the Hexi Corridor (Gao et al., 1999; Ye et al., 2015; Huang et al., 2021). The second seismic profile (Figure 1B, NN') crosses the central and Southern Qilian, delineating a significant south-dipping fault (Haiyuan Fault) in the mantle lithosphere, which is related to the subduction and closure of the North Qilian Ocean in the Late Paleozoic. This fault was reactivated due to the northward indentation of the Indian plate during the Cenozoic, facilitating lithosphere subduction along the fault and contributing to the uplift of the Qilian Mountains. Under the plate convergence of the Indian plate and Alxa block, the Southern and northern margins of the QOB are undergoing intensive crustal shortening (Hao et al., 2021; Huang et al., 2021; Gao et al., 2022), featured by decoupled deformation between the upper and lower crust, i.e., the upper crust is migrating outward while the lower crust is shortening (Liu et al., 2021; Liu et al., 2023).
[image: Geological map and 3D cross-section showing fault systems and structural features of the Qilian Orogen region. The map details faults, basins, and blocks with labels like "Tarim Basin" and "Qaidam Basin." The 3D section highlights seismic profiles and fault traces, with red lines denoting major faults. A legend differentiates fault types, and colored lines indicate various seismic surveys.]FIGURE 1 | Geological settings and lithospheric structures of the QOB. (A) Geological background with the ages indicating surface uplift events (uplift ages from Pang et al. (2019) and references therein). The locations of the two deep seismic reflection profiles are shown (Green lines). TS: Tuolai Shan; TNS: Tuolai Nan Shan; SNS, Shule Nan Shan; DNS, Danghe Nan Shan. (B) Deep seismic reflection profiles revealed lithosphere subduction (NN') and crust underthrusting (MM') in the south and north of the QOB, respectively (Gao et al., 2022).
Based on the lithospheric structure revealed by deep seismic reflection profiles, the Qilian orogen may have experienced lithosphere subduction and crust underthrusting simultaneously. Lithosphere subduction is associated with the re-activation of faults caused by the closure of the North Qilian Ocean. Crust underthrusting caused by southward underthrusting of the Alxa block beneath the Qilian Mountains (Figure 1B). And when the continental collision, the QOB may has experienced two stages of uplift during the Cenozoic. However, the processes by which these two types of continental collision occur in the QOB, the pattern of the QOB uplift, and the formation of crust stratification remain obscure. This study aims to answer this question by linking detailed lithospheric structures revealed by deep seismic reflection profiles to geodynamical modeling. 2D thermos-mechanical models are employed to investigate intracontinental thrusting/subduction based on the QOB.
2 METHODS
2.1 Numerical method
We use the 2D thermo-mechanical coupled geodynamic numerical code I2VIS to simulate continental collision (Gerya and Yuen, 2003). Finite differences and marker-in-cell techniques are used in the code to solve the conservation equations for mass, momentum and energy:
[image: Partial derivative of v sub i with respect to x sub i equals zero.]
[image: A mathematical equation showing partial derivatives: partial derivative of sigma sub ij with respect to x sub j, minus partial derivative of pressure P with respect to x sub i, equals minus rho g sub i.]
[image: The equation represents heat transfer in a material, expressed as ρCₚ(dT/dt) = ∂/∂xᵢ(κ ∂T/∂xᵢ) + Hₛ + Hᵣ + Hₐ + Hₗ. The terms describe density, specific heat capacity, temperature change over time, thermal conductivity, and various heat sources.]
where [image: Please upload the image so I can assist with creating the alt text.] is velocity, [image: Mathematical symbol for "sigma prime," consisting of the lowercase Greek letter sigma (σ) followed by an apostrophe, often used in mathematical equations or statistics.] is the deviatoric stress tensor, [image: Please upload the image or provide a URL for me to generate the alt text.] is the pressure, [image: It seems there was an issue with uploading the image. Please try uploading the image again or provide a link to it.] is the density, [image: It looks like there was an error or misunderstanding with the input. Please describe or upload the image again for assistance with creating alternate text.] is the gravitational acceleration, [image: Stylized letter "C" followed by a subscript "p" in a serif font.] is the heat capacity, [image: If you can provide an image or a URL, I can help create an alternate text for it. If there is any additional context you'd like to include, feel free to add that as well.] is the temperature. Hs is shear heating, Ha is the adiabatic heating, [image: Stylized mathematical notation displaying the letter H with a subscript r, typically used in algebraic or mathematical contexts to denote specific variables or functions.] is the radioactive heating with a constant value for each rock, and HL is the latent heating included implicitly by increasing the effective heat capacity and thermal expansion of the partially crystallized/molten rocks (Burg and Gerya, 2005).
In this study, the visco-plastic rheology is applied. The non-Newtonian viscous rheology is strain rate-, pressure-, and temperature-dependent. Plastic rheology is described by a Drucker–Prager yield criterion, where the yield stress ([image: It looks like there was an issue with the image upload. Please try uploading the image again, and I will be happy to help with the alternative text.]) is pressure dependent ([image: It seems like the image was not uploaded correctly. Please try uploading the image again, and I will help you create the alt text.] is rock cohesion and [image: It seems there was an issue with the image loading. Please try uploading the image again, and I'll generate the alt text for you.] is the effective friction coefficient). Viscosity due to plastic deformation ([image: Text showing "eta subscript plas" in cursive font.]) is computed based on the square root of the second invariant of strain rate ([image: Stylized letter "E" with a dot above and two vertical lines below, resembling a mathematical symbol.]). Eventually, the effective viscosity of rocks ([image: The image displays the mathematical symbol for effective refractive index, denoted as "n" with a subscript "eff."]) is constrained by both viscous and plastic deformation.
[image: The equation for ductile efficiency is given as the shear strain rate divided by the normal strain rate, multiplied by \(A\) raised to the power of one over \(n\), and multiplied by the exponential of \((E_a + PV_a)/(nRT)\), where \(E_a\) is activation energy, \(P\) is pressure, \(V_a\) is activation volume, \(n\) is a constant, \(R\) is the gas constant, and \(T\) is temperature.]
[image: The formula displayed is: sigma subscript yield equals P sine of phi subscript eff plus C subscript a.]
[image: The equation shows the plastic viscosity (\(\eta_{\text{plastic}}\)) equal to the yield stress (\(\sigma_{\text{yield}}\)) divided by twice the shear rate (\(2\dot{\varepsilon}_{II}\)).]
[image: The formula \(\eta_{\text{eff}} = \min(n_{\text{ductile}}, n_{\text{plastic}})\) is depicted, where \(\eta_{\text{eff}}\) is the effective value, and the minimum function selects the lesser of \(n_{\text{ductile}}\) and \(n_{\text{plastic}}\).]
See further explanation of variables/symbols in Table 1.
TABLE 1 | Material parameters used in the numerical experiments. aFlow laws: from (Kirby and Kronenberg, 1987; Wilks and Carter, 1990; Ranalli, 1995; Afonso and Ranalli, 2004) bHeat conductivity is from Clauser and Huenges (1995). cRadioactive heating is from Turcotte and Schubert (2002). [image: A table displaying various material properties across different geological layers: upper crust (wet quartzite, felsic granulite, plagioclase, diabase, mafic granulite) and mantle (dry olivine, wet olivine). Columns list properties like viscosity (η), exponent (n), activation energy (Eₐ), density (ρ), and thermal conductivity (κ), among others. Each property is detailed with specific values for each material type.]: initial viscosity, [image: Stylized italic letter "E" with a subscript "a".]: activation energy, [image: Mathematical notation showing a variable \( V_a \) with the subscript 'a'.]: activation volume, [image: The image shows the mathematical notation for "sigma subscript crit," indicating a critical value of sigma.]: diffusion-dislocation creep transition stress, [image: Please upload the image or provide a URL so I can help create the alt text for it.]: exponent parameter, [image: The chemical formula shows carbon monoxide, represented by "C" for carbon and a subscript "0" for monoxide.]/ [image: If you would like me to generate alt text for an image, please upload the image or provide a URL.]: cohesion, [image: The image shows the mathematical expression φ subscript 0 divided by φ subscript 1.]: internal friction coefficients, [image: Mathematical expression depicting epsilon sub zero over epsilon sub one.]: strain weakening coefficients, [image: Please upload the image or provide a URL, and I'll create the alt text for you.]: initial density, [image: If you have an image you'd like me to describe, please upload it or provide a URL.]: thermal expansion, [image: The Greek letter kappa (κ) is shown in a serif typeface, commonly used in mathematics and science.]: thermal conductivity, [image: Text depicting the mathematical notation "k subscript coef" in italic font.] T: thermal conductivity temperature coefficient, [image: Please upload the image or provide a URL for me to generate the alt text.]: radioactive heat production. All materials were assigned the same values for compressibility: [image: Please upload the image or provide a URL so I can help create the alt text for it.] = 1.00e−03 kbar−1 and heat capacity: [image: A black and white image showing the mathematical notation for specific heat capacity, represented by an uppercase "C" followed by a subscript "p."] = 1.00e+03 J/kg.
[image: Table displaying various geological properties across different crustal and mantle materials. Columns are labeled as Upper Crust: Wet Quartzite, Felsic Granulite; Lower Crust: Plagioclase, Diabase, Mafic Granulite; Mantle: Dry Olivine; and Weak Zone: Wet Olivine. Properties include viscosity (η), stress exponent (n), activation energy (Ea), activation volume (Va), critical stress (σcrit), cohesion (C), porosity (φ), strain (ε), density (ρ), thermal expansivity (α), compressibility (β), specific heat capacity (Cp), thermal conductivity (κ), thermal gradient coefficients (κkoef T), and heat production (H).]2.2 Model setup
The initial model setup is shown in Figure 2. The model size is 2,500 km × 450 km, consisting of 401 × 151 numerical nodes distributed unevenly with the highest resolution in the center of the model domain. The grid spacing decreases linearly from 20 km at the edge of the box to 2 km in the center and increases from 1 km at the top to 5 km at the bottom of the model. The model has several layers, from top to bottom: “sticky air”, continental crust, mantle lithosphere, and asthenosphere. The crust and mantle lithosphere are 40 km and 80 km thick, respectively, as observed in the Qilian region (Ye et al., 2015; Huang et al., 2021; Ye et al., 2021). With fixed crust thickness, the lower crust thickness is gradually increased from 10, 15, 20, to 25 km. A crustal-scale weak zone was established on the right side of the model to represent the NBT (Figure 1B, profile MM'; Figure 2), and a lithospheric-scale weak zone is incorporated into the model on the left side (Figure 1B, profile NN'; Figure 2). These two weak zones are set up based on deep seismic observations and previous studies (Gao et al., 2022).
[image: Diagram illustrating tectonic boundaries and composition. Panel A shows boundary velocity and free slip at constant temperature. Panel B details crust layers: air, water, sediment, upper continental crust, lower continental crust, lithosphere, asthenosphere, and a weak zone. The depth is in kilometers with labels for Qilian and Alxa regions.]FIGURE 2 | Initial model setup. (A) Boundary condition setup. (B) Lithological layers are shown by colors. Oblique weak zones are imposed representing pre-existing crustal faulting zones. White lines are isotherms with an interval of 400°C. The velocity and temperature boundary conditions are labeled in the figure.
We set a 20 km thick layer with ‘sticky air' at the top of the model domain, approximating the free surface. Our surface process is highly simplified and uses gross-scale erosion/sedimentation rates which are independent of local elevation and topography slopes (Burov and Cloetingh, 1997). We use a moderate erosion/sedimentation rate (0.315 mm/yr) which falls within naturally observed ranges.
Velocity boundary conditions are free-slip on all boundaries. We prescribed internal boundary velocities to drive plate convergence (Figure 2A). The initial temperature distribution of the lithosphere is uniform and zero-flux across the vertical boundaries. The initial temperatures on the crustal surface, Moho, and the lithosphere-asthenosphere boundary (LAB) are 0°C, 450°C, and 1,300°C, respectively. Temperature increases linearly in the crust and mantle lithosphere. Beneath the LAB, the temperature gradient is prescribed as 0.5°C/km.
3 MODEL RESULTS
We conduct a series of models to simulate the continental collision along the imposed pre-existing weak zones. Based on the model results, three patterns of continental collision are recognized: 1) crust underthrusting follows the lithosphere subduction, 2) lithosphere subduction, and 3) failed underthrusting/subduction.
3.1 Crust underthrusting follows the lithosphere subduction
The first pattern is characterized by two modes of continental collision (Figure 3), i.e., lithosphere subduction initiated first beneath Southern Qilian and crust underthrusting of Alxa terrain along the NBT. In the beginning, strain localized along two pre-existing weak zones, and the lithosphere subduction forms quickly. Under continuous convergence, the thrust fault around NBT evolves to the crust underthrusting (Figure 3A). A remarkable feature of this pattern is the decoupled deformation between the upper and lower crust. The upper crust migrates northward and shortens significantly, while the lower crust slowly moves (Figure 3B), analogous to natural observations (Huang et al., 2018).
[image: Diagram showing two panels labeled A and B, illustrating crustal movements over time. Panel A displays labeled stages of lithosphere subduction, thrust fault, crust underthrusting, and upper crust migration at different times: 12.5, 18.5, 28.4, and 38.3 million years. Panel B shows associated strain patterns, highlighting strain localization, decoupling areas, and high strain zones at corresponding times. Distance is marked in kilometers, and depth in meters, with a color scale for strain.]FIGURE 3 | Typical evolution of crust underthrusting follows lithosphere subduction (Mode 1). (A) Composition fields show the lithospheric deformation (color coding refers to Figure 2). (B) Model evolution shown by strain rate. White lines represent isotherms with a temperature interval of 400°C.
3.2 Lithosphere subduction
By testing different lower crust strengths, such as decreasing lower crust thickness will be weaker and more mafic rheology will be stronger, we obtain the Mode 2 models. This pattern only shows one lithosphere subduction. In terms of the subduction initiates along which pre-existing weak zone, we categorized the models into Mode 2A and Mode 2B. Mode 2A and 2B show the lithosphere subduction beneath Southern Qilian or NBT, respectively (Figures 4, 5). Compared to the Mode 1, strain localized rapidly along pre-existing weak zones. When the strain is localized successfully in one of those weak zones, negligible deformation will be observed in the other weak zones.
[image: Lithospheric subduction diagrams beneath Southern Qilian showing changes over time. The left panel illustrates the thrust faulting and subduction at depths up to 200 km. The right panel visualizes strain localization, upper crust migration, and their absence, using a color-coded log stress scale. Labels indicate time intervals of 8.33 Myr and 18.33 Myr.]FIGURE 4 | Typical evolution of lithosphere subduction beneath Souther Qilian (Mode 2a). (A) Composition fields show the lithospheric deformation (color coding refers to Figure 2). (B) Model evolution shown by strain rate. White lines represent isotherms with a temperature interval of 400°C.
[image: Diagram showing lithospheric subduction along the North Border Thrust. Three panels on the left display stages of subduction at 4.42, 16.41, and 27.41 million years. Each shows depth in kilometers with thrust fault and subduction zones marked. Three panels on the right illustrate strain localization and subduction over the same periods, with a color scale indicating log strain rates from negative twelve to negative eighteen.]FIGURE 5 | Typical evolution of lithosphere subduction along NBT. (A) Composition fields show the lithospheric deformation (color coding refers to Figure 2). (B) Model evolution shown by strain rate. White lines represent isotherms with a temperature interval of 400°C.
3.3 Failed crust underthrusting/lithosphere subduction
A few models failed to generate underthrusting/subduction. The typical evolution of this mode is shown in Figure 6. In the early stage, strain localized and formed thrusting faults near the NBT due to the strong lower crust (Figure 6A). However, with further model evolution, it fails to form underthrusting/subduction, instead, it forms lithospheric thickening due to two-sided convergence. Crustal deformation is also seen in Southern Qilian, mainly because subduction fails to initiate along the NBT. Compared with the subduction cases, failed cases are mainly promoted by a lower convergence rate and weak continental crust (Figure 7).
[image: Diagram showing Mode 3 failed crust underthrusting/lithosphere subduction. Panel A depicts cross-sectional profiles with depth versus distance, illustrating thrust fault, no underthrusting, and no subduction at different time intervals (9.46 Myr, 23.46 Myr, 37.07 Myr). Panel B displays strain localization maps for the same times, with colors indicating strain intensity. The areas marked include Qilian, NBT, and Alxa. A color scale indicates strain rate from negative sixteen to negative twelve per second.]FIGURE 6 | Typical evolution of failed underthrusting and subduction cases. (A) Composition fields show the lithospheric deformation (color coding refers to Figure 2). (B) Model evolution shown by strain rate. White lines represent isotherms with a temperature interval of 400°C.
[image: Diagram showing three models of lithosphere subduction and crustal underthrusting beneath regions in Qilian and Alxa. Panel A illustrates crust underthrusting and lithosphere subduction, panel B shows lithosphere subduction beneath Southern Qilian, and panel C depicts lithosphere subduction along NBT. Each panel indicates deformation over time with labeled timelines and distance scales, highlighting different geological features like thrust faults and crust underthrusting. Colors and lines represent layers and movement within the earth's crust.]FIGURE 7 | Three evolution models of stress field under two-sided convergence condition. (A) Crust underthrusting and Lithosphere subduction. Lithosphere subduction (B) beneath Southern Qilian or (C) along NBT.
3.4 Two-sided convergence
Based on the aforementioned models with one-sided plate convergence, we increase the right plate velocities to investigate the effect of two-sided convergence (Figure 7). We increase the right plate velocities to the aforementioned model results, three types of model evolution are observed in this set of models, i.e., crust underthrusting follows the lithosphere subduction, lithosphere subduction, and failed underthrusting/subduction. However, changes in lithospheric deformation due to double-direction convergence are still observed. The right plate velocity dramatically affects model evolution. Lower right plate velocities and relatively lower convergence rates favor the crust underthrusting form, which follows the lithosphere subduction (Figure 7A). While higher right plate velocities and a large convergence rate from the right boundary promote the formation of lithosphere subduction (Figures 7B, C).
3.5 Model parameter effect
The thickness of the crust and the rheological properties of the lower crust can influence the initiation of intracontinental subduction (Huangfu et al., 2018). We systematically tested the crustal strength by varying the thickness and rheology of the lower crust (Figure 8A). In our model, the total crustal thickness is constant (i.e., 40 km), while the tested lower crustal thickness gradually changes from 10, 15, 20, and 25 km. Besides, varied lower crustal rheology (i.e., felsic granulite, plagioclase, diabase, mafic granulite) is tested. Model results show that crustal strength affects the pattern of intracontinental subduction. The formation of Mode 1 or 2 depends on strain localization, i.e., occurring fast in Southern Qilian or along the NBT. With a weak lower crust, characterized by a thin lower crust and felsic rheology, models favor the formation of crust underthrusting following lithosphere subduction. In such models, strain localization is hard to form along the NBT, resulting in a relatively more distributed stress distribution. With continuous plate convergence, deformation concentrates along the Qilian faulting zone, initiating intracontinental subduction and prompting the migration of crustal shortening into the plate's interior. On the contrary, with high crustal strength, characterized by more mafic and thicker lower crust, lithospheric deformation is prone to localize in the NBT, resulting in lithosphere subduction.
[image: Diagram showing the relationships between lower crustal rheology and various geological processes. Panel A illustrates the relationship with upper and lower crust compositions using different rock types. Panel B shows convergence rates correlating with crustal rheology. Panel C depicts left and right plate velocities. Symbols represent different geological processes: circles for crustal-scale underthrusting, blue squares for lithospheric subduction zones, and other symbols for varying geological conditions. A legend provides symbol explanations.]FIGURE 8 | Model results influenced by different model parameters. (A) Regime diagram illustrates the impact of lower crustal rheology and upper/lower crustal thickness on model evolution. Upper crustal rheology is prescribed by wet quartz in these models. A fixed convergence rate of 1.5 cm/yr is set on the left plate. (B) Regime diagram showing the effect of convergence rate. (C) Regime diagram showing the effect of double direction convergence. Convergence rates are tested by changing the plate velocities.
The convergence rate of Indian plate subduction is 5–20 cm/yr (Pusok and Stegman, 2020). Previous study indicates that the southward underthrusting of Alxa terrane influences the QOB. However, the magnitude of underthrusting influence has not yet been determined. And high convergence rate will promote strain localization and will influence shear heating (Faccenda et al., 2008), which may influence the intracontinental underthrusting. Thus, to systematically test the influence of convergence rate, we change the internal boundary velocity to test varied convergence rates 1, 1.5, 2.0, and 2.5 cm/yr with a lower crust thickness of 20 km. The model results are shown in Figure 8B. With the convergence rate of 0.5 cm/yr, strain localization becomes difficult and fails to form underthrusting/subduction in the models. Increase the convergence rate, crust underthrusting occurs in the models. When we use more mafic lower crust, with the same convergence rate, the lithosphere subduction occurs.
Different directions of convergence result in different deformation patterns and different subduction polarities (Mishin et al., 2008; Liu et al., 2024a; Liu et al., 2024b). In the additional models with two-sided plate convergence, the right plate velocities are systematically tested while the left plate velocities maintain constant (Figures 2A, 8C). Modeling results show that as the convergence rate increases, the position of lithosphere subduction initiation shifts from the NBT to the Qilian Thrust system (Figure 8C). However, the crust underthrusting following lithosphere subduction is difficult to form, and only one tested model forms this deformation type. Thus, compared to the single-direction convergence models, the models with two-sided plate convergence do not favor the formation of crust underthrusting along NBT following lithosphere subduction, and thus could not be applied to the QOB.
4 DISCUSSION
4.1 Model comparison
We compare model results through topography and stress fields (Figure 9). The regions dominated by extensional or compressional stress are distinguished in the plots. In the early stage of these two modes, strain localized along pre-existing weak zones, compressional stress dominates all mode types (Figures 9B, G). When lithosphere subduction initiates along the Southern Qilian, the upper crust shows extensional stress and starts to migrate (Figures 9C, D). When the crust underthrusting along NBT, Mode 1 shows significant crustal stress stratification, but Mode 2a does not (Figures 9D, I). The notable difference is the lower crust compressional stress state and the shortening deformation, which indicates the main reason for crustal stress stratification is crust underthrusting. Moreover, the topographic uplift of the Mode 1 is relatively higher than Mode 2a. Differences in topography are mainly due to the shortening of lower crust. Compared with the observation of deep seismic reflection profiles (Figure 1), the evolution of Mode 1 is similar to the deformation pattern of the QOB.
[image: Two sets of geological simulation panels labeled Mode 1 and Mode 2a, comparing crustal processes at different times and depths. Both modes include topography maps and graphs depicting strain localization, lithospheric-scale subduction, and migration over time and distance, indicated in millions of years (Myr). Mode 1 and Mode 2a show similar patterns in strain and subduction but differ in the extent of crust migration. Color gradients indicate topography and deviatoric stress (d_xx in MPa). ]FIGURE 9 | Reference Mode 1 and Mode 2a comparison through topography and stress fields. (A–E) Crust underthrusting follows lithosphere subduction (Mode 1). (F–J) Lithosphere subduction beneath Southern Qilian (Mode 2a). Lower crustal rheology is prescribed by plagioclase but with varied thickness of lower crust. A fixed convergence rate of 1.5 cm/yr is set on the left plate.
4.2 Comparison between simulation and observation
The tectonic uplift and evolution history of the Qilian Mountain can be explained based on the model results. Following the closure of the Proto-Tethys Ocean and the commencement of continental collision, the interior of the Tibetan Plateau was subjected to the northward indentation of the Indian Plate (Figure 10A). The far-field compression stress exerted by the Indian plate led to the reactivation of two pre-existing faults. Subsequently, lithosphere subduction initiated beneath the Southern Qilian, and crust underthrusting occurred along the NBT (Figure 10B). The processes of underthrusting and subduction result in significant uplift in the Qilian Mountains. In the absence of the Alxa terrain underthrusting, the uplift of the Qilian Mountains would be significantly reduced (Figure 9). Accordingly, based on the model results, the crust underthrusting favors the uplift and the crust stress stratification. Besides, our model results suggest that the multiple intracontinental subduction in the Qilian orogenic belt primarily results from plate convergence from the south.
[image: Cross-section diagrams illustrate geological formations between Qilian and Alxa. Diagram A shows layers from upper crust to lithosphere with slight faulting. Diagram B depicts more pronounced faulting and deformation labeled "NBT" due to Cenozoic far-field stress.]FIGURE 10 | Schematic diagram showing two types of continental collision in the QOB (A) Lithosphere subduction initiated beneath Southern Qilian. (B) Crust underthrusting along the NBT.
5 CONCLUSION
Based on the constraints from the deep seismic reflection profiles of the QOB, we conducted a 2D thermo-mechanical coupled numerical modeling. We investigate continental collision and surface uplift in the Qilian Mountain from the Cenozoic. We obtained the following conclusions.
	(1) Three patterns of continental collision are recognized, i.e., crust underthrusting follows lithosphere subduction, lithosphere subduction beneath Southern Qilian or along NBT, and failed underthrusting/subduction.
	(2)The controlling effect of crustal rheology on model evolution was recognized, i.e., the felsic lower crust promotes the formation of crust underthrusting following lithosphere subduction. A lower convergence rate allows the crust to underthrust along NBT.
	(3) Two-sided convergence influences the model evolution. A lower convergence rate from the right plate favors the crust underthrusting along NBT, which indicates that the uplift of the QOB is likely driven by southern compressional convergence.
	(4) The presence of crust underthrusting along NBT leads to the crustal stress stratification between the upper and lower crust. And crust underthrusting along NBT promotes the uplift of the QOB.
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During the exploration and development of deep coalbed methane (CBM), delineating the thickness of coal seam and lithofacies of the roof and floor is one of the major challenging tasks. In past attempts, the prediction methods of these parameters have been limited to the conventional inversion. However, the effect of coal shielding on adjacent reflecting layers restricts the identification of underlying sand effectively by conventional inversion. Also, the depth at which the deep CBM zone is located (1,500–2000 m) produces a significant overlap of P-wave impedance and Vp/Vs of sands and shale which increases classification uncertainty between these two lithofacies. We proposed a new workflow for high-precision quantitative seismic interpretation of deep CBM reservoir. Not only P-wave impedance but also GR is selected as the optimized attributes for lithofacies classification. To reduce the effect of strong reflection of coal seam and identifying thin coal layers, the seismic waveform indication inversion method is used to obtain high-resolution results of P-wave impedance and GR. It uses horizontal changes in seismic waveforms to reflect lithological assemblage characteristics for facies-controlled constraints. Then, Bayesian classification theory is used to achieve three-dimensional lithofacies classification with multi-source data. To improve the continuity and accuracy of the interpreted results, a Markov chain is applied in the Bayesian rule as the spatial prior constraint. A well-associated synthetic test and field data application in Ordos Basin demonstrates the accuracy of the proposed workflow. Compared with conventional inversion, the results of proposed workflow showed higher resolution and accuracy. By providing a new solution for the identification of roof and floor lithofacies of deep CBM reservoir, this workflow aims to contribute to the better exploration and development of deep CBM.
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1 INTRODUCTION
Deep coalbed methane (CBM) resources at depths below 1524 m are abundant globally, as indicated by the review of major coal-bearing basins worldwide (Kuuskraa and Wyman, 1993). Countries such as the United States and Canada realized the commercial development of deep CBM resources in the last century owing to the relatively simple geological conditions in these countries (Moore, 2012; Li et al., 2018). For instance, The United States pioneered the co-production of deep coal seams and sandstones in the Piceance Basin, with 60% of gas production originating from coal seams. This approach led to significant advancements in the industrial exploitation of deep CBM. In contrast, although the latent capacity of deep CBM in China is considerable, the exploration and production of deep CBM is still in its exploratory stage. The CBM resources within deep formations (depth >1,000 m) in China were estimated to be 22.5 × 1012 m3 (61.2% of total CBM resource). Qinshui Basin and eastern Ordos Basin are two leading basins with proven CBM resources over 100 × 109 m3. Notably, in 2023, CNOOC’s discovery of a trillion cubic meters of deep CBM in the Shenfu area of the Ordos Basin substantially enhanced industry confidence (Fan et al., 2024; Guo et al., 2024).
In the process of CBM exploration and production, the accurate lithofacies identification of the coal seam roof and floor is essential for assessing the potential of CBM reservoir (Hemza et al., 2009). The reason is that the lithofacies, thickness, and mechanical properties of the coal seam roof and floor are pivotal in determining the storage capacity. Shale, in contrast to the porous and permeable sandstone, exhibit relatively smaller pore sizes, and lower permeability, which are conducive to the sequestration of CBM (Saghafi et al., 2010; Liu et al., 2020). Commonly, the lithofacies identification by seismic data is executed on the basis of seismic inversion-derived elastic attributes, including P-wave impedance and S-wave impedance, as well as density. Based on these attributes, an objective function is formulated by applying probabilistic and statistical principles to conduct lithofacies classification. Thus, the key challenge to construct reliable 3D CBM reservoir lithofacies models is to accurately predict feasible elastic attributes using seismic inversion.
Different seismic attribute pairs vary in their ability to classify lithofacies. Pore fluid and rock property variation can be discriminated over a crossplot of acoustic impedance versus the ratio of P-wave velocity to S-wave velocity (Vp/Vs) (Avseth et al., 2003). However, for sandstone and shale in proximity to deep CBM reservoir, there is considerable overlap in the crossplot of P-wave impedance against Vp/Vs, resulting high uncertainty in reservoir characterization using this seismic attribute pair (Avseth et al., 2003; Aleardi and Ciabarri, 2017). To reduce this uncertainty, the proposed workflow conducts a comparative analysis of confusion matrix for various attribute pairs. P-wave impedance and nature gamma (GR) are selected as the optimized pair of attributes for lithofacies classification.
Another problem is that, coal seams are characterized by low P-wave impedance, forming a strong impedance contrast with surrounding strata and high seismic reflection coefficient. In scenarios with low seismic resolution, the strong seismic reflections interfere with weaker adjacent reflections, leading to the appearance of strong amplitudes on seismic profiles. This phenomenon presents a challenge to precisely delineate sandstone formations adjacent to coal seams for conventional inversion methods, including conventional post-stack inversion and pre-stack amplitude versus offset (AVO) inversion, among others (Veeken and Da Silva, 2004; Phan and Sen, 2018; Yuan et al., 2019). To address this challenge, we utilize a seismic waveform indication inversion approach, which imports horizontal waveform similarity to invert for high-frequency geological data from well logs, thus achieving high-resolution inversion. In recent years, waveform indication inversion techniques have gradually been applied to thin reservoir prediction, sand body identification and boundary delineation, carbonate reservoir type recognition, and exploration of subtle hydrocarbon traps, yielding favorable application outcomes (Gao et al., 2017; Duan, 2019). Gu et al. (2017) employed seismic waveform indication inversion techniques, thereby enhancing the resolution of inversion results and effectively addressing the prediction of thin sandstone reservoirs under conditions of strong amplitude masking.
It is a complex nonlinear classification issue for lithofacies identification using seismic attributes. Discriminant analysis, Bayesian inference, neural network modeling, support vector machine (SVM), and K-nearest neighbors (KNN) classification are prevalent methodologies employed in classification techniques (Mukerji et al., 2001; Baddari et al., 2009; He et al., 2022). Among these, Bayesian classification is recognized for its advanced and extensively applied nature (Avseth et al., 2005; Grana, 2018). Bayesian classification methods exploit the seismic likelihood function, coupled with a set of a priori information (derived from well log data), to calculate a posterior probability, which quantify the likelihood of each sample belonging to a specific lithological class (Grana, 2016; Aleardi and Ciabarri, 2017). Furthermore, within the Bayesian framework, a 1D Markov chain a priori model, in the form of a transition probability matrix, is often incorporated as additional priori information to ensure the vertical continuity of the lithofacies (Larsen et al., 2006; Wang et al., 2019).
We first employ a multi-attribute high-resolution waveform indication inversion technique to obtain the 3D of GR and P-wave impedance, thereby achieving a detailed characterization of deep coal seams. Then, to interpret different lithofacies from elastic parameters of seismic inversion, the statistical rock-physics technique in Mukerji et al. (2001) and Avseth et al. (2005) is subsequently applied to GR and P-wave impedance volumes. This enables the realization of refined coal seam description and prediction of the lithology of the coal seam roof and floor. This proposed workflow is demonstrated by application to synthetic data and real seismic data from the Ordos Basin in China. The results show that the method can identify coal seams as thin as 3 m, thereby enhancing the accuracy of prediction.
2 GEOLOGIC INFORMATION
The study area (H area) is located in the east margin of Ordos Basin, as depicted in Figure 1. It is tectonically positioned within the northeastern extremity of the Yishan Slope and the western region of the Shanxi Fold Belt, characterized by a topography that inclines from the northeast to the southwest. Within the region, the Upper Paleozoic Carboniferous-Permian strata are developed, which from the base to the top, sequentially manifest a transition from marine-terrestrial intercalated strata to terrestrial deltaic deposits. Furthermore, the Benxi Formation, influenced by the sedimentary environment of the study area, exhibits a facies transition from delta front to lagoon-tidal, leading to horizontally discontinuous sand body development and vertically complex lithological assemblages. The principal hydrocarbon source rocks are the No.8+9 and No.4+5 coal seams. Analysis of drilled wells within the study area reveals that the No.8+9 coal seam of the Benxi Formation possesses a thickness that varies between 3 and 20 m, averaging 11.5 m, and is buried at depth about 1,500 m. It is classified within the deep CBM category. The metamorphic grade of the No. 8+9 coal seam increases progressively with greater burial depth, with a vitrinite reflectance value ranging from 0.8% to 0.9%, classifying it as a medium rank CBM (Qin et al., 2021; Zhu et al., 2022).
[image: Geological map and stratigraphy chart. The left panel shows a simplified geological map with regions labeled such as Yimeng Uplift and Weibei Uplift. The right panel displays a stratigraphy chart detailing strata, thicknesses, and lithology with symbols for mudstone, shale, and others.]FIGURE 1 | (A) Structural location map, (B) comprehensive stratigraphic column of research area.
Within the study area, a total of 20 wells have been drilled. This research classifies the lithologies within the study area into three categories including sandstone, shale and coal seams based on the analysis of porosity, mineral content and water saturation well log curves. Figure 2 presents the spatial distribution of the aforementioned 20 wells, alongside the elastic parameter curves and the true vertical lithofacies profile derived from the actual well log measurements for Well 8. The lithofacies profile utilizes yellow color for sandstone, black for coal seams, and gray for shale. The majority of the wells are situated in the southern sector of the operational area. Logging interpretations indicate that the thinnest coal seam observed within 20 wells is a mere 3 m in thickness. Concurrently, the dominant frequency of the existing seismic dataset is around 35 Hz, a value substantially lower than the minimum resolution necessary for seismic discrimination of such thin layers. This discrepancy presents a significant challenge to the precise characterization of deep CBM reservoirs.
[image: Geological analysis featuring two panels. Panel A shows a scatter plot with labeled data points and a red boundary line. Panel B displays a stratigraphic column divided into several sections with varying colors, alongside three line graphs representing different geological measurements labeled PHI, VpVs, and GR. Each panel provides detailed data for geological interpretation.]FIGURE 2 | (A) Well location map, (B) the well log curves and lithofacies of Well 8.
3 METHODOLOGY
Figure 3 delineates the workflow for lithofacies prediction within coal-bearing strata. It encompasses four main stages: 1) Log curve upscaling. Utilizing the Backus averaging theory (Gelinsky and Shapiro, 1997), log curves are up-scaled to match the well-seismic scale precisely, ensuring precise scale match between well data and seismic information. 2) Seismic attribute pair selection. Initially, kernel density estimation (KDE) is applied to derive the probability density functions (PDFs) for various seismic attribute pairs. These PDFs act as likelihood functions within the Bayesian classification framework. Also, the corresponding Bayesian confusion matrix for each pair is calculated to assess the classification efficacy of each attribute pair. The objective of this stage is to identify the seismic attribute pair that exhibits the greatest sensitivity to sandstone and shale. 3) High-resolution seismic inversion. Utilizing the selected pair of attributes in step 2), seismic waveform indication inversion is executed, integrating well log data alongside seismic data. This process yields high-resolution results of P-wave impedance and GR. 4) Seismic attributes interpretation. Constructing upon the foundation laid in step 2), PDFs derived from well logs are applied to conduct Bayesian classification of seismic attributes volumes. This stage interprets seismic data into discernible lithological categories in accordance with the relationships previously defined.
[image: Flowchart illustrating the process of seismic facies classification. It starts with well data, which is up-scaled and processed through a conditional probability density function using Bayes theory. This leads to one-dimensional lithofacies via Markov Chain Constraint. Simultaneously, seismic data undergoes well-seismic calibration, waveform indication, and inversion, resulting in GR and Imp data. Both streams converge to produce a three-dimensional seismic facies classification result.]FIGURE 3 | Flow chart of the deep coal lithofacies prediction technology based on high-resolution seismic inversion.
This comprehensive workflow integrates both statistical analysis and geophysical inversion techniques to enhance the precision of lithofacies prediction in complex coal-bearing strata.
3.1 Well log curve upscaling
Well logs provide precise reservoir and rock physics information at the wellbore points, typically sampled at an interval of 0.125 m. Conversely, 3D seismic data offer a comprehensive reflection of subsurface geological information but are sampled at a coarser scale, conventionally around 1 ms (Cao, 2015). This disparity in vertical resolution, which can be an order of magnitude higher, impedes the direct application of well log data for seismic interpretation. The Backus equivalent averaging method is extensively employed for upscaling purpose. It accounts for the anisotropy induced in stratified media under conditions of long-wavelength, thereby enhancing the accuracy of well-seismic data correlation while maintaining the equivalence of parameters (Lindsay and Van Kouqhnet, 2001; Bayuk et al., 2008). The Backus averaging formula, adapted for isotropic media, can be reformulated to compute the vertical and horizontal wave velocities and density as follows:
[image: Mathematical equations defining \( V_p \) and \( V_s \). \( V_p = \sqrt{\frac{\langle \lambda + 2\mu \rangle^{-1}}{\langle \rho \rangle}} \) and \( V_s = \sqrt{\langle \mu^{-1} \rangle^{-1} \langle \rho \rangle} \), where \( \rho^* \leq \langle \rho \rangle \). Equation labeled as (1).]
where [image: It appears that there is an error because no image was uploaded. Please try again by uploading the image or providing a URL. If you have a caption or additional context, feel free to include it.] represents the Lamé constants corresponding to the sampling points in the well log, and [image: It seems like there was an error in providing the image. Please ensure the image is uploaded or provide a direct URL to it.] represents the shear module, and ρ represents density; [image: Text displaying the mathematical notation for primary and secondary velocities with asterisks, denoting them as \(V_{p}^{*}\) and \(V_{s}^{*}\).] and ρ* denote the equivalent P-wave velocity, S-wave velocity, and equivalent density obtained after upscaling, respectively. The notation [image: Please upload the image or provide a URL so I can help generate the alt text for it.] implies a weighted average over the time window considered. Additionally, in this study, the natural gamma attribute is also scaled up. Lacking a specific calculation formula for this attribute, it is upscaled analogously using the same approach as for density.
Figure 4 illustrates the results of applying the Backus averaging scale-up process to the well log data for the work area, as depicted by the red line. An empirical value of 1/8 of the wavelet wavelength was chosen as the scale-up window for this process.
[image: A multi-panel image consisting of five columns labeled A to E. Column A shows lithological layers with alternating grey and yellow bands. Column B displays PIMP values in kilometers per second per gram per cubic centimeter. Column C presents Well-8 Vp/Vs ratios in red. Column D contains gamma ray (GR) values in American Petroleum Institute (API) units. Column E features a seismic section with black and white patterns. Depth ranges from 1070 to 1180 milliseconds two-way travel time (TWT).]FIGURE 4 | (A) Lithofacies distribution extracted from up-scaled well logs: shale (gray), sand (yellow), and coal (black). Up-scaled well logs of (B) P-wave impedance, (C) ratio of Vp to Vs., and (D) nature gamma ray (GR). (E) Stacked seismic traces at the well location corresponding to CDP 550.
3.2 Bayesian lithofacies classification technique
Indeed, as the burial depth increases, the elastic properties of sandstone and shale become increasingly similar (Avseth et al., 2003), which complicates the classification of lithofacies based on seismic attributes. Figure 5 presents the cross-plots of various attribute pairs for 20 wells within the study area, where black represents coal seams, yellow denotes sandstone, and gray corresponds to shale. Evidently, within these cross-plots, coal seams exhibit a distinctively low impedance characteristic, allowing clear differentiation from other lithologies. However, there is an overlap between sandstone and shale across multiple attribute pairs, which precludes a definitive distinction between each other.
[image: Scatter plots labeled A and B. Plot A shows GRAMS on the y-axis against log(Fe/H)+9 on the x-axis. Plot B shows V(V−I) on the y-axis against the same x-axis. Data points are colored black, gray, and yellow, indicating different categories.]FIGURE 5 | The crossplot for lithofacies of sand (yellow), coal (black) and shale (grey) corresponding to different attribute pairs. (A) GR-Impedance, (B) Vp/Vs-Impedance.
To address the aforementioned issues, this paper utilizes Bayesian classification algorithms to conduct lithofacies classification based on various combinations of well log attributes, and introduces the classification confusion matrix (CM) to quantify the classification capability (Avseth et al., 2005; González, 2006), thereby selecting the attribute pairs with optimal discriminative power to enhance the resolution of sandstone and shale above and below coal seams. Furthermore, to enhance the accuracy and spatial continuity of the identifications, this paper also establishes a Markov chain prior model to incorporate the interrelationships between neighboring points as spatial constraints (Larsen et al., 2006).
The Bayesian classification algorithm bases its categorization on the probability densities of classes, achieving statistically optimal classification results. Assuming there are n lithofacies to be differentiated, represented by [image: Lowercase letter "c" followed by subscript "11".], and the attributes corresponding to lithofacies [image: Mathematical notation showing the binomial coefficient symbol, with "C" representing combination and subscripts "n" and "11", indicating the number of ways to choose 11 items from a set of n items.] are denoted by X, with the conditions between attributes being mutually independent. Then for an unknown sample with attribute parameters X, the probability that it belongs to lithofacies [image: It seems like there is an issue with displaying the image. Please upload the image file directly or provide a link to the image, and I will be happy to help with the alt text.] expressed by the posterior probability, as shown in Equation 2. Among the calculated n posterior probabilities, if the maximum belongs to [image: To provide alt text, please upload the image or provide a URL where I can view it.], then the sample [image: Please upload the image you would like me to describe. If there is additional context or a specific aspect you would like me to focus on, feel free to include that as well.] is classified as belonging to [image: It seems like there was an issue with the image upload, as I cannot see an image here. Please try uploading the image again, and I will help create the alt text for it.]
[image: Equation showing a proportional relationship between the probability of C given X and the product of the probability of X given C and the probability of C, denoted mathematically as P(C|X) ∝ P(X|C)P(C).]
where [image: Mathematical expression showing the probability of class \( C_i \).] is the prior probability of class [image: It seems that there is no image attached. Please upload the image or provide a URL, and I will help you create alt text for it.] occurring, which is typically computed from well log data, [image: The formula represents the conditional probability of event X given condition C sub i.] represents the likelihood function, expressible by the probability density function [image: Mathematical expression displaying \( f_i(x) \).], and [image: Probability equation displayed: P(X given C sub i) equals two a f sub i of X.] indicates the probability that the attribute parameter is [image: Please upload the image or provide a URL so I can create the alternate text for you.] given the lithofacies [image: It seems there is a mistake in your request. Please provide the image you want described. If you have the image on your device, you can upload it here.], with a denoting an infinitesimally small interval surrounding. The probability density function can be estimated using corrected well log data corresponding to different lithofacies via KDE, thereby calculating the bivariate probability density functions for various combinations of attributes. Its mathematical formulation is given as follows.
[image: Mathematical formula for kernel density estimation: \( f(x) = \frac{1}{mh} \sum_i K\left(\frac{x - X_i}{h}\right) \), labeled as equation three.]
where m represents the total number of known samples, h represents the bandwidth (or smoothing parameter), x signifies a random sample point, [image: Please upload the image or provide a URL so I can help create the alt text for it.] represents the ith known sample, and [image: Mathematical notation featuring the letter K followed by a pair of parentheses, suggesting a function or operation denoted as K applied to an unspecified argument.] represents the kernel function.
In geology, it is commonly assumed that stratigraphic sequences exhibit Markov properties (Eidsvik et al., 2004). Incorporating these Markov properties into a prior model enhances the posterior probabilities to better align with the characteristics of the depositional process, thereby improving the accuracy of lithology identification. The fundamental assumption of a first-order Markov chain is that the probability distribution of lithofacies at given time t depends solely on the lithofacies category at the immediately preceding time t − 1, and is independent of all other previous states. Thus, the evolution of a Markov chain through time can be viewed as transitions between different states, which are represented by a transition probability matrix [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if available. You can also add a caption for additional context.]. Elements [image: Mathematical notation showing the variable \(P_{ij}\) with subscripts \(i\) and \(j\).] of this matrix denote the conditional probability of transitioning from state i to state j, with the sum of elements in any row equaling unity. Transition probabilities describe the probabilistic and statistical attributes of the Markov process, which are time-independent. Therefore, a related downward transition probability matrix P can be defined as prior information for Bayes theory. The probability of moving from time t to t + 1 is then computed as follows:
[image: The image shows a mathematical expression for probability. It states \( P(C_{n+1}) = P(C_n) = P(C_1) \prod_{i=1}^{n} P(C_{i+1} | C_i) \), followed by equation number (4).]
where [image: The formula represents conditional probability: \( P(C_1) = P(C_1 | C_0) \), where \( C_1 \) is the event whose probability is being calculated given the condition \( C_0 \).]. Hence, given the initial state probabilities and the transition probability matrix P, the behavior of this Markov chain can be determined.
Figure 6 presents PDFs for different lithofacies, which have been derived from upscaled well data using various attribute pairs. In accordance with the observations from the attribute cross-plots, PDFs for sandstone and shale exhibit overlapping regions. Furthermore, a comparison of the probability density function graphs reveals a greater overlap for sandstone and shale when using the Vp/Vs-Impedance attribute pair rather than the GR-Impedance attribute pair, suggesting that the GR-Impedance attribute pair offer enhanced discriminatory potential between sandstone and shale. Subsequently, we shall demonstrate lithofacies classification utilizing well data to substantiate this assertion. Utilizing Well-8 as an illustrative case, the classification of lithofacies is executed employing PDFs derived from Equation 4. The classification is subsequently conducted applying the Bayesian rule outlined in Equation 3, succeeded by the calculation of a confusion matrix to evaluate the efficacy of the classification. The diagonal elements of the confusion matrix represent the probabilities of correct classifications, for instance, signifies the probability that a sample truly belonging to class 1 is classified as class 1.
[image: Matrix \( C_M \) depicted, containing elements \( P_{11}, P_{12}, \ldots, P_{1n} \) in the first row, \( P_{21}, P_{22}, \ldots, P_{2n} \) in the second, and continuing in a similar pattern down to \( P_{m1}, P_{m2}, \ldots, P_{mn} \) in the \( m \)-th row. The matrix is labeled as equation (5).]
[image: Contour plots labeled A and B show velocity distributions. Plot A displays velocity in meters per year on the x-axis and strain rate on the y-axis, with shaded regions in gray and yellow. Plot B has similar variables with contour patterns. Color bar indicates regions of fast and slow velocities.]FIGURE 6 | Probability density functions of lithofacies corresponding to different pairs of attributes (A) GR–Impedance, (B) Vp/Vs–Impedance.
Figure 7 delineates the classification outcomes utilizing distinct attribute pairs. Specifically, Figure 7A displays the log curves of the target layer and the interpreted lithology from Well-8, Figure 7B illustrates the lithology classification outcome employing the GR-Impedance attribute pair, and Figure 7C represents the classification result utilizing the Vp/Vs-Impedance attribute pair. It is evident that the Vp/Vs-Impedance pair’s lack of sensitivity to sandstone and shale lithofacies results in numerous misclassifications, notably within the interval ranging from 1750 m to 1800 m. Figure 8 presents the confusion matrix results for the aforementioned attribute pairs, with yellow denoting high discriminatory power and blue signifying low discriminatory power. Clearly, the GR-Impedance attribute pair exhibits superior discrimination across all three lithofacies. The GR-Impedance attribute combination displays the most robust capability for lithology classification. This analysis leads to the conclusion that the GR-Impedance attribute pair accurately classifies each lithofacies type with a probability that surpasses 80%, indicative of its high lithology classification capacity. Consequently, this attribute pair is chosen for the computation of conditional probability density functions and is designated as the definitive inversion parameters for subsequent inversion procedures.
[image: Graphs display lithofacies data alongside porosity (Vp), density (Den), and gamma-ray (Gr) across depth. Lithofacies columns use colors—yellow, gray, black—for different periods, showing similarities across columns A, B, and C.]FIGURE 7 | (A) Real lithofacies distribution and well curves extracted from Well-8, (B) Bayesian classification based on GR-Impedance elastic attributes, and (C) Bayesian classification based on Vp/Vs-Impedance elastic attributes.
[image: Two heatmaps labeled A and B display data grids with varying colors. Both have rows labeled Sand, Coal, and Shale, and columns with the same labels. The color scales range from blue to yellow, indicating different values, with A showing a range of zero to point seven and B from zero to one.]FIGURE 8 | (A) The confusion matrix of GR-Impedance, (B) the confusion matrix of Vp/Vs-Impedance.
3.3 Seismic waveform indication inversion
According to statistical data from 20 wells drilled in the area, the No. 8 + 9 coal seam thickness ranges from 3 to 20 m and exhibits a vertical pattern characterized by an intercalation of continuous and bifurcated deposition. At low seismic resolution, the strong seismic reflection signature from coal seams has a tendency to obscure weaker reflections. The acquired seismic data, with a dominant frequency of approximately 35 Hz, renders conventional inversion incapable of accurately predicting thin coal seams and the lithology of their roof and floor, thereby hampering the effective identification of sweet spots for deep coalbed methane reservoirs.
The aforementioned study has identified P-wave impedance and GR attributes as the optimal pair for lithofacies discrimination. To achieve the high-resolution seismic attributes, a waveform indication inversion method is introduced to the study. Researches have revealed that well log curves and their corresponding seismic traces exhibit certain degree of similarities within defined frequency bands (Wang et al., 2022). Leveraging this characteristic, seismic waveform indication inversion establishes a mapping relationship between the high-frequency information of well logs and seismic waveform, thereby enhancing the lateral and vertical resolution of the inversion results.
The principle of waveform indication inversion is herein simplified as follows. Implement dynamic clustering analysis of seismic waveforms through singular value decomposition, to obtain the correspondence between different reservoir types of seismic waveforms and the characteristics of well logging curves, establish an initial sample set, and carry out waveform indication inversion under the Bayesian framework for different reservoir types. Assuming that the noise adheres to a Gaussian distribution, the posterior probability distribution of the model parameters within the Bayesian framework is articulated as:
[image: Probability equation for data \( P(d \mid m, I) \) shown with components: a division involving standard deviation \(\sigma\) and a summation of differences \(\Delta d_i\) and model \(G \Delta m\), squared, over \(2 \sigma^2\), multiplied by a fraction with \( \Delta m^T \Delta m \) over \(2 \sigma_{\Delta m}\), using an exponential function.]
where the vector [image: It looks like there might have been an issue uploading the image. Please try uploading it again, and I will be happy to help with the alt text.] represents the input seismic data, [image: The lowercase letter "m" in a pixelated font with a resolution of 8 by 14 pixels, appearing in grayscale.] represent the elastic parameter model, [image: A person dressed in a peculiar dark coat with shiny, patterned fabric stands in an outdoor area, surrounded by green grass and a wooden fence. The outfit includes distinctive gold accents and elaborate designs, suggesting a costume or themed event. The background features a slight blur, emphasizing the person in the foreground.] represents prior information, N represents the size of the data, [image: Delta m subscript i.] represents the perturbation term of the model, [image: Greek letter delta followed by lowercase letter d and subscript i, commonly used to denote a change or difference in a specific dimension in mathematical or scientific contexts.] represents the perturbation of seismic data, and [image: Sorry, I cannot view or interpret the image directly. Could you please describe the image or provide more details so I can help create appropriate alt text for you?] represents the variance of the perturbation of the model parameters.
The solution where the probability is maximized in Equation 6 is the final solution of the inversion, that is, the maximum a posteriori probability solution. By taking the logarithm of both sides of Equation 6 and omitting parameters that are irrelevant to the solution, the objective function is obtained.
[image: Equation showing a mathematical expression with symbols and variables: O(m|d,I) equals negative one over two sigma squared, times the sum from n equals one to N, of (delta d_n minus G times delta m_n) squared, minus delta m transposed delta m over two sigma_delta m. The equation is marked as equation number seven.]
To maximize the posterior probability, we differentiate the above equation with respect to the model parameters and obtain:
[image: Mathematical equation: \( O'(\Delta m) = \frac{1}{\sigma^2}[G^T G \Delta m - G^T \Delta d] - \frac{\Delta m}{\sigma_{\Delta m}} \), labeled as equation (8).]
Taking the derivative of the above equation with respect to the model parameter, and setting it to zero, yields the point of maximum posterior probability. At this point, the perturbation can be determined as follows:
[image: Equation showing the formula for \(\Delta m\), expressed as \((G^T G + \frac{\sigma^2}{\sigma_{am}})^{-1} G^T \Delta d\). It is labeled as equation (9).]
Substituted into the objective function, the maximum probability is the answer of the inversion problem. The final inversion result approximates the sample data by the perturbation of the iteration model.
The specific process of seismic waveform indication inversion can be divided into three steps: 1) Each seismic trace is individually compared with the borehole nearby traces, and the top N wells with the highest similarity are selected, where N represents the number of effective samples. Log curves from these top N wells are taken and, using singular value decomposition, waveform clustering techniques are applied to establish a mapping relationship between seismic traces and log curve samples, forming a sample set. 2) Employing wavelet transform technology, the log curves in the sample set are decomposed into information across different frequency ranges. Common structural features in the low-to-middle frequency components are extracted and used to construct the initial model. 3) Based on seismic data, relative impedances are derived, and in conjunction with well log data, absolute impedances are calculated to establish a likelihood function. Grounded in Bayesian theory, Markov Chain Monte Carlo (MCMC) stochastic simulation is employed to introduce random perturbations to the initial model, ensuring the inversion results conform to both middle-frequency seismic information and well log structural characteristics. Here, the MCMC method is employed to calculate the expected value of complex posterior distributions. The concrete implementation of MCMC algorithm using in Seismic waveform indicated inversion is Metropolis Hastings Sampling. The idea of MH is to construct a Markov chain that tends to converge to a stationary distribution, which then converges to the posterior probability. Utilizing this framework to derive sampling samples facilitates the computation of the target expected value, bypassing the need to directly engage with the posterior probability. If conformity is not met, the perturbation process is iteratively repeated until inversion results that meet the criteria are obtained.
3.4 Field data results
We conduct an application of proposed lithofacies identification workflow on 3D seismic data from Ordos Basin as an example to test the prediction effect of the proposed method. Figure 9 presents a seismic profile near wellbore. The predominant frequency of the 3D seismic data for the target stratum is 35 Hz, with an average P-wave velocity of the formation at 4,200 m/s. Based on the Rayleigh criterion (Kallweit and wood, 1982), the maximum reservoir thickness identifiable by seismic data is approximately 30 m, which is clearly insufficient for the identification of thin interbedded sand bodies in the roof and floor strata.
[image: Seismic reflection data visualization showing a series of undulating wave patterns on a graph. The horizontal axis represents the common depth point (CDP) numbers, while the vertical axis represents time in milliseconds. Darker bands indicate seismic reflections, with variations suggesting subsurface geological formations.]FIGURE 9 | Seismic section near well bore of study area.
The selected inversion parameters are enumerated as follows: smoothing radius = 1, number of effective samples = 5, optimal cut-off frequency = 300 Hz, and target sampling rate = 0.2 ms. The smoothing radius parameter exerts an influence on the lateral resolution of the inversion results, whereas the optimal cut-off frequency impacts the vertical resolution. Figure 10A displays the P-wave impedance inversion result section, wherein blue indicates low P-wave impedance values, associated with coal seams, and red denotes high P-wave impedance values, indicative of sandstone and shale. It illustrates the efficacy of the inverted P-wave impedance in the delineation of coal seams. Furthermore, this study implemented waveform indication inversion on a GR data volume, as depicted in Figure 10B, where blue signifies low GR values, corresponding to coal seams and sandstones, and red indicates high GR values, characteristic of shale. This figure elucidates the discriminatory capability of GR between sandstones and shale. Additionally, Figure 10C portrays the traditional post-stack impedance inversion, from which it is evident that it possesses a lower resolution compared to the aforementioned results.
[image: Three seismic stratigraphic sections labeled A, B, and C display color-coded geophysical data with vertical black reference lines. Depth is indicated on the vertical axis while horizontal scales are labeled as CDP. Sections show layered formations in shades of blue, green, yellow, and red corresponding to different deposition layers. A color legend on the right presents a range from red through yellow to blue, indicating varying geological attributes.]FIGURE 10 | (A) High resolution seismic waveform indication inversion of P-impedance, (B) high resolution seismic waveform indication inversion of GR, (C) conventional post-stack inversion of P-impedance.
Utilizing the high-resolution P-wave impedance and GR data volumes from the prior inversions, this study employed the Bayesian classification theory for lithofacies classification. And the Markov chain prior information of Bayes frame is derived by using Equation 4. To accurately describe the thickness distribution of the target layer, a time-depth conversion was also performed on the time domain results, utilizing a velocity model derived from the seismic data processing workflow. The software implementation details of the time-depth conversion are not discussed here. The 3D lithofacies data volume provides a directly depiction of coal seam thicknesses and the lithologies of the roof and floor strata.
Figure 12A shows the lithofacies prediction results based on the Vp/Vs-Impedance attribute pairs, where the Vp/Vs attribute is obtained by model-based pre-stack inversion, while the impedance attribute is obtained by traditional post-stack inversion. The lithofacies profile using proposed workflow is illustrated in Figure 12B. Compared with Figure 12A, the results in Figure 12B exhibit a more significant concordance with the interpretations derived from well logs. And moreover, the figure illustrates that the new method is capable of identifying thin coal seams as little as 3.3 m thick. To quantitatively evaluated the goodness of the results, the diagonal element confusion matrix is introduced here. It is calculated using the classification results at well location and true vertical lithofacies profile derived from the actual well log measurements for Well 8. The prediction accuracy of sand, coal, shale for proposed workflow is [0.90 0.86 0.85]. The prediction accuracy of sand, coal, shale for traditional inversion is [0.80 0.85 0.75]. The results show the proposed workflow exhibits a higher accuracy rate.
[image: Seismic sections showing subsurface geological features from two wells, labeled A and B. Yellow represents sand, gray indicates shale, and black denotes coal. Both sections reveal stratified layers, with sand and shale alternating, and coal appearing as distinct bands. Depth is measured vertically in milliseconds, with a horizontal Common Depth Point (CDP) axis. Legend details rock types.]FIGURE 12 | Classification results of lithofacies at well location. (A) Classification results based on traditional inversion (B) classification results based on proposed method.
By statistically analyzing the depth-domain inversion results at well locations for the No. 8+9 coal seam thickness, it was found that the predicted thicknesses from 20 wells correlate with the actual thicknesses with a coefficient of 0.89, as shown in Figure 13. This substantiates the precision of the lithofacies classification results.
[image: Scatter plot showing predicted versus actual thickness of 8+9# coal. Orange dots represent data points, with a linear trend line indicating a positive correlation between predicted and actual values on the axes.]FIGURE 13 | Crossplot between predicted thickness of 8+9# coal and real thickness of 8+9# coal.
To further emphasize the superiority of the aforementioned method in terms of vertical resolution, Figure 11 presents the inversion outcomes alongside actual well log curves, where black solid lines denote logging data and red solid lines denote inversion results. The correlation coefficient between the P-wave impedance inversion and well logs attain a value of 0.91, whereas the coefficient for the GR simulation is 0.88. These inversion results indicate that the technique enhances inversion resolution and improves the accuracy of coal seam characterization.
[image: Geological well log with three columns: depth in meters, lithology chart in black and yellow, and two graphs. The first graph shows compressional wave impedance, and the second shows gamma-ray activity, both with black lines and red trend lines, spanning depths 1620 to 1860 meters.]FIGURE 11 | Comparison between the inversion results (red) and real well data (black) of P-impedance and GR for Well-8.
Figure 14 shows extracted layer slice attributes from the lithofacies data volume. Figure 14A presents a plan view map of the No. 8+9 coal seam thickness distribution across the study area, revealing extensive development of thick coal seams in the southern-central part, indicative of pre-coal peat swamp and post-coal formation interdistributary bay development zones. Figure 14B depicts the distribution of sandstone thickness within the upper 10 m of the coal seam roof across the study area, showing the development of underwater distributary channels in the western part, where thicker sandstones have been deposited. Figure 14C illustrates the distribution of sandstone thickness within the lower 10 m of the coal seam floor across the study region, with two underwater distributary channels distributing sandstones on the east and west sides. These findings align with sedimentological understandings. The above analysis indicates that the proposed lithofacies prediction method has been well applied in Ordos Basin, and the obtained 3D lithofacies cube is of guiding significance to the exploration and development of deep CBM.
[image: Three colorful heat maps labeled A, B, and C show vertical electrical sounding (VES) results from different locations. Colors range from red to blue, indicating varying resistivity levels. VES points like VES-1, VES-2, etc., are marked. Color scales on each map indicate resistivity values in ohm-meters.]FIGURE 14 | Distribution characteristics of (A) the coalbed thickness of No.8 and No.9 coal seam, (B) the thickness of roof sand of No.8 and No.9 coal seam and (C) the thickness of floor sand of No.8 and No.9 coal seam.
4 DISCUSSION
The representation of deep CBM reservoir lithofacies as a 3D model has advantages in recognizing productive zones of CBM reservoirs, designing horizontal wells and hydraulic fracturing. It is used to build and analyze the distribution of deep coal and roof/floor lithofacies in a 3D space, which is important to better understand the local and regional scale distribution of CBM productive zones. Though we have provided a new solution for the identification of roof and floor lithofacies of deep CBM reservoir, this workflow can be improved for better application.
The method mainly includes waveform indication inversion and Bayesian lithofacies classification. With respect to waveform indication inversion, the selected attributes to be inverted is not limited in using P-wave Impedance and GR. For the discrimination of shale and sand, research indicates that the GR can discriminate these two lithofacies effectively, and the characteristic has been applicated in Suez Rift Basin and Appalachian Basin (Grana et al., 2015). However, the selected optimized attributes may be different when it comes to different reservoirs, such as carbonate or dolomite reservoir. We suggest the discrimination ability of different attributes should be cautiously evaluated using the confused matrix or other way to allow more reliable lithofacies identification. Furthermore, Bayesian lithofacies classification has been widely used in worldwide, for instance in North Sea sandstone reservoir, shale reservoir in China (Larsen, et al., 2006; Wang, et al., 2019). The main limitation of the case study is that the prior information about the spatial correlation in horizontal for the lithofacies model has not been taken into account. Numerically, the prior model on the lithofacies classes can be characterized by a Markov random field instead a Mrkov chain that captures the locally vertical and horizontal continuities (Larsen et al., 2006; Ulvmoen and More, 2010). This should be considered in future work.
5 CONCLUSION
A new seismic interpretation workflow based on high resolution seismic waveform indication inversion and Bayesian classification is proposed to enable the lithofacies identification of the deep coal-bearing strata. P-wave impedance and GR are selected as the optimized pair of attributes to classify three lithofacies including shale, tight sand and coal. The seismic waveform indication inversion method is used for reducing the effect of coal shielding on adjacent reflecting layers to obtain high-resolution results of P-wave impedance and GR. A Markov chain is applied to maintain the spatial continuity of the lithofacies classification. This study, taking the Block H in Ordos Bain, China as an example, has established a comprehensive workflow for predicting 3D lithofacies volumes. This methodology has demonstrated the capability to discern coal seams with a minimal thickness of 3.3 m. Furthermore, the coal seam thicknesses predicted from the lithofacies data volume exhibited a significant correlation coefficient of 0.89 with the real measured thicknesses, thus achieving a quantitative characterization of the coal seams and the lithology of the roof and floor strata. Despite the existence of thinner reservoir layers that may lie beneath the resolution threshold of seismic data, along with the pronounced lateral variability in rock properties and fluid phases, the research outcomes remain satisfactory. However, to substantiate these findings, the drilling of additional wells represents a viable option for further validation. The 3D lithofacies model obtained from the workflow provides a good basic data for development of deep CBM, and has great potential to be applicated in other region or depth. Nevertheless, in regard to considering horizontal continuities, there is still room for this proposed lithofacies identification method for deep CBM reservoir.
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The width-displacement (W-D) relationship of fault zones is significant for deepening the understanding of subsurface faulting mechanisms, yet quantitative research using seismic reflection data, especially for boundary identification, remains challenging. This study focuses on the quantitative characterization of the W-D relationship in fault zones using 3D seismic data from the C36 Prospect in the Junggar Basin, China. The hybrid attributes derived from several conditioning approaches, multiple-attribute calculation, and a supervised artificial neural network (ANN) have effectively enhanced images of the fault zones. Quantitative analysis using the computed hybrid attributes reveals that the center and the bend positions of the single fault zone respectively control the largest width and displacement values. Different fault sets containing different fault linkage types with different geometry, standing for different evolution stages, provide various contributions to the W-D relationship, leading to the different scatter data distribution. This research clarifies the relationship between the evolution of fault zones and the scatter data, offering new insights into the mechanisms controlling hydrocarbon accumulation and providing valuable guidance for future exploration.
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HIGHLIGHTS

	• Improved images of subsurface fault zones using seismic data conditioning, attribute calculation, and artificial neural computation are presented.
	• The width and displacement values of subsurface fault zones are measured and analyzed mainly according to the computed hybrid attribute.
	• The fault zone sets, including different linkage types, stand for different stages of fault zone growth periodically, and exert divergent controls on hydrocarbon accumulation.

1 INTRODUCTION
In recent years, many publications have stated that fault zones play a crucial role in subsurface fluid flow, such as geothermal, groundwater and hydrocarbon, and CO2 (Billi et al., 2003; Schueller et al., 2013; Dimmen et al., 2017; Peacock et al., 2017; Torabi et al., 2019; Wu et al., 2019). The displacement and width (W-D) scaling relation of fault zones is an essential parameter for predicting subsurface faulting mechanisms (Ma et al., 2019). However, The scaling relationship is very complicated and easily influenced by the accuracy of the methods (Ma et al., 2019) utilized to investigate faults, the heterogeneities (Scholz et al., 1993; Childs et al., 1996; Alaei and Torabi, 2017; Celestino et al., 2020) within the fault rocks in 3D, and other vital parameters such as the nature of the protolith, depth of faulting, tectonic environment (e.g., normal, strike-slip or reverse faulting), layer thickness, various stress fields, diagenesis and their interactions (Evans, 1990; Faulkner et al., 2011; Torabi and Berg, 2011). Although segment linkage plays a crucial role in fault evolution (Dawers, 1995; Imber et al., 2004; de Joussineau and Aydin, 2007; Torabi and Berg, 2011; Choi et al., 2016; Mayolle et al., 2019; Wu et al., 2020), different fault sets, including different fault linkage types, play an essential factor for the scaling relationship that is seldom discussed.
The methods of previous studies focused on the outcrop observed (Mitchell and Faulkner, 2009; Putz-Perrier and Sanderson, 2010; Savage and Brodsky, 2011), logging identification (Liu et al., 2017), the core observation (Zeng et al., 2012; Guerriero et al., 2013; Liu et al., 2017), numerical simulation (González et al., 2008; Guerriero et al., 2013), physical simulation (Liao et al., 2017), and other additional means, such as using scanline fracture analysis data techniques and topographic and aeromagnetometric data (Celestino et al., 2020). However, the research on fault zones using 3D seismic data is challenging (Iacopini et al., 2016; Alaei and Torabi, 2017; Liao et al., 2019; Liao et al., 2020; Ma et al., 2019; Wu et al., 2019) while the method using multiple-attribute analysis techniques effectively identify and analyze fault zones is also relatively lacked. Although more and more seismic attributes (Bahorich and Farmer, 1995; Chopra and Marfurt, 2007a; Chopra, 2009; Hale, 2013; Wu and Hale, 2016; Wu, 2017) sensitive to the fault zone response are adopted to image fault zones, fault zone features are almost not accurately characterized using the single seismic attribute derived from seismic data. Seismic attributes (Iacopini et al., 2016; Alaei and Torabi, 2017; Liao et al., 2019; Liao et al., 2020; Ma et al., 2019; Wu et al., 2019; Zhao et al., 2021) recently have been adopted to study the fault zone. However, seismic recognition of the boundary of the fault zone (Alaei and Torabi, 2017; Liao et al., 2019; Ma et al., 2019) is still relatively subjective to the interpreters, leading to a scatter in the reported data attributed to the ambiguity in the definition of fault zones and bringing out additional difficulties in studying the scaling of fault zones objectively. Therefore, the enhancing interpretation of fault zones using advanced workflows will likely help researchers quantitatively study the fault zone via 3D seismic data.
Research progress has been made in post-stack seismic processing technology, especially post-stack data conditioning and seismic multi-attribute amalgamation methods. On the one hand, some conditioning methods based on the dip-steered cube can effectively improve the fault imaging of conventional geometric attributes (Santosh et al., 2013; Odoh et al., 2014). On the other hand, seismic multi-attribute amalgamation methods can further weaken the deficiencies of single-attribute characterization ability and effectively enhance its ability to characterize complex structural features. It is worth mentioning that artificial neural networks (ANNs), as a part of machine learning methods, have gradually gained wide acceptance for the application of seismic multi-attribute amalgamation over the years in the field of seismic fault image (Tingdahl and de Rooij, 2005; Basir et al., 2013; Mirkamali et al., 2013; Zheng et al., 2014; Kumar and Mandal, 2017; Srivastava et al., 2017; Kumar and Sain, 2018; Mandal and Srivastava, 2018; Kumar et al., 2019). It provides enhanced images of fault zones, reducing the interpretation ambiguity to some extent and new clues for our application of seismic multi-attribute amalgamation. Now, the C36 survey within the Baijiahai subuplift from the Central Depression of Junggar Basin is composed of four-fault sets with four different linkage types in the base surface of the toutunhe member of Jurassic formation (J2t) in the map view, and the 3D seismic data are available for trying. Therefore, we believe that delineating fault zone features and analyzing the W-D relationship based on the hybrid attribute from 3D seismic data likely provide new possibilities to investigate fault zones and compare the findings derived from other data sources (like outcrops). Moreover, further geometric classification of the fault zone may reduce data scattering about the relationship between fault zone W-D (Choi et al., 2016) or gain new insights.
This research focused on (1) enhancing the fault zone features from the 3D seismic data by combining the seismic conditioning process, seismic multi-attribute calculation, and an ANN; (2) analyzing the width and displacement distribution features of fault zones via the calculated hybrid seismic attributes; and (3) discussing the relationship between W-D scaling of fault zones and fault linkage types (or different evolution stages).
2 GEOLOGY SETTINGS
The Junggar Basin is located in the northwestern Xinjiang Uygur Autonomous Region, China. It is a major Paleozoic to Cenozoic sedimentary basin, covering approximately 1.3 × 105 km2. This basin presents a triangular shape in the map view lying at the intersection of the Kazakhstan, Siberia, and Tarim cratons (Chen et al., 2005; Cao et al., 2006). It is a typical “walled” sedimentary basin (Gao et al., 2020), bounded by mountains from the northeastern, western, and southern sides (Bian et al., 2010; He et al., 2018). To the northwest are the Zhayier, Halaalate, and Delun mountains; to the northeast side lie the Kelameili and Qinggelidi mountains; and to the south are the Yilinheibiergen and Bogeda mountains. Several authors have documented the structural arrangement (Figure 1) of the Junggar Basin (Liu et al., 2006; Qiu et al., 2008; Hao et al., 2011; Cao et al., 2012; Xiang et al., 2014; Yang et al., 2015; Han et al., 2019; Tao et al., 2019). According to the Permian tectonic framework, the Junggar Basin comprises six principal structural units: the Wulungu depression, the Luliang uplift, the Western uplift, the Central depression, the North Tian Shan Fold-Thrust Belt, and the Eastern uplift (Wang et al., 2018). Furthermore, each tectonic unit contains several elements, such as structural highs, sedimentary sags, or fault-fold belts. Therefore, the whole basin consists of 44 tectonic elements (He et al., 2005; Zhang et al., 2010). The studied C36 3D Prospect (Figure 1b) lies in the center part of the Baijiahai subuplift of the Central depression.
[image: Map showing the Junggar Basin. The top map (a) is a black and white sketch illustrating the tectonic features and major geographic locations like India, Tibet, and various basins and folds. The bottom map (b) is a colored elevation map with the Junggar Basin highlighted, bordered by the Altai, Yilimubergen, and Bogeda mountains, showing basin boundaries, tectonic elements, and stratigraphic units. Labels and geographic coordinates are indicated.]FIGURE 1 | (a) Location of the Junggar Basin. (b) Regional geological map. It presents major structural features of the Junggar Basin [modified from Cao et al. (2017)]. The blue rectangle area indicates the location map of the C36 3D Prospect.
The Junggar basin has experienced four tectonic-sedimentary periods (Zhu et al., 2017): Hercynian, Indo-Chinese, Yanshan, and Himalayan. The strata contain the Carboniferous, Permian, Triassic, Jurassic, Cretaceous, Tertiary, and Quaternary rocks with thickness up to 14,000 m (Figure 2). The Junggar Basin has experienced a protracted structural evolution with multiple compressional and extensional phases since the Late Paleozoic period, closely related to the evolution of the Central Asian Orogenic Belt (CAOB) and the successive accretion onto the south Asian margin (Graham et al., 1993; Zhang et al., 2006; Xiao et al., 2015; Han and Zhao, 2018; He et al., 2018; Wang et al., 2018). This basin was initially formed in the Late Carboniferous period by the collision and amalgamation of the CAOB (Carroll et al., 1990; Allen and Vincent, 1997). Although the Permian formation and tectonic evolution of the Junggar Basin are highly controversial, most researchers agree that there was an orogeny in the Late Permian period (Şengör, 1990; Chen et al., 2005; Wu et al., 2005). During the Triassic-Paleogene periods, the Junggar Basin underwent overall subsidence (Şengör, 1990; Chen et al., 2002; Wu et al., 2005). However, recent studies indicate strike-slip fault activity is likely influenced by the rotation of Siberia (Yang et al., 2015) occurred in the late Jurassic-early Cretaceous period. From Neogene to Quaternary periods, the basin evolved as a near EW-striking intracontinental foreland basin (Chen et al., 2005; Wu et al., 2005; He et al., 2018) due to the collision of the Indian Plate with the Eurasian Plate (Figure 1a).
[image: Geological chart displaying stratigraphic columns with lithostratigraphy formations, symbols, thickness, tectonic stages, and lithology. Adjacent is a seismic section showing colored wave patterns labeled K, Jₓ, Jₛ, Jᵦ, and T, indicating geological layers. A legend on the right defines various geological symbols like conglomerate, sandstone, limestone, mudrock, coal seam, tuffs, dolerite, and rhyolite.]FIGURE 2 | Central Junggar Basin generalized stratigraphic column [modified from Cao et al. (2017)]. The target strata in this research are labeled in pink. J2t stands for the toutunhe formation of the Jurassic.
3 DATASET AND METHODOLOGY
3.1 Dataset
The C36 3D seismic survey was of moderate quality with a 2 ms sample rate, covering about 400 km2. The seismic data were prestack processed with a common bin size of 25 × 50 m. The minimum and maximum frequencies are 8.8 and 63 Hz, respectively, at −20 dB, with a dominant frequency of 29.1 Hz within the Jurassic formation. We determined and interpreted the Toutunhe (J2t) bottom based on the most exploratory wells drilled into the Jurassic bottom in this study area.
3.2 Methodology
The methodology utilized for the present research is shown in the workflow of Figure 3a. We have presented an integrated approach to achieve our objectives. The whole workflow contains four phases: 1) data conditioning, 2) seismic attribute calculation, 3) ANN computation, and 4) displacement and width plot. In this study, the workflow of the first three phases was performed using Opendtect software (Zheng et al., 2014; Kumar and Mandal, 2017; Srivastava et al., 2017; Kumar and Sain, 2018; Mandal and Srivastava, 2018; Kumar et al., 2019). The width and throw measurement scheme of the fault zones is illustrated in a typical seismic profile in Figure 3b, according to the previous definition and approach (Ma et al., 2019). The two-way travel time (TWT) and plane coordinate (X, Y) values of point 1 and point 2 in Figure 3b could be obtained via the ways to extract background values easily along the gridded horizon data. Thus, we could measure the very small W-D values. They are not limited by the resolution of seismic data to some extent. The fault zone throw is simply used as the displacement.
[image: The left side of the image shows a flowchart detailing the zone caliper analysis process with phases for baseline, key wells, and field study, including stages like dip and azimuth misalignment. The right side features a color-coded seismic image indicating geological displacements, with labels for points and horizons, and annotations of fault damage zones.]FIGURE 3 | (a) Workflow used for the current research. It comprises four phases: data conditioning, attribute extraction, ANN computation, and W-D plot. (b) Typical definitions of the W-D values from seismic profile. The TWT and plane coordinate (X, Y) values of point 1 and point 2 could be easily obtained by extracting background values along the green horizon data.
3.2.1 Seismic data conditioning
This phase was conducted to obtain conditioned seismic data. Geological features on the seismic data are very complicated because of acoustic disturbances influencing their effective visualization and causing deterioration of data quality, making it very hard to image them (Alves et al., 2015; Marfurt and Alves, 2015). Therefore, the data quality should be optimally conditioned by removing unwanted (noisy) information.
Initially, a dip-azimuth volume (also called steering cube) was calculated from the original seismic data. The steering cube was obtained by extracting dip and azimuth values along the seismic reflectors (Tingdahl et al., 2001; Tingdahl and de Rooij, 2005). Honoring our objectives, we extracted two different steering cubes: (1) the detailed steering cube was computed adopting a mild filtering step-out (set as inline/cross-line/sample: 1/1/3), preserving detailed information of seismic reflectors; (2) the background steering cube was generated adopting coarser filtering step-out (set as inline/cross-line/sample: 5/5/5), storing their overall trend (Kumar and Mandal, 2017). The latter steering cube was utilized further as an input for the seismic data conditioning.
Conditioning of the original seismic data (Figure 4a) improved signal quality by effectively suppressing random noise. It further improved the lateral continuity of the seismic events and highlighted the sharpness of the geologic features via several structure-oriented filters (Fehmers and Höcker, 2003). They could effectively smoothen the seismic events using dip-steered median filtering (DSMF), enhance their edges of fault zones via dip-steered diffusion filtering (DSDF) (Weickert, 1999), simultaneously preserving all their structural characteristics, logically merging the DSMF and the DSDF for producing fault enhanced filtered (FEF) seismic data.
[image: Three seismic data images comparing different attributes. Image (a) and (b) are side-by-side, showing similar horizontal wave patterns with slight variations. Image (c) is below, displaying distinct wave patterns with highlighted features. Each image includes a color bar indicating amplitude levels, with blues as lower values and reds as higher values.]FIGURE 4 | (a) Original seismic for inline 450. The geologic structures are heavily masked with noisy reflections. (b) DSMF seismic for the same inline. DSMF effectively improves image quality by removing random noises and enhancing the lateral continuity of seismic reflects. (c) FEF seismic for the same inline. This result exhibits that the sharpness of the fault zones in the seismic section gets improved and is illustrated using blue ovals. Moreover, reflections closer to fault zones are also enhanced.
The DSMF was firstly used over the original seismic data based on the pre-processed steering cube (Chopra and Marfurt, 2007b; Chopra and Marfurt, 2007a) to generate DSDM seismic volume (Figure 4b). The DSMF seismic volume preserves edges and improves the lateral continuity of seismic events within the seismic data. After the events were smoothed, another filter called DSDF was adopted to sharpen the edges of the seismic events. The filter produced a new seismic volume called DSDF seismic volume. Then, the DSDM and DSDF seismic volume were logically combined with a pre-calculated similarity attribute applying a cut-off value (0.7 for current research) via the FEF to obtain FEF seismic volume. This filter will take the outputs as DSMF when the similarity value is higher than the set threshold value mentioned above; otherwise, the DSDF will be used. The corresponding output, called FEF seismic volume (Figure 4c), improved the sharpness of the fault zones and reduced the random noise. During the second phase, the FEF seismic volume, integrated with the detailed steering cube, was used to extract sensitive attributes related to fault zones.
3.2.2 Seismic attribute calculation
This second phase was intended to select and calculate sensitive attribute sets regarding fault zones. Seismic attributes play a critical role in imaging complex geologic structures from 3D seismic data. We used several time windows and inline/crossline parameters for testing to extract an appropriate attribute set. The attribute calculation is time-consuming, so the result was quality-checked over a few vital seismic lines. If only the results were judged to be suitable, these attributes were further extracted over the entire seismic cube. Several seismic attributes, e.g., similarity, polar dip, curvature, laplacian, and energy attributes, are sensitive to fault zones and finally selected in this research.
3.2.3 Artificial neural computation
This third phase was aimed to implement the precomputed sensitive attribute sets amalgamation and produce hybrid attributes via the supervised ANN. This phase contains the following three procedures: (a) fault and non-fault location picking, (b) neural network design, and (c) network operation as well as validation.
Fault zone locations are generally picked as zones characterized with bed terminations and associated breaks in seismic events, commonly showing low-similarity value, abrupt dip changes, and loss in signal amplitude. However, the non-fault zone locations were picked as zones avoiding such characteristic features. As input data from fault and non-fault zones were prepared according to FEF seismic data and extracted seismic attribute data, they were used for a supervised ANN. Moreover, the input data were split into training and testing data sets. The network underwent a training schedule to obtain an optimum output to effectively discriminate fault and non-fault cases in the input sets through learning from the network. All example sets, including fault zone and no-fault zone locations, were manually picked from the conditioned seismic data to attain this objective. According to extracted seismic attributes (as mentioned in Section 3.2.2), the interpreters picked these locations based on their own experience and the other judgment.
The non-linear neural network chosen in this paper is a fully connected multilayer perceptron (MLP) network (Meldahl et al., 2002; Aminzadeh and De Groot, 2006). Three layers: (1) the input layer, (2) the hidden layer, and (3) the output layer are designed in the neural network. These layers are interconnected with each other via a form of a fully connected MLP network. The neural network training was performed via several iterations to achieve a minimum normalized root mean square (N-RMS) error between the two sets of the train and test data.
Seismic attributes serve as test data sets in this computation. Fault zone features are commonly associated with reflector terminations, abrupt changes in reflector dip and orientations, and signal amplitude loss. Therefore, selecting sensitive attributes is crucial to effectively highlight these variations and help the adopted network gain optimum output. We carefully selected such attributes (as mentioned in Section 3.2.2) to provide a maximum contribution for capturing reliable signatures of fault zones from the seismic data. These attributes were initially tested for their efficacy in imaging fault zone variations. Suitable attributes were finally grouped as input sets for the neural network computation.
Once the input (test) data sets were prepared for training via the network to produce optimum output. Thus, the training data sets were required to train the network to learn through these examples. To attain this objective, 400 example sets, including fault zone and no-fault zone locations, were carefully picked from time slice 4,500 ms. Fault zone locations are commonly associated with seismic event terminations, presenting low similarity, low most positive curvature, low energy, and variable dip. Conversely, non-fault zone locations are not such characteristic features.
During network operation, 30% of input data was assigned for testing the network, and the rest of the input data was assigned for training purposes, respectively. The training set was applied for updating the network weights, while the test set was used to evaluate the performance, preventing over-fitting problems (Atakulreka and Sutivong, 2007; Singh et al., 2016; Kumar and Mandal, 2017). Once a minimum error was achieved between the train and test data sets, the training process was stopped. The result was further adopted over the entire seismic volume to produce a fault probability cube (FPC). It includes sample values from 0 to 1, representing the lowest and highest probability of fault zones. This FPC was firstly validated by comparing it with the fault zone distribution of the studied area. Furthermore, its validation would be assessed again according to the later analysis of the width and displacement distribution features and the W-D relationship based on the computed hybrid attribute.
3.2.4 W-D measurements
This final phase was to gain the W-D values. The W-D measurement schemes were shown in the seismic section (Figure 3b), co-rendered with the hybrid attribute, perpendicular to the strike of the fault zones. Most of the fault zones in this survey are commonly steep in the seismic section and present as slightly normal throws (Figure 4c). The throw is used as a proxy for displacement in this research. We measured the W-D data set at almost all fault zones by the 90 numbered seismic sections from the TVSS structure map co-rendered with the FPC attribute indicating the fault traces. The boundary of the displayed FPC attribute, comprehensively based on the original seismic profile and similarity attribute, is considered the boundary of the fault zone, including the fault core and the damage zone (Ma et al., 2019) in seismic profile. Thus, it is easily taken as the united identification criterion in this research. Fault zone W-D measurements were taken every 350 m along every single fault trace from northeast towards southwest.
Fault traces were digitized based on the attribute volumes in the map view. We digitized 52 fault zones, and 45 fault zones were numbered from the TVSS structural map corresponding to the base surface of the toutunhe formation of the Jurassic (J2t). We plotted the digitized fault traces to investigate their linkage types along these fault zones. Based on the united FPC attribute boundary, we only manually determine the two-point locations where correspond to the intersection points from the navigation line and the boundary of the numbered fault zones. The fault zone width and the corresponding displacements of Figure 3b could be easily calculated via extracting background values (including X, Y and TWT values) of these corresponding two points at the gridded time structural map. In total, their width and the corresponding displacement of fault zones were measured at 174 points distributed, including four different sets and well representing the development trend of fault zones. The constant relationship between travel time and depth is depth (meter) = TWT (millisecond) × 0.89, converting the time domain into the depth domain of all fault geometry data. All the displacement values of the depth domain mentioned below are derived from the TWT domain by this relationship.
4 RESULTS
These results of the current research are illustrated in two main parts. Firstly, the present study presents the efficiency of the hybrid attribute in enhancing fault zone images, aiding in identifying the boundary of the fault zones. Secondly, linkage types of fault zones and the responding measure values were derived from four fault zone sets dominantly displaced clastic rocks within the studied strata.
4.1 Enhancing interpretation of fault zones
The current approach of using non-linear multiple seismic attributes significantly improved the detailed features of the fault zones presented on the seismic data. The FEF seismic data (Figure 4c) have sharpened the structures near the fault zones by eliminating unwanted seismic noises masking critical fault signatures from the subsurface. This FEF seismic data further improve attribute extraction for a better understanding of the subsurface. Seismic attributes extracted from the FEF data generate the fault zone features, providing a better way for reliable interpretation of fault zone features. This similarity attribute calculated from the original seismic data (Figure 5a) delineates the discontinuity of fault zone locations closely related to low similarity values. However, the results of this similarity attribute extracted from FEF seismic data (Figure 5b) can be better. This attribute depicts the structural trend of the fault zones as southwest to northeast (SW-NE), consistent with the general trend of the Baijiahai subuplift. In addition, the sharpness and visibility of the fault zone features are much more apparent by this similarity attribute (Figure 5b), which takes both the steering cube and FEF seismic data as input. The non-steered similarity (mid window) attribute, which only uses the original seismic data as input, could image these fault zone features. However, enhanced interpretation of fault zones could not be realized. We observed that the fault zones were associated with higher polar dip values from the polar dip attribute than those in non-fault zones (Figure 6a). The lowest values are apparently visualized by displaying the most positive curvature attribute (Figure 6b) due to the presence of fault zones. The laplacian showed the sharpness response, with the largest and lowest values (Figure 6c) of the fault zone. The energy response (Figure 6d) near the fault zones is sudden change due to that these signatures are commonly characterized by amplitude distortions. The fault zones present vertical segmented characteristics in the seismic section (Figure 6).
[image: Two geological maps with grayscale shading depict subsurface structures. Red arrows indicate notable features, while blue dashed ovals highlight specific areas of interest. Compass and scale bars provide spatial orientation.]FIGURE 5 | (a) Non-steered similarity (mid window) attribute. It is extracted from the original seismic data displayed over time slice (t = 4,500 ms) cuts the Jurassic formation. The attribute illustrates the presence of fault zones and discontinuities characterized by low similarity values. (b) Steered similarity (mid window) attribute. It is extracted from FEF seismic data displayed for the same time slice. Fault zones are more sharpened and prominent that are marked with red arrows and blue ovals.
[image: Four seismic data visualizations in a grid. (a) Blue-toned map with red and green oval highlights indicating fault lines. (b) Yellow-toned map, lighter blue ovals indicating regions of interest. (c) Beige map with green oval highlights for faults. (d) Colorful wave-like pattern with pink, green, and blue stripes, white ovals highlighting specific areas. Labels and scales are at the edges.]FIGURE 6 | (a) Polar dip attribute. This calculated attribute is presented for inline 450. High polar dip values are closely related to the fault zones marked with red ovals. (b) Most positive curvature attribute. This calculated attribute is presented for the same inline. Low positive curvature values exhibit within the fault zones marked with black ovals. (c) Laplacian attribute. This calculated attribute is presented for the same inline. The lowest and highest laplacian values simultaneously present within the fault zones marked with green ovals. (d) Energy attribute. This calculated attribute is presented for the same inline. Sudden changes in the energy occur from high to low within the fault zones marked with white ovals.
The neural computation based on these seismic attributes and the picked fault and non-fault locations (Figure 7a) produced an FPC attribute. The non-linear MLP network designed for the current work consists of 17 fully connected nodes: 10, 5, and 2 nodes responding to the input, hidden, and output layers (Figure 7b). In our study, 30% of the picked data were randomly taken as test sets, and the rest of the data were taken as train sets. The neural training was performed iteratively to update the weights for overcoming over-fitting problems. The relative contribution made by each of the input attributes is listed in Table 1. It is shown that similarity short windows, polar dip offered maximum contribution for training the network. It is also observed that the N-RMS error values for both trained and tested data produce a minimum value that varies between 0.34–0.38 (Figure 7c). The minimum misclassification value (%) for both the train and test data sets ranges from 3.27% to 3.36% (Figure 7d). This indicates that the careful selection of attributes, along with their appropriate combination, plays a crucial role in designing the FPC attribute that effectively highlights fault zones and non-fault zones. The neural training finally produced a hybrid seismic attribute used for processing over the full seismic volume to gain the FPC attribute volume, which (Figure 8a) captures and contains all possible fault zone features. The volume values range from 0 to 1, where 1 stands for higher confidence of fault zone locations. It is observed that the extracted FPC attribute is co-rendered with the FEF seismic time slice 4,500 ms (Figure 8b), capturing and containing fault zone details within the Jurassic formation. The image details of the fault zone (marked with two blue dotted ellipses in Figures 5b, 8a) were further enhanced via multiple-attribute amalgamation. Figure 9 presents eight attributes shown in Figure 7, excluding the Non-steered similarity (mid window) and Steered similarity (mid window) attributes displayed in Figure 5. The fault response characteristics of these attributes are comparatively less distinct than those of the extracted FPC attribute. The computational environment for the experiment was as follows: A Dell Precision 5,760 workstation equipped with an Intel Xeon W-11955M processor (8 cores), 64 GB DDR4 memory (3,200 MHz), and an NVIDIA RTX A3000 laptop GPU (6 GB of video memory). Using OpendTect version 6.2.1, 400 example sets, including fault zone and no-fault zone locations, were selected from the 4,500 ms time slice. The ten attributes listed in Figure 7b served as inputs, with Figures 7c, d used for quality control. The computation of the weight file required approximately 1 min, while the FPC attribute calculation for the 4,500 ms horizontal slice, as shown in Figure 8a, took approximately 20 min. This provides a solid foundation for supporting subsequent research efforts.
[image: (a) Seismic data with color-coded waveforms indicating depth and structure. (b) Neural network diagram with input, hidden, and output layers; nodes highlight feature contributions to a target. (c) Graph showing normalized RMS with a rapidly dropping curve. (d) Misclassification graph depicting a decreasing error rate.]FIGURE 7 | (a) Example locations. They are manually picked from the time slice (4,500 ms) of FEF seismic volume and grouped into fault-yes (blue color) and fault-no (pink color) data sets. (b) Non-linear MLP network. It is applied for artificial neural calculation. (c) N-RMS error between the test data (blue curve) and the train data (red curve). (d) Corresponding misclassification percentage between the two data sets.
TABLE 1 | Attribute-weight chart illustrating the weight from each attribute adopted for neural training in this research.
[image: Table displaying attributes and their corresponding weights. Attributes include Similarity (SW) with weight 100, Similarity (MW) with 74, Polar dip with 73.2, Similarity (MW) No-Steering with 67.4, Similarity (LW) with 59.1, Most Negative Curvature with 55.9, Energy with 32.3, Most Positive Curvature with 14.9, Laplacian (ID) with 11.4, and Laplacian (CD) with 11.4.][image: Panel (a) shows a grayscale seismic reflection image with features outlined by dashed blue ellipses, indicating lineations. Panel (b) displays a colored seismic section, highlighting subsurface geological layers with color variations representing different geological formations. Both panels include compass markers for orientation.]FIGURE 8 | (a) FPC attribute. This attribute is presented for time slice 4,500 ms. Higher fault probabilities are marked with deep black color, while lower fault probabilities are marked with white color. This attribute brings out better visibility of the fault zones and improves seismic reflect continuity. (b) Same attribute. They are co-rendered with FEF seismic data for the same time slice. The green color indicates a higher probability of fault locations.
[image: Series of eight geographic analysis images comparing topographical and hydrological data in black and white and various color-coded overlays. The panels show different filtering techniques and thematic classifications, with scales and orientations indicated by north arrows and legends.]FIGURE 9 | (a) Similarity (SW) attribute. (b) Polar dip attribute. (c) Similarity (LW) attribute. (d) Most negative curvature attribute. (e) Energy attribute. (f) Most positive curvature attribute. (g) Laplacian (ID) attribute. (h) Laplacian (CD) attribute. All these attributes are presented for time slice 4,500 ms.
The FPC attribute has efficiently depicted the spatial and temporal distribution of fault zones and within the Jurassic formation (Figure 10). The fault zones mostly strike NE-SW structural trends and are divided into four different sets based on their curvature degree and linkage types, named I, II, III, and IV (Figure 11), marked with blue dashed ovals), according to the TVDSS structure map co-rendered with the FPC attribute (Figure 11a). It is also observed set I, presenting straight segments, mostly containing soft-linked fault zones with some typically isolated fault zones, is structured with minor fault discontinuities no longer than 3 km and mostly located on the northeast part of this study area. About ten numbered fault zones consist of set II, mostly presenting sub-straight segments and containing typical soft-linked fault zones, and located on the center part of this study area. Set III, roughly presenting sub-curved segments and including typical coalesced fault zones with some bends at the linked locations, is located on the northern part of the studied area. Set IV, mostly showing curved segments and typical hard-linked fault zones, presents more complicated distribution features.
[image: 3D seismic data visualization showing geological layers with color gradients indicating depth. Insets (b), (c), and (d) highlight detailed sections with directional axes. North (N), East (E), and depth (Z) axes are marked.]FIGURE 10 | (a) Overall display of the 3D volumetric. The FEF seismic data volume is co-rendered with the FPC attribute within the Jurassic. (b–d) Detailed display of the fault signatures. These fault zones are indicated by the FPC attribute. The different fault zones with different geometry could be observed detailedly.
[image: Top image shows a colored tectonic map with linkage types marked by circles: nucleated (green), soft (blue), combined (yellow), and hard linkage (red). A gradient from purple to red indicates topography. Bottom image is a black and white tectonic map depicting fault lines with annotated numbers and directional arrows. A compass for orientation is included in both maps.]FIGURE 11 | (a) TVDSS structure map of the base surface of J2t from the C36 seismic volume. The TVDSS structure map, co-rendered with the hybrid seismic attribute, presents the distribution and orientation of the fault zones. (b) Fault zones. They are digitized, according to (a). J2t stands for the toutunhe formation of the Jurassic. Here, “Pro.” is an abbreviation for “Profile.” It is used to denote the locations of seismic profiles selected perpendicular to the strike of fault zones.
4.2 The W-D distribution features of fault zones
The W-D values were measured along four sets containing the different linkage types of fault zones at the base of the toutunhe formation of the Jurassic (J2t) (Figure 11a) using the depth converted displacements. Displacement values within set I vary between 0.3 and 26.4 m (Figure 12a). The largest displacement is from the central locations of F8 (pro. 11), located at the middle zones of set I. The northeastern tip of the fault zone is spread beyond the studied seismic survey range. The fault zone width ranges between 43.4 and 160.5 m within the same fault sets (Figure 12a), with the widest position located at the fault bends of F10 (pro. 17). The displacement measurements within set II (Figure 12b) exhibit variations from 2.8 to 28.7 m, with the largest displacement from the central position (pro. 40) of F20 (Figure 12b). The fault zone width varies from 47.3 to 138.1 m, and the largest width (Figure 12b) has been measured near the bend position (pro. 35) of F17 (Figure 12b). Within set III, displacement (Figure 12c) varies between 1.1 and 27.8 m, with the largest displacement from the central position (pro. 49) close to the central location of F26. Displacement decreases toward the western tip of the fault zone. Their width ranges from 37.7 to 236.2 m, and local increases in width (Figure 12c) are shown where the largest width value was measured from the fault bend position (pro. 59) of F28 (Figure 12c). Their displacement measurements within set IV (Figure 12d) demonstrate variations from 1.2 to 49.9 m, with the largest displacement from the western position (pro. 83) of F36 (Figure 12d), hard-linked with F38. Their width (Figure 12d) varies from 47.3 to 326.7 m, and the largest width has been measured near the fault bend positions (pro. 87) of F38.
[image: Four bar charts labeled (a) to (d) display profile numbers along the horizontal axis and frequency on the vertical axis. Each chart contains multiple blue and pink bars representing different datasets across various profiles, marked from F1 to F45. Specific profiles, like F10 and F28, are highlighted with annotations indicating features such as "Finish Zone Found."]FIGURE 12 | Fault zone W-D values. They were measured by seismic profiles roughly perpendicular to fault zones according to the digitized fault distribution map of the base surface of J2t (See Figure 11b for location). The W-D values cover four named fault sets: I (a), II (b), III (c), and IV (d). J2t = toutunhe formation of the Jurassic.
We have also plotted the W-D relation of the fault zone and further compared our latest results with previous related studies. Our plot presents a similar trend to the previous studies (Figure 13) for the W-D relationship of the fault zone. Moreover, our plot clearly exhibits such evident distribution characteristics of horizontal extension and local aggregation. Furthermore, most of the largest displacement values are almost located on the center locations of single fault zones, while most of the largest width values are almost located on the bend parts of single fault zones. However, the displacement data from the different fault sets with different curved features and linkage types demonstrate significantly different relationships with fault zone width. The W-D of the fault zone data showed a roughly positive correlation in Figures 14a–d, with different R2 values. Conversely, Figure 14d exhibits a significant negative W-D correlation of the fault zone.
[image: Scatter plot showing fault zone width versus displacement in meters. Data points are grouped and color-coded into four sets, with a legend indicating different studies and types of geological formations. The graph illustrates a trend where increasing displacement corresponds with increasing fault zone width.]FIGURE 13 | Log-log plots of width versus displacement of strike-slip fault zones. They exhibit a comparison between this research and the previous studies (Alaei and Torabi, 2017). The measured values from four sets with different curved segments and link types are marked with different color circles. DB stands for deformation band.
[image: Four scatter plots labeled Set I to Set IV show relationships between width of fault core and fault zone, each with trend lines and equations. Set I shows an increasing trend, Set II a moderate increase, Set III a slight increase, and Set IV a decrease. A fifth diagram (e) plots data overlap zones for the four sets, identifying intensive damage, growth, and core stages with colored arrows. Each set is uniquely colored for differentiation.]FIGURE 14 | Linear plots of fault zone width versus displacement for the base of J2t in the C36 area, Junggar Basin: (a) Set I, (b) Set II, (c) Set III, (d) Set IV, and (e) combined data from Sets I-IV showing overlapping zones and different fault zone growth stages. The values from different sets are also marked with different color circles.
5 DISCUSSION
5.1 The hybrid attribute for fault zones enhancing imaging
The computed hybrid attribute using ANN networks, jointly combined with post-stack conditioned process and seismic multi-attribute analysis, opens new opportunities to investigate fault zones at seismic scales further and could compare with the previous studies, whose data obtained from other sources, including outcrops. The results indicate that the workflows we proposed, especially the computed hybrid attribute, are valid and widely applied to other 3D surveys.
Some attempts, especially applying seismic attributes to define some characteristics, have been constructed, and part of them could be correlated to the studies from the outcropped fault zones. Dutzer et al. (2010) adopt the seismic fault distortion zone concept containing inner and outer zones. Iacopini et al. (2016) adopt the fault seismic disturbance zone (SDZ) concept and present workflows for imaging the SDZ by comprehensively using amplitude, waveform similarity (coherence), and phase attributes. Alaei and Torabi (2017) extract the segment length and width data of the fault zones by using frequency decomposition and fault attribute analysis methods. Liao et al. (2019) try to adopt seismic coherence to investigate the subsurface characterization of fault zones. Ma et al. (2019) integrate seismic coherence and amplitude attributes to image fault zones, proposing an evolution process of damage zone growth within carbonates. Liao et al. (2020) analyze the internal architecture and fracture distribution within composite damage zones (CDZ-s), jointly applying seismic attributes, such as variance, curvature, and dip-azimuth, defining three classes of CDZ-s. However, using only a single seismic attribute or jointly using several attributes is still arguable or subjective for the reliability of fault interpretation. Therefore, we strongly support that the advanced workflow for attribute amalgamation, mostly including the ANN approach, is adopted to image fault zones and bring out more details than before. The fault zones could be displayed in the 3D space, and quantitatively analyzed the W-D distribution features using the hybrid attribute. This method could reduce the subjectivity of the interpreter during the measuring stage of W-D according to the united identification criterion of the boundary of fault zones to some extent. It is observed that the boundary of fault zones is more apparent than before, and the hybrid attribute brings out a relatively fixed or uniform standard about the boundary. Therefore, the quantitative analysis of fault zone W-D is easy and useful for measuring enough samples for including much different geometry or order fault zones. It also provides convenience for selecting the fault zones to avoid these conditions cutting through various lithologies and measuring at various depths for reducing the unnecessary influence factor of scattering in the sampled data. Thus, we consider that the workflows could be widely applied to other surveys to study the W-D scaling relationship in the future.
The hybrid attribute demonstrates new possibilities of studying fault zones based on 3D seismic data and could compare the latest results with other data sources, especially outcrops. Our proposed workflow, which adopts several post-stack seismic data conditioning processes and multi-attribute amalgamation using a neural network approach (unlike traditional single or several attributes), provides enhanced images of fault zones. The compared image results of fault zones from Figure 5 indicate that data conditioning is necessary and plays an essential role in improving the image quality. Table 1 also illustrates that the multi-attribute amalgamation using a neural network approach could avoid the deficiencies of single-attribute characterization ability to some extent. Figures 5, 9 collectively illustrate the ten input attributes shown in Figure 7b. When compared with Figure 8a, each attribute demonstrates fault response characteristics consistent with the weight contributions listed in Table 1. These methods effectively enhance their ability to image complex structural features (Figure 8). In addition, the additional threshold setting further improves the boundary sharper signatures of fault zones, bringing out the united boundary identification criterion. These considerable improvements in imaging out the boundary of the fault zone allow us to study its scaling relation with displacement efficiently, at least eliminating the interference of boundary inconsistent to some extent. Figure 12 demonstrates that all measured fault zones have thicker fault zones (varies between 37.7 and 326.7 m) with respect to their corresponding displacement compared to previous findings (Alaei and Torabi, 2017). Although seismic attributes are commonly efficient in highlighting fault zones (Botter et al., 2016; Iacopini et al., 2016; Wan et al., 2016; Ma et al., 2019; Liao et al., 2020), identifying fault zone boundaries according to a single or several common seismic attributes remains bias. The use of integrated workflows in this research further enhances the sharper characteristics of the fault zones. Thus, the latest identification of the boundary of the fault zone is more transparent and objective than the previous study, which used the coherence and amplitude attributes (Wan et al., 2016).
Moreover, we have also plotted the scaling relation between the W-D of the fault zone and compared our latest results with previous studies (Figure 13). Our latest research results could be compared well with previous studies. It implies that our approach is feasible and that the result is reliable. Thus, our studies suggest that the boundary identification of fault zone based on the hybrid seismic attribute and the following research of the W-D relationship is feasible. Our current approach provides more possibilities using 3D seismic data to investigate the W-D relationship of fault zones, especially for the area lacking drilling data and outcrop data. Therefore, we strongly suggest that the workflows could be widely applied to other surveys to study the fault zones. Although, this study only presents a related case regarding shallow machine learning, not deep learning. It has demonstrated an effective imaging result of the subsurface fault zones. Therefore, we consider that deep learning must also be extended to study fault zone identification and quantitative interpretation in future research. The application of deep learning will likely bring out more insight into understanding the subsurface fault zones.
5.2 The W-D influencing factors of fault zones
The largest strength of our work is that the sample data collected are enough and derived from the same lithological combinations, deformation element, united boundary definition, and at approximately the same depth range. This enables us to isolate the influence of the aforementioned overlapping factors on fault zones. Consequently, such data is essential for more effectively analyzing other controlling factors of fault zones through the width-displacement relationship. Furthermore, as fault zones are rarely completely exposed in 3-D, especially the examples from outcrops, interpreting the 3-D distribution of fault zones seems always challenging. Therefore, the seismic data seem very important to study the fault zones, avoiding the incomplete observations of fault zones, especially in the outcrops. In addition, the fault zones with four typical geometry characteristics, such as different curved features and linkage types in the map view, are available for direct comparisons. All the data are well used for analyzing the influence for the attribute of W-D of the fault zone.
Most researchers have focused their researches on the influence factors of the W-D of fault zones. The protolith nature, the depth range of faulting, tectonic environment (such as normal, strike-slip, or reverse faulting), layer thickness, and various stress fields are prone to affect the damage zone width (Faulkner et al., 2011). In addition, the fault damage types, including tip damage, wall damage, and link damage, are not differentiated, probably explaining a part of the D-T data scattering (Mayolle et al., 2019). Although some researchers consider that fault linkage types likely influence the scaling of fault zones, the sampled data they used has a common defect: the data are not enough or typical. Our W-D measurements could meet these three conditions (Evans, 1990) from (1) different points along the same fault, (2) families of faults in similar rock types with different amounts of slip, such as different numbered fault zones, and (3) faults with similar amounts of the net slip in similar structural settings. The latest interpretation results indicate that fault linkage-type including isolated, soft-linked, hard-linked, and coalesced fault traces co-occur in the C36 Prospect, with enough sampled and continuous data in this research. It provides a typical case for unlocking the fault geometry influencing for W-D of fault zones because the data set in this study comes from the same lithological combination and deformation histories.
Moreover, the survey locates nearly the same depth range, varying between 2,510 and 3,100 m, and the studied area roughly presents a uniform slope characteristic without any local strata folding, without apparent width or displacement change patterns along the depth even within the same set. Consequently, the influence of lithology and burial effects on fault zones could be negligible. Thus, we consider that perhaps the fault geometry, acting as the most crucial factor, influences both attributes of fault, such as W-D, further leading to the different W-D correlations. Fault zone W-D values were detailedly measured along with four sets at the base surface of the toutunhe formation of the Jurassic (J2t) (Figure 11). It is shown that the largest width of a single fault zone seems always locates the bend of the single fault zone, while the largest throw values are commonly from the locations where located in its center part (Figure. 11) to some extent.
5.3 The fault linkage types and the scatter data from their scaling
The width and corresponding displacement data for all fault zones were plotted against each other in both log-log and linear space. Although the displacement in the present study refers to the throw measured easily (the true displacement values are difficult to measure continuously), our latest research results bring out new insights about the four sets and the scatter data from their scaling, while the fault zones could also be available to unlock the influence of the evolution of fault zone growth for scattering data. The average throw can approximately reveal the activity strength of strike-slip faults (Han et al., 2020). Thus, the activity strength of fault zones, from fault zone I to III, II, and IV, gradually becomes stronger according to their average throws (9.2–11.4, 12.6, and 15.9 m, respectively) and approximately stand for four the different evolution stages of fault zones.
Although the fault zone width mostly demonstrates a positive correlation with the displacement (Figures 14a–c), the W-D relationship of the fault zone presents no simple linear or power-law relation with scattering data. Our plot (Figure 13) clearly exhibits a longitudinally extending feature, similar to the data trends from previous studies (Alaei and Torabi, 2017) to some extent. The W-D data of the fault zones showed a roughly positive correlation in Figures 14a–c, with different R2 values. Conversely, Figure 14d demonstrates a significant negative W-D correlation. These figures present two main characteristics. The first one is that although all of the relationships exhibit mostly the same distribution trend, such as same gradients of best-fit trends or same magnitudes within the plot, the relationships still do not present a positive linear trend. It concludes that the scattering relationships between W-D of the fault zone may not be visible. The second one is that although the scattering relationships are largely reduced, their data scattering still occurs, presenting different R2 values in each relationship.
The data compiled from the fault zones with different geometrical characteristics indicates (Figures 14a–d) that the fault linkage type is an important controlling factor that results in different W-D relationship features, simultaneously presenting a scatter distribution characteristic. It is easily observed that almost all of the largest displacement values are located at the center part of the single fault zones, not identified easily from hard-linked fault zones (set IV) due to their complicated linkage relationship, while almost all of the largest width values are from the bends (Figures 12, 13) of the corresponding fault zones. Whatever the scaling relationships, especially from Figures 14a–c, may help predict geometries of fault zones from the Junggar Basin and possibly elsewhere. Figure 14e contains data from Sets I-IV. This figure indicates that the fault zones with different geometric characteristics have some of the same numerical distribution range of the W-D relationship in the linear plot, especially in the same 3D area with similar tectonic activity history. Our latest research demonstrates that although four sets with different fault geometric features stand for different evolution or growth stage, all of them still have a broad overlap range of W-D distribution (marked with a black rectangle dotted box in Figure 14e) in the plot. Therefore, it is challenging to unlock the evolution process of the fault zones in the linear plot. However, our latest research still could bring out important notes about fault zone evolution with different trend scattering data marked with different color dotted lines in the same plot. The I set, locating the center part of the plot and approximately standing for the isolated fault zone evolution stage, presents both W-D growths simultaneously (marked with a pink arrow in Figure 14e). This pink arrow trend could also roughly stand for the growth of the process zone stage, occurring in the initial evolution stages of fault zones. The II set, mostly standing for the soft-linkage fault zone evolution stage, presents a slight difference in W-D growth, illustrating that the displacement growth is more pronounced (marked with a blue arrow in Figure 14e). This blue arrow trend also could be understood as roughly standing for fault zone growth stage. The III set, roughly standing for the coalesced fault zone evolution stage, presents a moderate growth difference of W-D growth, showing that the scaling of width growth is more pronounced (marked with a green arrow in Figure 14e). This green arrow trend also could be considered to stand for the inactive fault zone stage roughly. The IV set, typically standing for the hard-linked fault zone evolution stage, exhibits great growth differences of W-D growth simultaneously (marked with two red arrows in Figure 14e). These two arrow trends also could be understood as roughly standing for inactive damage zone stage and damage zone growth stage. Therefore, a fault zone can grow periodically (Fossen, 2010), mostly consisting of the process (or damage) zone growth and throw/displacement accumulation stages as shown in Figure 14e. Four different sets containing different fault linkage types, standing for four different fault growing stages and presenting four different W-D growing trends, obviously provide a deep understanding of the scatter data.
5.4 Relationship between different types the fault zones and hydrocarbons
Previous studies have primarily focused on the architecture types of fault zones or W-D relationship, lacking further analysis on their control over hydrocarbons combined with well data (Liao et al., 2019; Liao et al., 2020; Ma et al., 2019; Wu et al., 2019). In this study, we conducted a comprehensive analysis by integrating drilled well data from the C36 3D area. Wells C521, C34, and C36 (Figure 11) are respectively located within fault zones I to III, and IV, and each of these wells shows good potential for hydrocarbon containment. The up-dip directions of wells C34 and C36 are obstructed by fault zones, leading to the formation of reservoirs. In contrast, well C521 formed a reservoir due to the absence of a fault zone in its up-dip direction. It can be inferred that the fault zones I to III in the up-dip directions of wells C34 and C36 likely played a role in laterally sealing these wells to prevent hydrocarbon lateral migration. On the contrary, some fault zones in the down-dip direction of well C521 may play a role in facilitating the drainage of hydrocarbon. Currently, there are no wells within fault zone II, so its role in hydrocarbon accumulation cannot be confirmed from the plan view.
Figure 11a illustrates that different sets are constituted by distinct fault linkage types. Section 5.3 discusses how various fault linkage types are associated with unique fault zone growth processes, corresponding to different growth cycles; evidently, these differing growth cycles probably exert distinct controls on hydrocarbons. To investigate the control exerted by various fracture linkage types on hydrocarbons, this study projects and compares the maximum displacement data of fault zones for different linkage types against prior research (Figure 15). The trends in the projected data suggest that sets I and II are predominantly characterized by extensional activities within the damage zones of fractures, whereas sets III and IV are mainly defined by cumulative displacement activity periods. Fault damage zones contains fracture commonly provide a high-permeability conduit for fluid flow (Billi et al., 2003) and can act as a preferential corridor for fluid flow in the subsurface (Martinelli et al., 2020). In addition, these fault zones display characteristics of strike-slip movement (Cui et al., 2022), and the wells C34 and C36 have been proven to contain hydrocarbons, likely due to obstruction by fault zones. So set I and set II probably act as facilitating the drainage of hydrocarbon. On the contrary, set III and set IV probably play a role in laterally sealing to prevent hydrocarbon lateral migration. This conclusion is likely to provide some potential constraints for future drilling plans in this block and exploration in other blocks. However, this conclusion will require more drilling data and examples in the future to substantiate this viewpoint.
[image: Log-log plot showing fault displacement versus damage zone width in meters. The graph illustrates the growth stages of the process zone and damage zone, with arrows indicating progression. Different sets are marked with colored arrows, stars, and labels. Key stages include growth of the process zone, faulting, process zone becoming damage zone, and damage zone growth. An inactive damage zone is noted. Data points for Set I, II, III, and IV are color-coded.]FIGURE 15 | Schematic illustration shows shows the relationship between the width of the damage zone and the corresponding maximum displacement, using data from data sets I, II, III, and IV for the base of J2t in the C36 area, Junggar Basin. The max displacement data sets are selected from four sets. J2t stands for the toutunhe formation of the Jurassic. The schematic demonstrates how a damage zone can grow periodically [modified from Fossen (2010)].
The W-D data of the fault zones with different linkage types showed different R2 values (Figures 14a–d), and presents data scattered characteristics (Figure 14e). These characteristics implie that the relationship between different types the fault zones and hydrocarbons is complicated. In the future, more detailed work is needed to explore the control of hydrocarbon from the perspectives of fault zones with different linkage types or growth cycles with greater precision. This study only analyzes the control of fault zones on hydrocarbons from the “set” perspective. Future research might need to focus on the influence of segmented fault zones within each sets on hydrocarbons, which could be more meaningful for subsequent drilling plans in the Junggar Basin and other petroliferous basins with similar settings (Figure 1).
6 CONCLUSION
Jointly using post-stack conditioning, seismic attribute calculation, and the ANN approach yielded a hybrid attribute, which provided enhanced images of fault zones from 3D seismic reflection data and could be widely applied to other surveys to quantitative study the W-D relationship in the future. We have imaged and analyzed fault zones, mostly including the W-D, within the C36 Prospect of the Baijiahai subuplift using the hybrid attribute. Furthermore, a comprehensive analysis of the fault linkage types and their W-D relationships has also been carried out. The following main conclusions can be made:
The present work presents a better path for improving fault zone features from 3D seismic data. The conditioned seismic volume with enhanced and sharpened fault features is carried out by several structure-oriented filtering steps in this work. The attribute calculation and neural training performed based on adopting this conditioned seismic data are integrated to produce the optimum hybrid seismic attribute, which has efficiently enhanced the image of fault zones, providing new paths for gaining the united boundary features of fault zones.
The current interpretation strategies provided here enhance boundary features by making them applicable to the fault zones. We gain new insights about the W-D distribution features of different fault sets with different fault linkage types in the map view. The computed hybrid seismic attribute is effectively used to measure and analyze the W-D of the fault zones. The largest width values are closely related to the bend of a single fault zone, while the largest displacement values commonly distribute its center.
The latest statistical results of fault zones provided new insights about the fault linkage types and the scatter data from their W-D relationship of fault zones, simultaneously including isolated, soft-linked, coalesced linkage, and hard-linked by the hybrid attribute. Our results suggest that the fault zone sets, including different linkage types with different geometry features, stand for different stages of fault zone growth periodically, with different fault zone width or displacement value growth process and accordingly provide different contributions for the W-D relationship in the linear plot.
The trends in the projected data suggest that sets I and II predominantly correspond to extensional activities of the fractured damage zones, and sets III and IV mainly associate with cumulative displacement activities of strike-slip fault core zones. Furthermore, based on a comprehensive analysis of drilling data, it is believed that sets I and II are likely to facilitate hydrocarbon drainage, while sets III and IV are believed to play a crucial role in lateral sealing, thereby preventing the lateral migration of hydrocarbons.
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Step description

Equation

1) Mesh the parameter models (velocity £ and 8) into the
body-fitted grid according to the irregular surface in the

physical domain

2) Transform the parameter models in the Cartesian coordinate
into the computational domain in the curvilinear coordinate

3) Input the parameter models and the observed data in the
computational domain

4) Calculate the forward-propagating wavefields in the
computational domain

5) Calculate the back-propagating wavefields in the same
computational domain

6) Apply the source-normalized cross-correlation imaging
condition to obtain the image in the same computational
domain

7) Inverse transform the imaging result in the computational
domain into the physical domain.
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SNR (dB) RMSE Amplitude Preservation (32nd trace)

51st point (%)  101th point (%)  138th point (%)

Before filtering -3 0.1394 100 100 100 100
After polarization filtering in time domain 66017 00583 64.70 4431 47.04 56.22
After Shearlet threshold filtering 05349 0.0789 61.40 55.17 62.67 82.62

After Shearlet-polarization filtering 137623 0.0407 75.12 69.00 70.01 7893 J
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Quaternary
L
Pliocene
E
L
M
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E
Oligocene
E

Comments

Normal deposition with
no or less tectonic effect

Basin fill under tectonics effect

MTD (Mass transport deposition)

MTD (due to uplift of invisible
bank)

MTD

Sand deposits

Reflection geometry

Depositional Horizon
environment Reflection Reflection Reflection
configuration amplitude continuity
Sag-fill Parallel Moderate to Continuous
high
Basin fill Wavy Low to moderate Continuous TI
Progradational Chaotic Low Discontinuous T2
Basin fill Wavy Low to moderate Continuous T3
Sigmoidal progradation S-shaped Moderate to high Continuous T4
Onlap fil Semi-transparent Chaotic Low Discontinuous TS
and moderately wavy
T6
Onlap fil Moderately wavy High Moderately
continuous Tg
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Algorithm 1 Workflow of s denoising by CS-LHR

Input: Observed seismic data Y € RV, the sensing matrix ®, the sparse basis ¥, the
positive parameter \;

Initialization: Initialize 0*) from Eq. 3. Determine each w; = (|9, + )"
through 65

Output: The sparse coefficient vector 6*;

Repeat: Update 0¥ and determine each w; by 8*) until convergence; ‘
End: Recover the free-noise X* = W6*. ‘
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Parameter Value Parameter
Porosity ¢ 0.284 Number of nodes m 5
Confining pressure p, 30 MPa Number of nodes 5
Solid particle modulus K, 36 GPa Number of nodes 1 5
Poisson's ratio v 025 Unit size 30%10°m
Young's modulus E 20 GPa Aspect ratio of fracture a 015
Skeleton density p, 2,650 kg/m’* Solid shear modulus G 174 GPa
Density of fluid (o) p, 762 kg/m3 Fluid (oil) viscosity 7 000144 Pa s
Fluid (oil) bulk modulus Ky 057 GPa
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‘ Solid particlemodulus K, 36 GPa  Number of network nodes | 5
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Grid parameters

Spatial step in each direction Ah 25m
Time step 20% 10
Calculated spatial steps 100
Calculated time steps 27,500
Center frequency 100 Hz
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