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Editorial on the Research Topic

NKT Cells in Cancer Immunotherapy

Natural killer T (NKT) cells are a unique subset of T cells that recognize glycolipid antigens
within the context of CD1d, a non-classical MHC class I-like molecule (1–3). NKT cells have
the capacity to mount strong anti-tumor responses and have thus become a major focus in the
development of effective cancer immunotherapy. Type I, invariant NKT (iNKT) cells, are the
most well-characterized subset of CD1d-restricted T cells. NKT cells express an invariant Vαβ

TCR and are known for their ability to rapidly produce copious amounts of Th1, Th2, and
Th17-type cytokines following stimulation by CD1d-antigen complexes (4). α-Galactocylceramide
(α-GalCer) is a potent activator of iNKT cells. Following treatment with α-GalCer, iNKT cells
produce large amounts of cytokines, undergo clonal expansion, and subsequently activate NK cells,
neutrophils, macrophages, dendritic cells (DC), B cells, and T cells. Moreover, activated NKT cells
can directly induce cell death in tumor cells and infected cells. NKT cells have been shown to play
a critical role autoimmune disease, infection, transplant immunology, and cancer. Therefore, it is
important to understand how to effectively guide their effector functions in order to develop novel
immunotherapeutic strategies (Lam et al.). The articles in this special issue are centered around our
current understanding of NKT cell biology and address outstanding questions in the field.

α-GalCer has been utilized extensively due to its ability to induce potent activation of mouse
and human iNKT cells. In this collection, Zhang et al. highlight different modalities for mobilizing
iNKT cells for anti-cancer therapies. These studies are important because preclinical studies
have shown that repeated exposure to α-GalCer can result in iNKT cell anergy. It is now
appreciated that loading dendritic cells with glycolipid antigens can help avoid the induction
of anergy. Fujii and Shimizu focused on NKT-mediated immunotherapy through selective DC
targeting. Other approaches include using nanovectors/nanoparticle-based delivery systems, α-
GalCer loaded exosomes, as well as treatment with IL-2 or using antibodies to block inhibitory
signaling (Ghinnagow et al.; Lam et al.; Zhang et al.). Co-signaling molecules, such as CD28 and
PD-1, can positively and negatively influence iNKT cell activation, and a review from theWebb lab
details the costimulatory requirements for iNKT cell development and function (Shissler et al.).
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New approaches to improve preclinical platforms to study
α-GalCer-based immunotherapies include the development of
humanized CD1d/NKT mouse models by several groups (Zhang
et al.). In addition, Dashtsoodo et al. has developed a therapy
using a newly identified NKT cell agonist, RK. They found that
RK-pulsed DCs resulted in the establishment of long-term T
cell memory responses. Strikingly, treatment of B16-melanoma
bearing mice with RK-pulsed DCs, resulted in a nearly complete
elimination of the tumor, whereas treatment with a similar
concentration of α-GalCer-pulsed DCs did not demonstrate any
therapeutic benefit.

Studies by Wolf et al., discussed clinical trials focused on
activating iNKT cells using α-GalCer pulsed antigen presenting
cells, as well as adoptive iNKT cell therapies using blood-
derived ex vivo expanded iNKT cells. This and other related
work suggests that iNKT-CARs may be advantageous because
their endogenous TCR has intrinsic anti-tumor activity, strong
signaling through the TCR typically results in a Th1-type
cytokine bias in NKT cells, and iNKT cells can migrate into
non-lymphoid tissues; therefore, they could mediate anti-tumor
immune responses in non-lymphoid tumors. Aside from the
fact that iNKT-CAR could be developed more easily as a
third-party cellular therapy, iNKT may behave differently than
conventional CAR T for which exhaustion and anergy limit
their efficacy in non-lymphoid tumors. In this vein, Zhang and
Donda has developed bi-functional fusion proteins composed of
extracellular CD1d and antibody scFv fragments specific toHER2
or CEA as a means of redirecting iNKT cells to the tumor site.
Importantly, they found that treatment of tumor-bearing mice
with their α-GalCer-loaded-CD1d anti-tumor fusion proteins
resulted in the recruitment of iNKT, NK, and T cells to the tumor,
leading to a significant reduction in tumor growth.

Mavers et al. highlights the critical role of NKT cells
in reducing graft vs.-host-disease (GVHD) in preclinical
and clinical studies of allogeneic hematopoietic stem cell
transplantation and enhancing anti-tumor immune reactions
(GVT). Their work also highlights two key areas needed to
advance iNKT into clinical practice, including the need to
better define and recapitulate NKT cell subsets and a better
understanding of optimal drug delivery strategies for α-GalCer
or other glycolipids for the activation and modulation of the
appropriate NKT cell subset in vivo. It has been well-established
that NKT cells can be activated following their recognition of
lipid antigen presented in the context of CD1d or by cytokines.
Modes of NKT cell activation are discussed by Cerundolo’s lab as
ameans to understanding how to effectively harness their effector
functions in cancer immunotherapy (Bedard et al.). Advances in
technology, such as single cell RNA-seq and microfluidics, can
help to provide a detailed description of the specific NKT subsets

within the tumor microenvironment. Teyton et al. discusses how
the implementation of these techniques can be used to gain a
better understanding of NKT cell during tumorigenesis.

Type II NKT cells have been shown to play a suppressive role
in many different disease settings; however, due to limitations
in reagents and model systems it has been difficult to study
this unique CD1d-restricted subpopulation. Herein, Kato et al.
discuss experimental tools that can be used to analyze type
II NKT cells, such as, 24αβ-TCR mice, 4get Jα18 −/− mice
and CD1d tetramers. The review by Nair and Dhadapkar also
discusses suppression of tumor immunity by type II NKT
cells. Importantly, this comprehensive issue includes primary
research investigating the impact of neurofibromin 1 on CD1d
expression (Liu et al.) and discusses NKT cells from an
ecological, evolutionary, and developmental biology “eco-evo-
devo” perspective (Kumar et al.). The gut microbiota has been
demonstrated to play a critical role determining responses to
immune checkpoint inhibitor therapy, and NKT cells have been
shown to regulate gut microbial ecology, thus future studies
should investigate the impact of the gut microbiome and NKT
cell number and function on immune responses and patient
outcomes following treatment with cancer immunotherapy.

This special issue also describes models in which type I
NKT cells have been shown to play a suppressive role in Th1
responses, thereby promoting tumor formation, specifically in
the intestines (Wang and Cardell). Given the dual role that NKT
cell can play in anti-tumor immunity, by either inducing tumor
suppression or promoting tumor formation, it is important to
investigate the role of the local tumor microenvironment and
understand how this guides NKT cell responses (5, 6). Also,
it is critical to identify and specific markers, such as PLZF,
that can help define functional differences within particular
NKT cell subsets. In closing, this special issue is a collection
of reviews and research articles that showcases the pioneering
techniques, unique model systems, and innovative therapeutic
strategies being utilized to modulate NKT cells. This work in
combination with future studies, will aid our understanding of
how to effectively manipulate these potent effector cells in order
to induce optimal anti-tumor immune responses.
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Type I natural killer T (NKT) cells have gained considerable interest in anticancer immune 
therapy over the last decade. This “innate-like” T  lymphocyte subset has the unique 
ability to recognize foreign and self-derived glycolipid antigens in association with the 
CD1d molecule expressed by antigen-presenting cells. An important property of these 
cells is to bridge innate and acquired immune responses. The adjuvant function of 
NKT cells might be exploited in the clinics. In this review, we discuss the approaches 
currently being used to target NKT cells for cancer therapy. In particular, we highlight 
ongoing strategies utilizing NKT cell-based nanovaccines to optimize immune therapy.

Keywords: natural killer T cells, adjuvant, α-galactosylceramide, CTL response, nanovaccines, dendritic cells, 
cancer

iNTRODUCTiON

Invariant or type I natural killer T cells (referred as NKT cells) represent a highly conserved subset 
of non-conventional T lymphocytes endowed with a remarkably broad range of immune effector and 
regulatory functions. These cells recognize foreign and self-derived glycolipid antigens presented 
by the monomorphic MHC/HLA class I-like molecule CD1d expressed by antigen-presenting 
cells, including dendritic cells (DCs) [for reviews, Ref. (1–5)]. NKT cells express on their surface a 
semi-invariant T cell receptor (TCR) composed by a unique TCR-α chain paired with a restricted 
number of β-chains. Rapidly after natural activation (inflammation, infection), NKT cells produce 
huge amounts of cytokines including T helper (Th)1-like (INF-γ), Th2-like (IL-4), Th17-like (IL-17, 
IL-22), and regulatory (IL-10) cytokines. This flexibility depends on the mode of stimulation, on the 
location and on the NKT cell subset challenged. Of note, NKT cells can be activated by direct TCR 
triggering and also via cytokines, without TCR engagement (5). With their ability to swiftly release 
cytokines, NKT cells have also the potential to lyse cellular targets following TCR recognition of lipid 

Abbreviations: NKT, natural killer T; DCs, dendritic cells; TCR, T cell receptor; α-GalCer, α-galactosylceramide; CAR, chi-
meric antigen receptor; aAVC, artificial adjuvant vector; PLGA, polylactic-coglycolic acid; CTL, cytotoxic CD8+ T lymphocyte; 
TLR, toll-like receptor; Trp2, tyrosinase-related protein 2.
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antigens (6). This property is important in immune surveillance 
against tumor cells and could be exploited for immune-based 
therapy. The role of NKT cells in various pathologies including 
cancer, infection, acute, and chronic inflammation and autoim-
mune diseases has been evidenced in experimental models and in 
humans (5). Along with their natural (beneficial or detrimental) 
role in pathological settings, NKT cells can also be manipulated by 
means of specific CD1d-restricted ligands. For instance, exposure 
of antigen-presenting cells to α-galactosylceramide (α-GalCer) 
triggers potent innate and acquired immune responses. Of par-
ticular interest is the exquisite capacity of NKT cells to promote 
DC maturation and, as a consequence, to trigger potent T and 
B  cell responses (7). This unique property, and given that the 
CD1d/NKT axis is conserved in humans (with no HLA restric-
tion), could be used in clinical situations, including cancer. There 
is a strong interest to exploit the adjuvant effects of α-GalCer or 
related glycolipid derivatives to develop more efficient NKT cell-
based vaccines (8–10). We herein review the effects of α-GalCer 
in preclinical and clinical studies and discuss ongoing and future 
strategies that aim to optimize NKT cell-based antitumor therapy 
with a particular focus on nanovector delivery systems. These 
systems, particularly those allowing encapsulation of tumor anti-
gens and α-GalCer derivatives (adjuvant), might realize maximal 
therapeutic benefit with minimal toxicity.

FRee α-GalCer iN ANTiTUMOR THeRAPY: 
FROM PReCLiNiCAL STUDieS TO 
CLiNiCAL DeveLOPMeNT

Alpha-GalCer is a marine sponge-derived glycosphingolipid orig-
inally discovered in a screen for antitumor compounds (11, 12).  
This seminal discovery has led to the development of synthetic 
α-GalCer derivatives as a family of powerful glycolipid agonists 
for NKT cells in order to promote protective immune responses 
against infections and cancers (13–15). α-GalCer triggers a mixed 
response by NKT  cells including the production of IFN-γ, a 
cytokine important in tumor immune surveillance and inhibition 
of angiogenesis. Different agonists with Th1-promoting functions 
(which appear to be more adapted for anticancer therapies) have 
been described (13, 16). Preclinical studies have highlighted the 
potent antitumor effect of α-GalCer and α-GalCer derivatives 
against solid tumors (sarcoma, melanoma and colon, prostate, and 
lung carcinoma) and hematological malignancies (lymphoma) 
(12, 17–21). Mechanisms involved include early production of 
IFN-γ by NKT cells and NK cells and secretion of IL-12 by DCs 
(20). This success has led to clinical trials in patients with advanced 
lung cancer. Free soluble α-GalCer was used. Unfortunately, no 
or low clinical benefits were reported among patients (22–24). 
These disappointing results might be due to the lower number 
of NKT cells in patients relative to healthy individuals and/or to 
their diminished (but reversible) activation threshold capacity 
(22–32). Hence, one concern in NKT cell-based therapy is the 
diminished NKT cell count and/or function, although this cannot 
be generalized to all advanced cancer patients. Various means 
of circumventing this potential drawback are being developed 
including infusion of autologous ex vivo-expanded NKT  cells. 

This approach can lead to clinically relevant antitumor responses 
(33–39). In vivo transfer of NKT cells expressing chimeric antigen 
receptor in order to redirect their cytotoxicity against tumor 
cells has also been explored in preclinical studies. This approach 
may provide potent antitumor activity (40, 41). Moreover, the 
reprogramming of NKT cells to induced pluripotent stem cells 
and their subsequent re-differentiation into more functional 
NKT cells (compared with the parental cells) is opening up new 
avenues in this field (42, 43). Another reason that might explain 
disappointing clinical data relates to the uncontrolled delivery of 
α-GalCer, which might lead to suboptimal primary and secondary 
activation of NKT cells. This later issue prompted researchers to 
inoculate α-GalCer in a vectorized (cellular or acellular systems) 
form in order to better control the delivery of the active principle 
and to generate more efficient innate and acquired immune-based 
antitumor responses.

veCTORiZATiON OF α-GalCer iN 
CeLLULAR SYSTeMS

Cellular systems in which α-GalCer is incorporated can act as 
potent (NKT cell-based) cellular adjuvants. As described below, 
these cellular systems include DCs, non-antigen presenting cells, 
and cancer cells. Studies in mice have demonstrated that α-GalCer 
loaded in DCs has a higher ability to activate NKT cells and to 
trigger antitumor responses relative to α-GalCer injected in a free 
(non-vectorized) form (18, 44). In the same line, adoptive transfer 
of α-GalCer-loaded autologous peripheral blood mononuclear 
cells or DCs induced clinical benefits in some patients (lung can-
cer and head and neck cancer), an effect that correlates with IFN-γ 
production (23, 33, 34, 36, 45–49). Of note, adoptive transfer of 
autologous NKT cells along with α-GalCer-pulsed mononuclear 
cells or DCs led to encouraging clinical results in term of prolonged 
median overall survival time (35, 36, 50). This effect was associ-
ated with a significant infiltration of NKT cells into the tumor (36) 
Hence, this combination therapy led to significant clinical efficacy, 
although technical and economic issues still persist.

Taniguchi’s group was the first to exploit artificial adjuvant vec-
tors (aAVCs) to enhance NKT cell-based antitumor responses (8). 
This system can induce both innate and long-term memory CD8+ 
T cell responses against cancer. For instance, inoculation (single 
dose) of allogeneic fibroblasts (used as a vector cell) into which 
tumor antigen mRNA and CD1d with α-GalCer were introduced 
led to a long-lasting antitumor response (51–54). The same group 
has designed a human aAVC consisting of embryonic kidney cells 
transfected with the human melanoma MART-1 antigen and 
CD1d and pulsed with α-GalCer. This cellular system promoted 
antitumor response in humanized mice (55). Mechanistically, 
it is likely that allogeneic cells are selectively taken up by DCs 
and that the subsequent cross-presentation of tumor antigens to 
CD8+ T cells and α-GalCer to NKT cell is critical in the promo-
tion of strong and long-lasting tumor-specific cytotoxic CD8+ T 
lymphocytes (CTL) responses.

Tumor cells are rich sources of tumor antigens. However, due to 
the low immunogenicity of tumor antigens, combined adjuvants 
are requisite in order to develop cancer vaccines. Shimizu and 
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collaborators were the first to evaluate the capacity of α-GalCer-
pulsed tumor cells (melanoma) to act as a cellular adjuvant (56). 
Numerous studies have validated the efficacy of this strategy 
in therapeutical settings in the mouse system (solid tumor and 
hematological malignancies) (57–66). Mechanistically, inocu-
lated α-GalCer-pulsed tumor cells are selectively taken up by DCs 
(as for aAVC), which have a unique capacity to cross-present anti-
gens from dying cells. It is also possible that the killing of CD1d-
expressing tumor cells by activated NKT cells leads to the release 
of tumor antigens and to their subsequent cross-presentation by 
DCs. Whatever the mechanism, it is likely that the presentation 
of both α-GalCer and tumor antigens by the same DC is critical 
in the development of the protective tumor-specific CTL-based 
antitumor response. Whether this strategy could be exploited in 
the human setting to harness cancer progression and recurrence, 
without inducing autoimmunity, is still unknown. Cooperative 
action of toll-like receptor (TLR) ligands and iNKT cells on DC 
function is a well-recognized phenomenon (67). Of interest, 
relative to inoculation of α-GalCer-loaded tumor cells alone, 
coadministration of α-GalCer-loaded tumor cells and TLR9 
agonists augments the antitumor response (66).

Introduction of α-GalCer and tumor antigens in antigen-pre-
senting cells has also been attempted in preclinical models. DCs 
expressing the mammary tumor-associated antigen Her-2 and 
pulsed with α-GalCer trigger potent antitumor responses (68). 
The use of different models of tumors revealed that this strategy 
was effective both in prophylactic and therapeutic settings (69). Of 
interest, vaccination with DCs transduced with OVA (used here 
as a model tumor antigen) plus CCL21, a chemokine that attracts 
both T  cells and NKT  cells, protects against OVA-expressing 
tumors (70). Finally, human embryonic stem cell-derived DCs 
genetically engineered to express CD1d can prime CD8+ T cells 
against tumor antigens (71). The potential benefit of this latter 
strategy in cancer immunotherapy is being studied. In conclu-
sion, cell-based vaccines to optimize α-GalCer activity in vivo are 
promising although technical, logistical, and financial difficulties 
might limit the development of such vaccines.

veCTORiZATiON OF α-GalCer iN 
ACeLLULAR SYSTeMS

Definition of Nanovectors
Development of nanovectors (<1 μm) holds great potential for 
cancer immunotherapy, including antitumor vaccines (72–74). 
The interest of using nanosized carriers able to incorporate 
α-GalCer (with or without tumor antigen) to optimize NKT cell-
based anticancer therapy has recently emerged. Encapsulation 
of α-GalCer into nanovectors might offer several advantages 
relative to soluble α-GalCer. This includes preferential internali-
zation by antigen-presenting cells (due to the size), slower and 
sustained release of α-GalCer in CD1d-containing endosomes, 
and minimal side effects (due to the lower amount required for 
a similar biological effect). Moreover, compared to cell-based 
vectorization, nanovectors are less invasive and costly (no 
adoptive transfer). Nanovectors offer the unique opportunity to 
deliver both adjuvant (including α-GalCer) and tumor antigens 

to the same antigen-presenting cells, especially DCs (75–77). 
Nanovectors represent an interesting class of delivery vehicles 
able to induce potent and long-lasting immune responses (78, 79).  
Surprisingly enough, few studies have exploited this unique 
property to enhance the antitumor functions of NKT cells.

Nanovectors include a multiple range of particulate systems 
including (among others) virus-like particles, dendrimers, silica 
microspheres, micelles, nanogels, nanoemulsions, liposomes, 
carbon nanotubes, metallic nanoparticles, and polymeric nano-
particles, which include nanospheres and nanocapsules (Table 1 
and not shown). The physical properties as well as the advantages 
and drawbacks of nanovectors are presented in Table  1. For 
vaccine development, a major goal is to target DCs. Uptake of 
nanovectors by DCs depends on several physicochemical proper-
ties including the size, shape, surface charge, hydrophobicity, and 
hydrophilicity of nanovectors. To target more selectively DCs, it 
is possible to arm nanovectors with ligands or antibodies on their 
surface. Among the different delivery systems for antigen encap-
sulation in vaccines, particularly for cancer therapy, polymeric 
nanoparticles have many advantages including low toxicity, high 
biodegradability, amenability to controlled release of the bioactive 
agents (antigen and adjuvant), preservation of their stability, and 
potential for surface functionalization (79, 80). Currently, there 
is a long list of polymers used to produce nanovectors including 
plasma albumin, chitosan, polyethyleneimine, polylactic acid, and 
polylactic-coglycolic acid (PLGA). PLGA is one of the most suc-
cessful biocompatible and biodegradable polymers (approved for 
in vivo use by the United States Food and Drug Administration). 
PLGA-based nanoparticle systems are particularly interesting 
since they allow high antigen density, incorporation of different 
classes of molecules including proteins and lipids, ability to reach 
MHC I pathway after uptake by DCs, and slow release kinetics 
delivery (75, 81–85). Attempts have been made to incorporate 
α-GalCer in nanosized vectors, with or without tumor antigens 
(Table  2). Here, we detail the effect of vectorized α-GalCer in 
innate and acquired immune-based antitumor responses.

vectorization of α-GalCer without Tumor 
Antigen
Preclinical studies suggest that α-GalCer vectorized in nanovectors 
is of potential interest. This relies mainly on passive (untargeted) 
and active (targeted) delivery of α-GalCer to antigen-presenting 
cells. For instance, silica microspheres coated with lipid bilayers 
plus α-GalCer target mouse CD169-expressing macrophages 
and DCs, both cell types being critical in the primary activation 
of NKT  cells (86, 87). Others and we have demonstrated that 
PLGA-based nanoparticles are internalized by DCs to promote 
NKT  cell activation (88, 89). Another study has shown that 
α-GalCer incorporated in octaarginine-modified liposomes 
are passively taken up by antigen-presenting cells and strongly 
activate NKT cells. This leads to therapeutic protection against 
B16F10 lung metastases (90). In order to optimize the targeting of 
α-GalCer to antigen-presenting cells, nanovectors can be armed 
with ligands or antibodies that bind to specific markers. For 
instance, liposomes decorated with oligomannose that binds to 
mannose receptor and DC-SIGN target DCs in vivo and potently 
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TAbLe 1| Physical properties, advantages and drawbacks of nanovectors.

Table 1 | Dendrimers 1.5–14.5 nm Chemical homogeneity, high, degree of surface functionality 
and versatility, controlled degradation

Multistep syntheses, elevated cost

Micelles 10–100 nm Capacity and compatibility with the loaded drug, minimized 
cylotoxicity

Low drug loading, low drug incorporation 
stability, limited targeting ability

Nanogels 20–200 nm Large Surface area, high capacity to absorb water and other 
biological fluids, functional modification of the surfaces to 
prevent rapid clearance by phagocytic cells

Difficulties to remove the solvents and 
surfactants (toxicity)

Nanoemulsions ≈100 nm Stable structures. Large effective surface area (enhances the 
bioavailability of the active compound)

Special application techniques (high pressure 
homogenizers, ultrasonics), expensive 
equipment. Emulsions require large amounts 
of surfactants (toxic)

Liposomes 400 nm to 
5 μm

Controlled release of the active principle (reduced side effect 
relative to the free form), economical production, good 
tolerability, specific targeting, can transport up to 10,000 
active compounds
Approved for clinical use

Rapid clearance due to the 
reticuloendothelial system low-term stability

Multilamellar vesicles 200 nm to 
1 μm

Large unilamellar vesicles 20 nm to 
200 nm

Possibility to incorporate PEG and antibodies/ligands  
onto the surface to lengthen blood circulation and target 
immune cells

Small unilamellar vesicles

Carbon nanotubes

Single-walled

Multi-walled (2–10 layers 
of graphene sheet)

Radius of 
up to 1 nm

Excellent chemical and thermal stability, ordered structure, 
high mechanical strength, high electrical and thermal 
conductivity, metallic or semimetallic behavior, high surface 
area, and bioavailability

Lack of solubility in aqueous media  
(may be solved by chemical modification 
and functionalization), potential toxic effects, 
aggregate formation (alteration of their 
general physico-chemical properties)

Diameter of 
>10 nm

Metallic nanoparticles 5–500 nm Biological capacity to catalyze reactions in aqueous media at 
standard temperature and pressure, use in molecular imaging

Toxic chemicals, high-energy requirements 
of production

Polymeric nanoparticles

Nanospheres

Continuous matrix 
systems in which loaded 
drugs are generally 
dispersed in and 
entrapped by different 
binding systems

10 nm to 
1 µm

Slower and sustained release of the active principle (adjuvant, 
antigens), high physical stability, simple formulation, 
multifunctionality, incorporation (absorption or covalent 
conjugation) of hydrophilic polymers (e.g., PEG/PEO-chains, 
polysorbate 80 polysaccharides). Cationic systems enhance 
DC uptake, possibility to graft ligands or antibodies to 
enhance the targeting

Quickly eliminated from the bloodstream 
(need specific design to escape the 
reticuloendothelial system cells)

Nanocapsules

Core (hydrophobic or 
hydrophilic) structure 
surrounded by a 
polymeric shell in which 
the drugs are confined

10 nm to 
1 µm

Natural polymers (dextran, Chitosan, albumin, gelatin, starch) 
Copolymers (PFLA, PGA, PLGA) approved by the FDA for 
clinical use, multiple functionalization (PLGA nanoparticles) for 
use in cancer immunotherapy
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stimulate NKT cells toward a Th1 direction (91). Encapsulating 
α-GalCer in liposomes bearing on their surface glycans specific 
for the sialoadhesin CD169 strongly activates NKT cells in vivo 
(92). Our recent data demonstrate that, relative to non-vectorized 
α-GalCer, α-GalCer incorporated into antibody-armed PLGA 
nanoparticles that target DCs increases NKT  cell-based innate 
immune responses (93).

vectorization of α-GalCer and Tumor 
Antigens
Passive (Untargeted) Delivery
Very few studies have been devoted so far to study the potential 
benefit of encapsulating α-GalCer and tumor antigens in nano-
sized vectors. A pioneer study from McKee and colleagues ana-
lyzed the consequences of α-GalCer and antigen co-encapsulation 
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TAbLe 2 | Utilization of α-GalCer-encapsulated nanovectors to promote NKT cell activation and antitumor responses.

Nanovectors Antigen Targeting and NKT cell response Antitumor response Reference

Silica microspheres No Targeting of dendritic cells (DCs) and  
CD169-expressing macrophages (NKT) cell activation

Not tested (86, 87)

Virus-like particles Lymphocytic 
choriomeningitis 
virus-derived 
peptide gp33

NKT cell activation gp33-specific CTL response (94)
Protection against melanoma (prophylactic 
setting)

Liposomes No Targeting of DCs (Mannose receptor, DC-SIGN) via surface 
oligomannose NKT cell activation (Thl biais)

Not tested (91)

No Targeting of macrophages (sialoadhesin CD169) via glycan 
ligands NKT cell activation (mouse and human)

Not tested (92)

No Targeting of antigen-presenting cells (octaarginine-modified 
liposomes) strong NKT cell response

Antitumor effects (melanoma)
Therapeutic setting

(90)

Tyrosinase-related 
protein 2 (Trp2)

NKT cell activation CTL response-antitumor effects
Therapeutic setting

(97)

PLGA-based NPs 
(passive targeting)

No Better primary activation of NKT cells (IFN-γ) Not tested (88, 89)

OVA NKT cell activation Higher CTL response relative to soluble OVA 
and α-GalCer and to TLR-based nanovaccine
Protection against melanoma
Prophylactic and therapeutic settings

(95, 96)

PLGA-based NPs 
(active targeting)

No Targeting of DEC205-expressing DCs Not tested (93)
Better primary activation of NKT cells compared to soluble 
α-GalCer
Reduced unresponsiveness of NKT cells upon restimulation

OVA Same extent of NKT cell activation relative to NPs without 
OVA

Robust OVA-specific CTL response
Antitumor effects (melanoma, lymphoma)
Prophylactic and therapeutic settings

(93)

Trp2
Gp100

Targeting of Clec9a-expressing DCs
NKT cell activation
Better primary and secondary activation of NKT cells

CTL response against tumor self antigens (107)
Antitumor effects (melanoma)
Prophylactic and therapeutic settings

Melan A Targeting of CLEC9a-expressing DCs
Expansion and activation of human NKT cells  
(expanded from PBMCs)

Expansion of human Melan A-specific CD8+ 
T cells

(107)
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in antitumor responses (94). In this work, α-GalCer and the gp33 
peptide derived from lymphocytic choriomeningitis virus (used 
as a model antigen) were incorporated into virus-like particles. 
This composite particle system induced a 10-fold more active 
gp33-specific CTL response, compared to free α-GalCer and 
gp33, and prophylactically protected against gp33-expressing 
melanoma. Mechanistically, it is likely that α-GalCer and gp33 are 
delivered in the endosomal compartment of antigen-presenting 
cells to load to CD1d and MHC Class I, respectively, thus favoring 
cross-presentation by DCs. Dölen and collaborators have recently 
demonstrated that encapsulating α-GalCer and OVA in PLGA-
based nanoparticles is efficient to trigger antitumor responses 
(95). Of interest was the observation that the response was 
superior compared to TLR agonist and OVA co-encapsulation. 
More recently, using a similar strategy, Li and colleagues showed 
that the immune responses triggered by α-GalCer and OVA 
encapsulated in PLGA nanoparticles was longer compared to that 
induced by its soluble counterparts (96). Of note, both intranasal 
and intraperitoneal injection of nanovaccine triggered robust 

antigen-specific CD8+ T cell response. Of interest, Neumann and 
colleagues investigated the effect of α-GalCer and tumor antigens 
co-delivery on antitumor responses using a cationic liposome (97). 
The self-antigen tyrosinase-related protein 2 (Trp2) was used. 
The authors found that the liposomal formulation elicits potent 
antigen-specific CTL response and prevents tumor progression 
in a therapeutic setting. Collectively, encapsulation of α-GalCer 
and tumor antigens in nanovectors, including liposomes and 
PLGA NPs (Table 2), elicits antitumor responses in experimental 
models. In these settings (passive delivery), DCs and probably 
other antigen-presenting cells are critically important.

Active (Targeted) Delivery in DCs
Our work was the first to investigate the consequences of active 
α-GalCer and tumor antigen delivery to DCs by means of mul-
tifunctional nanovectors. In light of the literature showing the 
unique ability of cross-priming DCs (CD8α+ DCs and BDCA3+ 
DCs in the mouse and human system, respectively) to initiate and 
maintain CTL responses (98–101), we decided to target this DC 
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FiGURe 2 | Promotion of CD8+ T cell responses upon direct [toll-like receptor (TLR)-based] and/or indirect [natural killer T (NKT) cell based] dendritic cell (DC) 
activation. Direct activation. Nanoparticles bearing TLR agonists are internalized by DCs (i.e., those that excel in cross-presentation) and activate endosomal 
TLRs (such as TLR3, TLR7/8, or TLR9). This rapidly leads to DC maturation and to the production of inflammatory cytokines and costimulatory molecules that in 
turn promote the differentiation and expansion of naïve CD8+ T cells. Indirect activation. In this setting, the delivery of α-GalCer in DCs leads to the exposition of 
the glycolipid on the cell surface in association with the CD1d molecule (at this stage, the DC is still immature). TCR triggering in NKT cells leads to the release of 
cytokines and to the expression of costimulatory (CD40) molecules culminating in DC maturation. In turn, mature DCs activate naïve CD8+ T cells. Direct and 
indirect activation. One may suppose that the two effects are additive, or even synergistic, to promote optimal CD8+ T cell responses that control tumor 
progression.

FiGURe 1 | Schematic “ménage à trois” between CD8α+ DC, natural killer  
T (NKT) cells, and naive CD8+ T cells. (1) Anti-Clec9a-armed nanoparticles 
that carry α-GalCer and tumor antigen are taken up by CD8α+ DC via the 
endocytic receptor Clec9a. (2) The active components are delivered in the 
endosomes and presented via MHC class I (peptide) and CD1d (α-GalCer) to 
naïve CD8+ T cells and NKT cells, respectively. (3) In response to TCR 
triggering, NKT cells activate the maturation of CD8α+ dendritic cells (DCs) 
through cytokines and costimulatory (CD40) molecules. (4) Mature DCs 
transmit signals to naïve CD8+ T cells, which, in turn, differentiate into CTLs. 
(5) CTLs destroy tumor cells. Note that α-GalCer is acquired and presented 
by DCs that are also actively engaged in presenting peptides to T cells. This 
scheme does not consider reciprocal interactions between NKT cells and 
CD8+ T cells.
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subset. Moreover, we and others showed that CD8α+ DCs are very 
potent to stimulate primary and secondary NKT cell activation 
(93, 102). Finally, the fact that NKT cells can substitute “classical” 
CD4+ Th cells to license the DCs for cross-priming represents 
another reason explaining our devised strategy (103). Since 
cross-priming DCs express specific markers on their surface, 
we armed PLGA-based nanoparticles with antibodies in order 
to target these cells in  vivo. Although DEC205 is not entirely 
specific for cross-priming CD8α+ DCs, nanoparticles armed 
with anti-DEC205 antibodies and carrying both α-GalCer and 
OVA successfully led to antigen cross-presentation and to potent 
antitumor responses (93). Of interest, this strategy also led to a 
long lasting antigen-specific antibody response. The C-type lectin 
Clec9a (also known as DNGR1) is almost exclusively expressed 
by cross-priming mouse and human DCs and is known to confer 
potent CTL responses (104–106). Our recent data indicate that 
PLGA-based nanoparticles armed with anti-Clec9a antibodies 
and incorporating both α-GalCer and OVA can confer protec-
tion against OVA-expressing tumors (lymphoma) (107). We also 
investigated whether our vectorization/targeting strategy might 
break tolerance to tumor self-antigens, an important challenge 
for optimal antitumor therapy [for reviews see Ref. (108–112)]. 
Indeed, co-incorporation of α-GalCer and tumor melanoma-
derived self-antigens (including Trp2) triggered a potent CD8+ 
T  cell-mediated antitumor response (107). Hence, our vaccine 

13

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Ghinnagow et al. Adjuvant Function of NKT Cells 

Frontiers in Immunology | www.frontiersin.org July 2017 | Volume 8 | Article 879

strategy, probably by enhancing DC/NKT cell/naive CD8+ T cell 
interactions (Figure  1), abrogates self-tolerance and promotes 
effective antitumor CTL responses. Signals incorporated by 
DCs are critical to shape the functions of naive T lymphocytes, 
including CD8+ T cells. Because maturation processes of DCs due 
to direct innate sensor (such as TLR) signaling might be differ-
ent to those triggered by NKT  cells, it would be interesting to 
compare the efficacy of TLR-based and NKT cell-based targeted 
nanovaccines in cancer therapies (Figure 2). Co-administration 
of soluble α-GalCer and TLR agonists with antigen was shown 
to enhance the CD8+ T cell response with augmented effect on 
tumor progression, relative to antigen mixed with an adjuvant 
alone (113). Therefore, encapsulation of both TLR ligands and 
α-GalCer derivatives in antibody-armed nanovectors might 
additively or synergistically enhance the responses, a hypothesis 
that needs further investigations.

CONCLUDiNG ReMARKS AND FUTURe 
PeRSPeCTiveS

Growing evidences demonstrate that α-GalCer (or α-GalCer 
derivatives) might be successfully used in cancer therapy. However, 
innovative strategies to better manipulate the adjuvant properties 
and the antitumor potentials of NKT cells are required. Among 
them, optimization of delivery systems that contain α-GalCer and 
tumor antigens to optimally activate NKT  cell-based immune 
responses remains an important goal. Cell-based vaccines that 
promote strong and long-lasting CTL responses offer an interest-
ing immunotherapeutic strategy for the future although concerns 
still exist (cost, invasive procedure). Nanovectors that passively or 
actively target (cross-priming) DCs are also of clinical interest. 
Future studies will aim to enhance the efficacy of delivery systems 
in order to improve cell targeting and to optimize the delivery of 

the active principles (α-GalCer and tumor antigens) in the right 
cellular compartment. Such development will require the use of 
more sophisticated nanovectors to improve surgical strikes and 
possibly the targeting of other (DC expressed) specific molecules. 
Complementary approaches including strategies that boost the 
number/function of NKT cells in patients (transfer of functional 
NKT  cells) and/or that aim to control immune suppression  
(e.g., check point blockers, immunomodulatory drugs) are of 
interest. Moreover, combination of NKT cell and TLR agonists 
might amplify the strength and the quality of the immune 
response in patients. An important area for future research is the 
development of humanized mouse models to accurately replicate 
the NKT cell response in humans. It is likely that, in a near future, 
the use of nanovector-based medicine will optimize antitumor 
responses for the sake of cancer patients, in combination with 
conventional immunotherapy.
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Immune checkpoint blockade therapy has prevailed for several types of cancer;  
however, its effectiveness as a single therapy is still limited. In principle, dendritic cells 
(DCs) should be able to control the post-therapy immune response, in particular since 
they can link the two major arms of the immune system: innate and adaptive immunity. 
Therefore, DCs would be a logical and ideal target for the development of immuno-
therapies. Since DCs are not activated in the steady state, an adjuvant to convert their 
function from tolerogenic to immunogenic would be desirable. Upon ligand activation, 
invariant natural killer T (iNKT) cells simultaneously activate NK cells and also energize 
the DCs, resulting in their full maturation. To utilize such iNKT-licensed “fully” matured 
DCs as adjuvants, mechanisms of both intercellular communication between DC 
subsets and iNKT cells and intracellular molecular signaling in DCs have to be clarified 
and optimized. To generate both innate and adaptive immunity against cancer, a variety 
of strategies with the potential to target iNKT-licensed DCs in situ have been studied. 
The benchmark of success in these studies, each with distinct approaches, will be the 
development of functional NK cells and cytotoxic T cells (CTLs) as well as generation 
of long-term, memory CTL. In this review, we provide a framework for NKT-mediated 
immunotherapy through selective DC targeting in situ, describe progress in the design of 
licensed therapies for iNKT cell targeting of DCs, and highlight the challenge to provide 
maximal benefit to patients.

Keywords: dendritic cells, invariant nKT  cells, innate immunity, adaptive immunity, cross presentation, 
immunotherapy

inTRODUCTiOn

Invariant natural killer T (iNKT) cells have several distinguishing characteristics, most notably they 
express an invariant TCRα chain, Vα14Jα18 in mice and Vα24Jα18 in human, paired with a TCRβ 
chain of limited diversity (1, 2). Unlike most αβTCRs, which recognize peptide MHC I/II complexes, 
iNKT TCRs recognize glycolipid antigens presented by the MHC class I-like molecule CD1d (3–5). The 
first NKT glycolipid ligand was identified by Kirin Pharmaceuticals (6). They extracted agelasphins 
as glycosphingolipid compounds from a marine sponge called Agelas mauritianus. They modified the 
structure of this compound and established a synthetic ligand with a branched galactosylceramide, 
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commonly referred to as α-GalCer (7, 8). In addition to α-GalCer, 
iNKT cells recognize certain microbial ligands, for example cell 
wall sphingolipids from Sphingomonas, Borrelia, or Streptococcus 
(9–11). iNKT cells recognize such natural or synthetic glycolipids 
and promptly produce a broad range of cytokines. iNKT  cells 
are not only stimulated by these glycolipid ligands directly via 
their invariant TCR but also indirectly. Since iNKT cells express 
IL-12 receptors, they can be stimulated by IL-12 released from 
dendritic cells (DCs) or macrophages. For example, Salmonella 
typhimurium does not express a glycolipid ligand, but can stimu-
late iNKT cells in vivo. In this case, the iNKT cells can be activated 
by both IL-12 and recognition of endogenous glycosphingolipid 
ligand on DCs (1, 12).

In the course of establishment or recurrence of tumor cells, 
genetic factors or immune related pressure may mediate the selec-
tive outgrowth of tumor cell clones lacking MHC or potentially 
immunogenic tumor associated antigens (TAA), thus leading 
to heterogeneous tumor cell evolution (13). In terms of cancer 
immunity, tumors are in general composed of two types of cells, 
some are MHC positive, but others are MHC negative. Based on 
our current understanding, the former can be eliminated by cyto-
toxic T cells (CTLs) and the latter can be eliminated by NK cells, 
thus both innate and adaptive immune responses are required for 
complete elimination of tumors. It is well-known that DCs can 
play a crucial role in activating both innate and adaptive immune 
responses (14–16). We and others demonstrated that iNKT cells, 
as well as many toll-like receptor (TLR) ligands, can be used 
for activation of DCs to bridge innate and adaptive immunity 
(17–20). In this review, we detail the rationale for modulation 
or optimization of iNKT  cell-licensed antigen-expressing DCs 
and also describe various attempts that have so far been made for 
developing antitumor therapeutic strategies.

nKT CeLL SUBSeTS—LOCALiZATiOn 
AnD FUnCTiOn

When TCRs on iNKT  cells are stimulated by a ligand such as 
α-GalCer, they are capable of producing IFN-γ and IL-4. These 
Vα14+iNKT cells were recently shown to belong to three distinct 
functional subsets. The NKT1, NKT2, and NKT17 cells all express 
promyelocytic leukemia zinc finger, but can be distinguished 
because they are mainly regulated by transcription factors similar 
to those of helper T cells, i.e., T-bet, GATA-3, and RORγt, respec-
tively (21, 22). Development of each type of iNKT cell is generally 
related to the cytokine milieu encountered upon activation (IFN-
γ, IL-4, or IL-17). An intravenous injection of α-GalCer rapidly 
activates NKT1 cells in the red pulp of the spleen and liver, thus 
leading to systemic IFN-γ and IL-4 responses, but not iNKT cells 
in LN and thymus (23, 24). NKT2 cells are mainly located in 
the medullary area of the thymus and T cell zone of the spleen, 
as well as in mesenteric LNs. Oral administration of α-GalCer 
may induce the activation of NKT2 cells in mLN, resulting in 
local IL-4 production (23, 24). NKT17 cells which are capable of 
producing IL-17, but not IFN-γ, are particularly enriched in the 
lung and the subcapsular region of LNs (23, 24). Thus, the pattern 
and amount of cytokine production can be determined by the 

location of NKT cells, NKT cell type and routes of administration 
of NKT ligands.

inDUCTiOn OF nK CeLL ReSPOnSeS AS 
An ADJUnCTive eFFeCT OF inKT CeLL 
THeRAPY

The critical role of iNKT cells in tumor immunosurveillance was 
shown in chemically induced spontaneous tumor models (25). 
The transfer of iNKT  cells prevented the induction of methyl-
cholanthrene sarcoma tumors in Jα18−/−, iNKT  cell-deficient 
mice. A similar protocol involving transfer of iNKT  cells had 
demonstrated a significant antitumor effect in p53-deficient mice 
(26) and in the transgenic adenocarcinoma of the mouse prostate 
tumor model (27).

Our first approach to understanding iNKT  cell immuno-
therapy was to compare cell therapy (e.g., administration of 
CD1d+ cells loaded with α-GalCer) versus unbound glycolipid 
drug therapy (e.g., administration of soluble α-GalCer) (28). 
An injection of bone marrow-derived ex vivo DCs loaded with 
α-GalCer (BM-DC/Gal) induced iNKT cells capable of producing 
IFN-γ (28) (Figure 1), and this correlated with antitumor effects 
in B16 melanoma lung metastasis. In contrast, the iNKT  cell 
response to unbound α-GalCer was more rapid, but transient 
and then the cells became anergic (28, 29). Thus, the glycolipid 
has different functional effects on iNKT cells when it is injected 
as a free glycolipid or in association with CD1d+ cells. When 
activated by the iNKT cell ligand, IFN-γ and IL-2 production by 
iNKT cells enhances the activation of NK cells as iNKT–NK axis 
(30) (Figure 2). The interaction between iNKT cells and DCs can 
also enhance NK cell activity. After activation by NKT cells, DCs 
express NKG2D ligands and CD70, thus leading to the activation 
of NK cells (31). In addition, since NK cells also express IL-12R, 
IL-12 released from DCs enhances NK  cell-mediated IFN-γ 
production (Figure  2). Thus, iNKT  cells efficiently stimulate 
NK  cells. The near synchronous activation of these iNKT and 
NK cell can account for innate resistance to susceptible tumors.

eFFiCienT inDUCTiOn OF AnTiTUMOR 
CTLs BY inKT CeLL-LiCenSeD DCs

In situ DCs activated by iNKT  cells act as a cellular adjuvant 
for T-cell priming. The licensing of DCs by iNKT  cells occurs 
by several molecular mechanisms. When activated iNKT  cells 
encounter DCs in  situ, co-stimulatory molecules on DCs are 
upregulated, indicative of DC maturation (32, 33). Activated 
iNKT cells can promote conversion of DCs from a tolerogenic 
to an immunogenic state. The DC surface remodeling of these 
mature DCs is driven by two inflammatory cytokines, TNF-α and 
IFN-γ. Cytokine production by the innate lymphocytes is tightly 
regulated by the interactions among unique cell types. TNF-α 
is produced by endogenous DCs, whereas IFN-γ is produced 
by iNKT or NK cells (Figure 2). It was previously reported that 
IFN-γ-producing DCs are important for priming of the gut 
intraepithelial lymphocyte response against intracellular parasitic 
infection (34). We also tested the possibility of IFN-γ production 
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by CD11c+DCs after administration of α-GalCer and found 
that isolated CD11c+cells produce IFN-γ, but that these were 
CD11c+NK cells and not any DC subset (35).

Co-stimulatory molecules, CD40, CD80, and CD86 on DCs, 
which are important for priming T cells, are upregulated during 
the early phase (from 4 h). In addition, we and others recently 
demonstrated upregulation of CD70, 4-1-BBL, and IL-15Ra on 
DCs, which are important for generation of memory T cells, at 
the late phase (from 40 h) (36, 37).

Other innate lymphocytes, such as γδT  cells (38, 39) and 
NK cells (40, 41) may also have adjuvant effects. They produce 
IFN-γ and TNF-α, thus promoting the maturation of DCs and help 
for the generation of CTLs. We also compared the magnitude of 
T cell responses after priming with the iNKT cell ligand α-GalCer 
versus NK cell ligands, such as retinoic acid early inducible-1ε 
(Rae1ε), Rae1γ, CD70 and murine UL16-binding protein-like 
transcript 1 (Mult-1). CTL induction triggered by iNKT cells is 
apparently more powerful than that triggering by NK cells (42).

An important difference between these other innate lympho-
cytes and iNKT cells lies in the CD40L signal to DCs. Bennett 
et al. reported that CD40L on helper T cells plays an crucial role 
in licensing DCs (43). Activated iNKT  cells express CD40L 
transiently (44), but other lymphocytes do not. In fact, the 
adjuvant effect of DCs triggered by iNKT  cells is eliminated 
when CD40−/− mice are used as recipients (44), even though 
the iNKT cell response is still present. In a reciprocal study, co-
administration of antigen plus soluble TNF-α and soluble IFN-γ 
induces the phenotypic maturation of DCs in situ, but does not 
generate antigen-specific T  cells. Thus, phenotypic maturation 
of DCs does not always correspond to an antigen-specific T cell 
response, whereas functional maturation of DCs does. CD40–
CD40L interaction during DC-iNKT  cell cross talk is critical 
for DC maturation, resulting in IL-12 production (Figure  2), 
whereas inflammatory cytokines (TNF-α and IFN-γ) serve as 
co-factors for full maturation of DCs. In addition, iNKT  cell-
licensed DCs apparently use a different mechanism rather than 
that used during TLR signaling. The adjuvant effect of TLR 
ligands depends on either MyD88 or TRIF (45), or both, but that 
by iNKT-licensed DCs does not (32). As discussed above, NKT 
licensed-DCs depend on CD40/CD40L signaling and inflamma-
tory signals (TNF-α and IFN-γ). CD40/CD40L signaling may 
involve the TRAFs (TRAF1, 2, 3, 5, 6), whereas TNF-α and IFN-γ 
signaling may involve the TRAF2 and JAK1/2-STAT1 pathway 
respectively (46, 47).

The location of DCs and iNKT  cells in spleen is another 
important factor in their mutual activation. After their activa-
tion, iNKT cells accumulate in the marginal zone, where they 
co-interact with DCs. After activation by iNKT  cells, XCR1+ 
DCs can traffic to the PALS area and then prime T cells (48). 
These responses are orchestrated by chemokines, cytokines, and 
cell surface molecules. iNKT cell-licensed DCs produce CCL17 
(37, 49), which attracts CCR4+ CD8+ T  cells for subsequent 
activation.

Several factors during the initiation of innate immunity deter-
mine the subsequent flavor of the adaptive immune response: (1) the  
number and function of iNKT cells and APCs, (2) the nature of 
the ligands (i.e., OCH, α-GalCer, or α-C-GalCer) (35), (3) the 

properties of host APCs (DC location or subset) (44), and (4) the 
level of CD1d expression (50). Thus, the magnitude of the innate 
immune response generated by all these factors can be directly 
correlated with the subsequent adaptive immune response.

DeveLOPMenT OF inKT-TRiGGeReD 
AnTiTUMOR STRATeGieS LinKinG 
innATe AnD ADAPTive THeRAPY

Cellular vaccines Acting As immunological 
Adjuvant and Tumor Antigen Carrying 
vector
We and others demonstrated that co-administration of antigen 
and iNKT ligand generates antigen-specific T cells, in addition to 
activating iNKT and NK cells (32, 33, 51). However, several opti-
mal conditions are limited. It has been reported that DCs cannot 
phagocytize antigen after their maturation. Indeed, administra-
tion of tumor antigen 4  h after an administration of NKT  cell 
ligand did not lead to a T cell response (32, 33). Therefore, tumor 
antigen and NKT cell ligands have to be delivered simultaneously 
to in vivo DCs (32, 33). In addition, we also found that this co-
administration protocol generates CTL, but not memory T cells 
easily.

CD1d+ cells loaded with α-GalCer can activate iNKT  cells 
directly in vitro, but it was not known whether adaptive immu-
nity was generated after initiating this innate immune response. 
We first showed conclusively that CD1d+tumor/Gal can induce 
antigen-specific CD4+ and CD8+ T cell immunity (50) (Figure 1). 
From this finding, we proposed a strategy using all-in one cell 
type that expressed tumor antigen as well as CD1d that was 
loaded with the NKT  cell ligand α-GalCer simultaneously, a 
cell that we reported an adjuvant vector cell (50, 52) (Figure 1). 
CD1d is generally expressed on most hematopoietic cells, e.g., 
DCs, B  cells, T  cells, and macrophages, and on some non-
hematopoietic cells, e.g., intestinal epithelium and hepatocytes, 
including multiple tumor types (53). Therefore, approaches using 
adjuvant vector cells may be applicable not only for most hema-
tological disorders, where they can be applied relatively easily, 
but also for many solid tumor cells, a more difficult therapeutic 
target. In fact, the therapeutic strategy using tumor/Gal has been 
extended to many types of CD1d+ tumor cells, including in our 
own studies, e.g., B16 melanoma, EL4 thymoma, WEHI3B leu-
kemia, and J558 plasmacytoma. In addition, Hunn et al. reported 
that irradiated Glioma/Gal was effective in a prophylactic setting 
and also in a therapeutic setting together with Treg depletion of 
intracranial glioma model (54). Kobayashi et  al. have reported 
on an α-GalCer-loaded B cell lymphoma (Eμ-myc tumor) com-
bined with an agonistic antibody targeting 4-1BB (CD137) (55). 
The studies as above demonstrated the antigen-specific effector 
T  cell-mediated survival. These tumor/Gal vaccines would be 
useful in an autologous setting.

Instead of such syngeneic tumor/Gal therapy, we newly 
established the concept of an artificial adjuvant vector cell 
(aAVC) as a new type of cancer vaccine platform that incorpo-
rates in vivo iNKT-licensed DC therapy (Figure 1). These cells 
(aAVC), NIH3T3 cells for mouse and HEK293 for humans, have 
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been transfected with a CD1d and tumor antigen mRNA and 
then loaded with α-GalCer (37, 42, 56). The aAVC express the 
α-GalCer-CD1d complex on their surface and tumor antigen 
protein inside of the allogeneic cells. The aAVC treatment reduces 
the number of metastases, and eliminated grossly large tumors 
(37, 42, 56).

As the mechanism of adjuvant vector cells (tumor/Gal or 
aAVC), four immunological steps take place (Figure 2). Initially, 
these cells directly activate iNKT  cells. iNKT  cells producing 
IFN-γ can then simultaneously activate NK cells. These innate 
killer iNKT/NK cells capable of producing IFN- γ reject the adju-
vant vector cells, but some of the killed adjuvant vector cells are 
taken up by DCs in situ, thereby several immunogenic features 
of DCs are engaged. The adjuvant vector cells-capturing DCs 
in lung, liver, and spleen become matured by their interaction 
with iNKT cells, resulting from CD40L–CD40 interactions and 
production of inflammatory cytokines. Next, the mature DCs 
present the TAAs to T cells on both MHC class I and II in situ. 
Particularly, the XCR1+DCs are specialized to cross-present 
antigens on MHC class I. Notably, when mice were vaccinated 
with adjuvant vector cells, they became resistant to the parental 
tumor cells. In fact, administration of adjuvant vector cells 
induces CTL and long-term memory T cells efficiently in vivo 
(48, 50, 52).

Bacteria-Based Adjuvant Therapy
Listeria monocytogenes (LM) is a Gram-positive intracellular  
bacterium. Several groups have investigated whether recombinant 
LM lacking virulence genes, but expressing several TLR ligands 
such as lipoteichoic acid, would be useful for delivering TAA 
in vivo (57, 58). After infecting the target cells with LM, there was 
active phagocytosis and lysis of the bacteria in the phagosome. The 
recombinant LM allowed for the delivery of the TAA directly into 
macrophages and DCs, which can present TAA peptides to CD4+ 
and CD8+  T cells. In practice, a live attenuated, LM-based tumor 
vaccine expressing TAA-Mage-b (Mb) and α-GalCer has been 
studied (59) (Figure 1). The T cell-mediated antitumor efficacy 
resulting from direct incorporation of α-GalCer into live LM-Mb 
was found to be more powerful and safer than co-administration 
of the LM-Mb vaccine and α-GalCer, but the iNKT cell response 
was weaker.

Bacille Calmette–Guerin (BCG) was derived by attenuating 
Mycobacterium bovis and is widely used in many countries 
as a tuberculosis vaccine, although its efficacy has been con-
tested. Recombinant BCG (rBCG) strains expressing either 
Listeriolysin-O from LM or perfringolysin from Clostridium  
perfringens have been investigated as candidate tumor vaccines 
(60). In simple rBCG-based vaccination models, skin CD11bhigh 
DC subsets present antigen to CD4+ T  cells (61). Using an 
approach of incorporating glycolipids into rBCG strains, rBCG 
strains expressing an SIV Gag antigen (rBCG-SIV gag) together 
with α-GalCer enhanced CTL more efficiently compared to 
responses primed by simple rBCG-SIV gag (62) (Figure 1). Similar 
to the concept of adjuvant vector cells or aAVC, these two types 
of bacteria vaccine expressing antigen and NKT ligand showed 
CTL induction more efficiently than that of co-administration 
approach.

inKT CeLL TRAnSFeR 
iMMUnOTHeRAPY

As the other option, complementation of iNKT cell therapy may 
be an approach for cancer patients with decreased iNKT  cell 
frequencies in target organs. This type of iNKT  cell-based 
immunotherapy may be able to take advantage of the recent iPS 
reprograming technology. We recently established a protocol to 
reprogram human Vα24+iNKT cells and then to re-differentiate 
them into functional iNKT cells, so called iPS-iNKT cells (63). 
Similar to conventional human Vα24+iNKT cells, iPS-iNKT cells 
can produce IFN-γ upon NKT ligand activation and kill several 
types of human tumor cell lines (leukemia, lung cancer, and head 
and neck cancers) in vitro and in vivo. As already discussed in this 
review, we demonstrated that NK cell activity but not T cell induc-
tion is induced after the iNKT  cell activation, mainly through 
IFN-γ production as iNKT–NK axis. In fact, once activated 
in  vivo, human iPS-iNKT  cells have been shown, in “human-
ized” NOG mice with human peripheral blood cells, to mediate 
adjunctive activity by activating autologous NK cells (Figure 1). 
We, therefore, suggest that human iPS-Vα24+iNKT  cells could 
exert antitumor activity in vivo.

COnCLUSiOn

When iNKT cells are activated by the ligand, they subsequently 
have the power to activate NK  cells by producing IFN-γ as 
iNKT–NK axis. In fact, several immunotherapies using autolo-
gous DC/Gal in clinical trials of solid tumor and hematological 
malignancies have indicated the importance of IFN-γ-producing 
iNKT cells and NK cell activation (Figure 1). Although iNKT cells 
can mature DCs in  vivo, IFN-γ alone is not sufficient to DC 
maturation and T  cell induction. Therefore, to further develop 
iNKT cell-mediated therapy, many groups have focused on the 
interaction between DC and iNKT cells. We summarized details 
of the mechanism of the interaction between these two cell types 
and also introduced several iNKT cell-triggered DC approaches 
that are candidates for potential new therapies for cancer treat-
ment. Adjuvant vector cells, including Tumor/Gal or aAVC as 
well as non-somatic cell adjuvants (bacteria) are all candidates 
for iNKT-triggered DC mediated immunotherapy.
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Invariant natural killer T (iNKT) cells serve as a bridge between innate and adaptive 
immunity and have been shown to play an important role in immune regulation, defense 
against pathogens, and cancer immunity. Recent data also suggest that this com-
partment of the immune system plays a significant role in reducing graft-versus-host 
disease (GVHD) in the setting of allogeneic hematopoietic stem cell transplantation. 
Murine studies have shown that boosting iNKT numbers through certain conditioning 
regimens or adoptive transfer leads to suppression of acute or chronic GVHD. Preclinical 
work reveals that iNKT cells exert their suppressive function by expanding regulatory 
T cells in vivo, though the exact mechanism by which this occurs has yet to be fully 
elucidated. Human studies have demonstrated that a higher number of iNKT cells in the 
graft or in the peripheral blood of the recipient post-transplantation are associated with 
a reduction in GVHD risk, importantly without a loss of graft-versus-tumor effect. In two 
separate analyses of many immune cell subsets in allogeneic grafts, iNKT cell dose was 
the only parameter associated with a significant improvement in GVHD or in GVHD-free  
progression-free survival. Failure to reconstitute iNKT  cells following allogeneic trans-
plantation has also been associated with an increased risk of relapse. These data 
demonstrate that iNKT cells hold promise for future clinical application in the prevention 
of GVHD in allogeneic stem cell transplantation and warrant further study of the immu-
noregulatory functions of iNKT cells in this setting.

Keywords: invariant natural killer T  cells, graft-versus-host disease, allogeneic hematopoietic stem cell 
transplantation, graft-versus-tumor effect, regulatory T cells

Abbreviations: α-GalCer, alpha-galactosylceramide; aGVHD, acute graft-versus-host disease; AML, acute myeloid leuke-
mia; ATG, antithymocyte globulin; BMT, bone marrow transplantation; cGVHD, chronic graft-versus-host disease; DCs, 
dendritic cells; GCSF, granulocyte colony stimulating factor; GPFS, GVHD-free progression-free survival; GVHD, graft-
versus-host disease; GVT, graft-versus-tumor; HCT, hematopoietic cell transplantation; IFN, interferon; IL, interleukin; 
iNKT, invariant natural killer T; MAC, myeloablative conditioning; MDSCs, myeloid-derived suppressor cells; MMRD, 
mismatched unrelated donor; MRD, matched related donor; MUD, matched unrelated donor; NRM, non-relapse mortality; 
OS, overall survival; PBSCT, peripheral blood stem cell transplantation; RIC, reduced intensity conditioning; STAT, signal 
transducer and activator of transcription; TBI, total body irradiation; TCR, T cell receptor; TGF, transforming growth factor; 
TLI, total lymphocyte irradiation; TNF, tumor necrosis factor; Tregs, regulatory T cells; UCB, umbilical cord blood.
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FiGuRe 1 | Roles of invariant natural killer T cells in allogeneic stem cell transplantation. Depicted are the variety of roles for iNKT in allogeneic stem cell 
transplantation which have been demonstrated in multiple studies, including graft-versus-tumor effect, antimicrobial effect, and suppression of graft-versus-host 
disease (GVHD). Purported mechanisms by which iNKT may function to suppress GVHD are shown. Red color represents inflammatory phenotype, blue color 
represents suppressive or anti-inflammatory phenotype, orange circle represents endogenous lipid antigen, foreign lipid antigen, or exogenous synthetic lipid antigen 
[i.e., alpha-galactosylceramide (α-GalCer)]. iNKT, invariant natural killer T cells; TCR, T cell receptor; DC, dendritic cell; IL, interleukin; TGF, transforming growth 
factor; MDSC, myeloid-derived suppressor cell; Treg, regulatory T cell; T, T lymphocyte.
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iNTRODuCTiON

Hematopoietic cell transplantation (HCT) remains the only  
curative treatment option for patients with many hematologic 
malignancies and hematologic disorders. Despite many improve-
ments to support patients following transplantation, graft-
versus-host disease (GVHD) continues to be one of the leading 
causes of morbidity and mortality (1). GVHD is characterized 
by a dys regulation of donor immune cells leading to a massive 
alloreactive T  cell proliferation and destruction of host tissues 
(2). To better understand the mechanisms underlying this dys-
regulation and potentially improve the outcome following HCT, 
different immune regulatory cell populations such as regulatory 
T cells (Tregs) and invariant natural killer T (iNKT) cells have 
been extensively studied. This review will focus on the immune 
biology of iNKT cells in the transplant setting.

Invariant natural killer T cells are a rare subset of T lympho-
cytes which are characterized by the coexpression of natural killer 
and T cell markers. They express a T cell receptor (TCR) which 
is semi-invariant (Vα14Jα18 pairing with a limited selection of 
beta chains in mice and Vα24Jα18 typically pairing with Vβ11 

in humans) and which recognizes glycolipid antigens presented 
by the non-polymorphic MHC Class I-like molecule CD1d with 
high affinity (3).

Despite their rarity, iNKT cells exert potent immunomodula-
tory functions bridging the innate and adaptive immune systems 
by rapidly producing vast amounts of cytokines and chemokines. 
This results either in enhanced immune responses (i.e., defense 
against pathogens, immunosurveillance in cancer) via the 
production of Th1 cytokines such as interferon (IFN)-γ or in 
suppression of autoimmune and alloimmune reactions by the 
production of interleukin (IL)-4 and IL-10 (4, 5) (Figure 1).

MuRiNe STuDieS

Host iNKT Cells Protect from GvHD
During the last two decades multiple studies have focused on  
the role of iNKT cells in the context of allogeneic HCT utilizing 
different animal models. One approach from the group of Strober 
et al. revealed that reduced intensity conditioning (RIC) with total 
lymphoid irradiation (TLI) and antithymocyte globulin (ATG) 
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results in a relative expansion of host iNKT cells which protect 
from GVHD, while preserving the graft-versus tumor effect  
(6, 7). The protection from GVHD was associated with a bias in 
donor T cell polarization to a Th2 cytokine pattern. The same 
group also demonstrated that host iNKT cells induce a donor 
Treg expansion and that these Tregs are crucial to protect from 
GVHD (8). The Treg proliferation was IL-4 dependent as it was 
lost when IL-4 deficient recipients were used. Another study 
investigating the effect of residual host NKT  cells in a major 
mismatch transplantation model with total body irradiation 
(TBI) found that these cells are essential for the protection from 
GVHD but can also cause a delay in engraftment and, under 
certain conditions, graft rejection (9).

Stimulation of iNKT Cells with  
Alpha-Galactosylceramide (α-GalCer) 
Protects from GvHD
Treatment of recipient mice with a synthetic iNKT TCR 
ligand α-GalCer (in aqueous or liposomal form) on the day of 
transplantation significantly reduced mortality and morbidity 
from GVHD (10–13). One study showed that this effect was 
abrogated if NKT cell-deficient CD1d knockout (CD1d−/−) or 
IL-4−/− recipient mice were used, indicating that host iNKT cells 
and their production of IL-4 play a critical role in tolerance 
induction (11). Furthermore, in the same study it was shown 
that tolerance induction also failed if the donors were signal 
transducer and activator of transcription (STAT)6 deficient. 
This suggests that the protection from GVHD is dependent 
on the Th2 polarization of donor T cells mediated by STAT6-
dependent mechanisms. Another study confirmed that the 
activation of iNKT with the liposomal form of α-GalCer and 
a CD40-CD40 ligand blockade lead to the establishment of a 
mixed chimerism and provides tolerance in a murine model 
with combined allogeneic bone marrow transplantation (BMT) 
and heart transplantation (13). Together with the protection 
from GVHD and the establishment of a mixed chimerism, 
an activation of Tregs and high amounts of Th2 cytokines in 
the recipient mice was observed. In line with this, Duramad 
et  al. observed a dose-dependent expansion of Tregs in 
spleen, lymph nodes, and bone marrow after administration 
of α-GalCer on the day of HCT (12). Interestingly the protec-
tive effect of α-GalCer was abrogated if the donors were Treg 
depleted. Further, in a model of chronic GVHD (cGVHD) 
the administration of α-GalCer is capable of reversing and 
preventing cGVHD (14). As described below, treatment with 
α-GalCer for the protection of GVHD is the first approach that 
has been successfully translated into the clinic and is currently 
being investigated in clinical trials.

Adoptive Transfer of iNKT Cells  
Protects from GvHD
Another approach to harnessing the immunoregulatory abilities  
of iNKT  cells is the adoptive transfer of either recipient-type, 
donor-type, or third party iNKT cells in the allogeneic transplan-
tation setting. Several studies by our group and others convinc-
ingly demonstrated that the adoptive transfer of iNKT cells leads  

to a decrease in acute GVHD without losing the graft-versus-
tumor (GVT) effect (7, 9, 15–17). In these studies, adoptively 
transferred donor CD4+ iNKT expanded in secondary lymphoid 
organs and migrated to GvHD target organs, similar to conven-
tional T cells (15). Interestingly, we have shown that extremely 
low iNKT cell numbers (i.e., 5 × 104) and even cells from a third-
party source are capable of these effects (15–17). Additionally, the 
adoptive transfer of donor iNKT cells is able to prevent and even 
reverse cGVHD in a minor-mismatch BMT model. This effect 
was also dependent on the production of IL-4 by iNKT cells and 
the presence of Tregs (14).

In an effort to make iNKT cells more accessible in the clinic,  
ex vivo expansion before adoptive transfer has been explored. 
Several studies demonstrated that it is feasible to expand 
iNKT  cells in  vitro with a combination of α-GalCer and IL-2. 
In these studies, the expanded iNKT  cells provide protection 
from GVHD which is dependent on the production of IL-4 by 
iNKT cells (18, 19).

Mechanisms of iNKT Cell Function in 
Murine HCT
Most of the studies described above had two intriguing findings 
in common. First, iNKT cells give rise to a bias in donor T cell 
polarization toward a Th2 cytokine pattern with significantly 
reduced production of IFN-γ and tumor necrosis factor (TNF)-
alpha (6, 13, 15, 17), and some even showed that the prolif-
eration of conventional T cells was diminished (6, 16). Second, 
the survival benefit of mice treated with TLI/ATG, donor 
iNKT cells, or α-GalCer was accompanied by an expansion of 
Tregs (12–14, 16, 17, 20). Tregs have been shown to function as 
potent immune suppressors in the context of allogeneic trans-
plantation and are capable of both inhibiting GVHD as well 
as preserving the GVT effect (21–23). There is compelling evi-
dence that the mechanism by which iNKT cells suppress GVHD 
is through the expansion of Tregs. Accordingly, it was shown in 
different murine transplantation models that cytokines such as 
IL-4 produced by iNKT cells play an important role in enhanc-
ing Treg function and that depletion of Tregs leads to a loss of 
function of iNKT  cells (14, 17, 20). Interestingly, it was also 
demonstrated that Tregs are not capable of inducing tolerance 
in a model of combined marrow and organ transplantation if 
the recipient is iNKT cell deficient (20). Another hypothesis to 
support the latter findings is that other cell populations, such as 
myeloid-derived suppressor cells (MDSCs) or CD8+ dendritic 
cells (DC), play an important role in the interplay between 
iNKT cells and Tregs.

Myeloid-derived suppressor cells are a heterogenous cell 
subset known to play a major role in the regulation of immune 
responses in cancer and other pathological conditions (24), and 
several studies have shown that they have the potential to inhibit 
GVHD (25, 26) and to induce Treg proliferation after HCT in 
PDL1-dependent manner (25, 26). Moreover, we demonstrated 
that MDSCs can work as a facilitator between iNKT  cells and 
Tregs in a murine allogeneic BMT model with adoptive trans-
fer of donor iNKT  cells (17). In this model, certain subsets of 
MDSCs were shown to expand shortly after transplantation 
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and, if depleted, the protective effect of the transferred donor 
iNKT  cells was lost. Furthermore, in the same model, MDSCs 
were also crucial to mediate the iNKT  cell-induced expansion 
of Tregs as the depletion of MDSCs led to a depletion of Tregs 
(17). In another model with combined bone marrow and heart 
transplantation, MDSCs were crucial to promote tolerance  
and chimerism and their activation was dependent on host 
iNKT cells and their production of IL-4 (27).

The second cell population, which has recently come to 
attention, is CD8α+ DCs. It was shown previously that these 
cells are the major DC subset to present a variety of glycolipids 
through the CD1d molecule to iNKT  cells leading to their 
activation (28). Furthermore, it is known that CD8α+205+DCs 
induce Tregs in a transforming growth factor-beta (TGF-β) 
and retinoic acid-dependent manner (29) and that they can 
exert immunosuppressive characteristics in specific situations 
yet are crucial to promote the GVT effect (29, 30). One group 
also found that there is an aggravated course of GVHD if this 
subset of DCs is missing (31). In addition, the total number of 
Tregs and levels of TGF-β are significantly lower when CD8+ 
DCs are not present. CD8+ DCs induced iNKT cells to secret 
IL-4, IL-13, and IFN-γ with a Th-2 bias (32). In return these 
tolerogenic iNKT cells altered the differentiation of CD8+ DCs 
and suppressed graft rejection in  vivo demonstrating elegantly 
that interactions between tolerogenic CD8+ DCs and iNKT cells 
are required to induce tolerance.

HuMAN STuDieS

In addition to these murine experiments, a number of human 
studies have also shown a role for iNKT in suppressing GVHD. 
Although largely correlative, these studies demonstrate the 
power of iNKT cells and the need for further research. In these 
reports, iNKT were defined as CD3+Vα24+Vβ11+, except where 
indicated.

Persistence and Rapid Recovery of iNKT 
Cells following Allogeneic HCT Are 
Associated with Reduced GvHD
One of the earliest studies delineating iNKT reconstitution 
following allogeneic HCT demonstrated a correlation between 
increased peripheral blood iNKT count and reduced acute and 
chronic GHVD (33). In this study iNKT were enumerated in the 
peripheral blood starting on day +30 following transplantation 
of 106 patients undergoing HCT without T-depletion following 
myeloablative conditioning (MAC). Donors included a mix of 
matched unrelated donors (MUDs) and matched related donors 
(MRD). In a multivariate analysis, stem cell source was the only 
variable associated with iNKT content in the peripheral blood 
post-transplantation. Following peripheral blood stem cell 
transplantation (PBSCT), iNKT cells were reconstituted within 
1 month, while after BMT, iNKT were not fully reconstituted 
within 1 year (and all iNKT were <10% recipient chimerism in 
four analyzed patients). In BMT, but not PBSCT, the number 
of total, CD4+, and CD4− iNKT were significantly reduced 
in patients with aGVHD, and total and CD4+ iNKT (as well 

as iNKT/T  cell ratio) were significantly reduced in extensive 
cGVHD. Importantly, steroids had no impact on iNKT counts. 
Although limited by quite high numbers of missing values, 
this study represents the first human report to explore the link 
between iNKT recovery and development of GVHD.

An early human study from our group translated the 
encouraging murine TLI/ATG results in 37 patients receiving 
human leukocyte antigen-matched (MRD or MUD) granulocyte 
colony-stimulating factor-mobilized PBSCT for hematologic 
malignancies (34). Only two patients developed aGVHD (one 
was only grade I), considerably lower than previously reported 
for RIC regimens, and only seven developed extensive cGVHD. 
Importantly, 62% either converted to or remained in CR. 
Interestingly, production of IL-4 (but not IFN-γ, IL-2, or TNF-α)  
was markedly elevated in CD4+ T  cells from patients who 
underwent TLI/ATG conditioning as compared to conventional 
RIC or normal subjects. In the five patients for whom peripheral 
blood iNKT count was measured following conditioning, iNKT 
percentage was increased by a factor of 10. Building on this 
success, a second report of 111 additional patients, including 
a few mismatched unrelated donors (MMUD) demonstrated 
that the overall probability of aGVHD was substantially lower 
than typically observed with RIC at 5.4%, and slightly lower for 
extensive chronic GVHD at 28% (35). One limitation was that 
19% of patients developed mixed chimerism, associated with 
higher risk of disease relapse or progression. The overall risk 
of relapse/progression was around 60%, though many were 
salvaged with donor lymphocyte infusion. Non-relapse mortality 
(NRM) was 3% suggesting excellent tolerability; indeed, death 
from infection was extremely low possibly related to less need for 
immunosuppression given the low GVHD rates. These findings 
were independently corroborated when TLI/ATG was used in  
a multicenter study of 45 patients (36) and when compared  
with TBI/fludarabine in a randomized study (37).

Interestingly, the effect of ATG on iNKT preservation and 
GVHD reduction does not appear to extend to the myeloabla-
tive setting. Immune cell reconstitution was analyzed starting at 
day +40 in 65 patients undergoing MAC prior to PBSCT with 
or without ATG (38). In this setting, the inclusion of ATG led 
to a significantly decreased number of iNKT  cells (defined as 
CD3+CD56+Vα24Jα18+Vβ11+) at day +40, though by day +100 
no difference was noted. The ATG group also had a dramatically 
lower incidence of aGVHD with no change in cGVHD. Another 
study failed to find an association of iNKT with GVHD in a MAC 
plus ATG setting (39). Similarly, a third study of MAC plus ATG 
conditioning evaluated iNKT after conditioning and starting at 
day +7 (40). Normalization of iNKT to healthy control levels  
had not occurred by day +730, though CD4− iNKT were recover-
ing faster than CD4+ iNKT. Interestingly, CD4− iNKT cells were 
significantly higher on d28 in patients who ultimately developed 
GVHD versus those did not.

However, in a study of 71 heterogenous patients (MAC and 
RIC, T  cell-depleted and non-depleted, mix of donor types 
and cell sources), early post-transplantation iNKT recovery 
[defined as CD3+CD1d tetramer (PBS57)+] predicted aGVHD 
and overall survival (OS) (41). iNKT/T ratio was monitored 
post-transplant and a threshold of 1  ×  10−3 appeared to 
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discriminate patients into low and high groups predictive 
of aGVHD. In multivariate analysis, high iNKT/T ratio was 
significantly associated with absence of aGVHD (hazard ratio 
0.12), and OS was also significantly improved (90 versus 52% at 
2 years). Significant reduction in NRM (6.1 versus 36.7%) was 
noted to be due to fewer deaths from aGVHD and infection. 
Impressively, the d15 ratio (with a cutoff of 0.58 × 10−3) could 
discriminate the risk of aGVHD with an area under the curve 
of 0.812 (odds ratio 0.06 for aGVHD in high iNKT/T group). 
Interestingly, CD4+ iNKT chimerism of five patients revealed all 
to be of donor origin.

Recovery of iNKT Cells is Also Associated 
with enhanced GvT effect
One study evaluated iNKT reconstitution (CD3+Vα24Jα18+) in 
cord blood and following umbilical cord blood (UCB) trans-
plantation in 33 patients with high-risk acute myeloid leukemia 
(AML) following RIC (42). While iNKT  cells were reduced 
after conditioning compared to healthy controls, a transient 
increase in frequency was observed in the first 3 months post-
transplant (which was not seen in other T  cell populations). 
In the first few months, most iNKT were CD4+, similar to that 
observed in UCB, which fell to healthy adult control levels by 
12  months. CD45RO expression remained high throughout 
(with low CD45RA), suggesting a primed/memory phenotype 
similar to UCB, while CD62L and CCR7 fell over time, sug-
gesting progression from a central memory phenotype toward 
more effector/memory tissue-homing. Early post-transplant 
iNKT cells were also enriched for CD69 which decreased over 
time, suggesting early activation. Production of IFN-γ and IL-4 
were both substantially reduced and granulocyte–macrophage 
colony-stimulating factor was substantially increased in UCB 
and in early post-transplant samples compared to healthy adults, 
which all normalized by 6  months post-transplant. Although 
cytotoxicity of iNKT against CD1d-transfected AML cell lines 
and primary AML blasts was significantly reduced in UCB and 
early post-transplant, it reached healthy adult control levels 
within 6 months. This study highlights the reconstitution pro-
cess of iNKT cells following UCB transplantation and begins to 
elucidate the mechanisms by which GVT may occur.

Invariant natural killer T  cell reconstitution was further 
studied in a group of pediatric patients receiving T cell depleted 
haploidentical transplants for hematologic malignancies (43). 
Twenty-two patients were followed longitudinally from day +30 
to 18 months; another 11 underwent cross-sectional analysis at 
2–6 years post-transplant. In this setting, iNKT cells emerged in 
peripheral blood around 3 months post-transplant and reached 
levels similar to age-matched healthy children by 18  months. 
The iNKT cell profile initially resembled that of cord blood: pre-
dominantly CD4+CD161−. CD4− iNKT began to emerge about 
2–4 months later than CD4+ iNKT and CD161+ cells emerged 
over time in both populations. IFN-γ production reached levels  
close to healthy adults by 6  months in CD4− iNKT, and both 
populations could produce IL-4 normally. This study also 
strikingly demonstrated that delayed iNKT reconstitution was 
significantly associated with relapse. iNKT remained essentially 

undetectable during the entire 18-month follow-up in the eight 
patients who experienced relapse, while absolute iNKT  cell 
counts were significantly higher in all patients who maintained 
remission. Although a decreased absolute number of T  cells  
was also significantly associated with relapse, in terms of fre-
quency only a lower iNKT cell frequency was significantly associ-
ated with relapse (19 iNKT/106 T cells in patients who relapsed 
versus 107 iNKT  cells/106 T  cells in those who did not) (44).  
The authors suggest that monitoring of iNKT cell reconstitution 
post-transplant and adoptively transferring donor iNKT  cells  
in those patients failing to reconstitute may be a method by  
which relapse could be prevented.

increased Number of iNKT Cells in the 
Allogeneic Graft Product is Associated 
with Reduced Acute GvHD
In addition to the above studies demonstrating that persistence 
and/or rapid recovery of iNKT  cells following transplantation 
correlate with reduced GVHD, a number of studies have evaluated 
the graft content of various cell populations and potential impact 
on clinically meaningful outcomes. The frequency of lymphocyte 
subsets in cryopreserved samples of 78 sibling donor non- 
T-depleted PBSCT grafts for patients undergoing mostly MAC 
were analyzed (45). In multivariate regression analysis, CD4− 
iNKT cell dose and chronic myeloid leukemia diagnosis were the 
only factors associated with aGVHD, with a RR of 4.27 for CD4− 
iNKT dose below the median (0.031 × 106/kg). Interestingly, graft 
Treg dose did not predict for grades II–IV aGVHD. The impact 
of iNKT  cell dose on chronic GVHD, relapse, or survival was 
not assessed. Further, CD4− iNKT cells consistently suppressed  
proliferation in a mixed lymphocyte reaction with autologous 
T  cells and allogeneic stimulator cells in a dose-dependent  
manner, and suppressed IFN-γ secretion.

Another study characterized over 25 immune cell subsets 
within cryopreserved grafts of 80 patients undergoing PBSCT 
from a mix of MRD, MUD, and MMUDs (46). Most patients 
received RIC and the vast majority received in vivo T cell deple-
tion with ATG. The dose of iNKT  cells (CD3+Vα24+) was the 
only factor with a significant impact on GVHD-free progression-
free survival (GPFS) in multivariate analysis. The 2-year GPFS 
was significantly increased in patients receiving greater than 
the median number of donor iNKT cells (0.11 × 106/kg) at 49% 
compared to 22% in patients receiving fewer than the median 
number, although OS was not significantly different. The find-
ings were primarily due to an increased incidence of relapse in 
the patients receiving fewer than the median iNKT cell dose, as 
there was no significant difference in NRM, grades III–IV acute 
GVHD, or severe chronic GVHD. As noted in the manuscript, 
the use of ATG leading to very low rates of aGVHD overall 
(20–25%) may explain the lack of association of increased iNKT 
with reduction in acute GVHD.

A third study investigated 15 immune populations from a 
mix of fresh and cryopreserved graft products for 117 trans-
plants from a variety of donors (MRD/MUD/MMUD), sources 
(PBSCT/BMT), and conditioning regimens (MAC/RIC, with 
about half receiving T-depletion with ATG) (47). Doses of 
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iNKT [CD3+CD1d-tetramer(PBS57)+] were noted to be higher 
in PBSC than BM grafts owing to the one log higher total T cell 
content. Although lower total and CD4− iNKT frequency was 
significantly associated with the occurrence of aGVHD in 
BMT and PBSCT, lower CD4− iNKT expansion factor was only 
associated with aGVHD in the PBSCT group. Importantly, this 
remained true when the expansion of iNKT cells was analyzed 
in donor peripheral blood prior to mobilization and at defined 
timepoints in patients post-transplant. The expansion factor was 
not predictive of relapse rate, cGVHD, NRM, or OS. Although, 
as the authors recognize, the ability to implement the expan-
sion technique as a GVHD predictive tool across all centers is 
unlikely, this work highlights the critical need for high frequen-
cies of functional iNKT cells for suppression of aGVHD. It also 
raises the question of whether iNKT  cell dose or frequency 
relative to total T  cells (or, indeed, expansion capacity) is the 
most important value in predicting aGVHD, which remains to 
be fully answered.

Interestingly, another study of immune cell content in 238 
allografts for a very heterogenous patient population showed a 
significant association of increased iNKT content with increased 
risk of cGVHD in a univariate analysis (48). However, a non-
standardized definition of iNKT  cells was used (CD3+CD56+ 
CD16−CD117−) and this finding did not pan out in multivariate 
analysis. The same study also found that increased iNKT  cell 
content was associated with lower risk of relapse in AML/MDS 
patients.

Therapeutic expansion of iNKT 
Compartment is well Tolerated with  
Lower GvHD Rates in Responders
Because of this strong evidence for GVHD suppression by 
iNKT  cells, attempts to intentionally expand the iNKT  cell 
compartment in allogeneic HCT patients have begun. A recently 
published phase 2A study explored pharmacologic expansion 
using a single dose of RGI-2001, the liposomal formulation of 
α-GalCer, on the day of transplantation with two dosing cohorts 
(identified from phase 1 testing) for a total of 29 patients (most 
undergoing RIC with PBSC grafts) (49). A total of 11 serious 
adverse events (two grade IV) were reported, regardless of 
causality. Immune cells were monitored prior to transplant and 
weekly for the first month with no significant changes in iNKT 
noted (remained <3% of total lymphocytes). However, similar 
to the iNKT-mediated Treg expansion noted in mice (16), four 
patients from each cohort had significant expansion of absolute 
number and frequency of Tregs (CD4+CD25hiCD127low). These 
responders were enriched for patients who had received sirolimus 
with their GVHD prophylaxis (though not statistically signifi-
cant), suggesting a synergistic effect (although an isolated effect 
of sirolimus cannot be entirely ruled out). Importantly, rates of 
grades II–IV aGVHD were 12.5% in responders and 52.4% in 
non-responders, though as noted by the authors based on the 
study design conclusions cannot be drawn as to whether RGI-
2001 reduces GVHD incidence. Future work optimizing the dos-
ing strategy, comparing patients receiving RGI-2001 to those who 
do not, and investigating why some respond and others do not 

will be required. Despite these limitations, this study represents 
a critical first step in the intentional boosting of iNKT cells to 
suppress GVHD.

CONCLuSiON AND FuTuRe DiReCTiONS

As demonstrated in the aforementioned murine and human 
studies, iNKT  cells may be the holy grail sought in stem cell 
transplantation that is capable both of suppressing allogeneic 
immune reactions (GVHD) and enhancing anti-tumor immune 
reactions (GVT). The murine studies all demonstrated a strong 
benefit of iNKT cells on GVHD reduction. Although a minority 
of human studies (primarily in the MAC plus ATG setting) did 
not find a significant association between iNKT and GVHD,  
or even found higher iNKT associated with worse GVHD 
(38–40), most found that increased iNKT  cell content of the 
graft or of peripheral blood post-transplantation was associated 
with GVHD suppression. One should keep in mind, however, 
that these are correlative studies. Indeed, cause-and-effect can-
not be determined for those studies evaluating iNKT content of 
peripheral blood, and the possibility of evolving GVHD causing 
lowered iNKT numbers in peripheral blood (perhaps due to 
increased target tissue homing) cannot be excluded. However, 
the studies revealing an association between higher iNKT counts  
(in the graft or peripheral blood) and improved NRM and sur-
vival (41, 46) suggest that, in general, iNKT cells exert an overall 
protective effect. The extensive murine data support this as 
well. Indeed, given the broad functions of iNKT cells, increased  
numbers may be beneficial not just for GVHD suppression,  
but also infection control and reduction in relapse (Figure 1).

Despite these promising results, however, a number of ques-
tions remain unanswered. First is whether donor iNKT, recipient 
iNKT, or both are critical for these functions. Although the 
results from TLI/ATG conditioning studies suggest a role for host 
iNKT in suppression of GVHD, the importance of donor graft 
iNKT cell content in other studies, as well as iNKT chimerism 
revealing donor origin, implicate the role of donor iNKT cells. 
One could envision that donor iNKT cells are most critical in a 
MAC setting, while both donor and recipient iNKT play a role 
in RIC, but more study is needed to tease apart their individual 
contributions. Second, is whether certain iNKT cell subsets are 
more functional in the transplant setting and/or whether differ-
ent subsets serve different (and yet equally critical) functions in 
transplant patients. The results of studies included in this review 
are not always congruous in this regard. In the murine adoptive 
transfer studies, our group found that CD4+ iNKT suppressed 
aGVHD in a major mismatch model (16, 17). However, two 
human studies have found in multivariate analyses that CD4−, 
not CD4+, iNKT graft content was significantly associated with 
reduced aGVHD (45, 47). Conversely, an increased number of 
CD4+ iNKT in post-transplant peripheral blood was signifi-
cantly associated with reduced cGVHD (increased CD4− iNKT 
were also associated with reduced cGVHD, but did not reach 
significance) (33). The discrepancy between mouse and human 
studies (and indeed, among human data) as to whether the 
CD4+ or CD4− iNKT population is best suited to reduce GVHD 
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(and possible differences between acute and chronic GVHD) 
highlights the need for further study. Recently, several subsets 
of iNKT cells have been described skewing toward phenotypes 
resembling Th1  cells, Th2 cells, and Th17  cells [reviewed in  
Ref. (5)], and even Treg-like iNKT which constitutively produce 
IL-10 (50). CD4−CD8+ iNKT have also been described in 
humans, but not mice, and exhibit potent cytotoxic functions 
(51). The contribution of each of these subsets in the setting of 
stem cell transplantation remains to be determined, and a better 
understanding of their physiologic and pathologic functions, 
as well as their degree of plasticity, will inform future work.  
In addition, the ability of CD4+ iNKT cells to produce some Th1-
type cytokines and vice versa (51) calls into question whether 
distinguishing subsets of iNKT based on expression of CD4 
alone and thereby assigning differing functions is appropriate.  
A third question is how to boost iNKT numbers in patients 
receiving grafts containing low iNKT numbers or with poor post-
transplantation iNKT reconstitution, and indeed these cutoffs 
remain to be clearly established (and may differ depending on 
transplant conditions). However, these studies begin to identify 
an iNKT  cell dose in the graft, or in peripheral blood as the 
population is reconstituting, that is associated with lower GVHD 
risk. This will aid clinical trial design for the adoptive transfer of 
iNKT cells. Several approaches have been investigated in mice 
to intentionally use iNKT cells to dampen GVHD while preserv-
ing the GVT effect. For instance, iNKT cells were expanded and 
their immunoregulatory abilities enhanced by treating recipient 
mice with α -GalCer on the day of transplantation (10–12). In 
addition, iNKT cells from different origins (host, donor, third 
party) were each shown to be effective in reducing acute and 
chronic GVHD when adoptively transferred together with the 
graft (7, 9, 14–16). Furthermore, iNKT  cells can be expanded 
ex vivo with IL-2 and α-GalCer and adoptively transferred for 
GVHD suppression (18, 19). Most of these studies also dem-
onstrated a conservation of the GVT effect. There is convincing 
evidence in mice that iNKT cells work through the expansion 
of Tregs, and the underlying biological mechanism is currently 
under investigation. IL-4 production by iNKT cells or facilita-
tors such as MDSCs or CD8+ DCs are possibilities. The findings 
that third party iNKT cells are as functional as donor-derived 

cells for the suppression of GVHD in mice and that the ability 
to expand these cells has been demonstrated sets the stage for 
clinical translation.

The first approach being investigated in humans utilizes 
delivery of α-GalCer to recipients at the time of transplantation 
(49). Though the choice of most appropriate transplant setting 
and optimal dosing strategy remains to be determined, phases 
1 and 2A trials have revealed this approach to be safe. Given 
the results with other approaches in mice, it would be exciting 
to pursue these additional strategies in humans. The non-
polymorphic nature of the CD1d molecule, as well as the ability 
of iNKT cells to be activated in non-TCR-dependent ways, make 
adoptive transfer of iNKT cells a feasible approach. Correlative 
biologic evaluations must accompany all clinical trial designs to 
determine the effect that any approach has not only on iNKT cell 
number, but also functional skewing.

Despite these lingering questions, harnessing the power of 
iNKT  cells remains an attractive approach to improving HCT 
outcomes. Although extremely rare in number, iNKT cells may 
represent the most versatile and critical cell population for 
suppressing GVHD, fighting infection, and reducing relapse in 
patients undergoing allogeneic hematopoietic cell transplantation.
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Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid 
antigens. Following stimulation, NKT cells lead to downstream activation of both innate 
and adaptive immune cells in the tumor microenvironment. This has impelled the devel-
opment of NKT  cell-targeted immunotherapies for treating cancer. In this review, we 
provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor 
immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, 
we discuss future perspectives to better harness the potential of NKT cells for cancer 
therapy.

Keywords: natural killer T, glycolipid antigens, CD1d, dendritic cells, innate immunity

iNTRODUCTiON

Both innate and adaptive immune systems respond to tumor cells and participate in immune-
surveillance against tumor (1). Defined immune interactions in the context of cancer include rec-
ognition of tumor-associated antigens or cues by innate cell populations such as antigen-presenting 
cells (APCs) [macrophages and dendritic cells (DCs), neutrophils, and natural killer (NK) cells (2)]. 
Innate immune cells rely on germline encoded pattern recognition receptors to recognize and elicit 
prompt response against cancer-associated danger signals, and also augment components of the 
adaptive immune system, composed of antigen-specific B and T cells (1). One of the key players that 
link the innate and adaptive immune systems is the natural killer T (NKT) cells (3–5). NKT cells are 
innate-like T lymphocytes that possess ability to quickly respond to antigenic stimulation and rapidly 
produce copious amounts of cytokines and chemokines (6). This rapid effect can modulate both 
innate and adaptive immunity and is important in influencing host immune responses to cancer (7).

Natural killer T  cells are a heterogeneous subset of specialized T  cells (8). These cells exhibit 
innate cell-like feature of quick response to antigenic exposure in combination with adaptive cell’s 
precision of antigenic recognition and diverse effector responses (9). Like conventional T  cells, 
NKT cells undergo thymic development and selection and possess T cell receptor (TCR) to recognize 
antigens (10). However, unlike conventional T cells, TCR expressed by NKT cells recognize lipid 
antigens presented by the conserved and non-polymorphic MHC class 1 like molecule CD1d (11). 
In addition to TCRs, NKT cells also possess receptors for cytokines such as IL-12, IL-18, IL-25, and 
IL-23 similar to innate cells such as NK and innate lymphoid cells (12). These cytokine receptors 
can be activated by steady state expression of these inflammatory cytokines even in the absence of 
TCR signals. Thus, NKT cells can amalgamate signals from both TCR-mediated stimulations and 
inflammatory cytokines to manifest prompt release of an array of cytokines (13). These cytokines 
can in turn modulate different immune cells present in the tumor microenvironment (TME) thus 
influencing host immune responses to cancer. Their predominant tissue localization and ability to 
sense cancer-mediated changes in host lipid metabolism or breach in tissue integrity via recognition 
of endogenous lipids, makes NKT cells an ideal candidate for cancer immunotherapy (14).
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TYPe i NKT CeLLS

Broadly, CD1d-restricted NKT cells can be divided into two main 
subsets based on their TCR diversity and antigen specificities. 
Type I (invariant) NKT cells, so named because of their limited 
TCR repertoire, express a semi-invariant TCR (iTCR) α chain 
(Vα14-Jα18 in mice, Vα24-Jα18 in humans) paired with a het-
erogeneous Vβ chain repertoire (V β 2,7 or 8.2 in mice and V β 
11 in humans) (8, 9). The prototypic antigen for type I NKT cells 
is galactosylceramide (α-GalCer or KRN 7000), which was 
isolated from a marine sponge as part of an antitumor screen 
(15). α-GalCer is a potent activator of type I NKT cells, inducing 
them to release large amounts of interferon-γ (IFN-γ), which 
helps activate both CD8+ T cells and APCs (16, 17). The primary 
techniques used to study type I NKT cells include staining and 
identification of type I NKT cells using CD1d-loaded α-GalCer 
tetramers, administering α-GalCer to activate and study the func-
tions of type I NKT cells and finally using CD1d deficient mice 
(that lack both type I and type II NKT) or Jα18-deficient mice 
(lacking only type I NKT) (10). Recent published study reported 
that Jα18-deficient mice in addition to having deletion in the 
Traj18 gene segment (essential for type I NKT cell development), 
also exhibited overall lower TCR repertoire caused by influence 
of the transgene on rearrangements of several Jα segments 
upstream Traj18, complicating interpretations of data obtained 
from the Jα18-deficient mice (18). To overcome this drawback, a 
new strain of Jα18-deficient mice lacking type I NKT cells while 
maintaining the overall TCR repertoire has been generated, 
which should facilitate future studies on type I NKT cells (19). 
Type I NKT cells can be further subdivided based on the surface 
expression of CD4 and CD8 into CD4+ and CD4−CD8− (DN) 
subsets and a small fraction of CD8+ cells found in humans  
(6, 20–24). Type I NKT  cells are present in different tissues in 
both mice and humans but at higher frequency in mice (25, 26). 
Two very unique characteristics of type I NKT cells are that they 
possess dual reactivity to both self and foreign lipids, and that 
even at steady state type I NKT cell have an activated/memory 
phenotype (6, 27, 28). Functionally distinct subsets of NKT cells 
analogous to Th1, Th2, Th17, and TFH subsets of conventional 
T  cells have been described. These subsets express the corre-
sponding cytokines, transcription factors and surface markers of 
their conventional T cell counterparts (29–31). Type I NKT cells 
have a unique developmental program that is regulated by a 
number of transcription factors (32). Transcriptionally, one of 
the key regulators of type I NKT cell development and activated 
memory phenotype is the transcription factor promyelocytic 
leukemia zinc finger (PLZF). In fact, PLZF deficient mice show 
profound deficiency of type I NKT cells and cytokine production 
(33, 34). Other transcription factors that are known to impact 
type I NKT cell differentiation are c-Myc (35, 36), RORγt (37), 
c-Myb (38), Elf-1 (39), and Runx1 (40). Furthermore, transcrip-
tion factors that control conventional T cell differentiation such 
as Th1 lineage specific transcription factor T-bet and Th2 specific 
transcription factor GATA-3 can also affect type I NKT  cell 
development (41–43). Aside from transcription factors, SLAM-
associated protein (SAP) signaling pathway can also selectively 
control expansion and differentiation of type I NKT cell (44, 45).  

Type I NKT cells have been shown to respond to both self and 
foreign α and β linked glycosphingolipids (GSL), ceramides, 
and phospholipids (46). Type I NKT cells have been reported to 
mostly aid in mounting an effective immune response against 
tumor (3, 5, 47–49).

TYPe ii NKT CeLLS

Type II NKT cells also called diverse or variant NKT cells, are 
CD1d-restricted T  cells that express more diverse alpha-beta 
TCRs and do not recognize α-GalCer (50). Type II NKT cells are 
major subset in humans with higher frequency as compared to 
type I NKT  cells (51). Due to absence of specific markers and 
agonistic antigens to identify all type II NKT cells, characteriza-
tion of these cells has been challenging. Different methodologies 
employed to characterize type II NKT cells include, comparing 
immune responses between Jα18−/− (lacking only type I NKT) 
and CD1d−/− (lacking both type I and type II NKT) mice, using 
24 αβ TCR transgenic mice (that overexpresses Vα3.2/Vβ9 TCR 
from type II NKT cell hybridoma VIII24), using a Jα18-deficient 
IL-4 reporter mouse model, staining with antigen-loaded CD1d 
tetramer and asses binding to type II NKT hybridomas [reviewed 
in Ref. (46)]. The first major antigen identified for self-glycolipid 
reactive type II NKT cells in mice was myelin derived glycolipid 
sulfatide (25, 26, 52). Subsequently, sulfatide and lysosulfatide 
reactive CD1d-restricted human type II NKT  cells have been 
reported (53, 54). Sulfatide specific type II NKT cells predomi-
nantly exhibit an oligoclonal TCR repertoire (V α 3/V α 1-J α 
7/J α 9 and V β 8.1/V β 3.1-J β 2.7) (25). Other self-glycolipids 
such as β GlcCer and β GalCer have been shown to activate 
murine type II NKT cells (55–57). Our group recently reported 
that two major sphingolipids accumulated in Gaucher disease 
(GD), β-glucosylceramide (β GlcCer) and its deacylated product 
glucosylsphingosine, are recognized by murine and human type 
II NKT cells (57). In an earlier study, we have also shown that 
lysophosphatidylcholine (LPC), lysophospholipid markedly 
upregulated in myeloma patients was an antigen for human 
type II NKT cells (58). Type II NKT cells can be distinguished 
from type I NKT cells by their predominance in humans versus 
mice, TCR binding and distinct antigen specificities (59). Crystal 
structures of type II NKT TCR-sulfatide/CD1d complex and type 
I NKT TCR-α-GalCer/CD1d complex provided insights into the 
mechanisms by which NKT TCRs recognize antigen (60). The 
type I NKT TCR was found to bind α-GalCer/CD1d complex 
in a rigid, parallel configuration mainly involving the α-chain. 
The key residues within the CDR2β, CDR3α, and CDR1α loops 
of the semi-iTCR of type I NKT  cells were determined to be 
involved in the detection of the α-GalCer/CD1d complex (61). 
On the other hand, type II NKT TCRs contact their ligands 
primarily via their CDR3β loop rather than CDR3 α loops in an 
antiparallel fashion very similar to binding observed in some of 
the conventional MHC-restricted T cells (62). Ternary structure 
of sulfatide-reactive TCR molecules revealed that CDR3 α loop 
primarily contacted CD1d and the CDR3β determined the speci-
ficity of sulfatide antigen (63). The flexibility in binding of type 
II NKT TCR to its antigens akin to TCR–peptide–MHC complex 

35

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


3

Nair and Dhodapkar NKT Immunotherapy

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1178

resonates with its greater TCR diversity and ability to respond 
to wide range of ligands. However, despite striking difference 
between the two subsets, similarities among the two subsets have 
also been reported. For example, both type I and type II NKT cells 
are autoreactive and depend on the transcriptional regulator PLZF 
and SAP for their development (55, 64, 65). Although, many type 
II NKT cells seem to have activated/memory phenotype like type 
I NKT cells, in other studies including ours, a subset of type II 
NKT  cells also displayed naïve T  cell phenotype (CD45RA+, 
CD45RO−, CD62high, and CD69−/low) (66, 67). Type II NKT cell is 
activated mainly by TCR signaling following recognition of lipid/
CD1d complex (56, 68) independent of either TLR signaling or 
presence of IL-12 (65, 69).

In tumor and autoimmune disease models, type II NKT cells 
are typically associated with immunosuppression (70–72).

HOw DO NKT CeLL TARGeT TUMOR 
CeLLS?

Several clues exist attributing a significant role of type I NKT cells 
in mediating protective immune response against tumors. 
Decreased frequency and function of type I NKT  cells in the 
peripheral blood of different cancer patients is suggestive of their 
role in effective antitumor immunity (73–78). Increased frequency 
of peripheral blood type I NKT cells in cancer patients predicts a 
more favorable response to therapy (79, 80). Furthermore, recent 
studies found an association between number of tumor-infiltrating 
NKTs with better clinical outcome (79, 81). Notably, α-GalCer, 
the prototypic NKT ligand, was first discovered in a screen for 
antitumor agents (82). Many studies using genetic knockouts and 
murine models of tumor have been useful to discern the role of 
NKT cells in malignancy (83, 84). Type I NKT cells can lead to 
effective antitumor immunity by three mechanisms: (a) direct 
tumor lysis, (b) recruitment and activation of other innate and 
adaptive immune cells by initiating Th1 cytokine cascade, and  
(c) regulating immunosuppressive cells in TME (Figure 1).

DiReCT CYTOTOXiCiTY AGAiNST TUMOR 
CeLLS

Natural killer T cells can eliminate CD1d-expressing transformed 
cells by direct cytolysis using either perforin (85, 86), granzyme B, 
Fas ligand (FasL) (87, 88), or TNF-α-mediated cytotoxic pathways 
(89). Tumor cells expressing CD1d are mainly of myelomonocytic 
and B-cell lineages origin (90), and very few solid tumors have 
also been found to be CD1d-positive (91–95). Surface expres-
sion of CD1d on tumor cells is assumed to directly correlate 
with NKT cell-mediated cytotoxicity (96). With higher expres-
sion of CD1d, resulting in higher tumor cell lysis and thereby 
lower metastasis rates (92, 97), while lack of CD1d expression 
in tumors leads to their escape from recognition by NKT cells, 
and tumor progression in some models (90, 98, 99). These stud-
ies postulate that loss or downregulation of surface expression 
of CD1d favors tumor survival and permits tumor escape from 
NKT cell-mediated immunosurveillance. This concept is further 
strengthened by observations that downregulation of CD1d in 

human breast cancer and multiple Myeloma correlated with 
increased metastatic potential and disease progression (92, 99). 
Similarly, downregulation of CD1d by human papillomavirus in 
infected cervical epithelial cells was linked to their progression to 
cervical carcinoma (100). Another means by which tumor cells 
escape NKT cell-mediated antitumor response was shown in a 
mouse model of lymphoma, where shedding of tumor-associated 
glycolipids was shown to inhibit CD1-mediated presentation to 
NKT cells (101). Interestingly, in chronic lymphocytic leukemia 
(CLL), CD1d expression was found to increase during disease 
progression, counteracting the suggested role of CD1d as an 
anti-survival factor in cancer (102, 103). However, a recent study 
has shown that higher CD1d expression on CLL cells associated 
with disease progression actually led to impairment in both func-
tion and numbers of type I NKT cells (104). CD1d independent 
cytotoxic effect of NKT  cells on various hematopoietic tumor 
cell lines have also been reported (98, 105, 106). Although, the 
mechanisms or tumor specific CD1d—glycolipid complex that 
helps NKT  cells recognize and kill only CD1d-positive tumor 
cells and not normal cells is still enigmatic. Membrane glycolipids 
especially GSL such as globotriaosyl-ceramide (Gb3Cer/CD77), 
gangliosides (GD2, GD3, and GM2) have been shown to be over-
expressed and altered in a range of cancers compared to normal 
tissue (107, 108). Shedding of some of the gangliosides and GSL 
into the TME have also been reported. Recognition of these 
overexpressed GSL and gangliosides on the surface of tumor cells 
may lead to differential recognition and killing of tumor cells by 
NKT cells.

CYTOKiNe-MeDiATeD MODULATiONS  
OF eFFeCTOR CeLLS

In addition to direct tumor lysis, type I NKT cells can activate 
and recruit both innate and adaptive immune cells, such as 
DCs, NK  cells, B  cells, and T  cells through rapid secretion 
of cytokines on activation (109). This is underscored by the 
observed increase in NK cells, CD8+ T cells and macrophages 
among tumor-infiltrating leukocytes brought about by α-GalCer 
injection (110). Owing to partially activated state and the pres-
ence of preformed cytosolic mRNA for various cytokines, type 
I NKT cells can rapidly produce broad spectrum of Th1 and Th2 
cytokines on activation (111–113). The nature and magnitude 
of the type I NKT  cell cytokine response is contingent on a 
number of variables that include the glycolipid antigen, subsets 
of NKT, and tissue location. For example, while α-GalCer-
activated type I NKT cell primarily elicits an IFN-γ, a synthetic 
analog of α-GalCer with a truncated lipid chain OCH elicits 
majorly elicits IL-4 production (114). Further, DN liver subset 
of type I NKT was found to confer protection as compared to 
CD4+ liver subset or IL-4 inducing thymic type I NKT cells in 
MCA-induced fibrosarcoma model (115). Type I NKT cells play 
a crucial role in induction of early immune responses to tumor 
by influencing DC maturation (116). Mostly DCs found in 
TME are immature and inept at activating specific T cells (117). 
Maturation and differentiation of DCs is important in shaping 
the magnitude and polarization of T cell-mediated response (118). 

36

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | Interactions and cross talk between different subsets of natural killer T (NKT) cells and other immune cells in tumor microenvironment (TME). Antigenic 
activated type I NKT cells can promote antitumor immunity by directly killing tumor cells in a CD1d-dependent and -independent mechanism. Type I NKT cells can 
recognize self or foreign lipid antigens presented by different CD1d-expressing antigen-presenting cells (APCs) in TME such as dendritic cells (DCs), TAMs, B cells, 
and neutrophils. On activation type I NKT cells can produce various Th1 and Th2 cytokines leading to reciprocal activation and or modulation of the APCs as well as 
other effector lymphocytes. Major type I NKT cytokine that helps activate DCs and CD8+ T cells is interferon-γ (IFN-γ). Type I NKT cells and DCs reciprocally activate 
each other via CD1d-TCR/lipid antigen and CD40–CD40L interactions. IL-12 produced by type I NKT cell matured DCs stimulates natural killer (NK), NKT, and 
MHC-restricted T cells to produce more IFN-γ which can secondarily activate other antitumor-promoting effector lymphocytes. Mature DCs derived factors as well 
as costimulatory receptors can activate CD8+ T cells to promote adaptive immunity. Type I NKT cells enhance tumor immunity by subduing the actions of tumor 
supporting cells such as TAMs, MDSCs, and suppressive neutrophils. In some instances, type II NKT cells have been shown to suppress the activation of type I 
NKT cells, T cells, NK cells and enhance development of tumor-associated MDSCs, aiding in tumor growth. iTCR, invariant TCR; IL-12, interleukin 12; IL-12R, IL-12 
receptor; CXCL16, chemokine ligand 16; CXCR6, chemokine receptor 6; MDSCs, myeloid-derived suppressor cell; TAM, tumor-associated macrophages; ARG1, 
arginase 1; NOS, nitrous oxide synthase; SAA-1, serum amyloid A1; TCR, T cell receptor.
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A mutually costimulatory interaction between DC and type I 
NKT cells ensues following encounter with CD1d/antigen com-
plexes displayed by immature DCs. Ligation of APC-expressed 
CD40 with upregulated CD40L on type I NKT  cells induces 
DCs’ maturation with higher surface expression of MHC class 
II, the costimulatory molecules CD40, CD80, CD86, CD70 and 
the endocytic receptor DEC205 and potent IL-12 production 
(119, 120). Sustained IL-12 secretion by mature DCs induces 
IFN-γ production by NKT cells (121–126). Mature DCs recip-
rocally enhance expression of CD40L and IL-12 receptor on 
type I NKT  cells providing a strong feed forward signal that 
amplifies IFN-γ responses (119, 127). Ligation of chemokine 
receptor CXCR6 on the surface of type I NKT cells by its ligand 
CXCL16 expressed on APCs can also provide costimulatory 
signal resulting in robust α-GalCer-induced type I NKT activa-
tion (128, 129). α-GalCer-induced type I NKT cells can provide 
cognate licensing for cross-priming CD8 alpha + DCs to produce 

CCL17, which attracts CCR4+CD8+ T cells for subsequent acti-
vation (130, 131). Presence of phenotypic maturation ligands, 
suitable cytokines (IFN-γ), other functional immunostimula-
tory factors on type I NKT licensed DC can induce activation 
of CD8 T cells and their polarization toward antitumor effector 
function (119, 132–134). Release of various cytokines such as 
IL-2, IL-12, and IFN-γ by type I NKT cells leads to activation 
and expansion of NK  cells into lymphokine-activated killer 
(LAK) cells. These LAK cells upregulate the effectors or adhe-
sion molecules such as perforin, NKp44, granzymes, FasL, 
and TRAIL and secrete IFN-γ to adhere and lyse tumor cells 
(135, 136). Type I NKT  cells can form bidirectional interac-
tions with B  cells, wherein B  cells can present lipid antigens 
to type I NKT  cells through CD1d (137) and NKT  cells can 
license B cells to effectively prime and activate antitumor CTL 
responses (138, 139) and can also directly provide B cell help to 
enhance and sustain humoral response (57, 140–143).
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ALTeRiNG THe eFFeCTS OF 
iMMUNOSUPPReSSive CeLLS iN TMe

Tumor-associated macrophages (TAMs) are prominent immu-
nosuppressive immune cells present in the TME (144). TAMs 
contribute to tumor progression by enhancing angiogenesis, 
tumor cell invasion, suppression of NK, and T  cell responses 
(145, 146). Type I NKT  cells were found to co-localize with 
CD1d-expressing TAMs in neuroblastoma and kill TAMs in an 
IL-15 and CD1d-restricted manner (90, 147). Besides TAMs, type 
I NKTs can alter the effects of CD1d+ myeloid-derived suppres-
sor cells (MDSCs)-mediated immune suppression. MDSCs are 
heterogeneous population of cells of myeloid origin, which often 
accumulate during tumor growth and contribute to immune 
escape and tumor progression (148). In a model of influenza A 
viral infection, adoptive transfer of type I NKTs inhibited argin-
ase 1 and nitrous oxide synthase-mediated suppressive activity of 
MDSCs. The ability of type I NKT cells to abolish the suppressive 
activity of MDSCs was found to be dependent on CD1d and 
CD40 interactions (149). In a tumor model, α-GalCer-loaded 
MDSCs facilitate conversion of immature MDSCs to mature 
APCs capable of eliciting cytotoxic NK and T  cell immune 
response against cancer cells (150). De Santo et al. reported type 
I NKT cell-mediated reversal of immunosuppressive activity of 
neutrophils in melanoma, serum amyloid A1 (SAA-1) derived 
as consequence of tumor-associated inflammation induced dif-
ferentiation of IL-10-producing neutrophils causing suppression 
of antigen-specific T  cell responses. Conversely, SAA-1 also 
enhanced CD1d-CD40 dependent interaction between the sup-
pressive neutrophils and type I NKT cells. This crosstalk lead to 
dephosphorylation of Erk, p38, and phosphatidylinositol-3-OH 
kinase, which in turn lead to inhibition of IL-10 secretion and 
promotion of IL-12 production by neutrophils, reinstating the 
proliferation of antigen-specific CD8+ T cells (151).

SUPPReSSiON OF TUMOR iMMUNiTY  
BY TYPe ii NKT CeLLS

In contrast to the established protective role of type I NKT 
in most murine tumor models, type II NKT  cells have been 
shown to possess a more suppressive/regulatory role in tumor 
immunity (4, 59, 65, 152). Comparison of antitumor response 
in Jα18-deficient mice (which lack only type I NKT) with CD1d 
deficient mice (which lack both type I and II NKT cell) revealed 
that type II NKT cells were responsible for suppression of anti-
tumor responses in several murine tumor models (152–154). 
Furthermore, sulfatide-reactive type II NKT cells was shown to 
antagonize the protective antitumor immune responses mounted 
by α-GalCer-stimulated type I NKT cells (47). Sulfatide activated 
murine type II NKT  cells were reported to inhibit proinflam-
matory functions of type I NKT cells, conventional T cells and 
DCs and also induce tolerization of myeloid DCs (155). A major  
attribute of type II NKT-mediated suppression of tumor immu-
nity is elevated production of IL-13 and IL-4 cytokines capable 
of skewing the cytokine response predominantly toward 
tumor-promoting Th2 type. In a mouse model of transformed 
recurrent fibrosarcoma, type II NKT cells was shown to suppress 

cytotoxic T cells through IL-13 production via IL4R and STAT6 
axis and also induce MDSCs producing immunosuppressive 
cytokine TGF-β (71). Similarly, LPC reactive type II NKT cells 
have been shown to preferentially produce IL-13 and exhibit 
immunoregulatory role in myeloma patients (58). Concentration 
of LPC, a phospholipid associated with inflammation, was found 
to be elevated in myeloma sera. Progressive myeloma disease is 
associated with a decline as well as dysfunctional activation of 
type I NKT cells and increased frequency of type II NKT cells  
(58, 78). The preferential production of IL-13, a cytokine implicated 
in promoting tumor growth, by LPC specific type II NKT cells 
suggests their role in disease progression (58). Recently, we have 
shown a possible implication of type II NKT cells in the develop-
ment of B-cell malignancies associated with GD. GD is uniquely 
associated with increased cancer risk particularly with multiple 
myeloma (156). GD is a lysosomal storage disorder caused due 
to an inherited deficiency of the acidic β-glucosidase enzyme, 
resulting in marked accumulation of β-glucosylceramide  
(β GlcCer) and its deacylated product, glucosylsphingosine (LGL1).  
Increased frequency of LGL1-specific type II NKT  cells with 
reduced frequency of type I NKT cells was observed in murine 
model and patients of GD. Interestingly, LGL1 reactive type II 
NKT  cells demonstrated follicular helper T  cell phenotype and 
were able to provide help to germinal center B  cells to produce 
lipid-reactive antibodies (57). In both patients and mice with 
GD having monoclonal gammopathy, the monoclonal immuno-
globulin was found to be reactive to Gaucher lipids (157). Though 
studies described earlier hint to pro- and antitumor functional 
dichotomy between type I and type II NKT, respectively, there are 
several emerging evidences challenging this paradigm, and the 
pro/antitumor roles of these cells may be context or activation-
dependent. While type I NKT cells have been shown to assume 
immune-suppressive role in several tumor settings (158–161), 
a recent study showed that CpG-activated type II NKT  cells 
secreted IFN-γ rather than IL-13, which in turn enhanced the 
activation and function of CD8+ T cells and contributed to the 
antitumor effect of CpG in the B16 melanoma model (162).

PReCLiNiCAL STUDieS

There are several theoretical advantages for harnessing type I 
NKT  cells against cancer. NKT  cell can simultaneously target 
both MHC positive and negative tumor cells due to ability to 
activate both antigen-specific CD8+ T cells and NK cells. Second, 
type I NKT cells show strong adjuvant activity thereby activating 
both innate and adaptive immune cells. Finally, NKT cells have 
the ability to convert immature and or tolerogenic DCs found in 
tumor bed into mature DCs capable of initiating tumor specific 
CD8+ T  cell response. However, major limitations in targeting 
NKT cell for tumor treatment are the cancer-mediated reversible 
defect in the number and function of type I NKT cells (73, 74,  
76–78, 80, 163, 164). Circulating type I NKT  cell deficiency 
leads to decreased proliferation and IFN-γ production by type 
I NKT cells, consequently skewing immune response to a pro-
tumor Th2 cytokine profile (73, 74, 76–78, 80, 163, 164). In line 
with this observation, reduced type I NKT  cell frequency was 
shown to correlate with poor survival, while increased type I 
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NKT cell numbers capable of making IFN-γ have positive prog-
nostic value for survival in cancer patients (74, 80, 163–167). To 
restore the numbers and function of type I NKT cells in cancer 
patients and murine models, several approaches like administra-
tion of α-GalCer either alone or with IL-12, administration of 
APCs (DC or irradiated tumor cells) with α-GalCer, adoptive 
transfer of ex vivo expanded and/or activated type I NKT cells, 
and finally a combination of α-GalCer with antibodies or fusion 
proteins have been exploited. Data from numerous studies on 
variety of experimental and spontaneous murine tumor models 
have shown significant role for NKT cells in launching of power-
ful antitumor immune responses (Table 1).

Type I NKT cells were shown to be indispensable in mediat-
ing IL-12-mediated antitumor effects in low- and moderate-
dose IL-12 treatment models (91, 169, 204). IL-12 was found 
to activate the NKT  cell-mediated lysis of tumor cells and also 
induce IFN-γ production by type I NKT  cells. Administration 
of soluble α-GalCer leads to activation and expansion of type I 
NKT  cells, creating a milieu of immune-stimulatory cytokines 
including IFN-γ and costimulatory molecules, resulting in matu-
ration of host APC thus enhancing antitumor T  cell response. 
IFN-γ production by type I NKT cell was found to be pivotal in 
inducing NK cell activation, proliferation of memory CD4+ and 
CD8+ T  cell effector functions, and inhibiting angiogenesis, all 
contributing to effective immune response against tumor. One of 
the major drawbacks of administering soluble free α-GalCer is 
that it causes type I NKT cell to adopt an anergic state causing 
unresponsiveness to sequential stimulation with α-GalCer (205). 
To circumvent this problem, mice were administrated DCs loaded 
with either α-GalCer alone or in combination with tumor anti-
gens (180, 182, 187, 190, 206). α-GalCer-pulsed APCs induced a 
more prolonged cytokine response as well as powerful antitumor 
immune response than α-Galcer alone (180, 207). Another recent 
immunotherapeutic approach has been to load autologous irradi-
ated tumors, which act as source of tumor antigens with α-GalCer 
(121, 182, 187, 188). A big improvement of this approach is 
CD1d-mediated cross-presentation of endogenous glycolipids 
and or α-GalCer from tumor cells to NKT cells, leading to DC 
maturation and consequently effective long-term T cell resistance 
to the tumor (128). Another approach involved adoptive transfer 
of ex vivo expanded and or activated type I NKT cells to restore 
type I NKT cell numbers in preclinical models of melanoma and 
lymphoid neoplasms (194, 196, 208). This approach has been 
shown to be more effective compared to the i.v. administration of 
α-GalCer (194). Finally, combination therapy using monoclonal 
Abs targeting CD1d alone or in combination with tumor cell 
death inducing and immunomodulating mAbs has emerged as 
promising immunotherapeutic candidate against CD1d-negative 
cancers (199). Stirnemann and Corgnac et al. attempted to target 
α-GalCer to tumor site by using constructs consisting of either 
α-GalCer/CD1d molecules alone or fused to tumor Ag specific 
scFv fragments in a colon carcinoma and murine melanoma model, 
respectively, and reported specific tumor localization of type I 
NKT activating potent antitumor responses compared to α-GalCer 
alone (200, 201). Preclinical studies obtained using chimeric 
antigen receptors (CARs) with engineered type I NKT cells have 
yielded promising result. CAR-bearing type I NKT cells effectively 

localized to the tumor sites, eliminating tumor cells, and exhibited 
potent and specific cytotoxicity against TAMs without producing 
graft-versus-host disease (202). Recently, CD62L+CD19−specific 
CAR-engineered NKT cells have been shown to possess superior 
therapeutic activity in a B-cell lymphoma model (203).

CLiNiCAL TRiALS OF NKT CeLLS

Based on the preponderance of data from preclinical mice 
models, showing that activation of type I NKT cells plays a sub-
stantial role in providing protection against tumor growth and 
metastasis of several tumors, different clinical trials have been 
initiated to harness NKT  cell’s antitumor potential (Table  2). 
However, while direct administration of soluble α-GalCer in 
cancer patients was well tolerated, it failed to yield any clinical 
response (209). Potential reasons for the low efficacy in human 
trials could be attributed to insufficient drug delivery, inter-
individual variability and very low type I NKT cell numbers at 
baseline, induction of anergy or regulatory IL-10-producing 
type I NKT cells (205, 210, 211). To overcome these limitations 
of soluble α-GalCer administration and improve NKT-mediated 
antitumor responses, multiple clinical trials were performed using 
autologous α-GalCer-pulsed APCs in patients with advanced and 
recurrent non-small cell lung cancer, head and neck squamous 
cell carcinoma (Table 2). Different types of APCs and alternative 
routes to efficiently target activated NKT cells directly to cancer 
region were optimized to achieve objective antitumor responses. 
Though promising, this strategy too suffers from certain caveats 
like the treatment is again dependent on the baseline NKT levels, 
which are inevitably low in most cancer patients. Second, it is 
difficult to obtain large number of autologous monocyte-derived 
DCs (moDCs) from immune suppressed cancer patients and 
also cumbersome for ex vivo generation of DCs in compliance 
with good manufacturing practices regulations. Another strategy 
involves adoptive transfer of in vitro-expanded autologous type I  
NKT populations. Clinical trials using this approach in non-
small cell lung cancer and advanced melanoma do show increase 
in type I NKT expansion and elevated serum IFN-γ levels in vivo; 
however, further optimization of the protocols and perhaps com-
bination approaches such as combining with immune checkpoint 
blockade may be needed to obtain a significant clinical response. 
Remarkably, combining activated type I NKT cells and α-GalCer-
pulsed APCs has been reported to enhance the low antitumor 
response observed with monotherapy employing either NKT or 
APCs alone in head and neck squamous cell carcinoma patients 
(212, 213). Similarly, combining regimen of α-GalCer-pulsed 
DCs and the immune-modulatory drug lenalidomide in treating 
multiple myeloma patients leads to type I NKT expansion with 
downstream activation of NK, monocytes and decrease in tumor-
associated M spikes (214).

eMeRGiNG APPROACHeS

Adoptive Transfer of Type i NKT Cells
Advanced cancer patients with low NKT cell numbers may bene-
fit from development of in vitro methods for generation of large 
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TABLe 1 | Preclinical studies on natural killer T (NKT) cell-targeted immunotherapeutics.

Therapy regimen Murine model/
cancer type

Outcome immunological response Reference

injection of α-GalCer/iL-12

IL-12 injection FBL-3 
erythroleukemia, B16 
melanoma

Inhibition of tumor growth and 
metastasis

 1. NKT cell produced IL-12-mediated tumor rejection
 2. NKT cell-mediated direct cytotoxicity

(168)

α-GalCer (i.v.) Colon 26 hepatic 
metastasis 
adenocarcinoma 
model

 1. Regression of Colon 26 nodules
 2. Inhibition of tumor growth in liver

Activation of natural killer (NK) cells, T cells, and NK1+ T cells (169)

α-GalCer (i.p.) B16 melanoma cells Prevented liver metastasis NK cell-mediated killing (170)

α-GalCer (i.v.) Spontaneous 
liver metastasis of 
reticulum cell sarcoma 
(M5076)

Suppressed growth of established 
liver metastases, prolonged survival 
time

Increased IFN-γ and IL-12 production by liver NKT cells (171)

α-GalCer + OVA (i.v.) or 
OCH + OVA (i.v.)

C57BL/6 mice s.c. 
injected with murine 
thymoma that express 
OVA

Slower growth of tumor up 
until 10 days followed by rapid 
regression

Induction of cytotoxic effector cells with potent antitumor 
activity

(172)

α-GalCer (i.v.) + IL-12 i.p. BL6-B16 melanoma Effective against metastatic tumor NKT activation with induction of Th1 immunity and CD4+, 
CD8+ T cells, and B cells activation

(173)

α-GalCer (i.v.) + IL-12 i.p. BL6-B16-HM 
melanoma

Prevention of tumor at early stages NKT and NK activation (174)

α-GalCer (i.p.) 2 μg  
single dose

B16-BL6 melanoma 
cells

Subcutaneous tumor growth and 
tumor-induced angiogenesis at 
early time points

 1. IFN-γ-dependent inhibition of tumor angiogenesis by 
α-GalCer

 2. α-GalCer-activated NKT cells and secondarily activated 
NK cells contributed to the inhibition of endothelial cell 
proliferation via their IFN-γ production

(175)

α-GalCer (i.p.) MCA induced 
sarcoma, mammary 
carcinomas in  
Her-2/neu transgenic 
mice, spontaneous 
sarcomas in 
p53−/−mice

Inhibition of primary tumor 
formation

 1. NK cell and T cell activation
 2. Higher serum levels of IFN-γ and IL-4
 3. TRAIL-dependent antimetastatic activity

(176)

α-GalCer (i.p.) + IL-12 i.p. TRAMP prostate 
tumor

Reversion of prostrate tumor-
mediated IFN-γ secretion by type I 
NKT cells

α-GalCer and IL-12 bypasses tumor cell-induced block of 
IFN-γ production

(91)

α-GalCer (i.v.) single dose Mantle cell lymphoma  1. Inhibition of disease 
development

 2. Delayed disease progression

NKT activation (177)

α-GalCer (i.p.) 2 μg 5T33 multiple 
myeloma

Significant reduction in micro vessel 
density

Possible role of IFN-γ from stimulated type I NKT cells in the 
antiangiogenic process

(178)

Priming with DNA vaccine 
expressing human 
papillomavirus type 16 E7+

α-GalCer and boosting with 
E7-pulsed DC-1

E7-expressing tumor 
model TC-1

Prolonged survival of vaccinated 
animals

E7-specific CD8+ T-cell responses (179)

Ex vivo-generated dendritic cell (DC) loaded with α-GalCer/dying tumor cells

α-GalCer-loaded DC B16 melanoma cells, 
LLC (lung metastatic 
model)

 1. Inhibition of tumor metastasis in 
liver and lung

 2. Eradication of established tumor 
metastasis

Activation of NKT cells (180)

α-GalCer-loaded ES DC 
genetically engineered to 
express a model antigen 
OVA + SLC/CCL21

MO4 (ova expressing 
melanoma)

 1. Protection against tumor
 2. Enhanced antitumor activity, 

rejection of tumor cell

Synergic activation of antigen reactive CTL and α-GalCer-
activated NKT cells

(181)
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Therapy regimen Murine model/
cancer type

Outcome immunological response Reference

α-GalCer + CD4-hepatic NKT MCA-induced 
sarcoma

Tumor regression NA (115)

α-GalCer-loaded irradiated 
tumor cells

A20 lymphoma, Meth 
A sarcoma, J558

Long-lived tumor immunity 1.  Type I NKT, CD8+ T cells, CD4+ T cells contribute to 
tumor resistance

 2. Activation and proliferation of antigenic specific T cells
 3. Secretion of IFN-γ and IL-2

(182)

α-GalCer-loaded DC Ductal pancreatic 
adenocarcinoma

Decrease in tumor growth and 
prolonged survival

Expansion of IFN-γ-producing NKT (183)

α-GalCer-loaded tumor cell A20 lymphoma Tumor regression, resistance to 
tumor challenge

CD4+ T cells mediate antitumor activity (184)

α-GalCer-loaded tumor cell B16 melanoma 
cells, WEHI-3B 
myelomonocytic 
leukemia, EL4 
thymoma tumor cells 
transfected with 
CD1d

Better survival with metastatic 
development thwarted

NKT and NK cell activation with induction of IFN-γ and 
IL-12p70 secretion

(185)

BM DC loaded with 
combination of tumor Ag and 
α-GalCer and anti-CD25 Ab

B16 melanoma cells Delayed onset of tumor growth Prolonged proliferative burst of responding CD8+ T cells (186)

α-GalCer-loaded irradiated 
tumor cells

VK*Myc mice, AML-
ET09G, Eu-myc 
lymphoma

Reduction in tumor load, resistance 
to rechallenge

 1. Expansion NKT and NK cells
 2. IL-12-dependent IFN-γ production by NKT and NK cells

(187)

α-GalCer-loaded mature DC 5T33 multiple 
myeloma

Increased survival Increased IFN-γ and Th1 response that tapers off at the end 
of disease

(178)

α-GalCer-loaded irradiated 
tumor cells

Multiple myeloma 
(MOPC315BM)

 1. Retarded tumor growth
 2. Regression of established 

tumors
 3. Protection of surviving mice from 

tumor rechallenge

 1. Expansion and activation of NKT cell in vivo
 2. Induction of strong myeloma specific antibodies and 

CD8+ CTL and memory T cells
 3. Decreased Treg frequency

(188)

α-GalCer delivery to CD8a+ 
DCs with anti-DEC205 
decorated nanoparticles

B16 F10 melanoma 
cells expressing Ova

Potent antitumor responses Type I NKT-mediated transactivation of NK cells, DCs, and 
gDT cells

(189)

α-GalCer-loaded irradiated 
tumor cells

C1498 leukemia 
model

 1. Prevention of new leukemia 
development however no 
protective benefit in established 
leukemia

NKT cells are activated by langerin+CD8+ DC leading to 
generation of CD4+CD8+ T cells

(190)

α-GalCer loaded in CXCL16hi 
BMDCs

B16 melanoma model Inhibition of metastasis Increased IFN-γ+ and Tbet+ type I NKT cells, enhanced 
serum IFN-γ levels

(191)

α-GalCer-loaded tumor 
cell + TLR9 agonist 
(CpG1826)

Colon cancer  1. Inhibition of established tumor
 2. Prolonged survival of tumor 

bearing mice
 3. Resistance to tumor rechallenge

 1. Type I NKT activation and DC maturation
 2. IFN-γ secretion by type I NKT and NK cells
 3. Redirection of Th2 response toward Th1 immune 

response by DC produced IL-12

(192)

α-GalCer-loaded 
DCs + tumor cells

B-cell lymphoma Potent long-lasting tumor-specific 
antitumor immune response

 1. Type I NKT cells secreting IFN-γ
 2. T cells and NK cell-mediated antitumor effect

(193)

Adoptive transfer of ex vivo-expanded NKT cells

IL-12-activated NKT i.v. 
injection (4 times)

B16 melanoma cells Inhibition of tumor metastasis Strong cytotoxic activity by activated NKT on metastasized 
tumor cells in liver

(194)

In vitro-expanded CD8+ 
NKT cells redirected with 
humanized bispecific 
antibody F(ab′)2HER2xCD3

HER2-expressing 
ovarian carcinoma

Rapid tumor regression with 
prolonged survival

High efficacy of target cell killing by CD8+ NKT (195)

α-GalCer + ex vivo-expanded 
NKT

C1R B-cell 
lymphoblasts

Reduced growth of CD1d+ 
leukemic cells and eradication of 
neoplastic clone

 1. NKT cell-mediated cytotoxicity on CD1d+ nodules
 2. Presence of NKT cells infiltrating lymphoid nodules

(196)
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Therapy regimen Murine model/
cancer type

Outcome immunological response Reference

Tumor-sensitive 
T cells + CD25+ 
NKT cells + epigenetic drug 
decitabine

Carcinoma Prolonged survival of animals 
bearing metastatic tumor cells

 1. Decitabine functioned to induce the expression of 
highly immunogenic cancer testis antigens in the tumor, 
while also reducing the frequency of myeloid-derived 
suppressor cells (MDSCs)

 2. The presence of CD25+ NKT cells rendered T cells 
resistant to remaining MDSCs

(197)

Monoclonal antibodies stimulating NKT and α-GalCer with fusion proteins

Anti-CD1d mAbs 4T1 mammary 
carcinoma, R331 
renal carcinoma 
and CT26L5 colon 
adenocarcinoma

Suppression of established tumor 
growth

 1. Activation of CD1d+ antigen-presenting cell to produce 
tumor inhibiting IFN-γ and IL-12

 2. Blocking of type II NKT cells activity in these models

(198)

Combination mAbs anti-DR5+ 
CD137+CD1d (1DMab)

4T1 mammary 
carcinoma, R331 
renal carcinoma, 
and CT26L5 colon 
adenocarcinoma

Suppression and or eradication of 
established tumors

Tumor rejection was dependent on CD8+ T cells, IFN-γ, and 
CD1d and partially dependent on NK cells and IL-12

(199)

α-GalCer-loaded recombinant 
soluble (sCD1d) + HER2-
specific scFv antibody 
fragment

HER2-expressing B16 
melanoma model

Potent inhibition of lung metastasis Specific localization to tumor site and accumulation of type I 
NKT, NK, and T cells at tumor site

(200)

α-GalCer-loaded sCD1d 
fusion proteins

MC38 colon 
carcinoma transfected 
with human CEA

Inhibition of tumor growth  1. Strong and prolonged reactivity of type I NKT cells
 2. IFN-γ production by NK and NKT cells
 3. Direct lysis by NKT cells

(201)

Type i NKT chimeric antigen receptor (CAR)

CAR.GD2 NKT with CD28, 
4-1BB

Metastatic 
neuroblastoma

Potent antitumor activity and long-
term survival

 1. Potent dose dependent cytotoxicity against GD2-positive 
neuroblasts

 2. Enhanced in vivo persistence of NKT cells with systemic 
elevation of Th1 cytokines

 3. Effective localization to tumor site without inducing GVHD

(202)

CD62L+ CAR.CD19 NKT B-cell lymphoma Prolonged survival of tumor 
bearing mice and sustained tumor 
regression

CD62L+ NKTs have prolonged persistence in vivo (203)
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numbers of functional NKT cells which can be further used for 
adoptive transfers. NKT cells have been generated from CD34+ 
cells isolated from cord blood using IL-15 and stem cell factor 
(flt-3 ligand) in liquid culture system. Watarai et al. successfully 
differentiated murine induced pluripotent stem cells (iPSCs) 
into functional NKT  cells in  vitro that secreted large amounts 
of Th1 cytokine IFN-γ acting as adjuvant and antitumor agent 
(223). Recently, protocol to generate human type I NKT  cells 
in  vitro from iPSC that are competent in eliciting antitumor 
activity has been generated (224). Human type I NKT cells can 
also be reprogrammed to pluripotency followed by redifferentia-
tion back to type I NKT cells in vitro using an IL-7/IL-15-based 
cytokine combination (225). The immunological features of re- 
differentiated type I NKT cells and their unlimited availability from 
iPSCs offer a potentially effective immunotherapy against cancer. 
Functionally mature human NKT cells have been also generated 
from bone marrow-derived adult hematopoietic stem-progenitor 
cells by expansion with CD1d-Ig-based artificial-presenting cells 
(226). Owing to the feasibility of producing large quantities of 
competent NKT cells, stem cell-derived type I NKT cells offer a 
promising strategy for effective anticancer immunotherapy.

ALTeRNATe LiGANDS

As discussed earlier, while α-GalCer is a potent activator of type I 
NKT cells, α-GalCer suffers from few drawback that limits its use 
as effective cancer immunotherapeutic. For example, α-GalCer 
induces anergy in type I NKT  cells. This has led to preclinical 
exploration of several alternate ligands that are now poised to enter 
the clinic. Synthetic glycolipids or α-GalCer analogs chemically 
modified to induce more precise and predictable cytokine profile 
than α-GalCer have been synthesized and tested. These analogs as 
compared α-GalCer, show superior anticancer immunity in tumor 
mouse models and therefore hold great potential as an alternative 
vaccine adjuvant (227–229). As compared to α-GalCer, alterna-
tive non-glycosidic type I NKT-cell agonist threitol ceramide pro-
moted stronger activation of human and mouse type I NKT cells 
and stronger antitumor responses in comparison to α-GalCer, 
making it potential candidate for NKT cell-based clinical trials 
(230). Another interesting prospect is encapsulating α-GalCer or 
other lipids in nanoparticle carriers or liposomes decorated with 
Abs or ligands to target specific APCs. These approaches have sev-
eral advantages like slower release of α-GalCer, specific targeting 

TABLe 1 | Continued

42

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


10

N
air and D

hodapkar
N

K
T Im

m
unotherapy

Frontiers in Im
m

unology | w
w

w
.frontiersin.org

S
eptem

ber 2017 | Volum
e 8 | A

rticle 1178

TABLe 2 | Clinical studies using natural killer T (NKT) cell-targeted immunotherapeutics.

Treatment injection site, number of 
injections/cycles

Tumor 
type

Number 
of 

patients

Safety Clinical outcome immunological response Reference

Direct α-GalCer injection

α-GalCer i.v., 50–4,800 µg/m2; 3 days  
4 weekly cycle

Solid 
tumors

24 No dose 
limiting 
toxicity

 1. 7/24 patient stable disease for 
123 days

 2. No clinical response

 1. Transient decrease in type I NKT and natural killer (NK) cells 
from circulation

 2. Increased serum cytokine levels of IFN-γ and GM-CSF in 5/24 
patients

 3. Cytotoxicity in 7/24 patients.
 4. The effect was dependent on pretreatment type I NKT cell 

numbers.

(209)

Ex vivo-generated dendritic cell (DC) pulsed with α-GalCer

α-GalCer-pulsed CD1d-
expressing immature 
monocyte-derived DCs 
(moDCs)

i.v., 2 doses over 2-week cycle Metastatic 
malignancy

12 No 
severe 
toxicity

 1. 2/12 patients had decreased 
serum tumor markers

 2. 1 subject developed extensive 
necrosis of tumor-infiltrating bone 
marrow

 3. 2 patients with hepatic infiltration 
had reduction in serum 
hepatocellular enzyme levels.

 4. Clinically apparent treatment 
specific inflammatory response at 
tumor sites

 1. NKT cell, T cell activation
 2. Increase in NK cell numbers, activation and enhanced 

cytotoxicity
 3. Increased IFN-γ (10/10) and IL-12 (6/9) levels in serum

(215)

α-GalCer-pulsed IL-2/
GM-CSF cultured 
PBMCs

i.v., 4 doses, 5 × 107 cells (level 1) 
5 patients, 2.5 × 108 cells (level 2) 
3 patients, 3 × 109 cells (level 3) 
3 patients

Non-small 
cell lung 
cancer

11 No 
severe 
toxicity

Stable disease in 3 patients  1. Expansion of type I NKT cells in 3/11 patients
 2. Elevated IFN-γ mRNA levels in 1/11 patients

(216)

α-GalCer-pulsed 
immature moDCs

i.v., 4 injections of 1 × 109 cells Non-small 
cell lung 
cancer

17 No 
severe 
toxicity

Stable disease in 5 patients, median 
survival time 18.6 months

 1. Expansion of type I NKT cells in 16/17 patients
 2. Elevated IFN-γ-producing cells by ELISPOT in 10/17 patients

(217)

α-GalCer-pulsed 
immature moDCs

4 treatments total with iv., 2 
treatments, and intradermal (i.d.) 
2 treatments, doses ranging from 
5 × 105, 5 × 106, and 2–5 × 107 
cells

Metastatic 
solid tumor

12 Safe 
and well 
tolerated

 1. Stable disease in 6/10 patients
 2. 3 patients show minor objective 

defined as reduction in tumor 
mass/marker

 3. 9/12 had transient therapy related 
tumor inflammation

Dose of 5 × 106 via i.v. route gave the most reproducible result of 
NKT activation resulting in increased circulating type I NKT cells 
levels with NK and T cell activation and increased serum IFN-γ 
levels

(218)

α-GalCer-pulsed IL-2/
GM-CSF cultured 
PBMCs

i.v., 1 injection Non-small 
cell lung 
cancer

4 No 
serious 
toxicity

NA  1. Increased mobilization of type I NKT cells into primary site of 
the lung cancer

 2. Augmented IFN-γ-producing ability of tumor-infiltrating type I 
NKT cells

(219)

α-GalCer-pulsed 
antigen-presenting cell 
(APCs)

Nasal sub-mucosal injections, 2 
treatments with 1-week interval

Head 
and neck 
squamous 
cell 
carcinoma

9 Safe 
and well 
tolerated

1 patient showed partial response, 7 
patients showed stable disease

 1. Increase in circulating type I NKT numbers (4/9)
 2. Expansion of α-GalCer reactive IFN-γ-producing cells in 

PBMCs (8/9)

(220)
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Treatment injection site, number of 
injections/cycles

Tumor 
type

Number 
of 

patients

Safety Clinical outcome immunological response Reference

α-GalCer-pulsed mature 
moDCs

i.v. 2 injections Advanced 
cancer

5 Safe 
and well 
tolerated

Patients had stable disease. 3 
patients had decreased M spike 
levels in serum and urine

 1. >100-fold expansion of type I NKT cell subsets sustained up 
to 5 months after vaccination

 2. Type I NKT cell activation was associated with increased 
serum levels of IL-12p40, IP-10, and MIP-1β

(221)

Adoptive transfer of autologous ex vivo-expanded NKT cells

Ex vivo-expanded 
NKT cells with 
autologous α-GalCer-
pulsed PBMCs

i.v., 2 doses, 1 × 107 cells (level 1) 
6 patients, 2.5 × 107 cells (level 2) 
3 patients

Non-small 
cell lung 
cancer

9 No 
adverse 
effects

 1. No tumor regression
 2. Stable disease in 2/9 patients

 1. Absolute number of circulating type I NKT cells increased in 
2/3 case receiving level 2 dose

 2. IFN-γ production augmented in all 3 cases receiving level 2 
dose

(222)

Ex vivo-expanded 
NKT cells

i.v., 3 infusions of 25 × 107 cells/
infusion spaced 2 weeks apart 
with pretreatment of GM-CSF 
before cycle 2 and 3 to enhance 
DC functions

Advanced 
melanoma

9 No 
adverse 
effects

 1. Patients deceased (3/9)
 2. Patients progressed (3/9). Median 

follow-up for 63 months

 1. Type I NKT infusions appeared to cause transient peak of 
circulating type I NKT cells that were enhanced by GM-CSF 
pretreatment

 2. Increased number of activated monocytes
 3. Elevated IFN-γ production (5/8)

(208)

Combination therapies

Ex vivo-expanded 
NKT cells (intra-arterial) 
and autologous 
α-GalCer-pulsed 
PBMCs (via nasal 
submucosal)

1 × 108 α-GalCer-loaded 
APCs submucosal injections (2 
injections) followed by in vitro 
activated type I NKT cells (i.a) into 
tumor feeding artery (1 injection)

Head 
and neck 
squamous 
cell 
carcinoma

8 Serious 
adverse 
event 
(1). Mild 
adverse 
events (7)

 1. Partial response (3/8)
 2. Stable disease (4/8)
 3. Progressive disease (1/8)

 1. Increase in circulating type I NKT numbers (6/8)
 2. Expansion of α-GalCer reactive IFN-γ-producing cells in 

PBMCs (7/8)

(212)

Ex vivo-expanded 
NKT cells (intra-arterial) 
and autologous 
α-GalCer-pulsed 
PBMCs (via nasal 
submucosal)

1 × 108 α-GalCer-loaded APCs 
submucosal injections (1 injection) 
followed by in vitro activated type 
I NKT cells (i.a) into tumor feeding 
artery (1 injection)

Head 
and neck 
squamous 
cell 
carcinoma

10 No 
adverse 
effects

 1. Objective tumor regression (5/10)
 2. Stable disease (5/10)
 3. Antitumor effects (8/10)

 1. Expansion of type I NKT in PBMC (7/10) and TIL correlating 
with partial response (6/6)

 2. Elevated expansion of IFN-γ spot forming cells in PBMCs 
(8/10) and in tumor tissue

(213)

α-GalCer-pulsed mature 
moDCs + LEN

i.v., LEN (oral 10 mg/day), 28 day 
×3 cycles

Multiple 
myeloma

6 Safe 
and well 
tolerated

3/4 patients show reduction in 
tumor-associated M spike after 
therapy

Activation of NKT, NK, monocyte, and eosinophils (214)
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of APC subset, lower amounts of α-GalCer required to activate 
NKT  cells than soluble α-GalCer (231). Positive therapeutic 
effect of α-GalCer-loaded octa-arginine modified liposomes was 
reported in melanoma murine model (232). Administration of 
α-GalCer and ovalbumin coencapsulated PLGA nanoparticles 
provided significant prophylactic and therapeutic responses in 
mouse melanoma model by enhancing activation and tumor 
infiltration of the antigen-specific CD8+ T cell (233).

COMBiNATiON APPROACHeS

A major limitation of the initial studies targeting NKT  cells 
in cancer is that these studies were conducted using single 
agent strategies and did not account for blockade of immune 
checkpoints or other immune-suppressive factors. PD-1:PD-L 
pathway has been shown to play an important role in mediat-
ing αGalCer-induced anergy in NKT cells. Antibody-mediated 
blockade of PD-1:PD-L interactions at the time of α-GalCer 
treatment prevent the induction of type I NKT anergy and also 
enhance the antitumor activities of αGalCer. Therefore, com-
bination of NKT-targeted therapies with PD-1:PD-L blockade 
should be considered (234). Synthetic lipopeptide vaccines based 
on conjugation of MHC-binding peptide epitopes to α-GalCer 
displayed promising antitumor activity in a melanoma model. 
The principle behind these vaccines is to simultaneously provide 
both adjuvant and antigen to the same cell in a controlled fash-
ion. Application of this vaccine technology using different tumor 
antigens might serve as a novel strategy for diverse malignancies 
(235). Combination of type I NKT-targeted DC vaccine with 

low dose of lenalidomide led to promising clinical activity in 
myeloma (214). Therefore, there is an unmet need to pursue 
combination approaches targeting type I NKT  cells to better 
harness the antitumor properties of type I NKT cells in the clinic.

CONCLUDiNG ReMARKS

Natural killer T cells are an important component of the TME 
and play key roles in regulating antitumor immunity. Although 
preclinical studies with NKT  cell-targeted therapies in murine 
tumor models have been positive, clinical translation of these 
results has proven challenging. Translational challenge could 
be attributed to incomplete knowledge of human NKT subsets. 
Generation of improved preclinical models that replicate human 
NKT cell response is needed to gain insights into the cross talk 
between APCs and NKT subsets and to improve the efficacy of 
NKT cell-targeting therapies.
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Current tumor therapies, including immunotherapies, focus on passive eradication 
or at least reduction of the tumor mass. However, cancer patients quite often suffer 
from tumor relapse or metastasis after such treatments. To overcome these problems, 
we have developed a natural killer T (NKT) cell-targeted immunotherapy focusing on 
active engagement of the patient’s immune system, but not directly targeting the tumor 
cells themselves. NKT cells express an invariant antigen receptor α chain encoded by 
Trav11 (Vα14)-Traj18 (Jα18) gene segments in mice and TRAV10 (Vα24)-TRAJ18 (Jα18) 
in humans and recognize glycolipid ligand in conjunction with a monomorphic CD1d 
molecule. The NKT cells play a pivotal role in the orchestration of antitumor immune 
responses by mediating adjuvant effects that activate various antitumor effector cells 
of both innate and adaptive immune systems and also aid in establishing a long-term 
memory response. Here, we established NKT  cell-targeted therapy using a newly 
discovered NKT cell glycolipid ligand, RK, which has a stronger capacity to stimulate 
both human and mouse NKT cells compared to previous NKT cell ligand. Moreover, RK 
mediates strong adjuvant effects in activating various effector cell types and establishes  
long-term memory responses, resulting in the continuous attack on the tumor that con-
fers long-lasting and potent antitumor effects. Since the NKT cell ligand presented by 
the monomorphic CD1d can be used for all humans irrespective of HLA types, and also 
because NKT cell-targeted therapy does not directly target tumor cells, this therapy can 
potentially be applied to all cancer patients and any tumor types.

Keywords: natural killer T  cell, tumor immunology, cD1d, immunotherapy, neoglycolipid, adjuvant activity,  
long-term memory responses

inTrODUcTiOn

Immunotherapy, which acts by harnessing the power of patient’s own immune system, has recently 
emerged as a treatment option to combat cancer in addition to conventional treatment options 
such as surgery, chemotherapy, and radiation therapy (1). Despite encouraging results, tumor 
relapse and metastasis still remain a major problem for any of the current anticancer therapies.  
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A common and significant limitation of current anticancer 
immunotherapies is that they often target only one type of 
antitumor effector cell. For example, in the immunotherapy 
approaches using tumor peptide-specific CTL, dendritic cells 
(DCs), engineered CAR-T cells, tumor-infiltrating lymphocytes, 
or antibodies against PD-1, the target is the effector T cell, which 
kills MHC-positive, but not MHC-negative, tumor cells, resulting 
in recurrence of MHC-negative tumor cells (2). Similarly, in the 
case of lymphokine-activated NK cells or NK cells generated by 
the enforced expression of NK receptor ligands, such as Rae1/
H60/Mult-1 (NKG2D-L), the effector cells eliminate only 
MHC-negative tumor cells, resulting in the relapse by MHC-
positive tumor cells (3). Moreover, tumor cells often undergo 
mutational changes that render them resistant to these therapies.

In contrast to the current immunotherapy approaches 
described above, natural killer T (NKT) cells (4–6), but not other 
effector cell types, have the potential to simultaneously activate 
various effector cell types, including both CD8 T and NK cells 
that, in turn, eliminate both MHC-positive and MHC-negative 
tumor cells (7). In addition, activated NKT  cells can interact 
with immature DCs in the presence of their agonist ligand and 
induce maturation of DCs, thereby overcoming of the immu-
nodeficiency status often seen in cancer patients, and also in 
establishment of long-term antitumor immunity (8). Therefore, 
NKT  cell-targeted therapy is thought to be an ideal treatment 
approach for combating cancer and preventing tumor relapse 
and metastasis. Moreover, as an NKT cell ligand is presented by 
the monomorphic CD1d molecule (9), the ligand itself could 
be used as a drug that could be administered to any patient, no 
matter what their HLA haplotype. As the antitumor effect of 
NKT cell-targeted immunotherapy largely depends on activating 
other innate and adaptive immune cells of patient’s own immune 
system, which theoretically contains clones of tumor-specific 
effector cells that, however, cannot be effectively activated due 
to the immunosuppressive mechanisms mediated by tumor 
cells, the NKT cell-targeted therapy could be used to harness the 
immune system to fight any tumors type.

Based on exceptional results from preclinical studies using the 
potent NKT cell agonistic glycolipid ligand α-galactosylceramide 
(GC) (10–14), NKT cell-targeted cancer therapy in human clini-
cal trials was started in patients with advanced or recurrent stages 
of various cancers. The results from these clinical trials were 
fairly promising, e.g., prolonged median survival time (MST) 
of 18.6 months in all treated patients (17 cases) with advanced 
non-small lung cancer refractory to the conventional therapies 
such as chemotherapy, radiation or surgery upon treatment 
with GC-pulsed peripheral blood mononuclear cells (PBMCs) 
compared to the MST of 4.6 months in the best supportive care 
patient group (15, 16). However, there is still a need for further 
improvements aimed to increase the efficacy of NKT cell-targeted 
immunotherapy. It is also important to mention that the efficacy 
of this NKT  cell therapy is almost equivalent to that using 
checkpoint inhibitor such as a PD-1 mAb treatment, where the 
reported MST of advanced non-squamous non-small-cell lung 
cancer patients was 12.2 months (17).

One of approaches aimed to increase the efficacy of NKT cell-
targeted antitumor immunotherapy is the optimization of 

NKT  cell-activating ligands (18). The antitumor effect of NKT 
cell-based immunotherapy depends primarily on potent secretion 
of IFN-γ, a cytokine that actually mediates the activation of down-
stream cellular networks, resulting in a strong adjuvant action 
via NK cells, CD8 cytotoxic T cells, and other cell types (19), and 
also establishment of long-term memory responses (8). Thus, the 
search for a ligand capable of stimulating human NKT cells with a 
strong TH1 cytokine profile is an important objective.

In this study, we developed NKT cell-targeted cancer therapy 
using a newly synthesized glycolipid, termed RK, which is recog-
nized by both mouse and human NKT cells, thereby resulting in 
the superior antitumor responses compared to GC. In addition, RK 
shows stronger activity in inducing IFN-γ release from both human 
and mouse NKT cells compared with the prototypical ligand GC 
when presented by DCs. We also demonstrate that RK-pulsed DCs 
have remarkable potential for induction of NKT  cell-mediated 
adjuvant activity by activating downstream cell types such as NK 
and CD8 T cells, and in the establishment of long-term memory 
responses against a model antigen ovalbumin. Taken together, we 
believe that RK has a potential use in human translational studies in 
anticancer immunotherapy applications targeting NKT cells.

MaTerials anD MeThODs

human samples and animal studies
All experiments involving human samples were performed with 
authorization from the Institutional Review Board for Human 
Research at RIKEN IMS. Umbilical cord blood samples were 
obtained from RIKEN BRC Cord Blood Bank collected with 
written informed consent. PBMCs from healthy donors were 
purchased from Astarte Biologics, LLC (USA).

Mice
Wild-type (WT) C57BL/6 (B6) mice were purchased from 
Charles River Laboratories; B6.CD45.1 mice were from The 
Jackson Laboratory; the new Traj18−/− mice expressing undis-
turbed TCRα chain repertoire, except for Jα18, on B6 background 
were described (20). Mice were maintained in the animal facility 
of RIKEN IMS under specific pathogen-free conditions and were 
used at 8–10 weeks of age. All animal experiments were approved 
by RIKEN Animal Care and Use Committee.

neoglycolipid
The structure and the synthesis method of RK were described 
previously (21). In brief, reduction of an azide prepared by 
modification of the 6-hydroxy group of the known alcohol 
(2S,3R,4E)-2-Azido-3,4-di-O-benzyl-1-O-[2,3,4-tri-O-benzyl-
6-O-(tert-butyldimethylsilyl)-d-galactopyranosyl]octade-
cane-1,3,4-triol by using Staudinger reaction gave an amine (22). 
The amine was acylated with cerotyl chloride to give an amide. 
Deprotection of all of the benzyl groups of the amide by hydrog-
enolysis afforded RK as white powder.

cell-Free antigen Presentation assay
Flat bottom 96-well culture plates were coated with 2 µg of solu-
ble dimeric mouse CD1d:Ig fusion protein (BD Biosciences) in 
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50 µL PBS. After incubation for 6 h at 4°C, 50 µl of the indicated 
lipid antigens diluted in PBS were added, and the plate was 
incubated overnight at 37°C. The next day, the wells were washed 
with PBS and incubated with complete culture medium before 
the addition of the NKT  cell hybridoma 2E10 at 1 ×  105 cells 
per well. Culture supernatants were collected after 16 h for the 
cytokine measurement assay by ELISA.

cell Preparation and Flow cytometry
Single-cells from designated mouse organs and mononuclear cells 
from umbilical cord blood samples were prepared as described 
previously (23, 24). Surface antigen staining was performed after 
Fc receptor blocking using TruStain fcX™ or human TruStain 
FcX™ (BioLegend). Forward light-scatter gating and 7-AAD 
staining (BD Biosciences) were used to gate out doublets and dead 
cells. Samples were acquired on FACS Canto II (BD Biosciences), 
and data were analyzed with FlowJo 10.0.8r1 software (Tree Star). 
Anti-mouse antibodies were as follows: CD3ε+ or -PE (145-2C11), 
CD8α+ or -PE (53-6.7), CD19-PerCP-Cy5.5 (1D3), CD45.1-FITC 
(A20), CD45.2-PE (104), NK1.1-APC (PK136), and TCRβ+ 
(H57-597). Anti-human antibodies were as follows: TCR Vα24-
Jα18-Brilliant Violet 421 (6B11), CD3-FITC, or -APC (OKT3). 
Above mAbs were from BD Biosciences or BioLegend. Vehicle-, 
RK-, or GC-loaded soluble dimeric mouse or human CD1d:Ig 
fusion protein (BD Biosciences) were used with APC-anti-mouse 
IgG1 (X56; BD Biosciences) to detect mouse or human NKT cells, 
respectively (23).

intracellular cytokine staining
Splenocytes were seeded at 2  ×  107 cells/mL in a complete 
medium supplemented with GolgiPlug (BD Biosciences) and 
cultured for 1  h at 37°C. After cell surface staining, cells were 
fixed, permeabilized and stained with PE-labeled anti-IFN-γ 
(XMG1.2) from BioLegend using BD Cytofix/Cytoperm™ 
Fixation/Permeabilization Kit (BD Biosciences) according to the 
manufacturer’s instructions.

In Vitro cell culture conditions
The NKT cell hybridoma 2E10 was cultured as described (25). Bone 
marrow-derived DCs from B6 mice were prepared as described 
(23, 26), where after 6 days of culture in a complete RPMI-1640 
medium (ThermoFisher Scientific) supplemented with 5 ng/mL  
mGM-CSF (R&D), DCs were purified with AutoMACS and 
anti-mouse CD11c microbeads (Miltenyi Biotec). Human DCs 
were prepared as described (27), where CD14+ monocytes were 
purified from PBMNCs with a MACS LS column and anti-human 
CD14 microbeads (Miltenyi Biotec) and cultured for 6 days in 
a DendriMACS GMP medium containing 800 U/mL hGM-CSF 
and 250 U/mL hIL-4 (all from Miltenyi Biotec). Human umbilical 
cord blood derived mononuclear cells were prepared by density 
gradient centrifugation using Ficoll-Paque Plus (GE Healthcare), 
and NKT cell cultures were performed as reported (23) with a 
minor modification, where the culture medium consisted of 50% 
AIM-V medium (ThermoFisher Scientific), 45% RPMI-1640, 
5% heat-inactivated fetal bovine sera (Sigma), 1 × NEAA, 1 mM 
sodium pyruvate, 55 µM 2-ME, 2 mM l-glutamine, and 100 U/mL  

penicillin/streptomycin (all from ThermoFisher Scientific) and 
supplemented with 100 U/mL hIL-2 (Shionogi, Japan).

cD40 ligation and real-time Quantitative 
Pcr
Human PBMNC-derived DCs (1 × 105 per well) were cultured in 
the presence or absence of histidine-tagged recombinant human 
CD40 Ligand (0.1  µg/mL; from R&D) and His Tag Antibody 
(10 µg/mL; from R&D) in 96-well culture plates for 12 h. RNA 
was purified using an RNeasy Plus Micro kit (Qiagen), and cDNA 
was prepared with Superscript VILO cDNA Synthesis Kit (Life 
Technologies). Quantitative real-time PCR was performed with 
the ABI PRISM 7900HT system (Applied Biosystems) using 
FastStart Universal Probe Master Mix (Roche). Relative gene 
expression was calculated with the 2−ΔΔCt method, where the 
GAPDH expression level served as an internal control. Taqman® 
Gene Expression Assays for IL12B (Hs01011518_m1) and 
GAPDH (Hs02758991_g1) were from Applied Biosystems.

cytokine Measurements
IFN-γ concentrations in plasma or culture supernatants were 
quantified with ELISA kits for mouse IFN-γ (R&D) or human 
IFN-γ (BD Biosciences). The levels of mouse IL-12p70, mouse 
IL-4, and human IL-4 were measured with a cytometric bead 
array (CBA) (BD Biosciences).

induction of T cell-Mediated immunity 
against OVa antigen
To identify OVA-specific T cells expanded upon NKT stimula-
tion in vivo, splenocytes were prepared according to a published 
report (28) with some minor modifications. In brief, splenocytes 
(2 × 107 cells per mouse) pulsed with OVA peptide (Worthington 
Biochemical) were administered intravenously together with 
5  ×  104 DCs that had been pulsed overnight with RK or GC 
at 100  ng/mL. The mice were sacrificed after 7  days, and liver 
mononuclear cells were stained for the presence of OVA-specific 
CD8 T  cells using T-Select H-2Kb OVA Tetramer-SIINFEKL-
APC (MBL). For the experiments to assess the induction of 
long-term OVA-specific immunity, OVA-pulsed, osmotically 
shocked splenocytes (2 × 107 cells per mouse) were intravenously 
injected together with unpulsed or RK-pulsed DCs (1 × 106 cells 
per mouse). These mice received another injection of unpulsed or 
RK-pulsed DCs (1 × 106 cells per mouse) 4 days after the initial 
immunization. At the indicated time points, mice were sacri-
ficed and splenocytes were directly assessed for the presence of 
OVA-specific CD8 T cells using T-Select H-2Kb OVA Tetramer-
SIINFEKL-APC (MBL), or were primed in vitro with or without 
1 µM SIINFEKL (OVA257–264) peptide (Abbiotec) for 6 h in the 
presence of GolgiPlug (BD Biosciences). The cells were then 
stained for cell surface markers, fixed with the Cytofix/Cytoperm 
Plus permeabilization kit (BD Biosciences), and stained with 
PE-labeled anti-IFN-γ (XMG1.2) from BioLegend.

B16 Melanoma Metastasis Model
Mice were anesthetized and the spleen was surgically removed  
on day 0 after intrasplenic inoculation of B16 melanoma 
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FigUre 1 | IFN-γ release from mouse Vα14+ natural killer T (NKT) cells activated with RK or galactosylceramide (GC) glycolipids. (a) NKT cell hybridoma E210 cells 
were plated 1 × 105 cells per well into 96-well culture plates, which were previously coated with soluble CD1d and incubated with RK or GC at the indicated 
concentrations overnight. Vehicle was used as a control in the NKT cell hybridoma activation assay. The culture supernatants were collected after 16 h and IFN-γ 
levels were measured by ELISA. Data are mean ± SEM from triplicate wells. The data are representative from two independent experiments with similar results.  
(B) In vivo antigen presentation assay with RK- or GC-pulsed dendritic cells (DCs). B6 mice were injected intravenously with 5 × 105 RK- or GC-pulsed DCs per 
mouse, and levels of IFN-γ and IL-4 in the sera collected at the indicated time points were measured by ELISA or cytometric bead array, respectively. Data are 
mean ± SEM from three mice and repeated three times with similar results. **P < 0.01; ***P < 0.001, unpaired Student’s t-test; n.d., not detected.
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(5 ×  105) cells. Four days after the B16 inoculation, mice were 
injected intravenously with either RK- or GC-pulsed bone mar-
row-derived DCs (3 × 104 or 1 × 105). The mice were sacrificed 
after 2 weeks, and the liver was visually or quantitatively evaluated 
for B16 metastases.

Measurement of B16 Melanoma 
Metastases in a liver Tissue with Visible 
light absorption spectrophotometry
Liver tissues were homogenized in 10 mL of a sodium hydroxide 
(1 M) solution with IKA Ultra-Turrax tube disperser workstation 
system using DT-20 dispersing tube with rotor–stator for 30  s. 
Then 1 mL of homogenate was heated at 75°C for 1.5 h, diluted 
further with sodium hydroxide, and 0.2 mL of diluted homogen-
ate was used for measurement of absorbance at 405 nm with a 
Wallace 1420 ARVO MX multi-label plate reader (PerkinElmer). 
A standard curve was generated using serially diluted B16 mela-
noma cells, and normalized absorbance values were calculated 
relative to the B16 only (untreated) controls.

statistical analysis
Where indicated, two-tailed unpaired t tests were done using 
PRISM 6 software (GraphPad). P < 0.05 was considered statisti-
cally significant.

resUlTs

rK is recognized by Mouse nKT cells 
and elicits strong iFn-γ secretion
In search of a potent NKT cell-activating antigen with superior 
antitumor characteristics compared to the widely used glycolipid 

ligand α-GC, we have newly synthesized a series (172) of neo-
glycolipids and screened these compounds for their potential 
to activate NKT cells. For the initial screening assay to measure 
the NKT cell activating potential of the newly synthesized com-
pounds, we used a cell-free antigen presentation assay, in which 
soluble CD1d was coated on a culture plate, pulsed with glycolipid 
antigens, and IFN-γ release from the NKT cell hybridoma 2E10 
expressing an invariant Vα14Jα18 TCRα paired with Vβ8 was 
used as a readout (25). Results showed that one of the newly 
synthesized glycolipid, termed RK, is a much more potent activa-
tor of the NKT cell hybridoma than GC in a glycolipid antigen 
dose-dependent manner (Figure 1A).

Next, we sought to verify and extend the in  vitro screening 
result with a more physiologically relevant in  vivo antigen 
presentation assay, where WT B6 mice were intravenously 
injected with RK-pulsed mouse bone marrow-derived dendritic 
cells (RK-pulsed DCs). Compared with GC-pulsed DCs, the 
RK-pulsed DCs showed a significantly higher (>4-fold) ability 
to elicit IFN-γ secretion in the sera collected at both early (6 h) 
and later (24, 36 h) time points. Conversely, the serum levels of 
IL-4 were similarly lower in mice injected with RK-pulsed or 
GC-pulsed DCs compared to IFN-γ levels (Figure 1B). In addi-
tion, as expected, IFN-γ was not detected in the sera of NKT cell-
deficient Traj18−/− mice, verifying the NKT  cell specificity of 
both RK- and GC-pulsed DCs (data not shown). These results 
demonstrated that RK-pulsed DCs induce stronger TH1-type 
cytokine secretion compared with GC-pulsed DCs.

rK is recognized by human nKT cells 
and elicits strong iFn-γ secretion
Because of its importance for therapeutic application, we wished 
to extend our mouse experiments into a human system to assess 
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FigUre 2 | The novel glycolipid RK is recognized by human natural killer T (NKT) cells. (a) Staining of an NKT-iPSC line with RK- or galactosylceramide (GC)-loaded 
human CD1d dimers. Flow cytometry plots are representative from triplicate samples per group. Numbers indicate the percentage of human CD1d dimer+CD3+ cells 
within the 7-AAD− viable lymphocyte gates. (B) The mean fluorescence intensity (MFI) levels of human CD1d dimers loaded with RK- or GC, which were gated as 
shown in panel (a). Data are mean ± SEM from triplicate samples per group. Experiments were repeated three times with similar results. (c) Human NKT cell 
expansion upon culturing with RK. Umbilical cord blood mononuclear cells were cultured in the presence or absence of the indicated glycolipids (100 ng/mL) for 
19 days in complete media supplemented with 100 U/mL hIL-2. The cultures were re-stimulated with fresh glycolipid-pulsed antigen-presenting cells on culture day 
9. Numbers on flow cytometry plots show frequencies (mean ± SEM, n = 3 samples per group) of Vα24+CD3+ human NKT cells within gated viable lymphocytes. 
(D) Absolute NKT cell numbers (mean ± SEM, n = 3 samples per group) of Vα24+CD3+ human NKT cells as shown in panel (c). Experiments were repeated with 
two different donors with similar results. (e) IFN-γ and IL-4 release from human NKT cells activated with RK-pulsed dendritic cells (DCs). Human NKT cells (5 × 104 
per well) were co-cultured for 48 h with the same numbers of peripheral blood monocyte-derived DCs that were pulsed overnight with RK or GC at 100 ng/mL. 
IFN-γ and IL-4 levels in culture supernatants were measured with ELISA or cytometric bead array, respectively. Data are mean ± SEM from triplicate wells. 
Experiments were repeated three times with similar results. **P < 0.01; ***P < 0.001; ****P < 0.0001, unpaired Student’s t-test.
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whether the RK antigen is recognized by human NKT  cells. 
To this end, we first loaded human CD1d dimers with RK or 
GC according to the previously published method (23), and 
stained a human NKT-iPSC line described previously (29). Flow 
cytometry results clearly demonstrated that RK-loaded human 
CD1d molecules efficiently stain human NKT  cells, where 
GC-loaded CD1d and unloaded CD1d were used as positive 
and negative staining controls, respectively (Figure 2A). Of note, 
the mean fluorescence intensity (MFI) of RK-loaded CD1d was 

significantly higher than GC-loaded CD1d (Figure 2B), which 
mirrored results obtained by staining of mouse NKT cells with 
mouse RK-loaded CD1d (Figures S1A–C in Supplementary 
Material). The elevated MFI levels could be best explained by the 
higher affinity of the RK-loaded CD1d complex for the invariant 
TCR of NKT cells.

Next, we examined whether RK can activate human NKT cells 
using proliferative responses upon in vitro culture as the readout. 
To this end, we cultured umbilical cord derived mononuclear 
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FigUre 3 | The in vivo tissue dynamics of RK-pulsed dendritic cells (DCs). 
RK-pulsed DCs prepared from B6.CD45.2 donors (1 × 107) were adoptively 
transferred via the tail veins of B6.CD45.1 congenic recipient mice, and 
CD45.2+ DCs of donor origin were assessed by flow cytometry at 1, 24, and 
72 h time points after injection. Absolute numbers of CD45.2+ donor-derived 
cells found within the indicated organs are shown (mean numbers ± SEM, 
n = 3 recipient mice). Experiments were repeated two times with similar 
results; n.d., not detected.
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cells in the presence of RK or GC for a total of 19  days. Flow 
cytometry analyses demonstrated that RK induces significantly 
higher expansion of human NKT  cells compared with GC 
(Figures 2C,D). These results indicate that RK not only strongly 
stimulates human NKT cells but also is efficiently processed and 
presented by human antigen-presenting cells (APCs).

To investigate whether RK presented by human DCs has the 
capacity to induce increased TH1 cytokine release from human 
NKT  cells, we carried out an antigen presentation assay using 
peripheral blood monocyte-derived DCs as APCs together with 
a human NKT cell line as effector cells. The IFN-γ but not IL-4 
levels in 48 h co-culture supernatants were significantly higher 
in RK-pulsed DCs compared with GC-pulsed DCs (Figure 2E).

In summary, these results demonstrate that RK is efficiently 
presented by human DCs and that these RK-pulsed DCs show 
superior activity compared to GC-pulsed DCs in promoting TH1 
cytokine production from human NKT cells.

The In Vivo Dynamics of rK-Pulsed Dcs
It is well known that GC-pulsed DCs mediate strong antitu-
mor activities upon systemic administration (14, 20). For 
pharmacokinetic characterization of RK-pulsed DCs, we 
investigated their tissue distribution and dynamics. To this end, 
we prepared RK-pulsed DCs from B6.CD45.2 donors and then 
injected these cells intravenously into B6.CD45.1 congenic 
recipient mice. CD45.2+ DCs of donor origin were enumerated 
at 1, 24, and 72 h time points after injection. Flow cytometry 
analyses of recipient mice demonstrated that injected DCs of 
donor origin are eliminated within 72  h when administered 
via the intravenous route (Figure 3). The distribution pattern 
of donor DCs suggests that the majority are located in the lung 
and liver at the 1-h time point and to a lesser extent in the 
spleen. The number of donor DCs gradually decreased until 
they were no longer detectable at the 72-h time point. These 
results imply that the RK-pulsed DCs are quickly eliminated 
from the organism, soon after these cells have done their job to 
activate NKT cells.

adjuvant effects on immune cell Types 
upon rK-Pulsed Dc administration
We went on to investigate in vivo adjuvant effects of RK-pulsed 
DCs on both innate and adaptive immune cell types, such 
as NKT, NK, and CD8 T  cells of the host. Flow cytometry 
analyses of splenocytes from B6 mice on day 6 post-injection 
revealed that both the frequency and absolute number of 
splenic NKT  cells was clearly augmented upon RK-pulsed 
DC administration compared with control mice injected with 
unpulsed DCs (Figures 4A,B). These results suggest that adop-
tive transfer of RK-pulsed DCs induces a robust expansion of 
NKT cells in vivo.

To directly assess the NKT cell-mediated trans-activation of 
NK cells (30, 31), we intravenously injected RK-pulsed DCs and 
then investigated IFN-γ production by splenic NK cells at 16 h 
post-injection. Flow cytometry analysis of splenic NK cells, which 
were detected as NK1.1+CD3ε− cells, revealed that frequency 
and number of IFN-γ+ NK  cells from RK-pulsed DC-injected 

animals were significantly increased compared to mice injected 
with unpulsed DCs (Figures  4C,D). These data suggest that 
RK-pulsed DCs induce strong trans-activation of NK cells, which 
in turn leads to the long-lasting IFN-γ secretion.

To directly assess the NKT cell-mediated adjuvant activity on 
adaptive immune responses, we immunized B6 mice with OVA 
antigen together with unpulsed or RK-pulsed DCs and analyzed 
liver mononuclear cells 7  days later for the presence of OVA-
specific CD8 T  cells. Flow cytometry analysis showed that the 
RK-pulsed DC injection resulted in greatly increased frequencies 
and numbers of OVA tetramer-positive CD8 T cells compared 
with those of unpulsed DCs (Figures 4E,F). These results indicate 
that RK-pulsed DCs show strong adjuvant effects in the induction 
of antigen-specific immunity.

Then, we wished to test whether in  vivo administration of 
RK-pulsed DCs results in IL-12 release, which in turn provides 
a positive feedback effect on IFN-γ production from NK and 
NKT  cells (32–34). To this end, we assessed sera samples col-
lected 6 h after injection with RK-pulsed DCs or unpulsed DCs. 
The CBA results clearly revealed strong IL-12p70 release from 
mice injected with RK-pulsed DCs, while no IL-12p70 was 
detected in mice that received unpulsed DCs (Figure 4G). Given 
that the mechanism of IL-12 release from DCs is thought to be 
a consequence of NKT cell-mediated maturation of glycolipid-
presenting immature DCs through CD40/CD40L interactions 
(35), we wished to further extend these results using human 
PBMNC-derived DCs pulsed with RK and assess the IL-12 
induction mimicking the CD40/CD40L interaction in  vitro. 
Real-time PCR analyses of human RK-pulsed DCs cultured 
with or without CD40 ligand clearly demonstrated a significant 
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FigUre 4 |  Continued  
The in vivo adjuvant effects of RK-pulsed dendritic cells (DCs). (a) In vivo expansion of natural killer T (NKT) cells upon injection of RK-DCs. Flow cytometry of 
wild-type B6 splenocytes 6 days after intravenous injection of 5 × 104 unpulsed DCs or RK-DCs. Numbers indicate percentages of CD1d dimer+TCRβ+ NKT cells 
within the 7-AAD−CD8−CD19− viable splenocyte gate. Data are representative of 3 mice per group. (B) Absolute numbers of splenic NKT cells as shown in panel 
(a). Data are mean ± SEM from three mice per group. (c) Intracellular analysis of IFN-γ production by splenic NK cells. Unpulsed- or RK-pulsed DCs (5 × 104 per 
mouse) were injected intravenously into B6 mice. Splenocytes were isolated after 16 h and cultured in complete media containing GolgiPlug (BD Biosciences) for 
1 h. Numbers on flow cytometry plots show percentages of NK1.1+IFN-γ+ cells among NK1.1+CD3ε− gated cells. The data are representative of n = 3 mice per 
group. (D) Absolute cell numbers of IFN-γ+ NK cells. Data are mean ± SEM from n = 3 mice per group. (e) Detection of OVA-specific tetramer-positive CD8 effector 
T cells. B6 mice were immunized with OVA antigen together with unpulsed- or RK-pulsed DCs (5 × 104 per mouse) on day 0 and liver mononuclear cells were 
analyzed 7 days later. Numbers on flow cytometry plots indicate percentages of OVA tetramer-positive cells among viable CD8 T cells. (F) Absolute numbers of OVA 
tetramer + CD8 T cells (mean ± SEM, n = 3 mice per group) gated as shown in panel (e). Experiments shown in panels (a–F) were repeated two times with similar 
results. (g) Detection of IL-12p70 in the sera collected 6 h after intravenous injection of 5 × 104 unpulsed- or RK-pulsed DCs into B6 mice. Serum IL-12p70 levels 
were measured by cytometric bead array. Data are mean ± SEM from three mice, and experiments were repeated three times with similar results. (h) Detection of 
IL12B mRNA encoding IL-12p40 by real-time quantitative PCR. RK-pulsed human PBMNC-derived DCs (1 × 105 per well) were cultured for 12 h with or without 
recombinant human CD40 ligand. Bars depict the relative gene expression (mean ± SEM from triplicate wells) with GAPDH used as internal control. The experiment 
was repeated with three different donors with essentially similar results. ***P < 0.001, unpaired Student’s t-test; n.d., not detected.
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induction of IL12B mRNA encoding IL-12p40 upon CD40 liga-
tion (Figure 4H).

Taken together, these results suggest a scenario where adop-
tively transferred RK-pulsed DCs, in addition to eliciting strong 
IFN-γ production by NKT  cells, mediate positive feedback to 
further enhance IFN-γ production through their ability to release 
IL-12 upon interaction with endogenous NKT cells of the host 
through CD40/CD40L. These cellular interactions presumably 
lead to observed remarkably strong adjuvant effects, resulting 
in the activation of players associated with innate and adaptive 
immune systems such as NK cells and antigen-specific effector 
CD8 T cells.

rK-Pulsed Dcs Promote an establishment 
of long-term T cell Memory responses
It was previously reported that NKT cells were required for the 
establishment of long-term protective immunity against several 
tumor cell lines that lasted even after one year of vaccination with 
GC-loaded tumor cells used as vaccine delivery vectors (8). Here, 
we investigated whether NKT activation with RK-pulsed DCs 
can induce long-term antigen-specific T cell-mediated memory 
responses. To test this, we made use of experimental model with 
OVA as an artificial antigen, where B6 mice were immunized 
with osmotically shocked splenocytes pulsed with OVA together 
with unpulsed or RK-pulsed DCs by the intravenous route. When 
we assessed the immunized mice 3  months later, the in  vitro 
functional assay results clearly demonstrated the presence of 
clonotypically expanded IFN-γ producing OVA-specific CD8 
T cells in mice that had received RK-pulsed DCs, whereas these 
OVA-specific CD8 T cells were virtually undetectable in mice that 
had received unpulsed DCs (Figures 5A,B). When we assessed 
similarly immunized mice after 9 months, we could still detect 
significant numbers of OVA-specific T  cells (Figures  5C,D), 
where the numbers of both CD44+CD62L+ central memory and 
CD44+CD62L− effector memory OVA tetramer+ CD8 T cells were 
expanded in mice treated with RK-pulsed DCs compared with 
those treated with unpulsed DCs (Figures 5E,F). These results 
demonstrate that RK-pulsed DCs have strong adjuvant effects 
that confer the induction of long-term antigen-specific T  cell 
memory, which presumably plays a prime role in the long-lasting 
T cell-mediated immunity against the MHC-positive tumors.

rK-Pulsed Dcs Possess superior 
antitumor activity
Since the in  vivo biological effects of RK-pulsed DCs were 
compatible with their being promising antitumor immuno-
therapy therapeutics, we investigated the antitumor properties of 
RK-pulsed DCs. For this purpose, we used a B16 melanoma liver 
metastasis model in which GC-pulsed DCs have been shown to 
completely eradicate the tumor (14, 20). Therefore, in order to 
directly compare the antitumor potential of RK- and GC-pulsed 
DCs, we modified our previously reported method. We estab-
lished a liver metastasis model by intrasplenic injection of B16 
melanoma cells at day 0, and then after 4 days we injected RK- or 
GC-pulsed DCs into the melanoma-bearing hosts. Macroscopic 
observation of liver tissues obtained after two weeks of injection 
with DCs clearly showed that RK-pulsed DCs have much stronger 
antitumor activity compared with GC-pulsed DCs (Figure 6A). 
Strikingly, as few as 3 × 104 RK-pulsed DCs almost completely 
eradicated the tumor, while the same number of GC-pulsed DCs 
did not show any therapeutic effect. Moreover, the effect from 
injection of 3 × 104 RK-pulsed DCs was almost comparable to the 
effect from injection of 1 × 105 RK-DCs. In addition to the mac-
roscopic evaluation, we also attempted to quantitatively measure 
the B16 melanoma burden in the liver by homogenizing the liver 
tissue and analyzing the melanin concentration in samples by 
visible light spectroscopy, based on a standard curve obtained 
with serially diluted melanoma cells (Figure 6B). Results from 
quantitative analyses of B16 melanoma burden confirmed the 
results derived from macroscopic observation (Figure  6C). 
Collectively, these results clearly demonstrate that RK-pulsed 
DCs have superior antitumor activity compared with the widely 
used GC-pulsed DCs.

DiscUssiOn

In this study, we have developed NKT  cell-targeted cancer 
therapy using a newly synthesized glycolipid, termed RK, which 
is recognized by both mouse and human NKT  cells, mediates 
strong adjuvant activity on various cell types in the innate and 
acquired immune systems, establishes long-term T cell memory 
responses (lasting more than 9  months), and shows superior 
antitumor responses.
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FigUre 5 | Evaluation of long-term T cell memory responses. (a) Detection of IFN-γ-producing memory CD8 T cells. B6 mice were immunized with OVA antigen and 
injected with unpulsed- or RK-pulsed dendritic cells (DCs) (1 × 106 cells per injection) on day 0 and day 4 by the intravenous route. Splenocytes were harvested 
3 months later and were activated in vitro with or without SIINFEKL (OVA257–264) peptide for 6 h in the presence of GolgiPlug Protein Transport Inhibitor. Cells were stained 
with anti-IFN-γ mAb using a Cytofix/Cytoperm intracellular staining kit. Numbers on flow cytometry plots indicate frequencies of IFN-γ producing CD8 T cells gated as 
CD3ε+CD8+ lymphocytes. Data are representative from three mice per group. (B) Absolute numbers of IFN-γ+ CD8 T cells (mean ± SEM, n = 3 mice per group) gated 
as shown in panel (a). (c) Frequencies and (D) absolute numbers (mean ± SEM, n = 3 mice per group) of OVA-specific memory CD8 T cells detected 9 months after 
immunization. OVA immunization and adoptive transfer of unpulsed- or RK-pulsed DCs were done as described in panel (a). Numbers on flow cytometry plots show 
percentages of OVA tetramer+CD8+ memory T cells among CD3ε+CD8+ gated splenocytes. (e) Frequencies and (F) numbers (mean ± SEM, n = 3 mice per group) of 
CD44+CD62L+ central memory and CD44+CD62L− effector memory antigen-specific CD8 T cells among gated OVA tetramer+CD8+ T cells analyzed 9 months after 
immunization as shown in panel (c). All experiments were repeated two times with similar results. *P < 0.05; **P < 0.01, unpaired Student’s t-test.
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FigUre 6 | Antitumor activity of RK-pulsed dendritic cells (DCs). (a) Inhibition of B16 melanoma metastasis by specific activation of natural killer T cells with 
RK-DCs. The antitumor effect of RK-DCs was assessed using the B16 melanoma liver metastasis model. Tumor cells were inoculated into B6 mice on day 0, and 
the indicated numbers of RK- or galactosylceramide (GC)-pulsed DCs were injected intravenously on day 4. Untreated control mice were inoculated only with the 
B16 melanoma. Individual liver tissue images obtained from three mice per experimental group on day 14 post-injection are shown. (B) Standard curve generated 
by melanin measurement using visible light spectroscopy at 405 nm, obtained from serially diluted B16 melanoma cells. (c) Quantitative analysis of B16 melanoma 
burden in the liver tissues shown in panel (a). Values represent calculated ratios of melanin concentrations assessed by visible light spectroscopy relative to the 
untreated animals inoculated only with the B16 melanoma (mean ± SEM, n = 5 mice per group). All experiments were repeated three times with similar results.
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There are several possible mechanisms that could explain this 
superior antitumor activity resulting from NKT  cell activation 
with RK. One interpretation is that RK has a much stronger ability 
to induce IFN-γ release from both mouse and human NKT cells 
compared with GC when presented by professional APCs such 
as DCs (as shown in Figure  1B). In agreement with previous 
studies suggesting that the strong binding affinity of the TCR 
with the glycolipid/CD1d complex may lead to the TH1 skewed 
cytokine release (27, 36), the staining intensities of RK-loaded 
human or mouse CD1d molecules showed significantly higher 
MFI than those of GC-loaded CD1d. This could partly explain 
the augmented IFN-γ release from NKT cells, which may have 
resulted from higher binding affinity of the TCR/RK/CD1d triple 
complex. We also found that adoptive transfer of RK-pulsed DCs 
strongly induced IL-12 release, presumably induced upon inter-
action of transferred RK-pulsed DCs with endogenous NKT cells 

through a CD40/CD40L interaction, which further enhances 
IFN-γ secretion through a positive feedback mechanism.

We have also made an interesting observation that adoptive 
transfer of RK-pulsed DCs mediated strong adjuvant effects 
before the cells were eliminated from the recipient within 72 h, 
yet they could still activate various downstream effector cell 
types such as NK and antigen-specific CD8 T cells. This feature 
of RK-pulsed DCs to activate both NK and CD8 T effector cells 
and other antitumor effector cells is particularly important for 
the immunotherapy approach, because for an optimal anticancer 
therapy both MHC-positive and MHC-negative tumor cells 
should be eliminated simultaneously to avoid tumor relapse and 
metastasis. In other words, this dichotomy represents the main 
threat in anticancer therapy because tumors in general contain 
both cell types and often undergo mutational changes that 
allow immune evasion. Furthermore, the adjuvant activity of 
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RK-pulsed DCs has important implications because tumor cells, 
unlike pathogens, are usually poorly immunogenic as they do not 
contain any endogenous adjuvant materials. It is this property 
of tumor cells that makes it difficult for the immune system to 
mount efficient antitumor immune responses in patients without 
use of adjuvants.

Another important finding was that RK-pulsed DCs have 
the capacity to establish long-term memory responses, where 
we could still detect ovalbumin-specific CD44+CD62L+ central 
memory CD8 T cells even after 9 months in OVA-primed mice 
that had received only a single injection of RK-pulsed DCs. The 
establishment of long-term T cell-based memory is particularly 
important in cancer patients to prevent tumor recurrence by 
conferring long-lasting tumor protection.

In summary, RK-pulsed DCs strongly activate NKT  cells 
in vivo, and through their ability to secrete IL-12, which is induced 
upon interaction with endogenous NKT cells of the host in situ, 
augment IFN-γ release that results in strong adjuvant activity for 
both innate and acquired effector systems. The endpoint result of 
these cellular interactions is the activation of both cytotoxic CD8 
T  cells and NK  cells that eliminate MHC-positive and MHC-
negative tumors, respectively, resulting in the tumor eradication 
without relapse.

Our results warrant further human translational studies using 
the newly discovered agonist antigen RK. Moreover, RK-pulsed 
DCs are promising targets for future clinical application because 
of their potent adjuvant activities on both cytotoxic CD8 T cells 
and NK  cells to eliminate MHC-positive and MHC-negative 
tumor cells, respectively, and their potential to establish long-
term effector memory. Currently, we have started translational 
research (AMED project) on the establishment of an immuno-
therapy method using the novel glycolipid ligand RK.
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Invariant natural killer T (iNKT) cells are a unique innate T  lymphocyte population that 
possess cytolytic properties and profound immunoregulatory activities. iNKT cells play 
an important role in the immune surveillance of blood cancers. They predominantly 
recognize glycolipid antigens presented on CD1d, but their activation and cytolytic activ-
ities are not confined to CD1d expressing cells. iNKT cell stimulation and subsequent 
production of immunomodulatory cytokines serve to enhance the overall antitumor 
immune response. Crucially, the activation of iNKT cells in cancer often precedes the 
activation and priming of other immune effector cells, such as NK  cells and T  cells, 
thereby influencing the generation and outcome of the antitumor immune response. 
Blood cancers can evade or dampen iNKT cell responses by downregulating expression 
of recognition receptors or by actively suppressing or diverting iNKT cell functions. This 
review will discuss literature on iNKT cell activity and associated dysregulation in blood 
cancers as well as highlight some of the strategies designed to harness and enhance 
iNKT cell functions against blood cancers.

Keywords: invariant natural killer T, natural killer T  cells, blood cancer, immunosurveillance, immunotherapy, 
tumor immune evasion

inTRODUCTiOn

Blood cancers are a heterogeneous group of malignancies broadly encompassing leukemia, 
myeloma, and lymphoma. As these cancers develop largely in lymphoid tissues, immune surveil-
lance mechanisms are engaged, but inevitably fail due to changes in the microenvironment which 
are permissive to tumor growth but impede the development of antitumor immunity. Invariant 
natural killer T (iNKT) cells, an innate-like lymphocyte population defined by their semi-invariant 
T  cell receptor (TCR)—Vα14Jα18 in mice and Vα24Jα18 in humans, have important roles in 
helping to regulate antitumor responses to cancer (1). These cells share similar properties to that 
of NK and T cells. The discovery of a potent prototypical NKT cell-activating glycolipid ligand 
known as α-galactosylceremide (αGalCer) (2, 3) prompted extensive attempts to manipulate this 
population to enhance antitumor immunity, both in solid and blood cancers. This review focuses 
on the activities of iNKT  cells in blood malignancies and discusses the potential avenues for 
therapeutic targeting of iNKT cells in humans based on preclinical evidence (Table 1).
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TaBle 1 | Evidence for the involvement and effective targeting of iNKT cells for blood cancer control in mice and humans.

Blood cancer type Mouse Human

Lymphoma •	 CD1d+ tumors can be recognized by NKT cells in vitro (4)
•	 Altered glycosphingolipids secreted by T lymphoma cell line 

shield iNKT cell recognition (5)
•	 αGalCer-pulsed tumor cells ± checkpoint agonist provide 

protection (6, 7)
•	 Pulsing of DCs with αGalCer and tumor antigen provides 

protection (ATOO) (8)
•	 Adoptive transfer of ex vivo activated iNKT cells provides 

protection (ALC) (9)
•	 NKT cells transduced with CD62L CAR persist in vivo and 

prevents tumor growth (10)
•	 DC-targeted nanoparticle provides prophylactic and  

therapeutic protection (11)

•	 Frequency of iNKT cells varies between loci of disease,  
disease stage, and subtypes (12, 13)

•	 CIK cells activated and expanded ex vivo show partial clinical 
efficacy against advanced lymphoma [reviewed (14, 15)]

Acute/chronic myeloid 
leukemia

•	 αGalCer-pulsed tumor cells provide protection (7) •	 Low expression of CD1d correlate with poorer prognosis (16)
•	 Functional defects in NKT cells and CD1d downregulation  

induced by oncogene expression (17, 18)
•	 Tyrosine kinase inhibitor can restore iNKT cell functions (17)
•	 Activated iNKT cells is cytotoxic against CD1d+ tumor cells  

in vitro (19, 20)

Acute lymphocytic 
leukemia

•	 αGalCer-pulsed tumor cells provide  
protection prophylactically. Therapeutic vaccine combined  
with chemotherapy is protective (C1498) (21)

•	 NKT-like cells transduced with CD19-directed CAR is  
protective and promotes long term survival (22)

•	 Low expression of CD1d may contribute to progression (16),  
yet CD1d+ leukemia can also associate with poor prognosis (23)

•	 CIK cells transduced with CD19-directed CAR kill tumor cells 
in vitro (22)

Chronic lymphocytic 
leukemia

•	 CD1d-deficiency shortens survival (TCL1) (24)
•	 NKT cells delay disease onset but become functionally  

impaired

•	 Reduced frequency, function and expression of CD1d on  
tumors is associated with progression of disease (13, 24–28)

•	 Higher CD1d expression can also be associated with poor 
prognosis (27, 29)

•	 Higher presentation of tumor-associated lipids on CD1d can lead  
to impairment of CD3ζ signaling and poorer prognosis (29)

•	 Cultured iNKT-like/CIK cells are cytotoxic against tumor  
in vitro (30–33)

Multiple myeloma •	 αGalCer-pulsed DCs improves survival outcome of mice 
(5T33MM) (34)

•	 αGalCer-pulsed tumor cells provides protection (Vk*myc, 
MOPC315.BM) (7, 35)

•	 Reduced frequency and function of iNKT cells correlates  
with disease progression (36)

•	 Inflammation associated lipids skew Th2 responses in  
iNKT cells (36, 37)

•	 Cultured expanded NKT cells are cytotoxic against CD1d+  
myeloma cells in vitro (20, 36)

•	 αGalCer-pulsed DCs ± lenalidomide induce NKT cell expansion 
(38, 39)
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iMMUnOReGUlaTORY anD DiReCT 
CYTOTOXiC aCTiviTieS OF inKT CellS 
in BlOOD CanCeRS

Invariant natural killer T  cells recognize glycolipid antigens 
presented on the MHC Class I-like molecule CD1d, which are 
expressed on many cell types, but most highly expressed on 
antigen-presenting cells (APCs) (40, 41). Both human and murine 
iNKT cells were found to recognize glycolipid antigens derived 
from components of bacteria (42, 43), as well as the syn thetic 
molecule, αGalCer (44). However, iNKT  cells have also been  
shown to recognize and respond to a variety of endogenous lipids 
including lysosomal glycosphingolipids such as isoglobotrihexo-
sylceramide (iGb3) (45–48). iNKT cells were shown to directly 
recognize and kill various human tumor cell lines in vitro and 
murine tumors in  vitro and in  vivo through the recognition of 
endogenous lipids expressed on CD1d (36, 49, 50). The identities 

of these tumor-associated lipid antigens are mostly unknown. 
However, the tumor-associated ganglioside GD3 can be presented 
on CD1d for the activation of iNKT cells in vivo (45).

Early preclinical studies demonstrated that engagement of lipid 
antigen-CD1d complexes via the iNKT TCR results in the pro-
duction of a diverse range of Th1/Th2 cytokines and chemokines 
(51–53), which can subsequently modulate both innate and 
adaptive immune cells. Notably, activation of iNKT  cells leads 
to the downstream activation of NK  cells and enhanced IFNγ 
production (54, 55), dendritic cell (DC) maturation and IL-12 
production, and the induction of CD4 and CD8 T cell responses 
(56–59). Consequently, this cascade of events constitutes the 
indirect antitumor immunity imparted by activated iNKT cells 
(transactivation). Indeed, mice lacking iNKT cells (CD1d−/− and 
Jα18−/− mice) are more susceptible to tumor development in sev-
eral spontaneous, oncogenic and carcinogenic models (60–63). 
In recent years, several studies have established the direct and 
spontaneous role of iNKT cells in the initiation of innate immune 

65

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | Invariant natural killer T (iNKT) cell-mediated immune surveillance of blood cancer and counteractive evasion strategies utilized by blood cancer cells. 
(Left) iNKT cells recognize glycolipid antigens presented on CD1d, commonly expressed by blood tumor cells. Recognition of glycolipid:CD1d complex via the 
invariant T cell receptor (TcR) leads to a cascade of events: the production of immunomodulatory cytokines such as interleukin-2 (IL-2), interferon-γ (IFNγ), tumor 
necrosis factor-α (TNFα), and granulocyte-macrophage colony-stimulating factor (GM-CSF), release of cytolytic mediators such as perforin/granzyme, activation of 
antigen-presenting cells (APCs) such as dendritic cells (DCs) and IL-12 production, as well as the rapid transactivation of NK cells and T cells. iNKT cells can also 
recognize tumor and degranulate in a CD1d-independent manner via Natural Killer Group 2D (NKG2D) receptors. (Right) In turn, tumor cells can evade recognition 
and killing by downregulating CD1d, NKG2D-L, TNF-related apoptosis-inducing ligand (TRAIL-L) and FAS/CD95. In addition, certain blood tumors can disrupt death 
signaling pathways to avoid killing. Some blood tumors express aberrant levels of glycolipids or shed soluble glycolipids and NKG2D-L which in turn dysregulate 
normal signaling pathway in iNKT cells. Blood tumors cells can also skew the production of Th2 cytokines (IL-4 and IL-13) in iNKT cells. IL-4 is associated with the 
activation of regulatory T cells (Treg) which are involved in dampening of antitumor responses. Dysfunction of iNKT cells have also been associated with tumor-
associated macrophages (TAMs) and their ability to induce hypoxia in the tumor microenvironment.
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responses against blood cancers such as B/T  cell lymphomas, 
chronic lymphocytic leukemia (CLL) and multiple myeloma 
(MM) (25, 36, 64–66). These studies show that iNKT cells have 
the potential to control or delay the progression of premalignant 
or early stage disease in a CD1d-dependent manner, as seen using 
murine models and iNKT cells derived from patients (4, 19, 49, 
67–69). In addition, innate immune control of blood cancers was 
found to correlate to the functional ability of iNKT cells to pro-
duce inflammatory cytokines IFNγ, and TNFα and as well as the 
induction of IL-12 production in APCs (64, 70, 71) (Figure 1).

In addition to their immunostimulatory effects, activated 
iNKT  cells possess direct cytotoxic activity against blood 
cancers through the production of cytolytic molecules such as 
granzyme B and perforin, and through the interaction of death-
inducing receptors such as Fas and TRAIL (19, 49, 72–75). More 
than half of all iNKT cells also express the NKG2D activating 
receptor enabling direct cytotoxicity against tumors expressing 
NKG2D ligands (76, 77). More broadly, NKG2D expression 
on immune effector cells is important for protection against 

hematological malignancy (78) (Figure 1). This was supported 
by two recent studies performed in NKG2D-deficient mice, 
which developed spontaneous lymphomas significantly faster 
than NKG2D-competent mice (79, 80). Similarly, the success 
of various inhibitors administered in mice that prevent the 
shedding of NKG2D ligands (NKG2D-L) or induce NKG2D-L 
expression on leukemic cells, and thereby enhancing cytotoxic 
killing, further demonstrates the significant role of NKG2D 
expression in immune surveillance of blood cancers (81, 82). In 
contrast, the functional role of NKG2D on human iNKT cells 
against tumors is less well defined. It has, however been dem-
onstrated that human CD3+CD56+ NKT-like cells derived from 
the blood of healthy individuals are sensitive towards NKG2D-
L-expressing cell lines including monocytic lymphoma (U937) 
and Burkitt’s lymphoma cell lines (Raji) (77, 83). More studies 
are required to understand the extent to which NKG2D expres-
sion on human iNKT cells is effective against blood cancers.

Invariant natural killer T  cells have also been identified 
in the control of host response against allogenic donor cell 
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rejection in leukemic patients receiving allogeneic HSCT. 
The suppression of graft-versus-host-disease (GvHD), while 
maintaining graft-versus-tumor effect has been shown to be 
highly dependent on the engraftment of donor iNKT cells, as 
failure to reconstitute iNKT cells after transplantation strongly 
correlated with disease relapse (84–87). Studies into the mecha-
nisms of GvHD suppression show that iNKT cells modulate the 
overall immune response through production of Th2 cytokines 
such as IL-4, which in turn dampen inflammatory donor 
T cells, and promote Treg proliferation against both acute and 
chronic GvHD (88–91). These studies therefore highlight an 
importance function of the Th2 arm of activated iNKT cells in 
the facilitation of engraftment of allogenic donor cells against 
recurrence of leukemia.

inKT Cell DYSFUnCTiOn anD evaSiOn 
OF inKT Cell ReCOGniTiOn in BlOOD 
CanCeRS

Tumor Cell evasion of inKT Cell 
Recognition and Killing
Blood tumor cells possess intricate methods of evading detection 
and elimination by the immune system (92–94). The downregula-
tion of CD1d on malignant cells is one of the major contribut-
ing factors to the evasion of iNKT  cell immunosurveillance in 
blood cancers (34, 95). In fact, lower expression levels of CD1d 
on a variety of blood cancers is associated with progressive and 
advanced stages of disease in both murine models and in humans 
(16, 25, 26, 64, 96). Various mechanisms have been associated 
with downregulation of CD1d expression in blood cancers. 
For example, surface CD1d downregulation in Epstein–Barr 
virus-transformed B cells is thought to be attributed to posttran-
scriptional mechanisms commonly employed by herpes viruses 
(97, 98). Downregulation of CD1d expression on CLL B cells is 
believed to be associated with the elevated levels of a transcrip-
tional protein called lymphoid enhancer-binding factor-1 (26).

Aside from regulation of CD1d expression, blood cancers 
may also be able to evade recognition by NKG2D on iNKT cells. 
This assumption is derived from previous observations in solid 
tumors. In one particular study, serum samples taken from 
patients with ovarian and prostate cancer had elevated levels 
of tumor-derived soluble NKG2D ligands, namely MHC class 
I chain-related (MIC) proteins. When cocultured with freshly 
isolated iNKT-like CD3+CD56+ cells in  vitro, the cytotoxic 
activity of these cells was compromised and NKG2D expres-
sion was downregulated (83). In a more recent study, Lu et al. 
(99) demonstrated that antibody blockade of soluble MIC in a 
model of adenocarcinoma could potentiate IFNγ production 
upon stimulation (100) As elevated levels of soluble NKG2D 
ligands in the plasma of patients with MM, acute lymphoblastic 
leukemia (ALL), chronic myeloid leukemia (CML), Hodgkin’s 
lymphoma (HL), and non-HL have been observed (101–105), 
it is predicted that NKG2D-expressing iNKT cells will be dys-
regulated in these tumor microenvironments. With evidence 
showing the capacity for iNKT  cells to utilize TRAIL to kill 
leukemic cells in vitro (19), it is anticipated that blood tumors 

would be able to evade recognition by iNKT cells by altering 
TRAIL receptor expression. Indeed, myeloma and B cell lym-
phomas have been reported to resist TRAIL-induced killing 
(106), by downregulating TRAIL receptors—death receptor 4  
(DR4) and DR5 (107, 108), or by dysregulating receptor 
signaling to evade killing (109, 110). Likewise, AML tumors 
have been observed to utilize decoy TRAIL receptors to resist 
apoptosis (111, 112).

immunosuppressive effects of Tumors  
on inKT Cells
Blood cancer disease progression in humans is associated with 
a profound decrease in the frequency and function of circulat-
ing iNKT  cells (12, 113–119). Although iNKT  cell numbers 
have been shown to vary between subtypes and grade of B cell 
neoplasms in humans (13), this parameter has been used as an 
independent factor for predicting disease stage and progression 
in blood cancer patients (25, 36, 118). It is currently unclear how 
disease progression causes these defects in iNKT cells. Several 
studies have suggested that iNKT  cell dysfunction caused by 
tumors are indirect, as iNKT cell function and expansion can be 
rescued upon administration of αGalCer-based treatments (36, 
67, 120, 121), or lenalidomide treatment (122, 123). In stud-
ies in CML patients, aberrant tyrosine kinase expression and 
dysfunctional Rho-associated protein kinase (ROCK) expres-
sion have been suggested to exert suppressive effects on iNKT 
cells by regulating the transcription factor PLZF, expression of 
CD95L and perforin (17) as well as altering CD1d expression 
on myeloid DCs (mDCs) (18). Indeed, in CML patients who 
had undergone treatment using a tyrosine kinase inhibitor, 
iNKT cell functions could be restored (17). Likewise, in vitro 
treatment of CML mDCs with ROCK inhibitors was found to 
partially restore CD1d expression (18). iNKT cell dysfunction 
has also been associated with tumor-associated lipid antigen 
production, such as altered glycosphingolipids secreted by a 
murine T cell lymphoma cell line. The shedding of these lipid 
antigens were suggested to shield from iNKT cell recognition, 
as inhibition of the release of these lipid antigens could rescue 
iNKT cell functions (5). Interestingly, in certain patients with 
leukemia, higher CD1d levels have been detected on malignant 
cells that correlated with poorer prognosis and lower iNKT cell 
numbers (23, 27, 29). In this instance, higher presentation of 
tumor-associated lipids on CD1d by leukemic cells was sug-
gested to cause iNKT cell hyporesponsiveness attributed to an 
impairment of CD3ζ signaling (29). In MM patients, inflamma-
tion-associated lysophospholipids and other glycolipids found 
to be elevated in the plasma were shown to induce iNKT cells to 
produce the Th2 cytokine IL-13 (36, 37), an anti-inflammatory 
cytokine associated with downregulation of tumor immuno-
surveillance (124). iNKT cell dysfunction has also been linked 
to hypoxia and tumor-associated macrophages (125), as well 
as interruptions in metabolic signaling caused by acidity of the 
tumor microenvironment (126) (Figure  1). These conditions 
have been implied to promote lymphoma tumor progression 
(127, 128). Better understanding of these immunosuppressive 
strategies of blood cancers will help with designing strategies 
that better harness the antitumor effects of iNKT cells.
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STRaTeGieS TO MODUlaTe inKT Cell 
aCTiviTY in BlOOD CanCeRS

early Use of inKT Cell adjuvants
Over the past couple of decades, strategies to exploit iNKT cells 
have been explored to treat various types of cancer, including 
blood cancers. Early studies in preclinical models showed that 
direct injection of αGalCer or its derivatives could induce 
potent iNKT  cell activation and subsequent innate and adap-
tive immune suppression of tumors, but was also associated 
with significant liver toxicity (63, 71, 129, 130). Unfortunately 
however, this antitumor effect was not recapitulated when tested 
against human cancers. A phase I clinical trial using αGalCer 
instead found limited value as a direct immunotherapeutic agent 
against advanced solid cancers, despite a relatively safe toxicity 
profile tested in dose-escalating studies (131, 132). Patients with 
a higher frequency of circulating iNKTs did however respond 
better to treatment and produce enhanced immunological 
responses (133). Yet, the induction of immunological activ-
ity in these patients did not result in any partial or complete 
responses, and only disease stabilization in some patients could 
be achieved (131, 132).

DC vaccines
Subsequently, it was revealed that free-form αGalCer causes 
profound and enduring hyporesponsiveness in iNKT  cells 
(134, 135). To overcome this treatment-induced anergy, vari-
ous other delivery strategies have been designed, including the  
ex vivo stimulation and loading of autologous DCs with αGalCer. 
Initial studies in solid tumor preclinical models showed that 
administration of αGalCer-pulsed DCs could enhance the 
frequency of iNKT cells and circulating IFNγ-producing cells, 
as well as Th1 antitumor responses when compared to free-form 
αGalCer (38, 136, 137). In addition, αGalCer-pulsed DCs can 
also efficiently promote the infiltration of lymphocytes includ-
ing iNKT cells into tumors, enhance circulating levels of IFNγ  
(138, 139), and promote iNKT  cell-induced immune memory 
upon secondary administration (140). These properties are 
believed to contribute in part to the long-term survival of tumor-
bearing mice receiving DC therapy. For example, αGalCer-
pulsed DCs has been shown to improve overall survival of mice 
with MM (5T33MM model) (34). When tested in patients with 
advanced MM, administration of αGalCer-pulsed DCs was 
found to sufficiently induce iNKT cell expansion and persistence 
in the blood (38). However, this study did not observe any over-
all clinical improvement in these patients. In a Phase I/II study 
in six patients with asymptomatic myeloma, the combination 
therapy of αGalCer-pulsed monocyte-derived DCs with low-
dose lenalidomide, resulted in improved modulation of both 
iNKT and NK  cell responses, including the increased surface 
expression of NKG2D on NK cells. The addition of lenalidomide 
was intended to augment the effects of DC vaccination (39), as 
lenalidomide have been previously suggested to skew iNKT cell 
and cytokine induced killer (CIK) cell responses toward a 
protective Th1 profile in MM patients (123, 141, 142). Similarly, 
coloading of DCs with αGalCer and irradiated tumor cells has 

also been shown to be highly protective against B cell lymphoma 
in mice (4TOO model) (8). In this instance, the pulsing of  
DCs with tumor cells served to provide a source of undefined 
tumor antigens to initiate tumor-specific immune responses 
enhanced by the adjuvanting effects of αGalCer.

Tumor Cell-Based vaccines
We and others have previously attempted to use autologous 
tumor cells as vaccine vehicles for αGalCer delivery in mice. 
Single administration of an αGalCer-loaded tumor cell vac-
cine could induce potent antitumor immunity and prolong 
overall survival in mice with various blood cancers, including  
B lymphoma (Eμ-myc), acute myeloid leukemia (AML-ETO9a), 
and myeloma (Vk*myc) (6, 7, 130, 143, 144). In addition, 
therapeutic effect of this vaccine approach was significantly 
enhanced when used in combination with immune checkpoint 
agonists, such as anti-4-1BB mAb (6). In other studies, the use 
of αGalCer-loaded tumor vaccines was also demonstrated to 
induce potent therapeutic responses against a murine model of 
MM (MOPC315.BM model) and found to generate long-term 
protection against tumor rechallenge (35). Interestingly, in a 
murine model of acute leukemia (C1498), the administration of 
αGalCer-loaded leukemic cells alone was found to be effective 
as a prophylactic vaccine but ineffective against established 
leukemia. The study found that while iNKT  cells could be 
effectively activated, the downstream leukemia-specific T cell 
responses were suppressed. Instead, the benefit of vaccination 
became apparent following chemotherapy treatment, to prevent 
relapse of leukemia, and protect against rechallenge (21).

adoptive Transfer of inKT Cells  
and CiK Cells
While the use of autologous cell-based vaccines has proven to 
be effective in animal models, a potential limitation in human 
patients is the high variability of iNKT  cell frequency. Also, 
the functionality of iNKT  cells often diminishes with tumor 
progression. Therefore, to circumvent this issue, adoptive 
transfer of activated and expanded iNKT  cells derived from 
patient peripheral blood mononuclear cells (PBMCs) have been 
explored. Notably, CD3+CD56+ CIK cells, which represent a 
mixture of NK cell-like T cells, and incorporate an iNKT popu-
lation, possess non-MHC-dependent tumor activity mediated 
through perforin and NKG2D expression (14, 15). By culturing 
autologous PBMCs under various conditions (e.g., αGalCer in 
the presence of GM-CSF and/or IL-2, or with a combination of 
cytokines such as IFNγ, OKT3, IL-2, and IL-15), ex vivo expan-
sion of autologous activated iNKT/CIK cells from patients can 
be achieved (20, 30, 145). Successful expansion of functional 
iNKT  cells from adult hematopoietic stem-progenitor cells 
using artificial APCs coated with CD1d-immunoglobulin (146, 
147) as well as iNKT cell generation from induced pluripotent 
stem cells have also been explored (148). Adoptive transfer 
of ex vivo expanded iNKT cells in conjunction with αGalCer 
administration is an effective treatment against CD1d+ leuke-
mic cells implanted in immunodeficient NOD/SCID mice (67). 
Similarly, adoptive transfer of iNKT cells activated ex vivo with 
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IL-12 and IL-18 could initiate protection against lymphoma 
(ALC model) in mice (9). In humans, cultured iNKT/CIK cells 
are able recognize autologous or allogenic blood tumor cells 
in vitro (20, 30–32, 149). However, therapeutic use of in vitro 
expanded iNKT cells against blood cancers in humans is limited. 
Thus far, three phase I trials and a phase II trial have looked into 
the safety profile and efficacy of expanded activated autologous 
iNKT  cells in patients with solid tumors (150–153). All of 
these studies demonstrated safety and feasibility of treatment 
as well as induction of IFNγ in circulating iNKT in patients. 
In the phase II study, αGalCer-loaded APCs administered 
alongside activated iNKT cells led to iNKT cell accumulation 
at tumor sites and some clinical efficacy in 50% of patients  
enrolled (153).

Notably, the use of expanded CIK cells in association with 
other treatments has led to complete cancer remissions in 
patients with hematological malignancies [reviewed in Refs. 
(14, 15)]. CIK cells have also been used in combination with 
HSCT in a bid to potentiate the overall inhibitory effects of 
GvHD in blood cancer patients receiving transplants (154).  
In a phase I study published by Luo et  al. (154), patients 
enrolled were refractory to chemotherapy or had relapsed after 
early allogenic HSCT treatment. While some patients displayed 
a response to engraftment of donor cells, and infusion of CIK 
cells appeared to contribute to the prolonged survival in these 
patients, the overall efficacy of the combination treatment 
remains limited for this small cohort of patients with highly 
aggressive hematological malignancies (154). The extent to 
which these responses can be attributed to iNKT-like cells 
specifically, is unknown.

Chimeric antigen Receptor (CaR) 
Modified inKT Cells and CiK Cells
Most recently, several studies have explored CAR engineering of 
iNKT/CIK cells (10, 22, 155). A summary of the proof of concept 
findings to date indicate that both CAR-NKT  cells and CAR-
CIK cells possess greater antitumor activity than their iNKT 
and CIK cell counterparts [recently reviewed in Ref. (156)]. In 
one example, donor CD62L+ iNKT cells that were identified to 
be highly proliferative in  vitro were transduced with a CD19-
specific CAR and tested for therapeutic activity against human-
ized mouse models of lymphoma and neuroblastoma. These 
CD62L+ CAR-NKT cells were demonstrated to persist long-term 
in vivo and were also highly effective at inhibiting tumor growth 
(10). The use of CAR-NKT  cells was demonstrated to be safe 
and did not induce graft-versus-host disease (GvHD) in mice 
with neuroblastoma (155). In addition, the antitumor effects of 
CIK cells generated from donor PBMCs could also be further 
enhanced when transduced with CAR specific for CD19 and the 
CD28-CD3ζ signaling domain (22). These CAR-CIK cells were 
found to be highly effective against B-cell ALL (B-ALL) in vitro, 
including against CIK-resistant tumor cells. When tested in vivo, 
CAR-CIK cells were described to be more effective than non-
CAR CIK cells in eliminating B-ALL tumors and promoting 
long-term survival in mice (22). We foresee that these studies 
will serve to accelerate research into modifying donor iNKT cells 

for adoptive therapies for blood cancers to complement other 
CAR-T cell-based therapies (157).

nanoparticle-Based Delivery Systems  
for inKT Cell adjuvants
To overcome some of the limitations associated with adoptive 
NKT  cell-based approaches and to provide less costly and 
time-consuming alternatives for NKT  cell-targeting immuno-
therapy, research into the use of nanoparticle-based systems 
are emerging [reviewed in Ref. (158)]. Briefly, nanoparticle 
vectors are delivery vehicles less than 1  µM in size and have 
wide applications in various diagnostic and treatment settings, 
including tumor immunotherapy (159). Delivery of glycolipid 
adjuvants in suitable nanoparticles presents several advantages 
over delivery in soluble form, such as reduced toxicity profile 
(owing to the reduced amount required to elicit a biological 
response), the ability to overcome iNKT cell anergy (160) and 
the preferential targeted delivery to APCs in vivo (158). To date, 
there exists various published studies in preclinical models of 
solid cancers on the nanoparticulate delivery of αGalCer alone 
or co-delivered with tumor-associated antigens (11, 161–164). 
By comparison, few therapeutic applications of nanoparticle 
delivery of glycolipid adjuvants have been reported for blood 
cancers. One such study utilized a targeted PLGA nanoparticle 
to codeliver a model tumor antigen ovalbumin (OVA) and 
αGalCer to DEC205+ CD8α+ DCs. iNKT  cells were rapidly 
activated using this approach and could drive the induction 
of cytolytic tumor-specific CD8 T cells. When assessed in pro-
phylactic and therapeutic settings against a model of thymoma, 
administration of targeted nanoparticles could significantly 
suppress early tumor growth (11). Recently, a liposomal form 
of αGalCer (RGI-2001) has been designed to circumvent GvHD 
after HSCT. Initial preclinical studies show that RGI-2001 could 
aid in graft-versus-leukemia effect and significantly prevented 
acute GvHD in lethally irradiated leukemia-bearing mice given 
allele-mismatched donor bone marrow cells or spleen cells. This 
effect was believed to be largely due to the enhanced expansion of 
donor-derived CD4+ regulatory T (Treg) cells that could exert its 
effects in an antigen-specific manner (165). Although RGI-2001 
was demonstrated to induce expansion of NKT cells as well as 
higher IL-4 levels early after treatment, the correlation between 
NKT cell expansion and Treg induction was not clearly demon-
strated. In a Phase II study in blood cancer patients, RGI-2001 
was administered as a single dose in combination with HSCT. 
Similar to findings in mice, this study showed that RGI-2001 was 
generally tolerable in most patients and suggested that immu-
nosuppressive Treg cells could be efficiently induced in vivo in 
a small proportion of patients. However, due to limited patient 
recruitment and difficulties in the detection of NKT cells in the 
blood in this particular study, the extent to which NKT  cells 
contributed to overall GvL response remained inconclusive (89).

COnClUDinG ReMaRKS

Increasing knowledge of how different blood cancers modulate 
their environment to avoid or suppress antitumor immunity 
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has advanced the development of counteractive measures 
with immunotherapies. The fortuitous discovery of the potent 
NKT cell-stimulatory properties of αGalCer has enabled us to 
better understand how iNKT  cells function to transactivate 
both the innate and adaptive immune system, and importantly, 
their unique role in antitumor immunity. However, encourag-
ing findings in preclinical studies have not yet convincingly 
translated to similar outcomes in human cancers. In fact, the 
number of human trials testing the therapeutic use of various 
glycolipid compounds against cancer is limited, perhaps not 
only due to interindividual variability between patients but 
also due to the lack of understanding on the effects of tumors 
on decreasing iNKT frequencies and function. This is also true 
in harnessing the functions of NKT cells against GvHD after 
HSCT. In general, there still exists an uncertainty on the proper 
manipulation of iNKT  cells and their different responses to 
a variety of glycolipids. We should continue to fully utilize 
preclinical models to understand how to best influence the 
functions of iNKT cells through synthetic glycolipid ligands, 
but also place more emphasis on the translation of these 

findings into the clinical setting, with the goal to rescue or 
enhance iNKT cell functions in different human blood cancer  
settings.
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Antibody Fusion Proteins Redirect 
invariant natural Killer T Cell immunity 
to Solid Tumors and Promote 
Prolonged Therapeutic Responses
Lianjun Zhang1,2 and Alena Donda1,2*

1 Translational Tumor Immunology Group, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, 
Switzerland, 2 Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland

Major progress in cancer immunotherapies have been obtained by the use of tumor tar-
geting strategies, in particular with the development of bi-functional fusion proteins such 
as ImmTacs or BiTes, which engage effector T cells for targeted elimination of tumor cells. 
Given the significance of invariant natural killer T (iNKT) cells in bridging innate and adaptive 
immunity, we have developed a bi-functional protein composed of the extracellular part of 
CD1d molecule that was genetically fused to an scFv fragment from high affinity antibod-
ies against HER2 or CEA. Systemic treatments with the CD1d-antitumor fusion proteins 
loaded with the agonist alpha-galactosylceramide (αGalCer) led to specific iNKT cell acti-
vation, resulting in a sustained growth inhibition of established tumors expressing HER2 
or CEA, while treatment with the free αGalCer was ineffective. Importantly, we discovered 
that αGalCer/CD1d-antitumor fusion proteins were able to maintain iNKT cells reactive to 
multiple re-stimulations in contrast to their anergic state induced after a single injection 
of free αGalCer. We further demonstrated that the antitumor effects by αGalCer/CD1d-
antitumor fusion proteins were largely dependent on the iNKT cell-mediated transactivation 
of NK cells. Moreover, prolonged antitumor effects could be obtained when combining the 
CD1d-antitumor fusion protein treatment with a therapeutic peptide/CpG cancer vaccine, 
which favored the capacity of iNKT cells to transactivate cross-presenting DCs for efficient 
priming of tumor-specific CD8 T cells. We will also summarize these pre-clinical results 
with a special focus on the cellular mechanisms underlying iNKT cell unresponsiveness to 
antigen re-challenge. Finally, we will discuss the perspectives regarding iNKT cell-medi-
ated tumor targeting strategy in cancer immunotherapy.

Keywords: bi-functional fusion protein, CD1d-antitumor scFv, nKT  cell, DC activation, innate and adaptive 
immune response, tumor-associated antigen

HARneSSinG inKT CeLLS FOR CAnCeR iMMUnOTHeRAPY

Invariant natural killer T (iNKT) cells represent a unique T cell subset characterized by an invariant 
TCR alpha chain paired with a restricted number of TCR beta chains both in mouse and humans 
(1–3). iNKT  cells have the capacity to bridge the innate and adaptive immunity (1, 4–6). First, 
iNKT cells acquire an effector memory phenotype before birth, which allows their trafficking to 
the site of inflammation where they exhibit direct cytotoxic capacity by the expression of perforin 
and granzymes. Second, iNKT cells secrete large amounts of effector cytokines very rapidly after 
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activation and are potent activators of NK  cells through their 
fast release of IFNγ. Third, activated iNKT  cells communicate 
with DCs via the upregulation of CD40L which promotes DCs 
licensing and maturation, and subsequently effective CD8 T cell 
responses (7, 8).

The significance of iNKT  cells in antitumor immunity has 
been well studied in both mouse models and clinics (1, 4, 5, 
9–12). Mice lacking iNKT cells are more prone to chemical or 
p53 loss-induced tumor development (13–15). Along the same 
line, late-stage cancer patients harbor either decreased numbers 
of iNKT cells or iNKT cells showing certain functional deficien-
cies (11, 16–19). Also, head and neck squamous cell carcinoma 
(HNSCC) patients with lower levels of circulating iNKT  cells 
before radiation therapy show poor 3-year survival as compared 
to patients harboring higher circulating levels of iNKT cells (20). 
These observations have triggered the development of iNKT-
mediated cancer immunotherapy mainly by the use of the CD1d 
agonist ligand alpha-galactosylceramide (αGalCer), either as 
a free drug or loaded on DCs before their adoptive transfer, as 
reviewed by McEwen-Smith et al. (4) and Robertson et al. (21). 
These approaches have demonstrated potent iNKT cell activation 
and subsequent NK cell transactivation and CD8 T cell priming. 
Despite the potent tumor cytotoxicity and transactivating proper-
ties of iNKT cells, clinical responses have remained so far limited, 
resulting on the one hand from the small numbers of iNKT cells, 
and on the other hand from their short-lived activation followed 
by long-term unresponsiveness. To address the issue of the small 
iNKT cell numbers, the adoptive cell transfer (ACT) of ex vivo 
expanded autologous iNKT cells has been tested in HNSCC and 
melanoma patients with, respectively, some objective clinical 
responses and Th1 responses, in particular when iNKT  cells 
were inoculated in the vicinity of the tumor in combination with 
αGalCer-pulsed DCs (22–24). As mentioned above, the powerful 
initial αGalCer-mediated activation of iNKT cells is followed by 
long-term unresponsiveness which is another drawback for the 
therapeutic manipulation of iNKT  cells against cancer (9, 25, 
26). In this regard, ACT of αGalCer-pulsed DCs was reported 
to trigger more effective antitumor immunity than administra-
tion of free αGalCer in mouse experimental models and cancer  
patients (25–28).

More recently, ACT of human iNKT cells transduced with a 
chimeric antigen receptor (CAR) was reported as a novel and safe 
platform in a humanized mouse tumor model (29). This attractive 
approach that requires further validation in immunocompetent 
hosts would combine the ACT of high numbers of tumor-specific 
iNKT cells which could be co-activated by αGalCer treatment. 
However, CAR-T  cell immunotherapy represents an expensive 
personalized cancer treatment and alternative cost-effective 
treatments would be preferred, such as the development of solu-
ble molecules able to activate and redirect endogenous iNKT cells 
to the tumor site.

TUMOR TARGeTinG in CAnCeR 
iMMUnOTHeRAPieS

Major progress in cancer therapy have been obtained by the 
development of tumor targeting strategies, which mostly 

involve monoclonal antibodies (mAbs) specific either of 
tumor-associated antigens (TAA), or soluble factors released by 
the tumor or inhibitory and activatory receptors expressed by 
tumor-infiltrating T cells (TILs). For instance, numerous clinical 
protocols are now routinely involving tumor targeting antibod-
ies such as anti-CD19, anti-HER2, or anti-EGFR combined 
with chemotherapy or kinase inhibitors for the treatment of, 
respectively, B cell lymphoma, breast, gastric, and colon cancers 
(30, 31). In addition to the use of native mAbs, various antibody 
formats have been developed, which allowed, for instance, the 
development of a large array of bi-functional molecules by the 
genetic fusion of an antibody fragment with an effector mol-
ecule, such as another antibody fragment, a toxin, a cytokine, 
or an antigen-presenting molecule. Yet, even a large array of 
bi-functional proteins have been tested in pre-clinical studies 
and some clinical trials, very few have so far entered routine 
clinical application. Among the few bi-functional molecules 
that are currently under clinical testing, the most promising are 
the Bi-specific T cell engagers or BiTes, which directly activate 
T cells against tumor cells by combining an anti-CD3 scFv frag-
ment with another scFv specific of an antigen over-expressed 
on tumor cells (32). The second class of bi-functional molecules 
that are currently tested in metastatic melanoma patients are the 
so-called ImmTACs for “immune mobilizing monoclonal TCRs 
against cancer,” which combines an optimized TCR specific of 
HLA-A2/gp100 (IMCgp100) fused to an anti-CD3 scFv (33). 
While the use of BiTes is restricted to surface-expressed tumor 
antigens, ImmTACs have the potential to target endogenously 
processed antigens loaded on MHC I molecules, which greatly 
increases the possible applications. However, ImmTACs require 
TCR optimization in the context of defined HLA haplotypes, 
which represents a personalized and expensive approach. By 
contrast, BiTes have the advantage to be one drug which fits 
all patients. Along the same line, we and others have initially 
developed bi-functional molecules, which combine an MHC 
I molecule with an antitumor antibody fragment (34–37). We 
could demonstrate the capacity of these bi-functional mole cules 
to redirect tumor-specific T cells to the tumor site, which led to 
a significant inhibition of tumor growth (34, 35). More recently, 
we developed CD1d-antitumor fusion proteins, which offered 
two main advantages. First, CD1d bi-functional molecules are 
exploiting a monomorphic antigen-presenting molecule that 
would fit all patients. Second, when loaded with αGalCer, these 
CD1d-antitumor fusion proteins will specifically activate Type 1 
iNKT cells and redirect both the innate and the adaptive antitu-
mor responses to the tumor site, in view of the transactivating 
properties of iNKT cells.

CD1d-AnTiTUMOR FUSiOn PROTeinS

In order to redirect iNKT  cell immunity at the tumor site, 
we have developed CD1d molecules genetically fused to an 
antibody scFv fragment specific of the HER2 or CEA antigens, 
which are overexpressed in several cancers (9, 10). Briefly, 
mouse β2-microglobulin coding sequence (β2M) was fused to 
the soluble part of CD1d followed by the antibody scFv frag-
ment and a 6xHIS-tag for purification. Flexible glycine/serine 
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linkers were inserted after β2M, CD1d, and scFv to facilitate 
proper folding. Recombinant proteins were produced in 293-
EBNA cells. Strikingly, unlike MHC I/peptide monomer and 
conventional CD8 T  cells, αGalCer/CD1d monomers were 
able to activate iNKT cells in vivo as seen by iNKT TCR down-
modulation, as well as iNKT and NK cell proliferation and DC 
maturation (9). The iNKT cell activation by CD1d monomers 
may result from the significantly higher binding affinity of the 
iNKT TCR for αGalCer/CD1d (KD ~ 0.3 μM) (38), as compared 
to conventional TCR for MHC/peptide (KD range 1–50  µM) 
(39). Moreover, it is possible that in vivo aggregation or loose 
cell binding may also facilitate iNKT cell monomer activation. 
Nonetheless, significant antitumor activity only occurred when 
the CD1d protein was targeted to a tumor antigen by its fusion 
to an antibody scFv fragment. First, we demonstrated that 

B16-HER2 tumor cells pre-coated with αGalCer/CD1d-anti-
HER2 fusion proteins totally abolished their potency to initiate 
tumors (9). In view of these encouraging results, we tested the 
therapeutic efficacy of αGalCer/CD1d-anti-HER2 proteins in 
mice bearing established B16-HER2 lung tumor nodules or 
subcutaneous tumors. In both models, we could demonstrate 
a significant inhibition of tumor growth, which was dependent 
on the presence of iNKT and NK cells as the antitumor effects 
were abolished in CD1d-deficient mice or upon depletion of 
NK cells (9). The analysis of peripheral lymphoid organs and 
tumor tissue revealed (i) localization of CD1d-antitumor 
proteins at the tumor site, (ii) recruitment of iNKT, NK, and 
T cells at the tumor, (iii) sustained activation of iNKT cells, and 
(iv) adjuvant effect on CD8 T cell priming (as depicted in the 
Figure 1).
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Localization of CD1d-Antitumor Proteins 
at the Tumor Site
CD1d-antitumor proteins were initially validated in  vitro for 
their specific binding to tumor cells expressing the relevant 
tumor antigen. Next, we investigated whether intravenously 
injected fusion proteins would reach the tumor site in sufficient 
amounts to attract iNKT cells. Indeed, when injecting radiola-
beled αGalCer/CD1d-anti-HER2 proteins in mice bearing on 
each flank either HER2-positive or HER2-negative tumors, up to 
twofold more radioactivity was found in HER2-positive tumors, 
as compared to HER2-negative tumors, while non-targeted 
αGalCer/CD1d protein did not localize preferentially to any of 
the tumors, although it induced systemic iNKT cell activation to 
some extent (9) (see Figure 1).

Recruitment of inKT, nK, and T Cells  
at the Tumor Site
When BrdU-positive iNKT cells in lung tumor nodules, there was 
a fivefold or twofold increase when compared to untreated mice or 
the ones treated with untargeted αGalCer/CD1d protein, respec-
tively. Most importantly, we observed a sevenfold enrichment of 
BrdU-positive NK cells and conventional T cells at tumor site, 
illustrating that the iNKT-mediated transactivation could trig-
ger their increased proliferation capacity. Interestingly, all three 
lymphocyte populations were instead decreased in the blood and 
spleen of CD1d-anti-HER2-treated animals as compared to the 
untargeted CD1d treatment, which might reflect their preferen-
tial recruitment to the tumor site upon HER2 targeting.

Sustained Activation of inKT Cells
Strikingly, iNKT cells remained reactive even after multiple treat-
ments with αGalCer/CD1d-antitumor fusion proteins, in contrast 
to the hyporesponsive state that typically follows the injection of 
the free ligand αGalCer. This preservation of iNKT cell respon-
siveness allowed multiple injections of the fusion proteins, which 
greatly enhanced antitumor efficacy of tumor-targeted CD1d as 
compared to αGalCer/CD1d molecules targeted to an irrelevant 
tumor antigen (10). Although iNKT cells remained substantially 
reactive to several injections of αGalCer/CD1d fusion proteins, 
we did observe a progressive loss of iNKT  cell activation with 
reduced cytokine production. It is highly possible that a propor-
tion of loaded glycolipid analog was lost from the fusion protein 
in vivo and, thus, processed by APCs, whereby they progressively 
induced iNKT cell anergy. In this regard, studies are in progress 
to assess the activities of CD1d fusion proteins loaded with 
photo-reactive αGalCer analogs that can be UV-crosslinked to 
CD1d. Initial studies show that complexes of mCD1d with a 
covalently bound αGalCer are resistant to dissociation and are 
potent iNKT cell activators in vitro and in vivo (personal com-
munication, S. Porcelli, Albert Einstein College of Medicine, 
NY, USA). The validation of these covalently bound αGalCer 
on CD1d antitumor fusion proteins is in progress with regard 
to their antitumor activity and capacity to maintain iNKT cells 
reactive to multiple stimulations.

The mechanism by which systemic treatments with αGalCer/
CD1d fusion proteins activate iNKT  cells without inducing 

anergy, as compared to free αGalCer analogs, remains an area 
of active exploration. High level of surface PD-1 expression 
has been well defined in exhausted CD8 T cells during chronic 
viral infection or tumor exposure, which closely correlated 
with T  cell functional decline (40). Likewise, PD-1 expression 
was also proposed to regulate iNKT  cell anergy induction  
(41, 42). Indeed, upregulation of PD-1 was observed shortly 
after αGalCer injections, which could last for at least 1  month 
(41). Moreover, two studies showed that blocking of the 
interaction between PD-1 and its ligand PD ligand 1 (PD-L1) 
or PD-L2 at the time of αGalCer injection could prevent the 
anergy induction of iNKT  cells (41, 42). In addition, injection 
of αGalCer into PD-1 deficient mice failed to induce iNKT cell 
anergy (42). In a different context, lymphocyte activation gene 3 
(LAG-3), another co-inhibitory molecule, was highly expressed 
on iNKT and NK  cells rather than conventional T  cells from 
chronically HIV-infected patients. Interestingly, LAG-3, but 
not PD-1, was associated with the reduced IFNγ production 
from iNKT cells, indicating that distinct mechanisms underly-
ing the anergy induction of iNKT  cells are context dependent 
(43). Yet, other mechanisms were also described (44, 45). For 
instance, deficiency of tuberous sclerosis 1 (TSC1), the upstream 
inhibitor of mTORC1 signaling, in iNKT cells results in increased 
resistance to αGalCer induced anergy, which is correlated with 
impaired upregulation of Egr2 and Grail (46). Altogether,  
it appears that PD-1 upregulation alone is not enough to mediate 
iNKT cell anergy.

Interestingly, a recent report showed that, instead of being aner-
gic, iNKT cells were rather reprogrammed toward a suppressive 
phenotype with the secretion of IL-10 associated with markedly 
reduced production of effector cytokines (47). Importantly, the 
study by Wingender et al. (48) showed that Th2-biased αGalCer 
analogs, which are less hydrophobic than Th1 analogs, are mostly 
surface-loaded as monomers on CD1d, resulting in a fast and 
transient iNKT cell activation which preserved their responsive-
ness to antigen re-challenge. By contrast, the more hydrophobic 
so-called Th1 αGalCer analogs characterized by a higher critical 
micelle concentration (CMC) are mostly loaded as micelles and 
internalized and processed on CD1d via the endosomal pathway, 
leading to a delayed and prolonged iNKT cell activation followed 
by long-term unresponsiveness (49, 50).

Therefore, we speculate that the surface loading of Th2 analogs 
on APCs is similar to the loading of αGalCer on CD1d fusion 
protein which in both cases triggers the fast and transient kinetic 
of iNKT cell activation, which might be instrumental for their 
retained reactivity to antigen re-challenge.

Adjuvant effect on CD8 T Cell Priming
CD1d-restricted iNKT  cells have been shown to promote 
the transactivation of DCs via the CD40L–CD40 interaction  
(see Figure  1), and their adjuvant properties on the adaptive 
immunity are well reported (51). For instance, DCs receive cognate 
“licensing” either from helper T cells or iNKT cells. With regard 
to iNKT cell, their licensing of cross-priming CD8α+ DCs induces 
them to produce CCL17, which thus attracts CCR4 expressing 
CD8 T cells (8). However, it remains largely undefined regarding 
how NK and T cells are recruited upon iNKT cell activation to the 
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tumor site. In this regard, several laboratories have developed vac-
cine strategies involving either the development of novel αGalCer 
analogs (52), αGalCer-loaded DC vaccines (53) or DC-targeted 
nanoparticles loaded with αGalCer (54). With regard to αGalCer/
CD1d proteins, repeated iNKT  cell activation by untargeted 
αGalCer/CD1d monomers efficiently promoted the maturation 
of pro-inflammatory DCs, while αGalCer as a free drug had only a 
marginal effect (9). Moreover, when tumor-bearing mice received 
an OVA peptide/CpG-ODN vaccination combined with systemic 
treatments of αGalCer/CD1d-antitumor fusion proteins, a syn-
ergistic expansion of OVA-specific CD8 T cells and NK cells was 
obtained, as compared to each regimen alone (12). The optimal 
adjuvant effect on innate and adaptive immune responses likely 
resulted from the enhanced production of the pro-inflammatory 
cytokine IL-12 by mature DCs, which was 10-fold higher with the 
combined stimuli of CpG-ODN and αGalCer/CD1d-anti-HER2 
fusion. Most importantly, the combined treatment resulted in an 
improved enrichment of tumor antigen-specific CD8 T cells and 
NK cells at the tumor site, associated with better tumor inhibition 
against tumors co-expressing HER2 and OVA (12). Interestingly, 
the antibody-mediated depletion of either NK cells or CD8 T cells, 
demonstrated an early and transient NK-mediated antitumor 
activity that was quickly replaced by the CD8 antitumor response. 
Thus, in this context, the direct antitumor activity of iNKT cells 
was minimal but was instead instrumental for the development of 
a tumor-targeted innate and adaptive antitumor responses.

PeRSPeCTiveS

CD1d-antitumor fusion proteins represent an attractive tool 
to redirect at the tumor site the immunoregulatory properties 
of iNKT  cells on the innate and adaptive immune responses. 
Importantly, this strategy holds the advantage to maintain 
iNKT cells reactive to multiple treatments in contrast to the use 

of an αGalCer analog as a free drug. Yet, the development of 
covalently bound αGalCer on CD1d fusion proteins will improve 
their stability in vivo and should greatly increase the sustained 
activation of iNKT cells and antitumor efficacy. Although, these 
molecules did not show significant liver toxicity, more in-depth 
pharmacological studies need to be done. Moreover, imaging 
techniques will help demonstrate that oligomerization of CD1d-
antitumor proteins on the tumor cell likely optimize the forma-
tion of an immunological synapse with the iNKT cell. However, 
in view of the low numbers of iNKT cells in cancer patients, the 
benefit would primarily result from their adjuvant effects rather 
than their direct antitumor cytotoxicity, unless iNKT ACT is 
included. Finally, CD1d is monomorphic and a single fusion 
protein would fit all patients, in contrast to other approaches such 
as ImmTacs, which involves individual TCRs.
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Invariant natural killer T (iNKT) cells are an integral component of the immune system 
and play an important role in antitumor immunity. Upon activation, iNKT cells can directly 
kill malignant cells as well as rapidly produce cytokines that stimulate other immune 
cells, making them a front line defense against tumorigenesis. Unfortunately, iNKT cell 
number and activity are reduced in multiple cancer types. This anergy is often associ-
ated with upregulation of co-inhibitory markers such as programmed death-1. Similar 
to conventional T cells, iNKT cells are influenced by the conditions of their activation. 
Conventional T cells receive signals through the following three types of receptors: (1) 
T cell receptor (TCR), (2) co-stimulation molecules, and (3) cytokine receptors. Unlike 
conventional T cells, which recognize peptide antigen presented by MHC class I or II, 
the TCRs of iNKT cells recognize lipid antigen in the context of the antigen presentation 
molecule CD1d (Signal 1). Co-stimulatory molecules can positively and negatively influ-
ence iNKT cell activation and function and skew the immune response (Signal 2). This 
study will review the background of iNKT cells and their co-stimulatory requirements for 
general function and in antitumor immunity. We will explore the impact of monoclonal 
antibody administration for both blocking inhibitory pathways and engaging stimulatory 
pathways on iNKT cell-mediated antitumor immunity. This review will highlight the incor-
poration of co-stimulatory molecules in antitumor dendritic cell vaccine strategies. The 
use of co-stimulatory intracellular signaling domains in chimeric antigen receptor-iNKT 
therapy will be assessed. Finally, we will explore the influence of innate-like receptors 
and modification of immunosuppressive cytokines (Signal 3) on cancer immunotherapy.

Keywords: invariant natural killer T, co-stimulation, cancer, immunotherapy, chimeric antigen receptor, checkpoint, 
natural killer T

iNvARiANT NATURAL KiLLeR T (iNKT) CeLLS AND  
CO-STiMULATiON

Natural killer T (NKT) cells exhibit similar traits to their namesakes. They express cell surface markers 
similar to natural killer (NK) cells such as CD161, CD56, and CD16. As a subset of T cells, NKT cells 
develop in the thymus and possess a T cell receptor (TCR) (1). Unlike conventional T cells, the NKT 
TCR recognizes lipid antigens in the context of the MHC class Ib molecule, CD1d (2). CD1d is 
expressed on many types of epithelial and endothelial cells and antigen-presenting cells (APCs), such 
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FigURe 1 | Second signals provided by co-receptors influence invariant natural killer T (iNKT) cell biology. Stimulatory (+) pathways result in homeostatic survival 
and enhanced activation, cytokine production, expansion, and cytotoxicity. These positive signals come from CD44, CD161, OX40, 4-1BB, ICOS, CD40L, and 
CD28. Inhibitory (−) signaling can result in cell death and inhibition of iNKT cell activation. Receptors that have shown negative signaling effects include programmed 
death (PD)-1, B and T lymphocyte attenuator (BTLA), and lymphocyte activation gene (LAG-3). The impacts of co-receptors, such as T cell immunoglobulin mucin 
(TIM), CD155, CTLA-4, OX40, and GITR, are not settled in the literature and are indicated by a +/− symbol. Some co-receptors, such as CD40L, selectively skew 
the immune response.

2

Shissler et al. Co-stimulation in iNKT Cancer Immunotherapy

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1447

as B cells and dendritic cells (DCs) (3, 4). There are two subsets 
of NKT cells that are differentiated by their TCRs. Type I NKT 
(iNKT) cells have an invariant TCR whereas type II have diverse 
TCRs (5–8). The TCR of iNKT cells is composed of a single α 
chain (Vα14Jα18 in mice and Vα24Jα18 in humans) paired with 
β chains of limited diversity (Vβ8.2, 7 or 2 in mice and Vβ11 
in humans) (9). While endogenous activating and suppressive 
antigens remain contested, iNKT cells respond to the exogenous 
glycolipid antigen, α-galactosylceramide (α-GalCer), while type 
II NKT cells do not (10). Upon antigenic stimulation, iNKT cells 
once again mirror NK and T cells. As innate-like lymphocytes, 
they respond to antigenic stimulation within a few hours by 
producing large amounts of Th1, Th2, and Th17 cytokines (11). 
This rapid response can be attributed to their storage of cytokine 
mRNA before activation (12). Like both NK cells and cytotoxic 
T lymphocytes (CTLs), iNKT cells can be directly cytotoxic (13). 
This combination of effector functions allows them to address 
stimuli directly and incite the immune system at large to mount 
an effective immune response against various assaults.

Naïve T cells conventionally require three signals for effective 
activation. Signal 1 is TCR: antigen–MHC engagement, Signal 
2 is co-stimulatory molecules, and Signal 3 is cytokine stimula-
tion. Signals 1 and 2 are regarded as mandatory for activation 
whereas Signal 3 is thought to direct the immune response  
(14, 15). This review focuses on the importance of Signal 2 for 
type I iNKT cell activation and function in antitumor immunity. 
Because the majority of the references presented herein refer 
to mouse iNKT  cells, it will be explicitly stated when the data 
refer to human iNKT cells. Co-stimulation receptors can provide 

multiple types of signals, including positive/stimulatory and 
negative/inhibitory, and influence the type of response. There are 
two primary families of co-receptors: the CD28/B7 family and 
the TNF receptor superfamily (TNFRSF). The CD28/B7 family 
members are composed of immunoglobulin domains whereas 
the TNFRSF members have cysteine-rich extracellular domains 
(15). First, we will review the literature that addresses the effects 
of co-stimulatory receptors on iNKT cell biology, which are sum-
marized in Figure 1.

CD28 is the canonical co-stimulatory molecule referred to 
during T  cell activation. It is known to compete with CTLA-4, 
an inhibitory signaler, to interact with CD80/86 (also known as 
B7-1/2). In iNKT cells, CD28 is important for expansion during 
thymic development and after stimulation in the periphery (16–19). 
CD28 is constitutively expressed on iNKT cells, but its expression 
is downregulated during anergy or exhaustion (20). Blockade of 
CD80/86 suppresses production of both Th1 and Th2 cytokines 
and immune responses (21). In an experimental autoimmune 
encephalomyelitis model, blockade of CD86 during α-GalCer 
activation resulted in a Th2 bias (22). The literature available clearly 
shows a stimulatory role for CD28 signaling in iNKT cells.

Inducible T cell costimulator (ICOS or CD278), another member 
of the CD28 family, is constitutively expressed on iNKT cells, and 
its expression is increased after activation (23). The ICOS:ICOSL 
pathway is important for homeostatic proliferation and Th1 and 
Th2 immune responses (23, 24). During stimulation by marginal 
zone B cells, ICOS:ICOSL interactions are necessary to produce 
Th2 cytokines (25). While ICOS engagement is distinctly positive, 
its influence over the immune response is uncertain.
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CD40L, a member of the TNFRSF that interacts with CD40 on 
APCs, has both positive co-stimulatory abilities as well as influ-
ence over the type of immune response generated. iNKT  cells 
have been shown to provide cognate help to B cells that is inde-
pendent of CD40:CD40L interactions (26) and non-cognate help 
in a method dependent on CD40:CD40L interactions (27). CD40 
is upregulated after activation and necessary for production of a 
Th1 inflammatory response in intracellular infections (28) and 
antitumor immunity (29, 30). Th2 cytokine production decreases 
in NKT  cells activated by APCs that had been treated with an 
agonistic anti-CD40 antibody (22). Blockade of CD40L results in 
decreased Th1 responses (21) and increased Th2 responses (31) 
making this pathway a likely target for enhancing transplant tol-
erance. CD40L signaling is distinctly positive and demonstrates 
importance for Th1 immune responses.

4-1BB (CD137), another member of the TNFRSF, is expressed 
on iNKT cells after activation. 4-1BB stimulation during or after 
activation results in increased cytokine production (32) and 
enhanced iNKT  cell proliferation in mice and humans (33). 
Under resting conditions, 4-1BB:4-1BBL interactions between 
iNKT cells and monocytes in the lungs provide homeostatic sur-
vival signals for both cell types in both human and mouse models 
(33). Blockade of 4-1BB results in decreased immune responses, 
including Th1 and Th2 responses (34). 4-1BB signaling is an 
important stimulatory pathway for iNKT cell function.

Although CD44 is expressed on all T cells, its function differs 
in iNKT cells. Unlike in conventional T cells, iNKT cell CD44 can 
bind hyaluronic acid and induce activation. Crosslinking CD44 
results in iNKT cell activation and increased cytokine produc-
tion as well as protection from activation-induced cell death (35). 
Stimulation of iNKT cells with artificial antigen-presenting cells 
that only possess CD1d and anti-CD44 on their surface results in 
potent iNKT cell cytokine production (36). Human iNKT cells 
also express CD161, which is a C-type lectin receptor that interacts 
with lectin-like transcript-1. While CD161 crosslinking by itself 
does not induce activation, CD161 blockade decreases cytokine 
production and proliferation. iNKT cell mediated cytotoxicity is 
independent of CD161 (37). CD44 and CD161 exert a positive 
influence over iNKT cell activation.

Glucocorticoid-induced TNFR-related (GITR or CD357), a 
TNFRSF member, is constitutively expressed on iNKT cells and 
is upregulated after activation. The effects of GITR signaling 
on iNKT  cells is somewhat contested. A paper by Chen et  al. 
shows that GITR has a co-inhibitory role in iNKT  cell activa-
tion as demonstrated by decreased proliferation and cytokine 
production in WT mice compared with GITR-KO mice (38). 
However, GITR:GITRL interactions are necessary for Th1 and 
Th17 cytokine production by iNKT  cells after stimulation by 
conventional DCs (25) and GITR stimulation using an agonistic 
monoclonal antibody enhances overall cytokine production by 
iNKT hybridomas in  vitro (39). Further studies are needed to 
address these disparities found in the literature to determine the 
effects of GITR on iNKT cell activation.

OX40 (CD134), a TNFRSF member, is expressed on iNKT cells 
and interacts with OX40L on APCs but the outcome of this 
interaction is debated. In the pancreas, the OX40:OX40L interac-
tion between iNKT cells and plasmacytoid DCs during LCMV 

infection, tested using neutralizing antibodies, induces IFN-α/β 
production by the DCs and dampens the adaptive immune 
response to avoid tissue damage (40). By contrast, stimulation of 
OX40 with an agonistic monoclonal antibody on liver-resident 
iNKT cells results in caspase-1-dependent pyroptosis and release 
of inflammatory cytokines that cause tissue injury (41). In a tumor 
model, iNKT cell expansion and IFN-γ production are enhanced 
by upregulation of OX40L on DCs (42). OX40 is stereotypically 
thought of as a stimulatory co-receptor, but its role in iNKT cell 
responses is unclear and may be tissue specific.

CD155, a member of the immunoglobulin superfamily, is 
expressed on iNKT cells and interacts with CD226, CD96, and 
TIGIT. CD155 blockade or knockout increases NKT1 cells and 
decreases both NKT2 and NKT17 cell generation during devel-
opment in Balb/c and C57BL/6 mice (43). Its effect on iNKT cell 
activation and cytokine production has not been published.

There are three different T cell immunoglobulin mucin (TIM) 
receptors expressed by iNKT cells (TIM-1, 3, and 4), and they have 
differing effects on iNKT cell activation. TIM-1 engagement on 
iNKT cells by monoclonal antibodies suppresses Th1 responses 
but enhances Th2 responses in both in vitro and in vivo models 
(44). Conversely, TIM-1 engagement by phosphatidylserine—a 
marker of apoptosis—enhances iNKT cell activation, prolifera-
tion, and cytokine production (45). In a nonalcoholic fatty liver 
disease model, TIM-3 is shown to control liver-resident iNKT cell 
homeostasis with direct TIM-3 signaling inducing apoptosis and 
indirect signaling from IL-15, produced by TIM-3 stimulated 
Kupffer cells, promoting iNKT cell proliferation (46). TIM-3 is 
classically an inhibitory receptor and is upregulated on human 
iNKT cells in chronic viral infections (47). TIM-4 is expressed 
but does not have an effect on iNKT cell development or function 
(48). The effects of TIM-1 and TIM-3 need to be further assessed 
in iNKT cell biology.

B and T lymphocyte attenuator (BTLA), a member of the CD28 
family that interacts with B7-H4, is an inhibitory co-receptor that 
is expressed on iNKT cells. Thus far, it has only been examined 
in ConA-induced hepatitis with both studies demonstrating that 
BTLA knockout increases iNKT  cell cytokine production and 
exacerbates hepatitis (49, 50), indicating an inhibitory role of 
BTLA in iNKT cell function. Although these results align with 
the role of BTLA in conventional T cells, more research is needed 
to assess the role of BTLA in other immune models.

Lymphocyte activation gene (LAG)-3, a member of the 
immunoglobulin superfamily that interacts with MHC class II, is 
induced on iNKT cells after activation. It has an inhibitory affect 
with overexpression resulting in inhibition of proliferation due to 
cell cycle arrest (51). LAG-3 is upregulated on human iNKT cells 
in chronic viral infection and is associated with decreased 
cytokine production (52). These inhibitory effects are consistent 
with the effects of LAG-3 in conventional T cells.

Programmed death (PD)-1, a member of the CD28 family, 
is constitutively expressed on iNKT  cells at low levels, rapidly 
upregulated after activation, and thought to play a role in 
iNKT  cell anergy (53–55). Blockade of PD-1 signaling during 
iNKT cell activation enhances Th1 immunity (56). PD-1 interacts 
with both PD-L1 and PD-L2, with PD-L1 also being expressed 
on iNKT cells. Blockade of PD-L1 increases IFN-γ production in 
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FigURe 2 | Co-stimulation plays a key role in the ability of invariant natural killer T (iNKT) cells to initiate antitumor immune responses. Presentation of α-GalCer to 
iNKT cells results in IFN-γ production. IFN-γ stimulates dendritic cells (DCs) to upregulate CD80/86 and activates natural killer (NK) cells. CD40L:CD40 interactions 
between the DC and iNKT cell activate the DC and result in IL-12 production. Cytotoxic T lymphocytes (CTLs) are activated by MHC:T cell receptor (TCR) interactions, 
CD80:CD28 co-stimulation, and IFN-γ and IL-12 signaling. iNKT cells, NK cells, and CTLs are able to directly kill tumor cells using perforin/granzyme and Fas:FasL.
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mice and humans whereas blockade of PD-L2 increases IL-4 and 
IL-13 production (57–59). In chronic viral infections and tumor 
models, human iNKT cells are dysfunctional—failing to prolifer-
ate or produce cytokines after activation—and have upregulated 
PD-1 (47, 60). Blockade of PD-1 signaling after iNKT cell activa-
tion and upregulation of PD-1 is debated with one paper showing 
ability to rescue anergy (55) and two others showing inability to 
rescue anergy (54, 61). iNKT  cells require CD28 signaling to 
produce cytokines in the presence of PD-1:PD-L1 signaling (53). 
The role of the PD-1 pathway in iNKT cell function is distinctly 
inhibitory.

Due to the innate-like qualities of iNKT cells, it was at one 
time contested how co-receptors affected iNKT  cell activation. 
The research summarized above demonstrates that iNKT  cells 
are sensitive to both positive and negative signaling. Indeed, the 
context of these signals can have dramatic effects on the type of 
immune response generated. The next sections will explore the 
effects of co-stimulatory molecules on the ability of iNKT cells to 
mount an effective antitumor immune response.

iNKT CeLLS iN CANCeR

The antitumor capabilities of iNKT cells were demonstrated soon 
after their discovery in 1987 (1). In fact, the 1993 discovery of 
their exogenous activating ligand, α-GalCer, was tested using a 
B16 melanoma model (62). Multiple papers noted the potent bio-
activity of α-GalCer—including inducing lymphocyte prolifera-
tion, NK cell activation, fewer metastases, and prolonged lifespan 
of tumor-bearing mice. Increased survival was correlated with 

IL-2 and IFN-γ production, APC activation, NK cell activation, 
and tumor-specific CTL production (63–66). However, it was not 
until 1997 that the proliferative effects of α-GalCer were shown 
to be dependent on CD1d, Vβ8, and co-stimulatory molecules 
(CD40/CD40L, B7/CTLA-4/CD28) (10), linking iNKT  cells to 
α-GalCer. A key piece of evidence was provided when surface 
plasmon resonance was used to prove that glycolipids such as 
α- and β-GalCer can bind both mouse CD1 and human CD1d 
(67). In 2000, the importance of iNKT cells in tumor immuno-
surveillance and initiation of the antitumor immune response 
was demonstrated using a carcinogen-induced tumor model in 
mice that had various lymphocyte subsets knocked out by gene 
targeting or depletion (68).

Both CD28 and CD40 are needed to spur an effective antitumor 
immune response after α-GalCer injection (29, 30, 69). α-GalCer 
presentation to iNKT  cells results in the production of IFN-γ 
and TNF-α. The CD40:CD40L interaction induces production of 
IL-12 by the DCs and upregulation of the IL-12Rα on iNKT cells. 
Activated iNKT cells can directly kill tumor cells via perforin/
granzyme and Fas:FasL interactions (70, 71). Coadministration 
of α-GalCer and IL-12 works synergistically for iNKT activation, 
cytokine production, and cytotoxicity (29). IFN-γ release by 
iNKT cells activates NK cells to produce IFN-γ and directly kill 
tumor cells (72). IFN-γ and TNF-α upregulate CD80/86 on DCs 
whereas IL-12 induces a Th1/CTL immune response—promot-
ing effective antitumor T  cell immunity (73). Thus, malignant 
cells are killed directly by iNKT cells as well as indirectly via the 
activation of cytotoxic NK and CD8+ T cells. The potent effects of 
iNKT cells in antitumor immunity are summarized in Figure 2.
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iNKT CeLLS AND MONOCLONAL 
ANTiBODY THeRAPieS

Progression of cancer to the stage of diagnosis indicates that the 
cancer has already undergone extensive immunoediting and has 
proceeded to the immune escape phase of immunosurveillance. 
In other words, cancers evolve to suppress and subvert the 
immune response (74). As reviewed by Joyce et al., the tumor 
microenvironment (TME) employs hypoxia, reactive nitrogen 
species, immunosuppressive chemokines and cytokines, dense 
extracellular matrix, and Th1-suppressive immune cells, such 
as regulatory T cells, myeloid-derived suppressor cells (MDSC), 
and tumor-associated macrophages, to suppress antitumor 
immunity (75). In fact, iNKT  cells are frequently suppressed 
in cancer patients—displaying decreased cytokine production, 
cytolytic activity, and proliferation (76). Inhibitory co-receptor 
molecules are meant to stop aberrant immune responses such 
as autoimmunity (77). This system is termed a “checkpoint,” but 
tumors have hijacked expression of molecules such as PD-L1 to 
suppress and evade the antitumor immune response in humans 
and mice (78). A key branch of cancer immunotherapy research 
is on the use of monoclonal antibodies that block inhibitory 
co-receptor pathways (checkpoint inhibitors) and antibodies 
that engage co-stimulatory pathways to enhance antitumor 
immunity (79–85).

Two checkpoint inhibitor pathways have been extensively 
explored: CTLA-4 and PD-1. CTLA-4 is an inhibitory co-receptor 
that competes with CD28 for interaction with CD80/86. PD-1 
and PD-L1 are both expressed on iNKT cells, but PD-1 engage-
ment with PD-L1/L2 is inhibitory to iNKT cell function. Despite 
the popularity of CTLA-4 checkpoint inhibitors, research on the 
effects of α-CTLA-4 on iNKT cell activation is extremely limited. 
A set of papers from Pilones et al. came out examining the effects of 
iNKT cells on an immunotherapy regimen of radiation treatment 
and CTLA-4 blockade in a BALB/c breast cancer model (86, 87). 
This immunotherapy regimen is more successful in the absence 
of iNKT cells due to an increased influx of cross-presenting DCs 
in the tumor draining lymph node, but it is important to note that 
iNKT cell activation via α-GalCer administration is not included 
in the regimen. There has been slightly more research into PD-1/
PD-L1 checkpoint inhibitors in tumor models. Checkpoint block-
ade of PD-1 or PD-L1, but not PD-L2, at the time of iNKT cell 
activation (by α-GalCer) increases cytokine production and 
cytotoxicity in vitro and in vivo, and decreases iNKT cell anergy, 
B16 melanoma tumor size, and metastatic lesions (54–56). It is 
still contested whether PD-1 blockade post-α-GalCer activation 
can rescue iNKT cells from anergy.

While checkpoint inhibitors have side effects such as autoim-
munity, agonistic monoclonal antibodies against stimulatory 
co-receptors can cause rampant, destructive immune activa-
tion—making researchers more cautious with their use. Two such 
agonists, against members of the TNFRSF, have been explored 
in conjunction with iNKT  cell immunotherapy: 4-1BB and 
GITR. In a mouse model of B  cell lymphoma, treatment with 
α-GalCer-loaded, irradiated tumor cells and α-4-1BB increases 
overall survival and tumor-free survival dependent on IFN-γ 
and KLRG1+ CTLs (88). This immunotherapy also generates a 

memory immune response. Another group designed a therapy 
called NKTMab that includes α-4-1BB, α-DR5, and α-GalCer or 
α-C-GalCer (a modified version of α-GalCer known to skew the 
iNKT cell response to Th1). This combination immunotherapy 
causes effective rejection of 4T1 breast cancer tumors in Balb/c 
mice that is dependent on CD4+ T cells, CTLs, iNKT cells, and 
IFN-γ, and they found that α-C-GalCer was more effective in a 
wider range of concentrations (89). The role of GITR in iNKT cell 
mediated antitumor immune responses is not fully elucidated. In 
one paper using a C57Bl/6 T cell lymphoma model, iNKT cells 
in GITR-KO mice exhibit increased survival compared with 
WT mice (38). In a B16 melanoma model, mice treated with an 
agonistic mAb against GITR (DTA-1) exhibit increased survival 
that was dependent on NK1.1+ cells and T cells (90).

Checkpoint inhibitors have excelled in the clinic, but research 
into their effects on iNKT cells is lacking. Treatment regimens 
that combine iNKT cell activation and checkpoint blockade or 
agonistic antibody treatments hold promise for the future.

MODiFieD APCs

Antibody treatments can be harsh due to off-target effects. One 
method of co-stimulatory delivery is DC vaccines. DC vaccines 
have been researched and improved upon for decades, with the 
first cancer vaccine approved by the FDA in 2010. DCs provide 
co-stimulatory molecules in a more natural context—thus limit-
ing off-target effects. Loading DCs with α-GalCer before vaccina-
tion enhances iNKT cell IFN-γ production and decreases tumor 
metastasis in B16 melanoma and Lewis lung carcinoma models 
(91, 92). In cancer patients, administration of α-GalCer-loaded 
DCs results in sustained iNKT  cell expansion and enhanced 
antigen-specific T cell responses (93). Coadministration of irradi-
ated tumor cells with α-GalCer or injection of α-GalCer-loaded, 
irradiated tumor cells enhances iNKT cell-mediated antitumor 
immune response via DC cross-presentation in plasmacytoma, 
lymphoma, and B16 melanoma models (94, 95). One vaccination 
strategy injects α-GalCer-loaded MDSCs—immunosuppressive 
immune cells created by the tumor—and demonstrates enhanced 
survival dependent on CTLs, NK  cells, and iNKT  cells. This 
enhanced immunity is due to increased positive co-stimulatory 
molecule (CD40, CD80/86) expression on the MDSC cell surface 
after iNKT  cell interaction (96). Pretreatment of DCs with the 
Th1, pro-inflammatory cytokine TNF-α enhances positive co-
stimulatory molecule expression such as CD80, CD86, 4-1BBL, 
and OX40L. OX40L expression drastically enhances antitumor 
immunity by enhancing iNKT cell activation, cytokine produc-
tion, expansion, and stimulation of antitumor CTL responses 
(42). These papers demonstrate the impact of APC modification 
and how this influences iNKT cell mediated antitumor immunity.

CHiMeRiC ANTigeN ReCePTORS (CARs) 
iN iNKT CeLLS

In addition to checkpoint inhibition and modified APCs, 
another unique approach that takes advantage of the antitumor 
capabilities of iNKT cells involves the use of CARs. A CAR is 
an artificially engineered receptor containing an extracellular 
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antigen recognition domain attached to an intracellular T cell 
activation domain. Traditionally, in cancer immunotherapy, 
CARs are placed in conventional T cells and contain an extra-
cellular domain that recognizes a tumor antigen along with 
intracellular CD3ζ and co-stimulatory domains that provide the 
appropriate signals needed to fully activate the T cell against the 
tumor. First-generation CARs were composed of an extracellular 
single-chain variable fragment (scFv) and a CD3ζ, which meant 
they required endogenous co-stimulation for activation. Second 
and third generation CARs included one or two co-stimulatory 
signaling domains, respectively, in addition to the CD3ζ chain, 
which eliminated the need for endogenous co-stimulation (97).

However, there are several issues with using conventional 
T cells in CAR based cancer immunotherapy that may be over-
come by expressing CARs in iNKT cells. One major complica-
tion is graft-versus-host disease (GVHD). Conventional TCRs 
are restricted to the polymorphic MHC (98), which can result 
in an allogenic anti-host response by donor T cells. By contrast, 
iNKT cells are restricted to the monomorphic CD1d molecule. 
Since CD1d is monomorphic, meaning it is conserved across 
individuals, iNKT cells can be adoptively transferred without con-
cern for HLA matching (3, 4, 10). Another advantage iNKT cells 
have over conventional T cells is their ability to regulate off tumor 
effects. Several studies have reported that GVHD is exacerbated 
in CD1d−/− or Jα18−/− mice and that stimulation of iNKT cells 
can increase antileukemia responses while simultaneously miti-
gating the severity of GVHD (99, 100).

Human and mouse iNKT  cells have the unique ability to 
secrete both Th1 and Th2 type cytokines, which may partly 
explain how they can simultaneously regulate GVHD and pro-
mote antitumor immunity (101, 102). Lee et al. showed that in 
humans, CD4+ iNKT cells were able to secrete the Th2 cytokines 
IL-4 and IL-13 whereas DN iNKT cells were able to secrete Th1 
cytokines (103). They proposed that this may explain the ability  
of iNKT  cells to facilitate both Th1 and Th2 type responses.  
A study later conducted by Tian et al. showed that stimulation 
with the combination of CD1d, CD86, 4-1BBL, and OX40L 
resulted in the greatest production of Th1 type cytokines by 
human CD19-specific CAR-iNKT cells containing a 4-1BB co-
stimulatory domain (104). A future generation CAR containing 
the signaling domains of all these co-stimulatory molecules could 
be more effective at generating antitumor Th1 type responses.

Despite all the promising reasons to the use CAR-iNKT cells 
in cancer immunotherapy, there have been relatively few studies 
completed (105). However, the few studies that do exist have 
yielded promising results. In 2014, Heczey et  al. generated a 
human anti-GD2 CAR-iNKT cell to target GD2+ neuroblastoma 
and found that these cells were able to localize to the tumor and 
initiate antitumor responses to neuroblastoma in  vivo with no 
indication of the development of GVHD (106). Two years later, 
the same group generated anti-CD19 CAR-iNKT  cells (104). 
CD19 is expressed on B  cells and is being actively explored as 
a therapeutic target to treat various types of lymphoma derived 
from B cells. This study showed that anti-CD19 CAR-iNKT cells 
were able to selectively target CD19+ cells both in  vitro and 
in  vivo. In addition, they identified CD62L+ as a marker of 
the most effective CAR-iNKT  cells due to greater proliferative 

potential and enhanced tumor reduction when compared with 
their CD62L− counterparts (104).

CAR-T cells are emerging as a powerful tool in the field of 
cancer immunotherapy. Given the current evidence suggesting 
that using iNKT  cells may be able to overcome some of the 
problems associated with CAR-T  cell therapy (highlighted in 
Figure 3), further study of CAR-iNKT cells, especially revolv-
ing around the use of various co-stimulatory domains to take 
advantage of their poly-functional cytokine secretion profiles, 
should prove rewarding. In addition, there have been other 
recent advances in the ability to isolate and expand human and 
mouse iNKT cells ex vivo for adoptive transfer that is beyond the 
scope of this review but will further facilitate the therapeutic use 
of these cells (36, 107, 108).

FUTURe DiReCTiONS

The development of CARs has followed a predictable pattern 
of continuously trying to add more and more co-stimulatory 
domains to the receptor to enhance activation. To make these 
receptors as efficient as possible, it is worth exploring new 
possible co-stimulatory domains not traditionally included in 
CARs. A recent study conducted by Baglaenko et al. found a 
new role for Ly108 in iNKT cells (109). Ly108 has been pre-
viously established to play a role in iNKT  cell development; 
however, this recent study found that peripheral trans-Ly108 
interactions between APCs and iNKT cells enhanced the ability 
of iNKT cells to secrete cytokines and that loss of Ly108 expres-
sion resulted in defective iNKT cell homeostasis in mice. They 
went on to find that Ly108 activation in human iNKT cells led 
to increased secretion of the Th1 cytokines IFN-γ and TNF-α 
whereas levels of Th2 or regulatory cytokines, including IL-4 
or IL-10, were unchanged. In addition to Ly108, there are 
several other innate-like co-stimulatory molecules such as 
TLR3, TLR9, and NKG2D that are known to be expressed on 
iNKT cells and be involved in immune surveillance. TLR3 and 
TLR9 agonists have been shown to enhance iNKT cell’s ability 
to mature DCs (110), whereas tumor cells are thought to shed 
NKG2D ligands in exosomes to block the receptor from recog-
nizing the tumor cell (111). The unique signaling cascades and 
the involvement of adaptor proteins could complicate the use 
of these signaling domains in CARs. However, they enhance 
iNKT cell-mediated antitumor immunity, thus their potential 
may outweigh the costs.

We have primarily focused on co-stimulatory domains; how-
ever, it is also important to note the inhibitory domains and how 
they might be taken advantage of to enhance iNKT cell mediated 
antitumor immunity. Tumor cells will upregulate inhibitory 
molecules in response to inflammatory cytokines, which serve 
to inhibit any local antitumor immune response. One of the most 
well-known co-inhibitory molecules upregulated by many tumor 
types is PD-L1, which binds to PD-1 on activated immune cells 
to inhibit their function. Cherkassky et  al. found that human 
CAR-T  cells became exhausted due to tumor cell expression 
of PD-L1. They also found that CAR-T  cell function could be 
rescued by anti-PD-1 therapy or by overexpression of a dominant 
negative PD-1 receptor. The dominant negative receptor consisted 
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FigURe 3 | Functional advantages of chimeric antigen receptor (CAR)-invariant natural killer T (iNKT) cells over conventional CAR-T cells. The structure of a 
third-generation anti-CD19 CAR-iNKT cell is depicted interacting with both a target CD19+ tumor cells and a healthy bystander cell. Third generation CARs have 
three endodomains that can be modified to tune the response of the iNKT cell when activated. Similar to conventional iNKT cells, CAR-iNKT cells would be able to 
directly kill tumor cells using Fas:FasL interactions and secretion of perforin/granzyme. CAR-iNKT cells also secrete stimulatory cytokines, such as IFN-γ, that can 
license dendritic cells as well as indirectly activate cytotoxic T lymphocytes and natural killer cells to kill tumor cells (not depicted). The CAR-iNKT cells is juxtaposed 
to a similar CAR-T cell to highlight a few key differences between CARs in iNKT cells and CARs in conventional T cells (differences are underlined). Skull and 
crossbones indicate cell killing.
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of the PD-1 extracellular ligand binding domain without any 
intracellular signaling domain (112).

Along the same lines as co-inhibitory molecules, blocking 
inhibitory cytokines commonly present in the TME, such as 
TGF-β, is being actively explored and has shown some promise 
(113). Terabe et al. found that CD11b+ or Gr1+ myeloid cells 
secreted TGF-β in a CD1d and IL-13 dependent manner and 
that removal of these cells prevented tumor recurrence, sug-
gesting iNKT  cells were actually playing a role in promoting 
an immunosuppressive environment (114). Directing the CAR 
against TGF-β could augment the ability of CAR-iNKT cells by 
simultaneously enhancing antitumor immunity while inhibit-
ing immunosuppressive functions. Considering that there are 
already multiple known co-inhibitory receptors and cytokines, 
the possibility of including dominant negative receptors for each 

or even attaching CARs to co-inhibitory ligand binding domains 
provides new avenues of exploration to enhance iNKT  cell-
mediated antitumor immunity.
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Natural killer T (NKT) cells have been placed at the interface between innate and adaptive 
immunity by a long series of experiments that convincingly showed that beyond cytokine 
secretion and NK cell recruitment, NKT cells were coordinating dendritic cell and B cell 
maturation through direct membrane contacts and initiate productive responses.  
As such, NKT cells are the cellular adjuvant of many immune reactions and have functions 
that go much beyond what their name encapsulates. In addition, the initial discovery of 
the ligands of NKT cells is deeply linked to cancer biology and therapy. However, for a 
host of reasons, animal models in which agonists of NKT cells were used did not translate 
well to human cancers. A systematic reassessment of NKT cells role in tumorigenesis, 
especially spontaneous one, is now accessible using single cell analysis technologies 
both in mouse and man, and should be taken advantage of. Similarly, the migration, 
localization, phenotype of NKT cells following induced expansion after injection of an 
agonist can be examined at the single cell level. This technological revolution will help 
evaluate where and how NKT cells can be used in cancer.

Keywords: natural killer t cells, endogenous ligands, single cell analysis, anti-PD1 treatment, vaccines

iNtrODUctiON

Natural killer T (NKT) cells were discovered more than 30 years ago as a small population of double 
negative or CD4+ T cells in the mouse and characterized by the usage of a unique T cell receptor 
(TCR) α chain with an invariant CDR3 segment. The same population was subsequently isolated 
from human blood and shown to express the same TCRα chain as the mouse, instantly raising the 
attention of researchers around the world as conservation of T cell population across distant species 
usually correlates to essential functions (1). In addition, it was also reasonable to assume that a 
semi-invariant TCR would recognize a limited set of antigens. The discovery of the first of these 
antigens took 10 years and serendipity, and linked forever NKT cells with cancer biology (2). Indeed, 
α-galactosylceramide (αGalcer) was isolated by a team of researchers at Kirin Pharmaceuticals who 
were seeking antitumor properties in natural compounds. The extracts from Agelas Mauritanus 
proved great antitumor effects in a melanoma model that they used for screening. The chemical 
nature of the natural product responsible for the activity was surprising and related to species that 
were isolated in 1989 by Mangoni and collaborators, from Amphimedon viridis, a marine sponge, 
and were identified as α-glucosamine ceramides (3). The connection of this new glycolipid, αGalcer, 
with NKT cell was also very circumstantial as in the same year, the crystal structure of CD1d was 
elucidated and revealed the lipid binding properties of this class of MHC-like molecules (4). With the 
rapid development of CD1d- αGalcer tetramers, a field was born as NKT cells were now accessible in 
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FigUre 1 | Schematic illustration of the various therapeutic intervention nodes that are relevant to the use of natural killer T (NKT) cells in immunotherapy.  
1: Monocyte lineage—these cells are essential to sample tumors and traffic to the lymph node to prime immune responses. The secretion of indoleamine 
2,3-dioxygenase by the tumor cells promotes the emergence of a suppressive phenotype linked to the downstream expression of immunosuppressive mediators 
such as arginase (ARG), nitric oxide synthase (NOS), transforming growth factor β (TGFβ), prostaglandin E2 (PGE2), and IL10. 2: CD8 T cells—the exhausted 
phenotype of these cells in tumor is directly exploited for intervention with checkpoint inhibitors. 3: NKT cells—in very much the same way CD8 T cell responses are 
improved by checkpoint blockade, NKT cells could benefit from the same treatment. In addition, the blockade of some of the immunosuppressive factors they may 
produce could be beneficial. 4: CD4 T cells—there is not to this day therapies intervening directly on this population of T cells to enhance their effector function or 
block their regulatory activities. 5: Lymphatics—the lymphatic architecture of tumors is notably compromised and likely contributes to poor priming against tumors. 
6: Blood vessels—the normal circulation is similarly aberrant and most likely compromises the access of effector cells to tumors.
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and ex vivo for studies. The discovery that CD1d was presenting 
other lipids and glycolipids to non-semi-invariant T cells was in 
the shadow of the semi-invariant NKT cells for years and led to 
a rather incongruous and inappropriate split in terminology of 
lipid-specific T cells with type 1 and type 2 NKT cells for the semi-
invariant and non-semi-invariant cells, respectively. The NKT 
name is related to the expression of NK markers by NKT cells 
but this name brings numerous confusions between the two cell 
types, while type 2 NKT cells appear to be mainstream T cells (5). 
In any case, we will only discuss the classic type 1 NKT cells in 
this communication.

As mentioned, the discovery of αGalcer in the context of a 
cancer program focused the attention of many on the potential 
linkage of NKT cells with the biology of cancer. The demonstra-
tion of a potent antimelanoma activity in mice and the analysis 
of some of the mechanisms that led to this response such as the 
ability of some NKT cells to lyse target cells, enticed clinicians to 
trying αGalcer as monotherapy in advanced cancers (6). In these 
trials, if the bioactivity of the compound could be demonstrated 
based on the expansion of the blood NKT  cell population, no 
clinical benefit could be shown (7–9). As often in the field of 
immunotherapy, initial failures greatly diminish the appetite of 
companies and clinicians to use a particular compound, and 

the consideration of αGalcer for cancer treatment has greatly 
diminished if not vanished. However, the biology of NKT cells, 
the identification of their natural ligands, the behavior of their 
agonists in  vivo, and the entire field of immunotherapy have 
made huge progress over the past decade and new approaches 
that would put NKT cells at the center of the treatment of cancer 
are emerging (Figure 1). This is precisely what we will discuss 
and place in the context of understanding the particular role of 
NKT cells in tumorigenesis in both mouse and man.

DeFiNitiON OF tHe NKt ceLL 
POPULAtiONs iN MOUse  
AND MAN, HeALtH AND DiseAses

As a preamble, it is important to mention that a substantial part of 
the NKT cell-cancer field has been shrouded in its early years by 
discrepancies and controversies that have to do with the relation-
ship between cancer and the presence of NKT  cells. In mouse 
models where NKT  cells can be removed by either deletion of 
CD1d, the antigen-presenting molecule, or Jα18, the junctional 
segment of NKT  cells, some have found an increase in MCA-
induced tumors in the absence of NKT cells (10), whereas other 
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have not (11). However, the dramatic effect of NKT cell activation 
on the fate of metastatic melanoma in mice kept the interest high 
enough for clinical trials to be carried out with the outcome that 
we have just mentioned. This discrepancy between mouse studies 
and clinical trials could be used for the sake of making the argu-
ment that mouse models are poorly predictive or human studies, 
but is this true? The mouse models offer the advantage of speed 
and the luxury of accessing every organ and lymph node during 
the course of a disease that we initiate. We often overlook the fact 
that the B16 melanoma model in its subcutaneous solid tumor 
or metastatic versions are acute cancers, a situation exception-
ally seen in human. So, in this case, it is not the mouse biology 
that trumps us but the model we decide to use for practical and 
financial reasons. Spontaneous tumors would and should offer 
a much better model to evaluate NKT  cells in the control of 
tumorigenesis and the NKT cell-based therapies but they take a 
long time. However, even in the case of the B16 melanoma model, 
most of the studies are shortcoming in understanding the role 
of NKT cells. We live on a model in which the secretion of IFNγ 
by NKT  cells explains all the therapeutic effects of αGalcer by 
allowing not only the maturation of dendritic cells but a large 
recruitment of NK cells and cytotoxic activities (12). However, 
little is known about where NKT cells are localized and what their 
function is before αGalcer is injected. Why cannot they control 
tumor seeding and development? Are NKT cells exclusively in the 
lymph node or also in the tumor? What gene expression profiles 
have those NKT  cells? Are they tissue- or blood-resident? Are 
some of them negative regulators of immune responses? Why 
do not they initiate a spontaneous immune response and tumor 
rejection? In all cases, the difficulty to study these functions and 
mechanisms is the paucity of the NKT cell population even in 
mice. In human, it is often brought up that NKT cell numbers 
vary greatly in the general population, spanning at least three 
orders of magnitude. However, this observation pertains only to 
peripheral blood NKT cells and variability in other tissue-resident 
NKT cells has never been systematically documented. The issue 
that is often overlooked is that NKT cells are tissue-resident and 
organ-specific (13), and that circulating cells are simply resident 
of the circulatory system, not merely circulating to the next organ. 
The molecular basis of this tissue residency is mostly unknown 
at the exception of the relationship between CXCR6 expression 
and liver NKT cells (14). What makes an NKT cell resident of a 
lymph node at a particular location is a field to be explored. In 
any instance, these considerations are key to understanding what 
NKT cells do in the vicinity of a tumor, e.g., the lymph node, or 
within the tumor environment when they are found locally.

siNgLe ceLL stUDies

An exhaustive description of NKT cell subsets has been done over 
the past decade: NKT1, NKT2, NKT17, NKTreg, double negative, 
CD4+ (1). This diversity demonstrates the plasticity of T  cells 
and the ability of specifying function in various environments. 
In relationship to cancer, no clear phenotyping has emerged for 
NKT cells that are inside the tumor and in draining lymph nodes 
but unexplained observations have been noted in relationship to 
phenotype; for instance, it appeared that only DN NKT cells from 

the liver could protect against MCA tumor development, while 
spleen and thymic NKT cells could not (15). Therefore, it seems 
obvious that a detailed description of the various NKT cells in the 
local environment of tumors must be carried out to understand 
the fundamental role of NKT cells and tumorigenesis. Because 
NKT  cells are so few, classical approaches cannot be used to 
address this question. However, we have stepped into the era of 
single cell analysis and pathway mapping, and the topic “NKT cells 
and cancer” is ideally suited for applying targeted single cell (SC) 
gene expression profiling by Q-PCR and systemic gene expression 
profiling by SC RNA-seq techniques. Microfluidics have made 
these techniques amenable to both mouse and human studies 
(16, 17), and in the case of NKT cells, the exceptional quality of 
the CD1d tetramers make the step of single cell isolation relatively 
trivial. In addition to pure phenotypic assignment to one of the 
subsets that we have just cited, RNAseq allows to map pathways 
that are up- or downregulated and gives a deep understanding of 
the biology that the isolated cells undergo at the time of sampling. 
It might not be surprising if these studies uncover an anergic 
state or a suppressive phenotype for intra-tumoral and draining 
lymph nodes NKT cells. For instance, the increased expression 
of PD1 could explain anergy and would beneficiate from anti-
PD1 interventions (see below). Such studies and the head to 
head comparison between mouse and man would allow the best 
possible translational research in the field. In addition, the same 
techniques could be used to follow therapeutic administration of 
NKT cell agonists and examine circulating as well as NKT cells 
recovered from biopsies.

OvercOMiNg ANergY AND ActivAtiON 
iNDUceD ceLL DeAtH

The systemic delivery of agonists of NKT cells has been shown to 
lead to a depletion in numbers and function of NKT cells, both in 
the mouse and man (18, 19). One obvious reason for dwindling 
numbers post-αGalcer administration is activation induced cell 
death by overstimulation, αGalcer being a very potent ligand 
in vitro and in vivo. In human, in the course of a phase 1 clinical 
trial for hepatitis B, our group discovered that maximal effects 
were obtained at 2 µg IM and followed by a long-term depletion 
of peripheral NKT  cells (18). Concurrently, it has been shown 
that higher dosage was accompanied by systemic adverse effects 
related to liver delivery and IFNγ release. It is obvious that the 
stunning of the NKT  cell compartment by a single injection 
would be detrimental to therapeutic schemes in which multiple 
rounds of administration of the therapy, e.g., NKT cell agonist 
or NKT cell agonist + antigen, would be beneficial. As such, it 
is highly unlikely that there is a future for therapies that would 
use αGalcer or similar agonists by itself or simply mixed with an 
antigen in the formulation of a therapeutic vaccine.

A second issue that might be pertinent to the relationship of 
NKT cells with cancer, is that there is a possibility that tumo-
rigenesis is accompanied by a chronic low level stimulation of 
NKT cells and their exhaustion (20). A similar phenomenon has 
been noted in chronic infections such as HIV and hepatitis B 
(21), and correlated to an increase PD1 expression. Surprisingly, 
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the NKT cell PD1 expression levels have not been examined yet 
in cancer patients. The broad use of anti-PD1 therapies creates 
the perfect opportunity to examine the status of NKT cells before 
and during the course of treatment. Would PD-1 be increased 
on NKT  cells during malignancies, it might indicate that the 
manipulation of NKT  cells during anti-PD1 antibody treat-
ment might contribute to increasing the effects of this type of 
immunotherapy. Indeed, it would seem logical that NKT cells 
engagement would improve antigen presentation and T  cell 
recruitment, therefore enhancing the expansion of anti-tumor 
T cells.

cLiNicAL MONitOriNg. BeWAre  
OF tHe BLOOD NUMBers

As mentioned above, both in mouse and man, we have used 
circulating NKT cell numbers as a surrogate for local effects but 
no study has systematically examined the correlation between 
peripheral and local expansion of NKT cells. The possibility of 
discrepancy between compartments was documented in the 
mouse when we studied glycolipid transport. Indeed, in the 
absence of FAAH, a αGalcer lipid binding protein, systemic trans-
port of αGalcer is greatly impaired but local effects are increased 
(22). Given the alterations of vascularization of tumors and their 
vicinity, it is difficult to assume that NKT cells agonists will be 
delivered locally with the same pharmacological parameters than 
in normal tissues. This possible dissociation of effects between 
organs should be kept in mind when trying to understand low 
circulating NKT cell numbers and cancer, even though in the case 
of neck and head malignancies it appears that low numbers and 
poor prognosis are correlated (23). Answering this concern is not 
trivial even in animal models as the recovery of NKT cells from 
various tissues is illustrious for its inconsistency and variability. 
Once again, SC analysis should be helpful to investigate some of 
these issues.

Use eNDOgeNOUs NKt ceLL LigANDs

In natural circumstances, NKT cells initiate activation when their 
TCR encounters endogenous ligands and then sustain activity 
on cytokine-mediated signaling. The critical TCR engagement 
step is mediated by a strong agonist, and is brief as one would 
expect to avoid overstimulation and cell death (24). The stunning 
or disappearance of NKT  cells mediated by the production of 
endogenous ligands such as after TLR engagement, have never 
been noted. It appears that endogenous NKT  cell activation is 
mainly controlled by the availability of ligands and that degra-
dation of stimulatory α-linked glysosylceramides is key to this 
tight regulation (24). Three enzymes are critical to this catabo-
lism, acid ceramidase, ASAH1, responsible for the first step of 
degradation, acid α-galactosidase, GLA, and acid α-glucosidase, 
GAA, both responsible for the removal of the head glycan and 
the production of free sphingosine. It is notable that during 
TLR-mediated activation of dendritic cells, all three enzymes are 
briefly down-regulated before returning to normal levels after 

about 2  h (25). In addition, we have shown that the chemical 
blockade of these enzymes increased the stimulatory capacity 
of dendritic cells and more importantly was efficient in  vivo 
at expanding NKT  cell populations over prolonged periods of 
time (Luc Teyton, unpublished). It is also of interest to note that 
ASAH1 inhibitors have been developed in the context of cancer 
therapy as chemosensitizing agents based on the hypothesis that 
ceramides were promoting cell death by apoptosis (26). We would 
argue that some of the effects that have been observed using these 
inhibitors are directly linked to the effects on NKT  cells. This 
hypothesis will be interesting to examine in patients receiving 
anti-ASAH1 inhibitors. It will also be of interest of testing the 
in vivo effects of GLA and GAA inhibitors alone and in combina-
tion with ASAH1 inhibitors with respect to expanding NKT cell 
populations without inducing cell death. Some of these inhibitors 
have been developed as folding-inducers in some of the forms of 
GLA and GAA deficiencies and appear safe for use in human. 
This concept of manipulating a cell population by tuning the 
availability of it endogenous ligand has never applied in any 
form of immunotherapy so far; the NKT cell system might offer 
the first opportunity. Finally, it would also be of great interest 
to appreciate whether some tumors, in addition to expressing 
CD1d, might express NKT cell ligands and in what amount. Local 
overproduction could result in the disappearance or functional 
anergy of local NKT cells.

OtHer POteNtiAL AveNUes  
OF UsiNg NKt ceLLs  
iN iMMUNOtHerAPY

Conceptually, and before we really understand the position of 
NKT cells in cancer and tumorigenesis, a large number of poten-
tial therapeutic avenues focused on NKT cells could be explored 
(Figure 1). The in vitro expansion of autologous NKT cells and 
reinfusion are practically achievable, but one could argue that in 
the absence of understanding the key mechanisms to NKT cell 
organ residency, the exercise will be futile, cumbersome and 
expensive. Similarly, it could be interesting to explore the poten-
tial of CAR T cells made with NKT cell receptors or the Fab of 
an anti-CD1d-αGalcer antibody, to hardwire recognition and 
killing; however, this approach could only be tested for tumors 
expressing CD1d. The usage of αGalcer and related compounds 
in the context of therapeutic vaccines is more mainstream and 
would simply take advantage of the remarkable adjuvant prop-
erties of NKT cells. The administration of autologous dendritic 
cells loaded with antigen and αGalcer has been shown effective 
in mouse models (27) and could ideally be tested to potenti-
ate vaccines such as Provenge™ (7). In addition, this mode of 
delivery of αGalcer bypasses systemic and liver delivery and as 
such should be devoid of side effects. On the other hand, direct 
administration of an antigen mixed with αGalcer would expose 
the patient to this undesirable stimulation of all NKT cells in 
his/her body; it cannot be conceived without controlling local 
delivery and limiting or eliminating systemic transport of 
αGalcer. With this in mind, direct coupling to the antigen or to 
particles, or unique routes of administration such as intradermal 
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or intranasal, have been explored with some success to control 
this issue.

cONcLUsiON

As often in translational research, the urgency of obtaining results 
combined with the infatuation of each researcher with his/her 
favorite cell type, leads to disappointing results. Taking a step back 
is often granted and querying additional basic knowledge never 
ill-advised. With the arising of SC technologies, we are today in a 
unique position of understanding what NKT cells do in the course 
of tumorigenesis and what role they play together with adaptive 

immunity to reject cancer cells. This knowledge will be essential to 
manipulate and utilize NKT cells in the arsenal of immunotherapy.
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Invariant natural killer T (iNKT) cells are a distinct subset of innate-like lymphocytes bear-
ing an invariant T-cell receptor, through which they recognize lipid antigens presented 
by monomorphic CD1d molecules. Upon activation, iNKT cells are capable of not only 
having a direct effector function but also transactivating NK  cells, maturing dendritic 
cells, and activating B cells, through secretion of several cytokines and cognate TCR-
CD1d interaction. Endowed with the ability to orchestrate an all-encompassing immune 
response, iNKT  cells are critical in shaping immune responses against pathogens 
and cancer cells. In this review, we examine the critical role of iNKT cells in antitumor 
responses from two perspectives: (i) how iNKT cells potentiate antitumor immunity and  
(ii) how CD1d+ tumor cells may modulate their own expression of CD1d molecules. We 
further explore hypotheses to explain iNKT cell activation in the context of cancer and 
how the antitumor effects of iNKT cells can be exploited in different forms of cancer 
immunotherapy, including their role in the development of cancer vaccines.

Keywords: invariant natural killer T cells, CD1d molecules, tumor immunology, innate immune response, lipid 
antigens

iNTRODUCTiON

The evidence that peptide-specific T cells play an important role in the immune defense against 
pathogens and cancer progression is compelling (1–3). In the last two decades, it has emerged that 
in addition to peptide-specific T cells, hereafter referred to as conventional T cells, α/β T cells can 
also recognize lipids and metabolites of vitamin B2 in the context of monomorphic MHC class 
I-like molecules (4, 5). Such T cells, hereafter referred to as unconventional T cells, can orchestrate 
an immune response against pathogens and cancer (4). This review will focus on the description 
of one of these unconventional T cell populations—invariant natural killer T (iNKT) cells. We will 
also highlight potential mechanisms of iNKT cell activation in cancer and how these cells can be 
manipulated for the purpose of cancer immunotherapy.

Development and Function
Invariant natural killer T cells originate from bone marrow-derived progenitors that, like conven-
tional T cells, migrate to the thymus. However, unlike conventional T cells, which are selected by 
self-peptides presented by MHC class I and II on thymic epithelial cells, iNKT cells are positively 
selected by CD1d molecules expressed by double-positive (CD4+CD8+) thymocytes (6, 7). Such 
CD1d molecules present self-lipid ligand(s), not yet fully characterized, and upon expression of the 
transcription factor PLZF, the thymocytes acquire the iNKT cell effector program (8). iNKT cells 
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subsequently migrate out of the thymus and reach maturity in 
the periphery (8). Unlike naïve conventional T cells, iNKT cell 
numbers in humans are high, particularly in the spleen and in 
the liver, reaching about 1% of total lymphocytes in the latter 
tissue (9).

Invariant natural killer T  cells are considered innate-like 
lymphocytes as they exhibit characteristics of both innate and 
adaptive immune cells. Their activation is driven by antigen rec-
ognition, a characteristic of conventional adaptive immune cells. 
However, unlike conventional T  cells, iNKT  cells bear a semi-
invariant TCR that recognizes different lipid antigens presented 
on monomorphic CD1d molecules. This recognition manner has 
been likened to a pattern recognition mode (10). iNKT cells fur-
ther deviate from conventional T cells by their ability to rapidly 
secrete copious amounts of cytokines, mainly IFN-γ and IL-4, 
shortly upon activation—a characteristic reminiscent of innate 
immune responses, and which is imparted at the epigenetic level 
by their unique developmental program (11–14).

Since iNKT cells are uniquely placed at the interface between 
innate and adaptive immunity, they have a tremendous influence 
in shaping immune responses. Cytokine stimulation and cog-
nate interaction between iNKT cells and dendritic cells (DCs), 
B  cells, neutrophils, and macrophages often polarizes these 
cells toward a pro-inflammatory phenotype (15–25). Similarly, 
activated iNKT  cells can transactivate natural killer cells (26) 
and enhance stimulation of conventional T cells through their 
ability to secrete cytokines and mature DCs (16, 18). Although 
the frequency of iNKT cells in humans ranges from 0.01 to 0.1% 
in peripheral blood (lower than in mice), this frequency is still 
orders of magnitude higher than that of naïve peptide-specific 
T  cells (9, 27). In addition, their constitutive expression of 
CD40L and ability to rapidly secrete cytokines make iNKT cells 
critical players in immunity, by orchestrating all-encompassing 
immune responses (9).

Means of Activation
There are two primary means of iNKT  cell activation: CD1d-
dependent and cytokine-driven activation. CD1d molecules are 
transmembrane proteins that, similar to MHC class I molecules, 
bind non-covalently to β2-microglobulin. The surface-exposed 
antigen-binding groove consists of two deep hydrophobic chan-
nels that bind the fatty acid tails of lipid antigen, while the head 
moiety is exposed for recognition by the iNKT-TCR (28, 29). 
Ceramide-based glycolipids (glycosphingolipids) and glycerol-
based lipids (such as membrane phospholipids) are the two 
main types of iNKT-activating lipids bound to CD1d molecules 
(30–34). While the most potent iNKT-activating lipid agonists 
described to date is threitol-6-ceramide (35), the classical iNKT-
activating lipid agonist most frequently used in the literature is 
α-galactosylceramide (αGC), which is derived from a bacterium 
on the Agelas mauritianus marine sponge (23, 36–38). Analysis 
of the crystal structure of CD1d monomers with or without αGC, 
which exploits the full binding capacity of CD1d, allowed for the 
identification of the hydrogen bonds required to hold the polar 
head of iNKT cell agonists (29). The presence of both a lipid bind-
ing and non-lipid binding molecule in the asymmetric unit of 
the CD1d crystals has enabled the identification of two different 

conformations of the antigen-binding groove (29). Using planar 
lipid bilayers and surface plasmon resonance, the contribution 
of the length and saturation of the alkyl chains occupying the 
A′ and F′ channel of human CD1d molecules to the stability of 
CD1d-lipid complexes and to the affinity of iNKT-TCR binding 
was further analyzed (39). These results led to the description 
of a general mechanism by which the length of the lipid chain 
occupying the F′ channel plays a role in controlling the affinity 
of lipid-specific CD1d-restricted T cells (39). This concept can be 
more generally extend to other CD1-restricted cells (40).

In a more physiological context, iNKT cells become activated 
by microbial or self-lipid antigens bound to CD1d molecules. 
For example, isoglobotriosylceramide (iGB3), a neutral gly-
cosphingolipid, has been identified as a weak self-lipid antigen 
for human and murine iNKT  cells (41–43), although its role 
as the only positive-selecting self-lipid in the thymus remains 
controversial, given that mice lacking the required synthases for 
iGB3 production maintain an intact iNKT cell repertoire (44, 45). 
Lysophospholipids and charged glycosphingolipids have been 
shown to be self-lipid antigens in different contexts (46–48). Self-
lipid antigens are weakly immunogenic and iNKT cell activation 
in this case is often largely driven by IL-12 and IL-18. In a model 
of hepatitis B infection, it has been shown that viral-induced 
phospholipases generate lysophospholipids that lead to iNKT cell 
activation (30, 47).

Cytokine-driven activation is common when lipid antigen is 
weakly immunogenic (47). Although CD1d-activated iNKT cells 
can undergo further activation via cytokines secreted from 
matured DCs, certain cytokines, namely IL-12 and IL-18, are 
alone sufficient to activate iNKT cells (49, 50). Avidity might play 
a more important role in iNKT  cell activation than previously 
considered, especially iNKT cell activation by self-lipid antigen 
repertoire. Alterations in the actin cytoskeleton are evidenced 
to create CD1d nanoclusters of higher avidity, increasing basal 
iNKT autoreactivity (51).

iNKT CeLLS iN ANTiTUMOR iMMUNiTY

The ability of iNKT  cells to orchestrate immune responses 
against cancer is perhaps the most striking example of their 
role in disease. Work from the laboratory led by Dale Godfrey 
highlighted the essential role of iNKT cells in tumor immunity 
by demonstrating that mice lacking iNKT  cells were more 
susceptible to methylcholanthrene-induced sarcomas, consist-
ent with the role of iNKT  cells in immunosurveillance (52). 
This effect was reversed upon iNKT  cell reconstitution, an 
observation that further supports their role in tumor clearance. 
Although the antitumor effector activity of iNKT  cells upon 
αGC injection was recently confirmed using newly generated 
Jα18-deficient mice, which bear an otherwise normal T  cell 
repertoire (53), the role of iNKT cells in immunosurveillance of 
methylcholanthrene-induced sarcomas was called into question 
in a separate study (54).

Invariant natural killer T  cells’ ability to modulate vari-
ous immune subsets is key to their role in antitumor immune 
responses. iNKT  cells can mature DCs, activate CD4+ T  cells, 
CD8+ T cells, and B cells, and transactivate NK cells (19, 23). In 
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FigURe 1 | Mechanisms of tumor evasion from invariant natural killer T 
(iNKT) immunosurveillance. Some tumors cells escape detection by iNKT 
cells via the regulation of surface CD1d, by: (1) heterochromatin formation at 
the CD1d locus by histone deacetylases (71, 72); or (2) improper folding and 
retention of CD1d in the ER (69). Other mechanisms to escape iNKT cell 
detection include: (3) engagement of surface CD1d with the inhibitory NK 
receptor Ly49, leading to the induction of iNKT cell anergy (70); (4) inhibitory 
signaling through PD1/PDL1 between iNKT cells and tumor cells (139); and 
(5) CD1d-dependent suppression of iNKT cells through presentation of the 
inhibitory, tumor-derived glycolipid GD3. GD3 production is also driven by the 
secretion of tumor-derived VEGF (75).
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murine models of lung and liver cancers, the antitumor effect 
of αGC administration was attributed to IFN-γ secretion from 
iNKT  cells and transactivated NK  cells, which culminated in 
NK perforin-mediated cytolysis of tumor cells (23). iNKT cell-
derived IFN-γ is also responsible for enhanced activation of 
tumor antigen-specific CD8+ T  cells (19, 55, 56). Additionally 
IL-12 derived from iNKT cell-matured DCs helped priming of 
tumor antigen-specific T cells (19, 57).

Invariant natural killer T cells can also augment an antitumor 
response by diminishing the immunosuppressive activities of 
immune subsets that promote tumorigenesis. It has been shown 
that iNKT cells can have a profound effect on the number and 
function of pro-tumorigenic myeloid populations (22, 58, 59). 
Tumor-associated macrophages (TAMs), which secrete immu-
nosuppressive molecules such as IL-6 and TGF-β that dampen 
T-cell responses to MHC-presented tumor antigen, are found 
in the tumor microenvironment of a variety of cancers, includ-
ing renal cell carcinomas and neuroblastoma (59). In primary 
human neuroblastoma samples, iNKT cells specifically killed the 
tumor-antigen-loaded TAMs rather than neuroblastoma cells, 
in part relieving the immunosuppressive tumor microenviron-
ment and limiting metastases (59). iNKT cells are also capable 
of reducing myeloid-derived suppressor cells (MDSC) numbers 
and immunosuppressive activity (22, 58). These findings beg the 
question of how iNKT cells remain unaffected by the immuno-
suppressive microenvironment. It is reported that in patients with 
head and neck cancer, iNKT cells, unlike conventional T cells, 
are resistant to hydrogen peroxide produced by CD15+ MDSCs 
(60). This observation potentially explains their persistent activa-
tion and cytotoxic activity within an immunosuppressive tumor 
microenvironment.

While iNKT cells are best known to potentiate their antitumor 
effect through enhancing the immunogenic activities of a variety 
of immune cell subsets, they are capable of themselves recogniz-
ing and killing CD1d+ tumor cells. Such is true for the EL4 T-cell 
lymphoma model, where both in  vitro and in  vivo iNKT  cells 
directly executed perforin-mediated cytolysis of lymphoma cells 
in a CD1d-dependent manner (61, 62). Furthermore, in a TRAMP 
murine model of CD1d+ prostate cancer, iNKT cells directly and 
predominantly reduce tumorigenesis, to a greater extent than 
cytotoxic T lymphocytes (63). In addition, in naturally express-
ing CD1d+ human osteosarcoma cell lines, iNKT cells selectively 
killed the tumor cells through Fas-FasL interaction, while leav-
ing cocultured CD1d− osteoclasts and CD1d+ mesenchymal 
stem cells unaffected (64). Glioma and breast cancer cell lines 
transduced with CD1d are targets of iNKT cell-dependent lysis 
(65, 66). These results collectively indicate that iNKT  cells are 
capable of directly killing CD1d+ tumors. In the large proportion 
of cases where solid tumors are CD1d−, tumor-infiltrating CD1d+ 
myeloid populations might activate iNKT cells either within the 
tumor or in distal lymphoid tissues enriched in iNKT cells.

Though their activation can contribute greatly to antitumor 
immune responses, there is a dearth of evidence that iNKT cells 
are present within the tumor microenvironment, particularly in 
human solid tumors. This issue might stem from low frequency of 
iNKT cells in humans, potentially making them difficult to detect 
by immunohistochemical techniques. While iNKT  cell-specific 

antibodies, including the 6B11 antibody (67), do exist, there 
are few reports of their use in identifying iNKT cell populations 
within tumor microenvironments.

MODULATiON OF CD1d: TUMOR  
evASiON FROM iNKT CeLL 
iMMUNOSURveiLLANCe

Tumor cells use a variety of mechanisms to escape detection and 
elimination by immune cells. These mechanisms include releas-
ing soluble mediators to dampen antitumor immune responses, 
notably TGF-β into the microenvironment and inducing T cell 
anergy and exhaustion (68). Another mechanism involves 
hindering antigen presentation, often by limiting expression 
of antigen-presenting molecules in infiltrating myeloid cells or 
on the tumor cells themselves. MHC class I molecules, which 
present peptide antigens to CD8+ T cells, are well characterized 
as a target of such escape mechanisms (68). Similarly, a variety of 
tumors downregulate CD1d molecules, further emphasizing the 
important role of iNKT cells in antitumor immunity (Figure 1).

The correlation between reduced CD1d expression and 
enhanced tumor progression has been reported in a variety of 
types of CD1d-transduced solid cancers, including breast, cervi-
cal, ovarian, prostate, lung, and melanoma (66, 69–72). This 
observation holds true for many naturally CD1d+ and transduced 
CD1d+ liquid tumors, such as mantle cell lymphoma, multiple 
myeloma, and chronic lymphocytic leukemia (61, 71, 73, 74). 
However, different tumors engage different mechanisms to reduce 
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CD1d surface expression. On the RNA level, modulation of CD1d 
expression is largely driven by epigenetic changes. Treatment of 
mantle cell lymphoma cell lines with histone deacetylase inhibi-
tors resulted in enhanced iNKT  cell activation upon coculture 
(71). This observation was attributed to the removal of HDAC2 
from the CD1d promoter, resulting in increased CD1d expres-
sion (71). Another report, which substantiates these findings, 
demonstrated that treating human and murine lung cancer and 
melanoma cell lines with HDAC2 inhibitors induce CD1d expres-
sion, although the functional relevance was not investigated (72). 
CD1d assembly in the endoplasmic reticulum (ER) is another 
potential target for tumor CD1d downregulation. In a model of 
HPV-driven cervical cancer, early-infected epithelial cells exhib-
ited reduced CD1d expression compared to uninfected cells. In 
infected cells, the viral protein E5 inhibited calnexin, resulting in 
improper folding of CD1d, retention of CD1d molecules in the 
ER, and subsequent proteasomal degradation (69).

Modulation of iNKT  cell function, even when CD1d mol-
ecules reach the surface of tumor cells, can contribute to evasion 
of iNKT surveillance. In the TRAMP murine model of prostate 
cancer, tumor cells express functional CD1d molecules, but lead 
to aberrant iNKT-cell activation akin to anergy, likely through the 
inhibitory receptor Ly49 (70). This phenotype could be rescued 
by simultaneous stimulation with αGC and IL-12, which likely 
overrides the inhibitory signal.

Tumor-derived factors can also inhibit trans-CD1d-dependent  
antigen presentation. When murine CD1d+ fibroblasts were 
treated with human ascites from ovarian cancer patients, 
CD1d-dependent iNKT  cell activation was markedly reduced, 
suggesting that a soluble factor released from ovarian tumors 
could affect CD1d-dependent activation (75). VEGF, a pro- 
angiogenic and pro-tumorigenic soluble factor, and the sup-
pressive glycolipid antigen GD3, were identified as the factors 
present in the ascitic fluid inhibiting iNKT cell activation (75). 
Interestingly, the authors also showed that GD3 synthesis was 
dependent on VEGF-mediated upregulation of GM3 synthase in 
the ovarian cancer cells (75).

While these findings illustrate the importance of CD1d in 
mounting iNKT-driven antitumor immune responses, there exists 
at least one example where increased CD1d expression and tumor 
progression are positively correlated (76, 77). Through microar-
rays, immunohistochemistry, and patient statistics, enhanced 
CD1d expression was associated with increased malignancy and 
higher relapse rates in a subset of human renal cell carcinoma, 
clear cell renal carcinoma (76). This result serves as a rare example 
of enhanced CD1d expression as a predictor of tumor progres-
sion. It is possible that CD1d-dependent activation of suppressive 
type II iNKT cells, to be discussed later, might contribute to this 
phenotype (78, 79).

Both tumor cells and tumor-infiltrating immune cells are 
subject to microenvironmental stress due to nutrient deprivation, 
hypoxia, or accumulation of toxic products of catabolism (80). This 
suboptimal environment can lead to upregulation of autophagy, 
a survival-promoting pathway centered on lysosomal-recycling 
intracellular material (80). Tumor cells that engage the autophagy 
pathway become more robust and are able to better persist and 
metastasize (80). It has been recently shown that in murine 

bone marrow DCs, deletion of the autophagy regulator protein 
ATG5 led to increased CD1d-dependent antigen presentation, 
due to limited CD1d internalization (81). However, it has also 
been demonstrated that during thymic iNKT cell development, 
ATG5 is dispensable to CD1d expression (82, 83). More research 
is required to clarify the role of autophagy in CD1d expression, as 
perhaps this mechanism is cell and time dependent.

iNKT CeLL ACTivATiON iN STeRiLe 
iNFLAMMATiON—CANCeR

The modulation of CD1d expression in tumor cells provides 
strong evidence for the critical role of iNKT cells in mounting 
antitumor immune responses. However, it remains unclear how 
iNKT cells become activated in the context of cancer, a form of 
sterile inflammation. The characterization of a growing number of 
activating stimuli and pathways, some of which might affect lipid 
antigen presentation, sheds light on a number of mechanisms that 
might contribute to iNKT sterile activation in cancer (Figure 2).

At the intersection of chemotherapy and immunotherapy lies 
a class of drugs that provoke a type of cell death in tumor cells 
that results in the activation of innate immune cells. This type of 
cell death is termed immunogenic cell death (ICD). When cancer 
cells die, for example, by necrosis, they surface-expose or release 
molecules called danger-associated molecular patterns (DAMPs) 
that are usually contained within the cell, not on the cell surface or 
in the extracellular milieu (84). These DAMPs can be recognized 
by receptors on a variety of immune cells, including toll-like 
receptors (TLRs), and initiate an immune response (84).

One prototypic DAMP is a protein called high mobility group 
box 1 (HMGB1). HMGB1, ubiquitously expressed in a variety 
of cell types, typically resides in the nucleus as a chromatin 
binding protein (85). However, HMGB1 can be released into the 
extracellular environment where it behaves as a DAMP (85). Its 
release may be passive or mediated by an active mechanism. In 
the passive form, HMGB1 is released from cells dying by necro-
sis or other forms of ICD (86). In the active form, HMGB1 is 
secreted from myeloid cells, namely DCs and macrophages (87). 
In the extracellular milieu, HMGB1 can bind and signal through 
TLRs 2, 4, and the receptor for advanced glycation end products 
(RAGE) expressed on innate immune cells, triggering an immune 
response (86). RAGE is reportedly expressed on iNKT cells and 
can bind HMGB1, resulting in a Th17 activation profile (88). 
While the presence of TLRs on iNKT  cells is disputed, most 
CD1d+ cells also bear TLRs (46, 89–91). Viral signaling through 
TLR7 on human DCs has also been implicated in enhanced de 
novo synthesis of CD1d molecules (91). Furthermore, engage-
ment of TLR4 on CD1d+ myeloid cells, both murine and human, 
enhanced loading of self-lipid antigens onto CD1d molecules 
leading to iNKT cell activation (46, 90). These findings give rise 
to the possibility that HMGB1 signaling through TLR4 could 
induce loading of immunogenic self-lipid antigens onto CD1d, 
thus providing an explanation for iNKT cell activation in cancer.

Another soluble DAMP involved in ICD in cancer is adeno-
sine triphosphate (ATP) (92, 93). ATP can interact with various 
immunomodulatory receptors and channels on myeloid cells and 

101101

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigURe 2 | Potential mechanisms of invariant natural killer T (iNKT) cell activation in cancer. Tumor cells subject to drugs or conditions that induce stress might 
activate iNKT cells through several pathways: (1) secretion or passive release of DAMPs, such as HMGB1, that bind RAGE receptors directly on iNKT cells or TLR4/
RAGE receptors on CD1d+ antigen-presenting cells (APCs), leading to the presentation of an immunogenic self-lipid antigen (46, 88, 90); (2) paracrine (from APCs) 
or autocrine release of ATP into the extracellular environment for uptake by iNKT cells, ultimately leading to iNKT cell activation (94, 95); (3) binding of the surface 
DAMP calreticulin to TRAIL on iNKT cells (103–110); (4) induction of ER stress in CD1d+ cells, due to the suboptimal physiological tumor microenvironment, might 
trigger the alternate loading immunogenic self-lipid antigen(s), resulting in enhanced iNKT cell activation (111–113).
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lymphocytes, a process termed purinergic signaling/regulation 
(94). Myeloid cells and T cells uptake extracellular ATP through 
P2X7 or pannexin channels, which can enhance inflammasome 
activation and amplify TCR-mediated activation, respectively 
(94). This mode of purinergic signaling might be especially rel-
evant in the context of cancer, where stressed and necrotic tumor 
cells could release ATP into the tumor microenvironment and in 
turn augment TCR stimulation in response to weak tumor anti-
gens (94). Like conventional T cells, iNKT cells bear P2XR and 
pannexins that allow uptake of extracellular ATP, which could 
provide additional costimulation to CD1d-mediated activation 
(95). iNKT cells also express two ectonucleotidases, CD39 and 
CD73 (95). CD39 converts ATP, a pro-inflammatory mediator 
to ADP, which is in turn converted by CD73 into AMP, an anti-
inflammatory mediator (96). This step-wise generation of AMP 
from ATP is thought to cause a shift toward an immunosuppres-
sive microenvironment, which might be advantageous for tumor 
progression (96). While the balance between extracellular ATP 
release and catabolism in the tumor microenvironment is poorly 
understood, we are gaining insights into mechanisms underlying 
purinergic signaling in iNKT cells.

The A2 adenosine receptor (A2AR), which binds adenosine 
to shift immune cells toward an immunosuppressive phenotype, 

also has a great influence on iNKT  cell activation. In a model 
of concanavalin A-induced hepatitis, which is predominantly 
iNKT  cell dependent, severity of the disease phenotype was 
dependent on the strength of A2A receptor signaling, with an 
exaggerated version of the disease seen in A2AR−/− mice, and 
an abrogation of the disease phenotype in mice treated with an 
A2AR agonist (97). It was later determined that A2AR exerts 
control over cytokine secretion in iNKT cells, particularly IL-4 
and IL-10 (98).

Adenosine triphosphate is also involved in DC–iNKT  cell 
interactions culminating in the release of inflammatory mediators 
that promote neutrophil recruitment. In monocyte-derived DC 
and iNKT cocultures, release of ATP from one or both of these 
immune cells (the secreting cell type was not identified) induced 
calcium flux within the DC through P2X7 signaling, which in 
turn triggered the release of prostaglandin E2 and soluble factors 
that promote neutrophil recruitment (99, 100). These observa-
tions were made in the setting of sterile inflammation, hinting 
that the influence of ATP in iNKT–DC interactions could hold 
true in the context of cancer (99). Maturation and stimulation 
of different immune cell populations by iNKT cells are thought 
to underlie their ability to induce antitumor immunity. This 
observation might be explained by the influence of purinergic 
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signaling leading to the recruitment of neutrophils and perhaps 
other cell types.

Another potentially relevant soluble factor is heat shock protein 
70 (Hsp70) an ER-derived chaperone (101). Similar to HMGB1, 
Hsp70 is upregulated during a variety of stress conditions, and 
under extreme stress conditions that induce tissue injury or 
necrotic cell death, Hsp70 is released in the extracellular envi-
ronment (101). Hsp70, or more specifically the Hsp70-derived 
14-amino acid peptide, in combination with either IL-2 or IL-15, 
enhanced the expression of NK-activating receptors, including 
their expression on the surface of iNKT cells (102). It remains to 
be seen whether this observation drives iNKT cell activation in 
the context of cancer.

Invariant natural killer T cells upregulate a number of different 
receptors upon activation, including activation markers such as 
CD69 and CD25, and cytotoxicity molecules including FASL and 
TNF-related apoptosis-inducing ligand (TRAIL) (103). TRAIL, 
best known for inducing apoptosis in cells expressing TRAIL 
receptors such as DR4 and DR5, shares a high degree of homol-
ogy with FASL in the extracellular binding motif (104). Although 
FASL-mediated killing is often indiscriminate due to rather 
ubiquitous expression of FAS on mammalian tissues, TRAIL-
mediated cytotoxicity is more selective toward virally infected 
cells and tumor cells, making it a potential target in immuno-
therapy (104). In humans, TRAIL is upregulated on iNKT cells 
upon activation and is consequently able to induce apoptosis is 
acute myeloid leukemia (AML) cells (105), which bear TRAIL 
receptors (103). This finding is substantiated in an AML murine 
model (103). Upon αGC administration, iNKT-derived IFN-γ 
upregulated TRAIL expression on activated NK  cells, which 
in turn limited the metastasis of liver and lung tumors (106). 
While TRAIL has a number of well-recognized receptors, a less 
characterized interaction is its binding and signaling through 
calreticulin. Under normal circumstances, calreticulin is retained 
in the ER where it acts as a chaperone. However, under conditions 
of extreme stress leading to ICD, as is often the case with tumor 
cells during chemotherapy, calreticulin can be translocated to the 
surface of dying cells (107). In fact, calreticulin is a marker of 
ICD and is considered a DAMP. Soluble TRAIL has been found 
to interact with calreticulin expressed on A375M melanoma cells 
(107). Furthermore, calreticulin exposure on malignant AML 
blasts is correlated with increased frequency of T  lymphocytes 
and improved survival—a finding that complements TRAIL+ 
iNKT  cells’ killing of AML cells, although in this cohort of 
AML patients iNKT  cells were not investigated (108). While 
the link between calreticulin-TRAIL cognate interaction and 
iNKT-dependent tumor killing requires further corroborating 
research, it would potentially provide a molecular mechanism for 
the iNKT cell-mediated antitumor effects in a variety of cancers.

Cells subject to TRAIL-induced killing typically undergo 
apoptosis, regulated non-inflammatory cell death, or necroptosis, 
a form of regulated inflammatory cell death due to the release of 
DAMPs (109). Both apoptosis and necroptosis utilize RIPK1/3 
signaling (109). In TRAIL-mediated cytotoxicity, the switch 
between the two types of death is dictated by the acidity of 
microenvironment. It is tempting to speculate that in the tumor 
microenvironment, in which nutrients are in short supply and 

hypoxia is a hallmark, the consequent acidic surrounding might 
shift TRAIL-mediated cell death towards necroptosis. Indeed, 
TRAIL-induced necroptosis can contribute to in vitro killing of 
human HepG2 liver and HT29 colon cancer cell lines. iNKT cells 
also induce TRAIL-mediated necroptosis in a ConA model of 
hepatitis (110). Although iNKT cells exert cytolytic functions via 
necroptotic signaling in target cells, aspects of the necroptotic 
signaling pathway are also essential in iNKT cells themselves.

RIPK3, a kinase involved in the transduction of the necroptotic 
signaling pathway, regulates iNKT cell activation independent of 
necroptosis, as RIPK3 knockdown iNKT cells exhibited impaired 
cytokine secretion, including IFN-γ, upon αGC stimulation 
(110). Furthermore, wild-type mice inoculated with B16 mela-
noma were able to clear the tumor burden upon administration 
of αGC, but RIPK3−/− mice were unable to do so, suggesting 
that RIPK3 is essential in iNKT-mediated anti-tumor responses 
(110). Further dissection of the mechanism involved illustrated 
that RIK3 signaling can induce the mitochondrial phosphatase 
PGAM5, which in turn upregulates NFAT translocation into the 
nucleus and stimulates the mitochondrial GTPase Drp1 (110). 
These factors appear to regulate TCR- and cytokine-mediated 
iNKT cell activation (110). These findings lay the foundation for 
a new pathway that can be manipulated in therapies centered on 
enhancing iNKT cell activation.

Cancer cells are subject to rapid cell division, leading to 
a reduction in available nutrients in the microenvironment 
and accumulation of nascent and/or mutated proteins. These 
suboptimal conditions, both intrinsic and extrinsic to the cell, 
compromise ER homeostasis and trigger the unfolded protein 
response (UPR) (111). Additionally, the UPR is likely triggered in 
immune cells in the suboptimal tumor microenvironment. UPR 
activation in malignant and infiltrating immune cells would alter 
lipid biosynthetic pathways (112). UPR activation might lead to 
sorting of self-lipid antigens onto CD1d complexes on CD1d+ 
tumor or surrounding immune cells—which in conjunction with 
inflammatory cytokines might become immunogenic. It has been 
shown that the microsomal triglyceride transfer protein (MTTP) 
lies at the intersection between the UPR and CD1d–lipid com-
plex formation (113). MTTP forms a heterodimer with protein 
disulfide isomerase (PDI) and transfers different lipid antigens 
onto assembling CD1d complexes in the ER. Importantly, PDIs 
are upregulated during UPR activation (112, 113). It is thus possi-
ble that ER-stressed CD1d+ cells exhibit altered self-lipid loading, 
such that immunogenic self-lipid antigens are presented to and 
activate iNKT cells in the context of cancer and other forms of 
sterile inflammation (113).

SUPPReSSive NKT CeLLS—A ROLe iN 
PROMOTiNg TUMOR PROgReSSiON

While iNKT cells are generally thought to augment antitumor 
immune responses, there exist subsets of NKT cells that exhibit 
a regulatory phenotype, which in fact might hinder antitumor 
responses and promote tumor progression. One of the earliest 
reports suggesting the presence of regulatory NKT cells identi-
fied that IL-13 secreted from NKT cells could signal through the 
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IL4R-STAT6 pathways in cytotoxic T  lymphocytes and conse-
quently hinder their immunosurveillance of colon carcinoma and 
fibrosarcoma tumors (114). NKT cell-derived IL-13 can further 
drive impaired tumor immunosurveillance by inducing TGF-β 
secretion from a population of myeloid cells (115). These find-
ings led to the identification of a Vα14Jα18− CD1d-restricted 
NKT population, dubbed type II NKT cells, which regulate and 
suppress antitumor immunity independent of IL-4, in contrast 
with the better-characterized Vα14Jα18+ CD1d-restricted 
iNKT population, or type I iNKT cells, that augment antitumor 
immunity (79). However, in a murine model of osteosarcoma, 
CD1d-restricted NKT  cells activated an immunoregulatory 
pathway independent of IL-13, IL4R-STAT6 signaling, and 
TGF-β, suggesting the existence of an alternative mechanism 
of NKT-mediated immunoregulation or different subsets of 
immunoregulatory NKT  cells in different tumors (116). The 
regulatory contribution of type II NKT cells compared to clas-
sical Tregs was explored in a murine model of colorectal and 
renal cancers (117). This work indicated that type II NKT cells 
and classical Treg cells were equally essential in suppressing 
antitumor responses (117).

The different cytokine profiles between type I and type II 
iNKT cells were better characterized in a murine model of B-cell 
lymphoma, where type I iNKT secreted primarily IFN-γ, and 
type II iNKT cells secreted TGF-β and IL-13 (78). Furthermore, 
a balance between the two subsets allowed for adequate tumor 
immunosurveillance, as demonstrated by the enhanced mortality 
of tumor-bearing mice that are deficient in type I NKT cells, but 
retain type II NKT cells (78).

In exploring αGC-induced anergy of iNKT  cells, a distinct 
subset of regulatory iNKT  cells was identified, now termed 
NKT10 cells (118). As the name suggests, this population of 
NKT cells secretes IL-10 upon antigenic stimulation and is able 
to increase the tumor burden in mice challenged with B16 mela-
noma cells (118). In line with these results, a recent report noted 
that the absence of iNKT cells correlated with reduced number 
of intestinal polyps in a murine model of colorectal cancer (119). 
It was shown that IL-10 producing iNKT  cells—reminiscent 
of the NKT10 cell subset—were enriched within polyps (119). 
Furthermore, these cells lack the NKT cell transcription factor 
PLZF, in keeping with recent findings that the PLZF is absent in 
regulatory iNKT cells in adipose tissue, where they secrete IL-2 
and IL-10, control the number of classical Tregs, and promote M2 
polarization of adipose-resident macrophages (120).

MANiPULATiNg iNKT CeLLS iN CANCeR 
iMMUNOTHeRAPY

Given their essential role in antitumor responses, iNKT cells are 
suitable targets for cancer immunotherapy research. Most studies 
have mainly focused on the adjuvant behavior of iNKT cells, in 
particular efficient methods of αGC delivery, often in combina-
tion with tumor antigens, to trigger an all-encompassing immune 
response against the tumor. However, more recent studies have 
focused on harnessing iNKT  cells in new, promising cancer 
immunotherapies.

Although αGC is a naturally occurring iNKT  cell agonist, 
which enhances the adjuvant effect of iNKT  cells in cancer, 
there is a focus on identifying stronger iNKT  cell agonists, 
either by modifying αGC or identifying novel molecules based 
on medicinal chemistry programs. Such efforts are supported 
by the structural knowledge of CD1d bound to αGC and of 
the iNKT-TCR either in isolation or during cognate interac-
tion with CD1d–lipid complexes (29, 121–123). In screening a 
panel of αGC analogs for enhanced iNKT cell activation, several 
iNKT cell agonists were characterized that produce a strong Th1 
response from iNKT cells. One of such compounds features an 
aromatic ring (or, more specifically, a phenyl ring) within the acyl 
tail (124–127) and is currently entering clinical trials as a vaccine 
adjuvant (128).

Since the polar head group of CD1d-bound lipids is key for 
recognition by the iNKT-TCR, cellular enzymes that might 
either catabolize some iNKT-cell agonists or redirect them away 
from lipid–antigen presentation pathways might in part drive 
suboptimal iNKT  cell responses. This observation has fueled 
work that led to the identification of a novel class of iNKT cell 
agonists that possess non-carbohydrate structures coupled to 
the ceramide moiety (129). One of these compounds, threitol-
ceramide (ThrCer), which was shown to be very efficient in 
augmenting antigen-specific T  cell responses and minimizing 
iNKT  cell overstimulation and iNKT  cell-dependent DC lysis, 
is capable of rectifying the deficiencies of αGC (130). Recent 
results have shown that incorporating the head group of ThrCer 
into a conformationally more restricted six-membered ring 
results in significantly more potent non-glycosidic analogs. In 
particular, Thr-6-Cer (IMM60) was found to promote strong 
antitumor responses and to induce a more prolonged stimula-
tion of iNKT  cells than does the canonical αGC, achieving an 
enhanced T-cell response at lower concentrations compared with 
αGC both in  vitro, using human iNKT  cell lines, and in  vivo, 
using C57BL/6 mice (35). The synthetic non-glycolipid IMM60 
is currently entering clinical trials in melanoma and non-small-
cell lung cancer patients in combination with anti-PD1 blocking 
antibodies. In addition, given that the coupling of iNKT cell ago-
nists with PLGA nanoparticles enhances their immune adjuvant 
potential by orders of magnitude (131), a phase I clinical trial in 
ovarian cancer and prostate cancer patients will be carried out 
with IMM60 conjugated to PLGA nanoparticles with full length 
NY-ESO-1 protein.

Efficient delivery of potent lipid iNKT cell agonists is essential 
in manipulating the adjuvant effects of iNKT cells. Optimizing 
delivery methods and combining the stimulatory lipid with 
tumor-specific antigens are critical to ensure that the adjuvanted 
immune response is targeted predominantly toward the tumor. In 
that vein, the use of exosomes as a means of codelivering αGC and 
ovalbumin has proved highly successful in reducing the tumor 
burden and increasing survival in mice inoculated with OVA-
expressing melanoma compared with injection of soluble αGC 
and OVA together (132). Since exosomes naturally bear surface 
markers to direct them to a particular destination—and for this 
reason are utilized by breast cancer cells themselves to create a 
“metastatic niche” at a location of future metastasis (133)—they 
make excellent conduits for delivery of this potential “cancer  
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vaccine” directly to the tumor site, while perhaps protecting the 
contents from degradation during delivery. Synthetic nanoparti-
cle delivery systems also hold great promise. In a construct similar 
to exosomes, delivery of αGC or TLR 3 and 7/8 agonists polyI:C 
and R848, and OVA in biodegradable poly(lactic-co-glycolic 
acid) nanoparticles proved efficient in stimulating CD8+ antigen-
specific T cell responses against OVA-B16 independent of CD4+ 
T cell help (131). Encapsulation of the contents was essential, as 
injection of a mixture of αGC, TLR ligands, and OVA did not 
induce a comparable antitumor T cell response (131).

As previously mentioned, a major pitfall in using glycolipid 
antigens, specifically αGC, as adjuvants in cancer immunotherapy 
is the induction of iNKT cell anergy, as defined by reduced IFN-γ 
secretion upon secondary exposure. The delivery of αGC, typically 
as an injection of free lipid particles that might be taken up and 
presented by a variety of antigen-presenting cells, might contrib-
ute to this issue. An alternate delivery method would involve the 
intravenous injection of autologous DCs preloaded with αGC. In 
a clinical study involving five late-stage cancer patients, injection 
of αGC-loaded DCs led to the robust proliferation of iNKT cells, 
sustained IFN-γ secretion, and enhanced antigen-specific CD8+ 
T-cell expansion ex vivo, as compared to injection of unpulsed 
DCs (134, 135). It is suggested that the extent of anergy induction 
is dependent on the type of antigen-presenting cells that present 
αGC, with B cells reportedly inducing a higher degree of anergy 
than DCs (135, 136). In addition to the augmented Th1 response 
upon injection of αGC-loaded DCs (137), perhaps upon second-
ary stimulation with αGC-pulsed DCs, anergic responses would 
be reduced. Alternatively, targeting iNKT  cell agonists to DCs 
through nanoparticle formulations has been shown to overcome 
iNKT cell anergy (138).

The recent emergence of monoclonal antibody therapies to 
checkpoint regulators has revolutionized the field of cancer immu-
notherapy, particularly antibodies targeting the PD1–PD1L axis 
and CTLA4. While these therapies are studied predominantly in 
the context of CD8+ cytotoxic T cells, iNKT cells are not exempt 
from their influence. Much like conventional T cells, iNKT cells 
upregulate PD1 on their cell surface upon activation as means 
of eventually resolving the immune response (139). Blockade of 
PD1 using anti-PD1 antibodies injected simultaneously with αGC 
results in iNKT cell activation and prevents iNKT cell anergy, a 
common occurrence after potent αGC stimulation (139–141). In 
fact, blockade of PD1 during αGC-mediated iNKT cell activation 
in a B16 melanoma mouse model leads to a persistent antimeta-
static immune response (139).

Another emerging T  cell-based cancer immunotherapy 
centers on the chimeric antigen receptor (CAR) T cell therapy. 
CAR T  cell therapy works on the principle that genetically 
engineered CD8+ T cells expressing TCRs specific for a tumor 
antigen fused to their native CD3 domain or modified with the 
endodomain of a costimulatory molecule can become activated 
and expand into a population of tumor-specific CD8+ cyto-
toxic T cells (142). This approach has recently been applied to 
iNKT cells (143). A CAR specific for GD2 ganglioside, an abun-
dant neuroblastoma antigen, was expressed in primary human 
iNKT cells (143). CAR.GD2 iNKT cells took on a Th1 profile 
and localized directly in the tumor site when transplanted in 

NSG mice (143). CAR.GD2 iNKT cells were highly cytotoxic 
against neuroblastoma cells, and when fused with CD28 and 
41BB endodomains, they increased long-term survival in a 
murine model of the disease (143). With conventional T cells, 
a frequent adverse effect of CAR therapy in NSG mice is that 
adoptive transfer of the engineered T cells can induce graft-ver-
sus-host disease (GVHD) (143). However, there is no evidence 
of GVHD in in  vivo models utilizing CAR.GD2 iNKT  cells 
(143). For this reason, CAR iNKT cells might become an alterna-
tive to conventional T cells as vectors for CAR therapy. So far, 
however, CAR iNKT cell therapy has not been translated into 
clinical trials due to a poor understanding of the mechanisms 
underlying their in vivo proliferation and persistence (144). There 
have been no clear markers to differentiate effector and memory 
iNKT cells (144). Recently, a subset of iNKT cells that express 
the adhesion marker CD62L (also found in naïve and central 
memory T  cells) has been identified (144). As expected, this 
population rapidly expands and can persist upon stimulation 
(144). In iNKT cells transduced to express a CD19.CAR, it was 
the CD62L+ population that achieved persistent activation and 
proliferation in  vivo and was responsible for lymphoma and 
neuroblastoma regression (144).

CONCLUSiON

Recent results have indicated that therapies harnessing iNKT cells 
seem generally well tolerated by mice and humans. There are still 
many unanswered questions in the field of iNKT cell therapies 
that demand full investigation, such as the optimal route of 
administration, formulation of dosing intervals, etc. Although 
preclinical studies in animal models may help answer these ques-
tions, ultimately, appropriately designed clinical trials in humans 
will guide protocol optimization. Our ability to manipulate these 
cells in antitumor therapeutics is critically dependent on our 
understanding of iNKT  cell biology, including the factors that 
activate and regulate these cells during sterile and non-sterile 
conditions; the strong immunomodulatory ability of iNKT cells 
begs the question as to whether their activation in cancer 
patients, in combination with immune check point inhibitors, 
can enhance the frequency and quality of neo-antigen tumor-
specific CD8+ and CD4+ T  cell responses. The identification, 
optimization, formulation, and clinical use of iNKT cell agonists 
that promote Th1 immune responses should be a high priority in 
future clinical trials.
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Type I natural killer T (NKT) cells are innate-like T  lymphocytes that recognize glyco-
lipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of 
NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemo-
kine responses. This property of NKT cells, in conjunction with their interactions with 
antigen-presenting cells, controls downstream innate and adaptive immune responses 
against cancers and infectious diseases, as well as in several inflammatory disorders. 
NKT cell properties are acquired during development in the thymus and by interactions 
with the host microbial consortium in the gut, the nature of which can be influenced by 
NKT cells. This latter property, together with the role of the host microbiota in cancer 
therapy, necessitates a new perspective. Hence, this review provides an initial approach 
to understanding NKT cells from an ecological evolutionary developmental biology (eco-
evo-devo) perspective.

Keywords: NKT cells, cancer immunotherapy, microbiota, infectious diseases, evolution

iNTRODUCTiON TO TYPe i NKT CeLLS

The evolutionary appearance of the vertebrate immune system equipped complex organisms with 
the ability to resist invasion by pathogenic microbes and to sense and respond to a loss of tissue 
integrity due to infection, aberrant cell growth, or mechanical injury. As organisms became increas-
ingly more complex and lived beyond their fecund years, a finer ability to discriminate self from 
non-self was required (1, 2). Thus, the maintenance of homeostasis in such organisms requires the 
concerted action of multiple cell types that stand poised to respond to a hostile world filled with 
a seemingly endless array of infectious agents, toxic chemicals, and biologics. The first respond-
ers in this elaborate defensive network have historically been classified as members of the more 
archaic, multi-modular innate immune system. Should the innate defenses prove insufficient, the 
evolutionarily younger, adaptive immune system—consisting of B and T lymphocytes—is recruited 
to restore the homeostatic state. The quick-acting cells of the innate immune system senses an altered 
homeostatic state with pattern recognition receptors to detect conserved molecular structures shared 
by many pathogens alike (3, 4). By contrast, the slow-responding, adaptive immune system senses 
alterations in homeostasis by using diverse, clonally distributed B  cell receptors (BCR and their 
secreted counterparts, antibodies), and T cell receptors (TCRs), respectively.
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Bridging the gap between innate and adaptive immune 
responses are the innate-like B and T  lymphocytes. These are 
a group of cells that express a relatively restricted repertoire of 
receptors generated through somatic recombination, yet unlike 
conventional T and B  cells, exhibit innate-like recognition 
principles and functional responses (5). Innate-like lymphocytes 
include both T cells (γδ T cells, natural killer T cells, mucosal-
associated invariant T  lymphocytes, and CD8αα-expressing 
intestinal intraepithelial lymphocytes) and B  cells (B-1 B  cells 
and marginal zone B cells). The evolutionary appearance of this 
group of immune cells, including natural killer T cells (NKT cells) 
endowed upon vertebrates the capacity to initiate and amplify 
both the innate and adaptive immune responses. By virtue of 
their immunoregualtory functions, innate-like lymphocytes can 
fine-tune the nature and magnitude of these immune responses 
(6). Although each immune module plays a specific role, it is 
the controlled integration of multiple modules that results in an 
effective inflammatory response that is essential in maintaining a 
stable milieu intérieur (7).

NKT  cells—originally defined as cells that co-express key 
natural killer (NK) cell surface markers and a conserved αβ 
TCR repertoire—are thymus-derived, innate-like T  lympho-
cytes. The functions of NKT  cells are controlled by self and 
non-self-lipid agonists presented by CD1d molecules (8). The 
majority of NKT cells (type I, invariant NKT) express an invari-
ant TCR α-chain (Vα14Jα18 in mice; Vα24Jα18 in humans). 
The invariant α-chain pairs predominantly with Vβ8.2, Vβ7, or 
Vβ2 in mouse NKT cells, or Vβ11 almost exclusively in human 
NKT cells. A small NKT cell population—referred to as type II 
NKT cells—expresses a more diverse TCR repertoire and recog-
nizes a distinct group of lipid antigens; these, however, are the 
focus of other reviews (9–14). The recognition of lipid agonists 
rapidly activates NKT  cells, which respond just as quickly by 
secreting a variety of cytokines and chemokines, and upregulate 
costimulatory molecules. By acting promptly, NKT  cells alert 
and regulate the effector functions of myeloid and lymphoid 
cells. In so doing, NKT cells play a critical role in controlling 
microbial and tumor immunity as well as autoimmune and 
inflammatory diseases (6, 15–17).

MULTiPLe MeCHANiSMS ACTivATe  
NKT CeLL

The functions of NKT cells are controlled by CD1d molecules. 
CD1d molecules bind to and present a variety of lipid ligands to 
reactive T cells (18). Numerous in vitro and in vivo studies using 
the synthetic lipid α-galactosylceramide (αGalCer, KRN7000) 
and its analogs (Table 1 and references therein) has led to our 
current understanding of NKT cell biology. αGalCer is a natural 
product isolated from the marine sponge, A. mauritianus. The 
gut bacterium, Bacteroides fragilis, and the fungus, Aspergillus 
fumigatus, also biosynthesise αGalCers and/or related com-
pounds (Table 1 and references therein). Hence, αGalCer and 
related compounds may be more prevalent in nature than previ-
ously thought and the NKT cell biology so gleaned may be highly 
relevant.

αGalCer is a potent NKT cell agonist, which when presented by 
CD1d molecules directly activates NKT cells in a TCR-dependent 
manner without need for additional signals. This activation 
mechanism is considered TCR-dominated mode of NKT  cell 
activation (Figure 1).

Sphingomonas spp. biosynthesises an αGalCer-related com-
pound, α-galacturonosylceramide (αGalACer). Other weak 
NKT  cell agonists include microbial glycosphingolipid [GSL; 
e.g., αGalCer-related asparamide B (A fumigatus)], diacylglyc-
erolipids [e.g., α-galactosyl- (Borrelia burgdorferi—the agent 
of Lyme disease) and α-glucosyl-diacylglycerol (Streptococcus 
pneumoniae)] and cholesteryl-α-glycoside [e.g., cholesteryl-6-O-
acyl α-glucoside (Helicobacter pylori)] (Table  1 and references 
therein). Being a weak agonist, NKT  cell activation by these 
microbial glycolipids requires a second activation signal from 
inflammatory cytokines. Such inflammatory cytokines result 
from dendritic cells (DCs) that are activated through their pat-
tern recognition receptors (45–47). This activation mechanism 
is considered TCR- and cytokine-mediated mode of NKT  cell 
activation (Figure 1)—a feature that is important for NKT cell 
activation by weak microbial and self-lipid agonists.

NKT cells react to CD1d molecules presenting self-lipids on 
host APCs in the presence of a second signal (6, 48). The inability 
to activate NKT cell hybridomas by using artificial APCs lacking 
βGlcCer synthase (49) and impaired NKT  cell development in 
mice lacking βGlcCer synthase in their thymocytes (50), sug-
gested that a cellular, βGlcCer-derived GSL is an endogenous 
mouse NKT  cell agonist (49, 50). Several microbes—bacteria 
(e.g., Staphylococcus aureus, Salmonella typhimurium, Listeria 
monocytogenes, etc.), fungi (e.g., A. fumigatus) and viruses—
activate NKT cells but do not biosynthesise NKT cell agonists. 
Such microbes induce the biosynthesis and/or presentation of 
self-lipids, which are thought to be mammalian αGalCer and 
perhaps iGb3 (19, 28, 35). As self-lipids are weak NKT  cell 
agonists, NKT  cell activation is bolstered by IL-12 secreted by 
DCs activated through dectin-1 DCs (31, 47) or toll-like receptor 
(TLR)-4 (45, 46). This activation mechanism is a variation on the 
TCR- and cytokine-mediated mode of NKT cell activation and a 
feature that is important for NKT cell activation by microbes that 
do not themselves biosynthesise an NKT cell agonist.

Type I interferon (IFN)—produced by DCs activated by the 
TLR9 ligand CpG—can serve as a second signal for NKT cell 
activation in conjunction with the presentation of sialylated 
cellular glycolipids by CD1d molecules (51). This finding is 
significant because almost all viral infections induce type I IFN 
response. Even though viruses do not biosynthesise NKT cell 
agonists, or any lipid for that matter, viral infections also 
activate NKT cells (52–62). Perchance, in such a circumstance, 
NKT cell activation occurs via the recognition of a self-lipid(s) 
presented by CD1d in the presence of inflammatory signals 
relayed by type I IFNs.

NKT  cells are activated by the combined actions of IL-12 
and IL-18. Under such conditions, NKT cell activation does not 
require the recognition of a CD1d-restricted agonist (63–65). 
This latter mechanism is considered cytokine-driven NKT cell 
activation (Figure  1). This mechanism is important for 
immunity to cytomegalovirus (65). Summarily, these multiple 
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TABLe 1 | Synthetic, microbial, and self NKT cell agonists—structures and properties.

Lipid (class) Chain Lengtha Structure Agonistb Reference

αGalCer (GSL) C18; C24:1

O
HO

HO

O
HO

OH

HN

OH

O
IFN-γ, IL-4 self (19)

Agel 9b (GSL) C17 (C16-Me);  
phyto C24 O

HO

HO

O
HO

OH

HN

OH

O

OH

Anti-tumor; Agelas 
mauritianus

(20, 21)

KRN7000  
αGalCer (GSL)

C18-phyto; C26
O

HO

HO

O
HO

OH

HN

OH

O

OH

Very strong; robust IFN-γ IL-4 
and other cytokines; synthetic 
analog of Agel 9b

(22)

αCGal-Cer  
(GSL)

C18-phyto; C26
O

HO

HO
HO

OH

HN

OH

O

OH

Weak (mo)-to-none (hu); IFN-
γ; synthetic

(23)

OCH (GSL) C9-phyto; C24
O

HO

HO

O
HO

OH

HN

OH

O

OH

Weak (mo)-to-none (hu); IL-4 
(low-to-no IFN-γ); synthetic

(24)

C20-diene  
(GSL)

C18-phyto; C20:2

O
HO

HO

O
HO

OH

HN

OH

O

OH

Strong; IL-4 (low-to-no IFN-
γ); synthetic

(25)

αGalCer (GSL) C17-C3OH; C17

O
HO

HO

O
HO

OH

HN

OH

O OH
Stimulatory and inhibitory 
Bacteroides fragilis

(26, 27)

αGalU Cer  
(GSL)

C18-phyto; C14

O
HO

HO

O
HO

OH

HN

OH

O

OH

O Weak; Sphingomonas spp. (28–30)

Asp B (GSL) C20:2-C9 Me;  
C16-C2 OH O

HO

HO

O
HO

OH

HN

OH

O OH Weak; Aspergillus fumigatus (31)

αGlc-6-acyl- 
Chol

C14

O

OHO
HO

HO

O

O Strong; binds a small 
NKT cell subset (mo); 
Helicobacter pylori

(32)
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Lipid (class) Chain Lengtha Structure Agonistb Reference

βGalCer (GSL) C18; C24:1

O
OH

HO
O

HO

OH
HN

OH

O Weak; self (33, 34)

iGb3 (GSL) C18; C24

O

HO
O

HO

OH
HN

OH

O

O
O

OH

HO

OHO
HO

HO
HO

OH

O

Weak (mo)-to-none (hu); self (35)

αGal-DAG  
(GGL)

sn1-C18:1; sn2-C16

O O
O

O
O

HO

HO
HO

OH

O

Weak (mo)-to-none (hu); 
Borrelia burgdorferi

(36)

αGlc-DAG  
(GGL)

sn1-C18:1; sn2-C16

O O
O

O
OHO

HO
HO

OH

O

Weak; Streptococcus 
pneumoniae

(37)

PtdIno (GPL) sn1-C18:1; sn2-C18:1

O O
O

O

HO
HO

HOHO

O

OH
O

P
O

OH

Week (mo)-to-no (hu); self (38, 39)

Plasma-logen 
(GPL)

sn1-C16 vinyl-ether; 
sn2-lyso O O

OH
O

P
O

OHH2N
Positive selection (mo); self (40)

Lyso-PtdCho 
(GPL)

sn1-C16; sn2-lyso

O O
OH

O

O
P
O

OHNH3C

H3C

CH3 Weak (hu)-to-none (mo); 
GM-CSF (no IL-4, IFN-γ); self

(41)

This table is adapted from Ref. (8, 42).
Agel, agelasphin; Asp B, asparamide B; Chol, cholesterol; DAG, diacylglycerol; GalCer, galactosylceramide; GalUCer, galacturonosylceramide; GlcCer, glucosylceramide; PtdCho, 
phosphatidylcholine; PtdIno, phosphatidylinositol; sn, stereo nomenclature for glycerolipids; GGL, glycoglycerolipid; GPL, glycerophospholipid; GSL, glycosphingolipid; mo, mouse; 
hu, human.
aSphingosine/phytosphingosine chain length indicated first and N-acyl chain length second.
bAgonist strength based on Ref. (43).
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TABLe 1 | Continued

modes of activation suggest that NKT cells have evolved many 
different mechanisms to sense an altered homeostatic state 
caused by microbial infections. How activated NKT  cells 
steer downstream innate and adaptive immune responses is 
described below.

TRANSACTivATiON OF iNNATe AND 
ADAPTive iMMUNe ReSPONSeS BY 
ACTivATeD NKT CeLLS

NKT cells form immune synapses upon recognition of lipid ago-
nists presented by CD1d molecules displayed on APCs or planar 
membranes. The kinetics NKTCR/ligand interactions determine 
the functional outcome (66). Positive cooperative engagement of 
CD1d-lipid agonistic complexes by the NKTCR allows NKT cells 
to recognize subtle changes in cellular lipid content and to actu-
ate a response (67). Upon activation, NKT cells rapidly polarize 

IFN-γ and lytic granules to the immune synapse to transmit an 
effector response (66, 68, 69). The synaptic transmission of effec-
tor molecules controls downstream innate and adaptive immune 
responses as described below.

Akin to the cells of the innate immune system (e.g., neutro-
phils, Mϕ, DCs, and NK  cells), NKT  cells respond within the 
first several hours of agonist recognition and secrete copious 
amounts of effector cytokines and chemokines (Figure 2). The 
nature of the activating NKT cell agonist controls the nature of 
the cytokine response (see Table 1). For example, the synthetic 
agonist αGalCer, within 30–90  min, elicits a wide variety of 
cytokines (Figure 2). Nonetheless, αGalCer variants containing 
different lipid chain length or unsaturation typically induce an 
IL-4 cytokine response (24, 25). By contrast, other αGalCer vari-
ants that have an altered glycosidic linkage, a chemically modified 
acyl-chain, or a modified sphingoid base, potently induce an IFN-
γ response (Table 1 and references therein). Thus, it is possible to 
steer desirable immune responses against cancers by harnessing 
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FiGURe 2 | The immunological effector functions of mouse NKT cells. The 
interactions between the invariant natural killer T (NKT) cell receptor and its 
cognate antigen, as well as interactions between costimulatory molecules 
CD28 and CD40 and their cognate ligands CD80/86 (B7.1/7.2) and CD40L, 
respectively, activate NKT cells. Activated NKT cells participate in crosstalk 
with members of the innate and the adaptive immune systems by deploying 
cytokine and chemokine messengers. Upon activation in vivo, NKT cells 
rapidly secrete a variety of cytokines and chemokines, which influence the 
polarization of CD4+ T cells toward T helper (Th)1 or Th2 cells as well as the 
differentiation of precursor CD8+ T cells to effector lymphocytes, and B cells 
to antibody-secreting plasma cells. Some of these mediators facilitate the 
recruitment, activation and differentiation of macrophages and dendritic cells 
(DCs), which results in the production of interleukin (IL)-12 and possibly other 
factors. Interleukin (IL)-12, in turn, stimulates NK cells to secrete interferon 
(IFN)-γ. Thus, activated NKT cells have the potential to enhance as well as 
temper the immune response. This schematic rendition of NKT cell effector 
functions is an adaptation of past reviews (6, 8, 44, 70) and is based on 
works cited in the text.

FiGURe 1 | Three distinct strategies activate mouse NKT cells. Potent 
NKT cell agonists—such as αGalCer—directly activate NKT cells without the 
need for a second signal, in a T cell receptor (TCR)-signaling dominated 
fashion (left panel). Alternatively, microbes containing toll-like receptor (TLR) 
ligands such as LPS activate NKT cells by inducing IL-12 production by DCs, 
which amplifies weak responses elicited upon the recognition of CD1d bound 
with self-glycolipids by the NKTCR. Several endogenous lipid agonists have 
been identified and characterized (see Table 1). Some microbes such as 
Sphingomonas capsulata, which are α-Proteobacteria, synthesize 
α-anomeric glycolipids for their cell walls. These glycolipids, when presented 
by CD1d, weakly activate NKT cells directly. In the presence of a second 
signal—generally a pro-inflammatory cytokine such as IL-12—such weak 
agonists strongly activate NKT cells (middle panel). Intriguingly, NKT cells can 
be activated solely by cytokines—mainly IL-12— in a TCR-independent 
manner (right panel). This diagram rendering the different strategies to 
NKT cells is an adaptation of past reviews (8, 44) and is based on works 
cited in the text.
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lipid agonists that induce therapeutic cytokine responses. This 
feature of αGalCer variants is further accentuated by the abil-
ity of activated NKT cell responses to transactivate cells of the 
innate and adaptive immune systems as narrated briefly below 
(see Figure 2).

Dendritic cells, especially CD8α+ DCs, which are a major 
producer of IL-12 (71), play a critical role in glycolipid ago-
nist presentation and NKT  cell activation (72–78). Activated 
NKT  cells reciprocate by activating the interacting DCs. DCs 
so activated rapidly mature. Hence, they upregulate costimula-
tory molecules CD40, CD80, and CD86; several molecules 
critical for protein antigen capture and peptide presentation, 
such as DEC205 and MHC class II molecules (79); and induce 
the production of IFN-γ, tumor necrosis factor (TNF)-α, and 
IL-12 (80–83). IFN-γ produced by activated NKT cells coupled 
with CD154 (CD40 ligand on NKT cells) and CD40 (on DCs) 
mediate the NKT-DC crosstalk (81, 84). This crosstalk steers 
multiple downstream immune responses: (1) the number and 
phenotype of DCs after tumor induction (85). (2) IL-12 and 
IL-18 resulting from NKT-DC crosstalk transactivates NK cells 
to produce IFN-γ (82). (3) NKT-DC crosstalk can result in 
IL-4, IL-6, IL-13, and IL-21, which together can enhance B cells 
responses to protein antigens by B cells (86–93). (4) NKT-DC 
cross talk licenses DCs for antigen cross-presentation to CD8+ 
T  cells (94–96), and the activation and differentiation of CD4 
and CD8 T cells (79, 95–97). Through these bidirectional interac-
tions, NKT cells and DCs cooperate to amplify and direct both 

innate and adaptive immune responses. Hence, NKT cells are an 
attractive target for cancer immunotherapies (98–102).

iMPLiCATiONS FOR CANCeR 
iMMUNOTHeRAPY

NKT cells have long represented an attractive target for tumor 
immunotherapy (103, 104). Numerous studies in both humans 
and mice have demonstrated their ability to directly target CD1d-
expressing tumor cells (105–108), recruit and activate anti-
tumor effector cells of the innate and adaptive immune systems 
(100, 109–114), and control the activity of immunosuppressive 
cells in the tumor microenvironment. After in vivo administra-
tion of αGalCer, NKT-DC cross-talk-mediated NK cell activation 
results in IFN-γ response (82) and, potentially, the anti-tumor 
effect of αGalCer (85, 115).

The potent anti-metastatic activity of αGalCer in mice  
(20, 116), which is NKT  cell mediated (22), prompted inves-
tigations in the role of NKT  cells in natural immunity against 
tumors. Such investigations include chemically induced tumors, 
transplanted tumors, and tumors arising in genetically engi-
neered animals (115). The outcomes of these studies have been 
promising because NKT cells exhibit natural immunity against 
different cancer models. Independent studies have sometimes 
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FiGURe 3 | Schematic rendition of mouse NKT cell developmental stages: 
precursor ST0, immature ST1 and ST2 and mature ST3 and NKT1, 2, and 17 
are functional subsets. Early developmental steps are common to both 
NKT cell and conventional T cell lineages as commitment to the NKT lineage 
occurs at the CD4 and CD8 double-positive (DP) stage. NKT cell ontogeny 
begins with rearrangement of the Vα14 to Jα18 T cell receptor (TCR) α-chain 
gene segments and after its interaction with the positively selecting 
CD1d-self-lipid complex. Stage-specific NKT cell markers—e.g., CD24, 
CD44, and NK1.1—and subset-specific differentiation signals and 
transcription factors are indicated. Interleukin (IL)-7 and IL-15 are cytokines 
that mediate intercellular communication. NKTCR signaling turns-on the 
master transcription factor promyelocytic leukemia zinc finger (PLZF), which 
controls multiple molecular events that distinguish NKT cells from all of the 
other thymus-derived T lymphocytes. Additional molecular cues include Fyn 
and Lck, which are Src (cellular protein homologous to the Rous sarcoma 
virus oncogene) kinases (protein phosphorylation enzymes) essential for 
transmitting NKTCR signals from the plasma membrane to inside of the cell. 
Fyn also transmits signals relayed from SLAM (signaling lymphocyte 
activation molecule) through the adapter protein SAP (SLAM-associated 
protein). Protein kinase C (PKC)-θ processes NKTCR signaling and activates 
the transcription factor nuclear factor-κB (NF-κB). Other transcription factors, 
such as Egr-2, Ets-1, GATA3, Id2, Id3, MEF, Nur77, RORγt, and T-bet, some 
of which are also essential for functional differentiation of NKT cell subsets 
(refer to Figures 4 and 6) and act at distinct stages of NKT cell development. 
This diagrammatic rendition of NKT cell development is an adaptation of a 
past review (8) and is based on works cited in the text.
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reported conflicting results as to the importance of NKT cells in 
the anti-tumor response, particularly with carcinomas induced 
by the topical carcinogen methylcholanthrene (117, 118). Such 
conflicting results were likely due to unknown environmental 
and/or genetic factors present in the mice used as controls in 
similar experiments by different groups (117). Studies in mice 
revealed that αGalCer variants that induce type I inflammatory 
response (see Table 1) were protective against tumor metastases. 
The mechanistic basis of this anti-metastatic effect remains elu-
sive. Nonetheless, the ability of NKT cells activated by αGalCer 
variants to steer desirable downstream effector functions, such as 
NK cells, cytotoxic T cells, Th1 and Th17 cells, γδ T cells, IFN-γ, 
and direct lysis of myeloid lineage cells may underlie the outcome 
(100, 115). The anti-tumor activities of NKT cell agonists have 
already been exploited in a variety of clinical trials. The outcomes 
of these trials have also been promising (103, 104, 119–121).

Genomic Control of NKT Cell Development
NKT  cells development and maturation occurs in the thymus 
(122, 123). Thus, genetically altered mice in which thymocytes do 
not develop beyond the double-negative (DN)2/DN3 stage also 
fail to develop NK1.1+ T cells (124). [Note: historically, prior to 

the development of CD1d-lipid tetramers (125, 126), NKT cells 
were identified by co-expression of the NK1.1 marker and a TCR. 
Hence, in pre-tetramer literature, they were referred to as NK1.1+ 
T cells (127).] Thymic NK1.1− NKT cells were later recognized as 
a CD1d tetramer+ NK1.1− subset that precedes NK1.1+ NKT cells 
in development (128, 129). Current literature refers to the IFN-γ-
producing, mature, stage 3 (st3) NKT cells as NK1.1+ NKT cells 
(Figure 3). Furthermore, NKT cells do not develop in mice har-
boring mutations in genes (e.g., Myb, that encodes the transcrip-
tion factor c-Myb, Rorc, which encodes RORγt, and Tcf12 that 
codes for HEB) that impair survival of immature double-positive 
(DP) thymocytes—cells that co-express both CD4 and CD8 co-
receptors— (130–133). Moreover, Vα14 and Jα18 rearrangement 
occurs at a late DP stage (130, 132). Consistent with this finding, 
NKT cells develop in NKT cell-deficient Jα18-deficient (Ja18−/−) 
mice that receive highly purified tetramer-negative, DP-high 
thymocytes (134). These findings together support the notion 
that commitment to the NKT cell lineage occurs at the DP stage 
much alike conventional T  cells (135). That notwithstanding, 
compelling new data indicate that Vα14 and Jα18 rearrangement 
can occur within CD4- and CD8-negative (DN) thymocytes. 
Additional data indicate that a fraction (~15%) of NKT  cells 
that differentiate into NKT1 cells emerge from DN thymocytes 
(136). Hence, an alternative precursor can give rise to functional 
NKT cells.

Positive selection of NK1.1+ T cells depends on DP thymo-
cytes (122). Developing NKT  cell-DP thymocyte interactions 
involve both self-lipid-bound CD1d/NKTCR (22, 116, 137–139) 
and signaling lymphocytic activation molecule (SLAM)–SLAM 
interactions (140–142). These interactions are critical to NKT cell 
maturation, which involves protein kinase Cθ-NF-κB (143) and 
NFAT-Egr2 (144–146) activation downstream of the NKTCR, 
and SLAM-associated protein-Fyn activation downstream of 
SLAM (140, 141, 147, 148). Signals so transmitted from the 
cell surface are relayed through multiple signaling nodes in the 
cytoplasm and integrated in the nucleus into a unique tran-
scriptional program (Figure  3). A key nuclear event involves 
the activation of the zinc finger BTB domain-containing-16 
(Zbtb16) gene that codes for promyelocytic leukemia zinc finger 
(PLZF). The PLZF-mediated genomic control distinguishes the 
unique NKT cell functions from those of the other T  lympho-
cytes (149, 150). NK1.1− NKT cells undergo several rounds of 
cell division, retaining some in the thymus with the remaining 
emigrating and populating the peripheral lymphatic organs. 
Thence, NK1.1− NKT cells mature to become NK1.1+ NKT cells, 
both in the thymus and the periphery (Figure 3). A key feature 
of this maturation process is the acquisition of cytokine secre-
tion function in a less well-understood mechanism (148) and 
the differentiation into three functional subsets: NKT1, NKT2, 
and NKT17 (discussed below). These NKT cell subsets marked 
by the same subset-specific transcription factors and cell surface 
markers expressed by the corresponding T helper cell subsets 
(151–156).

Gene regulatory networks (GRNs) are composed of trans-
regulatory factors—generally made up of transcription factors 
and regulatory RNA such as microRNAs and long non-coding 
RNA—and cis-regulatory regions generally found upstream of 
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FiGURe 4 | Promyelocytic leukemia zinc finger (PLZF)-driven gene regulatory 
network directs innate effector function in mouse NKT cells. NKTCR 
stimulation by self-glycolipid antigen activates downstream nuclear factor of 
activated T cells (NF-AT), which activates Egr2 gene. Egr2 is essential for 
Zbtb16 gene expression downstream of NKTCR stimulation. PLZF encoded 
by Zbtb16 activates T helper (Th) lineage-specific transcription factors, 
except Tbx21, which codes for the Th1 master regulator Tbet. Promyelocytic 
leukemia zinc finger (PLZF) also binds to multiple cis-regulatory elements to 
repress Bach2, which is a repressor of Th cytokine genes. In addition, PLZF 
binds to cis-regulatory elements of a variety of cytokine and chemokine 
receptor genes. NF-AT, Tcf3, Tcf12, Egr2, Zbtb16, Bach2, c-Maf, Gata 3, 
Runx3, Rora, Rorc, Bcl6, and Klf2 encode transcription factors. Other genes 
under PLZF control encode effector proteins, mostly cytokines (e.g., Il4), 
cytokine receptor (Il12Rb1, Ifngr1, Il21r), chemockine (Ccr4) or cell adhesins 
[Cd44, Sell (L-selectin)]. Bach2 represses the induction of T helper (Th) 
effector cytokine genes. Thick black lines, cis-regulatory elements of genes; 
solid green lines, enhancer; solid red lines, repressor; dashed green lines, 
indirect evidence for enhancement; dashed red lines, indirect evidence for 
repression. Based on Ref. (145, 149, 150, 158).
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genes whereupon transcription factors bind to control lineage-
specific gene expression. GRNs unveil the origins and evolution 
of cell lineages (157). Many transcription factors have been stud-
ied in relation to NKT cell development and function. Among 
these, PLZF works as a master transcription factor controlling the 
development of innate-like functions within NKT cells (Figure 4) 
(149, 150, 158). Mice harboring a loss-of-function PLZF mutation 
or lacking PLZF demonstrated poor NKT cell development, and 
those NKT cells that developed were NK1.1− and homed to lymph 
nodes but not to tissues such as thymus and liver where they are 
found abundantly in wild type (wt) mice (149, 150). Additional 
studies indicated that PLZF binds to cis elements of effector 
cytokine and homing receptor genes to direct their expression 
within NKT cells (Figure 4) (158). Furthermore, forced expres-
sion of a Zbtb16 transgene in all T cells during thymic develop-
ment resulted in the acquisition of an innate-like phenotype and 

function in conventional T cells (158). These findings heralded 
PLZF as a lineage-specific master regulator of transcription (149, 
150, 158), and has led to the unveiling of a GRN that controls 
effector differentiation in developing NKT cells (Figure 4).

The induction of Zbtb16 is controlled in part by acetylated Egr2 
(159), which is induced downstream of NKTCR signaling (144). 
A recent study demonstrated that the gene encoding the histone 
acetylase GCN (general control non-derepressible) 5 acetylates a 
critical lysine residue in Egr2. DP thymocyte-specific depletion 
of GCN5 blocked the progression of NKT cell development from 
stage 0 to stage 1 in a cell intrinsic manner. This stage 0 to stage 
1 developmental block was due to transcriptional downregula-
tion of the lineage driving gene Zbtb16 and other genes such as 
Runx1, Tbx21, and Il2rb that are essential for proper NKT cell 
development (159). GCN5 itself is an acetylated protein. Whether 
its function during NKT cell development depends on acetylation 
is currently unknown. In some models, the function of GCN5 
depends on its deactylation (160). Should GCN5 function in 
NKT cells depend on deacetylation, whether and which sirtuins 
[silent mating type information regulation 2 homologs 1–7 (160)] 
play this role in NKT cells remains to be established.

Even though the mouse invariant Vα14i TCR α-chain has the 
potential to pair with virtually all available TCR β-chains, the 
peripheral NKT cell repertoire consists of Vα14i paired with a 
restricted set of β-chains, viz., Vβ8, Vβ7, and Vβ2 (161). There are 
two views to the events that sculpt this semi-invariant NKTCR 
repertoire: the predominant view is that such a semi-invariant 
NKTCR repertoire is built exclusively by positive selection (162). 
The competing hypothesis—that both positive and negative selec-
tions sculpt the semi-invariant NKTCR repertoire—is supported 
by indirect evidence (163–166).

Two lines of evidence support the notion that positive selec-
tion sculpts the NKT  cell repertoire. CD1d molecules have a 
recycling motif in their cytoplasmic tail, which is essential for 
the endo/lysosomal exchange of CD1d-bound lipids and their 
subsequent presentation to NKT cells. Transgenic mice express-
ing a mutant CD1d molecule that has lost the ability to recycle do 
not develop NKT cells, suggesting that positive selection requires 
a recycling CD1d molecule (167). Another line of support comes 
from the study of CD1d-null mice, which contain a small number 
of CD1d-tetramer+ thymocytes. These pre-selection thymocytes 
also express only the Vβ8, Vβ7, and Vβ2 β-chains expressed by 
the post-selection NKT  cells. Such pre-selection thymocytes 
expand the same NKTCR repertoire when stimulated with a 
putative self-glycolipid called isogloboside-3 in  vitro (35, 161). 
These lines of evidence support positive selection as the sole 
model for sculpting the NKT cell repertoire.

Deletion of the gene coding for NKAP (NF-κB activating 
protein) in DP thymocytes specifically blocks the development of 
NKT cells but not conventional T cells (168). NKAP colludes with 
HDAC3 (histone deacetylase 3) to function as a transcriptional 
repressor (169). Accordingly, deletion of the Hdac3 gene in DP 
thymocytes completely blocks NKT cell development, while con-
ventional T  cell development proceeds normally (168). Hence, 
the repression of target genes at the DP thymocytes stage by the 
combined action of NKAP and HDAC3 is essential for positive 
selection of the NKT cell lineage.
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FiGURe 5 | At least four mouse NKT cell subsets divide-up the labor. The four NKT cell subsets reflect T helper (Th)1, Th2, Th17, and Treg subsets. The 
transcription factors and the prototypic effector molecules as well as the locations and functions, which define the four NKT cell subsets, are represented. The 
text contains detailed description of each subset. This diagrammatic rendition of NKT cell subsets is an adaptation of a past review (8) and is based on works 
cited in the text.
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Three lines of evidence support a potential role for negative 
selection in pruning self-reactive NKT cells for sculpting a func-
tional repertoire: first, all available TCR β-chains can pair with 
the Vα14i TCR α-chain and react with CD1d tetramer, yet only 
Vβ8, Vβ7, and Vβ2 β-chains are expressed by the post-selection 
NKT cells (161). This finding can be explained only by negative 
selection of the majority of the β-chains and not by the failure to 
survive owing to the inability to interact with CD1d or to failed 
positive selection (38, 161). Second, transgenic over expression 
of either mouse or human CD1d in DP thymocytes and thymic 
myeloid cells results in fewer NKT cells and, those that remain, 
display altered Vβ usage (163, 170). Furthermore, only wt 16.5-
day post-coitus mouse fetal thymic organ cultures (FTOCs), but 
not FTOCs from CD1d-overexpressing transgenic animals, fos-
tered NKT cell development (163). Finally, exogenous addition 
of αGalCer, to wt mouse FTOCs resulted in NKT cell depletion 
(163, 164). Likewise, in  vivo αGalCer injections into neonatal 
mice also resulted in the intra-thymic depletion of NKT  cells 
(164). Together, these findings provide compelling evidence, 
albeit indirect, supporting a role for negative selection in sculpt-
ing a functional NKT cell repertoire.

Agonistic ligand(s)—those that positively select in the thymus 
being similar or identical to ligands that activate in the periph-
ery (19, 27, 171)—selects NKT  cells, which strikingly contrast 
antagonist ligand-mediated selection of conventional T  cells. 
Further, SLAM–SLAM interactions, which activate PKC-θ via 
the SAP-FynT signaling module, mediate persistent interac-
tions between developing NKT cells and the selecting DP cells 
(140,  141, 147, 172–175). NF-κB provides a survival signal to 
escape death that could result from these high affinity interactions 
(166, 176–182). Current evidence suggests that signals relayed 

through the TCR–PKCθ–CARMA1 axis are integrated by NF-κB 
to prevent death of developing NKT cells (143, 166, 183). But the 
signals relayed by the TCR-PKCθ-CARMA1 axis only partially 
accounts for such death signals. Consistent with this conclusion 
is the finding that TNF-α ligation of TNF receptor superfamily 
member 1a (TNFR1) relays caspase 8 and caspase 9 activation 
signals to mediate NKT cell death. This death signal is also obvi-
ated by NF-κB activation (183). Additional signals also mediate 
NKT  cell survival during development (181, 184–192). Hence, 
escaping cell death from multiple signals may be a key feature of 
thymic NKT cell development. Whether this cell death is the basis 
for negative selection of NKT cells currently remains unknown.

NKT cells must tightly regulate NF-κB activation as mice that 
lack RelA or cannot activate NF-κB poorly develop NKT  cells 
(143, 176, 177). On the other hand, mice that express overactive 
NF-κB or lack the negative regulator of NF-κB signaling CYLD, 
develop NKT cells but fail to mature and populate the lymphoid 
organs and peripheral tissues (181). Hence, NF-κB may function 
as a rheostat to set the threshold for peripheral NKT cell acti-
vation. Such a threshold may be critical as their selection and 
function are controlled by agonistic ligand(s) so as to prevent 
autoreactivity. How NF-κB functions as a rheostat in developing 
NKT cells needs elucidation.

NKT Cell Subsets, Frequency variation, 
and Microbial influences on Function: An 
ecological Perspective
Recent findings on NKT cell developmental properties may be 
best understood from an ecological perspective. These proper-
ties include, (a) functional NKT cell subsets and the division of 
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labor; (b) NKT cell frequency variation; (c) tissue environment-
dependent NKT  cell subset frequency variation; and (d) gut 
microbiota-dependent peripheral NKT  cell maturation and 
reciprocal NKT cell control over gut microbiota.

FUNCTiONAL NKT CeLL SUBSeTS AND 
THe DiviSiON OF LABOUR

NKT cell activation results in rapid secretion of pro-inflammatory 
and regulatory cytokines and chemokines. This property in 
conjunction with the capacity to transactivate a variety of innate 
and adaptive immune cells—see subsection on Transactivation—
allows NKT  cells to steer downstream immune responses. 
NKT cells are heterogeneous, consisting of at least four distinct 
subsets—NKT1, NKT2, NKT10, and NKT17. In addition, at least 
one induced subset, NKTfh, is also recognized. As with conven-
tional CD4+ T cell subsets, NKT cell subsets are characterized by 
prototypic cytokine responses and subset-specific transcription 
factors (Figure 5). Each subset is represented at different propor-
tions in various mouse strains (151–155).

MOUSE NKT1 CELLS are marked by either the expression 
of CD4 or the absence of CD4/CD8 co-receptors. NKT1 cell 
activation results in a Th1-like cytokine response. The majority of 
mouse splenic and hepatic NKT cells are NKT1 subset, especially 
in the C57Bl/6 strain. NKT1 cell differentiation depends on T-bet 
(Tbx21) and IL-15 but less on GATA3 (151, 152, 187, 189–191). 
Unlike HDAC3 depletion in DP thymocytes, NKT cell lineage-
specific deletion of Hdac3 (derived with the use if Zbtb-Cre) 
results in selective impairment in NKT1 cell development. The 
selective absence of HDAC3 in NKT cells resulted from reduced 
autophagy (193–195)—a cytoplasm recycling process essential to 
T and NKT  cell development —and decreased GLUT1, CD71, 
and CD98 nutrient receptor expression (196). Moreover, the 
anti-tumor effect of αGalCer (109) is potentially mediated by 
IFNγ- and TNFα-producing NKT1 cells.

MOUSE NKT2 CELLS express the CD4 co-receptor. NKT2 
cell actiation results in a Th2-like cytokine and chemokine 
response. This subset is enriched in mouse lungs and the intestine 
(152). IL-13 and IL-4 as well as CCL17, CCL22, CCL10/CCL6, 
and eosinophil chemotactic factor-L secreted by activated NKT2 
cells may mediate airway hyperresponsiveness (151, 197–200). 
This Th2-type response recruits Mϕs, eosinophils, neutrophils, 
and lymphocytes into the lungs to incite tissue damage (197). 
Coincidently, in BALB/c mouse that is sensitive to airway hyper-
responsiveness, NKT2 cells predominate (152).

NKT cells constitutively express Il4 and Ifng transcripts. This 
constitutively expressed cytokine genes may explain the rapid 
NKT cell response to agonistic stimulation in vivo (201). Epigenetic 
changes in the two cytokine genes control their transcription. For 
example, the conserved non-coding sequence (CNS) 2 located 
downstream of the mouse Il4 locus is constitutively active in 
NKT cells, which thereby constitutively transcribe the Il4 gene. 
CNS 2 activity depends on NOTCH and Rbp-j (recombination 
signal binding protein for immunoglobulin kappa J region)—a 
transcriptional regulator of NOTCH signaling. Hence, DP 
thymocyte-specific deletion of Rbp-j abolished CNS 2 activity and 
the ability to transcribe Il4 (202).

A similar epigenetic control of the human Ifng locus using 
CNS-30 and CNS +18–20 transcribes the Ifng locus in NKT cells 
(203, 204). Consistent with this finding, NKT  cells showed 
acetylated histone 4 marks upstream and downstream of the 
Ifng coding region only when activated by weak (self agonists) 
or strong signals (phorbolmyristate acetate  +  ionomycin) but 
not in resting NKT  cells. Furthermore, NKT  cells rested after 
stimulation returned the Ifng locus to an unmarked state (205). 
H4 acetylation occurs at CNS +18–20, a site essential for human 
Ifng transcription in NKT cells and conserved within the mouse 
Ifng locus (203, 205). These findings notwithstanding, it is 
unclear whether human NKT cells constitutively transcribe the 
Ifng locus and how mouse NKT  cells constitutively transcribe 
its Ifng locus.

MOUSE NKT17 CELLS do not express CD4 or CD8 co-
receptors. They are enriched in the lungs, skin, and peripheral 
lymph nodes, and are poorly represented in the spleen and 
liver (206–208). These cells require IL-7, not IL-15, for survival  
(151, 209). The development of NKT17 cells also requires 
mTORC2 signaling and the transcription factors Runx1 and 
NKAP (168, 210–213). Thus, NKT cell-specific Runx1 deletion 
results in decreased IL-7Rα, BATF, and c-Maf expression against 
the backdrop of increased Lef and Bcl11b expression (211). On 
the other hand, how NKAP controls NKT17 cell development 
is not understood, but appears not to require mTOR, IL-7, and 
TGF-β signaling (210).

Akin to Th17  cells, NKT17 cells constitutively express 
RORγt (206), rapidly produce IL-17A in response to certain 
bacterial infections, and induce airway neutrophilia when 
challenged with synthetic glycolipid or LPS (37, 206, 214). 
NKT17 cells may contribute to ozone-induced airway hyper-
sensitivity (215), the development of experimental autoim-
mune encephalomyelitis (214), and the pathogenesis of acute 
hepatitis in mice (216).

MOUSE NKT10 CELLS, the PLZF-independent subset 
(154), are found in low frequency in unchallenged mice and in 
human peripheral blood mononuclear cells (PBMCs). Upon 
re-activation, NKT10 cells that previously responded to αGalCer 
in vivo, secrete IL-10 (155). IL-10 produced by activated NKT10 is 
thought to maintain immune-privilege sites. This NKT cell subset 
may also control Treg cell functions in adipose tissues (154).

Mouse NKT  cells can provide cognate (lipid antigens) or 
non-cognate (protein antigens) help to B  cells and regulate 
antibody responses (89, 90, 92, 217, 218). Upon immunization 
with αGalCer a subset of NKT cells acquire a phenotype similar 
to T follicular helper T cells (Tfh) referred to as NKT follicular 
helper (NKTfh) cells (218–220). NKTfh are characterized by the 
expression of CXCR5, ICOS, PD1, Bcl6, and BTLA. Their devel-
opment is dependent on same factors that drive Tfh development 
(219). NKTfh cells induce rapid production of germinal centers 
through IL-21 production that yields detectable levels of antigen-
specific IgG (91, 219, 220). Nonetheless, NKTfh cell-induced 
antibody responses are short-lived and inferior to Tfh cell-
induced responses (91, 219, 220). NKTfh cells may play a role 
in antibody responses against human pathogens such as Borrelia 
hermsii, Streptococcus pneumoniae, and Plasmodium falciparum 
(91, 219, 220). NKTfh and Tfh cells can act synergistically to 
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induce robust antigen-specific antibody responses underscoring 
the use of αGalCer as a vaccine adjuvant (218).

Human NKT cell responses are as diverse as those of mouse 
(221), yet NKT cell subsets have not been formalized in humans. 
Functional dichotomy has been reported in human CD4+ and DN 
NKT cell subsets: activated human CD4+ NKT cells secrete IL-4. A 
pathological role has been attributed to human CD4+ NKT cells, 
which accumulate in the lungs of chronic asthmatic patients and 
produce IL-4 and IL-13 (222). Hence, human CD4+ NKT  cell 
resembles the mouse NKT2 cell subset. On the other hand, the 
activated DN NKT cells secrete IFN-γ and TNF-α. Furthermore, 
both CD4 and DN human NKT cell subsets upregulate perforin 
in the presence of inflammatory signals. The DN NKT cells also 
upregulate NKG2D expression, which together with perforin 
may mediate cytotoxicity against infected cells and cancer cells 
(223, 224). These functions of human NKT cells resemble those 
of mouse NKT1 cells. Activated human NKT cells can also secrete 
IL-17 (221), suggesting the presence of an NKT17-like subset.

In summary, mouse NKT cells divide labor into four subsets. 
Global and single cell transcriptome analyzes demonstrated that 
the thymic NKT1, NKT2, and NKT17 cells were distinct subsets 
(156, 225). Even though not formalized, human NKT cells also 
have the potential to mirror mouse NKT  cell subsets, but this 
requires further investigation. That the tissue environment plays 
a role in the differentiation of NKT cell subsets is supported by the 
finding that NKT17 differentiation required mammalian target of 
rapamycin complex-2 (213) or is suppressed by Tet enzymes that 
modify 5-methylcytosine in DNA by controlling the expression 
of Tbet and ThPOK transcription factors (226). Another study 
using somatic cell nuclear transfer to generate mice with mono-
clonal NKT  cell populations demonstrated that tissue homing 
pattern, and, to a lesser extent, TCR avidity governed NKT cell 
subset differentiation (208). That NKT1, NKT2, and NKT17 cells 
differentiated within peripheral tissues of each of the three mono-
clonal mouse lines, derived from somatic cell nuclear transfer, 
suggests that the subsets are perhaps NKT cell “reaktionsnorm 
[German for reaction norm or norm of reaction; Woltereck 1909 
cited in Ref. (227)]” induced by the tissue-specific environment, 
potentially by local cytokine/chemokine milieu in conjunction 
with the host microbiota.

NKT CeLL FReQUeNCY vARiATiON

An intriguing property of NKT  cells is their frequency varia-
tion observed in lymphoid tissues of different inbred strains of 
similar age: low in 129 and NOD, intermediate in C57Bl/6, and 
high in BALB/c, CBA, and DBA/2 mice (152, 153, 228–230). 
Likewise, NKT cells show striking frequency variation that can 
range from as little as 0.001% to 5–10% within human PBMCs 
(221, 231, 232).

Mice show inter-strain variation in thymic NKT cell subset 
numbers (152). C57Bl/6 mice have high proportion of NKT1 
cells and low frequency of NKT2 cells, whereas BALB/c have 
high frequency of NKT2 and NKT17 suggesting an inverse 
correlation between frequency of NKT1 cells versus NKT2 cells 
and mouse strains. Curiously, mouse strains that have a high 
frequency of NKT2 cells (BALB/c, CBA, and DBA/2) showed 

high numbers of eomesodermin-expressing memory-like CD8+ 
thymocytes (152) which was attributed to the steady-state 
production of IL-4 by the expanded NKT2 population in these 
mice. In an effort to understand whether genetic polymor-
phisms between mouse strains controlled NKT cell frequency, 
recombinant inbred and co-isogenic strains begotten from NOD 
(low NKT cell frequency) X C57Bl/10 (intermediate NKT cell 
frequency) crosses were analyzed. The outcomes of several such 
studies indicated that NKT cell frequency segregated with the 
genetic background of the mouse (153, 229, 230). Whereas this 
outcome suggests that NKT  cell frequency is under genetic 
control, whether this control is direct or indirect remains to be 
ascertained.

DeveLOPMeNTAL SYMBiOSiS: GUT 
MiCROBiOTA-DePeNDeNT PeRiPHeRAL 
NKT CeLL FReQUeNCY AND NKT CeLL 
CONTROL OveR GUT MiCROBiOTA

NKT  cells surveil barrier mucosae such as that of the small 
and large intestine (233, 234). The number, phenotype, and 
functional maturation of NKT  cells in the gut epithelium and 
lamina propria are controlled by neonatal colonization of the 
gut by bacterial symbionts. Thus, germ-free (GF) mice have 
high numbers of NKT  cells in the gut epithelium and lamina 
propria that are immature and, hence, hypo-responsive to 
αGalCer (233). Curiously, reconstitution of young, but not adult 
mouse gut by bacteria that biosynthesise αGalCer or related 
compounds reverses the hypo-responsiveness of NKT  cells 
found in GF intestinal mucosae (234). Similarly, GF mice also 
harbor high hepatic and pulmonary, but not thymic and splenic 
NKT cell frequencies (234). Additional evidence implicates the 
CXCR6 ligand CXCL16, whose expression is under the control 
of gut microbiota, in regulating gut NKT  cell frequency and 
maturation (234, 235). Furthermore, αGalCer compounds (see 
Table  1) synthesized by the bacterial symbiont Bacteriodes 
fragilis, exert either an inhibitory effect preventing proliferation, 
or are stimulatory on developing NKT  cells (26, 27). As the 
gut microbiota varies between individuals of different genetic, 
ethnic, and geographic backgrounds (236), the above findings in 
mice suggest the intriguing possibility that the human symbionts 
may impart an epistatic control over human NKT cell frequency 
and maturation as well. Because the frequency and functional 
status are environmentally controlled even though the genotype 
of the differentiating NKT  cells remains the same, NKT  cell 
frequency and proper maturation are potentially polyphenic 
(227, 237) properties.

Early-life microbial ecology has implications for health. 
Thus, GF mice are prone to severe airway hypersensitivity and 
dextran sodium sulfate-induced colitis (233–235). The latter 
phenotype is obviated by the interaction of NKT  cells with B. 
fragilis-derived glycosphingolipid(s) during early life (26). Not 
surprisingly, NKT cells can, in turn, control gut microbial ecology 
and gut physiology (238). Whether similar reciprocal interactions 
between NKT cells and the gut microbiota occur in humans cur-
rently remains unknown.
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FiGURe 6 | Phylogenetic tree of CD1 and syntenic relationship of eutherian Cd1d. (A) Protein sequences of α1-α2 domains of mammalian and reptilian CD1, 
human and zebra fish MHC class I and Xenopus XNC10 were retrieved from NCBI using PSI-BLAST. Sequences with E-value of ≤0.05 were considered mostly 
similar to the human CD1D query sequence; significant bootstrap values are indicated for critical nodes. Sequences were aligned using ClustalW. Phylogenetic 
analysis (pairwise deletion, bootstrap: n = 1,000) was performed to construct the optimal tree with the sum of branch length = 9.42589507. Neighbor-Joining 
method (245) was used to infer evolutionary history. An optimal tree with the sum of branch length = 9.42589507 is shown. p-distance method was used to 
compute evolutionary distances (246, 247). The tree is drawn to scale, with branch length units the same as those of the evolutionary distances used to infer the 
phylogenetic tree. A total of 51 sequences and 210 positions were included in the final dataset. Evolutionary analyses were performed using MEGA6 (248). 
Mammalian species names according to Ref. (249), and the Order/Family to which they belong according to Ref. (250, 251) as well as homology to human CD1D 
are as follows: northern brown bandicoot (Isoodon macrourus), Peramelemorphia/Peramelidae, 50%; Tasmanian devil (Sarcophilus harrisii), Marsupialia/
Dasyuridae, 42%; Hoffmann’s two-toed sloth (Choloepus hoffmanni), Pilosa (Xenarthra)/Megalonychidae, missing various parts of the protein; nine-banded 
armadillo (Dasypus novemcinctus), Cingulata (Xenarthra)/Dasypodidae, 62%; tailless tenrec (Echinops telfairi), Afrosoricida (Insectivora)/Tenrecidae, missing N- and 
C-terminal ends of the protein; western European hedgehog (Erinaceus europaeus), Erinaceomorpha (Insectivora)/Erinaceidae; Eurasian shrew (Sorex araneus), 
Soricomorpha (Insectivora)/Soricidae, has only 181 aa, missing N- and C-terminal ends of the protein; northern tree Shrew (Tupaia belangeri), Scandentia/
Tupiidae, 68%, missing leader sequence; large flying fox (Pteropus vampyrus): Chiroptera/Petropodidae; little brown bat (Myotis lucifugus), Chiroptera/
Vespertilionidae 62%; dog (Canis lupus familiaris), Carnivora/Canidae, 57%, missing initiator methionine; giant panda (Ailuropoda melanoleuca), Carnivora/Ursidae, 
60%, missing initiator methionine; ferret (Mustela putorius furo), Carnivora/Mustelidae, 60%, missing leader sequence; cat (Felis catus), Carnivora/Filidae; 
bottlenose dolphin (Tursiops truncatus), Cetacea/Delphinidae; African bush elephant (Loxodonta africana) Probosidea/Eliphantidae 65%; horse (Equus caballus), 
Perissodactyla/Equidae, 73%; rock hyrax (Procavia capensis), Hyracoidea/Procavidae, 64%; wild boar (Sus scrofa), Artiodactyla/Suidae, 65%; alpaca—Andean 
paca (Vicugna pacos), Artiodactyla/Camelidae; cow (Bos taurus), Artiodactyla/Bovidae, 65%, valine substitution of initiator methionine; squirrel (Ictidomys 
tridecemlineatus), Rodentia/Sciuridae, 64%, missing last 12 aa including the recycling motif; Ord’s kangaroo rat (Dipodomys ordii): Rodentia/Heteromyidae; brown 
rat (Rattus norvegicus), Rodentia/Muridae; 64%; mouse (Mus musculus domesticus), Rodentia/Muridae, 61%; guinea pig (Cavia porcellus), Rodentia/Cavidae, 
65%; American pika (Ochotona princeps), Logomorpha/Ochotonidae, 64%, missing last 17 aa including the recycling motif; European rabbit (Oryctolagus 
cuniculus), Logomorpha/Leporidae, 67%; gray mouse lemur (Microcebus murinus), Primates/Cheirogaleidae, 78%; small-eared galago—a bushbaby (Otolemur 
garnettii), Primates/Galagidae (Loridae), 71%, missing last 31 aa including the recycling motif; Philippine tarsier (Tarsius syrichta), Primates/Tarsiidae, 71%; 
white-tufted-ear marmoset (Callithrix jacchus), Primates/Callitrichidae, 83%; rhesus monkey/macaque (Macaca mulatta), Primates/Cercopithecidae, 88%; northern 
white-cheeked gibbon (Nomascus leucogenys), Primates/Hylobatidae, 95%; western gorilla (Gorilla gorilla gorilla), Primates/Hominidae, 99%; Sumatran orang 
utan (Pongo abelii), Primates/Hominidae, 96%; chimpanzee (Pan troglodytes), Primates/Hominidae, 98%; human (Homo sapiens), Primates/Hominidae. (B) 
Syntenic map was drawn using Genomicus v89.01 Phyloview (252). Human CD1D gene was used as reference gene and species, respectively, Eutheria as the 
root species. Upstream of CD1D gene are KIRREL, CD5L, FCRL1, FCRL2, and FCRL3 genes, and downstream from CD1D are CD1A, CD1C, CD1B, CD1E, and 
ORIOT2 genes in the syntenic map.
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Microbial ecology has emerged as an important determin-
istic factor in the outcome of chemotherapy, radiation therapy, 
and immunotherapy against cancers (239). NKT cells have been 
targeted in the clinic for immunotherapy (see Implications 
for Cancer Immunotherapy), but how each of these therapies 
impact NKT  cells is not known. It is noteworthy that a frac-
tion of NKT cells are radiation resistant (130). This feature can 
be exploited for NKT  cell-targeted immunotheraphy against 

lymphomas and leukemias. Clinical trials have shown that the 
outcome of NKT cell-targeted immunotherapy varied between 
recipients (103, 104). Hence, what roles the gut microbiota 
played in the outcome is worthy of investigation. So also, con-
sidering that NKT  cells can impact microbial ecology (238), 
what roles NKT cells play in tumorigenesis and metastasis are 
also worthy of investigation. Insights into how the microbial 
community assembles and forms the host–symbiont ecosystem 
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will facilitate an essential understanding of the molecular 
underpinnings that govern reciprocal interactions between the 
host and its internal ecosystem. These new insights can, in turn, 
impact the way by which new cancer therapies are designed, 
developed, and refined.

evolution of Type i NKT Cells

… the struggle against diseases, and especially infec-
tious diseases, has been a very important evolutionary 
agent and that some of its results have been unlike those 
of the struggle for life … [(240) within a collection of 
papers in genetics by Haldane (241)].

Comparative vertebrate genomics, enabled by recent advances in 
whole-genome sequencing, have revealed molecular signatures 
of selection upon genes that control many biologic functions, 
including immune responses. Hence, pathobionts can apply 
immense selection pressure and play significant roles in the evolu-
tion of immune response genes and cells. As early-life symbionts 
can impact health, microbial ecology may also play roles in the 
evolution of the immune response genes and cells.

The NKTCR engages its ligand, CD1d-lipid co-complex, with 
conserved germline-encoded residues in four-to-five of the six 
complementarity-determining regions of the combined TCR 
α- and β-chains (242). Hence, phylogenetic studies of genes 
that encode CD1 molecules and the invariant NKTCR α-chain 
can reveal the origin and evolution of NKT  cells. A recent 
phylogenomic analysis revealed that the Cd1 gene is an amniote 
innovation that evolved in the Mesozoic reptiles and was retained 
in the extant anapsid (green anole lizard Anolis carolinensis) and 
synapsid (Siamese crocodile Crocodylus siamensis and Chinese 
alligator Alligator sinensis) reptilians (243). Cd1 genes diversified 
in mammals, wherein evolved the Cd1d gene that encodes the 
lipid agonist presenting molecule that controls the functions of 
NKT cells in eutherians (of placental mammals; Figure 6) (244). 
Curiously however, the reptilian Cd1 gene has no orthology with 
avian or mammalian Cd1 genes (243), suggesting that Cd1 genes 
may have emerged multiple times during amniote evolution. Or 
alternatively, Cd1 genes may have evolved rapidly and diverged 
substantially from the reptilian form within extinct synapsid and 
mammal-like reptiles prior to stabilization within eutherian spe-
cies. The latter view is supported by the finding that egg-laying 
monotremes such as platypuses and echidnas do not have Cd1 
genes while a CD1d-like gene exists in a few metatherian (of 
marsupial mammals) species such as the opossum.

A phylogenetic analysis of TRAV10 (encoding the human 
Vα24 gene segment) or TRAV11 (encoding the mouse Vα14 
gene segment) and TRAJ18 (encoding the Jα18 gene segment) 
revealed that gene elements related to TRAV10/11 and TRAJ18 
were found only in placental mammals (244). This finding sug-
gests that NKT cells are a eutherian innovation. As the host–gut 
microbiota controls NKT cell terminal functional differentiation 
and NKT cells impact gut microbial ecology, it is postulated that 
placental development, sudden perinatal exposure to maternal 
and environmental microbiota, and lactation may have contrib-
uted to the evolution of CD1d-restricted type I NKT cells.

A Final Analysis: Under the Spell of PLZF 
and Host Microbial ecology, a Curious 
Case for a “Limbic immune System!”
The foregoing discusses recent advances in developmental biology 
of NKT cells and the environmental context in which it develops, 
matures and differentiates. A final section discusses their evolu-
tionary path and how developmental biology and ecology may 
have contributed to this unique developmental plan. In addition, 
how the eco-evo-devo perspective on NKT cells may contribute 
to cancer immunotherapy is touched upon. Finally, areas that 
will benefit from further investigation are also pin pointed in 
their respective sections. Summarily, such areas include, (a) what 
early events specify NKT cell lineage commitment and turn on 
the unique lineage-specific GRN?; (b) what signals do symbionts 
relay to developing NKT cells to specify physiologic functions?; 
(c) in turn, what signals do NKT  cells relay to the microbial 
community in the gut, and potentially to the microbionts in skin 
and lungs, to ensure physiologic community assembly, structure, 
and organization in early, young, and adult life?; (d) what tissue 
environmental signals underlie NKT cell subset differentiation?; 
(e) can radiation resistance of NKT cells be used in cancer immu-
notherapy?; and (f) what NKT cell intrinsic and environmental 
signals have retained NKT  cells in certain mammalian species 
but not in others?

As a final note to the devo-eco-evo synthesis, we observed 
that the unique behavior of a group of innate-like T lympho-
cytes and innate lymphoid cells (ILCs) are under the control 
of PLZF (253–255). These include γδ T  cells, NKT  cells, 
MAIT  cells, and certain ILCs. In addition, the development 
(MAIT  cells, and potentially γδ T  cells) and functional dif-
ferentiation (NKT cells, MAIT cells, and ILCs) of these cells 
are determined by gut and potentially other barrier (skin and 
lungs) symbionts. As these immune cells, all of lymphoid 
origin, function at the edge (limbus in Latin) of the innate 
and adaptive immune systems, a proposal to group them into 
the “limbic immune system” is made here. Curiously, γδ T, 
NK, and NKT cells localize to the inter-follicular region of the 
lymph nodes, straddling the cells of the innate and adaptive 
immune systems (256). By virtue of their physiologic func-
tions, other tissue-restricted innate-like lymphocytes, such as 
CD8αα innate-type lymphocytes (257) as well as B1 cells and 
NK cells (258), can be included in the “limbic immune system” 
even though their development and function may not be con-
trolled by PLZF or the microbiota. In other words, the “limbic 
immune system” is anglicized Latin for the “inbetweeners” 
(259) and, hence, synonymous with it.
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Neurofibromin 1 (NF1) is a tumor suppressor gene encoding a Ras GTPase that 
negatively regulates Ras signaling pathways. Mutations in NF1 are linked to neurofi-
bromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. In terms 
of antitumor immunity, CD1d-dependent natural killer T (NKT) cells play an important 
role in the innate antitumor immune response. Generally, Type-I NKT cells protect (and 
Type-II NKT cells impair) host antitumor immunity. We have previously shown that CD1d-
mediated antigen presentation to NKT cells is regulated by cell signaling pathways. To 
study whether a haploinsufficiency in NF1 would affect CD1d-dependent activation of 
NKT cells, we analyzed the NKT-cell population as well as the functional expression of 
CD1d in Nf1+/− mice. Nf1+/− mice were found to have similar levels of NKT cells as wild-
type (WT) littermates. Interestingly, however, reduced CD1d expression was observed in 
Nf1+/− mice compared with their WT littermates. When inoculated with a T-cell lymphoma 
in  vivo, Nf1+/− mice survived longer than their WT littermates. Furthermore, blocking 
CD1d in vivo significantly enhanced antitumor activity in WT, but not in Nf1+/− mice. In 
contrast, a deficiency in Type-I NKT cells increased antitumor activity in Nf1+/− mice, but 
not in WT littermates. Therefore, these data suggest that normal NF1 expression impairs 
CD1d-mediated NKT-cell activation and antitumor activity against a T-cell lymphoma.

Keywords: neurofibromin 1, cD1d, natural killer T cells, T-cell lymphoma, antitumor immunity

inTrODUcTiOn

Neurofibromatosis type 1 is an autosomal-dominant disorder caused by a mutation in a tumor 
suppressor gene encoding the protein neurofibromin 1 (NF1) (1), affecting 1 in 3,500 individuals 
worldwide. NF1 is a p21ras (Ras) guanosine triphosphatase (GTP)-activating protein (GAP). It cata-
lyzes the hydrolysis of Ras-GTP, thus negatively regulating multiple Ras-dependent cellular signaling 
pathways (1). Mutations in NF1 are associated with many diseases, including hematopoietic cancers 
such as myeloid leukemia and diffuse plexiform neurofibromas (2). Extensive studies from human 
tissue analyses and mouse models have discovered that loss of heterogyzosity (LOH) of NF1 in 
Schwann cells and a heterozygous NF1 microenvironment are both important for the formation 
of neurofibromas (3, 4). LOH may also explain the localized formation of tumors in patients with 
neurofibromatosis type 1 (1).
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Ras-dependent signaling pathways have been shown to be 
important for αβ T-cell positive selection (5). Because NF1 
is a negative regulatory GAP and highly expressed in leuko-
cytes (6), the absence of NF1 may affect T-cell development.  
An Nf1−/− mutation is embryonic lethal (1). Therefore, the 
method of Nf1−/− fetal liver reconstitution to immune-deficient 
mice, such as Rag1 KO mice, has been used to study T-cell devel-
opment in the absence of NF1 (7). Although an nf1 deficiency 
in mice increases T-cell numbers in both thymus and spleen, 
it also causes impaired proliferation of T  cells in response to 
in  vitro stimulation (7). Moreover, antigen receptor-induced 
proliferation is also defective in NF1-deficient peripheral 
B cells (8), implicating a positive (but unknown) role for NF1 in 
regulating B and T-cell receptor (TCR)-induced proliferation.  
An earlier study indicated that NF1 promotes thymocyte positive 
selection, but has no effect on negative selection (9). Increasing 
evidence also suggests that NF1 may function in other cellular 
processes besides negatively regulating Ras function (10). For 
example, the Sec14-homology domain of NF1 is involved in 
forming a bipartite lipid-binding module, and possibly binds 
to cellular glycerophospholipid ligands (11). The loss of NF1 in 
Drosophila causes a reduction in body size, which is rescued by 
increasing cAMP protein kinase (PKA) signaling; this suggests 
that NF1 may also regulate the cAMP signaling pathway in a 
GAP-independent manner (12).

Natural killer T (NKT) cells express both natural killer (NK) 
and T-cell markers. Unlike conventional T cells which recognize 
peptide antigens presented by MHC class I and II molecules, 
NKT  cells are activated by lipid antigens presented by the 
MHC class I-like molecule, CD1d. CD1d-deficient mice lack 
NKT  cells and NKT-cell development requires positive selec-
tion in the thymus, similar to conventional T-cell development 
(13). Ras/mitogen-activated protein kinase (MAPK) signaling 
pathways, which are important for αβ T-cell positive selection 
(5), have also been shown to be critical for NKT-cell develop-
ment (14). Furthermore, previous work from our laboratory 
has demonstrated that stimulation of MAPK pathways affects 
CD1d-mediated antigen presentation (15, 16). We have found 
that activation of the p38 pathway inhibits, whereas activation 
of ERK pathway increases, CD1d-mediated antigen presentation 
to NKT cells, likely through regulating the trafficking of CD1d 
molecules in antigen-presenting cells (15). In line with this, we 
reported that anthrax toxin inhibits CD1d-mediated antigen 
presentation by targeting the ERK pathway (16).

Based on TCR usage, NKT  cells can be divided into two 
groups: Type-I (invariant) and Type-II (other CD1d-restricted) 
NKT  cells. Type-I NKT (also called iNKT) cells express an 
invariant TCR α-chain rearrangement (Vα14Jα18 in mice and 
Vα24Jα18 in humans) that is associated with β-chains of limited 
diversity (Vβ8.2, Vβ7, and Vβ2 in mice; Vβ11 in humans). The 
glycolipid α-galactosylceramide (α-GalCer or PBS57), originally 
derived from a marine sponge, has been shown to be a specific 
activator of iNKT cells in a CD1d-dependent manner (17, 18). 
Type-II NKT  cells are less well-defined, due to a paucity of 
ligands identified that are recognized by these NKT cells (19, 20). 
However, by studying CD1d-deficient (lacking both Type-I and 
Type-II NKT cells) and Jα18-deficient mice (lacking only Type-I 

NKT cells), it is believed that Type-II NKT cells are similar to 
T  regulatory cells (Tregs) and are mostly immunosuppressive 
(21). In line with this idea, Type-II NKT cells have been shown 
to impair tumor immunosurveillance in a CD1d-dependent 
manner (22).

In the current study, we asked whether NF1, a negative 
regu lator of Ras/MAPK pathways, impacts CD1d-dependent 
antitumor activity by NKT  cells. Because an Nf1−/− mutation 
is embryonic lethal, a haploinsufficient (Nf1+/−) mouse model 
is commonly used for the study of NF1 function in  vivo.  
We analyzed NKT-cell activity as well as the functional expres-
sion of CD1d in Nf1+/− mice, in order to determine whether a 
haploinsufficiency in NF1 would affect the CD1d/NKT-cell axis 
in the context of NKT-cell-mediated antitumor activity.

MaTerials anD MeThODs

animals
Female C57BL/6 wildtype (WT) mice were obtained from The 
Jackson Laboratory (Bar Harbor, ME, USA). Male Nf1+/− mice 
were kindly provided by Dr. Wade Clapp (Indiana University, 
Indianapolis, IN, USA). CD1d1 KO (CD1d1−/−) mice on the 
C57BL/6 background (23) were a kind gift from Dr. Luc Van 
Kaer (Vanderbilt University, Nashville, TN, USA). Jα18-deficient 
C57BL/6 mice were also obtained from Dr. Van Kaer, with 
permission from Professor M. Taniguchi (Chiba University, 
Chiba, Japan). All mice were bred in specific pathogen-free 
facilities at the Indiana University School of Medicine. Nf1+/− 
mice were backcrossed to CD1d1−/− mice or Jα18−/− to obtain 
Nf1+/−/CD1d1−/− and Nf1+/−/Jα18−/− mice, respectively. All mice 
were age- and sex-matched littermates, both males and females 
were utilized, and used in all experiments between 8 and 16 weeks 
of age. All animal procedures were approved by the Indiana 
University School of Medicine’s Institutional Animal Care and 
Use Committee.

cell lines
The Tap 2-deficient RMA/S T-cell lymphoma cell line was kindly 
provided by Drs. J. Yewdell and J. Bennink (National Institutes 
of Health, Bethesda, MD, USA). These cells were transfected 
with the pcDNA3.1-neo vector alone (RMA/S-V) or the vector 
with a mouse cd1d1 cDNA insert (RMA/S-CD1d) as previously 
described (23). MC57G–CD1d cells were generated by trans-
fecting the methylcholanthrene-induced fibrosarcoma cell line 
MC57G with a pSRα vector encoding mouse cd1d1 cDNA (a kind 
gift from Dr. S. Balk, Harvard University, Cambridge, MA, USA).

antibodies and reagents
Allophycocyanin (APC)-conjugated, PBS57-loaded, and 
unloaded CD1d tetramers were provided by the NIH Tetramer 
Core Facility (Atlanta, GA, USA). APC-, Phycoerythrin (PE)-, 
and fluorescein isothiocyanate (FITC)-conjugated monoclonal 
antibodies (mAb) against murine NK  cell-, B-cell- or T-cell-
specific markers, including NK1.1, MHC class II, CD11c, B220, 
CD1d (1B1), CD4, CD8, and TCRβ, were purchased from 
BD Biosciences (San Diego, CA, USA). PE/Cy7-conjugated 
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anti-CD21 and PerCP/Cy5.5-conjugated anti-CD23 were from 
Biolegend (San Diego, CA, USA). The mouse CD1d-specific mAb 
1H6 generated by our laboratory has been previously described 
(24). The isotype control mAb TW2.3 was kindly provided by 
Drs. J. Yewdell and J. Bennink (NIH, Bethesda, MD, USA). 1H6 
and TW2.3 hybridoma supernatants were purified by immobi-
lized protein A agarose beads for in vivo use.

Flow cytometry
Thymocytes and splenocytes were harvested using standard 
procedures. Liver mononuclear cells (LMNCs) were harvested 
as described previously (25). To obtain bone marrow-derived 
dendritic cells (BMDCs), bone marrow cells obtained from 
mouse femurs and tibias were cultured in the presence of IL-4 
(10  ng/mL) and GM-CSF (10  ng/mL) for 7  days. For flow 
cytometry analyses, single-cell suspensions of all indicated 
cell types were prepared, and 1  ×  106 cells were incubated at 
4°C for 30 min with various mAb as indicated. The cells were 
washed three times with HBSS containing 0.1% bovine serum 
albumin (BSA; Sigma-Aldrich, St. Louis, MO, USA). All cells 
were fixed with 1% paraformaldehyde in PBS and analyzed on a 
FACSCalibur or LSRII (Becton Dickinson, San Jose, CA, USA).

T-cell stimulation assays
Bone marrow-derived dendritic cells from Nf1+/− mice and their 
littermates were incubated with the mouse Type-I NKT hybri-
doma N38-2C12 (26) or Type-II NKT hybridoma N37-1A12 
(27) [both hybridomas kindly provided by Dr. K Hayakawa (Fox 
Chase Cancer Center, Philadelphia, PA, USA)]. 5 ×  104 hybri-
doma cells and 5 ×  105 BMDCs were added to triplicate wells 
in 96-well microtiter plates for 24 h. Secreted IL-2 levels in the 
supernatants were measured by ELISA.

Western Blot analysis
Thymocytes and splenocytes were lysed, separated on a 10% 
SDS-PAGE gel and then transferred to a polyvinylidene dif-
luoride (PVDF) membrane (Merck Millipore, Billerica, MA, 
USA). The blot was then probed with phospho-JNK1/2 or 
ERK1/2-specific antibodies (Cell Signaling Technology, Inc., 
Danvers, MA, USA), and developed using chemiluminescence 
prior to exposure on film. The same membrane was then 
stripped and reprobed with total JNK1/2- or ERK1/2-specific 
antibodies (Cell Signaling Technology Inc.). Images were 
quantified using ImageJ (1.37v; National Institutes of Health, 
Bethesda, MD, USA).

In Vitro stimulation of nKT cells
Liver mononuclear cells (2.5 × 105 cells/well) from Nf1+/− mice or 
WT littermates were cocultured with α-GalCer-pulsed MC57G–
CD1d cells (5  ×  105 cells/well) in triplicate wells of a 96-well 
microtiter plate. After culture at 37°C for 48 h, the supernatants 
were collected for the analysis of NKT-cell production of IFN-γ, 
IL-4, and IL-13 by ELISA.

Tumor inoculation
Nf1+/−, CD1d1−/−, Nf1+/−/CD1d1−/−, Jα18−/−, Nf1+/−/Jα18−/−, and 
their WT littermates were inoculated intraperitoneally (i.p.) 

with 5 × 105 RMA/S-V or RMA/S-CD1d cells in 500-µL IMDM 
media supplemented with 5% FBS. The mice were monitored 
for up to 60 days posttumor inoculation, as previously described 
(23). To block CD1d in  vivo, the mice were injected i.p. with 
50 μg/mouse of purified mouse CD1d-specific antibody (1H6) 
or isotype control mAb in PBS on days 1, 5, 10, and 20 post-
tumor inoculation.

statistics
Graphs were generated and statistics calculated using GraphPad 
Prism 6 (GraphPad Software, La Jolla, CA, USA). The mean 
of triplicates of a representative assay is shown with error bars 
representing the SEM, using Student’s t-test analyses. For the sta-
tistical analysis of survival rate, the log-rank test was performed. 
A p-value < 0.05 was considered significant.

resUlTs

increased JnK and erK activation  
in Nf1+/− Mice
Previous reports have shown increased Ras-GTP levels in 
unstimulated thymocytes from Nf1+/− mice when compared 
with WT mice (7). In our study, we also observed elevated ERK 
phosphorylation in splenocytes and thymocytes when they were 
stimulated with Phorbol 12-myristate 13-acetate (Figure  1A; 
Figures S7A,B in Supplementary Material), suggesting elevated 
activation of the Ras/ERK pathway in Nf1+/− mice. Compared 
with their WT littermates, Nf1+/− mice were also found to have 
elevated JNK activation in the spleen and thymus (Figure  1B; 
Figures S7C,D in Supplementary Material). We did not observe 
any hyperactivation of p38 in the thymus or spleen from Nf1+/− 
mice (data not shown). These data indicate that elevated Ras-GTP 
activity causes hyperactivation of the ERK and JNK pathways in 
Nf1+/− mice.

comparable inKT-cell Population  
in WT and Nf1+/− Mice
Previous studies have suggested that an NF1 deficiency increases 
the number of immature and mature conventional T cells in vivo, 
but reduces cell proliferation in response to TCR and IL-2 stim-
ulation in vitro (7). NF1 promotes thymocyte positive selection, 
a process that is also required for NKT-cell development (9, 28).  
To determine if an NF1 deficiency affects iNKT-cell develop-
ment, we compared the iNKT-cell populations in thymus, 
spleen, and liver from Nf1+/− mice to those from WT littermates. 
We found there were comparable levels of iNKT cells in WT and 
Nf1+/− mice (Figure 2), suggesting that a haploinsufficiency in 
NF1 has a minimal effect on NKT-cell development and their 
numbers in the periphery.

lower cD1d expression on BMDcs  
from Nf1+/− Mice
Although a haploinsufficiency in NF1 did not seem to affect 
iNKT-cell development, we found that BMDCs from Nf1+/− 
mice expressed lower levels of CD1d (but similar amounts of 

131

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 2 | Comparable numbers of iNKT cells in wildtype (WT) and Nf1+/− mice. (a) Thymocytes, splenocytes, and liver mononuclear cells from Nf1+/− mice and 
WT littermates were stained with α-GalCer-loaded CD1d tetramers and a TCR-β-specific antibody for the identification of iNKT cells, identified in the upper right 
quadrant. (B) Percentages (upper) and total numbers (lower) of iNKT cells are summarized for the thymus, spleen and liver. Pooled data from three independent 
experiments are shown. Each dot represents an individual mouse. The data are plotted as mean ± SEM.

FigUre 1 | Increased activation of ERK and JNK in the spleen and thymus of Nf1+/− mice. Splenocytes and thymocytes were treated with Phorbol 12-myristate 
13-acetate (100 ng/mL) for 30 min. The cells were then lysed and resolved on a 10% SDS-PAGE gel for the detection of phosphorylated and total ERK1/2  
(a) and JNK1/2 (B) expression by Western blot analysis. The relative levels of phosphorylated ERK1/2 and JNK1/2 compared with the total respective proteins  
were quantified by densitometry. Combined results from multiple experiments are shown in the bar graphs. The data are plotted as the mean ± SD. *p < 0.05.
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MHC class I and II) on the cell surface compared with WT 
BMDCs (Figure  3A; Figure S1 in Supplementary Material). 
Furthermore, similar to the reduced CD1d expression observed 
in Nf1+/− BMDCs, there was also a significant decrease in the 
splenic B220+CD21hiCD23intCD1dhi population in Nf1+/− mice 
(Figures  3B,C). These cells express a high level of CD21 and 
low to intermediate levels of CD23, suggesting they are marginal 
zone B (MZB) cells. We also analyzed DCs (MHC II+ CD11c+) 

and macrophages (MHC II+ F4/80+) for CD1d expression, but 
there were no differences between WT and Nf1+/− mice (data 
not shown). Although BMDCs from Nf1+/− mice expressed 
less CD1d on their surface, they were similar to WT BMDCs 
in their ability to activate both Type-I and Type-II NKT-cell 
hybridomas (Figure 3D). Interestingly, thymocytes from both 
WT and Nf1+/− mice express similar levels of CD1d and have 
a comparable ability in stimulating NKT  cells (Figure S8 in 
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FigUre 3 | Lower CD1d expression on cells from Nf1+/− mice. (a) Bone marrow-derived dendritic cells (BMDCs) from Nf1+/− and wildtype (WT) mice were fixed and 
stained with the anti-CD1d mAb, 1B1. CD1d-specific staining from a representative Nf1+/− mouse (dotted line) was overlaid with that of a WT littermate (solid line). 
(B) Splenocytes from Nf1+/− mice or WT littermates were stained with MHC II-, B220-, CD21-, CD23-, and CD1d-specific antibodies. MHC II+ cells were gated and 
further analyzed for B220, CD21, CD23, and CD1d expression by flow cytometry. The circled population corresponds to B220+CD21hiCD23intCD1dhi splenocytes. 
Combined results from multiple experiments are shown in (c). Each dot represents an individual mouse. ***p < 0.001. (D) BMDCs from Nf1+/− mice or WT 
littermates were cocultured with the NKT-cell hybridomas, N38-2C12 and N37-1A12. The activation of NKT cells by BMDCs was determined by ELISA, measuring 
IL-2 secretion in the supernatants. The relative levels of IL-2 production in Nf1+/− BMDCs compared with WT (WT = 1) are indicated. Combined results from multiple 
experiments are shown. The data are plotted as the mean ± SEM. Each dot represents an individual mouse.
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Supplementary Material); this suggests that a haploinsufficiency 
in NF1 does not alter the positive selection of NKT cells in the 
thymus. Overall, we conclude that a haploinsufficiency in NF1 
reduces CD1d surface expression, but the decrease in CD1d 
expression in Nf1+/− cells is likely still above the normal thresh-
old level necessary to activate NKT cells. This may help explain 
why Nf1+/− mice have a similar level of iNKT cells in vivo as their 
WT littermates.

increased activation of inKT  
cells from Nf1+/− lMncs
Because there was decreased CD1d expression on APCs from 
Nf1+/− mice, we next wanted to find out whether NKT cells from 
Nf1+/− mice were functionally normal in  vitro and in  vivo. To 
test iNKT-cell function in vitro, LMNCs were cocultured with 
CD1d-expressing MC57G cells (derived from histocompatible 
H-2b mice) in the presence of the iNKT-cell ligand, α-GalCer. 

133

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 4 | Increased activation of liver iNKT cells from Nf1+/− mice. Liver 
mononuclear cells (LMNCs) from individual Nf1+/− mice or wildtype (WT) 
littermates were cocultured with MC57G–mCD1d cells in the presence of 
α-GalCer for 48 h. Activation of iNKT cells was measured by IFN-γ (a) and 
IL-4 (B) production into the supernatants. ***p < 0.001. (c) MC57G–mCD1d 
cells were cocultured with LMNCs from WT mice in the presence or absence 
of the murine CD1d-specific antibody, 1H6, for 48 h. Production of IFN-γ into 
the supernatants was measured by ELISA. The data are shown as the 
mean ± SEM. The results are representative of three independent 
experiments.
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LMNCs from Nf1+/− mice were more responsive to CD1d-
mediated antigen presentation than those from their WT litter-
mates (Figures 4A,B). The addition of an anti-CD1d antibody 
blocked the activation of iNKT cells (Figure 4C), demonstrating 
that the NKT-cell activation was CD1d-specific. In contrast to 
antigen-specific activation, when LMNCs from Nf1+/− mice 
were stimulated with anti-CD3 and anti-CD28 antibodies, they 
secreted a similar level of cytokines as their WT littermates 
(Figure S2 in Supplementary Material). Thus, these data dem-
onstrate that iNKT  cells (but not conventional T  cells) from 
Nf1+/− mice are more activated than those from WT littermates 
upon exogenous lipid Ag stimulation in vitro.

To determine whether the NF1 haploinsufficiency would 
affect NKT-cell function in vivo, we injected the iNKT-cell ligand 
α-GalCer to Nf1+/− mice and their WT littermates. At different 
time points, sera were harvested and circulating IL-4 and IFN-
γ were measured. Nf1+/− mice produced similar levels of these 
cytokines as their WT littermates (Figure S3 in Supplementary 
Material). Therefore, these results suggest that iNKT  cells are 
functionally normal in Nf1+/− mice.

Nf1+/− Mice Bearing rMa/s Tumors 
surviving longer Than WT Mice
Because we observed decreased CD1d expression but increased 
iNKT-cell activity in  vitro in Nf1+/− mice, it was important to 
determine what the impact of a haploinsufficiency of NF1 would 
be on CD1d-dependent antitumor activity. Previous reports 
have suggested that Nf1+/− mice are predisposed to developing 
multiple cancers after 1 year of age, and thus have a shorter life 
span compared with WT mice (1). To address this question, 
we inoculated Nf1+/− mice and their WT littermates with the 
RMA/S T cell lymphoma transfected with an empty vector or 

the murine cd1d1 cDNA (23). They were then observed for 
tumor incidence and survival rate. Surprisingly, Nf1+/− mice had 
a better survival rate and longer median survival time (MST) 
than their WT littermates when they were challenged with either 
CD1d-positive or CD1d-negative RMA/S tumor cells although, 
in this experiment, the difference between Nf1+/− and WT mice 
was not statistically significant (Figure S4 in Supplementary 
Material). Thus, in terms of survival, the antitumor activity in 
Nf1+/− mice exceeds that of their WT littermates.

Blocking cD1d In Vivo enhancing 
antitumor activity in WT But not  
Nf1+/− Mice
Our previous studies have shown enhanced survival in CD1d-
deficient mice when they were inoculated with RMA/S T-cell 
lymphoma cells (23). It was possible that the reduced CD1d 
expression in Nf1+/− mice altered host antitumor activity. To test 
this hypothesis, Nf1+/− and WT mice were treated with an anti-
CD1d antibody or isotype control at various times before and 
after they were inoculated with RMA/S-CD1d cells. Blocking 
CD1d expression by a CD1d-specific antibody significantly 
enhanced antitumor activity in WT mice. The CD1d-specific 
antibody treatment in Nf1+/− mice also increased the survival 
rate of tumor-bearing mice. Although reproducible, the dif-
ference was not statistically significant in this experiment 
(Figures 5A–C). In a parallel experiment, CD1d was also geneti-
cally deleted from Nf1+/− mice by back-crossing Nf1+/− mice to 
CD1d1−/− mice. Thus, Nf1+/−, CD1d1−/−, Nf1+/−/CD1d1−/−, and 
WT mice were inoculated with RMA/S-CD1d cells, WT mice 
had the lowest survival rate among these four different strains of 
mice (Figures 5D,E). As was observed when CD1d was blocked 
by antibody in vivo, deleting CD1d genetically from WT (but 
not Nf1+/−) mice significantly enhanced their survival rate 
(Figure 5F). Therefore, reduced CD1d expression in Nf1+/− mice 
very likely contributes to host antitumor activity in this model 
system.

nF1-haploinsufficient Type-i (But not  
Type ii) nKT cells suppressing antitumor 
immunity In Vivo
CD1d-deficient mice lack both Type-I and Type-II NKT cells, 
whereas Jα18−/− mice only have Type-II NKT  cells (29). To 
determine the impact of NF1 on the antitumor activity of Type-I 
and Type-II NKT  cells, Nf1+/− mice were crossed with Jα18−/− 
mice to generate Nf1+/−/Jα18−/− mice. These mice, together 
with their WT, Nf1+/− and Jα18−/− littermates were inoculated 
with RMA/S-CD1d cells. While WT and Jα18−/− mice died at 
a similar rate, as we observed in multiple experiments, Nf1+/− 
mice survived significantly longer than their WT littermates 
(Figures  6A,C,D). Interestingly, Nf1+/−/Jα18−/− mice had the 
highest survival rate among the four experimental groups 
(Figures 6A,C). Thus, the deletion of Type-I NKT cells in Nf1+/− 
mice significantly enhanced survival (Figure  6D), which sug-
gests NF1-haploinsufficent Type-I NKT cells may actually impair 
antitumor activity. However, as Nf1+/−/Jα18−/− mice survived 
much longer than their Jα18−/− littermates, this would indicate 
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FigUre 5 | Blocking CD1d in vivo enhancing antitumor activity in wildtype (WT) (but not Nf1+/−) mice. (a) Nf1+/− mice (black symbols) and their WT littermates (white 
symbols) were treated i.p. with 50 µg of anti-CD1d antibody 1H6 (triangles) or isotype control (circles) on day 1, and days 5, 10, and 20 posttumor inoculation. The 
mice were inoculated i.p. with 5 × 105 RMA/S-CD1d cells on day 0 and survival was monitored for up to 60 days posttumor inoculation. Pooled data from three 
independent experiments are shown. N = 14–15 per group. The median survival time (MST) and percent survival on the final day were determined and summarized 
in (B). Statistical analyses of the survival curves between the different groups are shown in (c). The p-values were based on a log-rank test comparing the survival 
curves of the indicated two groups of mice. S, significant, p < 0.05; NS, not significant, p > 0.05. (D) Nf1+/− (black circles), Nf1+/−/CD1d1−/− (black triangles) 
CD1d1−/− (white triangles), and their WT littermates (white circles) were inoculated with 5 × 105 RMA/S-CD1d cells on day 0 and their survival was monitored for up 
to 60 days posttumor inoculation. Pooled data from three independent experiments are shown. N = 7–13 per group. The MST and percent survival on the final day 
were determined and summarized in (e). Statistical analyses of the survival curves between the different groups are shown in (F). The p-values were based on a 
Log-rank test comparing the survival curve of the indicated two groups of mice. S, significant, p < 0.05; NS, not significant, p > 0.05.
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that a haploinsufficiency of NF1 also results in a reduction of the 
immunosuppressive activity of Type-II NKT cells. In fact, Nf1+

/−/Jα18−/− and Nf1+/−/CD1d1−/− mice had similar survival rates 
posttumor inoculation (Figures 6B–D); this suggests that NF1-
haploinsufficent Type-II NKT cells in Nf1+/−/Jα18−/− mice are less 
able to suppress antitumor immunity as compared with WT.

DiscUssiOn

Neurofibromatosis type 1 is a disease caused by mutations in 
the NF1 gene, a negative regulator of the Ras signaling pathway. 
Elevated Ras/ERK activation has been reported in Nf1+/− mice 
and reconstituted NF1−/− mice, as well as cells from NF1 patients 
(7, 30). Hyperactivation of the Ras/ERK pathway was also 
confirmed in the current study by the detection of increased 
phospho-ERK in the thymus and spleen of Nf1+/− mice. Although 
hyperactivation of the Ras/ERK pathway has been reported to 
be associated with a defect in NKT-cell development (31), we 
did not observe any defect in NKT-cell development in Nf1+/− 
mice. Instead, our work has demonstrated that NKT cells from 
Nf1+/− mice actually have enhanced CD1d-dependent activation, 
compared with those from their WT littermates. We observed 
similar levels of circulating cytokines in Nf1+/− mice after in vivo 

treatment with α-GalCer, even though APCs from Nf1+/− mice 
expressed lower levels of CD1d compared with their WT lit-
termates. This may be explained by the increased responsiveness 
of NKT cells in vitro.

On the other hand, the reduced CD1d expression found in 
BMDCs from Nf1+/− mice suggests that NF1 positively regulates 
CD1d expression. It is worthwhile to point out that this effect 
might be due to in vitro cultures, as we did not observe a dif-
ference in CD1d expression in splenic DCs. It is well-known 
that NF1 is a negative regulator of the Ras/MAPK pathway (1). 
We not only observed hyperactivation of the Ras/ERK pathway 
but also detected elevated Ras/JNK pathway activation in the 
thymus and spleen of Nf1+/− mice. Daginakatte et al. (32) also 
reported increased JNK activation in Nf1+/− microglia cells, but 
not Nf1−/− astrocytes, which likely contributed to the increased 
proliferation of Nf1+/− microglia cells in that study. Consistent 
with our findings, they also did not observe increased p38 activa-
tion in these tissues (32). Our results are particularly interesting 
because we found that blocking the JNK pathway increases 
(and activation of JNK decreases) CD1d-mediated antigen 
presentation (Liu et al., manuscript in preparation). In contrast, 
we previously reported that elevated ERK activation enhances 
CD1d-mediated antigen presentation during a viral infection by 

135

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 6 | NF1-haploinsufficient Type-I (but not Type-II) NKT cells suppressing antitumor immunity in vivo. (a) Nf1+/− (black circles), Nf1+/−/Jα18−/− (black triangles), 
Jα18−/− (white triangles), and WT littermates (white circles) were inoculated with 5 × 105 RMA/S-CD1d cells on day 0 and survival was monitored for up to 60 days 
posttumor inoculation. Pooled data from two independent experiments are shown. N = 15–21 per group. (B) Nf1+/−/Jα18−/− and Nf1+/−/CD1d1−/− mice were 
inoculated with RMA/S-CD1d cells and their survival was monitored as shown in (a). Pooled data from two independent experiments are shown. N =18 per group. 
The MST and percent survival on the final day were determined and summarized in (c). Statistical analyses of the survival curves between the different groups are 
shown in (D). The p-values were based on a Log-rank test comparing the survival curve of the indicated two groups of mice. S, significant, p < 0.05; NS, not 
significant, p > 0.05.
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regulating intracellular CD1d trafficking (15). Thus, it is very 
likely that the reduction of CD1d expression in Nf1+/− APCs is 
an outcome of the combined regulation of multiple signaling 
pathways as a consequence of the NF1 haploinsufficiency. It is 
worthwhile to mention that we did not observe any difference in 
CD1d recycling (Figure S5 in Supplementary Material) or CD1d 
distribution by confocal microscopy between BMDCs from 
Nf1+/− or WT littermates (data not shown). This suggests that 
the reduced CD1d expression on the cell surface of Nf1+/− APCs 
is not due to modified CD1d intracellular trafficking caused by 
an NF1 haploinsufficiency.

Marginal zone B cells, which express a high level of CD1d, 
are reduced in Nf1+/− mice. Moreover, it is known that Notch2 
is indispensable to MZB development (33). A recent report 
suggests that Notch is the effector of NF1 in neurological tissue 
(34). Thus, a haploinsufficiency of NF1 may affect Notch2 and 
thereby alter MZB development. However, NF1 may have other 
unknown functions, not just as a Ras-GAP. A 2,839-amino-
acid protein, NF1 contains two major functional domains: a 
Ras-GAP-related domain (Ras-GRD) and a Sec14-interactive 
domain. The Sec14-interactive domain is involved in forming 
a bipartite lipid-binding module and possibly binds to a cel-
lular glycerophospholipid ligand (11). Further investigations are 
needed to determine how NF1 regulates CD1d expression.

We observed increased antitumor activity in Nf1+/− mice 
compared with their WT littermates. Although the differences 
were not always statistically significant, Nf1+/− mice consistently 
survived longer than their WT littermates. Treatment with 
a CD1d-specific mAb has shown to protect mice from tumor 

metastasis by several groups (22, 35, 36). It has been suggested 
that the CD1d mAb may block the activation of “immunosup-
pressive” Type-II NKT  cells (22). Crosslinking CD1d by a 
specific mAb can also activate antigen-presenting cells, such 
as DCs, to produce the proinflammatory cytokines IL-12 and 
IFN-γ (35, 36). Reduced CD1d expression in Nf1+/− mice may 
be somewhat like CD1d-deficient mice (or CD1d mAb-treated 
mice), in that there is a dysfunction in (or reduced activity of) 
“immunosuppressive” Type-I NKT cells; this could explain the 
increased antitumor activity observed in Nf1+/− mice. It is also 
consistent with the findings that blocking CD1d in vivo enhanced 
antitumor activity in WT but Nf1+/− mice. In the current study, 
WT and Jα18−/− mice died at similar rates and CD1d1−/− mice 
survived longer than WT mice. The results suggest that Type-I 
NKT  cells have little impact on antitumor activity whereas 
Type-I NKT cells are immunosuppressive in this model system 
(Figure  7). Nf1+/−/Jα18−/− mice survived much longer than 
Nf1+/− littermates, suggesting that NF1-haploinsufficient Type-I 
NKT  cells, although demonstrating increased activity in  vitro, 
suppressed antitumor activity in vivo.

Type-I NKT cells can directly destroy tumor cells, especially 
those expressing CD1d on their surface, by performing cytolysis 
via perforin, granzyme B, Fas ligand (FasL), and TRAIL (37). 
Type-I NKT cells can also suppress the function of myeloid-derived 
suppressor cells (MDSC) and suppressive IL-10-producing neu-
trophils, to enhance antitumor immunity (20). Type-I NKT cells 
are capable of producing both Th1 and Th2 cytokines (38). The 
avidity and stability of antigen/TCR complex determines the type 
of cytokine production. Strong antigen/TCR interaction causes 
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FigUre 7 | A working model illustrating that neurofibromin 1 (NF1) plays 
distinct roles in regulating the antitumor activity of Type-I and Type-II 
NKT cells in vivo. NF1 reduces the immunosuppressive activity of Type-I 
NKT cells, as NF1-haploinsufficient Type-I NKT cells suppress antitumor 
immunity. In contrast, NF1 expression upregulates CD1d levels and enhances 
the immunosuppressive activity of Type-II NKT cells. In line with this, a 
haploinsufficiency in NF1 causes a reduction in CD1d expression and 
decreases the immunosuppressive activity of Type-II NKT cells, augmenting 
antitumor immunity.
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NKT  cells to produce Th1 cytokines, whereas weak antigen/
TCR interaction results in Th2 cytokines from NKT cells (39). 
Th1-biased and IFNγ-producing Type-I NKT cells greatly boost 
antitumor immunity (20). On the other hand, Type-I NKT cells 
have been reported to be immunosuppressive by supporting Tregs 
and/or suppressing tumor-specific CD8+ T cells (40, 41). In the 
current study, the reduced CD1d expression observed in Nf1+/− 
mice may further cause Type-I NKT cells to become Th2-biased 
and thereby suppress the antitumor activity of CTL and NK cells. 
In conclusion, NF1-haploinsufficient Type-I NKT cells are more 
immunosuppressive compared with WT Type-I NKT  cells, 
through a currently unknown mechanism.

In contrast, Nf1+/−/Jα18−/− mice survived much longer than 
their Jα18−/− littermates, indicating that Type-II NKT  cells 
in Nf1+/− mice are not as immunosuppressive as WT Type-II 
NKT  cells. Nf1+/−/Jα18−/− mice survived at a similar rate as 
Nf1+/−/CD1−/− mice, further confirming that Type-II NKT cells in 
Nf1+/− mice are not immunosuppressive. Our work suggests that 
NF1 is required for the immunosuppressive activity of Type-II 
NKT  cells. The reduced CD1d expression in Nf1+/− mice may 
functionally alter Type-II NKT cells, moving from suppressing 
to enhancing antitumor activity.

A recent publication has suggested that Tregs are also impor-
tant in the balance of antitumor activity involving Type-I/Type-II 
NKT cells (29). We did not observe any changes in Tregs in our 
studies (data not shown). Further studies are needed to investi-
gate tumor immunosurveillance by Type-I/Type-II NKT cells as 
well as Tregs in Nf1+/− mice.

One question raised from our tumor challenge study is the 
identity of the effector cells that are responsible for removing the 
tumor cells in vivo. Because the RMA/S cell line is Tap-2 deficient, 
they express a very low level of MHC I molecules on their surface 
(42). Thus, the effector cells for eliminating RMA/S cells are 
unlikely to be CD8+ cytotoxic T cells. NKT cells have also been 
shown to exhibit cytotoxicity activity against CD1d+ cells (23). 
However, because Nf1+/− mice are more resistant to both CD1d+ 
and CD1d− RMA/S cells, it is unlikely that the sole effector cells 

are NKT cells. Another population of cytotoxic cells that could 
play a role here are NK cells. RMA/S cells are highly susceptible to 
NK cell-mediated lysis (43). We speculate that Type-I and Type-II 
NKT cells may impact the function of NK cells in the RMA/S 
tumor model (Figure 7). On the other hand, the cytolytic activity 
of NK cells is also regulated by many signaling pathways (44). It 
has been reported that NK cells from vav-1 (a GEF)-deficient mice 
have reduced cytotoxicity (45), suggesting that NK cell activity 
may be impacted by changes in Ras/MAPK pathways. However, 
in the current study, we did not observe increased cytotoxicity by 
NK cells in Nf1+/− mice (Figure S6 in Supplementary Material). 
Of further interest, a recent report suggests that the inoculation 
of mice with RMA/S cells causes NK cell anergy and escape from 
antitumor immunity (46). Importantly, NK  cell anergy only 
occurs in the tumor proximal environment and is likely due to 
impaired ERK activation downstream of activating receptors on 
NK cells (46). It is possible that NK cells in Nf1+/− mice may be 
compensated for by reduced ERK phosphorylation and rescue 
of MAPK/ERK signaling in the tumor microenvironment; thus, 
Nf1+/− mice would exhibit an increase in antitumor immunity 
and have enhanced survival. Further studies will be focused on 
how NF1 regulates the antitumor activity of NKT and NK cells 
in Nf1+/− mice.

Neurofibromas are derived from a broad range of cells, includ-
ing hyperproliferative Schwann cells, fibroblasts, mast cells and 
perineural cells (47). Loss of heterogyzosity of NF1 in Schwann 
cells and a heterozygous NF1 microenvironment are both impor-
tant for the formation of neurofibromas (3). Schwann cells have 
been shown to express CD1d and can activate NKT cells to secrete 
anti-inflammatory cytokines (48). We speculate that the absence of 
NF1 in Schwann cells from NF1 patients may cause a deficiency in 
CD1d expression. It would be interesting to study the tumor immu-
nosurveillance activity of Type-I and Type-II NKT cells within the 
neurofibroma microenvironment, where Schwann cells are NF1-
deficient. Further studies are necessary to understand the role of 
the CD1d/NKT-cell axis in NF1-dependent disease progression.

In summary, we have found reduced CD1d expression but 
increased antitumor activity in a haploinsufficiency model of 
NF1. This is likely due to reduced immunosuppressive activity 
by Type-II NKT  cells, rather than by an increase in antitumor 
activity by Type-I NKT cells. The results support the hypothesis 
that NF1 regulates CD1d-mediated NKT-cell activation and con-
sequent antitumor activity (Figure 7). Future work will focus on 
investigating how NF1 may regulate the antitumor activity of 
NKT cells. Our study may therefore provide mechanistic support 
to target NF1 to improve CD1d/NKT-cell-based immunetherapy.
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Natural Killer T Cells in Tumor 
immunity—Suppression of Tumor 
immunity in the intestine
Ying Wang and Susanna L. Cardell*
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CD1d-restricted invariant natural killer T (iNKT) cells are known as early responding, potent 
regulatory cells of immune responses. Besides their established role in the regulation of 
inflammation and autoimmune disease, numerous studies have shown that iNKT cells 
have important functions in tumor immunosurveillance and control of tumor metastasis. 
Tumor-infiltrating T helper 1 (TH1)/cytotoxic T lymphocytes have been associated with a 
positive prognosis. However, inflammation has a dual role in cancer and chronic inflam-
mation is believed to be a driving force in many cancers as exemplified in patients with 
inflammatory bowel disease that have an increased risk of colorectal cancer. Indeed, 
NKT cells promote intestinal inflammation in human ulcerative colitis, and the associated 
animal model, indicating that NKT cells may favor tumor development in intestinal tissue. 
In contrast to other cancers, recent data from animal models suggest that iNKT cells 
promote tumor formation in the intestine by supporting an immunoregulatory tumor 
microenvironment and suppressing TH1 antitumor immunity. Here, we review the role 
of iNKT cells in suppression of tumor immunity in light of iNKT-cell regulation of intestinal 
inflammation. We also discuss suppression of immunity in other situations as well as fac-
tors that may influence whether iNKT cells have a protective or an immunosuppressive 
and tumor-promoting role in tumor immunity.

Keywords: natural killer T cells, CD1d, tumor immunity, immunosuppression, intestinal inflammation, intestinal 
polyposis

iNTRODUCTiON

CD1d-restricted natural killer T (NKT) lymphocytes belong to a diverse group of non-conventional 
T cells that recognize non-peptide antigens. These T cells have some general features that distinguish 
them from conventional T cells that are activated by foreign peptides presented on MHC class-I 
and -II molecules (1, 2). Non-conventional T cells often have a memory/pre-activated phenotype 
and respond more rapidly to stimulation and can be activated in the absence of T-cell receptor 
(TCR) signals. They are generally not recirculating but preferentially localize to particular tissues 
and have a reduced TCR diversity compared with conventional T cells. These characteristics make 

Abbreviations: AOM, azoxymethane; DSS, dextran sodium sulfate; IBD, inflammatory bowel disease; NKT, natural killer T; 
dNKT, NKT cell with diverse TCR; iNKT, NKT cell with invariant TCR; TCR, T-cell receptor; TH, T helper; TLR, toll-like 
receptor; Treg, regulatory T.
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FigURe 1 | The Yin and Yang of invariant natural killer T (iNKT) cells in tumor immunity. iNKT cells can either suppress T helper 1 (TH1) tumor immunity and promote 
an immunosurveillance environment as found in intestinal polyposis (Yin, left) (PLZF-neg; PLZF-negative), or enhance TH1 immunity to tumors as found in many 
tumor models and inferred from studies of human cancer (Yang, right).
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non-conventional T cells rapid responders to infection, inflam-
matory signals, and tissue damage and enable them to regulate 
the quality and quantity of immune responses. Recent progress in 
our understanding of the activation and function of these cells has 
led to an increased appreciation of their role in health and disease. 
The evolutionary conservation of CD1d and NKT cells between 
mouse and humans, and the essentially non-polymorphic nature 
of CD1d, has made the CD1d-NKT-cell system attractive to 
explore for the development of targeted immunomodulation.

Natural killer T cells recognize lipid and glycolipid antigens 
of self or microbial origin presented on the MHC class-I-like 
CD1d molecule. The term “NKT  cells” is now generally used 
synonymously with CD1d-restricted T  cells that carry TCRαβ 
(3). This definition will be used here. NKT cells can be divided 
into two subsets based on the TCR expressed. The first is type 
I or invariant NKT (iNKT) cells. These display an invariant 
TCR α-chain (Vα14-Jα18 in the mouse, Vα24-Jα18 in humans) 
paired with TCR β-chains using a limited set of Vβ segments but 
diverse CDR3 (4–6). In contrast, type II or diverse NKT (dNKT) 
cells have diverse TCR (7–9). The relative roles of these NKT-
cell subsets have been explored in mice lacking all NKT  cells 
(CD1d−/− mice) and mice lacking only iNKT cells (Jα18−/− mice). 
Studies of iNKT  cells have also been greatly facilitated by the 
use of CD1d multimers loaded with the iNKT-cell ligand 
α-galactosylceramide (αGalCer) (10) which detects essentially 
all iNKT  cells with high specificity. In contrast, while the role 
of dNKT cells can be studied in TCR transgenic mice (11) and 
deduced from comparisons of CD1d−/− and Jα18−/− mice, there 
are no specific reagents that detect all dNKT cells. Thus, studies of 
dNKT cells are more challenging. From studies of animal models 
and humans, both subsets of NKT cells have been suggested to 
play a role in diverse immune settings including autoimmunity, 

immunity to infections, and tumor immunity. Sometimes the 
two subsets have a similar function, while in other immune 
responses they counteract each other (12, 13). Besides the 
division of NKT cells based on their TCR, different functional 
programs have been identified in iNKT cells (14). For example, 
the iNKT1, iNKT2, and iNKT17 subsets express distinct sets of 
transcription factors. This makes them poised for the production 
of certain cytokines analogous to the T helper (TH) 1, TH2, and 
TH17 conventional T-cell subsets and corresponding subsets of 
innate lymphoid cells. More recently, iNKT cells with immuno-
suppressive function have been described that do not fit into this 
classification, as discussed below (15–17).

The majority or data from animal models and inferred from 
studies of human cancers show that iNKT  cells enhance TH1 
tumor immunity and combat tumors. However, in some situa-
tions, iNKT cells have surprisingly have demonstrated the oppo-
site effect and promoted tumor development (Figure 1) (17–19). 
A recent example of iNKT-cell promotion of tumors is from a 
spontaneous mouse model for human colon cancer (17). We 
recently demonstrated that deletion of iNKT cells in this model 
reduces spontaneous intestinal polyp formation by 75%. Here, 
we will discuss our findings in light of the role of iNKT cells in 
intestinal immunity and compare tumor models that demonstrate 
tumor suppressive and tumor-promoting effects of iNKT cells.

NKT CeLLS eNHANCiNg TUMOR 
iMMUNiTY iN MANY MODeLS

The potent role of iNKT cells in tumor immunosurveillance and 
suppression of tumor metastasis was demonstrated many years 
ago. The enhancement of tumor immunity by iNKT cells has been 
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described in several publications and discussed in many reviews 
[see for example Ref. (20)], and has led to intense studies aimed at 
targeting iNKT cells to combat cancer. The strong agonist iNKT-
cell ligand αGalCer very efficiently activates iNKT cells leading to 
reduction or eradication of tumors in several animal models (13). 
Subsequent studies have addressed iNKT-cell function in tumor 
immunity after treatment with αGalCer and structural vari-
ants (21). iNKT cells can directly kill cancer cells, but the most 
important role of iNKT cells may be to activate other immune 
cells involved in tumor immunity. This includes activation of 
NK cells, maturation, and activation of dendritic cells, promo-
tion of cytotoxic T cells and TH1 cells, and generally relies on 
the production of IFN-γ and TH1-related cytokines (Figure 1). 
iNKT  cells can also counteract immunosuppressive cells. In 
patients, there is a reduced number of circulating iNKT cells in 
some cancers, and this reduction has been associated with poor 
survival in head and neck cancer and acute myeloid leukemia. 
These findings have led to clinical trials with iNKT-cell-directed 
immunotherapy in human cancer (22). In addition, iNKT cells 
perform natural tumor immunosurveillance in some animal 
models, suppressing the appearance of tumors and leukemia even 
in the absence of treatments that activate iNKT cells (23–26). In 
contrast to the usual protective function of iNKT cells, a natural 
immunosuppressive effect has been described for dNKT cells that 
promote tumor growth (27, 28).

iNKT CeLLS SUPPReSSiNg TUMOR 
iMMUNiTY iN MURiNe iNTeSTiNAL 
POLYPOSiS

The influence of NKT cells on tumor immunity or tumor growth 
and metastasis has frequently been investigated in tumor cell 
transplantation models such as the B16 melanoma model. These 
models have some advantages, including a coordinated initiation 
of growth, the availability of well-characterized tumor cell lines 
for transplantation as well as the possibility to genetically alter the 
tumor cells and design specific tools to study the tumor immune 
response. On the other hand, induction of tumors by injection of 
cell lines has the disadvantages of lacking the early steps of natural 
cancer initiation and the natural heterogeneity of tumors. Tumor 
growth is also usually at a site different from the origin of the 
tumor. These parameters may influence the immune response to 
the tumor, and the regulation of tumor immunity.

It is well known that cancer is promoted by inflammation. For 
example, the chronic inflammation in patients with inflammatory 
bowel disease (IBD) leads to increased risk for colorectal cancer. 
It has been described that iNKT cells promote inflammation in 
a mouse model for IBD (29), suggesting that iNKT cells might 
promote tumor formation in the intestine. To investigate this, we 
have studied iNKT-cell-mediated regulation of tumor immunity 
in the orthotopic spontaneous model for early stages of intestinal 
cancer, the Apcmin/+ mouse (30). Apcmin/+ mice are heterozygous 
for a truncating mutation in the adenomatous polyposis coli 
(Apc) tumor suppressor gene, and spontaneously develop polyps 
in the small and large intestines (31). The APC protein is part 
of an inhibitory complex associated with the canonical Wnt 

signaling pathway that ubiquitously controls cell differentiation 
and proliferation. Mutation of the APC gene is an early event in 
80% of sporadic colorectal cancers in humans and is the mutated 
gene inherited in familial adenomatous polyposis. In the Apcmin/+ 
mouse, polyps develop following additional genetic events such 
as loss of heterozygosity of the Apc gene (31).

Using mice deficient in either all NKT  cells or specifically 
lacking iNKT cells, we found a dramatic reduction of intestinal 
polyps, demonstrating that iNKT  cells favor polyp growth in 
this tissue (17). Detailed investigation of immune parameters 
revealed that iNKT  cells suppressed the expression of genes 
associated with TH1 immunity, including IFN-γ, inducible 
nitric oxide synthase (iNOS), IL-12p40, T-bet, and granzyme 
B. A TH1-type immune response has been shown to prevent 
tumors in the Apcmin/+ mouse model as well as in human colo-
rectal cancer (32–34). In contrast, the presence of iNKT  cells 
increased the proportion and activation of FoxP3-expressing 
regulatory T (Treg) cells specifically in polyps (17). The infil-
tration of high proportions of Treg cells in tumors is generally 
associated with suppressed tumor immunity and poor prognosis 
in cancer patients (35). Although Treg cells have a complex role 
in colon carcinogenesis, likely reflecting different functions of 
Treg cells at different stages of disease (36), deletion of Treg 
cells in the Apcmin/+ mouse resulted in enhanced accumulation of 
conventional CXCR3+ T lymphocytes in polyps (37). Moreover, 
iNKT cells augmented the proportion of M2-like macrophages, 
a cell type that is associated with tumor promotion. They also 
elevated the numbers of myeloid-derived suppressor cells, 
especially those with a polymorphonuclear phenotype (17). 
Taken together, we concluded that iNKT  cells support an 
immunosuppressive microenvironment, most pronounced in 
the polyps, and directly and/or through the promotion of Treg 
cells, inhibited a TH1 antitumor immune response (Figure 1).

It should be noted that the immune microenvironment 
changes in tumors of colon cancer as the disease progresses. The 
role of Treg cells in human colon cancer has been controversial, 
and different studies have associated high densities of infiltrating 
Treg cells with either a better or worse outcome. A possible expla-
nation for this was recently provided, as it was demonstrated that 
at later stages of colon cancer, Treg cells become positive for the 
transcription factor RORγt and acquire the capacity to produce 
the tumor-promoting cytokine IL-17 (36). RORγt-expressing 
Treg cells retained the capacity to suppress T  lymphocytes, but 
were no longer anti-inflammatory. Similar Treg cells were found 
in the Apcmin/+ mouse, and ablation of RORγt in Treg cells in 
this model resulted in improved suppression of inflammation 
and attenuated polyposis. A study of human colorectal cancer 
demonstrated an increased infiltration of cells positive for Vα24, 
the TCR α-segment used by human iNKT cells, in carcinomas 
compared with unaffected tissue (38). A higher density of Vα24+ 
cells correlated with increased patient survival, suggesting that 
iNKT cells may be protective. This is in contrast to the findings in 
Apcmin/+ mice where iNKT cells promote polyps. Further studies, 
using specific reagents such as αGalCer-loaded CD1d multimers, 
are required to investigate whether iNKT cells, analogous to Treg 
cells, perform different function at different stages of intestinal 
cancer.
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Quite surprisingly, the characteristics of iNKT cells in polyps 
of Apcmin/+ mice differed significantly from iNKT cells in lymphoid 
organs (17). Most importantly, they were negative for PLZF, which 
has been considered a master transcription factor for NKT cells 
(39). Polyp iNKT cells also had lower expression of CD4, NK1.1, 
and CD44, and were enriched for IL-10- and IL-17-producing 
cells. They also had a lower production of pro-inflammatory 
cytokines compared with iNKT cells in other organs. These dis-
tinct characteristics of intestinal polyp iNKT cells likely underpin 
their unusual function to suppress tumor immunity.

THe ROLe OF iNKT CeLLS iN THe gUT 
DURiNg iNTeSTiNAL iNFLAMMATiON 
AND iNFLAMMATiON-DRiveN 
iNTeSTiNAL CANCeR

In the steady state, there does not seem to be a role for iNKT cells 
to maintain immune homeostasis in the intestine, as to our 
knowledge, there are no reports of evident inflammation or 
alteration in the inflammatory microenvironment in the gut 
in normally housed and unchallenged Jα18- or CD1d-deficient 
mice (also, our unpublished data). In contrast, iNKT cells have 
been shown to be involved in the regulation of inflammation 
in murine models of induced IBD and induced inflammation-
associated colon cancer.

For example, the murine oxazalone-induced colitis model 
shares immunological features with human ulcerative colitis. 
It was demonstrated that iNKT  cells had an important role in 
driving inflammation in this model (29) and IL-13 produced by 
iNKT cells was essential for disease to develop. A similar function 
was proposed for CD1d-restricted dNKT cells in patients with 
ulcerative colitis (40). To establish a model for inflammation-
induced colon cancer, a chronic form of oxazalone-induced colitis 
was combined with the genotoxic agent azoxymethane (AOM) 
resulting in colon tumors. Tumor development was associated 
with the appearance of F4/80+CD11bhighGr1low M2 macrophages 
that produced the tumor-promoting factors IL-6 and EGF, in a 
CD1d- and IL-13-dependent manner (41). Interestingly, while 
oxazalone  +  AOM treatment resulted in robust colitis in mice 
lacking the major signaling pathway for toll-like receptors (TLR) 
(MyD88−/− mice), these mice did not develop colon tumors. A 
dependence on MyD88 for polyp formation has also been dem-
onstrated in Apcmin/+ mice (42), indicating that signaling from 
the microbial flora plays a major role in tumor development. The 
immunoregulatory functions of iNKT cells in the oxazalone coli-
tis and the oxazalone + AOM models appear similar to what has 
been described for iNKT cells in the murine intestinal polyposis 
model (Apcmin/+ mice) (17). The similarity in regulatory function 
performed by iNKT  cells in these models indicates that tissue 
location may influence local iNKT-cell behavior.

Both murine and human intestinal epithelial cells express 
CD1d (43, 44), which upon cross-linking by iNKT TCR medi-
ates retrograde signaling in epithelial cells inducing their IL-10 
production (45). Epithelial cell-specific deletion of IL-10 or CD1d 
leads to more severe oxazalone colitis, illustrating protective 
anti-inflammatory cross talk between intestinal epithelium and 

iNKT cells (46). In contrast, IL-13-mediated inflammation in this 
model was dependent on CD1d expression on bone-marrow-
derived cells. Thus, in the oxazalone-induced IBD model, 
iNKT cells are activated to produce pro-inflammatory IL-13 by 
CD1d expressed by bone-marrow-derived cells, while interaction 
with CD1d on epithelial cells results in epithelial cell production 
of protective IL-10.

A somewhat different picture is found in the dextran sodium 
sulfate (DSS) colitis model of IBD, which results from disrup-
tion of the colonic epithelial barrier. Inflammation in this model 
differs from that of the oxazalone model in that it is mediated 
by innate cells and is not dependent on adaptive immunity 
(47). If present, however, T cells can promote the inflammatory 
response as exemplified by a TH1 or mixed TH1/2 response 
has been found in an acute or chronic DSS colitis, respectively. 
In the acute DSS model, activation of iNKT  cells ameliorated 
disease after administration of αGalCer or OCH, a structural 
variant of αGalCer that skews the cytokine response toward 
TH2 (48, 49). It was therefore speculated that the protection was 
due to anti-inflammatory TH2-type cytokines induced by the 
activation of iNKT cells. The natural effect of iNKT cells on DSS 
colitis (without experimental activation of iNKT cells) was not 
directly addressed in these studies. In another model, repeated 
administration of DSS has been applied together with AOM 
to induce inflammation-driven colon cancer development. In 
these studies, an increased number of colon tumors and more 
severe inflammation were found in mice lacking iNKT  cells 
compared with control mice (50). Administration of αGalCer, 
but not the TH2-skewing iNKT-cell ligand OCH, led to reduced 
inflammation, reduced colon tumor formation and decreased 
IL-13. This suggests that iNKT  cells protected the mice from 
colitis, and consequently from the downstream development of 
colon tumors in the AOM-DSS model, through a mechanism 
that includes suppression of IL-13 production. It is possible that 
the disruption of the epithelial barrier and leakage of bacteria/
bacterial fragments into the intestinal tissue in this model results 
in an inflammatory microenvironment that is different from that 
of the oxazalone colitis model. This may influence the function 
of iNKT  cells, as NKT  cells can be activated by inflammatory 
cytokines produced by TLR-stimulated dendritic cells, and 
IL-12 strongly skews NKT cells toward the production of TH1 
cytokines (51).

iNTeRPLAY BeTweeN iNKT CeLLS AND 
THe iNTeSTiNAL MiCROBiOTA

The commensal intestinal microbiota is essential for the devel-
opment and function of the host immune system (52). The 
interplay between the intestinal microbiota and iNKT  cells in 
health and disease was recently discussed in a comprehensive 
review (53). iNKT cells are established in the intestinal mucosa 
in an IL-12- and MyD88-independent manner. However, 
microbial colonization affects the phenotype and function of 
systemic iNKT cells and increases their immune responsiveness. 
This occurs independently of MyD88 and is thought instead to 
depend on agonistic iNKT  cell ligands produced by bacteria 
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such as Sphingomonas (54). In another study, neonatal microbial 
colonization limited iNKT-cell numbers in the adult mouse 
colon, which reduced sensitivity to oxazalone-induced intestinal 
inflammation (55). This was shown to depend on an abundant 
inhibitory glycosphingolipid from Bacteroides fragilis that bound 
CD1d but failed to activate iNKT cells (56). At the same time, 
NKT  cells influence the growth of the commensal microflora 
(57). Mice lacking NKT cells demonstrate an accelerated micro-
bial colonization and an altered composition of the intestinal 
microbiota. NKT cells also provide protection to bacterial infec-
tions, as recently reviewed (51, 58). Thus, iNKT cells are strongly 
affected by different species of bacteria that colonize the intestine. 
It is unclear, however, to what extent the intestinal microbial flora 
can skew the functional program in local iNKT cells, as has been 
described for conventional T cells (52).

SUPPReSSiON OF TUMOR iMMUNiTY BY 
iNvARiANT AND dNKT CeLLS iN OTHeR 
TUMOR MODeLS

Similar to their immunosuppression in intestinal polyposis, 
iNKT cells have been shown to suppress immunity in some other 
tumor models. However, the mechanisms underlying NKT-cell 
suppression of tumor immunity has been most exhaustively 
studied for dNKT cells. A series of elegant publications by Terabe 
and Berzofsky and coworkers detail how dNKT cells suppressed 
CD8 T-cell tumor immunity to different transplanted tumors (27, 
59, 60). In these models, it was shown that dNKT cells produced 
IL-13 that activated CD11b+Gr-1+ myeloid cells to produce TGF-
β. This suppressed cytotoxic T-cell activity, resulting in tumor 
recurrence. Tumor recurrence was prevented in mice deficient 
of all NKT cells (but not in mice lacking iNKT cells only), or by 
blocking TGF-β or depleting Gr-1+ cells. A similar mechanism 
may underlie the dNKT-cell suppression of immunity to a B 
lymphoma where increased levels of IL-13, TGF-β, and myeloid-
derived suppressor cells correlated with enhanced tumor growth 
(28). In contrast, lack of dNKT cells and reduced tumor growth 
was associated with increased IFN-γ and IL-12. In these models, 
iNKT cells had a protective effect, suggesting that dNKT cells and 
iNKT cells counteracted each other in the regulation of immu-
nity to this tumor. In myeloma patients, it has been proposed 
that also human dNKT cells can have suppressive role in tumor 
immunity (61).

Interestingly, as suggested from two lymphoma models, 
sometimes iNKT cells seem to be able to support suppression 
of tumor immunity by mechanisms similar to those described 
above for dNKT cells. In a transplantable B-cell lymphoma model 
it was found that iNKT cells suppressed antitumor CD8+ T cells 
required for lymphoma eradication (19). While the majority of 
WT mice succumbed to the lymphoma, mice lacking iNKT cells 
cleared the tumor cells. In another study, the survival of WT 
mice inoculated with CD1d-transfected T lymphoma RMA-S 
cells was significantly lower than inoculated CD1d−/− and Jα18−/− 
mice (18). Improved survival in iNKT-cell-deficient mice was 
associated with increased production of IFN-γ, while tumor 
growth in WT mice correlated with higher IL-13 production. 

Lymphoma growth in WT mice was not observed after inocula-
tion of untransfected RMA-S cells, suggesting that lymphoma 
overexpression of CD1d-induced immunosuppressive activities 
of iNKT cells. Interestingly, studies of patients with B-cell-derived 
chronic lymphatic leukemia indicate a similar scenario. Here, 
CD1d expression on tumor cells was higher in patients with unfa-
vorable prognosis, and the level of CD1d on leukemia cells was 
inversely correlated with iNKT-cell frequencies (26, 62). Higher 
levels of CD1d on lymphoma cells were also correlated with 
reduced IFN-γ production by remaining iNKT  cells. However, 
it was not reported in these studies whether these iNKT  cells 
instead produce other cytokines such as IL-10 or IL-13 (26). Thus, 
in some tumor models, iNKT cells express immunosuppressive 
effector functions similar to those described for dNKT  cells. 
These studies indicate that suppressive iNKT cells may be more 
likely to be induced in a situation where the tumor cells express 
high levels of CD1d.

iMMUNOSUPPReSSiON BY ADiPOSe 
TiSSUe iNKT CeLLS

The mechanisms that underpin the iNKT-cell-mediated regula-
tion of tumor immunity in the Apcmin/+ model also bear strik-
ing resemblance to what has been described in adipose tissue 
homeostasis (16). iNKT  cells are highly enriched in this tissue 
in both mice and humans, and are suggested to protect against 
obesity-induced inflammation. It was suggested that in the lean 
state, production of IL-2 by iNKT cells promoted Treg cells in 
adipose tissue. Furthermore, mice deficient in iNKT cells had a 
reduced frequency of Treg cells that proliferated less at this site. It 
is notable that in the prevention of autoreactivity, iNKT cells have 
also been shown to support Treg cells in several different settings 
of autoimmunity and tolerance induction, through a variety of 
mechanisms (13). Moreover, adipose tissue iNKT cells had high 
expression of E4BP4, a transcription factor that determines 
production of IL-10 in T  cells (16). iNKT  cells were localized 
juxtaposed to macrophages in adipose tissue, and IL-10 produced 
by activated iNKT cells enhanced M2 and reduced M1 phenotype 
in adipose tissue macrophages. This strongly suggests that com-
parable subsets of regulatory iNKT  cells regulate immunity by 
very similar mechanisms in intestinal polyps of Apcmin/+ mice and 
in adipose tissue of lean WT mice.

THe PLZF-NegATive/ADiPOSe/iNKT10 
SUBSeT OF iNKT CeLLS wiTH 
iMMUNOSUPPReSSive CAPACiTieS

A unique feature in adipose tissue iNKT  cells (16) that is 
shared with intestinal polyp iNKT  cells (17) is a lack of the 
NKT-cell transcription factor PLZF. In fact, adipose iNKT cells 
demonstrated some similarities to the reduced population of 
iNKT cells that remain in PLZF-deficient mice (16). Moreover, 
polyp and adipose iNKT  cells share the production of IL-10. 
IL-10-producing iNKT  cells, then coined iNKT10 cells, were 
also increased in αGalCer-injected mice, and were enriched 
in adipose tissue after injection of αGalCer (15). This latter 
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study showed that a single treatment of mice with αGalCer 
led to expansion of IL-10-producing iNKT  cells concomitant 
with reduced production of pro-inflammatory cytokines by 
iNKT cells. Strikingly, the αGalCer-induced iNKT10 cells could 
suppress tumor immunity and ameliorate experimental autoim-
mune encephalomyelitis (15). These iNKT10 cells thus appear 
similar to adipose iNKT cells and intestinal polyp iNKT cells. 
Taken together, these cell types seem to constitute a unique 
regulatory subset(s) of iNKT  cells that is not yet well defined, 
and that has not been taken into account in previous studies.

DiFFeReNTiATiON OF SUPPReSSive 
iNKT CeLLS—THYMiCALLY DeTeRMiNeD 
OR AN eFFeCT OF THe LOCAL 
MiCROeNviRONMeNT?

It is yet to be revealed what determines the development of 
immunosuppressive PLZF-negative iNKT cells, and how these 
cells localize to the tissue where they suppress immunity. Do 
these cells develop during thymic maturation followed by selec-
tive homing to specific tissues? Or is their function influenced 
during peripheral activation by tissue-derived signals such as 
those from local CD1d-expressing cells and other cues in the 
tissue microenvironment? A recent study found that mutating 
a hydrophobic patch in the iNKT-cell TCR resulted in thymic 
selection of functionally altered iNKT cells that accumulated 
in adipose tissue (63). In the thymus, these iNKT cells already 
expressed some characteristics of adipose iNKT  cells. This 
suggests that iNKT cells with the immunosuppressive PLZF-
negative phenotype may be committed during thymic devel-
opment, as has been proposed for other functional subsets of 
iNKT  cells (14). If this is the case, there may be a selective 
expression of homing receptors on this subset of iNKT  cells 
that guide their localization to adipose tissue and intestinal 
polyps or other tumor or inflammatory sites where they may 
suppress immunity. Adipose tissue-specific recruitment is 
unlikely to occur constitutively at a high rate, however, as 
adipose iNKT cells are mostly resident and non-recirculating 
(16). On the other hand, it is also likely that the tissue micro-
environment will alter the function of immune cells that enter 
the tissue (64). Further transcriptomic and epigenetic analysis 
of iNKT-cell subsets will provide important information in 
this respect (65). The finding that the immune response to 
syngeneic colon cancer cells is significantly different when 
the cells grow in the intestine compared with subcutaneous 
growth demonstrates that the immune microenvironment 
varies between tissues (66). In the Apcmin/+ model, we showed 
that transfer of hepatic iNKT cells predominantly of the iNKT1 
type to iNKT-cell-deficient Jα18−/−Apcmin/+ mice reconstituted 
immunosuppressive effects of iNKT cells in intestinal polyps 
(17). This indicates that the polyp microenvironment might 
alter the function of iNKT cells. Highly relevant in this context 
is the recent interest in immunometabolism and investigations 
of how the metabolism of immune cells is modulated in fat 
tissue and tumors, resulting in alterations of immune cell func-
tion (67, 68). It is important to investigate whether metabolic 

states of iNKT  cells correlate with their programs and their 
immunosuppressive activities in different situations.

ACTivATiON OF iMMUNOSUPPReSSive 
iNKT CeLLS—A ROLe FOR THe CD1d-
eXPReSSiNg CeLL AND CD1d-
PReSeNTeD LigANDS?

It seems feasible that a major importance for determining iNKT-
cell function will be attributed to the CD1d-expressing cell 
type that activates iNKT cells in the periphery. Induced effector 
functions are likely different if CD1d is presented to iNKT cells 
on a professional antigen-presenting cell such as dendritic cells, 
which may produce pro-inflammatory cytokines like IL-12 and 
provide other accessory signals, or if iNKT  cells are activated 
by CD1 expressed by non-professional antigen-presenting 
cells such as adipocytes, epithelium, or tumor cells of different 
origin. Activation by non-professional antigen-presenting cells 
may be more likely to induce an anti-inflammatory function in 
iNKT cells. In the oxazalone-induced colitis model, iNKT cells 
were induced to produce IL-13 by bone-marrow-derived cells. In 
contrast, IL-13 production was reduced by iNKT-cell interaction 
with CD1d-expressing intestinal epithelial cells through induc-
tion of IL-10 secretion by the epithelial cells (46). The adipose 
tissue iNKT cells expressed high levels of Nur77 (16), a nuclear 
receptor that is upregulated upon TCR ligation. This suggests 
that adipose iNKT  cells may be under constant TCR stimula-
tion. Adipocytes express high levels of CD1d that is required for 
iNKT-cell regulation of immune homeostasis in adipose tissue 
(64), indicating that adipocytes act as non-professional antigen-
presenting cells for iNKT cells. Whether adipose tissue-specific 
signals or CD1d-presented lipids determine the functional 
phenotype of adipose iNKT  cells remains to be determined. 
Interestingly, a role for CD1d on tumor cells was also suggested 
(18, 26, 62). CD1d expression on tumor cells was associated with 
the induction of immunosuppressive functions in iNKT cells or 
the induction of “non-functional” iNKT cells.

The activating ligand presented on CD1d may also play a role 
in selective induction of iNKT subsets and functions. Considering 
the dynamic nature of glycolipid metabolism and modulations 
of these processes in activated or stressed cells, it seems feasible 
that cancer cells contain an altered set of lipids that are potential 
iNKT ligands. Such ligands could be presented on CD1d, either 
on the cancer cells themselves, if CD1d-positive, or on antigen-
presenting cells and result in different outcomes. An intriguing 
example is the disialoganglioside GD3. This is expressed only 
in a few normal tissues at low levels but accumulates in human 
melanoma, and in ascites fluid in ovarian cancer patients (69, 70). 
Using a mouse model, one study found that GD3 was an activat-
ing ligand for a small subset of iNKT cells that was only detectable 
in immunized mice (69). Interestingly, these iNKT cells produced 
IL-4, but not IFN-γ, in response to immunization with GD3-
pulsed dendritic cells. Another study found that GD3 bound 
both human and mouse CD1d with high affinity (70). However, 
in contrast to the previous study, GD3 was not found to stimulate 
iNKT  cells. It rather inhibited αGC stimulation of iNKT  cells 
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in vitro and in vivo, and GD3-loaded CD1d multimers did not 
bind iNKT cells. The latter study may have missed the small GD3-
reactive iNKT-cell subset, as these cells were not detectable in 
non-immunized mice. Thus, GD3 enriched in some cancers seems 
to prevent induction of TH1 tumor immunity by iNKT cells in 
two ways: it inhibits the majority iNKT cells from activation with 
agonist ligands by binding to CD1d with high affinity, while at the 
same time stimulating a small subset of GD3-specific iNKT cells 
to secrete IL-4. Another glycolipid that inhibited iNKT-cell 
activation, gangliotriaosylceramide, was found to be shed from a 
T-cell lymphoma line (71). Besides these examples, there is little 
information available about the contribution of CD1d-presented 
lipids that are cancer specific or upregulated in cancer to activa-
tion of NKT cells in tumor immunity.

Research ongoing in many laboratories explore and refine 
iNKT-cell-directed immunotherapy strategies using αGalCer 
and structurally related ligands that have an improved induction 
of tumor immunity, often by the enhancement of TH1 cytokines 
[for recent reviews, see Ref. (72, 73)]. However, many factors 
influence the outcome of iNKT-cell activation in tumor immunity. 
For example, Wingender et al. demonstrated that αGalCer as well 
as the TH1-biasing structural variant of αGalCer, C-glycoside, 
could induce the expansion of iNKT10 cells, while a TH2-biasing 
variant, OCH, did not induce their expansion (74). Another 
study identified β-mannosylceramide as a ligand for mouse and 
human iNKT cells (75). Administration of β-mannosylceramide 
protected mice from tumors in a manner that was dependent on 
TNF-α and nitric oxide synthase and only partially dependent on 
IFN-γ. In contrast, protection afforded by αGalCer was completely 
dependent on IFN-γ. To investigate whether iNKT-cell-targeted 
immunotherapy with agonist ligands could counteract the 
immunosuppressive effects of iNKT cells in the Apcmin/+ intestinal 
polyposis model, we treated mice repeatedly with αGalCer or the 
TH2-biasing structural variant of αGalCer, C20:2 (17). Despite the 
natural tumor-promoting effect of iNKT cells in untreated mice, 
treatment with αGalCer resulted in decreased polyp numbers. 
This suggests that αGalCer may either modulate the function of 
polyp iNKT cells, or overcome their immunosuppressive effect 
by activating iNKT cells systemically. As expected, mice treated 
with C20:2 had increased numbers of polyps. This is consistent 
with a TH2 cytokine profile induced by this ligand, resulting in 
suppression of a TH1 antitumor immune response. Quite sur-
prisingly, treatment with the TH1-biasing ligand C-glycoside had 
no effect on polyp counts (76). As C-glycoside has been shown 
to induce TH1 cytokines, this treatment would be expected to 
reduce polyp counts, and be even more effective than αGalCer. 
It is possible that the lack of effect on polyps after repeated treat-
ment of Apcmin/+ with C-glycoside is a consequence of expansion 
of iNKT10 cells by this ligand, as demonstrated by Wingender 
and coworkers (74). Our own data from the Apcmin/+ model also 
show that different time periods of treatment with iNKT ligands 
can result in opposite effects (76). Taken together, these data show 
that modulation of tumor immunity by treatment with iNKT-cell 
ligands is not always predictable. They also warrant some caution 
and motivate further studies of the effects of iNKT-cell-directed 
therapy on iNKT-cell function and downstream regulation of 
tumor immunity.

CONCLUDiNg ReMARKS AND 
OUTSTANDiNg QUeSTiONS

Natural killer T  cells are important players in the regulation 
of tumor immunity. iNKT  cells are an expanded subset of 
NKT  cells with potent and rapid effector response that show 
great promise as targets for tumor immunotherapy. However, the 
effect of iNKT cells, activated naturally or by artificial ligands, 
on tumor immunity is influenced by many factors. This makes 
the outcome of iNKT-cell-targeted therapy difficult to predict. 
The recent identification of a distinct subset of iNKT  cells 
with immunosuppressive properties, shown to suppress tumor 
immunity and promote tumor growth, calls for more detailed 
investigation of iNKT  cells in different cancer settings. There 
are a number of outstanding questions that will be important 
to resolve to clarify the differentiation, activation, and func-
tion of immunosuppressive iNKT  cells. Is the lack of PLZF a 
common feature of immunosuppressive iNKT cells in different 
tumor settings? Is this also the case for regulatory iNKT cells in 
inflammation and autoimmune diseases? Is the PLZF-negative 
functional phenotype determined during thymic development, 
or is imposed by activation and/or the tissue microenvironment 
under specific conditions? What is the role of the tumor micro-
environment, local cytokines, and other signals in modulating 
the iNKT-cell phenotype, and in the attraction of functionally 
different iNKT-cell subsets? What is the role of the CD1d-
expressing antigen-presenting cell for induced immunosuppres-
sive iNKT-cell functions? What is the effect of iNKT-targeting 
immunotherapy on tumor-associated iNKT cells? What is the 
influence of the intestinal microbiota and inflammation on 
local iNKT cells? Undoubtedly, our knowledge regarding these 
issues will be significantly expanded in the coming years, and 
will hopefully contribute to improved strategies for iNKT-cell-
directed tumor immunotherapy.
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Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from 
both the innate immune cells and T cells. There are at least two subsets of NKT cells, 
type I and type II. These two subsets of NKT cells have opposite functions in antitumor 
immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor 
immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this 
review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After sum-
marizing their definition, experimental tools to study them, and subsets of them, we will 
discuss possible therapeutic applications of type II NKT cell pathway targeted therapies.

Keywords: natural killer T  cell, type ii natural killer T  cell, tumor immunology, immune regulation, 
immunosuppression, immunotherapy, lipid antigens, transforming growth factor beta

iNTRODUCTiON

One of the successful recent approaches to cancer immunotherapy is to overcome immunosuppres-
sive signaling pathways, such as the CTLA-4 or PD-1 pathways. These pathways are endogenous 
regulatory systems to suppress excessive immunity. Since tumor antigens (Ags) are autologous, 
antitumor immunity is a kind of autoimmune reaction and is inhibited by those immunosuppres-
sive mechanisms. Thus, to induce antitumor immunity of sufficient magnitude, it is important to 
overcome them.

In the tumor microenvironment, multiple immune cells form an interacting network. In addi-
tion, considering that the suppression mechanisms differ among the mouse tumor models, the 
mechanisms may also differ among cancer types in humans. Moreover, it is known that even cells 
of the same mouse tumor cell line growing in different organs are subject to different dominant 
immunosuppressive mechanisms (1). These findings indicate that the most appropriate immuno-
therapy for cancer patients with distant metastasis may be different among the metastatic sites of 
cancer. Altogether, a detailed understanding of suppression mechanisms is important to establish 
appropriate strategies to control them.

In this review, we mainly focus on immunosuppressive natural killer T (NKT) cells, type II 
NKT cells. Type II NKT cells play a suppressive role in many diseases, including autoimmune and 
inflammatory diseases, as well as the tumor setting. Although multiple experimental tools have been 
used, no tools can analyze the entire population of type II NKT cells so far. Thus, when we discuss 
type II NKT cells, it is important to understand the advantages and limitations of each experimental 
tool, as well as the definition of type II NKT cells used in the study.
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DeFiNiTiON OF NKT CeLLS, TYPe i NKT 
CeLLS, AND TYPe ii NKT CeLLS

Natural killer T  cells are a unique T  cell subset that exhibits 
characteristics from both innate immune cells and T  cells. 
Similar to innate immune cells, NKT cells react quickly to stimuli 
and produce a large amount of various kinds of cytokines and 
chemokines to modulate the immune response (2, 3). Also, like 
T cells, NKT cells express a T cell receptor (TCR) and respond in an 
Ag-specific manner. Thus, the nomenclature of NKT cells may be 
misleading, as they are not related to natural killer (NK) cells. The 
name originally came from the expression of the NK1.1 marker 
by many of them (4), but this was an unreliable characteristic and 
the definition was changed to define any T cell expressing a TCR  
that recognized a lipid presented by CD1d as an NKT cell (5).

With this feature of lipid–CD1d specificity, NKT cells can be 
distinguished from conventional T cells that recognize peptide 
Ags presented by conventional MHC molecules. Therefore, 
NKT cells expand the repertoire of Ags that the cellular immune 
system can recognize beyond the proteins detected by conven-
tional T  cells. Thus, the current definition of NKT  cells is any 
CD1d-restricted T cell, which can recognize lipid Ag presented 
by CD1d through its TCR.

Type I NKT cells are defined as CD1d-restricted T cells, which 
express a TCR α-chain that utilizes Vα14-Jα18 gene segments in 
mice and Vα24-Jα18 gene segments in humans. This semiinvari-
ant TCR α-chain was initially discovered as a quite unusual TCR 
α-chain across several hybridoma lines (6), because the TCRα 
chain expressed by these NKT cells has very few or no nucleotide 
insertions in the CDR3 region. Thus, type I NKT cells are also 
referred to as invariant or iNKT cells.

Type II NKT  cells are defined as CD1d-restricted T  cells 
that express diverse TCR α-chains other than the semiinvariant 
one expressed by type I NKT  cells. This definition means all 
CD1d-restricted T cells except for type I NKT cells are type II 
NKT cells. Thus, type II NKT cells can be a mixture of a variety of 
different subsets. However, currently, no experimental tools exist 
to identify or analyze the entire population of type II NKT cells. 
When we discuss type II NKT cells, it is important to understand 
the advantage and limitation of each experimental tool, as well 
as the definition of type II NKT  cells in the discussion. The 
frequency of the entire type II NKT cell population is not known 
yet. However, sulfatide-reactive type II NKT  cells are reported 
to be approximately 4.5% of the mononuclear cell fraction of 
cells in the liver (7). Taking into consideration that these type II 
NKT cells have the same Ag specificity in naive mice, this T cell 
population is not trivial in size compared to the population of 
naive conventional T  cells specific for a single Ag or epitope. 
In this review, we first summarize the experimental tools and 
subsets of type II NKT cells, and next, we will focus on their role 
in tumor immunity.

eXPeRiMeNTAL TOOLS FOR  
TYPe ii NKT CeLL ANALYSiS

Type II NKT  cells were originally discovered from MHC-II-
deficient mice. Cardell et al. discovered that MHC-II-deficient 

mice unexpectedly had a significant population of peripheral 
CD4+ T  cells (8), even though conventional CD4+ T  cells are 
absent. The authors created several CD4+ T  cell hybridomas 
from MHC-II-deficient mice and found that many of them were 
CD1d restricted. These type II NKT cell hybridomas are useful 
tools for in vitro analysis. For example, many lipid Ags for type 
II NKT cells have been discovered using NKT cell hybridomas  
(9–11). Also, analysis using type II NKT hybridomas demonstrated 
that type II NKT cells did not recognize α-galactosylceramide 
(α-GalCer), which is a potent stimulator for type I NKT  cells 
(12), suggesting that the lipid Ags recognized by type I NKT cells 
and type II NKT cells are different.

For in vivo analysis, the function of different NKT cell subsets 
has been assessed by comparison of immune responses of WT 
mice that have both type I and II NKT cells to those of Jα18−/− 
mice that lack type I NKT cells but retain type II and to those of 
CD1d KO−/− mice, which lack all NKT cells. Although this model 
can provide only indirect evidence of type II NKT cell function, 
currently, this is the only strategy that can analyze the in  vivo 
function of the entire type II NKT cell population.

For direct analysis of type II NKT cells, three experimental 
tools have been reported, 24αβ-TCR transgenic mice, 4get 
Jα18−/− mice, and lipid Ag-loaded CD1d tetramers. Although 
none of them can identify the entire population of type II 
NKT  cells in  vivo, these tools can provide direct evidence of 
in vivo function of at least a subset of type II NKT cells. These 
experimental tools are summarized in Table 1.

SULFATiDe-ReACTive TYPe ii  
NKT CeLLS

The first lipid Ag for murine type II NKT cells, sulfatide, was reported 
in 2004 (7) (Figure 1). Sulfatide, 3′-O-sulfogalactosylceramide, 
is an endogenous glycolipid, which is abundant in the myelin 
in the nervous system, as well as the pancreas, kidney, and 
liver (13). Notably, the authors created sulfatide-loaded CD1d 
tetramers and identified sulfatide-reactive type II NKT cells in 
the liver and spleen. This is the first report that type II NKT cells 
in ex vivo mononuclear cells were visualized. Subsequently, 
using sulfatide-loaded CD1d tetramers, the TCR repertoire of 
sulfatide-reactive type II NKT  cells in the liver was analyzed 
(14). As expected, the TCR repertoire of sulfatide-reactive type 
II NKT was diverse, but most frequently employed alpha gene 
segments from Vα1 and Vα3 and paired with Vβ8.1/Vβ8.3.

Although sulfatide-loaded CD1d tetramers were reported in 
2004, the analysis of sulfatide-reactive type II NKT cells has not 
been as rapid as that of type I NKT cells. This may be partly due 
to the fact that sulfatide-loaded CD1d tetramers are not widely 
available, because making stable sulfatide-loaded CD1d tetram-
ers to stain sulfatide-reactive type II NKT  cells is technically 
difficult. Recently, we have overcome these problems (Kato et al., 
manuscript in preparation). We found that a significant number 
of sulfatide-reactive type II NKT  cells exist in the lung, which 
is a major target organ for tumor metastasis. This population 
can produce IL-13 after activation, consistent with the previous 
observation in the analysis of their suppressive effect in tumor 
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TAbLe 1 | Experimental tools to analyze type II NKT cells.

Tools Advantage Limitation

Type II NKT cell hybridomas Easy to handle Limited to in vitro experiments and specific clones 
available, not representative of all populations

Comparison of WT mice,  
Jα18−/− mice, and CD1d KO−/− mice

This model can provide in vivo behavior  
of the entire type II NKT cell population

This model can provide only indirect evidence  
of type II NKT cell function

24αβ-TCR transgenic mice This model enables identification  
of type II NKT cells in vivo

This model can provide behavior of type II NKT cells 
with one TCR repertoire, not representative of the 
majority of type II NKT cells

This model can provide in vivo behavior  
of type II NKT cells

The majority of other T cells are absent in this model

4get Jα18−/− mice This model enables identification  
of type II NKT cells in vivo

Not all type II NKT cells may be identified in this model, 
only ones in which the IL-4 gene is activated

Type I NKT cells are absent in this model

More conventional T cells are present  
than in 24αβ-TCR transgenic mice

Once other T cells are activated, type II NKT cells can  
no longer be distinguished from other T cells as other  
T cells may express GFP

Lipid antigen-loaded  
CD1d tetramers

These tools can provide direct identification  
and evidence of type II NKT cell function

Currently, no reagents can identify all type II NKT cells, just ones  
with receptors recognizing the lipid–CD1d combinations available

Some reagents are technically difficult to create

NKT, natural killer T cell; TCR, T cell receptor.
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immunity (15). A transcriptome analysis of sulfatide-reactive 
type II NKT cells indicated that this cell type has a gene expres-
sion profile distinct from but similar to that of type I NKT cells, 
in contrast to Th2, Th0, and innate-like lymphoid cells (ILCs)/
NK cells.

24αβ-TCR TRANSGeNiC MiCe

The 24αβ-TCR was identified as one of the TCRs in the repertoire 
of murine type II NKT  cells from the CD4+ type II NKT  cell 
hybridoma VIII24 that expresses a Vα3.2 and Vβ9 rearrangement 
(8). For in  vivo analysis of type II NKT  cells, TCR transgenic 
mice carrying the 24αβ-TCR were developed (16). In 24αβ-TCR 
transgenic mice, the majority of αβ-T cells express the 24αβ-TCR. 
They express NK1.1, CD122, intermediate levels of TCR and are 
CD4/CD8 double negative or CD4+. Upon activation in vitro, they 
secrete large amounts of IL-4 and IFN-γ, as this is characteristic 
of NKT cells.

The gene expression profiling of 24αβ-TCR cells revealed that 
the cells expressed genes predominantly associated with Th1 
effector functions comparable to type I NKT cells (17). Also, the 
24αβ-TCR cell signature genes, such as annexin A2, Ly6C and 
c-kit, have all been shown to be augmented in CD8αα thymic 
cells obtained by re-aggregation thymic organ culture (18), 
which have self-reactive TCRs and phenotypic characteristics of 
innate immune cells. Taken together, the pattern of genes highly 
expressed in 24αβ-TCR cells indicates that the cells have charac-
teristics of innate immune cells and Th1 cells.

Although the gene profile suggests that 24αβ-TCR cells have 
features of cytotoxic T  cells (CTLs), their immune-suppressive 
effect has been reported in multiple mouse disease models, 
including type I diabetes (19) and autoimmune colitis (20). The 
functions of 24αβ-TCR cells in tumor settings are unclear.

Although VIII24 was reported not to react to sulfatide, inter-
estingly, we found that lung sulfatide-reactive type II NKT cells 
were partially positive for Ly6C and c-kit, similar to 24αβ-TCR 
cells (Kato et al., manuscript in preparation). These findings sug-
gest that these two subsets of type II NKT cells may share some 
characteristics.

4get Jα18−/− MiCe

Other approaches to detect type II NKT cells in vivo involve using 
constitutive expression of cytokine mRNA for their marker. The 
IL-4 GFP enhanced transcript (4get) mice were used to identify 
type II NKT  cells in  vivo based on the hypothesis that similar 
to type I NKT  cells, which constitutively express IL-4 mRNA, 
type II NKT  cells must express IL-4 at a steady state (21, 22). 
TCRβ+GFP+α-GalCer/CD1d tetramer-negative cells were sorted 
from liver mononuclear cells of 4get Jα18−/− mice. This popula-
tion produced IFN-γ when co-cultured with CD1d-expressing 
bone marrow-derived dendritic cells (DCs), suggesting the cells 
reacted with self-Ags presented by CD1d, and thus they were 
type II NKT  cells. This sorted population reacted with lipid 
ligands, which had been previously shown to be ligands for 
type II NKT  cells, such as β-glucosylceramide (β-GlcCer) and 
β-GalCer (10, 23) (Figure 1). The sorted β-GlcCer reactive type 
II NKT cells did not respond to sulfatide and favored TCR gene 
segments from Vα8 and Vβ8.1/8.2, a combination that is distinct 
from sulfatide-reactive type II NKT cells (22).

OTHeR TYPe ii NKT CeLLS

Type II NKT cells recognize both glycolipids and phospholipids 
derived from self as well as microbes. In addition to sulfatide, 
other self-glycolipids, β-GlcCer, β-GalCer, and lysophosphati-
dylcholine (LPC) have been reported to be recognized by type II 
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FiGURe 1 | Structure of lipid antigens for type II natural killer T (NKT) cells. 
Type II NKT cells can recognize a broad range of both endogenous and 
exogenous lipid antigens. The representative structures for each lipid are 
shown. Pollen grain phospholipids, such as phosphatidylcholine and 
phosphatidylethanol, are recognized by human type II NKT cells.
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TYPe ii NKT CeLLS iN HUMANS

Human type II NKT  cells have been studied as CD1d-reactive 
T cells expressing diverse TCRs and were found to be more fre-
quent than type I NKT cells in bone marrow, liver, and inflamed 
intestines of patients with ulcerative colitis (26–28).

Also, some lipid ligands have been reported to be recognized by 
both murine and human type II NKT cells, such as β-GlcCer 22:0, 
glucosylsphingosine (29), sulfatide, and lysosulfatide (30, 31).  
LPC was discovered from the plasma of myeloma patients and 
has been shown to be recognized by both human and murine 
type II NKT cells (24, 32–34). Human type II NKT cells are also 
reported to recognize non-lipid small molecules, such as phenyl 
pentamethyldihydrobenzofuran (35) (Figure  1). Interestingly, 
although most lipid ligands for type II NKT cells are not recog-
nized by type I NKT cells, LPC is reported to be recognized by a 
few human type I NKT cell clones. However, it is not recognized 
by murine type I NKT cells (32, 36–38).

In addition to the use of αβ-TCRs, NKT cells using γδ-TCRs 
have been described. In humans, γδ-T cells that recognize lipid 
Ag presented by CD1d were discovered in peripheral blood 
and nasal mucosa of cypress pollen-sensitive subjects (39–41). 
These cells recognize phospholipids, such as phosphatidylcholine 
and phosphatidylethanol, extracted from pollen grains (41) 
(Figure  1). Surprisingly, although sulfatide-reactive type II 
NKT cells in mice use αβ-TCRs, at least some sulfatide-reactive 
CD1d-restricted T cells in humans have been shown to express 
γδ-TCRs (42, 43). In addition, although sulfatide has been 
considered as a specific Ag for type II NKT cells, a recent report 
demonstrated that human, but not mouse, type I NKT cells could 
recognize sulfatide presented by CD1d (44). These findings sug-
gest that sulfatide-reactive type II NKT cells in humans and mice 
may comprise distinct populations, so we may need to subdivide 
them for further analysis.

THe MeCHANiSM OF TYPe ii NKT CeLL-
MeDiATeD SUPPReSSiON OF TUMOR 
iMMUNiTY

The initial observation that NKT cells can suppress tumor immu-
nity was reported in 2000 (15). In a 15-12RM fibrosarcoma tumor 
model in which tumors show a growth-regression-recurrence 
pattern, IL-13 had a key role for downregulation of CTLs, and 
CD1d−/− mice had decreased IL-13 production and resistance to 
the recurrence. Subsequently, type II NKT cells were shown to 
be sufficient for the suppression of tumor immunity in multiple 
mouse tumor models, in which CD4+CD25+ regulatory T cells 
(Tregs) do not play a critical role in the regulation of immuno-
surveillance (24, 45).

These represented indirect evidence of suppressive roles 
of type II NKT  cells, which were obtained by comparing WT 
mice, Jα18−/− mice, and CD1d KO−/− mice. After the discovery 
of sulfatide as a ligand for type II NKT  cells, direct evidence 
of the suppressive role of type II NKT  cells was obtained. The 
administration of sulfatide to activate sulfatide-reactive type II 

NKT cells (10, 23, 24) (Figure 1). The lipid Ags from microbial 
sources, such as glycolipids from Mycobacterium tuberculosis 
or Corynebacterium glutamicum (11) and phosphatidylglyc-
erol from Listeria monocytogenes (25), have also been reported  
to be Ags for type II NKT  cells other than those described 
above. Observations that some Ags recognized by a fraction 
of type II NKT cells or type II NKT cell hybridomas are not 
always recognized by other fractions of the cells suggest that 
the type II NKT cell population contains multiple cell subsets 
specific for distinct Ags. However, the functional diversity 
of type II NKT  cells recognizing distinct Ags remains to be 
explored.
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FiGURe 2 | Immunosuppressive cell network in tumor microenvironment. 
Type II natural killer T (NKT) cells and type I NKT cells cross-regulate each 
other. Type II NKT cells cross talk with myeloid-derived suppressor cells 
(MDSCs) through production of IL-13. Transforming growth factor beta 
(TGF-β) produced by MDSCs suppresses CD8+ T cells, induces 
immunosuppressive regulatory T cells (Tregs), and enhances development of 
additional tumor-associated MDSCs by an autocrine loop. In addition, type II 
NKT cells can suppress CD8+ T cells by unknown mechanisms other than 
through cross talk with MDSCs. Type I NKT cells enhance the antitumor 
function of CD8+ T cells and are able to directly lyse tumor cells. Type I 
NKT cells’ interaction with dendritic cells (DCs) through CD1d-TCR and 
CD40-CD40L induces activation and maturation of DCs. The interaction 
licenses DCs to be able to prime CD8+ T cells and produce IL-12 and IL-15. 
IL-12 and IL-15 production by DCs stimulates natural killer (NK), type I NKT, 
and/or CD8+ T cells. IL-2 produced by activated type I NKT cells induces the 
proliferation of memory CD4+ T cells, which support the activation of CD8+ 
T cells. However, type I NKT cells also support Tregs through IL-2 production. 
Treg cells suppress type I NKT cells and CD8+ T cells. Three kinds of T cells, 
type II NKT cells, type I NKT cells, and Tregs, cross talk with each other.
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NKT cells enhanced tumor growth in a CD1d-dependent manner 
in a murine colon cancer cell line, CT26, lung metastasis model 
(46). Although it is not clear whether all type II NKT cells sup-
press tumor immunity, the studies suggest that type II NKT cells 
in the absence of type I NKT cells in Ja18−/− mice are sufficient 
to suppress tumor immunity. However, among subsets of type II 
NKT cells, we have detailed knowledge only of sulfatide-reactive 
ones, and even among those, we cannot be sure that all of them 
are immunosuppressive.

One of the mechanisms of type II NKT cell-mediated suppres-
sion is through cross talk with myeloid-derived suppressor cells 
(MDSCs). In the 15-12RM fibrosarcoma tumor model, although 
IL-13 was necessary for downregulation of CTL-mediated 
tumor immunosurveillance, it could not directly downregulate 
CTL activity as T  cells do not have receptors for IL-13. IL-13 
induced transforming growth factor beta (TGF-β) production 
by the CD11b+Gr1+ population of myeloid suppressor cells, and 
blocking TGF-β or depleting Gr1+ cells in  vivo could inhibit 
the suppression of tumor immunity by type II NKT cells (47) 
(Figure  2). This IL-13 signaling is mediated through an IL-4 
receptor α, which forms a heterodimer with IL-13 receptor α1, 
and the STAT6 pathway. There is another receptor that can bind 

IL-13, IL-13 receptor α2, whose expression is induced by tumor 
necrosis factor-α (TNF-α) along with the STAT6 signal from 
IL-4 or IL-13. Because a TNF-α-neutralizing agent was shown 
to be able to inhibit the suppression of tumor immunity by type 
II NKT cells, TNF-α is also involved in this signaling pathway 
(48). It was shown that induction of TGF-β requires a two-step 
process in which TNF-α and IL-13/4/STAT6 synergistically 
upregulated the IL-13Rα2, which then responded to IL-13 to 
induce TGF-β production through AP-1 signaling. This interac-
tion with MDSCs was also reported in a CD1d-overexpressing 
B  cell lymphoma model (49). Interestingly, reports of similar 
IL-13-mediated cross talk with MDSCs by group 2 innate 
lymphoid cells have been recently published (50, 51). Therefore, 
this IL-13-mediated cross talk with MDSCs is not limited to 
type II NKT cells, and multiple kinds of immune cells that can 
produce IL-13 may be involved in this immunosuppressive loop. 
However, it should be pointed out that CD1−/− mice that lack 
NKT cells with facilitated tumor immunity retain ILCs, so the 
effects lost in these mice must be dependent on NKT cells rather 
than ILCs.

Another mechanism may exist for suppression of tumor 
immunity by type II NKT cells. In a K7M2 mouse osteosarcoma 
model, CD1d−/− mice showed higher resistance to growth of 
osteosarcoma primary tumors than WT mice. The protection 
was shown to be CD8+ T  cell dependent, and CD1d−/− mice 
had significantly higher numbers of tumor-infiltrating lympho-
cytes. In this model, TGF-β and IL-13 were not the drivers of 
immunosuppression (52). Thus, alternative pathways exist for 
immunosuppression mediated by type II NKT cells.

CROSS-ReGULATiON OF TYPe i NKT 
CeLLS AND TYPe ii NKT CeLLS

As mentioned above, type I and type II NKT  cells generally 
have opposite function in tumor immunity. In addition, these 
two subsets of NKT cells cross-regulate each other (Figure 2).  
In the CT26 pulmonary metastasis model, selective stimula-
tion of type II NKT cells by sulfatide enhanced tumor growth.  
In addition, when both type I and type II NKT  cells were 
activated simultaneously by α-GalCer and sulfatide, respec-
tively, the tumor immunity by activated type I NKT cells was 
inhibited by concurrent activation of type II NKT  cells. This 
finding suggested that activated type II NKT cells may suppress 
type I NKT  cell-mediated enhancement of tumor immunity 
(46). Analogously, in in  vitro analysis, α-GalCer-induced 
cytokine production by type I NKT cells was inhibited by type 
II NKT cells stimulated with sulfatide (46, 53). This suppressive 
effect of type II NKT  cells against type I NKT  cells was also 
reported in mouse models of other diseases. For example, in a 
model of concanavalin A-induced hepatitis, activation of type II 
NKT cells by sulfatide induced anergy, or hyporesponsiveness, 
of type I NKT cells (54).

In the CT26 pulmonary metastasis model, Jα18−/− mice 
showed lower and CD1d−/− mice showed higher resistance 
to tumor growth than WT mice. Consistent with this finding, 
Jα18−/− mice showed a weaker specific CTL response than did 
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WT mice against tumor Ag-pulsed cells, whereas CD1d−/− mice 
showed a stronger tumor-Ag-specific cytotoxic response than 
WT mice. These results suggested that type I NKT cells inhibit the 
function of type II NKT cells in tumor immunity to suppress CTL 
activity (46). Altogether, therefore, type I and type II NKT cells 
form a novel immunoregulatory axis of cells with opposing roles 
that counteract each other, in which the balance affects the tone 
of local immunity, in that sense (but not in specific cytokines) 
analogs to the Th1–Th2 axis that so profoundly affected immunol-
ogy (55). Because NKT cells act early in immune responses, the 
balance along this axis can have profound effects on subsequent 
conventional T cell or antibody responses (56).

CROSS TALK AMONG THRee TYPeS  
OF iMMUNOReGULATORY T CeLLS

In addition to cross-regulation of two subsets of NKT cells, type 
II NKT cells may also cross talk with CD4+Foxp3+ Tregs. In a 
CT26 subcutaneous tumor model, this cross-regulation of two 
subsets of NKT  cells helps determine the primary suppressive 
cell in tumor immunity. Although Tregs are known not to have 
suppressive effects in the CT26 pulmonary metastasis model, 
they do have a suppressive effect in the CT26 subcutaneous 
tumor model. In the CT26 subcutaneous tumor model, Treg 
blockade was sufficient to protect against tumor outgrowth in 
WT type and CD1d−/− mice. However, Treg blockade was insuf-
ficient for protection in Jα18−/− mice in which type II NKT cells 
are unopposed (57, 58). It was demonstrated that in WT mice, 
type II NKT  cells are neutralized by type I NKT  cells, leaving 
Tregs as the primary suppressor in this model. In mice lacking 
type I NKT cells, in which type II are not neutralized by type I 
NKT  cells, type II NKT  cells could suppress tumor immunity 
even when Treg cells are blocked. Thus, type I NKT cells regulate 
the balance between other regulatory cells, regulating the regula-
tors. This situation may apply in human cancer patients, as it was 
reported that myeloma patients have deficient type I NKT cell 
function (59), and other studies of type I NKT  cells in cancer 
patients have reported either decreased numbers or decreased 
cytokine production (59–64). This altered balance of type I versus 
II NKT  cells in patients with cancer may affect the dominant 
immune-suppressive cells in the patients.

POTeNTiAL ROLe OF TYPe ii NKT CeLL 
iN CHRONiC iNFLAMMATiON-MeDiATeD 
CANCeR

Type II NKT cells may play an important role in inflammation-
induced cancers. Because type II NKT cells react to endogenous 
lipids, they may be activated when endogenous lipids are released 
from autologous organs damaged by inflammation. In addition, 
unusual lipid accumulation caused by metabolic disorders 
may induce the activation of type II NKT  cells. Gaucher’s 
disease (GD) is an inherited metabolic disorder characterized 
by lysosomal storage of β-GlcCer (d18:1/C22:0; βGL1-22) and 
glucosylsphingosine (Lyso-GL1; LGL1) (65). It has been reported 
that the overall cancer risk is increased in GD patients (66–68). 

Especially, the association of GD and multiple myeloma is most 
striking, with the risk estimated at almost 37-fold compared to 
the general population (68).

Studies in human GD patients revealed that human type II 
NKT cells react to βGL1-22 and LGL1 that accumulate in these 
patients. Also, both βGL1-22/LGL1-reactive type II NKT  cells 
express markers of T follicular helper cells (CXCR5hi PD1hi 
ICOShi BCL6+IL-21+) and promote plasma cell differentiation in 
human T-B cocultures (29). In addition, it is reported that the 
clonal immunoglobulin in patients with GD is reactive against 
LGL1. Furthermore, administration of anti-LGL1 antibodies 
ameliorates GD-associated gammopathy in mice, suggesting 
that long-term immune activation by LGL1 may underlie 
GD-associated gammopathies (69). These findings suggest that 
type II NKT cells are activated due to abnormal accumulation of 
lipid Ags and provide help for B cell activation in patients with 
GD. This chronic lipid-mediated and type II NKT cell-mediated 
B cell activation may underlie the increased risk of plasma cell 
tumors in GD.

Notably, dysregulation of glucosphingolipids has been dem-
onstrated not only in inherited metabolic disorders but also in 
obesity (70). Recently, obesity is viewed as a chronic low-grade 
inflammatory disease that is also associated with cancer risk (71). 
The relationship between NKT cells and obesity is unclear, because 
three different outcomes for the involvement of NKT cells in the 
development of obesity are reported. Some groups reported a 
protective role and demonstrated that type I NKT cells in adipose 
tissue produce anti-inflammatory cytokines, such as IL-4 and 
IL-10 (72–74). On the other hand, other groups reported their 
aggravating role and demonstrated that type I NKT  cells pro-
duced pro-inflammatory cytokines, such as IFN-γ, in response 
to lipid excess in the body (75, 76). In addition, another group 
reported a neutral role and stated NKT cells have no active role 
for skewing the environment toward either a Th1- or Th2-bias 
during the development of obesity (77). Regarding the involve-
ment of type II NKT cells, one of the reports demonstrated that 
type II NKT cells exacerbated diet-induced obesity in the absence 
of type I NKT cells (78). Thus, type II NKT cells may be activated 
during obesity-induced chronic inflammation and may have a 
role for exacerbation of obesity and carcinogenesis associated 
with obesity.

POTeNTiAL ROLe OF TYPe ii NKT CeLLS 
iN CANCeR iMMUNOeDiTiNG

In the tumor microenvironment, cancer cells affect and 
modulate antitumor immunity to escape immunosurveillance. 
Some cancer cells are reported to express CD1d, suggesting 
that they may affect NKT cell-mediated antitumor immunity. 
Considering that type I NKT  cells have been reported to be 
able to eliminate CD1d-expressing tumor cells via multiple 
pathways (79–83), it seems that CD1d on the cancer cells is 
mainly recognized by type I NKT cells, resulting in enhance-
ment of tumor immunity. However, conversely, CD1d expres-
sion in human cancer has been reported to be correlated with 
poor prognosis in human renal cell carcinoma and multiple 
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human hematopoietic malignancies (84–87). This finding sug-
gests that CD1d on the cancer cells may be recognized by type 
II NKT cells and that activated type II NKT cells may induce 
suppression of tumor immunity.

TGF-β bLOCKADe AS A THeRAPeUTiC 
APPLiCATiON OF bLOCKiNG TYPe ii NKT 
CeLL-MeDiATeD iMMUNe SUPPReSSiON

One of the candidates for therapeutic targets for cancer immu-
notherapy is type II NKT  cell-MDSC cross talk, which results 
in TGF-β-mediated CTL downregulation. A role for TGF-β in 
cancer-mediated immunosuppression was demonstrated in 1990 
for the first time (88). Initial studies to inhibit TGF-β signaling by 
antibodies demonstrated enhanced cancer cell-specific immune 
responses (89) and reduced tumorigenicity of a human breast 
cancer cell line in athymic mice (90).

In addition, to enhance the effect of TGF-β blockade on tumor 
immunity, combination therapies have been studied. In a murine 
B16 melanoma model, neutralizing antibodies to TGF-β com-
bined with IL-2 therapy could decrease the number of metastases 
(91). Similar synergistic effect of TGF-β blockade in conjunction 
with a cancer vaccine has been reported in multiple tumor 
models with multiple vaccine platforms (92–97). In humans, an 
antibody that neutralizes all three isoforms of active TGF-β has 
shown clinical benefit in some patients with metastatic malignant 
melanoma (98, 99). Of course, TGF-β can be made by many cell 
types, not just MDSCs. For example, TGF-β can be important in 
induction of some types of Treg cells and can play a role in their 
function (100). It can also be made by tumor cells themselves. 
Thus, TGF-β blockade can promote antitumor immunity through 
a plethora of complementary mechanisms. Nevertheless, despite 
their limited numbers, type II NKT  cells may play a key role, 
as a frequency of as much as 4.5% of sulfatide-reactive type II 
NKT cells in the liver (7) is actually a substantial number when 
one considers that the steady-state frequency of conventional 
T cells with a single-Ag specificity is orders of magnitude lower.

In addition to synergy with IL-2 therapy or a cancer vaccine, 
TGF-β blockade may have multiple benefits for the induction 
of adequate immune response to tumor cells. Because TGF-β 
is a pleiotropic cytokine, it has multiple roles in tumor immu-
nity. First, as mentioned above, TGF-β production by MDSCs 
directly suppresses other immune cells, such as CTLs. Second, 
TGF-β produced by MDSCs also feeds into an autocrine loop 
to enhance the development of additional tumor-associated 
MDSCs (101). Third, MDSCs induce expansion of immuno-
suppressive, tumor-specific Tregs (102), resulting in stronger 
suppression of CTLs. Altogether, TGF-β blockade could inter-
rupt these autocrine and paracrine loops driving suppression of 
tumor immunity (101, 103).

OTHeR POSSibLe THeRAPeUTiC 
APPLiCATiONS OF bLOCKiNG TYPe ii 
NKT CeLL-MeDiATeD iMMUNe 
SUPPReSSiON

One of the possible therapeutic approaches targeting type II 
NKT  cell-mediated immune suppression is development of 
an antagonistic Ag for type II NKT  cells. The development of 
antagonistic Ags for type II NKT cells that have higher affinity 
for CD1d than tumor Ags may enable blocking the signaling 
between tumor lipid Ags and type II NKT cells. The candidates 
for the antagonistic Ags are structural analogs of type II NKT cell 
Ags since it is reported that the affinity between lipid Ag and 
CD1d differ according to the structure of the fatty acid chain of 
the glycolipid Ags (104, 105). To this end, it is important to carry 
out structure–function studies of the tumor-derived and other 
lipid Ags recognized by type II NKT cells in cancer patients. Such 
studies are underway in our laboratory.

CONCLUSiON

After development of immunotherapy targeting a CTLA-4 or a 
PD-1 signaling pathway, multiple combination therapies have 
been studied. More detailed understanding of the roles and cross 
talk among immune cells in the tumor microenvironment will be 
necessary for the development of effective combination therapies.  
In addition to the more widely studied immunoregulatory cells such 
as Tregs and MDSCs, here we have reviewed abundant evidence  
that type II NKT cells play a major role in regulating immunity 
against cancer. Furthermore, the dominant immunosuppressive 
cells may differ among different types of cancer or sites of metas-
tasis. Thus, the development of diagnostic methods to determine 
dominant immunosuppressive cells and proper targeting of cells  
or pathways for individual patients is needed to relieve this sup-
pression and allow the full efficacy of the immune system to be 
marshaled to treat cancer. This “precision diagnosis of immunosup-
pressor cells in the tumor microenvironment” would help enhance 
the efficacy and decrease adverse effects of cancer immunotherapy.
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iNKT cells are a subset of innate-like T cells that utilize an invariant TCR alpha chain 
complexed with a limited repertoire of TCR beta chains to recognize specific lipid anti-
gens presented by CD1d molecules. Because iNKT cells have an invariant TCR, they 
can be easily identified and targeted in both humans and mice via standard reagents, 
making this a population of T cells that has been well characterized. iNKT cells are some 
of the first cells to respond during an infection. By making different types of cytokines 
in response to different infection stimuli, iNKT cells help determine what kind of immune 
response then develops. It has been shown that iNKT cells are some of the first cells 
to respond during infection with a pathogen and the type of cytokines that iNKT cells 
make help determine the type of immune response that develops in various situations. 
Indeed, along with immunity to pathogens, pre-clinical mouse studies have clearly 
demonstrated that iNKT cells play a critical role in tumor immunosurveillance. They can 
mediate anti-tumor immunity by direct recognition of tumor cells that express CD1d, 
and/or via targeting CD1d found on cells within the tumor microenvironment. Multiple 
groups are now working on manipulating iNKT cells for clinical benefit within the context 
of cancer and have demonstrated that targeting iNKT cells can have a therapeutic bene-
fit in patients. In this review, we briefly introduce iNKT cells, then discuss preclinical data 
on roles of iNKT cells and clinical trials that have targeted iNKT cells in cancer patients. 
We finally discuss how future trials could be modified to further increase the efficacy of 
iNKT cell therapies, in particular CAR-iNKT and rTCR-iNKT cells.

Keywords: NKT cells, CD1d, iNKT cells, cancer immunotherapy, monoclonal antibody

iNTRODUCTiON

T cells utilize their unique T cell receptor (TCR) αβ or γδ chain pairs to recognize the universe 
of antigens. Although many TCRs with extensive somatic V-D-J gene rearrangements recognize 
peptide antigens within the context of MHC molecules, this is not the only type of antigen that can 
be recognized. T cells can also utilize near-germline V-J TCR rearrangements to recognize vitamin 
metabolites, small phosphoantigens, and lipid antigens presented within various highly conserved 
and non-polymorphic MHC-I like molecules (1–3). Collectively, these non-peptide-recognizing 
T  cells are called “innate-like” T  cells and make up a significant proportion of the mammalian 
T  cell compartment (1–4). Importantly, new research is suggesting that these innate-like T  cells 
have important roles in regulating immune reactions not only to pathogens but also to tumors, 
making them potentially exploitable T cell populations for immunotherapy (1–6). One of the best 
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FigURe 1 | Invariant NKT (iNKT) cell contribution to initiating immune reactions via a positive feedback loop with dendritic cells (DCs). The contribution of iNKT cells 
to immune surveillance is linked to DC maturation. DCs produce IL-12 and present lipid antigens on CD1d (an MHC class 1 homolog) to stimulate iNKT cell 
production of IFNγ. The relative contribution of IL-12 or lipid-CD1d to iNKT cell activation is variable and context dependent. Activated iNKT cells produce IFNγ and 
co-stimulate DCs via CD40L-CD40 interactions to promote DCs to produce IL-12. This IL-12 then further activates iNKT cells in a positive feedback loop. Following 
activation of iNKT cells, iNKT cell-produced IFNγ and other iNKT-DC interactions (e.g., CD40L-CD40) mature DCs and promote production of IL-12, which further 
activates iNKT cells in a positive feedback loop.
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characterized innate-like T  cell subsets that is being leveraged 
in immuno-oncology are Natural Killer T (NKT) cells, which 
recognize lipid antigens bound within the antigen presentation 
molecule CD1d. The best-characterized subset of NKT  cells is 
“invariant” or “iNKT” cells (1–6). Mouse and human iNKT cells 
are sufficiently conserved that they can respond to each other’s 
CD1d (7).

OveRview OF iNKT CeLL BiOLOgY

NKT cells are a heterogenous population of innate-like CD1d-
restricted T  cells, the best known of which are invariant NKT 
(iNKT) cells (1–9). iNKT  cells utilize a near-germline TCRα 
rearrangement (Vα24-Jα18 in humans and Vα14-Jα18 in mice) 
combined with a limited TCRβ repertoire (1–4). iNKT cells were 
originally named because of expression of NK1.1 (CD161C) 
in some mouse strains (CD161A in humans) but this does not 
accurately define iNKT cells (5, 6). Instead, iNKT cells are func-
tionally defined by their ability to respond to the lipid antigen 
α-galactosylceramide (α-GalCer) when bound within CD1d 
molecules and/or by utilizing monoclonal antibodies against the 
human invariant TCRα chain (3–8). By utilizing (imperfect) co-
expression of NK and T cell markers, absence in CD1d or Jα18 
KO mice, CD1d tetramers loaded with α-GalCer, or other meth-
ods, iNKTs were discovered to make up a significant proportion 
of T cells within the mouse liver (~20−50%) and adipose tissue 
(~10−25%) and are present in significant numbers (~0.5−2%) 
within the murine thymus, spleen, blood, and bone marrow (3–6). 
Within humans, iNKT cells are represented at similar frequencies 
to mice in adipose tissue, but are much less frequent in the liver 
and other organs where “non-invariant” or “diverse” NKT cells 

predominate (6, 8, 9). In human peripheral blood, iNKT  cells 
range between undetectable to over 1% of circulating T  cells 
in rare individuals, with a median percentage of approximately 
0.05% (6, 8, 9).

Unlike peptide-MHC restricted T  cells, which emerge from 
the thymus “naïve,” iNKT cells leave the thymus fully matured 
and able to perform their effector functions without priming 
(3–6). Within the periphery, iNKT cells respond to lipid antigen 
and/or cytokine (e.g., IL-12/18) exposure by rapid secretion of 
multiple cytokines (3–6). Depending on how the iNKT cells are 
activated, this can include both regulatory cytokines (e.g., IL-4, 
IL-10, by analogy with Th2, Treg, etc., especially from NKT2, 
NKT10) (3–6) and/or pro-inflammatory cytokines (e.g., IL-2, 
IL-17, TNFα, and/or IFNγ, particularly NKT1 or NKT17) (3–6). 
Since iNKT cells respond rapidly and without the need for prim-
ing, they are some of the first cells within an immune response 
to be activated and therefore act as a “bridge” between the innate 
and adaptive immune systems. Indeed, iNKT cell activation via 
TCR engagement or IL-12 or both causes iNKT cells to upregu-
late IL-12 receptor [which is already basally expressed at a higher 
level than in NK  cells (6, 8)] and CD40L, while also inducing 
maturation and production of IL-12 in dendritic cells (DCs). This 
IL-12 release then in turn greatly increases IFNγ production by 
iNKT cells, leading to a positive feedback loop for Th1 immunity 
(Figure 1) (3–6, 8, 9). Additionally, this maturation of DCs leads 
to trans-activation of NK cells and increased MHC class I and 
II antigen presentation to T cells as well as direct cognate B cell 
“help,” allowing for both innate and adaptive immune responses 
to be established (3–6).

Invariant NKT cells can be further subdivided into additional 
subsets based on anatomical location or by surface activation 
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markers and transcription factors (1–6). The key master tran-
scription factor of at least iNKT cell development and present in 
most mature iNKT populations is PLZF (4). Unlike most MHC-
restricted T cells that are either CD4 + or CD8α + , iNKT cells 
in mice are either CD4 + or CD4/CD8αβ double negative (DN) 
(3–6). In humans, a minor population of iNKT  cells (typically 
1–5%) can instead express CD8αβ (3, 10). Additionally, CD8αα 
homodimers are expressed by other activated human T  cells, 
although at lower levels on activated CD4 + T cell subsets lack-
ing CD8β (1, 2, 11). In general, CD4 +  iNKT  cells are able to 
express more Th2-related cytokines like IL-4, although they can 
express as much Th1 cytokines at the same time (3–9). Human 
CD8αβ  +  and DN iNKT  cells are biased toward a Th1-related 
phenotype, more cytotoxic and preferentially make IFNγ. In both 
cases, these are plastic definitions and CD4  +  iNKT  cells can 
make IFNγ and DN iNKT cells can make IL-4, at least partially 
depending on the stimuli given (3–6, 8, 9). Mouse iNKT cells are 
less clearly biased, although liver iNKT cells have greater anti-
tumor activity than other organ iNKT cells (12). Indeed, within 
different organs, different iNKT phenotypes tend to dominate. 
Relatively Th1-like iNKT  cells tend to be enriched within the 
spleen and liver, while Th2-like iNKT  cells are associated with 
the lungs and intestine (3–6). There are also Th17-like iNKT cells 
that express cytokines like IL-17 and are enriched within the 
lungs, intestine, lymph nodes, and skin (13). Finally, a subset has 
recently been described in adipose tissue. Adipose iNKT tend to 
make anti-inflammatory cytokines like IL-10 and unlike other 
mature iNKT cells, lack PLZF (14, 15).

Because iNKT cells can rapidly produce IFNγ, IL-4, or both, 
they have been found to play a role in various diseases by establish-
ing a Th1- or Th2-based immune response. In bacterial and viral 
infections, iNKT cells typically help in early control of the patho-
gen by establishing a productive Th1 response (1–6, 9, 13, 16). In 
both mouse and human studies, roles for iNKT cells have been 
described in diseases associated with excessive Th1 responses like 
type 1 diabetes (9) and chronic obstructive pulmonary disease 
(17, 18). Roles have also been described for iNKT cells helping to 
suppress Th1 responses and drive tolerogenic responses to grafts. 
As an example, following hematopoietic stem cell transfer, the 
presence of iNKT cells is predictive for survival with a reduction 
in graft versus host disease (GvHD) in patients and preclinical 
models (8, 9, 19–21).

iNKT CeLLS iN CANCeR

Within the context of cancer, the frequency and/or function of 
iNKT  cells (either within the tumor or in circulation) can be 
selectively and highly correlative with overall survival. In human 
studies, this has been demonstrated in prostate cancer, medul-
loblastoma and neuroblastoma, melanoma, colon, lung, breast, 
and head and neck squamous cell carcinomas (8, 9, 22–37). The 
largest numbers of patient samples and/or longest follow-ups 
were analyzed for tumor in neuroblastoma and circulating in 
head and neck squamous cell carcinomas, respectively (26, 37). 
Consistent with reduced numbers, proliferative response defects 
of iNKT cells have been noted in cancer patient iNKT cells (23, 
28, 37). Decreased numbers of circulating iNKT  cells can be 

accompanied by decreases in IFNγ production and a concurrent 
increase in IL-4 production (22, 24, 25, 35). Importantly, all of 
these defects including the shift toward an iNKT cell Th2 pheno-
type can be reversed in vitro. Activation via 2 strong stimuli, such 
as α-GalCer and IL-12, increases iNKT  cell IFNγ production, 
promotes tumor rejection, and protects from development of 
metastasis in multiple mouse models and enhances cancer patient 
iNKT Th1 responses in vitro (8, 22, 24, 25, 35). However, such 
stimuli do not reverse iNKT defects individually (particularly in 
advanced disease) (8, 22, 24, 25, 35). Additionally, injection of 
α-GalCer-pulsed DCs (particularly mature DC) can provide a 
strong anti-tumor effect (31, 34, 35).

ROLe OF iNKT CeLLS iN CANCeR:  
PRe-CLiNiCAL MOUSe MODeLS

While the human data is correlative, the role for iNKT cells in 
providing tumor surveillance has been well-characterized in 
mouse models. Examples of iNKT-mediated tumor clearance 
were demonstrated by the lab of Taniguchi et al. (31, 38) as well 
as those of Smyth and Godfrey (9, 12). iNKT cells were found to 
be essential for anti-tumor responses induced by α-GalCer (12, 
30, 38). Treatment with carcinogen or transfer of carcinogen-
induced tumor cell lines in mice lacking iNKT  cells (via TCR 
Jα18 deletion, Jα18-KO) caused tumors to appear at a much 
higher frequency than in wild-type (WT) mice (39). Additionally, 
transfer of iNKT cells into Jα18-KO mice was sufficient to cause 
protection against tumors to a level like WT mice, unless the 
iNKT cells came from an IFNγ KO mouse (39). Together, these 
and other results show that even in the absence of exogenous 
antigens like α-GalCer, iNKT cells can establish a Th1 response to 
some tumors and can contribute to tumor clearance (8, 9, 29, 32, 
39). Further support for iNKT cell-mediated tumor surveillance 
was obtained with the spontaneous prostate cancer mouse strain: 
transgenic adenocarcinoma of the mouse prostate (TRAMP). By 
back-crossing Jα18-KO to TRAMP mice, Bellone et al. suggested 
that lack of iNKT cells led to accelerated tumor generation and 
quicker mortality than was detected in WT TRAMP mice (39), 
consistent with earlier human in vitro data (22). However, more 
recently, a caveat of studies using the original Jα18 KO mice 
(38) has come to light, most notably the inability of these mice 
to express TCR Jα regions past Jα19 (40). This impacts the TCR 
repertoire of conventional T cells, which could also impact in vivo 
immune responses, so new Jα18 KO mice have been developed 
that do not share this defect (41, 42).

While some CD1d-expressing tumors can probably cause 
Th1-biased iNKT cell activation, progressive chronic tumor cell 
growth can also apparently directly cause Th2-biased iNKT cell 
activation. By utilizing the same TRAMP prostate cancer model 
as a source of primary prostate tumors, we demonstrated that 
CD1d-expressing prostate tumor cells can directly activate 
iNKT cells, but biased them toward making Th2 cytokines (43). 
While addition of α-GalCer or IL-12 can usually help bias an 
iNKT cell toward a Th1 phenotype, neither of these stimuli on 
their own were enough to reverse the tumor cell driven Th2 bias 
in iNKT cells. However, pulsing the tumor cells with α-GalCer 
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FigURe 2 | Invariant NKT (iNKT) cell activity within the tumor microenvironment (TME). iNKT cells can function within the TME via direct or indirect interactions with 
tumor cells. (A) In the direct activation pathway, iNKT cells recognize lipid-CD1d complexes on the surface of tumor cells and then directly mediate killing of tumor 
cells. By making inflammatory cytokines like IFNγ, this also helps TME-resident NK cells perform their anti-tumor cell effector functions (24, 35, 36, 43, 44). (B) In the 
indirect activation pathway, iNKT cells recognize lipid-CD1d complexes on the surface of TME-resident antigen presenting cells (APCs) or tissue-associated 
macrophages (TAMs) (29). This interaction leads to iNKT cell-mediated killing of immunosuppressive TAMs, leading to a less immunosuppressive environment where 
tumor-infiltrating NK cells can better perform their functions. Alternately, if the CD1d is on the surface of a TME-resident APC, the iNKT cell can activate that APC 
and stimulate production of IL-12, helping resident effector cells like NK cells overcome the immunosuppressive state of the tumor (32).
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and adding IL-12 at the same time synergized to allow for IFNγ 
production to occur (43).

In both the models described above and in humans, activation 
of iNKT cells and tumor rejection can occur in one of two ways 
(Figure 2). The first is that iNKT cells directly recognize and kill 
CD1d-expressing tumor cells. This can occur in a significant 
portion of lymphomas, early myeloma, myeloid leukemias, 
medulloblastoma, and prostate cancers (24, 35, 36, 43, 44). The 
second is by activation of iNKT cells by other CD1d-expressing 
cells in the tumor microenvironment (TME) (29, 32). In this 
indirect system, iNKT cell activation by CD1d-expressing TME 
cells leads to trans-activation of NK cells and/or killing of immu-
nosuppressive cells like tumor-associated Macrophages (TAMs) 
(29, 32, 45). When we directly tested the ability of iNKT cells to 
respond to CD1d-expressing prostate tumor cells from TRAMP 
mice in vitro, we found that they did not elicit a Th1 phenotype 
that would be indicative of killing (43). However, Bellone et al. 
found that iNKT cells do help delay tumor growth within intact 
TRAMP mice over periods of months (39). The differences in 
these two studies may include that within the intact mouse there 
is also a role for iNKT  cells in killing CD1d-expressing TAMs 
independent of any direct anti-tumor interactions (29, 32). 
Therefore, relieving some of the immunosuppression within the 
primary tumor by killing TAMs may be a key role for iNKT cells 
in vivo. However, in progressive clinical cancer, TAMs can appar-
ently overwhelm iNKT cells (29, 32). Reversing these as well as 
tumor cell-driven iNKT defects is the goal of the groups working 
on clinical trials targeting iNKT cells worldwide.

PReCLiNiCAL AND CLiNiCAL TRiALS 
TARgeTiNg iNKT CeLLS

Pre-clinical murine models have shown similar defects in 
iNKT  cells as have been seen in humans and demonstrated 
that iNKT stimulation in  vivo or adoptive transfer can induce 
strong antitumor immune responses (38, 43, 46–51). This has 
been shown to be the case for stimulation of iNKT  cells via 
α-GalCer infusion and when α-GalCer has been loaded on DCs 
(46–51). Additionally, as iNKT cells play a key role in generating 
a positive feedback loop for IL-12 production by DCs, low and 
moderate-dose IL-12 therapy in animal models is also dependent 
on iNKT cells (46, 50, 51). Either stimulation causes iNKT cells 
to rapidly produce a strong cytokine response, including large 
amounts of IFN-γ that stimulates NK cells, B cells, and that also 
enhances the generation of classical cytotoxic T  cell responses 
(39, 49, 51). Strong antitumor immune responses to α-GalCer 
and/or IL-12 have been observed in most murine models, includ-
ing colon carcinoma, lymphomas, sarcoma, melanoma, prostate, 
and lung carcinoma (39, 41, 46–51). Together, these observations 
indicate that restoration of iNKT cell function in humans with 
cancer may stimulate potent antitumor immune responses.

Clinical Trials Targeting iNKT Cells via 
Stimulation with α-galCer
The pre-clinical antitumor effects of α-GalCer stimulated a 
phase 1 clinical study in advanced-stage cancer patients (52). 
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Administration of α-GalCer was not accompanied by dose 
limiting toxicity. In this phase 1 study, as in other analyses 
(9, 28, 29, 37), circulating iNKT  cell numbers were found 
to be decreased in cancer patients (52). The relevance of the 
decreased size of the iNKT cell pool was demonstrated in the 
same trial as immunological responses to α-GalCer adminis-
tration (increases in GM-CSF and TNF-α) were only observed 
in those patients with higher iNKT  cell levels comparable to 
healthy controls (52).

This initial clinical study and preclinical studies outlined above 
implied that antitumor effects of α-GalCer in cancer patients 
would be limited by both qualitative and quantitative defects in 
iNKT cells, necessitating the evaluation of alternative approaches 
to exploit this natural antitumor system. In mice, administration 
of α-GalCer-loaded DC resulted in a more powerful antitumor 
immune response (48, 49). Several phase 1 clinical studies have 
used α-GalCer-loaded immature or matured monocyte-derived 
dendritic cells (Mo-DC) or other monocyte-derived antigen-
presenting cell (APC) preparations leading to clinically relevant 
antitumor responses (53–58).

In the first published autologous Mo-DC transfer clinical 
study, Nieda et al. investigated the transfer of purified α-GalCer-
pulsed immature Mo-DC in a variety of different malignancies 
(53). They found that adoptive transfer of α-GalCer-pulsed 
Mo-DC led to minor systemic side effects in 9 of 12 patients such 
as fever, malaise, lethargy, and headache (53). These side effects 
were temporary and expected when eliciting an immune response 
by activating iNKT  cells. Several patients experienced tempo-
rary exacerbation of tumor symptoms that were interpreted as 
inflammatory responses to the tumor (e.g., enlargement of tumor 
deposits or associated lymph nodes, bone pain, and respiratory 
symptoms in subjects with pulmonary metastases) (53). These 
exacerbated tumor symptoms had a strong temporal and repro-
ducible relationship in terms of timing and nature with treatment 
cycles, were transient (generally lasting 1 to 3  days), and were 
absent outside of the study period. In four of the patients, there 
were decreases in tumor markers, and in one patient, there was 
extensive tumor necrosis (53). This study was also important in 
that it was the first to provide clinical interventional data for the 
role of iNKT cells as the “bridge” between the innate and adaptive 
immune systems in humans, as has been seen in multiple human 
in vitro and murine in vivo studies (39, 43, 46–51). In this clinical 
trial, activation of human iNKT cells in vivo by adoptive transfer 
of α-GalCer-loaded Mo-DC reproducibly initiated an activation 
program wherein iNKT cell activation led to subsequent activa-
tion of B cells, T cells, NK cells, and increased serum levels of 
IL-12 and IFN-γ (53).

Ishikawa et al. investigated the effects of adoptive transfer of 
autologous cell preparations that were enriched for α-GalCer-
pulsed DCs in 11 patients with recurrent lung cancer or advanced 
non-small cell lung cancer (54). No serious adverse events were 
reported. Importantly, in several patients, an increase in the 
circulating number of iNKT cells was also detected. Notably, as 
reported previously, immunological responses were restricted to 
patients having “normal” pretreatment iNKT cell numbers. No 
patients exhibited complete or partial responses in this study, but 
two patients had stable disease (54).

Chang et  al. performed a clinical trial where five cancer 
patients were treated with α-GalCer-pulsed mature Mo-DC (55). 
The trial was focused on evaluating the number and phenotype 
of iNKT  cells following stimulation via DC transfer. A more 
than 100-fold expansion of circulating iNKT cell numbers was 
observed in all five patients, and this expansion was sustained for 
up to 6 months post-vaccination (55). Additionally, the data sug-
gested a boost in adaptive T cell immunity, as it was accompanied 
by an increase in antigen-specific memory CD8 + T cells (55). 
In this study, no more than grade 1 toxicity was observed, and 
although one patient developed rheumatoid factor and transient 
positive anti-nuclear antibody at follow up, no clinical evidence 
of autoimmunity was observed (55).

In addition to these trials above, several subsequent trials have 
used APC (i.e., adherent monocytic cells treated with GM-CSF 
and IL-2) loaded with α-GalCer and have shown increasing effec-
tiveness as dose and targeting have been improved, particularly so 
far in lung cancer and head and neck cancers (56–58). Specifically 
in a lung cancer trial, patients who had circulating iNKT able to 
produce IFNγ had a threefold longer lifespan (57).

Clinical Trials Boosting endogenous iNKT 
Cell Numbers via Adoptive Transfer
Another (and complementary) approach to α-GalCer-based 
treatments involves the adoptive transfer of activated iNKT cells 
to restore iNKT cell numbers and potentially iNKT cell function 
in cancer patients. This approach has been tested in preclinical 
models of melanoma and lung cancer and shown to be more 
effective compared to the i.v. administration of α-GalCer (50). 
Trials of iNKT-enriched PBMC have supported direct use of 
iNKT with evidence for immunological and objective clinical 
responses (59–62).

The first of these adoptive iNKT  cell therapies targeted 
six patients with non-small cell lung cancer (59). To grow out 
iNKT  cells, bulk PBMCs were stimulated two to three times 
via addition of α-GalCer to the cultured cells. These iNKT cell-
enriched products were then infused back into the patient, 
and the iNKT  cell numbers, persistence, and phenotype were 
measured. In most patients, there was a transient but not long-
term increase in iNKT  cell number within the blood, and this 
coincided with the ability to detect IFNγ production ex vivo via 
α-GalCer stimulation of PBMCs. Only minor adverse effects were 
seen in this first trial, demonstrating that adoptive cell therapy of 
iNKT cells is likely to be safe. In this study, no partial or complete 
responses were seen (59).

The next adoptive iNKT cell-based therapy studies combined 
autologous iNKT  cell-enriched product with in  vivo boosting. 
In a Phase I and subsequent Phase II study, the trial group first 
treated head and neck squamous cell carcinoma (HNSCC) 
patients with two doses of α-GalCer-loaded DCs followed by an 
iNKT cell infusion (60). In the Phase I trial, three patients showed 
partial responses, four had stable disease, and one had progressive 
disease (60). Of the eight patients, only one had grade 3 adverse 
events and that patient also had a partial response: a fistula formed 
within the tumor apparently due to rapid tumor killing (60). In 
the follow-up Phase II trial for 10 patients with HNSCC, patients 
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were first given nasal submucosal administration of α-GalCer 
loaded DCs followed by iNKT  cell infusion directly into the 
tumor-feeding arteries, so that iNKT cells were more likely to end 
up in the tumor site (61). Adverse events were minimal and lim-
ited to grade 2 or below, five patients had a partial response, and 
five patients had stable disease (61). iNKT cell numbers within 
the tumor and in the peripheral blood were measured, and while 
iNKT cell numbers in the blood did increase in 9 of 10 patients 
post-treatment, this did not correlate with outcome. Instead, a 
high number of tumor-infiltrating iNKT cells correlated with an 
objective response of patients (61).

With clinical colleagues at Harvard Cancer Center, we per-
formed a Phase I clinical trial of autologous purified [with the 
iNKTCR mAb 6B11 (62)] and expanded iNKT cells in nine mela-
noma cancer patients (62). In our study, iNKT cells were isolated 
from PBMCs with a protocol based on a monoclonal antibody 
that specifically recognizes the invariant TCR of iNKT cells and 
then expanded in  vitro with plate bound anti-CD3 antibody  
(62–64). Compared to previous studies using α-GalCer stimulated 
PBMCs as a source of iNKT cells (59–61), this study transferred 
in generally higher purity and/or larger numbers of iNKT cells  
(3 doses at up to 250 million iNKT cells per dose). Since iNKT cells 
are activated via interaction with CD1d on APC, after the first 
three patients had no significant toxicities, subsequent patients 
were pre-treated with GM-CSF to enhance DC functions before 
iNKT infusion cycles 2 and 3. Like in the other studies, we noted 
a transient increase in circulating iNKT cell numbers following 
adoptive cell transfer and increased activation of other T  cells 
and myeloid cells in some patients, and toxicities were minor and 
readily treatable (Grade 1 & 2 only) (62). In terms of responses 
at the end of the study, three patients had no evidence of disease 
or stable disease, three eventually progressed and responded to 
subsequent treatment, and three died of disease (one removed 
from study after infusions, two at 2 or more years post-treatment). 
Overall, our trial confirms that iNKT cell adoptive therapy is safe 
and well-tolerated, but modified treatment regimens are likely 
required to demonstrate efficacy. These could include further 
conditioning with stimulations like α-GalCer (on APC or free) 
and/or IL-12 in vivo.

FUTURe CLiNiCAL TRiALS: CAR-iNKT 
AND rTCR-iNKT

Current clinical trials with either α-GalCer-loaded Mo-DCs 
or adoptive transfer of iNKT  cells have produced partial and 
complete responses, but few if any cures in late stage patients. In 
contrast, T cells expressing chimeric antigen receptors (CAR-T)  
targeting surface proteins like CD19 have shown complete 
response rates of up to 90% in specific diseases such as B-ALL, 
leading to the first approvals for these treatments (65). Additional 
T cell therapies are utilizing recombinant TCR (rTCR-T) express-
ing T cells to be able to target peptides from tumor-associated 
intracellular proteins within the context of HLA molecules and 
are reporting similar complete response rates in myeloma (66) 
and solid malignancies.

One of the major drawbacks of CAR-T/rTCR-T cell therapy 
is a very high rate of serious adverse effects, including cytokine 

release syndrome (CRS) and lethal neurotoxicity (65, 67). Other 
risks include antigen selection issues (e.g., off-tumor on-target) 
and GvHD caused by TCR mispairing in rTCR-expressing cells 
and via allogeneic cell therapy (67). Interestingly, while GvHD 
is a common concern for both CAR-T and rTCR-T, iNKT cells 
have been shown in pre-clinical models to suppress, not cause 
GvHD and are associated with reduced GvHD in the clinic (19–
21, 68, 69), making for a potentially safer therapeutic approach. 
In light of both the promises and drawbacks of CAR-T and 
rTCR-T cells, there is growing interest in utilizing iNKT cells 
as an ideal platform for CAR or rTCR therapies (CAR-iNKT or 
CAR-rTCR).

One of the main benefits of considering iNKT  cells as an 
ideal vector for CAR/rTCR therapies is that iNKT cells have an 
endogenous TCR that is confirmed to have intrinsic anti-tumor 
capabilities (Figure 3). While the “random” endogenous TCRs on 
a bulk polyclonal T cell preparations are unlikely to contribute to 
anti-tumor effects, it is likely that iNKT cells could utilize both 
their endogenous TCR and their CAR/rTCR to target the tumor 
with two different targeting moieties. As mentioned previously, 
this could be by direct CD1d targeting either on the surface of the 
tumor cell or a bystander tumor-promoting myeloid cell, or via 
removing immunosuppression by killing CD1d + TAMs. Since 
strong TCR signaling cascades (as evidenced by potent iNKT cell 
antigens like α-GalCer) help cause Th1-based iNKT cell responses, 
having a second TCR signaling pathway engaged within the 
iNKT cell may help ensure that the iNKT cells remain Th1-biased 
in  vivo. Another advantage for CAR-iNKT or rTCR-iNKT  cell 
therapies is that iNKT cells naturally migrate into non-lymphoid 
tissues (70), suggesting that they would be ideal cells to target 
non-lymphoid tumors. Indeed, PLZF expression seems to drive 
innate T  cells tissue homing in general (4, 71). iNKT  cells are 
known to respond to tissue chemokines CCL2 (72) and CCL20 
(45). While suggestive of intrinsic benefits of iNKT cells, these 
points remain to be formally tested in the context of CARs in 
the clinic.

The Metelitsa group has pioneered CAR-iNKT cells for tumor 
therapies. In pre-clinical models, they have tested human iNKT cells 
purified with the iNKTCR mAb 6B11 for their ability to express 
GD2 CARs (against neuroblastomas) and CD19 CARs (against 
B cell lymphomas) (73, 74). Importantly, they demonstrated that 
iNKT cells could stably express either CAR construct, and that 
the CAR-iNKT cells kill relevant antigen-expressing tumor cell 
lines in vitro. With GD2 CAR-iNKT, this included killing of both 
GD2  +  CD1d− cells and GD2− CD1d  +  cells, demonstrating 
that the endogenous iNKT TCR was still functional within GD2 
CAR-iNKT cells (73). Importantly, CAR-iNKT cell homing and 
killing in vivo of either the solid tumor xenograft model GD2-
expressing neuroblastoma or liquid xenograft B cell lymphoma 
was greatly increased over non-transduced iNKT cells, leading to 
substantially increased survival of CAR-iNKT treated mice (73).

As tumor homing and GvHD are concerns for both CAR-T 
and rTCR-T, they further measured if CAR-iNKT cells had better 
trafficking to the tumor and what effect placing the CAR into 
bulk T cells or iNKT cells had on GvHD. CAR-iNKT cells homed 
to the tumor at an even higher frequency than CAR-T  cells, 
providing evidence that iNKT cells do indeed have better tumor 
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homing than bulk T  cells (73). To model GvHD within the 
context of a xenogeneic cell transfer, CAR-iNKT or CAR-T cells 
were transferred into humanized mice and monitored for GvHD. 
As would be expected when transferring in xenogeneic T cells, 
CAR-T cells caused severe GvHD in the livers and lungs of the 
mice. In contrast, CAR-iNKT cells did not cause GvHD of these 
organs during xenogeneic transfer (73), consistent with the 
GvHD suppressing activities of iNKT described above. Finally, 
additional work suggested that in GD2 CARs, expression of 
both the CD28 and 4-1BB costimulatory domains led to longer 
CAR-iNKT persistence and increased survival of mice compared 
to single CD28 or 4-1BB costimulatory domains (73). As well as 
the Metelitsa group, Karadimitris et al. reported in a review oth-
erwise of potential myeloma treatments that CD19-CAR iNKT 
had promising preclinical anti-tumor activity in their hands also 
(75). Both groups are planning clinical trials in the near future.

Many groups are looking at transducing subsets of T  cells 
for CAR/rTCR therapies, and some studies have suggested that 
CD62L+ (central memory) T cells are superior to other T cell 
subsets (76). In the Metelitsa group CD19 CAR-iNKT study, 
Tian et  al. separated CD62L+ and CD62L− CAR-iNKT  cells 
and measured their persistence and anti-tumor ability (74). 
CD62L+ CAR-iNKT  cells had superior proliferation, in  vivo 
persistence, and antitumor activity as compared to the CD62L− 
CAR-iNKT  cells (74), suggesting that even with iNKT  cells, it 
may be worthwhile to target a defined subset for CAR-iNKT 
or rTCR-iNKT therapies. Interestingly, the majority of iNKT 
express CD62L until they are repeatedly stimulated in vitro (74). 

While these CAR-iNKT preclinical studies are extremely valu-
able, critical issues should be generalized within future studies. 
First, multiple in vivo comparisons of tumor killing and survival 
of CAR-iNKT to bulk T cell CAR-T cells should be performed. 
Second, as in vivo administration of α-GalCer is well tolerated 
in humans, it should be determined if α-GalCer administration 
could help either expand CAR-iNKT in vivo and/or cause an addi-
tive/synergistic increase in anti-tumor activity. Planned clinical 
studies will begin to address these issues in the near future.

Jiang et al. have provided the first evidence of iNKT cells being 
able to express a second recombinant TCR (77). In this study, 
a HLA class I-restricted TCR (TCR-Vα9 TCR-Vβ5) against the 
Mycobacterium tuberculosis (Mtb) 38-kDa protein was cloned and 
expressed in iNKT cells. Using autologous 38-kDa protein pulsed 
Mo-DCs as APC, they confirmed that only rTCR-expressing 
iNKT cells recognized and killed these cells. The relative killing 
efficiency of α-GalCer-pulsed Mo-DCs was similar to the kill-
ing of 38-kDa pulsed Mo-DCs, suggesting that the endogenous 
iNKT TCR was still fully functional (77). However, it was not 
determined if the recombinant TCR and the endogenous TCR 
could both signal at the same time to cause additive or synergistic 
effects. Nor was it determined if expression of the recombinant 
TCR came at the expense of some endogenous iNKT-TCR, as 
could happen due to competition for CD3 complexes. Finally, as 
it has been reported that the anti-Mtb activity of iNKT cells is 
due to production of GM-CSF and not production of IFNγ or 
infected cell lysis (78), it is unclear what additional role(s) rTCR-
iNKT cells would play during Mtb infection. Future studies are 
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needed to determine if expressing this rTCR in iNKT cells skews 
their function in vivo during Mtb infection, either by helping traf-
ficking of iNKT cells to the site of infection or otherwise. Clearly, 
iNKT expressing anti-tumor rTCR could also gain augmented 
activity, as is currently being addressed by some groups.

CONCLUSiON

iNKT cells provide a novel alternative to standard T cells in cancer 
immunotherapy, as described above. Their tissue (and therefore 
also tumor) tropism, inherent direct and indirect anti-tumor 
activities and our ability to manipulate them in vitro and in vivo 
(e.g., with α-GalCer, analogs thereof, or the iNKTCR mAb 6B11) 
combined with reversible defects in cancer patients suggest that 
they can be exploited to treat a range of solid and hematological 
malignancies.

An important potential caveat in exploiting iNKT  cells 
has been the observation that repeated stimulation of mouse 
iNKT cells (though less so with human iNKT) with α-GalCer can 
lead to an anergic-like state (3–6, 8, 79–81). Interestingly, this 
state can be reversed by PD-1/PD-L1 blockade (79), commonly 
now used in the clinic to overcome conventional anti-tumor 
responses. Furthermore, it may reflect a polarization to IL-10 
producing “NKT10” that have been found in mice and man 
(81). Another promising approach in general, which may also 
overcome NKT  cell anergy/polarization, is differential use of 
co-stimulation alongside direct invariant TCR stimulation (82).

There may well be more total “non-invariant” diverse CD1d-
restricted NKT cells in the body than iNKT and their ability to 

make Th2 cytokines appears to impair tumor immunity (30), 
whereas such NKT making IFNγ stratifies with cancer patient 
survival (83), as does iNKT (24, 25, 54). However, non-invariant 
CD1d-restricted NKT cell manipulation is much more challeng-
ing and their understanding lags far behind iNKT cells. Finally, 
unlike other innate lymphocytes like NK and γδ T cells, iNKT 
are also relatively rare, so substantially increasing their numbers 
should be safe and is both very feasible (as described above) and 
has more potential to change the milieu (the other populations 
at ~5% of total lymphocytes probably cannot be increased more 
than ~10-fold without concomitant loss of conventional T cells). 
The next few years should provide an opportunity for iNKT cells 
to “put up or shut up”!
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NKT cells are CD1d-restricted innate-like T cells expressing both T cell receptor and

NK cell markers. The major group of NKT cells in both human and mice is the invariant

NKT (iNKT) cells and the best-known function of iNKT cells is their potent anti-tumor

function in mice. Since its discovery 25 years ago, the prototype ligand of iNKT cells,

α-galactosylceramide (α-GalCer) has been used in over 30 anti-tumor clinical trials with

mostly suboptimal outcomes. To realize its therapeutic potential, numerous preclinical

models have been developed to optimize the scheme and strategies for α-GalCer-based

cancer immunotherapies. Nevertheless, since there is no standard protocol for α-GalCer

delivery, we reviewed the preclinical studies with a focus on B16 melanoma model in

the goal of identifying the best treatment schemes for α-GalCer treatment. We then

reviewed the current progress in developing more clinically relevant mouse models for

these preclinical studies, most notably the generation of new mouse models with a

humanized CD1d/iNKT cell system.With ever-emerging novel iNKT cell ligands, invention

of novel α-GalCer delivery strategies and significantly improved preclinical models for

optimizing these new strategies, one can be hopeful that the full potential of anti-tumor

potential for α-GalCer will be realized in the not too distant future.

Keywords: iNKT cell, cancer immonotherapy, preclinical modeling, humanized mice, α-GalCer

Natural Killer T (NKT) cells are CD1d-restricted innate-like T cells expressing both T cell receptor
and NK cell markers (1). Invariant NKT (iNKT) cells are the major group of NKT cells in both
human and mice. They express the invariant Vα24-Jα18 chains and Vα14-Jα18 TCRα chains in
human and mice, respectively (2–4). Since their discovery in the early 1990s, the best-studied
function of iNKT cells has been their anti-tumor function. Activated iNKT cells rapidly secrete
both Th1 and Th2 cytokines and activate NK and other immune cells to stimulate anti-tumor
immune responses (5, 6). The prototypical iNKT cell ligand, α-galactosylceramide (α-GalCer),
is a sphingolipid that was first isolated from the marine sponge Agelas mauritianas in 1994
by chloroform extraction and HPLC purification techniques (7). Mice injected with free α-
GalCer demonstrated potent anti-tumor activity against metastatic B16 melanoma cells (7, 8).
Furthermore, α-GalCer demonstrated synergistic anti-tumor effects when co-administered with
another chemotherapy agent, adriamycin (8), suggesting α-GalCer has a different target other
than the tumor cells themselves. Interestingly, early researchers believed that α-GalCer was a
non-specific immunostimulatory agent (8). However, by 1998, studies using knockout mice had
concluded that α-GalCer’s anti-tumor properties were mediated by CD1d-restricted iNKT cells
(9, 10). Several excellent reviews have been published recently on the anti-tumor function of
α-GalCer and iNKT cells (5, 6, 11–15). Here we aim to review commonly used preclinical mouse
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models for α-GalCer and iNKT cell-based cancer
immunotherapy to compare and contrast the different
approaches in mobilizing iNKT cells for anti-tumor therapies.
We specifically focus on the syngeneic mouse B16 melanoma
model, a well-established model for humanmelanoma (16). For a
comprehensive review of preclinical modeling of α-GalCer-based
cancer therapy targeting diverse tumor types, readers are referred
to a recent review by Nair and Dhodapkar (6).

HOW EFFECTIVE IS α-GALCER IN

ANTI-TUMOR IMMUNITY IN

EXPERIMENTAL MICE?

Despite extensive literature on the anti-tumor function of
α-GalCer and iNKT cells, no standard procedure has been
established in delivering the iNKT cell ligands. Procedures
vary widely between different research groups. The glycolipid
ligands can be administered prior to, simultaneously or after
the inoculation of tumor cells at different time points, via
intravenous, intraperitoneal or subcutaneous routes, and in free
or vehicled forms. Clearly, the scheme, time points, routes and
forms for glycolipid deliveries all have a significant impact on
the ensuing immune response and therefore the interpretation
of the results.

In initial reports on the anti-tumor function of α-GalCer
[KRN7000, a close analog of original AGL9b (8)], the glycolipid
was injected post B16 cell inoculation. For example, Morita
et al. (8) reported that α-GalCer injected 1, 5, and 9 days after
subcutaneous inoculation of B16 cells suppressed the tumor
volume growth by about 50%. Glycolipid treatment before tumor
inoculation represents a prophylactic treatment and may be
particularly applicable for future tumor vaccination with specific
neoantigens, while the post-tumor inoculation studies are more
clinically relevant for anti-cancer therapies.

α-GalCer Treatment Prior to B16

Melanoma Inoculation
While several reports have demonstrated that pre-treatment with
α-GalCer can lead to an anti-tumor response in mice, one
study found that injecting α-GalCer immediately before tumor
inoculation does not show an anti-tumor effect (17) (Table 1).
However, pre-administration of a single-dose α-GalCer 2 days
prior to B16 cell inoculation leads to powerful anti-metastatic
effect (20). This has been confirmed by ours and other studies
(14, 21–23). It is unclear how long the anti-tumor response
can last, but it is unlikely to last too long, for example 30
days, as the NKT cells will become anergic by then (17,
25). More kinetic experiments are warranted to determine the
duration of this anti-tumor response before the anergy induction
because the information will be important for future repetitive
administration of α-GalCer and its analogs in clinics.

α-GalCer Treatment Post B16 Melanoma

Inoculation
Several reports showed that one single injection of α-GalCer
either simultaneously or shortly after the B16 melanoma

inoculation does not inhibit tumor growth (17–19, 24). Similarly,
a single α-GalCer treatment 4 days (19), or seven days
after B16 cell inoculation (24) had little beneficial effect on
suppressing tumor growth or mouse survival. Therefore, most
reports investigating anti-B16 function of α-GalCer have utilized
multiple dosages of α-GalCer, typically in a three-dose scheme
at days 0, 4, and 8 post B16 inoculation (25–28). In one
study, repetitive administration of α-GalCer was initiated at
different time points post B16 inoculation (29). α-GalCer was
administrated every other day until the end of the experiment
on day 14. The free α-GalCer glycolipid demonstrated anti-B16
function as late as 3 days after tumor inoculation, but not beyond
5 days after (29). This may be due to immune-suppression by the
established B16 tumors as reported (30). On the other hand, DC-
vehicled α-GalCer clearly can extend this treatment window to
at least seven days after B16 inoculation (29), suggesting that the
vehicled α-GalCer is more efficient in boosting immune response
and/or overcoming tumor-led immune suppression.

APPROACHES TO IMPROVE THE

ANTI-TUMOR EFFICACY OF α-GALCER

Many possible mechanisms have been proposed for the
suboptimal efficacies of α-GalCer in anti-tumor clinical trials
(5, 6, 11), such as the induction of anergy, the secretion of both
Th1 and Th2 cytokines by iNKT cells and immune suppression
by the tumors in the microenvironment (30). Many novel α-
GalCer analogs have been designed to increase the Th1/Th2
ratio and enhance the anti-tumor immunity (22, 37, 38). While
we focus on the anti-tumor function of the prototypic α-
GalCer, the chemistry and anti-tumor efficacy and mechanism
for these novel α-GalCer analogs have been elegantly reviewed
elsewhere (38).

Approaches to Suppress the Induction of

iNKT Cell Anergy
Pioneering work from Fujii and Van Kaer groups demonstrated
the induction of long-lasting anergy post α-GalCer activation
of iNKT cells (17, 25). The anergy induction not only makes
further activation of iNKT cells inefficient, anergic iNKT cells
can actually exacerbate tumorigenesis upon further stimulation
by glycolipids (25).

The arguably best approach by far to overcome iNKT
cell anergy is to load the α-GalCer to dendritic cells (17).
Although the absolute amounts of Th1/Th2 cytokines secreted
post DC-loaded α-GalCer were not as high as that of
free α-GalCer and the cytokines were secreted at a delayed
kinetics, the DC-vehicled α-GalCer stimulated higher numbers
of cytokine-secreting splenocytes. Importantly, DC-loaded α-
GalCer does not lead to iNKT cell anergy (17). More importantly,
the DC-vehicled α-GalCer showed more potent anti-tumor
activity than free α-GalCer in the B16 melanoma model
(17). Interestingly, in this study, both the free α-GalCer
and DC-loaded α-GalCer were administered simultaneously
with the B16 melanoma cells. While co-injected α-GalCer
does not induce immediate anti-tumor activity as discussed
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TABLE 1 | Preclinical studies of α-GalCer and iNKT cell-mediated anti-tumor therapies.

Treatment agent Treatment regime Administration α-GalCer

amount/Cell number

per mouse

Cancer type/mouse

model

Outcome References

Injection of free α-GalCer

α-GalCer Once, immediately

before B16

inoculation

Intravenous 2 µg B16 melanoma Very little anti-tumor

effect

(17)

α-GalCer Once, shortly after

B16 inoculation

Intravenous 100 ng or 500 ng B16 melanoma Very little anti-tumor

effect

(18, 19)

α-GalCer Once,

simultaneously

with B16

inoculation

Intravenous 2 µg B16 melanoma Very little anti-tumor

effect

(17)

α-GalCer Once, 2 days prior

to B16 inoculation

Intravenous or

intraperitoneal

2 µg or 4 nmol B16 melanoma Potent anti-tumor effect (20–23)

α-GalCer Once, 7 days post

B16 inoculation

Intraperitoneal 2 µg B16 melanoma Very little anti-tumor

effect

(24)

α-GalCer Multiple, days 0, 4,

8 post B16

inoculation

Intravenous or

intraperitoneal

2 or 5 µg B16 melanoma Potent anti-tumor effect (25–28)

α-GalCer Multiple, from day

3 post B16

inoculation, every

other day

Intravenous 2 µg B16 melanoma Effective anti-tumor

response

(29)

α-GalCer Multiple, days 1, 5,

9 post B16

inoculation

Intraperitoneal 2 µg B16 melanoma Tumor growth inhibition (9)

α-GalCer Once and together

with anti-PD-

1/PD-L1/L2

antibodies

Intraperitoneal 2 µg B16 melanoma Enhanced anti-tumor

effect, suppressing

iNKT cell anergy

(28)

α-GalCer Once, 7 days post

B16 inoculation

Intraperitoneal 2 µg B16

melanoma/iNOS-

KO

Tumor growth inhibition (24)

α-GalCer Multiple, every 4

days post B16

inoculation plus

ATRA treatment

Intraperitoneal 2 µg B16 melanoma Enhanced anti-tumor

effect, reducing

CD11b+ Gr-1+ cells

(30)

Vehicled α-GalCer

DC-loaded α-GalCer Once,

simultaneously

with B16

inoculation

Intravenous 6 × 10e5 B16 melanoma Enhanced anti-tumor

effect, no induction of

iNKT cell anergy

(17)

DC-loaded α-GalCer Multiple, from day

7 post B16

inoculation, every

other day

Intravenous 3 × 10e6 B16 melanoma Extended therapeutic

window with

DC-loaded α-GalCer

(29)

DC-loaded α-GalCer Multiple, days−7,

14, 21 from tumor

cell inoculation

Subcutaneous 6 × 10e5 PancO2

pancreatic cancer

Suppressing tumor

growth

(31)

DC-loaded α-GalCer Once, 2 days prior

to B16 inoculation

Intravenous 1–3 × 10e6 B16

melanoma/hCD1d-

KI

Inhibition of B16

metastasis at lower

iNKT cell abundance

(21)

B16 loaded α-GalCer Once, 2 to 4

weeks prior to B16

inoculation

Intravenous 5 × 10e5 B16 melanoma Long-term inhibition of

lung metastasis

(32)

B16 loaded α-GalCer Once, 3 hours

post B16

inoculation

Intravenous 3 × 10e5 B16 melanoma Prevention of lung

metastasis

(18)

(Continued)
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TABLE 1 | Continued

Treatment agent Treatment regime Administration α-GalCer

amount/Cell number

per mouse

Cancer type/mouse

model

Outcome References

DC-derived

exosomes loaded

with α-GalCer/OVA

Once or twice, 4

or 4 and 11 days

post B16

inoculation

Intravenous 40µg exosomes B16.OVA

melanoma

Effective suppression of

tumor growth, no

anergy induction

(19)

Cationic liposomes

loaded with α-GalCer

Once, 6 days post

B16 inoculation

Intravenous 200 ng liposomes B16.OVA

melanoma

Prolonged survival time (33)

PLGA nanoparticle

encapsulated with

α-GalCer/Trp2/gp100

Multiple, days 14

and 7prior to B16

inoculation

Intravenous 5 ng nanoparticle B16 melanoma Slowed tumor growth (34)

PLGA nanoparticle

encapsulated with

α-GalCer/Trp2/gp100

Multiple, days 5

and 12 post B16

inoculation

Intravenous 5 ng nanoparticle B16 melanoma Slowed tumor growth (34)

α-GalCer loaded to

soluble CD1d fused

to anti-HER2-svFv

Multiple, every 3-4

days from day 2

post B16

inoculation

Intravenous 40µg fused

sCD1d

B16.HER2

melanoma

Potent anti-tumor effect (35)

DC-loaded with

α-GalCer and B16

cells plus

pre-treatment with

anti-CD25 Ab

Once, day 7 and

anti-CD25

treatment on day 9

prior to B16

inoculation

Intravenous or

intraperitoneal

5 × 10e5 B16.OVA

melanoma

Slowed tumor growth,

prolonged survival,

depleting Tregs

(36)

above, DC-vehicled α-GalCer can immediately induce anti-
tumor activity. Free α-GalCer takes 2 days to induce an
anti-tumor response in mice (20), suggesting that these
two approaches boosted different downstream effectors. It
is particularly important to note that NK cells are only
responsible for approximately half of the anti-tumor effect
for DC-vehicled α-GalCer (17), while they account for almost
all of free α-GalCer mediated anti-tumor function (26, 39,
40). Given the fact that DC-loaded α-GalCer has been widely
used in anti-tumor clinical trials (31, 41–43), it is important
to further delineate the exact anti-tumor mechanism of
DC-vehicled α-GalCer.

The second reported approach to suppress NKT cell anergy
is to use exosomes loaded with α-GalCer (19). While in early
clinical trials, exosomes loaded with tumor antigens have mostly
been tolerated and had little immunostimulatory effects (44, 45),
exosomes loaded with α-GalCer as an immune-stimulatory
adjuvant led to an effective anti-tumor responses in mice (19).
Using a subcutaneous B16 melanoma model, Gehrmann et al.
(19) demonstrated that dendritic cells-derived exosomes loaded
with α-GalCer administered 4 days after tumor inoculation could
effectively suppress tumor growth and extend mouse survival.
More importantly, a second injection of loaded exosomes 1 week
after the first one can further inhibit tumor growth, suggesting
that the first injection with α-GalCer-loaded exosomes did not
induce anergy.

Rejuvenating anergic NKT cells at molecular levels is the
third approach for suppressing NKT cell anergy. Expression of
inhibitory co-stimulatory molecules including PD-1 and PD-
L1/L2 is partially responsible for the anergy of NKT cells (28).
Three injections of anti-PD-L1/L2 or anti-PD-1 antibodies post

α-GalCer activation of iNKT cells could maintain the iNKT cells
response for at least 30 days after the α-GalCer treatment (28).
This allowed the recovery of iNKT cells to a responsive state
and repeated activation of iNKT cells with α-GalCer extended
the anti-B16 metastatic function (28). Considering the recent
success of anti-PD-L1/2 and anti-PD-1 antibodies in rejuvenating
tumor-specific T cells in clinics, future combination treatment
with these antibodies and α-GalCer may synergize their anti-
tumor functions.

IL-2 has shown anti-anergy function to iNKT cells. In light
of its function in breaking anergy of conventional T cells (46),
Parekh et al. (25) demonstrated that IL-2, but not IL-12, IFN-γ or
IL-4 could re-stimulate the anergic iNKT cells to proliferate both
in vitro and in vivo.

Additional Approaches to Enhance the

Anti-tumor Efficacy by α-GalCer
Vaccination With Tumor Cells or Tumor Antigens

Complexed With α-GalCer
One major innovation in the field pioneered by the Fujii group
is to load α-GalCer to the tumor cells for immunization (18,
32). Even for low immunogenicity tumor cells including B16
melanoma cells, one single vaccination with α-GalCer-loaded
tumor cells could stimulate potent tumor-specific CD8+ T cell
responses. Memory CD4 and CD8T cells could protect the
immunized mice from tumor re-challenge for as long as 6–12
months (32). It was also demonstrated that CD1d expression
significantly improved the efficacy of iNKT cell-based therapies,
presumably due to increased efficiency of direct killing by iNKT
cells. Therefore, CD1d expression on tumor cells can be a positive
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biomarker for future iNKT cell therapies in clinics, as suggested
by another report (47). Importantly, the tumor protection from
vaccination in this study is tumor-specific. The mice were only
immune to the specific tumor that was used for vaccination
(32). On the other hand, α-GalCer-loaded dendritic cells induce
short-term tumor resistance against different types of tumors,
including melanoma (29), multiple myeloma (48), pancreatic
cancer (31) and B cell lymphoma (49). These studies suggested
that dendritic cells loaded with α-GalCer induce mostly innate
immunity-based non-specific anti-tumor responses including
activated NK cells, whereas tumor cells loaded with α-
GalCer induce more specific long-term adaptive immunity-based
anti-tumor responses.

Several other groups have explored delivering tumor cells
or specific tumor antigens with α-GalCer using vehicles such
as dendritic cells (36, 50, 51), dendritic cells-derived exosomes
(19), dendritic cells loaded with tumor-derived exosomes (52),
PLGA nanoparticles (34), cationic liposomes (33), chemically
conjugated α-GalCer-tumor peptide antigen compound vaccine
(53), or α-GalCer-loaded recombinant soluble CD1d protein
fused with single chain antibodies against neoantigen (35, 54).
In vivo, the tumor antigens are either directly or cross-presented
by endogenous dendritic cells to CD8+ T cells while the co-
delivered α-GalCer is presented to iNKT cells. As expected, all of
these approaches have shown enhanced tumor antigen-specific
CTL responses and increased IFN-γ secretion in these T cells.
These approaches have demonstrated both prophylactic (36), or
therapeutic effects (19, 34, 50–53) to challenges by vaccinated
tumors. One Phase I trial has been completed using dendritic
cells loaded with α-GalCer and the well-established neoantigen
NY-ESO-1 (51). It is encouraging that there were increases in
NKT cell proliferation, NKT cell-associated cytokine secretion
and more importantly, the circulating NY-ESO-1-specific T cells
in most (7 out 8) patients (51).

More Approaches to Enhance the Anti-tumor

Function of α-GalCer
It has been well-established that CD4+CD25+ Treg cells suppress
anti-tumor immunity (55, 56). On the other hand, several
reports showed that α-GalCer-activated NKT cells secret IL-
2 leading to the expansion of Treg cells (57, 58). Pre-
administration of depleting anti-CD25 monoclonal antibody
(PC61) 2 days prior to α-GalCer vaccination increased
the α-GalCer-induced prophylactic anti-tumor function in a
subcutaneous challenge model with B16 melanoma cells (36).
However, pre-administration with the same PC61 antibody prior
to α-GalCer treatment did not enhance the anti-tumor function
of α-GalCer in a therapeutic tumor challenge model with a
lung tumor cell line TC1 (59). Interestingly, in the Petersen
report (36), α-GalCer challenge and NKT cell activation did not
induce an expansion of Treg cells as previously reported (57).
This difference is likely due to the different routes of α-GalCer
delivery. While in the previous report, delivery of free α-GalCer
led to Treg expansion (57), the α-GalCer delivered in dendritic
cell-vehicled form in the later study did not (36). More studies are
needed to delineate the interaction between iNKT cells and Tregs

in order to manipulate Tregs for the benefit of iNKT cell-mediated
cancer therapies.

IFN-γ is one of the major cytokine effectors after α-GalCer
administration (1). The high amount of IFN-γ induces immuno-
suppressive factors including the iNOS enzyme, which produces
nitric oxide and inhibits anti-tumor immunity (60). In iNOS-
knockout mice or wild-type mice treated with an iNOS inhibitor,
L-NAME, the B16 metastasis was more efficiently suppressed
by a suboptimal treatment of α-GalCer (one single treatment
seven days after B16 melanoma inoculation) (24). Another
study demonstrated that lung metastasis of B16 melanoma was
also significantly inhibited by a suboptimal treatment of α-
GalCer when the mice were simultaneously treated with all-
trans-retinoic acid (ATRA) (30). ATRA, a derivative of vitamin
A, can induce the differentiation of CD11b+Gr-1+ immature
myeloid cells and reduce this major nitric oxide-producing
population (30).

There are more innovative approaches of enhancing anti-
tumor activity of α-GalCer, such as adoptive iNKT cell transfer
(61, 62), using artificial antigen-presenting cells to expand iNKT
cells in vitro (63), co-administration of NK cell activator, IL-18
(64). Altogether, all the reported approaches could increase α-
GalCer function. Clearly more research is required to realize their
therapeutic potential and achieve the optimal therapeutic efficacy
by combining these novel approaches.

BUILDING BETTER MOUSE MODELS FOR

DEVELOPING α-GALCER-BASED

ANTI-TUMOR THERAPIES

The sharp difference between mouse and human immune
systems, including the difference in the CD1d/iNKT cell system,
urgently demand better mouse models with improved predictive
powers for clinics. In addition to the significantly lower affinities
of the human CD1d and iNKT TCR to α-GalCer compared
to that of mice (65, 66), human iNKT cells are present at a
much lower abundance with very different subset compositions
(21, 67, 68). The journey from the original discovery of α-
GalCer’s anti-tumor function in mice to current clinical trials
also suggests that preclinical modeling with more relevant mouse
strains is warranted before translating α-GalCer and its analogs
into clinics.

One attractive direction to improve the preclinical modeling
of α-GalCer-based immunotherapies is to develop mouse models
with a human-like CD1d/iNKT TCR system. The first mouse
model with a humanized CD1d/NKT cell system is from
the Wang group in which human CD1d is expressed under
a mouse MHC class I (Kb) promoter (69). Human CD1d
is highly expressed in all nucleated cells as a MHC class I
expression pattern. It is not clear how NKT cells are developed
in this strain. However, it was clear that the exogenous human
CD1d can function as a strong transplantation antigen (69).
The second mouse model generated by the Casorati group
expressed human CD1d using Lck or CD11c promoters to direct
specific human CD1d expression in thymocytes or dendritic
cells, respectively (70). By breeding to CD1d-knockout mice,
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the authors demonstrated that thymocyte-specific expression
of human CD1d alone is sufficient to support iNKT cell
development (70). However, because of no human CD1d
expression on dendritic cells in these pLck-hCD1dTg mice,
in vivo α-GalCer treatment is not feasible to test the α-
GalCer-based cancer immunotherapy. For a human-like iNKT
cell population, the Casorati group generated a pre-arranged
human invariant Vα24-Jα18 TCRα chain and expressed it as
a transgene under the human CD2 promoter (71). In the
Jα18-knockout background, which eliminates the expression
of mouse iNKT TCRα chain (Vα14), the human Vα24-Jα18
TCRα chain could support the development of human-like Vα24
iNKT cells. The Gumperz group has utilized the humanized
SCID mice to generate mice with a humanized CD1d/iNKT
cell system. Immune-deficient mice were engrafted with human
fetal thymus, liver and CD34+ hematopoietic cells. Four surface
CD1 gene family members, CD1a, CD1b, CD1c, and CD1d
were all expressed in vivo. Furthermore, T cell responses have
been detected for all the CD1 family members. In addition,
α-GalCer can stimulate IFN-γ secretion in the mouse serum,
suggesting the NKT cells are developed and functional in
vivo (72). Nevertheless, more investigation on the immune cell
development and adaptive immune responses may be needed
before this engrafted system can be widely used for modeling
NKT cell-based cancer immunotherapies.

Our group has been working on yet another approach

to humanize the CD1d/iNKT cell system. By homologous
recombination, we generated a human CD1d knock-in mouse,

in which human CD1d is under the endogenous mouse CD1d
promoter (21). Consistent with the previous report (70), thymic

expression of human CD1d supports NKT cell development.

Importantly, this new human CD1d-knock in mouse possesses
an iNKT cell population with human-like abundance and similar
subset composition in terms of co-receptor expression pattern
(21), making this strain a particularly useful tool for modeling
in vivo human iNKT cell responses to α-GalCer or its analogs.
By expressing the pre-arranged human Vα24/Jα18 TCRα chain
(23), this further improved mouse strain can be particularly
instrumental to test and optimize the glycolipid ligands for anti-
tumor therapies. However, since the human Vα24/Jα18 TCRα

is a transgene, the current mouse strain is not optimal for

investigating the antigen-specific T cell responses during anti-
tumor immunotherapies. Nevertheless, since the NK cells and
other innate immune cells are not affected by the transgene,
this strain can still be used to investigate the innate immunity-
mediated anti-tumor function of α-GalCer. To further improve
this model, future “knock-in” of human Vα24/Jα18 and Vβ11
genomic regions will be necessary. The continuous improvement
of current gene-editing techniques, including CRISPR-Cas9
(73), may make the knock-in more feasible. For preclinical
modeling of α-GalCer-mediated anti-tumor therapy, we have
demonstrated that prophylactic treatment with α-GalCer in
the two CD1d-humanized mouse strains can suppress B16
metastasis (21, 23). Nevertheless, it will be most interesting to
investigate whether α-GalCer can suppress B16 melanoma in
these humanized mice under therapeutic settings, and if not,
how the treatment regimes can be improved for an optimal
anti-tumor effect.

In summary, joint efforts from researchers in chemistry,
pharmaceutics and immunology fields will bring about more
potent α-GalCer analogs, optimized delivery and treatment
schemes and much-improved preclinical models. We envision
that the α-GalCer-based cancer immunotherapy will be reaching
its full potential in clinics in the near future.
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