
Edited by

Pavan Turaga, Yunye Gong, P. Thomas Fletcher

and Ajay Divakaran

Published in

Frontiers in Computer Science

Frontiers in Artificial Intelligence

Frontiers in Big Data

Geometries of learning

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/research-topics/52285/geometries-of-learning
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/big-data

April 2025

Frontiers in Computer Science frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is

a pioneering approach to the world of academia, radically improving the way

scholarly research is managed. The grand vision of Frontiers is a world where

all people have an equal opportunity to seek, share and generate knowledge.

Frontiers provides immediate and permanent online open access to all its

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review,

selection and dissemination processes in academic publishing. All Frontiers

journals are driven by researchers for researchers; therefore, they constitute

a service to the scholarly community. At the same time, the Frontiers journal

series operates on a revolutionary invention, the tiered publishing system,

initially addressing specific communities of scholars, and gradually climbing

up to broader public understanding, thus serving the interests of the lay

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include

some of the world’s best academicians. Research must be certified by peers

before entering a stream of knowledge that may eventually reach the public

- and shape society; therefore, Frontiers only applies the most rigorous

and unbiased reviews. Frontiers revolutionizes research publishing by freely

delivering the most outstanding research, evaluated with no bias from both

the academic and social point of view. By applying the most advanced

information technologies, Frontiers is catapulting scholarly publishing into

a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers

journals series: they are collections of at least ten articles, all centered

on a particular subject. With their unique mix of varied contributions from

Original Research to Review Articles, Frontiers Research Topics unify the

most influential researchers, the latest key findings and historical advances

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or

contribute to one as an author by contacting the Frontiers editorial office:

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual
articles in this ebook is the property
of their respective authors or their
respective institutions or funders.
The copyright in graphics and images
within each article may be subject
to copyright of other parties. In both
cases this is subject to a license
granted to Frontiers.

The compilation of articles constituting
this ebook is the property of Frontiers.

Each article within this ebook, and the
ebook itself, are published under the
most recent version of the Creative
Commons CC-BY licence. The version
current at the date of publication of
this ebook is CC-BY 4.0. If the CC-BY
licence is updated, the licence granted
by Frontiers is automatically updated
to the new version.

When exercising any right under
the CC-BY licence, Frontiers must be
attributed as the original publisher
of the article or ebook, as applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of
others may be included in the CC-BY
licence, but this should be checked
before relying on the CC-BY licence
to reproduce those materials. Any
copyright notices relating to those
materials must be complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed
in any copy, derivative work or partial
copy which includes the elements
in question.

All copyright, and all rights therein,
are protected by national and
international copyright laws. The
above represents a summary only.
For further information please read
Frontiers’ Conditions for Website Use
and Copyright Statement, and the
applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-8325-6261-1
DOI 10.3389/978-2-8325-6261-1

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

April 2025

Frontiers in Computer Science 2 frontiersin.org

Geometries of learning

Topic editors

Pavan Turaga — Arizona State University, United States

Yunye Gong — SRI International, United States

P. Thomas Fletcher — University of Virginia, United States

Ajay Divakaran — SRI International, United States

Citation

Turaga, P., Gong, Y., Fletcher, P. T., Divakaran, A., eds. (2025). Geometries of

learning. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-6261-1

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-6261-1

April 2025

Frontiers in Computer Science frontiersin.org3

04 Editorial: Geometries of learning
Yunye Gong, Pavan Turaga, P. Thomas Fletcher and Ajay Divakaran

07 Leveraging linear mapping for model-agnostic adversarial
defense
Huma Jamil, Yajing Liu, Nathaniel Blanchard, Michael Kirby and
Chris Peterson

18 Probabilistic and semantic descriptions of image manifolds
and their applications
Peter Tu, Zhaoyuan Yang, Richard Hartley, Zhiwei Xu, Jing Zhang,
Yiwei Fu, Dylan Campbell, Jaskirat Singh and Tianyu Wang

35 Integrating geometries of ReLU feedforward neural networks
Yajing Liu, Turgay Caglar, Christopher Peterson and Michael Kirby

48 Locally linear attributes of ReLU neural networks
Ben Sattelberg, Renzo Cavalieri, Michael Kirby, Chris Peterson and
Ross Beveridge

65 An algorithm for computing Schubert varieties of best fit with
applications
Karim Karimov, Michael Kirby and Chris Peterson

81 Exploring fMRI RDMs: enhancing model robustness through
neurobiological data
William Pickard, Kelsey Sikes, Huma Jamil, Nicholas Chaffee,
Nathaniel Blanchard, Michael Kirby and Chris Peterson

96 Manifold-driven decomposition for adversarial robustness
Wenjia Zhang, Yikai Zhang, Xiaoling Hu, Yi Yao, Mayank Goswami,
Chao Chen and Dimitris Metaxas

109 On-manifold projected gradient descent
Aaron Mahler, Tyrus Berry, Tom Stephens, Harbir Antil,
Michael Merritt, Jeanie Schreiber and Ioannis Kevrekidis

126 Leveraging diffusion models for unsupervised
out-of-distribution detection on image manifold
Zhenzhen Liu, Jin Peng Zhou and Kilian Q. Weinberger

140 Orthogonality and graph divergence losses promote
disentanglement in generative models
Ankita Shukla, Rishi Dadhich, Rajhans Singh, Anirudh Rayas,
Pouria Saidi, Gautam Dasarathy, Visar Berisha and Pavan Turaga

151 Implications of data topology for deep generative models
Yinzhu Jin, Rory McDaniel, N. Joseph Tatro, Michael J. Catanzaro,
Abraham D. Smith, Paul Bendich, Matthew B. Dwyer and
P. Thomas Fletcher

166 Recovering manifold representations via unsupervised
meta-learning
Yunye Gong, Jiachen Yao, Ruyi Lian, Xiao Lin, Chao Chen,
Ajay Divakaran and Yi Yao

Table of
contents

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/

TYPE Editorial

PUBLISHED 09 April 2025

DOI 10.3389/fcomp.2025.1597931

OPEN ACCESS

EDITED AND REVIEWED BY

Marcello Pelillo,

Ca’ Foscari University of Venice, Italy

*CORRESPONDENCE

Yunye Gong

yunye.gong@sri.com

RECEIVED 21 March 2025

ACCEPTED 26 March 2025

PUBLISHED 09 April 2025

CITATION

Gong Y, Turaga P, Fletcher PT and Divakaran A

(2025) Editorial: Geometries of learning.

Front. Comput. Sci. 7:1597931.

doi: 10.3389/fcomp.2025.1597931

COPYRIGHT

© 2025 Gong, Turaga, Fletcher and Divakaran.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Editorial: Geometries of learning

Yunye Gong1*, Pavan Turaga2, P. Thomas Fletcher3 and

Ajay Divakaran1

1Center for Vision Technologies, SRI International, Princeton, NJ, United States, 2School of Arts Media

and Engineering, Arizona State University, Tempe, AZ, United States, 3Department of Computer

Science, University of Virginia, Charlottesville, VA, United States

KEYWORDS

geometries of learning, manifold learning, deep neural networks, adversarial learning,

topological data analysis

Editorial on the Research Topic

Geometries of learning

Despite the widespread application and empirical success of deep neural networks,

the theoretical development of these networks remains an under-explored area. The lack

of theory prevents rigorous explanation and prediction of networks’ performance and

hinders confident deployment of the networks especially in safety-critical applications.

Geometric analysis provides a unique perspective to bridge this gap between the practice

and the theory of deep neural networks. As complex real-world data often lie on low-

dimensional manifolds, geometries of these underlying structures provide informative

insights for understanding the behavior of networks fitting to the data.

In this Research Topic of Frontiers in Computer Science on Geometries of Learning,

we aim to present the latest advances on inspecting deep learning through the lens of

geometry. We have followed a rigorous peer review process and collected 12 articles

that showcase the depth and breadth of current approaches across applications of

geometric analysis across diverse problem domains from adversarial defense to object pose

estimation. A summary of the collection is introduced below.

In the article titled “Leveraging linear mapping for model-agnostic adversarial defense”

Jamil et al. shed light on generalization of adversarial defense by demonstrating the

existence of a linear mapping between adversarial image representations across different

deep neural networks. Based on this insight, the authors further demonstrate a model-

agnostic adversarial defense strategy by mapping adversarial representations from diverse

models into a canonical space where adversarial representation can be identified accurately

using a simple linear classifier without re-training.

In the article titled “Probabilistic and semantic descriptions of image manifolds and

their applications”, Tu et al. model image manifolds as probability density functions using

advanced deep generative models including normalizing flows and diffusion models. The

authors further introduce a model based on the variational auto encoder to demonstrate

semantic disentanglement on the image manifold and demonstrate reliable density

estimation by enforcing semantic consistency as an application in adversarial robustness

against patch attacks.

In the article titled “Integrating geometries of ReLU feedforward neural networks”, Liu Y.

et al. introduce a toolbox that computes geometric properties of ReLU feedforward neural

networks for characterizing networks’ partition of the input space. The geometric analysis

framework based on polyhedral decomposition lays a foundation for comprehensive

analysis of network geometries and their implications on model behavior.

Frontiers inComputer Science 01 frontiersin.org4

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1597931
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1597931&domain=pdf&date_stamp=2025-04-09
mailto:yunye.gong@sri.com
https://doi.org/10.3389/fcomp.2025.1597931
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1597931/full
https://www.frontiersin.org/research-topics/52285/geometries-of-learning
https://doi.org/10.3389/fcomp.2023.1274832
https://doi.org//10.3389/fcomp.2023.1253682
https://doi.org/10.3389/fdata.2023.1274831
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Gong et al. 10.3389/fcomp.2025.1597931

In the article titled “Locally linear attributes of ReLU neural

networks”, Sattelberg et al. investigate ReLU neural networks which

partitions the input space into convex polytopes. By studying the

evolution of the polytope structure and affine transformations

associated, the authors present insights on how the number of

the polytopes can be reduced and how similar structures observed

across different networks, suggesting improved network design for

reducing complexity and enhancing generalization.

In the article titled “An algorithm for computing Schubert

varieties of best fit with applications”, Karimov et al. present a

geometric tool based on Schubert variety to present a collection

of subspaces of a fixed vector space. The authors further

introduce integration of the representation as a mathematically

interpretable abstract node for artificial neural networks. The

proposed algorithms demonstrated on classification problems

suggest the existence of a best dimension for the representative

subspace, as exceeding the dimension leads to no improvement

in accuracy.

In the article titled “Exploring fMRI RDMs: enhancing model

robustness through neurobiological data”, Pickard et al. introduce

a large public benchmark consisting biological representations for

classic vision datasets. With curated data, metrics and analysis

based on representational dissimilarity matrices and Fiedler

partitioning, the authors demonstrate the use of the benchmark

to facilitate research on inspecting the alignment between neural

network representations and neurobiological representations from

fMRI and how it relates to network performance and robustness.

In the article titled “Manifold-driven decomposition for

adversarial robustness”, Zhang et al. investigate the adversarial

risk and robustness-accuracy trade-off of machine learning

models from the manifold perspective. Considering decomposing

adversarial risk into normal adversarial risk and in-manifold

adversarial risk, the authors present theoretical findings on

bounding the adversarial risks as well as empirical validation of the

findings on synthetic and real-world datasets.

In the article titled “On-manifold projected gradient descent”,

Mahler et al., present a novel solution for generating on-manifold

adversarial data, by leveraging mathematical rigorous tools to

approximate the data manifold and its tangent directions for

sample perturbation. The perturbed samples are further projected

back to the data manifold, resulting in adversarial samples which

effectively confuse trained classifiers. The misclassification can be

further explained based on the semantic basis of the manifold.

In the article titled “Leveraging diffusion models for

unsupervised out-of-distribution detection on image manifold”,

Liu Z. et al. propose a novel solution for unsupervised out-of-

distribution detection by performing image inpainting with in

domain diffusion models. The diffusion model serves as a mapping

to its training manifold and the distance between mapped image

and the original image serves an indicative metric for out-of-

distribution detection, as supported by empirical experiments

across images with diverse characteristics.

In the article titled “Orthogonality and graph divergence losses

promote disentanglement in generative models”, Shukla et al.

improve deep generative models by integrating an architecture

promoting separation of latent space, an orthonormality constraint

modeling statistical independence of latent attributes and

a differentiable graph divergence loss promoting manifold

preservation. The proposed solution achieves disentangled

representations and controlled generation as demonstrated in

experiments on 3D shape datasets.

In the article titled “Implications of data topology for deep

generative models”, Jin et al. study the ability of various deep

generative models to model complex data topologies. With

experiments using synthetic data, the authors demonstrate

the limitations of models with normal assumptions on latent

distribution and demonstrate improved abilities of recent

models including chart auto encoders and denoising diffusion

probabilistic models. The work further identifies challenges

including the limitations of distribution-based metrics for

assessing deep generative models with respect to capturing

underlying data topologies.

In the article titled “Recovering manifold representations via

unsupervised meta-learning”, Gong et al. address the challenge

of learning complex data manifold without uniformly or densely

sampled data by leveraging novel episodic sampling strategies

to improve auto encoders’ generalization. The authors adopt

topological and geometric metrics based on persistent homology

to demonstrate the quantitative improvement on manifold

reconstruction on 6-D object pose estimation benchmarks.

In summary, the selected papers highlight the cutting-

edge developments in theories, methods, tools and datasets

for geometric understanding of deep learning across different

applications. Based on the insightful findings from the collection,

we anticipate promising future research in multiple directions

such as scaling up geometric analysis for larger network

architectures including transformers which serve the core of recent

developments in language modeling, promoting geometric and

topological interpretation of learning with direct links to semantics,

and expanding the study for a wide range of applications involving

diverse data manifolds at real-world complexities.

The guest editor team would like to extend our sincere

gratitude to all the authors, reviewers and the editorial team for

their valuable contribution to this Research Topic. Our special

thanks go to Dr. Bruce Draper for his vision and leadership

in the research and discussions that laid the foundation of this

Research Topic as well as his guidance and support throughout the

editing process.

Author contributions

YG: Writing – review & editing, Writing – original draft.

PT: Writing – original draft, Writing – review & editing. PF:

Writing – original draft, Writing – review & editing. AD:Writing –

review & editing, Writing – original draft.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Frontiers inComputer Science 02 frontiersin.org5

https://doi.org/10.3389/fcomp.2025.1597931
https://doi.org/10.3389/frai.2023.1255192
https://doi.org/10.3389/frai.2023.1274830
https://doi.org/10.3389/fcomp.2023.1275026
https://doi.org/10.3389/fcomp.2023.1274695
https://doi.org/10.3389/fcomp.2024.1274181
https://doi.org/10.3389/frai.2024.1255566
https://doi.org/10.3389/fcomp.2024.1274779
https://doi.org/10.3389/fcomp.2024.1260604
https://doi.org/10.3389/fcomp.2024.1255517
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Gong et al. 10.3389/fcomp.2025.1597931

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inComputer Science 03 frontiersin.org6

https://doi.org/10.3389/fcomp.2025.1597931
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 30 October 2023

DOI 10.3389/fcomp.2023.1274832

OPEN ACCESS

EDITED BY

Pavan Turaga,

Arizona State University, United States

REVIEWED BY

Norman Tatro,

Systems and Technology Research,

United States

Yunye Gong,

SRI International, United States

*CORRESPONDENCE

Huma Jamil

huma.jamil@colostate.edu

RECEIVED 08 August 2023

ACCEPTED 11 October 2023

PUBLISHED 30 October 2023

CITATION

Jamil H, Liu Y, Blanchard N, Kirby M and

Peterson C (2023) Leveraging linear mapping

for model-agnostic adversarial defense.

Front. Comput. Sci. 5:1274832.

doi: 10.3389/fcomp.2023.1274832

COPYRIGHT

© 2023 Jamil, Liu, Blanchard, Kirby and

Peterson. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Leveraging linear mapping for
model-agnostic adversarial
defense

Huma Jamil1*, Yajing Liu2, Nathaniel Blanchard1, Michael Kirby1,2

and Chris Peterson2

1Department of Computer Science, Colorado State University, Fort Collins, CO, United States,
2Department of Mathematics, Colorado State University, Fort Collins, CO, United States

In the ever-evolving landscape of deep learning, novel designs of neural

network architectures have been thought to drive progress by enhancing

embedded representations. However, recent findings reveal that the embedded

representations of various state-of-the-art models are mappable to one another

via a simple linear map, thus challenging the notion that architectural variations

are meaningfully distinctive. While these linear maps have been established for

traditional non-adversarial datasets, e.g., ImageNet, to our knowledge nowork has

explored the linear relation between adversarial image representations of these

datasets generated by di�erent CNNs. Accurately mapping adversarial images

signals the feasibility of generalizing an adversarial defense optimized for a specific

network. In this work, we demonstrate the existence of a linear mapping of

adversarial inputs between di�erent models that can be exploited to develop

such model-agnostic, generalized adversarial defense. We further propose an

experimental setup designed to underscore the concept of this model-agnostic

defense. We train a linear classifier using both adversarial and non-adversarial

embeddings within the defended space. Subsequently, we assess its performance

using adversarial embeddings from other models that are mapped to this space.

Our approach achieves an AUROC of up to 0.99 for both CIFAR-10 and ImageNet

datasets.

KEYWORDS

linear mapping, adversarial defense, embedded representations, embeddings spaces,

cross-model defense, convolutional neural network architectures

1. Introduction

The rapid advancements in deep learning have led to remarkable breakthroughs in

various tasks, such as image recognition, natural language processing, and autonomous

driving. These achievements are widely attributed to increasingly innovative designs of

neural network architectures, which are believed to enhance the quality of embedded

representations. However, evidence from recent research into embedded representations has

found results that counter this narrative. Specifically, McNeely-White et al. (2022) found that

embedded representations of inputs within state-of-the-art models can be linked via a simple

linear map. The existence of this simple map suggests that, despite the architectural diversity,

the learned embedded representations may not be as distinctive as previously assumed.

In this study, we investigate the potential to harness this mapping to develop robust

defenses against adversarial attacks (i.e., imperceptible perturbations added to input data

that cause neural networks to incorrectly process inputs; Szegedy et al., 2014b). The crux

of our proposed defense is that an adversarial defense can be established for specific neural

network’s embedded space—then, other neural network’s embedded representations can be

Frontiers inComputer Science 01 frontiersin.org7

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1274832
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1274832&domain=pdf&date_stamp=2023-10-30
mailto:huma.jamil@colostate.edu
https://doi.org/10.3389/fcomp.2023.1274832
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1274832/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jamil et al. 10.3389/fcomp.2023.1274832

linearly mapped to that embedding space, leading to the detection

of adversarial attacks. We define the neural network with the

defense’s embedding space as the canonical embedding space.

In order for the defense designed for the canonical embedding

space to generalize to mapped inputs from other networks,

adversarial inputs into other networks would need to map to the

canonical space. We believe our work is the first to investigate

if such a mapping would be accurate—McNeely-White et al.

(2022) only experimented with mapping in-domain, unperturbed

inputs from datasets like ImageNet and IJB-C. Mapping adversarial

inputs between embedding spaces is a difficult problem because

adversarial inputs are typically generated for a specific network.

Thus, a source image that is adversarially perturbed by two different

networks, resulting in one image per network, is distinct because

each generated image is designed to fool a specific network. This

makes the mapping problem more difficult, and requires that any

adversarial defense for a canonical embedding space be robust to

these differences.

Our work investigated a defense proposed by Gorbett and

Blanchard (2022), utilizing a linear SVM to detect adversarial

inputs specific to a particular network. The SVM training

necessitates creating a dataset of potential attacks. While Gorbett

and Blanchard (2022) demonstrates robustness with sufficient data,

a drawback lies in the dataset requirement. By considering one

network as the canonical reference and mapping other networks

to that space, we overcome this limitation, needing training data

solely for the canonical network. Figure 1 provides a high-level

illustration of the concept.

In this research paper, we present the following key

contributions:

• Successful Linear Mapping of Adversarial Inputs: We

successfully establish connections between adversarial inputs

across diverse CNNs using a simple linear mapping. By

applying this technique to adversarial versions of MNIST,

CIFAR-10, and ImageNet datasets, we achieve Mean Squared

Error (MSE) scores, of mapped adversarial embeddings,

going as low as approximately 0, highlighting significant

similarities in the adversarial image embeddings of various

CNN architectures.

• Robust Cross-Model Adversarial Detection: We develop a

straightforward yet effective adversarial defense mechanism

based on a linear SVM approach. Remarkably, this defense

method, initially constructed for one model’s embeddings,

proves to be highly adept at detecting adversarial embeddings

from other models as well. The achieved Area Under the

Receiver Operating Characteristic (AUROC) scores, reaching

up to 0.99, demonstrate the robustness and generalizability of

our defense approach across different CNN architectures.

• By integrating linear mapping to build adversarial detection

method, ultimately, we propose a canonical adversarial

defense that accurately identifies adversarial inputs from a

range of networks and adversarially manipulated datasets.

Our paper adheres to the following structure: Section 2

presents a comprehensive review of related literature concerning

adversarial defense and linear mapping. In Section 3, we outline the

experimental setup, encompassing the definition of linearmapping,

selection of datasets, implementation of adversarial attacks, and

the chosen evaluation metrics. Sections 4, 5, and 7 contain the

details of conducted experiments, analysis of obtained results, and

discussion. Lastly, in Section 8, we provide concluding remarks

summarizing the overall findings and contributions of our research.

2. Related work

2.1. Adversarial defense

In recent years, the vulnerability of deep neural networks

(DNNs) to adversarial attacks has sparked significant interest,

leading to a growing body of research focused on interpreting

adversarial attacks (Han et al., 2023) and devising defense and

detection mechanisms (Khamaiseh et al., 2022). Various proposed

methods include augmenting input images to enhance robustness

against adversarial attacks (Frosio and Kautz, 2023), mapping

adversarial images back to the clean distribution (Li et al.,

2023), and using vector quantization (Dong and Mao, 2023).

Several studies have delved into gradient-based methods, including

leveraging sparse representation to counter adversarial attacks

(Gopalakrishnan et al., 2018), constraining the hidden space of

DNNs (Mustafa et al., 2019), and reducing the space of potential

adversarial examples (Xu et al., 2017).

In parallel, researchers have also explored the utilization of

manifold-related properties to address adversarial attacks. Notably,

Jha et al. (2018) observed that adversarial examples tend to deviate

from the data manifold as the intensity of attacks increases,

and this increasing distance can serve as a valuable cue for

detection. Moreover, Crecchi et al. (2019) employed the non-linear

dimensionality reduction technique t-SNE to identify adversarial

examples by detecting images lying outside the manifold in

localized pockets. Additionally, Feinman et al. (2017) introduced

kernel density and Bayesian uncertainty estimation methods for

adversarial detection, using the representations of unknown data

points in the last hidden layer to measure their distance within that

feature space. These manifold-based approaches present promising

avenues for fortifying DNNs against adversarial perturbations.

Another intriguing area for advancing adversarial defense

techniques lies in the development of pre-processing methods.

Recent studies by Blau et al. (2022) and Nie et al. (2022) have

introduced innovative defense strategies based on diffusion

processes, which prove effective in countering adversarial

attacks. Qiu et al. (2021) in their work, have put forth pre-

processing techniques aimed at mitigating gradient-based attacks.

Additionally, Zheng et al. (2020) have proposed a model-agnostic

defense approach that leverages affine transformations applied to

images as a pre-processing step. Our work distinguishes itself from

traditional pre-processing defense methods. Instead of modifying

the input data prior to model inference, we harness the output of

trained models as a foundation for constructing our adversarial

defense.

The utilization of information from latent layers for detecting

adversarial attacks has also received extensive attention. Bendale

and Boult (2016) introduced OpenMax as an alternative to the

Frontiers inComputer Science 02 frontiersin.org8

https://doi.org/10.3389/fcomp.2023.1274832
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jamil et al. 10.3389/fcomp.2023.1274832

FIGURE 1

The idea of a model-agnostic defense: Adversarial embeddings from di�erent models are mapped to a target model with a defended space. The

mapped adversarial embeddings can then be e�ectively detected from non-adversarial embeddings using a simple linear classifier trained on the

adversarial and non-adversarial embeddings of the target model.

softmax layer, leveraging penultimate layer information to identify

unknown classes. Li and Li (2017) employed convolution layer

outputs to develop a cascade method for detecting adversarial

examples. In contrast, Gorbett and Blanchard (2022) demonstrated

that only penultimate layers carry sufficient information to

distinguish adversarial from non-adversarial images. Furthermore,

Jamil et al. (2023) highlighted the utility of intermediate ReLU

activation patterns for detecting adversarial images. These diverse

approaches underscore the significance of using latent layer

information for robust adversarial detection.

Our work aligns with the latter research endeavors, where

we capitalize on information from the penultimate layer to

construct a shared embedding space for various DNNs. This

shared space exhibits potential as a robust fortress for adversarial

defense. By mapping adversarial embeddings from different DNNs

onto this canonical space, our aim is to create a generalized

defense mechanism against adversarial attacks. This approach

holds promise for strengthening the security and robustness of deep

neural networks in the face of adversarial perturbations.

2.2. Linear mapping

Some researchers have directed their efforts toward

emphasizing the commonalities existing between different DNN

architectures concerning the learned features. For instance, in Lenc

and Vedaldi (2015), a comparison of the hidden representations

of DNNs in the convolutional layers was carried out through

regression analysis. Notably, a series of studies conducted by

McNeely-White et al. (2020), McNeely-White et al. (2021), and

McNeely-White et al. (2022), established a relationship among

DNNs by demonstrating that their hidden representations are

essentially similar, up to a single linear transformation. McNeely-

White et al. (2022) delved into the implications of these linear

mappings in the context of biometric security.

In our work, we build upon this concept and extend it to the

domain of adversarial attacks. We aim to investigate whether the

hidden network representations for adversarial data can also be

effectively mapped from one model’s embedding space to another

model’s space. By exploring the feasibility of such cross-model

mappings, we seek to uncover potential insights that may facilitate

the development of more robust adversarial defense strategies.

3. Experimental setup

This section presents the methodology for establishing a linear

mapping between a source network and a target network (see

Section 3.1). Additionally, it encompasses the details of the datasets

utilized in this study (see Section 3.2), the employed adversarial

attacks (see Section 3.3), and the evaluation metrics (see Section

3.4) used to assess the transferability of adversarial features.

3.1. Linear mapping

Given fA and fB as the source and target networks, respectively,

and X as the set of input images, we define a linear map denoted by

MA→B as follows:

f̃B(X) = MA→BfA(X), (1)

where f̃B(X) is the best approximation to fB(x) across a given

dataset, and the linear mapping MA→B is computed by solving a

Frontiers inComputer Science 03 frontiersin.org9

https://doi.org/10.3389/fcomp.2023.1274832
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jamil et al. 10.3389/fcomp.2023.1274832

least square regression problem as follows:

minimize
M̃A→B

∑m
i=1 ‖M̃A→BfA(x)− fB(x)‖2. (2)

3.2. Datasets

To assess the transferability of adversarial information between

different architectures, we conduct a series of experiments. We

begin by testing with a simple dataset such as MNIST, and

subsequently, we validate its generalizability by extending the

evaluation to more complex datasets like CIFAR-10 and ImageNet.

This section provides an overview of the datasets utilized in the

experiments, as well as a detailed explanation of the methodology

used for generating the adversarial attacks.

3.2.1. MNIST
The MNIST dataset comprises a collection of 70,000 grayscale

images of handwritten digits, each measuring 28 × 28 pixels. The

dataset is further partitioned into a training set, containing 60,000

images, and a test set, containing 10,000 images. These images are

categorized into 10 classes, representing the digits from 0 to 9.

3.2.2. CIFAR-10
The CIFAR-10 dataset comprises 60,000 images that are

organized into 10 distinct classes. For training purposes, there are

50,000 images, and an additional 10,000 images are allocated for

testing. Each image within the dataset measures 32× 32 pixels.

3.2.3. ImageNet
In this study, we utilized the validation set from the ImageNet

dataset, consisting of 50,000 images spread across 1000 classes, with

50 images per class.

For the MNIST and CIFAR-10 datasets, we employed the

training set to train the models. Subsequently, the test set was

utilized to calculate the linearmapping and assess the transferability

of adversarial attacks.

As for the Imagenet dataset, we performed a train-test split on

the validation set. The training set was utilized to compute the

linear mapping, while the test set was employed to evaluate the

transferability of adversarial attacks.

3.3. Adversarial attacks

We generate adversarial datasets corresponding to MNIST,

CIFAR-10, and ImageNet datasets using the following adversarial

attack techniques.

3.3.1. Fast gradient sign method
The Fast Gradient Sign Method (FGSM) (Szegedy et al., 2014b)

is an efficient one-step adversarial attack technique. It introduces

small perturbations δ to the input data x based on the gradient ▽x

of the loss function J with respect to the input. The perturbations

are scaled by a small positive scalar ǫ, and their direction is

determined by the sign of the gradient. This method causes

misclassification by the targeted machine learning model. The

mathematical representation is as follows:

δ = ǫ · sign
(

▽xJ
(

8, x, y
))

, (3)

where ǫ is the scaling factor and sign denotes the sign function.

This technique is widely used for crafting adversarial examples to

evaluate the robustness of machine learning models.

3.3.2. Projected gradient descent
In contrast to FGSM, Projected Gradient Descent (PGD)

(Madry et al., 2017) is an iterative adversarial attack method that

computes perturbations using gradients and then restricts them

within a specified perturbation bound. This iterative approach leads

to more robust attacks as the perturbations are constrained to

remain within an acceptable range. The iterative perturbation can

be expressed as follows, where α represents the perturbation step

size:

δt+1 = clip
ǫ
(δt + α · sign

(

▽xJ
(

8, x+ δt , y
))

). (4)

Here, clip
ǫ
denotes a function that ensures the perturbations stay

within the specified range, ǫ.

3.3.3. Carlini and Wagner attack
The Carlini and Wagner attack (Carlini et al., 2019) is

an optimization-based adversarial technique that efficiently finds

small perturbations to cause misclassification in a fixed input

image. By minimizing a distance metric between the original

and perturbed images, the attack strikes a balance between

misclassification confidence, perturbation size, and the distance

norm. This approach aims to generate potent and subtle adversarial

perturbations for evading machine learning models effectively.

3.3.4. DAmageNet
DAmageNet (Chen et al., 2019) presents a transferable

adversarial attack strategy that leverages attention heatmaps to

create universal adversarial samples. By directing the attention to

irrelevant regions in the image, it induces misclassification, taking

advantage of shared attention patterns across diverse deep neural

networks. This technique has proven to be effective in causing

misclassification across a wide range of models, demonstrating its

potency in generating robust adversarial samples.

In our experimental setup, we employed the Fast Gradient

Sign Method (FGSM) attack to create adversarial datasets for the

MNIST, CIFAR-10, and ImageNet validation datasets. For each

dataset, we set the perturbation magnitude (ǫ) to the values of 0.02,

0.05, and 0.01, respectively.

However, for the ImageNet experiments, we extended our

evaluation to include more sophisticated attacks, such as PGD,

C&W attack, and the DamageNet attack. The adversarial dataset

corresponding to the ImageNet validation set, generated with the

DamageNet attack, was directly obtained from reliable source on

the web.

Frontiers inComputer Science 04 frontiersin.org10

https://doi.org/10.3389/fcomp.2023.1274832
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jamil et al. 10.3389/fcomp.2023.1274832

3.4. Testing and evaluation metrics

3.4.1. Mean squared error
To evaluate the effectiveness of a linear mapping, we use

the Mean Squared Error (MSE) metric. This involves calculating

the MSE between the target embeddings and their corresponding

linearly mapped source embeddings. For each pair of embeddings,

we compute the squared differences between their elements, sum

up these squared differences, and then take the average across all

pairs. This resulting average MSE score represents how well the

linear mapping transforms embeddings from one space to another.

Lower MSE values indicate a more accurate and robust linear

mapping.

3.4.2. Linear SVM classifier
To assess the effectiveness of linear mapping for deep neural

networks with adversarial images, we adopt a linear SVM classifier.

As demonstrated in a prior study (Gorbett and Blanchard, 2022),

adversarial image embeddings can be distinguished from non-

adversarial image embeddings using a linear SVM. To evaluate the

mapping’s efficacy, we train a linear SVM classifier on embeddings

generated by one model to discern between adversarial and

non-adversarial image embeddings. Additionally, we investigate

whether the mapped adversarial embeddings, linearly transformed

from a different network’s embedding space to the target network’s

space, remain distinguishable from the non-adversarial image

embeddings. To quantify the SVM’s performance, we measure the

area under the receiver operating characteristic curve (AUROC)

metric.

4. Experiments

For CIFAR-10 and MNIST datasets, each comprising two sets:

train and test. These sets consist of original images and their

corresponding adversarial counterparts generated using the FGSM

attack mentioned in Section 3.4.1.

In the case of ImageNet, we utilize pretrained models, leading

to a dataset that solely contains test data. This dataset encompasses

both original images and their corresponding adversarial images

crafted through all the mentioned adversarial attacks given in

Section 3.3.

For MNIST, we use two straightforward architectures: one

comprising convolution layers and the other a feed-forward

neural network (FFNN). For CIFAR-10, we employ EfficientNet

(Tan and Le, 2020), ResNet-18 (He et al., 2015), MobileNetV2

(Sandler et al., 2019), GoogLeNet (Szegedy et al., 2014a), and

VGG-19 (Simonyan and Zisserman, 2015) architectures. These

networks were trained solely on the original images from the

MNIST and CIFAR-10 training sets, respectively. In the case of

ImageNet, we use pre-trained models, namely ResNet-50, ResNet-

101, ResNet-152 (He et al., 2015), VGG-19, Inception-v3 (Szegedy

et al., 2014a) and Vision Transformer (Dosovitskiy et al., 2020),

which have been trained on the ImageNet training dataset. The

classification accuracy on original test dataset and corresponding

FGSM adversarial dataset of each of these models, evaluated using

the test set, along with the size of the penultimate layer, are

summarized in Table 1.

In these experiments, we initially construct a linear classifier

trained to discriminate between the adversarial embeddings

and original embeddings of a target model. Subsequently, we

demonstrate that the trained classifier also effectively distinguishes

these original embeddings from adversarial embeddings that are

mapped from a source model to this target model.

To conduct this investigation, we designate a model as the

target model and proceed to map the adversarial and original

features from the embedding spaces of other models to the

embedding space of this target model using MNIST and CIFAR-

10 datasets with specified neural architectures. We then expand

this approach to the ImageNet dataset, employing one neural

architecture as the target model and several other architectures as

source models. The experiment involves dividing the validation

dataset into three distinct splits: map, svm, and val. For each

split, we calculate the embeddings of the networks from their

penultimate layer, which are denoted as XA
map, X

A
svm, X

A
val
, with A

representing the network under consideration.

Given two networks, a source network denoted by s and a target

network denoted by t, we train a linear SVM using the embeddings

Xt
svm from the target network. This SVM classifier is trained with

binary labels to distinguish between adversarial and original data.

Then, we learn a linear mapping denoted as Ms→t that aligns the

embeddings Xs
map with Xt

map by solving model (2). Subsequently,

we obtain the mapped embeddings X
′

val
by applying Ms→t to the

validation data, Xs
val
, i.e., X

′

val
= Ms→tX

s
val
. We then measure the

strength of this mapping using the MSE metric, as mentioned in

Section 3.4.1.

To assess adversarial transferability, we replace the validation

data of target network, Xt
val
, with X

′

val
obtained from linear

mapping process. Next, we evaluate the modified data on the linear

SVM trained on the target model’s embeddings. The extent of

transferability is quantified by measuring the SVM classification

accuracy on the data which is the source model’s adversarial and

original embeddings after being linearly mapped to the target

model’s embedding space (see Section 3.4.2). The procedure is

formally described in Algorithm 1.1

5. Results

5.1. Linear mapping for MNIST

Initially, we investigated the feasibility of linearly mapping

adversarial images from theMNIST dataset and using a linear SVM

to identify the adversarial images. Using a convolutional neural

network (CNN) and a feed-forward neural network (FFNN) and

evaluating mapping between both, we found the SVM was able to

accurately identify adversarial images with 99.4% accuracy (CNN

→ FFNN) and 99.5% accuracy (FFNN → CNN) with ǫ = 0.02—

notably, these results were consistent across various epsilon values.

This mirrors the accuracy of the SVM’s performance on the original

embedding space (99.8% for CNN; 99.9% for FFNN).

1 The “+” in step 1 of the Algorithm 1 indicates the concatenation of two

sets.

Frontiers inComputer Science 05 frontiersin.org11

Jamil et al. 10.3389/fcomp.2023.1274832

TABLE 1 Classification accuracies for DNNs trained and evaluated on MNIST, CIFAR-10, and ImageNet and their corresponding adversarial datasets.

Datasets Model names Latent layer dimension size Classification accuracy

Original data (%) Adversarial data (%)

MNIST
CNN 128 99.16 88.42

FFNN 128 97.98 58.27

CIFAR-10

EfficientNet-B0 320 85.20 39.31

ResNet-18 512 95.42 44.09

VGG-19 512 93.51 48.41

MobileNet-V2 1,280 92.85 41.13

GoogLeNet 1,024 95.75 45.49

ImageNet

ResNet-50 2,048 75.68 48.50

ResNet-101 2,048 76.92 64.41

ResNet-152 2,048 78.08 66.49

VGG-19 25,088 72.16 59.43

Inception-V3 2,048 77.20 66.37

Vision Transformer 768 81.02 74.18

The adversarial data is created using FGSM attack with ǫ = 0.02, 0.05, and 0.01, respectively.

Require: Xi
map, Xi

svm, Xi
val where i = t, s

Ensure: AUROCsvm

1) Identify:

Xi
map = Xorgimap + Xadvimap

Xi
svm = Xorgisvm + Xadvisvm

Xi
val = Xorgival + Xadvival

2) Train a linear SVM with Xadvisvm +Xorgisvm

for i = t

3) Learn a linear mapping Ms→t using (2) with

fA(x) = Xs
map and fB(x) = Xt

map,

calculate X
′

val = Ms→tX
s
val

4) Evaluate SVM with X
′

val = Xadv
′

val + Xorg
′

val

5) Calculate AUROCsvm

Algorithm 1. Cross-network adversarial mapping and detection.

5.2. Linear mapping for CIFAR-10

Table 2 presents the MSE scores between the adversarial

embeddings of the target space and the ones mapped from the

source model embedding space to the target model embedding

space. The recorded lowest MSE values are 0.003 and 0.004 when

adversarial embeddings are mapped to the space of GoogLeNet and

MobileNet, respectively. Even when other models are considered as

the targetmodel, theMSE values remain remarkably low, indicating

the overall efficiency of the linear mappings.

The architectures employed in the experiments demonstrate

varying accuracies on non-adversarial and adversarial data

(Table 1). EfficientNet-B0, with an accuracy of only 85%, is

particularly vulnerable to adversarial attacks, achieving a mere

39.31% accuracy when exposed to such perturbations. Table 3

illustrates that when adversarial embeddings are mapped to

the low-performing EfficientNet-B0, its ability to distinguish

adversarial images from non-adversarial ones decreases. On

the contrary, for ResNet-18, which exhibits better classification

accuracy on original data, the mapped adversarial embeddings

retain more distinctive features, enabling their effective separation

from original images. These results show that the separability of

adversarial embeddings seems to be contingent on the model’s

ability to classify the original data accurately. In other words, if

the model performs well in classifying the original data, it tends to

achieve better separability of adversarial embeddings as well.

These findings were obtained using the FGSM adversarial

attack with ǫ = 0.05. However, the transferability of adversarial

features appears to be less dependent on the perturbation level,

consistent with our observations from the MNIST experiments.

5.3. Linear mapping for ImageNet

Building upon the insights gained fromMNIST and CIFAR-10,

where linear mapping for adversarial data between different CNN

architectures proved effective, we propose a shared embedding

space concept, leveraging the ImageNet dataset. Specifically, we

utilize ResNet-152’s penultimate layer as the shared space, mapping

adversarial embeddings from other networks onto it. Table 4 shows

the MSE scores between the adversarial embeddings generated

by ResNet-152 and the ones mapped to it from various CNNs.

The overall MSE values are very low, except for VGG-19 where

we observe notably higher MSE scores. We hypothesize that this

discrepancy can be attributed to the high dimensionality of the

VGG-19 embedding space. This trend appears to persist across our

subsequent experiments, suggesting a consistent challenge posed by

the intricately layered embedding space of VGG-19. Interestingly,

the attention based model, ViT, shows very low MSE scores,

signifying linear mapping can be easily learnt between CNN and

attention based architectures.

Frontiers inComputer Science 06 frontiersin.org12

https://doi.org/10.3389/fcomp.2023.1274832
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jamil et al. 10.3389/fcomp.2023.1274832

TABLE 2 MSE scores (3.4) for the trained linear mapping between source and target adversarial embeddings for CIFAR-10.

Target

Source E�cientNet-B0 ResNet-18 VGG-19 MobileNet GoogLeNet

EfficientNet-B0 0.000 0.017 0.022 0.017 0.018

ResNet-18 0.020 0.000 0.011 0.013 0.010

VGG-19 0.037 0.018 0.000 0.025 0.021

MobileNet 0.006 0.004 0.005 0.000 0.004

GoogLeNet 0.007 0.003 0.004 0.004 0.000

TABLE 3 AUROC scores for classification of mapped original and adversarial image embeddings from the sourcemodel using a linear SVM trained on

targetmodel’s embeddings for CIFAR-10 dataset.

Target

Source E�cientNet-B0 ResNet-18 VGG-19 MobileNet GoogLeNet

EfficientNet-B0 0.907 0.942 0.886 0.899 0.922

ResNet-18 0.907 0.995 0.939 0.979 0.988

VGG-19 0.899 0.979 0.943 0.974 0.972

MobileNet 0.904 0.991 0.936 0.989 0.983

GoogLeNet 0.902 0.987 0.928 0.978 0.985

An AUROC score of 1 indicates the best performance, with values close to 1 considered indicative of good classification performance.

TABLE 4 MSE scores for the linear mapping trained on original and

adversarial embeddings for ImageNet between various models and

ResNet-152.

Test data Adversarial attacks

FGSM PGD DamageNet C&W

ResNet-50→

ResNet-152

0.0672 0.0871 0.0851 0.0882

ResNet-101→

ResNet-152

0.0583 0.0747 0.0792 0.0813

VGG-19→

ResNet-152

0.817 0.8439 0.8127 0.8971

Inception-V3→

ResNet-152

0.1058 0.1084 0.1124 0.1146

ViT→ ResNet-152 0.1368 0.1423 0.1508 0.144

The arrow indicates the direction of the linear map, with ResNet-152 as the target model and

all other models serving as sourcemodels.

Moreover, Table 5 presents the AUROC values obtained

from the linear SVM classification. Firstly, it shows the results

for ResNet-152 generated using adversarial and non-adversarial

embeddings (1st row). Subsequently, it demonstrates the

performance of the linear SVM when applied to the adversarial

embeddings mapped to ResNet-152 space from other models’

embedding space. The AUROC scores range from 0.75 to 0.99,

which represents an impressive range, highlighting the excellent

performance of the linear SVM. These results demonstrate that

different DNNs learn similar adversarial features, facilitating

successful mapping and accurate detection using a binary classifier.

We also perform the similar experiment while making the ViT

as the target model and mapped the embeddings from all CNN

architectures to its space. The AUROC scores for the SVMdetection

is given is Table 6. It is interesting to observe that the attention

TABLE 5 AUROC scores for classification of mapped original and

adversarial image embeddings from various models using a linear SVM

trained on ResNet-152 model’s embeddings.

Test data Adversarial attacks

FGSM PGD DAmageNet C&W

ResNet-152 0.9885 0.9932 0.9995 0.999

ResNet-50→

ResNet-152

0.9874 0.9913 0.9991 0.999

ResNet-101→

ResNet-152

0.9862 0.9926 0.9993 0.999

VGG-19→

ResNet-152

0.7584 0.7453 0.8572 0.8764

Inception-V3→

ResNet-152

0.9635 0.9434 0.9721 0.9886

ViT→ ResNet-152 0.9721 0.9686 0.9959 0.9955

The arrow indicates the direction of the linear map, with ResNet-152 as the target model and

all other models serving as sourcemodels.

based architecture does not affect the quality of learnt linear map

and the results are consistent with when the embeddings were

mapped to ResNet-152’s space.

Remarkably, the linear mapping is trained exclusively on

adversarial images; however, during detection, when differentiating

adversarial embeddings from other models with non-adversarial

embeddings from ResNet-152, the SVM performs comparably

or even better. This observation indicates that adversarial

information within an image can be linearly transferred, alongside

the image embeddings themselves, to a different CNN space.

Consequently, this idea hints at the potential for a unified and

transferable representation of adversarial features across diverse

DNN architectures within the ImageNet dataset.

Frontiers inComputer Science 07 frontiersin.org13

https://doi.org/10.3389/fcomp.2023.1274832
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jamil et al. 10.3389/fcomp.2023.1274832

5.4. Mapped embeddings adversarial
classification accuracy

To assess whether the embeddings, once mapped to

the target network, maintain their adversarial nature, we

conducted an experiment to measure the classification accuracies

achieved by the target models. Specifically, we recorded the

classification accuracies of the target models when provided

with embeddings mapped to their respective embedding spaces.

The results are presented in Table 7, showcasing both the

average accuracies across different source models and their

standard deviations.

Table 7 reveals a notable trend—the classification accuracy of

the target models closely aligns with their adversarial accuracies

(as indicated in column 3 of Table 7). This observation underscores

the effectiveness of our mapping approach in preserving adversarial

characteristics during the transfer.

However, it’s worth noting that when considering the

ImageNet dataset, we observed a higher standard deviation,

particularly due to the mapping process from the VGG-19

embedding space. This outcome can be attributed to the inherent

challenges posed by the substantial disparity in dimensions

between the source and target embeddings, a point previously

discussed.

TABLE 6 AUROC scores for classification of mapped original and

adversarial image embeddings from various models using a linear SVM

trained on Vision Transformer (ViT) model’s embeddings.

Test data Adversarial attacks

FGSM PGD DAmageNet C&W

ViT 0.9799 0.9755 0.9973 0.9972

ResNet-50→ ViT 0.9815 0.9837 0.9978 0.9992

ResNet-101→ ViT 0.9793 0.9850 0.9985 0.9991

ResNet-152→ ViT 0.9797 0.9849 0.9986 0.9992

VGG-19→ ViT 0.7083 0.7001 0.8096 0.8106

Inception-V3→

ViT

0.9610 0.9385 0.9707 0.9863

The arrow indicates the direction of the linear map, with ViT as the targetmodel and all other

models serving as sourcemodels.

6. Comparison with other method

Our proposed method is the first to demonstrate the existence

of a linear mapping between adversarial image representations of

twomodels and leverages this insight to construct a model-agnostic

adversarial defense.

We illustrate the possibility of this linear mapping using

a simple baseline—a linear Support Vector Machine (SVM)—

to create a model-agnostic detection method. We compare our

baseline with the adversarial detection method proposed by Harder

et al. (2021). The experiments in this section provide a comparative

analysis. Specifically, we calculate the magnitude and phase of

Fourier transforms for the penultimate layer embeddings and

utilize them to establish a linear mapping. We then proceed to

train a linear SVM classifier, following the procedure outlined in

Algorithm 1.

To facilitate a comprehensive comparison, we selected ResNet-

152 and Vision Transformer (ViT) as our target models, and

mapped theMagnitude Fourier Spectrum (MFS) and Phase Fourier

Spectrum (PFS) embeddings from various source models into the

spaces of these target models. Our findings, as presented in Tables 8,

9, offer valuable insights.

Notably, when utilizing the mapped MFS embeddings, we

observed that linear SVM did not exhibit strong performance, as

indicated by relatively low AUROC scores across all adversarial

attacks. In contrast, our method, which involves directly learning

the linear mapping using the model’s native embeddings,

consistently outperformed the mapped MFS approach.

Furthermore, our analysis reveals that PFS presents an

intriguing facet. It demonstrates superior performance when

compared to mapped MFS embeddings, suggesting that phase

information is amenable to linear mapping. However, it’s worth

highlighting an interesting observation: while PFS performs

well within the realm of CNN-based architectures, its efficacy

diminishes when applied to the mapping from attention-based

architectures to CNN-based ones, as evidenced by lower AUROC

scores in Table 8.

Notably, when all models are mapped to ViT space, the

performance of PFS exhibits a slight decrease (see Table 9)

compared to our proposed method. This underscores the

adaptability and robustness of our approach, particularly in

scenarios involving attention-based architectures.

TABLE 7 Adversarial classification accuracies of embeddings from di�erent models mapped to the target model for FGSM attack.

Datasets Target models Adversarial accuracy of target model Mapped accuracy for adversarial dataset

Cifar-10

EfficientNet-B0 39.31 41.90± 1.48

ResNet-18 44.09 40.55± 4.83

VGG-19 48.41 39.6± 4.02

MobileNet 41.13 42.125± 3.24

GoogleNet 45.49 40.825± 4.134

ImageNet
ResNet-152 66.49 52.30± 19.21

ViT 74.18 46.75± 20.01

Accuracies are represented as the average of various accuracies with the standard deviations. The high standard deviation in ResNet-152 and Vision Transformer comes from the poor

performance of VGG-19 mapped to ResNet-152 and ViT having accuracies (16.6 and 8.9%), respectively.

Frontiers inComputer Science 08 frontiersin.org14

https://doi.org/10.3389/fcomp.2023.1274832
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jamil et al. 10.3389/fcomp.2023.1274832

TABLE 8 AUROC scores for classification of mapped original and adversarial image magnitude Fourier spectrum (MFS) and phase Fourier spectrum (PFS)

from various models using a linear SVM trained on ResNet-152 model’s embeddings.

Test data Adversarial attacks

FGSM PGD DAmageNet C&W

MFS PFS MFS PFS MFS PFS MFS PFS

ResNet-152 0.823 0.966 0.816 0.967 0.958 0.995 0.986 0.998

ResNet-50→ ResNet-152 0.804 0.969 0.820 0.954 0.945 0.993 0.985 0.999

ResNet-101→ ResNet-152 0.793 0.961 0.778 0.961 0.942 0.995 0.978 0.999

VGG-19→ ResNet-152 0.562 0.692 0.548 0.692 0.658 0.779 0.702 0.811

Inception-V3→ ResNet-152 0.621 0.934 0.514 0.514 0.803 0.940 0.769 0.968

ViT→ ResNet-152 0.606 0.894 0.544 0.868 0.803 0.980 0.721 0.965

The arrow indicates the direction of the linear map, with ResNet-152 as the target model and all other models serving as sourcemodels.

TABLE 9 AUROC scores for classification of mapped original and adversarial image magnitude Fourier spectrum (MFS) and phase Fourier spectrum (PFS)

from various models using a linear SVM trained on Vision Transformer (ViT) model’s embeddings.

Test data Adversarial attacks

FGSM PGD DAmageNet C&W

MFS PFS MFS PFS MFS PFS MFS PFS

ViT 0.577 0.884 0.549 0.858 0.813 0.980 0.676 0.963

ResNet-50→ ViT 0.614 0.947 0.521 0.921 0.865 0.989 0.835 0.993

ResNet-101→ ViT 0.595 0.937 0.562 0.925 0.858 0.991 0.841 0.992

ResNet-152→ ViT 0.604 0.934 0.565 0.922 0.847 0.990 0.834 0.993

VGG-19→ ViT 0.524 0.639 0.499 0.616 0.594 0.737 0.562 0.741

Inception-V3→ ViT 0.549 0.895 0.483 0.835 0.704 0.935 0.703 0.950

The arrow indicates the direction of the linear map, with ViT as the target model and all other models serving as sourcemodels.

In summary, our exploration of MFS and PFS mappings

reveals interesting results. While PFS demonstrates promise,

especially within the CNN domain, our method of direct linear

mapping using model embeddings consistently delivers superior

performance across various model architectures and adversarial

attacks.

We also observed a notable variation in results when using

different adversarial attack methods. For instance, the performance

is better with DAmageNet images, likely due to their higher level of

perturbation (MSE = 2.97 across the dataset) compared to FGSM

(0.013), PGD (1.83), and C&W (1.05).

7. Discussion

To our knowledge, this is the first work to establish that

adversarial features can be efficiently mapped between diverse

DNN architectures. This novel discovery indicates the feasibility

of creating a robust canonical embedding space that is resistant to

adversarial inputs. This involves mapping adversarial embeddings

from other DNNs to this canonical embedding and utilizing the

canonical defense for identifying adversarial inputs. In this work,

we establish the feasibility of a simple model-agnostic defense using

an SVM—however, future work needs to explore the feasibility of

alternative solutions for adversarial defense.

It is important to note that while this mapping does require data

from the source model during its establishment, it subsequently

enables the efficient detection of adversarial inputs. This detection

process involves a minimal computational overhead, primarily

consisting of matrix multiplication. The distinct advantage of

our approach lies in its model-agnostic nature, allowing multiple

models to achieve robustness against adversarial attacks through

a shared and efficient detection mechanism. In contrast, model-

dependent defense methods, although also requiring access to data,

are inherently tied to specific model architectures and demand

customization for each model.

These linear mappings raise intriguing possibilities for

understanding the learned representations across different

modalities, such as linking vision and language representations.

Moreover, the implications extend to leveraging these mappings

for practical purposes. For instance, mapping image embeddings

to language embeddings may enhance the performance of language

models in their respective tasks.

Our work also provide valuable insights into how one could

consider the influence of architecture on a learned representation.

If high performing models have ultimately learned similar

representations, areas like neural architecture search (NAS) may

consider shifting their focus to identifying higher performing

representations—there is some work in this domain, such as the

hypothesis by Blanchard et al. (2019) that learned representations

that mirror biology, by grouping similar-looking objects in the

Frontiers inComputer Science 09 frontiersin.org15

https://doi.org/10.3389/fcomp.2023.1274832
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jamil et al. 10.3389/fcomp.2023.1274832

embedded representations, enhance robustness. The methodology

for evaluating this shift in focus has been established by works like

Radford et al. (2021), who evaluated their learned representation by

testing generalization to new tasks in a zero-shot context.

There are of course further investigations that need to be

done for non-traditional training paradigms and architectures.2

For example, what is the feasibility linear of mapping between

generative models, such as Variational Autoencoders (VAEs),

Generative Adversarial Networks (GANs), and CNNs? Do linear

methods suffice for mapping from VAE spaces to CNN spaces,

or are non-linear methods required? Despite initial appearances

suggesting differences in the organization of VAEs’ latent spaces,

exploring the degree of dissimilarity from a linear relationship

could yield valuable insights. Understanding the connections

between these distinct embedding spaces will open avenues for

leveraging the respective strengths of generative models and

CNNs. Are there hybrid approaches that capitalize on the unique

capabilities of each architecture? How can hybrid approaches

facilitate the development of more powerful and adaptable AI

systems?

Overall, our novel findings offer valuable insights into

the interplay between adversarial features and neural network

embeddings. This work paves the way for investigating novel

model-agnostic defense strategies that transcend the limitations of

individual architectures. Such defensesmay enablemore robust and

reliable deep learning systems in the face of adversarial challenges.

8. Conclusion

In this study, we showcase the remarkable shared commonality

in representations of adversarial images across a diverse set of deep

neural networks (DNNs). This interchangeability is made possible

through a straightforward linear mapping technique, typically

using the DNNs penultimate layers. To our knowledge, this is

the first work to establish that adversarial inputs are mappable

across DNNs. Further, we capitalize on our novel finding to

introduce the concept of a model-agnostic adversarial defense

that leverages the transferability of adversarial features across

representations. We develop a canonical adversarial defense, map

adversarial embeddings from other models to that canonical space,

and show adversarial inputs can be accurately identified without

any additional training. The feasibility of linearly transforming

2 Assuming the “traditional” paradigm is architectures trained for

classification.

adversarial features presents promising prospects for developing a

more robust model-agnostic adversarial defense, provides insights

for understanding and evaluating learned representations, and

opens the door for a wealth of future research that capitalizes on

these linear mappings.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

HJ: Conceptualization, Methodology, Writing—original draft,

Writing—review & editing. YL: Conceptualization, Supervision,

Writing—review & editing. NB: Conceptualization, Formal

analysis, Supervision, Writing—review & editing. MK: Funding

acquisition, Project administration, Supervision, Writing—review

& editing. CP: Supervision, Writing—review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the DARPA Geometries of Learning Program

under Award No. HR00112290074.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Bendale, A., and Boult, T. E. (2016). “Towards open set deep networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (LasVegas, NV).

Blanchard, N., Kinnison, J., RichardWebster, B., Bashivan, P., and Scheirer, W. J.
(2019). “A neurobiological evaluation metric for neural network model search,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (Long Beach, CA).

Blau, T., Ganz, R., Kawar, B., Bronstein, A., and Elad, M.
(2022). Threat model-agnostic adversarial defense using diffusion
models. arXiv preprint arXiv:2207.08089. doi: 10.48550/arXiv.2207.
08089

Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, J., Tsipras, D.,
et al. (2019). On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705.
doi: 10.48550/arXiv.1902.06705

Frontiers inComputer Science 10 frontiersin.org16

https://doi.org/10.3389/fcomp.2023.1274832
https://doi.org/10.48550/arXiv.2207.08089
https://doi.org/10.48550/arXiv.1902.06705
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jamil et al. 10.3389/fcomp.2023.1274832

Chen, S., Huang, X., He, Z., and Sun, C. (2019). DAmageNet: a universal adversarial
dataset. arXiv preprint arXiv:1912.07160. doi: 10.48550/arXiv.1912.07160

Crecchi, F., Bacciu, D., and Biggio, B. (2019). Detecting adversarial examples
through nonlinear dimensionality reduction. arXiv preprint arXiv:1904.13094.
doi: 10.48550/arXiv.1904.13094

Dong, Z., and Mao, Y. (2023). Adversarial defenses via vector quantization. arXiv
preprint arXiv:2305.13651. doi: 10.48550/arXiv.2305.13651

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., et al. (2020). An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929. doi: 10.48550/arXiv.2010.11929

Feinman, R., Curtin, R. R., Shintre, S., and Gardner, A. B. (2017).
Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410.
doi: 10.48550/arXiv.1703.00410

Frosio, I., and Kautz, J. (2023). “The best defense is a good offense: adversarial
augmentation against adversarial attacks,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (Vancouver, BC), 4067–4076.

Gopalakrishnan, S., Marzi, Z., Madhow, U., and Pedarsani, R. (2018). Combating
adversarial attacks using sparse representations. arXiv preprint arXiv:1803.03880.
doi: 10.48550/arXiv.1803.03880

Gorbett, M., and Blanchard, N. (2022). “Utilizing network features to detect
erroneous inputs,” in Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (Waikoloa, HI), 34–43.

Han, S., Lin, C., Shen, C., Wang, Q., and Guan, X. (2023). Interpreting
adversarial examples in deep learning: a review. ACM Comput. Surv. 55, 1–38.
doi: 10.1145/3594869

Harder, P., Pfreundt, F.-J., Keuper, M., and Keuper, J. (2021). “Spectraldefense:
detecting adversarial attacks on CNNs in the fourier domain,” in 2021 International
Joint Conference on Neural Networks (IJCNN) (Shenzhen: IEEE), 1–8.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385. doi: 10.1109/CVPR.
2016.90

Jamil, H., Liu, Y., Caglar, T., Cole, C., Blanchard, N., Peterson, C., et al. (2023).
“Hamming similarity and graph Laplacians for class partitioning and adversarial image
detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (Vancouver, BC), 590–599.

Jha, S., Jang, U., Jha, S., and Jalaian, B. (2018). “Detecting adversarial examples using
data manifolds,” in MILCOM 2018 - 2018 IEEE Military Communications Conference
(MILCOM) (Los Angeles, CA).

Khamaiseh, S. Y., Bagagem, D., Al-Alaj, A., Mancino, M., and Alomari,
H. W. (2022). Adversarial deep learning: a survey on adversarial attacks and
defense mechanisms on image classification. IEEE Access 10, 102266–102291.
doi: 10.1109/ACCESS.2022.3208131

Lenc, K., and Vedaldi, A. (2015). “Understanding image representations by
measuring their equivariance and equivalence,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (Boston, MA), 991–999.

Li, J., Zhang, S., Cao, J., and Tan, M. (2023). Learning defense transformations
for counterattacking adversarial examples. Neural Netw. 164, 177–185.
doi: 10.1016/j.neunet.2023.03.008

Li, X., and Li, F. (2017). “Adversarial examples detection in deep networks with
convolutional filter statistics,” in Proceedings of the IEEE International Conference on
Computer Vision (ICCV) (Venice).

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2017). Towards
deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083.
doi: 10.48550/arXiv.1805.12152

McNeely-White, D., Beveridge, J. R., and Draper, B. A. (2020). Inception
and resnet features are (almost) equivalent. Cogn. Syst. Res. 59, 312–318.
doi: 10.1016/j.cogsys.2019.10.004

McNeely-White, D., Sattelberg, B., Blanchard, N., and Beveridge, R. (2021).
Exploring the interchangeability of CNN embedding spaces. arXiv preprint
arXiv:2010.02323. doi: 10.48550/arXiv.2010.02323

McNeely-White, D., Sattelberg, B., Blanchard, N., and Beveridge, R. (2022).
Canonical face embeddings. IEEE Trans. Biometr. Behav. Identity Sci. 4, 197–209.
doi: 10.1109/TBIOM.2022.3155372

Mustafa, A., Khan, S., Hayat, M., Goecke, R., Shen, J., and Shao, L. (2019).
“Adversarial defense by restricting the hidden space of deep neural networks,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision (Seoul),
3385–3394.

Nie, W., Guo, B., Huang, Y., Xiao, C., Vahdat, A., and Anandkumar, A.
(2022). Diffusion models for adversarial purification. arXiv preprint arXiv:2205.07460.
doi: 10.48550/arXiv.2205.07460

Qiu, H., Zeng, Y., Zheng, Q., Guo, S., Zhang, T., and Li, H. (2021). An efficient
preprocessing-based approach to mitigate advanced adversarial attacks. IEEE Trans.
Comput. doi: 10.1109/TC.2021.3076826

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., et al.
(2021). “Learning transferable visual models from natural language supervision,” in
International Conference on Machine Learning (Seoul: PMLR), 8748–8763.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C.
(2019). MobileNetV2: Inverted residuals and linear bottlenecks. arXiv preprint
arXiv:1801.04381. doi: 10.1109/CVPR.2018.00474

Simonyan, K., and Zisserman, A. (2015). Very deep convolutional
networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
doi: 10.48550/arXiv.1409.1556

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.
(2014a). Going deeper with convolutions. arXiv preprint arXiv:1409.4842.
doi: 10.48550/arXiv.1409.4842

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., et al.
(2014b). Intriguing Properties of Neural Networks. Technical report.

Tan, M., and Le, Q. V. (2020). EfficientNet: rethinking model scaling
for convolutional neural e networks. arXiv preprint arXiv:1905.11946.
doi: 10.48550/arXiv.1905.11946

Xu, W., Evans, D., and Qi, Y. (2017). Feature squeezing: Detecting
adversarial examples in deep neural networks. arXiv preprint arXiv:1704.01155.
doi: 10.48550/arXiv.1704.01155

Zheng, H., Zhang, Z., Gu, J., Lee, H., and Prakash, A. (2020). Efficient adversarial
training with transferable adversarial examples. arXiv preprint arXiv:1912.11969.
doi: 10.48550/arXiv.1912.11969

Frontiers inComputer Science 11 frontiersin.org17

https://doi.org/10.3389/fcomp.2023.1274832
https://doi.org/10.48550/arXiv.1912.07160
https://doi.org/10.48550/arXiv.1904.13094
https://doi.org/10.48550/arXiv.2305.13651
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.1703.00410
https://doi.org/10.48550/arXiv.1803.03880
https://doi.org/10.1145/3594869
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ACCESS.2022.3208131
https://doi.org/10.1016/j.neunet.2023.03.008
https://doi.org/10.48550/arXiv.1805.12152
https://doi.org/10.1016/j.cogsys.2019.10.004
https://doi.org/10.48550/arXiv.2010.02323
https://doi.org/10.1109/TBIOM.2022.3155372
https://doi.org/10.48550/arXiv.2205.07460
https://doi.org/10.1109/TC.2021.3076826
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.4842
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.1704.01155
https://doi.org/10.48550/arXiv.1912.11969
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 02 November 2023

DOI 10.3389/fcomp.2023.1253682

OPEN ACCESS

EDITED BY

Yunye Gong,

SRI International, United States

REVIEWED BY

Ajay Divakaran,

SRI International, United States

Michael Yao,

Stony Brook University, United States, in

collaboration with reviewer AD

Chao Chen,

Stony Brook University, United States

Ruyi Lian,

Stony Brook University, United States, in

collaboration with reviewer CC

*CORRESPONDENCE

Peter Tu

tu@ge.com

RECEIVED 05 July 2023

ACCEPTED 16 October 2023

PUBLISHED 02 November 2023

CITATION

Tu P, Yang Z, Hartley R, Xu Z, Zhang J, Fu Y,

Campbell D, Singh J and Wang T (2023)

Probabilistic and semantic descriptions of

image manifolds and their applications.

Front. Comput. Sci. 5:1253682.

doi: 10.3389/fcomp.2023.1253682

COPYRIGHT

© 2023 Tu, Yang, Hartley, Xu, Zhang, Fu,

Campbell, Singh and Wang. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Probabilistic and semantic
descriptions of image manifolds
and their applications

Peter Tu1*, Zhaoyuan Yang1, Richard Hartley2, Zhiwei Xu2,

Jing Zhang2, Yiwei Fu1, Dylan Campbell2, Jaskirat Singh2 and

Tianyu Wang2

1Computer Vision and Machine Learning Laboratory, General Electric Research, Niskayuna, NY,

United States, 2School of Computing, College of Engineering, Computing and Cybernetics, Australian

National University, Canberra, ACT, Australia

This paper begins with a description of methods for estimating probability density

functions for images that reflects the observation that such data is usually

constrained to lie in restricted regions of the high-dimensional image space—

not every pattern of pixels is an image. It is common to say that images lie on

a lower-dimensional manifold in the high-dimensional space. However, although

images may lie on such lower-dimensional manifolds, it is not the case that all

points on the manifold have an equal probability of being images. Images are

unevenly distributed on the manifold, and our task is to devise ways to model

this distribution as a probability distribution. In pursuing this goal, we consider

generative models that are popular in AI and computer vision community. For our

purposes, generative/probabilisticmodels should have the properties of (1) sample

generation: it should be possible to sample from this distribution according to

the modeled density function, and (2) probability computation: given a previously

unseen sample from the dataset of interest, one should be able to compute the

probability of the sample, at least up to a normalizing constant. To this end, we

investigate the use of methods such as normalizing flow and di�usion models.

We then show how semantic interpretations are used to describe points on the

manifold. To achieve this, we consider an emergent language framework that

makes use of variational encoders to produce a disentangled representation of

points that reside on a given manifold. Trajectories between points on a manifold

can then be described in terms of evolving semantic descriptions. In addition to

describing the manifold in terms of density and semantic disentanglement, we

also show that such probabilistic descriptions (bounded) can be used to improve

semantic consistency by constructing defenses against adversarial attacks. We

evaluate our methods on CelebA and point samples for likelihood estimation

with improved semantic robustness and out-of-distribution detection capability,

MNIST and CelebA for semantic disentanglement with explainable and editable

semantic interpolation, and CelebA and Fashion-MNIST to defend against patch

attacks with significantly improved classification accuracy. We also discuss the

limitations of applying our likelihood estimation to 2D images in di�usion models.

KEYWORDS

image manifold, normalizing flow, di�usion model, likelihood estimation, semantic

disentanglement, adversarial attacks and defenses

1. Introduction

Understanding the complex probability distribution of the data is essential for image

authenticity and quality analysis, but is challenging due to its high dimensionality and

intricate domain variations (Gomtsyan et al., 2019; Pope et al., 2021). Seen images usually

have high probabilities on a low-dimensional manifold embedded in the higher-dimensional

space of the image encoder.

Frontiers inComputer Science 01 frontiersin.org18

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1253682
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1253682&domain=pdf&date_stamp=2023-11-02
mailto:tu@ge.com
https://doi.org/10.3389/fcomp.2023.1253682
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1253682/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

Nevertheless, the phenomenon that image embeddings

encoded using methods such as a pretrained CLIP

encoder (Ramesh et al., 2020) lie within a narrow cone of the

unit sphere instead of the entire sphere (Gao et al., 2019; Tyshchuk

et al., 2023), which degrades the aforementioned pattern of

probability distribution. Hence, on such a manifold, it is unlikely

that every point can be decoded into a realistic image because of

the unevenly distributed probabilities. Therefore, it is important

to compute the probability in the latent space to indicate whether

the corresponding image is in a high-density region of the

space (Lobato et al., 2016; Chang et al., 2017; Hajri et al., 2017;

Grover et al., 2018; Papamakarios et al., 2021; Coeurdoux et al.,

2022; Klein et al., 2022). This helps to distinguish seen images from

unseen images, or synthetic images from real images. Some works

train a discriminator with positive (real) and negative (synthetic)

examples in the manner of contrastive learning (Liu et al., 2022) or

analyze their frequency differences (Wang et al., 2020). However,

they do not address this problem using the probabilistic framework

afforded by modern generative models.

In this work, we calculate the exact log-probability of an image

by utilizing generative models that assign high probabilities to seen

images and low probabilities to unseen images. The confidence

of such probabilities is usually related to image fidelity, we hence

also introduce efficient and effective (with improved semantic

robustness) generation strategies using hierarchical structure and

large sampling steps with the Runge-Kutta method (RK4) (Runge,

1895; Kutta, 1901) for stabilization. Specifically, we use normalizing

flow (NF) (Rezende and Mohamed, 2016; Papamakarios et al.,

2021) and diffusion models (DMs) (Ho et al., 2020; Song et al.,

2021; Luo, 2022) as image generators. NF models learn an image

embedding space that conforms to a predefined distribution,

usually a Gaussian. In contrast, DMs diffuse images with Gaussian

noise in each forward step and learn denoising gradients for the

backward steps. A random sample from the Gaussian distribution

can then be analytically represented on an image manifold and

visualized through an image decoder (for NF models) or denoiser

(for diffusion models). In prior works, NF for exact likelihood

estimation (Rezende and Mohamed, 2016; Kobyzev et al., 2019;

Zhang and Chen, 2021) and with hierarchical structure (Liang et al.,

2021; Hu et al., 2023; Voleti et al., 2023) have been explored in

model training. To the best of our knowledge, however, it has not

been studied by investigating such likelihood distribution of seen

and unseen images with a hierarchical structure (without losing the

image quality) from themanifold perspective. This is also applied to

the diffusion models noting the difficulty of combining such exact

likelihood with the mean squared error loss in diffusion training.

Samples from these image generators can be thought of

having several meaningful semantic attributes. It is often desirable

that these attributes be orthogonal to each other in the sample

latent space so as to achieve a controllable and interpretable

representation. In this work, we disentangle semantics in the

latent space by using a variational autoencoder (VAE) (Kingma

and Welling, 2013) in the framework of emergent languages

(EL) (Havrylov and Titov, 2017; Kubricht et al., 2020; Pang et al.,

2020; Tucker et al., 2021; Mu et al., 2023). This allows the latent

representation on the manifold to be more robust, interpretable,

compositional, controllable, and transferable. Although some

VAE variant models such as β-TCVAE (Chen et al., 2018),

GuidedVAE (Ding et al., 2020), and DCVAE (Parmar et al., 2021)

achieve qualified semantic disentanglement results, we mainly

focus on understanding the effectiveness of the emergent language

framework for VAE based disentanglement inspired by Xu et al.

(2022) and emphasizing the feasibility of our GridVAE (with

mixture of Gaussian priors) under such an EL framework to study

semantic distributions on the image manifold. We also evaluate

their semantic robustness on such a manifold against adversarial

and patch attacks (Carlini and Wagner, 2016; Brown et al., 2017;

Tramer et al., 2017; Madry et al., 2018; Chou et al., 2019; Liu et al.,

2020; Xiang et al., 2021; Hwang et al., 2023) and defend against the

same attacks using semantic consistency with a purification loss.

We organize this paper into three sections, each with their

own experiments: log-likelihood estimation for a given image

under normalizing flows and diffusion models (see Section 2),

semantic disentanglement in emergent languages for a latent

representation of object attributes, using a proposed GridVAE

model (see Section 3), and adversarial attacks and defenses in image

space to preserve semantics (see Section 4).

2. Likelihood estimation with image
generators

We evaluate the log-probability of a given image using (1) a

hierarchical normalizing flow model, (2) a diffusion model adapted

to taking large sampling steps, and (3) a diffusion model that uses a

higher-order solution to increase generation robustness.

2.1. Hierarchical normalizing flow models

Normalizing flow (NF) refers to a sequence of invertible

functions that may be used to transform a high-dimensional image

space into a low-dimensional embedding space corresponding

to a probability distribution, usually Gaussian. Dimensionality

reduction is achieved via an autoencoding framework. For the

hierarchical model, the latent vector corresponding to the image xi
at each level i is computed as

zi = gi(yi) = gi ◦ fi(xi) ∼ N(0, 1) , (1)

and the inversion of this process reconstructs the latent z′i to x
′
i as

x′i = f ′i ◦ g
′
i (z

′
i) , (2)

where the decoder f ′i and flow inverse function g′i are inversions

of the encoder fi and flow function g respectively, and z′i can be

zi or randomly sampled from N(0, 1). We illustrate hierarchical

autoencoders and flows for rich and high-level spatial information

with conditioning variables in either image space or latent space.

In Figure 1, we show a 4-level hierarchical normalizing flow

model, where each set of functions (fi, gi, g
′
i , f

′
i) corresponds to

one level and where g′i and f ′i are conditioned on the higher-level

reconstruction, that is

x′1 = f ′1 ◦ g
′
1(z

′
1|f

′
2 ◦ g

′
2(z

′
2|f

′
3 ◦ g

′
3(z

′
3|f

′
4 ◦ g

′
4(z

′
4)))) . (3)

The model is learned in two phases: joint learning of all

autoencoders {fi, f
′
i } and then joint learning of all flows {gi, g

′
i} with

Frontiers inComputer Science 02 frontiersin.org19

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

the pretrained autoencoders, for all i ∈ {1, 2, 3, 4}. The loss function

for autoencoder learning, denoted Lae, is the mean squared error

(MSE) between the reconstructed data and the processed data, and

for the learning of flows the objective is to minimize the negative

log-probability of yi, denoted Lflow, such that the represented

distribution of the latent variable is modeled to be the standard

Gaussian distribution, from which a random latent variable can be

sampled for data generation. GivenN pixels and C channels (C = 3

for an RGB image and C = 1 for a greyscale image), xi at level i can

be represented as xi = {xij} for all j ∈ {1, ...,N}, the autoencoder

loss is then given by

Lae(x
′
i, xi) =

1

CN

N
∑

j=1

‖x′ij − xij‖
2 , (4)

and the flow loss for the latent at level i is the negative log-

probability of yi, that is Lflow(yi) = − log pY (yi), using the change

of variables as

log pY (yi) = log pZ(zi)+ log
∣

∣det∇Ygi(yi)
∣

∣

= log pZ(zi)+ log
∣

∣JY
(

gi(yi)
)∣

∣ , (5)

where

log pZ(zi) = −
1

di
log

1
(√

2π
)di

exp

(

−
1

2
‖zi‖

2

)

=
1

2
log 2π +

1

2di
‖zi‖

2 , (6)

di is the dimension of the ith latent and JX(·) computes the Jacobian

matrix over the partial derivativeX. Similarly, the log-probability of

xi at level i is

log pX(xi) = log pZ(zi)+ log
∣

∣det∇X

(

gi ◦ fi(xi)
)∣

∣

= log pZ(zi)+ log
∣

∣det JY (gi(yi))
∣

∣+ log
∣

∣det JX(fi(xi))
∣

∣ .

(7)

Then, the log-probability of an image at level i with hierarchical

autoencoders and flows from multiple downsampling layers,

xi+1 = d(xi) at level i, can be calculated with the chain rule as

log p(xi) =

i
∑

j=1

log pX(xj)+ log
∣

∣det JX(d(xj−1))
∣

∣ · 1
[

j > 1
]

, (8)

where [·] is a binary indicator.

2.2. Di�usion models

Differently from normalizing flow models that sample in a

low-dimensional embedding space due to the otherwise large

computational complexity, diffusion models diffuse every image

pixel in the image space independently, enabling pixelwise

sampling from the Gaussian distribution. We outline below a

strategy and formulas to allow uneven or extended step diffusion

in the backward diffusion process.

FIGURE 1

A 4-level hierarchical normalizing flow model, where each level

involves the functions (fi,gi,g
′
i
, f ′

i
). The normalizing flow (NF) model

is based on Glow (Kingma and Dhariwal, 2018); the downsampling

block decreases image resolution by a factor of two; and the output

of each higher (i > 1) level is conditioned on the output of the lower

level. We first train all autoencoders {fi, f
′
i
} jointly, then train all flows

{gi,g
′
i
} jointly, to obtain the generated image x′1. The latent variable

zi conforms to the standard Gaussian distribution N(0, 1) during

training; at test time, zi is sampled fromN(0, 1) for image generation.

2.2.1. Multi-step di�usion sampling
2.2.1.1. Forward process

The standard description of denoising diffusion model (Ho

et al., 2020) defines a sequence of random variables {x0, x1, . . . , xT}

according to a forward diffusion process

xt+1 =
√
αt xt +

√

βt ǫ , (9)

where βt = 1 − αt , xt is a sample from a random variable Xt , and

ǫ is a sample from the standard (multidimensional) Gaussian. The

index t takes integer values between 0 and T, and the set of random

variables form a Markov chain.

The idea can be extended to define a continuous family of

random variables according to the rule

xt =
√

ᾱt x0 +

√

β̄t ǫ , (10)

where β̄t = 1 − ᾱt , and for simplicity, we can assume that xt is

defined for t taking continuous values in the interval [0, 1]. Here,

the values ᾱt are a decreasing function of t with ᾱ0 = 1 and ᾱ1 = 0.

It is convenient to refer to t as time.

It is easily seen that if {0 = t0, t1, ..., tT = 1} are an increasing

set of time instants between 0 and 1, then the sequence of random

variables {Xt0 , . . .XtT } form a Markov chain. Indeed, it can be

computed that for 0 ≤ s < t ≤ 1, the conditional probabilities

p(xt|xs) are Gaussian

p(xt|xs) = N
(

xt |
√

ᾱstxs, β̄st
)

. (11)

where ᾱst = ᾱt/ᾱs and β̄st = 1 − ᾱst . This is the isotropic

normal distribution havingmean
√
ᾱstxs and variance β̄st . Similarly

to Eq. (9), one has

xt =
√

ᾱst xs +

√

β̄st ǫ . (12)

Frontiers inComputer Science 03 frontiersin.org20

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

This applies in particular when s and t refer to consecutive

time instants ti and ti+1. In this case, the joint probability of

{Xt0 , . . . ,XtT } is given by

p(xt0 , xt1 , . . . , xtT) = p(xt0)

T
∏

i=1

p(xti |xti−1) . (13)

One also observes, from Eq. (10) that p(x1) is a standard Gaussian

distribution. A special case is where the time steps are chosen evenly

spaced between 0 and 1. Thus, if h = 1/T, this can be written as

p(x0, xh, x2h, . . . , xTh) = p(x0)

T
∏

i=1

p(xih|x(i−1)h) . (14)

2.2.1.2. Backward process

The joint probability distribution is also a Markov chain, which

can be written in the reverse order, as

p(xt0 , xt1 , . . . , xtT) = p(xtT)

T
∏

i=1

p(xti−1 |xti) . (15)

This allows us to generate samples from X0 by choosing a

sample from X1 = XtT (a standard Gaussian distribution)

and then successively sampling from the conditional probability

distributions p(xti−1 |xti).

Unfortunately, although the forward conditional distributions

p(xti |xti−1) are known Gaussian distributions, the backward

distributions are not known and are not Gaussian. In general, for

s < t, the conditional distribution p(xt|xs) is Gaussian, but the

inverse p(xs|xt) is not.

However, if (t − s) is small, or more exactly, if the variance of

the added noise, β̄st = 1 − ᾱst is small, then the distributions can

be accurately approximated by Gaussians with the same variance

β̄st as the forward conditionals. With this assumption, the form of

the backward conditional p(xs|xt) is specified just by determining

its mean, denoted by µ(xs|xt). The training process of the diffusion

model consists of learning (using a neural network) the function

µ(xs|xt) as a function of xt . As explained in Ho et al. (2020), it

is not necessary to learn this function for all pairs (s, t), as will be

elaborated below.

We follow and generalize the formulation in Ho et al. (2020).

The training process learns a function ǫθ (xt , t) that minimizes the

expected least-squared loss function

Ex0∼X0 ,ǫ∼N
[‖ǫ − ǫθ (xt , t)‖

2] , (16)

where xt =
√
ᾱtx0 +

√

β̄tǫ. As such it estimates (exactly, if the

optimum function ǫθ is found) the expected value of the added

noise, given xt (note that it estimates the expected value of the added

noise, and not the actual noise, which cannot be predicted). In this

case, following Ho et al. (2020),

µ(xt−1|xt) =

√

ᾱt−1

ᾱt

(

xt −
1− ᾱt/ᾱt−1
√
1− ᾱt

ǫθ (xt , t)

)

. (17)

In this form, this formula is easily generalized to

µ(xs|xt) =
1

√
ᾱst

(

xt −
1− ᾱst
√
1− ᾱt

ǫθ (xt , t)

)

=
1

√
ᾱst

(

xt −
β̄st
√

β̄t

ǫθ (xt , t)

)

. (18)

As for the variance of p(xs|xt), in Ho et al. (2020) it is assumed that

the p(xt−1|xt) is an isotropic Gaussian (although in reality, it is not

exactly a Gaussian, nor exactly isotropic). The covariance matrix of

this Gaussian is denoted by σ 2
stI, and two possible choices are given,

which are generalized naturally to

σ
2
st = β̄st or σ

2
st =

β̄sβ̄st

β̄t

. (19)

As pointed out in Ho et al. (2020) both of these are compromises.

The first choice expresses the approximation that the variance of

the noise added in the backward process is equal to the variance

in the backward process. As mentioned, this is true for small time

steps.

Thus, in our work, we choose to model the reverse conditional

as follows,

pθ (xs|xt) = N(xs|µ(xs|xt), σ
2
stI) , (20)

where µ(xs|xt) is given by Eq. (18) and σ 2
st is given by Eq. (19). This

is an approximation of the true conditional probability p(xs|xt).

2.2.2. Probability estimation
In the following, we choose a finite set of T time instances

(usually equally spaced) {0 = τ0, τ1, . . . , τT = 1} and consider the

Markov chain consisting of the variables Xτt , for t = {0, . . . ,T},

at these time instances. For simplicity, we use the notation Xt

instead of Xτt and xt a sample from the corresponding random

variable. Then, the notation corresponds to the common notation

in the literature, but also applies in the case of unevenly, or widely

sampled time instants.

To distinguish between the true probabilities of the variables

Xt and the modeled conditional probabilities, the true probabilities

will be denoted by q (instead of p which was used previously).

The modeled probabilities will be denoted by pθ (xt−1|xt), and the

probability distribution of XT , which is Gaussian, will be denoted

by p(xT).

The image probability can be calculated by using the forward

and backward processes for each step of a pretrained diffusion

model. The joint probability p(x0 :T) and the probability of clean

input x0 can be computed using the forward and backward

conditional probability, q(xt+1|xt) and pθ (xt|xt+1) respectively.

Each sampling pair (xt , xt+1) where t ∈ S = {0, 1, 2, ...,T − 1},

follows the Markov chain rule resulting in the joint probability

p(x0 :T) = q(x0)
∏

t∈S

q(xt+1|xt) = p(xT)
∏

t∈S

pθ (xt|xt+1) , (21)

so

q(x0) =
p(xT)

∏

t∈S pθ (xt|xt+1)
∏

t∈S q(xt+1|xt)
. (22)

Frontiers inComputer Science 04 frontiersin.org21

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

The negative log-probability of the input image x0 is then

−log q(x0) = − log p(xT)+
∑

t∈S

log q(xt+1|xt)
︸ ︷︷ ︸

forward process

− log pθ (xt|xt+1)
︸ ︷︷ ︸

backward process

.

(23)

Computing Eq. (23) can be decomposed into three steps:

(1) Calculating log p(xT). Since x0 is fully diffused after T

forward steps, xT follows the standard Gaussian distribution

N(0, 1), and thus the negative log-likelihood only depends on the

Gaussian noise.

(2) Calculating log q(xt+1|xt). Since q(xt−1|xt) is a Gaussian

with known mean ᾱt/ᾱt−1, and variance 1 − ᾱt/ᾱt−1, the

conditional probability is easily computed, as a Gaussian

probability.

(3) Calculating log pθ (xt|xt+1). Similarly, the probability

pθ (xt−1|xt) is modeled as a Gaussian, with mean and variance given

by Eq. (18) and Eq. (19) (where s = t−1) the backward conditional

probabilities are easily computed.

2.2.3. Higher-order solution
With the hypothesis that high-fidelity image generation is

capable of maintaining image semantics, in each of the diffusion

inversion steps the x0 estimation and log-likelihood calculation

should be stable and reliable with a small distribution variance. The

diffusion inversion, however, usually requires a sufficiently small

sampling step h, where DDPM (Ho et al., 2020) only supports h = 1

and DDIM is vulnerable to h (Song et al., 2021) as evidenced in

Figure 8. It is important to alleviate the effect of h on the generation

step by stabilizing the backward process in diffusion models.

Without loss of generality, the Runge-Kutta method

(RK4) (Runge, 1895; Kutta, 1901) can achieve a stable inversion

process by constructing a higher-order function to solve an

initial value problem. Different from the traditional RK4, the

diffusion inversion requires inverse-temporal updates because of

the denoising gradient direction from the initial noisy image at

t = T to the clean image at t = 0. We provide the formulation

of traditional RK4 and our inverse-temporal version in the

Supplementary material.

2.3. Experiments

For each of the hierarchical normalizing flows (NFs) and

diffusion models (DMs), we first show the effectiveness of

likelihood estimation to analyze the image distribution (on 2D

images for NFs and point samples for DMs). For likelihood

estimation with image fidelity, we then illustrate the quality of

images generated by our generation models (sampling on the

manifold from a Gaussian distribution as well as resolution

enhancement in NFs and sampling step exploration with RK4

stabilization in DMs).

2.3.1. Experiments on hierarchical normalizing
flow models
2.3.1.1. Probability estimation

Figure 2 illustrates the probability density estimation on level

3 for an in-distribution dataset CelebA (Liu et al., 2015) and

an out-of-distribution dataset CIFAR10 (Krizhevsky, 2009). The

distribution of the latent variable zi of CelebA is concentrated

on a higher mean value than that of CIFAR10 due to the

learning of zi in the standard Gaussian distribution. Similarly, this

distribution tendency is not changed in the image space illustrated

by log p(xi). In this case, outlier samples from the in-distribution

dataset can be detected with a small probability in the probability

estimation.

2.3.1.2. Random image generation

Image reconstructions with encoded latent variables and

conditional images as well as random samples are provided in

Figure 3. For the low-level autoencoder and flow, say at level 1,

conditioned on the sequence of decoded xi for i = {2, 3, 4}, the

reconstruction of x1 is close to the processed images although some

human facial details are lost due to the downsampling mechanism,

see Figure 3A. While randomly sampling {zi} from the normal

distribution at each level, the generated human faces are smooth

but with blurry details in such as hair and chin and lack a realistic

background.

2.3.1.3. Image super-resolution

With the jointly trained autoencoders and flows on CelebA, the

images with low resolution, 3 × 8 × 8 (channel × height × width)

and 3 × 16 × 16, are decoded to 3 × 64 × 64 with smooth human

faces, see Figures 4A, B respectively. The low-resolution image xi
is used as a condition image for (1) NF inverse {g′i} to generate

embedding code to combine with the randomly sampled zi ∼

N(0, 1) and (2) decoders {f ′i } to concatenate with all upsampling

layers in each decoder. This preserves the human facial details from

either high levels or low levels for realistic image generation. As the

resolution of the low-resolution images increases, the embedding

code contains richer details.

2.3.2. Experiments on di�usion models
2.3.2.1. Log-likelihood estimation on point samples

We evaluate the log-probability of each point of point samples

(Pedregosa et al., 2011) including Swiss roll, circle, moon, and

S shown in Figure 5. Given a pretrained diffusion model on

Swiss roll samples with 100 forward steps with each diffused

by random Gaussian noise (see Figure 5A, the log-probability

of the samples in Figure 5B follows Eq. (23) with h = 1

and indicates higher probability and density on seen or similar

samples than unseen ones. In Figures 5B, C, the mean value

of the Swiss roll sample achieves a higher mean value, −0.933,

and a higher histogram density, 0.7, than the others. As the

difference in the sample shape from the Swiss roll increases, the

log-likelihood decreases, as shown in the bar chart in Figure 5C.

It indicates that sampling from a low-density distribution is unable

to reverse the diffusion step to obtain a realistic sample from the

training set.

2.3.2.2. DDPM sampling with large steps

While Figure 5 uses h = 1 as the standard DDPM sampling

process, it is feasible to sample with a fairly large step without

losing the sample quality. This enables sampling from the Gaussian

distribution for the log-likelihood estimation with less running

Frontiers inComputer Science 05 frontiersin.org22

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

FIGURE 2

Log-likelihood estimation using hierarchical autoencoders and flows. The encoder and flow are trained on CelebA and evaluated on CelebA and

CIFAR10. The x-axis is logp(·) and the y-axis is the histogram density. In each subfigure, the first row is on the in-distribution dataset CelebA and the

second row is on out-of-distribution CIFAR10, both are in the last row. In (A), logp(z) can detect outlier samples, and adding log |det(·)| from NF and

autoencoder does not significantly a�ect the distribution tendency, see (B) and (C). For better visualization, samples with logp(·) less than −10,000

are filtered out.

FIGURE 3

Image reconstruction and generation on the end-to-end training of 4-level autoencoders and flows. For each of two columns from left to right in

(A), the left is the real image and the right is the reconstructed image. (A) Reconstruction at level 1 with {zi} from encoders {gi} and conditioned on

{f ′
i
}. (B) Random generation at level 1 with latent variables {zi} ∼ N(0, 1) and conditioned on {f ′

i
}.

FIGURE 4

Image super-resolution on dataset CelebA. The first column is low-resolution images, the second column is real images, and the rest are

high-resolution images with latent variables {Zi} ∼ N(0, 1) conditioned on the low-resolution images and temperature 1.0. (A) Resolution: 3× 8× 8

to 3× 64× 64. (B) Resolution: 3× 16× 16 to 3× 64× 64.

time. To visualize the image quality, we evaluate the samples

on CelebA dataset by using a pretrained diffusion model with

1,000 forward diffusion steps. In Figure 6, the sampling has

an increase step h in {2, 10, 100} while the samples have a

high quality for h = {2, 10} and a fair quality for h =

100.

Frontiers inComputer Science 06 frontiersin.org23

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

FIGURE 5

Evaluation of log-probability of x0 on point samples with each of 10,000 points. (A) The training is on a Swiss roll sample and a di�usion model with

forward (noising) and backward (denoising) processes. (B) At the evaluation phase, unseen samples, that is circle, moon, and S, have lower logp(x)

values than the seen Swiss roll sample. In (B), the first row is sampled points and the middle and last rows are the mean value and the standard

deviation of logp(x) for each point on 100 random rounds respectively, which is represented as “mean ± SD.” The randomness lies in the random

noise in the forward and backward processes. A lighter color indicates a higher density. (C) Statistics indicates the higher density of a seen sample

(Swiss roll) than an unseen one (circle, moon, or S) through the di�usion model by using the negative of Eq. (23) with log10.

2.3.2.3. Higher-order solution stabilizes sampling

While sampling with a large step h can sometimes cause bias

from the one with a small h, RK4 effectively alleviates such a bias.

We evaluate both the point samples and human face images from

CelebA. In Figure 7, compared with the sample by using DDPM,

RK4 with DDPM inference achieves less noise at h = {2, 5, 10}. For

h = 20, RK4 performs expectedly worse because it only applies

five sampling steps while the training is on (T = 100) diffusion

steps. In Figure 8, we apply DDIM as the inference method for

RK4 to deterministically compare the samples with DDIM. As

h increases from 1 to 100, many of the samples using DDIM

lose the image consistency with the samples at h = 1; however,

most of the samples using RK4 still retain the image consistency.

This indicates the robustness of applying RK4 with a large

sampling step.

3. Semantic disentanglement on
manifold

Semantics of object attributes are crucial for image distribution

and spatial presentation. For instance, different shapes in Figure 5

represent different objects while those closer to the seen samples

have high likelihood; in Figure 8 semantics such as human gender

(see the 2nd row and 3rd column image with DDIM and

RK4) are fundamental for controllable generation by sampling

in high-density regions of specific semantic clusters on the

manifold. These semantics, however, are usually entangled without

independent distributions from each other for deterministic

embedding sampling on the image manifold (Liu et al., 2018;

Ling et al., 2022; Pastrana, 2022). Hence, regardless of image

generation models, we exploit the popular and efficient variational

autoencoder and introduce our GridVAE model for effective

semantic disentanglement on the image manifold.

3.1. GridVAE for clustering and
disentanglement

3.1.1. Formulation
A variational autoencoder (VAE) (Kingma and Welling, 2013)

is a neural network that maps inputs to a distribution instead

of a fixed vector. Given an input x, the encoder with neural

network parameters φ maps it to a hidden representation z.

The decoder with the latent representation z as its input and

the neural network parameters as θ reconstructs the output to

be as similar to the input x. We denote the encoder qφ(z|x)

and decoder pθ (x|z). The hidden representation follows a prior

distribution p(z).

With the goal of making the posterior qφ(z|x) close to the actual

distribution pθ (z|x), we minimize the Kullback-Leibler divergence

between these two distributions. Specifically, we aim to maximize

the log-likelihood of generating real data while minimizing the

difference between the real and estimated posterior distribution by

using the evidence lower bound (ELBO) as the VAE loss function

L(θ ,φ) = − log pθ (x)+ DKL(qφ(z|x)||pθ (z|x))

= −Ez∼qφ (z|x) log pθ (x|z)+ DKL(qφ(z|x)‖pθ (z)) , (24)

where the first term is the reconstruction loss and the second term

is the regularization for qφ(z|x) to be close to pθ (z). The prior

distribution of z is often chosen to be a standard unit isotropic

Frontiers inComputer Science 07 frontiersin.org24

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

FIGURE 6

Image generation from our modified DDPM with step size h. Samples follow a Gaussian distribution. Fine details are obtained even for very large

steps (h = 100). (A) h = 1. (B) h = 2. (C) h = 10. (D) h = 100.

FIGURE 7

Sampling robustness of DDPM and RK4 @ step h. With h being 5 or 10, RK4 still achieves clear sampling compared with DDPM. If h is too large, for

instance 20, RK4 fails as expected. (A) DDPM. (B) RK4@2. (C) RK4@5. (D) RK4@10. (E) RK4@20.

FIGURE 8

Random image generation using DDIM and RK4 with DDIM as inference @ time step h={1, 2, 10, 100}. The RK4 sampling method is more robust than

DDIM, especially at h = 100, with a higher image consistency than those at h = 1. (A) DDIM@1. (B) DDIM@2. (C) DDIM@10. (D) DDIM@100. (E)

RK4@1. (F) RK4@2. (G) RK4@10. (H) RK4@100.

Frontiers inComputer Science 08 frontiersin.org25

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

FIGURE 9

Scatter plot of test set latent space with an MoG prior.

Gaussian, which implies that the components of z should be

uncorrelated and hence disentangled. If each variable in the latent

space is only representative of a single element, we assume that this

representation is disentangled and can be well interpreted.

Emergent language (EL) (Havrylov and Titov, 2017) is hereby

introduced as a language that arises spontaneously in a multi-agent

system without any pre-defined vocabulary or grammar. EL has

been studied in the context of artificial intelligence and cognitive

science to understand how language can emerge from interactions

between agents. EL has the potential to be compositional such that

it allows for referring to novel composite concepts by combining

individual representations for their components according to

systematic rules. However, for EL to be compositional, the latent

space needs to be disentangled (Chaabouni et al., 2020). Hence,

we integrate VAE into the EL framework by replacing the sender

LSTM with the encoder of the VAE noting that the default

LSTM encoder will entangle the symbols due to its sequential

structure where the previous output is given as the input to the

next symbol. In contrast, the symbols can be disentangled with a

VAE encoder.

To achieve disentangled representations in EL, the VAE

encoder must be able to cluster similar concepts into discrete

symbols that are capable of representing attributes or concepts. The

standard VAEs are powerful, but their prior distribution, which

is typically the standard Gaussian, is inferior in clustering tasks,

particularly the location and the number of cluster centers. In

the EL setting, we desire a posterior distribution with multiple

clusters, which naturally leads to an MoG prior distribution with

K components

p(z) =
1

K

K
∑

k=1

N(z|µk, σ
2
k) . (25)

We choose the µk to be located on a grid in a Cartesian coordinate

system so that the posterior distribution clusters can be easily

determined based on the sample’s distance to a cluster center. We

refer to this new formulation as GridVAE, which is a VAE with

a predefined MoG prior on a grid. The KL-divergence term in

Eq. (24) can be re-written as

DKL(qφ(z|x)‖pθ (z)) = Ex∼p(x)Eqφ (z|x)[log p(z)− log qφ(z|x)] .

(26)

The log probability of the prior can be easily calculated with

the MoG distribution, and we only need to estimate the log

probability of the posterior using a large batch size during training.

By using a GridVAE, we can obtain a posterior distribution with

multiple clusters that correspond to the same discrete attribute,

while allowing for variations within the same cluster to generate

different variations of the attribute.

3.1.2. Experiments
We evaluate the clustering and disentanglement capabilities

of the proposed GridVAE model using a two-digit MNIST

dataset (LeCun et al., 1998) consisting of digits 0 to 5. Each digit

is from the original MNIST dataset, resulting in a total of 36 classes

[00, 01, 02,..., 55].

To extract features for the encoder, we use a 4-layer ResNet (He

et al., 2016) and its mirror as the decoder. The VAE latent space

is 2-dimensional (2D), and if the VAE learns a disentangled

representation, each dimension of the 2D latent space should

represent one of the digits.We use a 2Dmixture of Gaussian (MoG)

as the prior distribution, with six components in each dimension

centered at integer grid points from [−2, −1, 0, 1, 2, 3], that is the

coordinates for the cluster centers are [(−2, −2), (−2, −1),..., (3,

3)]. The standard deviation of the mixture of Gaussian is 1/3.

After training the model, we generate a scatter plot of the test

set latent space, as shown in Figure 9. Since the prior is a mixture

of Gaussian on the grid points, if the posterior matches the prior,

we can simply draw a boundary in the middle of two grid points,

illustrated by the red lines in Figure 9.

With the trained model, one can sample in the latent space

for image generation. In Figures 10A, B, when we decode from

the cluster centers (i, j): in (A) we keep j = 0 and change i from

−2 to 3, while in (B) we keep i = 0 and change j from −2 to

3. The latent space is disentangled with respect to the two digits

- the first dimension of the latent space controls the first digit, while

the second dimension controls the second digit. Each of the cluster

centers corresponds to a different number.

Figures 10C, D show images generated within the cluster

centered at (1, 1), that is the pairs of number “44”. If we slightly

modify one of the dimensions, it corresponds to different variations

of the number “4” along this dimension, while keeping the other

digit unchanged.

Overall, these results demonstrate the effectiveness of the

proposed GridVAEmodel in clustering and disentangling the latent

space on the two-digit MNIST dataset.

Frontiers inComputer Science 09 frontiersin.org26

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

FIGURE 10

Generated images from sampling the latent space. (A) The second

dimension is fixed at 0, changing the first dimension from −2 to +3.

(B) The first dimension is fixed at 0 and the second dimension is

changed from −2 to +3. (C) Around the cluster center(1, 1), keep

the second dimension fixed and change the first dimension. (D)

Around the cluster center(1, 1), keep the second dimension fixed

and change the first dimension.

3.2. Scaling up GridVAE

In Section 3.1, the two-digit MNIST dataset lies in a 2-

dimensional latent space. However, many real-world datasets

would require a much higher dimensional space.

3.2.1. Addressing higher dimensional latent space
Discretizing a continuous space, such as in GridVAE, is

challenging due to the curse of dimensionality (Bellman, 1957).

This refers to the exponential growth in the number of clusters

as the number of dimensions increases, which leads to a

computational challenge when dealing with high-dimensional

latent space. For example, when applying GridVAE to reconstruct

images of the CelebA (Liu et al., 2015) dataset to learn the 40

attributes, we need a 40-dimensional latent space with two clusters

in each dimension to represent the presence or absence of a given

attribute. Firstly, parametrizing the mixture of Gaussian prior

p(z) =
∑K

k=1 N(z|µk, σ
2
k
)/K over 40 dimensions is prohibitively

expensive as K = 240 ≈ 1.1 × 1012. Secondly, the assumption

of equal probability for the components, which was appropriate

for the simple 2-digit MNIST dataset, is no longer valid. This is

because the attributes in the CelebA dataset are not uniformly

distributed, and some combinations may not exist. For instance,

the combination of “black hair” + “blonde hair” + “brown hair”

+ “bald” is impossible due to attribute conflicts. To address this

issue, we use the proposed loss function in Eq. (24) incorporating

relaxation.

To avoid pre-parametrizing p(z) over 40 dimensions, we have

implemented a dynamic calculation of the KL-divergence between

qφ and pθ , whereby only the cluster that is closest to the latent

space representation is considered, as illustrated in Figure 11. This

means that clusters to which the data point does not belong do not

affect its distribution, and the MoG distribution is simplified to a

FIGURE 11

When calculating the KL-divergence, only the mixture component

closest to the data (darker shade) is considered. Other components

(lighter shade) are ignored. This can be generalized to multiple

dimensions and multiple components in each dimension.

multivariate Gaussian as

DKL(p1 || p2) =
1

2

[

log
|62|

|61|
− n+ tr

(

6
−1
2 61

)

+ (µ2 − µ1)
⊺
6

−1
2 (µ2 − µ1)

]

, (27)

where p1 = qφ(z|x) = N(z|µ1,61), 61 = diag(σ 2
1 , . . . , σ

2
n),

p2 = N(µ2,62), µ2 = R(µ1), and 62 = diag(σ 2
0 , . . . , σ

0
n) with

the round function R(·) for the closest integer.

The key step here is that the round function dynamically selects

the cluster center closest to µ1, and σ0 is a pre-defined variance for

the prior distribution. It should be chosen so that two clusters next

to each other have a reasonable degree of overlap, for example, σ0 =

1/16 in some of our following experiments. The KL-divergence

term becomes

DKL(qφ(z|x)‖pθ (z)) =
1

2

[

log
|62|

|61|
− n+ tr

(

6
−1
2 61

)

+ (µ2 − µ1)
⊺
6

−1
2 (µ2 − µ1)

]

=
1

2

[

log
∏

i

σ
2
0 − log

∏

i

σ
2
i − n+

∑

i

σ
2
i

σ
2
0

+
∑

i

(µi − R(µi))
2

σ
2
0

]

=
1

2

[

n
∑

i=1

(

log σ 2
0 − log σ 2

i − 1
)

+

n
∑

i=1

σ
2
i + (µi − R(µi))

2

σ
2
0

]

.

(28)

By adopting Eq. (28), we can significantly reduce the computational

complexity of the model, even for a high-dimensional latent space,

Frontiers inComputer Science 10 frontiersin.org27

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

bringing it to a level comparable to that of a standard VAE. It is

worth noting that the global disentanglement may no longer be

guaranteed. Rather, the model only provides local disentanglement

within the proximity of each cluster.

Upon training the GridVAE with a 40-dimensional latent space

by using the proposed Eq. (28) on the CelebA dataset, we observe

some intriguing disentanglement phenomena. Figure 12 showcases

the disentanglement of two latent space dimensions, where the

first dimension governs one attribute and the second dimension

determines another one. Combining these two dimensions leads to

simultaneous attribute changes in the generated images.

An inherent limitation of this unsupervised approach is that

while the latent space appears to be locally disentangled for

each image, the same dimension may have different semantic

interpretations across different images. To address this issue, we

introduce all 40 attributes of the dataset during the training. This

should establish an upper bound on the disentanglement.

3.2.2. From unsupervised to guided and partially
guided GridVAE

To this end, we described an unsupervised approach to learning

the latent space representation of images. However, for datasets like

CelebA with ground truth attributes, we can incorporate them into

the latent space to guide the learning. Specifically, we extract the

40-dimensional attribute vector indicating the presence or absence

of each feature for each image in a batch and treat it as the ground

truth cluster centerµ
gt
i . Hence, instead of rounding the latent space

representation µi in Eq. (28), we replace it with µ
gt
i .

One limitation of this approach is the requirement of the

ground truth attributes for all images, which may not always

be available or feasible. Additionally, it is important to note

that while we refer to this approach as “guided,” the given

attribute information only serves in the latent space as the

cluster assignment prior, and the VAE reconstruction task remains

unsupervised. This differs from classical supervised learning,

where the label information is the output. Furthermore, in

our approach, no specific coordinate in the latent space is

designated for the input. Instead, we provide guidance that the

sample belongs to a cluster centered at a certain point in the

latent space.

This guided learning framework can be extended to a subset of

the 40 attributes or a latent space withmore dimensions. For clarity,

we will refer to the latter as “partially guided” to distinguish it

from the commonly used “semi-supervised” by using a subset of the

labeled dataset.

We conduct the experiments using attribute information

as latent space priors and obtain the following findings for

the guided approach: (a) GridVAE is able to cluster images

accurately based on their attributes and the same dimension

has the same semantic meaning across different images. For

instance, dimension 31 represents “smile”. (b) GridVAE could not

generate images for clusters that have little or no representation

in the training set. For example, the attempt to generate

an image of a bald female by constraining GridVAE to the

“female” and “bald” clusters is not achievable for an accurate

representation. (c) Some attributes are more universal across

different images, such as their ability to add a smile to almost

any face. However, other attributes, such as gender, are not

always modifiable. This could be caused by attributes that are

not independent and can be influenced by others. Universal

attributes, such as “smile,” seem to primarily located locally in the

image region without interruption from the other attributes, see

Figure 13.

To further illustrate the incompleteness and correlation among

the attributes in the CelebA dataset, we use a subset of the

given attributes. We choose 38 out of the 40 attributes, excluding

attributes 20 (female/male) and 31 (not smiling/smiling). Figure 14

shows that the GridVAE cannot learn the omitted attributes. This

highlights the interdependence of different attributes in the latent

space.

3.3. Combining manifolds of GridVAE
disentangled attribute and facial
recognition

After achieving a disentangled latent space, one may still

wonder about the usefulness of a semantic description of a

manifold. One can consider the scenario where another manifold,

such as a facial recognition manifold, is learned. By studying these

two manifolds jointly, we can gain insights to make the models

more explainable and useful. One potential application is to better

understand the relationship between facial attributes and facial

recognition. By analyzing the disentangled latent space of facial

attributes and the manifold learned for facial recognition, we can

potentially identify which attributes are the most important for

recognizing different faces. This understanding can then be used

to improve the performance of facial recognition models as well as

explain the model decisions.

For instance, FaceNet (Schroff et al., 2015) directly learns a

mapping from face images to a compact Euclidean space where

distances correspond to a measure of face similarity. To discover

the semantic structure of this manifold with x as binary attributes,

we can follow these steps:

1. Build a face recognition manifold using contrastive learning.

2. Use the CelebA dataset with ground truth attribute labels (40

binary values).

3. Insert CelebA samples onto the recognition manifold.

4. Find the nearest neighbor for each CelebA sample using the face

recognition manifold coordinates.

5. For each attribute in x, compute p(x) over the entire CelebA

dataset.

6. For each attribute in x, compute p(x|x of nearest neighbor = 0).

7. For each attribute in x, compute the KL divergence between p(x)

and p(x|x of nearest neighbor = 0).

8. Identify attributes with the largest KL divergence.

Figure 15 demonstrates that the KL Divergence between p(x)

and p(x|x of nearest neighbor = 0) is significantly larger for

certain attributes, such as “male,” “wearing lipstick,” “young” and

“no beard,” than the others. This indicates that the neighborhood

structure of the facial recognition manifold is markedly different

from the distribution of these attributes in the entire dataset.

These findings highlight the importance of the joint study of

Frontiers inComputer Science 11 frontiersin.org28

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

FIGURE 12

Two generated examples using linear sampling in the latent space. The top row fixes the dimensions and changes the first one, collar in (A) and skin

color in (B), from −0.5 to +1.5. The middle row fixes the dimensions and changes the second one, hair color in (A) and hairstyle in (B), from −0.5 to

+1.5. The bottom row changes the first and second dimensions from −0.5 to +1.5.

different manifolds to gain a more profound understanding of the

relationship between the attributes and the recognition tasks. By

incorporating it into the models, we can potentially improve the

performance of facial recognition models and also enhance their

interpretability.

4. Application to defend patch attacks

To this end, interpretable and controllable samplings from each

semantic distribution on the manifold can be achieved by using

the semantic disentanglement in Section 3 toward high-fidelity and

diverse image generation and probability distribution analysis in

Section 2. It is also of strong interest to enhance the robustness

of such semantic samplings under certain attacks. In this section,

we present an adversarial robustness framework by enforcing the

semantic consistency between the classifier and the decoder for

reliable density estimation on the manifold.

4.1. Adversarial defense with variational
inference

In Yang et al. (2022), adversarial robustness can be achieved

by enforcing the semantic consistency between a decoder and a

classifier (adversarial robustness does not exist in non-semantically

consistent classifier-decoder). We briefly review the adversarial

purification framework below. We define the real-world high-

dimensional data as x ∈ R
n which lies on a low-dimensional

manifold M diffeomorphic to R
m with m ≪ n. We define an

encoder function f :Rn → R
m and a decoder function f †

:R
m →

R
n to form an autoencoder. For a point x ∈ M, f † and f are

approximate inverses. We define a discrete label set L of c elements

as L = {1, ..., c} and a classifier in the latent space as h :Rm → L.

The encoder maps the image x to a lower-dimensional vector z =

f (x) ∈ R
m and the functions f and h together form a classifier in

the image space h(z) = (h ◦ f)(x) ∈ L.

A classifier (on the manifold) is a semantically consistent

classifier if its predictions are consistent with the semantic

interpretations of the images reconstructed by the decoder. Despite

that the classifiers and decoders (on the manifold) have a low

input dimension, it is still difficult to achieve high semantic

consistency between them. Thus, we assume that predictions and

reconstructions from high data density regions of p(z|x) are more

likely to be semantically consistent and we need to estimate the

probability density in the latent space with the variational inference.

We define three sets of parameters: (1) φ parametrizes the

encoder distribution, denoted as qφ(z|x), (2) θ parametrizes

the decoder distributions, represented as pθ (x|z), and (3) ψ

parametrizes the classification head, given by hψ (z). These

parameters are jointly optimized with respect to the ELBO loss and

the cross-entropy loss as shown in Eq. (29), where λ is the trade-

off term between the ELBO and the classification. We provide the

framework in Figures 16A, B for the two-stage procedure and the

trajectory of cluster center change after introducing our purification

over attacks in Figure 16C. By adopting this formulation, we notice

a remarkable semantic consistency between the decoder and the

classifier. Specifically, on Fashion-MNIST (Xiao et al., 2017), when

making predictions on adversarial examples, if the predicted label

is “bag,” we observe that the reconstructed image tends to resemble

a “bag” as well. This phenomenon is illustrated in Figures 16D, 17.

max
θ ,φ,ψ

Ez∼qφ (z|x)

[

log pθ (x|z)
]

− DKL[qφ(z|x)‖p(z)]
︸ ︷︷ ︸

ELBO (lower bound of log pθ (x))

+λEz∼qφ (z|x)[y
⊺ log hψ (z)]

︸ ︷︷ ︸

Classification loss

. (29)

To defend against image-level attacks, a purification vector can

be obtained through the test-time optimization over the ELBO loss.

For example, given an adversarial example xadv, a purified sample

can be obtained by xpfy = xadv + ǫpfy with

ǫpfy = argmax
ǫ∈Cpfy

Ez∼qφ (z|xadv+ǫ)

[

log pθ (xadv + ǫ|z)
]

−DKL[qφ(z|xadv + ǫ)‖p(z)] ,

(30)

where Cpfy = {ǫ ∈ R
n | xadv + ǫ ∈ [0, 1]n and ‖ǫ‖p ≤ ǫth} which

is the feasible set for purification and ǫth is the purification budget.

Since the classifier and the decoder are semantically consistent, the

predictions from the classifier become normal to defend against the

attacks upon normal reconstructions.

Frontiers inComputer Science 12 frontiersin.org29

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

FIGURE 13

Generated images from sampling in the latent space. Keeping all other dimensions fixed and changing dimension (A) 31 (smile) from −0.5 to +1.5, or

(B) 20 (male) from −0.5 to +1.5.

FIGURE 14

Partially guided GridVAE generation from the latent attributes which are not provided during training. The left and right subfigures (each with 11

images) are with the dimensions 20 and 31 respectively.

FIGURE 15

Semantic structure of the face recognition manifold by jointly studying the attribute manifold and the facial recognition manifold. (A) p(x) and

p(x|x of nearest neighbor = 0) distributions. (B) KL divergence.

Frontiers inComputer Science 13 frontiersin.org30

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

FIGURE 16

The framework of adversarial purification for image-level adversarial attacks. (A) Jointly train the classifier with the ELBO loss. (B) Test time adversarial

purification with the ELBO loss. (C) Trajectories of clean (green)—attack (red)—purified (blue) images on a 2D latent space. (D) Input images and

reconstruction images of samples in (C). The top two rows are the input and reconstruction of clean images, the middle two rows are the input and

reconstruction of adversarial images. The bottom two rows are the input and reconstruction of purified images. The text represents predicted classes

with green color for correct predictions and red color for incorrect predictions. The red box on the right corresponds to the failure case (purified

process fails).

FIGURE 17

Class predictions from the VAE-Classifier models on clean, adversarial and purified samples of the CelebA gender attribute. The top two rows are the

input and reconstruction of clean images, the middle two rows are the input and reconstruction of patch adversarial images. The bottom two rows

are the input and reconstruction of purified images. The text represents the predicted classes with green color for correct predictions and red color

for incorrect predictions. Since predictions and reconstructions from the VAE classifier are correlated, our test-time defenses are e�ective against

adversarial attacks.

Frontiers inComputer Science 14 frontiersin.org31

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

TABLE 1 Classification accuracy of the model on clean and adversarial (patch) examples.

VAE-CLF +TTD (ELBO)

Dataset (backbone) Clean Patch-PGD Patch-NAG Clean Patch-PGD Patch-NAG

CelebA-Gender (ResNet-50) 97.86 13.14 6.83 91.20 75.75 76.75

4.2. Bounded patch attack

In this work, we focus on the ℓ0-bounded attacks (Papernot

et al., 2016; Brown et al., 2017) from the manifold perspective

which is not investigated in the prior work. In contrast to full

image-level attacks like ℓ2 and ℓ∞ bounded attacks (Madry

et al., 2018), patch attacks, which are ℓ0 bounded attacks, aim to

restrict the number of perturbed pixels. These attacks are more

feasible to implement in real-world settings, resulting in border

impacts. Below, we conduct an initial investigation into the defense

against patch attacks by leveraging the knowledge of the data

manifold.

When compared to ℓ∞ attacks, ℓ0 attacks, such as the

adversarial patch attacks, introduce larger perturbations to the

perturbed pixels. Therefore, we decide to remove the purification

bound for the patch-attack purification. Without these constraints,

the purified examples can take on any values within the image

space. A purification vector can then be obtained through

the test-time optimization over the ELBO loss as shown in

Eq. (30).

4.3. Experiments

We use the gender classification model (Yang et al., 2022) to

demonstrate the adversarial purification of ℓ0 bounded attacks.

To ensure that the adversarial examples do not alter the semantic

content of the images, we restrict the perturbation region to

the forehead of a human face. The patch for perturbation is

a rectangular shape measuring 16 × 32, see Figure 17. For

the patch attacks, we conduct 2,048 iterations with step size

1/255 using PGD (Madry et al., 2018) and PGD-NAG (Nesterov

Accelerated Gradient) (Lin et al., 2020). In Table 1, the purification

is carried out through 256 iterations with the same step

size.

5. Limitation

The current version of log-probability estimation in diffusion

models has limitations in evaluating high-dimensional images.

Specifically, at early denoising steps (when t is small) the

diffusion model serves as a denoiser such that xt and xt+h

are similar while at large steps (when t moves toward T),

their difference is still small due to the high proportion

of the Gaussian noise in xt . This leads to the proportion

of the difference between xt and xt+h for effective out-of-

distribution detection small compared with the log p accumulated

in the processes. We keep this as an open problem for

future work.

6. Conclusion

This work studies the image geometric representation from

high-dimensional spatial space to low-dimensional latent space on

the image manifold. To explore the image probability distribution

with the assumption that real images are usually in a high-

density region while not all samples from the distribution can

be represented as realistic images, we incorporate log-likelihood

estimation into the procedures of normalizing flows and diffusion

models. Meanwhile, we explore the hierarchical normalizing flow

structure and a higher-order solution in diffusion models for high-

quality and high-fidelity image generation. For an interpretable

and controllable sampling from the semantic distribution on the

manifold, we then propose GridVAEmodel under an EL framework

to disentangle the elements of the latent variable on the image

manifold. To test the semantic and reconstruction robustness on

the manifold, we first apply patch attacks and defenses in the image

space and then effectively recover the semantics under such attacks

with our purification loss. Experiments show the effectiveness of

probability estimation in distinguishing seen examples from unseen

ones, the quality and the efficiency with large sampling steps in

image generation, meaningful representations of varying specific

element(s) of the latent variable to control the object attribute(s) in

the image space, and the well-preserved semantic consistency with

patch attacks.

Data availability statement

Publicly available datasets were analyzed

in this study. This data can be found at:

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html,

http://yann.lecun.com/exdb/mnist/, and

https://github.com/zalandoresearch/fashion-mnist.

Ethics statement

Written informed consent was not obtained from the

individual(s) for the publication of any potentially identifiable

images or data included in this article because these human face

images are from the public dataset CelebA, which is widely used in

computer vision community.

Author contributions

PT: Writing—original draft, Writing—review & editing. ZY:

Writing—original draft,Writing—review& editing. RH:Writing—

original draft, Writing—review & editing. ZX: Writing—original

draft, Writing—review & editing. JZ: Writing—original draft,

Frontiers inComputer Science 15 frontiersin.org32

https://doi.org/10.3389/fcomp.2023.1253682
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

Writing—review & editing. YF: Writing—original draft, Writing—

review & editing. DC: Writing—review & editing. JS: Writing—

review & editing. TW: Writing—review & editing.

Funding

This work was supported by the DARPA geometries of learning

(GoL) project under the grant agreement number HR00112290075.

Acknowledgments

We thank Amir Rahimi for his contribution to the code and

discussion of the normalizing flow models.

Conflict of interest

PT, ZY, and YF are employed by General Electric.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2023.1253682/full#supplementary-material

References

Bellman, R. (1957). Dynamic Programming. Princeton, NJ: Princeton University
Press.

Brown, T. B., Mané, D., Roy, A., Abadi, M., and Gilmer, J. (2017). “Adversarial
patch,” in Conference on Neural Information Processing Systems (NeurIPS) (Long
Beach). Available online at: https://nips.cc/Conferences/2017

Carlini, N., andWagner, D. A. (2016). “Towards evaluating the robustness of neural
networks,” in CoRR abs/1608.04644.

Chaabouni, R., Kharitonov, E., Bouchacourt, D., Dupoux, E., and Baroni, M.
(2020). Compositionality and generalization in emergent languages. arXiv. [preprint].
doi: 10.48550/arXiv.2004.09124

Chang, L., Borenstein, E., Zhang, W., and Geman, S. (2017). Maximum
likelihood features for generative image models. Ann. Appl. Stat. 11, 1275–1308.
doi: 10.1214/17-AOAS1025

Chen, R. T. Q., Li, X., Grosse, R., and Duvenaud, D. (2018). “Isolating sources
of disentanglement in vaes,” in Conference on Neural Information Processing Systems
(NeurIPS) (Montreal, QC). Available online at: https://nips.cc/Conferences/2018

Chou, E., Tramer, F., and Pellegrino, G. (2019). “SentiNet: detecting localized
universal attacks against deep learning systems,” in Deep Learning and Security
Workshop (DLSW) (San Francisco, CA: IEEE). doi: 10.1109/SPW50608.2020.
00025

Coeurdoux, F., Dobigeon, N., and Chainais, P. (2022). “Sliced-Wasserstein
normalizing flows: beyond maximum likelihood training,” in European Symposium on
Artificial Neural Networks (ESANN) (Bruges). doi: 10.14428/esann/2022.ES2022-101

Ding, Z., Xu, Y., Xu, W., Parmar, G., Yang, Y., Welling, M., et al. (2020).
“Guided variational autoencoder for disentanglement learning,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (Seattle, WA: IEEE).
doi: 10.1109/CVPR42600.2020.00794

Gao, J., He, D., Tan, X., Qin, T., Wang, L., Liu, T. Y., et al. (2019). “Representation
degeneration problem in training natural language generation models,” International
Conference on Learning Representations (ICLR) (New Orleans, LA). Available online at:
https://iclr.cc/Conferences/2019

Gomtsyan, M., Mokrov, N., Panov, M., and Yanovich, Y. (2019). “Geometry-aware
maximum likelihood estimation of intrinsic dimension,” in Proceedings of Machine
Learning Research. Asian Conference on Machine Learning (ACML). Available online
at: https://www.acml-conf.org/2019/

Grover, A., Dhar, M., and Ermon, S. (2018). “Flow-GAN: combining maximum
likelihood and adversarial learning in generative models,” in AAAI Conference on
Artificial Intelligence (AAAI). (New Orleans, LA). Available online at: https://dblp.org/
db/conf/aaai/aaai2018.html

Hajri, H., Said, S., and Berthoumieu, Y. (2017). “Maximum likelihood estimators
on manifolds,” in International Conference on Geometric Science of Information (Cham:
Springer). doi: 10.1007/978-3-319-68445-1_80

Havrylov, S., and Titov, I. (2017). “Emergence of language with multi-agent
games: learning to communicate with sequences of symbols,” in Conference on Neural
Information Processing Systems (NeurIPS) (Long Beach, CA), 30. Available online at:
https://dblp.org/db/conf/nips/nips2017.html

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(Las Vegas, NV: IEEE), 770–778. doi: 10.1109/CVPR.2016.90

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models.
Conference on Neural Information Processing Systems (NeurIPS).

Hu, H. Y., Wu, D., You, Y. Z., Olshausen, B., and Chen, Y. (2023). RG-Flow: a
hierarchical and explainable flow model based on renormalization group and sparse
prior. arXiv. [preprint]. doi: 10.48550/arXiv.2010.00029

Hwang, R. H., Lin, J. Y., Hsieh, S. Y., Lin, H. Y., and Lin, C. L. (2023). Adversarial
patch attacks on deep-learning-based face recognition systems using generative
adversarial networks. Sensors 23, 853. doi: 10.3390/s23020853

Kingma, D. P., and Dhariwal, P. (2018). “Glow: generative flow with invertible
1x1 convolutions,” in Conference on Neural Information Processing Systems (NeurIPS)
(Montreal, QC). Available online at: https://dblp.org/db/conf/nips/nips2018.html.

Kingma, D. P., and Welling, M. (2013). Auto-encoding variational bayes. arXiv.
[preprint]. doi: 10.48550/arXiv.1312.6114

Klein, S., Raine, J. A., and Golling, T. (2022). Flows for flows:
training normalizing flows between arbitrary distributions with maximum
likelihood estimation. arXiv. [preprint]. doi: 10.48550/arXiv.2211.
02487

Kobyzev, I., Prince, S., and Brubaker, M. A. (2019). Normalizing
flows: introduction and ideas. arXiv. [preprint]. doi: 10.48550/arXiv.1908.
09257

Krizhevsky, A. (2009). “Learning multiple layers of features from tiny images,” in
Technical Report. University of Toronto. Available online at: https://learning2hash.
github.io/publications/cifar2009learning/

Kubricht, J. R., Santamaria-Pang, A., Devaraj, C., Chowdhury, A., and
Tu, P. (2020). Emergent languages from pretrained embeddings characterize
latent concepts in dynamic imagery. Int. J. Semant. Comput. 14, 357–373.
doi: 10.1142/S1793351X20400140

Kutta, W. (1901). Beitrag zur naherungsweisen integration totaler
differentialgleichungen. Z. Math. Phys. 46, 435–453.

Frontiers inComputer Science 16 frontiersin.org33

https://doi.org/10.3389/fcomp.2023.1253682
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1253682/full#supplementary-material
https://nips.cc/Conferences/2017
https://doi.org/10.48550/arXiv.2004.09124
https://doi.org/10.1214/17-AOAS1025
https://nips.cc/Conferences/2018
https://doi.org/10.1109/SPW50608.2020.00025
https://doi.org/10.14428/esann/2022.ES2022-101
https://doi.org/10.1109/CVPR42600.2020.00794
https://iclr.cc/Conferences/2019
https://www.acml-conf.org/2019/
https://dblp.org/db/conf/aaai/aaai2018.html
https://dblp.org/db/conf/aaai/aaai2018.html
https://doi.org/10.1007/978-3-319-68445-1_80
https://dblp.org/db/conf/nips/nips2017.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.2010.00029
https://doi.org/10.3390/s23020853
https://dblp.org/db/conf/nips/nips2018.html
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.2211.02487
https://doi.org/10.48550/arXiv.1908.09257
https://learning2hash.github.io/publications/cifar2009learning/
https://learning2hash.github.io/publications/cifar2009learning/
https://doi.org/10.1142/S1793351X20400140
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Tu et al. 10.3389/fcomp.2023.1253682

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE. doi: 10.1109/5.
726791

Liang, J., Lugmayr, A., Zhang, K., Danelljan, M., Gool, L. V., Timofte, R.,
et al. (2021). “Hierarchical conditional flow: a unified framework for image
super-resolution and image rescaling,” in IEEE International Conference on
Computer Vision (ICCV) (Montreal, QC: IEEE). doi: 10.1109/ICCV48922.2021.
00404

Lin, J., Song, C., He, K., Wang, L., and Hopcroft, J. E. (2020). “Nesterov accelerated
gradient and scale invariance for adversarial attacks,” in International Conference on
Learning Representations (ICLR). Available online at: https://iclr.cc/Conferences/2020

Ling, J., Wang, Z., Lu, M., Wang, Q., Qian, C., Xu, F., et al. (2022). “Semantically
disentangled variational autoencoder for modeling 3D facial details,” Transactions
on Visualization and Computer Graphics. IEEE. doi: 10.1109/TVCG.2022.31
66666. Available online at: https://ieeexplore.ieee.org/document/9756299

Liu, A., Wang, J., Liu, X., Cao, B., Zhang, C., Yu, H., et al. (2020). “Bias-based
universal adversarial patch attack for automatic check-out,” in European Conference
on Computer Vision (ECCV) (Cham: Springer). doi: 10.1007/978-3-030-58601-0_24

Liu, B., Yang, F., Bi, X., Xiao, B., Li, W., Gao, X., et al. (2022). “Detecting generated
images by real images,” in European Conference on Computer Vision (ECCV) (New
York, NY: ACM). doi: 10.1007/978-3-031-19781-9_6

Liu, Y., Wei, F., Shao, J., Sheng, L., Yan, J., Wang, X., et al. (2018). “Exploring
disentangled feature representation beyond face identification,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (Salt Lake City, UT: IEEE).
doi: 10.1109/CVPR.2018.00222

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). “Deep learning face attributes in the
wild,” in Proceedings of International Conference on Computer Vision (ICCV) (Santiago:
IEEE). doi: 10.1109/ICCV.2015.425

Lobato, G. A., Mier, P., and Navarro, M. A. A. (2016). Manifold learning and
maximum likelihood estimation for hyperbolic network embedding. Appl. Netw. Sci.
1, 10. doi: 10.1007/s41109-016-0013-0

Luo, C. (2022). Understanding diffusion models: a
unified perspective. arXiv. [preprint]. doi: 10.48550/arXiv.2208.
11970

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). “Towards
deep learning models resistant to adversarial attacks,” in International Conference on
Learning Representations (ICLR). (Vancouver, CA). Available online at: https://iclr.cc/
Conferences/2018

Mu, Y., Yao, S., Ding, M., Luo, P., and Gan, C. (2023). “EC2 : emergent
communication for embodied control,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Vancouver, BC). doi: 10.1109/CVPR52729.2023.00648

Pang, A. S., Kubricht, J., Chowdhury, A., Bhushan, C., and Tu, P. (2020). “Towards
emergent language symbolic semantic segmentation and model interpretability,” in
Medical Image Computing and Computer Assisted Intervention (MICCAI).

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and
Lakshminarayanan, B. (2021). Normalizing flows for probabilistic modeling and
inference. J. Mach. Learn. Res. 2, 1–64. doi: 10.5555/3546258.3546315

Papernot, N., McDaniel, P. D., Jha, S., Fredrikson, M., Celik, Z. B., Swami, A.,
et al. (2016). “The limitations of deep learning in adversarial settings,” in EuroS&P
(Saarbruecken: IEEE), 372–387. doi: 10.1109/EuroSP.2016.36

Parmar, G., Li, D., Lee, K., and Tu, Z. (2021). “Dual contradistinctive generative
autoencoder,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(Nashville, TN: IEEE). doi: 10.1109/CVPR46437.2021.00088

Pastrana, R. (2022). Disentangling variational autoencoders. arXiv. [preprint].
doi: 10.48550/arXiv.2211.07700

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.
doi: 10.5555/1953048.2078195

Pope, P., Zhu, C., Abdelkader, A., Goldblum, M., and Goldstein, T. (2021). “The
intrinsic dimension of images and its impact on learning,” in International Conference
on Learning Representations (ICLR). Available online at: https://iclr.cc/Conferences/
2021

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., et al. (2020).
“Zero-shot text-to-image generation,” in International Conference onMachine Learning
(ICML). Available online at: https://icml.cc/Conferences/2020

Rezende, D. J., and Mohamed, S. (2016). “Variational inference with normalizing
flows,” in International Conference on Machine Learning (ICML).

Runge, C. D. T. (1895). Über die numerische auflösung von
differentialgleichungen. Math. Annal. 46, 167–178. doi: 10.1007/BF01
446807

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). “Facenet: a unified embedding
for face recognition and clustering,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (Boston, MA: IEEE), 815–823. doi: 10.1109/CVPR.2015.72
98682

Song, J., Meng, C., and Ermon, S. (2021). “Denoising diffusion implicit models,”
in International Conference on Learning Representations (ICLR). Available online at:
https://iclr.cc/Conferences/2021

Tramer, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel,P.,
et al. (2017). “Ensemble adversarial training: attacks and defenses,” in International
Conference on Learning Representations (ICLR) (Toulon). Available online at: https://
iclr.cc/archive/www/doku.php%3Fid=iclr2017:main.html

Tucker, M., Li, H., Agrawal, S., Hughes, D., Sycara, K., Lewis, M., et al.
(2021). “Emergent discrete communication in semantic spaces,” in Conference on
Neural Information Processing Systems (NeurIPS). Available online at: https://nips.cc/
Conferences/2021

Tyshchuk, K., Karpikova, P., Spiridonov, A., Prutianova, A., Razzhigaev, A.,
Panchenko, A., et al. (2023). On isotropy of multimodal embeddings. Information 14,
392. doi: 10.3390/info14070392

Voleti, V., Voleti, V., Oberman, A., and Pal, C. (2023). Multi-resolution continuous
normalizing flows. Res. Sq. Available online at: https://arxiv.org/abs/2106.08462

Wang, S.-Y., Wang, O., Zhang, R., Owens, A., and Efros, A. A. (2020). “CNN-
generated images are surprisingly easy to spot... for now,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (Seattle, WA: IEEE).
doi: 10.1109/CVPR42600.2020.00872

Xiang, C., Bhagoji, A. N., Sehwag, V., and Mittal, P. (2021). “PatchGuard: a
provably robust defense against adversarial patches via small receptive fields and
masking,” USENIX Security Symposium 2021. Available online at: https://www.usenix.
org/conference/usenixsecurity21

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms. arXiv. [preprint].
doi: 10.48550/arXiv.1708.07747

Xu, Z., Niethammer, M., and Raffel, C. (2022). “Compositional generalization in
unsupervised compositional representation learning: a study on disentanglement and
emergent language,” in Conference on Neural Information Processing Systems (NeurIPS)
(New Orleans, LA). https://nips.cc/Conferences/2022

Yang, Z., Xu, Z., Zhang, J., Hartley, R., and Tu, P. (2022). Adaptive test-time defense
with the manifold hypothesis. arXiv. [preprint]. doi: 10.48550/arXiv.2210.14404

Zhang, Q., and Chen, Y. (2021). “Diffusion normalizing flow,” in Conference on
Neural Information Processing Systems (NeurIPS). Available online at: https://nips.cc/
Conferences/2021

Frontiers inComputer Science 17 frontiersin.org34

https://doi.org/10.3389/fcomp.2023.1253682
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ICCV48922.2021.00404
https://iclr.cc/Conferences/2020
https://doi.org/10.1109/TVCG.2022.3166666
https://ieeexplore.ieee.org/document/9756299
https://doi.org/10.1007/978-3-030-58601-0_24
https://doi.org/10.1007/978-3-031-19781-9_6
https://doi.org/10.1109/CVPR.2018.00222
https://doi.org/10.1109/ICCV.2015.425
https://doi.org/10.1007/s41109-016-0013-0
https://doi.org/10.48550/arXiv.2208.11970
https://iclr.cc/Conferences/2018
https://iclr.cc/Conferences/2018
https://doi.org/10.1109/CVPR52729.2023.00648
https://doi.org/10.5555/3546258.3546315
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/CVPR46437.2021.00088
https://doi.org/10.48550/arXiv.2211.07700
https://doi.org/10.5555/1953048.2078195
https://iclr.cc/Conferences/2021
https://iclr.cc/Conferences/2021
https://icml.cc/Conferences/2020
https://doi.org/10.1007/BF01446807
https://doi.org/10.1109/CVPR.2015.7298682
https://iclr.cc/Conferences/2021
https://iclr.cc/archive/www/doku.php%3Fid=iclr2017:main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2017:main.html
https://nips.cc/Conferences/2021
https://nips.cc/Conferences/2021
https://doi.org/10.3390/info14070392
https://arxiv.org/abs/2106.08462
https://doi.org/10.1109/CVPR42600.2020.00872
https://www.usenix.org/conference/usenixsecurity21
https://www.usenix.org/conference/usenixsecurity21
https://doi.org/10.48550/arXiv.1708.07747
https://nips.cc/Conferences/2022
https://doi.org/10.48550/arXiv.2210.14404
https://nips.cc/Conferences/2021
https://nips.cc/Conferences/2021
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 14 November 2023

DOI 10.3389/fdata.2023.1274831

OPEN ACCESS

EDITED BY

Yunye Gong,

SRI International, United States

REVIEWED BY

Dzung Phan,

IBM Research, United States

Ajay Divakaran,

SRI International, United States

*CORRESPONDENCE

Turgay Caglar

tcaglar@colostate.edu

†Deceased

RECEIVED 08 August 2023

ACCEPTED 25 October 2023

PUBLISHED 14 November 2023

CITATION

Liu Y, Caglar T, Peterson C and Kirby M (2023)

Integrating geometries of ReLU feedforward

neural networks. Front. Big Data 6:1274831.

doi: 10.3389/fdata.2023.1274831

COPYRIGHT

© 2023 Liu, Caglar, Peterson and Kirby. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Integrating geometries of ReLU
feedforward neural networks

Yajing Liu1†, Turgay Caglar2*, Christopher Peterson1 and

Michael Kirby1

1Department of Mathematics, Colorado State University, Fort Collins, CO, United States, 2Department of

Computer Science, Colorado State University, Fort Collins, CO, United States

This paper investigates the integration of multiple geometries present within a

ReLU-based neural network. A ReLU neural network determines a piecewise

a�ne linear continuous map, M, from an input space R
m to an output space

R
n. The piecewise behavior corresponds to a polyhedral decomposition of Rm.

Each polyhedron in the decomposition can be labeled with a binary vector

(whose length equals the number of ReLU nodes in the network) and with

an a�ne linear function (which agrees with M when restricted to points in

the polyhedron). We develop a toolbox that calculates the binary vector for a

polyhedra containing a given data point with respect to a given ReLU FFNN.

We utilize this binary vector to derive bounding facets for the corresponding

polyhedron, extraction of “active" bits within the binary vector, enumeration of

neighboring binary vectors, and visualization of the polyhedral decomposition

(Python code is available at https://github.com/cglrtrgy/GoL_Toolbox). Polyhedra

in the polyhedral decomposition of R
m are neighbors if they share a facet.

Binary vectors for neighboring polyhedra di�er in exactly 1 bit. Using the

toolbox, we analyze the Hamming distance between the binary vectors for

polyhedra containing points from adversarial/nonadversarial datasets revealing

distinct geometric properties. A bisection method is employed to identify sample

points with a Hamming distance of 1 along the shortest Euclidean distance

path, facilitating the analysis of local geometric interplay between Euclidean

geometry and the polyhedral decomposition along the path. Additionally, we

study the distribution of Chebyshev centers and related radii across di�erent

polyhedra, shedding light on the polyhedral shape, size, clustering, and aiding in

the understanding of decision boundaries.

KEYWORDS

ReLU feedforward neural networks, binary vectors, polyhedral decomposition,

geometries, Chebyshev center, Hamming distance

1 Introduction

ReLU feedforward neural networks (FFNNs) exhibit a number of interesting local

and global geometric properties. These networks decompose the input space into convex

polyhedra and assign to each data point within the same polyhedron a common linear

affine function. This polyhedral decomposition offers a fundamental geometric framework,

enabling researchers to comprehend the network’s partitioning and modeling of the input

space. By investigating these geometric properties, including the decomposition of the input

space and the counting of linear regions, researchers can gain profound insights into the

expressive power, generalization abilities, and limitations of the network. The following

sections will present a thorough literature review focusing on the key aspects that have been

extensively examined.

Frontiers in BigData 01 frontiersin.org35

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1274831
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1274831&domain=pdf&date_stamp=2023-11-14
mailto:tcaglar@colostate.edu
https://doi.org/10.3389/fdata.2023.1274831
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1274831/full
https://github.com/cglrtrgy/GoL_Toolbox
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

The exploration of neural networkmappings, which encompass

diverse architectures like convolutional neural networks, residual

networks, skip connected networks, and recurrent neural networks,

as max-affine spline operators, has been extensively investigated

by Balestriero and Baraniuk (2018). Sattelberg et al. (2020)

built intuition on how the polyhedral decomposition acts and

both how they can potentially be reduced in number and how

similar structures occur across different neural networks. The

number of polyhedra present in the input space, or within a

bounded region thereof, serves as a measure of the network’s

expressivity and complexity. Bounds, both upper and lower, on

the maximum number of attainable polyhedra for a given ReLU

FFNN architecture can be found in multiple studies such as

Pascanu et al. (2013), Montufar et al. (2014), Raghu et al. (2017),

Arora et al. (2018), Serra et al. (2018), Hanin and Rolnick (2019),

Hinz and van de Geer (2019), and Safran et al. (2022). In an

alternative approach, Wang (2022) investigated local properties of

the polyhedra, such as inspheres, hyperplane directions, decision

boundaries, and the relevance of surrounding regions, to analyze

the behavior of neural networks. Masden (2022) has given a

full encoding of the canonical polyhedral complex across all

dimensions.

Various algorithms in Xiang et al. (2018), Yang et al. (2020),

and Xu et al. (2021) have been devised to compute the precise

polyhedral decomposition of the input space by employing

a layer-by-layer linear inequality solving approach. For larger

decomposition instances, an efficient method proposed by Vincent

and Schwager (2021) and Liu et al. (2023), is available, which

systematically enumerates all polyhedra within the input space by

traversing the neighbors of each polyhedron.

Several studies have delved into the intricate geometric

properties of ReLU feedforward neural networks. Notably, Zhang

et al. (2018) established a profound connection between ReLU

FFNNs and tropical geometry, showcasing their equivalence to

tropical rational maps. Ergen and Pilanci (2021) focused their

attention on finite-width two-layer ReLU networks and revealed

that optimal solutions to the regularized training problem can be

characterized as extreme points within a convex set, capitalizing

on the advantageous attributes of convex geometry. Additionally,

Novak et al. (2018) conducted meticulous sensitivity analyses on

trained neural networks, scrutinizing the input-output Jacobian

norm and the quantification of linear regions in the realm of image

classification tasks.

The research conducted by Jamil et al. (2022) and Jamil et al.

(2023) has presented a binary vector representation for individual

polyhedra, emphasizing its ability to capture abundant information

related to both the data and the neural network. Their research

has compellingly demonstrated the practical utility of these binary

vectors as highly effective tools for enhancing the explainability

of neural networks and facilitating the detection of adversarial

instances. Building upon the foundational research mentioned

earlier, our primary objective is to construct a comprehensive

toolbox that effectively leverages the binary vectors and the

associated linear model for polyhedra. By harnessing these tools,

we aim to delve into and analyze the intricate geometric properties

exhibited by ReLU FFNNs.

In this manuscript, we make several key contributions. Firstly,

we formulated the codebase for the toolbox as outlined in our

prior work (Liu et al., 2023). This codebase is now accessible to

the public, and it can be found at the following URL: https://

github.com/cglrtrgy/GoL_Toolbox. Leveraging this toolbox, we

delve into the intricate geometries of neural networks, utilizing the

Hamming distance as a dissimilarity metric for binary vectors to

gain insights into network geometry. Additionally, we employ the

bisection method to generate samples with Hamming distances of

1, revealing network connectivity. We further explore Chebyshev

centers and polyhedral radii, shedding light on polyhedral

shape and size, network clustering, decision boundaries, and

generalization capabilities. Our approach is validated through

implementations on toy datasets, MNIST, and CIFAR-10 datasets,

offering compelling insights into neural network geometries.

The remaining sections of the paper are organized as follows:

Section 2 introduces the toolbox, providing a comprehensive

overview of its functionalities. Section 3 details the methodologies

employed for analyzing the geometries of neural networks. It covers

the distance metric used, the application of the bisection method,

and the utilization of Chebyshev center analysis. In Section 4,

5, the toolbox and the aforementioned analysis methods are

demonstrated through illustrative examples using both toy datasets,

the MNIST, and CIFAR-10 dataset. Finally, Section 6 provides a

conclusive summary of the paper.

2 Definitions and methods

In this section, we will provide a comprehensive review of

the following key aspects: model of ReLU FFNNs, the definition

of binary vectors, the linear model for polyhedra decomposed

by ReLU FFNNs, and the traversal method employed for listing

these decomposed polyhedra. For more in-depth information and

references, please refer to Liu et al. (2023).

2.1 ReLU feedforward neural network
(FFNNs)

We consider an (L+1)-layer FFNNwith an input space denoted

as R
m and an output space denoted as R

n. Each hidden layer

consists of hi nodes. The weight matrix and bias vector of layer

i are denoted as Wi ∈ R
hi×hi−1 and bi ∈ R

hi , respectively. The

ReLU activation function is applied to the initial L layers, while the

final layer does not have an activation function. For a given input

x ∈ R
m, the output in layer i is denoted as Fi(x) ∈ R

hi . The given

notation represents the FFNN as follows:

R
m (W1 ,b1)
−−−−→
ReLU

R
h1 (W2 ,b2)

−−−−→
ReLU

R
h2 → . . . →

R
hL−1

(WL ,bL)
−−−−→
ReLU

R
hL

(WL+1 ,bL+1)
−−−−−−−→ R

n. (1)

The feedforward process of model (1) can be summarized as

follows:

1). Layer 0 (Input Layer): Given a data point x ∈ R
m, it serves

as the input to Layer 1.

Frontiers in BigData 02 frontiersin.org36

https://doi.org/10.3389/fdata.2023.1274831
https://github.com/cglrtrgy/GoL_Toolbox
https://github.com/cglrtrgy/GoL_Toolbox
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

2). Layer 1 to L (Hidden Layers): The output of x at layer i can

be expressed as:

Fi(x) = ReLU(WiFi−1(x)+ bi)

=

max{0,wi,1Fi−1(x)+ bi,1}
...

max{0,wi,hiFi−1(x)+ bi,hi }

,
(2)

where wi,j is the jth row ofWi and bi,j is the jth entry of bi.

3). Layer L + 1 (Output Layer): The output of x at layer L + 1

(also the output of the FFNN) is WL+1FL(x) + bL+1. By iteration,

this implies that an FFNN represents an affinemapping given a data

point x.

2.2 Binary vector

A ReLU feedforward neural network performs a partitioning

of the input space into convex polyhedra (Sattelberg et al.,

2020), where each individual polyhedron is associated with a

corresponding binary vector representation (Liu et al., 2023). The

binary vector is defined based on the output of the ReLU activation

function in each hidden layer of model (1). The definition is as

follows:

For a given point x ∈ R
m to model (1), its binary vector at

hidden layer i is defined as

si(x) = [si,1(x) . . . si,hi (x)]
⊤ ∈ R

hi ,

where si,j(x) (with 1 ≤ j ≤ hi) is defined as follows:

si,j(x) =

{

1 if wi,jFi−1(x)+ bi,j > 0,

0 if wi,jFi−1(x)+ bi,j ≤ 0.
(3)

The binary vector of x in model (1) is obtained by stacking its

binary vectors from all hidden layers as follows:

s(x) = [s⊤1 (x) . . . s⊤L (x)]
⊤ ∈ R

h, (4)

where h =
∑L

i=1 hi is the total number of nodes across all

hidden layers.

It is worth noting that points residing within the same

polyhedron exhibit identical binary vectors, thereby allowing

each polyhedron to be represented by a single binary vector.

Subsequently, the forthcoming section will provide a review of the

linear model expressed in terms of the binary vector associated with

each polyhedron.

2.3 Linear model for polyhedra

Given a data point x, we assume that its binary vector s(x) is

obtained using Equation (4). To ensure consistent directionality in

expressing the linear inequalities, a sign vector s′i = [s′i,1 . . . s′
i,hi

]⊤

is defined for each hidden layer i, where s′i,j = 1 if si,j = 0 and

s′i,j = −1 if si,j = 1.

Let Ŵj = Wjdiag(sj−1)Ŵj−1 and b̂j = Wjdiag(sj−1)b̂j−1 + bj

for 2 ≤ j ≤ L with Ŵ1 = W1, b̂1 = b1. The linear model for the

polyhedron associated with the binary vector s(x) is expressed as

follows:

Ax ≤ c, (5)

where A = [A⊤
1 A⊤

2 . . . A⊤
L]

⊤ and c = [c⊤1 c⊤2 . . . c⊤L]
⊤ with

Aj = diag(s′j)Ŵj ∈ R
hi×m and cj = diag(s′j)(−b̂j) ∈ R

hi .

It’s essential to highlight that, within the polyhedron defined

by the bit vector s, the output of any input x is solely determined

by a single affine mapping: G(x) = WL+1diag(sL)ŴLx +

WL+1diag(sL)b̂L + bL+1.

Each facet of the polyhedron corresponds to a unique linear

inequality from (5), indicating the non-redundancy of these

inequalities. An active bit within the ith entry of s(x) indicates

that the ith linear inequality is essential and not redundant. The

following linear program can be used to determine whether the ith

linear inequality of (5) is redundant or not.

Let

A =

[

a1 a2 . . . ah

]⊤

and c =
[

c1 c2 . . . ch
]⊤

with ai ∈ R
m and ci ∈ R. We define Ã as the matrix obtained

by removing the ith row a⊤i from A, and c̃ as the vector obtained

by removing the ith element ci from c. Consider the following

linear program

maximize
x

a⊤i x

s. t. Ãx ≤ c̃.
(6)

If the optimal objective value of (6) is less than or equal to

ci, it indicates that the ith linear inequality is redundant. In such

cases, we can remove the row a⊤i and the corresponding element

ci from A and c, respectively. This iterative process of removing

redundant constraints leads to the formation of the reduced set

(A′, c′), which represents the minimum set of constraints in (A, c).

Moreover, the indices of the active bits in s(x) can be obtained

through this process. It is noteworthy that the number of active bits

within a binary vector corresponds to the number of nonredundant

inequalities present in its linear model (5).

By flipping an active bit in s(x) (switching 1 to 0 or 0 to 1),

a binary vector corresponding to a neighboring polyhedron that

shares a facet with the given polyhedron can be obtained. The

validity of this claim can be demonstrated through a proof by

contradiction. This enables the derivation of the binary vectors that

determine all polyhedra decomposed by the neural network, along

with the corresponding derivation of the associated linear models.

This method, known as the traversal method, will be reviewed in

the subsequent section.

2.4 Traversal-and-Pruning method

In this section, we shall present the Traversal-and-Pruning

method as outlined in Algorithm 1. This method systematically

explores all bit vectors that define a polyhedron within the input

space through the activation of specific bits.

The method employed in this approach originates from Liu

et al. (2023), while the concept of flipping an active bit aligns with

Frontiers in BigData 03 frontiersin.org37

https://doi.org/10.3389/fdata.2023.1274831
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

the findings presented in Vincent and Schwager (2021). However,

the key distinction lies in the fact that this method generates

binary vectors for all polyhedra, which holds significant importance

in the subsequent section as it facilitates the exploration of the

neural network’s underlying geometry. Furthermore, Liu et al.

(2023) also demonstrates the capability to enumerate polyhedra

within a bounded region, although specific details are omitted in

this context.

Require: A pretrained (L+1)-layer ReLU FFNN

with weights and biases {Wi, bi}
L
i=1 for all L hidden

layers and a random point x(0) in the input space

R
m. Denote by p(x(0)) the polytope to which x(0)

belongs and by s(x(0)) the specific bit string that

uniquely identifies p(x(0)).

Ensure: P: the set of bit vectors that determine

all polyhedra in the input space, and the size of

P as the number of polyhedra in the input space.

1) Initialize an empty set P to store all

bit vectors that determine a polyhedron and

define a label for each stored bit vector with

1 denoting if we have found all polyhedra adjacent

to p(x(0)) and 0 otherwise.

2) Calculate the bit vector s(x(0)) using (2) and

(4), add s(x(0)) to the set P, and give a label

of 0 to s(x(0)).

3) Traverse all the polyhedra adjacent to p(x(0)),

save their bit vectors to P, and update these

bit vectors’ labels using the following

process:

• Find the active bits of s(x(0)) by solving the

LP model (6). Without loss of generality,

say there are q active bits.

• Flip each of these q active bits of s(x(0)) (one

at a time), producing q new bit strings {ŝ(j) :

1 ≤ j ≤ q} =: Ŝ, which all differ from s(x(0))

by only one bit. Add the elements of Ŝ to P

that are not already in P.

• Label the added bit vectors with 0 and switch

the label of s(x(0)) from 0 to 1, indicating that

we have found all of the neighbors of p(x(0))

and have added their bit vectors to P.

4) Repeat 3 for bit vectors in P with label 0

until all the bit vectors in P have label 1.

Algorithm 1. Traversal-and-Pruning method.

The traversal method exhaustively enumerates all binary

vectors, and this assertion can be substantiated through the

following argument: Consider a set of binary vectors represented as

vertices in a graph, where two vertices are connected if they differ

by flipping a single active bit.

• We begin by selecting an initial binary vector arbitrarily. The

method identifies the active bits in this vector, flips one active

bit at a time to generate neighbors, and continues this process

iteratively until all possible neighbors are explored.

• To prove completeness, we employ mathematical induction.

In the base case, we establish that the method successfully

traverses all binary vectors within a small neighborhood of the

initial vector. By the inductive hypothesis, we assume that for

any binary vector within a certain radius of the initial vector,

the traversal method can reach it through a sequence of active

bit flips.

• For the inductive step, we show that the method can extend

this reach to binary vectors within an expanded radius. By

flipping active bits, we demonstrate that it’s possible to reach

any binary vector within this extended region. This ensures

that the method systematically explores the entire space of

binary vectors.

• Moreover, the graph formed by these binary vectors is

connected because any binary vector in the graph can be

transformed into any other binary vector by a series of single-

bit flips, ensuring the existence of a path between any two

binary vectors.

As a result, we conclude that the traversal method, starting from

an arbitrary binary vector, effectively enumerates all binary vectors

in the defined space by flipping active bits. This proof establishes

the method’s capability to traverse and enumerate all binary vectors

systematically.

3 Geometric aspects and
methodologies of neural networks

In this section, utilizing the toolbox developed in Section 2,

our primary aim is to thoroughly investigate the intricate

geometries that underlie neural networks. To achieve this, we

leverage the Hamming distance, which serves as a dissimilarity

metric based on the binary vectors. Moreover, we employ

the bisection method to identify the sample points along the

shortest Euclidean path between two given data points, imposing

the constraint that neighboring sample points must exhibit a

Hamming distance of 1. Additionally, we explore the Chebyshev

centers and the corresponding radii of the polyhedra, providing

valuable insights into the characteristics of the polyhedral

structures.

3.1 Distance metric

The Euclidean distance or L2 norm is widely adopted as the

primary distancemetric between two data points, including images.

Alternatively, for binary data, the Hamming distance is commonly

employed, quantifying the dissimilarity between two binary strings

by counting the differing positions. In this manuscript, we establish

the Hamming distance between two data points or polyhedra as

the count of dissimilar entries in their respective binary vectors,

which are obtained using Equation (4) based on a pre-trained

FFNN.

It is important to highlight that the Hamming distance

between polyhedra serves as an approximation for quantifying the

Frontiers in BigData 04 frontiersin.org38

https://doi.org/10.3389/fdata.2023.1274831
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

minimum number of steps required to transition between two

polyhedra. This observation establishes the Hamming distance as

a valuable metric for capturing the geometric relationship and

connectivity among polyhedra. Notably, the effectiveness of the

Hamming distance in unveiling the underlying mechanisms of

neural network functionality has been substantiated in Jamil et al.

(2023). Inspired by these findings, we leverage the Hamming

distance between data points or polyhedra to probe the geometric

characteristics of a pretrained FFNN.

3.2 Bisection method

The Hamming distance serves as an estimate for determining

the shortest path between vertices on the dual graph of the

polyhedral decomposition. In our case, we focus on finding the

samples along the shortest Euclidean path given two data points,

ensuring that the Hamming distance between adjacent samples

is precisely 1. To achieve this, we introduce a bisection method,

described in Algorithm 2, that allows us to generate data points

and their corresponding binary vectors between any two given data

points, while satisfying the following properties:

(1) The Hamming distance between two adjacent data points is

exactly 1.

(2) The sampled data points align with the same line defined by

the initial two data points.

Formulating this mathematically, we consider two data points,

denoted as A and B, within the input space. Our objective is to

identify a series of points {Ai}
n
i=1 that meet the following criteria:

(1) Ai = A+ δi ∗ (B−A), where δi ∈ (0, 1) for 1 ≤ i ≤ n. Here,

we set A0 = A and An+1 = B.

(2) The Hamming distance between the bit vectors of Ai and

Ai−1, for 1 ≤ i ≤ n+ 1, is equal to 1.

3.3 Chebyshev center

In our exploration of convex polyhedra in R
N , various

statistical characteristics are of interest. For example, determining

the number of d-dimensional faces in P or calculating its volume

is a fundamental pursuit. The count of (N − 1)-dimensional

faces, analogous to the number of active bits, is computable via

linear programming. On the contrary, pinpointing the number

of zero-dimensional faces (i.e., vertices) poses challenges due to

combinatorial complexities. To illustrate, a convex polytope with

30 faces in R
15 can possess over 150,000 vertices, rendering

calculations intractable in R
1000. Estimating the radius and

center of the largest inscribed sphere (the Chebyshev center)

is achievable through linear programming, while determining

the radius and center of the smallest bounding sphere remains

infeasible. Similarly, exact volume calculations elude us, but the

Chebyshev center provides a coarse approximation. The Gaussian

mean width offers another proxy for volume but relies on

probabilistic algorithms. Leveraging the Chebyshev center as a

representation of the polyhedron’s “center" and the associated

sphere’s radius as a volume indicator, we gain insights into

Require: • A,B: Two given data points.

• Flag = 1: Determines whether the algorithm

stops.

• Aleft = A: The starting point of {Ai} from 0 to

n+ 1.

• a = 0, b = 1: Defines the search interval for δi.

• δlist: An empty list to store {δi}
n
i=1.

Ensure: {δi}
n
i=1.

While Flag = 1:

1) Perform the following calculations:

• Calculate the middle point, δ, as a+b
2 ;

• Calculate C as A+ δ · (B− A);

• Compute the binary vectors for Aleft, C, and B;

• Compute the Hamming distance between the binary

vectors of Aleft and C, denoted by d1.

2) Check the Hamming distance, d1:

• If d1 = 1, return δ;

• If d1 > 1, set b = δ, and return to step 1;

• If d1 = 0, set Aleft = C and a = δ, then return

to step 1.

Append δ to δlist.

3) Update a = δ and Aleft = A+ δ · (B− A).

4) Compute the Hamming distance between the binary

vectors of Aleft and B, denoted by d2; If d2 = 1,

set Flag = 0 to exit the loop; Otherwise, repeat

the above process.

Algorithm 2. Bisection method.

polyhedral attributes, network clustering, decision boundaries, and

generalization capabilities.

Consider a bounded set Q. The Chebyshev center refers to the

center of the largest inscribed ball within Q, as defined in Boyd

and Vandenberghe (2004). In our case, we aim to determine the

Chebyshev center and its corresponding radius for a polyhedron

that has been decomposed by a pretrained FFNN.

Assume that A′x ≤ c′ represents a minimal set defining a

bounded polyhedron resulting from the decomposition performed

by an FFNN. Here,

A′ =

[

a′1 a
′
2 . . . a′

l

]⊤

∈ R
l×m and c′ =

[

c′1 c
′
2 . . . c′

l

]⊤

∈ R
l.

Note: In the case of an unbounded polyhedron, the inclusion

of bounds on each dimension can be implemented to render it

bounded.

To describe the center of the ball inscribed within the

polyhedron A′x ≤ c′, we introduce xc ∈ R
m and r ∈ R, where

xc represents the center and r denotes the radius. Any point within

the ball can be expressed as xc+ t, with ||t||2 ≤ r, and it must satisfy

the constraints:

a′
⊤
i (xc + t) ≤ c′i for 1 ≤ i ≤ l.

Frontiers in BigData 05 frontiersin.org39

https://doi.org/10.3389/fdata.2023.1274831
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

We know that sup‖t‖2≤r{a
′⊤
i t} = r||a′i||2 for 1 ≤ i ≤ l, which

allows us to rewrite the constraints as:

a′
⊤
i xc + r||a′i||2 ≤ c′i for 1 ≤ i ≤ l.

Therefore, the problem of maximizing the radius r can be

formulated as the following optimization problem:

maximize
r,xc

r

s. t. a′⊤i xc + r||a′i||2 ≤ c′i for 1 ≤ i ≤ l.
(7)

Define

x =

[

r

xc

]

∈ R
m+1, e =

1

0
...

0

∈ R
m+1, and Â =

||a′1||2 a′⊤1
||a′2||2 a′⊤1

...

||a′l||2 a′⊤l

∈ R
l×(m+1).

The optimization problem (7) can then be reformulated as:

minimize
x

−e⊤x

s. t. Âx ≤ c′.
(8)

Problem (8) is a linear program, which can be effectively solved

using the cvxpy package in Python.

4 Examples

In this section, we initially showcase the efficacy of our toolbox

using toy datasets and the MNIST dataset. Subsequently, we apply

the bisection method and Chebyshev center analysis to the MNIST

dataset, enabling a detailed investigation of the intricate geometries

present in neural networks.

4.1 Basic FFNN

4.1.1 Toy examples 1: 20 nodes
We initially employed model (1) composed of two hidden

layers, each consisting of 10 nodes, to approximate the function

f1(x1, x2) = x21+x22−0.4. The training of this model was performed

using PyTorch, a Python library known for its capabilities in deep

learning (Paszke et al., 2019). To create a representative dataset, we

uniformly sampled 10,000 points from the interval [−1, 1]2. The

training process iterated until a predefined early stopping criterion,

based on the convergence of the validation loss, was satisfied.

Figure 1 is generated through the following procedure: (1)

Enumerate all the binary vectors using Algorithm 1. (2) Determine

the linear model associated with each polyhedron using equation

(5). (3) Compute the vertices of each polyhedron using the Python

package intvalpy and plot each polyhedron using the vertices.

Figure 1 illustrates the decomposition of polyhedra achieved by

the aforementioned model. Within the bounded region [−1, 1]2,

Algorithm 1 yields a total of 218 polyhedra, contributing to the

overall count of 237 polyhedra in the 2-dimensional space R
2.

FIGURE 1

2-D visualization of polyhedral composition within [−6, 6]2. The

central bounded region, indicated by white dotted lines,

encompasses [−1, 1]2.

Among these polyhedra, 211 are classified as bounded, while 26 are

deemed unbounded.

Observations: The size of the polyhedra within the training

area is relatively small, and their size increases as they move farther

away from the training area. Furthermore, for points located on the

two white dotted lines at a fixed Euclidean distance, their Hamming

distance is greater within the training area and decreases as the

points move away from it. To illustrate this, consider the following

example: the Hamming distance between the points (0,−1) and

(0, 1) is greater than the Hamming distance between the points

(6,−1) and (6, 1). This trend highlights how the Hamming distance

varies with respect to the proximity to the training area.

4.1.2 Toy examples 2: di�erent model structures
The relationship between the number of polyhedra

decomposed by an FFNN and the network depth/width has

been extensively explored in prior studies such as Pascanu

et al. (2013), Montufar et al. (2014), Raghu et al. (2017), and

Hanin and Rolnick (2019).This study aims to investigate the

relationship between the mean square error (MSE) of the

objective function on the validation dataset and the number

of polyhedra. The examination involves exploring different

network structures while keeping a consistent number of nodes

or layers. By analyzing this relationship, we aim to gain insights

into the influence of network structure on the performance of

the model.

We conducted a series of experiments where we varied the

number of hidden layers while maintaining a consistent number of

5 nodes per layer. Additionally, we adjusted the number of nodes

in each hidden layer while keeping a consistent total number of

3 layers. To assess the stability and consistency of the results, we

repeated each scenario 50 times with different initializations. The

Frontiers in BigData 06 frontiersin.org40

https://doi.org/10.3389/fdata.2023.1274831
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

TABLE 1 Comparison of model architectures: polyhedra count and MSE statistics on validation dataset.

Models # Polyhedra stats Model training stats

layer # nodes Avg SD Median Min Max Avg MSE SD MSE

2 5 55.10 8.28 56 37 70 0.001389 0.000618

4 5 163.33 43.99 156.5 101 277 0.001086 0.001553

6 5 260.70 108.29 249 114 664 0.000947 0.001926

8 5 472.53 232.09 392 265 1,081 0.000593 0.000518

10 5 588.80 181.59 539.5 378 1,072 0.000635 0.000711

3 5 110.20 27.35 105 75 210 0.000651 0.000300

3 10 392.20 64.65 379 302 532 0.000081 0.000021

3 15 788.83 138.14 774 572 1,051 0.000036 0.000014

3 20 1,405.30 233.28 1,376 970 1,938 0.000019 0.000003

3 25 2,225.60 315.68 2,245.5 1,592 3,153 0.000014 0.000002

experimental setup aligns with the details described in Section 4.1.1.

The results on the polyhedra count and MSE statistics are listed in

Table 1.

The results presented in Table 1 reveal significant trends.

Firstly, when the number of nodes is held constant, increasing

the number of layers leads to improved average performance and

an increase in the number of polyhedra. Moreover, maintaining

a fixed number of layers while increasing the number of nodes

also results in improvements in both the number of polyhedra

and performance.

4.1.3 Toy examples 3: visualizing polyhedral
compositions in 3D

Following the same procedure outlined in Section 4.1.1,

we utilized a neural network model comprising three hidden

layers, each containing 10 nodes, to approximate the function

f1(x1, x2, x3) = x21 + x22 + x23 − 3. To ensure an accurate

representation of the function, we randomly sampled 125,000

points from the range [−1, 1]3. Figure 2 illustrates the

decomposition of polyhedra in three-dimensional space. This

decomposition encompasses a total of 2,212 polyhedra within the

range of [−1, 1]3 in all three dimensions.

4.2 MNIST

In this experimental study, we conducted our analysis using the

well-known MNIST dataset with dimensions of 28 × 28. Model

(1), comprising five hidden layers, was trained on the training

dataset using five distinct configurations. Notably, the loss function

utilized was cross-entropy, optimization was conducted with the

Adam optimizer, and the maximum training epochs were limited

to 50. The node configurations for these layers were chosen as

300, 350, 400, 450, and 500, respectively, for each of the five

structures, surpassing the input dimension of 784. Remarkably,

all configurations consistently yielded training and test accuracies

surpassing 98%. Subsequently, we randomly selected 30 images

from the training dataset and computed their corresponding binary

FIGURE 2

3-D visualization of polyhedral composition within [−1, 1]3.

vectors and the linear model (5) representing the polyhedra they

belong to for the five different structures. To determine the active

bits for each binary vector across the five different model structures,

we solved a varying number of instances of model (6), specifically

1,500, 1,750, 2,000, 2,250, and 2,500, by considering different

values of i. The coefficient matrix Ã in the constraint of model

(6) had dimensions of 1, 499 × 784, 1, 749 × 784, 1, 999 × 784,

2, 249 × 784, and 2, 499 × 784 for the respective instances. To

optimize computational efficiency, we leveraged parallel processing

on a Linux machine equipped with AMD EPYC 7,452 2.35 GHz

processors, utilizing 48 CPUs to efficiently solve model (6) for the

corresponding number of times: 1,500, 1,750, 2,000, 2,250, and

2,500, respectively.

Table 2 provides a comprehensive summary of the experimental

results, presenting various metrics for different configurations

represented by the “Variable nodes per hidden layer” columns. The

table includes measurements such as the average (Avg), standard

Frontiers in BigData 07 frontiersin.org41

https://doi.org/10.3389/fdata.2023.1274831
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

TABLE 2 Results of active bits for di�erent model structures.

Variable nodes per hidden layer

300 nodes 350 nodes 400 nodes 450 nodes 500 nodes

Avg # active bits 658.30 740.57 780.00 886.87 975.00

SD # active bits 64.07 82.18 97.48 105.19 124.29

Min # active bits 520 525 556 636 719

Max # active bits 785 885 942 1,056 1,181

FIGURE 3

Time taken to find active bits vs. node sizes per hidden layer. Error

bars represent 1 SD.

deviation (SD), minimum (Min), and maximum (Max) number of

active bits.

The results summarized in Table 2 reveal the following insights:

As the number of nodes per hidden layer increases (from 300 to

500), the average number of active bits also increases, indicating a

positive correlation between the number of nodes and the number

of polyhedra; The standard deviation of active bits shows some

variation across different configurations, with larger numbers of

nodes generally leading to higher variability. The minimum and

maximum number of active bits demonstrate an increasing trend

as the number of nodes per hidden layer increases.

The computational complexity for solving problem (6) can be

described asO(m3h). Figure 3 showcases the average and standard

deviation of computation time across various node quantities

using the Python cvxpy solver. The results demonstrate a positive

correlation between the number of nodes per hidden layer and

the average computation time. Furthermore, configurations with

a larger number of nodes demonstrate increased variability in

computation time. In future work, we plan to investigate the

scalability of these computations on GPUs.

4.2.1 Hamming distance and bisection method
In this section, we begin by showcasing the efficacy of the

Hamming distance in capturing data features and its properties

across different source points. We then utilize the bisection method

to generate samples along the shortest Euclidean distance path

between two designated data points, subsequently analyzing the

TABLE 3 Classification accuracy rates of the nearest neighbors for

training/test data using Euclidean and Hamming distances.

Data points

Metrics Training Test

Euclidean 97.37% 95.58%

Hamming for structure 1 99.50% 98.26%

Hamming for structure 2 99.52% 98.06%

Hamming for structure 3 99.58% 98.05%

fluctuations in the number of polyhedra among nearest neighbors

as the neural network’s layer count undergoes variation.

4.2.1.1 Why using hamming distance?

In this section, we aim to elucidate the rationale behind utilizing

the Hamming distance as a representation for the neural network,

subsequently leveraging it to delve into the intricate geometric

properties inherent within the network.

We examine three distinct structures of the neural network

(1). The first comprises 3 layers with 200 nodes per layer, the

second consists of 5 layers with 300 nodes per layer, and the

third is composed of 5 layers with 500 nodes per layer. The

training accuracies for the three structures are 99.08%, 99.01%,

and 99.11%, respectively. Correspondingly, the test accuracies for

these structures are 97.57%, 97.95%, and 97.64%. We compute the

binary vectors corresponding to each training and test data point

for the three structures. Subsequently, we determine the nearest

neighbor for each data point in both the training and test sets,

employing both Euclidean and Hamming distances. Additionally,

we investigate whether the nearest neighbor belongs to the same

class as the data point under consideration. Table 3 presents the

classification accuracy rates of the nearest neighbors for training

and test data points belonging to the same class, using both

Euclidean distance and Hamming distance for the three structures.

From the table, we observe that the Hamming distance yields

higher accuracy rates compared to the Euclidean distance for both

training and test data. This suggests that the utilization of the

Hamming distance measure leads to more precise classification

of data points, resulting in superior classification accuracy

rates compared to those obtained with the Euclidean distance

measure. The superior performance of the Hamming distance

can be attributed to its calculation based on binary vectors,

which are derived from the pretrained neural networks. By

considering only the differing entries between binary vectors, the

Frontiers in BigData 08 frontiersin.org42

https://doi.org/10.3389/fdata.2023.1274831
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

TABLE 4 Comparison of Hamming distance between data points from training/test/adversarial datasets and sampled data points with fixed Euclidean

distance.

Euclidean distance

0.5 0.75 1.0

Hamming distance Hamming distance Hamming distance

Datasets Avg SD Avg SD Avg SD

Training (Structure 1) 52.97 13.80 102.76 30.90 131.82 35.73

Test (Structure 1) 52.48 13.66 101.40 29.71 130.51 34.43

FGSM (Structure 1) 75.27 13.37 128.01 35.27 151.09 36.89

Training (Structure 2) 99.97 41.88 173.59 69.61 251.73 93.69

Test (Structure 2) 99.36 42.65 170.45 67.51 246.99 90.01

FGSM (Structure 2) 178.57 83.69 264.66 99.79 339.07 106.60

Training (Structure 3) 129.98 56.91 234.34 92.26 329.89 107.36

Test (Structure 3) 129.05 56.73 242.05 87.36 344.97 106.26

FGSM (Structure 3) 219.92 99.16 351.10 113.61 439.77 118.09

TABLE 5 The Hamming distance vs. the number of polyhedra along shortest Euclidean path length.

Pairs number 1 2 3 4 5 6

Hamming distance 98 132 184 232 282 320

of polyhedra along the shortest Euclidean path 100 135 193 252 299 351

Hamming distance captures crucial features that are highly relevant

for determining similarity within the dataset. Consequently, it

effectively discriminates between data points and contributes to the

improved classification accuracy observed in the results.

Figure 1 illustrates a notable observation: data points that

maintain a constant Euclidean distance can exhibit varying

Hamming distances as they traverse the input space. This intriguing

finding motivates us to explore the potential differences in the

Hamming distance when comparing a data point to a sampled data

point, while maintaining a fixed Euclidean distance. Specifically,

we aim to explore whether the Hamming distance varies based

on whether the data point is sourced from the training, test, or

adversarial set.

We compute the Hamming distance between a given data point

and a sampled data point, while maintaining a fixed Euclidean

distance of 0.5, 0.75, and 1, respectively. This analysis encompasses

data points sourced from the training, test, and adversarial datasets.

The adversarial dataset is generated using the Fast Gradient Sign

Method (FGSM) (Goodfellow et al., 2015) and is derived from the

test dataset. The results presented herein are based on a dataset

comprising 10,000 data points from the training set, as well as the

entire test and corresponding adversarial datasets.

Table 4 demonstrates that the average Hamming distance

between training data points and their sampled counterparts

mirrors that of test data points and their corresponding samples.

This consistent behavior underscores the Hamming distance’s

efficacy in capturing fundamental features and affinities across data

points, regardless of their belonging to the training or test set.

However, a notable disparity emerges in the Hamming

distances between adversarial data points and their corresponding

samples, compared to those of training and test data points. This

discrepancy suggests a distinctive and divergent relationship in

terms of their binary vector representations. These observations

highlight that adversarial examples manifest a substantially

dissimilar geometric nature compared to the original training and

test data points.

The larger Hamming distances between adversarial data points

and their sampled counterparts signify heightened dissimilarity and

divergence in their binary vectors. This underscores that adversarial

data points occupy a distinct region in the input space separate

from both training and test data.

Despite the average Hamming distance between training/test

data points and their samples being smaller than that between

adversarial data points and corresponding samples, an overlap

within the range exists. Consequently, the Hamming distance alone

cannot definitively discern the adversarial nature of a point.

4.2.1.2 Bisection method

In this section, we used the bisection method (Section 3.2)

to systematically enumerate samples along the shortest Euclidean

path between two specified data points. Initially, we analyzed the

correlation between the Hamming distance and the number of

polyhedra along this path, considering a given data point and its

nearest neighbors in the training dataset. Furthermore, we explored

how the number of polyhedra changes along the shortest Euclidean

path between two nearest neighbors from the training dataset with

increasing layer numbers.

Firstly, we aim to demonstrate that the Hamming distance

of two given data points does not equate to the number of

polyhedra along the shortest Euclidean path between these two

Frontiers in BigData 09 frontiersin.org43

https://doi.org/10.3389/fdata.2023.1274831
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

FIGURE 4

Mean values with error bars (maximum and minimum) for the

number of polyhedra along the shortest Euclidean path for 1000

pairs of two nearest neighbors versus the number of layers.

given data points. To accomplish this, we computed the Hamming

distance for six pairs of nearest neighbors within the train dataset

and the results are listed in Table 5. The experiment was carried

out using the pretrained model Structure 2, as discussed in the

preceding section.

Table 5 illustrates the relationship between the Hamming

distance and the number of polyhedra along the shortest

Euclidean path between two nearest neighbors (in terms of

the Hamming distance). It reveals that when the Hamming

distance is small, there is a close correspondence between the

Hamming distance and the number of polyhedra along the shortest

Euclidean path. However, as the Hamming distance increases,

the disparity between the Hamming distance and the number

of polyhedra along the shortest Euclidean path becomes more

pronounced.

Next, we apply the bisection method to 1000 pairs of nearest

neighbors from the training dataset to investigate the variation in

the number of polyhedra along the shortest Euclidean distance as

the number of layers increases. For this analysis, we utilize the

Euclidean distance to determine nearest neighbors, as it remains

consistent regardless of any alteration in the neural network

structure. We increase the number of layers from 1 to 5 and keep

the number of nodes in each layer as 200 for the neural network (1).

Figure 4 illustrates the relationship between the number of

layers and the number of polyhedra along the shortest Euclidean

path between two nearest neighbors. The results reveal an

exponential increase in the maximum number of polyhedra,

ranging from 41 to 303, as the number of layers is increased.

In contrast, the mean number of polyhedra shows a gradual rise

from 21 to 49. This discrepancy suggests that for nearest neighbor

pairs with larger Euclidean distances, the number of polyhedra

changes significantly with the addition of layers, while most nearest

neighbor pairs exhibit a relatively slow change in the number of

polyhedra as the number of layers increases.

4.2.2 Chebyshev center
In this section, we employed the same pretrained models

discussed in Section 4.2.1.1, along with the MNIST dataset, to

conduct our analysis. Specifically, we randomly sampled 1000

data points from the training, test, and adversarial datasets. For

each of these data points, we computed the linear models (6)

corresponding to the polyhedra on which they reside. Additionally,

we utilized model (8) to solve for the Chebyshev centers and their

associated radii. The corresponding results for Structure 2 are

presented in Figure 5 and Table 6. Additionally, Figure 6 showcases

the distribution of radii for the 1000 data points across the three

datasets. It is worth noting that the Chebyshev center for each

polyhedron resides in a 784-dimensional space, while Figure 5

provides a visual representation limited to three dimensions.

Figure 5A visually depicts the close proximity of the Chebyshev

center between the polyhedra containing randomly selected

training and test samples. Additionally, Table 6 and Figure 6

present the similarity in size between the polyhedra for the

training and test samples. Conversely, Figure 5B reveals a

noticeable disparity in the Chebyshev center between the polyhedra

encompassing the randomly selected training and adversarial

data points. Furthermore, Table 6 and Figure 6 highlight the

comparatively smaller size of the polyhedra housing the adversarial

data samples in relation to the polyhedra encompassing the

training and test data samples. These findings are consistent with

the observations from Table 4, which indicates larger Hamming

distances when sampling the original points from the adversarial

dataset, while maintaining a fixed Euclidean distance.

The above observations provide insights into the behavior and

characteristics of the neural network.

The close proximity of the Chebyshev centers and the similarity

in size between the polyhedra containing the training and test

samples suggest that the neural network exhibits consistent

behavior and decision boundaries for these two datasets. This

indicates that the network generalizes well and maintains stability

in its predictions when presented with new test samples.

On the other hand, the noticeable disparity in the Chebyshev

centers and the smaller size of the polyhedra for the adversarial

data points indicate that the neural network behaves differently

when faced with adversarial inputs. Adversarial examples are

intentionally designed to mislead the network and exploit

vulnerabilities in its decision-making process. The observed

differences in the Chebyshev centers and polyhedra sizes

suggest that the network’s decision boundaries are more

susceptible to manipulation and exhibit variations in response to

adversarial inputs.

5 CIFAR-10

To demonstrate the practical applicability of our toolbox and

the methodologies outlined in Sections 2 and 3, we conducted

experiments using the CIFAR-10 dataset. CIFAR-10 is characterized

by its inclusion of real-world images that exhibit heightened

complexity, encompassing variations in lighting, orientation, and

backgrounds, a notable departure from the MNIST dataset.

For training purposes, we employed model (1) with eight

hidden layers, each comprised of 400 nodes. The training

Frontiers in BigData 10 frontiersin.org44

https://doi.org/10.3389/fdata.2023.1274831
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

FIGURE 5

The Chebyshev center for randomly selected training, test, and adversarial samples. (A) The Chebyshev center for training and test samples. (B) The

Chebyshev center for training and adversarial samples.

TABLE 6 Statistics of the radius of the largest inscribed ball within polyhedra: training, test, and adversarial datasets.

Mean SD Max Min

Train 0.23 0.081 0.43 0.016

Test 0.21 0.079 0.43 0.018

Adv 0.13 0.092 0.54 0.097

FIGURE 6

Histogram with Gaussian normal distribution for the radius of

training, test, and adversarial datasets.

configuration, encompassing the choice of loss function, optimizer,

and maximum number of training epochs, remained consistent

with the parameters utilized in our MNIST experiments. The

training process culminated in a remarkable training dataset

accuracy of 99.39%, while the test dataset accuracy reached 53.59%.

In the initial phase of our experimentation, we computed the

Hamming distance between a selected data point and a reference

data point, maintaining a predefined fixed Euclidean distance of

0.1. These data points were sourced from the training, test, and

adversarial datasets. It’s essential to note that the adversarial dataset

was generated using the same methodology applied to the MNIST

dataset. Furthermore, the training dataset consisted of 10,000 data

points, aligning with the identical number of data points present in

the test and adversarial datasets.

The computed mean Hamming distances across the three

datasets reveal values of 109.47, 130.19, and 142.80, accompanied

by respective standard deviations of 40.44, 50.66, and 63.42 for

the 10,000 data point pairs. Notably, these results diverge from

our MNIST experiments, as they indicate a notable dissimilarity

in the average Hamming distance between training data points

and their corresponding samples compared to that observed in the

test dataset. This discrepancy can be attributed to the suboptimal

generalization of the trained neural network when applied to

the test dataset, resulting in disparate Hamming distance profiles

between the training and test datasets.

It’s important to underscore the significance of Hamming

distance as a lower boundary for quantifying the number of

polyhedral boundaries traversed during the trajectory between

two polyhedra. The variance in mean Hamming distances among

the three datasets implies that, on average, a greater number of

polyhedral boundaries exist between an adversarial dataset and its

sampled data point.

Subsequently, we conducted a random sampling of 200 data

points from the training, test, and adversarial datasets and

computed the linear models of the polyhedra within which they

Frontiers in BigData 11 frontiersin.org45

https://doi.org/10.3389/fdata.2023.1274831
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

TABLE 7 Statistics of the radius of the largest inscribed ball within

polyhedra: training, test, and adversarial datasets.

Mean SD Max Min

Train 0.038 0.015 0.081 0.015

Test 0.021 0.016 0.069 0.089

Adv 0.017 0.0095 0.051 0.0054

resided. We then calculated the Chebyshev centers and their

corresponding radii. The statistics concerning the radii of the

polyhedra containing the sampled training, test, and adversarial

data points are presented in Table 7. The results shed light on

the distinctive nature of the average polyhedral sizes across the

three datasets. Notably, the training data points exhibited the most

substantial polyhedral size, followed by the test data points, with the

adversarial data points displaying the smallest polyhedral size. This

observation aligns with the findings derived from the Hamming

distance measurements.

Similar to the obersvation on MNIST dataset, the

reduced polyhedral size within the adversarial dataset

accentuates the network’s decision boundaries’ susceptibility

to manipulation and their propensity to undergo variations

when exposed to adversarial inputs. These insights

underscore the intricate interplay between geometric

characteristics and network behavior, reinforcing the

critical need for comprehensive and robust neural

network assessments.

The analysis on MNIST and CIFAR datasets has revealed

valuable insights into the performance and adaptability of

trained neural networks. By employing a combination of

Hamming distance and the Chebyshev center method, we

are capable of gauging a network’s generalization capability

and its resilience to real-world data variations and adversarial

challenges. These insights not only enhance our understanding

of neural network behavior but also provide practical guidance

for creating more robust and versatile neural systems capable

of effectively navigating the complexities of real-world data and

adversarial scenarios.

6 Conclusion

In this work, we present a toolbox for exploring aspects of

the polyhedral decomposition (and other associated geometries) of

neural networks. Our toolbox allows for the calculation of binary

vectors, derivation of polyhedron linear models, extraction of

active bits, and enumeration of neighboring polyhedra. Leveraging

this toolbox, we investigate the geometric properties of neural

networks using the Hamming distance, bisection method, and

Chebyshev centers. Through implementation on toy datasets

and the MNIST dataset, we validate the effectiveness of our

approach and gain insights into the underlying geometries of

neural networks. Overall, our work provides a contribution to the

understanding and analysis of ReLU neural network structures,

decompositions, and behaviors. This paper serves as a proof of

concept, laying the foundation for future endeavors. Subsequent

work will extend the application of the toolbox and methodologies

to conduct comprehensive geometric analyses on much larger real-

world datasets together with much more intricate neural network

architectures. This includes enhancing model generalization,

optimizing model structures, and exploring the design of novel

network architectures.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

YL: Conceptualization, Formal analysis, Investigation,

Methodology, Software, Supervision, Writing—original draft,

Writing—review & editing. TC: Data curation, Formal analysis,

Software, Writing—original draft. CP: Supervision, Writing—

review & editing. MK: Funding acquisition, Project administration,

Supervision, Writing—review & editing.

Funding

The author(s) declare financial support was received

for the research, authorship, and/or publication of

this article. This work was supported by the DARPA

Geometries of Learning Program under Award

No. HR00112290074.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in BigData 12 frontiersin.org46

https://doi.org/10.3389/fdata.2023.1274831
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Liu et al. 10.3389/fdata.2023.1274831

References

Arora, R., Basu, A., Mianjy, P., and Mukherjee, A. (2018). “Understanding deep
neural networks with rectified linear units,” in International Conference on Learning
Representations, 1–17.

Balestriero, R., and Baraniuk, R. (2018). “A spline theory of deep learning,” in
Proceedings of the 35th International Conference on Machine Learning, 374–383.

Boyd, S., and Vandenberghe, L. (2004). Convex Optimization. Cambridge:
Cambridge University Press.

Ergen, T., and Pilanci, M. (2021). Pconvex geometry and duality of over-
parameterized neural networks. J. Mach. Learn. Res. 22, 1–63.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing
adversarial examples. arXiv.

Hanin, B., and Rolnick, D. (2019). “Deep ReLU networks have surprisingly few
activation patterns,” in Proceedings of the 33rd International Conference on Neural
Information Processing Systems, 361–370.

Hinz, P., and van de Geer, S. (2019). A framework for the construction
of upper bounds on the number of affine linear regions of relu feed-forward
neural networks. IEEE Trans. Inf. Theory 65, 7304–7324. doi: 10.1109/TIT.2019.292
7252

Jamil, H., Liu, Y., Cole, C., Blanchard, N., King, E. J., Kirby, M., et al. (2022). “Dual
graphs of polyhedral decompositions for the detection of adversarial attacks,” in 2022
IEEE International Conference on Big Data (Big Data), 2913–2921.

Jamil, H., Liu, Y., Caglar, T., Cole, C., Blanchard, N., Peterson, C., et al. (2023).
“Hamming similarity and graph Laplacians for class partitioning and adversarial image
detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops. Vancouver, BC: IEEE, 590–599.

Liu, Y., Cole, C., Peterson, C., and Kirby, M. (2023). “ReLU neural networks,
polyhedral decompositions, and persistent homology,” in the ICML 2023 Workshop on
Topology, Algebra, and Geometry in Machine Learning.

Masden, M. (2022). Algorithmic determination of the combinatorial structure of
the linear regions of relu neural networks. arXiv.

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). “On the
number of linear regions of deep neural networks,” in Proceedings of the
27th International Conference on Neural Information Processing Systems,
2924–2932.

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., and Sohl-Dickstein, J. (2018).
Sensitivity and generalization in neural networks: an empirical study. arXiv.

Pascanu, R., Montufar, G., and Bengio, Y. (2013). On the number of response
regions of deep feed forward networks with piece-wise linear activations. arXiv.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“Pytorch: An imperative style, high-performance deep learning library,” in Proceedings
of the 33rd International Conference on Neural Information Processing Systems, 8026–
8037.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-Dickstein, J. (2017). “On
the expressive power of deep neural networks,” in International Conference on Machine
Learning, 2847-2854.

Safran, I., Vardi, G., and Lee, J. D. (2022). On the effective number of linear regions
in shallow univariate ReLU networks: convergence guarantees and implicit bias. arXiv.

Sattelberg, B., Cavalieri, R., Kirby,M., Peterson, C., and Beveridge, R. (2020). Locally
linear attributes of ReLU neural networks. arXiv.

Serra, T., Tjandraatmadja, C., and Ramalingam, S. (2018). Bounding and Counting
Linear Regions of Deep Neural Networks.

Vincent, J. A., and Schwager, M. (2021). “Reachable polyhedral marching (RPM):
a safety verification algorithm for robotic systems with deep neural network
components,” in 2021 IEEE International Conference on Robotics and Automation
(ICRA). Xi’an, China: IEEE, 9029–9035.

Wang, Y. (2022). “Estimation and comparison of linear regions for ReLU networks,”
in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
3544–3550.

Xiang, W., Tran, H.-D., Rosenfeld, J. A., and Johnson, T. T. (2018). “Reachable
set estimation and safety verification for piecewise linear systems with neural network
controllers,” in 2018 Annual American Control Conference (ACC), 1574–1579.

Xu, S., Vaughan, J., Chen, J., Zhang, A., and Sudjianto, A. (2021). Traversing the
local polytopes of ReLU neural networks: a unified approach for network verification.
arXiv.

Yang, X., Tran, H.-D., Xiang, W., and Johnson, T. (2020). Reachability analysis for
feed-forward neural networks using face lattices. arXiv.

Zhang, L., Naitzat, G., and Lim, L.-H. (2018). Tropical geometry of deep neural
networks. arXiv.

Frontiers in BigData 13 frontiersin.org47

https://doi.org/10.3389/fdata.2023.1274831
https://doi.org/10.1109/TIT.2019.2927252
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 23 November 2023

DOI 10.3389/frai.2023.1255192

OPEN ACCESS

EDITED BY

Yunye Gong,

SRI International, United States

REVIEWED BY

Takashi Kuremoto,

Nippon Institute of Technology, Japan

Daochen Zha,

Rice University, United States

*CORRESPONDENCE

Ben Sattelberg

ben.sattelberg@colostate.edu

RECEIVED 08 July 2023

ACCEPTED 20 October 2023

PUBLISHED 23 November 2023

CITATION

Sattelberg B, Cavalieri R, Kirby M, Peterson C

and Beveridge R (2023) Locally linear attributes

of ReLU neural networks.

Front. Artif. Intell. 6:1255192.

doi: 10.3389/frai.2023.1255192

COPYRIGHT

© 2023 Sattelberg, Cavalieri, Kirby, Peterson

and Beveridge. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Locally linear attributes of ReLU
neural networks

Ben Sattelberg1*, Renzo Cavalieri2, Michael Kirby2,

Chris Peterson2 and Ross Beveridge1

1Department of Computer Science, Colorado State University, Fort Collins, CO, United States,
2Department of Mathematics, Colorado State University, Fort Collins, CO, United States

A ReLU neural network functions as a continuous piecewise linear map from an

input space to an output space. The weights in the neural network determine

a partitioning of the input space into convex polytopes, where each polytope

is associated with a distinct a�ne mapping. The structure of this partitioning,

together with the a�ne map attached to each polytope, can be analyzed to

investigate the behavior of the associated neural network. We investigate simple

problems to build intuition on how these regions act and both how they can

potentially be reduced in number and how similar structures occur across di�erent

networks. To validate these intuitions, we apply them to networks trained on

MNIST to demonstrate similarity between those networks and the potential for

them to be reduced in complexity.

KEYWORDS

neural networks, ReLU, linearization, linear mapping, polyhedral decomposition,

Jacobian matrices

1 Introduction

Building a better understanding of neural network behavior is critically important.

Neural networks are state-of-the-art in a variety of contexts, including facial

recognition (Deng et al., 2019) and object recognition (Russakovsky et al., 2015). However,

there is limited understanding of how these networks work or what they are truly doing

to achieve such high performance. We present one path for building understanding and

intuition by investigating the locally linear behavior of ReLU networks.

ReLU neural networks can be broken into linear region facets—the small polytopes

where the network behaves as a linear function based on the activation pattern of the ReLU

activation functions. These can be considered both through the underlying geometry of

the polytope partitioning of the network and through the linear function associated with

the network within each polytope. Prior work has been done on establishing theoretical

bounds on the number of regions that it is possible for a network to have (Pascanu et al.,

2013; Montufar et al., 2014; Raghu et al., 2017) and on investigating metrics involving these

structures (Novak et al., 2018).

Much of the original study dealing with the linear regions of ReLU neural networks

has focused on investigating expressivity and complexity. It has previously been shown that

networks are universal approximators, that is, subject to certain mild constraints, and they

are able to approximate any well-behaved function to within arbitrary precision as the size of

the network increases (Cybenko, 1989; Hornik, 1991; Hanin and Sellke, 2017; Lu et al., 2017;

Lin and Jegelka, 2018). As meaningful as these results are, they are typically not applicable

to practical neural networks and do not say anything about the expressivity of a given neural

network. To assist with determining the expressivity of networks in practice, various groups

found and improved bounds on the maximum number of linear regions that feedforward

fully connected ReLU neural networks can attain as functions of their width, the number of

Frontiers in Artificial Intelligence 01 frontiersin.org48

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2023.1255192
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2023.1255192&domain=pdf&date_stamp=2023-11-23
mailto:ben.sattelberg@colostate.edu
https://doi.org/10.3389/frai.2023.1255192
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2023.1255192/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

nodes in a given layer, and depth, that is, the number of

layers (Pascanu et al., 2013; Montufar et al., 2014; Raghu et al.,

2017). Themain result of this study is that themaximum number of

linear regions a network can have grows polynomially in the width

and exponentially in the depth (Raghu et al., 2017). This partially

explains the success of the trend in many modern neural networks

to go deeper, such as ResNet (He et al., 2016).

However, empirical investigations of the number of linear

regions actually achieved by many neural networks have shown

different results. Untrained neural networks after initialization have

a number of linear regions that tends to grow linearly in the number

of ReLU functions along any one-dimensional subspace of the input

space (Hanin and Rolnick, 2019a). Furthermore, after training, the

number of regions tends to grow polynomially in the number of

ReLU nodes in the network and exponentially in the dimension of

the inputs to the network (Hanin and Rolnick, 2019b).

These linear regions have also been used empirically to

measure the sensitivity of neural networks. As will be discussed in

Section 2.1, the Jacobian of a neural network at a point, together

with the value of the neural network at the point, describes exactly

the linear function that agrees with the network in a polytope

around that point. Novak et al. (2018) utilized this fact to investigate

the effect of hyperparameters on input sensitivity and found

that overparameterization can help in generalization. Additionally,

they Zhang and Wu (2019) investigated how the linear region

structure can be used to predict the quality of a network.

Many of these studies have used visualization methods for

the polytope structures of neural networks (Hanin and Sellke,

2017; Hanin and Rolnick, 2019a; Zhang and Wu, 2019). These

visualizations are frequently done on MNIST or similar datasets

using cross-sections of the input space to better understand how the

polytope structure of networks evolves through training or through

different training methodologies. We apply such visualizations to

toy, two-dimensional input problems so that we can build intuition

on problems where the entire relevant input space is viewable.

Liu et al. (2023) investigated the properties of the activation

patterns of the ReLU functions as bit strings corresponding to

these linear regions, although their method works only for fully

connected networks, and they did not extend it to convolutional

layers or max-pooling.

In the study by McNeely-White et al. (2019), it was shown

that one can apply a linear map to the feature vector (the outputs

of the pre-classification layer) of one network to obtain a vector,

considered as a feature vector in the second network, that can then

be used by the second network for classification while maintaining

high accuracy.

Zhang et al. (2018) showed that due to the piecewise linear

structure of these neural networks, and under certain assumptions,

the set of ReLU neural networks, the set of piecewise linear

functions, and the set of tropical rational functions are equivalent.

We do not extend our results to the realm of tropical algebra, but

we do take inspiration from the concept of the dual as commonly

expressed in tropical algebra.

We investigate the behavior of linear region for small networks

trained on toy problems where full visualization is possible to

build intuition for the behavior and structure of both the polytope

geometry and their associated linear functions. Insights from those

small networks are extended to larger, more modern networks

trained to recognize handwritten digits from the Modified National

Institute of Standards and Technology database for handwritten

digit recognition (MNIST) (LeCun et al., 1998; Szegedy et al., 2016;

Lin and Jegelka, 2018). The first is that clustering these linear

regions based on Euclidean distance between the weights of their

linear functions can be carried out while preserving much of the

original performance of the networks. This implies that networks

have significant redundancy at the facet level, aligning with the

success of methods for pruning and compressing networks (Frankle

and Carbin, 2018; Blalock et al., 2020).

The second main result is that the linear functions associated

with linear region of two different networks, trained or fine-tuned

on the same problem, can be related by a linear map that maintains

high accuracy. This implies that qualitatively different networks

result in similar solutions when considered on the polytope level,

while also providing a way to identify when two networks may

identify different patterns in the input data that they exploit

for classification. Identifying when networks converge to similar

solutions allows for a stronger ability to determine where different

architectures or training methods will be successful.

2 Materials and methods

Neural networks with piecewise linear activation functions,

such as ReLU, are continuous piecewise linear maps from the input

space to the output space (Zhang et al., 2018). Additionally, each

of the linear portions of this mapping is supported on a convex

polytope defined by the boundaries along which the ReLU nodes

activate. Visualizing and analyzing the structure of these linear

regions allows for increased understanding of network behavior.

2.1 Linear regions definition

The piecewise linear and convex polytope structures of a ReLU

neural network, f :Rd → R
o with inputs inRd and o outputs, mean

that it can be written as a piecewise linear function (Zhang et al.,

2018). A representation of that is

f (x) =

W1x+ b1, if A1x ≤ c1

W2x+ b2, if A2x ≤ c2
...

Wmx+ bm, if Amx ≤ cm.

(1)

For each of the 1 ≤ i ≤ m linear regions, the affine mapping

defined by Wi and bi is valid on the convex polytope defined by

Ai and ci. One way to determine these parameters for a given

input, x, starts with identifying which ReLU functions are activated

for that input. Zeroing the weights in the network associated

with deactivated ReLU nodes and converting activated ReLU

functions to the identity function, Wi and bi can be determined

by multiplying through the resulting linear equation. The values

of Ai and bi can be determined by finding the zeros of the ReLU

functions and setting inequalities based on their activation patterns.

Frontiers in Artificial Intelligence 02 frontiersin.org49

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 1

An illustration of how the ReLU activation pattern for an input determines the linear mapping used for that input. If a given input fails to activate the

crossed out red nodes, the corresponding rows of matrices in the functional representation are zeroed. This leads to a single linear function of the

input for that input. The region of validity refers to the possible x values for which this ReLU activation pattern exists and is determined by finding

inequalities corresponding to the zeros of the ReLU function. The zero for a given node corresponds to the x values for which the output value of the

associated matrix row is zero. All the equations must be satisfied.

An example of this process is shown in Figure 1. This piecewise

linear mapping structure can be extended to various other common

layers types, such as max and average pooling with additional work.

The Wi and Ai are linked—the Wi are selected based on

which ReLU nodes are activated, and the Ai describe where ReLU

nodes switch from activated to deactivated or vice-versa. This is

partially illustrated in Figure 1 and a specific, smaller example

of this is shown later in Equations 2 and 3. There are also

similarities and relationships between different Wi or Ai—because

they are coming from the same network weight matrices with rows

removed, there is an inherent structure in the specific values used to

construct them.

Frontiers in Artificial Intelligence 03 frontiersin.org50

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

An additional note tomake is that the number of regions,m, has

the potential to be very large, with exponential growth in the depth

and polynomial growth in the width of the network (Pascanu et al.,

2013; Montufar et al., 2014; Raghu et al., 2017). Experimentally,

trained networks have been shown to typically exhibit polynomial

growth with the number of ReLU activations of the network, where

the degree of the polynomial is the input dimension (Hanin and

Rolnick, 2019b). Although this is polynomial, networks applied in

domains such as image recognition frequently have inputs with at

least 1,000 dimensions, so this still results in very large numbers of

regions (Russakovsky et al., 2015).

The linear mapping network definition, Equation 1, highlights

the fact that as long as one of the ReLU nodes does not switch

from “activated” to “deactivated” or vice-versa, the behavior of

the network is purely linear. Since the network is a composition

of continuous linear and piecewise linear functions, it is itself a

continuous piecewise linear function that splits the input space

into disjoint polytopes, on each of which there is an associated

affine mapping. This represents an unequivocally simple way to

conceptualize what ReLUnetworks compute, but unfortunately, the

typically extreme growth in the number of facets in Equation 1

means enumerating the full set of affine mappings is impractical

for most modern networks.

Because of this difficulty in computation, Equation 1 is of

conceptual value but, arguably by itself, not of much practical value;

however, it leads to several distinct yet ultimately equivalent views

of neural networks. Some of the relevant views are:

• The weight matrix, Wi, is the Jacobian of the neural network

in the region described by Ai and ci. The j
th row of Wi is the

gradient of the jth output of the network. This fact has been

utilized previously to consider sensitivity metrics for neural

networks (Novak et al., 2018). This also allows for simple

calculation of the Wi and bi values, even in networks with

unusual piecewise linear activation functions.

• The weight matrices, Wi, and biases, bi, form a set of linear

maps which the neural network chooses from based on the

value of the input. Each row of these Wi is a surface normal

to the hyperplane used for classification.

• The choices are based on the location of the input in a

set of connected polytopes induced by the ReLU structure

of the network. We provide animations showing how these

structures evolve as networks train in Section 3.1.

• Each row ofWi concatenated with the corresponding element

of bi forms a point in R
d+1. These points can be considered

as lying in a “dual” space to the corresponding output of the

network, and their structure can be analyzed in that context

to investigate the linear function behavior. We show how this

space forms in Sections 2.2 and 3.1, and analyze this space for

clustering and similarity of networks in Sections 3.2 and 3.3.

2.2 Example on XOR

For an example of how the piecewise linear nature of ReLU

neural networks works, we consider an XOR problem and a ReLU

neural network that solves it as presented in Figure 2. We choose

XOR as it is a complex enough problem that it illustrates non-linear

aspects of network behavior, but simple enough that full analysis

of that behavior is feasible. Note that for the XOR function itself,

shown in Figure 2A, zero is replaced with−1 to assist with training

of networks. Figure 2B shows a network which solves the XOR

problem. The functional form of that same network mapping from

the two inputs x and ymay be written as

f (x, y) =
[

2 −4
]

max

{[

1 1

1 1

] [

x

y

]

+

[

1

0

]

,

[

0

0

]}

− 1. (2)

As a function on R
2, the network divides R2 into three linear

regions with corresponding linear function/polytope pairs,

f (x) =

−2x− 2y+ 1, 0 ≤ x+ y, Both ReLUs activated

2x+ 2y+ 1, −1 ≤ x+ y ≤ 0, Top activated; bottom

not activated

−1, x+ y ≤ −1, Neither ReLU activated

(3)

These linear regions are shown in Figure 3. Even for this very

simple example, a complication arises: there is actually a “fourth”

region,−4x− 4y− 1, tied to the case where the lower ReLU node is

activated and the top is not. However, that case occurs in the empty

polytope 0 ≤ x+y ≤ −1 which cannot occur for any values of x and

y, and thus, in practical terms, this empty polytope does not exist.

This is an example of a general phenomena where cases exist in

principle but are unreachable regardless of input. Furthermore, the

existence of such cases explains in part why the number of possible

linear regions grows as it does and not simply as a power of two of

the number of ReLU functions.

There are additional practical complications that can arise but

do not on this network due to its simplicity—a network can be

considered as a function on all of its input space, Rd, but the data

to which the network is actually applied lie in a bounded region

within that space. Polytopes may exist outside of that region but

not be meaningful for the purpose of the network. Furthermore, in

many problems, the data used are a discrete subset of this bounded

region. It is possible for the network to define polytopes lying in

the bounded region but too small to contain any of the discrete

data to which the network is applied. In general, we observe that

the number of polytopes does typically grow beyond the number of

actual training samples when considering high-dimensional input

data and complex networks.

Returning to the regions shown in Figure 3, the weights and

biases in these polytopes can be considered as d + 1-dimensional

points existing in a “dual space” to the original neural network. For

example,

− x− y =
[

−1 −1 0
]

x

y

1

(4)

and so the point (−1,−1, 0) in the dual is induced by this region.

Further examples of these duals are illustrated in Figure 4, which

shows the decision boundary, numerical output, and dual points

for three networks with varying numbers of nodes trained on the

XOR problem. These can illustrate patterns in the behavior of

the network, and as will be discussed in more detail, mapping

Frontiers in Artificial Intelligence 04 frontiersin.org51

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 2

The modified XOR problem. (A) The input and output values—inputs and outputs are rescaled to be from –1 to 1 rather than from 0 to 1. (B) A

network architecture and its associated weights that solves this problem. Nodes in red have ReLU applied after calculating their associated input

values.

FIGURE 3

The polytopes and associated linear regions for a simple network to solve the XOR problem. (A) The cross-section of the network in the plane. Green

corresponds to points that would be labeled in the positive class (neural network output greater than zero) and red corresponds to points that would

be labeled in the negative class (neural network output less than zero). The black lines correspond to the points at which one of the two ReLU units

“activates” or “deactivates” and switches the linear region used for classification. The three polytopes form bands in the plane. (B) The surface of the

neural network. The points used for training are shown as green and red dots, the non-linearities are shown as red lines, and the decision boundary

(zeros of the network) are shown as black lines.

between dual regions of networks or clustering in this space can

identify similarity metrics and areas where the neural network gives

potentially unnecessary complexity.

2.3 Polytope visualization

One way to think of the polytopes resulting from ReLU

activation patterns is the way in which they arise as a consequence

of the iterated perceptron structure inherent in this style of

network. Each ReLU node in the network builds upon the non-

linearities in the previous layers by having its activation boundary

correspond to a line in the output space of the previous layer.

An example of this is illustrated in Figure 5. This figure shows

the decision surface, numerical output, dual points, and the

boundaries of the linear regions induced by each node split by

layer.

The boundaries induced by the first hidden layer of the

network, bottom left of Figure 5, are relatively simple—each of the

nodes in the first layer has a line in the original input space for

an activation boundary where the output of that node switches

Frontiers in Artificial Intelligence 05 frontiersin.org52

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 4

The decision boundaries (left), wireframe representations of output (center), and dual representations of the linear regions (right) for three networks

designed to solve ReLU. The top network (A) is the simple one described previously. The center (B) and bottom (C) are single hidden layer neural

networks with the center having 20 hidden nodes and the bottom having 100 hidden nodes. In the dual, blue dots represent linear regions used on

the 101× 101 uniform grid in [−1, 1]2. The red dots represent the linear regions used for the actual classification of the four data points—note that

the top image only has three dots corresponding to these, rather than four, as it only has a total of three linear regions.

Frontiers in Artificial Intelligence 06 frontiersin.org53

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 5

The polytopes resulting from the various layers of a simple network to classify a circle versus a surrounding annulus. Top left: the original problem

and the decision boundary determined by the network. Top middle: the outputs of the network. Top right: the dual weights. Bottom first: the zeros

for each of the perceptrons from the original input space to the first hidden layer—these decision boundaries are all lines, as the perceptrons at this

stage are purely linear in the original input. Each color corresponds to one of eight nodes in this hidden layer (and the colors do not relate between

each of the four bottom plots). Not every node has zeros occurring in the window shown. Bottom second: the zeros for each of the perceptrons

from the original input to the second hidden layer, with the boundaries for the first hidden layer in light gray. These are lines in the output space of

the first layer, but appear non-linear when shown in the original input space. Each boundary can only break at one of the lines from the previous

layer. Bottom third: the zeros for each of the perceptrons from the original input to the third layer, with the boundaries of the first two layers in gray.

Breaks in this layer can occur at any location where it crosses a zero of a previous layer. Bottom fourth: zeros in the output layer. This forms the

decision boundary shown in the top left.

from positive to negative. Each subsequent layer builds upon

the previous. However, the activation boundaries of ReLU nodes

in subsequent layers form lines in compressed space. Within the

polytopes formed by the activation boundaries of previous layers,

the new activation boundaries are still linear, but when changing

between those polytopes, the new activation boundaries are able

to change angle. To illustrate this, the activation boundaries for

each layer in Figure 5 are reproduced in subsequent layers in gray.

The more complicated activation boundaries for each subsequent

layer are always locally linear with changes in direction only arising

where they intersect a boundary from a previous layer. This is a

direct result and also illustration of the fact that the non-linearities

of multi-layer ReLU networks must be built up from activation

boundaries established by the previous layers in the network.

Finally, notice in the bottom right of Figure 5 that the output layer

of the network does as expected, constructing a valid piecewise

linear decision boundary for the original classification task.

A few things can be noticed from Figure 5. The first is

that the final decision boundary is not reliant on all of the

activation boundaries from previous layers. This implies that

some of the nodes in the network could be removed without

qualitatively impacting the classification. Additionally, the final

decision boundary corresponds closely to an activation boundary in

the second hidden layer, suggesting that layers after the second are

not necessary. These observations support the idea of the “lottery

hypothesis,” where networks have more nodes that necessary, and

subnetworks that are initialized well can be the main driving

force for network success (Frankle and Carbin, 2018; Blalock

et al., 2020). Finally, the 90 identified linear function weights

in the dual graph cluster into a small number of points, again

suggesting simplification of the network is possible to remove such

redundancy.

2.4 Region modification

To investigate extraneous complexity in networks, it is useful

to consider the linear functions that arise on each polytopes.

This is useful for a number of reasons, but the two simplest

are that the visualizations done in the previous section cannot

be done as simply with high-dimension input data, and that the

complexity of the polytope partitioning increases significantly with

the complexity of the network. Using the linear functions allows us

to sample points from the input space and compare the behavior

of a network or networks across those points without having to

worry about the polytope structure between those points. Even

for relatively simple image classification datasets such as MNIST,

small networks have nearly every image in the dataset lying on a

unique polytope (Novak et al., 2018). Additionally, by calculating

the linear functions using the Jacobian, we can largely treat the

Frontiers in Artificial Intelligence 07 frontiersin.org54

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

network structure as a black box and avoid difficulties that arise

from considering more complex activation functions (Liu et al.,

2023).

For investigating these affine mappings, there are two useful

steps to take: constructing notation to allow us to refer to the set of

affine mappings potentially used for a specific output of a network,

and considering only the affine mappings that are used for training

or testing to reduce the number to something computationally

manageable.

In terms of notation, the Wi, which is the Jacobian of the

network within the region defined by Ai and ci, and bi described

in Equation 1 can be written as

Wi =

wT
i,1

wT
i,2
...

wT
i,o

and bi =

bi,1
bi,2
...

bi,o

, (5)

Where each wi,j and bi,j correspond to the affine mapping in

polytope 1 ≤ i ≤ m for the 1 ≤ jth ≤ o output of the network.

Then, it is possible to construct the matrix containing the set of

affine mappings used for a given output, j, as

Cj =

wT
1,j b1,j

wT
2,j b2,j
...

wT
m,j bm,j

∈ R
m×(d+1). (6)

In practice, it is computationally infeasible to calculate all m

linear regions, so for the purpose of empirical studies, we choose

p points in the input space to sample and construct the matrix.

Cj =

wT
1,j b1,j

wT
2,j b2,j
...

wT
p,j bp,j

∈ R
p×(d+1). (7)

For simple, two-dimensional input problems, we choose the

p points by sampling from a uniform grid. We also consider the

MNIST dataset (LeCun et al., 1998), where the p points we sample

from are the 60,000 training or 10,000 testing input samples from

that network. We construct the Cj matrices using the training

samples, and we additionally construct C̃j using the testing samples

for evaluation of how various modifications impact accuracy on the

testing set.

2.4.1 Clustering regions
Even for potentially large numbers of sampled affine maps, it

is likely that many samples will have a unique Wi due to the large

number of total linear regions. For example, even simple networks

on the MNIST dataset only have overlap on <1% of the training

inputs. This is not necessarily surprising, simply due to the sheer

number of possible linear regions the network can construct.

However, although these weights are not necessarily equivalent,

there is potentially a great deal of redundancy or similarity among

them. As discussed in Section 2.3 and shown in the behavior of the

dual points of increasingly complex networks in Figure 4, patterns

appear in the linear weights that can indicate redundant behavior.

We can cluster these linear weights and determine how well those

clusters are able to replicate the behavior of the network as a

measure of that redundancy.

1. Calculate the Cj and C̃j matrices.

2. Train k-means clustering models using the rows of each of the

Cj matrices.

3. For each row of each of the C̃j determine for which cluster center

it is closest.

4. Use that cluster center as a linear mapping from input space to

determine the value for that output.

5. Classify the input based on which of the newly calculated

outputs is highest.

By varying k and comparing the resulting accuracy against the

original accuracy of the network, we can investigate the degree to

which networks can be simplified. If applying this method with

k = 1 results in near-original accuracy, that suggests the network

is behaving holistically as a linear mapping, whereas if it results

in near-random accuracy, that suggests the network’s behavior

can not be well described by a linear transformation from the

input space to the output space. Determining at which value of k

accuracy approaches the original provides a way to understand how

significantly the network can be simplified.

2.4.2 A�ne maps between linear functions
Another area where representing the weights of these linear

regions as points in space can be useful is in finding similarities

between two networks. GivenCj,network1 andCj,network2, we can train

least-squares regression models for each output to find matrices

Mj ∈ R
d+1×d+1 for each 1 ≤ j ≤ o that minimize

||Cj,network1Mj − Cj,network2||2. (8)

This method finds a mapping between the linear region

weights, or equivalently, between the gradients of the outputs

with respect to the input. Due to this, as with the k-means

clustering method, this method requires running inputs through

each original network, calculating the Jacobians, then applying the

transformation.

This is similar to the study by McNeely-White et al. (2019)

where the authors demonstrated that the outputs of the final

layer before the linear classifier of networks trained on ImageNet

are affine-equivalent. Unlike their study, our study investigates

the connection between the affine mappings of the locally linear

functions of networks, rather than the feature vectors of networks.

Results of this process for XOR networks using the C matrices

constructed by sampling points on the 101× 101 uniform grid are

shown in Figure 6, which shows the results of mapping between two

networks trained on XOR. Although the two networks have similar

behavior, their decision boundaries are somewhat different and

their dual representations are close to rotations of each other. The

resulting points of Cj,network1Mj are very similar to Cj,network2 and

vice versa, meaning that the mapping is successful. The function

resulting from this is no longer continuous—because the bias is

part of what is being mapped, the result is able to vary based on

Frontiers in Artificial Intelligence 08 frontiersin.org55

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 6

The decision boundaries (A), wireframes (B), and weights in the dual space (C) for two di�erent XOR networks and the result of training an a�ne

mapping from the linear regions of one network to the other. The original networks are the upper left and lower right in each subplot, with the

resulting mapped networks are the top right and bottom left. In the dual space, the four points of XOR are in red and all other points sampled

uniformly from the grid in the original input space are in blue.

the position in the plane and regions may no longer join at their

boundaries. By applying this method to more complex networks

where similarity is not as clear, we can determine potential overlap

in network behavior.

2.5 Extension to image data

The idea of investigating and visualizing linear regions can

be extended to higher dimensions, and specifically to image

data, although visualizations are no longer as simple. We

consider the MNIST dataset of handwritten digits which contains

60,000 training samples and 10,000 test samples (LeCun et al.,

1998). MNIST was chosen as an image classification dataset

due to its relative simplicity. We used PyTorch (Paszke et al.,

2019) to train four networks on the MNIST dataset. These

networks are

• A fully connected feedforward network with a single hidden

layer consisting of 128 ReLU nodes. This network achieves an

accuracy of 96.03%. The training process used cross-entropy

loss and PyTorch’s SGD function with parameters of 0.01

Frontiers in Artificial Intelligence 09 frontiersin.org56

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

update rate, 0.5 momentum, 0.01 weight decay, and a batch

size of 64 over 30 epochs.

• Two simple convolutional networks with equivalent

architectures but different initializations. A convolutional

layer with 10 filters and a kernel size of 5 is applied to the

input, followed by a max pool. The results of that have a

convolutional layer with 20 filters and a kernel size of 5

applied, again followed by a max pool. The 320 resulting

outputs are used as inputs to a fully connected layer with 50

outputs, which is followed by a linear layer from those 50

nodes to the 10 outputs. The network achieves an accuracy

of 98.07% (labeled Conv1) and 98.04% (labeled Conv2).

The training process for both used cross-entropy loss and

PyTorch’s SGD function with parameters of 0.01 update rate,

0.5 momentum, 0.01 weight decay, and a batch size of 64 over

30 epochs.

• A network with the Inception-v3 architecture as implemented

in Torchvision’s models subpackage trained from

scratch (Marcel and Rodriguez, 2010; Szegedy et al.,

2016). This network achieves an accuracy of 99.08%. The

first layer of the network was modified to expect images with

only one channel and images were upsampled, using bilinear

interpolation, to the expected size of 224 × 224 pixels. The

training process used cross-entropy loss and PyTorch’s SGD

function with parameters of 0.1 update rate, 0.9 momentum,

1e-4 weight decay, and a batch size of 50 over 22 epochs.

• A network with the ResNet-152 architecture as implemented

in Torchvision’s models subpackage trained from

scratch (Marcel and Rodriguez, 2010; Lin and Jegelka,

2018). This network achieves an accuracy of 98.92%. The first

layer of the network was modified to expect images with only

one channel. The training process used cross-entropy loss and

PyTorch’s SGD function with parameters of 0.1 update rate,

0.9 momentum, 1e-4 weight decay, and a batch size of 50 with

60 epochs.

For a given input image and output, each network determines

a polytope within the input space which contains the image. By

considering a single output, the gradient at the input image can be

displayed in the same format as the input image. The collection

of 50 different gradient “images,” computed by considering each

of the five neural networks and each of the 10 output nodes for

an example “4” image, is visualized in Figure 7. Based on the

appearance of the images, the dense network appears to have

relatively little complexity, so it is classifying based on its “ideal”

shape of each output, corresponding to what a linear classifier

may do. This suggests a possibility for a reduction of number of

linear regions used, as presented in Section 2.4.1 and discussed

in Secton 3.2. The other networks have more complexity, tend

to focus more sharply on the relevant information being passed

in, and classify based on that input. ResNet has behavior that

is not human-interpretable and appears somewhat noisy. Based

on these visuals, the only networks that appear visually similar

are the two simple convolutional networks, suggesting possible

difficulty in the mappings presented in Section 2.4.2 and discussed

in Section 3.3. The visualization of these linear regions is similar

to the idea of saliency mappings, although many modern forms of

saliency mapping are more sophisticated than simply visualizing

the gradients at an input image, as this is doing (Simonyan et al.,

2013).

3 Results

Constructing animations and visualizations of how network

structure changes throughout the training process for different

problems and architectures on two-dimensional problems can aid

in understanding how the training process creates some of the

properties investigated and provide inspiration for behavior to

investigate in more detail. Although two-dimensional problems

are useful for building intuition of network behavior, they do

not necessarily include all of the behavior that most modern

neural networks include. As such, using intuitions gained on those

networks, even on a simple dataset such as MNIST, is necessary for

confirming that networks can be reduced in complexity or exhibit

quantitatively similar behavior despite differences in architecture.

3.1 Polytope evolution through training

The polytope structures discussed in Section 2.3 and their

associated linear mappings change as the network trains, as has

been studied previously (Hanin and Sellke, 2017; Hanin and

Rolnick, 2019a; Zhang and Wu, 2019). However, these studies

focus on MNIST and the usage of summary statistics to analyze

behavior beyond the visuals in high-dimensional space. We focus

on the visualization for two-dimensional input problems here,

so that we can fully visualize the polytope structure and identify

patterns of behavior across the entirety of the input. We continue

with the problem of classifying a circle versus a surrounding

annulus and additionally consider a more complex problem that

is a combination of the XOR problem and the circle versus annulus

problem, both illustrated in Figure 8.

There exist many simple solutions to the single circle

versus single annulus problem, but neural networks do not

intrinsically take advantage of the rotational symmetry of this

problem to express these solutions. As has been demonstrated

previously (Hanin and Sellke, 2017; Raghu et al., 2017), any

network that solves this problem requires a minimum of three

hidden nodes in at least one of its hidden layers. A node in any

layer creates a non-linearity along a line in the input space of that

layer, but when mapped back to the original input space that line

becomes a trajectory that “breaks” by changing direction whenever

it encounters a line created by the activation boundary of a node

in a previous layer. A network with a maximum width of two is

unable to solve this problem as it is unable to create a closed region

in the input space. To see this, note that each layer with at most two

nodes can only partition space into four regions (both on, one on,

the other on, and both off), one of which (both off) will be constant.

Due to this, any such network cannot form a closed region in space

and will instead have each of its polytopes extend to infinity.

To illustrate how these polytopes and decision boundaries

change as the neural network trains, we have two examples to

compare as networks increase in complexity. One is the simplest

possible network with three nodes in a single hidden layer, and the

Frontiers in Artificial Intelligence 10 frontiersin.org57

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 7

The linear regions for each output of the four networks for the input in the top left corner. These visualizations are similar to simple forms of saliency

mapping (Simonyan et al., 2013). White pixels correspond to positive values, black pixels to negative values, and gray pixels to zero.

FIGURE 8

Two classification problems used to show animations of polytope structures during the training process. (A) The goal is to classify points in the red

annulus as being a separate class as those in the blue annulus. (B) A combination of the left problem with the XOR problem to demonstrate more

sophisticated network behavior.

other is a far more complex network with three hidden layers each

containing eight nodes. Still images of the polytope development

throughout the training process for the simple network are shown

in Figure 9 and the end result of the more complex network

is shown in Figure 10. Full videos of the evolution of their

polytope structure throughout the training process are available

at https://www.youtube.com/watch?v=lpXQI-UJIZM and https://

www.youtube.com/watch?v=rANyD9t-X-c, respectively.

As shown in the training animations, the increased complexity

of the network in Figure 10 allows it to manipulate its non-

linearities to create a closed region in fewer epochs than that of

the simple network shown in Figure 9. This comes from the fact

that the structure of the simple network forms a subnetwork of the

more complex network. The more complex networks initialization

is more likely to have activation boundaries in beneficial places

for finding good solutions, as believed to occur with the lottery

Frontiers in Artificial Intelligence 11 frontiersin.org58

https://doi.org/10.3389/frai.2023.1255192
https://www.youtube.com/watch?v=lpXQI-UJIZM
https://www.youtube.com/watch?v=rANyD9t-X-c
https://www.youtube.com/watch?v=rANyD9t-X-c
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 9

A selection of images throughout the training process of the simplest possible network (three hidden nodes in a single layer) on this problem. The

top left set of six image shows the network at initialization, and each set of six images following that increases by 40 training epochs. Within each set

of six images, the top left shows the decision surface, the top center shows the network output, the top right shows the weights in the dual, the

bottom left shows the training accuracies, the bottommiddle shows the activation boundaries of the hidden nodes, and the bottom right shows

the decision boundary overlaid with the previous layers activation boundaries. An animation of this process is available at https://www.youtube.com/

watch?v=lpXQI-UJIZM.

hypothesis (Frankle and Carbin, 2018). Additionally, the simple

network does not find a solution every time using its training

method, frequently finding locally optimal solutions that do not

form closed regions and achieving only 50% accuracy.

An example of the polytopes constructed by a more complex

network on combination of the XOR and circle vs. annulus

problem is in Figure 11. A video of the training process

is shown at https://www.youtube.com/watch?v=T_uoGBUOgUY.

This network demonstrates a situation where the network requires

a more complex structure to successfully classify. Additionally, the

points in the dual do not cluster as they do in the original circle

versus annulus problem.

It has previously been shown by Raghu et al. (2017) that earlier

layers are more important than later layers for the quality of a

network and certain visualizations of this were included in their

study. These animations provide additional intuitive examples of

Frontiers in Artificial Intelligence 12 frontiersin.org59

https://doi.org/10.3389/frai.2023.1255192
https://www.youtube.com/watch?v=lpXQI-UJIZM
https://www.youtube.com/watch?v=lpXQI-UJIZM
https://www.youtube.com/watch?v=T_uoGBUOgUY
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

FIGURE 10

A solution to this problem found by a more complex network (three hidden layers, each with eight nodes). An animation of the training process of

this network is available at https://www.youtube.com/watch?v=rANyD9t-X-c.

FIGURE 11

A solution to this problem found by a more complex network (three hidden layers, each with eight nodes). An animation of the training process of

this network is available at https://www.youtube.com/watch?v=T_uoGBUOgUY.

this—the structures constructed by the early layers are passed on,

and many of the deeper layers provide only slight modifications to

the structures apparent in the first layers. Even in the more complex

problem combining XOR and the circle versus annulus problem,

the second layer forms the bulk of the structure for classification,

with the third and final layers only refining it.

Frontiers in Artificial Intelligence 13 frontiersin.org60

https://doi.org/10.3389/frai.2023.1255192
https://www.youtube.com/watch?v=rANyD9t-X-c
https://www.youtube.com/watch?v=T_uoGBUOgUY
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

Using simple visualizations of this sort provide a holistic view

of certain network behaviors. Intuitive understanding of existing

hypotheses and theorems and inspiration for further investigation

can be gained. In this case, the visualizations and animations

demonstrate results such as the lottery hypothesis (Frankle and

Carbin, 2018) and the influence of earlier layers (Raghu et al., 2017)

visually to potentially enhance understanding of the phenomena.

It also allows for identification of further areas of interest—in this

case, the idea that networks trained on the same problem can

exhibit significant similarity, and that there is possible pruning that

can be done on networks that are more complex than necessary for

representing a solution despite their increased complexity allowing

a good solution to be found more effectively. Additionally, they

show that the more complex network on the circle problem can

have hidden layers removed, despite that method being relatively

rare in studies of network pruning (Blalock et al., 2020).

3.2 Clustering sampled local linear
functions

Using the methods discussed in Secton 2.4.1 and the networks

described in Section 2.5, we can investigate the effect of clustering

the linear weights for MNIST trained neural networks. Accuracies

for this process with different numbers of cluster centers are shown

in Table 1.

Networks with less complex architectures capture the near-

linear behavior of the MNIST dataset well. The dense, single-

hidden-layer network, in particular, is able to recover a solution

close to linear classifiers in the single cluster case, suggesting that

the network replicates linear behavior well. This matches previous

study that shows that single-hidden-layer wide networks tend to

behave in highly linear ways.

Inception and ResNet, however, have near random

performance in the single cluster case. This suggests that the

networks are transforming the data in such a way that the

transformation cannot be approximated linearly, which matches

the complexity of architectural structure that those networks have.

The basic convolutional networks perform poorly, but significantly

better than random, suggesting that their transformation is

non-linear but has some linear properties.

As the number of clusters increases, inception quickly recovers

a high degree of accuracy, achieving better accuracy than the

original dense network with as few as 10 clusters. This suggests

that inception identifies a piecewise linear mapping from the input

space that can be reasonably well approximated by as few as 10

regions. This means that inception has a high degree of redundancy

when trained on MNIST, and could likely be pruned significantly

while maintaining original accuracy. This also could be a sign that

inception generalizes well on this dataset; it does not maintain

a high level of complexity and uses relatively simple methods to

classify the data.

This behavior is not matched by the basic convolutional

networks or ResNet, with their performance remaining poor.

The basic convolutional networks are able to recover for better

accuracy than the original dense network with 10,000 clusters (1/6

of the number of training samples), but ResNet maintains poor

accuracy throughout. This means that the polytope structure of

ResNet cannot be simplified easily in this manner—either a more

sophisticated method is necessary to identify ways of simplifying

the polytope structure, or the network has a high degree of

complexity that can not be reduced.

3.3 A�ne maps between sampled local
linear functions

Using the methods discussed in Secton 2.4.2 and the networks

described in Section 2.5, we can investigate the effect of

transforming between the linear weights for different MNIST

trained neural networks. Examples of this are illustrated for five

input samples for W0,dense and W0,conv in Figure 12. Qualitatively,

the mapped linear regions are similar, but not equivalent, to the

target. One point to note is that all of the linear regions for the dense

network appear qualitatively similar, with their shape matching

that of a zero. The convolutional network does not follow this

pattern, having different patterns for each of the input samples, and

the transformed dense regions are able to replicate those patterns

despite their visual similarities.

Table 2 shows the results of the affine mapping trained on the

training set and evaluated on the testing set for the five networks

trained on MNIST. No mapped network performs better than its

original accuracy or the original accuracy of the network it is

transformed to match. Despite this decrease in accuracy from the

original networks, a high level of accuracy is maintained for many

of the mappings. This is not necessarily unexpected, as all five

networks are attempting to approximate the same function because

they are trained to solve the same problem using the same loss

function. However, accuracy does not necessarily tell the whole

story. A high level of performance is preserved, but it may be

the case that slight variations in accuracy represent significant,

qualitatively meaningful differences in what the networks do. Even

so, these results demonstrate that there is ostensibly an interesting

relationship between these different networks and their similar

behaviors.

The dense network and the basic convolutional networks are

able to transform to each other reasonably well. Transforming

to and from the dense network achieves accuracy near its

original, and the basic convolutional networks with equivalent

architectures and training methods are able to nearly replicate

their original accuracies with transforming between each other.

This suggests overlap in how the networks transform the data

to achieve their networks, with the convolutional networks

achieving additional complexity that allows them to increase their

accuracy.

Interestingly, the inception network replicates the other

networks poorly, with a significant drop in accuracy mapping

to the dense network, accuracy near the dense networks

transformation to the basic convolutional networks for them, and

accuracy below the original dense network when transforming

to ResNet. This matches the clustering results, where the

network did not have a good single linear representation,

explaining its lack of success mapping to the dense network,

but recovers accuracy quickly with 10 clusters, suggesting a

Frontiers in Artificial Intelligence 14 frontiersin.org61

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

TABLE 1 The accuracies of networks on the MNIST dataset after applying k-means clustering to their collection of local linear maps.

Clusters Dense Conv1 Conv2 Inception ResNet

Original 9603 9807 9804 9908 9892

1 8679 6766 6366 974 1432

10 9231 8639 8672 9660 8166

100 9434 9382 9421 9689 8458

1000 9508 9586 9603 9695 8982

10000 9554 9696 9673 9752 9381

Values reported are the number of correctly labeled test set samples out of 10,000. Note that the number of clusters for a given network is technically 10 times larger than stated in the table—each

of linear mappings corresponding to a digit is clustered separately.

FIGURE 12

Example image representations of the a�ne mapping from the dense network to the simple convolutional network trained on MNIST. White pixels

correspond to positive values, black pixels to negative values, and gray pixels to zero.

possible simple transformation that does not easily replicate

the success of the other networks despite its success by

itself.

ResNet, however, is able to replicate everything except the dense

network well. It comes close to the original accuracies of the basic

convolutional networks when mapping to them, as well as both

its and inception’s accuracies when mapping to inception. This

suggests that the linear regions it uses contain the information that

the other networks use for classification. Together with the results

with clustering, this suggests that ResNet maintains a complex

transformation from the input space.

The lack of symmetry between inception and ResNet is

interesting. ResNet is able to approximate inception well, but

inception is not able to approximate ResNet well. This means

that there is a qualitative difference between the methods these

networks are using for classification, despite their near equivalent

original accuracies. This suggests, due to both of them achieving

success, that ResNet identifies information that may not generalize,

as inception is able to perform equivalently using a representation

that appears simpler. Identifying both the overlap and differences

in the methods these networks use for classification provides a way

for identifying possible improvements for both networks.

Frontiers in Artificial Intelligence 15 frontiersin.org62

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

TABLE 2 Number of correct labels on the test set (out of 10,000) after applying a�nemappings to the linear mappings of MNIST trained neural networks.

To

Dense Conv1 Conv2 Inception ResNet

From Dense 9603 9536 9519 9290 9068

Conv1 9567 9807 9776 9662 9588

Conv2 9562 9786 9804 9644 9579

Inception 8868 9488 9511 9908 9536

ResNet 9320 9738 9739 9838 9892

Diagonal elements are the original accuracies of the networks.

By identifying the similarity between the linear regions of

networks trained on the same or similar datasets, it is possible to

gain a deeper understanding of the networks’ behavior. Dissimilar

representations suggest the exploitation of different information

across the networks, meaning that the network behaviors can

potentially be combined to improve effectiveness. The ability

for one network to effectively recreate the representations of

another suggests that the first network exploits the information

the other contains meaning that differences in accuracy can

come down to more effective exploitation, rather than identifying

qualitative differences.

4 Discussion

Identifying patterns in simple neural networks trained on low-

dimensional toy problems can provide meaningful insight and

intuition for patterns that are replicated inmodern neural networks

trained on high-dimensional complex problems. These patterns

can assist in gaining deeper insight into the behavior and in

suggesting methodologies that can be applied to those complex

networks. We have extended the work of Raghu et al. (2017) in

visualizing the polytope structure of neural networks with two

inputs by constructing animations of the evolution of the polytope

structure. These animations demonstrate how early layers have

significant influence over the structure of subsequent layers and

how the polytope structures form through training.

Additionally, we have shown experimentally that even complex

neural networks such as inception can have the complexity of their

underlying polytope partitioning of the input space highly reduced.

The linear regions of all networks considered, except ResNet, can

be clustered to as few as 10 cluster centers for networks trained on

MNIST while preserving much of their accuracy.

We have also shown experimentally that the linear regions of

different networks are similar under an affine mapping. Applying

such an affine mapping preserves a high level of accuracy in the

resulting classifier, suggesting thatmany of the considered networks

are solving problems in qualitatively similar ways. By comparing

accuracies of mapped networks, we are able to determine where

networks may have qualitatively dissimilar behavior in a way that

suggests poor generalization or information that can be exploited

to improve network behavior.

We provide support for the tantalizing idea that different

networks converge to similar solutions that have a great deal more

simplicity than would be suggested by their complex architectures.

Further investigations of this area could allow for identification of

patterns across disparate networks that allow for a more refined

understanding of both training networks and modifying them to

be effective in full usage. We would like to continue to explore the

extent to which that idea is correct for modern neural networks

through extensions to more complex datasets and network pruning

methodologies.

Although MNIST provides high-dimensional image data, the

dataset itself is relatively simple. Extending the similarity and

clusteringmethods tomore complex datasets would provide deeper

insight into how complexity of dataset can influence the similarity

and complexity of neural networks trained on them. Each of the

networks trained here, despite their distinct architectures, used

similar training methodologies. Extending the study by Zhang and

Wu (2019) to investigate how different training methodologies and

regularization techniques impact the similarity of network behavior

would allow for an understanding of how those methods impact

polytope structures.

Additionally, network pruning research provides a natural field

where the ability to compare the similarity of two networks, linear

regions would be useful. Identifying the degree to which a network

can be simplified without impacting its ability to successfully

classify can be difficult using only accuracy as a metric (Blalock

et al., 2020). Comparing the behavior of those networks directly

while being able to treat the interior of the network as a black box

provides a promising technique for identifying success.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found in the

article/Supplementary material. Code accessible at https://

github.com/bsattelb/local-linearity-of-relu-neural-networks/tree/

master.

Author contributions

BS: Conceptualization, Methodology, Software, Writing—

original draft, Writing—review & editing. RC: Conceptualization,

Writing—review & editing. MK: Conceptualization, Writing—

review & editing. CP: Conceptualization, Writing—review &

editing. RB: Conceptualization, Writing—original draft, Writing—

review & editing.

Frontiers in Artificial Intelligence 16 frontiersin.org63

https://doi.org/10.3389/frai.2023.1255192
https://github.com/bsattelb/local-linearity-of-relu-neural-networks/tree/master
https://github.com/bsattelb/local-linearity-of-relu-neural-networks/tree/master
https://github.com/bsattelb/local-linearity-of-relu-neural-networks/tree/master
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Sattelberg et al. 10.3389/frai.2023.1255192

Funding

This study is partially supported by the DARPA Geometries of

Learning Program under Award No. HR00112290074.

Acknowledgments

Apreprint version of this article is available on arXiv (Sattelberg

et al., 2020).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2023.

1255192/full#supplementary-material

VIDEO 1.AVI

An animation showing the training process of a simple neural network

training to classify a points on a circle vs. points on a surrounding annulus.

Polytope structure, local linear weights, decision boundary, and the output

of the network are shown through the training process.

VIDEO 2.AVI

An animation showing the training process of a relatively complex neural

network training to classify a points on a circle vs. points on a surrounding

annulus. Polytope structure, local linear weights, decision boundary, and the

output of the network are shown through the training process.

VIDEO 3.AVI

An animation showing the training process of a neural network training to

classify points on four circles with classes matching the XOR problem and

annuli surrounding each circle with opposite classification. Polytope

structure, local linear weights, decision boundary, and the output of the

network are shown through the training process.

References

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J. (2020). “What is the state
of neural network pruning?” in Proceedings of Machine Learning and Systems 2 (MLSys
2020) 129–146.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathem. Control Sign. Syst. 2, 303–314. doi: 10.1007/BF02551274

Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). “ArcFace: additive angular
margin loss for deep face recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 4690–4699. doi: 10.1109/CVPR.2019.00482

Frankle, J., and Carbin, M. (2018). “The lottery ticket hypothesis: finding sparse,
trainable neural networks,” in International Conference on Learning Representations.

Hanin, B., and Rolnick, D. (2019a). Complexity of linear regions in deep networks.
arXiv preprint arXiv:1901.09021.

Hanin, B., and Rolnick, D. (2019b). “Deep ReLU networks have surprisingly few
activation patterns,” in Advances in Neural Information Processing Systems 361–370.

Hanin, B., and Sellke, M. (2017). Approximating continuous functions by ReLU nets
of minimal width. arXiv preprint arXiv:1710.11278.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition 770–778. doi: 10.1109/CVPR.2016.90

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural Netw. 4, 251–257. doi: 10.1016/0893-6080(91)90009-T

LeCun, Y., Cortes, C., and Burges, C. J. (1998). The MNIST database of handwritten
digits. Available online at: http://yann.lecun.com/exdb/mnist/ (accessed October 15,
2019).

Lin, H., and Jegelka, S. (2018). “ResNet with one-neuron hidden layers is a universal
approximator,” in Advances in Neural Information Processing Systems 6169–6178.

Liu, Y., Cole, C., Peterson, C., and Kirby, M. (2023). “Relu neural networks,
polyhedral decompositions, and persistent homology,” in the ICML 2023 Workshop on
Topology, Algebra, and Geometry in Machine Learning.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). “The expressive power of
neural networks: A view from the width,” in Advances in Neural Information Processing
Systems 6231–6239.

Marcel, S., and Rodriguez, Y. (2010). “Torchvision the machine-vision package
of torch,” in Proceedings of the 18th ACM international conference on Multimedia
1485–1488. doi: 10.1145/1873951.1874254

McNeely-White, D., Beveridge, J., and Draper, B. (2019). Inception
and ResNet features are (almost) equivalent. Cogn. Syst. Res. 59, 312–318.
doi: 10.1016/j.cogsys.2019.10.004

Montufar, G. F., Pascanu, R., Cho, K., and Bengio, Y. (2014). “On the number of
linear regions of deep neural networks,” in Advances in Neural Information Processing
Systems 2924–2932.

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., and Sohl-Dickstein, J. (2018).
Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760.

Pascanu, R., Montufar, G., and Bengio, Y. (2013). On the number of response
regions of deep feed forward networks with piece-wise linear activations. arXiv preprint
arXiv:1312.6098.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“PyTorch: an imperative style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems, eds. H. Wallach, H. Larochelle, A. Beygelzimer,
F. d Alché-Buc, E. Fox, and R. Garnett (Red Hook, NY: Curran Associates, Inc.),
8024–8035.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-Dickstein, J. (2017). “On
the expressive power of deep neural networks,” in international Conference on Machine
Learning, pages 2847–2854.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252.
doi: 10.1007/s11263-015-0816-y

Sattelberg, B., Cavalieri, R., Kirby,M., Peterson, C., and Beveridge, R. (2020). Locally
linear attributes of relu neural networks. arXiv preprint arXiv:2012.01940.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition 2818–2826. doi: 10.1109/CVPR.
2016.308

Zhang, L., Naitzat, G., and Lim, L.-H. (2018). Tropical geometry of deep neural
networks. arXiv preprint arXiv:1805.07091.

Zhang, X., andWu, D. (2019). “Empirical studies on the properties of linear regions
in deep neural networks,” in International Conference on Learning Representations.

Frontiers in Artificial Intelligence 17 frontiersin.org64

https://doi.org/10.3389/frai.2023.1255192
https://www.frontiersin.org/articles/10.3389/frai.2023.1255192/full#supplementary-material
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/CVPR.2019.00482
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0893-6080(91)90009-T
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1016/j.cogsys.2019.10.004
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2016.308
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 24 November 2023

DOI 10.3389/frai.2023.1274830

OPEN ACCESS

EDITED BY

Pavan Turaga,

Arizona State University, United States

REVIEWED BY

Ankita Shukla,

Arizona State University, United States

Suhas Lohit,

Mitsubishi Electric Research Laboratories

(MERL), United States

Gautam Dasarathy,

Arizona State University, United States

*CORRESPONDENCE

Michael Kirby

michael.kirby@colostate.edu

RECEIVED 08 August 2023

ACCEPTED 03 November 2023

PUBLISHED 24 November 2023

CITATION

Karimov K, Kirby M and Peterson C (2023) An

algorithm for computing Schubert varieties of

best fit with applications.

Front. Artif. Intell. 6:1274830.

doi: 10.3389/frai.2023.1274830

COPYRIGHT

© 2023 Karimov, Kirby and Peterson. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

An algorithm for computing
Schubert varieties of best fit with
applications

Karim Karimov, Michael Kirby* and Chris Peterson

Department of Mathematics, College of Natural Sciences, Colorado State University, Fort Collins, CO,

United States

We propose the geometric framework of the Schubert variety as a tool for

representing a collection of subspaces of a fixed vector space. Specifically, given a

collection of l-dimensional subspaces V1, . . . ,Vr of R
n, represented as the column

spaces of matrices X1, . . . ,Xr, we seek to determine a representative matrix K ∈

R
n×k such that each subspace Vi intersects (or comes close to intersecting) the

span of the columns of K in at least c dimensions. We formulate a non-convex

optimization problem to determine such a K along with associated sets of vectors

{ai} and {bi} used to express linear combinations of the columns of the Xi that

are close to linear combinations of the columns of K. Further, we present a

mechanism for integrating this representation into an artificial neural network

architecture as a computational unit (which we refer to as an abstract node).

The representative matrix K can be learned in situ, or sequentially, as part of a

learning problem. Additionally, the matrix K can be employed as a change of

coordinates in the learning problem. The set of all l-dimensional subspaces of Rn

that intersects the span of the columns of K in at least c dimensions is an example

of a Schubert subvariety of the Grassmannian GR(l,n). When it is not possible to

find a Schubert variety passing through a collection of points on GR(l,n), the goal

of the non-convex optimization problem is to find the Schubert variety of best fit,

i.e., the Schubert variety that comes as close as possible to the points. This may be

viewed as an analog of finding a subspace of best fit to data in a vector space. The

approachwe take is well-suited to themodeling of collections of sets of data either

as a stand-alone Schubert variety of best fit (SVBF), or in the processing workflow

of a deep neural network. We present applications to some classification problems

on sets of data to illustrate the behavior of the method.

KEYWORDS

Schubert variety of best fit, manifold approximation, subspace classification, geometry of

learning, neural network, abstract node, GPU parallel computing

1 Introduction

A variety of powerful tools have been developed in Machine Learning and Artificial

Intelligence and these have led to remarkable applications. A damper on the success of

these tools is the fact that the resulting models are frequently difficult to explain and the

predictions may not be trustworthy in high stakes scenarios, e.g., those related to medical

diagnoses, battlefield scenarios, or intelligence gathering. One reason the success of ML/AI

tools is challenging to explain, or trust, is that these models were designed, first and foremost,

to make accurate predictions; attempts to interpret or explain the effectiveness of the models

being only an afterthought.

Frontiers in Artificial Intelligence 01 frontiersin.org65

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2023.1274830
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2023.1274830&domain=pdf&date_stamp=2023-11-24
mailto:michael.kirby@colostate.edu
https://doi.org/10.3389/frai.2023.1274830
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2023.1274830/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

In this paper, we propose a methodology based on an

interpretable mathematical framework, i.e., the geometric setting

of the Schubert Variety, as the starting point, and explore

variations on the theme to determine optimal architectures

for predictive modeling. The goal of this research is to begin

with a mathematically motivated explainable approach, and

then optimize its performance through numerical algorithms.

Optimistically, this approach will lead to results of comparable

accuracy of the traditional ML/AI toolkit, however, with the

advantage of explainability and trustworthiness. To this end, we

propose an approach for characterizing sets of linear spaces, i.e.,

fitting/approximating subspaces with one, or more representative

spaces. Additionally, we demonstrate how the mathematical

framework and resulting algorithms can be integrated into current

tools including deep feed forward neural networks.

The initial development of ML/AI, focused more on thinking

machines than interpretability. Human intelligence, and the

associated architecture of the human brain, have been a driving

force in biomimetic approaches. For example, the McCullough-

Pitts node (McCulloch and Pitts, 1943) and its associated weights

were proposed as amathematical model of the cell and its associated

neurons, respectively. The first transfer function at a computational

node was a simple step function replicating the firing or quiescence

of a neuron. Impressively, arrays of such networks were shown to

be able to serve as models of associative memory, and to even recall

patterns which were partially occluded (Hertz et al., 1991). Hebbian

learning (Hebb, 1949) was proposed as a model for memory and

convincingly analyzed as a dynamical system where the patterns

were stored as fixed points (Hertz et al., 1991), an early appearance

of the application of mathematical analysis for explainability of

artificial neural networks.

Geometric ideas emerged with Rosenblatt’s simple

perceptron (Rosenblatt et al., 2002), still loosely based on neurons

firing, where the dot product operation between a pattern and a

weight vector gave rise to classification via the interpretation of

the models as splitting a space into two half-spaces. The multilayer

perceptron extended these ideas in natural ways, however, at the

expense of geometric interpretability. Nonlinear data reduction

was made possible by autoencoder neural networks (Kramer,

1991; Oja, 1992). The encoder-decoder architecture has been

widely exploited by Variational Autoencoders (Kingma and

Welling, 2019), Centroid-Encoders (Ghosh and Kirby, 2022), and

Transformers (Vaswani et al., 2017). These developments, while

providing powerful tools, widely lack mathematical underpinnings

that provide insight into their utility.

In this paper, we illustrate how one can use mathematical

theory and geometric frameworks as a design philosophy in the

construction of novel neural network architectures. This general

idea can be found in previous work, e.g., geometric, or topological

nodes such as circular (Kirby and Miranda, 1996), or spherical

computational units (Hundley et al., 1995). Whitney’s theorem has

also been invoked to provide a basis to understand the power of

autoencoders from a geometric perspective (Broomhead and Kirby,

2000) and to provide insights into novel architectures (Broomhead

and Kirby, 2001) and dimension estimation (Anderle et al., 2002;

Kvinge et al., 2018a,b). These ideas are central to the computation of

homeomorphisms between data sets residing in spaces of differing

dimensions. Using these ideas as motivation we can envision

extending the concept of an abstract node more generally to

algebraic varieties related to Generalized Principal Component

Analysis (Vidal et al., 2005), Klein bottles, Grassmannians, and

Schubert Varieties (see Figure 1).

In this paper, we focus our attention on the mathematical

framework of the Schubert Variety described in what follows. We

are motivated by the idea that a Schubert variety is to a Flag or

Grassmann manifold what a subspace is to a vector space. Flag

manifolds, and their special case the Grassmann manifolds, are

examples of homogeneous manifolds particularly relevant to and

amenable to subspace methods in Data Science. They have been

observed to be particularly robust to data collected under variations

in pattern state (and indeed exploit structure in such data sets). For

example, digital images of an object, collected under variations in

illumination, are known to sweep out a convex cone. If the object

is Lambertian then this cone has been shown to lie close to a low

dimensional linear space which can in turn be represented by a

point on a Grassmannian (Beveridge et al., 2008). The flagmanifold

comes equipped with geometric features capable of representing

sets of data where the number of points is larger than the number of

dimensions in the ambient space (Ma et al., 2021). We note that the

flag mean proposed in Marrinan et al. (2014, 2015) and Mankovich

et al. (2022), and its various extensions, are a special case of the

work proposed here.

Briefly, in this paper we propose several optimization problems

which are used to produce a geometric object, e.g., a Schubert

variety of best fit (SVBF), that optimally represents a set of linear

subspaces of a fixed vector space R
n. In several applications, the

set of linear spaces are obtained from sets of sets of data. The

optimization problem is determined by a real valued objective

function on a manifold (typically a Grassmann or Flag manifold)

whose points parameterize a family of potential Schubert varieties

of best fit. Further, we show how this framework can be viewed as a

component of a machine learning architecture integrated, e.g., into

the broader framework of feed forward neural networks.

This paper is organized as follows: Section 2 presents a brief

overview of a class of manifolds built from matrix group actions.

In Section 3, we describe Schubert varieties and how to define a

Schubert variety of best fit to a collection of subspaces. Section 4

describes a specific implemented optimization problem for finding

a Schubert variety of best fit and applies it to an illustrative

example. Section 5 provides three algorithms and shows how to

implement the ideas as an abstract node. Lastly, in Section 6, we

provide concluding remarks summarizing the overall findings and

contributions of our research.

2 Background

Consider the set, S, of n × n invertible matrices whose inverse

is equal to its transpose, i.e., S = {A ∈ R
n×n | ATA = In}. S

contains the identity matrix, In, and is closed under the operations

of matrix inversion and matrix multiplication. In other words, if A

and B are in S then both A−1 and AB are in S. The set S together

with the binary operation of matrix multiplication is known as the

orthogonal group O(n). Alternatively,O(n) is the group of distance-

preserving transformations of an n-dimensional Euclidean space

that preserve a fixed point. A distinguished subgroup of O(n) is

Frontiers in Artificial Intelligence 02 frontiersin.org66

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 1

Various examples of abstract nodes. These computational units can be integrated into data fitting problems, e.g., multilayer neural networks, to extract

topological or geometric structure. This paper focuses on the particular case of the Schubert variety constraint (D). (A) This computational unit with

matrix values X is required to satisfy XTX = 1. (B) This unit requires the data to reside in a union of sub-spaces such as the xy, xz, and yz planes

shown. (C) The Klein bottle is an example of a unit manifold constraint. (D) A Schubert variety constraint.

the special orthogonal group SO(n) consisting of elements of Swith

determinant equal to one (orientation preserving transformations).

From a geometric perspective, the orthogonal group O(n) can

be considered as a manifold whose points parameterize ordered

orthonormal bases of R
n. As a manifold, it consists of two

connected components corresponding to the square orthogonal

matrices with determinant +1 and those with determinant −1. Its

dimension as a real manifold is
(n
2

)

. Several interesting manifolds

can be built, through a “quotient” operation, by considering the

action of subgroups of O(n) [resp. SO(n)] on O(n) [resp. SO(n)]

throughmultiplication. Some particularly relevant examples are the

following:

• Grassmann manifolds GR(l, n)

• Oriented Grassmann manifolds ˜GR(l, n)

• Flag manifolds FL(l1, l2, ..., lm; n)

• (Partially) oriented flag manifolds

• Steifel manifolds ST(l, n)

Grassmann manifold—The Grassmannian of l-dimensional

subspaces of Rn is denoted by GR(l, n). Points on GR(l, n)

correspond to l-dimensional subspaces of Rn. It can be built as a

coset space O(n)/O(l) × O(n − l) where O(l) × O(n − l) denotes

n × n matrices consist of an l × l orthogonal block and an n −

l × n − l orthogonal block. Through this identification, points on

GR(l, n) correspond to equivalences classes of n × n orthogonal

matrices where two such matrices are identified if the span of their

first l columns agree. We can also think of points on GR(l, n) as

corresponding to equivalences classes of n× l orthogonal matrices

where two suchmatrices are identified if they have the same column

space. GR(l, n) can be considered as a homogeneous space and

as a differentiable manifold. As a real manifold, the dimension of

GR(l, n) is l(n− l) = dim(O(n))− dim(O(l))− dim(O(n− l)).

Oriented Grassmann manifold—The oriented Grassmannian

of all oriented l-dimensional subspaces of Rn is denoted ˜GR(l, n).

It can be built as a coset space SO(n)/SO(l) × SO(n − l). There

is a natural 2:1 covering map from ˜GR(l, n) to GR(l, n). A special

case is ˜GR(1, n) whose cosets correspond to points on the n −

1 dimensional sphere Sn−1 in Rn. GR(1, n) corresponds to the

real projective space RPn−1. RPn−1 can also be built from Sn−1

by identifying antipodal points on the sphere. In the map from
˜GR(1, n) to GR(1, n), a pair of antipodal points on the sphere get

mapped to a single point in projective space. As a real manifold, the

dimension of ˜GR(l, n) is the same as the dimension of GR(l, n).

Flagmanifold—FL(l1, l2, ..., lm; n) = collection of all flags of the

form V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ R
n such that dimVi = li. The

flag manifolds can be built by considering quotients of O(n) by a

direct product of smaller orthogonal groups. More precisely by the

quotient ofO(n) byO(l1)×O(l2− l1)×O(lm− lm−1)×O(n− lm). As

a real manifold, the dimension of FL(l1, l2, ..., lm; n) is dim(O(n))−

dim(O(l1))− dim(O(l2− l1))− dim(O(l3− l2))−· · ·− dim(O(lm−

lm−1))− dim(O(n− lm)).

Frontiers in Artificial Intelligence 03 frontiersin.org67

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

Oriented flag manifold—FL◦(l1, l2, ..., lm; n) = collection of all

oriented flags of the form V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ R
n

such that dimVi = li. The oriented flag manifolds can be built

by considering quotients of SO(n) by a direct product of smaller

special orthogonal groups. There is a natural 2m : 1 covering map

from FL◦(l1, l2, ..., lm; n) to FL(l1, l2, ..., lm; n). As a real manifold,

the dimension of FL◦(l1, l2, ..., lm; n) is the same as the dimension

of FL(l1, l2, ..., lm; n).

Partially oriented flag manifold—The partially oriented flag

manifolds can be built by considering quotients of SO(n) by a direct

product of a mixture of smaller special orthogonal groups and

smaller orthogonal groups [with the additional constraint that the

direct product is a subgroup of SO(n)]. There are many different

types of partially oriented flag manifolds.

Steifel manifold—Points on the Steifel manifold ST(l, n)

correspond to ordered orthonormal sets of l vectors in R
n.

Alternatively, points on ST(l, n) correspond to elements in the set

{A ∈ Rn×l|ATA = Il}. The Steifel manifold ST(l, n) can also

be considered as the oriented flag manifold FL◦(1, 2, 3, . . . , l; n).

The dimension of ST(l, n) is (n − 1) + (n − 2) + · · · +

(n − l). There is a natural 2l : 1 covering map from ST(l, n)

to FL(1, 2, . . . , l; n).

The homogeneous spaces listed above are all compact

differentiable manifolds whose points parameterize flags of

(oriented) subspaces of Rn with a common signature l1, . . . , lm.

Many problems of interest can be formulated in terms of

optimizing some function on one or several of these or related

parameter spaces. The formulation and solution is often driven

by geometric considerations. Problems which have an efficient

numerical solution are particularly appealing. Some additional

parameter spaces of interest include Affine space, Euclidean

space, Hyperbolic space, Anti-di Sitter space, and product spaces

built out of any combination of these spaces, their oriented

versions, or any the previously described homogeneous spaces

from above.

3 Schubert varieties

A Schubert variety in a Grassmann or flag manifold is a certain

kind of subvariety (typically with singularities) that can be defined

by a collection of linear algebraic incidence constraints with respect

to a fixed flag, F, drawn from some flag variety FL(k1, k2, . . . , km; n).

If you vary the flag then you vary the Schubert variety. The Schubert

variety can be viewed as a kind of moduli space while points on

the flag variety can be seen as parameterizing a family of Schubert

varieties of a particular type.

3.1 Definition of Schubert variety

We first consider an example of a kind of Schubert variety

that will be referred to several times in this paper. If W ∈

GR(k, n) then W is a rank k subspace of R
n. Given a pair of

non-negative integers (c, l), we can define a collection of points

in GR(l, n) by

�c,k,l(W) = {V ∈ GR(l, n) | dim(V ∩W) ≥ c}

In order for this set of points to be nonempty we will need that c ≤ l

and that c ≤ k. For eachW ∈ GR(k, n), �c,k,l(W) is a subvariety of

GR(l, n). As a consequence, GR(k, n) can be seen as parameterizing

a family of such subvarieties of GR(l, n). The subvariety �c,k,l(W)

is an example of a particular kind of Schubert variety on GR(l, n).

As mentioned in the previous paragraph, Schubert varieties are

typically singular.

The example in the previous paragraph can be extended in

several directions. The following is an example where W is drawn

from a more general Flag manifold. Recall that FL(k1, k2, ..., km; n)

is the collection of all flags of the form W1 ⊂ W2 ⊂ · · · ⊂

Wm ⊂ R
n such that dimWi = ki. To emphasize that W is a flag

of vector spaces, we will writeW asW. We call FL(k1, k2, ..., km; n)

an m step flag manifold. Points on this manifold are m step flags

of signature (k1, k2, . . . , km). A Grassmann manifold is a one step

flag manifold. For instance, GR(k, n) = FL(k; n). A large collection

of Schubert subvarieties of GR(l, n) can be built as follows: Pick

a point W on a flag manifold FL(k1, k2, ..., km; n) and an m-tuple

Ec = (c1, . . . , cm) (thus W corresponds to a specific flag W1 ⊂

W2 ⊂ · · · ⊂ Wm where dimWi = ki). Let Ek = (k1, k2, ..., km).

An associated subvariety of GR(l, n) is given by

�
Ec,Ek,l

(W) = {V ∈ GR(l, n) | dim(V ∩Wi) ≥ ci for 1 ≤ i ≤ m}

Points on FL(k1, k2, ..., km; n) parameterize a family of such

subvarieties.

In a similar manner, one can build subvarieties of a more

general flag manifold FL(l1, . . . , ls; n). The subvarieties will be

written �
C,Ek,El

(W). The data that is determining the subvariety,

�
C,Ek,El

(W), is the space from which we draw our fixed flags [e.g.,

W ∈ FL(k1, . . . , km; n)], a space on which the subvariety lives [e.g.,

FL(l1, . . . , ls; n)], and incidence constraints, ci,j, stored in an m × s

array C. We have

�
C,Ek,El

(W) =

{V ∈ FL(El; n) | dim(Vj ∩Wi) ≥ Ci,j for 1 ≤ i ≤ m, 1 ≤ j ≤ s}.

3.2 Schubert varieties of best fit

Suppose we are given a collection of l-dimensional subspaces

D = {V1, . . . ,Vr} of Rn. Each element in D can be thought of

as a point in the Grassmannian GR(l, n) thus we have r points on

GR(l, n). We seek to determine a Schubert variety of best fit to the r

points. In order for this problem to make sense, we need to answer

two questions: the first is “What class of Schubert varieties are you

going to use to best fit the data?” and the second question is “What

is the objective function you are trying to optimize when searching

for a Schubert variety of best fit?.” Intuitively, we are searching for a

Schubert variety that comes as “close as possible” to the set of points

determined byD. This should remind you of finding a “linear space

of best fit” to a set of points in R
n. For our purposes, given a point

Frontiers in Artificial Intelligence 04 frontiersin.org68

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

or collection of points on Gr(l, n) and a Schubert variety S, we

further seek to have ameasurement of closeness that is orthogonally

invariant, i.e., is invariant to the action of the orthogonal group

O(n). Points on a Grassmannian correspond to subspaces and

Schubert varieties are defined in terms of incidence conditions with

respect to a fixed flag of subspaces. With this in mind, in order to

achieve measurements that are orthogonally invariant, it is natural

to write the measurement of closeness in terms of principle angles

between the subspaces involved. There are many different ways

in which this can be carried out and this leads to many different

answers to the problem.

In what follows, let D = {V1,V2, . . . ,Vr} be a collection of

l dimensional subspaces considered as points on GR(l, n). Given

positive integers k and c, our goal is to find a point W ∈ GR(k, n)

such that the Schubert variety

�c,k,l(W) = {V ∈ GR(l, n) | dim(V ∩W) ≥ c}

comes as close as possible to the points in D. We will break this

up into three parts. The first part will be to define a measurement

of closeness, d[Vi,�c,k,l(W)], between a single point Vi ∈ GR(l, n)

and the Schubert variety �c,k,l(W) [with W ∈ GR(k, n)]. The

second part will be to combine these single point measurements

into a measurement of closeness between a set of points D =

{V1,V2, . . . ,Vr} ⊂ GR(l, n) and the Schubert variety �c,k,l(W).

The third part will be to find a W∗ ∈ GR(k, n) that optimizes this

measure of closeness.

With respect to the third part, suppose we have fixed a real

valued measurement of closeness between a set of points, D ⊂

GR(l, n) and a Schubert variety �c,k,l(W). For each point W ∈

GR(k, n) we have effectively assigned a real number (the closeness

measure) thus we have a function F :GR(k, n) → R. Since GR(k, n)

is a compact manifold, this real valued function will attain both

its maximum and minimum values. Our goal is to describe an

algorithm, implemented in a neural network, to find a point in

GR(k, n) that achieves either a maximum or a minimum of this

function.

3.3 Examples of distance/closeness
measures

Let V1,V2 be subspaces of Rn of dimension l. Recall that the

principal angles between V1 and V2 satisfy 0 ≤ θ1 ≤ θ2 ≤

· · · ≤ θl ≤ π/2. If 2(V1,V2) = [θ1, θ2, . . . , θl] then dg(V1,V2) =

‖2(V1,V2)‖2 is known as the geodesic norm between V1 and V2.

If sin2(V1,V2) = [sin θ1, sin θ2, . . . , sin θl] then dc(V1,V2) =

‖ sin2(V1,V2)‖2 is known as the chordal norm between V1 and

V2.

We can generalize to the setting where V1 and V2 have

potentially differing dimensions and we can modify the measure

of the length of the principal angle vector between these subspaces.

We will rename V1 as V and V2 as W to emphasize this flexibility

in dimensional differences. Let V ,W be subspaces of R
n of

dimensions l and k and letm = min(l, k). Let c be a positive integer

less than or equal to m and define 2c(V ,W) = [θ1, θ2, . . . , θc]

and sin2c(V ,W) = [sin θ1, sin θ2, . . . , sin θc]. Given a vector

norm, ‖ · ‖α on R
c, we can measure the “size” of the vector

2c(V ,W) or of sin2c(V ,W). We claim that in either case, this

norm gives a measure of closeness between a point V ∈ GR(l, n)

and the Schubert variety �c,k,l(W) by defining d(V ,�c,k,l(W)) =

‖2c(V ,W)‖α or by defining d(V ,�c,k,l(W)) = ‖ sin2c(V ,W)‖α .

To see that this is a measure of closeness, note that θ1, . . . , θc are the

c smallest principal angles between the subspaces. They correspond

to the c smallest possible principal angles between c-dimensional

subspaces of V and c-dimensional subspaces ofW.

If we now pick a norm ‖ · ‖β on R
r , once we have chosen a

norm for measuring the size of 2c(V ,W) or of sin2c(V ,W), we

can measure a Schubert variety’s fit to a collection of l-dimensional

subspaces D = {V1, . . . ,Vr} of R
n by

FIT(D,�c,k,l(W)) =

‖d(V1,�c,k,l(W)), d(V2,�c,k,l(W)), . . . , d(Vr ,�c,k,l(W))‖β

and we can define the Schubert variety of best fit toD as

BEST(D,�c,k,l) = �c,k,l(W
∗) where

W∗ = arg minW∈GR(k,n)FIT(D,�c,k,l(W))

For programming advantages, in the next section an optimization

problem is described in terms of maximizing the norm of

cos2c(V ,W) = [cos θ1, cos θ2, . . . , cos θc] instead of minimizing

the norm of sin2c(V ,W). The goal of the optimization problem is

to find BEST(D,�c,k,l).

4 Optimization problem for SVBF

Consider a set of matrices {Xi}
r
i=1 with each Xi ∈ R

n×l having

orthonormal columns. Let K ∈ R
n×k be an unknown matrix with

orthonormal columns. Let R(Xi) denote the column space of Xi.

Define θij to be the jth smallest principal angle between R(Xi) and

R(K).

Problem Statement: Given the set {Xi}
r
i=1 and an integer c with

1 ≤ c ≤ min(l, k), find K that comes as close as possible to satisfying

dim(R(Xi) ∩R(K)) ≥ c for each of the subspacesR(Xi).

One approach is to find a matrix K∗ ∈ R
n×k such that

K∗ = arg max
K∈Rn×l

1

rc

r
∑

i=1

c
∑

j=1

cos2(θij) (1)

subject to KTK = I and 1 ≤ c ≤ min{l, k}. We have normalized by

the factor 1/rc so that the optimal value of the solution will be one.

Note that for c = min{l, k} this is the flag mean (Marrinan et al.,

2015).

Alternatively, we can solve

K∗ = arg max
K∈Rn×k

1

rc

r
∑

i=1

c
∑

j=1

cos(θij) (2)

subject to KTK = I and 1 ≤ c ≤ min{l, k}. Note that for

c = min{l, k} this is the flag median (Mankovich et al., 2022).

Frontiers in Artificial Intelligence 05 frontiersin.org69

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 2

Images from the Cat and Dog dataset. The (top) row corresponds to the data in a single cat sample with three elements. Similarly, the (bottom) row

corresponds to a dog sample consisting of three elements.

4.1 SVBF optimization problem
formulation

For simplicity, in this paper we will focus on the case c = 1,

i.e., we are looking for the column space of each Xi to be close to

intersecting the column space of K in at least one dimension.

Suppose we are given a set of matrices {Xi}
r
i=1, each Xi ∈ R

n×l

satisfying XT
i Xi = Il. We would like to find a matrix K whose

column space intersects the column space of eachXi in at least a one

dimensional space. This is achieved if and only if the first principle

angle between the column space of K and the column space of Xi is

equal to zero for each i. Let θ1(K,Xi) denote the first principle angle

between the column space of K and the column space of Xi. In the

optimization below we seek to find a matrix K that maximizes the

function
∑r

i=1 cos
2(θ1(K,Xi)). This amounts to finding a a matrix

K∗ ∈ R
n×k such that

K∗ = argmax
bi ,K

r
∑

i=1

bTi K
TXiX

T
i Kbi (3)

subject to bi ∈ R
k×1, ‖bi‖ = 1, K ∈ R

n×k, and KTK = Ik.

In the second optimization problem, given below, we seek to

find a matrix K that maximizes the function
∑r

i=1 cos(θ1(K,Xi)).

This amounts to finding a matrix K∗ ∈ R
n×k such that

K∗ = arg max
ai ,bi ,K

r
∑

i=1

aTi X
T
i Kbi (4)

subject to ai ∈ R
l×1, ‖a‖ = 1, bi ∈ R

k×1, ‖bi‖ = 1, K ∈ R
n×k, and

KTK = Ik.

4.2 SVBF optimization problem
implementation with PyTorch

All of the experiments in this paper are conducted for the

special case where c = 1. This case, along with the relative

simplicity of the dataset that we used, allows us to directly initialize

the problem with the PyTorch class. The unknown matrix K and

vectors {bi} in this case are initialized in the PyTorch class as two

sets of parameters: {Kij}, 1 ≤ i ≤ n, 1 ≤ j ≤ k, and {bij}, 1 ≤ i ≤

r, 1 ≤ j ≤ k. The Lagrangian, associated with the problem given by

Equation (3), is considered via the Adam optimizer and provides a

path to the approximate solution:

LossK
(

K, b
)

= (5)

−

r
∑

i=1

bTi K
TXiX

T
i Kbi + λ0

(

KTK − Ik

)

+

r
∑

i=1

λi

(

‖bi‖ − 1
)

Let’s focus on the first part of this expression as the part

containing a majority of the complexity. In our design, for each

sample it is calculated in three steps:

1. L1i = KTXi

2. L2i = L1i L
1T
i

3. L3i = bTi L
2
i bi

Based on this chain of matrix multiplications and assuming that

n ≫ k we can calculate the time complexity of the forward pass as

O
(

2k(nl+ kl+ 2k)
)

= O
(

nkl
)

. The backward pass complexity,

calculated based on the chain of multiplications of respective

Jacobian matrices, is also equal to O
(

nkl
)

. Hence, along with

complexity of the Adam optimizer, equal to O
(

nk
)

, the overall

complexity of one iteration is equal to O
(

nkl
)

and the complexity

of the entire optimization process is equal to O
(

tnklr
)

, where t is

Frontiers in Artificial Intelligence 06 frontiersin.org70

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

the number of iterations and r is a number of l-dimensional inputs.

Note that it is effectively equal to the complexity of the training of

one fully connected layer with k nodes at the output given that it

is trained on l × r n-dimensional vectors with the same number of

iterations t.

The given approximations of the complexity are derived

following the traditional approach that was common before the

era of GPU’s. The GPU’s benefit from parallelizing an immense

number of simple operations and are capable of accelerating

matrix multiplications by orders of magnitude. We run all of

our experiment on V-100 Tesla GPU’s, hence to provide a better

understanding of performance in actual experiments we present a

computational profiling in Table 1. The profiling was conducted for

100 randomly generated inputs. The dimensionalities of inputs vary

as n ∈ {82, 83, 84, 85}, l ∈ {1, 41, 42, 43}, while the dimensionality

of K varies as k ∈ {8 × 1, 8 × 41, 8 × 42, 8 × 43}. Given that

SVBF optimization can also be run as a training with batches for

larger number of samples, this range of parameters supposedly

covers several of the possible cases that one may encounter in real

experiments.

In fact, instead of including the unit length condition for each of

the bi’s in the cost function, we use the normalizing transformations

of bi’s suggested in Kirby and Miranda (1996), which doesn’t

introduce much complexity and, at this point, has already been

implemented in PyTorch as a built-in routine. The resulting loss

function is as follows:

LossK
(

K, b
)

= −

r
∑

i=1

bTi K
TXiX

T
i Kbi + λ0

(

KTK − Ik

)

(6)

where ‖bi‖ = 1 ∀i ∈ {1, r} by construction of the PyTorch class.

As it was mentioned before this function is minimized with Adam

optimizer and the number of iterations is equal to 40,000. The

following is a list of some other details important for reproduction

of results:

• λ0 = 10,000

• Initialization of parameters K and {bi}:

element-wise random numbers from a uniform

distribution on the interval [0,1]

• Adam optimizer settings:

lr = 0.001, betas = (0.9,0.999), eps = 1e−08, weight_decay

= 0, amsgrad = False

• Python version: 3.6.8

• torch version: 1.10.1

• cuda version: 11.0

All these settings are preserved exactly the same across all

experiments including SVBF problem solving. For the faster

processing in benchmarking experiments we also leverage Ray 2.0.0

python package to run several experiments in parallel.

4.3 Illustrative example

In this paper we now present results from the given

implementations of the SVBF algorithm. Given that our objective is

a comparative analysis of these algorithms, we focus on a modestly

TABLE 1 Tables of processing times for one iteration of optimization loop

in milliseconds. The number of samples is fixed to 100, while the

dimensionatity of inputs l, dimensionalilty k of K, and dimensionality n of

ambient space vary.

l \ n 82 83 84 85

1 1.18 1.23 1.58 2.77

41 1.27 1.70 5.00 49.31

42 1.26 1.69 5.00 45.27

43 1.30 1.82 5.20 48.80

l \ n 82 83 84 85

1 1.30 1.49 2.45 1

41 1.47 1.97 5.09 28.18

42 1.47 1.98 5.18 30.53

43 1.54 2.13 5.87 52.20

l \ n 82 83 84 85

1 1.54 2.13 8.62 160.36

41 1.86 2.72 10.43 191.06

42 1.87 2.76 10.91 192.08

43 2.01 3.01 11.99 204.16

l \ n 82 83 84 85

1 4.09 6.76 73.90 491.70

41 5.17 7.72 77.40 506.52

42 5.49 7.97 80.87 518.80

43 6.58 9.96 89.52 616.49

k = 8× 1. k = 8× 41 . k = 8× 42 . k = 8× 43 .

sized Cat and Dog dataset consisting of 99 images of cats and 99

images of dogs. All the images are 64 × 64 greyscale images; you

can see some of the representatives of each class in Figure 2. We

preprocess the data by flattening each image into a vector of length

n = 4, 096 and scaling the entries into the range from−1 to 1. The

SVBF algorithm operates over sets of subspaces, therefore we split

the data into equally sized collections of l vectors and extract an

orthonormal basis for each set. The resulting orthonormal bases are

used as the inputs. In other words, the inputs, or samples, consist

of tall orthonormal matrices of dimension R
n×q where q = l for

training data and q = m for test data. We chose to allow for

l and m to be distinct so that we may consider the cases when

dimensionality of samples in training and test data might differ.

Importantly, no cat or dog vector is used in more than one sample.

Further, we never mix classes within one sample, samples consist

of sets of only dog vectors or only cat vectors. For example, the

notations {Xtrain
i }, l = 3 describes the set of three-dimensional

bases of mono-class sets of scaled image-vectors sampled from the

training data.

In Figure 3, we show sample solutions of Schubert Varieties

of Best fit. In each case the matrix K to be determined is chosen

to have one column and these solutions are displayed for cats

and dogs individually. It is interesting to compare the solutions

to Equation (3) and Equation (4). We see that for cos(θ) the

Schubert variety matrices K show higher resolution detail while

Frontiers in Artificial Intelligence 07 frontiersin.org71

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 3

Solutions to the Schubert Variety of best fit problem for a = 1. The (left) column consists of solutions to Equation (3) while the (right) column consists

of solutions to Equation (4). In each case there are three images in each sample. The top and bottom rows use cat and dog samples, respectively.

for cos2(θ) the features are larger scale. This example underscores

the potential significance in the selection of distance measure in

computing SVBFs. For all these examples we select three images

in each sample.

4.4 Optimal dimension of K

We illustrate the relative rates of conve rgence of the SVBF

optimization problems in Figure 4. Figure 4A shows the value

of the objective function for the optimization problem given by

Equation (3), i.e., the average sum of the squared cosines of the

1st principal angles for 10 two-dimensional subsets of cats sampled

from both training and test datasets versus the dimension k of

the solution subspace K. We can see that the objective function

for test samples effectively flattens out after k=2. Similar behavior

can be observed for the dog dataset, presented in Figure 4B, except

the flattening is smoother and starts approximately at k =4. The

results for the combined datasets, presented in Figure 4C, show

that the flattening also starts at around k = 4. These plots lead us

to several observations. Firstly, the flattening of the curves itself

suggests that more columns in K do not lead to improvements in

the solution. Thus, the set of points {Xi} has an intrinsic subspace

dimension as captured by K. We see that the dimension of this

Frontiers in Artificial Intelligence 08 frontiersin.org72

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 4

Average squared-cosines of the 1st principle angle for training and test data sampled from di�erent classes, from both classes and sampled from the

uniform distribution on the Grassmann manifold: (A) cat class, (B) dog class, (C) cats and dogs classes combined, (D) random samples.

FIGURE 5

Workflow of Cat and Dog classification experiment using Algorithm I.

subspace is smaller than the direct sum of the dimensions of the

class-specific subspaces. This does not come as too big a surprise

when one considers the correlation between the images. Finally,

the Figure 4D illustrates how samples, randomly selected from

the uniform distribution (with respect to Haar measure) on a

Grassmann manifold, do not possess the same structure and the

number of columns required in K does not converge. Experiments

with other dimensions of samples have also been conducted,

and they align with the results reported here. Other approaches

to dimension optimization are also possible with the SVBF

method, e.g., task-specific optimizations that will be considered in

Section 5.

5 SVBF as an abstract node

Here, we explore the application of the SVBF

as a computational unit in a feed-forward neural

Frontiers in Artificial Intelligence 09 frontiersin.org73

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 6

Average accuracies with error bars for 1NN-classification of test data for Y embeddings from Algorithm I and for PCA embeddings. (A) Y embeddings,

plots are labeled as l_m depending on the dimensions of training samples l and dimensions of test samples m. (B) PCA embeddings, plots are labeled

as m_m depending on dimensions of test samples m.

Frontiers in Artificial Intelligence 10 frontiersin.org74

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 7

Workflow of Cat and Dog classification experiment using Algorithm II.

network. We shall see that Schubert varieties of best

fit provide a natural transformation of the data into

the coordinates of the learned Schubert variety of

best fit K.

5.1 Algorithm I

Given a solution K and a data sample Xi it is natural to consider

the change of coordinates of the sample that can be implemented in

the neural network, i.e.,

Yi = KTXi

The design of the classification experiment for this case is

presented in Figure 5.

Step 1 involves training the SVBF Node, the outcome of which

is the representative K of the SVBF. This K is then used in Step

2 to compute the change of coordinates to produce Y. This is

done using training data. Further, in Step 2 the 1-nearest neighbor

(1NN) classification is implemented using the scikit-learn Python

package. Step 3 involves the application of 1NN to the test data and

the results are shown in Figure 6. Figure 6A illustrates the average

for 10 different samplings of a 1NN-classifier applied to the {Yi}

embeddings of Cat and Dog data. In each sampling, the data is

split randomly into train and test datasets with proportions 0.78

and 0.22, respectively. Benchmarking is performed for different

dimensions l = m = 1, . . . , 5 of samples in training and tests

subsets, and different dimensions k = 1, . . . , 10 forK. The accuracy

grows with the dimension of the samples, but interestingly starts

decreasing for l ≥ 3. At the same time, increasing the dimension of

K also significantly increases the accuracy up to dimension 3 and

only slightly effects the accuracy above that level. This low accuracy

is a result of using the Frobenius norm to compute distances

between matrices. Later we will see that using subspace distances

in general produces superior results. For a better understanding of

the benefits of the SVBFmethod, we provide side by side the results

for classification based on PCA-embeddings as well (Figure 6B). In

this first experiment, the performance of the classification method

based on learningK is slightly better than the one based on learning

a representative subspace based on PCA-analysis.

5.2 Algorithm II

Another possible approach is to learn a representative K for

each class of data. In our example, in Step 1, we propose to

learn K1 as a solution to Equation (3) for the cat class, and

K2 as a solution to Equation (3) for the dog class. Now these

matrices K1,K2 can be used to classify the data. To assign a class

to an unknown sample Xi in Step 2, we compute the smallest

principle angle between Xi and each of K1 and K2. The smallest

of these two angles provides the classification. The diagram for

such an experiment with the Cat and Dog dataset is presented

in Figure 7. Labeling of the test data is performed by finding

the nearest, in terms of smallest principle angle to K, for each

sample.

Figure 8A shows the average classification accuracy

across 10 different samplings of the test data. Again,

this procedure is implemented for a range of l,m,

and k. The data was split into training and test

sets with the same ratio as in the Algorithm I

experiments.

The benchmarking plots indicate a significantly more accurate

classification versus Algorithm I for the comparable cases.

Due to the higher overall accuracy of this design, we also

investigated it for different dimensions of training and test

samples, which can be useful for a wide variety of datasets,

specifically when test samples cannot be grouped by labels.

As before, increasing the dimension k of K leads to higher

accuracies for all cases. However, in contrast to Algorithm I,

now the accuracy increases monotonically with the dimensions

l,m.

For further comparative analysis, we also calculate PCA

embeddings for each class and label test samples, based on

the nearest, in terms of the smallest principle angle subspace

captured by PCA-analysis. We repeat this experiment 10

times for different samplings similar to the Algorithm I

experiment. The results of this experiment are shown in

Figure 8B. The lower accuracies for the class-specific PCA

experiment indicate the SVBF optimization problem is

capturing additional useful information that is helpful for

classification.

Frontiers in Artificial Intelligence 11 frontiersin.org75

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 8

Average accuracies of classification of test set by Algorithm II design and design based on the closest class-specific PCA subspaces: (A) Algorithm II

design, plots are labeled as l_m depending on the dimensions of training samples l and dimensions of test samples m. (B) Closest PCA design, plots

are labeled as m depending on dimensions of test samples m.

Frontiers in Artificial Intelligence 12 frontiersin.org76

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 9

Workflow of Cat and Dog classification experiment using Algorithm III.

FIGURE 10

Visualization of the outputs of the trained SVBF node and generated embeddings for the entire Cat and Dog dataset, k=3, and l=2. (A) Learned basis

K, (B) some samples reconstructed in ambient space from embeddings, (C) learned embeddings.

Frontiers in Artificial Intelligence 13 frontiersin.org77

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 11

Average accuracies of classification of test data by Algorithm III design. Accuracies for one-layer NN design are labeled as “NN,” and accuracies for

SVBF-Node design as “l_m,” where l is dimensionality of train samples and m is dimensionality of test samples.

5.3 Algorithm III

Note that the element k̂ ∈ R(K) given by

k̂i = Kbi

is the vector in R(K) that is closest to the span of Xi.

There is a natural association between Xi and bi and this

can be exploited for classification. Hence, a consequence of

Equation (3) is that once we approximate K we can use bi, the

coordinates of the closest to Xi vector in K, as a proxy for Xi

in the classification. One of the possible experiments exploiting

this option is classification with neural networks outlined

in Figure 9.

This experiment also illustrates how SVBF nodes can be

stacked into a larger network and trained simultaneously with

other parts of the network. In this case, we attach a classifier that

takes outputs bi of SVBF nodes as inputs, learns centroids in a

training process and generates soft labels at the inference step.

In Step 1, we optimize K and bi independently at each iteration.

In other words, K is not adjusted by any contribution to the

gradient from the classification error. Generally, the outline given

in Figure 9 does not require detaching the classifier’s error back-

propagation from that of an SVBF node. However, detaching the

training of K and bi, as we have done here, seems to improve

performance without loss of the benefits of parallelization. The

loss function for Step 1 is defined as a weighted sum of three loss

functions:

Lossθ = −

M
∑

i=1

bTi K
TXiX

T
i Kbi

Lossorth = KTK − Ik×k

LossClass = −

k
∑

j=1

yij log
(

logitij

)

Loss = αLossθ + βLossorth + γ LossClass

(7)

where logiti = Softmax((bTi W)2,T) with W learnable centroids,

and the hyperparameter T. The output of Step 1 is the matrix K, set

{btraini } and the classifierW. Now, given K,W, the prediction of the

labels is accomplished in Steps 2 and 3.

In Step 2, we initialize the SVBF node with the K computed in

Step 1 to determine the coordinates btesti , associated with the test

samples Xtest
i , using the loss function LossK similar to Step 1, but

without the classification component and with K fixed. In Step 3,

we use the classifier W trained in Step 1 to map the btesti to their

class label.

This hybrid network was also tested with the Cat and Dog

dataset following exactly the same preprocessing pipeline as in the

Algorithm I and Algorithm II experiments. Figure 10 illustrates

trained parameters for such a network for the entire Cat and Dog

dataset with l = 2 and k=3. As we now describe, this picture captures

many interesting features of the method. Figure 10A depicts the

three columns of K. Interestingly one column is a dog, and one is

Frontiers in Artificial Intelligence 14 frontiersin.org78

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

clearly a cat! But all columns seem to capture salient features in

the data. In Figure 10B, we show the directions Kbi for three cat

samples and three dog samples, where we recall that each sample is

a 4, 096× 2 matrix. So each of these six figures is a direction in the

span of K that is closest to the data training sample. In Figure 10C,

we show the set of all features in terms of bi for cats (blue) and dogs

(red). We note that their clear separation is a reflection of the fact

that this method captures information capable of discriminating

between cats and dogs.

In Figure 11, you can find the classification accuracy for test

data for different dimensions of training and tests samples as well

as different dimensions forK. It is very interesting that the accuracy

of the classification problem levels off at 4 dimensions, which is

consistent with the optimal size k = 4 of K as suggested in Figure 4.

Hence we view k = 4 as the apparent working dimension for K.

We see the accuracy increases monotonically with the dimension

of the samples. Importantly, the results in which the samples have

dimensions >5, which we are not reporting here, support this

observation. However, given our limited data we were not able to

pursue this behavior further.

In the same Figure 11, we also report the average accuracies

for the classification of l2-normalized vectors used as inputs. In

this design, instead of an SVBF-Node, we use one fully connected

layer with k nodes at the output and with the hyperbolic tangent

as the activation function (all other settings are kept the same).

In Section 4.2, it was shown that this network has the same

computational complexity as the SVFB-Node. Along with the

higher resulting average accuracies for some cases this method also

has an advantage of ∼10 times faster convergence (in terms of the

required number of iterations). On the other hand, we can see that

for dimensionalities of test samples ≥ 3 the SVBF method is more

accurate. It’s important to note here that benchmarking against the

regular networks processing vector inputs wasn’t within the focus

of this paper. Our prime goal was to show that in the suggested

framework a big part of the progress made with the regular neural

networks during the last decades can be directly leveraged in the

case of sets of datasets.

6 Conclusions and future work

In this paper we proposed a geometric approach for the analysis

of sets of datasets using the idea of a Schubert Variety of Best Fit.We

formulated two optimization problems and compared them on a

two class data set comprised of sets of cats and dogs. We proposed

three distinct algorithms for data classification and explored and

benchmarked these using the same dataset and preprocessing

pipeline. Algorithm I uses a single solution K to characterize the

data and a Frobenius norm to measure distances. Overall, this

algorithm performed poorly when compare to Algorithms II and

III which generated promising results. Algorithm II, based on

learning two SVBFs, provides the most accurate classifications.

This algorithm explicitly builds a model for the cats and dogs

through their respective SVBFs and appears to be more capable of

addressing complex structures of data, including classes with higher

within-class variance. Algorithm III introduces the idea of using

auxiliary features to perform data classification, and is based on a

single model K.

All three algorithms suggest that there is a best dimension for

the representative subspace and that exceeding this leads to no

improvement in classification accuracy. Hence the SVBF approach

appears to provide a measure of complexity of a set of data

sets through this working dimension. Interestingly, Algorithm III

provides a very clear signal for this optimal dimension through a

classification criterion. Algorithm III illustrates how the SVBF node

can be used as an abstract unit of computation in a neural network.

This enables researchers to process sets of datasets in the same spirit

as sets of vectors are processed in a variety of ML libraries based on

neural networks.

It is worth noting that all the experimental results provided

in this paper are based on approximations of one or multiple K’s

intersecting all training samples or special label groups only in

one direction. The preliminary results indicate the promise of the

SVBF approach for finding a representative subspace for the set

of datasets in classification tasks. The natural path forward is to

increase the number of intersections in the SVBF optimization

problem, i.e., increase the number of angles being used in the

optimization problem. We also plan to explore this approach on

more realistic data sets and explore how this impacts our ability

to determine optimal K. We anticipate the main challenges will

be in parallelizing the code efficiently to make larger problems

computationally feasible.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

KK: Writing—original draft, Writing—review & editing. MK:

Writing—original draft, Writing—review & editing. CP: Writing—

original draft, Writing—review & editing.

Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work

was partially supported by the DARPA Geometries of Learning

Program under Award No. HR00112290074.

Acknowledgments

We would like to thank DARPA for support under the

Geometries of Learning program grant number HR00112290074.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Frontiers in Artificial Intelligence 15 frontiersin.org79

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Anderle, M., Hundley, D., and Kirby, M. (2002). The bilipschitz
criterion for mapping design in data analysis. Intell. Data Anal. 6, 85–104.
doi: 10.3233/IDA-2002-6106

Beveridge, J. R., Draper, B. A., Chang, J.-M., Kirby, M., Kley, H., and Peterson,
C. (2008). Principal angles separate subject illumination spaces in YDB and CMU-
pie. IEEE Trans. Pattern Anal. Mach. Intell. 31, 351–363. doi: 10.1109/TPAMI.
2008.200

Broomhead, D., and Kirby, M. (2000). A new approach for dimensionality
reduction: theory and algorithms. SIAM J. Appl. Math. 60, 2114–2142.
doi: 10.1137/S0036139998338583

Broomhead, D., and Kirby, M. (2001). The Whitney reduction network: a
method for computing autoassociative graphs. Neural Comput. 13, 2595–2616.
doi: 10.1162/089976601753196049

Ghosh, T., and Kirby, M. (2022). Supervised dimensionality reduction and
visualization using centroid-encoder. J. Mach. Learn. Res. 23, 20–21.

Hebb, D. O. (1949). The first stage of perception: growth of the assembly. Organ.
Behav. 4, 78–60.

Hertz, J., Krogh, A., Palmer, R. G., andHorner, H. (1991). Introduction to the theory
of neural computation. Am. Instit. Phys. 44:70. doi: 10.1063/1.2810360

Hundley, D., Kirby, M., and Miranda, R. (1995). “Spherical nodes in neural
networks with applications,” in Intelligent Engineering Through Artificial Neural
Networks, Vol. 5, eds S. Dagli, B. Fernandez, J. Ghosh, and R. S. Kumara (New York,
NY: The American Society of Mechanical Engineers), 27–32.

Kingma, D. P., and Welling, M. (2019). An introduction to variational
autoencoders. Found. Trends Mach. Learn. 12, 307–392. doi: 10.1561/2200000056

Kirby, M., and Miranda, R. (1996). Circular nodes in neural networks. Neural
Comput. 8, 390–402. doi: 10.1162/neco.1996.8.2.390

Kramer, M. A. (1991). Nonlinear principal component analysis using
autoassociative neural networks. AIChE J. 37, 233–243. doi: 10.1002/aic.690370209

Kvinge, H., Farnell, E., Kirby, M., and Peterson, C. (2018a). “A GPU-
oriented algorithm design for secant-based dimensionality reduction,” in 2018 17th
International Symposium on Parallel and Distributed Computing (ISPDC) (Geneva),
69–76. doi: 10.1109/ISPDC2018.2018.00019

Kvinge, H., Farnell, E., Kirby, M., and Peterson, C. (2018b). “Too many secants: a
hierarchical approach to secant-based dimensionality reduction on large data sets,” in
2018 IEEE High Performance Extreme Computing Conference (HPEC) (Waltham, MA),
1–7. doi: 10.1109/HPEC.2018.8547515

Ma, X., Kirby, M., and Peterson, C. (2021). “The flagmanifold as a tool for analyzing
and comparing sets of data sets,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) Workshops (Montreal, BC), 4185–4194.
doi: 10.1109/ICCVW54120.2021.00465

Mankovich, N., King, E. J., Peterson, C., and Kirby, M. (2022). “The flag median and
flagirls,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (New Orleans, LA), 10339–10347. doi: 10.1109/CVPR52688.2022.01009

Marrinan, T., Beveridge, J. R., Draper, B., Kirby, M., and Peterson, C. (2015).
“Flag manifolds for the characterization of geometric structure in large data sets,” in
Numerical Mathematics and Advanced Applications-ENUMATH 2013, eds T. J. Barth,
Mi. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, and T. Schlick (Berlin; Heidelberg:
Springer), 457–465. doi: 10.1007/978-3-319-10705-9_45

Marrinan, T., Draper, B., Beveridge, J. R., Kirby, M., and Peterson, C. (2014).
“Finding the subspace mean or median to fit your need,” in 2014 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (Columbus, OH), 1082–1089.
doi: 10.1109/CVPR.2014.142

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bull. Math. Biophys. 5, 115–133. doi: 10.1007/BF02478259

Oja, E. (1992). Principal components, minor components and linear neural
networks. Neural Netw. 5, 927–935. doi: 10.1016/S0893-6080(05)80089-9

Rosenblatt, D., Lelu, A., and Georgel, A. (2002). “Learning in a single pass: a
neural model for principal component analysis and linear regression,” in Proceedings
of the IEE International Conference on Artificial Neural Networks (London),
252–256.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et
al. (2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems, Vol. 30 (Long Beach, CA).

Vidal, R., Ma, Y., and Sastry, S. (2005). Generalized principal component
analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27, 1945–1959.
doi: 10.1109/TPAMI.2005.244

Frontiers in Artificial Intelligence 16 frontiersin.org80

https://doi.org/10.3389/frai.2023.1274830
https://doi.org/10.3233/IDA-2002-6106
https://doi.org/10.1109/TPAMI.2008.200
https://doi.org/10.1137/S0036139998338583
https://doi.org/10.1162/089976601753196049
https://doi.org/10.1063/1.2810360
https://doi.org/10.1561/2200000056
https://doi.org/10.1162/neco.1996.8.2.390
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1109/ISPDC2018.2018.00019
https://doi.org/10.1109/HPEC.2018.8547515
https://doi.org/10.1109/ICCVW54120.2021.00465
https://doi.org/10.1109/CVPR52688.2022.01009
https://doi.org/10.1007/978-3-319-10705-9_45
https://doi.org/10.1109/CVPR.2014.142
https://doi.org/10.1007/BF02478259
https://doi.org/10.1016/S0893-6080(05)80089-9
https://doi.org/10.1109/TPAMI.2005.244
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 19 December 2023

DOI 10.3389/fcomp.2023.1275026

OPEN ACCESS

EDITED BY

Yunye Gong,

SRI International, United States

REVIEWED BY

Jesús Malo,

University of Valencia, Spain

Peter C. Doerschuk,

Cornell University, United States

*CORRESPONDENCE

Nathaniel Blanchard

nathaniel.blanchard@colostate.edu

RECEIVED 09 August 2023

ACCEPTED 20 November 2023

PUBLISHED 19 December 2023

CITATION

Pickard W, Sikes K, Jamil H, Cha�ee N,

Blanchard N, Kirby M and Peterson C (2023)

Exploring fMRI RDMs: enhancing model

robustness through neurobiological data.

Front. Comput. Sci. 5:1275026.

doi: 10.3389/fcomp.2023.1275026

COPYRIGHT

© 2023 Pickard, Sikes, Jamil, Cha�ee,

Blanchard, Kirby and Peterson. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Exploring fMRI RDMs: enhancing
model robustness through
neurobiological data

William Pickard1, Kelsey Sikes1, Huma Jamil1, Nicholas Cha�ee1,

Nathaniel Blanchard1*, Michael Kirby1,2 and Chris Peterson2

1Department of Computer Science, Colorado State University, Fort Collins, CO, United States,
2Department of Mathematics, Colorado State University, Fort Collins, CO, United States

Artificial neural networks (ANNs) are sensitive to perturbations and adversarial

attacks. One hypothesized solution to adversarial robustness is to align

manifolds in the embedded space of neural networks with biologically grounded

manifolds. Recent state-of-the-art works that emphasize learning robust neural

representations, rather than optimizing for a specific target task like classification,

support the idea that researchers should investigate this hypothesis. While works

have shown that fine-tuning ANNs to coincide with biological vision does increase

robustness to both perturbations and adversarial attacks, these works have relied

on proprietary datasets—the lack of publicly available biological benchmarks

makes it di�cult to evaluate the e�cacy of these claims. Here, we deliver a

curated dataset consisting of biological representations of images taken from

two commonly used computer vision datasets, ImageNet and COCO, that can be

easily integrated into model training and evaluation. Specifically, we take a large

functional magnetic resonance imaging (fMRI) dataset (BOLD5000), preprocess it

into representational dissimilarity matrices (RDMs), and establish an infrastructure

that anyone can use to train models with biologically grounded representations.

Using this infrastructure, we investigate the representations of several popular

neural networks and find that as networks have been optimized for tasks, their

correspondence with biological fidelity has decreased. Additionally, we use a

previously unexplored graph-based technique, Fiedler partitioning, to showcase

the viability of the biological data, and the potential to extend these analyses by

extending RDMs into Laplacian matrices. Overall, our findings demonstrate the

potential of utilizing our new biological benchmark to e�ectively enhance the

robustness of models.

KEYWORDS

brain-inspired neural networks, computational neuroscience, deep learning, geometric

analysis, object recognition, functional MRI, Fiedler partitioning, human visual system

1 Introduction

Over the last decade, the landscape of state-of-the-art neural networks has shifted at a

near continuous rate. But, within the last few years, the discourse around how to achieve

the state-of-the-art has shifted from an emphasis on architecture to an emphasis on robust

learned representations. In this work, we note that what constitutes a “good” representation

to optimize for is still a matter of debate—we posit that one promising representation to

strive for is the one employed by the biological brain. Our contributions include the curation

of a new dataset to facilitate measuring the similarity of neural network representations with

biological representations, an investigation of the biological fidelity of several state-of-the-art

models’ representations, and the establishment of a new evaluative benchmark to facilitate

further research into aligning artificial and biological neural representations.

Frontiers inComputer Science 01 frontiersin.org81

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1275026
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1275026&domain=pdf&date_stamp=2023-12-19
mailto:nathaniel.blanchard@colostate.edu
https://doi.org/10.3389/fcomp.2023.1275026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1275026/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

Investigations into how similar a trained neural network is

to a biological brain have been unfolding since the early days

of the neural network boom (Yamins et al., 2013, 2014; Hong

et al., 2016; Kheradpisheh et al., 2016; Yamins and DiCarlo, 2016).

Prior work has shown that representations closer to the biological

brain are more robust to adversarial attacks (Li et al., 2019), are

adaptable to new tasks in a zero-shot context (Schrimpf et al.,

2018; Blanchard et al., 2019), and have gains in task performance

that emerge quicker than when learning representations without

biological similarity (Blanchard, 2019; Blanchard et al., 2019).

Given this pedigree, one would be remiss not to wonder why

research into these comparisons is so rare. Unfortunately, most

biological datasets are proprietary or too small (Chang et al., 2019)

and without this resource, neither researchers nor practitioners

can further investigate this phenomenon. Further, state-of-the-art

models have traditionally been assessed by their accuracy on key

datasets while evaluations of how well-embedded representations

generalize to new tasks is a relatively recent phenomenon (Radford

et al., 2021).

Additionally, many of these works simply focus on post-

hoc evaluations. There are relatively few works investigating

how to optimize networks to achieve biological representations

(Elsken et al., 2018; Hsu et al., 2018; Liu et al., 2018; Pham

et al., 2018; Bashivan et al., 2019). Even recent efforts to learn

strong representations focus on unsupervised methods that

allow massive amounts of data to be used for training, with

the hope that stronger representations will emerge (Radford

et al., 2021). We hypothesize that a large biological dataset

would facilitate a deeper investigation into the viability of

biological representations for artificial neural networks. Of

particular interest to this community is the potential for deeper

investigations into how to optimize for biologically grounded

manifolds—current methodologies utilize representational

similarity analysis (RSA) (Kriegeskorte et al., 2008), but

recent work has suggested methods to adopt and expand

these methods (Jamil et al., 2023) by redefining the core data

structures of RSA, representational dissimilarity matrices (RDMs),

into weighted graphs.

Following the methodology pioneered by Jamil et al. (2023),

we demonstrate that network representations drift further away

from biological representations when networks are optimized for

task performance. This is in agreement with Kumar et al. (2022),

who found an inverse-U relationship exists between ImageNet

classification accuracy of a network and its perceptual similarity

score (Zhang et al., 2018). We posit that these mirror critiques of

prominent research groups like Google’s DeepMind, where Goh

et al. (2021) identified the viability of an adversarial typographic

attack where simply writing the incorrect word on an object sufficed

for causing misclassifications. In a blog post discussing the attack,

Goh et al. (2021) suggested,

“this attack exploits the way image classification tasks are

constructed. While images may contain several items, only one

target label is considered true, and thus the network must learn

to detect the most ‘salient’ item in the frame. The adversarial

patch exploits this feature by producing inputs much more

salient than objects in the real world. Thus, when attacking

object detection or image segmentation models, we expect a

targeted toaster patch to be classified as a toaster, and not to

affect other portions of the image.”

It is true that assessing state-of-the-art models has always been

important for both practitioners adapting those models to their

own tasks and researchers seeking to understand and push toward

better models (Kingma and Welling, 2013); however, the advent of

works like CLIP, from Radford et al. (2021), have ushered in a new

era driven by evaluating neural networks on how adaptable their

learned representations are to new tasks in a zero-shot context.

This work provides the tools for researchers to take this idea

further providing biologically viable target representations that can

be factored into the optimization of networks. As illustrated in

Figure 1, our contributions include:

• The presentation and re-release of the BOLD5000 dataset

(Chang et al., 2019), which has been fully processed to facilitate

evaluating and optimizing neural networks on biologically

grounded representations of data. Our efforts culminate

in one of the largest biological datasets for vision ever

released, which will facilitate widespread investigations into

optimal representations.

• The application of a previously unexplored graph-based

technique, the Fiedler algorithm, to this preprocessed dataset,

demonstrating its versatility as an evaluation metric.

• The introduction of a framework which allows researchers to

better fine-tune, evaluate, and select models for robustness.

Ultimately, the products of this work will facilitate future

research into how robust representations manifest, and

methods for optimizing networks to achieve trustworthy and

adversarially robust results.

2 Related work

Here, we detail prior works that investigate biological

representation benchmarks. In particular, we focus on methods

that investigate “neuro-similarity,” i.e., the similarity of an artificial

neural network’s (ANN’s) learned representation to a benchmark of

the biological brain. First, we examine metrics of neuro-similarity,

then, efforts to increase neuro-similarity, and conclude with an

investigation of works that link biologically consistent ANNs

and robustness.

2.1 Metrics of neuro-similarity

Representational similarity analysis (RSA) is a popular tool

measuring neuro-similarity where similarity metrics are derived

from representational dissimilarity matrices (RDMs) (Kriegeskorte

et al., 2008). ANN activations and neural data can be abstracted

into RDMs for a set of stimuli. If two RDMs are created using the

same stimuli set, they can be directly compared to one another

by measuring the similarity of the consistency across that stimuli

set. Two established metrics that capitalize on RSA for measuring

Frontiers inComputer Science 02 frontiersin.org82

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

FIGURE 1

In this work, we present a new biologically grounded representation for evaluation and optimization of neural representations. Prior work has shown

such representations correspond with robustness to adversarial attacks and task generalization. The curation of this new benchmark required

preprocessing the BOLD5000 data into representational dissimilarity matrices (RDMs) and establishing a framework for investigating biological

representations. We then investigate the viability of our discovered representation with a novel application of Fiedler partitioning on the data to

demonstrate the potential of the biological representation for adversarial robustness.

the neuro-similarity of ANNs are human-model similarity (HMS)

(Blanchard et al., 2019) and Brain-Score (Schrimpf et al., 2018).

HMS (Blanchard et al., 2019) evaluates the neuro-similarity

between fMRI data and ANNs as the Spearman correlation between

the averaged fMRI RDM and an ANN’s RDM. The metric was

validated on self-supervised predictive coding networks—a form of

ANN composed of convolutional long short-termmemory (LSTM)

units designed to mimic predictive coding employed by biological

visual systems. They found that models with higher HMS exhibited

higher performance on next-frame prediction (the self-supervised

task the networks were trained on) and were more robust to other

tasks that networks were not trained for, such as object matching.

They also found that HMS could be accurately measured early in

the training process, and they proposed that it could be utilized

for “early stopping”, i.e., training could be abandoned before the

weights fully converged.

Similar to HMS, Brain-Score (Schrimpf et al., 2018) is a

composite neural and behavioral benchmark set, which uses

multiple evaluation metrics to score and rank ANNs according to

how brain-like their visual object-recognition mechanisms are. To

accomplish this, the internal representations of ANNs trained on

ImageNet were compared for similarity against neural recordings

taken from the V4 and IT cortical areas of macaque monkeys. From

this, Dense-Net169, COREnet-S, and ResNet-101 were found to be

the most brain-like, though Brain-Score was unable to reveal why.

HMS is the most similar to our methodology because we too

use publicly available fMRI data, but a major limitation of HMS is

that it only utilizes 92 stimuli, making it unsuitable to train with

since networks quickly overfit to the small sample. These metrics

are a great starting point for measuring neural similarity—however,

to improve model robustness, more specific metrics need to be

created. To effectively achieve this, datasets similar to this one

must have as little noise in them as possible, something we address

with BOLD5000.

In addition to RSA, there has also been research into

psychophysical comparison metrics between ANNs and the human

vision system. Jacob et al. (2021) found that ANNs trained for

object recognition tasks were susceptible to some of the same visual

illusions as the human visual system, such as mirror confusion,

while other effects were absent. Gomez-Villa et al. (2020) found

that ANNs trained for low-level visual tasks such as denoising

and deblurring demonstrate human-like contrast similarity, but

noted that deeper, more flexible network architectures did not

demonstrate the same similarity. Human-like contrast similarity

was also found in a variety of ANN architectures trained for

different tasks (Li et al., 2022; Akbarinia et al., 2023).

2.2 Increasing neuro-similarity

Multiple methods have been investigated to affect an increase

in the neuro-similarity of ANNs. One approach is the tailoring of

image training datasets to achieve a distribution of input stimuli

that more closely matches what may be experienced in nature

(Aliko et al., 2020; Mehrer et al., 2021; Roads and Love, 2021; Allen

et al., 2022). This approach is based on observations that training

datasets designed for machine vision applications are crafted for

domain specific applications, or otherwise contain internal biases

in their distribution of subject matter that do not match what is

in nature (Smith and Slone, 2017). A specific example of such a

bias is the fact that ImageNet (Deng et al., 2009), one of the most

widely used image classification datasets in the field, contains 120

categories of dog breeds, but lacks any categories for humans. By

creating datasets withmore natural image distributions, researchers

have been able to significantly improve the neuro-similarity of the

DNNs trained on these datasets.

While this approach does improve neuro-similarity in the

trained models and demonstrates the potential of DNNs to achieve

higher levels of neuro-similarity, it may not always be feasible or

desirable to augment every dataset with a great enough volume of

images, or images of the correct type, to achieve a distribution that

matches the natural world. For example, domain specific datasets,

such as for medical imaging research, don’t have a complementary

input set in nature to draw from. Datasets for machine vision

research are also growing in size constantly and it may not be cost-

effective or efficient to increase their size to a point where a natural

distribution is achieved. However, these domain-specific models

can potentially still benefit from greater neuro-similarity.

Frontiers inComputer Science 03 frontiersin.org83

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

One architectural approach to increasing neuro-similarity is

divisive normalization, which seeks to replicate how neighboring

neurons normalize their activations non-linearly (Miller et al.,

2021; Veerabadran et al., 2021; Hernández-Cámara et al.,

2023).

It has been demonstrated that DNNmodels with greater neuro-

similarity perform better at some tasks than models with lesser

neuro-similarity. One exciting example of this, and the inspiration

for this paper was work done by Li et al. (2019), who improved

the robustness of a deep convolutional neural network (DCNN)

to image noise via fine-tuning with an additional loss function

that favored greater neuro-similarity. These experiments were

conducted using a dataset derived from two-photon excitation

microscopy (2PEF) ofmice brains—they released the code to enable

the fine-tuning but did not release the data itself. The fine-tuning

was enabled via RDM comparisons—however, unlike Brain-Score

and HMS, they approximated complete RDMs during training

by only creating an RDM for a subset of stimuli. Constructing

an entire RDM during training is computationally expensive

because activations for each of the stimuli must be collected

and compared.

2.3 Linking neuro-similarity to robustness

Despite initial findings that improving neuro-similarity could

increase robustness (Li et al., 2019), none of the known evaluation

metrics explicitly measure this improvement. We think this is an

area where some could be created. We propose that robustness

should be measured via psychophysics (RichardWebster et al.,

2018, 2019). This evaluation focuses on evaluating robustness

across a range of different noise levels. It also focuses on explainable

and trustworthy evaluations of networks—by exploring amultitude

of different noise types, the evaluation reveals specific weaknesses

that networks are susceptible to, e.g., in the domain of face

recognition, RichardWebster et al. (2018) found that FaceNet

was surprisingly susceptible to brown noise, while other methods

were not.

3 Materials and methods

3.1 BOLD5000

BOLD5000, one of the largest, publicly available fMRI datasets,

was created to address three areas of neural dataset design: create

a dataset of sufficient size to enable fine-tuning a deep neural

network (DNN), have a greater diversity of images and image

categories than is normally present in a neural study, and provide

an overlap between the stimulus images used in the fMRI trials and

the training image datasets of DNNs to allow for a more direct

comparison of DNN and human brain activations (Chang et al.,

2019).

Similar to most other human fMRI brain scan datasets,

BOLD5000 is composed of stimuli images pulled from existing

machine vision image datasets (Geirhos et al., 2018; Allen et al.,

2022). In total, it consists of fMRI brain scans from four

participants (CSI1-4) who were presented with 4,916 real-world

images from three commonly used computer vision datasets: 1,916

from ImageNet (Deng et al., 2009), 2,000 from Common Objects

in Context (COCO) (Lin et al., 2014), and 1,000 custom images

of scenes from categories inspired by Scene UNderstanding (SUN)

(Xiao et al., 2010). Collectively, these datasets span a wide variety of

categories and consist of images of real-world indoor and outdoor

scenes and objects either centered in or interacting with complex

real-world scenes.

All selected images were resized, cropped to 375 × 375, and

adjusted for even luminance. For each input dataset, exemplar

images were hand-selected by the BOLD5000 authors on a per-

category basis. Subjects then engaged in 15 functionalMRI sessions,

where all images were presented on a single trial basis, except

for a subset of 113, for which unique neural representation data

was collected.

During the original BOLD5000 study, one participant (CSI4)

did not complete the entire experiment. As a result, CSI4 is typically

discarded from studies using the BOLD5000 (Sexton and Love,

2022). However, because there are already only three complete

participants to begin with, and because the majority of the stimuli

images are only presented once, this study incorporates CSI4’s

partial data into a mean subject using the RDMs calculated as part

of the RSA analysis (Section 3.4).

A second release of the BOLD5000 dataset occurred in

2021 (Chang et al., 2021). The major difference with the second

release was the re-processing of the beta values for the fMRI

sessions using the GLMSingle toolbox (Prince et al., 2022). The

goal of the second release was to increase the reliability of the beta

value estimates.

3.2 Preprocessing

All betas were provided in NIfTI format, divided by subject

and session. The image coordinate transforms provided within

the file header did not correspond to the transforms used for

brainmasks, ROI masks, and T1w anatomical images from the

original BOLD5000 release. This transform information is required

for several other processing steps, including the re-application of

the functional region of interest (ROI) masks from the original

release of the BOLD5000 and application of the two new ROI

atlases, vcAtlas (Rosenke et al., 2018) and visfAtlas (Rosenke

et al., 2021), to the four participant brains. We solved this

issue by intuiting that the provided NIfTI files were derived

from the same fMRIPrep (Esteban et al., 2019) derivatives as

the original BOLD5000, thus allowing us to utilize the same

alignments and brainmasks. The affine transforms from the

original BOLD5000 brainmasks were applied to the GLMSingle

beta files and the results were visually checked against both

the original brainmasks and the T1w anatomical scans of the

participants to confirm good alignment. The generation of a

global brainmask intersection was also required for each of the

four subjects across all sessions. RSA analysis calculates distance

metrics for each pair of input stimuli and therefore requires

that the input vectors for each of the stimuli have the same

Frontiers inComputer Science 04 frontiersin.org84

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

number of dimensions (in the case of fMRI, dimension is a

voxel). The BOLD5000 is somewhat unique in that it is largely

made up of single presentations of each stimulus, and the order

of the stimuli is randomized across multiple sessions for each

participant. This poses a challenge because even very minor

positional changes between sessions can lead to the introduction of

invalid voxel values, especially around the very edge or pial surface

of the brain.

The fMRIPrep pipeline uses a number of advanced tools to

correct for any changes (Esteban et al., 2019), however, it was

found that the participant brain masks provided in the original

BOLD5000 release still resulted in invalid voxels being included for

some trials. To address this issue, a global mask was calculated for

each participant using the intersection of the valid voxels for each

input across all sessions. These global participant brain masks were

applied to every ROI to ensure that no invalid voxel data entered

into the RSA calculations.

3.3 FreeSurfer

FreeSurfer is an incredibly powerful suite of tools originally

developed with the goal of reconstructing cortical surface models

from T1w anatomical scans (Fischl, 2012). A further goal of

this original development in reconstructing the cortical surface

is finding alignments between subject brains based on cortical

folding patterns. It is this alignment functionality that makes the

FreeSurfer a vital component of the fMRIPrep (Esteban et al.,

2019) pipeline used in the original BOLD5000 release (Chang et al.,

2019).

As follow-on researchers, we leverage these FreeSurfer

derivatives to extract additional information from the dataset. We

use FreeSurfer to parcellate a reconstructed cortical surface based

on its folding patterns using specially crafted atlases. We used

this functionality to identify and extract additional areas relevant

to vision based on structural connectivity or functional response

to images using vcAtlas and visfAtlas respectively. Our analysis

is concerned with comparing the BOLD activations of voxels in

volumetric space. Thus, several steps were required to convert these

surface atlases into volumetric ROI masks.

First, the labels from the atlases were resampled from the

standard fsaverage surface to each of the subjects’ cortical surfaces.

This is accomplished using the mri_surf2surf command. With the

labels for each atlas and ROI now resampled onto the subjects’

cortical surfaces, the labels were used to define a volumetric

ROI as the volume of gray matter that makes up the cortex

beneath the cortical surface label. This is accomplished with the

mri_label2vol command with projection fraction set to include

100% of the volume between the pial and white matter surfaces.

The output of this function is a series of volumetric ROI

masks in NIfTI format, similar to the ROI masks from the

original BOLD5000. All ROI masks generated using FreeSurfer

also had the global mask for each participant applied to them

to ensure that only valid voxels would be extracted for a

given ROI.

3.4 RSA

After preprocessing and utilizing FreeSurfer to identify ROIs,

we create RDMs from the neural data. We construct RDMs in

accordance with establishedmethodology (Kriegeskorte et al., 2008;

Blanchard et al., 2019). Here, we briefly summarize the process:

RDM construction. Given a single feature f and a single

stimulus s, v = f (s), where v is the value of feature f in response

to s. Likewise, the vector

Ev =

v1
v2
...

vn

T

=

f1(s)

f2(s)
...

fn(s)

T

(1)

can represent the feature values of a collection of n features,

f1, f2, ..., fn, in response to s. If one expands the representation

of s to a set of m stimuli S = s1, s2, ..., sm, the natural extension

of Ev is the set of feature value collections V = Ev1, Ev2, ..., Evm, in

which si ∈ S is paired with Evi ∈ V for each i = 1, 2, ...,m. The

last step prior to constructing an RDM is to define the dissimilarity

score between any two Evi ∈ V and Evj ∈ V . We use the

symmetric function

ψ(Evi, Evj) : = 1−
(Evi − v̄i) · (Evj − v̄j)

‖Evi − v̄i‖2‖Evj − v̄j‖2
(2)

where v̄ is the mean of the features in Ev. An RDM R may then be

constructed from S, V , and ψ as:

R =

ψ(Ev1, Ev2) ψ(Ev1, Ev3) . . . ψ(Ev1, Evm)

ψ(Ev2, Ev3) . . . ψ(Ev2, Evm)

. . .
...

ψ(Evm−1, Evm)

(3)

3.4.1 Biological similarity metric
The methodology for comparing a network to a biologically

constructed RDM is simple: After constructing an RDM R1 for the

network following the procedure outlined in Section 3.4 using the

same stimuli set S, one can compute the similarity to the biological

RDM R2 with the function

biologicalSimilarity = ρ(R̂1, R̂2) (4)

where R̂ is the flattened RDM and ρ corresponds with a similarity

metric, e.g., Pearson’s correlation. Note, many works suggest

estimating the RDM during training by only considering a subset

of the stimuli (Li et al., 2019).

3.4.2 rsatoolbox package
rsatoolbox is a Python package for RSA (Nili et al.,

2014). Originally developed for Matlab, rsatoolbox is under

Frontiers inComputer Science 05 frontiersin.org85

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

TABLE 1 Five supercategories were created by combining the synset

labels from the ImageNet stimuli.

Supercategory Hypernyms Num. images

Vertebrate [animal, person] 646

Invertebrate [invertebrate] 96

Natural object [food, plant, fungus, plant_part] 128

Artifact [artifact] 912

Place [structure, geological_formation] 134

active development and can be used for the generation

and comparison of RDMs, the creation and evaluation of

multiple types of models with various statistical tools, and

visualization tools. All fMRI RDMs, RDM comparisons,

and models were performed with rsatoolbox (Initial

RDM generation for the ANNs were generated using

functionality built into the Net2Brain tool as detailed in

Section 3.7.).

3.5 ImageNet in BOLD5000

The use of images from the ImageNet dataset in the BOLD5000

presents a unique opportunity because the ImageNet Large Scale

Visual Recognition Challenge (ILSVC) benchmark remains the

standard benchmark and training dataset for image classification

models such as those included in this paper. Prior to the BOLD5000

data, representations of neurological data tended to be collected for

simple stripped-back stimuli such as a clearly cut-out image against

a gray background. While these simple stimuli enabled research

comparing biological representations to artificial representations

(e.g., Blanchard et al., 2019), they had limited additional uses. For

example, these stimuli were too simple and too few for fine-tuning

networks to exhibit biologically consistent embeddings. The use

of complex images like those within the ImageNet dataset may be

non-ideal for traditional fMRI research, but they enable a wealth of

experiments examining artificial neural networks (ANNs).

ImageNet classes are based on the WordNet synset hierarchy.

In theory, this synset hierarchy can be used to establish the

relationships between image classes. However, there are known

deficiencies in the WordNet structure and most researchers

resort to creating custom “supercategories” that combine multiple

synsets. The original BOLD5000 paper used four supercategories

for t-SNE analysis: Objects, Food, Living Inanimate, and

Living Animate (Chang et al., 2019). For this work, five new

supercategories were chosen that attempt to create more logical

pairings for comparison. Animate subjects were divided into

“vertebrate” and “invertebrate” supercategories, inanimate classes

were divided into “artifact” (man-made) and “natural object”, and

a final “place” category was included to align with the emphasis on

scenes in the BOLD5000. Table 1 summarizes the supercategories

created for this project and the hypernyms used to define each

supercategory. Each of the ImageNet synset labels were sorted into

a supercategory by matching the synset’s hypernyms to one of the

supercategory hypernyms.

3.6 Categorical model analysis

While the end goal of our RSA analysis is to compare the

biological data from the BOLD5000 fMRI trials to ANNs, RSA

also allows us to leverage other types of dissimilarity models

such as the supercategories within ImageNet as described in

Section 3.5. First, categorical RDMs are generated for each

supercategory as illustrated in Figure 2. These consist of an RDM

where all images of the same category are assigned the minimum

distance/dissimilarity for a given metric and all images from other

categories are assigned the maximum distance/dissimilarity for a

given metric.

Using rsatoolbox’s weighted model functionality, the individual

category RDMs are linearly fit to the Mean Subject RDMs

for the vcAtlas ROIs. The model weights were then used to

predict the final categorical model shown in Figure 3. This

categorical model is a representation of the relative similarities

of each of the supercategories as perceived by the human

brain. Categorical models such as this can act as a reference

point for later RSA analysis because it relies on additional

structural information that is embedded into the ImageNet

image labels.

3.7 Net2Brain

Here, we link our preprocessed data and subsequent

evaluations to Net2Brain, a toolbox for researching the internal

geometric representations of artificial deep neural networks,

particularly convolution neural networks, using RSA. One of the

strengths of Net2Brain is the very extensive set of over 600 models

that it is preconfigured to pull down, extract activations from,

and calculate RDMs for. Net2Brain is able to pull models not

only from the official PyTorch model zoo, but also from timm,

the Pytorch Image Models library created by Ross Wightman.

All of the aforementioned 600+ models available to Net2Brain

come pre-trained and are fully ready for activation extraction.

All of the stimuli from the BOLD5000 are made available to

Net2Brain and once it pulls down the pre-trained model in

question, it presents each of the BOLD5000 images to the model

as input and performs a forward pass. The model activations from

each of the model’s convolutional layers are then extracted and

stored to disk. Once all of the activations have been extracted,

RDMs for each of the convolutional layers are calculated. As of

the time of writing, the toolbox enables creating RDMs using

Pearson’s correlation, and there are plans to add various other

distance metrics.

3.7.1 Model selection
Of the over 600 models available, four were chosen based

on a couple of criteria. First, due to the limitations in the

architecture of both Net2Brain and rsatoolbox, the calculation

of RDMs required substantial amounts of memory given the

number of unique stimuli in the BOLD5000. There was, therefore

a relative size limit to the number of output activations in

a model given the memory limits of available hardware. The

Frontiers inComputer Science 06 frontiersin.org86

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

FIGURE 2

Categorical RDMS for each of the ImageNet supercategories. Categorical RDMs consist of an RDM where all images of the same category are

assigned the minimum distance/dissimilarity for a given metric (i.e., for the 1-r distance metric, 0) and all images from other categories are assigned

the maximum distance/dissimilarity for a given metric (i.e., 1).

FIGURE 3

Predicted output RDM of the weighted categorical model.

second criterion was to achieve a representative sampling of ANN

model architectures that are designed for image classification

tasks and pre-trained on the ImageNet dataset over time. The

four models chosen were: AlexNet (Krizhevsky et al., 2012),

the progenitor of all subsequent deep convolutional neural

networks, ResNet50 (He et al., 2016), which introduced skip

connections to neural network architectures, MobileNetv2 (Sandler

et al., 2018), which was specifically designed to perform well

even on restricted hardware such as mobile devices, and

finally EfficientNet (Pham et al., 2018), which expands on the

same architectural concepts present in MobilNet with efficient

network scaling.

3.8 Fiedler vector partitioning

In this section, we detail how we employ Fiedler partitioning,

a graph-based technique, on the processed data. Fiedler

partitioning aims to partition a graph into two distinct

groups by utilizing the Fiedler vector, which corresponds to

the second smallest eigenvector of the Laplacian (Fiedler, 1973,

1975).

We analyzed individual RDMs for three BOLD5000

participants (CSI1-3), and a mean RDM (averaged subject

data) for fMRI data specific to the Left-Hand Fusiform Gyrus

3 (LHFG3). Each RDM is composed of the supercategories

described in Table 1. From these supercategories, we first

extracted subsets of each class pairing. We then applied

Fiedler partitioning to these RDMs and recorded the

classification accuracy for each class in a pair. The pseudo

code for finding the Fiedler partitioning accuracy for

an RDM is detailed in Algorithm 1. Bias corrected and

accelerated (BCa) bootstrap intervals were calculated for each

binary classification.

Frontiers inComputer Science 07 frontiersin.org87

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

4 Results

4.1 Categorical model analysis

Each of the vcAtlas ROIs from the mean subject was

compared back against the predicted categorical model to

determine which ROI best represents the supercategorical

structure of the data. Figure 4 shows the correlation of

each of the ROIs to the categorical model. In the case of

the BOLD5000 data, the LHFG3 is the best exemplar of the

categorical model.

Figure 5 shows the RDM for LHFG3 from the mean

subject with the images sorted by supercategory. Comparing

LHFG3 Figure 5 to the categorical model Figure 3, is it clear

how the supercategory representations cluster in a similar

way. This can be explored further through the comparison of

RDM correlations.

Figure 6 shows the RDMs of the layer with the highest

correlation to the categorical model for each of the four ANNs

Require: Representational Dissimilarity Matrix R

Ensure: Classification Accuracy

1) Get a subset Ri of R with two categories.

2) Compute Adjacency Matrix A = 1− Ri.

3) Compute Degree matrix from A.

4) Compute Laplacian matrix: L = D− A.

5) Get second smallest eigen vector e2 for L.

6) Compute Fiedler partitioning: P1 = {i ∈ N : e2(i) <

0} and P2 = {i ∈ N : e2(i) > 0}.

7) Compute Accuracy = (|P1| + |P2|)/len(e2)

Algorithm 1. Fiedler partitioning classifier.

investigated. When visually comparing the categorical model,

Figure 3, the mean subject fMRI response, Figure 5 and the ANN

responses, Figure 6, a correspondence between the representation

of the supercategories is evident.

FIGURE 5

RDM of the Left-Hand Fusiform Gyrus 3 (LHFG3) ROI calculated

from the mean subject using the correlation distance metric. Image

inputs are sorted by their ImageNet supercategory. Clustering of

similar images within supercategories is visible, as is dissimilarity

between supercategories.

FIGURE 4

An exemplar ROI is chosen from the available vcAtlas ROIs by comparing its Pearson correlation to the categorical model (Figure 3). The Left-Hand

Fusiform Gyrus 3 (LHFG3) (highlighted in red), was found to have the highest correlation with the categorical model.

Frontiers inComputer Science 08 frontiersin.org88

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

FIGURE 6

RDMs from each of the four ANNs ordered by ImageNet supercategory. Each RDM is taken from the ANN layer with the highest correlation to the

categorical model calculated in Section 3.6.

4.1.1 ANN vs. human fMRI RDM comparison
Direct comparison of RDMs can be accomplished through

a number of similarity measures. Here, we report Pearson

correlation, an established standard for use in RSA (Kriegeskorte

et al., 2008). Table 2 presents the Pearson correlation between the

categorical model and each of the four ANNs under test. Bootstrap

resampling of the input stimuli was performed to assess that all

results were statistically significant (p < 0.001). All comparisons

and statistical evaluations were performed using the rsatoolbox

package (Section 3.4.2).

An unexpected result of this analysis is the inverse relationship

between model age and its biological similarity. AlexNet

(Krizhevsky et al., 2012), the model that kicked off the deep

convolutional neural network revolution in machine vision,

has the highest biological similarity of the models tested,

and EfficientNet (Tan and Le, 2019), the most modern and

highest performing classification model, has by far the lowest

biological similarity.

4.1.2 Comparing human fMRI ROIs to individual
ANN layers

In Figure 7, we break down our evaluation layer by layer in

order to provide fine-grained details on which components of the

trained network best exhibits biological similarity.

One of the goals in reprocessing the BOLD5000 dataset using

the vcAtlas (Rosenke et al., 2018) and visfAtlas (Rosenke et al.,

2021) maps was to enable future research into comparing how

various components of an ANN, such as individual convolutional

layers, can be compared to specialized structures in biological

representations. For example, consider the theoretical concept

behind the ventral visual stream in the human brain is that

visual information flows from the early visual cortex at the

back of the brain forward into the Fusiform Gyrus. Along the

way, the visual stimuli is decoded in increasingly higher order

representations. Our findings give credence to the observation that

deep convolutional neural networks mimic some of what occurs

with this process.

Frontiers inComputer Science 09 frontiersin.org89

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

TABLE 2 Comparison of mean subject LHFG3 ROI RDM to categorical

model and ANN RDMs with bootstraped p-values.

Model Pearson correlation p (against 0)

Categorical 0.165 <0.001

AlexNet 0.054 <0.001

MobileNet v2 0.023 <0.001

ResNet50 0.031 <0.001

EfficientNet b0 0.015 <0.001

The human brain also has a number of very specialized areas for

certain tasks such as facial recognition in the Fusiform Face Area

(FFA) (Kanwisher et al., 1997), one of the ROIs included in the

visfAtlas. The goal is to provide the data so that these specialized

areas of the brain can be used to analyze and train equivalently

specialized components of ANNs.

4.2 Fiedler partitioning

Figure 8 displays the Fiedler partitioning accuracies for each

of the four ANNs from our experiments, and Figure 9 shows the

partition accuracy for the biological data. All accuracies illustrate

the separability of class pairs—the results indicate that the human

subjects consistently achieved higher classification accuracy when

discriminating between the vertebrate class and the invertebrate,

natural object, and place categories. This shows that the feature

embeddings in the LHFG3 are well-clustered for those categories.

Bonferroni-corrected BCa confidence intervals are also

reported in Figures 8, 9. Because Fiedler partitioning is applied

against supercategory pairs, the null hypothesis corresponds to

an accuracy of 0.50. An interesting phenomenon that can be seen

in the results is that even if the Fiedler partitioning achieves high

levels of accuracy, we may not be able to reject the null hypothesis

due to the lower bootstrap confidence interval being at or near

0.50. This can be seen both in the fMRI subject results and the

ANN results. Analysis of the bootstrap sample distribution shows

this is sometimes the result of a bimodal distribution of results,

where a small cluster of failed partitions will be present at or near

0.5 accuracy, with the rest scoring much higher. This effect is likely

due to a combination of label noise in the BOLD5000 dataset and

how the Fiedler vector is calculated.

Label noise arises when the two ImageNet images selected for

each synset category contains more than just the intended subject,

or when other factors, such as the crop of the image that was used

for presentation obscure or make the intended subject unclear.

An example of this is the fact that many of the stimuli images

in the BOLD5000 which fall under the supercategory “artifact”

depict people holding the object with a full human face visible in

the image. The presence of human faces in images that are meant

to depict inanimate objects causes significant unintended brain

activation in areas such as the FFA (Kanwisher et al., 1997).

The second factor contributing to this phenomenon is the fact

that Fiedler partitioning is not an operation that is performed on

individual stimuli, but on the RDM as a whole. The Fiedler vector

is calculated as the second smallest eigenvector of the Laplacian of

the RDM. Therefore, if a bootstrap sample is composed of a set of

images with sufficient label noise, the Fiedler vector will partition

the entire RDM orthogonal to the intended supercategories. An

example of this was found with the above “artifact” supercategory

example. When applied solely to the stimuli images from the

“artifact” supercategory in an unsupervised manner, the Fiedler

partitioning algorithm spontaneously partitions the images into a

group that contains humans in the image and a group that contains

just inanimate objects in the frame.

Overall, our findings indicate that Fiedler partitioning

effectively identifies supercategory clusters in the RDMs of human

fMRI subjects and ANNs. Similar to our findings with the RDM

comparisons, a surprising trend emerges with the ANNs. AlexNet,

the oldest of the ANNs, produces a far higher Fiedler partitioning

accuracy than the newer models. EfficientNet-b0, in particular,

does not produce results significantly above noise for most of the

supercategory pairings.

5 Discussion and future work

ANNs have long suffered from decreased performance as a

result of their sensitivity to random noise and adversarial attacks.

Recent works have shown that fine-tuning a network representation

to align with a biological standard fortifies networks against both

noise and adversarial corruptions of images (Blanchard et al., 2019;

Li et al., 2019). However, exploration of these ideas has been limited

by the unavailability of public datasets: prior works have relied

on private datasets (Li et al., 2019) or datasets with a limited

number of stimuli (Blanchard et al., 2019). The BOLD5000 dataset

has always been a promising resource for investigating just this,

but the data was not packaged for use by researchers without a

strong neuroscience background. Here, we eliminate this barrier—

our curation and investigations of the BOLD5000 data will now

enable the broader community to explore the viability of biological

representation in networks.

An important result of our analysis is that recent, more

advanced, neural networks such as EfficientNet (Tan and Le, 2019)

have lower neuro-similarity to human fMRI responses than the

much older and simpler AlexNet, despite also performing much

better on the standard ImageNet Large Scale Visual Recognition

Challenge (ILSVRC).

The discovery that ANNs are diverging from their biological

inspiration is not, in and of itself, surprising and is supported

by other recent research (Gomez-Villa et al., 2020; Kumar et al.,

2022). It does emphasize the fundamental question of whether or

not neuro-similarity is an asset, a hindrance, or simply a non-

factor. Are these newer models performing better on an, admittedly

artificial, metric because of their neuro-dissimilarity or in spite

of it? Humans are not susceptible to the same adversarial attacks

that ANNs have been shown to be susceptible, so it’s possible this

divergence in the geometry of ANN embedding spaces from their

human counterparts is opening up new avenues of attack.

To put a finer point on it, are more advanced models achieving

higher accuracy by focusing on minutia instead of the complete

composition, e.g., the features being extracted from an image of

one of ImageNet’s many dog breed classes focused on things like fur

texture and color as a way to correctly classify the breed, the source

Frontiers inComputer Science 10 frontiersin.org90

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

FIGURE 7

Pairwise analysis of each of the layers of AlexNet to ROIs of the new vcAtlas and visfAtlas cortical atlases. In the vcAtlas comparison it can be seen

that while the LHFG3 ROI does dominate the comparison, there is a correlation between the first two layers of AlexNet with the early visual cortex in

Oc1 and Oc2.

Frontiers inComputer Science 11 frontiersin.org91

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

FIGURE 8

Fiedler partitioning accuracy for ANNs. Partitioning is performed on the RDM of the layer with the highest correlation to the categorical model

developed in Section 3.6. Accuracy is reported along with Bonferroni-corrected BCa bootstrap intervals (CIs) (accuracy [lower CI bound, upper CI

bound]). AlexNet and ResNet demonstrate significantly higher accuracy and significance across all supercategory comparisons.

of the image classification, or on the fact that the image depicts a

four-legged creature with two eyes and other mammalian features?

Having a fragmented embedding space that emphasizes minutia is

likely to make a model more susceptible to adversarial attacks. To

use the example above, a model that has been overfit to the point

where it only focuses on fur pattern features to identify something

as a dog, could be tricked into misidentifying a common artifact

such as a box, by covering it with a fake fur texture or image.

We expect images containing similar features to elicit

activations that are closer together within the embedding space

while dissimilar activations should exist further apart—Goh et al.

(2021) investigated the presence of this phenomenon, finding

certain neuron groups in CLIP activated or deactivated in response

to similar concepts. Fiedler partitioning of an RDM should be able

to exploit this clustering of like embeddings to get us in the ballpark

of a reasonable classification by selecting an appropriate class

category regardless of whether or not there is a strong correlation

between the ANN and the biological benchmark. By demonstrating

that this works well for a model like AlexNet, but not for a model

like EfficientNet, we imply that these more advanced models are

not creating the expected clusters within their embedding space.

This leads to the question of how these new ANNs are actually

structuring their feature space or whether they are extracting a

similar set of features at all. Our work shows that ANNs trained for

classification performance are evolving internal embedding space

geometries more dissimilar from the human vision system and

that these embedding spaces lack a geometry that clusters like

image subjects together. We can either conclude that state-of-the-

art ANNs are creating a novel way to learn and store image feature

representations, or we must conclude that embedding spaces are

becoming more disjoint because of the singular push to maximize

classification accuracy.

Since learned representations like (Goh et al., 2021) do seem

to demonstrate this phenomenon with CLIP embeddings, and

since CLIP embeddings match or surpass the performance of the

models we evaluate (Radford et al., 2021), it seems likely that

Frontiers inComputer Science 12 frontiersin.org92

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

FIGURE 9

Fiedler partitioning accuracy for fMRI subjects. Partitioning is performed on the RDM of the LHFG3 ROI. Accuracy is reported along with

Bonferroni-corrected BCa bootstrap intervals (CIs) (accuracy [lower CI bound, upper CI bound]). The mean subject demonstrates both higher

accuracy and statistical significance when compared to each of the three complete participants.

the biological ideal does correspond with robustness. However,

a full investigation of the viability of the biological benchmark

is beyond the scope of this work—and likely beyond the scope

of any singular work. Instead, a wealth of future research is

needed to tease out the intricacies of what kinds of representations

correspond with robustness. The most impactful outcome of

this work is the facilitation of these future research projects via

a shared, publicly available dataset that allows researchers and

practitioners to scrutinize the evidence for a biologically grounded

representation, and investigate alternatives.

Finally, the curation of this data also facilitates additional uses

of the data: modeling neural processes and creating new biologically

consistent architectures. Neural networks are the premier means

for modeling neural data. However, it has also been shown that

current architectures have largely plateaued (Storrs et al., 2021)

and that all networks are equally predictive of the human inferior

temporal cortex. This is problematic because these models still

fail to predict certain properties of visual processing (Storrs et al.,

2021). Our data could facilitate the creation of neural network

designs that are biologically grounded. Previously, work has shown

that networks deliberately modeled on neural phenomena exhibit

higher biological consistency than traditional CNNs (Blanchard,

2019), which corresponds with higher performance. However,

even this work would vastly benefit from expanding methods

for comparing with biological benchmarks via novel techniques

like extending RDMs into Laplacian matrices (Jamil et al., 2023).

6 Conclusion

Here, we establish a new biological benchmark for embedded

representations. Our experiments on our benchmark establish the

viability of utilizing this data to enhance the robustness of learned

representations to inputs like adversarial attacks. Specifically, our

experiments with Fiedler partitioning showcase how biologically

Frontiers inComputer Science 13 frontiersin.org93

https://doi.org/10.3389/fcomp.2023.1275026
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

grounded representations facilitate interwoven separability and

clustering of data. As part of this work, we release our curated data

and a framework to facilitate further investigation.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found below: https://doi.org/10.5061/

dryad.wpzgmsbtr.

Author contributions

WP: Conceptualization, Data curation, Investigation,

Methodology, Software, Validation, Visualization, Writing

– original draft. KS: Investigation, Writing – original draft,

Visualization. HJ: Investigation, Methodology, Software,

Visualization, Writing – original draft. NC: Software, Visualization,

Writing – original draft. NB: Conceptualization, Investigation,

Project administration, Software, Supervision, Writing –

original draft. MK: Supervision, Writing – review & editing.

CP: Supervision, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The work

was supported by Defense Advanced Research Projects Agency

(DARPA) HR00112290074.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Akbarinia, A., Morgenstern, Y., and Gegenfurtner, K. R. (2023).
Contrast sensitivity function in deep networks. Neural Netw. 164, 228–244.
doi: 10.1016/j.neunet.2023.04.032

Aliko, S., Huang, J., Gheorghiu, F., Meliss, S., and Skipper, J. I. (2020). A naturalistic
neuroimaging database for understanding the brain using ecological stimuli. Sci. Data
7, 347. doi: 10.1038/s41597-020-00680-2

Allen, E. J., St-Yves, G., Wu, Y., Breedlove, J. L., Prince, J. S., Dowdle, L. T., et al.
(2022). A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial
intelligence. Nat. Neurosci. 25, 116–126. doi: 10.1038/s41593-021-00962-x

Bashivan, P., Tensen, M., and Dicarlo, J. (2019). “Teacher guided architecture
search,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
(Seoul), 5319–5328. doi: 10.1109/ICCV.2019.00542

Blanchard, N., Kinnison, J., Richard Webster, B., Bashivan, P., and Scheirer, W.
J. (2019). “A neurobiological evaluation metric for neural network model search,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (Long
Beach, CA), 5399–5408. doi: 10.1109/CVPR.2019.00555

Blanchard, N. T. (2019). Quantifying internal representation for use in model search
(Ph.D. thesis). University of Notre Dame, Notre Dame, IN, United States.

Chang, N., Pyles, J., Prince, J., Tarr, M., and Aminoff, E. (2021). BOLD5000 Release
2.0. CarnegieMellonUniversity. doi: 10.1184/R1/14456124. Available online at: https://
kilthub.cmu.edu/articles/dataset/BOLD5000_Release_2_0/14456124/2

Chang, N., Pyles, J. A., Marcus, A., Gupta, A., Tarr, M. J., and Aminoff, E. M. (2019).
BOLD5000, a public fMRI dataset while viewing 5000 visual images. Sci. Data 6, 49.
doi: 10.1038/s41597-019-0052-3

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “ImageNet: a
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition (Miami, FL), 248–255. doi: 10.1109/CVPR.2009.5206848

Elsken, T., Metzen, J. H., and Hutter, F. (2018). Neural architecture search: a survey.
J. Mach. Learn. Res. 20, 1997–2017. doi: 10.48550/arXiv.1808.05377

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe,
A., et al. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat.
Methods 16, 111–116. doi: 10.1038/s41592-018-0235-4

Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Math. J. 23,
298–305.

Fiedler, M. (1975). A property of eigenvectors of nonnegative symmetric matrices
and its application to graph theory. Czechoslovak Math. J. 25, 619–633.

Fischl, B. (2012). FreeSurfer. Neuroimage 62, 774–781.
doi: 10.1016/j.neuroimage.2012.01.021

Geirhos, R., Temme, C. R. M., Rauber, J., Schütt, H. H., Bethge, M., andWichmann,
F. A. (2018). “Generalisation in humans and deep neural networks,” in Advances in
Neural Information Processing Systems, eds S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett (Curran Associates, Inc.).

Goh, G., Cammarata, N., Voss, C., Carter, S., Petrov, M., Schubert, L.,
et al. (2021). Multimodal neurons in artificial neural networks. Distill. 6, e30.
doi: 10.23915/distill.00030

Gomez-Villa, A., Martín, A., Vazquez-Corral, J., Bertalmío, M., and Malo, J. (2020).
Color illusions also deceive CNNs for low-level vision tasks: analysis and implications.
Vision Res. 176, 156–174. doi: 10.1016/j.visres.2020.07.010

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Las Vegas, NV: IEEE), 770–778.

Hernández-Cámara, P., Vila-Tomás, J., Laparra, V., and Malo, J. (2023). Neural
networks with divisive normalization for image segmentation. Pattern Recogn. Lett.
173, 64–71. doi: 10.1016/j.patrec.2023.07.017

Hong, H., Yamins, D. L. K., Majaj, N. J., and DiCarlo, J. J. (2016). Explicit
information for category-orthogonal object properties increases along the ventral
stream. Nat. Neurosci. 19, 613–622. doi: 10.1038/nn.4247

Hsu, C.-H., Chang, S.-H., Liang, J.-H., Chou, H.-P., Liu, C.-H., Chang, S.-C.,
et al. (2018). MONAS: multi-objective neural architecture search using reinforcement
learning. arXiv [Preprint]. arXiv:1806.10332. doi: 10.48550/arXiv.1806.10332

Jacob, G., Pramod, R. T., Katti, H., and Arun, S. P. (2021). Qualitative similarities
and differences in visual object representations between brains and deep networks.Nat.
Commun. 12, 1872. doi: 10.1038/s41467-021-22078-3

Jamil, H., Liu, Y., Caglar, T., Cole, C., Blanchard, N., Peterson, C., et
al. (2023). “Hamming similarity and graph Laplacians for class partitioning
and adversarial image detection,” in 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW) (Vancouver, BC), 590–599.
doi: 10.1109/CVPRW59228.2023.00066

Kanwisher, N., McDermott, J., and Chun, M. M. (1997). The fusiform face area: a
module in human extrastriate cortex specialized for face perception. J. Neurosci. 17,
4302–4311.

Kheradpisheh, S. R., Ghodrati, M., Ganjtabesh, M., and Masquelier,
T. (2016). Deep networks can resemble human feed-forward vision

Frontiers inComputer Science 14 frontiersin.org94

https://doi.org/10.3389/fcomp.2023.1275026
https://doi.org/10.5061/dryad.wpzgmsbtr
https://doi.org/10.5061/dryad.wpzgmsbtr
https://doi.org/10.1016/j.neunet.2023.04.032
https://doi.org/10.1038/s41597-020-00680-2
https://doi.org/10.1038/s41593-021-00962-x
https://doi.org/10.1109/ICCV.2019.00542
https://doi.org/10.1109/CVPR.2019.00555
https://doi.org/10.1184/R1/14456124
https://kilthub.cmu.edu/articles/dataset/BOLD5000_Release_2_0/14456124/2
https://kilthub.cmu.edu/articles/dataset/BOLD5000_Release_2_0/14456124/2
https://doi.org/10.1038/s41597-019-0052-3
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/arXiv.1808.05377
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.23915/distill.00030
https://doi.org/10.1016/j.visres.2020.07.010
https://doi.org/10.1016/j.patrec.2023.07.017
https://doi.org/10.1038/nn.4247
https://doi.org/10.48550/arXiv.1806.10332
https://doi.org/10.1038/s41467-021-22078-3
https://doi.org/10.1109/CVPRW59228.2023.00066
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Pickard et al. 10.3389/fcomp.2023.1275026

in invariant object recognition. Sci. Rep. 6, 32672. doi: 10.1038/
srep32672

Kingma, D. P., and Welling, M. (2013). Auto-encoding variational Bayes. arXiv
[Preprint]. arXiv:1312.6114. doi: 10.48550/arXiv.1312.6114

Kriegeskorte, N., Mur, M., and Bandettini, P. (2008). Representational similarity
analysis - connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4.
doi: 10.3389/neuro.06.004.2008

Krizhevsky, A., Sutskever, I., andHinton, G. E. (2012). “ImageNet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
Systems (Curran Associates, Inc.),

Kumar, M., Houlsby, N., Kalchbrenner, N., and Cubuk, E. D. (2022). Do
better ImageNet classifiers assess perceptual similarity better? arXiv [Preprint].
arXiv:2203.04946. doi: 10.48550/arXiv.2203.04946

Li, Q., Gomez-Villa, A., Bertalmío, M., and Malo, J. (2022). Contrast sensitivity
functions in autoencoders. J. Vision 22, 8. doi: 10.1167/jov.22.6.8

Li, Z., Brendel, W., Walker, E., Cobos, E., Muhammad, T., Reimer, J., et al. (2019).
“Learning from brains how to regularize machines,” in Advances in Neural Information
Processing Systems, Vol. 32 (Curran Associates, Inc.).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
“Microsoft COCO: common objects in context,” in Computer Vision – ECCV 2014,
eds D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars (Cham: Springer International
Publishing), 740–755.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., et al. (2018).
“Progressive neural architecture search,” in Proceedings of the European Conference on
Computer Vision (ECCV), 19–34.

Mehrer, J., Spoerer, C. J., Jones, E. C., Kriegeskorte, N., and Kietzmann,
T. C. (2021). An ecologically motivated image dataset for deep learning yields
better models of human vision. Proc. Natl. Acad. Sci. U.S.A. 118, e2011417118.
doi: 10.1073/pnas.2011417118

Miller, M., Chung, S., and Miller, K. D. (2021). “Divisive feature normalization
improves image recognition performance in AlexNet,” in International Conference on
Learning Representations.

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., and Kriegeskorte,
N. (2014). A toolbox for representational similarity analysis. PLoS Comput. Biol. 10,
e1003553. doi: 10.1371/journal.pcbi.1003553

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). “Efficient neural
architecture search via parameters sharing,” in Proceedings of the 35th International
Conference on Machine Learning (PMLR), 4095–4104.

Prince, J. S., Charest, I., Kurzawski, J. W., Pyles, J. A., Tarr, M. J. and Kay, K.
N. (2022). GLMsingle: a toolbox for improving single-trial fMRI response estimates.
bioRxiv [Preprint]. doi: 10.1101/2022.01.31.478431

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., et al.
(2021). “Learning transferable visual models from natural language supervision,” in
Proceedings of the 38th International Conference on Machine Learning (PMLR), 8748–
8763.

RichardWebster, B., Anthony, S. E., and Scheirer, W. J. (2019). PsyPhy:
a psychophysics driven evaluation framework for visual recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 41, 2280–2286. doi: 10.1109/TPAMI.2018.284
9989

RichardWebster, B., Kwon, S. Y., Clarizio, C., Anthony, S. E., and Scheirer,
W. J. (2018). “Visual psychophysics for making face recognition algorithms more

explainable,” in Proceedings of the European Conference on Computer Vision (ECCV),
252–270.

Roads, B. D., and Love, B. C. (2021). “Enriching ImageNet with human similarity
judgments and psychological embeddings,” in 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (Nashville, TN: IEEE), 3546–3556.

Rosenke,M., vanHoof, R., van denHurk, J., Grill-Spector, K., andGoebel, R. (2021).
A probabilistic functional atlas of human occipito-temporal visual cortex.Cereb. Cortex
31, 603–619. doi: 10.1093/cercor/bhaa246

Rosenke, M., Weiner, K. S., Barnett, M. A., Zilles, K., Amunts, K., Goebel, R., et al.
(2018). A cross-validated cytoarchitectonic atlas of the human ventral visual stream.
Neuroimage 170, 257–270. doi: 10.1016/j.neuroimage.2017.02.040

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018).
“MobileNetV2: inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT: IEEE),
4510–4520.

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., et al.
(2018). Brain-score: which artificial neural network for object recognition is most
brain-like? BioRxiv [Preprint]. 407007. doi: 10.1101/407007

Sexton, N. J., and Love, B. C. (2022). Reassessing hierarchical correspondences
between brain and deep networks through direct interface. Sci. Adv. 8, eabm2219.
doi: 10.1126/sciadv.abm2219

Smith, L. B., and Slone, L. K. (2017). A developmental approach to machine
learning? Front. Psychol. 8, 2124. doi: 10.3389/fpsyg.2017.02124

Storrs, K. R., Kietzmann, T. C., Walther, A., Mehrer, J., and Kriegeskorte, N. (2021).
Diverse deep neural networks all predict human inferior temporal cortex well, after
training and fitting. J. Cogn. Neurosci. 33, 2044–2064. doi: 10.1162/jocn_a_01755

Tan,M., and Le, Q. (2019). “EfficientNet: rethinkingmodel scaling for convolutional
neural networks,” in Proceedings of the 36th International Conference on Machine
Learning, Proceedings of Machine Learning Research, eds K. Chaudhuri and R.
Salakhutdinov (PMLR), 6105–6114.

Veerabadran, V., Raina, R., and de Sa, V. R. (2021). “Bio-inspired learnable divisive
normalization for ANNs,” in SVRHM 2021 Workshop@ NeurIPS.

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2010). “SUN
database: large-scale scene recognition from abbey to zoo,” in 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (San Francisco, CA),
3485–3492. doi: 10.1109/CVPR.2010.5539970

Yamins, D. L., Hong, H., Cadieu, C., andDiCarlo, J. J. (2013). “Hierarchical modular
optimization of convolutional networks achieves representations similar tomacaque IT
and human ventral stream,” in Advances in Neural Information Processing Systems, eds
C. J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (Curran
Associates, Inc.).

Yamins, D. L. K., and DiCarlo, J. J. (2016). Using goal-driven deep learning models
to understand sensory cortex. Nat. Neurosci. 19, 356–365. doi: 10.1038/nn.4244

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., and
DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural
responses in higher visual cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8619–8624.
doi: 10.1073/pnas.1403112111

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018). “The
unreasonable effectiveness of deep features as a perceptual metric,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT: IEEE),
586–595.

Frontiers inComputer Science 15 frontiersin.org95

https://doi.org/10.3389/fcomp.2023.1275026
https://doi.org/10.1038/srep32672
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.48550/arXiv.2203.04946
https://doi.org/10.1167/jov.22.6.8
https://doi.org/10.1073/pnas.2011417118
https://doi.org/10.1371/journal.pcbi.1003553
https://doi.org/10.1101/2022.01.31.478431
https://doi.org/10.1109/TPAMI.2018.2849989
https://doi.org/10.1093/cercor/bhaa246
https://doi.org/10.1016/j.neuroimage.2017.02.040
https://doi.org/10.1101/407007
https://doi.org/10.1126/sciadv.abm2219
https://doi.org/10.3389/fpsyg.2017.02124
https://doi.org/10.1162/jocn_a_01755
https://doi.org/10.1109/CVPR.2010.5539970
https://doi.org/10.1038/nn.4244
https://doi.org/10.1073/pnas.1403112111
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 11 January 2024

DOI 10.3389/fcomp.2023.1274695

OPEN ACCESS

EDITED BY

Pavan Turaga,

Arizona State University, United States

REVIEWED BY

Jiang Liu,

Johns Hopkins University, United States

Chun Pong Lau,

City University of Hong Kong, Hong Kong SAR,

China

*CORRESPONDENCE

Chao Chen

chao.chen.1@stonybrook.edu

Dimitris Metaxas

dnm@cs.rutgers.edu

RECEIVED 08 August 2023

ACCEPTED 19 December 2023

PUBLISHED 11 January 2024

CITATION

Zhang W, Zhang Y, Hu X, Yao Y, Goswami M,

Chen C and Metaxas D (2024) Manifold-driven

decomposition for adversarial robustness.

Front. Comput. Sci. 5:1274695.

doi: 10.3389/fcomp.2023.1274695

COPYRIGHT

© 2024 Zhang, Zhang, Hu, Yao, Goswami,

Chen and Metaxas. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Manifold-driven decomposition
for adversarial robustness

Wenjia Zhang1, Yikai Zhang2, Xiaoling Hu3, Yi Yao4,

Mayank Goswami5, Chao Chen6* and Dimitris Metaxas1*

1Department of Computer Science, Rutgers University, Piscataway, NJ, United States, 2Morgan Stanley,

New York, NY, United States, 3Department of Computer Science, Stony Brook University, Stony Brook,

NY, United States, 4SRI International, Computer Vision Lab, Princeton, NJ, United States, 5Department of

Computer Science, Queens College of CUNY, New York, NY, United States, 6Department of Biomedical

Informatics, Stony Brook University, Stony Brook, NY, United States

The adversarial risk of a machine learning model has been widely studied. Most

previous studies assume that the data lie in the whole ambient space. We

propose to take a new angle and take themanifold assumption into consideration.

Assuming data lie in a manifold, we investigate two new types of adversarial risk,

the normal adversarial risk due to perturbation along normal direction and the in-

manifold adversarial risk due to perturbation within the manifold. We prove that

the classic adversarial risk can be bounded from both sides using the normal and

in-manifold adversarial risks. We also show a surprisingly pessimistic case that

the standard adversarial risk can be non-zero even when both normal and in-

manifold adversarial risks are zero. We finalize the study with empirical studies

supporting our theoretical results. Our results suggest the possibility of improving

the robustness of a classifier without sacrificing model accuracy, by only focusing

on the normal adversarial risk.

KEYWORDS

robustness, adversarial attack, manifold, topological analysis of network, generalization

1 Introduction

Machine learning (ML) algorithms have achieved astounding success in multiple

domains such as computer vision (Krizhevsky et al., 2012; He et al., 2016), natural language

processing (Wu et al., 2016; Vaswani et al., 2017), and robotics (Levine and Abbeel, 2014;

Nagabandi et al., 2018). These models perform well on massive datasets but are also

vulnerable to small perturbations on the input examples. Adding a slight and visually

unrecognizable perturbation to an input image can completely change the prediction of the

model. Many studies have been published, focusing on such adversarial attacks (Szegedy

et al., 2013; Carlini and Wagner, 2017; Madry et al., 2017). To improve the robustness of

these models, various defense methods have been proposed (Madry et al., 2017; Shafahi et al.,

2019; Zhang et al., 2019). These methods mostly focus on minimizing the adversarial risk,

i.e., the risk of a classifier when an adversary is allowed to perturb any data with an oracle.

Despite the progress in improving the robustness of models, it has been observed

that compared with a standard classifier, a robust classifier often has a lower accuracy on

the original data. The accuracy of a model can be compromised when one optimizes its

adversarial risk. This phenomenon is called the trade-off between robustness and accuracy.

Su et al. (2018) observed this trade-off effect on a large number of commonly used

model architectures. They concluded that there is a linear negative correlation between the

logarithm of accuracy and adversarial risk. Tsipras et al. (2018) proved that adversarial risk

is inevitable for any classifier with a non-zero error rate. Zhang et al. (2019) decomposed

the adversarial risk into the summation of standard error and boundary error. The

Frontiers inComputer Science 01 frontiersin.org96

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1274695
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1274695&domain=pdf&date_stamp=2024-01-11
mailto:chao.chen.1@stonybrook.edu
mailto:dnm@cs.rutgers.edu
https://doi.org/10.3389/fcomp.2023.1274695
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1274695/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

decomposition provides the opportunity to explicitly control the

trade-off. They also proposed a regularizer to balance the trade-off

by maximizing the boundary margin.

In this study, we investigate the adversarial risk and the

robustness-accuracy trade-off through a new angle. We follow

the classic manifold assumption, i.e., data are living in a low

dimensional manifold embedded in the input space (Cayton,

2005; Niyogi et al., 2008; Narayanan and Mitter, 2010; Rifai

et al., 2011). Based on this assumption, we analyze the adversarial

risk with regard to adversarial perturbations within the manifold

and normal to the manifold. By restricting to in-manifold and

normal perturbations, we define the in-manifold adversarial risk

and normal adversarial risk. Using these new risks, together with

the standard risk, we prove an upper bound and a lower bound

for the adversarial risk. We also show that the bound is tight by

constructing a pessimistic case. We validate our theoretical results

using synthetic and real-world datasets.

Our study sheds light on a new aspect of the robustness-

accuracy trade-off. Through the decomposition into in-manifold

and normal adversarial risks, we might find an extra margin to

exploit without confronting the trade-off.

A preliminary version of this study, which mainly focuses

on the theoretical results, was published in the study mentioned

in the reference (Zhang et al., 2022). The major differences

between this article and Zhang et al. (2022) include the adding

of experimental validation on real-world datasets to verify our

theoretical discoveries. To realize this validation process, we

employ the Tangent-Normal Adversarial Regularization algorithm

(TNAR) by Yu et al. (2019), which obtain the normal and in-

manifold directions within real data. This strategic utilization of

Tangent-Normal Adversarial Regularization algorithm not only

strengthens the empirical foundation of our research but also

indicates our commitment to bridging the gap between theoretical

insights and practical applicability. By integrating this experimental

result, we not only refines the theoretical framework but also

provides an empirical verification, enhancing the overall credibility

and relevance of our research findings.

1.1 Related works

Robustness-accuracy trade-off: It was believed that a classifier

cannot be optimally accurate and robust at the same time. Different

articles study the trade-off between robustness and accuracy (Su

et al., 2018; Tsipras et al., 2018; Dohmatob, 2019; Zhang et al., 2019).

One main question is whether the best trade-off actually exists.

Tsipras et al. (2018) first recognized this trade-off phenomenon

by empirical results and further proved that the trade-off exists

under the infinite data limit. Dohmatob (2019) showed that a high

accuracy model can inevitably be fooled by the adversarial attack.

Zhang et al. (2019) gave examples showing that the Bayes optimal

classifier may not be robust.

However, others have different views on this trade-off or even

its existence. In contrast to the idea that the trade-off is unavoidable,

according to these studies, the drop of accuracy is not due to

the increase in robustness. Instead, it is due to a lack of effective

optimization methods (Shaham et al., 2018; Awasthi et al., 2019;

Rice et al., 2020) or better network architecture (Fawzi et al., 2018;

Guo et al., 2020). Yang et al. (2020) showed the existence of both

robust and accurate classifiers and argued that the trade-off is

influenced by the training algorithm to optimize the model. They

investigated distributionally separated dataset and claimed that the

gap between robustness and accuracy arises from the lack of a

training method that imposes local Lipschitzness on the classifier.

Remarkably, in the study mentioned in the reference (Carmon

et al., 2019; Gowal et al., 2020; Raghunathan et al., 2020), it was

shown that with certain augmentation of the dataset, one may be

able to obtain a model that is both accurate and robust.

Our theoretical results upperbound the adversarial risk using

differentmanifold-derived risks plus the standard Bayes risk (which

is essentially the accuracy). This quantitative relationship provides

a pathway toward an optimal robustness-accuracy trade-off. In

particular, our results suggest that, by adversarial training, the

model against perturbations in the normal direction can improve

robustness without sacrificing accuracy.

Manifold assumption: One important line of research focuses on

the manifold assumption on the data distribution. This assumption

suggests that observed data are distributed on a low dimensional

manifold (Cayton, 2005; Narayanan and Mitter, 2010; Rifai et al.,

2011), and there exists a mapping that embeds the low dimension

manifold in some higher dimension space. Traditional manifold

learning methods (Tenenbaum et al., 2000; Saul and Roweis, 2003)

that try to recover the embedding by assuming the mapping

preserves certain properties such as distances or local angles.

Following this assumption, on the topic of robustness, Tanay and

Griffin (2016) showed the existence of adversarial attack on the

flat manifold with linear classification boundary. It was proved

later (Gilmer et al., 2018) that in-manifold adversarial examples

exist. They stated that high-dimension data are highly sensitive to

l2 perturbations and pointed out that the nature of adversarial is

the issue with potential decision boundary. Later, Stutz et al. (2019)

showed that with the manifold assumption, regular robustness is

correlated with in-manifold adversarial examples, and therefore,

accuracy and robustness may not be contradictory goals. Further

discussion (Xie et al., 2020) even suggested that adding adversarial

examples to the training process can improve the accuracy of the

model. Lin et al. (2020) used perturbation within a latent space

to approximate in-manifold perturbation. Most existing studies

only focused on in-manifold perturbations. To the best of our

knowledge, we are the first to discuss normal perturbation and

normal adversarial risk. We are also unaware of any theoretical

results proving upper/lower bounds for adversarial risk in the

manifold setting.

We also note a classic manifold reconstruction problem,

i.e., reconstructing a d-dimensional manifold given a set of

points sampled from the manifold. A large group of classical

algorithms (Edelsbrunner and Shah, 1994; Dey andGoswami, 2006;

Niyogi et al., 2008) are probably good, i.e., they give a guarantee of

reproducing the manifold topology with a sufficiently large number

of sample points.

Under data manifold assumption, Stutz et al. (2019) and

Shamir et al. (2021) first reconstruct the data manifold using

Generative Networks. Then, with the approximation of manifold,

Frontiers inComputer Science 02 frontiersin.org97

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

the authors explored different approaches for computing in-

manifold attack examples under manifold assumption. Stutz et al.

(2019) approximate the data manifold using VAE models and

then directly perturbed the latent space without considering the

perturbed distance in the original space, making it difficult to

bound their on-manifold examples. On the other hand, Shamir

et al. (2021) first perturbed the latent code to generate a set of basis

in the tangential space, using these basis vectors to generate on-

manifold directions and search for in-manifold attack examples. In

the study by Lau et al. (2023), the author employs generativemodel-

based methods to simultaneously perturb the input data in both the

original space and the latent space. This dual perturbation process

results in in-manifold perturbed data even on high-resolution

datasets.

The Tangent-Normal Adversarial Regularization (TNAR)

algorithm (Yu et al., 2019) distinguishes itself by finding tangential

directions along the data manifold through power iteration and

conjugate gradient algorithms. Subsequently, we perform a targeted

search along these tangential directions to find valid Lp norm-based

adversarial examples while ensuring effective perturbation bounds

on the in-manifold examples.

2 Manifold-based risk decomposition

In this section, we state our main theoretical result

(Theorem 1), which decomposes the adversarial risk into

normal adversarial risk and in-manifold (or tangential) adversarial

risk. We first define these quantities and set up basic notations.

Next, we state the main theorem in Section 2.3. For the sake of

simplicity, we describe our main theorem in the setting of binary

labels, {−1, 1}. Informally, the main theorem states that under mild

assumptions, (1) the adversarial risk can be upper-bounded by

the sum of the standard risk, normal adversarial risk, in-manifold

adversarial risk, and another small risk called nearby-normal-risk;

(2) when the normal adversarial risk is zero, the adversarial risk

can be upper-bounded by the standard risk and the in-manifold

adversarial risk. Finally, we show in Theorem 2 that the bounds are

tight by constructing pessimistic cases.

2.1 Data manifold

Let (RD, ||.||) denote the D dimensional Euclidean space with

ℓ2-norm, and let p be the data distribution. For x ∈ R
D, let Bǫ(x) be

the open ball of radius ǫ in R
D with center at x. For a set A ⊂ R

D,

define Bǫ(A) = {y : ∃x ∈ A, d(x, y) < ǫ}.

Let M ⊂ R
D be a d-dimensional compact smooth manifold

embedded in R
D. Thus, for any x ∈ M, there is a corresponding

coordinate chart (U, g), where U ∋ x is an open set of M and g is

a homeomorphism from U to a subset of Rd. Let TxM and NxM

denote the tangent and normal spaces at x. Intuitively, the tangent

space TxM is the space of tangent directions or equivalence classes

of curves in M passing through x, with two curves considered

equivalent if they are tangent at x. The normal space NxM is the

set of vectors in R
D that are orthogonal to any vector in TxM.

Since M is a smooth d-manifold, TxM and NxM are d and

(D − d) dimensional vector spaces, respectively (see Figure 1 for

an illustration). For detailed definitions, we refer the reader to the

study mentioned in the reference (Bredon, 2013).

We assume that the data and (binary) label pairs are drawn

fromM×{−1, 1}, according to some unknown distribution p(x, y).

Note that M is unknown. A score function f (x) is a continuous

function from R
D to [0, 1]. We denote by 1A the indicator function

of the event A that is 1 if A occurs and 0 if A does not occur and will

use it to represent the 0-1 loss.

2.2 Robustness and risk

Given data from M × {−1, 1} drawn according to data

distribution p and a classifier f onRD, we define three types of risks.

The first, adversarial risk, has been extensively studied in machine

learning literature:

Definition 1 (Adversarial risk). Given ǫ > 0, define the adversarial

risk of classifier f with budget ǫ to be

Radv(f , ǫ) : = E(x,y)∼p1(∃x
′ ∈ Bǫ(x) : f (x

′)y ≤ 0)

Notice that Bǫ(x) is the open ball around x in R
D (the ambient

space).

Next, we define risk that is concerned only with in-manifold

perturbations. Previously, Gilmer et al. (2018) and Stutz et al.

(2019) showed that there exist in-manifold adversarial examples

and empirically demonstrated that in-manifold perturbations are

a cause of the standard classification error. Therefore, in the

following, we define the in-manifold perturbations and in-manifold

adversarial risk.

Definition 2 (In-manifold Adversarial Risk). Given ǫ > 0, the in-

manifold adversarial perturbation for classifier f with budget ǫ is

the set

Bin
ǫ
(x) : = {x′ ∈ M : ‖x− x′‖ ≤ ǫ}

The in-manifold adversarial risk is

Rinadv(f , ǫ) : = E
(x,y)∼p

1(∃x′ ∈ Bin
ǫ
(x) : f (x′)y ≤ 0)

We remark that while the above perturbation is on the

manifold, many manifold-based defense algorithms use generative

models to estimate the homeomorphism (the manifold chart)

z = g(x) for real-world data. Therefore, instead of in-manifold

perturbation, one can also use an equivalent η-budget perturbation

in the latent space. However, for our purposes, the in-manifold

definition will be more convenient to use. Finally, we define the

normal risk:

Definition 3 (Normal adversarial risk). Given ǫ > 0, the normal

adversarial perturbation for classifier f with budget ǫ is be the set

Bnor
ǫ

(x) : = {x′ : x′ − x ∈ NxM, |‖x− x′‖ ≤ ǫ}

Define the normal adversarial risk as

Rnoradv(f , ǫ) : = E
(x,y)∼p

1(∃x′ 6= x ∈ Bnor
ǫ

(x) : f (x′)y ≤ 0)

Frontiers inComputer Science 03 frontiersin.org98

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

FIGURE 1

Tangent and normal spaces of a manifold. Here, x is the original data point on the data manifold M. TxM is the tangent space along the data

manifold M at point x. x′ is the in-manifold adversarial example on the data manifold M. NxM denotes the normal space perpendicular to TxM. x∗

is an adversarial perturbation along NxM.

Notice that the normal adversarial risk is non-zero if there is an

adversarial perturbation x′ 6= x in the normal direction at x. Finally,

we have the usual standard risk: Rstd(f) : = E(x,y)∼p 1(f (x)y ≤ 0).

2.3 Main result: decomposition of risk

In this section, we state our main result that decomposes the

adversarial risk into its tangential and normal components. Our

theorem will require a mild assumption on the decision boundary

DB(f) of the classifier f , i.e., the set of points x where f (x) = 0.

Assumption [A]: For all x ∈ DB(f) and all neighborhoods U ∋ x

containing x, there exist points x0 and x1 in U such that f (x0) < 0

and f (x1) > 0.

This assumption states that a point that is difficult to classify

by f has points of both labels in any given neighborhood around

it. In particular, this means that the decision boundary does not

contain an open set. We remark that both Assumption A and the

continuity requirement for the score function f are implicit in

previous decomposition results such as Equation 1 in the study by

Zhang et al. (2019). Without Assumption A, the “neighborhood”

of the decision boundary in the study by Zhang et al. (2019)

will not contain the decision boundary, and it is easy to give a

counterexample to Equation 1 in the study by Zhang et al. (2019) if

f is not continuous.

Our decomposition result will decompose the adversarial risk

into the normal and tangential directions: however, as we will show,

an “extra term” appears, which we define next:

Definition 4 (NNR Nearby-Normal-Risk). Fix ǫ > 0. Denote by

A(x, y) the event that ∀x′ ∈ Bnor
ǫ

(x), f (x′)y > 0, i.e., the normal

adversarial risk of x is zero.

Denote by B(x, y) the event that

∃x′ ∈ Bin2ǫ(x) :(∃z ∈ Bnor
ǫ

(x′) : f (z)f (x′) ≤ 0),

i.e., x has a point x′ near it such that x′ has non-zero normal

adversarial risk.

Denote by C(x, y) the event ∀x′ ∈ Bin2ǫ(x), f (x
′)y > 0, i.e., x has

no adversarial perturbation in the manifold within distance 2ǫ.

The Nearby-Normal-Risk (denoted as NNR) of f with budget ǫ

is defined to be

E
(x,y)∼p

1(A(x, y) ∧ B(x, y) ∧ C(x, y)),

where ∧ denotes “and”.

We are now in a position to state our main result.

Theorem 1. [Risk Decomposition] Let M be a smooth compact

manifold inRD and let data be drawn fromM×{−1, 1}, according

to some distribution p. There exists a 1 > 0 depending only onM

such that the following statements hold for any ǫ < 1. For any

score function f satisfying assumption A,

(I)

Radv(f , ǫ) ≤ Rstd(f)+ Rnoradv(f , ǫ)+ Rinadv(f , 2ǫ)

+ NNR(f , ǫ). (1)

(II) If Rnor
adv

(f , ǫ) = 0, then

Radv(f , ǫ) ≤ Rstd(f)+ Rinadv(f , 2ǫ)

Remark:

1. The first result decomposes the adversarial risk into the standard

risk, the normal adversarial risk, the in-manifold adversarial

risk, and an “extra term”—the Nearby-Normal-Risk. The NNR

comes into play when a point x does not have normal adversarial

risk, and the score function on all points nearby agrees with y(x),

yet there is a point near x that has non-zero normal adversarial

risk.

2. The second result states that if the normal adversarial risk is zero,

the ǫ-adversarial risk is bounded by the sum of the standard risk

and the 2ǫ in-manifold adversarial risk.

3. Our bound suggests that there may be “free lunch” in

robustness-accuracy trade-off. There is an extra margin one

can exploit without confronting the trade-off. Specifically,

this corollary suggests that by solely minimizing the normal

adversarial risk, we can govern the difference between

adversarial risk and standard accuracy by focusing exclusively

on in-manifold adversarial risk. This insight provides a pathway

Frontiers inComputer Science 04 frontiersin.org99

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

to navigating the trade-off under the condition of zero normal

adversarial risk, wherein the key lies in minimizing the in-

manifold risk. This strategic approach opens up ways for

fine-tuning and optimizing the robustness-accuracy trade-

off, shedding light on potential methods for achieving better

performance on robust models.

One may wonder if a decomposition of the form Radv(f , ǫ) ≤

Rstd(f) + Rnor
adv

(f , ǫ) + Rin
adv

(f , 2ǫ) is possible. We prove that this is

not possible. The complete proof of Theorem 1 is technical and is

provided in the Supplementary material. Here, we provide a sketch

of the proof first.

2.3.1 Proof sketch of theorem 1
We first address the existence of the constant 1 that only

depends on M in the theorem statement. Define a tubular

neighborhood of M as a set N ⊂ R
D containing M such that

any point z ∈ N has a unique projection π(z) onto M such that

z − π(z) ∈ Nπ(z)M. Thus, the normal line segments of length ǫ at

any two points x, x′ ∈ M are disjoint.

By Theorem 11.4 in the study by Bredon (2013), we know that

there exists 1 such that N : = {y ∈ R
D
: dist(y,M) < 1} is a

tubular neighborhood ofM. The1 guaranteed by Theorem 11.4 is

the 1 referred to our theorem, and the budget ǫ is constrained to

be at most 1.

For simplicity, we first sketch the proof of the case when y

is deterministic (the setting of Corollary 1). Considering a pair

(x, y) ∼ p, x has an adversarial perturbation x′ within distance ǫ.

We show that one of the four cases must occur:

• x′ = x (standard risk).

• x′ 6= x, x′ ∈ NxM, and f (x)y > 0 (normal adversarial risk).

• Let x′′ = π(x′) (the unique projection of x′ onto M), then

d(x′′, x) ≤ 2ǫ and either

* f (x′′)y ≤ 0 and x have an 2ǫ in-manifold adversarial

perturbation (in-manifold adversarial risk) or

* f (x′′)f (x′) ≤ 0, which implies that x is within 2ǫ of a point

x′′ ∈ M that has non-zero normal adversarial risk (NNR:

nearby-normal-risk).

The second of these sets is Znor(f , ǫ) in the setting of

Corollary 1. One can observe that the four cases correspond to the

four terms in Equation 2.

For the proof of Theorem 1, one has to observe that since y

is not deterministic, the set Znor(f , ǫ) is random. One then has to

average over all possible Znor(f , ǫ) and show that the average equals

NNR.

For the second part of Theorem 1 and Corollary 1, we observed

that if the normal adversarial risk is zero, in the last case, x′′

has non-zero normal adversarial risk, with normal adversarial

perturbation x′. Unless x′′ is on the decision boundary, by

continuity of f one can show that there exists an open set around

x′′ such that all points have non-zero normal adversarial risk.

This contradicts the fact that the normal adversarial risk is zero,

implying that case 4 happens only on a set of measure zero

(recalling that by assumption A, the decision boundary does not

contain any open set). This completes the proof sketch.

Theorem 2. [Tightness of decomposition result]

For any ǫ < 1/2, there exists a sequence {fn}
∞
n=1 of continuous

score functions such that

(I) Rstd(f) = 0 for all n ≥ 1,

(II) Rin
adv

(fn, 2ǫ) = 0 for all n ≥ 1, and

(III) Rnor
adv

(fn, ǫ) → 0 as n goes to infinity,

but Radv(f , ǫ) = 1 for all n >
1√
3ǫ
.

Thus, all three terms, except the NNR term, indicate zero, but

the adversarial risk (the left side of Equation 2) indicates one.

Here, we provide a sketch of the proof of Theorem 2. Then, we

give the complete proof in the Supplementary material.

2.3.2 Proof of theorem 2
Let M = [0, 1] and fix ǫ < 1/2 and n ≥ 1. We will think of

data as lying in the manifold M and R
2 as the ambient space. The

true distribution is simply η(x) = 1 for all x ∈ M, hence y ≡ 1 (all

labels onM are 1).

Let ℓ1 = n−1
n(n+1)

and ℓ2 = 1
n2
. Note that (n + 1)ℓ1 + nℓ2 = 1.

Consider the following partition ofM = A0 ∪B1 ∪A1 ∪B2 ∪ · · · ∪

Bn ∪ An, where Ai (0 ≤ i ≤ n) is of length ℓ1 and Bi (1 ≤ i ≤ n) is

an interval of length ℓ2. The interval A0,B1,A1, · · · ,Bn,An appears

in this order from left to right.

For ease of presentation, we will consider {0, 1} binary labels

and build score functions fn, taking values in [0, 1] that satisfy the

conditions of the Theorem.

For an x ∈ Ai for some 0 ≤ i ≤ n, define gn(x) = 1. For x ∈ Bi
for some 1 ≤ i ≤ n, define gn(x) = ǫ/2. Observe that ǫ/2 < 1/4.

We now define the decision boundary of fn as the set of points

in R
2 on the “graph” of gn and−gn. That is,

DB(fn) =
{

(x, cgn(x)) : x ∈ [0, 1], c ∈ {−1, 1}
}

.

(see Figure 2 for a picture of the upper decision boundary).

Now, let fn be any continuous function with decision boundary

DB(fn) as above. That is, fn :R
2 → [0, 1] is such that fn(x, t) > 1/2

if |t| < gn(x), fn(x, t) < 1/2 if |t| > gn(x) and fn(x, y) = 1/2 if

|t| = gn(x).

In-manifold adversarial risk is zero: Observe that since η(x) =

1 on [0, 1], the in-manifold adversarial risk of fn is zero, since

fn(x, 0) > 1/2, and so sign(2fn − 1) equals 1, which is the same as

the label y at x. This means that there are no in-manifold adversarial

perturbations, no matter the budget. Thus, Rin
adv

(fn, ǫ) = 0 for all

n ≥ 1.

Normal adversarial risk goes to zero: Next, we consider the

normal adversarial risk. If x ∈ Ai for some i, a point in the normal

ball with budget ǫ is of the form (x, t) with |t| < ǫ < 1/2 but

fn(x, t) > 1/2 for such points and thus sign (2fn − 1) = y(x).

Thus, x ∈ Ai does not contribute to the normal adversarial risk.

If x ∈ Bi for some i then fn(x, ǫ) < 1/2 while fn(x, 0) > 1/2,

and hence such x contributes to the normal adversarial risk. Thus,

Frontiers inComputer Science 05 frontiersin.org100

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

FIGURE 2

Lower bound illustration.

Rnor
adv

(fn, ǫ) =
∑n

i=1 µ(Bi) =
∑n

i=1 ℓ2 = 1/n, which goes to zero as

n goes to infinity.

Adversarial risk goes to one:Now, we show that Radv(fn, ǫ) goes to

one. In fact, we will show that as long as n is sufficiently large, the

adversarial risk is 1. Consider n such that ℓ1 : = n−1
n(n+1)

<
√
3ǫ.

Note that such an n exists simply because ℓ1 goes to zero as n goes

to infinity and n >
1√
3ǫ

works.

Clearly, points in Bi contribute to adversarial risk as they have

adversarial perturbations in the normal direction. However, if we

consider x ∈ Ai (which does not have adversarial perturbations

in the normal direction or in-manifold), we show that there still

exists an adversarial perturbation in the ambient space: that is, there

exists a point x′ such that a), the distance between (x′, ǫ/2) and

(x, 0) is at most ǫ and b) sign(2fn(x, ǫ/2)) 6= sign(2fn(x, 0)). Let x
′

be the closest point in B : = ∪Bi to x. Then, |x′ − x| ≤ ℓ1/2 <
√
3ǫ/2. Thus, the distance between (x′, ǫ/2) and (x, 0) is at most

√

(
√
3ǫ/2)2 + (ǫ/2)2 = ǫ. Since x′ ∈ B, fn(x

′, ǫ/2) < 1/2, whereas

fn(x, 0) < 1/2, (x′, ǫ/2) is a valid adversarial perturbation around x.

Thus, for all x ∈ [0, 1], there exists an adversarial perturbation

within budget ǫ and therefore Radv(fn, ǫ) = 1 as long as n >
1√
3ǫ
.

This completes the proof.

2.4 Decomposition when y is deterministic

Let η(x) = Pr(y = 1|x). We consider here the simplistic setting

when η(x) is either 0 or 1, i.e., y is a deterministic function of x. In

this case, we can explain our decomposition result in a simpler way.

Let Znor(f , ǫ) : = {x ∈ M : f (x)y > 0 and ∃x′ 6= x ∈

Bnor
ǫ

(x), f (x′)y(x) ≤ 0}. That is, Znor(f , ǫ) is the set of points with

no standard risk but with a non-zero normal adversarial risk under

a positive but less than ǫ normal perturbation. Let Znor(f , ǫ) =

M \ Znor(f , ǫ) be the complement of Znor(f , ǫ). For a set A ⊂ M,

let µ(A) denote the measure of A.

Corollary 1. Let M be a smooth compact manifold in R
D, and let

η(x) ∈ {0, 1} for all x ∈ M. There exists a 1 > 0 depending only on

M such that the following statements hold for any ǫ < 1. For any

score function f satisfying assumption A,

(I)

Radv(f , ǫ) ≤ Rstd(f)+ Rinadv(f , 2ǫ)+ Rnoradv(f , ǫ)

+ µ(Znor(f , ǫ)) ∩ B2ǫ(Z
nor(f , ǫ)) (2)

(II) If Rnor
adv

(f , ǫ) = 0, then

Radv(f , ǫ) ≤ Rstd(f)+ Rinadv(f , 2ǫ).

Therefore, in this setting, the adversarial risk can be

decomposed into the in-manifold adversarial risk and the measure

of a neighborhood of the points that have non-zero normal

adversarial risk.

3 Experiment: synthetic dataset

In this section, we verify the decomposition upper bound

in Theorem 1 on synthetic data sets. We train different

classifiers and empirically verify the inequalities on these

classifiers.

In our experiments, instead of using L2 norm to evaluate

the perturbation, we search the neighborhood under L∞ norm,

which would produce a stronger attack than L2 norm one. The

experimental results indicate that our theoretical analysis may hold

for an even stronger attack.

Frontiers inComputer Science 06 frontiersin.org101

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

3.1 Toy data set and perturbed data

We generate four different data sets where we study both the

single decision boundary case and the double decision boundary case.

The first pair of datasets are in 2D space and the second pair is in

3D. We aim to provide empirical evidence for the claim i) in the

Theorem 1 using the single and double decision boundary data.

For the 2D case, we sample training data uniformly from a unit

circle C1 : x
2
1 + x22 = 1. For the single decision boundary data set,

we set

y = 21(x1 > 0)− 1 (Single Decision Boundary)

y = 21(x1x2 > 0)− 1 (Double Decision Boundary)

The visualization of the dataset is shown in Figures 3A, B). In

particular, we set unit circle C1 has 1 = 1, we set the perturbation

budget to be ε ∈ [0.01, 0.3]. Moreover, the normal direction is alone

the radius of the circle.

In the 3D case, we set the manifold to be M : x3 = 0 and

generate training data in region [−π ,π]× [−π ,π] on x1x2-plane.

We set

y = 21
[

x1 > sin(x2)
]

− 1(Single)

y = 21
[

(x1 − sin(x2))x2 > 0
]

− 1(Double)

Figures 3C, D show these two cases. For the single decision

boundary example, due to the manifold being flat, we have 1 =

∞, and we explore the ǫ value in range [0.1, 0.8]. For the double

decision boundary, the distance to the decision boundary is half of

the distance in the single boundary case. Therefore, we set the range

of perturbation to be [0.1, 0.4].

3.2 Algorithm for estimating di�erent risks

To empirically estimate the decomposition of adversarial risk,

we need to estimate the normal adversarial risk Rnor
adv

, the in-

manifold adversarial risk Rin
adv

, the classic adversarial risk Radv,

and the standard risk Rstd. The standard risk is obtained by

evaluating on the standard classifier f trained by the original

training data set. For the classic adversarial risk Radv, we follow

the classic approach and train the adversarial classifier f adv

following the classic adversarial training Algorithm (Madry et al.,

2017). The risk is evaluated on perturbed example xadv computed

by the classic Projected Gradient Descent Algorithm (Madry

et al., 2017). To estimate the other two risks, Rnor
adv

and Rin
adv

,

we generate adversarial perturbations along normal and in-

manifold directions and use these perturbations to train different

robust classifiers.

To compute the in-manifold perturbation, we design two

methods. The first one is using grid search to go through all the

perturbations in the manifold within the ǫ budget and return

the point with maximum loss as in-manifold perturbation xin.

Although this seems to be the best solution, it is quite expensive

due to the grid-search procedure. Therefore, we resort to a second

method in our experiments using Projected Gradient Descent

(PGD) method to find a general adversarial point xadv in ambient

space and then project xadv back to the data manifold M.

In Supplementary material, we will further compare these two

methods.

Next, we explain how to obtain normal direction perturbations

xnor . Note that in both the 2D and 3D toy datasets, the dimension

of the normal space is 1. Therefore, the normal space at point x can

be represented by NxM = {x + t · v|0 < t < ǫ}. Here, v is the

unit normal vector and can be computed exactly in close-form in

our toy data.

We list the Radv and RHS value for 2D and 3D datasets for all

classifiers in Tables 1, 2.

3.3 Empirical results and discussion

2D dataset: We generate 1,000 2D training data uniformly.

The classifier is a two-layer feed-forward network. Each classifier

is trained with Stochastic Gradient Descent (SGD) with a learning

rate of 0.1 for 1,000 epochs. In addition, since 1 = 1

for the unit circle, the upper bound of ǫ value is up to

1. Hence, we run experiments for ǫ from 0.01 to 0.3. We

leave more discussion and visualization of this phenomenon

in Supplementary material. The right hand side values of the

inequality for all three classifiers are presented in Table 1. We could

observe that the upper bounds hold for 2D data, at least for all

these classifiers.

3D dataset: We generate 1,000 training data from the data set.

The classifier is a four-layer feedforward network. We use SGD

with a learning rate of 0.1 and weight decay of 0.001 to train the

network. The total training epoch is 2,000. In Table 2, we list same

classifiers trained on the 3D dataset. Similar to the 2D dataset, for

all classifiers, inequality 1 holds. Due to the limit of the space, we

provide additional empirical results in Supplementary material.

4 Experiment: real-world datasets

In this section, we verify our theoretical results on real-

world dataset experiments. The challenge is to find a manifold

representation and generate in-manifold/normal perturbations.

We use an Autoencoder to represent the manifold. Next, we use

the TNAR algorithm to generate in-manifold perturbations. We

also extend TNAR to generate normal perturbations. These in-

manifold/normal perturbations allow us to estimate different risks.

In Section 4.1, we explain how to learn the manifold

representation. In Sections 4.2 and 4.3, we provide details

on finding in-manifold and normal adversarial perturbation,

respectively. Finally, in Section 4.4, we validate our theoretical

bound.

Datasets: We utilize three commonly used datasets, two of

which are grayscale: MNIST and FashionMNIST. Both of these

datasets comprise 28×28 pixel images. MNIST dataset contains

handwritten digits ranging from 0 to 9, each labeled accordingly.

The dataset is divided into 60,000 training samples and 10,000

testing samples. FashionMNIST dataset consists of images of

clothing items, with each item labeled into one of ten different

categories. It includes 60,000 training samples and 10,000 testing

samples. In addition to the grayscale datasets, we also incorporate

Frontiers inComputer Science 07 frontiersin.org102

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

FIGURE 3

In this figure, we show our four toy data set. On the left side, 2D data is set on a unit circle. The single decision boundary data are linearly separated

by the y-axis. Moreover, in the double decision boundary case, the circle is separated into four parts with x-axis and y-axis. On the right side, the 3D

data is set. The data are distributed in a square area on x1x2-plane. In the single decision boundary example, the data are divided by the curve

x1 = sin(x2). Moreover, in the double decision boundary situation, we add the y-axis as the extra boundary. (A) 2D single decision boundary. (B) 2D

double decision boundary. (C) 3D single decision boundary. (D) 3D double decision boundary.

TABLE 1 2D adversarial risk comparison.

Single boundary f f adv Double boundary f f adv

ǫ Radv RHS Radv RHS ǫ Radv RHS Radv RHS

0.01 0.0110 0.022 0.0110 0.022 0.01 0.0080 0.0286 0.0060 0.0296

0.02 0.0130 0.0449 0.0130 0.0449 0.02 0.0240 0.0694 0.0230 0.2525

0.03 0.0230 0.063 0.0250 0.0671 0.03 0.0510 0.1333 0.0460 0.1363

0.05 0.0280 0.0794 0.0300 0.0784 0.05 0.0620 0.1810 0.0620 0.1640

0.1 0.0709 0.1652 0.0699 0.1645 0.1 0.1170 0.3398 0.1169 0.3071

0.15 0.0979 0.2831 0.1009 0.2886 0.15 0.1850 0.6059 0.1860 0.4895

0.2 0.128 0.3951 0.126 0.3971 0.2 0.242 0.8763 0.247 0.8002

0.25 0.1660 0.4966 0.1630 0.4931 0.25 0.3139 1. 0.3169 0.9971

0.3 0.1979 0.4509 0.1979 0.5613 0.3 0.386 0.9615 0.379 1

TABLE 2 3D adversarial risk comparison.

Single boundary f f adv Double boundary f f adv

ǫ Radv RHS Radv RHS ǫ Radv RHS Radv RHS

0.1 0.0450 0.0992 0.0410 0.092 0.1 0.0649 0.1654 0.0789 0.153

0.2 0.1139 0.2297 0.0999 0.229 0.2 0.1700 0.3858 0.1370 0.3341

0.3 0.1550 0.3106 0.136 0.3216 0.3 0.2159 0.4740 0.1810 0.4208

0.4 0.2089 0.3765 0.1680 0.3889 0.4 0.3000 0.6051 0.2069 0.5325

one color dataset. SVHN dataset contains 10 different classes of

digit images, each with 3×32×32 pixels.

Classifier: We selected ResNet18 as our classifier and employed

the Adam optimizer with learning rate to be 0.001 for our

experiments. To train the ResNet18 network for each dataset, we

continued training until the training accuracy reached 99%. On

the MNIST dataset, our trained classifier achieved an test accuracy

of 99.24%. When applied to the FASHIONMNIST dataset, the

classifier demonstrated a test accuracy of 94.78%. Moreover, the

SVHN dataset obtain a test accuracy of 96.74%.

Classic adversarial training: To evaluate the robustness of the

classifier, we generated Projected Gradient Descent (PGD) (Madry

et al., 2017) attacks using L2 norms. For creating an adversarial

attack, we set the L2 attack budget to 1.5 for the MNIST and

FASHIONMNIST datasets and 0.25 for SVHN. For L∞ attacks, the

perturbation budget was set to 0.3 for grayscale datasets and 8/255

for color images.

4.1 Approximation of data manifold

We employed an autoencoder structure consisting of 7

VGG blocks to approximate the underlying data manifold. The

autoencoder was trained using Mean Square Loss of 400 epochs.

The output of the trained autoencoder is presented in Figure 4.

We observe that for MNIST and FASHIONMNIST datasets, the

reconstruction results are very close to the input data. For the

SVHNdataset, while the reconstruction images are reasonably close

Frontiers inComputer Science 08 frontiersin.org103

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

FIGURE 4

The manifold reconstruction from VGG-like Autoencoder Network on (A) MNST, (B) FASHIONMNST, and (C) SVHN datasets. For each dataset, we

randomly sampled 12 examples. We plot the reconstructed images in the first row, the original input images in the middle row, and the di�erence

between them in the last row.

to the input images, the reconstruction error is relatively large. We

provide quantitative measures of the reconstruction quality in the

Supplemental material.

4.2 Generating in-manifold perturbations

We use TNAR (Yu et al., 2019) to generate in-manifold

examples. TNAR formulates the in-manifold adversarial attack as a

linear optimization problem. Using power iteration and conjugate

gradient algorithms, the tangent direction along the data manifold

is identified. Next, a search along the tangent direction is performed

to find valid Lp-norm adversarial perturbations.

Figure 5 shows the in-manifold perturbations generated using

the TNAR method. Similar to commonly believed, the in-manifold

perturbations are mainly “semantical”. We observe that the

perturbations mainly occur at the edges of the image content for

datasets such as MNIST or inside the items to change their texture

or details, as observed in FASHIONMNIST. In the case of SVHN,

the perturbations are primarily focused on the background part of

the images to reshape the meaning of the digits.

4.3 Generating normal perturbations

We extend TNAR to compute the normal direction

perturbation. In the original TNAR, a single random normal

direction is generated without fully exploring the vast ambient

space. However, by nomeans, the normal space is one-dimensional.

We need to explore the whole normal space to find good normal

perturbations. To this end, we employ an iterative process to

repeatedly generate normal vectors. Along each normal vector,

we perform a search until the perturbation limit is reached.

This iterative process is crucial, and it enables us to explore

the whole normal space, test a broader range of perturbation

patterns, and increase the chance of obtaining better normal

adversarial perturbations.

Sample normal perturbations are presented in Figure 6.

Consistent with our initial expectations, the normal perturbations

do not directly modify the meaning of the image. Instead, they

add noise to various parts of the images, effectively deceiving

the classifier.

For the MNIST dataset, we observed that the normal

perturbations primarily occur in the background, an area that

in-manifold attacks would not typically alter. Similarly, in the

FASHIONMNIST dataset, the attack expands to the background

Frontiers inComputer Science 09 frontiersin.org104

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

FIGURE 5

We present the in-manifold examples in the first row, followed by the original images in the second row, and the di�erences are shown in the last

row. Clearly, for MNIST (A) and FASHIONMNIST (B) datasets, the attacks only a�ect the object part. As for SVHN (C), visualizing the di�erence

between attacks on the object and the background is challenging. Nonetheless, when comparing with Figure 6, we can discern that the

perturbations contain some information about the target object. For instance, in the eighth example, the attack mainly targets the object

representing the number five and modifies it to be the number three. Moreover, in cases where multiple numbers are present in the image, such as

the fifth example, the attack first merges the number two into the background and alters the appearance of the number six to be an eight.

areas as well. On the other hand, for SVHN, the noise covers the

entire images, not restricted to the background of the digits as the

in-manifold perturbations.

4.4 Validate our theoretical findings

In this section, we validate the inequality on the classifiers. We

focus on L2 normal attacks. We employ PGD attack with 40 search

steps. As shown in Table 3, we report in column 1 the adversarial

risk, which is the left-hand side (LHS) of Inequality 2. In columns 2,

3, and 4, we report the standard risk, in-manifold perturbation risk

(evaluated on in-manifold perturbations), and normal adversarial

risk (evaluated on normal perturbations). In column 5, we report

their sum. Unfortunately, we have no close-form solution of the

NNR term (the forth term in RHS). So, we know that column 5 is

smaller than the actual RHS of the inequality.

Upon examining the table, we find that our theoretical findings

hold for the FASHIONMNIST and SVHN datasets; the first column

is smaller than the fifth column, which is smaller than the RHS.

These results validate our theoretical result.

We do not observe similar trend in MNIST; the fifth column is

smaller than the first column. This could be due to two potential

reasons: (1) the missing term NNR is very large, causing the fifth

column to be small while the actual RHS is still larger than LHS;

(2) we underestimated the in-manifold and normal adversarial

risks, as we are unable to find good quality in-manifold/normal

perturbations. The second potential issue might be related to the

separation of classes in MNIST.

Frontiers inComputer Science 10 frontiersin.org105

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

FIGURE 6

In this plot, we display the normal examples using the same visualization approach as the in-manifold examples. From the observation, it is evident

that the attacks primarily occur in the background and lack substantial information about the target object. (A) MNIST. (B) FASHIONMNIST. (C) SVHN.

TABLE 3 In the table, we validate our theoretical findings using L2 norm.

Dataset L2 attack risk Standard risk In-manifold
adversarial risk

Normal adversarial
risk

Sum of RHS

MNIST 0.856 0.0076 0.0702 0.5109 0.5887

FASHIONMNIST 0.98 0.0522 0.1047 0.8647 1.0216

SVHN 0.55 0.0326 0.1715 0.4783 0.6824

We report different risk terms in the Inequality 1 in separate columns. The first column (L2 attack risk) is the adversarial risk Radv , corresponding to the LHS of the inequalities. In the last

column, we report RHS of 1, which is approximately the sum of the standard risk, in-manifold adversarial risk, and normal adversarial risk.

4.5 Limitations and future work

Our empirical experiments are limited to low-dimensional

datasets due to the computational complexity of the TNAR

algorithm, which is used to find the normal and in-manifold

directions. The TNAR algorithm employs power iteration to

compute the approximation of the largest eigenvector of the

Jacobian matrix of the network. As the dimension of input images

increases, the computation complexity of generating the normal

and in-manifold directions grows quadratically. This would be

costly to compute for high-resolution datasets, as the computations

are performed on CPU instead of GPU. Therefore, addressing the

application of our approach to high-dimensional datasets is a future

direction worth exploring further.

Frontiers inComputer Science 11 frontiersin.org106

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

Extending our experiments to high-dimensional datasets

for future studies would provide valuable insights into the

generalizability and effectiveness of our approach in real-world

scenarios. Additionally, investigating the behavior of the normal

and in-manifold directions in high-dimensional spaces could shed

light on the robustness of the proposed method against more

complex and diverse adversarial attacks.

5 Conclusion

In this study, we study the adversarial risk of the machine

learning model from the manifold perspective. We report

theoretical results that decompose the adversarial risk into the

normal adversarial risk, the in-manifold adversarial risk, and the

standard risk with the additional Nearby-Normal-Risk term. We

present a pessimistic case suggesting that the additional Nearby-

Normal-Risk term can not be removed in general. Our theoretical

analysis suggests a potential training strategy that only focuses on

the normal adversarial risk.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding authors.

Author contributions

WZ: Writing – original draft. YZ: Writing – original draft.

XH: Writing – original draft. YY: Writing – review & editing. MG:

Writing – review & editing. CC: Writing – review & editing. DM:

Writing – review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. MG

would like to acknowledge support from the US National Science

Foundation (NSF) 476 awards CRII-1755791 and CCF-1910873.

This material is partially based on study supported by the Defense

Advanced Research Projects Agency (DARPA) under Agreement

No. HR0011-22-9-0077. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of DARPA. The

content of this manuscript has been presented at the AISTATS

(Zhang et al., 2022).

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

The author(s) declared that they were an editorial

board member of Frontiers, at the time of submission.

This had no impact on the peer review process and the

final decision.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2023.1274695/full#supplementary-material

References

Awasthi, P., Dutta, A., and Vijayaraghavan, A. (2019). “On robustness to adversarial
examples and polynomial optimization,” in Advances in Neural Information Processing
Systems, 32.

Bredon, G. E. (2013). Topology and Geometry, Volume 139. Cham: Springer Science
& Business Media.

Carlini, N., and Wagner, D. (2017). “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (sp) (NewYork, NY: IEEE),
39–57.

Carmon, Y., Raghunathan, A., Schmidt, L., Liang, P., and Duchi, J. C. (2019).
Unlabeled data improves adversarial robustness. arXiv.

Cayton, L. (2005). Algorithms for Manifold Learning. San Diego: University of
California at San Diego Tech. Rep, 1.

Dey, T. K., and Goswami, S. (2006). Provable surface reconstruction from noisy
samples. Comp. Geomet. 35, 124–141. doi: 10.1016/j.comgeo.2005.10.006

Dohmatob, E. (2019). “Generalized no free lunch theorem for adversarial
robustness,” in International Conference on Machine Learning (London: PMLR),
1646–1654.

Edelsbrunner, H., and Shah, N. R. (1994). “Triangulating topological spaces,” in
Proceedings of the Tenth Annual Symposium on Computational Geometry (New York,
NY: Association for Computing Machinery), 285–292.

Fawzi, A., Fawzi, H., and Fawzi, O. (2018). “Adversarial vulnerability for any
classifier,” in Advances in Neural Information Processing Systems, 31.

Gilmer, J., Metz, L., Faghri, F., Schoenholz, S. S., Raghu, M., Wattenberg, M., et al.
(2018). Adversarial spheres. arXiv.

Gowal, S., Qin, C., Uesato, J., Mann, T., and Kohli, P. (2020). Uncovering the limits
of adversarial training against norm-bounded adversarial examples. arXiv.

Guo, M., Yang, Y., Xu, R., Liu, Z., and Lin, D. (2020). “When nas meets robustness:
In search of robust architectures against adversarial attacks,” in Proceedings of the

Frontiers inComputer Science 12 frontiersin.org107

https://doi.org/10.3389/fcomp.2023.1274695
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1274695/full#supplementary-material
https://doi.org/10.1016/j.comgeo.2005.10.006
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Zhang et al. 10.3389/fcomp.2023.1274695

IEEE/CVF Conference on Computer Vision and Pattern Recognition (New York, NY:
IEEE), 631–640.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition (New York, NY: IEEE), 770–778.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Adv. Neural Inform. Proc. Syst. 25, 1097–1105.
doi: 10.1145/3065386

Lau, C. P., Liu, J., Souri, H., Lin, W.-A., Feizi, S., and Chellappa, R. (2023).
Interpolated joint space adversarial training for robust and generalizable defenses. IEEE
Trans. Pattern Anal. Mach. Intell. 45, 13054–13067. doi: 10.1109/TPAMI.2023.3286772

Levine, S., and Abbeel, P. (2014). “Learning neural network policies with guided
policy search under unknown dynamics,” in NIPS (Pittsburgh: CiteSeerX), 1071–1079.

Lin, W.-A., Lau, C. P., Levine, A., Chellappa, R., and Feizi, S. (2020). Dual manifold
adversarial robustness: Defense against lp and non-lp adversarial attacks. Adv. Neural
Inform. Proc. Syst. 33, 3487–3498.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2017). Towards
deep learning models resistant to adversarial attacks. arXiv preprint.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. (2018). “Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning,”
in 2018 IEEE International Conference on Robotics and Automation (ICRA) (New York,
NY: IEEE), 7559–7566.

Narayanan, H., and Mitter, S. (2010). “Sample complexity of testing the manifold
hypothesis,” in Proceedings of the 23rd International Conference on Neural Information
Processing Systems (Red Hook, NY: Curran Associates Inc.), 1786–1794.

Niyogi, P., Smale, S., and Weinberger, S. (2008). Finding the homology of
submanifolds with high confidence from random samples. Discrete & Comp. Geomet.
39, 419–441. doi: 10.1007/s00454-008-9053-2

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J., and Liang, P. (2020).
“Understanding and mitigating the tradeoff between robustness and accuracy,” in
Proceedings of the 37th International Conference on Machine Learning, 7909–7919.

Rice, L., Wong, E., and Kolter, Z. (2020). “Overfitting in adversarially robust
deep learning,” in International Conference on Machine Learning (London: PMLR),
8093–8104.

Rifai, S., Dauphin, Y. N., Vincent, P., Bengio, Y., andMuller, X. (2011). Themanifold
tangent classifier. Adv. Neural Inform. Proc. Syst. 24, 2294–2302.

Saul, L. K., and Roweis, S. T. (2003). “Think globally, fit locally: unsupervised
learning of low dimensional manifolds,” inDepartmental Papers (CIS) (Brookline, MA:
Microtome Publishing), 12.

Shafahi, A., Najibi, M., Ghiasi, A., Xu, Z., Dickerson, J., Studer, C., et al. (2019).
Adversarial training for free! arXiv.

Shaham, U., Yamada, Y., and Negahban, S. (2018). Understanding adversarial
training: increasing local stability of supervised models through robust

optimization. Neurocomputing 307, 195–204. doi: 10.1016/j.neucom.2018.
04.027

Shamir, A., Melamed, O., and BenShmuel, O. (2021). “The dimpled manifold model
of adversarial examples in machine learning,” in Advances in Neural Information
Processing Systems, 30.

Stutz, D., Hein, M., and Schiele, B. (2019). “Disentangling adversarial robustness
and generalization,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (New York, NY: IEEE), 6976–6987.

Su, D., Zhang, H., Chen, H., Yi, J., Chen, P.-Y., and Gao, Y. (2018). “Is robustness
the cost of accuracy?-A comprehensive study on the robustness of 18 deep image
classification models,” in Proceedings of the European Conference on Computer Vision
(ECCV) (Berlin: Springer Science+Business Media), 631–648.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., et al.
(2013). Intriguing properties of neural networks. arXiv.

Tanay, T., and Griffin, L. (2016). A boundary tilting persepective on the
phenomenon of adversarial examples. arXiv.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global
geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323.
doi: 10.1126/science.290.5500.2319

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and Madry, A. (2018).
Robustness may be at odds with accuracy. arXiv.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems, 30.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., et al. (2016).
Google’s neural machine translation system: bridging the gap between human and
machine translation. arXiv.

Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A. L., and Le, Q. V. (2020). “Adversarial
examples improve image recognition,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (New York, NY: IEEE), 819–828.

Yang, Y.-Y., Rashtchian, C., Zhang, H., Salakhutdinov, R., and Chaudhuri, K.
(2020). A closer look at accuracy vs. robustness. Adv. Neural Inform. Proc. Syst. 33,
8. doi: 10.1007/978-3-030-63823-8

Yu, B., Wu, J., Ma, J., and Zhu, Z. (2019). “Tangent-normal adversarial
regularization for semi-supervised learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (New York, NY: IEEE),
10676–10684.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and Jordan, M. (2019).
“Theoretically principled trade-off between robustness and accuracy,” in International
Conference on Machine Learning (London: PMLR), 7472–7482.

Zhang,W., Zhang, Y., Hu, X., Goswami,M., Chen, C., andMetaxas, D. N. (2022). “A
manifold view of adversarial risk,” in International Conference on Artificial Intelligence
and Statistics (London: PMLR), 11598–11614.

Frontiers inComputer Science 13 frontiersin.org108

https://doi.org/10.3389/fcomp.2023.1274695
https://doi.org/10.1145/3065386
https://doi.org/10.1109/TPAMI.2023.3286772
https://doi.org/10.1007/s00454-008-9053-2
https://doi.org/10.1016/j.neucom.2018.04.027
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1007/978-3-030-63823-8
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 14 February 2024

DOI 10.3389/fcomp.2024.1274181

OPEN ACCESS

EDITED BY

Pavan Turaga,

Arizona State University, United States

REVIEWED BY

Chao Tong,

Beihang University, China

Henry Kirveslahti,

Swiss Federal Institute of Technology

Lausanne, Switzerland

*CORRESPONDENCE

Aaron Mahler

aaron.mahler@teledyne.com

Tyrus Berry

tberry@gmu.edu

RECEIVED 07 August 2023

ACCEPTED 22 January 2024

PUBLISHED 14 February 2024

CITATION

Mahler A, Berry T, Stephens T, Antil H,

Merritt M, Schreiber J and Kevrekidis I (2024)

On-manifold projected gradient descent.

Front. Comput. Sci. 6:1274181.

doi: 10.3389/fcomp.2024.1274181

COPYRIGHT

© 2024 Mahler, Berry, Stephens, Antil, Merritt,

Schreiber and Kevrekidis. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

On-manifold projected gradient
descent

Aaron Mahler1*, Tyrus Berry2*, Tom Stephens1, Harbir Antil2,

Michael Merritt1, Jeanie Schreiber2 and Ioannis Kevrekidis3

1Teledyne Scientific & Imaging, LLC, Durham, NC, United States, 2Center for Mathematics and Artificial

Intelligence, George Mason University, Fairfax, VA, United States, 3Departments of Chemical and

Biomolecular Engineering and Applied Mathematics and Statistics, Johns Hopkins University,

Baltimore, MD, United States

This study provides a computable, direct, and mathematically rigorous

approximation to the di�erential geometry of class manifolds for high-

dimensional data, along with non-linear projections from input space onto these

class manifolds. The tools are applied to the setting of neural network image

classifiers, where we generate novel, on-manifold data samples and implement

a projected gradient descent algorithm for on-manifold adversarial training.

The susceptibility of neural networks (NNs) to adversarial attack highlights the

brittle nature of NN decision boundaries in input space. Introducing adversarial

examples during training has been shown to reduce the susceptibility of NNs

to adversarial attack; however, it has also been shown to reduce the accuracy

of the classifier if the examples are not valid examples for that class. Realistic

“on-manifold” examples have been previously generated from class manifolds

in the latent space of an autoencoder. Our study explores these phenomena in

a geometric and computational setting that is much closer to the raw, high-

dimensional input space than what can be provided by VAE or other black

box dimensionality reductions. We employ conformally invariant di�usion maps

(CIDM) to approximate class manifolds in di�usion coordinates and develop

the Nyström projection to project novel points onto class manifolds in this

setting. On top of the manifold approximation, we leverage the spectral exterior

calculus (SEC) to determine geometric quantities such as tangent vectors of the

manifold. We use these tools to obtain adversarial examples that reside on a class

manifold, yet fool a classifier. These misclassifications then become explainable

in terms of human-understandable manipulations within the data, by expressing

the on-manifold adversary in the semantic basis on the manifold.

KEYWORDS

di�usion maps, kernel methods, manifold learning, Nyström approximation, adversarial

attack, image classification, projected gradient descent

1 Introduction

Despite their superior performance at image recognition, neural network (NN)

classifiers are susceptible to adversarial attack, and their performance can degrade

significantly with small perturbations to the input (Szegedy et al., 2014; Tabacof and Valle,

2016; Moosavi-Dezfooli et al., 2017). The brittle performance of NNs when given novel

inputs can be attributed to their intricate high-dimensional decision boundaries, which

fail to generalize robustly outside of the training data. This problem is epitomized by the

observation that NNs are excellent interpolators but poor extrapolaters.

Frontiers inComputer Science 01 frontiersin.org109

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1274181
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1274181&domain=pdf&date_stamp=2024-02-14
mailto:aaron.mahler@teledyne.com
mailto:tberry@gmu.edu
https://doi.org/10.3389/fcomp.2024.1274181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1274181/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

Crafting attacks to deceive NNs with minimal changes to the

input has been shown to be remarkably easy when the attacker has

full access to the NN architecture and weights. The fast gradient

sign method is one of the earliest attack methods that crafts

adversarial examples by taking the sign of the gradient of the

loss function to perturb the input in the direction that maximizes

the loss in pixel space (Goodfellow et al., 2015). Other methods

take a number of smaller steps in directions to find the smallest

perturbation required to misclassify an input (Moosavi-Dezfooli

et al., 2016; Carlini and Wagner, 2017; Samy Bengio, 2018; Madry

et al., 2019). Most of these methods use the gradient of the NN

loss function for a given input as a way to determine directions of

maximal confusion, i.e., directions leading to the closest decision

boundary in the high-dimensional pixel space. There also exists

single-pixel attacks that use differential evolution with no gradient

information and are able to reliably fool NNs (Su et al., 2019).

Variousmethods have been proposed tomakeNNsmore robust

to adversarial attack. Adversarial training is a common choice

because it involves using attack inputs as additional training data,

thereby allowing the NN decision boundary to more correctly

classify that data. Commonly, the gradient of the NN will be used

to augment the data set for this purpose (Goodfellow et al., 2015;

Madry et al., 2019). On the other hand, gradient masking is a

method that attempts to create a network that does not have useful

information in the gradient, so that it cannot be exploited for

creating attacks (Papernot et al., 2017). These types of networks

have been found to still be vulnerable though to similar attacks that

work on NNs with useful gradients (Papernot et al., 2017; Athalye

et al., 2018). Defensive distillation is a gradient-free method that

uses two networks, where the second network is trained using the

distilled (softened) outputs of the first network (Papernot et al.,

2017). Training on distilled outputs is done to create less irregular

decision boundaries, which in turn results in being less prone

to misclassifying small perturbations. Ensemble methods use the

output of multiple models, which results in less effective attacks

since it is unlikely the models are sensitive to the exact same attacks

(Tramèr et al., 2020). Input preprocessing can also be applied to try

to mitigate or remove adversarial perturbations. This can be done

in a model agnostic way such as filtering or compressing the data

(Yin et al., 2020), detecting adverasial inputs with feature squeezing

(Xu et al., 2018), or using an autoencoder to denoise the input (Cho

et al., 2020).

One popular method of adversarial training uses small steps

along the network gradient that are only allowed to step so far away

from the original input, called projected gradient descent (PGD)

(Madry et al., 2019). The data set is augmented with examples

that are maximally confusing to the NN during training, but the

augmented data points are only allowed to be ǫ far away from true

data points. This results in a marked improvement to the NN when

it is attacked with perturbations of the same strength. However,

PGD trained networks show a decrease in accuracy on clean inputs

and the accuracy goes down as the size of the ǫ-ball allowed for

augmentations increases (Engstrom et al., 2019). The degradation

of accuracy and the rise of robustness could be due to several

factors, such as overfitting the model to adversarial examples or

from adversarial examples that are not actually representative of

the class of the input that was perturbed. The trade-off between

robustness and accuracy has been noted to occur with many flavors

of adversarial training, and it has even been conjectured that

robustness and accuracy may be opposed to each other for certain

NNs (Su et al., 2018; Tsipras et al., 2019).

On the other hand, it has also been shown that in some cases,

a more careful choice of adversarial examples can create robust

NNs that are also on-par with standard networks at generalizing

to unseen validation data (Stutz et al., 2019). This was explained

by the fact that adversarial training such as PGD creates samples

that are not truly on the manifold of that data’s class label. The NN

is then tasked with learning a decision boundary for the training

data as well as randomly noisy data, resulting in the compromise

between accuracy and robustness for those types of adversarial

training. In Stutz et al. (2019), they found perturbations in a latent

space learned from the training data. Perturbing in an ǫ ball in the

latent space was surmised to be on a class manifold and therefore a

new augmentation that was representative of that class. Adversarial

training in a way that is agnostic to the underlying geometry of

the data itself therefore seems to be a root cause for the trade-off

between robustness and accuracy.

The above mitigations to adversarial attacks all proceed from

the perspective that the neural network has simply not been fed

enough variation in the collected training data to learn decision

boundaries that adhere to the full underlying data manifolds. From

this perspective, injecting adversarial examples into the original

training data “pushes out” incursions by the decision boundary

into the true manifold. An alternative perspective is that the

adversarial examples do not result from so-called bugs in the

decision boundaries but are instead features of the data (Ilyas

et al., 2019). From the features perspective, adversarial training is

a data cleaning process; the original data has pixel correlations

across classes that our eyes cannot detect, and computed adversarial

perturbations act to wash those away. While we do not embark

on our applications from this perspective, the mathematical tools

developed here are ideally suited for extending their hypotheses

and results.

Our application of on-manifold adversarial training connects

the learning problem to the manifold hypothesis and manifold

modeling techniques. For natural images, the manifold hypothesis

suggests that the pixels that encode an image of an object, together

with the pixel-level manipulations that transform the scene through

its natural, within-class variations (rotations, articulations, etc),

organize along class manifolds in input space. In other words,

out of all possible images drawn from an input space, while the

vast majority look like random noise, the collection of images that

encode a recognizable object (a tree, a cat, or an ocean shoreline)

are incredibly rare, and the manifold hypothesis claims that those

images should be distributed throughout input space along some

coherent geometric structure. On-manifold adversarial training

aims for an NN to better capture the underlying structure in the

data. In this study, we use novel manifold modeling techniques that

do not rely on autoencoders or black box neural networks.

To construct and leverage a data-driven representation of

an embedded manifold, we use a collection of tools that have

grown out of the diffusion maps-based methods in the manifold

learning community. Diffusion maps methods are based on

learning a manifold by estimating a certain operator called

Frontiers inComputer Science 02 frontiersin.org110

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

the Laplace–Beltrami operator, which encodes all the geometric

properties of the manifold. The advantage of this approach is

that is does not require constructing a simplicial complex (or

triangularization) from data, which can be quite challenging.

However, diffusion maps-based manifold learning requires several

additional tools to access needed geometric quantities for on-

manifold adversarial learning. In particular, we need the ability to

find the tangent directions to the manifold, walk along a tangent

direction, and then project down onto the manifold. To find the

tangent directions to the manifold, we use a recent development

known as the Spectral Exterior Calculus (SEC) that builds these

estimators directly from the diffusion maps constructions. The SEC

uses global information to find the principal tangent directions,

and is thus less susceptible to noise and large ambient dimensions

than local (nearest neighbor)-based methods. Finally, to project a

point from data space onto the manifold, we discover a surprising

and powerful new tool which we call the Nyström projection. Using

these methods, we demonstrate creating on-manifold adversarial

examples that are explainable in terms of their semantic labels.

1.1 Manifold learning and CIDM

Manifold learning emerged as an explanation for how kernel

methods were able to perform regressions and identify low-

dimensional coordinates from much higher dimensional data

sets than would be possible according to normal statistics.

Assuming that the data were lying on a submanifold of

the data space, it appeared that the kernel methods (kernel

regression, kernel PCA, etc.) were able to leverage this intrinsically

low-dimensional structure.

The first advance in understanding this effect rigorously was

Laplacian eigenmaps (Belkin and Niyogi, 2003). They employed

a Gaussian kernel to build a complete weighted graph on the

data set with weights Kij = k(xi, xj) = exp(−||xi − xj||
2
/(2ǫ2)).

This was a very common choice of radial basis kernel at the time

and a natural first choice for analysis. Laplacian Eigenmaps then

constructs the weighted graph Laplacian L = D−K
ǫ2

, where diagonal

matrix Dii =
∑

j Kij is called the degree matrix. In the limit, as

the number of data points goes to infinity, the Laplacian matrices

become larger and larger, and if the bandwidth, ǫ, is taken to

zero at an appropriate rate, this sequence of matrices are shown

to converge to the Laplace–Beltrami operator on the manifold that

the data were sampled from. This was the first rigorous connection

between the somewhat ad hoc kernel methods and the intrinsic

geometry of the data.

Unfortunately, the assumptions required to prove the key

theorem of Laplacian eigenmaps were overly restrictive in practical

settings. In addition to only applying to a single kernel function

(when in practice, many different kernel functions were known

empirically to have similar behavior), Laplacian eigenmaps also

required the data to be sampled uniformly from the underlying

manifold. This is a somewhat technical requirement, an embedded

manifold (such as the one the data are assumed to lie on), that

inherits a natural measure from the ambient data space which

is called the volume form. We can think of this volume form as

a distribution, and when the data are sampled from this natural

distribution, it is called uniformly sampled. However, there is no

reason for the data to have been be uniformly collected in this

sense. For example, if your data lie on a unit circle, there is no

reason that the data could not be more densely collected on one

side of the circle and more sparsely collected on the other side,

but Laplacian eigenmaps did not allow for this in their theorem.

These restrictions meant that the applicability of kernel methods to

resolving the intrinsic geometry of a real data set was still seen as

rather tenuous.

Diffusion maps (Coifman and Lafon, 2006a) resolved these

concerns and solidified the connection between a large class of

kernel methods and the intrinsic geometry of the data. The idea

of diffusion maps turns out to be fairly simple, although the

technical details of the theorems are somewhat challenging. The

key idea is that the degree matrix, Dii =
∑

j k(xi, xj), is actually

a classical kernel density estimator, meaning that if the data are

not sampled uniformly, then Dii will be proportional to the true

sampling density (up to higher order terms in ǫ which can be

carefully accounted for). Diffusion maps begins by generalizing the

kernel density estimation results to data sampled on manifolds,

and then uses the estimated density to de-bias the kernel. De-

biasing the kernel turns out to be a simple normalization procedure

called the diffusion maps normalization, which constructs the

normalized kernel,

K̂ = D−1KD−1

and then recomputes the new degree matrix D̂ii =
∑

j K̂ij and

finally the diffusion maps graph Laplacian L̂ = D̂−K̂
ǫ2

. The diffusion

maps theorems showed that for any radial basis kernel that had

exponential decay in distance, and for data collected from any

smooth distribution on the manifold, their new graph Laplacian,

L̂, converged to the Laplace–Beltrami operator on the manifold.

Moreover, the diffusion maps theorems also showed (although this

was only realized in later works, e.g., Berry and Sauer, 2016) that

even when their normalization was not used, the classical graph

Laplacian converged to a Laplace–Beltrami operator with respect

to a conformal change of metric. This ultimately showed that all

kernel methods with radial basis kernels that had fast decay were

finding the intrinsic geometry of the data (possibly up to a change

of measure). Later works would generalize the diffusion maps

theorems to include all kernels that had sufficiently fast decay in the

distance between points (so not just radial basis functions) (Berry

and Sauer, 2016).

At this point, we should address why both Laplacian eigenmaps

and diffusion maps have the word “Maps” in them. This goes back

to the motivation that was driving the development of these new

theories. In particular, both methods were motivated by Kernel

PCA, which interpreted the eigenvectors of the kernel matrix as

providing the coordinates of a mapping into a new space, often

called a ‘feature space’. Ironically, this mapping interpretation arose

from the theory of Reproducing Kernel Hilbert Spaces, where

the kernel induces a map into a function space (not a Euclidean

space). However, since the kernel matrix, K, has as many rows

and columns as there were data points, the eigenvectors of the

kernel matrix have as many entries as there are data points, so

inevitably these were visualized and interpreted as new coordinates.

Diffusion maps and Laplacian eigenmaps were trying to show

Frontiers inComputer Science 03 frontiersin.org111

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

that this “mapping” preserved intrinsic aspects of the geometry

while also reducing dimension, and while the first part is partially

correct, the dimensionality reduction aspect of the diffusion maps

turns out to not be guaranteed. However, this was merely a case

of applying the wrong interpretation to the results. In fact what

diffusion maps had proven was much better than any fact about

a mapping. By recovering the Laplace–Beltrami operator on the

manifold, and its eigenfunctions, diffusion maps unlocked the door

and allowed access to every single aspect of the geometry of the

data. Moreover, the eigenfunctions provide a generalized Fourier

basis for analysis of functions and operators on the data set, and

have been used in regression, interpolation, forecasting, filtering,

and control applications.

To leverage the opening that diffusion maps has created to

learning manifold geometry from data, we will need several recent

advances that improve and apply the original theory. First, it

turns out that for real data sets in high dimensions, the fixed

bandwidth kernels discussed so far have difficulty adjusting to

large variations in sampling density. To compensate for this, a

variable bandwidth kernel is needed (Berry and Harlim, 2016),

which can automatically adjust to have a small bandwidth and high

resolution in areas of data space that are densely sampled, while

keeping a large bandwidth and a lower resolution representation

of sparsely sampled regions of data space. The ultimate evolution

of the variable bandwidth kernels is the Conformally Invariant

Diffusion Map (CIDM) (Berry and Sauer, 2016, 2019), which we

introduce in Section 1.1.1.

The next tool we will need is a rigorous method for

extending/interpolating all of the discrete representations of

functions, mappings, and operators to be able to operate on any

new input data. Here, we use a regularized version of a standard

method called the Nyström extension, introduced in Section 1.1.2.

Although this basic method of interpolation is well-established, we

will apply it in ways that have never been considered before to

achieve powerful new methods and results.

Finally, we mentioned above that the Laplace–Beltrami

operator unlocks the door to access all the hidden geometry of

the data. This is due to a technical result which says that if

you know the Laplace–Beltrami operator, you can recover the

Riemannian metric on the manifold, and the Riemannian metric

completely determines all aspects of the geometry (from dimension

and volume to curvature to geodesics and everything in between).

However, until recently, this was a purely abstract possibility,

and there was no actual method for constructing these geometric

quantities starting from the Laplace–Beltrami operator. This was

achieved in 2020 with the creation of the Spectral Exterior Calculus

(SEC), which re-builds all of differential geometry starting just from

the Laplace–Beltrami operator. While we will not require every

aspect of the SEC here, the basic philosophy of its construction will

be fundamental to the way that we will construct vector fields and in

a particular tangent vectors on the manifold, so a brief introduction

will be given in Appendix A.1.

1.1.1 Conformally invariant di�usion map
Asmentioned above, the original version of diffusionmaps uses

a fixed bandwidth kernel of the form J(x, y) = h(||x − y||2/ǫ2).

Here, h is called the shape function and is assumed to decay quickly

to zero as the input (distance) goes to infinity. A typical choice

for h is the exponential function h(z) = exp(−z), so moderate

differences in distances leads to large differences in the values of

h. This becomes particularly problematic in terms of the distance

to the nearest neighbors. If the distances from a data point to

its nearest neighbors are large (relative to the bandwidth ǫ), then

the values of the kernel become very close to zero. This means

that even though our weighted graph is technically still connected,

the weights are so close to zero that it becomes numerically

disconnected, which causes the diffusionmap to interpret such data

points as disconnected from the rest of the data set. On the other

hand, we want the kernel function to decay quickly beyond the

nearest neighbors to localize the analysis and make the resulting

kernel matrix approximately sparse.

When the density of points varies widely, it becomes very

difficult to find a single bandwidth parameter ǫ which achieves

these two goals across the data set. One tends to have to choose

the bandwidth large enough to connect with the sparsest region of

data, and this large bandwidth value results in a loss of resolution in

the denser sampled regions. This trade-off is examined rigorously

in Berry and Harlim (2016), which introduces variable bandwidth

kernels and generalizes the diffusion maps expansions for such

kernels. The best practical implementation of a variable bandwidth

approach was introduced in Berry and Sauer (2019), which is a

variable bandwidth version of the Conformally Invariant Diffusion

Map (CIDM) that was introduced in Berry and Sauer (2016).

The CIDM starts by re-scaling the distance using the distances

to the nearest neighbors, namely

δ(x, y) ≡
d(x, y)

√

d(x, kNN(x))d(y, kNN(y))

Where kNN returns the k-th nearest neighbor of the input point

from the training data set. Note that the distance to the k-th nearest

neighbor is a consistent estimator of the density to the power of

−1/d where d is the dimension of the manifold. Thus, when the

local density is high, the distance to the kNN will be small, and

conversely when the local density is sparse, the distance to the kNN

will be large. Thus, δ(x, y) has re-scaled the distances into a unit-less

quantity which will be on the same order of magnitude for the k-th

nearest neighbors of all the data points.

Inside the kernel, we will use the square of this quantity,

δ(x, y)2 =
d(x, y)2

d(x, kNN(x))d(y, kNN(y))

which is also more convenient for derivatives. Next, we use the

dissimilarity δ in a kernel,

k(x, y) ≡ h(δ(x, y)2/ǫ2)

Where ǫ is a global bandwidth parameter and h :[0,∞) →

[0,∞) is a called a shape function (examples include h(z) = e−z

as mentioned above or even simply the indicator function h(z) =

1[0,1](z)). We can then build the kernel matrix Kij = k(xi, xj) on the

training data set, and the diagonal degree matrix Dii =
∑

j Kij and

the normalized graph Laplacian L ≡ I − D−1K.

Frontiers inComputer Science 04 frontiersin.org112

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

We should note that in Berry and Sauer (2019), it was shown

that, uniquely for the CIDM, the unnormalized Laplacian Lun ≡

D − K has the same limit as the normalized Laplacian in the

limit of large data; however, the normalized Laplacian, L, has some

numerical advantages. Numerically, it is advantageous to maintain

the symmetry of the problem by finding the eigenvectors of the

similar matrix, Lsym ≡ D1/2LD−1/2 = I − D−1/2KD−1/2. Finally,

we are interested in the smoothest functions on themanifold, which

are the minimizers of the energy defined by L; however, it is easier

to find the largest eigenvalues of Ksym ≡ D−1/2KD−1/2 (Recall that

maximal eigenvalues can be found with power iteration methods

which are fast than the inverse power iterations required for finding

smallest eigenvalues). Once we have computed the eigenvectors

KsymEv = λEv, then it is easy to see that Eφ = D−1/2Ev are eigenvectors

ofD−1K with the same eigenvalues, and Eφ are also eigenvectors of L

with eigenvalues ξ = 1−λ. Thus, when λ are the largest eigenvalues

of Ksym, the corresponding ξ will be the smallest eigenvalues of L.

We will refer to L as the CIDM Laplacian, and we will use the

eigenvectors and eigenvalues of L to represent the geometry of the

data manifold. The eigenvectors of the CIDM Laplacian, L Eφ = λ Eφ

are vectors of the same length as the data set, so the entries of these

eigenvectors are often interpreted as the values of a function on the

data set, namely φ(xi) = Eφi. Of course, we have not really defined

a function φ since we have only specified its values on the data set.

However, in the next section, we will show how to define a function

φ on the whole data space that takes the specified values on data set.

This method is called the Nyström extension because it extends the

function from the training data set to the entire data space.

In Berry and Sauer (2016), the CIDM Laplacian, L, was

shown to converge (in the limit of infinite data and bandwidth

going to zero) to the Laplace–Beltrami operator of the hidden

manifold with respect to a conformal change of metric that has

volume form given by the sampling density. The Laplace–Beltrami

operator encodes all the information about the geometry of the

manifold (see Appendix A for details), which is why methods such

as diffusion maps and the CIDM are called manifold learning

methods. Moreover, it was shown in Berry and Harlim (2016)

and Berry and Sauer (2016, 2019) that the CIDM construction

using the k-nearest neighbors density estimator, as described above,

does not require the so-called “DiffusionMaps normalization”. The

CIDM gives the unique choice of conformal geometry for which a

standard unnormalized graph Laplacian is a consistent estimator of

a Laplace–Beltrami operator (Berry and Sauer, 2019). Empirically,

we have found that this variable bandwidth kernel construction is

much more robust to wide variations in sampling density.

We should note that in the Nyström extension section below,

we will make use of the following normalized kernel,

k̂(x, y) =
k(x, y)

∑N
i=1 k(x, xi)

=
h(δ(x, y)2/ǫ2)

∑N
i=1 h(δ(x, xi)

2/ǫ2)

since this corresponds to D−1K as discussed above [namely if K =

k(xi, xj), then k̂(xi, xj) = (D−1K)ij]. Finally, to reduce sensitivity, we

often use the average of the distances to the k-nearest neighbors in

the re-scaling, so the dissimilarity would then be,

δ(x, y)2 =
d(x, y)2

1
k

∑k
i=1 d(x, iNN(x))

1
k

∑k
j=1 d(y, jNN(y))

Where iNN refers to the i-th nearest neighbor so the

summations are averaging the distances to the k-nearest neighbors.

1.1.2 Nyström extension: interpolation and
regularization

In this section, we introduce the Nyström extension, which is

the standard approach for extending diffusion maps eigenfunctions

(and thus the “diffusion map”) to new data points. Once the

eigenfunctions can be extended, arbitrary functions can also be

extended by representing them in the basis of eigenfunctions;

this approach can be used to extend any sufficiently smooth

function to new data points in input space. Since, in practice, we

can only represent a function with finitely many eigenfunctions,

the truncation onto this finite set gives us a regularized, or

smoothed, regression. The Nyström extensions of the diffusion

maps eigenfunctions are sometimes called geometric harmonics

(Coifman and Lafon, 2006b) and these out-of-sample extensions

are related to the method of Kriging in Gaussian Processes, a

connection which is explored in Dietrich et al. (2021).

Given an eigenvector K Eφ = λ Eφ of a kernel matrix Kij =

k(xi, xj), we can extend the eigenvector to the entire input space by,

φ(x) ≡
1

λ

N
∑

j=1

k(x, xj)(Eφ)j (2)

which is called the Nyström extension. Note that here k is an

abstract kernel which may incorporate CIDM normalizations

inside the shape function as well as normalization such as

the diffusion maps normalization and/or Markov normalization

outside of the shape function. For example, for CIDM, the Nyström

extension of an eigenfunctions is,

φ(x) =
1

λ

N
∑

j=1

k̂(x, xj)φ(xj) =

∑N
j=1 h(δ(x, xj)

2
/ǫ

2)φ(xj)

λ
∑N

i=1 h(δ(x, xi)
2/ǫ2)

Where the CIDM kernel k̂ takes the place of the abstract kernel

k in Equation (2). Notice that evaluating k̂ involves computing

the dissimilarity δ between arbitrary point x and a training data

point xj, which in turn requires finding the k nearest neighbors

of the point x from the training data set. Thus, evaluating the

abstract kernel k may actually depend on the entire training data

set; however, in this section, we will consider the training data

set as fixed and treat its influence on k as hidden parameters that

define the kernel k. We should note that although everything in this

section can be applied to any kernel, a simple radial basis function

kernel with no normalizations and a fixed bandwidth has fairly poor

performance for the off-manifold extensions we will discuss later in

this section.

A key property of the Nyström extension is that on the training

data points, we have

φ(xi) =
1

λ

N
∑

j=1

k(xi, xj)(Eφ)j =
1

λ
(K Eφ)i =

1

λ
(λ Eφ)i = (Eφ)i.

So if we interpret (Eφ)i as the value of a function on the data

point xi, then the Nyström extension agrees with these function

Frontiers inComputer Science 05 frontiersin.org113

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 1

Nyström extension comparison. Consider data points near a unit circle (top left) and a function to learn given by the color (also shown bottom left)

localized near the unit circle. We consider three methods of learning the function, a simple 2-layer neural net, the standard di�usion map Nyström

extension, and the CIDM Nyström extension. Each extension is shown on a large region (top row) as well as localized near the unit circle (bottom

row). The CIDM provides the smoothest extension to the entire input space.

values on the original data set and extends the function to the entire

input space.

Moreover, given an arbitrary vector of function values Efi on

the data set, we can extend this function to the entire data set

by representing Efi in the basis of eigenvectors and then applying

the Nyström extension to these eigenvectors. Let {φℓ}
N
ℓ=1 be the

collection of eigenvectors of the kernel matrix K. Note that (Eφℓ)i
will refer to the i-th entry of the ℓ-th eigenvector. Notice that,

Ef =

N
∑

ℓ=1

〈

Ef , Eφℓ

〉

Eφℓ

so if we replace the vector Eφℓ with the Nyström extension, we have

the Nyström extension of f given by

f (x) =

N
∑

ℓ=1

〈

Ef , Eφℓ

〉

φℓ(x) =

N
∑

ℓ=1

〈

Ef , Eφℓ

〉 1

λℓ

N
∑

j=1

k(x, xj)(Eφℓ)j.

Notice that this can be viewed as a kernel extension of f by

rewriting the above as

f (x) =

N
∑

j=1

k(x, xj)

(

N
∑

ℓ=1

〈

Ef , Eφℓ

〉 1

λℓ

(Eφℓ)j

)

In other words, the Nyström extension of a function is given by

f (x) =
∑N

j=1 k(x, xj)cj, which is a linear combination of the kernel

basis functions k(·, xi), with coefficients cj ≡
∑N

ℓ=1

〈

Ef , Eφℓ

〉

1
λℓ
(Eφℓ)j.

This formula can be truncated for ℓ = 1, ..., L, with L < N to get a

smoothed, low-pass filtered version of the function. When all of the

eigenvectors are used, we have

f (xi) =

N
∑

ℓ=1

〈

Ef , Eφℓ

〉 1

λℓ

N
∑

j=1

k(xi, xj)(Eφℓ)j =

N
∑

ℓ=1

〈

Ef , Eφℓ

〉

(Eφℓ)i = Efi

So again the Nyström extension agrees with the original vector

of function values on the original data points. When fewer than

N eigenfunctions are used, the Nyström extension is a smoothing

of the original function, so it does not interpolate the values on

the training data, which can be useful for de-noising. Finally, if we

substitute in the definition of the vector inner product, we have the

following expression for the Nyström extension:

f (x) =

N
∑

j=1

k(x, xj)

(

L
∑

ℓ=1

1

λℓ

(Eφℓ)j

N
∑

i=1

Efi(Eφℓ)i

)

Where L is the number of eigenfunctions used and is typically

much less than N to smooth and denoise the function.

2 Methods

Here, we introduce some tools for analyzing data on manifolds

in the input data space. The first tool is a novel method of projecting

arbitrary data points non-linearly down onto the manifold. This

method is based on using the Nyström extension to build a

projection, so we call this new method the Nyström projection

in Section 2.1. The next tool is the Spectral Exterior Calculus

(SEC), which was developed in Berry and Giannakis (2020) and

is able to identify vector fields that respect the global structure

of the data. Here, we overview the interpretation of the SEC

on vector fields in Section 2.2 and describe how we use these

vector fields to approximate the tangent space to the manifold in

a way that is more robust than local linear methods. Together, by

using linear projection of vectors (such as perturbation directions)

onto the tangent space and the non-linear Nyström projection of

perturbations of data points down onto the manifold itself, we

introduce an on-manifold technique for projected gradient descent

in Section 2.3.

Frontiers inComputer Science 06 frontiersin.org114

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

2.1 The Nyström projection: mapping
o�-manifold points onto the manifold

In Section 1.1.2, we reviewed the Nyström extension as an

established method of out-of-sample extension for functions on the

data space. In this section, we introduce a novel application of this

extension, which we will call the Nyström projection. The Nyström

projection will be defined below as the Nyström extension of the

original data coordinate functions. This special case is deserving of

extra scrutiny because it is the only function which maps a new

data point through the diffusion maps embedding and back into

the original data space, meaning that the Nyström projection can

be iterated with surprising and useful results.

The next (and crucial) question is: How does the Nyström

extension perform out-of-sample? In the case of manifold learning,

this question has two cases, first, when the out-of-sample data

lie on the manifold, and, second, when they are off the manifold

(and potentially far from the manifold). For data points on the

manifold, the behavior of Nyström is well-understood as a band-

limited interpolation of the function f , which minimizes a certain

cost function. The on-manifold out-of-sample interpretation is easy

because we started by assuming that there was a given function on

the manifold and that we had sampled values of that function on

our in-sample training data. Thus, there is a natural “true” function

in the background to compare our Nyström interpolation to.

The case of extension to off-manifold points is much more

interesting and less is known about this case. Clearly, for any fixed

“true” function defined on the manifold, there will be infinitely

many smooth extensions to the entire space, so the Nyström

extension is selecting one of these extensions, and in the limit

of infinitely many data points and eigenfunctions, this extension

is minimizing a certain functional. While this is an open area

of research, empirically, we observe that for a normalized CIDM

kernel, the Nyström extends the function to an off-manifold data

point by essentially taking the function value of the nearest point

on the manifold. Since almost every point in the ambient data space

has a unique nearest point on the manifold, this is well-defined up

to a set of measure zero, and, in practice, there is a smoothing effect

in a neighborhood of this measure zero set; however, we will ignore

these effects for simplicity.

To demonstrate empirically how the Nyström extension

performs far from the training data set, in Figure 1 we show an

example of a data set lying near the unit circle in the plane. Given a

simple smooth function, shown in the first panel of Figure 1, we can

use various methods to learn this function and attempt to extend it

to the entire input data space (the plane in this case). Notice that

when well-tuned, performance near the training data set, shown

by the “localized” panels of Figure 1, is comparable for a simple

two-layer neural network as well as the Nyström extension with

both the standard diffusion maps kernel and the CIDM kernel.

However, Figure 1 shows that these methods have very different

behavior far from the data set, with the neural network behaving

somewhat unpredictably, and the standard diffusion map kernel

having difficulty extrapolating when far from the training data,

whereas the CIDM makes a smooth choice of extension which is

well-defined even very far from the training data.

This interpretation of the Nyström extension as taking the

value of the nearest point on the manifold is critical since it lead

us to a novel and powerful method of achieving a non-linear

projection onto the manifold. The idea is actually quite simple,

think of the original data set as a function on the manifold and

build the Nyström extension of this function. In fact, this is how

we often think of a data set mathematically in the manifold learning

literature. Thus, we will apply the Nyström extension of the original

data coordinates into a function on the entire data space, andwe call

the resulting function the Nyström projection.

While it is perfectly valid to consider the data manifold as a

subset of the ambient data space,M ⊂ R
n in differential geometry,

it is useful to think of an abstract manifold N that is simply an

abstract set of points, and then think of the data set as the image of

this abstract manifold under an embedding into Euclidean space,

so ι :N →M ⊂ R
n. Now, the points in data space, xi ∈ R

n, are

the images of an abstract point x̃i ∈ N , such that ι(x̃i) = xi. In

this interpretation, each of the coordinates of the data are actually

scalar valued component functions of the embedding function, so

(xi)s = ιs(x̃i), where ιs :N → R are the component functions

of the embedding. Of course, since we know the value of these

coordinate functions on the training data set, we can apply the

Nyström extension to each of the ιs functions, and extend the entire

ι embeddingmap to the entire data space. In this way, we obtain the

Nyström projection ι̃ :R
n → R

n, which is given by

ι̃s(x) =

N
∑

j=1

k(x, xj)

(

L
∑

ℓ=1

1

λℓ

(Eφℓ)j

N
∑

i=1

(Exi)s(Eφℓ)i

)

Where (Exi)s is the s-th coordinate of the i-th data point. We can

also write the Nyström projection more compactly in terms of the

Nyström extension of the eigenfunctions, as

ι̃(x) =

L
∑

ℓ=1

x̂ℓφℓ(x)

Where x̂ℓ =

〈

Ex, Eφℓ

〉

is a vector-valued generalized Fourier

coefficient given by (x̂ℓ)s =
〈

(Ex)s, Eφℓ

〉

=
∑N

i=1(Exi)s(
Eφℓ)i. Thus, we

can think of x̂ as encoding the embedding function that takes the

abstract manifold to the realized data coordinates.

In fact, ι̃ does much more than the original embedding

function, since it extends the embedding function to the entire data

space. This is because when input data points are off-manifold, the

Nyström extension of a function is well-approximated by selecting

the values of the function for the nearest point on the manifold.

Since we are applying the Nyström extension to the embedding

function itself, this means that for an off-manifold point, the

Nyström projection ι̃ will actually return the coordinates of the

nearest point on the manifold. In other words, Nyström projection

ι̃ acts as the identity for points on the manifold and projects off-

manifold points down to the nearest point on manifold. This novel

yet simple tool gives us a powerful new ability in manifold learning

and has opened up several promising new research directions.

Moreover, the choice of L in the Nyström projection gives us

control over the resolution of the manifold we wish to project on.

Thus, for a noisy data, we can intentionally choose a smaller L

value to project down through the noise to a manifold that cuts

through the noisy data. This is demonstrated in Figure 2 (rightmost

Frontiers inComputer Science 07 frontiersin.org115

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 2

Nyström projection onto the Unit Circle. We use the Nyström projection to project points on the plane onto the unit circle using a noisy training data

set (red) to learn the manifold. Top: After learning from the red training data set, blue data points far from the manifold are projected onto the

magenta points using a single iteration of the Nyström projection (left) and two iterations (middle); the green line connects each initial point to its

Nyström projection. Top Right: Applying two iterations to a grid in the plane projects onto a circle, the original grid points are colored by the angle

computed after they are projected to show where they land. Bottom Row: A grid colored by radius (left) is projected once (middle) and twice (right)

using the Nyström projection learned from the same data set (red) as the top row.

panels), where we set L = 20 and recovered a smooth circle that

cuts through the noisy input data set (red points).

It is useful to formulate the Nyström projection as a

composition of a non-linear map (related to the Diffusion Map)

and a linear map. Often, we consider the map which takes an

input point in data space and returns the coordinates of the first L

eigenfunctions, 8 :R
n → R

L given by 8(x) = (φ1(x), ...,φL(x))
⊤.

This is the so-called diffusion map (with t = 0). While we have

argued above that this is not necessarily the best embedding of the

data, it is useful to express the projection we have just constructed.

Note that the x̂ is an n× Lmatrix containing the first L generalized

Fourier coefficients of each of the n coordinates of our data set.

Thus, x̂ defines a linear map X̂ :R
L → R

n from R
L (the image

of 8) back to the data space, Rn (where X̂ is simply given by left

multiplication by the matrix x̂). The Nyström projection onto the

manifold is the composition of these two maps, namely ι̃ = X̂ ◦8,

so that we have a map,

x 7→8 (φ1(x), ...,φL(x))
⊤ 7→X̂ ι̃(x)

such that ι̃ ≡ X̂ ◦8 :R
n →M ⊂ R

n and X̂ ◦8

∣

∣

∣

M
= IdM.

The fact that the Nyström projection maps back into the

original data space has the significant consequence that it actually

forms a dynamical system which can be iterated. Moreover, we

have seen that its behavior can be extremely useful in that it

tends to project data points “down onto onto the manifold”. This

feature, that applying (and iterating when necessary) the Nyström

projection pushes new data points down toward the manifold

inside of the ambient data space, is what allows us to search for

on-manifold adversaries.

Before continuing, we consider a future application of the

Nyström projection as an input layer to a neural network. If we are

performing optimization with respect to a loss function L :Rn → R

and we want to restrict our optimization to the manifold, we can

simply compose with the projection ι̃ to find,

L|M(x) = L(X̂ ◦8)(x)

which has gradient,

∇L|M(x) = D8(x)⊤x̂⊤∇L((X̂ ◦8)(x)) ∈ TxM ⊂ R
n.

Here, we assume that the gradient of L is already computable,

and we are merely evaluating grad L on ι̃(x) = X̂ ◦ 8(x) which is

still a point in data space and just happens to have been projected

down onto the manifold. Moreover, we already have the matrix x̂,

so the only additional component that is needed is the gradient of

8, which simply requires computing the gradient of each of the

Nyström eigenfunctions.

2.2 SEC vectors

Our goal is to find vector fields that span the tangent spaces

of the manifold at each point. While this is not always possible

Frontiers inComputer Science 08 frontiersin.org116

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

with just d vector fields (where d is the intrinsic dimension of the

manifold), the Whitney embedding theorem guarantees that it is

always possible with 2d vector fields. The L2 inner product,

G(v,w) ≡ 〈v,w〉L2 ≡

∫

M

v · wdvol,

induced on vector fields by the Riemannian metric provides a

natural notion of orthogonality that can help to identify non-

redundant vector fields. Here, we use the notation v · w ≡ g(v,w)

to denote the function which at each point is the Riemannian dot

product of the two vectors at fields at that point.

In addition to being orthogonal, we also need these vector

fields to cut through noise and follow the coarse (principal)

geometric structure of the manifold. For this purpose, we introduce

the Dirichlet energy on vector fields, induced by the weak form

of the Hodge 1-Laplacian, δ1 = dδ + δd, where d, δ are the

exterior derivative and codifferential, respectively. These operators

are defined on differential forms, which are dual to tensor fields,

and, in particular, the dual of a vector field is a 1-form. The musical

isomorphisms switch back and forth between forms and fields, with

sharp, ♯, turning forms into fields, and flat, ♭, going back. As an

example, the codifferential on 1-forms is related to the divergence

operator by,

∇ · v = −δ(v♭)

Similarly, the exterior derivative, which acts on forms, induces

an operator on smooth fields which generalizes the curl operator,

∇ × v ≡ (⋆d(v♭))♯.

This operator coincides with the curl when manifold is three-

dimensional, so we use the same name, but in general, on an n-

dimensional manifold, the output of the generalized curl operator

will be a n − 2 tensor field. Using the generalized divergence and

curl operators, we can now define the Dirichlet energy on smooth

vector fields as

E(v,w) ≡

∫

M

(∇ × v) · (∇ × w) dvol+

∫

M

(∇ · v)(∇ · w) dvol

Where we note that the dot product in the first term is

the extension of the Riemannian metric to n − 2 forms. By

minimizing this energy, we will ensure that we have the smoothest

possible vector fields, as seen by a global (integrated) measure

of smoothness. As discussed in Appendix A, the Dirichlet energy

on vector fields is motivated by a dual energy on differential 1-

forms. Note that while measuring smoothness on functions only

requires a single term, the integral of the gradient of the function,

measuring smoothness of vector fields requires two different types

of derivatives. This is because neither the divergence nor the curl

can completely measure the different types of oscillations a vector

field can have, but when combined they provide a robust measure

of smoothness.

The Dirichlet energy and Riemannian metric together will

define a natural function for identifying good sets of vector fields,

which in turn will reduce to a generalized eigenvalue problem. In

Appendix A, we overview the SEC construction of the Dirichlet

energy and how to find its minimizers relative to the Riemannian

inner product. For now, we demonstrate the advantage of this

approach to finding vector fields that respect the global structure

of the data set. In Figure 3, we show a data set that while near

a simple manifold exhibits variations in density and noise levels

characteristic of real data. This example clearly demonstrates how

the SEC principal vectors respect the principal global structure

of the manifold, rather than getting lost in local details the way

local linearization is. This is possible because the Dirichlet energy

captures a measure of smoothness that is balanced over the entire

global structure of the data set.

Finally, we should note an important caveat and related

direction for future research. The vector fields identified here

are only globally orthonormal, meaning in an integrated sense.

This means that they are not required to be orthonormal in each

coordinate chart, since positive alignment in some regions can be

canceled by negative alignment in others. In future study, one could

consider a local orthonormality condition. This is related to the

search for minimal embeddings.

2.3 On-manifold projected gradient
descent

As discussed in Section 1, projected gradient descent (PGD)

relies on computing the network loss gradient with respect to

the input rather than the weights of the model. Once these input

gradients have been computed via backpropagation with respect to

a target class, the input is perturbed in the direction of the gradient

to create an adversarial example. If the resulting perturbed image

is farther than ǫ away from the starting image for a given distance

metric (typically ℓ2 or ℓ∞), then the perturbed image is projected

onto the ǫ-ball surface around the starting image. This is done

with the intent of keeping the adversarial example from becoming

unrecognizable as the original class. We use the SEC and Nyström

projection to create an on-manifold PGD that is representative of

the original class but not constrained to an ǫ-ball. First, we take

the gradient of the network for an input with respect to the input’s

class. Then, we find the input point’s position on the manifold with

the Nyström projection, see Section 2.1. Using the SEC, we then

compute the vector fields that are tangent to the manifold and

obtain the tangent bundle at the position of the starting point’s

position on the manifold, see Figure 3 for a comparison of vector

fields from SEC to local PCA. Next, we project the gradient onto

the orthonormalized subspace spanned by a subset of tangent

vectors at the input point depending on the dimensionality of the

underlying data. For instance, if the underlying manifold had an

estimated dimension of 2 then you would choose the 2 tangent

vectors from the smoothest vector fields computed by the SEC. We

orthonormalize the subspace by using the non-zero eigenvectors

of the singular value decomposition (SVD) to obtain an unbiased

basis. Then, we step along the direction of the gradient in the

tangent space by an amount determined by a hyperparameter

so that the input is sufficiently perturbed. As the final step,

we use the Nyström projection to return this perturbed sample

back to the manifold, see Figure 2 for an example. The Nyström

projection ensures that the resulting example is on that particular

class’s manifold and provides the information for determining

Frontiers inComputer Science 09 frontiersin.org117

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 3

SEC vector fields (left) respect global structure. Here, we consider a data set (blue points) localized near the unit circle but with varying density and

varying amounts of noise. In the top left plot, we show the principal vector field identified by the SEC (the global minimizer of the Dirichlet energy).

We compare this to a local PCA approach using k = 20, 40, and 60 nearest neighbors of each point (middle left to right). Note how the SEC vector

field smoothly respects the dominant mode of variation in the data set; while the local PCA approach can find the tangent direction in the clean

sections, it loses track in the noisy section of the data. The problem is further exacerbated in higher dimensions, and in the bottom row, we repeat

the same experiment using an isometric embedding of the circle into four dimensions. Again, we show the SEC principal vector (bottom left) and

local PCA with k = 10, 20, and 30 nearest neighbors from middle left to right.

FIGURE 4

On-manifold PGD steps for a 2D tangent space. Starting with an initial image (black dot), we follow the network gradient (red arrow). The perturbed

sample (red X) is then projected (black arrow) onto the tangent plane, TPM (gray surface), from the geometry found around the initial image. The

upwards black arrow pointing out of the tangent plane at the black dot is normal to the tangent plane for visual clarity. The on-plane perturbation

(blue X) is then Nyström projected (blue arrow) onto the manifold (curved surface M). The on-manifold point (green dot) is then classified to

determine if the network has classified it correctly. If the on-manifold point is classified correctly, then it is fed back into the network and the process

is repeated, although it reuses the same manifold and TPM from the starting point.

the example’s semantic labels (intrinsic coordinates) and tangent

vectors. We can obtain the on-manifold example’s semantic labels

using the same methodology used to obtain the mapping from

CIDM coordinates to pixel, see Figure 1 for an example of obtaining

semantic labels on a learned manifold. The perturbation and

projection steps are repeated until a misclassification is found, see

Figure 4 for an pictoral overview and Algorithm 1 for a pseudo-

code description. We use the same tangent basis from the starting

Frontiers inComputer Science 10 frontiersin.org118

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

image at all steps because we found that updating the tangent basis

at each step did not appreciably change the result after performing

Nyström projection. If the on-manifold PGD is successful, then it

produces an adversarial example that fools the classifier and is also

on the input class’s manifold.

Input: x0, y0, α, Tx0M //initial image, class, step

size, and tangent bundle

x← x0

y← C(x) //network classification of image

Px0 ←
∑

i viv
T
i ; vi ∈ Tx0M //projector from tangent

bundle at x0

while y = y0 do

g ← ∇xL(x, y) //classifier loss gradient w.r.t. x

x← x+ αPx0 (g) //step along projected gradient

x← N (x) //Nyström project image onto manifold

y← C(x)

end while

return x //on-manifold adversarial example

Algorithm 1. On-manifold PGD algorithm.

3 Results

The main result we present shows on-manifold adversarial

examples that are explainable in human understandable terms

by using the adversaries’ semantic labels on the manifold. We

present experimental results for finding on-manifold adversaries

using a VGG11 classifier (Simonyan and Zisserman, 2014) and a

synthetic data set. Our classifier is trained and validated to classify

RGB images of various vehicles (see Figure 5 for examples), which

were generated using synthetic data collected in Microsoft’s AirSim

platform, allowing for insertion of various vehicle classes in a range

of locations. Each vehicle class is sampled over two sets of intrinsic

parameters, represented by the azimuth angle and down look angle

(DLA) from which the image is captured. The azimuth angles are

sampled one degree apart from 1 to 360 and the down look angle is

sampled one degree apart from 1 to 45 degrees. The dense sampling

in intrinsinc parameters will enable CIDM and SEC computations,

while also allowing for NN models trained on the data to be

fairly robust.

3.1 VGG11 with static backgrounds

We trained a VGG11 classifier on a subset of the down look

angles (10◦ − 30◦) and all azimuth angles. See Figure 6 for the loss

and decision boundaries of the classifier for a single class over all

view angles available, including those the classifier was not trained

on. We use an image from the training set that was in a region close

to a decision boundary at 30◦ down look and 100◦ azimuth. We

then apply our on-manifold PGD to that point using a manifold

modeled on the points surrounding that point from 0◦ to 40◦

DLA and 80◦ to 120◦ azimuth, see Figure 7. The output of the

on-manifold PGD for this example results in a misclassification

that correlates with the decision boundary for this class near that

sample in view angle as seen in Figure 6. Note that the results of

projecting onto the manifold provide not only the on-manifold

point in pixel space but also in intrinsic parameter coordinates.

This means that the misclassification can be explained in terms

of human-understandable features. In this case, the on-manifold

adversarial example seen at step 5 in Figure 7 is shown to be at 39.36

DLA and 101.22 azimuth, which can be confirmed to be a region of

misclassification by looking at the explicit sampling of that region

in the decision boundary map of Figure 6.

When perturbing the on-manifold images with the gradient,

X′ = X + α∇X, we use a fixed step size, α = 106.38 for

convenience. We tested a range of step sizes ranging on a log scale

to find the smallest step that sufficiently perturbed the input into

misclassifying with the on-manifold PGD algorithm. The size of the

parameter α is due to the fact that the network gradient is mostly

contained in a space not spanned by the tangent vectors. After

projecting the gradient onto the tangent plane, the magnitude of

the projected gradient is several orders of magnitude smaller than

the raw gradient, which is visibly discernible in the second and third

columns of Figures 7, 10. To obtain a sufficient perturbation for the

classifier to misclass, this required a large value for α. Due to the

fact that the ℓ2 norm of the gradient was typically on the order of

10−3 for these examples, the gradient could also be normalized so

that smaller values of α could be used.

We choose the first two tangent vectors from the SEC because

the output of the SEC code returns the vector fields ordered by

smoothness, which typically results in the first vector fields being

best aligned with themanifold.We visually confirmed this in CIDM

coordinate space as seen in Figure 8.

3.2 Simple CNN with random backgrounds

We present another on-manifold PGD result using an

adversarially trained network. The model is a CNN with two

convolutional layers and a final fully connected layer. Both of the

2D convolutional layers have a kernel size of 3, stride of 1, padding

1, and are followed by a 2D max pooling with a kernel size of 2

and then ReLu activations. The first layer has 12 filters and the

second layer has 24 filters. For our data set with images sizes of

128×128, this leads to an input of size 32×32×24 into the last fully

connected layer. The output of the final layer is set to the number of

classes in the data set and we apply the softmax activation function.

The training paradigm for this experiment consists of using images

with randomly generated backgrounds, as shown in Figure 5, with

the result that the trained network will be background-agnostic.

We train on images from all azimuth angles and DLA from 20

to 30 degrees. After six epochs of standard training, we switch

to adversarial training, where adversarial images are generated by

following the network gradient. We continue until we reach 100

total epochs of training. Figure 9 then plots the loss and prediction

maps over azimuth and DLA for the luxury SUV class.

We note in Figure 9 that the majority of the misclassifications

occur outside of the training regime, with a few rare

misclassifications in the training regime, given as scattered

predictions of the box truck and sedan classes. We seek to generate

on-manifold adversarial examples in the range 20◦ − 30◦ for DLA

Frontiers inComputer Science 11 frontiersin.org119

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 5

Examples of RGB vehicle datatset, consisting of seven vehicle types (pickup truck, SUV, sedan, dump truck, box truck, jeep, and fork lift), varying in

360 degrees azimuth and 45 degrees down look angle. The data contains six types of scene backgrounds including urban and rural environments.

The full resolution data is 256 by 256 pixels, although it has been downsampled to 128 by 128. Top row: vehicle images with flat backgrounds

generated using image segmentation maps. Bottom row: vehicle images with randomly sampled location backgrounds (images are again inserted

into backgrounds using segmentation maps).

FIGURE 6

Network loss and prediction map (pickup truck class). Loss map and decision boundary map for the Pickup Truck class on a VGG11 network. The

classifier was trained with the seven vehicle types shown in Figure 5 using down look angles from 10◦ to 30◦ and azimuths from 0◦ to 359◦.

and 135◦−165◦ for azimuth, which is the range we use in geometry

calculations. Notice, in this experiment, we are only providing our

geometry tools with data from the intrinsic parameter range that

the network was trained on. The goal of this experiment is to use

our geometry tools to find and correctly explain an adversarial

example that caused the network to mislcassify, without giving the

geometry tools preferential treatment in the form of additional

data that the network was not trained on. Figure 10 illustrates our

on-manifold PGD iteration, as described in Section 2.3, with the

starting point at DLA 20◦ and azimuth 150◦.

Figure 10 depicts the iteration of on-manifold PGD to an on-

manifold adversarial example, which is classified as a box truck

Frontiers inComputer Science 12 frontiersin.org120

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 7

Generation of an on-manifold adversarial image. The first column is the Nystöm projection of the input from the previous step with the step number

on the vertical axis and the predicted intrinsic parameters on the horizontal axis. The second column is the first column after adding the network

gradient times 106.38. The third column adds the image from the first column and 107 times the gradient after it is projected onto the manifold

subspace spanned by the tangent subspace. The fourth column is the result of Nystöm projecting the third column so that it is on the manifold. Each

image includes the network prediction of that image at the top, and the outline color corresponds to the steps in Figure 4.

(as one would expect from Figure 9). In this experiment, we note

that adversarial examples causing a misclassification often contain

a reflection on the side of the vehicle. We have verified that this

matches with a rare feature in the training data, where images

containing a reflection commonly cause the luxury SUV to be

misclassified as the white box truck. These reflections are a result of

AirSim’s environment and they represent an unexpected challenge

that network mislcassified but was identified by our on-manifold

PGD approach. Evidently, not only is this approach able to generate

adversarial example which can be explained in terms of their

semantic labels but it also provides explainable insights into which

features of an image cause a network to misclassify.

4 Discussion

In conclusion, we have presented a formal introduction of

CIDM, a type of variable bandwidth kernel diffusion map that

Frontiers inComputer Science 13 frontiersin.org121

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 8

Pickup truck manifold approximation. The top two images show the manifold of the Pickup Truck plotted using the first three coordinates from

CIDM. The top left image is colored by the azimuth angle, and the top right is colored by the down look angle. The bottom four plots show the

tangent vector fields of the SEC as red arrows, and the initial point around which the geometry approximation was built as a blue dot.

FIGURE 9

Network loss and prediction map (luxury SUV class). Loss map and decision boundary map for the Luxury SUV class on a CNN. The classifier was

trained with seven vehicle types as shown in Figure 5 using down look angles from 20◦ to 30◦ and azimuths from 0◦ to 359◦. Adversarial training

begun after epoch 6 and continued until epoch 100, where the network gradients were used to generate adversaries. Network evaluation takes place

with scene background images, while the network was trained with a randomized set of backgrounds to avoid an over-dependence of the network

on the image background.

Frontiers inComputer Science 14 frontiersin.org122

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

FIGURE 10

Generation of an on-manifold adversarial image. The first column is the Nystöm projection of the input from the previous step with the step number

on the vertical axis and the predicted intrinsic parameters on the horizontal axis. The second column is the first column after adding the network

gradient times 105.23. The third column shows the gradient after it is projected onto the manifold subspace spanned by the tangent subspace. The

fourth column is the result of Nystöm projecting the third column so that it is on the manifold. Each image includes the network prediction of that

image at the top and the outline color corresponds to the steps in Figure 4.

is adept at dealing with heterogenous data density. We have

also introduced a novel application of the Nyström method for

extending the CIDM eigenfunctions to new data points. We use the

Nyström projection to map off-manifold points onto the manifold

inside PGD to implement an on-manifold PGD. Additionally, we

showed how to use SEC to find vector fields of the manifold for

points on the manifold, which we use as a local linear space around

the data to project to for intermediate points in our on-manifold

PGD implementation. We were able to successfully obtain on-

manifold examples that the trained NN misclassifies, showing the

promise of on-manifold examples that can be found in input space

without reducing down to a latent space. Our reported results

provided the geometry approximation tool with data that was

outside the data used to train the NN classifier, meaning that

Frontiers inComputer Science 15 frontiersin.org123

https://doi.org/10.3389/fcomp.2024.1274181
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

the output of the on-manifold PGD algorithm would not be a

valid input for adversarial regularization. However, the experiment

did provide novel tools for modeling the data manifold in a

manner that allowed the on-manifold PGD algorithm to walk in the

direction of the NN gradient while remaining on themanifold. This

provided novel examples that were on-manifold but not simply

part of the hold out data. In addition, the Nyström projection onto

the manifold provided the intrinsic parameters of the adversarial

examples so that the misclassification was human interpretable.

The ability to report the intrinsic parameter of arbitrary points on

the manifold opens the door to being able to explain NN decision

boundaries in human understandable terms without explicitly

sampling all possible inputs. In non-synthetic data, a single class

will typically not have continuously varying intrinsic parameters, so

additional work needs to done to transition these tools to real-world

data sets.

Data availability statement

The datasets presented in this article are not readily available

because the way the dataset was generated was described

for reproducibility, but it is not available due to commercial

restrictions. Requests to access the datasets should be directed to

aaron.mahler@teledyne.com.

Author contributions

AM: Conceptualization, Investigation, Methodology,

Software, Supervision, Visualization, Writing – original draft.

TB: Conceptualization, Funding acquisition, Investigation,

Methodology, Visualization, Writing – original draft. TS:

Conceptualization, Funding acquisition, Investigation,

Methodology, Software, Writing – review & editing. HA:

Investigation, Project administration, Writing – review &

editing. MM: Investigation, Software, Visualization, Writing –

original draft. JS: Investigation, Software, Writing – review &

editing. IK: Conceptualization, Methodology, Writing – review

& editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This material was based upon study supported by the Defense

Advanced Research Projects Agency (DARPA) under Agreement

No. HR00112290079, and it has been approved for public release;

distribution is unlimited.

Acknowledgments

The authors would also like to thank Juan M. Bello-Rivas for

many helpful and insightful discussions related to these topics.

Conflict of interest

AM, TS, and MM were employed by Teledyne Scientific &

Imaging, LLC.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2024.1274181/full#supplementary-material

References

Athalye, A., Carlini, N., and Wagner, D. (2018). “Obfuscated gradients give a false
sense of security: circumventing defenses to adversarial examples,” in Proceedings of
the 35th International Conference on Machine Learning (Cambridge, MA: PMLR),
274–283.

Belkin, M., and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality
reduction and data representation. Neural Comput. 15, 1373–1396.
doi: 10.1162/089976603321780317

Berry, T., and Giannakis, D. (2020). Spectral exterior calculus. Commun. Pure Appl.
Math. 73, 689–770. doi: 10.1002/cpa.21885

Berry, T., and Harlim, J. (2016). Variable bandwidth diffusion kernels. Appl.
Comput. Harmon. Anal. 40, 68–96. doi: 10.1016/j.acha.2015.01.001

Berry, T., and Sauer, T. (2016). Local kernels and the geometric structure of data.
Appl. Comput. Harmon. Anal. 40, 439–469. doi: 10.1016/j.acha.2015.03.002

Berry, T., and Sauer, T. (2019). Consistent manifold representation for topological
data analysis. Foundations of Data Science 1, 1. doi: 10.3934/fods.2019001

Carlini, N., and Wagner, D. (2017). Towards evaluating the robustness of neural
networks. arXiv [preprint]. doi: 10.1109/SP.2017.49

Cho, S., Jun, T. J., Oh, B., and Kim, D. (2020). “DAPAS: denoising autoencoder
to prevent adversarial attack in semantic segmentation,” in 2020 International
Joint Conference on Neural Networks (IJCNN), pages 1-8. Conference Name: 2020
International Joint Conference on Neural Networks (IJCNN) (Glasgow: IEEE).

Coifman, R. R., and Lafon, S. (2006a). Diffusion maps. Appl. Comput. Harmon.
Anal. 21, 5–30. doi: 10.1016/j.acha.2006.04.006

Coifman, R. R., and Lafon, S. (2006b). Geometric harmonics: a
novel tool for multiscale out-of-sample extension of empirical functions.
Appl. Comput. Harmon. Anal. 21, 31–52. doi: 10.1016/j.acha.2005.
07.005

Dietrich, F., Bello-Rivas, J. M., and Kevrekidis, I. G. (2021). On the
correspondence between gaussian processes and geometric harmonics. arXiv
[preprint]. doi: 10.48550/arXiv.2110.02296

Frontiers inComputer Science 16 frontiersin.org124

https://doi.org/10.3389/fcomp.2024.1274181
mailto:aaron.mahler@teledyne.com
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1274181/full#supplementary-material
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1002/cpa.21885
https://doi.org/10.1016/j.acha.2015.01.001
https://doi.org/10.1016/j.acha.2015.03.002
https://doi.org/10.3934/fods.2019001
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/j.acha.2005.07.005
https://doi.org/10.48550/arXiv.2110.02296
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mahler et al. 10.3389/fcomp.2024.1274181

Engstrom, L., Ilyas, A., Salman, H., Santurkar, S., and Tsipras, D. (2019). Robustness.
Python Library. Available online at: https://github.com/MadryLab/robustness

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing
adversarial examples. arXiv [preprint]. doi: 10.48550/arXiv.1412.6572

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., and Madry, A.
(2019). Adversarial examples are not bugs, they are features. arXiv [preprint].
doi: 10.48550/arXiv.1905.02175

Kurakin, A., Bengio, A., and Goodfellow, A. K. (2018). “Adversarial examples in the
physical world,” in Artificial Intelligence Safety and Security (Boca Raton, FL: Chapman
and Hall/CRC), 14.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2019).
Towards deep learning models resistant to adversarial attacks. arXiv. [preprint].
doi: 10.48550/arXiv.1706.06083

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and Frossard, P. (2017). “Universal
adversarial perturbations,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (Honolulu, HI: IEEE), 1765–1773. Available online at: https://
ieeexplore.ieee.org/document/8099500

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016). “DeepFool: a simple
and accurate method to fool deep neural networks,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV: IEEE), 2574–2582.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A.
(2017). “Practical black-box attacks against machine learning,” in Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security, ASIA CCS
’17 (New York, NY: Association for Computing Machinery), 506–519.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks
for large-scale image recognition. arXiv [preprint]. doi: 10.48550/arXiv.1409.
1556

Stutz, D., Hein, M., and Schiele, B. (2019). Disentangling adversarial
robustness and generalization. arXiv [preprint]. doi: 10.1109/CVPR.2019.
00714

Su, D., Zhang, H., Chen, H., Yi, J., Chen, P.-Y., and Gao, Y. (2018). Is robustness
the cost of accuracy?-A comprehensive study on the robustness of 18 deep image
classification models. arXiv [preprint]. 631–648. doi: 10.1007/978-3-030-01258-8_39

Su, J., Vargas, D. V., and Kouichi, S. (2019). One pixel attack for fooling deep neural
networks. IEEE Transact. Evol. Comp. 23, 828–841. doi: 10.1109/TEVC.2019.2890858

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
et al. (2014). Intriguing properties of neural networks. Technical Report. arXiv.
doi: 10.48550/arXiv.1312.6199

Tabacof, P., and Valle, E. (2016). “Exploring the space of adversarial images,” in 2016
International Joint Conference on Neural Networks (IJCNN) (Vancouver, BC: IEEE),
426–433.

Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., and McDaniel,
P. (2020). Ensemble adversarial training: attacks and defenses. arXiv [preprint].
doi: 10.48550/arXiv.1705.07204

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and Madry, A.
(2019). Robustness may be at odds with accuracy. arXiv [preprint].
doi: 10.48550/arXiv.1805.12152

Xu, W., Evans, D., and Qi, Y. (2018). “Feature squeezing: detecting adversarial
examples in deep neural networks,” in Proceedings 2018 Network and Distributed
System Security Symposium (San Diego, CA: Internet Society).

Yin, Z., Wang, H., and Wang, J. (2020). “War: an efficient pre-processing method
for defending adversarial attacks,” in Machine Learning for Cyber Security: Third
International Conference, ML4CS 2020, Guangzhou, China, October 8–10, 2020,
Proceedings, Part II (Berlin: Springer-Verlag), 514–524.

Frontiers inComputer Science 17 frontiersin.org125

https://doi.org/10.3389/fcomp.2024.1274181
https://github.com/MadryLab/robustness
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1905.02175
https://doi.org/10.48550/arXiv.1706.06083
https://ieeexplore.ieee.org/document/8099500
https://ieeexplore.ieee.org/document/8099500
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR.2019.00714
https://doi.org/10.1007/978-3-030-01258-8_39
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1705.07204
https://doi.org/10.48550/arXiv.1805.12152
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 09 May 2024

DOI 10.3389/frai.2024.1255566

OPEN ACCESS

EDITED BY

Yunye Gong,

SRI International, United States

REVIEWED BY

Pavan Turaga,

Arizona State University, United States

Ankita Shukla,

University of Nevada, Reno, United States

*CORRESPONDENCE

Zhenzhen Liu

zl535@cornell.edu

Jin Peng Zhou

jz563@cornell.edu

†These authors have contributed equally to

this work and share first authorship

RECEIVED 09 July 2023

ACCEPTED 25 March 2024

PUBLISHED 09 May 2024

CITATION

Liu Z, Zhou JP and Weinberger KQ (2024)

Leveraging di�usion models for unsupervised

out-of-distribution detection on image

manifold. Front. Artif. Intell. 7:1255566.

doi: 10.3389/frai.2024.1255566

COPYRIGHT

© 2024 Liu, Zhou and Weinberger. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Leveraging di�usion models for
unsupervised out-of-distribution
detection on image manifold

Zhenzhen Liu*†, Jin Peng Zhou*† and Kilian Q. Weinberger

Department of Computer Science, Cornell University, Ithaca, NY, United States

Out-of-distribution (OOD) detection is crucial for enhancing the reliability of

machine learning models when confronted with data that di�er from their

training distribution. In the image domain, we hypothesize that images inhabit

manifolds defined by latent properties such as color, position, and shape.

Leveraging this intuition, we propose a novel approach to OOD detection

using a di�usion model to discern images that deviate from the in-domain

distribution. Our method involves training a di�usion model using in-domain

images. At inference time, we lift an image from its original manifold using a

masking process, and then apply a di�usion model to map it towards the in-

domain manifold. We measure the distance between the original and mapped

images, and identify those with a large distance as OOD. Our experiments

encompass comprehensive evaluation across various datasets characterized

by di�erences in color, semantics, and resolution. Our method demonstrates

strong and consistent performance in detecting OOD images across the

tested datasets, highlighting its e�ectiveness in handling images with diverse

characteristics. Additionally, ablation studies confirm the significant contribution

of each component in our framework to the overall performance.

KEYWORDS

out-of-distribution detection, di�usion models, score-based models, generative

modeling, manifold learning

1 Introduction

The goal of out-of-distribution (OOD) detection is to ascertain if a given data point

comes from a specific domain. This task is crucial given that machine learning models

generally require that the distribution of test data mirrors the distribution of the training

data. In cases where the test data deviates from the training distribution, the models can

generate meaningless or deceptive results. This could be especially harmful for tasks in

high-stake areas like healthcare (Hamet and Tremblay, 2017) and criminal justice (Rigano,

2019).

The OOD detection task has been examined under settings with access to

varied amount of information. These settings can be categorized as supervised

and unsupervised. Among supervised settings, the most informed scenario makes

the assumption that exemplar out-of-domain data are available. One can then

incorporate them in the training of neural networks to enhance their ability

to recognize out-of-domain inputs (Hendrycks et al., 2018; Ruff et al., 2019).

Various methods excel on identifying out-of-domain data when that resemble

the training examples, but their performance deteriorates on out-of-domain

Frontiers in Artificial Intelligence 01 frontiersin.org126

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1255566
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1255566&domain=pdf&date_stamp=2024-05-09
mailto:zl535@cornell.edu
mailto:jz563@cornell.edu
https://doi.org/10.3389/frai.2024.1255566
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1255566/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

inputs that are not represented in the training process. In practical

applications, inputs are often highly diverse, and it is challenging

to construct a truly representative set of out-of-domain examples.

A more feasible setting is to only leverage in-domain classifiers or

class labels (Hendrycks and Gimpel, 2016; Liang et al., 2017; Lee

et al., 2018; Huang et al., 2021; Wang et al., 2022). Although this

setting is less restrictive, it still requires two essential conditions:

well-defined categorization of the in-domain data and an adequate

amount of labeled data. These conditions do not hold for many

tasks. In contrast, the fully unsupervised setting only require access

to unlabeled in-domain data, which can often be obtained with low

cost and in abundant quantities. As a result, it is ideal to develop

OOD detectors under the fully unsupervised setting.

Recently, the diffusion models (DMs), a type of generative

models, have received increasing attention in the machine learning

community (Ho et al., 2020; Song et al., 2020). DMs operate on

two procedures: The forward operation performs iterative noise

addition to an image’s pixels and transforms it into a sample drawn

from a noise distribution. The backward operation—performed

by a dedicated neural network—gradually removes noise from the

image, guiding a noise image toward a specific image manifold.

In this paper, we show that we can leverage DMs as a

mapping to amanifold, and use it for unsupervised OOD detection.

Conceptually, if an image is lifted from its manifold, a diffusion

model trained over the same manifold can guide it back to its

original manifold. However, if the diffusion model has been trained

on a different manifold, it would lead the lifted image toward its

own training manifold, resulting in a substantial distance between

the original and the mapped images. Therefore, we can identify

out-of-domain images based on this distance.

To this end, we introduce an innovative unsupervised method

for out-of-distribution detection, Lift, Map, Detect (LMD), that

embodies the aforementioned concept. Lifting is performed

through image corruption. For instance, a face image that has

been masked in the center will no longer fit into the face image

category. Previous research by Song et al. (2020) and Lugmayr et al.

(2022) have demonstrated that the diffusion model can perform

inpainting, i.e., restoring missing areas in an image with visually

convincing content, without the need for additional training.

This allows us to map the mapped image via inpainting with

a in-domain diffusion model. We can employ a conventional

image similarity metric to calculate the distance between the

original and mapped images, and detect an out-of-domain image

when there is a significant distance. In Figure 1, we provide

an example: A diffusion model trained with face images maps

a lifted in-domain face image closer to its original location,

while moving an lifted fire hydrant, an out-of-domain image,

further away.

Our main contributions include: (1) We propose an innovative

unsupervised OOD detection technique, Lift, Map, Detect (LMD),

that utilizes of the inherent manifold mapping capacity of

diffusion models, and incorporates design choices that enhance

the distinguishability between in-domain and out-of-domain data.

(2) We conduct extensive experiments on various image datasets

with different characteristics to illustrate the versatility of LMD.

(3) We present in-depth analysis, visualizations and ablations to

confirm LMD’s underlying hypothesis and provide insights into

LMD’s behaviors.

FIGURE 1

The intuition behind LMD. In essence, LMD leverages a di�usion

model as a mapping toward the in-domain manifold. It applies a

mask to the image to lift it from its original manifold, and uses the

di�usion model to guide it toward the in-domain manifold. If an

image is in-domain, it would generally have smaller distance

between the original and mapped locations than out-of-domain

images.

2 Materials and methods

2.1 Preliminaries

Problem formulation. Formally, we define the unsupervised

out-of-distribution (OOD) task as follows: We aim to build a

detector to identify data points x that deviate from a distribution of

interest D. The detector should be built using only unlabeled data

x1, · · · , xn sampled fromD. It should assign anOOD score s(x) that

positively correlates with the likelihood of x not belonging toD.

Diffusion models. In this section, we present a brief summary

of the concepts behind the diffusion model (DM). It is a class of

generative models that can learn complex distributions. It involves

a forward process of diffusion and a backward process of denoising.

Diffusion corrupts the original data with noise, while denoising—

performed by a learned neural network—progressively reduces

noise from the corrupted image. There are various formulations

of diffusion models, such as score-based generative models (Song

and Ermon, 2019) and stochastic differential equations (Song et al.,

2020). A comprehensive review can be found in Yang et al. (2022).

LMD is agnostic to the different DM variants. Here, we describe

one prominent variant: the Denoising Diffusion Probabilistic

Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020).

DDPM’s diffusion process begins with a data sample x0, and injects

Gaussian noise at every subsequent step t = 1, 2, · · · ,T following

Equation (1)

q(xt|xt−1) = N (xt;
√

1− βtxt ,βtI) (1)

where βt adheres to a predetermined variance schedule. The

denoising process has a prior distribution xT ∼ N (0, 1), and

Frontiers in Artificial Intelligence 02 frontiersin.org127

https://doi.org/10.3389/frai.2024.1255566
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

Input: test image x, in-domain diffusion model θin

Output: OOD score of test image x

for i = 1 to r do

Mi ← Get_Mask(i)

x′i ← Inpaint(x,Mi, θin)

di ← Distance(x, x′i)

end for

return Aggregate(d1, . . . , dr)

Algorithm 1. Lift, Map, Detect (LMD).

formulates the process following Equation (2)

pθ (xt−1|xt) = N (xt−1;µθ (xt , t),6θ (xt , t)) (2)

where both µθ (xt , t) and 6θ (xt , t) are parametrized by a neural

network θ .

2.2 Lift, Map, Detect

Lift, Map, Detect (LMD) is inspired by the observation that a

diffusion model maps images toward the manifold it is trained on.

Concretely, it leverages a diffusion model trained over unlabeled

in-domain data. Given a test image, LMD applies corruption

techniques to lift it from its original manifold, and utilizes the

diffusionmodel to map it toward the in-domainmanifold on which

the model is trained. As depicted in Figure 1, if the image is indeed

in-domain, the model can map it back to its manifold close to its

original location. Conversely, if the image belongs to a different

manifold, then the diffusion model would redirect it toward the in-

domainmanifold, moving it further away from its original location.

Hence, out-of-domain images often have larger distance between

the original and mapped images than in-domain images, and LMD

identifies images with large distance as OOD. Figure 2 presents the

general framework of LMD in Figure 2, and Algorithm 1 provides a

succinct representation of the LMD algorithm. Subsequent sections

explain each component of LMD in detail.

2.2.1 Lifting and mapping images
LMD lifts an image by masking parts of it, and maps it

by inpainting over the masked area. For convenience, we also

refer the lifted and mapped images as masked and reconstructed

images, respectively. Masking provides a straightward way of

controlling the extent to which an image is lifted, as larger

masked area generally corresponds to larger deviation from the

manifold. Furthermore, recent studies have shown that vanilla

diffusion models can perform inpainting without the need for

retraining, regardless of the size or shape of the masked regions.

This highlights masking and inpainting as an intuitive strategy.

Algorithm 2 describes the high-level process of inpainting with

diffusion models. Additionally, we observe that an alternative way

of lifting and mapping an image is to just add noise to it and then

denoise with the diffusion model. We compare this instantiation

with masking and inpainting in Table 4.

LMD operates based on the assumption that in-domain images

have smaller reconstruction distance than out-of-domain images.

Input: original image xorig, binary mask M where 0

indicates region to be inpainted, diffusion model θ

Output: inpainted image xinp

for t = T to 1 do

if t == T then

xinp ← sample from noise distribution

end if

x′orig ← diffuse(xorig ; θ) to step t − 1

xinp ← denoise(xinp; θ) to step t − 1

xinp ← x′orig ·M + xinp · (1−M)

end for

return xinp

Algorithm 2. Inpaint.

In practice, the validity of this assumption depends on two

factors. First of all, inpainting with a diffusion model is stochastic.

This occasionally leads to unfaithful in-domain reconstructions

or faithful out-of-domain reconstructions. Consequently, a single

reconstruction distance provides a noisy signal for identifying

OOD images. To mitigate the randomness, we perform multiple

reconstructions for each image, and use the median reconstruction

distance as the OOD score. Our experiments in Section 3.4.3 show

that this can significantly improve the detection performance.

Another factor to consider is the amount of information

removed from an image. In the extreme case where the whole image

is masked out, the reconstruction would be a random image from

the in-domain manifold. This could lead to large reconstruction

distance for both in-domain and out-of-domain images, especially

when the in-domain distribution is diverse. Conversely, if only one

pixel is removed from an image, then both in-domain and out-

of-domain reconstructions would be highly faithful. Therefore, a

mask should ideally provide sufficient clues for the diffusion model

to map a lifted in-domain image close to its original location,

while creating enough space to produce dissimilar out-of-domain

reconstructions.

In this regard, we propose to use the alternating checkerboard

N × N mask (Figure 3). For simplicity, we assume that images are

square-shaped with size L × L; extension to rectangular-shaped

images is straightforward. The checkerboard mask divides the

image into an N × N grid of patches, where each patch has

size L
N ×

L
N . It masks out every other patch in a checkerboard-

like fashion, covering 50% of an image in total. During

multiple reconstructions, the masked and unmasked patches are

flipped at each reconstruction attempt. This ensures that salient

characteristics of an out-of-domain images are covered at some

attempts. We default to N = 8. Experiments with different values

of N can be found in Table 2.

2.2.2 Measuring reconstruction distance
We use the Learned Perceptual Image Patch Similarity

(LPIPS) (Zhang et al., 2018) metric to measure the distance

between the original and reconstructed images. LPIPS utilizes

calibrated intermediate activations of a pretrained neural network

as features, and measures the normalized ℓ2 distance between

Frontiers in Artificial Intelligence 03 frontiersin.org128

https://doi.org/10.3389/frai.2024.1255566
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

FIGURE 2

Overview of the LMD process. LMD utilizes a di�usion model trained over the in-domain manifold. It repeatedly lifts an image from its manifold by

masking, and maps it toward the di�usion model’s training manifold by inpainting. It measures the median distance between the original and the

mapped images, and considers images with larger distance as out-of-domain.

FIGURE 3

The alternating checkerboard mask. We flip the masked and unmasked regions at each reconstruction attempt. The example in the figure is 8× 8.

the features of two images. This yields a value between 0 and

1, where lower value indicates higher similarity. We employ the

version with AlexNet (Krizhevsky et al., 2012) backbone pretrained

on ImageNet.1 LPIPS has been observed to align with human

perception of image similarity (Zhang et al., 2018), and has been

applied in research on a wide range of tasks (Karras et al., 2019;

Alaluf et al., 2021; Meng et al., 2021) and image modalities (Gong

et al., 2021; Lugmayr et al., 2022; Toda et al., 2022). Experiments

with alternative metric choices in Table 3.

3 Results

3.1 Experiment settings

We benchmark LMD against existing unsupervised OOD

detection methods on widely used datasets. We provide fine-

grained analysis and visualizations of the reconstructed images to

better understand LMD’s performance. Additionally, we perform

ablation studies to analyze the individual components of LMD.

1 We use the implementation of https://github.com/richzhang/

PerceptualSimilarity.

3.1.1 Baselines
We compare LMDwith seven existing baselines, covering three

mainstream classes of methods: likelihood-based, reconstruction-

based and feature-based. For likelihood-based methods, we

consider Likelihood (Likelihood) (Bishop, 1994), Input

Complexity (IC) (Serrà et al., 2019) and Likelihood Regret

(LR) (Xiao et al., 2020). We obtain the likelihood from the

diffusion model using Song et al. (2020)’s approach.2 We adapt

the official GitHub repository of Likelihood Regret3 for both

Likelihood Regret and Input Complexity. For Input Complexity,

we leverage the likelihood from the diffusion model to ensure

fairness in comparison; we have experimented with both the

PNG compressor and the JPEG compressor, and we report the

results from the PNG compressor due to its superior performance.

For reconstruction-based methods, we consider Reconstruction

with Autoencoder and Mean Squared Error loss (AE-MSE),

AutoMahalanobis (AE-MH) (Denouden et al., 2018) and AnoGAN

(AnoGAN) (Schlegl et al., 2017). For feature-based method, we

consider Pretrained Feature Extractor + Mahalanobis Distance

2 https://github.com/yang-song/score_sde_pytorch

3 https://github.com/XavierXiao/Likelihood-Regret

Frontiers in Artificial Intelligence 04 frontiersin.org129

https://doi.org/10.3389/frai.2024.1255566
https://github.com/richzhang/PerceptualSimilarity
https://github.com/richzhang/PerceptualSimilarity
https://github.com/yang-song/score_sde_pytorch
https://github.com/XavierXiao/Likelihood-Regret
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

(Pretrained) (Xiao et al., 2021). We use our own implementation

as we did not find any existing implementation to our

best efforts.

3.1.2 Evaluation
We evaluate the performance of LMD and the baselines using

the area under Receiver Operating Characteristic curve (ROC-

AUC), following the practice of existing works (Hendrycks and

Gimpel, 2016; Ren et al., 2019; Xiao et al., 2021). OOD detection

methods commonly produce numeric OOD scores, and apply a

decision threshold to classify data as in-domain or out-of-domain.

The ROC curve plots the true positive rate against the false positive

rate at various decision thresholds, and ROC-AUC measures the

area under the curve. ROC-AUC ranges between 0 and 1, with

higher values indicating better performance. A detector achieves

ROC-AUC > 0.5 when it in general assigns higher OOD scores to

out-of-domain images than in-domain images. Conversely, it yields

ROC-AUC < 0.5 when it in general assigns higher OOD scores for

in-domain images.

3.1.3 Datasets
For quantitative evaluations, we consider pairwise

combinations of CIFAR10 (Krizhevsky, 2009),

CIFAR100 (Krizhevsky, 2009) and SVHN (Netzer et al., 2011),

and pairwise combinations of MNIST (LeCun et al., 2010),

KMNIST (Clanuwat et al., 2018), and FashionMNIST (Xiao et al.,

2017), as the in-domain and out-of-domain datasets. This yields

12 pairs in total. For qualitative evaluations, we further present

visualizations on two pairs of in-domain vs. out-of-domain datasets

with higher image resolutions: CelebA-HQ (Karras et al., 2017)

vs. ImageNet (Russakovsky et al., 2015), and LSUN bedroom (Yu

et al., 2015) vs. LSUN classroom (Yu et al., 2015). We standardize

these images to 256× 256.

3.1.4 Implementation details of LMD
We build LMD on top of Song et al. (2020)’s implementation.

For datasets in Table 3, we use DDPM++ models with SubVP

SDE. We take Song et al. (2020)’s pretrained CIFAR10 checkpoint,

and train from scratch for the other datasets. We use alternating

checkerboard 8×8 mask (Figure 3), reconstruction distance metric

LPIPS and 10 reconstructions per image for LMD.

For the higher resolution datasets, we use NCSN++ models

with VE SDE.We take Song et al. (2020)’s pretrained FFHQ (Karras

et al., 2019) checkpoint for CelebA-HQ vs. ImageNet. This is to

avoid model memorization concerns given that the CelebA-HQ

checkpoint is pretrained over the whole dataset. We use Song et al.

(2020)’s pretrained LSUN bedroom checkpoint for LSUN bedroom

vs. LSUN classroom. For these datasets, we consider a checkerboard

4 × 4 mask, a checkerboard 8 × 8 mask and a square-centered

mask, with one reconstruction per image. We additionally report

the ROC-AUC from our default configuration of alternating 8 × 8

checkerboard and 10 reconstructions per image as a reference. We

use LPIPS as the distance metric.

3.2 Quantitative results and analysis

We present the OOD detection performance of LMD and

the baselines on 12 dataset pairs in Table 1. LMD attains the

highest ROC-AUC on five pairs, while demonstrating consistent

and strong performance on others. Specifically, on CIFAR100

vs. SVHN, it attains 10% higher ROC-AUC than the best

baseline performance. LMD also attains the highest average

ROC-AUC of 0.907, which is 9% higher than the best average

performance among the baselines. We visualize examples of the in-

domain and out-of-domain reconstructions of LMD in Figure 4.

In general, in-domain reconstructions resemble their original

images, while out-of-domain reconstructions are fragmented

and noisy.

We further conduct fine-grained analysis to understand

LMD’s performance. We observe that each dataset in Table 1

consists of images from multiple distinct semantic categories,

forming a diverse data distribution. For example, CIFAR10

comprises 10 different objects or animals, and SVHN comprises

10 digits. We seek to understand whether LMD performs similarly

across different semantic categories, or if certain categories

are more challenging for LMD than the others. Specifically,

we group the images by their ground truth classes, and

examine the distinguishability of the OOD scores for each

pair of classes of the in-domain vs. out-of-domain datasets.

We present the results for CIFAR10 vs. SVHN and SVHN

vs. CIFAR10 in Figure 5. On CIFAR10 vs. SVHN, all pairs of

classes are highly distinguishable, with ROC-AUC ranging from

0.97 to 1. This is unsurprising given that LMD attains strong

performance of ROC-AUC 0.992 on this pair. On SVHN vs.

CIFAR10, pairwise performance shows visible variation, with

ROC-AUC ranging from 0.84 to 0.97. Specifically, the ROC-

AUC is relatively low when the in-domain class is “3” or “5,”

and when the out-of-domain class is “deer” or “frog.” This

suggests that the reason behind LMD’s satisfactory but suboptimal

performance on SVHN vs. CIFAR10 is primarily attributed to

the relative difficulty in distinguishing between some of the

semantic categories.

3.3 Qualitative studies on higher resolution
images

We show qualitative results on images with resolution 256×256

for two in-domain/out-of-domain pairs: CelebA-HQ vs. ImageNet

(Figure 6) and LSUN bedroom vs. LSUN classroom (Figure 7).

The ROC-AUCs in the images correspond to LMD’s performance

with only one reconstruction attempt. As a reference, under our

default configuration of alternating checkerboard 8 × 8 mask and

10 reconstruction attempts, CelebA-HQ vs. ImageNet has a ROC-

AUC of 0.993, and LSUN bedroom vs. LSUN classroom has a

ROC-AUC of 0.927.

For CeleA-HQ vs. ImageNet, LMD performs competitively

under all three mask choices, and achieves ROC-AUC ranging from

0.991 to 1 even without multiple reconstructions. Given the highly

structured nature of human faces, the in-domain reconstructions

under all three masks are accurate. For the out-of-domain images,

reconstructions under the checkerboard masks contain local

Frontiers in Artificial Intelligence 05 frontiersin.org130

https://doi.org/10.3389/frai.2024.1255566
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

TABLE 1 ROC-AUC of LMD and the baselines.

ID OOD Likelihood IC LR Pretrained AE-MSE AE-MH AnoGAN LMD

CIFAR10 CIFAR100 0.520 0.568 0.546 0.806 0.510 0.488 0.518 0.607

SVHN 0.180 0.870 0.904 0.888 0.025 0.073 0.120 0.992

CIFAR100 CIFAR10 0.495 0.468 0.484 0.543 0.509 0.486 0.510 0.568

SVHN 0.193 0.792 0.896 0.776 0.027 0.122 0.131 0.985

SVHN CIFAR10 0.974 0.973 0.805 0.999 0.981 0.966 0.967 0.914

CIFAR100 0.970 0.976 0.821 0.999 0.980 0.966 0.962 0.876

MNIST KMNIST 0.948 0.903 0.999 0.887 0.999 1.000 0.933 0.984

FashionMNIST 0.997 1.000 0.999 0.999 1.000 1.000 0.992 0.999

KMNIST MNIST 0.152 0.951 0.431 0.582 0.102 0.217 0.317 0.978

FashionMNIST 0.833 0.999 0.557 0.993 0.896 0.868 0.701 0.993

FashionMNIST MNIST 0.172 0.912 0.971 0.647 0.804 0.969 0.835 0.992

KMNIST 0.542 0.584 0.994 0.730 0.976 0.996 0.912 0.990

Average 0.581 0.833 0.783 0.821 0.651 0.679 0.658 0.907

Higher value is better. We use the default configuration of alternating checkerboard 8× 8, LPIPS metric and 10 reconstructions per image for all experiments. LMD consistently demonstrates

strong performance and attains the highest average ROC-AUC. The bold values mean the best performance, i.e., the highest ROC-AUC, among the evaluated methods in each setting, where a

setting is either an in-domain vs. out-of-domain dataset pair or the average across all dataset pairs.

FIGURE 4

Example reconstructions from three pairs of dataset. “Orig.” is the original image and “Inp.” is the inpainted image. Generally, the in-domain

reconstructions are faithful while the out-of-domain reconstructions are noisy and dissimilar.

distortions, while reconstructions under the center mask tend to

hallucinate faces. As a result, in this case, the in-domain and out-of-

domain reconstructions become more discernible when employing

larger patches in masking.

For LSUNbedroom vs. LSUN classroom, the checkerboard 8×8

mask attains strong results, while the checkerboard 4× 4 mask and

the center-squared mask demonstrate suboptimal performance.

This is because bedroom images exhibit greater variation and

contain more intricate details. Consequently, when large patches

are masked, the diffusion model may fill in plausible yet different

content, resulting in significant reconstruction discrepancies for

in-domain images. In fact, even with the checkerboard 8 × 8

mask, the diffusion model may hallucinate or alter elements in the

bedroom inpaintings. Moreover, the complex and diverse nature

Frontiers in Artificial Intelligence 06 frontiersin.org131

https://doi.org/10.3389/frai.2024.1255566
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

FIGURE 5

Per-Class ROC-AUC for CIFAR10 vs. SVHN and SVHN vs. CIFAR10. The classes for CIFAR10 are: 1, airplane; 2, automobile; 3, bird; 4, cat; 5, deer; 6,

dog; 7, frog; 8, horse; 9, ship; and 10, truck. (A) CIFAR10 vs. SVHN. (B) SVHN vs. CIFAR10.

of bedroom images poses substantial challenges for the diffusion

model to accurately learn the in-domain distribution; samples and

inpaintings from the LSUN bedroom model generally have lower

quality than those from the CelebA-HQ model.

Results from these two dataset pairs collectively demonstrate

that LMD could scale to higher resolution images with richer

details. They also highlight the checkerboard 8 × 8 mask as a

versatile default choice, as it is effective for both structured and

diverse in-domain distributions. For further discussions on mask

choices, please refer to Section 3.4.1.

3.4 Ablation studies

3.4.1 Mask choice
Table 2 presents the performance of LMD under alternative

mask choices. Besides our default mask, we consider alternating

checkerboard 4× 4, alternating checkerboard 16× 16, a fixed 8× 8

checkerboard for which we do not perform the flipping operation,

a square-centered mask, and a random patch mask following (Xie

et al., 2022).4 Figure 8 visualizes the mask patterns. We experiment

on three dataset pairs: CIFAR10 vs. CIFAR100, CIFAR10 vs. SVHN

and MNIST vs. KMNIST. For all the mask choices, we perform

10 reconstructions per image and use LPIPS as the reconstruction

distance metric.

Our default mask choice of alternating checkerboard

8 × 8 shows consistent and strong performance. Alternating

checkerboard 16 × 16 mask, fixed checkerboard 8 × 8 mask and

the random patch mask are competitive but underperform the

4 https://github.com/microsoft/SimMIM

default choice. Nevertheless, alternating checkerboard mask is

recommended over fixed checkerboard mask or random patch

mask, as it ensures that all parts of the image are covered in

some of the reconstruction attempts. Alternating checkerboard

4 × 4 and square-centered masks show suboptimal performance

on MNIST vs. KMNIST. This is because they mask out too

much information from the images, and therefore lead to

unfaithful reconstructions for both in-domain and out-of-domain

images.

3.4.2 Reconstruction distance metric
We study the effect of using alternative metrics for measuring

the reconstruction distance. We consider two popular metrics,

Mean Squared Error (MSE) and Structural Similarity Index

Measure (SSIM) (Wang et al., 2003), both of which have been

widely used for image comparison (Zhang et al., 2019; Bhat

et al., 2021; Saharia et al., 2022). We further observe that Xiao

et al. (2021) uses features from a ResNet-50 pretrained with

SimCLRv2 (Chen et al., 2020) on ImageNet, and achieves superior

performance on CIFAR10 vs. CIFAR100. Thus, we also consider a

SimCLRv2-based metric, in which we calculate the cosine distance

between the SimCLRv2 features of the original and reconstructed

images.

We present the performance of LMD under different distance

metrics in Table 3. MSE and SSIM demonstrate poor performance

when SVHN is the out-of-domain dataset. Our default choice

LPIPS demonstrates strong and consistent performance, and

attains the highest average ROC-AUC. SimCLRv2 is competitive

but underperforms LPIPS. This suggests that deep feature based

metrics are in general effective, and LPIPS is suitable as a default

choice.

Frontiers in Artificial Intelligence 07 frontiersin.org132

https://doi.org/10.3389/frai.2024.1255566
https://github.com/microsoft/SimMIM
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

FIGURE 6

Examples of image reconstruction from CelebA-HQ (in-domain) and ImageNet (out-of-domain). For out-of-domain reconstructions, the

checkerboard masks result in local inconsistencies, while the center mask hallucinates faces. In this case, employing larger masked patches slightly

improves the performance.

3.4.3 Number of reconstructions per image
We examine LMD’s performance under different number of

reconstructions per image. Figure 9 plots the ROC-AUC against

the number of reconstructions per image for MNIST vs. KMNIST

and KMNIST vs. MNIST. LMD’s performance improves as the

number of reconstructions increases, regardless of the choice of

distance metric. The improvement is especially obvious for the

first 5 attempts, and gradually plateaus as the number of attempts

approaches 10. This suggests that it is generally sufficient to

perform 10 attempts per image.

3.4.4 Alternative instantiation of lifting and
mapping

We observe that another intuitive way of lifting and mapping

images with a diffusion model is to lift by diffusion to an

intermediate step t in the noise schedule, and denoising back to

the image distribution. We refer to this alternative instantiation as

diffusion/denoising, and compare it with our default instantiation

of masking/inpainting. Given that the image distribution is at t = 0

and the noise distribution is at t = T, the larger t we diffuse to,

the further away we lift an image from the manifold. We consider

different lifting distances with t = 250, t = 500, and t =

750, where the full schedule has T = 1000. We use our default

alternating checkerboard 8 × 8 mask for masking/inpainting. We

use 10 reconstructions per image and the LPIPS metric for both

diffusion/denoising and masking/inpainting.

We present the performance in Table 4. Diffusion/denoising

with t = 250 and t = 750 demonstrate suboptimal performance on

several pairs, indicating that the lifting distance is too small or too

large for the in-domain and out-of-domain to be distinguishable.

t = 500 is competitive but underperforms masking/inpainting.

This suggests that while LMD is robust to alternative choices

of lifting and mapping, masking/inpainting is the recommended

instantiation.

3.4.5 Alternative choices for the inpainting model
We perform qualitative evaluation on using other classes of

inpainting models in the LMD framework. We consider Masked

Autoencoder (MAE) (He et al., 2022) trained on CIFAR10,5 and

LaMa (Suvorov et al., 2022),6 a GAN-based inpainting model,

trained on CelebA-HQ. We perform one reconstruction per image,

as both MAE and LaMa are deterministic.

5 https://github.com/IcarusWizard/MAE

6 https://github.com/advimman/lama

Frontiers in Artificial Intelligence 08 frontiersin.org133

https://doi.org/10.3389/frai.2024.1255566
https://github.com/IcarusWizard/MAE
https://github.com/advimman/lama
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

FIGURE 7

Reconstruction examples from LSUN bedroom (in-domain) and LSUN classroom (out-of-domain). As bedroom images are diverse and contain

richer details, a mask with smaller patches is preferrable.

TABLE 2 Performance of ROC-AUC on three dataset pairs with di�erent mask types.

Mask type CIFAR10 vs. CIFAR100 CIFAR10 vs. SVHN MNIST vs. KMNIST

Alternating checkerboard 4× 4 0.594 0.987 0.923

Alternating checkerboard 8× 8 0.607 0.992 0.984

Alternating checkerboard 16× 16 0.597 0.981 0.997

Fixed checkerboard 8× 8 0.601 0.990 0.974

Center 0.570 0.978 0.479

Random patch 0.591 0.990 0.912

The alternating checkerboard 8× 8 shows strong and consistent results. The bold values mean the best performance, i.e., the highest ROC-AUC, among the evaluated methods in each setting,

where a setting is either an in-domain vs. out-of-domain dataset pair or the average across all dataset pairs.

FIGURE 8

Masks used in the mask ablation. The random patch mask in the figure is just one example; a di�erent pattern is sampled each time.

Frontiers in Artificial Intelligence 09 frontiersin.org134

https://doi.org/10.3389/frai.2024.1255566
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

TABLE 3 ROC-AUC performance under di�erent reconstruction distance metrics.

ID OOD MSE SSIM LPIPS SimCLRv2

CIFAR10 CIFAR100 0.548 0.624 0.607 0.713

SVHN 0.155 0.329 0.992 0.970

CIFAR100 CIFAR10 0.549 0.551 0.568 0.523

SVHN 0.157 0.258 0.985 0.924

SVHN CIFAR10 0.987 0.998 0.914 0.933

CIFAR100 0.979 0.995 0.876 0.928

MNIST KMNIST 0.998 0.997 0.984 0.983

FashionMNIST 0.995 0.999 0.999 0.999

KMNIST MNIST 0.835 0.922 0.978 0.920

FashionMNIST 0.802 0.979 0.993 0.995

FashionMNIST MNIST 0.993 0.960 0.992 0.961

KMNIST 0.998 0.988 0.990 0.977

Average 0.750 0.800 0.907 0.902

LPIPS demonstrates consistent and robust results, while other metrics exhibit performance fluctuations. The bold values mean the best performance, i.e., the highest ROC-AUC, among the

evaluated methods in each setting, where a setting is either an in-domain vs. out-of-domain dataset pair or the average across all dataset pairs.

FIGURE 9

ROC-AUC vs. the number of reconstruction attempts. More reconstruction attempts enhances the OOD detection performance, irrespective of the

distance metric. (A) MNIST vs. KMNIST. (B) KMNIST vs. MNIST.

Bothmodels demonstrate lower performance than the diffusion

model in various scenarios. Figure 10 shows LaMa’s performance

on CelebA-HQ vs. ImageNet. LaMa attains reasonable results, but it

underperforms diffusion models. LaMa hallucinates faces with the

center mask, but unlike the diffusion model, the color and texture

of the hallucinated faces are very consistent with the surroundings.

Figure 11 shows MAE’s performance on CIFAR10 vs. SVHN.

Both in-domain and out-of-domain reconstructions are accurate

when the individual masked patch sizes are small, while both

deviate from the originals when the patch sizes are large.

Performance-wise, inpainting with MAE only attains ROC-AUC

0.065 for checkerboard 8 × 8 mask, 0.178 for checkerboard 4 × 4

mask and 0.403 for center mask.

The suboptimal performance of alternative inpainting models

can be attributed to their ability to leverage various sources of

information—from not only its understanding of the training

distribution, but also color or texture of unmasked parts of

an image. Models like LaMa and MAE employ specialized loss

functions and large masked ratios during training, and thus

excel at inferring missing regions from known ones regardless

of semantics. Consequently, these models are more prone to

producing reasonable out-of-domain inpaintings, especially with

simpler out-of-domain images. In contrast, a vanilla diffusion

model is not specifically trained for inferring missing regions

from the surroundings. It primarily relies on its understanding of

the training distribution to perform inpainting, and thus attains

robust performance.

4 Discussion

4.1 LMD’s relationship with existing works

In the unsupervised setting, existing works generally follow

one of the three paradigms: likelihood-based, reconstruction-

based and feature-based. LMD is a reconstruction-based

approach. Typically, reconstruction-based methods involve

Frontiers in Artificial Intelligence 10 frontiersin.org135

https://doi.org/10.3389/frai.2024.1255566
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

TABLE 4 ROC-AUC performance of using di�usion/denoising vs. masking/inpainting.

ID OOD Denoising
(t = 250)

Denoising
(t = 500)

Denoising
(t = 750)

Inpainting

CIFAR10 CIFAR100 0.583 0.600 0.589 0.607

SVHN 0.967 0.976 0.954 0.992

CIFAR100 CIFAR10 0.568 0.524 0.436 0.568

SVHN 0.949 0.957 0.904 0.985

SVHN CIFAR10 0.861 0.966 0.957 0.914

CIFAR100 0.847 0.949 0.957 0.876

MNIST KMNIST 0.956 0.993 0.715 0.984

FashionMNIST 0.998 0.998 0.927 0.999

KMNIST MNIST 0.645 0.972 0.721 0.978

FashionMNIST 0.998 0.994 0.943 0.993

FashionMNIST MNIST 0.428 0.941 0.876 0.992

KMNIST 0.567 0.943 0.862 0.990

Average 0.781 0.901 0.820 0.907

Diffusion/denoising with t = 500 achieves reasonable performance but underperforms diffusion/inpainting. The bold values mean the best performance, i.e., the highest ROC-AUC, among the

evaluated methods in each setting, where a setting is either an in-domain vs. out-of-domain dataset pair or the average across all dataset pairs.

training a model using in-domain samples, and assessing the

reconstruction quality of a test data point under the model.

Prior works commonly use autoencoders (Sakurada and

Yairi, 2014; Xia et al., 2015; Zhou and Paffenroth, 2017; Zong

et al., 2018) or GANs (Schlegl et al., 2017; Li et al., 2018).

One concurrent work (Graham et al., 2022) utilizes diffusion

models, and considers image reconstructions under varying

numbers of diffusion and denoising steps. This contrasts with

LMD, which repeatedly performs masking and inpainting with

fixed number of steps. These two approaches are orthogonal

and complementary.

The likelihood-based paradigm has been extensively explored,

with early contributions dating back to Bishop (1994). The core

idea is to approximate the in-domain distribution with a generative

model that has likelihood computation capability (Salimans et al.,

2017; Kingma and Dhariwal, 2018). Intuitively, the model should

assign higher likelihood to in-domain data than out-of-domain

data, but various studies have observed that such assumption

often does not hold (Choi et al., 2018; Nalisnick et al., 2018;

Kirichenko et al., 2020). One line of work addresses this issue

under a typicality test framework (Ren et al., 2019; Serrà et al.,

2019; Xiao et al., 2020). Essentially, they view likelihood as a

model statistic rather than a literal measure of how likely a data

point is in-domain. They examine the extent to which the model

statistic of a test data point deviates from the typical distribution of

model statistics for in-domain data. Notably, this is complementary

to LMD, as the reconstruction distance can also be viewed

as a model statistic. Other likelihood-based approaches include

adjusting the likelihood by background likelihood (Ren et al.,

2019), image complexity (Serrà et al., 2019) or the likelihood under

optimal model configurations (Xiao et al., 2020), or improving the

generative model architectures (Maaløe et al., 2019; Kirichenko

et al., 2020).

The feature-based paradigm usually involves extracting lower-

dimensional features from the data from unsupervised sources,

such as autoencoders (Denouden et al., 2018), generative

models (Ahmadian and Lindsten, 2021), self-supervised

training (Hendrycks et al., 2019; Bergman and Hoshen, 2020;

Tack et al., 2020; Sehwag et al., 2021) or pretrained feature

extractors (Xiao et al., 2021). They then perform detection in

lower-dimensional space, typically with simple techniques like

fitting one-class Support Vector Machines or Gaussian Mixture

Models.

4.2 Limitation and future work

One limitation of LMD is the speed. Vanilla diffusion models

have a time-consuming denoising process that involves a large

number of sampling steps. Therefore, similar to other diffusion-

based approaches for various tasks (Meng et al., 2021; Lugmayr

et al., 2022; Saharia et al., 2022), LMD is currently not well-

suited for real-time OOD detection. Several recent works have

proposedmethods to accelerate the sampling process of pre-trained

diffusion models through noise rescaling (Nichol and Dhariwal,

2021), sampler optimization (Watson et al., 2022), or numerical

methods (Liu et al., 2022; Wizadwongsa and Suwajanakorn, 2023).

One future direction is to harness these methods to expedite LMD’s

detection.

Another potential extension is to utilize more advanced

methods for aggregating reconstruction distances from multiple

reconstructions, or even under different masks or distance metrics.

As briefly discussed in Section 4.1, this can involve integrating

typicality test approaches such as multiple hypothesis testing or

learning density models (Nalisnick et al., 2019; Morningstar et al.,

2021; Bergamin et al., 2022).

Frontiers in Artificial Intelligence 11 frontiersin.org136

https://doi.org/10.3389/frai.2024.1255566
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

FIGURE 10

Reconstruction examples from CelebA-HQ (in-domain) and ImageNet (out-of-domain) using LaMa, a GAN-based inpainting model. Unlike the

di�usion model, LaMa produces less visible artifacts. Even though it also introduces face-like artifacts with the center mask, the faces have the colors

and textures of the surrounding unmasked regions.

FIGURE 11

Reconstruction examples from CIFAR10 (in-domain) and SVHN (out-of-domain) using MAE. Di�erentiating between in-domain and out-of-domain

inpaintings are hard, because reconstructing SVHN from only known regions is relatively simple, and because MAE is trained to have strong capability

of inference from known regions.

5 Conclusion

We propose a novel method, Lift, Map, Detect (LMD), for

unsupervised out-of-distribution detection. LMD leverages the

diffusion model’s strong ability in mapping images onto its training

manifold, and detects images with large distance between the

original and mapped images as OOD. Our extensive experiments

and analysis show that LMD achives strong performance for

Frontiers in Artificial Intelligence 12 frontiersin.org137

https://doi.org/10.3389/frai.2024.1255566
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

various image distributions with different characteristics. Some

future directions of improvement include accelerating LMD’s

speed and leveraging advanced aggregation for reconstruction

distance.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: CIFAR10, CIFAR100, SVHN, MNIST, KMNIST,

and FashionMNIST: can be accessed through https://pytorch.

org/vision/stable/datasets.html. CelebA-HQ: https://github.com/

tkarras/progressive_growing_of_gans. ImageNet: https://www.

image-net.org/. LSUN bedroom and LSUN classroom: https://

github.com/fyu/lsun.

Ethics statement

Written informed consent was not obtained from the

individual(s) for the publication of any potentially identifiable

images or data included in this article, because these human face

images are either from the public datasets CelebA-HQ and FFHQ,

which are widely used in the machine learning and computer vision

communities, or synthetic faces created by generative models.

Author contributions

ZL and JZ contributed to the design of the research, performed

the experiments, and wrote the manuscript. KW is the PhD

supervisor of ZL and JZ, he conceptualized and directed the

research, and revised the manuscript. All authors approved the

submitted version.

Funding

The author(s) declare that financial support was received for

the research, authorship, and/or publication of this article. This

research was supported by grants from DARPA AIE program,

Geometries of Learning (HR00112290078), the Natural Sciences

and Engineering Research Council of Canada (NSERC) (567916),

the National Science Foundation NSF (IIS-2107161, III1526012,

IIS-1149882, and IIS-1724282), and the Cornell Center for

Materials Research with funding from the NSF MRSEC program

(DMR-1719875).

Acknowledgments

We would like to thank YufanWang for helping with literature

search and initial setups of some of the baselines.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ahmadian, A., and Lindsten, F. (2021). “Likelihood-free out-of-
distribution detection with invertible generative models,” in IJCAI, 2119–2125.
doi: 10.24963/ijcai.2021/292

Alaluf, Y., Patashnik, O., and Cohen-Or, D. (2021). “Restyle: a residual-based
stylegan encoder via iterative refinement,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 6711–6720. doi: 10.1109/ICCV48922.2021.00664

Bergamin, F., Mattei, P.-A., Havtorn, J. D., Senetaire, H., Schmutz, H., Maalœ, L.,
et al. (2022). “Model-agnostic out-of-distribution detection using combined statistical
tests,” in International Conference on Artificial Intelligence and Statistics (PMLR),
10753-10776.

Bergman, L., and Hoshen, Y. (2020). Classification-based anomaly detection for
general data. arXiv preprint arXiv:2005.02359.

Bhat, S. F., Alhashim, I., and Wonka, P. (2021). “Adabins: depth estimation using
adaptive bins,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4009–4018.

Bishop, C. M. (1994). Novelty detection and neural network validation. IEE Proc.
Vision Image Sig. Proc. 141, 217–222. doi: 10.1049/ip-vis:19941330

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton, G. E. (2020). “Big
self-supervised models are strong semi-supervised learners,” in Advances in Neural
Information Processing Systems, 22243–22255.

Choi, H., Jang, E., and Alemi, A. A. (2018). Waic, but why? Generative ensembles
for robust anomaly detection. arXiv preprint arXiv:1810.01392.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and Ha, D.
(2018). Deep learning for classical Japanese literature. arXiv preprint arXiv:1812.01718.

Denouden, T., Salay, R., Czarnecki, K., Abdelzad, V., Phan, B., and Vernekar,
S. (2018). Improving reconstruction autoencoder out-of-distribution detection with
mahalanobis distance. arXiv preprint arXiv:1812.02765.

Gong, Y., Liao, P., Zhang, X., Zhang, L., Chen, G., Zhu, K., et al. (2021). Enlighten-
gan for super resolution reconstruction in mid-resolution remote sensing images. Rem.
Sens. 13:1104. doi: 10.3390/rs13061104

Graham, M. S., Pinaya, W. H., Tudosiu, P.-D., Nachev, P., Ourselin, S.,
and Cardoso, M. J. (2022). Denoising diffusion models for out-of-distribution
detection. arXiv preprint arXiv:2211.07740. doi: 10.1109/CVPRW59228.2023.
00296

Hamet, P., and Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism
69, S36–S40. doi: 10.1016/j.metabol.2017.01.011

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2022).
“Masked autoencoders are scalable vision learners,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16000–16009.
doi: 10.1109/CVPR52688.2022.01553

Hendrycks, D., and Gimpel, K. (2016). A baseline for detecting misclassified and
out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136.

Hendrycks, D.,Mazeika,M., andDietterich, T. (2018). Deep anomaly detection with
outlier exposure. arXiv preprint arXiv:1812.04606.

Frontiers in Artificial Intelligence 13 frontiersin.org138

https://doi.org/10.3389/frai.2024.1255566
https://pytorch.org/vision/stable/datasets.html
https://pytorch.org/vision/stable/datasets.html
https://github.com/tkarras/progressive_growing_of_gans
https://github.com/tkarras/progressive_growing_of_gans
https://www.image-net.org/
https://www.image-net.org/
https://github.com/fyu/lsun
https://github.com/fyu/lsun
https://doi.org/10.24963/ijcai.2021/292
https://doi.org/10.1109/ICCV48922.2021.00664
https://doi.org/10.1049/ip-vis:19941330
https://doi.org/10.3390/rs13061104
https://doi.org/10.1109/CVPRW59228.2023.00296
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.1109/CVPR52688.2022.01553
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Liu et al. 10.3389/frai.2024.1255566

Hendrycks, D., Mazeika, M., Kadavath, S., and Song, D. (2019). “Using self-
supervised learning can improve model robustness and uncertainty,” in Advances in
Neural Information Processing Systems 32.

Ho, J., Jain, A., and Abbeel, P. (2020). “Denoising diffusion probabilistic models,” in
Advances in Neural Information Processing Systems, 6840–6851.

Huang, R., Geng, A., and Li, Y. (2021). “On the importance of gradients for
detecting distributional shifts in the wild,” inAdvances in Neural Information Processing
Systems, 677–689.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Progressive growing of gans
for improved quality, stability, and variation. CoRR, abs/1710.10196.

Karras, T., Laine, S., and Aila, T. (2019). “A style-based generator architecture
for generative adversarial networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 4401–4410. doi: 10.1109/CVPR.2019.00453

Kingma, D. P., and Dhariwal, P. (2018). “Glow: generative flow with invertible 1x1
convolutions,” in Advances in Neural Information Processing Systems 31.

Kirichenko, P., Izmailov, P., and Wilson, A. G. (2020). “Why normalizing flows
fail to detect out-of-distribution data,” in Advances in Neural Information Processing
Systems, 20578–20589.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.
Technical report.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
Systems 25.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database.ATT
Labs. Available online at: http://yann.lecun.com/exdb/mnist (accessed July 08, 2023).

Lee, K., Lee, K., Lee, H., and Shin, J. (2018). “A simple unified framework for
detecting out-of-distribution samples and adversarial attacks,” in Advances in Neural
Information Processing Systems 31.

Li, D., Chen, D., Goh, J., and Ng, S.- K. (2018). Anomaly detection with generative
adversarial networks for multivariate time series. arXiv preprint arXiv:1809.04758.

Liang, S., Li, Y., and Srikant, R. (2017). Enhancing the reliability of out-of-
distribution image detection in neural networks. arXiv preprint arXiv:1706.02690.

Liu, L., Ren, Y., Lin, Z., and Zhao, Z. (2022). Pseudo numerical methods for diffusion
models on manifolds. arXiv preprint arXiv:2202.09778.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., and Van Gool,
L. (2022). “Repaint: inpainting using denoising diffusion probabilistic models,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
11461–11471. doi: 10.1109/CVPR52688.2022.01117

Maalœ, L., Fraccaro, M., Liévin, V., and Winther, O. (2019). “Biva: a very
deep hierarchy of latent variables for generative modeling,” in Advances in Neural
Information Processing Systems 32.

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-Y., et al. (2021). “Sdedit: guided
image synthesis and editing with stochastic differential equations,” in International
Conference on Learning Representations.

Morningstar, W., Ham, C., Gallagher, A., Lakshminarayanan, B., Alemi, A., and
Dillon, J. (2021). “Density of states estimation for out of distribution detection,” in
International Conference on Artificial Intelligence and Statistics (PMLR), 3232–3240.

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., and Lakshminarayanan,
B. (2018). Do deep generative models know what they don’t know? arXiv preprint
arXiv:1810.09136.

Nalisnick, E. T., Matsukawa, A., Teh, Y. W., and Lakshminarayanan, B. (2019).
Detecting out-of-distribution inputs to deep generative models using a test for
typicality. arXiv preprint arXiv:1906.02994.

Netzer, Y.,Wang, T., Coates, A., Bissacco, A.,Wu, B., andNg, A. Y. (2011). “Reading
digits in natural images with unsupervised feature learning,” inNIPSWorkshop on Deep
Learning and Unsupervised Feature Learning, 7.

Nichol, A. Q., and Dhariwal, P. (2021). “Improved denoising diffusion probabilistic
models,” in International Conference on Machine Learning (PMLR), 8162–8171.

Ren, J., Liu, P. J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., et al. (2019).
“Likelihood ratios for out-of-distribution detection,” inAdvances in Neural Information
Processing Systems 32.

Rigano, C. (2019). Using artificial intelligence to address criminal justice needs.Natl.
Inst. Justice J. 280, 1–10.

Ruff, L., Vandermeulen, R. A., Görnitz, N., Binder, A., Müller, E., Müller, K.-R., et
al. (2019). Deep semi-supervised anomaly detection. arXiv preprint arXiv:1906.02694.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252.
doi: 10.1007/s11263-015-0816-y

Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., and Norouzi, M. (2022).
Image super-resolution via iterative refinement. IEEE Trans. Patt. Analy. Mach. Intell.
45, 4713–4726. doi: 10.1109/TPAMI.2022.3204461

Sakurada, M., and Yairi, T. (2014). “Anomaly detection using autoencoders with
nonlinear dimensionality reduction,” in Proceedings of the MLSDA 2014 2ndWorkshop
on Machine Learning for Sensory Data Analysis, 4–11. doi: 10.1145/2689746.2689747

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P. (2017). Pixelcnn++:
improving the pixelcnn with discretized logistic mixture likelihood and other
modifications. arXiv preprint arXiv:1701.05517.

Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., and Langs, G.
(2017). “Unsupervised anomaly detection with generative adversarial networks to
guide marker discovery,” in International Conference on Information Processing in
Medical Imaging (Springer), 146–157. doi: 10.1007/978-3-319-59050-9_12

Sehwag, V., Chiang, M., and Mittal, P. (2021). Ssd: A unified framework for
self-supervised outlier detection. arXiv preprint arXiv:2103.12051.

Serrà, J., Álvarez, D., Gómez, V., Slizovskaia, O., Nú nez, J. F., and Luque, J. (2019).
Input complexity and out-of-distribution detection with likelihood-based generative
models. arXiv preprint arXiv:1909.11480.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015).
“Deep unsupervised learning using nonequilibrium thermodynamics,” in International
Conference on Machine Learning (PMLR), 2256–2265.

Song, Y., and Ermon, S. (2019). “Generative modeling by estimating gradients of the
data distribution,” in Advances in Neural Information Processing Systems 32.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole,
B. (2020). Score-based generative modeling through stochastic differential equations.
arXiv preprint arXiv:2011.13456.

Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov,
A., et al. (2022). “Resolution-robust large mask inpainting with fourier convolutions,”
in Proceedings of the IEEE/CVFWinter Conference on Applications of Computer Vision,
2149–2159. doi: 10.1109/WACV51458.2022.00323

Tack, J., Mo, S., Jeong, J., and Shin, J. (2020). “CSI: novelty detection via contrastive
learning on distributionally shifted instances,” in Advances in Neural Information
Processing Systems 11839–11852.

Toda, R., Teramoto, A., Kondo, M., Imaizumi, K., Saito, K., and Fujita, H. (2022).
Lung cancer ct image generation from a free-form sketch using style-based pix2pix for
data augmentation. Sci. Rep. 12:12867. doi: 10.1038/s41598-022-16861-5

Wang, H., Li, Z., Feng, L., and Zhang, W. (2022). “Vim: out-of-distribution with
virtual-logit matching,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 4921–4930. doi: 10.1109/CVPR52688.2022.00487

Wang, Z., Simoncelli, E. P., and Bovik, A. C. (2003). “Multiscale structural similarity
for image quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals,
Systems and Computers (IEEE), 1398–1402.

Watson, D., Chan, W., Ho, J., and Norouzi, M. (2022). “Learning fast samplers for
diffusionmodels by differentiating through sample quality,” in International Conference
on Learning Representations.

Wizadwongsa, S., and Suwajanakorn, S. (2023). Accelerating guided diffusion
sampling with splitting numerical methods. arXiv preprint arXiv:2301.11558.

Xia, Y., Cao, X., Wen, F., Hua, G., and Sun, J. (2015). “Learning discriminative
reconstructions for unsupervised outlier removal,” in Proceedings of the IEEE
International Conference on Computer Vision, 1511–1519. doi: 10.1109/ICCV.2015.177

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747.

Xiao, Z., Yan, Q., and Amit, Y. (2020). “Likelihood regret: an out-of-distribution
detection score for variational auto-encoder,” in Advances in Neural Information
Processing Systems, 20685–20696.

Xiao, Z., Yan, Q., and Amit, Y. (2021). Do we really need to learn representations
from in-domain data for outlier detection? arXiv preprint arXiv:2105.09270.

Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., et al. (2022).
“Simmim: a simple framework for masked image modeling,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9653–9663.
doi: 10.1109/CVPR52688.2022.00943

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., et al. (2022).
Diffusion models: a comprehensive survey of methods and applications. arXiv preprint
arXiv:2209.00796.

Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J. (2015). Lsun: construction of a
large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365.

Zhang, K. A., Cuesta-Infante, A., Xu, L., and Veeramachaneni, K. (2019).
Steganogan: high capacity image steganography with gans. arXiv preprint
arXiv:1901.03892.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018). “The
unreasonable effectiveness of deep features as a perceptual metric,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 586–595.
doi: 10.1109/CVPR.2018.00068

Zhou, C., and Paffenroth, R. C. (2017). “Anomaly detection with robust deep
autoencoders,” in Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 665–674. doi: 10.1145/3097983.30
98052

Zong, B., Song, Q., Min, M. R., Cheng, W., Lumezanu, C., Cho, D., et al. (2018).
“Deep autoencoding gaussian mixture model for unsupervised anomaly detection,” in
International Conference on Learning Representations.

Frontiers in Artificial Intelligence 14 frontiersin.org139

https://doi.org/10.3389/frai.2024.1255566
https://doi.org/10.1109/CVPR.2019.00453
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1109/CVPR52688.2022.01117
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TPAMI.2022.3204461
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1007/978-3-319-59050-9_12
https://doi.org/10.1109/WACV51458.2022.00323
https://doi.org/10.1038/s41598-022-16861-5
https://doi.org/10.1109/CVPR52688.2022.00487
https://doi.org/10.1109/ICCV.2015.177
https://doi.org/10.1109/CVPR52688.2022.00943
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1145/3097983.3098052
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 22 May 2024

DOI 10.3389/fcomp.2024.1274779

OPEN ACCESS

EDITED BY

Yi-Zhe Song,

University of Surrey, United Kingdom

REVIEWED BY

Aneeshan Sain,

University of Surrey, United Kingdom

Ruoyi Du,

Beijing University of Posts and

Telecommunications (BUPT), China

*CORRESPONDENCE

Ankita Shukla

ankitas@unr.edu

RECEIVED 08 August 2023

ACCEPTED 29 February 2024

PUBLISHED 22 May 2024

CITATION

Shukla A, Dadhich R, Singh R, Rayas A, Saidi P,

Dasarathy G, Berisha V and Turaga P (2024)

Orthogonality and graph divergence losses

promote disentanglement in generative

models. Front. Comput. Sci. 6:1274779.

doi: 10.3389/fcomp.2024.1274779

COPYRIGHT

© 2024 Shukla, Dadhich, Singh, Rayas, Saidi,

Dasarathy, Berisha and Turaga. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Orthogonality and graph
divergence losses promote
disentanglement in generative
models

Ankita Shukla1*, Rishi Dadhich2, Rajhans Singh2,3,

Anirudh Rayas3, Pouria Saidi3, Gautam Dasarathy3, Visar Berisha3

and Pavan Turaga2,3,4

1Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States,
2Geometric Media Lab, Arizona State University, Tempe, AZ, United States, 3School of Electrical,

Computer, Energy Engineering, Arizona State University, Tempe, AZ, United States, 4School of Arts,

Media, and Engineering, Arizona State University, Tempe, AZ, United States

Over the last decade, deep generative models have evolved to generate

realistic and sharp images. The success of these models is often attributed

to an extremely large number of trainable parameters and an abundance

of training data, with limited or no understanding of the underlying data

manifold. In this article, we explore the possibility of learning a deep generative

model that is structured to better capture the underlying manifold’s geometry,

to e�ectively improve image generation while providing implicit controlled

generation by design. Our approach structures the latent space into multiple

disjoint representations capturing di�erent attribute manifolds. The global

representations are guided by a disentangling loss for e�ective attribute

representation learning and a di�erential manifold divergence loss to learn

an e�ective implicit generative model. Experimental results on a 3D shapes

dataset demonstrate the model’s ability to disentangle attributes without

direct supervision and its controllable generative capabilities. These findings

underscore the potential of structuring deep generative models to enhance

image generation and attribute control without direct supervision with ground

truth attributes signaling progress toward more sophisticated deep generative

models.

KEYWORDS

generative models, auto-encoders, graph divergence, manifolds, geometry

1 Introduction

Data-driven deep learning techniques have resulted in numerous advances, but several

findings have demonstrated the brittleness of such models in different end tasks (Nguyen

et al., 2015; Pontin, 2018). Many reasons have been hypothesized for such empirical

behavior, chief among which is the realization that there is a need to leverage known

physical laws such as the physics of image formation, the interaction of light with

surfaces, and disentangling the effects of intrinsic object-related shape from photometric

variation into deep learning frameworks (Bronstein et al., 2017). Several studies show

that even simple unaccounted for shifts in data can lead to large losses in performance.

Furthermore, from information theoretic perspectives (Achille and Soatto, 2018), the

concepts of invariance and task performance are considered at odds with each other (e.g.,

discrimination). Information theoretic metrics for invariance seek to reduce the dimension

of representations (Achille and Soatto, 2018), whereas metrics for a specific end-task such

as classification seem to benefit from larger representation dimension. Thus, it seems that

one cannot achieve true invariance while maintaining high end-task performance nor

Frontiers inComputer Science 01 frontiersin.org140

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1274779
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1274779&domain=pdf&date_stamp=2024-05-22
mailto:ankitas@unr.edu
https://doi.org/10.3389/fcomp.2024.1274779
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1274779/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Shukla et al. 10.3389/fcomp.2024.1274779

can one achieve high end-task performance while guaranteeing

invariance. Information theoretic analysis suggests the need for a

middle ground, where a geometric treatment of feature spaces and

loss functions can potentially allow deep representations to find

practical tradeoffs between task performance and invariance.When

applied to generative models, invariance often refers to achieving

a clean disentanglement of control variables–that correspond

specifically to physical factors, such as pose, lighting, and shape–

where modifying the control variable can be done in isolation,

without affecting other variables.

In vision literature, much prior knowledge exists about how

light interacts with surface geometry and reflectance properties, the

workings of projective geometry, and how temporal dynamics can

be used to explain observed dynamic scenes. These physical laws

and properties constrain the set of feasible or valid observations

from image sensors. Images are often constrained to lie in low-

dimensional subsets (of large Euclidean spaces), more formally

referred to as image manifolds. While numerous efforts have

sought to characterize these image manifolds, both empirically

and theoretically, throughout the last two decades (Turaga and

Srivastava, 2015; Shao et al., 2018), how they are integrated into

controllable and disentangled generative architectures is still an

open question. In prior study (Shukla et al., 2019), we have shown

that several of these constraint sets can be relaxed to subspace-

type or sphere-type constraints. Different such constraints can be

accommodated by constraining the features from the latent space

to have orthogonality properties, as a proxy for physical factor

disentanglement.

In the context of generative models, while there exist many

different classes of architectures, a common theme is to learn the

underlying distribution of the dataset. Once trained, it can be used

to sample novel data points from the underlying distribution. There

are diverse types of generative models, including but not limited

to generative adversarial networks (GANs; Goodfellow et al.,

2014) and variational autoencoders (VAEs; Kingma and Welling,

2013), each with pros and cons. These generative models generally

have a low-dimensional latent space modeled using a Gaussian

or uniform distribution, and they map these low-dimensional

points to complex high-dimensional data points, matching the

distribution of the training dataset. Generative models are versatile

and used in various applications such as text-to-image models

(Zhang et al., 2023), image-to-image translation (Zhu et al., 2017),

domain adaptation (Hoffman et al., 2018), image editing (Zhu

et al., 2020), and inverse problems (Asim et al., 2020). Furthermore,

these generative models can offer explainable and controllable

representation, leading to disentangled representations, a key area

of interest. How do we encode the geometric nature of the

output space in the loss function of generative model is still an

open question. In this article, we make some concerted advances

toward that viamanifold-divergence loss functions and latent-space

orthogonality properties.

One major challenge in existing approaches is the trade off

between their ability to disentangle different attributes and their

ability to generate novel samples. Most existing studies are based

on VAEs and GANs that encourage factorization of the latent

space. Methods based on VAE add a regularizer to the loss

function to encourage disentanglement in the encoder distribution.

Owing to their ability to capture explainable and controllable

representation, they have been used in applications in computer

vision, recommender systems, graph learning (Ma et al., 2019;

Wang et al., 2020), and various downstream tasks. VAEs are

auto-encoder models that map low-dimensional representation to

images with a goal of image reconstruction. As, the network only

focuses on reconstruction and mapping to it to Gaussian prior, it

has weak disentanglement. Thereafter, β-VAE proposed to add a

hyperparameter β that provides a tradeoff between regularization

and reconstruction. However, the generated images have low

reconstruction quality. With the success of geometric constraints

in different learning scenarios, they have been recently explored in

the context of unsupervised disentangled representation learning.

In this study, we draw from several prior threads of studies,

several of which we have pursued, including orthogonality

constraints on latent spaces, chart-autoencoder-inspired

architectures, and graph divergence measures as differentiable loss

functions. We develop a controllable generative architecture that

integrates the following components: (a) a generative architecture

motivated by chart-autoencoders to promote separation of latent

space in a set of disjoint latent spaces, (b) an orthonormality

constraint across latent spaces implemented as a proxy for

statistical independence to promote effective disentanglement, (c)

a differentiable graph theoretic divergence measure that serves

as an approximation to manifold-to-manifold divergence, as a

measure of discrepancy between the training-set and the generated

set. The contributions of this article are as follows:

• We propose a set of simple yet effective loss functions for

disentangled representation learning that combine the benefits

of orthogonality constraints in the latent space to promote

factor disentanglement, with a differentiable graph divergence

loss on the output to promote a manifold structure in the

output space.

• We develop an architecture that consists of encoding

latent spaces as attribute spaces that can be trained with

the aforementioned loss functions. This has the advantage

of providing image manipulation controls by navigating

individual attribute spaces.

• We show experimental results on the challenging 3D shapes

datasets, showing disentanglement of several meaningful

attributes, and their potential in generative modeling tasks.

2 Background

2.1 Notation

We use lowercase letters for scalars, bold lowercase letters for

vectors, and bold uppercase letters for matrices. We use G (X) =

(X,E) to define the complete directed graph over the vertex set X

with edges E, whereX = {x1, x2, . . . , xn} is a set of points inR
d. For

any edge, e ∈ E with adjacent vertices i and j, we denote the weight

of the edge by d (e) = d
(

xi, xj
)

= ‖xi − xj‖, where ‖.‖ denotes the

Euclidean norm. Following the notation fromDjolonga and Krause

(2017), we assume there is a function π that assigns a label to each

vertex, i.e., π :X → {1, 2}. We use x ∼ p to indicate that a random

vector x is drawn from a distribution p.

Frontiers inComputer Science 02 frontiersin.org141

https://doi.org/10.3389/fcomp.2024.1274779
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Shukla et al. 10.3389/fcomp.2024.1274779

2.2 Orthonormality in disentangled latent
spaces

Orthogonality in latent spaces is motivated as a proxy for

physical independence of variables. Specifically, our high-level

approach has been to promote the learning of disentangled

representations to account for physical variables such as rotation,

illumination, and shapes as elements of groups such as the special

orthogonal group, and Grassmannians.

Meanwhile, the illumination cone model is a pivotal concept

in computer vision, especially for tasks like facial recognition.

This model conceptualizes all potential images of an object under

varying lighting conditions as existing within a high-dimensional

space. Assuming Lambertian reflectance, and convex object-shapes,

one can show that the image space is a convex-cone in image

space (Georghiades et al., 2001). A relaxation of this model

leads to identifying cones as linear subspaces, which are seen

as points on a Grassmannian manifold Gn,k (n = image-size,

k = lighting dimensions, typically considered equal to number

of linearly independent normals on the object shape). Under

certain conditions of variance on the Grassmannian being low, a

distribution of points on the Grassmannian induces a distribution

on a high-dimensional sphere, whose dimension depends on n

and k (Chakraborty and Vemuri, 2015), which we have leveraged

in prior study to impose Grassmannian constraints in latent

spaces (Lohit and Turaga, 2017). Similarly, 3D pose is frequently

represented as an element of the special orthogonal group SO(3).

For analytical purposes, it is convenient to think of rotations

represented by quaternions, which are elements of the 3-sphere

S3 embedded in R
4, with the additional constraint of antipodal

equivalence. This makes rotations to be identified as points on a

real-projective space RP3. Real-projective spaces are just a special

case of the Grassmannian–in this case, of 1D subspaces inR4. From

a distribution on quaternions, we can induce a distribution in a

higher dimensional hyperspherical manifold.

Our previous approaches indicate that imposing these product-

of-sphere constraints via a simple orthonormality condition

improves model explainability, reduces calibration error, and

provides robustness to a variety of image degradation and feature-

pruning conditions (Choi et al., 2020). In this study, we show that

it improves the learning of disentangled representations as well.

Let zk represents the latent space representation corresponding

to the kth attribute. Now, for a disentangling network, the combined

orthogonal loss function is given by (1)

argmin
θ ,φ Ldis(θ ,φ)+ ‖ZZ⊤ − I‖2 (1)

where, Z = [z1, z2, . . . zk], with

zksubpart of the latent embedding: z = e(X).

2.3 Graph test statistics

In the context of controllable generative models, the main

goal is to train a generative model capable of transforming latent

space representations to samples generated by an unknown target

distribution. To ensure that the generated samples are drawn

according to a desired target distribution, it becomes essential

to measure the “closeness” between the latent space distribution

and the unknown target distribution. As traditional divergence

measures require knowledge of the underlying distributions, they

are not suitable for this task. In this article, we consider the k-NN

test statistic, a multivariate graph test statistics for computational

efficiency (Djolonga and Krause, 2017) that exhibit the desired

property of being distribution-free while acting as a good surrogate

for the divergence measure between distributions. Given that the

k-NN test statistic is inherently non-differentiable, a smoothing

process is introduced to approximate it with continuously

differentiable functions.

Let us consider the latent space representations, denoted by

z ∼ Q0, generated according to a distribution Q0. The generative

model then produces samples fθ (z) ∼ Q, where fθ is a differentiable

function parameterized by θ . The primary objective is to optimize

θ to produce samples that closely resemble the unknown target

distribution P. We now outline the procedure we employ to

compute this statistic as mentioned in Djolonga and Krause (2017).

First, we gather data samples from two distributions, denoted as

X0 ∼ P and X1 ∼ Q, which is aggregated to form a joint dataset

X = X0 ∪ X1. Then, we construct a complete graph G(X) on X, a

k-NN neighborhood denoted by U∗ is constructed by connecting

each point x ∈ X to its k-nearest neighbors (in Euclidean distance).

In order to distinguish between the two sets of data, we define a

group membership function, represented as a map π
∗
:X → {0, 1},

which assigns the value 0 to elements in X0 and the value 1 to

elements in X1. Finally, the k-NN test statistic, denoted as Tπ∗ ,

is computed by evaluating the number of edges in U∗ connecting

points in X0 to points in X1, more formally for every edge e ∈ U∗

with adjacent vectors i and j, we denote by Iπ∗ (e) to mean I{π∗(i) 6=

π
∗(j)}, where I is the indicator function. The k-NN test statistic is

then given by Tπ∗ (U∗) =
∑

e∈U∗ Iπ∗ (e). Under the null hypothesis

where the two distributions are equal, it results in a larger test

statistic.

As our objective was to design a generative model capable of

producing according to a target distribution P, we seek to identify

the optimal parameter θ by maximizing the expected test statistic

EX0∼P,Z∼Q0 [Tπ∗ (X0, fθ (Z))]. However, as Tπ∗ is not differentiable,

we use the differentiable k-NN test (Djolonga and Krause, 2017)

by relaxing it to expectations in natural probabilistic models by

designing a probability distribution over a subset of the edges U

to focus on feasible configurations (Djolonga and Krause, 2017).

To this end, the neighborhood U is drawn according to the Gibbs

measure with the temperature parameter λ. Subsequently, the

graph test statistic can be replaced by its expectation giving rise to

the smoothed statistic (Djolonga and Krause, 2017):

Tπ⋆

(

U
⋆
)

→ Tλ

π⋆ : = EU∼P(.|d,λ) [Tπ⋆ (U)] =
∑

e∈U

Iπ⋆ (e)µ
(

d/λ
)

e
,

(2)

where µ
(

d/λ
)

e
denotes the marginal probability of the edge e. In

this study, we employ the smoothed k-NN test with k = 1, as

it provides the most computationally efficient differentiable test.

In this case, it has been shown that the smoothed graph test in

Equation (2) redcues to the following

Tλ

π⋆ (X0,X1) =
∑

i,j

I{π∗(i) 6= π
∗(j)}

e−‖xi−xj‖/λ

∑

k6=i e
−‖xi−xk‖/λ

. (3)

Frontiers inComputer Science 03 frontiersin.org142

https://doi.org/10.3389/fcomp.2024.1274779
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Shukla et al. 10.3389/fcomp.2024.1274779

FIGURE 1

Overview of the proposed approach DAE-OG. Images are transformed with an encoder to a low-dimensional latent space. This representation is

partitioned into k disjoint subparts corresponding to k attributes and transformed by k attribute auto-encoders. This is followed by a decoder that

reconstructs the image from the concatenated attribute auto-encoder representations.

Although this test defined by Equation (3) can be used directly,

lower values of Tλ

π⋆ does not guarantee lower p-values; toward this,

Djolonga and Krause (2017) proposed an alternative test statistic

based on the notion of a smooth p-value defined as

tλ
π⋆ =

Tλ

π⋆ − Eπ∼H0

[

Tλ
π

]

√

Vπ∼H0

[

Tλ
π

]

. (4)

We use this notion of the t-statistic in Equation (4) to define our

graph divergence loss as follows,

L
λ

stat(X0,X1) = −tλ
π⋆ (X0,X1) = −

Tλ

π⋆ − Eπ∼H0

[

Tλ
π

]

√

Vπ∼H0

[

Tλ
π

]

. (5)

3 Proposed framework

In this section, we provide details of the proposed disentangled

generative model. An overview of the framework is shown in

Figure 1. We use autoencoder as the backbone of our model

and improve disentangling performance and reconstruction

quality through proposed constraints and divergence loss.

Specifically, we introduce an orthogonality loss to promote

disentangled representation and a manifold divergence loss to

learn the underlying data distribution. These losses improve

the disentanglement and generative performance of the model,

discussed in detail in the following sections.

Our approach first embeds the training images into a low-

dimensional representation followed by mapping disjoint parts

of these representations to low-dimensional latent vectors with

attribute auto-encoders, aiming to encode different attributes

in the data. This is followed by a decoder/generator network

that transforms representations from attribute auto-encoders to

an image.

3.1 Encoder network

Specifically, as the first step, images are transformed by the

encoder e(θ) to the latent representation ze ∈ R
nout . The

latent representation is partitioned into k equally sized subsets,

where k denotes the number of distinct attributes in the data.

The partitioned representations are transformed using k different

attribute auto-encoders.

3.2 Relevance of attribute auto-encoders

Specifically, we utilize attribute encoder networks that

transform a disjoint subset of latent representations further into

a lower dimension space. This allows the network to learn, from

disjoint latent dimensions, relevant and informative factors of

variations that control different aspects of the image. The choice

of the number of such attribute auto-encoders is empirically based

on observed factors of variations in the data. This is also based

on the assumption that the images are created by different factors

that can vary independently of each other, which is often the

case in practical situations. Each of the attribute auto-encoder

transforms the subset of latent representation to an integral latent

representation of dimension nk for the k
th attribute. We choose nk

as the number of unique variations in an attribute.

3.3 Decoder network

The decoder network is responsible for reconstructing an image

of the same size as the input using the embeddings from the

attribute encoders. The embeddings are stacked in-order and fed to

the decoder network for reconstruction. For the sake of simplicity,

Frontiers inComputer Science 04 frontiersin.org143

https://doi.org/10.3389/fcomp.2024.1274779
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Shukla et al. 10.3389/fcomp.2024.1274779

we refer to the combined parameters of attribute encoders and the

decoder network as φ and the mapping function as g.

3.4 Loss Functions

We now present details of our loss functions that enable

disentangled representation learning in an auto-encoder

framework. Our loss function consists of three parts that are

discussed below:

3.4.1 Reconstruction loss
Given an autoencoder, reconstruction loss measures the ability

of the network to reconstruct an image from the input image when

transformed into a low-dimensional space.

3.4.2 Enforcing orthogonality on latent
embeddings

We impose the orthogonality constraint on the initial

latent space. To achieve disentangled representation, we enforce

orthogonality constraint on representations of every image. The

encoder transforms the image to nout dimensions. In order to

ensure stability during network training, the subset dimensions are

normalized to unity, as given by Equation (1).

3.4.3 Enforcing Lstat on latent embeddings
Given an unknown target distribution, the main objective was

to learn an implicit generative model where one can sample from

without the ability to evaluate the distribution. This can be achieved

by minimizing a divergence loss that measures the difference

between the target distribution and a transformation on the latent

space and can be captured by enforcing theLstat on the initial latent

embeddings, as given by Equation (5).

The total loss function is given as follows:

L(θ ,φ) =argmin
θ ,φ ‖X− Xrecon‖2 + α1‖ZZ

⊤ − I‖2

+ α2Lstat(X, g(N)) (6)

where, Z ∈ R
nout = [ẑ1, ẑ2, . . . ẑk], Xrecon = g(e(X, θ),φ)

and ẑi = zi/‖zi‖2 for i = 1, 2, ..k

here zk represents the latent space representation

corresponding to the kth encoder and α1 and α2 are

hyperparameters for the weights corresponding to the two loss

functions. Here, we use θ to denote the encoder e parameters, and

φ denotes the combined parameters of the attribute auto-encoders

and the decoder for simplicity.

3.4.4 Generation
In order to generate new samples, we sample from a Gaussian

prior with zero mean and unit standard deviation. The normal

distribution is defined in the nout dimensional space.

4 Experimental setup and results

In this section, we present details about the experiments to

evaluate the effectiveness of our approach. Our approach is termed

Disentangled Attribute Encoder with Orthogonality and Graph

divergence—DAE-OG. We compare our approach DAE-OG with

the model without orthogonality constraint, referred to asDAE-G.

4.1 Setup

4.1.1 Dataset description
Our approach is evaluated on the 3D shapes dataset Burgess

and Kim (2018). This dataset consists of 3D shapes, procedurally

generated from six ground truth independent latent factors. These

factors are floor color, wall color, object color, scale, shape, and

orientation. For our experiments, we re-sample the dataset to have

five variations for two different objects with fixed floor hue.

4.1.2 Model
We implement the initial encoder with convolution layers

followed by a fully connected layer. Each of the attribute encoders

consists of FC and ELU layers. The decoder is constructed in the

same way as the encoder. For our experiments, we report results

with three and five attribute auto-encoders. We use the same

network architecture across all our experiments–an overview of the

architecture is shown in Table 1.

4.1.3 Training details
We adopt an annealing strategy for network training with the

loss function given in Equation (6). The models are trained for

1,000 epochs, with an initial learning rate of 3e − 4. The value of

hyperparameters α1 and α2 are selected as α1 = α2 = 0.1 and α1 =

α2 = 0.001 for 3 and 5 attribute spaces, respectively. We set nout to

96 and 105 for 3 and 5 attribute encoders, respectively. In case of 3

attribute encoder network, the nk corresponding to three attribute

encoders are 6, 9, and 5. In addition, in case of 5 attribute encoder

network, the nk corresponding to the five attribute encoders are 15,

8 10, 10, and 2. For the graph divergence loss, we use k = 1 in k-nn

test and λ = 0.1 for all our experiments.

4.2 Results

We compare the advantages of our model from both

qualitative and quantitative aspects, across many criteria including

reconstruction error, image quality, disentanglementmeasures, and

FID scores.

4.2.1 Reconstruction fidelity
We first evaluate the reconstruction fidelity of the model both

quantitatively and qualitatively. Few example images as well as

corresponding reconstructed images are shown in Figure 2 for

3 and 5 partitions of the latent space. We also report MSE in

Frontiers inComputer Science 05 frontiersin.org144

https://doi.org/10.3389/fcomp.2024.1274779
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Shukla et al. 10.3389/fcomp.2024.1274779

TABLE 1 Details of the network architectures used to design the generative model used across di�erent experiments.

Encoder: images−→ Conv(3, 16, 4, 4) + ELU Decoder: FC (nout , 128) + ELU

Conv(16, 32, 2, 2) + ELU FC (128, 2048) + ELU

FC (2048, 128) + ELU DConv(32,16,2,2) + ELU

FC (2048, nout), DConv(16, 3, 4, 4) + Sigmoid()−→ Images

Attribute auto-encoders

Encoder FC (nin ,128) + ELU Decoder FC (kn ,32) + ELU

FC (128,64) + ELU FC (32, 64) + ELU

FC (64, 32) + ELU FC (64,128) + ELU

FC (32,nk) FC (128, nout)

Here, nk denotes the internal dimension of the attribute autoencoder, chosen to be the number of unique labels in an attribute.

FIGURE 2

Some example images and the corresponding reconstructions from our proposed model DAE-OG and its improvement over DAE-G for three and

five attribute spaces. DAE-OG results in better visual quality.

TABLE 2 Comparison of MSE, PSNR, and FID of DAE-G and DAE-OGmodels for three and five attribute encoder models.

Method Three attribute encoder Five attribute encoder

MSE ↓ PSNR ↑ FID ↓ MSE ↓ PSNR ↑ FID ↓

DAE-G 0.054 14.25 154.53 0.016 19.48 146.49

DAE-OG 0.019 17.84 153.04 0.014 19.97 145.80

Bold means better performance.

Table 2. We observe that our approach consistently results in better

reconstruction quality both quantitatively and qualitatively.

4.2.2 Image generation
Images are generated by sampling from a normal distribution

in the initial encoder latent space. Example images are shown in

Figure 3 for 3 and 5 attribute encoders. We observe that DAE-OG

generates images that are visibly consistently better than DAE-G.

4.2.3 Latent space interpolation
Latent space manipulation is important for assessing the

performance of disentangling abilities of models in terms of

capturing independent and semantically meaningful factors of

variations. We show results by interpolating between two images

in the latent space of the initial encoder. The results show that

traversal in the latent space leads to smoother interpolation in

the image space as well. Specifically, owing to the orthogonality

constraint, we obtain better results as shown in the Figures 4–7.

4.2.4 Disentanglement and FID scores
A large number of disentanglement scores have been proposed

over the last several years that measure different aspects of

disentanglement. We use a few of them in this study to evaluate

the quality of disentanglement achieved owing to the contribution

of orthogonality constraint. The results are shown in Table 3.

We observe that the results with orthogonality constraints are

consistently better than their counterpart.

4.2.5 E�ect of orthogonality
As with the method DAE-OG, we observe smoother transition

within an attribute space. We note that imposing the orthogonality

loss term promotes disentanglement as seen in the low-dimensional

Frontiers inComputer Science 06 frontiersin.org145

https://doi.org/10.3389/fcomp.2024.1274779
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Shukla et al. 10.3389/fcomp.2024.1274779

FIGURE 3

Some example images generated from our proposed model with three and five attribute auto-encoders by using implicit sampling for DAE-G and

DAE-OG models.

FIGURE 4

Three example interpolation results in the latent space of three attribute encoders on DAE-G and DAE-OG (bottom row). DAE-OG achieves a

smoother interpolation.

visualization of the latent space in Figure 8, done via t-SNE (van der

Maaten and Hinton, 2008).

5 Discussion

The experimental datasets chosen here in our study use the

3D shapes dataset, which has simple objects and scenes; still has

sufficient complexity owing to shape change, view change, and

background changes. We do observe meaningful disentanglement

of variables in this case. We do anticipate that scaling to

more complex datasets is feasible and could form directions for

future study. Due to the special nature of disentanglement tasks,

where one needs to further provide some notion of meaning to

variable disentangled, common datasets used in literature to assess

disentangling models usually include datasets, which show some

natural transitions. These include (a) KITTI-masks–which contain

binary masks of pedestrians (Klindt et al., 2021), (b) the Natural

Frontiers inComputer Science 07 frontiersin.org146

https://doi.org/10.3389/fcomp.2024.1274779
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Shukla et al. 10.3389/fcomp.2024.1274779

FIGURE 5

Three example interpolation results in the latent space of five attribute encoder. The first and the last image in each row denotes the start and end of

the interpolation.

FIGURE 6

Interpolation along individual attribute space by keeping the other two attribute spaces frozen for a three attribute encoder-based model. For

DAE-OG, in 1st attribute space, we see variation in the size; in 2nd attribute space, we see variation in the color of the object; and in 3rd attribute

space, we see variation in shape.

Sprites dataset (Matthey et al., 2017), which consists of pairs of

rendered sprite images with generative factors from the YouTube-

VIS challenge, which we have experimented with before (Shukla

et al., 2019), and (c) the 3DIdent dataset (Zimmermann et al., 2021),

which contains objects rendered in 3D under differing lighting and

viewing conditions.

The dataset we have chosen (Kim and Mnih, 2018) is another

standard benchmark in this area, and is most similar to 3DIdent,

however with simpler objects. With more complex objects as in

3DIdent, some of the observed visual variation will be due to self-

shadowing and cast-shadowing, which would be an interesting

avenue to explore the impact on disentanglement performance.

Frontiers inComputer Science 08 frontiersin.org147

https://doi.org/10.3389/fcomp.2024.1274779
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Shukla et al. 10.3389/fcomp.2024.1274779

FIGURE 7

Interpolation along individual attribute space by keeping the other two attribute representations frozen for five attribute encoder-based model for

DAE-G and DAE-OG. DAE-OG results in smoother interpolation in each space, with only one attribute change in a given space.

TABLE 3 Disentanglement metric score.

Method Three attribute encoder Five attribute encoder

mig dcimig mig_sup jemmig mig dcimig mig_sup jemmig

DAE-G 0.0234 0.2832 0.1709 0.2271 0.0333 0.3172 0.1948 0.2273

DAE-OG 0.02760 0.2580 0.1589 0.2083 0.0278 0.3366 0.1885 0.2248

DAE-OG consistently outperforms DAE-G across the various disentanglement metrics.

6 Conclusion

In this article, we presented an approach to learning

disentangled representations in a generative framework.

In addition to disentanglement, our approach enables

diverse image generation and manipulation. We find that

orthogonality in the latent space encourages disentanglement

with a graph divergence loss that transforms the latent

space. Our results support the hypothesis that inductive

biases are crucial for learning disentangled representations.

In future, we would like to explore the possibility of

incorporating known attribute-specific constraints to

further improve the interpretability of the disentangled

representations.

Frontiers inComputer Science 09 frontiersin.org148

https://doi.org/10.3389/fcomp.2024.1274779
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Shukla et al. 10.3389/fcomp.2024.1274779

FIGURE 8

Two-dimensional visualization of the latent space representations showing the e�ect of orthogonality on the latent space representation for three

attribute latent spaces. Attributes are color-coded. We note that DAE-OG achieves more compact and smoother transitions within an attribute space.

Author’s note

This study was carried out when AS was at Geometric Media

Lab, Arizona State University.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: https://github.com/deepmind/3d-shapes.

Author contributions

AS: Conceptualization, Investigation, Methodology, Writing

- original draft, Writing - review & editing. RD: Investigation,

Writing - original draft. RS: Investigation, Writing - original

draft. AR: Writing - original draft, Writing - review & editing.

PS: Investigation, Writing - original draft, Writing - review &

editing. GD: Writing - original draft, Writing - review & editing.

VB: Investigation, Writing - original draft, Writing - review &

editing. PT: Conceptualization, Investigation, Writing - original

draft, Writing - review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by Defense Advanced Research Projects Agency

(DARPA) under Agreement No. HR00112290073.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Achille, A., and Soatto, S. (2018). Emergence of invariance and
disentanglement in deep representations. J. Machine Learn. Res. 19, 1947–1980.
doi: 10.1109/ITA.2018.8503149

Asim, M., Daniels, M., Leong, O., Ahmed, A., and Hand, P. (2020). “Invertible
generative models for inverse problems: mitigating representation error and dataset
bias,” in International Conference on Machine Learning (PMLR), 399–409.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017).
Geometric deep learning: going beyond euclidean data. IEEE Sign. Process. Mag. 34,
18–42. doi: 10.1109/MSP.2017.2693418

Burgess, C., and Kim, H. (2018). 3D Shapes Dataset. Available online at: https://
github.com/deepmind/3dshapes-dataset/

Chakraborty, R., and Vemuri, B. C. (2015). “Recursive fréchet mean computation
on the grassmannian and its applications to computer vision,” in IEEE International
Conference on Computer Vision, ICCV 2015, 4229–4237.

Choi, H., Som, A., and Turaga, P. K. (2020). Role of orthogonality constraints in
improving properties of deep networks for image classification. CoRR abs/2009.10762.
Available online at: https://arxiv.org/abs/2009.10762

Djolonga, J., and Krause, A. (2017). “Learning implicit generative models using
differentiable graph tests,” in Advances in Approximate Bayesian Inference NIPS
Workshop. Available online at: http://www.approximateinference.org/2017/accepted/
DjolongaKrause2017.pdf

Georghiades, A. S., Belhumeur, P. N., andKriegman, D. J. (2001). From few tomany:
illumination cone models for face recognition under variable lighting and pose. IEEE
Trans. Pattern Anal. Mach. Intell. 23, 643–660. doi: 10.1109/34.927464

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., et al. (2014). “Generative adversarial nets,” in Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014,Montreal, Quebec, Canada, eds. Z. Ghahramani,M.Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, 2672–2680.

Frontiers inComputer Science 10 frontiersin.org149

https://doi.org/10.3389/fcomp.2024.1274779
https://github.com/deepmind/3d-shapes
https://doi.org/10.1109/ITA.2018.8503149
https://doi.org/10.1109/MSP.2017.2693418
https://github.com/deepmind/3dshapes-dataset/
https://github.com/deepmind/3dshapes-dataset/
https://arxiv.org/abs/2009.10762
http://www.approximateinference.org/2017/accepted/DjolongaKrause2017.pdf
http://www.approximateinference.org/2017/accepted/DjolongaKrause2017.pdf
https://doi.org/10.1109/34.927464
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Shukla et al. 10.3389/fcomp.2024.1274779

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., et al.
(2018). “CYCADA: cycle-consistent adversarial domain adaptation,” in International
Conference on Machine Learning (PMLR), 1989–1998.

Kim, H., andMnih, A. (2018). “Disentangling by factorising,” Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, eds. J. Dy and A. Krause, vol. 80 (PMLR), 2649–2658. Available online at:
https://proceedings.mlr.press/v80/kim18b.html

Kingma, D. P., and Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114. doi: 10.48550/arXiv.1312.6114

Klindt, D. A., Schott, L., Sharma, Y., Ustyuzhaninov, I., Brendel, W., Bethge, M., et
al. (2021). “Towards nonlinear disentanglement in natural data with temporal sparse
coding,” International Conference on Learning Representations. Available online at:
https://openreview.net/forum?id=EbIDjBynYJ8

Lohit, S., and Turaga, P. K. (2017). “Learning invariant riemannian geometric
representations using deep nets,” in IEEE International Conference on Computer Vision
Workshops, ICCVWorkshops 2017 (IEEE Computer Society), 1329–1338.

Ma, J., Cui, P., Kuang, K., Wang, X., and Zhu, W. (2019). “Disentangled graph
convolutional networks,” in International Conference on Machine Learning (PMLR),
4212–4221.

Matthey, L., Higgins, I., Hassabis, D., and Lerchner, A. (2017). dsprites:
Disentanglement Testing Sprites Dataset. Available online at: https://github.com/
deepmind/dsprites-dataset/

Nguyen, A. M., Yosinski, J., and Clune, J. (2015). “Deep neural networks are easily
fooled: high confidence predictions for unrecognizable images,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 427–436.

Pontin, J. (2018). Greedy, Brittle, Opaque, and Shallow: The Downsides to Deep
Learning. Wired Magazine.

Shao, H., Kumar, A., and Fletcher, P. T. (2018). “The riemannian
geometry of deep generative models,” in 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW),
4288.

Shukla, A., Bhagat, S., Uppal, S., Anand, S., and Turaga, P. K. (2019). “PrOSe:
product of orthogonal spheres parameterization for disentangled representation
learning,” in 30th British Machine Vision Conference 2019, BMVC 2019, Cardiff, UK,
September 9-12, 2019 (BMVA Press), 88. Available online at: https://bmvc2019.org/wp-
content/uploads/papers/1056-paper.pdf

Turaga, P. K., and Srivastava, A. (2015).Riemannian Computing in Computer Vision,
1st Edn. Berlin: Springer Publishing Company, Incorporated.

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J.
Machine Learn. Res. 9, 2579–2605. Available online at: http://jmlr.org/papers/v9/
vandermaaten08a.html

Wang, X., Jin, H., Zhang, A., He, X., Xu, T., and Chua, T.-S. (2020). “Disentangled
graph collaborative filtering,” in Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, 1001–1010.

Zhang, C., Zhang, C., Zhang, M., and Kweon, I. S. (2023). Text-to-image
diffusion model in generative AI: a survey. arXiv preprint arXiv:2303.07909.
doi: 10.48550/arXiv.2303.07909

Zhu, J., Shen, Y., Zhao, D., and Zhou, B. (2020). “In-domain gan inversion for
real image editing,” in European Conference on Computer Vision (Berlin: Springer),
592–608.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). “Unpaired
image-to-image translation using cycle-consistent adversarial networks,”
in Proceedings of the IEEE International Conference on Computer Vision,
2223–2232.

Zimmermann, R. S., Sharma, Y., Schneider, S., Bethge, M., and Brendel, W. (2021).
“Contrastive learning inverts the data generating process,” in Proceedings of the 38th
International Conference on Machine Learning, eds. M. Meila and T. Zhang (PMLR),
12979–12990.

Frontiers inComputer Science 11 frontiersin.org150

https://doi.org/10.3389/fcomp.2024.1274779
https://proceedings.mlr.press/v80/kim18b.html
https://doi.org/10.48550/arXiv.1312.6114
https://openreview.net/forum?id=EbIDjBynYJ8
https://github.com/deepmind/dsprites-dataset/
https://github.com/deepmind/dsprites-dataset/
https://bmvc2019.org/wp-content/uploads/papers/1056-paper.pdf
https://bmvc2019.org/wp-content/uploads/papers/1056-paper.pdf
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.48550/arXiv.2303.07909
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

TYPE Original Research

PUBLISHED 26 August 2024

DOI 10.3389/fcomp.2024.1260604

OPEN ACCESS

EDITED BY

Maria Rodriguez Martinez,

Yale University, United States

REVIEWED BY

Zhanglin Cheng,

Chinese Academy of Sciences (CAS), China

Ankita Shukla,

University of Nevada, Reno, United States

*CORRESPONDENCE

Yinzhu Jin

yj3cz@virginia.edu

RECEIVED 18 July 2023

ACCEPTED 12 July 2024

PUBLISHED 26 August 2024

CITATION

Jin Y, McDaniel R, Tatro NJ, Catanzaro MJ,

Smith AD, Bendich P, Dwyer MB and

Fletcher PT (2024) Implications of data

topology for deep generative models.

Front. Comput. Sci. 6:1260604.

doi: 10.3389/fcomp.2024.1260604

COPYRIGHT

© 2024 Jin, McDaniel, Tatro, Catanzaro,

Smith, Bendich, Dwyer and Fletcher. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Implications of data topology for
deep generative models

Yinzhu Jin1*, Rory McDaniel1, N. Joseph Tatro2,

Michael J. Catanzaro3, Abraham D. Smith3,4, Paul Bendich3,5,

Matthew B. Dwyer1 and P. Thomas Fletcher1,6

1Department of Computer Science, University of Virginia, Charlottesville, VA, United States, 2STR, Vision

and Image Understanding Group, Woburn, MA, United States, 3Geometric Data Analytics, Inc., Durham,

NC, United States, 4Math, Stats, and CS Department, University of Wisconsin-Stout, Menomonie, WI,

United States, 5Department of Mathematics, Duke University, Durham, NC, United States, 6Department

of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States

Many deep generative models, such as variational autoencoders (VAEs) and

generative adversarial networks (GANs), learn an immersion mapping from

a standard normal distribution in a low-dimensional latent space into a

higher-dimensional data space. As such, these mappings are only capable of

producing simple data topologies, i.e., those equivalent to an immersion of

Euclidean space. In thiswork, we demonstrate the limitations of such latent space

generativemodels when trained on data distributions with non-trivial topologies.

We do this by training these models on synthetic image datasets with known

topologies (spheres, torii, etc.). We then show how this results in failures of both

data generation as well as data interpolation. Next, we compare this behavior to

two classes of deep generative models that in principle allow for more complex

data topologies. First, we look at chart autoencoders (CAEs), which construct

a smooth data manifold from multiple latent space chart mappings. Second,

we explore score-based models, e.g., denoising di�usion probabilistic models,

which estimate gradients of the data distribution without resorting to an explicit

mapping to a latent space. Our results show that these models do demonstrate

improved ability over latent space models in modeling data distributions with

complex topologies, however, challenges still remain.

KEYWORDS

data topology, generative model, variational autoencoder (VAE), di�usion probabilistic

models (DDPM), topological data analysis

1 Introduction

Recent advances in deep generative models (DGMs) have resulted in the

unprecedented ability of these models to produce realistic data, including imagery, text,

and audio. While qualitative evaluation of generated data makes it clear that DGMs are

improving at a rapid pace, quantifying how well a model produces samples similar to the

original data distribution on which it was trained is a challenging task and an area of active

research. Inherent to this problem is that generative models are fundamentally meant to

produce data that would be judged to be realistic to a human observer, and quantifying

human perception—of images, language, or audio—is a difficult task.

A common approach to evaluating a generative model is to compute

an empirical distributional distance between a sample from the data

distribution and a sample generated by the model. For example, in computer

Frontiers inComputer Science 01 frontiersin.org151

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1260604
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1260604&domain=pdf&date_stamp=2024-08-26
mailto:yj3cz@virginia.edu
https://doi.org/10.3389/fcomp.2024.1260604
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1260604/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

vision, the Fréchet inception distance (FID) (Heusel et al., 2017) is

a popular choice for such a distance metric. The FID approximates

both the data distribution and the generated image distribution as

multivariate normal distributions on the outputs of an Inception

v3 model trained on ImageNet. The Fréchet distance between the

resulting multivariate normal distributions is then computable in

closed-form. More recently, precision and recall (Sajjadi et al.,

2018) were proposed to separately evaluate how close generated

samples are to the data distribution (precision) and how well they

cover the data distribution (recall).

The manifold hypothesis of machine learning informally

states that data distributions naturally lie near lower-dimensional

manifolds embedded in the higher-dimensional Euclidean space

formed by their raw representations. One class of DGMs, including

variational autoencoders (VAEs) (Kingma and Welling, 2014) and

generative adversarial networks (GANs) (Goodfellow et al., 2014),

attempt to model the data manifold explicitly. They do this by

generating data by mapping points from a prior distribution in a

lower-dimensional latent space into the data representation space.

This has led researchers to investigate the manifold properties of

such DGMs and use manifold methods to evaluate their quality.

Shao et al. (2018) develop algorithms for computing geodesic

curves and parallel translation of VAEs. They observed that while

VAEs were able to capture the curvature of synthetic data manifolds

when trained on real image data, the manifolds generated by VAEs

were nearly flat. Arvanitidis et al. (2018) propose that deterministic

generators lead to a distortion of the data manifold in the latent

space that fails to capture the intrinsic curvature of the data.

They propose a stochastic Riemannian metric to correct for this

and show that this results in improved variance estimates. Chen

et al. (2018) demonstrate that Riemannian geodesics in the latent

space of a DGM give better interpolations and visual inspection

of generated data. Shukla et al. (2018) show that disentangled

dimensions of the latent space of a VAE demonstrate higher

curvature.

While these works have investigated the differential and

metric geometry of DGMs, less is known about the topological

properties of DGMs. Theoretically, models that generate data

from a continuous mapping of a Gaussian prior distribution into

Euclidean space, such as VAEs and GANs, are not able to faithfully

reproduce data with non-trivial topology (e.g., spheres, tori, or

other spaces with “holes”). In practice, these models may be able

to perform fairly well in approximating non-trivial data topologies

by shifting density away from holes. The chart autoencoder (CAE)

model by Schonsheck et al. (2019) extends the topological abilities

of VAEs/GANs by modeling a manifold topology with multiple

overlapping charts. On the other hand, DDPMs and their relatives

have no topological constraints in theory. However, the topological

abilities of these various DGMs have not been empirically tested

or compared. This paper empirically tests the ability of generative

models to handle data arising from distributions with underlying

topology, and is, to the best of our knowledge, the first systematic

study in this direction. There have been papers that use topological

techniques, such as Manifold Topology Divergence (Barannikov

et al., 2021) or Geometry Score (Khrulkov and Oseledets, 2018),

to quantify the quality of data produced by generative models.

More broadly, there has been extensive recent work (Hensel et al.,

2021) at the interface of TDA and DL/ML. These range from

methods (e.g., Chen et al., 2019; Solomon et al., 2021; Nigmetov

and Morozov, 2022) that integrate TDA-based loss functions into

DL algorithms, to bespoke DNN architectures (Carrière et al., 2020)

that incorporate layers that process persistence diagrams, to works

(e.g., Naitzat et al., 2020; Wheeler et al., 2021) that use TDA to

analyze the structure of data as it moves through DNN layers.

This paper is organized as follows. In Section 2 we review

the methods used in this paper, namely, the DGMs and metrics

for evaluating their quality, including persistent homology. In

Section 3 we present our experiments comparing the ability of three

DGMs—VAE, CAE, and DDPM—to learn to generate data with

known non-trivial topologies. To do this, we use two synthetic

image datasets with a torus and sphere topology, respectively,

and a real dataset of conformations of cyclooctane, which is

known to have topology equivalent to a Klein bottle intersecting

with a 2-sphere (Martin et al., 2010). Note that this test is even

more difficult from a topological perspective, as the cyclooctane

conformations form a topology that is non-manifold, but rather a

more complicated stratified space (in this case, the intersection of

two manifolds). Finally, in Section 4 we discuss conclusions from

these experiments and future directions.

2 Background and methods

In this section, we first review the three deep generative models

(VAEs, CAEs, and DDPM) that we evaluated for their ability

to learn data distributions with non-trivial topology. Next, we

describe the evaluation metrics used for our study, both related and

unrelated to the topological structure.

2.1 Deep generative models

Various structures for deep generative models have

been proposed over time. Some of the popular models are

normalizing flows (Rezende and Mohamed, 2015), variational

autoencoders (Kingma and Welling, 2014), generative adversarial

networks (Goodfellow et al., 2014), deep energy-based model (Du

and Mordatch, 2019), and the recent denoising diffusion

models (Ho et al., 2020). Each type of generator has different

variations. Yet, topology is rarely considered in the design. Here

we choose three models to discuss.

2.1.1 Variational autoencoders
A variational autoencoder (VAE) is a type of encoder-decoder

generative model proposed by Kingma and Welling (2014).

Unlike the traditional autoencoder (Hinton and Salakhutdinov,

2006), a VAE models the probability distribution of the latent

representation, z, of each data point instead of a deterministic latent

representation. AVAEmodels themarginal log-likelihood of the ith

data point, x(i), as Equation 1:

log pθ

(

x(i)
)

= DKL

(

qφ

(

z
∣

∣

∣
x(i)
) ∥

∥

∥
pθ

(

z
∣

∣

∣
x(i)
))

+L

(

θ ,φ; x(i)
)

,

(1)

where θ is a vector of the parameters for the generative model, and

φ is a vector of the parameters for the variational approximation.

Frontiers inComputer Science 02 frontiersin.org152

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

The objective is to maximize the evidence lower bound (ELBO),

which is derived to be Equation 2:

L

(

θ ,φ; x(i)
)

= −DKL

(

qφ

(

z
∣

∣

∣
x(i)
) ∥

∥

∥
pθ (z)

)

+ Eqφ

[

log pθ

(

x(i)
∣

∣

∣
z
)]

, (2)

Usually the prior pθ (z) is set to be an isotropic Gaussian, N (0, I).

The encoder also models the qφ(z | x(i)) as a Gaussian distribution

N (µ(i), (σ (i))2I). Therefore, the first term is easy to compute with

predicted mean and variance of qφ(z | x(i)). On the other hand,

the equation for the second term of the lower bound depends on

what probability distribution we assume in the data space. For

example, using an isotropic Gaussian distribution leads to the mean

squared error loss, and using a Bernoulli distribution corresponds

to minimizing the binary cross entropy loss.

As discussed above, VAEs usually assume a Gaussian

distribution in the latent space. Although this might be a reasonable

assumption for many data with trivial topology, it might cause

problems when this is not the case. Even in a simple case

where the data has an S
1 topology which is a loop, the neural

network could struggle to learn a mapping from two different

topological spaces. Although one might argue the Gaussian can

be deformed enough so that it resembles a loop in practice, we

still need experiments to investigate this issue. Similarly, generative

adversarial networks (Goodfellow et al., 2014) also use a Gaussian

prior distribution in the latent space, and therefore might as well

have problems learning data with non-trivial topology.

2.1.2 Chart autoencoders
Inmany applications of the VAE, its learned latent space is often

treated as a linear space. For instance, generating interpolations

between two points of a given dataset is often performed by

generating the linear path between the embeddings of these points

in latent space. This operation implicitly assumes that the geodesics

between points correspond to linear paths in latent space. Yet,

we know there exist manifolds, such as the sphere S2, which are

not homeomorphic to a single linear space. It follows that the

latent space learned by a VAE trained on such a manifold is

not geometrically faithful. That is the latent space either contains

a point that decodes to a point off the manifold, or the space

cannot capture all geodesic paths. To this end, recent architectures

have been introduced to rectify this problem. We consider one

such architecture, the chart autoencoder (CAE) (Schonsheck et al.,

2019).

Chart autoencoders are a generative model architecture

motivated by the concept of an atlas in differential geometry.

In comparison to the VAE, we learn a set of k encoders and

decoders parameterized by {φi}
k
i=1 and {θi}

k
i=1 respectively. Each

corresponding encoder and decoder is affiliated with a latent

chart, Zi. Thus, the latent space of the CAE is composed of a

set of linear latent spaces. The CAE output is determined by a

chart prediction network, P. In the original work, P maps x from

the input space X to p ∈ R
k, where p represents the vector

of log probabilities of the chart membership of x. In training,

the output of the CAE is taken to be the sum of the outputs

from the k decoders weighted by the chart prediction vector, p.

During evaluation, the output is taken to be that of the decoder

corresponding to the likeliest chart via p. In this work, we update

the chart prediction network to map from the direct sum of the

latent embeddings, zi, instead of x. This change was made to allow

generations from the latent space without reference to any network

input. Intuitively, this chart prediction network is analogous to

the chart transition function affiliated with a geometric atlas.

Indeed, the CAE is capable of transitioning between the outputs of

different latent charts when a linear interpolation is performed in

latent space.

2.1.3 Denoising di�usion probabilistic models
In contrast to the previous two models, the denoising diffusion

probabilistic model (DDPM) proposed by Ho et al. (2020) does not

have a low-dimensional latent space. It is based on the diffusion

probabilistic model by Sohl-Dickstein et al. (2015), which learns

to reverse a diffusion process in which Gaussian noise is gradually

added to the original image, x0, for T timesteps until we get a

sampled image xT that is nearly pure noise. We call the diffusion

process that adds noise the forward process, which is a Markov

chain. The reverse process is also defined to be a Markov chain

as follows Equation 3:

pθ (x0 :T) : = p(xT)
∏T

t=1 pθ (xt−1 | xt),

pθ (xt−1 | xt) : = N (xt−1;µθ (xt , t),6θ (xt , t)), (3)

where βt ’s define the variance schedule and θ is the parameter

vector of the model that learns the reverse process. During training,

we can optimize the lower bound of the log-likelihood.

In the DDPM, βt is fixed and therefore the first term of the

loss can be ignored. 6θ (xt , t) is also fixed for each time step t.

Then DDPM reparameterizes xt with the added noise ǫ ∼ N (0, I),

and µθ (xt , t) with ǫθ (xt), which means the model is now trained

to predict the noise ǫ. Their experiments also show that omitting

the different weights dependent on t does not compromise the final

performance, which results in the final loss (Equation 4):

Lsimple(θ) : = Et,x0 ,ǫ

[

∥

∥

∥
ǫ − ǫθ (

√

ᾱt x0 +
√

1− ᾱt ǫ, t)
∥

∥

∥

2
]

, (4)

with ᾱt ’s being expressions of βt ’s. It is also worth noting that Song

et al. (2021) derived the same model from the view of a score based

model, which learns the gradient of the log probability density in

the data space.

We can see that the DDPM does not assume any topology

on the original data distribution. The sampling only depends

on the fact that the diffused data distribution is Gaussian,

which is achieved by using a prefixed time variance schedule.

Therefore, theoretically, it should be able to learn the data of

any topological structure. Yet, this needs to be examined through

experiments. Similarly, energy based models (Du and Mordatch,

2019) also do not assume any topology on the data distribution,

and during sampling start from Gaussian distribution and then

travel to high probability regions of the data space. Thus, we

could expect a similar ability in learning distributions of non-

trivial topology.

Frontiers inComputer Science 03 frontiersin.org153

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

2.2 Quantitative metrics for evaluating
DGMs

Given the purpose of DGMs is to generate samples that are

as realistic as possible for a human, the straightforward evaluation

method would be the judgments by human eyes. However, there

have been attempts to quantitatively measure their performances.

2.2.1 Wasserstein distance
We propose to evaluate how well a generative model learns a

data probability distribution using a sample approximation to the

L2 Wasserstein 2-distance. By definition this should be Equation 5:

W2(µ, ν) = inf
γ∈Ŵ(µ,ν)

(

E(x,y)∼γ ‖x− y‖2
)1/2

, (5)

where µ and ν are probability measures of the ground truth

data and the generative model, respectively, Ŵ(µ, ν) is the set of

any joint distribution of x and y such that
∫

γ (x, y)dy = µ(x)

and
∫

γ (x, y)dx = ν(y). We implement the empirical version as

Equation 6:

W2(µ, ν) = inf
π

(

1

n

n
∑

i=1

‖Xi − Yπ(i)‖
2

)1/2

, (6)

where X1,X2, ...,Xn are random samples from µ, and Y1,Y2, ...,Yn

from ν, and π is any permutation of 1, 2, ..., n. Since the datasets

are simulated, we can easily sample from the ground truth

data distribution µ. The best π is obtained using the Jonker–

Volgenant algorithm (Jonker and Volgenant, 1988) implemented

by SciPy (Virtanen et al., 2020).

There are some existing works (e.g., Genevay et al., 2018),

that train generative models from the viewpoint of optimal

transport, and therefore include the Wasserstein distance in the

training loss. However, to the best of our knowledge, we are

the first to employ Wasserstein distance to evaluate how well

generators learn the overall data distribution. The high time

complexity (O(n3)) of the Jonker–Volgenant algorithm forbids us

from using too large sample sizes to represent ground truth and

learned distributions. Therefore, one concern is whether the set

of samples can adequately cover the whole distribution. However,

in our experiments, we use data from known low-dimensional

distributions that can be reasonably covered with relatively

fewer samples.

2.2.2 Fréchet inception distance
Fréchet Inception Distance (FID) is computed by computing

the Wasserstein distance on two probability distributions obtained

by feeding a set of ground truth examples and a set of fake examples

to an embedding function. The embedding function generally

used is Inception v3 trained on ImageNet with the final layer

truncated, yielding a 2048-dimensional vector for each sample.

A normal distribution is fit in this space for each of the ground

truth and fake sets, which are then the direct inputs for the

Wasserstein distance. While FID has been shown to usually align

with human judgement (Heusel et al., 2017), it has a number

of shortcomings (Chong and Forsyth, 2020; Parmar et al., 2022).

Despite its shortcomings, FID has established itself as the de facto

standard metric for judging the quality of generative images (Borji,

2022).

2.2.3 Density, coverage
A line of work has defined metrics that separate failure

modes by using multi-valued metrics. For example, a metric

might focus on fidelity which captures the degree to which a

generated image resembles those in a dataset, whereas another

might focus on diversity which captures the degree to which a

sample reflects the variation in generative factors that gives rise

to a dataset.

The earliest work, Precision and Recall (Sajjadi et al., 2018),

introduces two metrics that successfully separate dropping and

adding modes (recall) from image quality (precision), but have

some shortcomings including not being robust to outliers and

requiring more significant tuning to be accurate.

Density and Coverage (Naeem et al., 2020) address these

limitations by, still in an embedding space, defining a manifold for

a set of ground truth examples and measuring how often generated

points land in it. For their reported results, they use the 4,096-

dimensional layer of a truncated VGG16 trained on ImageNet as

the embedding space. They then form the real manifold as k-nearest

neighbor balls for each real point. Density is then a cumulative

measure of howmany real neighborhood balls the generated points

land in, normalized for the number of points. Intuitively, this

value is greater than 1 when many generated samples occur in

a few real modes and less than 1 when the generated samples

are too diverse or don’t fall in real modes. The other half of the

metric, Coverage, is then the percentage of real neighborhood

balls that have a generated point within them. Intuitively, this is

1 when all modes of the original data are covered, and less than

1 otherwise.

2.2.4 Topological data analysis: persistent
homology

Here we give some brief intuition about the information carried

by the persistent homology of a point cloud. Readers interested in a

fuller and more rigorous discussion are pointed to textbooks such

as Edelsbrunner and Harer (2010) or Oudot (2017).

Suppose that X = {x1, . . . , xn} is a point cloud in some

Euclidean space. For example, let X be the collection of points

on the left of Figure 1. The persistence diagram Dk(X) is a

compact summary of some of the k-dimensional multi-scale shape

information carried by X. We now give some more details about

what this means.

For each threshold value r ≥ 0, let Xr =
⋃n

i=1 Br(xi). Note

that whenever r < s, we have Xr ⊂ Xs, and as r moves from

0 to ∞, the union of balls around the points in X grows from

the points themselves to the entire Euclidean space. During this

process, various shape changes occur. In our working example, as

r increases, the number of connected components, which began

as |X|, rapidly becomes 3 as clusters form and then subsequently

decreases as those clusters merge. The r values at which these

mergers happen are recorded as death values and stored in the

Frontiers inComputer Science 04 frontiersin.org154

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

FIGURE 1

Illustration of persistence diagrams (right) for the Rips homology filtration on a point cloud (left). Persistence is shown in dimensions zero (red) and

one (blue).

zero-dimensional persistence diagram D0(X); see the red dots

on the right side of Figure 1. The higher-level connectivity of

the union of balls also changes as r increases. In our working

example, an annulus forms in the upper right of X at a very small

value of r, and a ring appears connecting the three clusters at a

larger value of r. In technical terms, these features are called one-

dimensional homology classes (Edelsbrunner and Harer, 2010) and

have rigorous algebraic definitions. The r values at which they first

appear are called birth value. Each homology class eventually fills

in as r increases; for example, the annulus at the upper right fills

in at the apparent radius of the feature. These death values of

the one-dimensional features are paired with the birth values that

created the feature, and they are plotted in the one-dimensional

persistence diagram D1(X); see the blue dots on the right side

of Figure 1.

Thus, each persistence diagram Dk(X) consists of a (multi-)

set of dots in the plane, with each dot recording the birth and

death value of a k-dimensional homological feature. Intuitively

0 and 1 dimensional features represent connected components

and loops/holes, respectively. Not shown in this example

are two-dimensional features, which represent voids, and still

higher-dimensional features. The persistence of a feature is

the vertical distance of its dot to the major diagonal y =

x in the persistence diagram. Higher-persistence features are

generally thought of as genuine representatives of the underlying

space, while lower-dimensional features are more likely to be

caused by sampling noise. This intuition can be formalized in

inference theorems (e.g., Cohen-Steiner et al., 2007; Fasy et al.,

2014).

Persistence diagrams of point clouds are computed by

transforming the growing union of balls into combinatorial

objects called filtered simplicial complexes. Without going into

the technical details here, we note that many software packages

for doing this exist (Otter et al., 2017 gives a nice overview), and

that the experiments in this paper use giotto-tda (Tauzin et al.,

2021).

3 Experiments

3.1 Datasets

We conduct experiments on two synthetic image datasets and

one real dataset. Samples of each dataset are shown in Figure 2.

The “torus” ellipse image dataset contains 10, 000 grayscale

images of white ellipses on black backgrounds. Each image is of size

32×32 and contains one ellipse. The images are downsampled from

64 × 64 images so the edges of ellipses are blurred. The ellipse can

rotate around itself 0 to π . And because the ellipse is 180−degree

rotation symmetric, it renders the topology of S1. The center point

position of the ellipse rotates 0 to 2π around the center of the image

with a radius of 7 pixels, which independently renders another S1

topology. In combination this results in S1×S
1 topology, i.e. a torus

topology.

The rotating jar image dataset is generated using POV-Ray

by Persistence of Vision Pty. Ltd. (2004). There are 10, 000 RGB

colored samples of size 64 × 64. Each image contains one rotating

jar in the fixed center position. The object has random three

dimensional orientations and it has rotational symmetry with

respect to the axis that connects the lid knob and the center

point of the bottom. Therefore, the image is defined given the

orientation of the lid knob. This indicates that the data has a

S2 topology.

The cyclooctane dataset consists of 6, 040 points in R
24,

corresponding to conformations of the cyclooctane molecule

(C8H16) (Martin et al., 2010). A conformation is a configuration

of atoms in a molecule up to rotation and translation of the

molecule. Physical chemistry constraints for cyclooctane imply the

positions of the 16 hydrogen atoms are determined by the positions

of the 8 carbon atoms in each conformation (Hendrickson,

1967; Martin et al., 2010). Each point in the dataset consists of

the 8 spatial coordinates of the carbon atoms flattened into a

single vector, as in [(x1, y1, z1), (x2, y2, z2), . . . , (x8, y8, z8)] becomes

(x1, y1, z1, x2, y2, z2, . . . , x8, y8, z8) ∈ R
24.

Frontiers inComputer Science 05 frontiersin.org155

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

FIGURE 2

Samples from each dataset. (A) “Torus” ellipse image dataset. (B) Rotating jar image dataset.

3.2 Training setups

Here we introduce our training setups of different generative

models. We adopted relatively simple architectures that are capable

of generating reasonably good quality samples. VAE and DDPM

used for the same dataset are designed to have a similar number

of parameters, so that we know the performance difference is

not because of different parameter numbers. Training hyper-

parameters, including learning rates, epochs, weight values for VAE

loss terms, and total time steps for DDPM, are determined using

Bayesian search (Falkner et al., 2018) over a set of different options.

Therefore, the hyper-parameters for each model are different but

they are chosen to maximize the performance. Every model is

trained using Adam optimizer (Kingma and Ba, 2015). For more

details see Supplementary material.

3.3 Qualitative evaluation

First, we evaluate each generative model qualitatively by

observing randomly generated samples and interpolations between

two data points.

Samples from generators trained on the “torus” dataset are

shown in Figure 3. We can see that DDPM produces high quality

samples that are almost indistinguishable from ground truth images

by human eyes. The ellipses have clear edges and are always in the

same correct shape. In contrast, VAE sometimes generates clearly

invalid images. The ellipse shapes are completely lost in some cases.

Figure 4 shows samples fromDGM trained on the rotating jar. Both

VAE and DDPM generally produce credible images. However, we

can see that VAE occasionally fails and generates misshapen jars.

These results could be due to VAE not learning the correct topology

of the dataset and possibly sampling on the “holes” of the torus or

the sphere.Wewill explore this further in the following subsections.

We also performed interpolation between two data points

using different generators, visualized in Figures 5, 6. For the

VAE, we linearly interpolate the latent space, which results in

invalid images in the middle (5−th image for the “torus” and

3−rd image for the jar). We assume this happens because when

we linearly interpolate between two points, we travel across the

void of the latent distribution, where the VAE decoder cannot

map to valid data points. For the DDPM, two end images are

diffused for several time steps (t = 250 for the “torus” and

t = 350 for the jar) and then linearly interpolated. Next, we

apply the usual denoising steps until reversing back to t = 0

to get clean images. Due to the stochasticity in both the forward

and reverse processes, the endpoints will be different from the

original images to a certain degree, depending on the diffusing time

Frontiers inComputer Science 06 frontiersin.org156

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

FIGURE 3

Random samples from di�erent generators on “torus” ellipse image dataset. (A) Variational autoencoder. (B) Denoising di�usion probabilistic model.

steps. We can also see that although the generated images look

valid but do not provide a reasonably continuous interpolation.

This can be considered as a shortcoming of DDPM not having a

latent space.

In Figure 7, we see generated samples of cyclooctane under

our different architectures. To visualize the conformations of

cyclooctane, we embed the R
24 representations in R

3 using

Isomap. This embedding is locally isometric and has been used

in literature such as Martin et al. (2010). The original embedding

of the dataset is visible on the left. Notice the geometry of this

manifold involves a Klein bottle enveloped by a sphere. We

find that the vanilla VAE struggles to generate conformations

associated with the Klein bottle. This is not ideal as these

conformations are associated with specific conformational states

that do not correspond to any points on the outer sphere.

Matching our intuition, the CAE is able to better cover the

manifold of cyclooctane, where the embedded color represents

chart membership. Still, we find the outer shell of the sphere is

sparsely covered. Perhaps counterintuitively, the DDPM model

visually best samples the data manifold. It is clear that the

samples cover both the Klein bottle and the outer sphere with

reasonable density.

3.4 Quantitative performance metrics

For each of the three datasets and each DGM, we computed

the L2 Wasserstein metric between a sample set from the ground

truth data distribution and a sample set generated by the DGM

models. Because of the computational complexity of the Jonker-

Volgenant algorithm, we were limited to computing with sample

sizes of 3,000 data in both ground truth and DGM. To ensure that

the metric values were stable at the given sample size, we repeated

the metric calculation 10 times, each time with an independently

drawn sample from both the ground truth and the DGM. For

the cyclooctane dataset, since we only have 6,040 samples in the

ground truth data, we randomly draw 3,000 samples each time

without replacement. Results are shown in Table 1. Since the sample

size used to approximate the Wasserstein distance is limited, to

rule out the effects of random sampling, we also performed t-tests

on Wasserstein distance observations and the resulting p-values

are listed in Table 2. It is clear that the Wasserstein distances for

different models are significantly different, except for between the

VAE and CAE trained on cyclooctane, which have very similar

results. We can see that on the image datasets, VAE has a

consistently smaller distance to the ground truth data distribution

Frontiers inComputer Science 07 frontiersin.org157

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

FIGURE 4

Random samples from di�erent generators on rotating jar image dataset. (A) Variational autoencoder. (B) Denoising di�usion probabilistic model.

FIGURE 5

Interpolations from di�erent generators on “torus” ellipse image dataset. (A) Variational autoencoder. (B) Denoising di�usion probabilistic model.

than DDPM, despite what appears to be worse image quality to

human eyes. The result is different for the cyclooctane dataset, with

DDPM having a significantly smaller distance while CAE has a

similar result to VAE. This should indicate in some datasets VAE

is learning the overall distribution better than DDPM. It could be

the case that in terms of L2 distance, although DDPM samples are

more precise, or more close to the ground truth distribution, VAE

samples cover the whole data distribution better. And we can also

see that the probability based metric alone does not sufficiently

represent the real world performance of models.

For the cyclooctane dataset, we calculated the bond lengths

of generated samples and compared them to the bond lengths

of the true cyclooctane data. Bond lengths for the true data

are tightly distributed about the mean value of 1.52 Å with a

Frontiers inComputer Science 08 frontiersin.org158

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

FIGURE 6

Interpolations from di�erent generators on rotating jar image dataset. (A) Variational autoencoder. (B) Denoising di�usion probabilistic model.

FIGURE 7

A comparison of the cyclooctane conformations generated by sampling the various di�usion models. On the left, we display the Isomap embedding

of the original cyclooctane data. For the CAE embeddings, the di�erent colors denote the corresponding chart. Notice that the vanilla VAE struggles

to generate the inner Klein bottle of the Isomap embedding. Counterintuitively, the DDPM generations most resemble the original data manifold

even though its latent space is high dimensional.

TABLE 1 L2 Wasserstein distance.

“Torus”
ellipse

Rotating
jar

Cyclooctane

Ground truth 2.01 (±0.15) 2.05 (±0.06) 0.215 (±0.009)

VAE 2.26 (±0.05) 2.17 (±0.05) 0.860 (±0.004)

DDPM 2.65 (±0.19) 3.20 (±0.10) 0.389 (±0.011)

CAE - - 0.860 (±0.010)

Reporting mean and standard deviation over 10 independent runs, each time sampling n =

3,000 images from both the ground truth data distribution and generators.

standard deviation of 4.09e− 05 Å. Figure 8 shows the distribution

of each sample set’s bond lengths. We can see that although the

sample bond lengths of all the generative models are much more

dispersed than the ground truth values, DDPM has a relatively

better distribution. The expected errors of each distribution to the

mean ground truth value are also calculated. This error is 0.165 Å

for VAE, 0.155 Å for CAE and 0.04 Å for DDPM.

TABLE 2 p-value of Wasserstein distance observations.

“Torus”
ellipse

Rotating
jar

Cyclooctane

Ground truth &

VAE

9.28e− 5 1.26e− 4 7.47e− 32

Ground truth &

DDPM

1.30e− 7 4.04e− 17 8.70e− 19

Ground truth &

CAE

- - 2.04e− 29

VAE & DDPM 6.41e− 6 1.35e− 16 4.76e− 28

VAE & CAE - - 1

DDPM & CAE - - 3.50e− 26

We also computed deep-learning-based metrics - FID, density,

and coverage, for our two image datasets. The sample sizes of 50,000

are used for both ground-truth data distribution and the DGM

learned distribution. The deep learning model used for embedding

is VGG16 “IMAGENET1K_V1”. The FID results are shown in

Frontiers inComputer Science 09 frontiersin.org159

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

FIGURE 8

Density histogram of bond lengths of samples generated by

di�erent models, compared to the ground truth bond lengths.

TABLE 3 Torchmetrics implementation of FID using 50,000 samples.

Lower is better.

“Torus” ellipse Rotating jar

VAE 16.77 77.72

DDPM 15.00 74.90

TABLE 4 Density / Coverage.

“Torus” ellipse Rotating jar

VAE 0.895 / 0.878 0.403 / 0.605

DDPM 0.903 / 0.951 0.943 / 0.903

Reference implementation from Naeem et al. (2020) with k = 5 and torchvision pretrained

VGG16 “IMAGENET1K_V1” as the embedding. 50, 000 samples. Density is positively valued,

with a value of 1 being ideal; values greater than 1 represent generated data occurring near

common modes in the real data more often, and values less than 1 represent generated data

occurring less often near real data. Coverage is in the range [0, 1] with 1 being optimal; it

represents the percentage of real points that are covered by a generated point.

Table 3, and density and coverage results are shown in Table 4.

Unlike in the case of Wasserstein distance, DDPM constantly has

better metrics values than VAE. This could indicate that the deep

learning model used to embed images does capture image features

in a way that matches better with human visual experiences. The

much larger sample size might also influence the results.

3.5 Topological properties

We also report the persistent homology of ground truth data

and samples from generators. Giotto-tda (Tauzin et al., 2021) is

used to obtain the results. As introduced in Section 2.2.4, the

results show when a topological feature was born and died. Zero-

dimensional features are connected components, one-dimensional

features are loops, and two-dimensional features are voids (e.g.,

spheres). The further a point on the persistence diagram is from

the diagonal line of “birth = death,” the longer they persist across a

range of scales, that is, distance thresholds determining when points

are connected. These points that stand out beyond the diagonal are

more likely to indicate a topological structure.

As we can see in Figure 9A, the “torus” dataset has two

significant one-dimensional loops [approximately (2.5, 8) and

(2.5, 13)] and one two-dimensional sphere [approximately (6, 8)]

because of its torus topology. The VAE captures this topological

structure poorly (Figure 9B), and only significantly captures one

one-dimensional loop structure. Although there are many other

points relatively far above the diagonal line, there are no points

that stand out from the others clearly. On the other hand,

DDPM preserves this structure very well (Figure 9C), and we can

clearly identify two one-dimensional loops [the points located at

approximately (3, 8) and (3.5, 13)] and one two-dimensional sphere

[located at approximately (7, 8)].

This result gives insight into the fact that the VAE sometimes

generates invalid samples despite its smaller Wasserstein distance.

More intuitively, we show the PCA visualization of the data

and the generator samples in Figure 10. We can clearly see that

VAE wrongly generates samples in the middle of the torus and

violates the original data topology, but DDPM does not. The

results for the jar dataset are displayed in Figure 11. As we

discussed above, the data has a spherical topology, which is

indicated by a significant dimension 2 point in the persistence

diagram in Figure 11A [located at approximately (5.5, 7.5)]. This

structure is clearly better preserved by DDPM [approximately

(5.5, 7.5)]. Whereas in the persistence diagram of the VAE

model, the two-dimensional structure is much less significant,

and also an incorrect one-dimensional loop appears [located at

approximately (3, 5.5)].

4 Discussion and conclusion

In this paper, we investigated the ability of DGMs to model data

distributions with non-trivial topologies. We hypothesized that

VAEs would struggle to faithfully model non-Euclidean topologies

because they generate data by continuously transforming a

Gaussian random vector from a lower-dimensional, Euclidean

latent space. This hypothesis was supported by our experiments on

datasets with known topology. Our results comparing persistence

diagrams of generated VAE samples vs. the ground truth

persistence diagram show that a VAE does not faithfully recover

the correct topology in the case of the torus (T2) or the sphere

(S2). We further hypothesize that a similar failure to capture

topology would hold for other models based on a Euclidean latent

space, e.g., GANs, although this would need to be verified with

further experiments.

Conversely, we hypothesized that DDPM and related score-

based models, which theoretically have no constraint on their

topology and learn the distribution in the original data dimension,

would more effectively capture non-trivial data topologies.

This turned out to be the case in our image experiments,

where the DDPM persistence diagrams showed that they

generated samples with much better matches to the ground-

truth data topology. Furthermore, the ability of DDPMs to

adapt to the topology of the data may explain their improved

Frontiers inComputer Science 10 frontiersin.org160

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

FIGURE 9

Persistent homology of ground truth data and generator samples on the “torus” dataset. (A) Ground truth data. (B) Samples from VAE. (C) Samples

from DDPM.

performance in generating realistic data samples, as they can

avoid sampling in “holes” of the data distribution. However,

one downside to DDPMs is that they do not parameterize

the data distribution with a low-dimensional latent space. This

makes moving along the data manifold, such as in the case of

interpolation, more difficult with DDPMs. The CAE model tries

in a sense to bridge this gap by providing a low-dimensional

latent space, while at the same time also providing more

topological flexibility. Our cyclooctane results show qualitatively

and quantitatively that the CAE performs well on a complex

data topology.

One unexpected result is the disagreement between the L2
Wasserstein metric and the other quantitative metrics (FID,

density, and coverage). It may be the case the restriction on the

sample size for the Wasserstein metric limits its approximation

accuracy. Or it may be the case that the exact matching

of points between the two samples is prone to outliers or

other artifacts in the samples. Or it may simply be that

“perceptual distances” mimicked by the VGG16 network are

substantially different enough from L2 distances to cause reverse

conclusions in the two classes of metrics. This discrepancy,

and the more general question of how to best measure

the distribution quality of a DGM, are directions ripe for

future research.

In conclusion, ourmain novel contribution is the first test of the

abilities of generative models to handle different data topologies.

Our empirical findings highlight the limitations of a simplistic data

topology assumption. The main takeaways are as follows:

Frontiers inComputer Science 11 frontiersin.org161

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

FIGURE 10

PCA visualizations of ground truth data and generator samples on the “torus” dataset. (A) Ground truth data. (B) Samples from VAE. (C) Samples from

DDPM.

• Generative models that assume data can be continuously

mapped from a Euclidean latent space, e.g., VAEs, have

limited ability to capture more complex topologies present

in data.

• Conversely, DDPMs operate in the full-dimensional data

space and without assumptions about the data topology. This

results in DDPMs being better able to capture non-trivial

topologies in data.

• However, the absence of straightforward Euclidean latent

spaces in DDPM presents obstacles, particularly in tasks such

as interpolations.

• Finally, our research underscores that distribution-

based evaluation metrics sometimes fail to provide

a comprehensive assessment of a generative

model’s ability to accurately capture the underlying

data topology.

Frontiers inComputer Science 12 frontiersin.org162

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

FIGURE 11

Persistent homology of the ground truth data and generator samples on jar dataset. (A) Ground truth data. (B) Samples from VAE. (C) Samples from

DDPM.

Data availability statement

The datasets presented in this study are either publicly available

or can be generated from publicly available packages/softwares

that can be found at online repositories. The names of the

repository/repositories and accession number(s) can be found in

the article/Supplementary material.

Author contributions

YJ: Writing – original draft, Writing – review & editing. RM:

Writing – original draft. NT: Writing – original draft. MC: Writing

– original draft. AS: Writing – original draft, Writing – review &

editing. PB: Writing – original draft, Writing – review & editing.

MD: Writing – original draft, Writing – review & editing. PF:

Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This work was funded by the Agreement HR0011-22-9-

0076 from the Defense Advanced Research Projects Agency

(DARPA), as part of the Geometries of Learning (GoL) Artificial

Intelligence Exploration (AIE) program, the National Science

Foundation under awards 2019239, 2129824, and 2205417,

and the Air Force Office of Scientific Research under award

number FA9550-21-0164.

Frontiers inComputer Science 13 frontiersin.org163

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

Conflict of interest

NT is employed by STR. MC, AS, and PB are employed by

Geometric Data Analytics, Inc.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2024.1260604/full#supplementary-material

References

Arvanitidis, G., Hansen, L. K., and Hauberg, S. (2018). “Latent space oddity: on the
curvature of deep generative models,” in Proceedings of the 6th International Conference
on Learning Representations, ICLR 2018.

Barannikov, S., Trofimov, I., Sotnikov, G., Trimbach, E., Korotin, A., Filippov,
A., et al. (2021). “Manifold topology divergence: a framework for comparing data
manifolds,” in Proceedings of Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
7294–7305.

Borji, A. (2022). Pros and cons of GAN evaluation measures: new developments.
Comput. Vis. Image Underst. 215:103329. doi: 10.1016/j.cviu.2021.103329

Carriére, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M., and Umeda, Y. (2020).
“Perslay: a neural network layer for persistence diagrams and new graph topological
signatures,” in Proceedings of the 23rd International Conference on Artificial Intelligence
and Statistics, AISTATS 2020, 2786–2796.

Chen, C., Ni, X., Bai, Q., and Wang, Y. (2019). “A topological regularizer for
classifiers via persistent homology,” in Proceedings of the 22nd International Conference
on Artificial Intelligence and Statistics, AISTATS 2019, 2573–2582.

Chen, N., Klushyn, A., Kurle, R., Jiang, X., Bayer, J., and van der Smagt, P.
(2018). “Metrics for deep generative models,” in Proceedings of the 21st International
Conference on Artificial Intelligence and Statistics, AISTATS 2018, 1540–1550.

Chong, M. J., and Forsyth, D. (2020). Effectively unbiased FID and inception score
and where to find them. arXiv:1911.07023.

Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. (2007). Stability of persistence
diagrams. Discr. Comput. Geom. 37, 103–120. doi: 10.1007/s00454-006-1276-5

Du, Y., and Mordatch, I. (2019). Implicit generation and generalization in energy-
based models. arXiv:1903.08689.

Edelsbrunner, H., and Harer, J. (2010). Computational Topology - an Introduction.
New York: American Mathematical Society. doi: 10.1090/mbk/069

Falkner, S., Klein, A., and Hutter, F. (2018). “BOHB: robust and efficient
hyperparameter optimization at scale,” in Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, 1436–1445.

Fasy, B. T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., and Singh,
A. (2014). Confidence sets for persistence diagrams. Ann. Stat. 42, 2301–2339.
doi: 10.1214/14-AOS1252

Genevay, A., Peyré, G., and Cuturi, M. (2018). “Learning generative models
with sinkhorn divergences,” in International Conference on Artificial Intelligence and
Statistics, AISTATS 2018, 1608–1617.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., et al. (2014). “Generative adversarial nets,” in Proceeding of Advances in
Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, NEURIPS 2014, 2672–2680.

Hendrickson, J. B. (1967). Molecular geometry. V. Evaluation of functions
and conformations of medium rings. J. Am. Chem. Soc. 89, 7036–7043.
doi: 10.1021/ja01002a036

Hensel, F., Moor, M., and Rieck, B. (2021). A survey of topological machine learning
methods. Front. Artif. Intell. 4:681108. doi: 10.3389/frai.2021.681108

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017).
GANs trained by a two time-scale update rule converge to a local nash equilibrium.
Adv. Neural Inf. Process. Syst. 30, 6626–6637.

Hinton, G. E., and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science 313, 504–507. doi: 10.1126/science.1127647

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models.Adv.
Neural Inf. Process. Syst. 33, 6840–6851. doi: 10.48550/arXiv.2006.11239

Jonker, R., and Volgenant, T. (1988). “A shortest augmenting path
algorithm for dense and sparse linear assignment problems,” in Proceedings
of the 16th Annual Meeting of DGOR in Cooperation with NSOR, 622–622.
doi: 10.1007/978-3-642-73778-7_164

Khrulkov, V., and Oseledets, I. V. (2018). “Geometry score: a method for comparing
generative adversarial networks,” in Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, 2626–2634.

Kingma, D. P., and Ba, J. (2015). “Adam: a method for stochastic optimization,” in
3rd International Conference on Learning Representations, ICLR 2015.

Kingma, D. P., and Welling, M. (2014). “Auto-encoding variational bayes,” in
Proceedings of the 2nd International Conference on Learning Representations, ICLR
2014.

Martin, S., Thompson, A., Coutsias, E. A., and Watson, J.-P. (2010). Topology
of cyclo-octane energy landscape. J. Chem. Phys. 132:234115. doi: 10.1063/1.
3445267

Naeem, M. F., Oh, S. J., Uh, Y., Choi, Y., and Yoo, J. (2020). “Reliable fidelity
and diversity metrics for generative models,” in Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 7176–7185.

Naitzat, G., Zhitnikov, A., and Lim, L.-H. (2020). Topology of deep neural networks.
J. Mach. Learn. Res. 21, 184:7503–184:7542. doi: 10.48550/arXiv.2004.06093

Nigmetov, A., and Morozov, D. (2022). Topological optimization with big steps.
arXiv:2203.16748.

Otter, N., Porter, M. A., Tillmann, U., Grindrod, P., and Harrington, H. A. (2017).
A roadmap for the computation of persistent homology. EPJ Data Sci. 6, 1–38.
doi: 10.1140/epjds/s13688-017-0109-5

Oudot, S. Y. (2017). Persistence Theory: From Quiver Representations to Data
Analysis. New York: American Mathematical Society.

Parmar, G., Zhang, R., and Zhu, J.-Y. (2022). On aliased resizing and surprising
subtleties in GAN evaluation. arXiv:2104.11222.

Persistence of Vision Pty. Ltd. (2004). Persistence of vision raytracer (version 3.6)
[computer software]. Available online at: http://www.povray.org/download/ (accessed
July 18, 2023).

Rezende, D. J., and Mohamed, S. (2015). “Variational inference with normalizing
flows,” in Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, 1530–1538.

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O., and Gelly, S. (2018).
“Assessing generative models via precision and recall,” in Proceedings of Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 5234–5243.

Schonsheck, S., Chen, J., and Lai, R. (2019). Chart auto-encoders for manifold
structured data. arXiv:1912.10094.

Shao, H., Kumar, A., and Fletcher, P. T. (2018). “The Riemannian geometry
of deep generative models,” in Proceedings of 2018 IEEE Conference on Computer
Vision and Pattern Recognition Workshops, CVPR Workshops 2018, 315–323.
doi: 10.1109/CVPRW.2018.00071

Shukla, A., Uppal, S., Bhagat, S., Anand, S., and Turaga, P. K. (2018). “Geometry of
deep generative models for disentangled representations,” in Proceedings of ICVGIP
2018: 11th Indian Conference on Computer Vision, Graphics and Image Processing,
68:1–68:8. doi: 10.1145/3293353.3293422

Frontiers inComputer Science 14 frontiersin.org164

https://doi.org/10.3389/fcomp.2024.1260604
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1260604/full#supplementary-material
https://doi.org/10.1016/j.cviu.2021.103329
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1090/mbk/069
https://doi.org/10.1214/14-AOS1252
https://doi.org/10.1021/ja01002a036
https://doi.org/10.3389/frai.2021.681108
https://doi.org/10.1126/science.1127647
https://doi.org/10.48550/arXiv.2006.11239
https://doi.org/10.1007/978-3-642-73778-7_164
https://doi.org/10.1063/1.3445267
https://doi.org/10.48550/arXiv.2004.06093
https://doi.org/10.1140/epjds/s13688-017-0109-5
http://www.povray.org/download/
https://doi.org/10.1109/CVPRW.2018.00071
https://doi.org/10.1145/3293353.3293422
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2024.1260604

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. (2015).
“Deep unsupervised learning using nonequilibrium thermodynamics,” in Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, 2256–2265.

Solomon, E., Wagner, A., and Bendich, P. (2021). “A fast and robust method for
global topological functional optimization,” in Proceedings of the 24th International
Conference on Artificial Intelligence and Statistics, AISTATS 2021, 109–117.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B.
(2021). “Score-based generative modeling through stochastic differential equations,”
in Proceedings of the 9th International Conference on Learning Representations,
ICLR 2021.

Tauzin, G., Lupo, U., Tunstall, L., Pérez, J. B., Caorsi, M., Medina-Mardones, A. M.,
et al. (2021). giotto-tda:: a topological data analysis toolkit for machine learning and
data exploration. J. Mach. Learn. Res. 22, 39:1–39:6. doi: 10.48550/arXiv.2004.02551

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in python.
Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0686-2

Wheeler, M., Bouza, J., and Bubenik, P. (2021). “Activation landscapes
as a topological summary of neural network performance,” in Proceedings
of 2021 IEEE International Conference on Big Data, 3865–3870.
doi: 10.1109/BigData52589.2021.9671368

Frontiers inComputer Science 15 frontiersin.org165

https://doi.org/10.3389/fcomp.2024.1260604
https://doi.org/10.48550/arXiv.2004.02551
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/BigData52589.2021.9671368
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

TYPE Brief Research Report

PUBLISHED 15 January 2025

DOI 10.3389/fcomp.2024.1255517

OPEN ACCESS

EDITED BY

Anuj Srivastava,

Florida State University, United States

REVIEWED BY

Xin Li,

West Virginia University, United States

Henry Kirveslahti,

Swiss Federal Institute of Technology

Lausanne, Switzerland

*CORRESPONDENCE

Yunye Gong

yunye.gong@sri.com

RECEIVED 09 July 2023

ACCEPTED 17 December 2024

PUBLISHED 15 January 2025

CITATION

Gong Y, Yao J, Lian R, Lin X, Chen C,

Divakaran A and Yao Y (2025) Recovering

manifold representations via unsupervised

meta-learning. Front. Comput. Sci. 6:1255517.

doi: 10.3389/fcomp.2024.1255517

COPYRIGHT

© 2025 Gong, Yao, Lian, Lin, Chen, Divakaran

and Yao. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Recovering manifold
representations via unsupervised
meta-learning

Yunye Gong1*, Jiachen Yao2, Ruyi Lian2, Xiao Lin1, Chao Chen2,

Ajay Divakaran1 and Yi Yao1

1Center for Vision Technologies, SRI International, Princeton, NJ, United States, 2Department of

Computer Science, Stony Brook University, Stony Brook, NY, United States

Manifold representation learning holds great promise for theoretical

understanding and characterization of deep neural networks’ behaviors

through the lens of geometries. However, data scarcity remains a major

challenge in manifold analysis especially for data and applications with real-

world complexity. To address this issue, we propose manifold representation

meta-learning (MRML) based on autoencoders to recover the underlying

manifold structures without uniformly or densely sampled data. Specifically,

we adopt episodic training, following model agnostic meta-learning, to meta-

learn autoencoders that are generalizable to unseen samples specifically

corresponding to regions with low-sampling density. We demonstrate the

e�ectiveness of MRML via empirical experiments on LineMOD, a dataset curated

for 6-D object pose estimation. We also apply topological metrics based on

persistent homology and neighborhood graphs for quantitative assessment of

manifolds reconstructed by MRML. In comparison to state-of-the-art baselines,

our proposed approach demonstrates improved manifold reconstruction better

matching the data manifold by preserving prominent topological features and

relative proximity of samples.

KEYWORDS

manifold representation learning, autoencoder, meta-learning, persistent homology,

data scarcity

1 Introduction

Challenges such as model transferability, explanability, and adversarial robustness

prevent the application of deep learning to real-world problems with safety and mission

importance. One research direction of growing interest is to address these challenges

by studying deep learning from the perspective of geometry and topology (Watanabe

and Yamana, 2022; Aktas et al., 2019). Based on the widely accepted assumption that

high dimensional data often lie on a low dimensional manifold, manifold representation

learning, which seeks to capture underlying manifold structure, serves as a critical first step

towards principled geometric and topological analysis of deep learning (Tenenbaum et al.,

2000; Bengio et al., 2013).

While autoencoders (Liou et al., 2014; Bank et al., 2020) have been widely adopted

for learning intrinsic structure from high dimensional empirical data in an unsupervised

manner, sample scarcity and sparsity remains a major challenge for capturing underlying

manifolds especially for real-world problems. Existing solutions are often prone to issues

of bad generalization and incorrect local geometry due to sparse sampling in high

dimensional space and noisy samples of real-world complexity (Lee Y. et al., 2021).

Meanwhile, meta-learning has been widely adopted as a technique to address the challenge

of data scarcity and to learn models that are easy to adapt given few samples from new task

domain (Hospedales et al., 2022; Snell et al., 2017; Finn et al., 2017).

Frontiers inComputer Science 01 frontiersin.org166

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1255517
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1255517&domain=pdf&date_stamp=2025-01-15
mailto:yunye.gong@sri.com
https://doi.org/10.3389/fcomp.2024.1255517
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1255517/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Gong et al. 10.3389/fcomp.2024.1255517

In this work, inspired by model agnostic meta-learning

(MAML) originally designed for domain adaptation and domain

generalization (Finn et al., 2017; Li et al., 2018), we aim to combine

the strength of autoencoders and meta-learning by proposing

manifold representation meta-learning (MRML) to improve

manifold representation learning considering training distributions

containing low sampling density regions. We compare three

different sampling schemes that mirror different types of shifts

between training and testing distributions in an episodic training.

Accordingly, we train models to achieve good generalization

performance at different levels of difficulty. Thanks to the improved

generalizability of meta-learned models, we demonstrate that

manifold regions with low sample density can be faithfully

recovered.

To evaluate the generalization performance of MRML,

we tap into topological metrics based on persistent

homology (Edelsbrunner and Harer, 2008) and neighborhood

graphs to quantify the reconstructions at the manifold level. We

perform experiments using the LineMOD dataset (Hinterstoisser

et al., 2012) which is designed for 6-D pose estimation. We

perform both qualitative and quantitative comparison between

MRML under three different settings and multiple baseline

methods including recent state-of-the-art autoencoders

considering local connectivity (Lee Y. et al., 2021) and

geometric regularization (Duque et al., 2022). We demonstrate

consistent qualitative and quantitative improvement of manifold

reconstruction against baselines with respect to topological metrics

considering generalization to hold-out test samples corresponding

to a missing gap/hole in the complete manifold. In comparison

to baseline reconstruction, our best performing meta-learning

procedure captures a manifold better matching the data manifold

and leading to a relative reduction of topological distance at 14.44%

considering the hold-out neighborhood and at 4.44% considering

the entire manifold.

In summary, our major contributions include the following:

(1) We propose MRML (manifold representation meta-

learning) with novel episodic sampling strategies to improve

autoencoders’ generalization performance in reconstructing

manifold especially for regions with low sampling density.

(2) In addition to standard metrics focusing on sample-

level reconstruction accuracy, we introduce topological

and geometric metrics based on persistent homology and

neighborhood graphs for quantitative evaluation of MRML

with respect to manifold reconstruction.

(3) We demonstrate both qualitative and quantitative

improvement via MRML against state-of-the-art baselines

for manifold reconstruction evaluated based on topological

and geometric metrics, using training data with low sampling

density regions.

2 Related work

2.1 Manifold representation learning

Autoencoders (Liou et al., 2014; Bank et al., 2020) are

commonly adopted for unsupervised representation learning

where data in high dimensional input space is projected onto a

lower dimensional latent space by an encoder and restored back

to data dimension in the output space by a decoder. Several recent

works are proposed to incorporate topological analysis in design

of autoencoders for preserving the local geometry in unsupervised

representation learning. Moor et al. (2020) propose Topological

Autoencoder using topological loss to regularize the representation

learning and thus improve the alignment between input and

latent space based on persistent homology features. Schönenberger

et al. (2020) propose Witness Autoencoder (W-AE) to improve

the regularization by defining the alignment between input and

latent space via geodesic distances computed based on witness

complexes. Schonsheck et al. (2019) propose Chart Autoencoder

(CAE) which use an ensemble of decoders to model a multi-

chart latent space representing the manifold with a collection

of overlapping local neighborhoods. With this formulation, the

authors discuss the local proximity and manifold approximation

theoretically. More recent works investigate the use of geometric

regularization such as regularization based on local contraction

and expansion of the decoder (Nazari et al., 2023) or isometry

to preserve local distance (Gropp et al., 2020; Lee et al., 2022).

In this work, we perform qualitative and quantitative comparison

against two recent baselines addressing underlying geometry

of autoencoders. Lee Y. et al. (2021) propose Neighborhood

Reconstructing Autoencoder (NRAE) which seeks to correct local

geometry and overfitting of autoencoders simultaneously with

novel reconstruction loss leveraging neighborhood graph and local

quadratic approximation of the decoder. Duque et al. (2022)

propose Geometry Regularized Autoencoders (GRAE) which

introduce regularization to specificallymatch latent representations

of the autoencoder to representations from manifold learning

computation. In comparison to existing works, our approach does

not need explicit modeling or calculation of topological features at

set or batch level during the training. It is based on meta-learning

framework with episodic training and thus enables improved

generalization of manifold learning with respect to topological

metrics considering training manifolds consisting low sampling

density regions.

2.2 Model agnostic meta learning

Meta-learning or ’Learning to Learn’ techniques seek to

extract generalizable knowledge from learning processes of

diverse tasks to achieve fast adaptation or generalization to new

tasks (Andrychowicz et al., 2016; Hospedales et al., 2022) and

have demonstrated tremendous success in tasks such as few-

shot learning (Snell et al., 2017; Hsu et al., 2019) and domain

generalization (Li et al., 2019; Liu et al., 2021). Specifically model

agnostic meta-learning (MAML) (Finn et al., 2017) is proposed to

learn to achieve good adaptation to new tasks given a few samples

with a few steps of gradient descent. The learned model serves an

initial condition that is easy to fine-tune. MLDG (Li et al., 2018)

extends the model agnostic episodic training framework and learns

to achieve good zero-shot transfer by simulating domain shifts

in supervised classification tasks. Recent works also apply meta-

learning techniques to improve the training of generative models

such as Variational AutoEncoders (VAE) where representation

Frontiers inComputer Science 02 frontiersin.org167

https://doi.org/10.3389/fcomp.2024.1255517
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Gong et al. 10.3389/fcomp.2024.1255517

learning is performed considering a sets of related probabilistic

models to achieve transferrable representation (Lee D. B. et al.,

2021; Wu et al., 2020). Our proposed methods follow the episodic

training framework in MLDG and explore novel episodic sampling

strategies simulating data shifts in transfer learning based on local

geometry without supervised labels. In comparison to recent works

based on variational inference, our work does not make any prior

assumption such as Gaussian or GaussianMixtures (Lee D. B. et al.,

2021) about the latent distribution.

3 Method

3.1 Meta-learning for manifold
representation learning

We develop unsupervised manifold representation learning

based on autoencoders to capture meaningful representation of

the data which faithfully encodes the underlying manifolds. To

address the challenge of data scarcity, we propose a generalizable

model which not only provides good reconstruction at sample level

but also preserves underlying geometry of the data (e.g., relative

proximity between samples; topological features highlights the

shape of underlying manifolds) given unseen data corresponding

to low sampling density region in the underlying manifold.

We integrate autoencoders with meta-learning for domain

generalization based on episodic training (MLDG) and examine

novel sampling strategies specifically simulating low sampling

regions in manifolds.

Following MLDG framework, we first split data into disjoint

meta training set S and meta testing set S′. We adopt episodic

training and at each training episode, we sample two disjoint

batches from the meta training set S, namely episodic training

batch Strain and episodic testing batch Stest . The split of episodic

training batch and episodic testing batch is designed to resemble

the distribution shift between source (S) and unseen target data (S′)

so as to test models’ generalization performance. We compute the

gradient on Strain with respect to model parameters θ and compute

the updated parameters θ
∗ after one step of gradient descent. At

the episodic testing step, we perform a virtual evaluation of the

updated model on the episodic testing set Stest with a task loss term

L. Herein, we adopt the Binary Cross Entropy (BCE) loss. Given

input x, model fθ with parameters θ , the task loss term is defined as

L(x, θ) = −[fθ (x) log(x)+ (1− fθ (x)) log(1− x)]. (1)

At themeta-optimization step, we update themodel parameters

θ considering a meta-optimization loss as the weighted sum of

task loss terms evaluated on the episodic training and episodic

testing after one step of virtual update. The detailed meta-learning

procedures are specified in Algorithm 1.

In comparison to the original MLDG where the sampling of

episodic training set and episodic testing set is designed based

on different image domains (e.g., cartoon, painting, photo, etc.)

for supervised object classification, in this work, we devise three

sampling schemes specifically targeting the task of unsupervised

reconstruction of data manifold given data scarcity. Figure 1

provides a notional depiction of sample distribution in 2D space

1: Input: Training Data S; reconstruction loss L

2: Init: Model parameters θ, Hyperparameters α,β, γ.

3: for iter in iterations do

4: Sampling: sample disjoint Strain and Stest from

S

5: Episodic Train: Compute ∇θ = L′
θ
(Strain; θ);

update θ
∗ = θ − α∇θ

6: Episodic Test: Evaluate L(Stest; θ
∗)

7: Meta Optimization: update θ ← θ −

γ
∂(L(Strain;θ)+βL(Stest;θ−α∇θ))

∂θ

8: end for

Algorithm 1. Meta-learning for manifold reconstruction.

which highlights the comparison between the different sampling

strategies, where each dot referes to a sample. In each setting,

we split the entire data space to meta training set S (light blue)

and meta testing set S′ (light red). Specifically to simulate a low

sampling density region in high dimensional data, we consider

samples in a random local neighborhood as the S′ which is

hold out from model training. Within S, at each episode, we

consider uniformly sampled Strain and construct Stest to include

(1) the nearest neighbor sample of each sample in Strain (Figure 1,

Setting A), (2) a disjoint random batch uniformly sampled from

the training data S (Figure 1, Setting B), or (3) a disjoint batch

containing a random local neighborhood in S (Figure 1, Setting C).

The three settings simulate different distribution shifts to encourage

model generalization with increased difficulty. Correspondingly,

the model is encouraged to generalize to (1) unseen test samples

close to training samples in the Euclidean space in Setting A, (2)

unseen test samples from the same training distribution in Setting

B, and (3) unseen test samples from a low sampling density region

corresponding to a hole or a gap in the training manifold in

setting C.

3.2 Topological metrics for manifold
reconstruction

To quantitatively evaluate the performance of manifold

reconstruction, we perform evaluation including metrics

beyond classic reconstruction errors describing instance-level

reconstruction quality. Based on various representation of

manifolds adopted in topological data analysis, we adopt two sets

of metrics to characterize reconstructions based on different types

of topological and geometric features of learned manifolds.

For each manifold, we first compute its persistence diagram

which characterizes the evolution of topological structures in

persistent homology and provides a summarized description of the

manifold shape (Cohen-Steiner et al., 2005; Pun et al., 2018; Agami,

2020; Watanabe and Yamana, 2022). We focus on the points in

the diagrams describing 0-dimension homology (i.e., connected

components) and 1-dimensional homology (i.e., holes) in the

manifold. We adopt the Wasserstein distance metric (Mileyko

et al., 2011) to compute the similarity between two persistence

Frontiers inComputer Science 03 frontiersin.org168

https://doi.org/10.3389/fcomp.2024.1255517
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Gong et al. 10.3389/fcomp.2024.1255517

FIGURE 1

Experimental setting A, B and C of MRML with increased di�culties in generalization. Each dot represents a sample when projected into 2D space. A

Meta-test set (light red) is held out from Meta-train set (light blue) to simulate random hole in the manifold corresponding low-sampling density

region. For each training episode, a random batch of episodic-train set (blue) and a disjoint batch of episodic-test set (red) are sampled from

Meta-train set to simulate the data shift to encourage generalization of the model.

diagrams. Considering two persistence diagrams D1 and D2, the

p-th Wasserstein distanceWp(D1,D2) is defined as:

Wp(D1,D2) = (inf
M

∑

x∈D1

||x−M(x)||
p
∞)

1
p (2)

where M denotes all bijection mappings from D1 to D2.

The Wasserstein distance measures the distance between coupled

points from an optimal matching between two diagrams and

thus characterizes the similarity of topological features between

two manifolds.

In addition to the persistence diagram, we further construct

a k-nearest neighbor (KNN) graph for each of the manifolds as

a representation characterizing the manifold from the perspective

of local geometry at different resolutions. Considering each

point in the manifold as a vertex in the graph, we connect

vertices based on the Euclidean distance between corresponding

samples (Omohundro, 1989). We describe each graph via its

binary adjacency matrix and evaluate the similarity between two

graphs based on adjacency spectral distance (Wills and Meyer,

2020). Let A1 and A2 denote the adjacency matrices of two KNN

graphs G1 and G2 of size n. An adjacency matrix A is computed

such that the (i, j)-th element in the matrix is labeled as 1 if i-

th sample is one of the k-nearest neighbors to the j-th sample

and is labeled as 0 otherwise. The adjacency spectral distance is

computed as

S(G1,G2) =

√

√

√

√

n
∑

i=1

|λ
A1
i − λ

A2
i |

2 (3)

with λ
A denoting the eigenvalues of matrixA and |·| computing

the magnitude of values.

4 Experiment

4.1 Dataset

4.1.1 LineMOD
To demonstrate manifold reconstruction, we use the LineMOD

dataset (Hinterstoisser et al., 2012) which is widely adopted for 6D

object pose estimation. The dataset includes 3D object models and

RGB-D images along with the ground-truth 6D object poses. There

are 15 texture-less objects with discriminative colors, shapes, and

sizes. For each of 15 objects, there are 1313 samples at 640x480

resolution which are obtained by rendering object mesh models

with surface color and normal from a densely sampled view sphere.

For our experiments, we use RGB data rescaled to 64x64. We train

autoencoders to learn manifolds corresponding to data of single

object class and data of all 15 object classes.

4.2 Experimental setting

To demonstrate manifold reconstruction with data scarcity, we

perform multiple baseline experiments using vanilla autoencoder

(AE) and recent approaches emphasizing preservation of

geometry (Lee Y. et al., 2021; Duque et al., 2022). We perform

experiments using MRML under three episodic sampling schemes

as illustrated in Figure 1.We first split the data into (meta-) training

and (meta-) testing set by randomly selecting a sample and holding

out nearest k samples from the neighbor in Euclidean space. By

holding out this random cluster away from training, we simulate

a training manifold with a low density region corresponding to

unseen latent variations. For all MRML experiments, we use the

same encoder and decoder architectures. The encoder consists of

4 convolutional layers followed by 3 fully connected layers and

the decoder consists of 3 fully connected layers followed by 4

Frontiers inComputer Science 04 frontiersin.org169

https://doi.org/10.3389/fcomp.2024.1255517
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Gong et al. 10.3389/fcomp.2024.1255517

deconvolutional layers. The latent space is set to 10 dimension.

We use the Adam optimizer (Kingma and Ba, 2015) and batch

size 64 for training all the models. We performed two sets of

experiments, one for learning the manifold from images of a single

object and one for learning the manifold from images of all 15

object classes. For single object experiment, we hold out a local

neighborhood containing 100 images. We perform training with

1,000 iterations at learning rate 10−3. For experiments on multiple

object classes, we hold out a local neighborhood containing 1,000

images. The hold out data are from the same object class. We use

the same batch size, learning rate, episodic step size and episodic

testing weight as used in the single object experiments. We set

the episodic training step size α and weight on episodic testing

loss β to be 10−7 and 10−3 for all three settings. For vanilla AE

and NRAE experiments, we use the same encoder and decoder

architecture, optimizer setting and learning rate as used in MRML

experiments. For GRAE, we followed the reported implementation.

The hyperparameters are selected based on the convergence of

reconstruction accuracy.

4.3 Results and discussion

We compare MRML under three episodic training settings

against the baselines. To qualitatively compare the learned

manifolds, we show 3-dimensional t-SNE visualizations (van der

Maaten and Hinton, 2008) of the manifolds in the data space, the

latent space of the encoder and the reconstruction space of the

decoder in Figure 2. We observe that for baselines and MRML,

the contour of the manifold is largely preserved when projected to

the latent space and the reconstructed space. Specifically focusing

on the hold-out test samples unseen at training stage (red in

Figure 2), we notice that in comparison to the ones learned via

baselines, manifold representations learned via MRML produce

more uniformly distributed samples in both the latent space and

the reconstructed space, which better matches the original data

manifold.

For qualitative comparison, in addition to sample-level

reconstruction accuracy measured via mean square error (MSE),

we measure the manifold-level reconstruction via the topological

distance between learned manifold of the reconstructed images

and the data manifold based on both persistence diagrams and

KNN graphs. Table 1 shows the quantitative comparison for

experiments on learning the manifold of a single object class.

For comparison based on MSE, we observe that most methods

have comparable sample-level reconstruction accuracy on average.

While GRAE shows an edge in overall reconstruction accuracy

but has considerably higher error when evaluated on the hold

out test data. We would like to note that, while selected baselines

were proposed to address local geometry, our problem setting pose

further challenge in generalization as we consider holdout data

specifically corresponding to holes/gaps in training manifolds as

visualized in Figure 2, in opposed to, e.g., unseen samples following

the same training distribution. Comparing performance over three

sets of metrics, it is observed that for approaches with similar

averaged reconstruction accuracy, its capability in preserving

topological or geometric features can still vary. This emphasize the

need for including topological and geometricmetrics for examining

representation learning to support the use of the representation

in topological or geometric analysis. For comparison based on

Wasserstein distance between persistence diagrams, we observe

thatMRMLmethods consistently achieve improved or comparative

performance against baseline approaches over different orders

of Wasserstein distance (p) and considering persistent homology

features at different dimensions, especially for MRML setting B

and setting C. This quantitative improvement is aligned with

qualitative observation as shown in Figure 2. This improvement

is consistent when we investigate manifold reconstruction of the

local neighborhood that is held out from the training as well as

the manifold reconstruction for the complete dataset including

both training and hold-out testing samples. We also note that the

improvement on reconstructing the manifold is demonstrated even

against baselines showing higher average accuracy at sample level

(e.g., comparing MRML against NRAE on holdout set and against

GRAE on complete data). Specifically, MRMLwith best performing

sampling strategy reduces the second orderWasserstein distance by

a factor of 14.44% considering the hold-out neighborhood and by a

factor of 4.44% considering the complete manifold against the best

performing baseline.

For comparison based on adjacency spectral distance between

KNN graphs at different resolutions, we observe that when

considering KNN graphs at finer granularity (k = 5), the

comparison better correlates with the comparison based on

averaged accuracy between pairwise samples. While proposed

MRML methods, especially setting B and setting C on holdout test

samples, demonstrate better match of KNN graphs at a coarser

resolution (k = 20) which suggests the alignment on the intrinsic

shape of the manifold. In this case, MRML with best performing

sampling strategy demonstrates a reduction in adjacency spectral

distance by a factor of 13.82% against the best performing baseline.

We also observe the improvement with proposed MRML

approaches in both experiments of single object class where

a manifold containing a single connected piece is considered

and experiments of multiple object classes where the manifold

of increased complexity contains multiple pieces, as shown in

Table 2. Note that for the multi-class experiments, due to the

computation cost, the comparison is only reported on the large

holdout test set corresponding to the missing gap/hole in the

manifolds. In this case, our proposed strategies again demonstrate

consistent improvement with respect to topological metrics based

on persistence diagrams and geometric metrics based on KNN

graphs, comparing to baselines at similar or inferior generalization

accuracy at sample level. Specifically, considering the hold-out

neighborhood, MRML with best performing sampling strategy

demonstrates a reduction in the second order Wasserstein distance

by a factor of 9.62% against the best performing baseline.

Finally, we compare the performance of MRML under different

episodic sampling schemes. We observe that the comparison

between MRML based strategies against baselines are mostly

consistent. For single object experiments, we observe that

Setting B and C yield relatively better generalization on the

hold-out test samples and better reconstruction on the overall

manifold. For experiments on multiple object classes where the

overall manifold has higher complexity, setting A and C yield

relatively better generalization. This comparison validate the use of

sampling scheme specifically simulating a generalization to missing

gaps/holes in the underlying manifold under setting C.

Frontiers inComputer Science 05 frontiersin.org170

https://doi.org/10.3389/fcomp.2024.1255517
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Gong et al. 10.3389/fcomp.2024.1255517

FIGURE 2

TSNE visualization of data and learned manifolds using LineMOD data of single object class (top panel) and all 15 object classes (bottom panel). In

single object manifolds, blue represents meta-training samples and red represents hold-out meta-testing samples. In multiple object manifolds, blue

with di�erent shades represents meta-training samples of di�erent objects and red represents hold-out meta-testing samples.

TABLE 1 Experiments on LineMOD dataset with single object class.

Test samples Algorithms MSE

Persistence diagram KNN Graph

Wasserstein p=1 Wasserstein p=2 Spectral distance

Dim 1 Dim 2 Total Dim 1 Dim 2 Total k = 5 k = 20

Holdout

AE 4.03e-3 158.43 22.60 181.03 15.94 2.73 18.67 2.98 8.90

NRAE 3.55e-3 189.51 25.20 214.70 18.99 2.85 21.85 2.49 9.04

GRAE 6.85e-3 140.52 14.37 154.89 14.45 2.03 16.48 3.47 9.41

Meta A (Ours) 4.11e-3 145.92 17.91 163.83 14.69 2.37 17.06 3.76 8.66

Meta B (Ours) 3.95e-3 122.49 16.94 139.44 12.35 2.26 14.61 3.26 7.67

Meta C (Ours) 3.82e-3 116.26 17.23 133.49 11.72 2.38 14.10 2.85 8.36

All

AE 2.05e-3 2,053.00 229.08 2,282.08 59.64 8.60 68.24 10.01 28.31

NRAE 1.92e-3 2,541.94 279.99 2,821.93 71.40 10.43 81.83 8.47 30.58

GRAE 1.25e-3 1,952.196 214.83 2,167.03 57.85 8.16 66.01 9.90 28.06

Meta A (Ours) 2.15e-3 2,139.59 213.28 2,352.87 62.28 9.23 71.51 10.24 29.37

Meta B (Ours) 2.05e-3 1873.38 185.59 2058.96 55.40 7.67 63.08 10.44 30.99

Meta C (Ours) 1.96e-3 1,902.57 194.37 2,096.94 56.07 8.24 64.32 9.24 32.70

Evaluation based on topological distance between data and reconstructed manifolds and mean squared error (MSE) between data and reconstructed samples. Evaluation on manifolds of

hold-out testing data (top) and manifolds of complete dataset including both training and testing data (bottom). The best and second best performing approaches are highlighted.

Frontiers inComputer Science 06 frontiersin.org171

https://doi.org/10.3389/fcomp.2024.1255517
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Gong et al. 10.3389/fcomp.2024.1255517

TABLE 2 Experiments on LineMOD dataset with multiple (15) object classes.

Test Samples Algorithms MSE

Persistence diagram KNNGraph

Wasserstein p=1 Wasserstein p=2 Spectral distance

Dim 1 Dim 2 Total Dim 1 Dim 2 Total k = 5 k = 20

Holdout

AE 3.88e-4 154.88 19.92 174.81 5.87 0.90 6.76 10.61 28.45

NRAE 7.91e-4 305.03 30.83 335.85 9.22 1.40 10.62 10.51 30.07

GRAE 9.48e-4 290.33 30.52 320.85 9.00 1.41 10.40 13.24 29.37

Meta A (Ours) 3.18e-4 134.66 15.95 150.60 5.30 0.81 6.11 10.68 28.65

Meta B (Ours) 3.47e-4 145.13 17.26 162.39 5.73 0.77 6.50 10.43 28.49

Meta C (Ours) 3.89e-4 141.15 17.03 158.17 5.49 0.81 6.30 9.96 28.08

Evaluation based on topological distance between data and reconstructed manifolds and mean squared error (MSE) between data and reconstructed samples. Evaluation is performed on the

manifold of hold-out test set only due to computation cost. The best and second best performing approaches are highlighted.

5 Conclusion

We propose manifold representation meta-learning to

address data scarcity in manifold reconstruction. Our framework

is based on model agnostic meta-learning, a state-of-the-art

learning paradigm that utilize episodic training to achieve better

performance given domain shifts. We specifically adapt the

framework to address the challenge task of unsupervised manifold

representation learning considering manifold regions with low

sampling densities. We adopt two sets of topological and geometric

metrics for quantitative comparison between data and model

reconstruction at manifold level. The metrics are computed based

on persistence diagrams characterizing homology features in

the manifold and KNN graphs characterizing relative proximity

of samples in the Euclidean space. We demonstrate that, in

comparison to state-of-the-art baselines, our MRML can better

preserve topological and geometric structures and better match the

data manifold, especially for regions with low sampling densities.

In our future work, we plan to integrate topological and geometric

measures with model training to better capture the underlying

manifold especially for real-world data with increasing complexity

in shape and increasing noise level in the data samples.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

YG: Writing – original draft, Writing – review & editing. JY:

Writing – review & editing. RL: Writing – review & editing. XL:

Writing – review & editing. CC: Writing – review & editing,

Supervision. AD: Writing – review & editing. YY: Writing – review

& editing, Supervision.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This material is based upon work supported by the Defense

Advanced Research Projects Agency (DARPA) under Agreement

No. HR0011-22-9-0077.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Author disclaimer

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of DARPA.

References

Agami, S. (2020). Comparison of persistence diagrams. Commun.
Stat. Simulat. Comput. 52, 1948–1961. doi: 10.1080/03610918.2021.18
94335

Aktas, M. E., Akbas, E., and Fatmaoui, A. E. (2019). Persistence
homology of networks: methods and applications. Appl. Netw. Sci. 4, 1–28.
doi: 10.1007/s41109-019-0179-3

Frontiers inComputer Science 07 frontiersin.org172

https://doi.org/10.3389/fcomp.2024.1255517
https://doi.org/10.1080/03610918.2021.1894335
https://doi.org/10.1007/s41109-019-0179-3
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Gong et al. 10.3389/fcomp.2024.1255517

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., et
al. (2016). “Learning to learn by gradient descent by gradient descent,” in Advances in
Neural Information Processing Systems, 29.

Bank, D., Koenigstein, N., and Giryes, R. (2020). Autoencoders. arXiv preprint
arXiv:2003.05991.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a
review and new perspectives. IEEE Trans. Patt. Analy. Mach. Intell. 35, 1798–1828.
doi: 10.1109/TPAMI.2013.50

Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. (2005). “Stability of persistence
diagrams,” in Proceedings of the Twenty-First Annual Symposium on Computational
Geometry, 263–271. doi: 10.1145/1064092.1064133

Duque, A. F., Morin, S., Wolf, G., and Moon, K. R. (2022). Geometry
regularized autoencoders. IEEE Trans. Patt. Analy. Mach. Intell. 45, 7381–7394.
doi: 10.1109/TPAMI.2022.3222104

Edelsbrunner, H., and Harer, J. (2008). Persistent homology – a survey. Contemp.
Mathem. 453, 257–282. doi: 10.1090/conm/453/08802

Finn, C., Abbeel, P., and Levine, S. (2017). “Model-agnostic meta-learning for
fast adaptation of deep networks,” in International Conference on Machine Learning
(PMLR), 1126–1135.

Gropp, A., Atzmon, M., and Lipman, Y. (2020). Isometric autoencoders. arXiv
preprint arXiv:2006.09289.

Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., et al.
(2012). “Model based training, detection and pose estimation of texture-less 3D objects
in heavily cluttered scenes,” in Computer Vision-ACCV 2012: 11th Asian Conference on
Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part I
11 (Springer Berlin Heidelberg), 548–562. doi: 10.1007/978-3-642-37331-2_42

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2022). Meta-learning
in neural networks: a survey. IEEE Trans. Patt. Analy. Mach. Intell. 44, 5149–5169.
doi: 10.1109/TPAMI.2021.3079209

Hsu, K., Levine, S., and Finnl, C. (2019). Unsupervised learning via meta-learning.
arXiv preprint arXiv:1810.02334.

Kingma, D. P., and Ba, J. (2015). Adam: a method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Lee, D. B., Min, D., Lee, S., and Hwang, S. J. (2021). “Meta-GMVAE: mixture of
gaussian vaes for unsupervised meta-learning,” in International Conference on Learning
Representations.

Lee, Y., Kwon, H., and Park, F. C. (2021). “Neighborhood reconstructing
autoencoders,” in Advances in Neural Information Processing Systems, 536–546.

Lee, Y., Yoon, S., Son, M., and Park, F. C. (2022). “Regularized autoencoders for
isometric representation learning,” in ICLR.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. (2018). “Learning to generalize:
meta-learning for domain generalization,” in Proceedings of the AAAI Conference on
Artificial Intelligence. doi: 10.1609/aaai.v32i1.11596

Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.-Z., and Hospedales, T.
M. (2019). “Episodic training for domain generalization,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 1446–1455.
doi: 10.1109/ICCV.2019.00153

Liou, C.-Y., Cheng, W.-C., Liou, J.-W., and Liou, D.-R. (2014). Autoencoder for
words. Neurocomputing 139, 84–96. doi: 10.1016/j.neucom.2013.09.055

Liu, Q., Chen, C., Qin, J., Dou, Q., and Heng, P.-A. (2021). “FEDDG:
federated domain generalization on medical image segmentation via episodic learning
in continuous frequency space,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 1013–1023. doi: 10.1109/CVPR46437.2021.
00107

Mileyko, Y., Mukherjee, S., and Harer, J. (2011). Probability measures
on the space of persistence diagrams. Inverse Problems 27:124007.
doi: 10.1088/0266-5611/27/12/124007

Moor, M., Horn, M., Rieck, B., and Borgwardt, K. (2020). “Topological
autoencoders,” in International Conference on Machine Learning (PMLR), 7045–7054.

Nazari, P., Damrich, S., andHamprecht, F. A. (2023). Geometric autoencoders-what
you see is what you decode. arXiv preprint arXiv:2306.17638.

Omohundro, S. (1989). Five balltree construction algorithms. International
Computer Science Institute Technical Report.

Pun, C. S., Xia, K., and Lee, S. X. (2018). Persistent-homology-based machine
learning and its applications - a survey. arXiv preprint arXiv:1811.00252.

Schönenberger, S. T., Varava, A., Polianskii, V., Chung, J. J., Kragic, D., and Siegwart,
R. (2020). “Witness autoencoder: shaping the latent space with witness complexes,” in
NeurIPS 2020 Workshop TDA and Beyond.

Schonsheck, S., Chen, J., and Lai, R. (2019). Chart auto-encoders for manifold
structured data. arXiv preprint arXiv:1912.10094.

Snell, J., Swersky, K., and Zemel, R. S. (2017). “Prototypical networks for few-shot
learning,” in Advances in Neural Information Processing Systems, 30.

Tenenbaum, J., de Silva, V., and Langford, J. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science 290, 2319–2323.
doi: 10.1126/science.290.5500.2319

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. JMLR 9,
2579–2605.

Watanabe, S., and Yamana, H. (2022). Topological measurement of deep
neural networks using persistent homology. Ann. Mathem. Artif. Intell. 90, 75–92.
doi: 10.1007/s10472-021-09761-3

Wills, P., and Meyer, F. G. (2020). Metrics for graph comparison: a practitioner’s
guide. PLoS ONE 15:e0228728. doi: 10.1371/journal.pone.0228728

Wu, M., Choi, K., Goodman, N., and Ermon, S. (2020). “Meta-
amortized variational inference and learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 6404–6412. doi: 10.1609/aaai.v34i04.
6111

Frontiers inComputer Science 08 frontiersin.org173

https://doi.org/10.3389/fcomp.2024.1255517
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1145/1064092.1064133
https://doi.org/10.1109/TPAMI.2022.3222104
https://doi.org/10.1090/conm/453/08802
https://doi.org/10.1007/978-3-642-37331-2_42
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1609/aaai.v32i1.11596
https://doi.org/10.1109/ICCV.2019.00153
https://doi.org/10.1016/j.neucom.2013.09.055
https://doi.org/10.1109/CVPR46437.2021.00107
https://doi.org/10.1088/0266-5611/27/12/124007
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1007/s10472-021-09761-3
https://doi.org/10.1371/journal.pone.0228728
https://doi.org/10.1609/aaai.v34i04.6111
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

+41 (0)21 510 17 00
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores fundamental and applied computer

science to advance our understanding of the

digital era

An innovative journal that fosters interdisciplinary

research within computational sciences and

explores the application of computer science in

other research domains.

Discover the latest
Research Topics

See more

Frontiers in
Computer Science

https://www.frontiersin.org/journals/computer-science/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Geometries of learning
	Table of contents
	Editorial: Geometries of learning
	Author contributions
	Conflict of interest
	Publisher's note

	Leveraging linear mapping for model-agnostic adversarial defense
	1. Introduction
	2. Related work
	2.1. Adversarial defense
	2.2. Linear mapping

	3. Experimental setup
	3.1. Linear mapping
	3.2. Datasets
	3.2.1. MNIST
	3.2.2. CIFAR-10
	3.2.3. ImageNet

	3.3. Adversarial attacks
	3.3.1. Fast gradient sign method
	3.3.2. Projected gradient descent
	3.3.3. Carlini and Wagner attack
	3.3.4. DAmageNet

	3.4. Testing and evaluation metrics
	3.4.1. Mean squared error
	3.4.2. Linear SVM classifier

	4. Experiments
	5. Results
	5.1. Linear mapping for MNIST
	5.2. Linear mapping for CIFAR-10
	5.3. Linear mapping for ImageNet
	5.4. Mapped embeddings adversarial classification accuracy

	6. Comparison with other method
	7. Discussion
	8. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Probabilistic and semantic descriptions of image manifolds and their applications
	1. Introduction
	2. Likelihood estimation with image generators
	2.1. Hierarchical normalizing flow models
	2.2. Diffusion models
	2.2.1. Multi-step diffusion sampling
	2.2.1.1. Forward process
	2.2.1.2. Backward process

	2.2.2. Probability estimation
	2.2.3. Higher-order solution

	2.3. Experiments
	2.3.1. Experiments on hierarchical normalizing flow models
	2.3.1.1. Probability estimation
	2.3.1.2. Random image generation
	2.3.1.3. Image super-resolution

	2.3.2. Experiments on diffusion models
	2.3.2.1. Log-likelihood estimation on point samples
	2.3.2.2. DDPM sampling with large steps
	2.3.2.3. Higher-order solution stabilizes sampling

	3. Semantic disentanglement on manifold
	3.1. GridVAE for clustering and disentanglement
	3.1.1. Formulation
	3.1.2. Experiments

	3.2. Scaling up GridVAE
	3.2.1. Addressing higher dimensional latent space
	3.2.2. From unsupervised to guided and partially guided GridVAE

	3.3. Combining manifolds of GridVAE disentangled attribute and facial recognition

	4. Application to defend patch attacks
	4.1. Adversarial defense with variational inference
	4.2. Bounded patch attack
	4.3. Experiments

	5. Limitation
	6. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Integrating geometries of ReLU feedforward neural networks
	1. Introduction
	2. Definitions and methods
	2.1. ReLU feedforward neural network (FFNNs)
	2.2. Binary vector
	2.3. Linear model for polyhedra
	2.4. Traversal-and-Pruning method

	3. Geometric aspects and methodologies of neural networks
	3.1. Distance metric
	3.2. Bisection method
	3.3. Chebyshev center

	4. Examples
	4.1. Basic FFNN
	4.1.1. Toy examples 1: 20 nodes
	4.1.2. Toy examples 2: different model structures
	4.1.3. Toy examples 3: visualizing polyhedral compositions in 3D

	4.2. MNIST
	4.2.1. Hamming distance and bisection method
	4.2.1.1. Why using hamming distance?
	4.2.1.2. Bisection method

	4.2.2. Chebyshev center

	5. CIFAR-10
	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Locally linear attributes of ReLU neural networks
	1 Introduction
	2 Materials and methods
	2.1 Linear regions definition
	2.2 Example on XOR
	2.3 Polytope visualization
	2.4 Region modification
	2.4.1 Clustering regions
	2.4.2 Affine maps between linear functions

	2.5 Extension to image data

	3 Results
	3.1 Polytope evolution through training
	3.2 Clustering sampled local linear functions
	3.3 Affine maps between sampled local linear functions

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	An algorithm for computing Schubert varieties of best fit with applications
	1 Introduction
	2 Background
	3 Schubert varieties
	3.1 Definition of Schubert variety
	3.2 Schubert varieties of best fit
	3.3 Examples of distance/closeness measures

	4 Optimization problem for SVBF
	4.1 SVBF optimization problem formulation
	4.2 SVBF optimization problem implementation with PyTorch
	4.3 Illustrative example
	4.4 Optimal dimension of K

	5 SVBF as an abstract node
	5.1 Algorithm I
	5.2 Algorithm II
	5.3 Algorithm III

	6 Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Exploring fMRI RDMs: enhancing model robustness through neurobiological data
	1 Introduction
	2 Related work
	2.1 Metrics of neuro-similarity
	2.2 Increasing neuro-similarity
	2.3 Linking neuro-similarity to robustness

	3 Materials and methods
	3.1 BOLD5000
	3.2 Preprocessing
	3.3 FreeSurfer
	3.4 RSA
	3.4.1 Biological similarity metric
	3.4.2 rsatoolbox package

	3.5 ImageNet in BOLD5000
	3.6 Categorical model analysis
	3.7 Net2Brain
	3.7.1 Model selection

	3.8 Fiedler vector partitioning

	4 Results
	4.1 Categorical model analysis
	4.1.1 ANN vs. human fMRI RDM comparison
	4.1.2 Comparing human fMRI ROIs to individual ANN layers

	4.2 Fiedler partitioning

	5 Discussion and future work
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Manifold-driven decomposition for adversarial robustness
	1 Introduction
	1.1 Related works

	2 Manifold-based risk decomposition
	2.1 Data manifold
	2.2 Robustness and risk
	2.3 Main result: decomposition of risk
	2.3.1 Proof sketch of theorem 1
	2.3.2 Proof of theorem 2

	2.4 Decomposition when y is deterministic

	3 Experiment: synthetic dataset
	3.1 Toy data set and perturbed data
	3.2 Algorithm for estimating different risks
	3.3 Empirical results and discussion

	4 Experiment: real-world datasets
	4.1 Approximation of data manifold
	4.2 Generating in-manifold perturbations
	4.3 Generating normal perturbations
	4.4 Validate our theoretical findings
	4.5 Limitations and future work

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	On-manifold projected gradient descent
	1 Introduction
	1.1 Manifold learning and CIDM
	1.1.1 Conformally invariant diffusion map
	1.1.2 Nyström extension: interpolation and regularization

	2 Methods
	2.1 The Nyström projection: mapping off-manifold points onto the manifold
	2.2 SEC vectors
	2.3 On-manifold projected gradient descent

	3 Results
	3.1 VGG11 with static backgrounds
	3.2 Simple CNN with random backgrounds

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Leveraging diffusion models for unsupervised out-of-distribution detection on image manifold
	1 Introduction
	2 Materials and methods
	2.1 Preliminaries
	2.2 Lift, Map, Detect
	2.2.1 Lifting and mapping images
	2.2.2 Measuring reconstruction distance

	3 Results
	3.1 Experiment settings
	3.1.1 Baselines
	3.1.2 Evaluation
	3.1.3 Datasets
	3.1.4 Implementation details of LMD

	3.2 Quantitative results and analysis
	3.3 Qualitative studies on higher resolution images
	3.4 Ablation studies
	3.4.1 Mask choice
	3.4.2 Reconstruction distance metric
	3.4.3 Number of reconstructions per image
	3.4.4 Alternative instantiation of lifting and mapping
	3.4.5 Alternative choices for the inpainting model

	4 Discussion
	4.1 LMD's relationship with existing works
	4.2 Limitation and future work

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Orthogonality and graph divergence losses promote disentanglement in generative models
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Orthonormality in disentangled latent spaces
	2.3 Graph test statistics

	3 Proposed framework
	3.1 Encoder network
	3.2 Relevance of attribute auto-encoders
	3.3 Decoder network
	3.4 Loss Functions
	3.4.1 Reconstruction loss
	3.4.2 Enforcing orthogonality on latent embeddings
	3.4.3 Enforcing Lstat on latent embeddings
	3.4.4 Generation

	4 Experimental setup and results
	4.1 Setup
	4.1.1 Dataset description
	4.1.2 Model
	4.1.3 Training details

	4.2 Results
	4.2.1 Reconstruction fidelity
	4.2.2 Image generation
	4.2.3 Latent space interpolation
	4.2.4 Disentanglement and FID scores
	4.2.5 Effect of orthogonality

	5 Discussion
	6 Conclusion
	Author's note
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Implications of data topology for deep generative models
	1 Introduction
	2 Background and methods
	2.1 Deep generative models
	2.1.1 Variational autoencoders
	2.1.2 Chart autoencoders
	2.1.3 Denoising diffusion probabilistic models

	2.2 Quantitative metrics for evaluating DGMs
	2.2.1 Wasserstein distance
	2.2.2 Fréchet inception distance
	2.2.3 Density, coverage
	2.2.4 Topological data analysis: persistent homology

	3 Experiments
	3.1 Datasets
	3.2 Training setups
	3.3 Qualitative evaluation
	3.4 Quantitative performance metrics
	3.5 Topological properties

	4 Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Recovering manifold representations via unsupervised meta-learning
	1 Introduction
	2 Related work
	2.1 Manifold representation learning
	2.2 Model agnostic meta learning

	3 Method
	3.1 Meta-learning for manifold representation learning
	3.2 Topological metrics for manifold reconstruction

	4 Experiment
	4.1 Dataset
	4.1.1 LineMOD

	4.2 Experimental setting
	4.3 Results and discussion

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Author disclaimer
	References

	Back Cover

