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Lung Cancer remains a major cause of death in of 
both women and men in our society. Lung cancer 
treatment paradigms have changed enormously as 
we’ve started to understand the genetic complexity 
and the multiple driver mutations influencing the 
disease. Therapeutics directed towards, or to inhibit 
signaling pathways has resulted in increased life 
spans for our patients. Over the last two decades, 
we have gone from simple chemotherapy used to 
treat all, to a personalized medicine approach for 
the majority. For non-small cell lung cancer patients 
without driver mutations, the world of immune 
oncology has arrived. These improved long-term 
outcomes mean that now our lung cancer patients 
can live with their cancers, but without progression.

The aim of this book is to catalogue the current state 
of knowledge for the many facets of advanced lung 
cancer. It describes current treatment approaches for 
driver mutations, rare mutations, and rare thoracic 

malignancies such as neuroendocrine tumors. Most importantly, this book addresses the topics 
of palliative treatment and care which allow our patients to enjoy longer survival with the 
highest quality of life. We hope you enjoy this e-book. The future is brighter for lung cancer 
patients and as lung cancer specialists; we finally feel sense optimism about treatment options 
for our patients.
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Editorial on the Research Topic

Update on the Treatment of Metastatic Non-small Cell Lung Cancer (NSCLC) in New Era of 
Personalised Medicine

We are honored and privileged to present 11 review articles in the context of “An Update 
on the Treatment of Non Squamous Non-small Cell Lung Carcinoma (NSCLC) in the era of 
Personalized Medicine.” Gone are the days when all lung cancers are treated the same. Treatment 
is now personalized for multiple biomarkers leading to major advances in survival and quality 
of life.

It has been over a decade since the IPASS trial was published showing us that patients with an 
EGFR mutation fare better with a first-generation EFGR TKI targeted to inhibit that mutation 
versus chemotherapy. In this update, results of clinical trials of the second-generation EGFR 
inhibitor, afatinib are explored (Morin-Ben Abdallah and Hirsh). The benefit in treatment naïve, 
refractory, and squamous histology is reviewed reflecting a benefit of irreversibly inhibiting all 
ErbB family members. As we identify resistance mechanisms to both first- and second-generation 
EGFR TKI’s, the use and benefit of third-generation inhibitors has become standard of care 
(Barnes et al.). The treatment paradigm of ALK rearrangement is rapidly changing. This incred-
ible journey is leading to prolonged survival in these patients. With next generation sequencing, 
rare oncogenic drivers are found and successful drug development has occurred (Daoud and 
Chu). Histology is itself a biomarker and with multiple mutations now being found, the practicing 
oncologist is challenged. A series of algorithms will be presented for non-squamous histology 
(Melosky). Squamous histology deserves its own attention and potential molecular targets and 
novel agents are explored (Soldera and Leighl).

You cannot mention advances in lung cancer without discussing the amazing story of immune-
oncology. Activating one’s own immune system has led to impressive survival in thoracic malig-
nancies. Future investigations combining PD-1/L1 with chemotherapy, targeted therapy, or other 
immune-oncology agents aim to improve the number of patients to benefit are ongoing (Iafolla and 
Juergens).

Targeting angiogenesis is recognized as an effective treatment strategy in a multitude of 
malignancies including lung cancer. Adding angiogenesis inhibitors to EGFR inhibitors has 
promising results. Preclinical evidence suggesting an immunosuppressive effect of pro-angiogenic 
factors leads also to the rationale of adding these agents to immune checkpoint inhibitors (Tabchi  
and Blais).

Addressing and maintaining quality of life has always been on the forefront goal of lung oncolo-
gists. Because of this and impact on lifespan, brain metastases have been an important issue to 
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address. Both targeted therapy and immunotherapy have changed 
the natural history and our treatment in this important metastatic 
site (Wong). Thoracic oncologists have had to become experts in 
systemic therapy of pain. The field of interventional pain manage-
ment needs to be highlighted as it leads to comprehensive patient 
care (Morin-Ben Abdallah and Hirsh).

Finally, carcinoid and atypical carcinoid tumors of lung origin 
are reviewed as new treatment options exist and education in 
these rare tumors is lacking (Melosky).

As far as we have come in the past few years, we still have 
to strive for improvement in patients with advanced disease. 
Molecular testing for should be standardized. Patients with non-
squamous histology and never smokers should have molecular 
testing to include at least EGFR, ALK, ROS 1, and BRAF. In addi-
tion, genes that could and should be tested include RET, HER2, 
NTRK, and C MET Exon 14 Skip. Driver mutations continue to 
be discovered and therapeutics directed toward them continue 
to be developed. We should not stop trying to inhibit KRAS, 
the most prevalent mutation in adenocarcinoma. Patients with 

advanced disease squamous histology should also be tested with 
molecular panels. CMET Exon 14 Skip is just one example of a 
driver in squamous histology that when identified may be treated 
appropriately. PD-L1 testing should be done reflexively on all 
patients. Although immuno-oncology has changed the treatment 
landscape, many still do not benefit or respond. Combination 
therapy may be the answer but toxicity must be low. Our goal for 
our patients it to prolong their survival duration while maintain-
ing a high quality of their life.

We welcome you to read this issue. The treatment has become 
complex but the winner is our patients who are now living longer 
and sustaining a higher quality of life as their treatment is now 
focused on their tumor factors. The world of lung cancer has 
changed dramatically with personalized medicine.
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Current Treatment Algorithms for 
Patients with Metastatic non-Small 
Cell, non-Squamous Lung Cancer
Barbara Melosky*
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The treatment paradigm for metastatic non-small cell, non-squamous lung cancer is 
continuously evolving due to new treatment options and our increasing knowledge of 
molecular signal pathways. As a result of treatments becoming more efficacious and 
more personalized, survival for selected groups of non-small cell lung cancer (NSCLC) 
patients is increasing. In this paper, three algorithms will be presented for treating 
patients with metastatic non-squamous, NSCLC. These include treatment algorithms 
for NSCLC patients whose tumors have EGFR mutations, ALK rearrangements, or wild-
type/wild-type tumors. As the world of immunotherapy continues to evolve quickly, a 
future algorithm will also be presented.

Keywords: metastatic non-squamous non-small cell lung cancer, systemic therapy, chemotherapy, targeted 
therapy, epidermal growth factor receptor, anaplastic lymphoma kinase, algorithm

inTRODUCTiOn

The previous standard of care in metastatic non-small cell lung cancer (NSCLC) was to treat patients 
with a platinum doublet for four to six cycles and to offer second-line therapy upon progression (1).

The emergence of molecular tests allows us to tailor treatment strategies based on the presence of 
driver mutations. Patients who have genetic alterations to epidermal growth factor receptor (EGFR) 
and anaplastic lymphoma kinase (ALK) now benefit from targeted therapies in the first line and 
beyond. In patients with no known driver mutations, the efficacy of immunotherapy with checkpoint 
inhibitors has revolutionized treatment. This area is evolving rapidly.

As new treatment options emerge, algorithms must balance the need to give the best drugs first 
with ensuring that there are still beneficial options available for later. The treatment algorithms 
discussed in this paper are based on Canadian recommendations. Although other health authorities 
may have different therapeutics available, many basic principles apply.

This paper discusses treatments for patients with non-squamous histology only.
Tumor mutation testing allows us to divide patients into three groups: patients with EGFR-positive 

tumor mutations (10–30%) (2); patients with ALK rearrangements (4–7%) (2); and patients with 
tumors who either do not have EGFR or ALK mutations, or their mutation status is unknown. As 
mutation testing expands to include new targets including human epidermal growth factor receptor 
2 (HER2), BRAF, RET and MET and effective treatments are found, the treatment algorithms will 
increase in complexity (3).

Abbreviations: ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; HR, hazard ratio; HER 2, human 
epidermal growth factor receptor 2; NSCLC, non-small cell lung cancer; OS, overall survival; ORR, overall response rate; RR, 
response rate; PFS, progression-free survival; TKI, tyrosine kinase inhibitor.
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FiGURe 1 | Treatment algorithms for non-small cell lung cancer (nSCLC) patients whose tumors have driver mutations. (A) A treatment algorithm for 
patients with EGFR-positive metastatic, non-squamous NSCLC [adapted from Melosky, Popat, and Gandara (submitted)]. (B) A treatment algorithm for patients with 
ALK-positive metastatic, non-squamous NSCLC.
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eGFR MUTATiOn POSiTive

First-line Therapies: Tyrosine Kinase 
inhibitors
Tyrosine kinase inhibitors (TKIs) that inhibit the EGFR are 
now standard of care for first-line treatment in patients with 
metastatic, non-squamous NSCLC whose tumors harbor an 
EGFR mutation (Figure 1A). Randomized trials have shown that 
patients experience superior overall response rates (ORR) and 
progression-free survival (PFS) when treated with EGFR TKIs 
versus chemotherapy for first-line therapy [erlotinib: EURTAC 
(4), OPTIMAL (5); gefitinib: NEJGSG_ 002 (6), WJTOG 3405 
(7), IPASS (8, 9); afatinib: LUX LUNG 3 (10, 11), LUX LUNG 6 
(11, 12)].

Erlotinib and gefitinib are first generation TKIs, while afatinib 
is a second generation TKI. Second generation TKIs block more 
ligands of the HER family and are non-competitive inhibitors at 
the kinase site so confer a longer period to resistance (13). Patient 
performance status, comorbidities, and age come into play in the 
decision making. EGFR mutation subtype is also important to 
consider. Unlike chemotherapy, TKIs are continued past progres-
sion as long as there is a clinical benefit to the patient.

LUX LUNG 7, a recently reported randomized phase IIb trial, 
compared afatinib to gefitinib in patients with advanced NSCLC 
and common EGFR mutations (14). The coprimary endpoint 
of PFS hazard ratio (HR) was met for superiority of afatinib, 
HR = 0.73 (p = 0.0165). This benefit was independent of muta-
tion subtype. Response rate (RR), a secondary endpoint, was 70% 

versus 56% (HR = 1.873, p = 0.0083) favoring afatinib. Toxicities 
were as expected, with a preponderance of diarrhea and rash 
for afatinib and transaminitis for gefitinib. The overall survival 
(OS) was 3 months longer for afatinib (27.9 versus 24.5 months) 
but did not meet statistical significance [HR: 0.86 (95% CI: 
0.66–1.12), p = 0.2580] (15). ARCHER 1050, a 452 patient phase 
III randomized trial of first-line treatment of EGFR-positive 
NSCLC comparing gefitinib with dacomitinib, will shed light on 
the question of which EGFR TKI is superior (16).

The inhibition of both EGFR and angiogenesis pathways 
deserves comment. The results of a randomized phase II trial 
from Japan illustrated a benefit for the combination erlotinib–
bevacizumab over erlotinib for common EGFR mutations (17). 
Median PFS for the combination was 16.0 versus 9.0  months 
for erlotinib monotherapy, with no statistical difference in RRs 
or OS (18). In June 2016, the European Commission approved 
the combined use of erlotinib and bevacizumab for the first-line 
treatment of EGFR positive NSCLC patients. A larger phase III 
trial of this EGFR TKI–bevacizumab combination is needed to 
confirm and quantify the benefit (18).

Retesting for eGFR Mutations  
on Progression
An acquired mutation in EGFR exon 20, T790M, which leads to 
drug resistance, may be found in up to 60% of patients progress-
ing on TKIs (19). Repeat testing for mutations is now recom-
mended. Testing plasma cell free (cf) DNA has been suggested 
as an alternative to repeat biopsy. Different testing platforms are 
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being developed and validated, and concordance between cfDNA 
and tumor tissue is improving (20–23). Patients who initially test 
negative for the presence of a T790M mutation by cfDNA testing 
should undergo a tumor rebiopsy. Biopsy is still considered to be 
the gold standard for T790M molecular testing.

Second-line Therapy
For patients with a T790M positive disease, third generation 
EGFR TKIs have demonstrated RRs of over 60% and prolonged 
PFS, resulting in the approval of osimertinib (AZD9291) in 
several countries. Pooled results from AURA phase I and II trials 
was recently presented, which evaluated osimertinib in patients 
with T790M-positive disease who progressed on previous EGFR 
TKIs (24). Patients from the pooled cohort (n = 411) had a RR of 
66%, and a PFS of 11 months (24, 25).

For patients without a T790M, second-line therapy is a chemo-
therapy doublet. Patients who are T790M mutation negative 
who progress on chemotherapy have few other options and may 
consider a clinical trial.

ALK MUTATiOn POSiTive nCSLC

Rearrangements in the ALK gene are found in adenocarcinomas 
and more commonly in light or non-smokers. ALK rear-
rangements occur in approximately 4–7% of lung cancers (2). 
A treatment algorithm for patients with ALK-positive metastatic, 
non-squamous NSCLC is shown in Figure 1B.

First-line Therapy with Crizotinib
For patients whose tumors are positive for an ALK rearrange-
ment, crizotinib is superior to standard chemotherapy. The 
phase III PROFILE 1014 trial randomized 343 treatment-naïve 
patients with advanced ALK rearrangement positive NSCLC to 
receive either crizotinib or intravenous chemotherapy (26). The 
primary endpoint of PFS was significantly longer in patients 
treated with crizotinib at 10.9  months as compared to those 
treated with chemotherapy at 7.0  months [HR: 0.45 (95% CI: 
0.35–0.60); p < 0.001]. Overall RRs were 74% for crizotinib and 
45% for chemotherapy (p < 0.001). Median OS was not reached 
in either group due to cross-over [HR: 0.82 (95% CI: 0.54–1.26); 
p = 0.36] (26). Crizotinib was associated with a greater reduc-
tion in symptoms and better quality of life. As with other TKIs, 
crizotinib can be continued past progression if there is continuing 
clinical benefit to the patient.

Second-line Therapy with Ceritinib, 
Alectinib, or Brigatinib
New agents are proving valuable as second-line treatments 
for NSCLC patients with ALK-positive tumors. As the brain 
is a frequent site of metastasis for patients with ALK-positive 
tumors, the intracranial activity of these agents is important 
to consider.

Ceritinib
Ceritinib is a second-generation ALK inhibitor that has demon-
strated impressive RRs and has improved survival in patients who 

have progressed on crizotinib. The results of the ASCEND 1, 2, 
and 3 trials demonstrated the efficacy of ceritinib in treating both 
systemic disease and brain metastasis.

The ASCEND 1 phase I trial evaluated the efficacy and safety 
of ceritinib in 246 patients with advanced ALK-positive NSCLC 
(27). The ORR for all patients was 61.8%; 56.4% in pretreated 
patients and 72.3% in inhibitor-naïve patients. The PFS was 
6.9 months for all trial participants (28). Of the 28 subjects with 
measurable brain metastases at baseline, 35% (n  =  10) had a 
partial response (29). As a result of this trial, the FDA approved 
ceritinib for patients with advanced ALK-positive NSCLC follow-
ing treatment with crizotinib in April 2014.

The ASCEND 2 single-arm phase II trial evaluated ceritinib 
efficacy in patients with advanced ALK-positive NSCLC who had 
progressed on both standard chemotherapy and crizotinib. With 
an ORR of 38.6% and a PFS of 5.7 months, ASCEND 2 confirmed 
the efficacy of ceritinib (30).

The ASCEND 3 single-arm phase II trial evaluated ceritinib 
efficacy in treatment-naïve patients with advanced ALK-positive 
NSCLC (31). In this trial, PFS was 11.1  months, with a RR of 
36.3%. ASCEND 3 demonstrated that ceritinib has intercranial 
activity; a blinded independent central review demonstrated a 
58.8% intracranial response in 50 (40.3%) of subjects with brain 
metastases (31).

Alectinib
Alectinib, another second-generation ALK inhibitor, also dem-
onstrated impressive RRs and has improved survival in patients 
who have progressed on crizotinib. A phase I/II trial first evalu-
ated the efficacy of alectinib in patients with crizotinib-refractory 
ALK-positive NSCLC; the dose determined in the phase I com-
ponent was 600 mg orally twice a day (32). Two large phase II 
trials conducted in North America and internationally evaluated 
the efficacy and safety of alectinib in patients with ALK-positive 
NSCLC who had progressed on crizotinib. In the international 
study, an ORR of 50.8% was observed, the CNS ORR was 58.8% 
with 20.6% complete responses (33). In the North America trial, 
similar results were seen with an ORR of 52.2%. The CNS ORR 
in patients with measurable CNS metastases was 75%, with 25% 
complete responses (34). In both studies, Grade  ≥  3 adverse 
events were rare (33, 34).

Japanese researchers have studied alectinib in the first-line set-
ting. The AF-001JP phase I study conducted in ALK treatment-
naïve patients showed impressive efficacy. Because Japan has 
regulations on the use of sodium lauryl sulfate, the dose was set 
at just 300 mg twice daily (35).

Primary results of the phase III J-ALEX trial were presented 
at the 2016 American Society of Clinical Oncology meeting 
(36). In this trial, patients were randomized to receive either 
alectinib (300 mg twice a day) or crizotinib (250 mg twice a day) 
in the first-line setting. Alectinib demonstrated significant pro-
longed PFS [median PFS not reached (95% CI: 20.3 months–not 
estimated)] compared to crizotinib [PFS: 10.2 months (95% CI: 
8.2–12.0)] (36). Although J-ALEX trial used a different dose 
than the global and North American trials, it led to FDA grant-
ing alectinib breakthrough therapy designation for first-line 
treatment (37).
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Investigational Agents: Brigatinib and Lorlatinib
Brigatinib and the third-generation ALK inhibitor lorlatinib are 
being investigated for their efficacy and safety in ALK-positive 
NSCLC patients who have progressed after crizotinib and/or 
ceritinib (38, 39). Results of a phase II trial testing two doses of 
brigatinib demonstrated that patients who received the higher 
dose achieved a PFS of 12.9 months (40). As a result, the FDA 
gave brigatinib break through designation. Lorlatinib demon-
strated efficacy in a phase I study in heavily pretreated patients; 
the ORR of 46% and a PFS of 11.4 months were impressive as 
most patients had received two or more lines of previous therapy 
(41). Both agents are active in CNS disease. We look forward to 
adding these agents to the algorithm.

ROS-1
The rare ROS-1 rearrangement is now recognized as a standard 
biomaker in many countries, and several ALK inhibitors includ-
ing crizotinib show activity in these patients. In May 2016, crizo-
tinib was approved in the United States for patients with ROS-1 
rearranged NSCLC (42).

MUTATiOn STATUS neGATive (“wiLD-
TYPe/wiLD-TYPe”) nSCLC

First-line Therapy: Platinum Doublet
Patients with advanced NSCLC whose tumors do not have EGFR 
mutations or ALK rearrangements, or who have unknown muta-
tion status, receive the standard of care: a platinum doublet (pem-
etrexed-based preferred) for four to six cycles (see Figure 2A). 
The Scagliotti trial demonstrated that NSCLC patients with 
adenocarcinoma experience greater benefit when treated with 

cisplatin/pemetrexed than with cisplatin/gemcitabine in the first 
line [OS: 12.6 versus 10.9 months; HR: 0.84 (95% CI: 0.71–0.99); 
p = 0.033] (1, 43).

Maintenance Therapy
Maintenance therapy is administered after completion of first-
line therapy but before disease progression. The PARAMOUNT 
trial demonstrated that pemetrexed maintenance after first-line 
chemotherapy significantly reduced disease progression over 
placebo for patients with non-squamous tumor histology (44). 
Studies have shown that pemetrexed improves both PFS and 
OS when administered as maintenance therapy (45). Although 
erlotinib was also an accepted option for switch maintenance 
based on the SATURN trial (46), the IUNO trial (HR: 1.02; 
95% CI: 0.85–1.22; p = 0.82) did not support these results. As a 
consequence, erlotinib is no longer considered as a maintenance 
option for people with negative or unknown tumor mutation 
status (47).

Second-line Therapy: immune  
Checkpoint inhibitors
The most important change in the NSCLC treatment paradigm 
has been the introduction and success of PD-L1 immune check-
point inhibitors. The programmed cell death receptor (PD-1) 
is an inhibitory receptor on T  lymphocytes that binds PD-L1 
and PD-L2 ligands. When ligands PD-L1 and PD-L2 bind, 
the immune response is suppressed. PD-L1 overexpression by 
tumor cells allows them to escape T cell detection. Monoclonal 
antibodies targeting PD-1 or PD-L1 can lead to reactivation of 
the T  lymphocyte and stimulate the natural immune response 
against tumor cells. Patients tested for PD-L1 overexpression can 
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be categorized into PD-L1 expressers (≥1% expression) and non-
expressers (<1% expression).

Trials evaluating three immunotherapy agents targeting the 
PD-1 pathway in NSCLC patients have demonstrated durable 
clinical activity and manageable toxicity (48–51).

Pembrolizumab
The KEYNOTE 010 trial compared pembrolizumab, a PD-1 
monoclonal antibody, to docetaxel in the second-line NSCLC 
setting. The trial was positive for OS, favoring pembrolizumab at 
10.4 months as compared to docetaxel at 8.5 months (HR: 0.71; 
p = 0.0008) (52). This trial included only patients whose tumors 
tested positive (> 1%) for the biomarker PD-L1. Pembrolizumab 
is administered intravenously every 3 weeks.

Nivolumab
Nivolumab, a monoclonal antibody against PD-1, was the 
first checkpoint inhibitor to show efficacy in a randomized 
phase III trial. The CHECKMATE 057 randomized phase III 
trial compared the efficacy of nivolumab with docetaxel as 
second-line treatment for patients with non-squamous NSCLC. 
Results showed OS benefits favoring nivolumab, at 12.2 months 
compared to 9.4  months for docetaxel (HR: 0.73; p  =  0.0015) 
(53). Although survival was independent of whether the PD-L1 
biomarker was present, there was a positive relationship between 
the degree of positivity of the biomarker and the level of benefit 
of the drug. Nivolumab is administered intravenously (3 mg/kg) 
every 2 weeks.

The decision about which antibody to use in the second line 
will depend on many factors. Determining the level of PD-L1 
expression is complex. Biomarker testing and results, scheduling 
of drug administration (every 2 or every 3 weeks), cost, and avail-
ability all play a role.

Third-Line Therapies and Beyond
Now that checkpoint inhibitors are used in the second line, 
the previously second-line therapies become third-line options 
for patients whose tumors are mutation negative or mutation 
unknown. Options include docetaxel (54), erlotinib (55), and 
pemetrexed (56). Pemetrexed can only be prescribed if it was not 
used in first line or maintenance therapy. The REVEL trial showed 
a benefit of adding the angiogenesis inhibitor ramucirumab to 
docetaxel, with PFS of 10.5 months for the combination versus 
9.1 months for docetaxel alone (HR: 0.86; p = 0.23) (57).

It follows from above that fourth line therapies may include 
whatever agents were not administered in previous lines. 
A significant limitation of therapy selection is that no trials have 
tested these different agents in later lines of therapy. Patients 
with satisfactory performance status can be considered for clini-
cal trials.

Future Algorithm for Speculation Only
With many investigational agents in development, it is enticing 
to speculate what future treatment algorithms for patients with 
non-squamous NSCLC, mutation negative, or unknown muta-
tion status (see Figure 2B).

High PD-L1 Expressers: Checkpoint  
Inhibitors in First-line Treatment
Recently, immune checkpoint inhibitors were tested in the first-
line setting. The KEYNOTE O24 trial randomized patients whose 
tumors expressed >50% PD-L1 to pembrolizumab or a platinum 
doublet. The primary endpoint of PFS was met with 10.3 months 
favoring pembrolizumab, as compared to 6.0 months for chemo-
therapy (HR: 0.50; p < 0.001) (58). KEYNOTE 024 results will 
quickly be accepted due to the checkpoint inhibitor’s unique 
mechanism of action and low toxicity profile; we anticipate using 
pembrolizumab in the first line soon.

This contrasts with the results of the CHECKMATE 026 first-
line trial of nivolumab, which randomized patients whose tumors 
expressed >5% PD-L1 to either nivolumab or a platinum doublet. 
The primary endpoint of PFS was not met, with 5.9 months favor-
ing chemotherapy as compared to 4.2  months for nivolumab 
(HR: 1.15; p = 0.2511) (59).

For the high PD-L1 expressers, we speculate that second-line 
treatment will be a platinum doublet.

Low PD-L1 Expressers
In the future, patients who are low PD-L1 expressers will 
likely be treated with a platinum doublet in the first line. 
After progression, patients will be subdivided further based 
on the results of their initial PD-L1 test. In addition to 
pembrolizumab or nivolumab, many other agents are also in 
development.

Atezolizumab
Atezolizumab is a PD-L1 monoclonal antibody. The results of the 
OAK second-line trial comparing atezolizumab with docetaxel in 
patients with positive or negative PD-L1 expression were recently 
presented (60). The endpoint of OS was met, with results favoring 
atezolizumab at 13.8 months as compared to 9.6 months for doc-
etaxel (HR: 0.73; p = 0.0003) (60). Atezolizumab is administered 
intravenously at a dose of 1200 mg/kg, every 3 weeks.

While speculating on the future of targeted therapy, will PD-1/
PD-L1 checkpoint inhibitors will be prescribed for patients whose 
tumors are driven by EGFR mutations or ALK rearrangements? 
None of the immune therapy agents tested in the CHECKMATE 
057 (59), KEYNOTE 010 (52), or OAK (60) trials showed efficacy 
in these patients. One reason for this may be because tumors 
with driver mutations have a low mutational load and low PD-L1 
expression.

COnCLUSiOn

Treatment algorithms for NSCLC have changed dramatically 
over the last few years. Researchers continue to elucidate many 
molecular pathways involved in thoracic malignancy. Our under-
standing of tumor mutations and their contribution to therapeu-
tic efficacy is expanding. The treatment selection is complex, with 
many new target therapies being developed.

For patients with EGFR-driven tumors, treatment with 
osimertinib, a third-generation inhibitor, can lead to improve-
ments in survival in patients whose tumors have acquired 
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a T790M mutation. For patients with ALK-driven tumors 
who have progressed on crizotinib, new treatment options 
to improve survival include second-generation inhibitors 
ceritinib and alectinib. For patients without driver mutations 
or have an unknown tumor mutation status, chemotherapy 
remains the standard first-line treatment. The efficacy of 
checkpoint inhibitors has revolutionized treatment in the 
second-line setting; they now occupy the second-line setting 
and, on completion of KEYNOTE 024, we hope to see them in 
the first-line setting as well.

Targeted therapies are shifting the treatment paradigms 
and increasing survival for patients with NSCLC, a group that 
used to have a very poor prognosis. The ultimate winner is the 
patient.
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Despite advances in molecular characterization and lung cancer treatment in recent 
years, treatment options for patients diagnosed with squamous cell carcinoma of the 
lung (SCC) remain limited as actionable mutations are rarely detected in this subtype. This 
article reviews potential molecular targets and associated novel agents for the treatment 
of advanced SCC in the era of personalized medicine. Elements of various pathways 
including epidermal growth factor receptor, PI3KCA, fibroblast growth factor receptor, 
retinoblastoma, cyclin-dependent kinases, discoidin domain receptor tyrosine kinase 2, 
and mesenchymal-to-epithelial transition may play pivotal roles in the development of 
SCC and are under investigation for drug development.

Keywords: targeted therapy, personalized medicine, lung cancer, squamous cell carcinoma, molecular sequence 
data

inTRODUCTiOn

In 2016, lung cancer remains the most commonly diagnosed malignancy and accounts for the 
most cancer-related deaths worldwide, representing a significant global health burden (1). The 
majority of these neoplasms are pathologically categorized as non-small cell lung cancer (NSCLC), 
which is further divided into three main pathological subtypes: adenocarcinoma, squamous cell 
carcinoma (SCC), and large cell carcinoma. SCC represents an estimated 20% of NSCLC in 
developed countries and is mainly attributed to tobacco consumption (2). In the past decade, 
breakthroughs in molecular characterization of cancers have revolutionized the classification and 
therapeutic arsenal for lung malignancies. With the discovery of oncogenic driver mutations in 
epidermal growth factor receptor (EGFR) and rearrangements in anaplastic lymphoma kinase 
(ALK) and ROS1, there has been a paradigm shift from a “one size fits all” approach to lung cancer 
treatment to more precise and rational targeted therapy (3, 4). Targeted agents such as EGFR 
and ALK tyrosine kinase inhibitors (TKI) are now routinely used in clinical practice and have 
contributed to improving the previously dismal prognosis of this malignancy (5–12). Unfortunately, 
the impact of these developments to date is largely limited to lung adenocarcinoma as these 
actionable mutations are rarely detected in other subtypes such as pure SCC (13). This article 
reviews potential molecular targets and associated novel treatments for advanced lung SCC in 
the new era of personalized medicine (Figure 1; Table 1).

In recent years, comprehensive molecular profiling of SCC has revealed that these cancers harbor 
numerous genomic and epigenomic alterations with a reported mean of 360 exonic mutations, 
165 rearrangements, and 323 segments of copy-number alteration per tumor (14). Relative to 
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TABLe 1 | estimated incidence of targetable molecular aberrations in 
squamous non-small cell lung cancer (nSCLC).

Gene and aberration incidence (%) Reference

eGFR
Mutation 0–4.9 Lindeman et al. (13)

1.1 TCGA (14)
4 Spoerke et al. (15)

Amplification 7 TCGA (14)

ALK
Rearrangement 0 Lindeman et al. (13)

FGFR
Mutation 0.8b CLCGP/NGM (16)

8c TCGA (14)

Amplification 9.7–22 Weiss et al. (17)

16e Heist et al. (18)

Pi3KCA
Amplification 37 Spoerke et al. (15)

33 Yamamoto et al. (19)

Mutation 9 Spoerke et al. (15)

16 TCGA (14)
3.6 Yamamoto et al. (19)
6.5 Kawano et al. (20)

PTen
Loss 21 Spoerke et al. (15)

Mutation 8 TCGA (14)
10.2 Jin et al. (21)

Rb1
Mutation 7 TCGA (14)

CDK
Amplificationd Significantly amplified TCGA (14)

CDKn2A
Mutation 15 TCGA (14)
Lossa 72 TCGA (14)

DDR2
Mutation 1.1 CLCGP/NGM (16)

3.8 Hammerman et al. (22)

MeT
amplification 6.2–10.3 Go et al. (23)

aVia epigenetic silencing by methylation, inactivating mutation, exon 1β skipping and 
homozygous deletion.
bAll FGFR3 mutations.
cFGFR1, 2, 3, and 4 mutations.
dSignificant amplification of CDK6 and CCND1.
eFGFR1 amplification.

FiGURe 1 | General signaling schema of cell membrane (eGFR, FGFR, 
MeT, and DDR2), cytoplastic (Pi3KCA, AKT, mTOR, and PTen), and 
nuclear (Rb1 and CDK) molecular targets in squamous nSCLC. CDK, 
cyclin dependent kinases; DDR2, discoidin domain receptor tyrosine kinase 
2; ECM, extracellular matrix; EGF, epidermal growth factor; EGFR, epidermal 
growth factor receptor; FGF, fibroblast growth factor; FGFR, fibroblast growth 
factor receptor; HGF, hepatocyte growth factor; mTOR, mammalian target of 
rapamycin; MET, mesenchymal-to-epithelial transition; PTEN, phosphatase 
and tensin homolog. Credit to Matthew Villagonzalo, graphic artist, University 
Health Network.
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other tumor types, only malignant melanomas contain a higher 
burden of genetic abnormalities (24). This is not surprising since 
both of these cancers are associated with significant exposure 
to carcinogens. In fact, SCC is known to be strongly associ-
ated with chronic tobacco exposure (25). With such a complex 
genetic landscape and associated high immunogenicity, this 
tumor type has been an interesting target for immunotherapy 
and chemotherapy, but the development of targeted agents has 
thus far represented a significant challenge (26). To address this 
lack of targeted therapies, the Cancer Genome Atlas Project 
compared SCC samples to normal pulmonary tissue in order to 
identify potential actionable mutations (14). Eleven recurrent 
genomic abnormalities were reported, including tumor protein 
53, cyclin-dependent kinase inhibitor 2A (CDKN2A), phosphatase 
and tensin homolog (PTEN), PIK3CA, Kelch-like ECH-associated 
protein 1, mixed-lineage leukemia protein 2, human leukocyte 
antigens A, nuclear factor erythroid-derived 2-like 2, NOTCH1, 
and retinoblastoma (Rb1) (Figure  1; Table  1). Aberrations in 
these genes are thought to promote oncologic transforma-
tion and progression through their effect on cell survival and 
proliferation, cell cycle progression, metastatic spread, genetic 
instability, and response to oxidative stress. Other series have 
demonstrated similar recurring mutations, while also demon-
strating significant abnormalities in Kirsten rat sarcoma viral 
oncogene homolog (KRAS), PI3KCA, mesenchymal-to-epithelial 
transition (MET), human epidermal growth factor receptor 2, 
fibroblast growth factor receptor (FGFR), platelet-derived growth 
factor receptors (PDGFR), BRAF, and discoidin domain receptor 
tyrosine kinase 2 (DDR2) (15–23, 27) (Figure 1; Table 1). These 
findings have fueled the development of multiple targeted agents 
directed against these pathways (Table 2).

ePiDeRMAL GROwTH FACTOR 
ReCePTOR

EGFR TKIs improve outcomes for patients with lung cancer 
harboring activating EGFR mutations. While these mutations are 
commonly found in adenocarcinoma, women, Asians and light 
or never smokers (3, 5–10), they are rarely found in pure SCC 
with series reporting a rate in the range of 0–5% (13). Despite this, 
EGFR TKI have shown significant benefit compared to placebo 
in patients with advanced lung cancer (all genotypes) having 
progressed on first or second-line chemotherapy, including SCC 
(28–30). More recently, Soria et al. reported further advantage of 
afatinib over erlotinib in the treatment of advanced unselected 
SCC (including mixed NSCLC) in terms of both PFS (median 
2.6 versus 1.9 months; HR 0.81, 95% CI 0.69–0.96, p = 0.0103) 
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TABLe 2 | Clinical trials of targeted therapies in squamous nSCLC.

Agents Trial Phase Outcome Reference

(95% Ci)

eGFR
Erlotinib versus placebo BR21 III OS HR 0.70 (0.58–0.85) Shepherd et al. (28)
Gefitinib versus D INTEREST III OS HR 1.020 (0.905–1.150) Kim et al. (29)
Afatinib versus erlotinib LUX-Lung 8 III PFS HR 0.81 (0.69–0.96) Soria et al. (30)

OS HR 0.81 (0.69–0.95)
C + T ± cetuximab BMS 099 III PFS HR 0.902 (0.761–1.069) Lynch et al. (31)

OS HR 0.890 (0.754–1.051)
Cis + V ± cetuximab FLEX III OS HR 0.871 (0.762–0.996) Pirker et al. (32)
Chemo ± cetuximab Pujol et al. Individual patient data meta-analysis PFS HR 0.90 (0.82–1.00) Pujol et al. (33)

OS HR 0.88 (0.79–0.97)
Cis + G ± necitumumab SQUIRE III OS HR 0.84 (0.74–0.96) Thatcher et al. (34)
P ± matuzumab (1 versus 3 week) Schiller et al. Randomized II ORR 5 versus 11% (p = 0.332)a Schiller et al. (35)

OS 1 week HR 0.67 (0.3–0.21)
OS 3 week HR 1.66 (0.9–0.86)

C + T ± panitumumab Crawford et al. Randomized II TTP HR 0.9 (0.66–1.21) Crawford et al. (36)

FGFR
D ± nintedanib LUME-lung 1 III PFS HR 0.79 (0.68–0.92) Reck et al. (37)

OS HR 0.94 (0.83–1.05)
Dovitinib Lim et al. Single arm II ORR 11.5% (0.8–23.8) Lim et al. (38)
AZD4547 Paik et al. Ib 0 CR, 1 PR, 4 SD, 9 PDb Paik et al. (39)
BGJ398 Nogova et al. I 15.4% PR, 34.6% SD Nogova et al. (40)

23.1% PR, 26.9% unknown

Pi3KCA
Everolimus Soria et al. Single arm II ORR 4.7% Soria et al. (41)
Everolimus + D Ramalingam et al. Single arm II ORR 8% Ramalingam et al. (42)
Erlotinib ± everolimus Besse et al. Randomized II PFS 0.769 (0.506–1.167) Besse et al. (43)
Buparlisib BASALT-1 Single arm II 12 week PFS 23.3% (9.9–42.3) Vansteenkiste et al. (44)
D ± PX-866 Levy et al. Randomized II med PFS 2 versus 2.9 mo (p = 0.65) Levy et al. (45)

med OS 7.9 versus 9.4 mo (p = 0.9)

Rb1/CDK
Palbociclib Gopalan et al. Single arm II ORR 0%, SD 50% (8/16) Gopalan et al. (46)

Med PFS 12.5 week
Abemaciclib Patnaik et al. I ORR 3%, DCR 49% Patnaik et al. (47)

DDR2
Dasatinib Johnson et al. Single arm II DCR 43%, ORR 3% Johnson et al. (48)

Med PFS 1.36 mo
Med OS 11.4 mo

Dasatinib + erlotinib Haura et al. I/II DCR 62%, ORR 7% Haura et al. (49)
Med PFS 2.7 mo
Med OS 5.6 mo

MeT
PL + TAX ± onartuzumab Hirsch et al. Randomized II PFS HR 0.95 (0.63–1.43) Hirsch et al. (50)

OS HR 0.90 (0.55–1.47)
Erlotinib ± tivantinib Sequist et al. Randomized II PFS HR 0.81 (0.57–1.16) Sequist et al. (51)

OS HR 0.87 (0.59–1.27)
Erlotinib ± onartuzumab METLung III PFS HR 0.99 (0.81–1.20) Spigel et al. (52)

OS HR 1.27 (0.98–1.65)
Erlotinib ± onartuzumab Spigel et al. Randomized II PFS HR 1.09 (0.73–1.62) Spigel et al. (53)

OS HR 0.80 (0.50–1.28)

C, carboplatin; Cis, cisplatin; CR, complete response; D, docetaxel; DCR, disease control rate; G, gemcitabine; HR, hazard ratio; Med, median; ORR, objective response rate; OS, 
overall survival; P, pemetrexed; PD, progressive disease; PFS, progression-free survival; PL, platinum; PR, partial response; SD, stable disease; T, taxane; TAX, paclitaxel; TTP, time 
to progression; V, vinorelbine.
aORR in pem versus all matuzumab containing arms.
bRepresents number of patients with measured response as detailed.
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and OS (median OS 7.9 versus 6.8  months; HR 0.81, 95% CI 
0.69–0.95, p  =  0.0077) (30). Of note, patients were previously 
treated with first-line platinum doublet and had no prior EGFR 
TKI directed therapies.

Monoclonal antibodies directed against EGFR have also been 
investigated in this setting. For example, several trials explored 
the use of cetuximab in combination with chemotherapy in treat-
ment naïve patients, including two phase III trials with conflicting 
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results (31, 32). A meta-analysis reported a HR of 0.878 (95% 
CI, 0.795–0.969; p = 0.01) for overall survival favoring the use 
of cetuximab in all lung cancer subtypes (33). Necitumumab, a 
second-generation recombinant human IgG1 monoclonal anti-
body, has also shown minor improvements in PFS and OS when 
added to gemcitabine/cisplatin first-line in advanced SCC versus 
gemcitabine/cisplatin alone (HR OS 0.84, 95% CI 0.74–0.96; 
p = 0.01) (34). No predictive markers of benefit were identified, 
although EGFR copy number may be promising (54). Conversely, 
other agents such as matuzumab and panitumumab have failed 
to show a benefit (35, 36). Despite the low frequency of action-
able mutations, SCC shows high rates of EGFR amplification and 
protein expression that could explain these results (55–57). To 
date, different trials have reported inconsistent results using these 
findings as predictive biomarkers for response to EGFR directed 
therapies and their significance remains controversial (58).

FiBROBLAST GROwTH FACTOR 
ReCePTOR

Genomic abnormalities in the FGFR pathway have also been 
frequently reported in various malignancies including SCC of 
the lung (59). Most of these aberrations are FGFR amplifica-
tions with reported rates ranging from approximately 10–25%, 
while mutations are present in approximately 0–8% of cases  
(14, 16–18). It is hypothesized that this family of transmembrane 
receptors participates in many cellular processes including cell 
survival, differentiation, migration, angiogenesis, tissue homeo-
stasis and repair, and inflammation (60–62). Clinically, FGFR 
amplifications are associated with smoking history and worse 
prognosis in SCC (63). In recent years, multiple FGFR-directed 
molecules, including both selective and non-selective FGFR 
inhibitors, have been developed but remain investigational to 
date. In the phase III LUME-lung 1 trial, nintedanib, an oral 
multiple TKI targeting FGFR1–3, vascular endothelial growth 
factor receptor 1–3, PDGFR α and β, RET, FLT3, and Src fam-
ily kinases, was investigated in combination with docetaxel 
after failure of first-line therapy versus placebo (37). Despite 
marginal improvement in PFS in the overall study population, 
OS benefit was limited to adenocarcinomas. Dovitinib, a mul-
tikinase inhibitor of FGFR1–3, VEGFR1–3, PDGFR β, c-KIT, 
and FLT3, investigated in a phase II trial of SCC lung cancers 
showed modest antitumor activity and acceptable toxicity profile 
with most common significant side effects including gastro-
intestinal toxicity (nausea, diarrhea, and anorexia), skin rash, 
and fatigue (38). Selective FGFR inhibitors, such as FGFR1–3 and 
VEGFR2 inhibitor AZD4547 and pan-FGFR inhibitor BGJ398, 
remain largely investigational, as early phase trials have reported 
mixed results in terms of efficacy (39, 40) (NCT00979134, 
NCT02154490, NCT02160041, NCT01004224). Other agents 
such as lucitanib (64) (NCT01283945, NCT02109016), ponatinib 
(NCT01935336), Bay1163877 (NCT02592785, NCT01976741), 
ARQ087 (NCT01752920), and JNJ-42756493 (NCT02699606) 
are also in development. Most trials enrolled molecularly enriched 
populations according to FGFR amplification. To date, there is 
however no standardized method or cut-off for amplification 
status with significant heterogeneity across trials.

Pi3KCA

Alterations in the PI3KCA pathway have also been implicated 
in the development and progression of advanced lung cancer 
(14). Its activation, triggering downstream AKT and mammalian 
target of rapamycin signaling, has been linked to gene amplifica-
tion and mutations, which are both found predominantly in SCC 
in the range of 35 and 3–15%, respectively (14, 15, 19–21). This 
pathway is also upregulated through inactivating mutations and 
loss of its negative regulator PTEN and rarely via AKT mutations  
(14, 21, 65). In response to various growth factors, PI3KCA-
AKT-mTOR participates in many cellular functions including 
cell growth, proliferation, differentiation, motility, and survival 
(66). In preclinical models, cells harboring PI3KCA alterations 
present aggressive phenotype and express markers of epithelial-
to-mesenchymal transition (67). Clinically, these aberrations are 
also linked to EGFR inhibitor resistance (68). Previously, multi-
ple trials have investigated the use of everolimus, an mTORC1 
inhibitor, with disappointing results (41–43). Currently, various 
newer agents targeting this pathway are in development includ-
ing isoform-specific and pan-isoform PI3KCA inhibitors, AKT 
inhibitors, and dual PI3KCA-mTOR inhibitors. Buparlisib, an 
oral inhibitor of class I PI3K (α, β, γ, and d), showed disappoint-
ing response rates in a phase II trial meeting futility criteria 
despite enrichment for PI3KCA pathway activation positive 
tumors (44). In phase I trials of advanced solid tumors including 
NSCLC, pilaralisib, an oral pan-class I PI3K inhibitor, has shown 
acceptable toxicity profile both as a single agent and in combina-
tion with EGFR inhibitors with preliminary efficacy limited to 
monotherapy use (69, 70). PX-866, an irreversible pan-isoform 
inhibitor of PI3K, failed to show benefit in terms of PFS and OS 
in a randomized phase II trial in combination with docetaxel 
compared to placebo (45). Trials investigating other selective 
PI3K inhibitors such as taselisib (NCT02785913, NCT02389842, 
NCT02154490, NCT02465060) and pictilisib (NCT01493843, 
NCT02389842) are currently ongoing both as single agents and 
in combination with chemotherapy.

Rb1 AnD CYCLin-DePenDenT  
KinASeS (CDK)

The Rb1 pathway is also commonly disrupted in various cancers. 
In association with D-type CDK, CDK4 and CDK6 promote cell 
cycle progression from the G1 to S phase via phosphorylation 
of the tumor suppressor Rb1. P16, a tumor suppressor protein 
encoded by CDKN2A, also influences this pathway through its 
negative regulation of CDK4 and CDK6, which ultimately causes 
inhibition of Rb phosphorylation. Once phosphorylated, Rb is 
rendered inactive, driving cells into synthesis thus contributing 
to oncogenesis. Deregulation of this pathway occurs as a result 
of various mechanisms in SCC including CDKN2A inactiva-
tion via promoter methylation, deletions, and mutations, Rb 
mutations and deletions, and CDK amplifications (14, 71–74). 
Furthermore, preclinical data suggest activity of CDK inhibi-
tors in lung cancer xenograft models, and therefore, CDK4/6 
inhibitors are currently under investigation for the treatment 
of advanced lung cancers (74). In a phase II trial, Gopalan et al. 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


18

Soldera and Leighl Update on the Treatment of Metastatic Squamous NSCLC

Frontiers in Oncology | www.frontiersin.org March 2017 | Volume 7 | Article 50

found no responses to palbociclib, a highly specific CDK4/6 
inhibitor, in patients with advanced lung cancers and negative 
p16 expression by immunohistochemistry (46). Interestingly, 
approximately half of evaluable patients had stable disease 
(SD) suggesting treatment may induce replicative senescence. 
Abemaciclib, another CDK4/6 inhibitor, showed acceptable 
toxicity profile and preliminary efficacy in a phase I trial of mul-
tiple tumor types, including NSCLC (47). Further trials inves-
tigating these agents are currently underway (NCT02411591, 
NCT02450539, NCT02152631, NCT02079636, NCT02022982, 
NCT02389842, NCT02897375, NCT02785939).

DiSCOiDin DOMAin ReCePTOR 
TYROSine KinASe 2

Discoidin domain receptor tyrosine kinase 2 is a widely expressed 
receptor tyrosine kinase (RTK) in normal cells that is activated 
through its interaction with various types of extracellular 
matrix protein collagen. Once activated by ligand binding and 
phosphorylation, DDR2 has been shown to promote various cel-
lular functions such as migration, differentiation, proliferation, 
and survival (75). This RTK has been proposed as a potential 
treatment target in various cancers. Sequencing data has in fact 
shown mutations in the kinase domain of DDR2 in approximately 
1–4% of SCC (16, 22). Furthermore, in  vitro studies have also 
demonstrated that cells harboring these mutations are sensitive 
to silencing of DDR2 by RNA interference. Multikinase inhibi-
tors have been found to have DDR2 directed activity in cell lines 
(76). Dasatinib, a multikinase inhibitor that targets BCR-ABL, 
Src family, c-KIT, PDGFR-β, and ephrin receptor approved for 
the treatment of chronic myelogenous leukemia (CML), has been 
investigated for the treatment of NSCLC. Pitini et  al. reported 
a case of a patient with DDR2 mutated SCC who presented a 
nearly complete response following treatment with dasatinib 
for a concurrent CML (77). In a phase II trial, this agent dem-
onstrated moderate clinical activity in patients with unselected 
treatment naive advanced NSCLC (48). Its use was however 
limited by significant toxicity, in particular pleural effusion. 
Notably, one patient responded markedly to treatment with four 
others showing prolonged SD, suggesting potential benefit in a 
subset of patients. Unfortunately, investigators failed to identify 
a predictive biomarker in this subpopulation of responders. 
Another phase II trial of dasatinib in combination with erlotinib 
in heavily pretreated NSCLC showed modest efficacy with two 
patients having PR, one with an EGFR mutated adenocarcinoma 
and one with SCC (49). It is however challenging to estimate the 
antitumor activity of dasatinib in this setting as responses are 
more likely related to erlotinib.

MeSenCHYMAL-TO-ePiTHeLiAL 
TRAnSiTiOn

The proto-oncogene MET is disrupted in various cancers includ-
ing NSCLC (78). It encodes a RTK that, once activated by its ligand 
hepatocyte growth factor, promotes downstream signaling via 
multiple pathways such as PI3KCA, AKT, signal transducer and 

activator of transcription 3, and mitogen-activated protein kinase 
(79). Various activating alterations in MET have been reported 
in NSCLC. For example, MET amplification has been reported 
in approximately 6–10% of SCC, while mutations, particularly 
in exon 14, are more common in adenocarcinomas (23). Once 
upregulated, MET signaling contributes to cell survival, invasion, 
migration, and proliferation (79). Clinically, MET amplification 
has been linked to EGFR TKI resistance and poor prognosis (80). 
Cells harboring alterations in this pathway were found to be 
responsive to MET inhibitors that are commonly used in other 
tumor types such as crizotinib and cabozantinib (81, 82). Several 
clinical trials have investigated various TKI with MET directed 
activity for the treatment of advanced NSCLC with disappointing 
results in the SCC subpopulation so far (50–53). For example, 
onartuzumab, a monoclonal antibody directed against MET, failed 
to show significant antitumor activity in a phase II trial in com-
bination with platinum-doublet chemotherapy (50). Moreover, a 
phase III trial of onartuzumab in combination with erlotinib was 
terminated early due to futility in terms of its primary outcome 
(OS) despite selection of patients with positive MET expression by 
immunohistochemistry (52). Tivantinib, a small-molecule MET 
inhibitor, showed modest antitumor activity in combination with 
erlotinib in unselected NSCLC (51). In subgroup analysis, benefit 
was however mostly noted in KRAS mutated patients and the 
subsequent phase III trial enrolled only non-squamous histology 
(83). Finally, identifying responding subpopulations represents a 
significant challenge in the development of these agents. In fact, 
selection of patients across trials has been inconsistent, with no 
clear definition of MET enriched populations. Overexpression 
has been defined using various methods including protein over-
expression by immunohistochemistry, gene copy-number gain, 
and amplification by fluorescent in  situ hybridization. Despite 
these challenges, multiple MET-directed molecules are cur-
rently under investigation for advanced NSCLC, including SCC 
(NCT02499614, NCT02034981, NCT00585195, NCT02925104, 
NCT02414139, NCT02929290, NCT02296879, etc).

iMMUne THeRAPY

In recent years, immunotherapy agents have elicited great interest 
for the treatment of several tumor types. Various immune check-
point inhibitors including antibodies directed against cytotoxic 
T-lymphocyte associated protein 4, programmed cell death 
protein 1 (PD-1), and programmed death ligand-1 (PD-L1) are 
under investigation or approved for clinical practice, revolution-
izing the approach to lung cancer treatment. Patients diagnosed 
with SCC in particular have benefited from these advancements, 
as alternative treatments are sparse, and they have higher muta-
tion burden, which may be associated with benefit. Agents such 
as nivolumab, pembrolizumab, and atezolizumab have demon-
strated improvement in survival outcomes in the second-line 
setting including in SCC (84–87). Furthermore, Pembrolizumab 
showed improvement both PFS and OS for patients with strongly 
PDL-1-expressing tumors treated in the first-line setting. This 
was however not the case for first-line nivolumab, another 
PD-1 inhibitor that used less restrictive PDL-1 selection, 
which had similar PFS and OS but not superior outcomes (88) 
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(NCT02041533). Much like targeted agents, the selection of 
patients seems to be an important factor when choosing the best 
course of therapy. Unfortunately, a predictive biomarker to guide 
this decision is lacking with PD-L1 expression status, a promising 
biomarker for the selection of the subgroup likely to benefit from 
PD-1 and PD-L1 inhibiting drugs, having shown mixed results 
so far. For example, in the Checkmate 017 study of nivolumab 
in advanced pretreated SCC patients, PDL-1 expression was not 
predictive of benefit and even those without PDL-1 expression 
derived survival gain (84). Conversely, PD-L1 expression was 
predictive in the Checkmate 057 trial of nivolumab in a similar 
setting in non-squamous NSCLC (85). Finally, smoking status, 
a simple clinical characteristic, could also represent a possible 
predictive marker of response.

COnCLUSiOn

SCC represents complex tumors with alterations in various 
interacting pathways (14). Despite the current wealth of avail-
able molecular data and a vast array of clinical trial results, 
multiple challenges remain in the development of targeted 
therapies for this cancer. One recurring obstacle is the definition 
of subgroups that derive optimal benefit from investigational 
agents. With the current understanding of NSCLC now refined 
according to molecular profiles, individual subpopulations rep-
resent rare tumor types limiting their accrual into traditionally 

designed clinical trials. The revolutionized classification of lung 
cancer therefore requires an equally novel approach to clinical 
trial design. In fact, a growing number of “master protocols” 
with innovative schemes such as “basket” and “umbrella” 
biomarker-driven trials have been completed or are currently 
underway (89, 90) (NCT01042379). The LUNG-MAP trial, one 
such biomarker-based master protocol, is currently ongoing in 
multiple centers (90). Enrolled patients with advanced SCC are 
assigned to treatment arms according to detected targetable 
mutations identified through a comprehensive genomic pro-
filing platform. Targeted agents such as taselisib, palbociclib, 
talazoparib, ABBV-399, rilotumumab, and AZD4547 have been 
included in this study. Furthermore, patients without action-
able mutations are included in immune therapy sub-studies 
investigating various immune checkpoint inhibitors such as 
nivolumab, ipilimumab, durvalumab, and tremelimumab. 
Considering the dismal prognosis of patients diagnosed with 
advanced SCC, a greater focus on drug development and clini-
cal trials remains of upmost importance to improve outcomes 
in this disease.
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Somatic epidermal growth factor receptor (EGFR) mutations are present in around 50% 
of Asian patients and in 10–15% of Caucasian patients with metastatic non-small cell lung 
cancer (NSCLC) of adenocarcinoma histology. The first-generation EGFR-tyrosine kinase 
inhibitors (TKIs) gefitinib and erlotinib have demonstrated improved progression-free 
survival (PFS) and response rates but not overall survival (OS) benefit in randomized 
phase III trials when compared with platinum-doublet chemotherapy. All patients treated 
with EGFR-TKIs will eventually develop acquired resistance to these agents. Afatinib, an 
irreversible ErbB family blocker, has shown in two randomly controlled trials in patients 
with EGFR-activating mutations, a significant improvement in PFS and health-related 
quality of life when compared to platinum-based chemotherapy. Afatinib improved OS in 
patients with Del19 mutations. In patients having progressed on first-generation EGFR-
TKIs, afatinib did lead to a clinical benefit. A randomly controlled trial showed that PFS 
was significantly superior with afatinib vs. erlotinib in patients with squamous NSCLC 
in the second-line setting. A phase IIb trial comparing afatinib and gefitinib in first-line 
EGFR positive NSCLC showed significantly improved PFS with afatinib but OS was not 
significantly improved.

Keywords: non-small cell lung cancer, epidermal growth factor receptor, tyrosine kinase inhibitor, afatinib, 
gefitinib, erlotinib

inTRODUCTiOn

The advent of targeted therapy has had a dramatic effect on the treatment of cancer. Few treatment 
landscapes have shifted more in recent years than in metastatic non-small cell lung cancer (NSCLC). 
The identification of several oncogenic driver mutations has led to the development of targeted 
agents (1). The principal targets identified include rearrangements in the anaplastic lymphoma 
kinase gene and mutations of the epidermal growth factor receptor (EGFR) (1–4).

Epidermal growth factor receptor is a receptor that is part of the ErbB family (5, 6). This family of 
receptors includes four members; human epidermal growth factor 1 (HER1; EGFR, ErbB1), HER2 
(Neu, ErbB2), HER3 (ErbB3), and HER4 (ErbB4) (5, 6). The physiological role of these receptor 
tyrosine kinases is to regulate cellular proliferation (5). Somatic EGFR mutations are present in 
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around 50% of patients in Asia and in 10–15% of Caucasian 
patients with metastatic NSCLC with adenocarcinoma histology 
(7). Most of these mutations are caused by deletions on the exon 
19 or L858R point mutations on exon 21 (8). EGFR-activating 
mutations lead to aberrant constitutive signaling by EGFR and its 
associated cell signaling pathways. As a consequence, prolifera-
tion often becomes completely dependent on EGFR activation 
in a phenomenon known as oncogene addiction. Because of 
this, inhibition of EGFR interrupts proliferation and induces 
apoptosis (9).

Epidermal growth factor receptor inhibition with oral tyrosine 
kinase inhibitors (TKIs) has shown proven clinical benefit in 
patients with NSCLC harboring activating EGFR mutations. The 
first-generation EGFR-TKIs gefitinib and erlotinib have demon-
strated improved progression-free survival (PFS) and response 
rates but not overall survival (OS) in randomized phase III trials 
when compared with platinum-doublet chemotherapy (10–16).

FiRST-GeneRATiOn eGFR TKis: 
GeFiTiniB AnD eRLOTiniB

The first-generation EGFR-TKIs, gefitinib and erlotinib, bind 
reversibly to the kinase domain of the receptor. This leads to the 
inhibition of both mutant and, to a lesser extent, wild-type EGFR 
(17). In the early phase III trials of gefitinib conducted in Asia, 
IPASS, and First SIGNAL (Table 1) (10, 13), patients were not ini-
tially selected for their EGFR mutation status. Several subgroup 
analyses of these trials in addition to smaller subsequent trials, 
however, showed that the presence of EGFR-activating mutations 
was a strong predictor of clinical benefit with gefitinib when 
compared with platinum-doublet chemotherapy (10, 13, 18, 19). 
As a result, subsequent phase III trials of EGFR-TKIs included 
exclusively patients with activating EGFR mutations (11, 12, 14, 
16). Two additional phase III trials, NEJ002 and WJTOG3405, 
also showed significant PFS advantages of first-line gefitinib when 
compared to chemotherapy, this time in a Japanese EGFR-mutant 
population (Table 1) (11, 12).

The benefit of EGFR-TKIs was also demonstrated in a 
European population with advanced NSCLC and EGFR-activating 
mutations. The phase III EURTAC trial compared erlotinib with 
platinum-based chemotherapy. Erlotinib was associated with a 
significant benefit in PFS and was better tolerated than chemo-
therapy (Table 1) (14). The OPTIMAL trial also showed similar 
results with erlotinib in a Chinese population (16).

Gefitinib and erlotinib have also shown efficacy in second and 
third line treatment of NSCLC (2). Erlotinib may be an option 
in both EGFR mutated and wild-type patients. This is based 
on the results of NCIC BR21 placebo-controlled phase III trial 
in which patients were not selected for EGFR status. The trial 
demonstrated a PFS advantage with docetaxel (27). When com-
pared with docetaxel, however, erlotinib did not appear to benefit 
patients with wild-type EGFR tumors in two phase III trials. In 
the TAILOR trial, PFS was significantly longer in wild-type EGFR 
NSCLC patients treated with second line docetaxel (28). In the 
DELTA trial, no PFS or OS improvement was shown in an EGFR-
unselected population treated in the second or third line (29).

Unfortunately, NSCLC with EGFR-activating mutations 
treated with first-generation EGFR-TKIs inevitably develop resist-
ances (30). Several resistance mechanisms have been described. 
The development of a T790M missense mutation in exon 20 is 
the most common of these and has been described in 50–60% of 
patients (31–33). This mutation causes steric hindrance, which 
obstructs binding of EGFR-TKIs to their target receptor (34). 
Other reported resistance mechanisms include alterations to the 
MET receptor (35–37) and amplification of HER2 (35–37) and 
HER3 (38).

AFATiniB

Afatinib irreversibly inhibits the tyrosine kinase activity of EGFR, 
HER2, and ErbB4 by forming covalent bonds to the receptors (39). 
Although ErbB3 lacks intrinsic kinase activity, it does form active 
heterodimers by interacting with ErbB family receptors and with 
HER2 in particular (40). Afatinib suppresses the activity of all 
four ErbB family members (39). Its irreversible inhibition is also 
more potent and prolonged than the reversible first-generation 
EGFR-TKIs (17, 39, 41).

FiRST-Line AFATiniB in PATienTS wiTH 
nSCLC AnD ACTivATinG eGFR 
MUTATiOnS: LUX-LUnG 3 (LL3) AnD 
LUX-LUnG 6 (LL6)

The largest randomized phase III trials in treatment-naive 
advanced NSCLC with EGFR-activating mutations were the 
LL3 and LL6 trials. The LL3 trial was a global trial, which 
recruited 345 patients while the LL6 trial recruited 364 patients 
in Asia (15, 21, 25). Patients were randomized (2:1) to afatinib 
(40  mg/day) or up to six cycles of platinum-doublet chemo-
therapy. LL3 used cisplatin and pemetrexed as a control group 
while LL6 used cisplatin and gemcitabine (42). The primary 
endpoint of these trials was PFS by prespecified independ-
ent central review. The trials also included comprehensive 
patient-reported outcomes (PROs) related to functional health 
status/quality of life (QoL) and lung cancer-related symptoms 
(Table 2) (15, 25, 43).

Both trials demonstrated a significant median PFS benefit 
with first-line afatinib [11.1 vs. 6.9  months; hazard ratio (HR) 
0.58 p = 0.001 in LL3 and 11.0 vs. 5.6 months; HR 0.28; p = 0.0001 
in LL6; Table 1] (15, 25). A preplanned analysis indicated that 
the PFS advantage was greater in patients with common EGFR 
mutations (Del19 and/or L858R). However, afatinib also showed 
activity in some patients with select uncommon EGFR-activating 
mutations. A pooled analysis of LL3, LL6, and the phase II 
LUX-Lung 2 (44) trials showed a median PFS of 10.7  months 
in 38 patients with uncommon mutations of EGFR (45). The 
pooled analysis also demonstrated particularly poor outcomes 
with afatinib in patients with exon 20 insertions (median PFS 
2.7 months, n = 23).

Afatinib also showed clinical benefit in patients with brain 
metastases (46). A subgroup analysis of 35 patients in LL3 dem-
onstrated a trend toward improved median PFS when compared 
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TABLe 2 | Patient-reported outcome assessments in first-line EGFR mutation-positive clinical trials vs. platinum-doublets [adapted from Ref. (20)].

Trial Treatments QoL assessments Methodology Outcomes

IPASS (13) Gefitinib vs. 
carboplatin + paclitaxel

FACT-L and FACT-TOI Randomization, week 1, every 
3 weeks until day 127, once every 
6 weeks from day 128 until disease 
progression, and when the study drug 
was discontinued

Significantly more patients in the gefitinib group than in 
the carboplatin + paclitaxel group had a clinically relevant 
improvement in QoL and by scores on the FACT-TOI. Rates of 
reduction in symptoms were similar

EURTAC (14) Erlotinib vs. 
cisplatin + docetaxel or 
gemcitabine

Completion of the 
lung cancer symptom 
scale

Baseline, every 3 weeks, end of 
treatment visit, and every 3 months 
during follow-up

Insufficient data collected for any analysis to be done—due to 
low compliance

LL3 (25, 43) Afatinib vs. 
cisplatin + pemetrexed

EORTC QLQ-C30, 
EORTC

Baseline, every 3 weeks until disease 
progression

Afatinib improved lung cancer-related symptoms and QoL 
and delay of deterioration of symptoms compared with 
chemotherapyQLQ-LC13

LL6 (26) Afatinib vs. 
gemcitabine + cisplatin

EORTC QLQ-C30, 
EORTC

Baseline, every 3 weeks until disease 
progression

Afatinib improved lung cancer-related symptoms of cough, 
dyspnea, and pain and global health status/QoL compared 
with chemotherapyQLQ-LC13

EGFR, epidermal growth factor receptor; EURTAC, European tarceva vs. chemotherapy; EORTC, QLQ European Organization for Research and Treatment of Cancer Quality of Life 
Questionnaire; FACT-L, Functional Assessment of Cancer Therapy—Lung; FACT-TOI, Functional Assessment of Cancer Therapy—Trial Outcome Index; IPASS, Iressa Pan-Asia 
study; LL3, LUX-Lung 3; LL6, LUX-Lung 6; QLQ-LC13, Quality of Life Questionnaire—Lung Cancer Module; QoL, quality of life.
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to chemotherapy [11.1 vs. 5.4  months (HR 0.52 p  =  0.13)]. 
For 10 patients with intracranial progression, median time to 
progression was 11.6 months with afatinib and 5.5 months with 
chemotherapy (46).

The median OS results of both trials did not show significant 
statistical differences between afatinib and chemotherapy. The 
LL3 trial had a median follow-up of 41 months. Median OS was 
28.2 months in the afatinib arm and 28.2 months in the chemo-
therapy arm (HR 0.88, p  =  0.39). In LL6, the median OS was 
23.1 months for afatinib and 23.5 months for chemotherapy (HR 
0.93, p = 0.61). However, in a preplanned analysis including only 
patients harboring Del19 mutations in both trials, a significant 
median OS advantage was shown in favor of afatinib (33.3 vs. 
21.1 months; HR 0.54, p = 0.0015 in LL3 and 31.4 vs. 18.4 months; 
HR 0.64, p = 0.0229; Table 1) (21).

Both the LL3 and the LL6 trials integrated comprehensive 
PRO evaluation, including both the EORTC QLQLC12 and 
QLQ-C30 questionnaires, to determine the effect of afatinib 
on QoL (47). This differed from the past trials such as IPASS 
(which used Functional Assessment of Cancer Therapy indices) 
and EURTAC (analysis of PROs was not possible due to insuf-
ficient data). This showed that prespecified lung cancer-related 
symptoms, including cough, dyspnea, and pain were improved 
with afatinib. In addition, time to deterioration was longer with 
afatinib when compared to the chemotherapy arms. LL3 dem-
onstrated statistically significant delayed time to deterioration 
and improved mean scores over time for cough and dyspnea 
(25, 43). Pain was not statistically different. Similar results were 
seen in LL6 with the addition that both time to deterioration and 
mean score over time were improved for pain. Overall, afatinib 
was associated with statistically significant improvements from 
baseline in global health status/QoL in both trials (26).

In comparison to platinum-based chemotherapy, afatinib was 
relatively well tolerated in both LL3 and LL6. Common grade 
3 or higher treatment-related adverse events (AEs) of afatinib  
(LL3/LL6) included diarrhea (14/5%), rash and acne (16/15%), 
stomatitis and mucositis (9/5%), and paronychia (11/0%). 
There were more treatment discontinuations due to AEs in the 

chemotherapy arm than in the afatinib arm in both trials (12 vs. 
8% in LL3 and 40 vs. 6% in LL6). No patient discontinued treat-
ment due to diarrhea as a lone AE.

The relatively low rate of treatment discontinuations of 
afatinib in both trials may be due to effective symptom control 
and/or protocol defined dose reductions (25, 26). The trials rec-
ommended dose reductions in 10 mg decrements to a minimum 
dose of 20 mg for grade 3 AEs or grade 2 AEs lasting a prolonged 
length of time (25, 26). These reductions were shown to decrease 
excessive plasma concentrations of afatinib and, therefore, 
reduced toxicity without compromising efficacy. In fact, dose 
reduction was not associated with an inferior PFS (25).

AFATiniB in PATienTS wiTH ReLAPSeD/
ReFRACTORY nSCLC: LUX-LUnG 1 (LL1) 
AnD LUX-LUnG 5 (LL5)

The phase IIb/III trial LL1 compared afatinib at a dose of 50 mg/day 
to placebo in 585 patients with stage IIIb/IV NSCLC. It included 
patients who had failed up to two lines of chemotherapy and had 
been exposed to at least 12 weeks of a first generation EGFR-TKI 
(gefitinib and/or erlotinib) (48, 49). Although a positive EGFR 
mutation status was not required, EGFR status was known for 
141 patients and, of these, 68% were EGFR positive. Patients were 
randomly assigned to afatinib or placebo. Afatinib did not lead 
to a benefit in the primary endpoint of median OS. The median 
OS was 10.8 months for afatinib and 12.0 months for the placebo 
arm (HR 1.08, p = 0.74). Despite the absence of benefit in OS, 
an improvement in median PFS was seen with afatinib (3.3 vs. 
1.1 months; HR 0.38, p < 0.0001) (49). The prolongation of PFS 
was also associated with an overall improvement in lung cancer-
related symptoms and EORTC global health status (48).

Another phase III trial, LL5, included 202 EGFR mutation-
positive patients with progressive disease on a prior EGFR-TKI 
(gefitinib, erlotinib, or afatinib) (46). Patients were randomly 
assigned to a combination of afatinib and paclitaxel or to 
investigator’s choice of chemotherapy without an EGFR-TKI. 
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The trial achieved its primary endpoint of PFS. The median 
PFS was 5.6 months with afatinib and paclitaxel and 2.8 months 
with chemotherapy alone (HR 0.60, p = 0.003). The secondary 
endpoint of objective response rate (ORR) was also significantly 
improved (32.1 vs. 13.2%, p <  0.005), but median OS was not 
significantly different (12.2 vs. 12.2 months, HR 1.00, p = 0.994). 
The results of LL5 demonstrated prospective evidence of the ben-
efit of maintaining EGFR blockade beyond disease progression in 
oncogene-addicted lung cancer.

COMPARinG ReveRSiBLe AnD 
iRReveRSiBLe eRBB FAMiLY BLOCKADe: 
LUX-LUnG 7 (LL7)

Lux-Lung 7 was an open-label trial comparing first-line afatinib 
(40 mg/day) to gefitinib (250 mg/day) in 319 EGFR mutation-
positive advanced NSCLC patients. This was an exploratory phase 
IIb trial. In the primary analysis, afatinib significantly improved 
the co-primary endpoints of PFS and time-to-treatment failure 
(TTF) when compared to gefitinib. At a median follow-up of 
27.3  months, the median PFS was 11.0  months with afatinib 
and 10.9 months with gefitinib (HR 0.73, p = 0.017). TTF was 
13.7  months with afatinib and 11.5  months with gefitinib (HR 
0.73, p = 0.007). The key secondary endpoint of ORR was also 
significantly improved (p = 0.008). The treatment discontinua-
tion rate was 6% in both arms (50). The OS data were recently 
updated with a median follow-up of 42.6 months. The median 
OS was 27.9 vs. 24.5  months with a non-significant trend in 
favor of afatinib (HR 0.86, p = 0.2580). Analysis by EGFR muta-
tion subtype showed a median OS of 30.7  months for afatinib 
compared to 26.4 months for gefitinib (HR 0.83, p = 0.2841) in 
patients with exon 19 deletion. In patients with a L858R mutation, 
there was a median OS of 25.0 months for afatinib compared to 
21.2 months for gefitinib (HR 0.91, p = 0.6585) (51). LL7 again 
demonstrated that dose reductions of afatinib reduced drug-
related AEs without compromising efficacy. Overall, irreversible 
ErbB family blockade with afatinib provided improved clinical 
benefit over the reversible EGFR-TKI gefitinib for patients with 
EGFR mutation-positive NSCLC (50).

AFATiniB in SeCOnD-Line TReATMenT 
FOR nSCLC OF SQUAMOUS CeLL (SCC) 
HiSTOLOGY: LUX-LUnG 8 (LL8)

Approximately 30% of NSCLC are of squamous histology 
(52). Platinum-doublet chemotherapy remains recommended 
first-line treatment for the majority of these patients. The phase 

III LL8 trial compared second-line afatinib (40  mg/day) and 
erlotinib (150 mg/day) in 795 patients with stage IIIb/IV SCC 
of the lung that were EGFR-TKI-naïve and had failed treatment 
after four or more cycles of platinum-based chemotherapy. The 
primary endpoint of PFS by independent radiological review 
was significantly improved with afatinib. The median PFS 
was 2.6  months with afatinib compared to 1.9  months with 
erlotinib (HR 0.81, p  =  0.010). In addition, the secondary 
endpoint of OS was also significantly improved with afatinib 
(7.9 vs. 6.8 months; HR 0.81, p = 0.008). Furthermore, results 
for disease-control rate (50.5 vs. 39.5%, p = 0.002), ORR (5.5 
vs. 2.8%, p  =  0.055), and global health status/QoL (35.7 vs. 
28.3%, p = 0.041) were all also in favor of afatinib (53). Overall, 
the benefit of EGFR-TKIs in squamous cell NSCLC has been 
limited. Immune-checkpoint inhibitors are now the preferred 
second-line option or even first-line option for patients with 
positive PD-L1 expression (54).

COnCLUSiOn

The development of ErbB-family blockers has significantly 
improved patient outcomes for patients with metastatic NSCLC. 
This is particularly true in patients with EGFR-activating driver 
mutations where three EGFR-TKIs, gefitinib, erlotinib, and 
afatinib were shown to have significant survival advantage over 
first-line platinum-based chemotherapy. Afatinib, an irrevers-
ible ErbB family blocker, was designed to decrease resistance to 
reversible EGFR-TKIs and, therefore, prolong response in the 
first-line setting. Afatinib remains the only EGFR-TKI to have 
demonstrated a significant OS advantage in comparison to chem-
otherapy in patients with EGFR Del19 mutations. Furthermore, 
head-to-head data of LL7 trial demonstrated an improvement 
in PFS and PROs with afatinib regardless of mutation type. The 
results of afatinib in brain metastases have also been promising. 
There continues to be significant developments in the field of 
EGFR mutation-positive NSCLC, a third-generation of EGFR-
TKIs is already seeking to improve outcomes, especially with 
osimertinib in patients resistant to EGFR-TKIs due to T790M 
mutations.
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Sensitizing mutations in the epidermal growth factor receptor (EGFR) predict response 
to EGFR tyrosine kinase inhibitors (TKIs) and both first- and second-generation TKIs are 
available as first-line treatment options in patients with advanced EGFR-mutant non-
small cell lung cancer. Eventual resistance develops with multiple mechanisms identifiable 
both upon repeat biopsy and in plasma circulating tumor DNA. The T790M gatekeeper 
mutation is responsible for almost 60% of cases. A number of third-generation TKIs are 
in clinical development, and osimertinib has been approved by the US Food and Drug 
Administration for the treatment of patients with EGFR T790M mutant lung cancer after 
failure of initial EGFR kinase therapy. Resistance mechanisms are being identified to these 
novel agents, and the treatment landscape of EGFR-mutant lung cancer continues to 
evolve. The sequence of EGFR TKIs may change in the future and combination therapies 
targeting resistance appear highly promising.

Keywords: lung cancer, lung cancer treatment, epidermal growth factor receptor, tyrosine kinase inhibitors, 
T790M

inTRODUCTiOn

Non-small cell lung cancer (NSCLC) accounts for over 80% of lung cancer cases and is a leading 
cause of morbidity and mortality internationally (1, 2). When treated with platinum-based chemo-
therapy, the median survival in patients with metastatic disease is 8 months (3). Mutations in the 
epidermal growth factor receptor gene (EGFR) are found in 10–15% of lung cancers in Caucasians, 
and 30–40% of East Asian patients (4, 5). These patients most commonly have adenocarcinoma, 
are lifetime non- or light smokers and are more frequently female. The most commonly described 
mutations are deletions in exon 19 (del19) and the exon 21 L858R point mutation (from leucine to 
arginine). The discovery of EGFR mutations as a predictor of response to tyrosine kinase inhibitors 
(TKIs) heralded a paradigm shift in the treatment of NSCLC (6–8).

In the advanced setting, options for first-line treatment of EGFR-positive lung cancer include 
first-generation TKIs (erlotinib, gefitinib) and afatinib, a second-generation kinase inhibitor. These 
agents have an impressive body of evidence confirming better response, improved progression-free 
survival (PFS), and quality of life compared to chemotherapy (9–16). The pooled analysis of the LUX 
Lung 3 and 6 studies also suggested an overall survival advantage of afatinib relative to chemotherapy 
in the first-line setting for the subgroup of patients with exon 19 deletions (17). Recently, afatinib 
has been shown to have improved PFS compared to gefitinib, however, at the expense of greater 
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toxicity (18). Resistance to both first- and second-generation 
TKIs is common and develops at a median time of 9–16 months 
(9, 11, 14, 19). This review summarizes known mechanisms of 
TKI resistance, clinical approaches to resistance with a focus 
on third-generation EGFR TKIs, their preclinical and clinical 
evidence for use, and future directions to improve the outcomes 
of patients with EGFR mutation-positive lung cancer.

ReSiSTAnCe TO FiRST- AnD  
SeCOnD-GeneRATiOn inHiBiTORS

By performing biopsies in patients with progression on first-
generation TKIs, Yu et al. elucidated the common mechanisms of 
resistance to first-generation TKIs (20). In approximately 60% of 
cases, a T790M point mutation in exon 20 was identified. Other 
mechanisms include downstream signaling pathway mutations 
in BRAF or PIK3CA, or parallel signaling pathway activation via 
changes in MET, HER2, FGFR, and AXL. A small group (3%) 
had histologic transformation: epithelial to mesenchymal transi-
tion or high-grade neuroendocrine transformation. A total of 
18% did not have an identifiable cause. Multiple mechanisms of 
resistance were shown in 10% cases and have been postulated to 
be up to 15% of cases in other series (20–22).

More recently, the rate of T790M mutation have been reported 
to be much higher when analyzing circulating tumor DNA 
(ctDNA), highlighting the limitations of a single biopsy in the 
context of tumor heterogeneity (23). Tissue biopsies are associ-
ated with risks, delays, and an increased economic burden (24). 
Liquid biopsies are an attractive alternative to this and can accu-
rately detect T790M mutations in ctDNA with a high positive 
predictive value. In the study by Oxnard et al., of 58 patients with 
a T790M negative tissue biopsy, one-third had T790M detected 
in plasma with similar response rates (RRs) to patients with the 
mutation identified in tumor biopsy samples (25). Recently, two 
studies have reported the detection of T790M several weeks to 
months prior to radiological progression, which emphasizes 
the potential use of serial plasma monitoring in this population  
(26, 27). However, plasma genotyping may still result in false 
negatives and it is unlikely that repeat tumor biopsies in clinic 
can be completely eliminated for all patients. But an approach 
whereby initial blood-based screening is used, followed by biopsy 
in only those without the mutation identified, may decrease the 
morbidity and delays involved in serial genomic testing.

MAnAGinG ReSiSTAnCe TO iniTiAL  
TKi THeRAPY

Platinum-based chemotherapy has been considered the stand-
ard treatment upon progression for patients on initial EGFR 
kinase therapy; however, few patients are well enough or agree to 
have cytotoxic chemotherapy (28). Intercalation or combination 
with chemotherapy has been minimally successful with added 
toxicity and no consistent survival benefit (29). The IMPRESS 
study showed that continuing TKI therapy with chemotherapy 
did not provide a PFS benefit and was associated with increased 
toxicity (30).

For oligo progressive disease, administering local therapy and 
continuing the original kinase inhibitor is a common approach 
(31). In a small single-arm phase II study (ASPIRATION), 
patients with minimally symptomatic or asymptomatic progres-
sion were randomized to continue erlotinib past progression or to 
stop, and those continuing remained on treatment for a median of 
an additional 3.7 months after the initial PFS of 11 months (32).

Despite in vitro T790M inhibition, the second-generation TKIs 
have not demonstrated significant single-agent activity in T790M 
mutation positive disease. Dual inhibition of EGFR signaling has 
generated interest, with a phase II study of afatinib and cetuximab 
in TKI-resistant patients, demonstrating a RR of 29% in T790M-
positive and -negative subgroups. Thus, EGFR pathway signaling 
remains an important driver of disease, with trials ongoing (33).

The most significant development in treating resistance has 
been through third-generation kinase inhibitors that target 
T790M.

THiRD-GeneRATiOn TKis

Not only do these agents have activity in T790M mutant lung  
cancer but many have the advantage of limited wild-type inhibition, 
therefore, overcoming toxicities associated with first- and second-
generation TKIs. WZ4002, a covalent pyrimidine EGFR TKI, was 
one of the first compounds to show in  vitro and in  vivo EGFR 
T790M inhibition with relative WT sparing (34). Several agents 
have now been tested in clinical trials, with osimertinib recently 
approved by the US Food and Drug Administration (FDA) and 
other regulatory agencies in patients with EGFR T790M mutant 
NSCLC post failure of first-/second-generation TKIs.

Osimertinib (AZD9291, Previously 
Merelitinib)
Osimertinib is an oral, irreversible TKI that forms a covalent 
bond with the cysteine residue in position 797 of EGFR within 
the ATP-binding site. Osimertinib and its active metabolites also 
interact with a number of other kinases harboring the cysteine 
residue. Osimertinib is a potent inhibitor of T790M with lit-
tle wild-type activity and shows tumor regression in murine  
models (35).

AURA (a phase I dose escalation study) (36) was performed 
in patients with EGFR mutation-positive advanced NSCLC with 
acquired resistance to TKI. No dose-limiting toxicity (DLT) was 
observed; the most common adverse events were diarrhea, rash, 
anorexia, and nausea (see Table  1). The overall RR was 51%  
[95% confidence interval (CI), 45–58]; higher in the T790M 
mutation-positive group than the T790M mutation-negative 
group (61 versus 21%). The median PFS was 9.6  months  
(95% CI, 8.3 to not reached) in EGFR T790M-positive patients.

Updated results of the 80  mg (RP2D) cohorts from three 
AURA studies were presented (37), and confirm a high RR  
(66% in phase I study and 71% in phase II studies). Encouraging 
duration of response (12.5 months in pooled phase II studies) and 
PFS (11.0 months in same pooled analysis) was seen (37).

AURA2 is a single-arm, open-label phase II study of osi-
mertinib 80 mg daily in T790M mutation positive NSCLC after 
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TABLe 1 | Toxicities of third-generation tyrosine kinase inhibitors.

Agent Osimertinib (36–39) Rociletinib (41, 43) Olmutinib (46–48) nazartinib (50, 51) Avitinib (55)

Study Phase I Phase II Phase III Phase I/II Phase I/II Phase I/II Phase I
Number of patients 253 210 419 92 93 111 25
Response rate (RR) overall 51 (45–58) 70 (64–77) 71 (65–76) 38 (NR) 54 (NR) 47 (39–55) NR
RR T790M Positive 61 (52–70) As above As above 45 (31–60) NR NR NR
Overall grade 3–4 toxicity 32 34 23 NR NR NR 4
Rash 40 (1) 40 (1) 34 (1) <1 (0) 39 (5) 39 (14) 20 (4)
Dry skin 20 (0) 30 (0) 23 (0) NR NR 28 (0) NR
Pruritus NR NR NR NR 39 (1) 32 (0) 16 (0)
Diarrhea 47 (2) 33 (<1) 41 (1) 22 (0) 55 (0) 40 (6) 44 (0)
Loss of appetite 21 (1) NR 18 (1) 20 (1) NR 17 (0) NR
Nausea 22 (<0.5) NR 16 (1) 35 (2) 38 (0) 13 (0) 16 (0)
Fatigue 17 (1) NR 16 (1) 24 (4) NR 21 (NR) NR
Dyspnea 11 (2) <1 (<1) 4 (<1) 1.5 NR (1) NR 12 (0)
Hyperglycemia 2 (0) NR NR 47 (22) NR (0) NR 0 (0)
QTc prolongation NR NR NR 12 (5) NR (0) NR 8 (0)
Anemia NR NR NR NR NR NR (6) NR
Stomatitis NR NR NR NR NR 23 (NR) NR
Muscle spasms NR NR NR 11 (1) NR NR NR
Dose reduction 7% 3% NR 51% NR NR NR
Discontinuation of drug 6% 5% 7% 11% 4% NR 0

RRs reported in % (95% confidence interval).
Toxicity reported in overall rate % (grade 3–4%).
NR, not reported.
Dyspnea, dyspnea/ILD/pneumonitis reported together.
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first-line TKI. A total of 140 (70%; 95% CI 64–77) of 199 patients 
(with measurable disease) achieved an objective response. There 
was a disease control rate (dCR) of 92%. Toxicity was manageable 
with low rates of grade 3 or higher toxicity (see Table 1) (38).

AURA3 was a phase III randomized trial that assessed the 
efficacy and safety of osimertinib (80 mg daily) versus platinum-
doublet chemotherapy after initial TKI failure in 419 patients 
with T790M mutation-positive advanced NSCLC (39). The trial 
demonstrated superior PFS 10.1 versus 4.4  months (HR 0.30; 
95% CI 0.23–0.41; p < 0.001) and higher RR with osimertinib, 
71%, versus chemotherapy, 31% (39). Grade 3 or 4 adverse events 
occurred in 23% of patients on osimertinib, compared to 47% 
with chemotherapy (Table 1). Quality of life results are pending.

In November 2015, osimertinib received accelerated approval 
by the FDA, representing rapid progress through drug devel-
opment—the first AURA patient was enrolled in March 2013  
and FDA accelerated approval was granted in November 2015.

Rociletinib (CO1686)
Rociletinib is an irreversible orally delivered third-generation 
TKI that targets L858R, del19, and T790M mutations of EGFR 
with little WT activity. Rociletinib also modifies the C797 site 
through covalent binding. Tumor xenograft and transgenic 
models documented tumor regression in preclinical studies (40). 
In the phase I/dose expansion study, TIGERX, 130 patients with 
progression following EGFR TKI were enrolled but the maximum 
tolerated dose was not reached (41). The RR was 59% in T790M-
positive patients; however, pooled data from this TIGER-X study 
and the phase II TIGER-2 was initially reported to be 30.2%  
(42) and later updated and published as 45% (43).

The most frequent grade 3/4 AEs, which occurred in more than 
10%, included hyperglycemia and QTc prolongation (Table 1). 

The hyperglycemia is thought to be mediated by a metabolite of 
rociletinib that inhibits insulin-like growth factor-1 receptor and 
to a lesser extent, insulin receptor kinases. Clovis has suspended 
development of rociletinib and terminated enrollment in clinical 
trials in 2016, soon after the FDA rejected the request for acceler-
ated approval (44).

Olmutinib (HM61713; Formerly Bi148269)
Olmutinib is an oral selective inhibitor for EGFR including 
T790M mutant kinases and acts by binding to a cysteine residue 
close to the kinase domain. Potent inhibition of representative cell 
lines and in vivo activity have been reported (45). A phase I trial 
of 173 patients with EGFR-mutant lung cancer that had failed 
previous TKI therapy demonstrated a favorable safety profile and 
promising antitumor activity (46, 47). The MTD was established 
as 800 mg once daily. Treatment-related adverse events occurred 
in 87.3% of 165 patients, mainly diarrhea, rash, skin exfoliation, 
nausea, pruritus, decreased appetite, and dry skin. Grade 3 or 
greater toxicity was 2% in the initial study report (2/93), although 
not in the updated results (Table 1) (46–48).

In 34 patients with centrally confirmed T790M tumor muta-
tions who received olmutinib at a dose greater than 650  mg 
daily, the RR was 59% (10 confirmed, 10 unconfirmed partial 
responses) and 13 achieved disease stabilization (dCR 97%). The 
phase II study has been suspended early with three cases of severe 
skin toxicity, including two reports of toxic epidermal necrolysis 
(one fatal), and one case of non-fatal Stevens–Johnson syndrome. 
The future of the drug’s development is uncertain.

nazartinib (eGF816)
EGF816 is an oral, irreversible EGFR TKI that also forms a cova-
lent bond with C797. Low IC50 values and in vivo activity against 
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L858R–T790M and del19–T790M have been reported (49). Data 
from the phase I/II study of EGF816 in advanced T790M-positive 
lung cancer are now available (50, 51). Dose escalation began 
at 75 mg daily up to 350 mg daily for capsules and 100–225 mg 
daily for tablets. Diarrhea, stomatitis, rash, and pruritus were the 
most common toxicities (see Table 1), and the confirmed RR was 
44% (56/127) and dCR was 91% (NCT02108964). Combination 
studies with immunotherapy are now recruiting (NCT02323126; 
NCT02335944; NCT02900664).

ASP8273
ASP8273 is an EGFR TKI that selectively and irreversibly inhibits 
mutant EGFR kinases including T790M by the formation of a 
covalent bond with C797. Both in vitro and in vivo studies confirm 
activity in T790M mutant lung cancer with relative WT sparing 
(52). In a phase I study, doses were escalated to 500 mg but the 
RP2D has been deemed 300 mg, although the details of DLT and 
maximum tolerated dose levels are not published (53). Of 60 
patients treated with ASP8273 at the 300 mg dose, there was no 
DLT. All patients were EGFR positive with 90% having a T790M 
mutation. PR was demonstrated in 16 of 45 evaluable patients; 
dCR was 62% (n = 28/45). For the 40 T790M mutation-positive 
subjects with evaluable data, 38% (15/40) had PR and dCR was 
65% (26/40) (NCT02113813). The Phase III SOLAR study is 
underway comparing initial ASP8273 with a first-generation TKI 
in patients with EGFR-mutant lung cancer (NCT02588261) (53).

PF06747775
PF0677775 is another oral inhibitor of EGFR T790M with 26-fold 
increased selectivity of mutant versus wild-type EGFR. It is cur-
rently under evaluation in a phase I/II study in patients with 
advanced EGFR mutation-positive lung cancer (del19 or L858R, 
T790M positive and negative) (NCT02349633) and early results 
have demonstrated activity and tolerability (54).

Avitinib (AC0010)
Avitinib is a new, irreversible, EGFR mutation selective TKI being 
evaluated in a phase I/II clinical trial (NCT02274337). In the 
reported dose escalation study (55), 25 patients were treated. The 
most common AEs were diarrhea, rash, and pruritus. Although 
diarrhea and rash increased in frequency in a dose-dependent 
manner, the majority of them were grade 1 (Table 1). There was 
no drug discontinuation in all treated patients. Outcomes for 
two patients with T790M-positive lung cancer showed partial 
responses. The clinical characteristics and efficacy outcomes of 
the remaining patients are not reported (55).

SPeCiAL POPULATiOnS

Uncommon Mutations
The “uncommon” EGFR mutations represent a heterogeneous 
group and can account for up to 10–18% of EGFR mutations  
(56, 57). The most frequent include exon 20 insertions (exon-
20ins), and point mutations G719X, L861Q, and S768I. The latter 
three mutations may have a superior response to afatinib (58). 
The majority of (exon20ins) are thought resistant to EGFR TKIs 

with the exception of A763_Y764insFQEA. In a preclinical study,  
osimertinib demonstrated potency with a wide therapeutic 
window in the exon20ins studied (Y764_V765insHH, A767V-
769dupASV, and D770_N771insNPG) (59). More recently, it has 
been revealed that EGFR amplification may occur in a subset 
of exon20ins. The dual EGFR blockade with osimertinib and 
cetuximab has demonstrated significant growth inhibition in 
in vivo models (60). EGF816 has shown both in vitro and in vivo 
efficacy in a number of exon20ins and in a patient-derived xen-
ograft model, 100 mg/kg dosing resulted in tumor regression of 
81% (49). AP32788 has also been shown to inhibit exon20ins 
in BA/F3 cell lines (61). The activity of third-generation TKIs  
in preclinical models has led to clinical trials for exon20 inser-
tions including the phase I/II study of AP32788 (NCT02716116).

Brain Metastases
Approximately 30–50% of patients with NSCLC develop central 
nervous system (CNS) disease (62, 63). The association between 
EGFR mutation-positive NSCLC and the incidence of brain 
metastases is controversial with some studies suggesting an 
increased risk of CNS disease at diagnosis (64, 65). CNS disease 
can reduce survival and both brain metastases and loco regional 
therapies can impact neurological function and quality of life. 
First-generation EGFR TKIs have shown intracranial activity 
with erlotinib exhibiting higher CSF concentrations than gefitinib 
(66). Afatinib in patients pretreated with chemotherapy and a 
first-generation TKI has demonstrated a CNS dCR of 66% (67). A 
recent preclinical study has shown superior blood–brain barrier 
penetration of osimertinib compared to gefitinib, afatinib, and 
rociletinib (68). Sustained tumor regression in a murine brain 
metastases model has also been reported with osimertinib, doses 
of 80 mg in humans were predicted to target human brain metas-
tases using an adaptive pharmacokinetic/pharmacodynamics 
model (69). AZD3759 is an innovative EGFR TKI developed 
to penetrate the blood–brain barrier but does not have T790M 
activity. BLOOM (NCT02228369) is a study testing the safety 
and efficacy of osimertinib 160 mg/day and AZD3759 in NSCLC 
patients with leptomeningeal disease; early data have reported 
disease control in three-quarters of patients and responses in 7 
of 20 patients (70).

Osimertinib CNS activity was also confirmed in AURA and 
AURA2 (71). In the recently reported phase III study of osimer-
tinib versus platinum-pemetrexed doublet, a significant improve-
ment in PFS in patients with brain metastases was evident in the 
osimertinib group (8.5 versus 4.2  months; hazard ratio 0.32;  
95% CI, 0.21–0.49) (39).

ReSiSTAnCe TO THiRD-GeneRATiOn 
TKis AnD COMBinATiOn TReATMenT

C797S and Other EGFR-Dependent 
Mechanisms
The point mutation C797S in exon 20 represents the most com-
mon resistance mechanism identified in third-generation EGFR 
TKIs. Most third-generation TKIs use the site of the cysteine 
amino acid located at position 797 for covalent binding, and 
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TABLe 2 | Ongoing combination studies targeting resistance mechanisms.

Target Trial name Clinical trial 
identifier

Status

Epidermal growth factor  
receptor (EGFR)

EGFR inhibitor AZD9291 and necitumumab in treating patients with EGFR-positive stage IV or recurrent 
non-small cell lung cancer (NSCLC) who have progressed on a previous EGFR tyrosine kinase  
inhibitor (TKI)

NCT02496663 Recruiting

EGFR A study of ramucirumab (LY3009806) or necitumumab (LY3012211) plus osimertinib in participants  
with lung cancer

NCT02789345 Recruiting
Vascular endothelial  
growth factor (VEGF)

VEGF Osimertinib and bevacizumab as treatment for EGFR-mutant lung cancers NCT02803203 Recruiting

JAK1 An open-label phase 1/2 study of INCB039110 in combination with osimertinib in subjects with NSCLC NCT02917993 Recruiting

BCL-2 Osimertinib and navitoclax in treating patients with EGFR-positive previously treated advanced or 
metastatic NSCLC

NCT02520778 Recruiting

ABL1/SRC Dasatinib and osimertinib (AZD9291) in advanced NSCLC with EGFR mutations NCT02954523 Recruiting 

TORC1/2 TORC1/2 inhibitor INK128 and EGFR inhibitor AZD9291 in treating patients with advanced EGFR  
mutation-positive NSCLC after progression on a previous EGFR TKI

NCT02503722 Recruiting

MET Study of safety and efficacy of EGF816 in combination with INC280 in NSCLC patients with EGFR 
mutation

NCT02335944 Recruiting

PD-1 Study of efficacy and safety of nivolumab in combination with EGF816 and of nivolumab in combination 
with INC280 in patients with previously treated NSCLC

NCT02323126 Recruiting
MET
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the serine amino acid substitution reduces the capacity for TKI 
binding. Analysis of both plasma and tissue has confirmed this 
as a mechanism of resistance to osimertinib and olmutinib  
(72, 73). C797S as a cause of rociletinib resistance has been found 
to be much lower, but emergence of other uncommon EGFR 
mutations including L798I, L692V, and E709K have been impli-
cated (23). Interestingly in preclinical models, if the activating 
mutation (del19 or L858R) is retained in the presence of C797S 
but without T790M, the tumor remains sensitive to gefitinib or 
afatinib. If T790M is present, in vitro analysis has demonstrated 
partial cetuximab sensitivity (74). Cetuximab with EAI045, a 
novel EGFR resistance mutation selective allosteric inhibitor 
was also effective in a mouse model of the triple-mutant EGFR 
L858R/T790M/C797S (75). Necitumumab is also being trialed 
in combination with osimertinib (Table  2) (NCT02496663, 
NCT02789345). Notably, brigatinib with or without the combi-
nation of an anti-EGFR antibody has demonstrated activity in 
preclinical models for the “triple-positive” tumors (76). First- 
and third-generation TKIs may also be combined effectively, 
but this is only likely if the C797S and T790M mutations occur  
in trans (77). Other acquired EGFR mutations have been reported 
by Chabon et al. including L798I, L762V, and E709K (23). EGFR 
amplification and copy number alterations are also important 
resistance mechanisms.

RAS/RAF/MeK
Cell line studies have identified the RAS pathway as important in 
emerging osimertinib resistance, including mutations in NRAS 
as well as copy number gains. The BRAF V600E mutation is 
also a known acquired resistance mutation (78). The addition of 
selumetinib (MEK inhibitor) delayed and prevented resistance in 
preclinical models and tumor regression has been documented 
in an osimertinib-resistant transgenic mouse model (79). The 

TATTON phase 1b study is a three-arm trial of TKI naive and 
pretreated patients that includes combinations of osimertinib 
with selumetinib (AZD6094), savolitinib, a MET inhibitor, and 
durvalumab (NCT02143466).

MET Amplification
MET amplification as a cause for EGFR TKI acquired resistance 
has been described in case reports and crizotinib led to a response 
in one of these (80–82). In a further study of rociletinib resistance, 
MET amplification accounted for 26% of patients. Patient-derived 
xenograft models in this study were again successfully targeted 
using crizotinib (83). Notable in the xenografts and in the case 
report by Planchard et al., selective pressure permitted the emer-
gence of MET amplifications without detectable T790M suggest-
ing that MET may induce resistance to third-generation TKIs. 
Chabon et  al. also described the preexistence of co-occurring 
MET amplification with T790M, which correlated with inferior 
responses to rociletinib (23).

immunotherapy Combinations
Although immune checkpoint inhibitors have made huge 
advances in shifting the treatment paradigm in NSCLC, their role 
in EGFR-mutant disease is unclear. The third arm of TATTON 
investigated the combination of osimertinib with durvalumab 
and has reported early data (84). Patients were treated with 
osimertinib 80 mg daily with varying dosing and scheduling of 
durvalumab. In EGFR TKI naïve patients, the RR was 70% and in 
pretreated T790M-positive patients and T790M-negative patients 
RR was 67 and 21%, respectively. The combined rate of interstitial 
lung disease was 38% and as such this arm is currently on hold. 
Similarly, the CAURAL (NCT02454933) study investigating the 
durvalumab combination versus single-agent osimertinib has 
been halted due to toxicity concerns.
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Other Resistance Mechanisms
Other potentially targetable resistance mechanisms include 
HER2 amplification, FGFR1 amplification, and the PIK3CA 
E545K mutation. Epithelial to mesenchymal transition (EMT) 
and small cell transformation are also well recognized. Preclinical 
models have successfully targeted EMT with Akt inhibitors (40). 
Navitoclax, a BCL-2 inhibitor when combined with WZ4002, 
was shown to induce greater apoptosis than with the EGFR 
TKI alone (85). A phase 1b study is accruing (NCT02520778). 
Vascular endothelial growth factor (VEGF) and EGFR pathways 
are intimately related. The upregulation of VEGF receptors may 
be responsible for EGFR resistance and combination studies 
are ongoing (86) (Table 2). Early trials have already confirmed 
the benefit of dual inhibition with bevacizumab and erlotinib  
(87, 88). One small retrospective study has suggested the possibil-
ity of rechallenging with EGFR TKIs in addition to bevacizumab 
to gain further disease control (89).

FUTURe DiReCTiOnS

It is not just the complexity of resistance mechanisms that poses 
challenges to physicians treating the EGFR mutation-positive 

population. It is also unclear as to whether third-generation 
TKIs should be used in the first-line setting or should remain 
the option for T790M resistance in the second line. The results 
of the phase III FLAURA study which compares osimertinib 
to either gefitinib or erlotinib are awaited. The ADAURA study 
will also investigate the potential role of adjuvant osimertinib in 
stage IB–IIIA resected NSCLC with and without chemotherapy. 
The roadmap of resistance continues to grow and it is very likely 
that ctDNA analysis will at least complement if not replace 
repeat tumor biopsies in building the knowledge of resistance 
mechanisms. Studies have already demonstrated the emergence 
of T790M prior to radiographic changes but whether this should 
mean a switch in TKI is uncertain at present.
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Discovery of the epidermal growth factor receptor gene mutation and the anaplastic lym-
phoma kinase chromosomal translocation in non-small cell lung cancer has prompted 
efforts around the world to identify many less common targetable oncogenic drivers. 
Such concerted efforts have been variably successful in both non-squamous and squa-
mous cell carcinomas of the lung. Some of the targeted therapies for these oncogenic 
drivers have received regulatory approval for clinical use, while others have modest 
clinical benefit. In this mini-review, several of these targets will be reviewed.

Keywords: novel, non-small cell lung cancer, advanced, mutations, chromosomal rearrangement

inTRODUCTiOn

Epidermal growth factor receptor (EGFR) activating mutations in exons 18–21 and their exceptional 
responses to its kinase inhibitors (1, 2) marked the beginning of precision medicine in non-small 
cell lung cancer (NSCLC). Randomized trials showed treatment naïve, recurrent, or metastatic 
NSCLC patients harboring these mutations, particularly for exons 19 or 21 (3–10), had improved 
median progression-free survival (mPFS), tolerability, and quality-of-life from EGFR inhibitors over 
platinum-based chemotherapy. These studies triggered ongoing research to identify novel targets 
in both non-squamous (11, 12) and squamous NSCLC (13, 14) (Table 1). Crizotinib for ROS1 and 
dabrafenib/trametinib for BRAF mutation have received and submitted for regulatory approval, 
respectively. Selected targets, excluding EGFR and ALK, which will be discussed in separate reviews, 
will be discussed.

BRAF MUTATiOnS

BRAF is a serine/threonine intracellular kinase and is activated by RAS, subsequently activates 
mitogen-activated protein kinase (MAPK). Activating BRAF mutations occur in 2–5% of NSCLC 
(15, 16). It is rare to find concurrent driver mutations, like K-RAS or EGFR (17). Activating BRAF 
mutations in NSCLC can be categorized into V600 and non-V600, in contrast to the predominance 
of V600 mutation in melanoma (15, 16). Although non-V600 BRAF mutations are more prevalent in 
heavy smokers, V600 mutants are found in never or light smokers (17). There are conflicting reports 
regarding the prognostic difference between the two subtypes (17).

BRAF inhibitors, such as vemurafenib, have shown promising preliminary benefit in V600 BRAF 
mutant, advanced NSCLC patients with a response rate (RR) of 42% and mPFS of 7.3  months 
(18). Planchard et al. (19) reported an RR of 33% and mPFS of 5.5 months with dabrafenib. Dual 
inhibition of BRAF and MEK with dabrafenib and trametinib yielded an RR of 63.2% and mPFS of 
9.7 months in 57 evaluable patients (20). Dual inhibition prevents mechanisms leading to MAPK 
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TABLe 1 | Targets, mechanism(s) of target dysregulation, associated histology, and examples of current drugs in development and corresponding phase of clinical 
development in non-small cell lung cancer.

Target Mechanism of target 
dysregulation

Histology associated example of targeted therapy Phase of clinical 
development

BRAF V600
Non-600

Adenocarcinoma Dabrafenib/trametinib
Vemurafenib ± cobimetinib

LGX 818

Awaiting approvala

I/II
I/II

DDR2 Mutation Squamous Dasatinib
Nilotinib

MGDC516

II
II
I/II

FGF1 Amplification Squamous Ponatinib
AZD4547
BGJ 398

INCB054828
JNJ-42756493

TAS120
ARQ087

Debio 1347
E7090

LY287445

II
I/II
I/II
I/II
I/II
I
I
I
I
I

HER-2 Exon 20 mutation
HER-2 amplification

Adenocarcinoma Afatinib
Dacomitinib

Trastuzumab ± pertuzumab
T-DM1

II/III and approvalb

II
II

II/III

K-RAS Point mutation Adenocarcinoma MEK inhibition:
Selumetinib
trametinib

CDK4/6 inhibitor:
Palbociclib

Abemaciclib
Ribociclib

III
I/II
I/II

II/III
I/II
I/II

MET Amplification
Exon 14

Non-squamous and squamous Crizotinib
Cabozantinib

Foretinib
Tepotinib

Capmatinib
Merestinib

Volitinib
Lorlatinib
RXDX106
PLB001

HS10241

II-approval
II
II
II
I/II
I/II
I/II

I/II/III
I
I
I

(Continued)
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pathway reactivation (21, 22), resulting in more effective growth 
inhibition. However, resistant mechanisms to dual inhibition 
may arise as a result of RAS or ERK activation or mutation 
(23, 24), epigenetic EGFR alteration (25), or overexpression of 
MCL-1 (26). Non-V600 BRAF mutants may not be as responsive 
to BRAF inhibition based on BRAF-mutated melanoma data (15, 
17, 20). There is no specific targeted therapy developed in this 
subpopulation.

DDR2 MUTATiOnS

DDR2 is a receptor kinase that binds to collagen at the discoidin 
domain leading to its activation and subsequently to cell migration, 
proliferation, and survival (27, 28). Activating DDR2 mutations 
were identified in 4% of squamous NSCLC, with the majority in 

the kinase domain. Tumor growth inhibition by dasatinib was 
observed preclinically (29). One partial response (PR), in a patient 
with S768R DDR2 mutation and wild-type EGFR, of almost 1 year 
was reported in the Phase II trial of dasatinib and erlotinib in 
advanced NSCLC (30). Another PR was reported in the Phase II 
trial of dasatinib in previously treated, advanced NSCLC (31).

A Phase II trial of dasatinib in patients with either inactivat-
ing BRAF mutations or DDR2 mutations was conducted. It was 
terminated prematurely due to intolerable dyspnea, fatigue, and 
nausea. Patients were on therapy for 9–42 days, with no observed 
response (32). Trials of dasatinib and MGCD516 in DDR2 
mutant solid tumors, including squamous NSCLC, are ongoing. 
Success in the development of DDR2 inhibitors should modulate 
the toxicity hindering adequate drug exposure and efficacy by 
careful dose and schedule selection.
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Target Mechanism of target 
dysregulation

Histology associated example of targeted therapy Phase of clinical 
development

NTRK Translocation
Point mutation

Adenocarcinoma Entrectinib
LOXO-101
AZD7451
DS 6051b
MGCD516
PLX 7486
TPX00005

II
I/II
I
I
I
I
I

P3K/AKT/mTOR PI3K mutation
AKT mutation

Squamous cell carcinoma PI3K inhibitor:
Pan inhibitor:

Buparlisib
Copanlisib

GSK2126458
MNL1117

XL147
CUDC-927 (HADC)

PKB inhibitor:
AZD8186

Alpelisib (BLY719)
BGT 226
GDC0084

PI3K/mTOR inhibitor:
BEZ 235
DS 7423

LY3023414
PF 04691502

VX-5584
XL 765

AKT inhibitor:
Ipatasertib (GDC 0068)

AZD 5363
GSK 2141795

LY2780301
Afuresertib
ARQ 092
ARQ 751

BAY 1125976
ONC201

mTOR inhibitor:
Temsirolimus
Everolimus

Vistusertib (AZD 2014)
AZD 8055
BI 860585
CC-223

GDC 0349
ME-344

P70/S6K inhibitor:
LY2584701

MSC 2363318A

II
II
II
II
I
I
I
II
I
I

I/II
I
I
I
I
I
II
I/II
I/II
I/II
I
I
I
I
I
II
II
I/II
I
I
I
I
I
I
I
I
I
I
I

I
I

RET Translocation Adenocarcinoma Cabozantinib
Lenvatinib
Ponatinib

Vandetanib
BLU667

II
II
II
II
I

ROS1 Translocation Adenocarcinoma Crizotinib
Cabozantinib

Ceritinib
Entrectinib
Lolatinib

DS 6015b
TPX0005

Approval
II
II
I/II
II
I
I

aDabrafenib and trametinib combination has received approval from EMEA in February 2017 and has been submitted to the FDA for approval.
bAfatinib has regulatory approval for EGFR mutation positive, treatment naïve, advanced NSCLC, and previously treated squamous cell carcinoma by the FDA and EMEA.
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FGFR PATHwAY ABeRRATiOnS

The FGF pathway consists of four receptors, FGFR1-4, and 18 
ligands. Activation of the pathway leads to downstream activation 
of the RAS/RAF/MAPK, PI3K/AKT/mTOR, STAT, and PLCγ, 
which cause cell growth, proliferation, differentiation, migration, 
and survival (33). Pathway dysregulation can result from over-
expression of either FGFs or their receptors, alternative splicing 
receptor isoforms, impaired downregulation, and degradation of 
activated FGF signal, FGFR gene amplification, point mutations, 
or chromosomal translocations (34). FGFR1 amplification is 
found in 10–25% of squamous NSCLC, commonly in smokers 
(35, 36). Whether FGFR1 amplification is prognostic remains 
controversial (36, 37).

An RR of 11.1% and disease-control rate (DCR) of 50% were 
reported in 36 FGFR1-amplified squamous NSCLC patients 
treated with BGJ398 (38). In the dose expansion cohort of the 
Phase 1 erdafitinib (JNJ-42756493) study, no response was 
observed (39). The criterion for FGFR1 amplification was not 
specified in either trial (38, 39). Two studies of AZD4547 reported 
0/4 and 1/14 PR in evaluable FGFR1-amplified NSCLC, respec-
tively. The responder had high FGFR1 amplification, defined as 
FGFR1:CEP8 ≥ 2.8 (40, 41).

It is premature to declare that FGFR1 amplification is not 
a driver mutation. Clinically significant toxicity from FGFR-
targeted agents may occur at doses below which adequate growth 
inhibition of amplified FGFR1 tumors can be achieved. It is still 
unknown if FGFR1 amplification translates to overexpression or 
activation of the receptor. The definition of FGFR1 amplifica-
tion needs to be refined, as in MET amplification and crizotinib 
efficacy (42).

Chandrani et  al. reported that 5.5% of adenocarcinoma 
NSCLC harbor FGFR3 mutations at S249C, which was previously 
described in squamous NSCLC, and G691R which are sensitive 
to FGFR kinase inhibition in preclinical models. The clinical 
relevance will be established by future clinical trials (43).

HeR-2 MUTATiOnS AnD AMPLiFiCATiOn

HER-2 is a member of the EGFR family. The most common 
HER-2 mutation is exon 20 in-frame deletion or insertion 
between codons 776–779 (44, 45), which occur in 1.7–9% of 
all adenocarcinoma NSCLC (44–47). The length of insertion 
or deletion is heterogeneous (48). They are most commonly 
found in females and non-smokers. HER-2 exon 20 mutation or 
amplification leads to HER-2 phosphorylation, RAS/RAF/MAPK 
and PI3K/AKT/mTOR activation, and subsequent cell growth, 
proliferation, survival, and metastasis.

Six patients with HER-2 3+ or amplification had an RR of 
83% and mPFS of 8.5 months as compared to an RR of 41% and 
mPFS of 7.0 months in those without after cisplatin/gemcitabine/
trastuzumab treatment (49). A retrospective series of metastatic, 
HER-2 exon 20 mutant NSCLC reported DCRs of 93 and 100% 
after trastuzumab (N = 15) and afatinib (N = 3), respectively (46). 
A Phase II study of dacomitinib in 30 NSCLC with HER-2 aberra-
tions reported an RR of 12% in those with exon 20 mutation and 
no response in those with amplification (50). The Phase II study 

of afatinib in 7 exon 20 mutant NSCLC had a DCR of 71% with 1 
unconfirmed PR (uPR) (51). The ETOP NICHE trial of afatinib 
in HER-2 exon 20 mutant NSCLC reported a disappointing DCR 
at 12-week of 54% and mPFS of 13 weeks (52).

Phase II trials of ado-trastuzumab emtansine in HER-2 
exon 20 or point mutations and HER-2 2+/3+ overexpressed 
NSCLC reported an RR of 6/18 and 10/49 with mPFS of 4 and 
2.7 months, respectively (53, 54). The preliminary result of the 
ongoing MyPathway trial of trastuzumab and pertuzumab, 
targeting HER-2 dimerization, reported an ORR of 13 and 
19% in 16 HER-2-amplified and 12-mutated NSCLC patients, 
respectively (55).

The benefit of HER-2-targeted therapeutics is modest. It is 
plausible that HER-2 exon 20 mutation and amplification repre-
sent two distinct molecular and therapeutic entities. There may be 
biological and therapeutic differences to HER-2-targeted agents 
based on the length of HER-2 exon 20 insertion or deletion (56). 
The full clinical and molecular data from these trials may help to 
elucidate the best treatment strategies to these subpopulations of 
HER-2 gene aberrant NSCLC.

K-RAS MUTATiOnS

K-RAS is a member of the guanosine triphosphate gene super-
family. Upon activation by upstream receptors or point mutations 
at codons 12, 13, 14, or 60/61, K-RAS activates RAF/MAPK and 
PI3K/AKT/mTOR. These pathways regulate cell proliferation, 
growth, motility, and apoptosis (57).

K-RAS is mutated in 20–30% of NSCLC, predominantly in 
adenocarcinoma, non-Asians, and smokers. The incidence of 
K-RAS mutations may correlate with the amount of cigarettes 
smoked (11, 57). The majority of K-RAS mutations in NSCLC 
are at codon 12 (58). In a meta-analysis (59), K-RAS muta-
tion was associated with poorer prognosis (HR  =  1.45, 95% 
CI: 1.29–1.62), particularly in adenocarcinoma and early-stage 
NSCLC. It remains controversial if K-RAS mutation is predic-
tive of platinum-based palliative chemotherapy efficacy (57), 
but it is associated with resistance to EGFR inhibitors. It is 
unclear if K-RAS mutation predicts efficacy to EGFR antibody 
(60–62), and if K-RAS transversion and transition mutations 
have different biology and thus therapeutic strategy and out-
come (63, 64).

Targeting K-RAS mutation remains elusive. RAS attaches 
to the cell membrane for activation of downstream pathways 
via isoprenylation by farnesyltransferase. Alternatively, this is 
achieved by adding geranyl group by geranylgeranyltransferase I,  
particularly for K-RAS and H-RAS. Farnesyltransferase inhibi-
tors failed possibly due to this geranylgeranyltransferase pathway 
(57, 65).

Current therapeutic approaches to K-RAS mutations in 
NSCLC focus on either the RAF/MAPK pathway or novel K-RAS 
biology. The MAPK pathway converges at MEK, which in turn 
activates ERK1/2. Targeting MEK will be expected to be effec-
tive in inhibiting the MAPK pathway, regardless of the upstream 
stimulatory signal. Despite encouraging Phase II results, the Phase 
III trial of docetaxel/selumetinib, an allosteric MEK1/2 inhibi-
tor, combination over docetaxel alone in platinum-pretreated, 
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advanced K-RAS mutant NSCLC (66), failed to confirm any 
survival improvement (67).

RAS activation drives G1/S cell cycle transition via cyclin-
dependent kinase 2 and 4 (CDK2/4), induces cyclin D1, and 
downregulates the cdk inhibitor, p27KIP. Cycle D1 activates 
CDK4/6, which in turn phosphorylates retinoblastoma protein, 
leading to G1/S transition (68). K-ras mutant NSCLC animal 
models were particularly sensitive to CDK4/6 inhibition (69, 70). 
Synergistic antitumor activity was observed with trametinib and 
CDK4/6 inhibitor because MEK or ERK activation leads to cyclin 
D1 expression (71). A number of CDK4/6 inhibitors as single 
agent or in combination with MEK inhibitors are being studied 
in this population (72).

MeT MUTATiOn AnD AMPLiFiCATiOn

MET is a receptor kinase and is activated by its ligand, hepatocyte 
growth factor, which plays a role in cell growth and development. 
It subsequently activates downstream RAS/RAF/MAPK, PI3K/
AKT/mTOR, WNT/β-catenin, and STAT, promoting mitogen-
esis, motility, invasion, and morphogenesis (73, 74).

MET point mutation is detected in 3–4% of NSCLC. The most 
common is exon 14 splicing mutation (METex14) in 2–3% of 
NSCLC, who are older than 70 with non-squamous histology 
(sarcomatoid  >  adenosquamous and adenocarcinoma) and 
smokers. METex14 can have concurrent MET amplification, 
defined as MET/CEP7 ratio > 5.0 (75, 76). METex14 corresponds 
to the juxtamembrane domain, which is involved in its degrada-
tion by ubiquitin ligase, Cbl, leading to increase in MET activity 
(74, 77). METex14 alteration is highly variable, making it different 
to diagnose and predict therapeutic benefit (78). There has been 
encouraging preliminary antitumor activity of MET inhibitors 
in METex14 NSCLC (74), like an RR of 44 and 28% uPR after 
crizotinib (79).

It is challenging to define MET amplification. A recent study 
suggested the MET/CEP7 ratio  >  5 as a sensitive and specific 
diagnostic test for MET amplification with low oncogenic driver 
overlap and highly predictive of crizotinib efficacy. These patients 
were mainly female and ex-smoker. High MET gene copy number 
was identified in 33% of adenocarcinoma NSCLC, however, none 
responded to MET inhibitor (80). The Phase II study of crizotinib 
in advanced NSCLC harboring MET amplification reported RR 
in low (>1.8–<2.2), intermediate (>2.2–<5) and high (>5) MET/
CEP7 ratios of 0, 20, and 50%, respectively (42). It is important to 
determine MET amplification in non-responding EGFR mutants 
to EGFR inhibitors, as 2% of them have concurrent MET ampli-
fication (81).

Clinical development of MET inhibitors in MET aberration 
positive and in combination with EGFR inhibitors in EGFR 
mutant NSCLC is ongoing. This latter strategy may delay the 
emergence of MET amplification and thus prolong clinical 
benefit to EGFR inhibitors. Caution should be exercised in 
patient selection. Onartuzumab, MET antibody, or ARQ-197, 
MET kinase inhibitor, combined with erlotinib failed to improve 
survival in either unselected or non-squamous NSCLC with 
or without wild-type EGFR (82–84). Exploratory analysis 

found EGFR mutants had a trend toward poorer survival with  
onartuzumab/erlotinib (82).

nTRK MUTATiOn AnD CHROMOSOMAL 
TRAnSLOCATiOn

The NTRK family kinases, NTRK1–3, are activated by ligands 
from neurotrophin growth factor family. They are involved in 
neuronal development (85, 86). They subsequently activate 
downstream PI3K/AKT/mTOR, RAS/RAF/MAPK, PLC-γ, 
and protein kinase C, leading to cell proliferation, survival, 
and growth (86, 87). In addition, NTRK overexpression is 
prognostic (85, 88, 89). NTRK activation can result from trans-
location of the NTRK kinase to a transcription factor. NTRK1, 
NTRK2, and NTRK3 translocations account for 3.5, 0.2–1, 
and 1%, respectively, of adenocarcinoma NSCLC (87). NTRK1 
and NTRK2 mutations were identified primarily in large cell 
carcinoma (85, 87).

Due to the structural similarity in the kinase domain 
of NTRK, ROS1, and ALK, several pan-inhibitors, such as 
entrectinib, LOXO101, and TPX-0005, are in clinical investiga-
tion. Initial Phase 1 studies reported encouraging preliminary 
antitumor activity and tolerability (87, 90). Identifying the 
primary and secondary resistant mechanisms, based on the 
understanding from ALK and ROS1, will help to improve  
the efficacy of current inhibitors and identify novel therapeutics, 
not limited to NTRK inhibitors targeting gatekeeper or solvent 
front mutation.

PiK3CA/AKT/PHOSPHATASe AnD 
TenSiOn HOMOLOG (pTen)/mTOR 
PATHwAY Gene ABeRRATiOnS

The PI3K/AKT/mTOR pathway is often activated in human can-
cers, leading to tumor proliferation, growth, and survival (91–93). 
There are three classes of PI3K. PIK3CA are heterodimers of a 
single p85 regulatory subunit, and one of the four isoforms of 
p110 catalytic subunits (α, β, γ, and δ). Different p110 subunit 
is preferentially expressed in different normal and malignant 
tissues. PIK3CA can be activated by upstream growth factor 
receptors, followed by AKT/mTORC1/p70S6K, which exerts a 
negative feedback on activated PIK3CA. In addition, tumor sup-
pressor pTEN is a key negative regulator to PI3K/AKT/mTOR 
activation at PIK3CA (91, 94).

Several PI3K pathway activation mechanisms have been 
documented in NSCLC. Activating mutations in the exon 9 
helical and exon 20 kinase domains are uncommon (92, 93, 95, 
96). Amplification or polysomy is the predominant mechanism  
(92, 93). PIK3CA genetic alterations are thought to be more 
pivotal in squamous NSCLC pathogenesis. A study screening 
NSCLC, SCLC, extrapulmonary small cell cancer cell lines, and 
resected NSCLC identified PIK3CA gain in 33.1 and 6.2% of squa-
mous and adenocarcinoma, respectively (92). Squamous NSCLC 
with PI3K family gene aberrations had inferior median overall 
survival (mOS) (8.5 versus 19.1  months, p  <  0.0001), higher 
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incidence of brain metastases, especially those with truncated 
pTEN loss (27 versus 11%, p <  0.0001), higher overall disease 
burden and genomic heterogeneity between the metastatic and 
primary tumors (37).

AKT consists of three isoforms, AKT1–3. Activating mutation, 
E17K in exon 4 kinase domain, accounts for 1–7% of all NSCLC 
(97, 98) with the majority being squamous NSCLC (99). Loss 
of pTEN expression occurred in up to 75% of NSCLC either by 
allelic loss (10–20%) (100, 101) or gene methylation (100, 102). It 
is postulated that pTEN loss leads to PIK3CAβ and downstream 
pathway activations.

Therapeutics targeting this pathway are currently in progress. 
Preliminary single agent antitumor activity has been disap-
pointing. Toxicity, including hyperglycemia and GI toxicity, at 
least in part, limits the delivery of the optimal dose or schedule 
and thus antitumor activity. Inhibition of specific PIK3CA or 
AKT isoform leads to compensatory activation of other iso-
forms, limiting the antitumor activity. Due to extensive negative 
feedback loops, inhibition of a component leads to rebound 
activation of the pathway upstream (103). Ongoing studies to 
fully understand how to best target these genetic alterations, 
particularly in squamous NSCLC, with single agents, such as the 
LUNG MAP trial, or in combination with other complementary 
pathways, such as EGFR, HER-2, BRAF, may help optimize their 
efficacy.

ReT CHROMOSOMAL TRAnSLOCATiOn

RET is a kinase receptor for the giant cell-derived neurotrophic 
factor ligand. Binding of ligand leads to activation of RAS/
RAF/MAPK, PI3K/AKT/mTOR, and PLC-γ, which regulate 
cell proliferation, migration, and differentiation. RET is 
important for renal organogenesis and enteric nervous system 
development (104).

RET was first determined to be oncogenic through the identi-
fication of interchromosomal translocation or intrachromosomal 
inversion in papillary thyroid cancer (105). Subsequently, RET 
chromosomal rearrangement was identified in NSCLC. The most 
common 5′ partner of the fusion oncogene is kinesin family 
member 5B, which is translocated to the kinase domain, leading 
to activation (106–110).

RET translocation is reported in 1–2% of NSCLC samples and 
are usually younger than 60, non-smoker, equally distributed in 
males and females and in mixed or solid adenocarcinoma. Over 
30% have signet ring features (106–110).

Preliminary antitumor activity in Phase II trials with cabo-
zantinib (111) and vandetanib (112, 113) demonstrated an RR 
of 18–47% and mPFS of 4.5–8 months. A global RET inhibitors 
registry reported an RR of 26% and mPFS of 2.3 months (114). 
The modest benefit from these multitargeted RET inhibitors may 
be related to subtherapeutic RET inhibition due to toxicity arising 
from inhibition of other targets. The heterogeneity of RET fusion 
partners and concurrent driver mutations may also impact the 
sensitivity to RET inhibitors. Highly selective RET inhibitors and 
better understanding of the biological differences in the fusion 
partners and concurrent mutations may help to improve the 
outcome of this NSCLC subtype.

ROS-1 CHROMOSOMAL 
TRAnSLOCATiOn

ROS is a kinase receptor in the insulin receptor superfamily. 
Rearrangement occurs in 1–2% of non-squamous NSCLC  
(115, 116). ROS-1 chromosomal rearrangement leads to 
STAT3, PI3K/AKT/mTOR, and RAS/RAF/MAPK activation, 
followed by cell growth, proliferation, and survival (117). 
ROS-1 translocation NSCLC patient is described to be young, 
female, non-smoker, and with advanced stage adenocarcinoma  
(115, 117–120). The 5′ partners and the breakpoints of the ROS1 
gene are variable (115, 116), which may impact on the biology 
and benefit to therapy.

The RR of 72%, mPFS of 19.2  months, and 1-year OS rate 
at 85% in 50 ROS-1 translocation NSCLC patients treated with 
crizotinib led to recent regulatory approval (121). Based on 77% 
homology in ALK and ROS-1, especially the kinase domain (121), 
ALK inhibitors are potentially efficacious. The Phase II study of 
ceritinib had an RR of 84% and mPFS of 19.3 months (122). In 
addition, pemetrexed-based chemotherapy may be effective, as 
ROS1 NSCLC have low thymidylate synthase mRNA levels (123). 
Further clinical validation is needed.

Overall, ROS1-rearranged NSCLC may have better prog-
nosis with mOS of 36  months after standard chemotherapy 
and exceeding 5 years with chemotherapy and crizotinib. The 
incidence of brain metastases may be lower (123). Ongoing 
development of novel ROS1 inhibitors or combination to 
improve the benefit and to overcome resistance is important. It 
is conceivable that the resistant mechanisms to ROS1 inhibition 
parallel to those to ALK (124), such as secondary kinase domain 
mutations (125–127), which are sensitive to cabozantinib and 
lorlatinib, KIT mutation (128), RAS or EGFR pathway activa-
tion (129, 130).

COnCLUSiOn

Multiple driver mutations have been identified in non-squamous 
and squamous NSCLC. There is regulatory approval of EGFR-, 
ALK-, ROS-1-, and BRAF-targeted agents. Benefits from thera-
pies to other targets are preliminary.

To bring targeted therapeutics into the clinic, emphasis 
should be made on careful selection of true drivers. The criteria 
remain to be defined (131). Early clinical development efforts 
to identify and validate the most predictive biomarkers are key. 
With increasing number of driver mutations and therapies, and 
limited diagnostic tissues in advanced NSCLC, it is important 
to optimize diagnostic tissue accruement, minimize unnecessary 
pathological tests, and implement multiplex mutation analysis. 
The latter approach and basket trials, such as the LUNG MAP 
trial, exploring multiple targets simultaneously, can reduce the 
number and risk of biopsy, increase enrollment, and improve 
clinical trial efficiency.

Continual basic, translational, and clinical investigations are 
crucial to understand the targets, their resistance mechanisms, 
and corresponding therapies. For treatment tumor or plasma 
biopsies are necessary.
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Purpose: Non-small-cell lung cancer (NSCLC) has a large worldwide prevalence with a 
high mortality rate. Chemotherapy has offered modest improvements in survival over the 
past two decades. Immune checkpoint modulation with programmed death-1 (PD-1) 
or programmed death-ligand 1 (PD-L1) inhibition has shown the promise of changing 
the future landscape of cancer therapy. This update reviews recent advances in the 
treatment of NSCLC with immune checkpoint modulation.

Methods: Publications and proceedings were identified from searching PubMed and 
proceedings from the annual meetings of the American Society of Clinical Oncology, 
European Society for Medical Oncology, and European Lung Cancer Conference.

Results: Atezolizumab, nivolumab, and pembrolizumab increase overall survival in 
second-line treatment of Stage III/IV squamous and non-squamous NSCLC when 
compared to docetaxel. Pembrolizumab increases progression-free survival in the 
first-line treatment of Stage IV NSCLC with 50% PD-L1 expression when compared to 
platinum-based chemotherapy. Combination therapy with chemotherapy and cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4) inhibitors has shown promise in early trials.

Conclusion: Immune checkpoint modulation produces durable responses and overall 
survival benefits with less toxicity compared to conventional chemotherapy. Future inves-
tigations are combining PD-1/L1 inhibition with chemotherapy, targeted therapy, or other 
immuno-oncology agents in an effort to further improve efficacy.

Keywords: non-small-cell lung cancer, immuno-oncology, programmed death-1, programmed death-ligand 1, 
CTLA-4

iNTRODUCTiON

More than 100 years of research in the field of cancer immunotherapy has produced several modali-
ties capable of producing clinical response (1). Most notably, immune checkpoint modulation has 
shown the promise of changing the future landscape of cancer therapy through its durable clinical 
responses (2–4) and safety profiles of some agents that are either milder and/or more manageable 
compared to traditional anti-neoplastic therapies (5). Cytotoxic T-lymphocyte-associated protein 4 
(CTLA-4), the first immune checkpoint receptor to be clinically targeted, is exclusively expressed 
on the surface of CD4+ and CD8+ T cells in lymphatic tissue and is involved in T-cell regulation, 

http://www.frontiersin.org/Oncology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2017.00067&domain=pdf&date_stamp=2017-04-06
http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
https://doi.org/10.3389/fonc.2017.00067
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:juergensr@hhsc.ca
https://doi.org/10.3389/fonc.2017.00067
http://www.frontiersin.org/Journal/10.3389/fonc.2017.00067/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2017.00067/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2017.00067/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2017.00067/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2017.00067/abstract
http://loop.frontiersin.org/people/406168


50

Iafolla and Juergens Update in Immuno-Oncology in Metastatic NSCLC

Frontiers in Oncology | www.frontiersin.org April 2017 | Volume 7 | Article 67

proliferation, and tolerance (6). The repertoire of immune modu-
lation was expanded with the advent of programmed death-1 
(PD-1) immune checkpoint inhibitor antibodies, which restores 
T-cell effector function and augments the host anti-tumor 
response by blocking the binding of either programmed death-
ligand 1 (PD-L1) and/or PD-L2 to PD-1 receptors (7).

Following the clinical success of treating melanoma with 
immune checkpoint modulation (8), trialists have expanded the 
application of checkpoint inhibitors to multiple tumor types, 
including lung cancer (9). Globally, 1.8 million new diagnoses 
of lung cancer occurred in 2012; with a mortality rate of nearly 
90%, lung cancer is the first and second cause of cancer mortality 
in men and women, respectively (10). Eighty-five percent of lung 
cancers are non-small-cell lung cancer (NSCLC), further divided 
into non-squamous (70%) and squamous (30%) histologic sub-
types (11). Metastatic disease is present in 50% of new NSCLC 
diagnoses (12, 13), which harbors an untreated median overall 
survival (mOS) of 4.0 months (14) and a metastatic 5-year survival 
rate ranging from 2 to 9% (15). Although mortality has improved 
with the use of targeted drugs for driver mutations (16–20), few 
patients harbor these mutations and resistance to targeted treat-
ment frequently occurs (21). Currently, NSCLC has numerous 
checkpoint inhibitors being evaluated for clinical efficacy (22). The 
possible treatment of NSCLC is being further enriched through 
the addition of other immune modulation targets and combina-
tion therapy. At present, the Food and Drug Administration has 
approved three immuno-oncology agents for the treatment of  
NSCLC: atezolizumab, nivolumab, and pembrolizumab in the 
relapsed, refractory setting as well as pembrolizumab for the first- 
line treatment of metastatic NSCLC with a tumor proportion 
score (TPS) ≥50%. This update will offer guidance into the cur-
rent application and pending developments for treatment NSCLC 
with immune modulating pharmacotherapy.

MeTHODS

Current studies investigating the use of immune checkpoint mod-
ulation in NSCLC were reviewed by searching PubMed (January 
1, 2015 to December 30, 2016) using the following search terms: 
non-small-cell lung cancer and immune checkpoint modulation 
(or aliases). Any proceedings from the American Society of Clini- 
cal Oncology (ASCO) (2015–2016), European Society for Medical 
Oncology (ESMO) (2015–2016), and European Lung Cancer 
Conference (ELCC) (2015–2016) annual meetings involving both 
NSCLC and immune checkpoint modulation were reviewed. 
Table 1 summarizes the search results and each trial’s pertinent 
characteristics.

ReSULTS

Third Line
CheckMate 063 is a Phase 2, open-label, global, multicenter, 
single-arm trial investigating the use of nivolumab, a fully human 
immunoglobulin G4 (IgG4) monoclonal antibody that selectively 
inhibits the PD-1 receptor, dosed 3 mg/kg every 2 weeks (n = 117) 
in patients with either Stage IIIb/IV squamous NSCLC who have 

received prior platinum-doublet and one additional systemic 
treatment. Treatment with nivolumab continued until progres-
sive disease (PD) or an unacceptable treatment-related adverse 
event (TRAE), although treatment beyond PD was permitted 
as per protocol. The primary endpoint was overall response rate 
(ORR) by independent radiology review (per RECIST v1.1). The 
ORR was 14.5% (95% CI 9–22). mOS was 8.2 months (95% CI 
6.1–10.9), with 12-month OS and 18-month OS rates of 39%  
(95% CI 30–48) and 27% (95% CI 19–35), respectively. TRAE 
of any Grade occurred in 75% of patients, Grade 3–4 TRAEs 
occurred in 17%, TRAE lead to nivolumab discontinuation in 12%,  
and death occurred in two patients secondary to nivolumab, 
although these patients had multiple comorbidities in the set-
ting of PD (23, 24). These results are similar to those obtained 
from two smaller Japanese trials (25). To put this in historical 
perspective, a retrospective analysis looking at third-line treat-
ment (58% received cytotoxic chemotherapy, 42% EGFR received 
tyrosine kinase inhibitors) in patients who had not received any 
immunotherapy found a 6.5-month mOS, 3.4-month median 
progression-free survival (mPFS), and 8% ORR (26).

Second Line
CheckMate 017 is a Phase 3, global, multicenter, open-label, 1:1 
randomized trial comparing nivolumab 3 mg/kg every 2 weeks 
(n = 135) or docetaxel 75 mg/m2 every 3 weeks (n = 137) in patients 
with Stage IIIb/IV squamous NSCLC histology that recurred or 
progressed following prior platinum-doublet therapy. Treatment 
continued until PD or unacceptable toxicity, and treatment  
beyond PD was allowed. The primary endpoint was OS. Nivolumab 
had an mOS of 9.2 months (95% CI 7.33–12.62) versus docetaxel 
with 6.0 months (95% CI 5.29–7.39). The risk of death was 41% 
lower with nivolumab versus docetaxel [hazard ratio (HR) 0.59, 
95% CI 0.44–0.79; p < 0.001]. The ORR with nivolumab was 20 
versus 9% with docetaxel. PD-L1 expression stratified to 1, 5, and 
10% was not predictive of benefit. Nivolumab had less TRAEs 
compared to docetaxel: TRAEs of any grade were reported in 
59 versus 87% of patients, respectively, and Grades 3–4 TRAEs 
were reported in 8 versus 56% of patients, respectively. Study 
discontinuation due to a TRAE was reported for 5% of nivolumab 
versus 10% of docetaxel patients. No treatment-related deaths 
occurred with nivolumab and two deaths occurred in patients 
receiving docetaxel that were determined to be treatment-related 
(27). This efficacy is similar to the single-arm CheckMate 063 
results (23). OS was updated at the ASCO 2016 Annual Meeting: 
the 1- and 2-year OS for nivolumab was 42 and 23%, respectively, 
in comparison to 24 and 8% for docetaxel (28).

CheckMate 057 is a Phase 3, global, multicenter, open-label, 
1:1 randomized trial comparing nivolumab 3 mg/kg every 2 weeks 
(n  =  292) to docetaxel 75  mg/m2 every 3  weeks (n  =  290) in 
patients with Stage III/IV non-squamous NSCLC that recurred 
or progressed on platinum-doublet chemotherapy. Treatment 
continued until PD or discontinuation due to toxicity; treatment 
beyond PD was permitted per protocol. This study met its pri-
mary endpoint of OS, with nivolumab mOS 12.2 months versus 
docetaxel 9.4 months, yielding a 27% reduction in risk of death  
(HR 0.73; p  =  0.002) and improved ORR (19 versus 12%; 
p = 0.02). Using pre-defined PD-L1 expression levels of ≥1, ≥5, 

http://www.frontiersin.org/Oncology/
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and ≥10% from archival tumors, nivolumab showed improved 
efficacy across all endpoints. PD-L1 expression predicted the ben-
efit of nivolumab, even at the lowest expression level of 1%. mOS 
approximately doubled with nivolumab versus docetaxel across 
PD-L1 expression levels; conversely, survival was equivocal with 
negative PD-L1 expression. Grades 3–4 TRAEs occurred in 10 
and 54% of nivolumab and docetaxel patients, respectively. There 
were no nivolumab-related deaths, whereas docetaxel led to one 
death. Subsequent systemic therapy was given to 42.1 and 49.7% 
of nivolumab and docetaxel patients, respectively (29). Investiga- 
tors at the ASCO 2016 Annual Meeting presented an update to the 
1- and 2-year OS for nivolumab noting 51 and 29%, respectively, 
in comparison to 39 and 16% for docetaxel (28).

Keynote 010 is Phase 2/3, global, multicenter, open-label, 
randomized, controlled study to evaluate the safety and efficacy 
of pembrolizumab, a humanized monoclonal IgG4 antibody 
that selectively inhibits the PD-1 receptor. Patients with NSCLC 
and tumor cell PD-L1 expression ≥1% who progressed after 
 platinum-doublet chemotherapy were randomized 1:1:1 to receive 
pembrolizumab 2  mg/kg (n  =  345), pembrolizumab 10  mg/kg 
(n = 346), or docetaxel 75 mg/m2 (n = 343) every 3 weeks; no 
crossover was allowed. Treatment was continued for 24 months, 
or until PD or discontinuation due to toxicity; treatment 
beyond PD was allowed. The primary endpoints were OS and 
 progression-free survival (PFS) (by independent radiology review 
as per RECIST v1.1) in both all patients and those with PD-L1 
expression ≥50% of tumor cells (TCs) from either archival or 
new biopsies. Compared to docetaxel, risk of death was decreased 
with both pembrolizumab 2 mg/kg (HR 0.71, 95% CI 0.58–0.88; 
p = 0.0008) and pembrolizumab 10 mg/kg (HR 0.61, 0.49–0.75; 
p  <  0.0001). Patients with PD-L1 expression ≥50% had better 
mOS with pembrolizumab 2 mg/kg (14.9 versus 8.2 months; HR 
0.54, 95% CI 0.38–0.77; p = 0.0002) and pembrolizumab 10 mg/kg  
(17.3 versus 8.2 months; HR 0.50, 95% CI 0.36–0.70; p < 0.0001) 
versus docetaxel. Grades 3–5 TRAEs were less common with 
pembrolizumab versus docetaxel: 13, 16, and 35% for those treated 
with pembrolizumab 2 mg/kg, pembrolizumab 10 mg/kg, and doc-
etaxel, respectively (30). Investigators at the ASCO 2016 Annual 
Meeting presented an update on the patients with 1–49% PD-L1  
expression: OS was longer for both pembrolizumab 2  mg/kg 
(9.4  months) versus docetaxel (8.6  months) (HR 0.79, 95% CI 
0.61–1.04) and pembrolizumab 10 mg/kg (10.8 months) versus 
docetaxel (8.6 months) (HR 0.71, 0.53–0.94) (31).

The OAK study is a Phase 3, global, multicenter, open-label, 
randomized, controlled study to evaluate the efficacy and safety 
of atezolizumab, a humanized IgG1-kappa monoclonal antibody 
that binds PD-L1 and inhibits PD-L1/PD-1 and PD-L1/B7.1 
interactions (32). Patients with Stage IIIb/IV or recurrent non-
squamous NSCLC following failure of platinum-based treatment 
were randomized 1:1 to receive either fixed dose atezolizumab 
1,200  mg (n  =  425) or docetaxel 75  mg/m2 (n  =  425) every 
3  weeks; no crossover was allowed. Treatment continued until 
disease progression or unacceptable toxicity occurred; treatment 
beyond PD was allowed. The study had co-primary endpoints of 
OS in the full study population, in addition to OS in patients with 
PD-L1 expression ≥1% of TCs or tumor-infiltrating immune cells 
(IC) by the Ventana SP142 assay. mOS was significantly longer Ty
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for atezolizumab versus docetaxel (13.8 versus 9.6 months, strati-
fied HR 0.73, 95% CI 0.62–0.87; p = 0.0003), and had 12- and 
18-month OS of 55 versus 41% and 40 versus 27%, respectively. OS 
was significant regardless of presence of PD-L1 expression: 55%  
of patients had PD-L1 expression ≥1% and had OS of 15.7 months 
versus docetaxel 10.3 months (stratified HR 0.74, 95% CI 0.58–
0.93; p = 0.0102); 45% of patients had no TC or IC with PD-L1 
expression with a respective OS of 12.6 months versus docetaxel 
8.9 months (HR 0.75, 95% CI 0.59–0.96; p = 0.0215); and 16% 
of patients had high TC (≥50%) or IC (≥10%) PD-L1 expres-
sion and had OS of 20.5  months versus docetaxel 8.9  months 
(HR 0.41, 95% CI 0.27–0.64; p < 0.0001). Further, OS was also 
significant regardless of NSCLC histology: non-squamous 
NSCLC had OS of 15.6  months versus docetaxel 11.2  months 
(HR 0.73, 95% CI 0.60–0.89; p = 0.0015); squamous NSCLC had 
OS of 8.9 months versus docetaxel 7.7 months (HR 0.73, 95% CI 
0.54–0.98; p = 0.0383). Five percent of the atezolizumab group 
went on to receive subsequent immunotherapy versus 17% in the 
docetaxel group. Atezolizumab was well tolerated: only 15% of 
patients treated with atezolizumab had Grades 3–4 adverse events 
compared to 43% of the patients treated with docetaxel (33).

First Line
Keynote 024 is Phase 3, global, multicenter, open-label, 1:1 ran- 
domized trial comparing fixed dose pembrolizumab 200  mg 
every 3 weeks (n = 154) to the investigator’s choice of five differ-
ent platinum-based chemotherapy regimens (n = 150) in patients 
with both squamous and non-squamous Stage IV NSCLC who 
have not received prior systemic therapy for their metastatic dis-
ease and have PD-L1 expression on ≥50% of TCs. Treatment with 
pembrolizumab and platinum-based chemotherapy continued 
for a total of 35 cycles (~2 years) and 4–6 cycles, respectively, or 
until the patient had radiologic disease progression or unaccep-
table toxicity. Pemetrexed maintenance was allowed for patients 
with non-squamous histology. Crossover from chemotherapy to 
pembrolizumab was allowed if PD occurred. The primary end 
point was PFS (by independent radiology review as per RECIST 
v1.1). mPFS was longer for pembrolizumab versus chemotherapy 
(10.3 versus 6.0 months) and disease progression or death was 
significantly better for pembrolizumab (HR 0.50, 95% CI 
0.37–0.68; p < 0.001). mOS has yet to be reached; however, the 
6-month OS for pembrolizumab versus chemotherapy was 80.2 
and 72.4%, respectively (HR 0.60, 95% CI 0.41–0.89; p = 0.005). 
Pembrolizumab had fewer TRAEs of any grade compared to 
chemotherapy (73.4 versus 90.0%), less grade 3–5 TRAEs (26.6 
versus 53.3%), and although had higher rates of immune-TRAEs 
(29.2 versus 4.7%) most were grade 1–2 severities and did not lead 
to any deaths. The second interim analysis by the data and safety 
monitoring committee determined that the benefit of pembroli-
zumab was large enough to warrant stopping the trial and offer 
the chemotherapy group pembrolizumab (34).

CheckMate 026 is a Phase 3, global, multicenter, open-label, 
1:1 randomized controlled trial comparing nivolumab 3  mg/kg 
every 2 weeks (n = 271) to the investigator’s choice of platinum-
based doublet chemotherapy (n = 270) in patients with Stage IV 
or recurrent squamous and non-squamous NSCLC who have 

not received previous systemic therapy for their disease and have 
PD-L1 expression on ≥1% of TCs. Nivolumab continued until 
disease progression or unacceptable toxicity. Treatment beyond 
progression was allowed. Platinum-doublet chemotherapy was 
given for up to six cycles and pemetrexed maintenance was allowed 
for non-squamous patients. Crossover from chemotherapy to 
nivolumab was allowed if PD occurred. The primary end point 
was PFS (by independent radiology review as per RECIST v1.1) 
in patients with PD-L1 expression ≥5%. Nivolumab did not 
improve mPFS compared to platinum-doublet among patients 
with PD-L1 expression ≥5%: 4.2 and 5.9  months, respectively 
(HR 1.15, 95% CI 0.91–1.45; p = 0.25). Surprisingly, in contrast 
to the Keynote 024 results, the PFS was not superior in the ≥50% 
PD-L1 cohort (PFS HR 1.07) in the subgroup analysis. The OS 
for the nivolumab and chemotherapy groups were similar with 
an mOS of 14.4 and 13.2 months, respectively (HR = 1.02, 95% 
CI 0.80–1.30). Nivolumab had less TRAEs of any grade and grade 
3–4 (71 and 18%), respectively, when compared to platinum-
doublet (92 and 51%) (35). Further knowledge on the use of first-
line nivolumab will be forthcoming from the ongoing CheckMate 
227 trial where the 1% PD-L1 positive arm includes patients 
randomized to combined immunotherapy with nivolumab and 
ipilimumab versus nivolumab alone versus chemotherapy in the 
first-line setting.

Combinations of immunotherapy and 
Chemotherapy
CheckMate 012 is a multi-cohort phase I clinical trial evaluating 
nivolumab as a single agent or in combination with chemo-
therapy, targeted therapy, or ipilimumab (a recombinant human 
IgG1 immunoglobulin that inhibits the CTLA-4 receptor). The 
data have been published from the platinum-doublet combi- 
nations (36). Three chemotherapy backbones were evaluated in 
56 patients: pemetrexed/cisplatin, gemcitabine/cisplatin, and 
paclitaxel/carboplatin. All three backbones were paired with 
nivolumab 10 mg/kg. An additional cohort of paclitaxel/carbo-
platin was accrued that was combined with nivolumab 5 mg/kg. 
Maintenance chemotherapy was not allowed but patients contin-
ued on maintenance of nivolumab until progression. The primary 
objective, ORR, was 47, 33, and 47% for the pemetrexed, gemcit-
abine and paclitaxel platinum combinations with the 10 mg/kg  
nivolumab dose, respectively; ORR for paclitaxel/carboplatin 
combination with 5 mg/kg nivolumab was 43%. Responses were 
seen irrespective of presence or absence of PD-L1 expression on 
the tumor. Two-year OS rates were 33, 25, and 27%, for the pem-
etrexed, gemcitabine and paclitaxel platinum combinations with 
the 10 mg/kg nivolumab dose, respectively. The 2-year OS rate for 
the paclitaxel/carboplatin combination with 5 mg/kg nivolumab 
was 62%. These objective response and 2-year survival rates for 
the nivolumab combinations were numerically increased over 
what we would have expected historically from platinum doublet. 
No dose-limiting toxicities occurred during the first two cycles 
of treatment. Forty-five percent of patients reported Grade 3–4 
TRAEs; 21% of patients discontinued all study therapy as a result 
of TRAEs.
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higher doses of ipilimumab (3  mg/kg) given every 3  weeks, 
similar to those used in melanoma, were not tolerable and had 
very high rates of TRAEs (49%) and treatment-related deaths in 
the NSCLC population (39). This prompted reassessment of dose 
and schedule. The results of nivolumab 3 mg/kg every 2 weeks 
in combination with ipilimumab 1 mg/kg every 6 or 12 weeks 
in 77 previously untreated metastatic NSCLC patients have been 
recently published (40). The ORR was 38 and 47% for the Q6 
and Q12 week ipilimumab cohorts, respectively. In patients 
with PD-L1 expression of 1% or greater, the ORR was 57% for 
both cohorts. OS at 1  year in the ipilimumab Q6 week cohort 
was 69%. The follow-up data were too immature at the time of 
publication to report the OS in the Q12 week cohort. Grade 
3–4 TRAEs occurred in 33 and 37% of patients in the Q6 and 
Q12 week cohorts, respectively. The majority of these TRAEs 
were auto-immune phenomena. No treatment-related deaths 
occurred. The results of the CheckMate 012 trial are the basis 
for the CheckMate 227 trial where PD-L1 positive (1%) patients 
are randomized to nivolumab 3  mg/kg every 2  weeks with 
ipilimumab 1  mg/kg every 6  weeks versus nivolumab 3  mg/kg  
every 2  weeks versus platinum doublet. The PD-L1 negative 
patients are randomized to nivolumab with ipilimumab at the 
dose and schedule above versus nivolumab with platinum-
doublet chemotherapy versus standard of care chemotherapy.

The phase Ib experience with the combination of durvalumab, 
an IgG1 antagonist antibody that binds PD-L1 and inhibits its 
function, with tremelimumab, a fully human IgG2 isotype that 
inhibits the CTLA-4 receptor, in NSCLC has recently been pub-
lished (41). In this dose-finding study, 102 patients were enrolled; 
94% of the patients had prior systemic therapy. The final toler- 
able dose was established as durvalumab 10 mg/kg and treme-
limumab 1  mg/kg both given every 4  weeks. Serious TRAEs 
occurred in 37 (36%) of 102 patients. Three treatment-related 
deaths occurred from suspected or confirmed autoimmunity 
(myasthenia gravis, pericardial effusion, and neuromuscular dis- 
order). In the final cohort of 26 patients treated at the tremeli-
mumab dose of 1 mg/kg, patients with both PD-L1 high (25%) 
as well as PD-L1 negative (0%) tumors had ORR 22 and 40%,  
respectively. Further work with this combination is being 
done in chemotherapy refractory (ARCTIC study) (42) and 
 chemotherapy-naïve (MYSTIC study) (43) NSCLC patients.

PD-L1 expression
Currently there are at least six monoclonal antibodies to assay 
PD-L1. The 28-8 antibody has been developed in conjunction 
with nivolumab. The 22C3 antibody has been developed with 
pembrolizumab. The 78-10 antibody has been developed with 
avelumab. Each of these three antibodies was developed initially 
on the DAKO autostainer platform. The SP142 antibody has 
been developed with atezolizumab. The SP263 antibody has been 
developed with durvalumab. Both of these antibodies were vali-
dated initially using the Ventana platform. Additional work has 
been published with the E1L3N antibody, which is commercially 
available and has been used in multiple laboratory-developed 
tests at numerous academic centers with both the DAKO and 
Ventana platforms. Work is now underway to cross compare the 

Keynote 021 is a multi-cohort Phase 1/2 randomized trial 
investigating the safety, tolerability, and efficacy of pembroli-
zumab in combination with platinum doublets, targeted therapy, 
and ipilimumab. The data were recently published from the 
randomized phase 2 cohort G which compared pemetrexed 
and carboplatin followed by pemetrexed maintenance with 
or without a maximum of 2  years of pembrolizumab in 123 
patients. Patients have Stage IIIb/IV non-squamous NSCLC and 
were stratified according to their PD-L1 TPS <1 versus ≥1%. 
Crossover from the chemotherapy group to the pembrolizumab 
group was permitted in the event of PD. The primary endpoint 
was ORR (by independent radiology review as per RECIST v1.1). 
Pembrolizumab combined with chemotherapy has a superior 
ORR versus chemotherapy alone (55 versus 29%, 95% CI 9–42%; 
p  =  0.0016). Subgroup analysis of PD-L1 stratification <1% 
versus ≥1% showed similar ORR for the pembrolizumab group 
(57 versus 54%, respectively) while the chemotherapy alone 
group showed a difference in ORR (13 versus 38%, respectively). 
Further stratification of PD-L1 to 1–49% and ≥50% had an 
ORR of 26 and 80%, respectively, for the pembrolizumab with 
chemotherapy group, versus 39 and 35%, respectively, for the 
chemotherapy alone group. Pembrolizumab with chemotherapy 
was able to achieve a superior mPFS versus chemotherapy 
alone (13.0 versus 8.9  months, HR 0.53, 95% CI 0.31–0.91; 
p  =  0.0102). mOS has not yet been met, and the 12-month 
OS has been 75% for those with pembrolizumab and chem- 
otherapy versus 72% for chemotherapy alone. Grade 3–5 TRAEs 
were similar between groups (39% in the pembrolizumab plus 
chemotherapy group versus 26% in the chemotherapy alone 
group), with similar treatment discontinuation rates (10% for the 
pembrolizumab arm compared to 13% for the chemotherapy only 
arm) and treatment-related deaths (one death in the pembroli-
zumab group secondary to sepsis, and two deaths in the chem- 
otherapy alone group due to sepsis and pancytopenia) (37).

immunotherapy Doublets
Based on the success of dual immunotherapy combinations in 
melanoma, PD-1 inhibitors have been combined with the CTLA-4 
inhibitor, ipilimumab. Cohort C from the Keynote 021 trial  
described above was presented at the ASCO Annual Meeting in 
2015 (38). This cohort was a dose finding and safety study. The 
initial doses of pembrolizumab were 10  mg/kg and doses of 1 
or 3  mg/kg of ipilimumab were planned. There were no safety 
signals at the 10 mg/kg dose of pembrolizumab with either dose 
of ipilimumab in the six patients treated, but, based on the emerg-
ing results from the CheckMate 012 trial, the final dose selected 
for further dose expansion was pembrolizumab 2  mg/kg and 
ipilimumab 1 mg/kg. Results were presented for the 15 patients 
treated at all dose levels. The ORR was 39% and the disease 
control rate was 83%. Immune TRAEs were identified in 33% of 
patients, half of whom had Grade 3 events (adrenal insufficiency 
and skin eruptions). This combination is being explored further 
in a randomized two cohort of Keynote 021 (cohort H).

The CheckMate 012 trial had several arms assessing the 
optimal dosing of nivolumab and ipilimumab in chemotherapy-
naïve patients with NSCLC. Initial dose combinations with 
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antibodies. Several studies have now been published including 
phase 1 of the BluePrint PD-L1 Assay Comparison Project (44). 
The results of this work consistently note that the 28-8, 22C3, 
and SP263 antibodies are comparable when staining tumor cells. 
The SP142 antibody has more variability when compared to the 
other three antibodies. In general, all four antibodies have greater 
variability when assaying ICs. Work is also underway to assess 
the reliability of some of the antibodies on alternative staining 
platforms. Recently, the Ventana platform has been shown to also 
be reliable for 22C3 analysis (45). While the FDA has approved 
many of these antibodies as either companion or complementary  
diagnostics, due to the high cost of these tests, globally, laboratory- 
developed assays for PD-L1 are likely to predominate. At this 
point, the authors recommend that a well-validated assay be 
used to determine the presence or absence of PD-L1 staining. 
The key to this is the requirement for rigorous validation metho- 
dology if a laboratory-developed assay is going to be used. This 
sentiment has been demonstrated in the recently presented 
Multi-center French Harmonization Project (46). The 22C3, 
28-8, SP263, and E1L3N antibodies were generally comparable. 
This study did show significant variability in the detection of PD- 
L1-positive tumor cells when laboratory-developed tests were 
used. The key is a thorough initial and ongoing validation process 
for laboratory-developed tests.

With that background, understanding the molecular determi-
nants of response to immunotherapies is a difficult clinical chal-
lenge. Presently, PD-L1 expression levels have shown a variable 
ability to predict response to checkpoint inhibition. CheckMate 
017 did not show any clear predictive benefit of PD-L1 analysis 
at the reported 1, 5, and 10% cut points for squamous histology 
patients. CheckMate 057 did show significant improvement in 
ORR, PFS, and OS with nivolumab for non-squamous patients 
expressing any level of PD-L1, but there is clear escalating benefit 
with increasing PD-L1 expression in the published 1, 5, and 10% 
cut points (47). The OAK study also showed that atezolizumab, 
when compared to docetaxel, produced OS benefit regardless 
of PD-L1 expression on either TC or IC, but again, increased 
magnitude of benefit is seen when patients with increasing 
PD-L1 expression are identified (33). The Keynote 010 trial only  
included PD-L1 positive patients, and although it does not 
offer information about the PD-L1-negative patients, there was 
increasing benefit when the patients with low expression (1–49%) 
are contrasted with the patients with high expression (≥50%) 
(31). Consistently in patients with non-squamous tumors who 
have progressed on platinum doublet, there is increased chance 
of benefit with increased PD-L1 expression. The struggle for clini-
cians is that the benefit in the PD-L1 low and/or negative groups 
is not zero, nor is it clinically insignificant, making use of PD-L1 
as a biomarker in the refractory setting a challenge.

There has been documented success when stratifying patients 
for PD-L1 using the 22C3 antibody at the 50% cut point. This 
cut point was clinically validated during the Keynote 010 phase 
I trial that showed both pembrolizumab at either 2 or 10 mg/kg  
dose significantly improved OS in patients with ≥50% PD-L1 
expression, which was numerically greater than the benefits seen 
in the low expressing cohort (48). Keynote 024 also demonstrated 

dramatic benefits of pembrolizumab in comparison to platinum-
doublet chemotherapy in previously untreated patients with 
PD-L1 expression ≥50%. This comes in contrast to what has been 
seen with the 28-8 antibody. The results of the CheckMate 026 
trial are perplexing. If the 22C3 and 28-8 antibodies select patients 
similarly, as is suggested by several recent publications including 
the initial publication of the BluePrint PD-L1 Assay Comparison 
Project, one would expect the patients treated with nivolumab 
who had ≥50% PD-L1 expression to do better with immu- 
notherapy than chemotherapy, but this was not demonstrated 
(44, 49). The CheckMate 026 study was not designed nor powered 
to look at this subgroup. Confirmatory information about the 
benefits of PD-L1 inhibition in the chemotherapy-naïve first-line 
setting is needed. The Keynote 042 trial is ongoing (50). This trial 
is similar to the CheckMate 026 trial where patients with ≥1% 
PD-L1 staining are eligible to enroll. Patients are stratified by 
PD-L1 expression using the 50% cut point and randomized to 
pembrolizumab versus standard platinum-doublet chemother-
apy. The high expressing group can then be used to confirm the 
Keynote 024 data. As mentioned earlier, the ongoing Checkmate 
227 trial has a nivolumab monotherapy arm for patients with ≥1%  
PD-L1 expression. Again, this trial was not designed to look 
specifically at the 50% PD-L1-positive group but may yield a 
signal as to whether there is benefit of nivolumab alone in the 
first-line setting.

Other Potential Biomarkers
A multivariate exploratory analysis of baseline serum cytokines 
levels in 222 nivolumab-treated patients in either Checkmate 
017 or 063 trials was presented at the April 2016 ELCC (51). The 
effect of the cytokine set on OS was quantified by generating an 
SQ-cytoscore defined as “high” or “low” based on the median cut-
off. Those with a high SQ-cytoscore (n = 102) achieved an mOS of 
15.6 months, approximately three times longer than 5.3 months of 
those with a low SQ-cytoscore (n = 120) (HR 0.48, 95% CI 0.36–0.64; 
p < 0.0001), respectively. While clinical factors are not suitable to 
determine sensitivity to PD-1 inhibition and PD-L1 expression 
does not predict response in squamous-NSCLC, the SQ-cytoscore 
may serve as a predictive marker for anti-PD-1 therapy. Prospec- 
tive validation of these preliminary findings is required.

Due to tumor heterogeneity and the fluctuant infiltration of ICs 
into the tumor microenvironment (52), future biomarker inves-
tigations may look at other checkpoint molecules (53), TIIC (54), 
blood-based immune analyses (55), inflammatory gene signa-
tures (56), and mutational load (57). In two independent cohorts, 
whole-exome sequencing of patients with NSCLC treated with 
pembrolizumab found an improved ORR, PFS, and durability in 
patients with higher tumor non-synonymous mutational load. 
Mutation burden was also associated with DNA repair pathway 
mutations, larger neoantigen burden, and molecular smoking 
signature; each factor was also correlated with clinical efficacy 
(57). Mutational burden is largely a consequence of chronic 
exposure to mutagens, and hence non-smoking NSCLC patients 
tend to harbor fewer mutations (58). Future prospective studies  
will need to explore the role of smoking exposure to durability 
of response.
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Future work
Future trials will continue to explore the potential of combina-
tion therapy of PD-1 inhibition with chemotherapy, targeted 
therapy, or other immuno-oncology agents. Chemotherapy 
has been shown to increase PD-L1 expression on TCs (59, 60), 
in addition to possibly reducing the quantity and activity of 
suppressive ICs, inducing immunogenic cell death, activat-
ing and maturing dendritic cells, enhancing tumor antigen 
presentation, and increasing effector T-cell function (61). 
Beyond cytotoxic chemotherapy combinations, the PD-1 
inhibitors are being combined with targeted therapies such 
as the EGFR and ALK inhibitors. As listed above, there are 
numerous clinical trials currently investigating the potential 
of combination immunotherapy in NSCLC, of which the 
majority are investigating the combination of PD-1/PD-L1 
inhibition with CTLA-4 inhibition, but other novel checkpoint 
inhibitors are also entering phase I development. Studies are 
also investigating the role of PD-1 inhibition in the adjuvant 
setting in the ANVIL (nivolumab), PEARLS (pembrolizumab), 
IMpower010 (atezolizumab), and BR31 (durvalumab) trials as 
well as in locally advanced disease (PACIFIC). Beyond inves-
tigating immunotherapy in earlier stages of NSCLC, further 
work needs to be done to understand the mechanisms of 
resistance to this class of drugs. Loss-of-function mutations in 
the interferon-receptor-associated Janus kinase 1 (JAK1) and/
or Janus kinase 2 (JAK2) genes in melanoma and mismatch 
repair-deficient colon cancer have been implicated in acquired 
resistance, or possibly even primary resistance, to PD-1 
inhibition (62, 63). JAK1/2 is required for signaling through 
the interferon-γ receptor, a process required for TC PD-L1 
expression (9). Hence inactivating JAK1/2 mutations lead to 
loss of PD-L1 expression and lack of response to anti-PD-1/
L1 therapy. While this mechanism has yet to be studied in 
NSCLC, it warrants further exploration as a possible biomarker 
of resistance. This paper also noted changes in the folding and 
localization of major histocompatibility complex (MHC) 1 to 
the cell surface in patients who have developed resistance to 
PD-1/L1 checkpoint inhibition through mutations in the beta-
2-microglobulin gene. The presence of MHC on the surface of 
tumor cells is required for T-cell cytotoxicity and lack of pres-
ence of MHC on the surface will mitigate the effect of PD-1/L1 
checkpoint inhibition.

CONCLUSiON

Based on the data we have to date, in patients who have not 
received prior therapy for metastatic NSCLC, pembrolizumab 
could be offered as an alternative to platinum-doublet chemo-
therapy for those patients who express PD-L1 on ≥50% of their 
TCs based on the Keynote 024 trial. Confirmatory data will be 
forthcoming to support this single positive trial. In the refrac-
tory setting, nivolumab, pembrolizumab, and atezolizumab 
have all shown benefit in phase 3 clinical trials. Nivolumab is 
the only agent tested in a phase 3 trial with both known and 
unknown PD-L1 expression and demonstrated an OS benefit. 
Atezolizumab has shown a significant survival benefit in both 
the PD-L1 positive and negative patients (patients in this trial 
were required to have adequate tissue to document PD-L1 status). 
Pembrolizumab should only be given to patients who have known 
PD-L1 expression of at least 1%. We look forward to further phase 
3 randomized data of the immunotherapy combination strategies 
but for now this strategy should be reserved for clinical trials.

Anti-PD1 and PD-L1 in NSCLC treatment have durable 
response rates of approximately 20% that produce remarkable 
long-term survival. Toxicity is more favorable than chemotherapy, 
however, unique to immune checkpoint blockade are immune 
TREAs, of which the Grade 3–4 occurring in 5% of patients leads 
to treatment discontinuation. PD-L1 expression levels show a 
variable response to checkpoint inhibition, and at present they 
are not essential to guide therapy in the patients who have failed 
platinum doublet. In contrast, PD-L1 expression appears to be 
critical in assessing the potential benefit of PD-1 inhibition in the 
chemotherapy-naïve patient population. Determining predictive 
biomarkers to response is still undergoing further investigation. 
The rapidly evolving future of immunotherapy will continue 
with future studies investigating the potential of PD-1 inhibition 
in combination with chemotherapy, targeted therapy, or other 
immuno-oncology agents. We have entered a new era of lung 
cancer treatment.
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Lung cancer is the worldwide leading cause of cancer-related mortality in men and 
second leading in women. Brain metastases (BM) account for 10% of non-small cell 
lung cancer (NSCLC) patients at initial presentation, with another 25–40% developing 
BM during the course of their disease. In the last decade, the field of precision oncology 
has led to the discovery of a multitude of heterogenous molecular abnormalities within 
NSCLC as well as the development of tyrosine kinase inhibitors that target them. In this 
review, the focus will be on targeted therapy and immunotherapy that show efficacy 
in BM rather than conventional treatment for multiple BM (such as surgical resection, 
WBRT, or stereotactic radiosurgery).

Keywords: brain metastases, non-small cell lung cancer, targeted therapies, immunotherapy, intracranial 
responses

inTRODUCTiOn

Lung cancer is the worldwide leading cause of cancer-related mortality in men and second leading in 
women (1). Brain metastases (BM) account for 10% of non-small cell lung cancer (NSCLC) patients 
at initial presentation (2), with another 25–40% developing BM during the course of their disease 
(3). The general metastatic NSCLC population survival is approximately 12 months, with a median 
progression-free survival (PFS) range from 3 to 6 months (4). BM are associated with poor prognosis, 
and the median survival ranges from 2.4 to 4.8 months for patients with BM who receive whole-brain 
radiation therapy (WBRT) (5). While the standard of care for BM remains radiotherapy, determining 
the optimal treatment between high-dose-focused radiations via stereotactic radiosurgery (SRS) 
alone versus WBRT remains controversial. A retrospective multi-institutional retrospective study 
showed a survival advantage in patients with fewer than four BM less than 4 cm in size (n = 189 for 
NSCLC) who were treated with SRS compared to those treated with WBRT [adjusted hazard ratio 
(HR) for NSCLC, 0.58; 95% confidence interval (CI), 0.38–0.87; P = 0.01] (6).

The treatment of BM is important in maintaining a good quality of life and limiting cognitive 
impairment and neurological dysfunction. In the last decade, the field of precision oncology has led 
to the discovery of a multitude of heterogenous molecular abnormalities within NSCLC as well as 
the development of tyrosine kinase inhibitors (TKIs) that target them (7).

Patients with untreated BM have been excluded from most clinical trials of systemic therapy 
for two reasons: (1) historically poor prognosis and (2) presumed poor blood–brain barrier (BBB) 
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penetration by experimental drugs. Thus, the efficacy of these 
drugs in controlling NSCLC-related BM remains controversial.

In this review, the focus will be on targeted therapy and immu-
notherapy that show efficacy in BM rather than conventional 
treatment for multiple BM (such as surgical resection, WBRT, or 
SRS), or some combination of the three.

AnAPLASTiC LYMPHOMA KinASe  
(ALK)-ReARRAnGeD nSCLC

The control and prevention of BM have emerged as an impor-
tant therapeutic issue as systemic therapies with TKIs continue 
to improve the duration of disease control for patients with 
oncogene-driven NSCLCs (8). BM have been reported in about 
24% of ALK-rearranged NSCLC patients at diagnosis, making 
intracranial activity an important feature of all ALK-targeted 
therapies (9).

Crizotinib
Crizotinib was the first ALK and ROS1 (c-ros oncogene 1) inhibi-
tor, approved for treatment of ALK-rearranged NSCLC. Crizotinib 
has shown evidence of potential clinical benefit in patients with 
a baseline of BM. PROFILE 1014, a phase 3 prospective study 
in ALK-positive NSCLC, demonstrated higher intracranial dis-
ease control rate (IDCR) with first-line crizotinib compared to 
chemotherapy in patients with treated BM. Although intracranial 
time to progression was improved, it was not significant (ITT 
population: HR, 0.60; 95% CI, 0.34–1.05; P = 0.069; treated BM 
present: HR, 0.45; 95% CI, 0.19–1.07; P = 0.063; BM absent: HR, 
0.69; 95% CI, 0.33–1.45; P = 0.323) (10). In patients with BM, the 
PFS was greatly improved with crizotinib versus chemotherapy 
(BM present: HR, 0.40; P < 0.001; median, 9.0 versus 4.0 months, 
respectively) and in the intent-to-treat population (HR, 0.45; 
P < 0.001; median, 10.9 versus 7.0 months, respectively). IDCR 
in patients with BM was significantly higher with crizotinib 
compared with chemotherapy (56 versus 25% at 24  weeks, 
respectively) (10) (Table 1).

Furthermore, a retrospective pooled analysis of single-arm 
phase 1 and 2 studies of crizotinib in advanced ALK-positive 
NSCLC, PROFILE 1007 (13) and 1005 (12), demonstrated a 
median overall survival (OS) of 29.6 months for 120 patients who 
were allowed to continue crizotinib beyond progressive disease 
(PD) because they continued to derive clinical benefit from it. 
Only 18% of previously untreated BM patients achieved an over-
all intracranial response rate (ICRR), with an IDCR of 56% (95% 
CI, 46–66%) at 12 weeks (11) (Table 1).

Inevitably, the brain is the most common site of PD after 
resistance to crizotinib because of inadequate central nerv-
ous system (CNS) penetration of the drug or the biological 
change in the tumor (28). Hence, progression of preexisting 
or development of new intracranial lesions in up to 70% of 
patients while receiving therapy was a common manifestation 
of acquired resistance to crizotinib (29). Most systemic cyto-
toxic chemotherapies and some TKIs seem to cross the intact 
BBB inefficiently (30).

Limited intracranial response of crizotinib might be related to 
lower concentrations of the drug in cerebrospinal fluid compared 

with the plasma concentration (0.616 versus 237 ng/mL, respec-
tively, 5 h after administration of a 250 mg dose) (31).

Ceritinib
Ceritinib is another ALK inhibitor approved for ALK-rearranged 
NSCLCs that have progressed on crizotinib.

In vitro studies have found that ceritinib has a 20-fold greater 
potency to inhibit ALK than crizotinib and a 12-fold greater 
potency than alectinib (32). Ceritinib was found to cross the intact 
BBB in rats with a brain-to-blood exposure ratio of approximately 
15%, although no human data exists (33).

In the phase 1 ASCEND-1 study, ceritinib demonstrated 
activity in ALK-rearranged locally advanced or metastatic cancer 
NSCLC patients, including both ALK-naïve and ALK-pretreated 
patients who had progressed following multiple lines of chemo-
therapy. Thirty one percent of the ALK inhibitor-naïve patients 
and 60% of ALK inhibitor-pretreated patients had BM, respec-
tively. There were 94 patients with retrospectively confirmed BM 
and at least one post-baseline imaging. IDCR was 79% (15 of 
19) in ALK inhibitor-naïve patients and 65% (49 of 75) in ALK 
inhibitor-pretreated patients (14). Overall ICRR was 34.5% (34) 
(Table 1).

In the ASCEND-2 phase 2 study, ceritinib showed a durable 
response in ALK-rearranged NSCLC patients who progressed 
on chemotherapy and crizotinib, including patients with BM. 
Moreover, 20 of the 100 patients with baseline BM had active 
target lesions at baseline. The investigator-assessed overall ICRR 
was 45% (95% CI, 23.1–68.5%), while the IDCR was 80% (n = 20, 
95% CI, 56.3–94.3) (15) (Table 1).

In the ASCEND-3 phase 2 study of ceritinib in ALK-inhibitor-
naïve NSCLC, 40.3% (50/124 patients) presented with BM at 
baseline. Fifty-four percent (27/50 patients) had received prior 
radiotherapy to BM. Updated data from ESMO 2016 showed an 
ICRR of 61.5% (8/13) in patients with measurable BM at baseline 
and an IDCR of 76.9% (10/13) (16) (Table 1).

Alectinib
Alectinib is another powerful ALK inhibitor that has shown 
activity in crizotinib-resistant patients. A phase 2 study in ALK-
positive NSCLC patients observed an objective response rate of 
48% (35).

A hurdle in treating BM is achieving a higher rate of drug 
concentration in the brain because of the BBB. In animal 
models, alectinib has a high brain-to-plasma ratio (0.63–0.94) 
and activity in intracranial tumor implantation models (36). 
Alectinib penetrates into the CNS (2.69  nmol/L) where it 
is able to exceed the in  vitro concentration for ALK inhibi-
tion (1.9  nmol/L) (35, 37). Alectinib human studies show a 
50% CNS distribution, but of a 12-fold lesser potency than  
ceritinib (33).

Unlike crizotinib and ceritinib, studies also suggest that alec-
tinib is not a substrate of P-glycoprotein (P-gp), a key drug efflux 
pump typically expressed in the BBB (36), thus allowing for a 
higher rate of drug penetration through the BBB.

Pooled data analysis of NP28761 and NP28673, two single-arm 
phase 2 trials, evaluated the CNS effect of alectinib in pretreated 
ALK-rearranged NSCLC patients (19). NP28761 was limited 
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TABLe 1 | intracranial effect of tyrosine kinase inhibitors ALK inhibitors and epidermal growth factor receptor (eGFR) inhibitors in trials in non-small cell 
lung cancer (nSCLC).

Trial Treatment iDCR iCRR

ALK inhibitors

PROFILE 1014 (10) Crizotinib 56% at 24 weeks Not described

PEM + CBDCA or CDDP 25% at 24 weeks Not described

Pooled analysis of Ref. (11) Crizotinib 56% at 12 weeks (previously untreated) 18% (previously untreated)
PROFILE 1005 (12)
PROFILE 1007 (13)

ASCEND-1 (14) Ceritinib 65% (pretreated) 34.5%
79% (naïve)

ASCEND-2 (15) Ceritinib 80% 45%

ASCEND-3 (16) Ceritinib 76.9% 61.5%

NCT01449461 (17) Brigatinib 83% (measurable) 50%
85% (non-measurable) 31%

NP28673 (18) Alectinib 85.3% 58.8% (measurable)
84.5% (pretreated) 46.4% (non-measurable)

NP28673 and NP28761 (19) Alectinib 90.0% (measurable BM) 64.0% (measurable BM)
85.3% (measurable and/or  
non-measurable BM)

42.6% (measurable and/or  
non-measurable BM)
35.8% (prior RT)
58.5% (non-prior RT)

J-ALEX (20) Alectinib 92.9% 85.4%

ALTA (21) Brigatinib 88% (90 mg) 36% (90 mg)
83% (180 mg) 67% (180 mg)

NCT01970865 (22) Lorlatinib Not described 44% (targetable and non-targetable)
60% (targetable)

eGFR inhibitors
Pooled analysis of published data Erlotinib or gefitinib 75.7% 51.8%
Fan et al. (23)

Retrospective analysis Pulsatile high-dose weekly erlotinib Not described 67%
Grommes et al. (24)

LUX-Lung 3 and LUX-Lung 6 (25) Afatinib Not assessed Not assessed

BLOOM (26) Osimertinib Not described 76% (33% LM improvement and 
43% LM SD)

BLOOM (27) AZD3759 Not described 52.4% (measurable)

IDCR, intracranial disease control rate; ICRR, intracranial response rate; PEM, pemetrexed; CBDCA, carboplatin; CDDP, cisplatin; BM, brain metastases; RT, radiotherapy; LM, 
leptomeningeal metastases; SD, stable disease.
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to North America only (NCT01871805), while NP28673 was a 
global study (NCT01801111). One hundred thirty-six patients 
had baseline measurable BM (60% of the overall study popula-
tions). For patients with baseline measurable BM, the ICRR was 
64.0% (95% CI, 49.2–77.1%) with 11 (22%) complete responses 
(CR) in the brain, the IDCR was 90.0% (95% CI, 78.2–96.7%), 
and the duration of response (DOR) was 10.8 months (95% CI, 
7.6–14.1 months) (19) (Table 1). For patients with measurable 
and/or non-measurable baseline BM, the IDCR was 42.6% (95% 
CI, 34.2–51.4%), the IDCR was 85.3% (95% CI, 78.2–90.8%), and 
the median DOR was 11.1 months (95% CI, 10.3 months to not 
evaluable) (19). For patients with prior radiotherapy (n  =  95), 
the ICRR was 35.8% (95% CI, 26.2–46.3%) and 58.5% (95% CI, 
42.1–73.7%) for patients without prior radiotherapy (n  =  41) 
(Table 1).

Updated intracranial response data on the 61/138 patients with 
baseline BM the global phase 2 NP28673 study was presented at 

ESMO 2016. In the measurable BM group (n =  34), the ICRR 
was 58.8% (95% CI, 40.7–75.4), while IDCR was 85.3% (95% CI, 
68.9–95.1) and the median DOR was 11.1 months (Table 1). In 
the measurable and non-measurable group (n = 84), the ICRR 
was 46.4% (95% CI, 35.5–57.7), while IDCR was 84.5% (95% CI, 
78–91.5) and median DOR was 11.2 months (18) (Table 1).

More recently, J-ALEX, a phase 3 study comparing alectinib 
and crizotinib in treatment naive patients in Japan, showed an 
ORR of 85.4% in the alectinib group versus 70.2% in the crizo-
tinib group (20). In patients with BM, the HR for alectinib versus 
crizotinib was 0.08 (95% CI, 0.01–0.61). The J-ALEX trial enrolled 
14 patients with asymptomatic BM in the alectinib arm. Only one 
of the patients with BM treated with alectinib had progressed by 
the time of data cut-off (IDCR of 92.9%) (20) (Table 1). Thus, 
reducing CNS progression in patients with ALK-positive NSCLC 
with alectinib could be achievable if alectinib is used in the  
first-line setting.
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The Global ALEX trial is currently ongoing, also comparing 
alectinib versus crizotinib in first-line ALK-positive NSCLC but 
on a global scale. If the J-ALEX results are confirmed with this 
trial, alectinib could likely replace crizotinib as the standard first-
line therapy for ALK-positive NSCLC in the future, especially 
those with BM.

Brigatinib, Lorlatinib, and Others
Brigatinib is an ALK inhibitor with preclinical activity against 
rearranged ALK and clinically identified crizotinib-resistant 
mutants. NCT01449461, a phase 1/2 single-arm, open-label, 
multicenter study in patients with advanced malignancies is 
ongoing. In a post hoc independent radiological review of patients 
with baseline BM, 6/12 patients with lesions ≥10 mm had a brain 
response (≥30% decrease in sum of longest diameters of target 
lesions) and 8/26 patients with only non-measurable lesions had 
disappearance of all lesions. ICRR for brigatinib with measure-
able BM was 50% and the IDCR was 83% (17). In non-measurable 
BM, the ICRR was 31%, IDCR was 85%, median intracranial PFS 
was 97  weeks, and median duration of intracranial response 
82 weeks (Table 1). In ALTA, a phase 2 trial of brigatinib, ORR 
in arm A (90 mg qd) was 46% while ORR in arm B (90 mg qd 
for 7 days followed by 180 mg qd) was 54%. Seventy-one percent 
(arm A) and 67% (arm B) had BM (21) (Table 1).

Since CNS progression is a common site of relapse in NSCLC 
ALK/ROS1 mutation patients, lorlatinib was developed as a selec-
tive brain-penetrant ALK/ROS1 TKI active against most known 
resistance mutations. The phase 1 portion of the ongoing phase 
1/2 study NCT01970865 enrolled patients with ALK+ or ROS1+ 
NSCLC with or without BM and were treatment naïve or had 
disease progression after ≥1 TKIs. Preliminary results revealed 
an objective ICRR of 44% in targetable and non-targetable lesions 
and 60% in targetable lesion, respectively (22) (Table 1).

Additional second-generation ALK inhibitors shown 
to have efficacy in the brain include ASP3026, X396, and  
entrectinib (38).

ePiDeRMAL GROwTH FACTOR 
ReCePTOR (EGFR) TKis

First-Generation TKis
Approximately 33% of patients with NSCLC harboring tumors 
with EGFR-TKI-sensitizing mutations develop BM during 
treatment (39). Evidence suggests that EGFR TKIs have some 
limited BBB penetration (40, 41). In a pooled analysis including 
464 patients from 16 trials to study the efficacy of EGFR TKIs 
in NSCLC patients with activating EGFR mutations with BM 
showed that EGFR TKIs produce significant beneficial effects, 
with a pooled objective ICRR of 51.8%, IDCR of 75.7%, median 
PFS of 7.4 months, and OS of 11.9 months (23) (Table 1).

Although erlotinib is effective for EGFR mutant NSCLC, CNS 
penetration is limited at standard daily dosing. Concentrations 
in cerebrospinal fluid exceeding the half maximal inhibitory 
concentration for EGFR mutant lung cancer cells in patients 
with BM and leptomeningeal metastases (LM) that developed 
despite standard daily erlotinib or other EGFR TKIs were 

achieved with weekly intermittent “pulsatile” administration of 
high-dose (1,500 mg) erlotinib (24). ICRR was 67% (Table 1). 
Median time to CNS progression was 2.7  months (range, 
0.8–14.5  months), and median OS was 12  months (range, 
2.5 months–not reached) (24).

Second-Generation TKi
In both LUX-Lung 3 and LUX-Lung 6 studies, there was a 
non-significant trend toward improved PFS with afatinib versus 
chemotherapy in patients with asymptomatic BM (LUX-Lung 
3:11.1 versus 5.4 months, HR = 0.54, P = 0.1378; LUX-Lung 6:8.2 
versus 4.7  months, HR =  0.47, P =  0.1060) (25). In combined 
analysis, PFS was significantly improved with afatinib versus 
with chemotherapy in patients with BM (8.2 versus 5.4 months; 
HR = 0.50; P = 0.0297) (25).

Afatinib significantly improved the ORR versus chemotherapy 
in patients with BM. For LUX-Lung 3, ORR for afatinib was 
70.0% (95% CI, 45.7–88.1) versus chemotherapy 20.0% (95% CI, 
4.3–48.1) in patients with BM. The LUX-Lung 3 DCR for afatinib 
was 95.0% (95% CI, 75.1–99.9) versus chemotherapy 80.0% (95% 
CI, 51.9–95.7) in patients with BM. In LUX-Lung 6, ORR for 
afatinib was 75.0% (95% CI, 55.1–89.3) versus chemotherapy 
27.8% (95% CI, 9.7–53.5) in patients with BM. The LUX-Lung 6 
DCR for afatinib was 89.3% (95% CI, 71.8–97.7) versus chemo-
therapy 72.2% (95% CI, 46.5–90.3). There was no significant dif-
ference in OS in patients with BM who were treated with afatinib 
or chemotherapy.

These findings perhaps demonstrate a clinical benefit of 
afatinib in EGFR mutation–positive patients with NSCLC and 
asymptomatic BM. However, the role of afatinib in active BM 
remains to be clarified since this was an exclusion criterion in this 
study. ICRRs were not assessed in this study (Table 1). Therefore, 
no direct conclusions can be made regarding afatinib’s ability to 
cross the BBB in concentrations sufficient to elicit CNS responses.

Despite limited evidence of EGFR TKIs providing benefit in 
a few patients with EGFR mutation-positive NSCLC with BM, a 
clinical need for novel EGFR TKIs with improved efficacy against 
BM still exists.

Osimertinib in Leptomeningeal Disease
Leptomeningeal metastases are seen in 3–5% of NSCLC (42) and 
in 9% of EGFR mutation-positive patients (43). Osimertinib is an 
irreversible EGFR TKI that targets activating mutations (EGFRm) 
and resistance mutations (T790M). Osimertinib induced sus-
tained tumor regression in an EGFRm PC9 mouse BM model. 
PET imaging showed higher levels of osimetinib levels in NHP 
and mouse models, in contrast to rociletinib and gefitinib (39).

In previous trials, osimertinib demonstrated robust systemic 
activity in patients with EGFRm NSCLC and BM and has shown 
CNS penetration with sustained tumor regression in BM (44). In 
the phase 1 BLOOM study, two third-generation EGFR TKIs—
osimertinib and AZD3759—were studied in patients with EGFR 
mutation-positive advanced NSCLC (26). Neurological function 
improved from baseline in 24% (5/21) patients. Radiological 
improvements in LM were seen in 33% (7/21) patients, and 43% 
(9/21) had stable disease (SD) (Table  1). Clearance of tumor 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


TABLe 2 | effect of immunotherapy on BM in non-small cell lung cancer 
trials.

Trial Treatment iDCR iCRR (%)

CheckMate 017 (47) Nivolumab 49% 19
CheckMate 012 (48) Nivolumab Not described 16.7
NCT12085070 (49) Pembrolizumab Not described 33

BM, brain metastases; IDCR, intracranial disease control rate; ICRR, intracranial 
response rate.
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cells from the CSF occurred in two patients at two consecutive 
visits. Time on treatment suggests durable clinical benefit, with 
15 patients remaining on treatment, 7 of whom have been on 
treatment for >9 months.

AZD3759 in BM
AZD3759 is a reversible inhibitor of EGFR-activating mutations 
that was designed to achieve high exposure in the plasma and 
CNS. AZD3759 has high passive permeability (29.5 × 10−6 cm/s) 
and is not a substrate of the efflux transporters Pgp or BCRP at the 
BBB. In vivo, AZD3759 reached distribution equilibrium in rats, 
mice, and monkeys (Kpuu,brain and Kpuu,CSF > 0.5), suggesting BBB 
penetration (45). AZD3759 induced significant tumor regression 
and dramatically improved animal survival in the BM model (45).

The AZD3759 cohort of the BLOOM trial evaluated the 
safety, tolerability, and early efficacy of AZD3759 in 29 patients 
with advanced EGFR mutation-positive NSCLC and metastases, 
including LM (27). Patients with non-LM BM were required to 
have at least one measurable intracranial or extracranial lesion. 
Patients with LM had a diagnosis confirmed by positive CSF 
cytology. All patients received at least one prior line of EGFR 
TKI therapy and chemotherapy. In addition, 34% of patients 
underwent prior whole-brain radiotherapy.

AZD3759 demonstrated encouraging intracranial antitumor 
activity. Among 21 patients with measurable BM, 11 patients 
demonstrated tumor shrinkage in the target brain lesion at 
AZD3759 doses of ≥50 mg BID (Table 1). In this group, there 
were three confirmed partial responses (PR) and three uncon-
firmed PRs. Among 22 patients with measurable extracranial 
lesions, 8 experienced tumor shrinkage, with 1 unconfirmed 
partial response. At the time of data cutoff, 5 of 29 patients 
remained on treatment with AZD3759. The longest duration of 
treatment was 48 weeks.

Beyond EGFR and ALK
Apart from EGFR mutation and ALK translocations other distinct 
molecular subtypes of NSCLC depend on oncogenic molecular 
aberrations (driver mutations) for their malignant phenotype. 
Limited but promising data exist for the treatment of BM on novel 
molecular targets such as ROS1, BRAF, KRAS, HER2, c-MET, 
RET, PIK3CA, FGFR1, and DDR2 (46).

iMMUnOTHeRAPY

nivolumab
Nivolumab, a human IgG4 anti-PD-1 monoclonal antibody is 
active in the second-line treatment of metastatic NSCLC after 
progression on a platinum-based chemotherapy. Experience in 
routine clinical practice may differ from that seen in a controlled 
clinical trial. In a randomized phase 3 trial (CheckMate 017), 
the effect of nivolumab was studied in patients with advanced 
squamous NSCLC and central CNS metastases in a real-world, 
expanded access program (EAP) in Italy (47). Three hundred 
seventy-one patients participated in the EAP at 96 centers in 
Italy. Thirty-seven of 371 (10%) patients had asymptomatic and 
controlled CNS metastases. The DCR was 49% among patients 
with CNS metastases, with CR in 1 patient, PR in 6 patients, SD 

in 11 patients, and PD in 19 patients (Table 2), while the ORR 
in patients with CNS metastases was 7/37 (19%) (Table 2). OS 
rate at 12 months was 35% for patients with CNS metastases and 
39% for all patients. The median OS was 5.8 months (95% CI, 
1.8–9.8) for patients with CNS metastases and 7.9 months (95% 
CI, 6.2–9.6) for all patients. The PFS rate at 12 months was 31% 
for patients with CNS metastases and 27% for all patients. The 
median PFS was 4.9 months (95% CI, 2.7–7.1) for patients with 
CNS metastases and 4.2 months (95% CI, 3.4–5.0) for all patients.

In the Goldman et al. abstract 9,038 analysis presented ASCO 
2016, pooled data from nivolumab studies [CheckMate 063 (50), 
CheckMate 017 (47), and CheckMate 057 (51)] were assessed 
to determine efficacy and safety of nivolumab in patients with 
previously treated, asymptomatic CNS metastases at baseline 
and patients with untreated, asymptomatic CNS metastases at 
baseline. The best response to most recent prior therapy dem-
onstrated in the nivolumab with CNS metastases arm was CR/
PR of 13/46 (28%), SD of 15/46 (33%), and PD of 18/46 (39%), 
compared to the docetaxel with CNS metastases arm with CR/PR 
8/42 (19%), SD 13/42 (31%), and PD 18/42 (43%) (48). Among 
patients with pretreated CNS metastases, median OS was longer 
in the nivolumab group (8.4 months; 95% CI, 4.99–11.6) com-
pared to the docetaxel group (6.2 months; 95% CI, 4.4–9.23). The 
frequency of and time to new CNS lesions were similar across 
treatment groups. Furthermore, 8/46 (17%) patients developed 
new CNS lesions in the nivolumab with CNS metastases arm 
with a median (range) of 3 (1.9–10.4) months, while 9/42 (21%) 
patients developed new CNS lesions in the docetaxel with CNS 
metastases arm with a median (range) of 2 (0.5–8.0).

Moreover, in CheckMate 012 Arm M, 2 of 12 patients 
(16.7%) with untreated CNS metastases achieved intracranial 
responses, including one intracranial CR lasting >10.5 months 
(48) (Table  2). These results support further investigation of 
nivolumab monotherapy in patients with NSCLC and asympto-
matic CNS metastases.

Pembrolizumab
Pembrolizumab, a fully human anti-PD-1 monoclonal antibody is 
approved in first- and second-line treatment of metastatic NSCLC. 
NCT02085070 is a phase 2 study of pembrolizumab in patients 
with metastatic melanoma and NSCLC with untreated or progres-
sive BM. The effect of drugs on untreated BM remains unclear 
because most clinical trials exclude these patients. Early data 
demonstrated that there was an ICRR of 6/18 (33%) in the NSCLC 
on pembrolizumab 10 mg/kg arm, similar to the systemic response 
rate (49) (Table 2). The median OS was 7.7 months to date.
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The available data for the use of anti-PD-1 agents in the treat-
ment of BM do not yet include data on PD-L1 status. These data 
when available could suggest higher response rates based on the 
level of PD-L1 positivity.

COnCLUSiOn

Current standard of care for BM that require immediate local 
intervention (based on symptoms, location, size, or other 
concerning features) is craniotomy with resection or radiation 
therapy. There is still a role in integrating locally ablative therapy 
(LAT) in combination with targeted therapy and immunotherapy 
in patients with oligometastatic BM that are limited or have low 
metastatic tumor burden (52).

Prior to the advent of second-generation therapies for BM 
developing while on crizotinib, the only alternatives were abla-
tion of oligometastatic brain lesion with LAT and continuing 
crizotinib (28). Using WBRT with concurrent erlotinib (53) 

was also a viable option rather than changing to traditional 
chemotherapy.

However, recent data showing dramatic and prolonged 
responses in BM patients treated with EGFR and ALK TKIs have 
suggested that delaying LAT and WBRT may be a valid treat-
ment option for patients with asymptomatic BM from NSCLC, 
especially for those with EGFR-activating mutations or harboring 
ALK rearrangement.

The challenge will be to determine the optimal sequence of 
agents and modalities (WBRT and SRS). Perhaps serial genotyp-
ing, the degree of BM symptoms, and the toxicity profiles will 
serve to individualize treatments and determine the role of these 
targeted therapies in the therapeutic armamentarium of BM.
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Over the past decade, patients with advanced non-small-cell lung cancer (NSCLC) 
have witnessed substantial advances in regards to therapeutic alternatives. Among 
newly developed agents, angiogenesis inhibitors were extensively tested in different 
settings and have produced some favorable outcomes despite several shortcomings. 
Bevacizumab is the most examined agent in this context and has demonstrated signif-
icant survival benefits when combined with standard chemotherapy in eligible patients. 
Preliminary results on the addition of bevacizumab to erlotinib in patients with EGFR-
mutated NSCLC seem promising. Other antiangiogenic agents were also tested, but 
ramucirumab and nintedanib are the only agents with a positive impact on survival. More 
recently, immune checkpoint inhibitors (ICIs) have had considerable success due to their 
prolonged durations of response, yet response rates are still deemed suboptimal, and 
various combination therapies are being tested in an effort to improve efficacy. Preclinical 
evidence suggests an immunosuppressive effect of pro-angiogenic factors, which sets 
up a plausible rationale for combining ICIs and antiangiogenic agents. Herein, we review 
the landmark data supporting the success of angiogenesis inhibitors, and we discuss 
the potential for combination with immunotherapy and targeted agents.

Keywords: antiangiogenesis, combination therapy, immunotherapy, non-small-cell lung cancer, angiogenesis

inTRODUCTiOn

A decade has now passed since bevacizumab, the first promising antiangiogenic agent, was approved 
for the treatment of non-small-cell lung cancer (NSCLC), and the lessons learned revealed that 
clinical applications of antiangiogenesis are somewhat more challenging than initially believed (1). 
As a fully humanized monoclonal antibody (mAb) that binds vascular endothelial growth factor-A 
(VEGF-A) and prevents interaction with VEGFR-1 and VEGFR-2 (the primary receptors involved in 
endothelial cell proliferation and migration), bevacizumab was thought of as a “silver bullet” capable 
of targeting multiple types of cancer since tumor proliferation and spread depend on neo-vasculature 
(2–4). However, despite survival gains attributed to this agent, clinical trial results did not fully meet 
with the expectations and management of patients with advanced NSCLC still requires significant 
improvements in order to clearly affect outcomes in this first ranking cancer in terms of cancer-
related mortality (5). Nevertheless, angiogenesis remained an area of active research, and numerous 
agents have been tested. These agents bind VEGFR-2 directly (e.g., ramucirumab), act as VEGF 
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inhibitors (e.g., aflibercept), or block intracellular downstream 
signal transduction by the inhibition of the tyrosine kinases of 
VEGF receptors (e.g., sorafenib and nintedanib) (6–8).

In the era of immunotherapy and refined precision medicine, 
the value of antiangiogenic agents and their cost-efficiency could 
be put into question in the face of more successful biologic agents 
such as immune checkpoint inhibitors (ICIs) that demonstrated 
significant clinical activity both in the first- and second-line set-
ting with much promise attributed to the durable responses they 
achieve in responding patients (9). On the other hand, combining 
immunotherapy and angiogenesis inhibitors could prove to be 
a successful undertaking, which might improve the efficacy of 
both agents. Herein, we will provide a review of noteworthy data 
relating to successful antiangiogenic agents in NSCLC, be it in 
combination with chemotherapy or with newer agents.

TARGeTinG veGF

Bevacizumab
Combination with Cytotoxic Therapy
The initial randomized phase II study of this anti-VEGF-A mAb 
evaluated two different doses of bevacizumab (7.5 and 15 mg/kg) 
in addition to paclitaxel/carboplatin vs. chemotherapy alone, and 
the results demonstrated significant improvements in terms of 
response rate (RR) (31.5 vs. 18.8%) and median time to progres-
sion (7.4 vs. 4.2 months, p = 0.023) in favor of the arm with the 
highest dose of bevacizumab compared with the control arm 
(10). A noteworthy outcome of this trial was the identification 
of clinical features that were associated with high rates of life-
threatening hemoptysis. Therefore, centrally located tumors with 
proximity to major blood vessels, cavitation, and squamous cell 
histology became exclusion criteria in most of the subsequent 
studies. However, ensuing data from the phase 4 SAiL study 
and the ARIES Observational Cohort study called into question 
whether cavitation and centrally located tumors did affect the rate 
of severe hemoptysis (11). Consequently, expert opinion suggests 
that squamous histology and the presence of hemoptysis are the 
most important contraindications to bevacizumab (12).

Following the success of the phase II study, a large phase III 
trial with a similar design conducted by the Eastern Cooperative 
Oncology Group (ECOG)—ECOG 4599—confirmed the ben-
efits of bevacizumab (at a dose of 15 mg/kg), in the same setting, 
in terms of overall survival (OS) (12.3 vs. 10.3 months, p = 0.003), 
RR (35 vs. 15%, p < 0.001), and progression free survival (PFS) 
(6.2 vs. 4.5 months, p < 0.001) (13). In Europe, the AVAiL phase 
III trial also attempted to confirm the benefit of bevacizumab 
but in combination with the cisplatin/gemcitabine doublet and 
at two different dose levels (7.5 and 15 mg/kg) (14). Although 
the improvements in PFS were statistically significant for both 
dose levels of bevacizumab (6.5 vs. 6.1 months, p = 0.03 for the 
higher dose and 6.7 vs. 6.1, p = 0.003 for the lower dose), the study 
design did not allow for a direct comparison between both dose 
levels. Additionally, a subsequent survival analysis failed to dem-
onstrate any OS benefit (15). Considering the modest absolute 
value of PFS improvements and the absence of any OS benefit, 
some experts favor the addition of bevacizumab to a paclitaxel/

carboplatin regimen and support a theory that paclitaxel might 
be more susceptible to positive modulation by bevacizumab 
(16–18). The results of the BEYOND study are in line with 
this reasoning. This more recent phase III study, evaluating the 
addition of bevacizumab (15 mg/kg) to a carboplatin/paclitaxel 
backbone chemotherapy regimen in a Chinese cohort, dem-
onstrated significant improvements in PFS [9.2 vs. 6.5 months; 
hazard ratio (HR), 0.40; 95% CI, 0.29–0.54; p < 0.001] and OS 
(24.3 vs. 17.7 months; HR, 0.68; 95% CI, 0.50–0.93; p = 0.0154) 
(19). Of particular note, the very favorable outcomes in terms of 
PFS and OS in the control arm seem to reflect a better selection 
of patients along with improvements in supportive care measures. 
Additionally, subsequent lines of therapy have most definitely 
impacted survival results in both arms as the EGFR mutation 
rates were 27 and 26% and the subsequent use of EGFR-TKI was 
36 and 38% for the experimental and standard arms, respectively 
(Table 1) (19).

To date, the available data were compiled in two different 
meta-analyses of platinum doublets combined with bevacizumab 
and both concluded to significant PFS and RR benefit from the 
addition of bevacizumab to standard cytotoxic therapy (20, 21). 
However, only one of these studies demonstrated a 10% relative 
reduction in the risk of death with the addition of bevacizumab 
to chemotherapy (HR: 0.90, 95% CI, 0.81–0.99) (21).

Bevacizumab was also tested in the adjuvant setting at a dose 
of 15  mg/kg in combination with cisplatin and vinorelbine, 
docetaxel, gemcitabine, or pemetrexed (for non-squamous 
histology) per physician’s choice. The results of the E1505 
phase III study were released after an interim analysis showed 
futility 41 months of follow-up. Additionally, patients receiving 
bevacizumab-containing therapy had significantly higher rates 
of grade 3–5 toxicities, mostly in the form of hypertension (8 vs. 
30%), neutropenia (33 vs. 38%), and overall worst grade (67 vs. 
84%) (22).

Maintenance Therapy and Dosing
Besides the issue of optimal backbone chemotherapy, other piv-
otal questions involve the duration of therapy with bevacizumab 
and the optimal dose of this agent.

In the landmark ECOG 4599 study, bevacizumab was contin-
ued until progression or limiting toxicities, and a retrospective 
analysis demonstrated superior PFS and OS in patients where 
bevacizumab was continued (PFS: 4.4 vs. 2.8; HR: 0.64, and 
OS: 12.8 vs. 11.4; HR: 0.75) (13, 23). Since then, three impor-
tant studies have addressed this issue. The POINTBREAK trial 
did not demonstrate any OS advantage when pemetrexed/
carboplatin/bevacizumab (15 mg/kg) followed by bevacizumab/
pemetrexed maintenance was compared with paclitaxel/car-
boplatin/bevacizumab followed by bevacizumab maintenance, 
but PFS favored the pemetrexed containing regimen (6.0 vs. 
5.6 months; p = 0.012). The AVAPERL study comparing cisplatin/
pemetrexed/bevacizumab followed by either pemetrexed or pem-
etrexed/bevacizumab maintenance, in non-progressing patients, 
demonstrated a substantial PFS advantage in favor of the doublet 
maintenance (7.4 vs. 3.7 months; HR, 0.57; 95% CI, 0.44–0.75; 
p  <  0.0001), but OS did not reach statistical significance. The 
PRONOUNCE study did not demonstrate a survival difference 
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TABLe 1 | Results of landmark trials evaluating antiangiogenic agents in metastatic non-small-cell lung cancer.

Study/phase Chemotherapy number of 
patients (n)

ORR 
(%)

Median 
PFS 

(months)

HR (95% Ci); p Median OS 
(months)

HR (95% Ci); p

ECOG 4599/
phase III

Pac/Carbo 444 15 4.5 HR = 0.66 (0.57–0.77); 
p < 0.001

10.3 HR = 0.79 (0.67–0.92); 
p = 0.003Pac/Carbo/Bev 434 35 6.2 12.3

AVAiL/phase III Cis/Gem 345 21.6 6.1 –HR = 0.75 (0.64–0.87); 
p = 0.0003

–HR = 0.85 (0.73–1.00); 
p = 0.0456

13.1 –HR = 0.93 (0.78–1.11); 
p = 0.420

–HR = 1.03 (0.86–0.54); 
p < 0.01

Cis/Gem/Bev
–7.5 mg/kg –345 –37.8 –6.7 –13.6
–15 mg/kg –351 –34.6 –6.4 –13.4

BEYOND/phase III Pac/Carbo 138 26 6.5 HR = 0.40 (0.29–0.54); 
p < 0.01

17.7 HR = 0.68 (0.50–0.93); 
p = 0.0154Pac/Carbo/Bev 138 54 9.2 24.3

AVAPERL/phase III Cis/Pem/Bev 376 – – – – –
Pem/Bev maintenance 128 – 7.4 HR = 0.57 (0.44–0.75); 

p < 0.0001
17.1 HR = 0.87 (0.63–1.21); 

p = 0.29Bev maintenance 125 – 3.7 13.2

POINTBREAK/
phase III

Carbo/Pem/Bev → Bev/Pem 
maintenance

472 34 6 HR = 0.83 (0.71–0.96); 
p = 0.012

13.4 HR = 1.0 (0.86–1.16); 
p = 0.949

Carbo/Pac/Bev → Bev 
maintenance

467 33 5.6 12.6

PRONOUNCE/
phase III

Carbo/Pem → Pem 182 23.6 4.44 HR = 1.06 (0.84–1.35); 
p = 0.610

10.5 HR = 1.07 (0.83–1.36); 
p = 0.615 Carbo/Pac/Bev → Bev 179 27.4 5.49 11.7

JO25567/phase II Erlotinib 75 64 9.7 HR = 0.54 (0.36–0.79); 
p = 0.0015

– –
Erlotinib/Bev 77 69 16.0 –

BELIEF/phase II Erlotinib/Bev 109 – 13.6 – – –
All patients 60 70.3 15.4 –
T790M-mutated EGFR

REVELa/phase III Docetaxel 625 14 3.0 HR = 0.76 (0.68–0.86); 
p < 0.0001

9.1 HR = 0.86 (0.75–0.98); 
p = 0.023Docetaxel/ramucirumab 628 23 4.5 10.5

LUME-lung 1a/
phase III

Docetaxel 659 1.5 1.5 HR = 0.63 (0.48–0.83); 
p = 0.0008

9.1 HR = 0.94 (0.83–1.05); 
p = 0.2720Docetaxel/nintedanib 655 4.9 3.6 10.1

LUME-lung 2a/
phase III

Pem 360 8.3 3.6 HR = 0.83 (0.70–0.99); 
p = 0.0435

12.7 HR = 1.03 (0.85–1.21); 
p = 0.8940Pem/nintedanib 353 9.1 4.4 12.2

HR, hazard ratio; PFS, progression free survival; OS, overall survival; Pac, paclitaxel; Carbo, carboplatin; Bev, bevacizumab; Cis, cisplatin; Gem, gemcitabine; Pem, pemetrexed; 
ECOG, Eastern Cooperative Oncology Group.
aTrials in the second-line setting.

72

Tabchi and Blais Antiangiogenesis for Advanced NSCLC

Frontiers in Oncology | www.frontiersin.org March 2017 | Volume 7 | Article 52

when pemetrexed/carboplatin followed by pemetrexed mainte-
nance was compared with paclitaxel/carboplatin/bevacizumab 
(15  mg/kg) followed by bevacizumab maintenance (Table  1) 
(24–26). When all these trials are taken together, it remains 
unclear whether the demonstrated benefit of maintenance 
pemetrexed is improved by bevacizumab. An ongoing phase III 
study with three different maintenance therapies (ECOG 5508; 
pemetrexed vs. bevacizumab vs. pemetrexed/bevacizumab) will 
provide further data in that regard.

Different doses of bevacizumab were tested in different set-
tings, and in NSCLC both the higher (15 mg/kg every 3 weeks) 
and lower (7.5 mg/kg every 3 weeks) doses were tested, but direct 
comparison of both dose levels for efficacy was not performed in 
the larger landmark trials. However, the ABIGAIL trial, designed 
as a correlative biomarker finding study of bevacizumab com-
bined to a platinum doublet, randomized patients to receive 7.5 
or 15 mg/kg. Although survival was not the primary endpoint of 
this study and with the caveat of an insufficient patient cohort 
(n = 303) to adequately compare the clinical effect of dose, no 
difference in PFS and OS was observed between both dose levels 
of bevacizumab (27). Considering these data and results from 

the aforementioned meta-analyses suggesting similar clinical 
benefit from bevacizumab at both dose levels, the optimal dose 
of bevacizumab is still debatable (20, 21).

Combination with Tyrosine Kinase Inhibitors
The addition of bevacizumab to erlotinib was initially attempted 
in patients with refractory NSCLC who were unselected for 
activating EGFR mutations, but no improvements in survival 
were obtained with the combination therapy (28). More recently, 
a Japanese phase II study evaluated the same combination of 
erlotinib/bevacizumab in patients with treatment-naïve EGFR-
mutated (exon 19 and 21 alterations) NSCLC (29). The results 
demonstrated a substantial improvement in PFS (16.0 vs. 
9.7 months, HR 0.54, p = 0.0015), but the study was not powered 
to compare OS (29).

These encouraging results have been suggested to be due to 
an increased uptake of erlotinib in tumor cells that is potentiated 
by bevacizumab in addition to the actual blockade of angiogenic 
signaling (30).

The preliminary results of another open label single arm phase 
II trial from Europe, the BELIEF study, yielded provocative results 
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and met its 1-year PFS endpoint for the entire cohort [55.6% 
(95% CI: 44.7–66.6%); median: 13.6 months], including patients 
with T790M-mutated NSCLC [1-year PFS: 60.2% (95% CI: 
45.6–74.8%); median: 15.4 months] (31). Based on these results, 
erlotinib/bevacizumab received approval as first-line treatment 
of patients with EGFR-mutated NSCLC in June 2016 in Europe. 
Another ongoing study, the ACCRU (NCT01532089) trial, has 
completed accrual in the US, and its results will help confirm the 
available data.

TARGeTinG veGF-R

Ramucirumab
This fully human mAb targeting VEGFR-2 first demonstrated 
its efficacy in gastric and colorectal cancers (32–34). The 
development in NSCLC was somewhat more challenging. 
After the initial open label phase II data demonstrated favora-
ble responses, another phase II study randomized patients to 
cisplatin/pemetrexed followed by pemetrexed maintenance 
vs. cisplatin/pemetrexed/ramucirumab followed by ramu-
cirumab-pemetrexed maintenance (35, 36). Unfortunately, the 
latter trial did not meet its primary endpoint (PFS: 7.2 vs. 5.6 
for the ramucirumab arm; p = 0.132) (36). Further develop-
ment of ramucirumab in the first-line setting was subsequently 
halted.

The activity of ramucirumab in NSCLC was nonetheless 
demonstrated in the phase III REVEL trial, where a docetaxel/
ramucirumab combination was compared to docetaxel alone 
in the second-line setting (Table 1) (37). Of note, patients who 
previously received bevacizumab and those who had squamous 
histology were not excluded. Modest but statistically significant 
improvements in OS [10.5 vs. 9.1 months; HR: 0.86 (0.75–0.98); 
p  =  0.023] and PFS [4.5 vs. 3.0  months; HR: 0.76 (0.68–0.86); 
p < 0.0001] led to FDA approval in combination with docetaxel 
regardless of histological subtype. However, the use of ramu-
cirumab is not widely adopted since some experts believe that 
the OS improvement, although statistically significant, might not 
be clinically meaningful in accordance with the ASCO definition 
for expensive drugs, particularly if these improvements come at 
the expense of added toxicities (38).

TYROSine KinASe inHiBiTORS  
OF AnGiOGeneSiS

The appeal of antiangiogenic TKIs stemmed from their success in 
renal cell carcinoma as well as from their ease of administration, 
which led to further development in different other cancer types. 
Unfortunately, different TKIs failed to produce consistent success 
in the treatment of advanced NSCLC.

Combining sorafenib with a platinum doublet in the first-line 
setting did not demonstrate any survival benefit (39). Two studies 
evaluating sunitinib combined with erlotinib in the second-line 
setting in patients with wild-type EGFR, or with pemetrexed, also 
failed to demonstrate efficacy of the combination therapies (40, 
41). Combining pazopanib with a platinum doublet resulted in 
excessive toxicities (42).

Among newer multi-kinase inhibitors, the phase II/III study 
evaluating cediranib in addition to frontline carboplatin/pacli-
taxel was halted for futility on the basis of excessive toxicities, 
and the phase III MONET trial testing motesanib, also in com-
bination with frontline carboplatin/paclitaxel, did not result in 
significant OS improvements (43, 44). Another TKI, vandetanib, 
was assessed in four phase III trials, two of which (ZEAL and 
ZODIAC trials) evaluated the agent in combination with doc-
etaxel or pemetrexed maintenance, whereas the other two studies 
tested vandetanib as a single agent in second or subsequent lines 
of therapy, but neither of these studies had a positive impact 
on survival, and the combination therapies mostly resulted in 
increased toxicities (45–48).

nintedanib
The triple angiokinase inhibitor nintedanib is the only TKI 
agent that has shown significant results when tested in the phase 
III LUME-Lung1 study (Table  1). This agent was tested in the 
second-line setting of patients with advanced NSCLC (both 
squamous and non-squamous histologies were included) in 
combination with docetaxel, and the study met its primary PFS 
endpoint in comparison with docetaxel monotherapy (3.4 vs. 
2.7 months; HR, 0.79; 95% CI, 0.68–0.92; p = 0.0019) but failed 
to demonstrate differences in survival for the global population 
(49). When patients were evaluated in a prespecified subgroup 
analysis, the combination therapy showed improvements in OS 
for patients with an adenocarcinoma histology who progressed 
within 9 months of first-line therapy (10.9 vs. 7.9 months; HR, 
0.75; 95% CI, 0.60–0.92; p  =  0.0073) and for all patients with 
adenocarcinoma (12.6 vs. 10.3  months; HR, 0.83; 95% CI, 
0.70–0.99; p = 0.0359). A confirmatory phase III trial, the LUME 
Columbus study (NCT02231164), with the same design, but 
excluding patients with squamous histology, was terminated for 
slow accrual. The LUME-Lung 2 study, examining a pemetrexed/
nintedanib combination in the second-line setting, also demon-
strated a modest but significant PFS improvement in comparison 
with pemetrexed monotherapy (PFS: 4.4 vs. 3.6  months; HR, 
0.83, 95% CI, 0.70–0.99; p = 0.0435) but failed to demonstrate 
a survival benefit (Table 1) (50). As such, this agent has received 
approval in Europe for the second-line treatment of NSCLC in 
combination with docetaxel, but FDA approval has not been 
granted.

COMBinATiOnS wiTH iMMUnOTHeRAPY

The demonstration of durable responses in patients with advanced 
NSCLC, through the use of ICIs, has led to considerable enthusi-
asm within the scientific community. The first anti-programmed 
death-1 (PD-1) agents, nivolumab and pembrolizumab, gained 
accelerated approval for the treatment of metastatic NSCLC in 
the second-line setting after demonstrating significant clinical 
activity in this context (51–53). Additionally, agents targeting 
programmed death-ligand 1 (PD-L1)—such as atezolizumab, 
durvalumab, and avelumab—are also in advanced stages of 
development, and some have gained approval in several other 
indications (54–56). Most recently, pembrolizumab was also 
found to be superior to standard platinum-based chemotherapy 
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and gained approval for the first-line treatment of metastatic 
NSCLC with positive PD-L1 expression—defined as tumor pro-
portion score of 50% or more (57). Despite their efficacy, reported 
overall RRs are less than optimal (20–25% in the second-line and 
45% in the frontline setting for selected patients), which gives 
rise to different strategies aimed at improving responses to ICIs. 
Therefore, investigators are attempting combinations of ICIs 
with chemotherapy, radiation therapy, cancer vaccines, oncolytic 
viruses, and targeted therapies in order to overcome resistance 
mechanisms (58). Some evidence suggests that angiogenesis 
might be associated with immunosuppression within the tumor 
microenvironment thereby potentiating immune-escape of 
tumor cells (59).

The complex relationship between VEGF and tumor-related 
immune regulation involves several key pathways that lead to 
an immunosuppressive microenvironment. VEGF is effectively 
capable of inducing inhibitory immune cells such as T-regulatory 
cells (Tregs) and myeloid-derived suppressor cells (MDSCs) (60, 
61). Additionally, exposure to VEGF at pathologic levels might 
inhibit the differentiation and/or emigration T-cell progenitors 
from the thymus resulting in a state of systemic cancer-related 
immunosuppression (62). Moreover, it seems that lymphocyte 
influx across the vascular endothelium toward the tumor is 
affected by VEGF, which leads to a defect in intercellular adhesion 
molecule-1 and vascular cell adhesion molecule-1 clustering at 
the endothelial cell surface through nitric oxide production and 
subsequently leads to defective lymphocyte adhesion and migra-
tion toward the tumor environment (63).

On the other hand, preclinical models have shown that the use 
of antiangiogenic agents such a sunitinib or cabozantinib lead to 
an increase in CD4+ and CD8+ T-cells infiltration and reduce 
PD-1 expression within these cells while the influx of MDSCs and 
Tregs toward tumor tissue seems to be decreased (64–66).

In light of these findings, multiple trials are currently inves-
tigating combinations of immunotherapy and antiangiogenic 
drugs in different types of cancer. The most encouraging results 
in this context come from the experience with melanoma, where 
immunotherapy achieved its first successes. Promising phase I 
data indicated that a combination of ipilimumab and bevacizumab 
is both safe and effective with a median OS of 25.1 months and a 
disease control rate of 67.4%, thereby supporting the preclinical 
rationale of VEGF impact on immune regulation (67).

In NSCLC, preliminary data from a phase I study evaluating a 
nivolumab/bevacizumab combination vs. nivolumab monother-
apy as maintenance after initial platinum-based chemotherapy 
suggested a favorable adverse-events profile for both arms (68). 
This study is certainly not powered to provide information in 
regards to optimal regimens, but the results indicated median 

PFS values with combination therapy that compared favorably 
to those obtained with the comparator arm (PFS: 37.1  weeks 
for nivolumab/bevacizumab, whereas nivolumab monotherapy 
yielded 16 and 21.4 weeks of PFS in patients with squamous and 
non-squamous histology, respectively) (68).

Another phase Ia/dose-limiting toxicity evaluation explored 
the addition of ramucirumab to pembrolizumab in patients with 
advanced NSCLC, gastric-esophageal cancers, and urothelial 
carcinoma (69). Preliminary data also indicate the safety of 
this combination as no dose-limiting toxicities were identi-
fied in patients with NSCLC (only one patient with urothelial 
carcinoma experienced severe toxicities requiring treatment 
discontinuation).

These encouraging safety data will certainly need to be 
cemented with efficacy data from larger trials exploring ICIs/
antiangiogenesis combinations before any definitive conclusions 
can be drawn. Several challenges involving optimal dosing and 
treatment schedules remain to be resolved before such combina-
tions can be considered for clinical practice especially since several 
combinations involving immunotherapy (with chemotherapy, 
radiation therapy, vaccines, etc.) are being tested and could have 
better efficacy when tested in larger trials.

COnCLUSiOn

Identifying the VEGF pathway as a key regulator in angiogenesis 
and in subsequent tumor growth and metastasis has led to the 
development of several agents targeting the pathway’s different 
components. Bevacizumab appears to be the most successful 
antiangiogenic, but ramucirumab and nintedanib have also dem-
onstrated clinical efficacy in the second-line setting. Although 
some experts believe that the benefits of these agents have pla-
teaued, the promising results of an erlotinib/bevacizumab combi-
nation in EGFR-mutated lung cancer have proven otherwise. The 
intricate relationship between immunosuppression and angio-
genesis indicates that a synergistic relationship could result from 
a combination of ICIs and angiogenesis inhibitors with relatively 
favorable toxicity profiles and has sparked a renewed interest in 
the study of antiangiogenic drugs. However, our comprehension 
of cancer-related immune modulation barely scratches at the 
surface of a vast compendium of knowledge. Many challenges 
need to be addressed before optimal combination therapies are 
defined.
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The lung is the second most common site of neuroendocrine tumors (NETs). Typical and 
atypical carcinoids are low-grade NETs of the lung. They present a favorable prognosis 
comported to the more common high-grade NETs. The low- and high-grade NETs 
require different treatment strategies; effective management of these tumors is essential 
to prolong survival and to manage the symptoms in patients with secretory or functional 
tumors. These rare tumors have received little attention and education is needed for 
treating physicians. This mini-review will concentrate mainly on advanced low-grade 
lung NETs. The article describes the classification of lung NETs and the diagnostic 
work-up. Different treatment methods including somatostatin analogs, peptide receptor 
radioligand therapy, and biologic systemic therapy are discussed. Promising results from 
recent trials are presented and discussed in the context of the lung primary site.

Keywords: neuroendocrine tumors, lung, everolimus, octeotride, Carcinoid, Atypical carcinoid

inTRODUCTiOn

Neuroendocrine tumors (NETs) are derived from neuroendocrine cells. As these cells exist in many 
organs embryologically, NETs can initiate in many parts of the body including the gastrointestinal 
(GI) tract, lung, thymus, and ovary. The lung is the second most common site for NETs after the GI 
tract, and account for 25% of all NETs (1, 2) and 1–2% of all lung cancers (1, 3, 4).

Neuroendocrine tumors are considered very rare tumors and accurate incidence and prevalence 
data is difficult to obtain. In 2010, (latest year available) only 315 Canadians were diagnosed with 
endocrine tumors of all types; the numbers of NETs and even lung NETs are lower still (5). The 
reported incidence of NETs is increasing, likely due to greater awareness of the disease and better 
diagnostic capabilities (3). As patients with NETs have a prolonged survival, prevalence rates are 
high.

Lung NETs are a very heterogeneous group of tumors. They possess varied pathological and 
clinical features and require different treatment strategies. A spectrum of cell histologies from low 
grade carcinoid to high-grade small cell malignancies can be observed. Although it is important for 
the treating physician to understand the disease spectrum of lung NETs, this review will primarily 
focus on the classification and treatment of low-grade, well-differentiated lung NETs.

Neuroendocrine tumors may secrete biologically active amines or peptides and are often referred 
to as “functional” or “secretory.” As a result of this secretory activity, patients experience a spectrum 
of symptoms. Treatment is essential for symptom management and quality of life improvement and 
may prolong survival. However, as there are only small numbers of patients with lung NETs, evidence 

Abbreviations: AC, atypical carcinoid; DOPA, dihydroxyphenylalanine; 5-HIAA, 5-hydroxyindoleacetic acid; HPF, high power 
field; HR, hazard ratio; IM, intramuscularly; NETs, neuroendocrine tumors; LAR, long-acting release; NR, non-response; 
OS, overall survival; PET, positron emission tomography; PFS, progression-free survival; PPRT, peptide receptor radioligand 
therapy; SC, subcutaneous; SSAs, somatostatin analogs; TC, typical carcinoid; TTP, time to progression; WHO, World Health 
Organization.
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FiGURe 1 | Photomicrographs of typical and atypical pulmonary carcinoid 
tumors. (A) Low power photomicrograph of a typical pulmonary tumor. (B) Low 
power photomicrograph of an atypical pulmonary carcinoid tumor with central 
necrosis. Reproduced with permission from: Tazelaar HD. Pathology of lung 
malignancies. In: UpToDate, Post TW (Ed), UpToDate, Waltham, MA. (Accessed 
on November 2, 2016.) Copyright © 2016 UpToDate, Inc. For more information 
visit www.uptodate.com.

TABLe 1 | WHO Classification of neuroendocrine tumors (NETs).

neT type wHO  
grading (6) 

Histology Mitosis 
per 2 mm2

Presence  
of necrosis

Low grade  
(well-differentiated)

G1 Typical 
carcinoid

<2 (6) No necrosis

Intermediate grade 
(well-differentiated)

G2 Atypical 
Carcinoid

2–10 (6) Necrosis 

High grade (poorly 
differentiated)

G3 Large cell >10 (6) Extensive 
necrosis

Small cell High necrosis
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for optimal treatment strategies is lacking. The heterogeneous 
nature of NETs, their rarity and the lack of randomized trials 
in this disease area, underscores the importance of education in 
disease management.

CLASSiFYinG LUnG neTs

The WHO classification of Lung NETs was updated in 2015 and 
organizes the types of lung NETs on a spectrum, shown in Table 1 
(6). A significant change made in the 2015 reclassification was 
grouping all four NET types into one category. Until this time, 
large cell and small NETs were separate from the typical carcinoid 
(TC) and atypical carcinoid (AC) tumors.

The WHO classification distinguishes between the low grade 
(TC and AC) and high grade (large cell neuroendocrine and small 
cell) tumors. TC tumors are quite bland in their histology, have 
less than 2 mitoses per 2 mm2 and lack any evidence of necrosis. 
AC tumors can have the same “carcinoid morphology,” but the 
mitotic rate is increased from 2 to 10 mitoses per 2 mm2 and/
or may be punctuated with necrotic features. Images of both TC 
(G1) and AC (G2) NETs are shown in Figures 1A,B, respectively.

Because this review focuses on low-grade NETs, pathology 
and clinical presentation of high-grade NETs is described only 
briefly here. As their name implies, large-cell neuroendocrine 
carcinomas have a large cell size, and a low nuclear to cytoplasmic 
ratio and frequent nucleoli. The mitotic rate is greater than >10 
mitoses per 2 mm2 and necrosis is frequently present.

Low-grade NETs include TC and AC tumors. NET G1 or TC 
tumors, account for 1% of thoracic malignancies with only 10% 
chance of distant spread (7). NET G2 or AC, account for 0.1% of 
thoracic malignancies with a 20% chance of distant spread (7). 
NET G3 large cell NETs have a 4.8% incidence and 50% chance of 
distant spread, and G3 small-cell NETs have the highest incidence 
at 13.9%, with the highest chance of distant spread at 70% (7).

The most important point of differentiation for the treating 
physician is the dichotomous distinction between low grade 
(carcinoid and AC) and high grade (large cell neuroendocrine 
and small cell carcinoma) NETs. Prognosis and management 
differ widely between these two groups. This article will focus 
on the low- and intermediate-grade NETs. It is important to 
note that some patients do not fall easily into a discrete category, 
despite this classification system. Although Ki-67 expression is 
not validated for use in the lung, it can be used to differentiate 
the high-grade large cell NETs from the G1/G2 NETs, with crush 
biopsies or when cells are necrotic (6). Ki-67 is not recommended 
by the WHO to distinguish the TC from AC tumors (6).

Low-grade lung NETs are subdivided into central or periph-
eral depending on their site of origin within the bronchial tree. 
Patients with central lesions may present with symptoms such as 
hemotypsis (bleeding), wheezing, or airway obstruction. Patients 
with peripheral disease rarely experience symptoms related to 
tumor location.

The staging of lung NETs is non-specific and follows the TNM 
staging of non-NET lung cancers, which follow the current WHO 
classification (8). This may not be the best staging for this subset 
of lung malignancies as many lung carcinoid and AC are <3 cm 
in size (9).

PROCeDUReS FOR wORK UP FOR 
ADvAnCeD LOw GRADe LUnG neT

According to SEER, 12.9% of NET patients present with metasta-
sized tumors at diagnosis (10). Although NETs are slow growing 
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tumors, advanced disease leads to poor survival, and in patients 
with well-differentiated NETs with distant metastasis, 73% will 
die within 5 years (1). Liver, bones, and mediastinal lymph nodes 
are the most common sites of metastasis (11).

Once a diagnosis of advanced low-grade lung NET (carcinoid 
or AC) is made, a workup to establish disease burden, determine 
whether the tumor is functional (secretory) or not, and document 
baseline cardiac status should be initiated. Baseline tests include 
renal function, calcium and plasma Chromogranin A (12).

For diagnosis, a CT scan of both chest and abdomen should 
be performed (13). A high resolution CT can be done if contrast 
is contraindicated. Functional imaging with 111-Indium labeled 
octreotide is commonly used to establish disease burden and 
can also indicate whether treatment with peptide receptor 
radioligand therapy (PPRT) is an option (described in more 
detail in the Section “Peptide Receptor Radioligand Therapy”) 
(14, 15). Newer imaging technologies are more accurate, permit 
tumor staging and better treatment decision making, and can 
help localize disease. These include 18F-dihydroxyphenylalanine 
(DOPA) positron emission tomography (PET) or preferably, 
68Ga-DOTATATE PET scan, which also targets somatostatin 
receptor expression (16, 17).

Functional or secretory NETs may secrete biologically active 
amines or peptides. Patients may experience a spectrum of symp-
toms that may include diarrhea, flushing, abdominal pain, hypo-
tension, and vasospasm. Depending on the source, an estimated 
10–30% of advanced TC and AC NETs are functional (3, 18).

In patients with functional symptoms, a 24-h urine test for 
5-hydroxyindoleacetic acid (5-HIAA) should be performed at 
baseline (12). High levels of urine 5-HIAA may correlate with 
the risk of carcinoid heart disease and an attempt to lower it by 
treating with somatostatin analogs (SSAs) should be made. The 
24-h 5-HIAA test should be repeated on disease progression or 
when a change is therapy is being considered. Because carcinoid 
complications may occur with time, a baseline echocardiogram 
should also be performed (19).

TReATMenT MODALiTieS FOR 
ADvAnCeD LOw GRADe neT

For advanced carcinoid and AC patients, treatment is essential 
for symptom management and quality of life improvement in 
patients with functional tumors. Treatment may prolong survival 
in patients with both non-functional and functional tumors. As 
there are only small numbers of patients with lung NETs, evidence 
for optimal treatment strategies is lacking. Most NET clinical tri-
als conducted to date have focused on GI NETs, particularly in 
those of pancreatic (pNET) and midgut origins. Although trial 
results may be extrapolated, lung NETs deserve individual atten-
tion. The heterogeneous nature of NETs, their rarity and the lack 
of randomized trials in this disease area, underscores the need 
for trials in this area and the importance of education in disease 
management.

Surgery
When TC and AC lung NETs are diagnosed at an early stage, 
surgical intervention is often curative. TC tumors have excellent 

5- and 10-year survival rates of over 90%. This is in contrast to AC 
tumors where 5-year survival is approximately 70% and 10-year 
survival is only 50% (20–22).

Regarding adjuvant therapy, the use of chemotherapy with or 
without radiation has not been well studied and treatment guide-
lines differ (3, 23, 24). The NCCN guidelines recognize that the 
role of chemotherapy in the adjuvant setting for typical NET of 
lung origin is not known (24). However, for stage II or III atypical 
NET, chemotherapy with or without radiation is recommended 
(23). The European ENET guideline agrees with this for TC but 
states that for AC, adjuvant therapy may be considered if nodal 
disease is found (3).

Surgical treatment may also be considered in patients with 
advanced or metastatic disease for curative intent or symptom 
control, depending on the individual patient and site of disease (3).

Systemic Chemotherapy for Advanced  
G1 (TC) and G2 (AC) Lung neTs
Patients with low-grade TC and AC lung NETs may respond to 
chemotherapy, but data are historical and concrete recommenda-
tions are not supported. Multiple cytotoxic drug combinations 
have shown degrees of activity in lung NETS, although there is a 
lack of consensus regarding standard therapy.

SSAs for Advanced Low Grade neT
Patient with functional tumors need appropriate treatment to 
control the functional symptoms of diarrhea, flushing, abdomi-
nal pain, hypotension, and vasospasm. In addition to symptom 
control, randomized trials have demonstrated the benefits in 
slowing disease progression (25, 26). These will be described in 
more detail below.

Somatostatin receptors are often overexpressed on the surface 
of low-grade lung NETs (27). SSAs bind to the somatostatin 
receptor, blocking the release of peptides and amines, and thus 
help to control symptoms. The two SSAs currently available in 
clinical practice for advanced low-grade NETs are octreotide and 
lanreotide. Pasareoide is a third SAA, not yet in clinical use but 
currently being tested in a lung NETs clinical trial (28).

Octreotide is available as both intermediate acting subcutane-
ous (SC) and long-acting release (LAR) formulations. A 30-mg 
IM dose of octeotride-LAR can be repeated every 4 weeks, and 
increased by 10 mg increments up to an octeotride-LAR dose of 
60 mg. At this dose, most receptors are saturated and increasing 
it beyond has little benefit (29). Lanreotide is administered as a 
deep SC injection at a dose of 120 mg every 4 weeks (30). Both 
SSAs are well tolerated, although they may also lead to increased 
rates of biliary stones so abdominal imaging by ultrasound is 
recommended every 6 months.

A carcinoid crisis is very rare and can occur when massive 
amines are released by NET tumors, leading to hypotension and 
flushing. This can occur in NET patients as a secondary effect to an 
operative procedure or general anesthesia (31). Most surgeons or 
interventional radiologists require patients to be pre-medicated 
with a SSA prior to a procedure to avoid such complications.

In addition to their established role in symptom control, 
there are now randomized trials demonstrating that SSAs have 
an antiproliferative effect. The PROMID trial is a randomized 
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phase III trial in 86 patients with midgut NETs, 40% of which 
are functional (secretory) tumors (25). Patients were randomized 
to receive either octreotide LAR 30  mg or placebo (25). Time 
to progression (TTP), the primary endpoint, was significantly 
increased with octreotide, at 14.3 months compared to 6 months 
with placebo (HR = 0.34, p = 0.000072). The CLARINET trial 
is a randomized phase III trial in 204 somatostatin receptor-
positive patients with non-functioning (non-secretory) well 
or moderately differentiated-NETs of the pancreas, midgut or 
hindgut. Patients were randomized to either lanreotide 120 mg 
SC or placebo (26). Median progression-free survival (PFS), the 
primary endpoint, was significantly increased in patients who 
received the lanreotide, at an estimated 24 months as compared 
to 18 months for placebo (HR = 0.47, p < 0.001). A comparison 
of the PFS in the placebo arms of PROMID and CLARINET  
(6 and 18  months, respectively) suggests key differences in 
patient populations, making cross trial comparison impossible. 
However, both trials illustrated that SSA treatment in patients 
with NETs incurs an anti-proliferative effect that improves sur-
vival in both non-functional and functional pancreatic and other 
GI NETs. Neither the PROMID nor CLAIRNET trials included 
any lung NET patients. Results from the LUNA-randomized trial, 
which was specifically designed for lung and thymic NETS, were 
recently presented (28). LUNA-randomized patients to pasire-
otide, everolimus, or a combination of both agents, and all three 
arms had a promising progression-free rate at 9 months. LUNA 
confirms that SSA is a viable treatment option for patients with 
functional lung NETs as they are effective in controlling symptoms 
and provide antiproliferative benefits. In some jurisdictions, they 
are approved only for patients who are symptomatic.

Peptide Receptor Radioligand Therapy
Peptide receptor radioligand therapy specifically delivers a radi-
olabeled agent to a target, such as somatostatin receptors which 
often overexpressed on the surface of metastatic lung NETs (27). 
PRRT using yttrium Y-90 labeled octreotide was first used to treat 
this disease in the early 1990 and has been delivered and used 
in many centers for decades, despite the lack of phase III trials 
confirming benefit.

This has now changed with the results of the phase III NETTER-1 
trial (32). This trial enrolled carcinoid patients whose disease was 
progressing on a standard dose of octreotide 30  mg LAR. Two 
hundred and thirty patients with grade 1–2 metastatic midgut 
NETs were randomized to receive either PRRT 177Lu-Dotatate, 
7.4 GBq every 8 weeks (×4 administrations), or octreotide LAR 
60 mg every 4 weeks. The primary endpoint of PFS was not reached 
for 177Lu-Dotatate and was 8.4 months in the control group (HR 
0.21, p < 0.0001). The objective radiographic response rate was 
18% with 177Lu-Dotatate and 3% with control (p  =  0.0008). 
Overall survival analysis, although preliminary, was positive as 
well (13 deaths in 177Lu-Dotatate group and 22 in control group; 
p = 0.019). The safety profile of PRRT was favorable. Although 
this trial was conducted primarily in patients with midgut NET, 
the results may apply to lung NETs that are receptor-positive by 
nuclear imaging. A retrospective study which included 89 lung 
NET’s treated with PRRT revealed a response by RECIST in 28% 
supporting this treatment as an option for pulmonary NETs (33).

Systemic Therapy: m-TOR inhibition
As lung NETs have shown increased activation of the mamma-
lian targets of the rapamycin (m-TOR) signaling pathway (34), 
everolimus, an m-TOR inhibitor, is another potential therapy 
for lung NET patients. The phase III RADIANT-2 trial evaluated 
everolimus plus octreotide-LAR compared to octreotide-LAR 
alone in advanced NETs with carcinoid syndrome (35). Although 
the trial included patients with lung NETs, it did not stratify by 
site. Patients treated with dual agents everolimus and octeotride-
LAR, experienced a non-significant improvement in PFS of 
16.4 months as compared to 11.3 months with octeotride-LAR 
alone (p  =  0.026). The predetermined PFS significance rate 
was 0.0246, so with a p value of 0.026, RADIANT-2 missed its 
mark. In an exploratory subgroup analysis for lung NETs only 
(n = 44), there was a trend toward improved PFS (13.6 months) 
for dual treatment as compared to 5.6 months for octeotride alone 
(p  =  0.228). As RADIANT-2 included only small numbers of 
patients and was not stratified per site, the trial had to be repeated 
to test the effect of everolimus without octeotride in a population 
of patients with non-functional tumors.

The RADIANT-4 trial randomized patients with non-
functional NETs of the lung and GI tract to either everolimus 
or placebo (36). The median PFS was significantly prolonged in 
the everolimus arm compared to placebo arm (11 months versus 
3.9  months, p  <  0.00001) (see Figure  2). These improvements 
were independent of site of disease origin: lung, GI, or unknown.

The phase III RADIANT-2 trial (comparing everolimus and 
octeotride with octeotride alone) included functional tumors 
in both lung and GI, and demonstrated that the combination of 
everolimus and octreotide was not only safe but complementary. 
However, as the RADIANT-4 trial (comparing everolimus with 
placebo) excluded functional tumors, the Health Canada label 
limits everolimus to be used without octeotride for the treatment 
of non-functional lung NETS only.

Treatment of neTs Side effects
Carcinoid heart disease may occur up to 50% of patients with 
functional tumors (37) and is secondary to serotonin acting on 
serotonin receptors on the right heart. An echocardiogram can 
show thickening of the tricuspid valve and surgical management 
may be needed. The medical management may include diuretics 
and SSAs to reduce levels of serotonin (38).

importance of Multidisciplinary 
Management
As patients with both TC and AC tumors have prolonged survival 
and treatment spans across many areas such as surgery, nuclear 
medicine, medical and radiation oncology, a multidisciplinary 
approach and or team may be in the patients’ best interest.

FOLLOw-UP

Patients diagnosed with low-grade lung NETs need to be fre-
quently followed up after surgical resection. For patients with 
TC NETs, conventional imaging can be carried out at 3 and at 
6 months, then on an annual basis. For AC, closer monitoring 
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is recommended, first at 3 and 6  months, then continuing at 
6-month intervals (3). Clear instructions for the type and inter-
val of follow-up for patients with advanced well-differentiated 
NETs do not exist (1, 24, 39). Follow-up and imaging needs to 
be individualized as it is based on the individual baseline status, 
new symptoms, prior treatment and if change in therapy is 
contemplated. Chromogranin A measurements can be used to 
monitor disease progression; however, the frequency and dura-
tion of measurement is not articulated. More detailed guidelines 
are needed to direct follow-up.

COnCLUSiOn

Lung NETs are a unique tumor entity. As the second most com-
mon type of NETs, they deserve attention. This heterogenous 
group of tumors requires a multimodality team approach for 
optimal treatment. A pathological review is critical to differenti-
ate between low-grade TC and AC NETs and high-grade tumors, 
and radiologicial imaging is necessary to visualize the tumor 
and determine metastatic spread. Treatment with somatostatin 

receptor analogs octreotide and lanreotide can improve carci-
noid symptomology and prolong PFS. Tumors that are receptor 
avid by octreotide may be treated with PRRT with the goal of 
improving PFS. Finally, m-TOR inhibitors have demonstrated 
efficacy toward NETs regardless of functional status. The rarity 
of the disease limits our knowledge, and there is a need for more 
trials involving lung NET patients. Until more lung-specific data 
are available, we will have to extrapolate data from the GI NET 
studies. We look forward to the global understanding of lung 
NET’s expanding, and the disease finally receiving the attention 
it deserves.
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Lung cancer is one of the four most prevalent cancers worldwide. Comprehensive patient 
care includes not only adherence to clinical guidelines to control and when possible cure 
the disease but also appropriate symptom control. Pain is one of the most prevalent 
symptoms in patients diagnosed with lung cancer; it can arise from local invasion of chest 
structures or metastatic disease invading bones, nerves, or other anatomical structures 
potentially painful. Pain can also be a consequence of therapeutic approaches like 
surgery, chemotherapy, or radiotherapy. Conventional medical management of cancer 
pain includes prescription of opioids and coadjuvants at doses sufficient to control the 
symptoms without causing severe drug effects. When an adequate pharmacological 
medical management fails to provide satisfactory analgesia or when it causes limiting 
side effects, interventional cancer pain techniques may be considered. Interventional 
pain management is devoted to the use of invasive techniques such as joint injections, 
nerve blocks and/or neurolysis, neuromodulation, and cement augmentation techniques 
to provide diagnosis and treatment of pain syndromes resistant to conventional medical 
management. Advantages of interventional approaches include better analgesic out-
comes without experiencing drug-related side effects and potential for opioid reduction 
thus avoiding central side effects. This review will describe various pain syndromes fre-
quently described in lung cancer patients and those interventional techniques potentially 
indicated for those cases.

Keywords: lung neoplasms, cancer pain, nerve block, spinal anesthesia, cementoplasty, neurostimulation

iNTRODUCTiON

Prevalence of Pain in Patients Diagnosed with Lung Cancer
Cancer and pain are clinical entities closely associated. Recent reviews suggest a prevalence of pain 
in cancer patients of 51% regardless of the type and stage. This prevalence increases with the type of 
tumor (head and neck, lung, and breast cancers are the ones with higher prevalence) and with the 
staging (advanced, metastatic, or terminal) reaching a 66% of cases (1).

Recent therapeutic advances have allowed increased survival rates potentially turning lung cancer 
into a chronic condition (2). Since pain is present in up to 39% of cases after curative intent, an 
increased survival could potentially impact this number of patients left with persistent symptoms 
despite being successfully treated.
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importance of Appropriate Symptom 
Control in Lung Cancer Patients
Undertreated cancer pain associates both physical and psycho-
logical consequences, causing suffering and reduced quality of 
life. Patients with unrelieved pain associate physical symptoms 
like insomnia, anorexia, profound fatigue, reduced cognition, and 
overall reduced vital capacity. Cancer patients presenting with 
unalleviated pain withdraw from social and familial interactions 
leading to isolation and psychological distress. Lastly, persistent 
pain can cause existential and spiritual suffering, which can limit 
the patient’s coping skills (3).

Basic Pharmacological Management to 
Relieve Cancer Pain
The World Health Organization (WHO) responded to an 
essential necessity to assess and treat cancer pain by designing in 
1986 the WHO Cancer Pain Relief guidelines [updated 10 years 
later (4)]. Adoption to the three step ladder approach leads to 
satisfactory cancer pain control in the majority of cases. However, 
in a significant proportion of patients, appropriate conventional 
medical management following the WHO guidelines do not war-
rant satisfactory analgesic control or may provoke limiting drug-
related side effects (5). For those cases, interventional cancer pain 
management may represent a valid option.

Definition of interventional Pain Medicine
Interventional pain management is a subspecialty of medicine 
devoted to the use of invasive techniques such as joint injections, 
nerve blocks and/or neurolysis, neuromodulation, and cement 
augmentation techniques to provide diagnosis and treatment 
of pain syndromes unresponsive to conventional medical 
management.

The basis of interventional pain practice lays on a profound 
knowledge of the anatomy and particularly the sensory innerva-
tion of different anatomical structures. When assessing a cancer 
pain case, aside from physiopathological considerations, the 
interventionalist may reflect about what is the anatomical struc-
ture that is hurting and which is the nerve supplying sensation to 
that structure.

As a principle, injections are avoided to be performed in the 
close vicinity of tumors for several reasons: (1) an increased risk 
of bleeding caused by abnormal tumor vascular neogenesis; (2) a 
risk of seeding cancer cells along the needle track, and (3) there 
is a risk of missing the target if the tumor has distorted the local 
anatomy. Routinely, nerve blocks are performed at levels where 
nerves are not damaged but are found proximal to the site of 
where the pain is coming from.

Several interventional cancer pain procedures have dem-
onstrated effectiveness in relieving drug-resistant cancer pain 
symptoms (6), yet the evidence is scant. This may explain why 
interventional procedures have not yet been adopted in clinical 
guidelines for the management of cancer pain and thus remain 
optional to teams with trained clinicians on board.

Scope of the Paper
This article aims to review the most common pain syndromes 
described in patients diagnosed with lung cancer. Treating 

physicians must be aware that conventional medical management 
is sufficient to achieve satisfactory pain management in most 
cases. Readers are encouraged to be familiar with comprehensive 
medical reviews on basic pharmacological analgesic approaches 
beyond the principles of the WHO (7, 8). The second part of this 
review lists the available interventional pain techniques indicated 
in cases of poor response to conventional medical management. 
A brief explanation of each technique with its peculiarities and 
scientific evidences, when available, is presented.

CLiNiCAL PAiN SYNDROMeS iN 
PATieNTS wiTH LUNG CANCeR

Pain in the Chest
Chest Wall Pain
Chest wall pain is a severe and disabling symptom. Over a half 
of lung cancer patients suffer from chest pain at diagnosis (9). 
Pain is usually ipsilateral to the tumor site and is described as 
dull, aching, persistent, and poorly localized. Chest pain can 
be particularly severe and better identified if secondary to a rib 
metastasis or when the primary tumor involves the chest wall or 
pleura. The majority of patients suffering from non-small cell 
lung cancer with chest wall invasion suffer from chest pain (10).

Costopleural Syndrome
It refers to the severe refractory chest pain, often observed in 
patients diagnosed with pleural mesothelioma. It is caused by 
tumor invasion of the pleural cavity and thoracic wall, and it is 
seen often in the early stages of the disease. This chest pain can 
be pleuritic in nature and also described as a dull and poorly 
localized pain arising and involving part of the hemi-thorax. It 
normally develops during the course of the disease thus worsen-
ing with disease progression and often becoming challenging 
to relieve with conventional drug management. Generally, the 
pain will present with mixed nociceptive and neuropathic pain 
features as the autonomic, intercostal, and occasionally brachial 
plexus nervous structures are involved (11).

Rib Bone Metastases
The primary symptom resulting from bone inflammation is pain, 
which may have a pleuritic component when the parietal pleura is 
involved. Since lung cancer metastases to bone are predominately 
lytic, periosteal inflammation and breach is the most common 
mechanism of pain from bone metastases (12). Additionally, 
metastases to the ribs often come associated with intercostal nerve 
damage and thus neuropathic pain. The pain usually is localized in 
a particular area and is often reported at night or on weight bear-
ing and with deep breathing. Pain is characteristically described 
as dull in character, constant in presentation, and progressively 
increasing in severity. At rest, the pain severity may be better 
controlled, thus patients may describe breakthrough pain related 
to postures and volitional or involuntary chest movements (13).

Pancoast Tumor
Pancoast tumor is defined as a malignant tumor arising from the 
lung apex, also referred to as superior sulcus tumor. The tumor 
usually affects adjacent structures such as ribs, blood vessels, and 
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nerves (typically the lower nerve roots of the brachial plexus). As a 
result, patients may present with severe pain, often of neuropathic 
characteristics radiating toward the ipsilateral upper extremity 
and accompanied with sympathetic symptoms (like the Horner 
syndrome) caused by invasion of the cervicothoracic sympathetic 
ganglion. These manifestations often appear months prior to the 
diagnosis of the underlining disease (14).

Malignant Brachial Plexopathy
Tumor infiltration of the brachial plexus is commonly seen 
among patients with lung cancer. It usually affects the lower 
elements of the nervous plexus but at times it may evolve into 
a panplexopathy. Presenting symptoms are typically pain at the 
shoulder and upper extremity associating with weakness, muscle 
atrophy, and sensory deficits. As the tumor expands and invades 
adjacent structures, the likelihood of reaching the epidural space 
becomes substantial (15).

Post-Thoracotomy Pain Syndrome
Between 25 and 60% of patients undergoing thoracic surgery 
develop persistent postoperative pain following the procedure 
(16). Post-thoracotomy pain syndrome (PTPS) is defined as pain 
along the surgical bed lasting more than 2 months post-thoracic 
resection surgery (17). It may occur after thoracotomy for malig-
nant or non-malignant lesions, it is usually restricted to one or 
more dermatomes. It is characterized by moderate to severe pain 
and typically described as numbness, tingling, burning, shooting, 
and sometimes itchy painful sensations. Sensory loss and allo-
dynia are usually present as well. The exact mechanism for the 
pathogenesis of PTPS remains unclear and is probably a combina-
tion of neuropathic and myofascial pain (MFP) (18). Genetics, 
age, gender, preoperative stress, and perioperative pain have been 
identified as predisposition factors for PTPS. The type and extent 
of surgery are also factors for the development of chronic pain 
particularly when there is trauma to the intercostal nerves.

Postherpetic Neuralgia
Cancer patients increasingly suffer from acute herpetic neuralgia 
(19). The Varicella Zoster virus, which remains dormant at the 
dorsal root ganglion after primary infection, is reactivated under 
certain circumstances like aging and immunosuppression, causing 
a skin rash usually restricted to a dermatomal distribution. Upon 
resolution of the skin lesions, patients develop the commonly 
known as postherpetic neuralgia. This pain, neuropathic in nature 
(20), is found most frequently affecting thoracic dermatomes. 
Pain management for both acute and chronic forms is challenging 
and relies mostly on pharmacology-based approaches. In severe 
cases, when conservative treatment fails to provide satisfactory 
relief of postherpetic neuralgic pain, interventional approaches 
could be attempted (21).

Bone Pain
Metastatic disease involving the musculoskeletal system is a 
common problem in oncology patients, occurring in up to 85% 
of patients diagnosed with breast, prostate, or lung cancer at the 
time of death (22). Bone metastases indicate a poor prognosis, 

with patients experiencing a median survival of 3 years or less; 
however, 5–40% of patients are alive at 5  years, dependent on 
tumor histology and disease burden (23). Metastatic bone disease 
leads to complications, such as pain, that can affect the patients’ 
quality of life. Bony metastases are frequent causes of pain 
among lung cancer patients as a result of pathological fractures, 
invasion of nearby pleural or visceral organs, involvement of 
neighbor nerve structures, spinal instability, and/or spinal cord 
compression. All of these complications are manifested as dif-
ficulty in ambulation or immobility and neurologic deficits (24). 
Pain symptoms arising from bone metastases present with mixed 
somatic and neuropathic features and are typically confined to a 
particular anatomical region. Pain often appears during the night 
and is exacerbated by weight bearing, posture change, or move-
ment, thus with a strong dynamic component. Pain starts over 
weeks or months with progressive worsening becoming more 
severe and continuous at rest or with exacerbation triggered by 
dynamic changes (7). When baseline pain is well controlled but 
the patient experiences sudden and short lasting crisis of severe 
pain (also known as breakthrough pain), the case becomes more 
challenging since the crisis can be unpredictable and the available 
pharmacological options may be unsatisfactory.

Although thought to be the optimal management, surgery 
often cannot be offered because of underlying medical conditions, 
poor functional status, poor bone quality, or presence of multiple 
bone metastases (25). Currently, the gold standard symptomatic 
treatment of focal bone pain caused by metastatic disease is exter-
nal beam radiation therapy. After radiation therapy most patients 
present with partial or complete pain relief; however, this relief is 
not achieved immediately but experienced after a considerable 
amount of time. In over 50% of patients, the pain relief is found 
temporary, and in 20–30% of cases the pain is not relieved (26, 
27). Patients who underwent radiation therapy presenting with 
localized recurrent pain in the irradiated region are not usually 
candidates to receive more radiation because the potential toxic 
impact on non-cancer tissues.

Unfortunately, standard chemotherapy is often ineffective to 
treat metastatic-related pain. Bisphosphonates and denosumab 
are agents with proven benefits in decreasing severity of bone-
related incidents in patients with metastatic bone disease. They 
may alleviate cancer-induced bone pain, yet there is insufficient 
evidence to recommend these therapies solely for pain relief 
purposes (28).

Myofascial Pain
In approximately 10% of cancer patients, pain is unrelated directly 
to the disease or treatment and is most often originated in muscles 
and connective tissues (29). MFP is started to be recognized as 
one of the most important causes of pain in cancer patients during 
treatment, at terminal stages, or after curative therapy (30). MFP 
is a syndrome characterized by regional chronic pain associating 
multiple myofascial trigger points and fascial constrictions. It can 
appear in any body part and characteristically features focal point 
tenderness, reproduction of pain and hardening of the muscle 
upon trigger point palpation, pseudo-weakness of the involved 
muscle, referred pain, and restricted range of motion (31). The 
treatment for MFP includes physical therapies like myofascial 
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trigger point needling and injections, myofascial release, and 
stretching exercises (32).

Pain Related to Diagnostic Procedures 
and Cancer Treatment
Certain diagnostic test and treatments can cause or aggravate 
pain because they require the patient to maintain an immobile 
posture like imaging test or radiotherapy (RT). Others cause pain 
due to their invasiveness such as transthoracic needle biopsy or 
thoracocentesis (33). These acute pain episodes are described 
as transient exacerbations of pain typically well managed with 
conventional analgesic medications. Chemotherapy and RT are 
treatments frequently associated with deleterious and persistent 
painful syndromes that are not easily managed.

Chemotherapy-induced painful neuropathy is one of the most 
common and better studied pain syndromes consequences of 
cancer therapy. Most of chemotherapy-induced pains are self-
limited and can be managed pharmacologically and/or with dose 
adjustments of the chemotherapeutic regimen. Probably, the better 
described chronic pain syndrome consequence of cancer treat-
ment is chemotherapy-induced peripheral neuropathic pain (34).

Cancer patients can potentially suffer from RT-related pain 
both immediately after the treatment and as a late complication. 
During the acute phase, RT causes pain due to skin or mucosa 
inflammation or due to the procedure itself. Patients subject to 
RT for bone metastasis commonly suffer from pain flare-ups in 
radiated areas (35) and are treated usually with breakthrough 
analgesics and steroids. At later stages, RT-related pain can be 
caused by a variety of mechanisms including soft-tissue fibrosis 
and sclerosis and muscle weakness, such as thoracic pain, shoul-
der pain, and cervical dystonia (36). Thoracic cancer patients 
receiving greater dosages may require opioids to treat brachial 
plexopathy or chest wall pain following radiation (37, 38).

iNTeRveNTiONAL PROCeDUReS

General Principles of interventional Pain 
Procedures in Cancer Patients
An interventional pain procedure is typically indicated when (a) 
the patient has not achieved satisfactory analgesic control despite 
optimal conventional medical management as suggested by the 
WHO guidelines or (b) when adequate pain control comes asso-
ciated with intolerable side effects (39). Additional indications 
may include (c) favoring analgesic control with opioid sparing 
techniques or (d) analgesia in patients that are poor candidates 
to opioid analgesia.

The key to a successful partnership between treating oncolo-
gists and interventional pain physicians is communication to 
sharing the cases, reviewing indications and contraindications, 
appraising the available scientific evidences, and updating the 
team about the patient’s status and goals of treatment, in sum-
mary creating a clinical pathway for these patients.

Overall, interventional pain procedures should be offered to 
patients before they are too frail to undergo the procedure, thus 
they should not be considered an option in isolation but rather 
a part of an analgesic strategy. Patients should be able to consent 

and they should, along with their caregivers and the treating 
team, understand the procedure, the expected benefits and side 
effects, and potential complications (40).

A bidirectional communication between teams allows for ear-
lier identification of candidates, thus preventing drug escalation 
and challenging cases. Additionally, the team must be updated 
on those fluctuations in the patient’s status that may potentially 
change the indication (risk of bleeding, infection, respiratory 
insufficiency). Following a successful procedure, the treating team 
must be vigilant for potential changes in analgesic requirements; 
ideally, opioids must be decreased to prevent central toxicity.

Peripheral Nerve injections
When cancer pain is experienced in the vicinity of an identified 
peripheral nerve, a temporary interruption of the pain transmis-
sion can be an effective method to control neuropathic pain. 
The term “nerve block” describes any procedure that utilizes a 
needle to deliver a local anesthetic or an ablative agent (phenol, 
alcohol, glycerin, etc.) for analgesic purposes. A block can have 
both diagnostic and therapeutic values. In order to identify the 
anatomical area and/or the afferent pathway involved in originat-
ing/conveying the pain sensation, a diagnostic nerve block may 
be effective. A prognostic block allows the decision to indicate a 
more complex and permanent procedure usually with neurolytic 
purposes. Diagnostic and prognostic blocks consist in injecting a 
small volume of a local anesthetic agent onto a nerve. The dura-
tion of the effect is usually short, depending on the potency of the 
local anesthetic agent injected. Patients are considered respond-
ers when most of their pain is significantly relieved during the 
following hours after the procedure. Neurolysis implies the focal 
destruction of nervous tissue as by the use of chemicals or thermal 
methods to disrupt nerve transmission. The classical targets for 
nerve blocks or neurolysis are sympathetic nerves or nerves with 
predominant sensory component. It is very important to always 
preserve motor and sphincter functions and when not possible, 
balance potential benefits against side effects before performing 
a neurolysis (40).

Among lung cancer pain patients, the most frequently targeted 
nerve structures are obviously located inside the thorax. As a gen-
eral principle, the interruption of nociception must be attempted 
at a proximal site to the pain generator (41). Patients with thoracic 
chest wall pain may benefit from procedures targeting (from 
distal to proximal) the intercostal nerve, the posterior root of the 
thoracic radicular nerve, and the paravertebral space.

Intercostal Nerve Blocks and Neurolysis
It consists in injecting the neural structure located underneath 
each rib. This is a simple procedure that can be performed at 
the patient’s bed site not requiring advanced imaging guidance 
systems. Because the main complication is the pleural puncture 
and subsequent pneumothorax, it is suggested direct needle 
placement with ultrasonography. The injection of an intercostal 
nerve provides loss of sensation distal to the point of injection 
following the trajectory of the nerve toward the anterior chest 
wall. The largest series reporting intercostal nerve procedures for 
chest pain management include 25 patients with metastatic rib 
lesion undergoing intercostal blocks. In this study, 80% of the 
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patients noted optimal local pain control and 56% experienced 
reduction in analgesic use after the procedure (42).

When a temporary intercostal nerve block provides adequate 
analgesia but limited to a short period of time, it may be reason-
able to repeat the block adding a coadjuvant (43) or opting for 
a more permanent relief by damaging the nerve with a chemi-
cal neurolysis with phenol (44), a thermal neurolysis with heat 
using radio-frequency (RF) (45, 46) or freezing the nerve with 
cryoneurolysis (47).

Thoracic Nerve Root and Paravertebral Procedures
This consists of injecting the thoracic nerve roots at their exit 
from the spinal canal. These nerve roots can be injected individu-
ally (selective thoracic nerve block/neurolysis) or several at the 
same time by placing a needle at the thoracic paravertebral space. 
The selective nerve root block technique has been suggested as a 
proximal alternative site of injection in cases of post-thoracotomy 
pain (48). Authors described the use of pulsed RF, which deliv-
ers electricity to the dorsal root ganglion without causing nerve 
tissue damage. Results favored this technique over treatment 
of intercostal nerves and over conventional pharmacological 
management.

The injection of neurolytic agents into the thoracic paraver-
tebral space presents advantages since one single injection may 
reach several thoracic nerve roots, thus involving a larger ana-
tomical area. Neurolytic injection of the thoracic paravertebral 
space has been also described in cases of lung cancer with chest 
wall pain. In a small case series, injection of phenol in the vicin-
ity of thoracic nerve roots provided satisfactory yet short lasting 
chest pain relief (49).

Brachial Plexus Procedures
Pain to the upper limb caused by lung cancer has been reported 
in cases of Pancoast tumors. The involvement of the sympathetic 
chain and the brachial plexus may cause neuropathic symptoms 
radiated toward the arm and the hand. Anesthetic techniques tar-
geting the brachial plexus may include intermittent or continuous 
injection of local anesthetics (50) and neurolysis with phenol (51).

Spinal injections
Drugs injected into the spinal canal act through direct interaction 
with spine receptors thus achieving more potent analgesic effects 
with minimal doses. Additionally, the effect may be restricted 
to few dermatomes, hence sparing the possible side effects to 
a targeted anatomical area. The two modalities of intraspinal 
procedures available to manage drug-resistant pain secondary 
to lung cancer are continuous spinal drug delivery or spinal 
neurolytic procedures.

Continuous Drug Delivery
The basics of neuraxial analgesia consist of a catheter inserted 
into the spinal canal and a pump to administering medication 
in a continuous fashion. Opioids alone or combined with local 
anesthetics and other substances, such as clonidine or ziconotide, 
can be administered via epidural or intrathecal route to achieve 
neuraxial analgesia. Neuraxial analgesia allows the use of lower 
dosages of opioids, hence minimizing systemic side effects. As 

an example of the potency of intraspinal opioids: 300  mg PO 
morphine/day  =  100  mg IV morphine/day  =  10  mg epidural 
morphine/day = 1 mg intrathecal morphine/day (52).

Patient selection for spinal drug delivery includes choice of 
the anatomical space to deliver the drug (epidural vs. intrathecal) 
and choice of the administration mode (external infusion with 
syringe driver/pump vs. implanted reservoir with automated 
pump). The selection of the system is determined by factors like 
survival expectancy, body habit, patient admitted or ambulatory, 
financial resources, and/or expertise of the treating team (53).

For those patients with reduced life expectancy (<3 months), 
the neuraxial method of choice remains the epidural route. The 
main advantages of epidural opioid delivery are reduced risk of 
pharmacological complications, theoretical dermatomal analge-
sia achieved when combined with local anesthetics, decreased 
risk of post-dural puncture headache, and potentially, more 
familiarity within other specialties. On the other side, continuous 
epidural analgesia requires infusion of larger volumes of medica-
tion and a higher risk of catheter-related complications since it is 
not normally anchored or internally implanted (54).

Intrathecal drug delivery has been extensively described in 
the literature for the management of drug-resistant cancer pain 
syndromes. Available guidelines can be found to identifying 
the best candidates for this analgesic therapy (55). Advantages 
of intrathecal systems include better pain control with lower 
dosages, lower risk of catheter-related complications, and totally 
implanted systems thus, reduced rate of infections (56). Direct 
comparison of intrathecal drug delivery vs. conventional medical 
management favors the experimental arm in quality of analgesia, 
profile of side effects, and survival rates (57).

Intraspinal Neurolysis
Pain relief in terminal cancer cases achieved by means of injection 
of a neurolytic agent has been extensively reported (58). The key 
for a successful neurolytic procedure is balancing the expected 
analgesia and the potential nerve deficits associated.

These neurolytic procedures seem to be restricted to the latest 
option in the interventional cancer pain armamentarium (59) 
because they carry inevitable nerve deficits and because intraspi-
nal drug delivery systems have become more available.

For lung cancer pain patients, the options include epidural (60) 
or intrathecal (58) injections of neurolytic agents such as alcohol 
or phenol. Because these neurolytic approaches are usually left 
as a last resort in the management of severe and drug-resistant 
cancer pain in terminally ill patients, the available evidences 
are only restricted to case series. From those evidences, it can 
be inferred that intraspinal neurolysis is a complex analgesic 
technique providing satisfactory analgesia but carrying a high 
potential for neurological deficits that must be weighted before 
performing the technique.

electrical Neuromodulation Techniques
Electrical neuromodulation is a technique by which an electrode 
that is placed next to a nervous structure stimulates selective small 
nerve fibers, which in turn inhibit nociception through complex 
physiological mechanism. Neurostimulation can be achieved 
via placement of electrodes under the skin (subcutaneous/field 
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stimulation), close to peripheral nerves or to spinal nerve roots 
(peripheral nerve/DRG stimulation), inside the epidural space 
close to the ascending dorsal columns [spinal cord stimulation 
(SCS)], or inside the brain (deep brain stimulation). The efficacy, 
safety, and cost-effectiveness of neurostimulation techniques in 
the management of chronic pain of non-cancer origin have been 
sufficiently demonstrated in the last decade (61).

Conversely, because of its cost, the indication for neuro-
stimulation in cancer pain patients is usually restricted to those 
cases when cancer has been successfully cured but patients are 
left with painful permanent consequences. There are no rand-
omized trials addressing the benefits of SCS for cancer-related 
pain (62). Indications for SCS included chest wall pain (63) or 
chemotherapy-induced neuropathy (64), for example.

Neurosurgical Procedures
Historically, destructive procedures for cancer pain were the main 
line of treatment therapy in the previous two centuries; however, 
the availability of opioids, coadjuvants, and newer anesthetic 
techniques has essentially replaced such procedures (65). The 
indication of these techniques is restricted to anecdotal reports 
nowadays.

Percutaneous Cervical Cordotomy
This procedure consists of creating a lesion to the lateral spi-
nothalamic tract. The purpose is to disrupt the pain transmission 
carried from the contralateral side, as the spinothalamic tract car-
ries pain, temperature, and some tactile information. The lesion 
is usually done percutaneously through the C1–C2 level (66). 
This procedure has been shown to be most effective in patients 
with confined unilateral nociceptive pain, such as in the case of 
mesothelioma (67) or other malignant invasions of the chest wall.

The complications involved are substantial with 3% mortal-
ity, up to 11% motor weakness, and others such as respiratory, 
postcordotomy hypotension, bladder dysfunction, sexual dys-
function, and dysethesia (68).

Intracerebroventricular Opioid Delivery
Intracerebroventricular opioids are useful for intractable pain 
when other simpler techniques have failed. It consists of deliver-
ing opioids via a ventricular catheter attached to a subcutaneous 
storage (69).

Cingulotomy
This procedure refers to lesioning of the anterior cingulate cortex, 
which is a component of the limbic system that affects a wide 
array of functions involving behavior, emotions, and others. It 
is indicated in cancer pain patients with significant emotional 
distress. A case report from 2014 described bilateral anterior cin-
gulotomy effectively relieved both pain and dyspnea for a patient 
with malignant mesothelioma (70).

Procedures for Localized Painful Bone 
Metastases
Cement Augmentation Techniques
The diagnosis and management of clinically relevant bone 
fractures are based on a clinical examination indicating pain 

localized to the level of the fracture along with confirmatory 
imaging studies (71). Cementoplasty refers to a technique where 
cement is delivered percutaneously to the spinal bones or other 
weight-bearing bones for stability purposes. It broadly includes 
procedures like vertebroplasty, kyphoplasty, sacroplasty, and 
osteoplasty (72).

Vertebroplasty and Kyphoplasty
Untreated vertebral compression fractures can result in a spinal 
cord compression with irreversible neurological symptoms 
and paraplegia (73, 74). Pain severity or the medications used 
to control pain can cause considerable functional impairment, 
significantly limiting patients’ mobility and ability to carry out 
day-to-day activities (75).

Vertebral augmentation techniques—vertebroplasty or 
kyphoplasty—are often done at an outpatient setting, at which 
image-guided injection of bone cement (methyl methacrylate) 
is injected into a collapsed vertebral body. This approach may be 
valuable for patients when pain is unresponsive to conservative 
treatments and no other options like RT are available, and for 
patients whose pain causes poor functional status thus limiting 
their life expectancy. Compared to non-surgical management, 
kyphoplasty was found to be an effective and safe treatment 
that rapidly reduced pain and improved function. A recently 
published systematic review including 111 clinical reports with 
4,235 patients evaluated vertebral augmentation (vertebroplasty 
or kyphoplasty) for cancer-related vertebral compression frac-
tures. Researchers found these two procedures to significantly 
and rapidly reduced pain intensity as well as significantly 
decrease the need for opioid pain medication, and functional 
disabilities related to back and neck pain (76). Beyond the con-
traindications mentioned above for invasive procedures, addi-
tional contraindications for these procedures include epidural 
disease, a fracture with new neurological impairment attributed 
to it, and fractured vertebra with a burst element penetrating the 
spinal canal (77).

Osteoplasty
It is the percutaneous injection of bone cement into painful bone 
metastases at extraspinal regions. Two retrospective studies, 
comprising a total of 76 patients, evaluated osteoplasty under 
CT or fluoroscopy found this technique effective and valuable 
as a method for reduction of pain and improvement of patients’ 
quality of life (78, 79). In particular, for patients with lung cancer 
metastatic to the bones, a large retrospective series demonstrated 
vertebroplasty and cementoplasty to be effective and safe as a 
means to decrease pain and enhance mobility in patients with 
vertebral and extra spinal metastases (80).

RF Ablation and Cryoablation of Painful Bone 
Metastases
Several new ablation treatment strategies have been reported to 
be effective over the last two decades. These treatments consist of 
image-guided (CT, fluoroscopy) destruction of soft tissues or bone 
tumors (either primary or metastatic). Among these techniques, 
RF ablation is the most studied and frequently used modality, but 
cryoablation, laser ablation, and microwave ablation have all been 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


90

Hochberg et al. Interventional Cancer Pain Management

Frontiers in Oncology | www.frontiersin.org February 2017 | Volume 7 | Article 17

also reported. The pain treated with these techniques should be 
limited to one or two sites, and patients with numerous painful 
tumors should be treated systemically. Ablative therapy tends 
to be most effective in soft-tissue tumors and bone tumors with 
dominant osteolytic component.

RF Ablation
High-frequency, alternating current is passed to an adjacent 
tissue via a needle electrode and results in heating of the tissue, 
denaturation of proteins, and cell death. It is usually performed 
with local anesthesia or under moderate sedation. Careful con-
sideration of the regional anatomy should be carefully assessed 
and considered. As anatomy is frequently disturbed in these 
patients, the ablation zone should not be extended to less than 
1 cm of critical structures such as the bowel, urinary bladder, or 
spine (81). Two multicenter clinical trials conducted on a large set 
of patients with a wide range of solid malignancies (the majority 
were lung, colon, and renal metastases) confirmed that RF abla-
tion as a means to decrease pain due to bone metastatic disease is 
safe and well tolerated by patients (82, 83).

Percutaneous Cryoablation
This method uses room temperature-pressurized argon and 
helium gasses for tissue freezing and warming, respectively. The 
cryoprobes are placed into the tumor using CT/fluoroscopy for 
tumors within bones or deep in the pelvis. The passage of gas 
through the probe results in rapid cooling that reaches −100°C 
within a few seconds, forming a low-attenuation ice ball that is 
readily visible with the CT imaging (or MRI). Tissue destruction 
is complete at −20 to −40°C, approximately 3- to 5-mm deep to 
the visible edge of the ice ball. A synchronous use of multiple 
cryoprobes can be done to allow for a complete coverage of 
the tumor and its immediate surroundings. The method is less 
studied than RFA, but case series and reports have established 
its efficacy. Its main advantage over RF is its ability to be readily 
visualized intra-procedurally with intermittent non-enhanced 
CT or MR imaging (84).

iNTeGRATiNG iNTeRveNTiONAL PAiN 
TReATMeNT iNTO AN ONCOLOGY 
PRACTiCe

Multidisciplinary symptom management results in positive out-
comes described in terms of significant relief of cancer pain and 
other cancer-related symptoms like fatigue, depression, anxiety, 
and drowsiness. It also impacts positively on patients’ disability 
and eventually on opioid reduction (85).

Traditionally, interventional treatments have been regarded 
as a last resort to relieving cancer pain in those patients where 
conventional drug therapies have failed. The term “fourth step 
of the WHO ladder” was coined with views of placing inter-
ventional cancer pain within the well-known WHO three steps 
clinical algorithm (86). Major efforts are being conducted to 
prove that interventional pain management indicated at early 
stages of the disease or before the pain becomes unmanageable 

with drugs may be a better option. Potential benefits of early 
blocks include better health status and enhanced performance 
to face the disease and its treatment and avoiding or delaying 
opioid escalation to manage pain. Rather than a fourth step of 
the ladder, interventional cancer pain approaches should be 
regarded as a handrail accompanying all the three steps of the 
WHO ladder.

Interaction between different clinical specialties may be 
challenging if their mutual approaches are poorly understood or 
perceived ineffective and/or dangerous. In the case of interven-
tional cancer pain management, this is more challenging since the 
outcomes can seldom be presented in terms of evidence-based 
medicine.

Oncologist must identify those patients whose pain is 
inadequately controlled and ask themselves if an interventional 
approach may be indicated. With progressive learning, the indi-
cations and contraindications become clearer, and the cases are 
referred in a timelier and more appropriate fashion. Interventional 
pain clinicians must identify, in turn, the potential implications of 
their techniques on the patient’s status like, for example, the risk 
of bleeding when anticoagulated or receiving chemotherapy, the 
anatomical alterations a tumor may cause when attempting to tar-
get a specific nerve structure, or the changes in analgesic therapy 
necessary to apply after a successful nerve block or neurolysis. A 
fluid and bidirectional communication is key to integrate success-
ful analgesic strategies into the oncology care.

SUMMARY

Interventional cancer pain approaches can provide valuable help 
to treating oncologist in cases of lung cancer with pain that is not 
satisfactorily relieved with conventional medical management. 
The indications and contraindications, the goals of treatment, 
the limitation of the technique, and the post-procedure care are 
necessary elements to be discussed between clinicians involved 
and the patient and their caregivers. Because the available scien-
tific evidences are sparse, at present, interventional cancer pain 
remains an optional alternative rather than a natural indication. 
Only those teams integrating a specialist in interventional cancer 
pain may offer these options to selected cases presenting with 
challenging cancer pain syndromes.
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