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COVID-19 and diabetes: Current findings and future perspectives
Introduction

COVID-19 and diabetes represent a complex intersection in the realm of public health,

with profound implications for individuals’ health outcomes and healthcare systems

worldwide. The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2,

has rapidly spread across the globe since its emergence in late 2019, resulting in millions of

infections and deaths (1). Individuals with diabetes have been identified as a particularly

vulnerable population, facing an increased risk of severe outcomes from COVID-19.

Conversely, COVID-19 infection can exacerbate glycemic control and increase the risk of

diabetic complications, highlighting the bidirectional relationship between these

two conditions.

Diabetes is a chronic metabolic disorder characterized by elevated blood sugar levels

due to insulin deficiency or resistance. It encompasses several subtypes, including type 1

diabetes, type 2 diabetes, and gestational diabetes, each with its own etiology and

management considerations. Diabetes affects millions of people worldwide and is

associated with a range of complications, including cardiovascular disease, kidney

failure, neuropathy, and retinopathy (2).

Despite these challenges, the COVID-19 pandemic has also catalyzed innovation and

adaptation in diabetes care delivery. Telemedicine, remote monitoring, and digital health

technologies have emerged as valuable tools for delivering diabetes care and education

remotely, enhancing access and convenience for patients. Healthcare providers have

embraced virtual consultations, telehealth platforms, and mobile applications to

maintain continuity of care and support patients in managing their diabetes during the

pandemic (3). These digital health solutions offer opportunities to reach underserved

populations, improve patient engagement, and optimize diabetes outcomes in the era of

COVID-19 and beyond. This Research Topic aimed at the relationship and coexistence of

diabetes and COVID-19. The Research Topic currently includes 16 papers which contain 2

case studies, 2 mini reviews, and 12 original research articles on the various topics.
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Interactions between COVID-19
infection and diabetes

The relationship between COVID-19 and diabetes is multifaceted

andmultifactorial. Individuals with diabetes aremore likely to experience

severe outcomes from COVID-19, including hospitalization, admission

to intensive care units, and death. Several factors contribute to this

heightened risk, including impaired immune function, underlying

comorbidities, and physiological changes associated with diabetes.

Moreover, individuals with diabetes often have other risk factors for

severe COVID-19 outcomes, such as obesity, hypertension, and

cardiovascular disease, further increasing their vulnerability.

Conversely, COVID-19 infection can exacerbate glycemic control and

increase the risk of diabetic complications (4). The inflammatory

response triggered by COVID-19 can lead to insulin resistance and

hyperglycemia, particularly in individuals with pre-existing diabetes.

Furthermore, the stress of illness, changes in diet and physical activity,

and disruptions to routine diabetes care can all contribute to worsening

glycemic control during COVID-19 infection. Yuanyuan et al. analyzed

the web of science database for the comprehensive analysis of current

publications related to diabetes mellitus (DM) research during the

COVID-19 epidemic reveals a growing body of literature addressing

various aspects of this intersection.

The COVID-19 pandemic, caused by SARS-CoV-2, has

profoundly affected global health and economy since 2020. The virus

binds to ACE2 receptors, found in various organs including endocrine

glands, impacting multiple endocrine systems. COVID-19 promotes

obesity through lifestyle changes, exacerbating diabetes risk.

Additionally, it directly affects pancreatic function, worsening type 1

or type 2 diabetes. High adiposity and chronic hyperglycemia increase

COVID-19 susceptibility and severity. Bidirectional interactions exist

between COVID-19 and diabetes, influencing each other’s progression.

Healthcare systems have adapted services to manage diabetes amidst

the pandemic’s challenges. Overall, COVID-19 and diabetes share

complex interactions, necessitating tailored healthcare responses.

Wolińska et al. discussed the role of various environmental factors

that lead to obesity either before COVID-19 or after COVID-19. The

rapid rise in overweight and obesity over recent decades has been

influenced by various factors, including environmental and novel

elements emerging during the COVID-19 pandemic. Lockdown

measures during the pandemic led to increased BMI in many

countries, driven by reduced physical activity, increased screen time

and sleep duration, and elevated consumption of processed foods.

Environmental factors such as policy issues, socioeconomic status,

lifestyle choices, and neighborhood conditions also contribute to

obesity trends. Air pollution’s role in obesity remains debated.

However, the pandemic’s impact extends beyond weight gain,

affecting individuals with diabetes disproportionately.
Challenges during hospitalization or
post covid-19

In this nationwide retrospective investigation, Kania et al.

examined the association between diabetes and in-hospital
Frontiers in Endocrinology 026
mortality among COVID-19 patients. Conducted in Poland since

the pandemic’s onset in 2019, the study revealed diabetes as a

significant factor linked to increased hospitalization rates and

higher risk of in-hospital mortality, even after adjusting for

various factors like age, sex, and comorbidities such as chronic

kidney disease and heart conditions. The study also noted variations

in relative risk across different age groups and genders, with

heightened risks observed in males and patients in their sixties.

The research underscores the importance of recognizing diabetes as

a crucial risk factor in COVID-19 prognosis, offering valuable

insights for healthcare providers.

Meanwhile, Gorchane et al. and Bukara-Radujkovic et al.

investigated the impact of the COVID-19 pandemic on new-onset

diabetic ketoacidosis (DKA) in Africa, an area with limited prior

research on this topic. Their analysis compared DKA incidence

trends before and during the pandemic, highlighting an increase in

DKA cases alongside rises in both type 1 and type 2 diabetes. These

findings suggest that the pandemic may have contributed to the

observed uptick in DKA cases, emphasizing the need for further

research and attention to COVID-19’s effects on diabetes-related

complications in Africa (9, 10).
Case study

A case of young pregnant Chinese woman developed sudden

hyperglycemia and ketoacidosis in her last trimester, following mild

SARS-CoV-2 infection were studies. Despite near-normal

glycohemoglobin levels, low C peptide levels indicated severe

insulin deficiency, leading to a diagnosis of fulminant type 1

diabetes (FT1D). Insulin therapy swiftly improved ketoacidosis

and hyperglycemia, but b cell function remained impaired. The

patient transitioned to insulin pump therapy post-discharge, with

favorable glucose control at the first follow-up. This case

underscores the potential for FT1D onset following SARS-CoV-2

infection and the importance of prompt recognition and

management during the COVID-19 pandemic (11). Another case

study of a 16-year-old boy developed symptoms of polyuria,

polydipsia, and weight loss after receiving the BNT162b2

Comirnaty COVID-19 vaccine, worsening after the second dose

has been performed. Diagnostic tests revealed central diabetes

insipidus due to neuroinfundibulohypophysitis. Treatment with

Desmopressin alleviated symptoms, with ongoing follow-up. This

case highlights the need for vigilance in recognizing and reporting

potential adverse effects of COVID-19 vaccines, including rare

conditions like hypophysitis. Further research is required to

determine any causal link between COVID-19 vaccination and

the development of central diabetes insipidus (12).
Future prospective

A large number of articles were focused on the prediction of

various aspects of post covid complications. This study done by

Byeon employed machine learning techniques to identify major risk

factors for depression in community diabetic patients and
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developed predictive models for high-risk group identification.

Analyzing 26,829 adults diagnosed with diabetes, it found a 22.4%

prevalence of depression. Utilizing CatBoost, the top nine

influential factors included gender, smoking status, COVID-19-

related changes in drinking and smoking, subjective health,

economic concerns, sleep alterations, economic activity, and

social support. Early identification of high-risk individuals is

crucial for implementing personalized psychological support at

the primary medical level, enhancing mental health outcomes for

diabetic patients (13).

Shoaib et al.‘s study underscores the complex interplay between

COVID-19 and diabetes, recognizing heightened vulnerability and

potential post-complications for diabetic individuals. Additionally,

it suggests a potential association between cough medicine

containing steroids and an increased risk of developing diabetes.

The study utilized deep-learning models on chest x-ray images

sourced from publicly available datasets, validated by a certified

radiologist, to aid diagnosis (14). Another study by Ahmad et al.

explored a deep transfer learning approach for COVID-19

detection, achieving a high accuracy of 99.11% with the

CIDICXR-Net50 model. This study also investigated the

relationship between COVID-19 and diabetes, aiming to enhance

diabetes prediction through advanced machine learning techniques.

Initial assessment favored the Support Vector Machines (SVM)

classifier with 76.62% accuracy (15). Advanced feature engineering

revealed hidden patterns, particularly in Glucose levels. Correlation

analyses highlighted significant associations, and integrating

Decision Trees, Gradient Boosting, and SVM in an ensemble

model improved accuracy to 93.2%. This research offers a robust

framework for diabetes prediction, crucial for early diagnosis,

personalized treatment, and preventive care, addressing global

health challenges and enhancing life expectancy (16).

Future prospects regarding COVID-19 and diabetes are

multifaceted, encompassing various aspects of research, treatment,

preventive measures, healthcare infrastructure, public health

policies, and education. Ongoing research endeavors aim to

elucidate the complex interaction between COVID-19 and

diabetes, seeking to understand why individuals with diabetes face

a heightened risk of severe outcomes from the virus. This research is

crucial for developing targeted treatments to mitigate complications

and improve outcomes for diabetic patients infected with COVID-

19. In addition to research, future strategies are likely to prioritize

preventive measures tailored to individuals with diabetes. This may

include vaccination campaigns aimed at diabetic populations,

lifestyle interventions to manage diabetes effectively, and

improved diabetes management protocols to reduce the risk of

severe COVID-19 outcomes. Furthermore, the pandemic has

underscored the importance of robust healthcare infrastructure,
Frontiers in Endocrinology 037
particularly for managing chronic conditions like diabetes during

public health crises. Investments in telemedicine, remote

monitoring technologies, and integrated care models are

anticipated to enhance the delivery of healthcare services and

improve outcomes for diabetic patients during future outbreaks.

Moreover, public health policies may be developed to address the

intersection of COVID-19 and diabetes. These policies could

involve prioritizing vaccination for diabetic individuals, ensuring

equitable access to healthcare services, and implementing measures

to reduce the risk of COVID-19 transmission in vulnerable

populations. Concurrently, education and awareness efforts will

likely intensify, emphasizing the increased risk of COVID-19

complications among individuals with diabetes. Such campaigns

may promote vaccination uptake, adherence to preventive measures

such as mask-wearing and social distancing, and regular monitoring

of blood glucose levels to manage diabetes effectively in the context

of the pandemic.

In conclusion, the intersection of COVID-19 and diabetes

presents complex challenges and opportunities for healthcare

systems, policymakers, and individuals alike. By prioritizing

vaccination efforts , optimizing diabetes management,

strengthening healthcare infrastructure, investing in research and

innovation, and promoting health equity, we can mitigate the

impact of COVID-19 on individuals with diabetes and safeguard

their health and well-being in the face of future pandemics.
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Case report: Fulminant type 1
diabetes following
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infection during late pregnancy

Lingling Zhou , Huanjia Qu, Qiuling Zhang,
Jinhua Hu and Lan Shou*

Department of Endocrinology and Metabolic Disease, Affiliated Hospital of Hangzhou Normal
University, Hangzhou Normal University, Hangzhou, China
Background: Dysregulation of glucose metabolism has been linked to SARS-

CoV-2 infection. In addition, the occurrence of new onset diabetes mellitus,

including fulminant type 1 diabetes, has been reported after SARS-CoV-2

infection or vaccination.

Methods and results: A young Chinese woman in her last trimester of pregnancy

presented with an abrupt progression of hyperglycemia and ketoacidosis, but

with a near-normal glycohemoglobin level following paucisymptomatic SARS-

CoV-2 infection. The low C peptide levels, both fasting and postprandial,

reflected profound insulin deficiency in the setting of negative islet

autoantibody testing, consistent with a diagnosis of fulminant type 1 diabetes.

Ketoacidosis and hyperglycemia quickly improved following the introduction of

insulin therapy, but not the b cell function. The patient received treatment with

insulin pump therapy after being discharged, and the first follow-up revealed a

well-controlled glucose profile.

Conclusions: New-onset FT1D can occur after SARS-CoV-2 infection. Our

report raises awareness of this rare but serious situation, promoting early

recognition and management of FT1D during the COVID-19 pandemic.
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Highlights
1. It is unknown if the risk of long-term diabetes mellitus incidence increases, but

SARS-CoV-2 infection causes aberrant glycometabolism.

2. FT1D often follows a preceding viral infection in a susceptible individual. There

have been a few cases of FT1D after SARS-CoV-2 infection or vaccination.
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3. SARS-CoV-2-induced islet dysfunction likely occurs not

only via direct viral entry but also via inflammation and

oxidative stress systematically or in islet micro-

environment.

4. During the COVID-19 pandemic, attention should be paid

to identify FT1D.
Introduction

There are mixed epidemiological results on the association

between new-onset diabetes and infection by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). Studies from

some regions have reported an increased type 1 diabetes mellitus

(T1DM) incidence during the pandemic, which supports the

diabetogenic effect of COVID-19, while other studies have not (1,

2). Fulminant type 1 diabetes (FT1D), a relatively rare subtype of

T1DM first reported in Japan, is characterized by a rapid

progression of insulin deficiency at disease onset (3). The

diagnosis is based on the following: i) occurrence of diabetic

ketosis soon after the onset of hyperglycemic symptoms, ii) high

level of plasma glucose (≥16.0 mmol/L, ≥288 mg/dL) but a relatively

mismatched level of glycohemoglobin (<8.7%), and iii) presence of

endogenous insulin deficiency including urinary C peptide

excretion <10 mg/day or fasting serum C peptide level <0.3 ng/ml

(<0.10 nmol/L) and <0.5 ng/ml (<0.17 nmol/L) after intravenous

glucagon or after meal load without verifiable islet-related

autoantibodies (4). Though the etiology of FT1D has not been

fully elucidated, viral infection is considered to be the most

important environmental risk factor for FT1D (4).
Recently, several case reports of FT1D after COVID-19

vaccination or infection were mainly on patients from East Asia

(5). Here, we describe a pregnant woman who eventually

experienced a rapid clinical course of diabetic ketoacidosis

following SARS-CoV-2 infection, drawing attention to FT1D

during the COVID-19 pandemic.
Case presentation and diagnosis
assessment

A 34-year-old Chinese woman with a singleton pregnancy in

her 34th gestational week presented to our hospital due to the

abrupt onset of polydipsia, nausea, and vomiting for one day. Five

weeks prior to admission, she had a brief fever with a maximum

temperature of 37.8°C, accompanied by mild fatigue and muscle

pain lasting for two days. She did not seek additional medical

attention despite a positive COVID-19 antigen self-test at that time.

She had been regularly evaluated in the obstetrics department for

close follow-up and her OGTT test result was negative at the

gestational age of 25 weeks. She was in good health with a normal

weight before pregnancy (53 kg and a BMI of 21 kg/m2) and was not

on any medication or vaccination, and did not smoke or consume

alcohol during pregnancy. None of her family members had a

history of type 1 or type 2 diabetes mellitus.
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At admission, the patient appeared to be dehydrated but was

conscious. A quick physical examination revealed a heart rate of 108

beats/minute, blood pressure of 132/72 mmHg, temperature of

36.6°C, respiratory rate of 20 breaths/minute, and oxygen

saturation of 98% breathing ambient air. The patient was 159 cm

in height and 67 kg in weight, with a BMI of 26.5 kg/m2. A physical

examination of the abdomen revealed no upper abdominal pain,

guarding, or rebound tenderness. The symphysis-to-fundal height

was 30 cm, and the abdominal circumference was 102 cm. On

obstetric evaluation, she was found to have uterine contractions

every 20 s per 2 min. The fetus presented as a vertex presentation

with an unengaged fetal head. Electronic fetal heart rate monitoring

showed a fetal heart rate (FHR) of 114 bpm and an unsatisfactory

contraction stress test (CST) result. Emergency obstetric ultrasound

showed a biparietal diameter (BPD) of 88 mm, femur length (FL) of

69 mm, FHR of 110 bpm, and a single deepest vertical pocket

of 70 mm.

Initial lab work showed an arterial pH of 7.08, actual

bicarbonate of 8.6 mmol/L, b-hydroxybutyrate of 5.8 mmol/L,

glucose level of 29 mmol/L (522 mg/dL), sodium level of 125

mmol/L, potassium level of 5.8 mmol/L, chloride level of 93

mmol/L, white cell count of 25.6×109/L, hemoglobin level of 114

g/L, and mildly elevated pancreatic enzymes (amylase and lipase

levels less than 3*upper limit of normal). The lipids profile indicated

a severe hypertriglyceridemia level of 10.99 mmol/L. Further

laboratory tests revealed a glycohemoglobin level of 5.9%, a

glycated serum protein level of 1.45 mmol/L, and an extremely

low serum C peptide level of 0.02 ng/ml. Immunological

examination yielded an absence of serum islet autoantibodies,

including glutamic acid decarboxylase antibody (GADAb),

insulinoma associated antigen-2 antibody (IA-2Ab), islet

cell antibody (ICAb), and insulin antibody(I-Ab). She tested

positive for IgG but not IgM antibodies against SARS-CoV-2.

Other potential viral antibodies, including coxsackievirus,

cytomegalovirus, parainfluenza virus, human herpes virus, and

Epstein–Barr virus, were also tested, but the results returned

negative. We ruled out acute pancreatitis from an abdominal

computed tomography scan, with no signs of pancreatic edema or

exudation soon after the patient received urgent Cesarean

section surgery.
Diagnosis

She was diagnosed with diabetic ketoacidosis (DKA) and

fulminant type 1 diabetes mellitus.
Treatment

The patient underwent emergency C-section surgery for acute

fetal distress and was immediately treated with fluid resuscitation,

intravenous insulin infusion, and low-dose sodium bicarbonate.

Her main complaints, metabolic acidosis and electrolyte

disturbance, were solved within six hours. Two days after

admission, b-hydroxybutyrate level was 0.15mmol/L. She was
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then switched to a subcutaneous insulin regimen for glycemic

control and was initiated with fenofibrate to lower the triglyceride

level. Her initial subcutaneous insulin regimen was insulin Glargine

14u SC QHS and insulin aspart 6u SC before meals. On the tenth

day after admission the patient started to use an insulin pump and

over the next few days the glucose levels stabilized at 4.5–15.6

mmol/L (81–281 mg/dL).
Outcome and follow-up

The newborn infant had a poor Apgar score (4/10) at birth,

which was re-evaluated to be 3/10 (at both 5 min and 10 min after

birth), and was transferred to a neonatal unit but died afterward.

After the C-section, the patient was transferred to intensive care

unit and then the endocrine ward. She was hospitalized for another

two weeks and then was discharged on continuous subcutaneous

insulin infusion therapy. However, three weeks after the disease

onset, she still had profound insulin deficiency, as evidenced by low

levels of and a slight but unsatisfactory increase of C peptide in the

fasting state and after a mixed meal load (shown in Table 1).
Discussion

To the best of our knowledge, this is the first case of newly

diagnosed fulminant type 1 diabetes following SARS-CoV-2

infection during pregnancy. The patient reported herein

presented with hyperglycemia, ketoacidosis with an extremely

rapid course, a near-normal glycohemoglobin level, and

exhaustion of endogenous insulin secretion but without evidence

of islet-related autoantibodies, which fulfilled the diagnosis of FT1D

(4). Although the gestational status itself is a pre-existing risk factor

for FT1D, we still suspect that in this case, FT1D occurred as rare

organ damage in the pancreas due to a previous COVID-19

infection, according to the timeline of the medical history (shown

in Figure 1), since no positive results of other suspicious virus

infections reported to be associated with FT1D were obtained.

During the COVID-19 pandemic and the rolling back of strict

anti-COVID-19 restrictions in China, cases of autoimmune-

mediated disorders, including Graves’ disease, type 1 diabetes,
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Guillain‐Bare Syndrome, and systemic lupus erythematosus have

been reported following SARS-CoV-2 infection or vaccination.

Although the underlying mechanisms and whether SARS-CoV-2

affects pancreatic islets or other endocrine organs remain unknown,

SARS-CoV-2 infection does result in aberrant glycometabolic

control (6). Existing clinical data suggest that the infection can

aggravate insulin resistance, increase hepatic glucose production,

and impair peripheral glucose uptake through increased counter-

regulatory hormones, release of cytokines and lipids, and also

through direct hepatocyte injury. In addition, drugs often used in

COVID-19 treatment, such as corticosteroids, also result in

metabolic dysregulation and impaired glucose homeostasis.

New-onset diabetes after SARS-CoV-2 infection or vaccination

has been reported. Autoantibody-negative, insulin-dependent

diabetes was reported following infection (7). Tang et al. also

documented a case of FT1D after receiving the first dose of an

inactivated COVID-19 vaccine (5). Individuals with HLA genotypes

predisposed to T1DM were diagnosed with FT1D several days after

COVID-19 mRNA vaccination (8, 9). Typical symptoms of

hyperglycemia and ketoacidosis following vaccination were

reported in patients who had also been treated with immune

checkpoint inhibitors (10, 11).

Studies have revealed that receptors involved in SARS-CoV-2

viral entry, including angiotensin-converting enzyme 2 (ACE2),

neurophilin-1 (NRP1), and transmembrane serine proteases 2

(TMPRSS), were detected in human islet b cells, though at low
TABLE 1 Results of mixed meal tolerance test in the 1st follow-up and OGTT at the 25th gestational week.

Glucose level (mmol/L) C peptide level (ng/ml)

Mixed meal load* in the 1st follow-up

Fasting 6.57 (118 mg/dL) 0.02

Postprandial (2 h) 21.39 (385 mg/dL) 0.05

OGTT at the 25th gestational week

Fasting 3.64 (66 mg/dL) Not applicable

Post oral glucose (1h) 8.67 (156 mg/dL) Not applicable

Post oral glucose (2h) 6.66 (120 mg/dL) Not applicable
* The meal contained approximately 70 g carbohydrates, 24 g proteins, and 15 g fat.
FIGURE 1

Timeline of events and important information of this patient.
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levels. This may indicate that human islet cells are permissive to

SARS-CoV-2 infection. Additionally, clinical data demonstrated

that SARS-CoV-2-triggered necroptosis and apoptosis of islets

cells were linked to increased glucose levels, a significant viral

load, and strong ACE2 expression in b cells (12). Preclinical

studies also supported the role of ACE2 in b cell homeostasis:

deletion of ACE2 impairs b cell proliferation, decreases b cell mass,

and induces b cell oxidative stress and thus decreases insulin

secretion. Besides, in high-fat diet mice, de-differentiation of b
cells was characterized by a reduction of ACE2 (13). Moreover,

molecular mimicry between the SARS-CoV-2 spike protein and

human endocrine cells, including pancreatic b cells, has been

proposed as a possible element in pathogenesis (14). A recent

study using autopsy samples also concluded that the SARS-CoV-2

viral antigen was detected in both endocrine and non-endocrine

human pancreas cells, and that the expression of multiple

chemokines as well as cytokines were higher in SARS-CoV-2-

infected human islets (15). It has also been reported that

pancreatic b cells presented with a lower expression of insulin but

with a higher expression of glucagon and trypsin1, suggesting that

cellular transdifferentiation takes place upon SARS-CoV-2 infection

(15). The virus-induced inflammatory cytokines storm, a

prothrombotic state, and endothelial derangement via ACE2

receptors might also injure b cells function, potentially by

affecting the islet microvascular system. Local islet inflammation

and systematic oxidative stress after infection might also induce

post‐translational protein modifications, enhance the generation of

neoepitopes, and thus initiate islet autoimmunity (16).

However, the genotype of classical human leukocyte antigen

(HLA) alleles was not determined in this case. A direct causal

relationship could not be proven in this patient; however, we regard

the SARS-CoV-2 infection as a suspicious trigger of FT1D onset in

the gestational setting. More studies on the interactions between

SARS-CoV-2 and pancreatic cells are warranted.

In conclusion, we presented a case report of a woman who

developed FT1D after SARS-CoV-2 infection during late

pregnancy. This is a rare and life-threatening situation, with high

stillbirth or miscarriage rates. Clinicians should be aware of the

possibility of the onset of FT1D within the COVID-19 background,

especially in expectant mothers.
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19 BNT162b2 Comirnaty vaccine
in adolescents: A case report
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Introduction: The coronavirus disease 19 (COVID-19) pandemic has prompted

the development of new vaccines to reduce the morbidity and mortality

associated with this disease. Recognition and report of potential adverse

effects of these novel vaccines (especially the urgent and life-threatening

ones) is therefore essential.

Case presentation: A 16-year-old boy presented to the Paediatric Emergency

Department with polyuria, polydipsia and weight loss over the last four months.

His past medical history was unremarkable. Onset of symptoms was referred to

be few days after first dose of anti-COVID-19 BNT162b2 Comirnaty vaccine and

then worsened after the second dose. The physical exam was normal, without

neurological abnormalities. Auxological parameters were within normal limits.

Daily fluid balance monitoring confirmed polyuria and polydipsia. Biochemistry

laboratory analysis and urine culture were normal. Serum osmolality was 297

mOsm/Kg H2O (285-305), whereas urine osmolality was 80 mOsm/Kg H2O

(100-1100), suggesting diabetes insipidus. Anterior pituitary function was

preserved. Since parents refused to give consent to water deprivation test,

treatment with Desmopressin was administered and confirmed ex juvantibus

diagnosis of AVP deficiency (or central diabetes insipidus). Brain MRI revealed

pituitary stalk thickening (4 mm) with contrast enhancement, and loss of

posterior pituitary bright spot on T1 weighted imaging. Those signs were

consistent with neuroinfundibulohypophysitis. Immunoglobulin levels were

normal. Low doses of oral Desmopressin were sufficient to control patient’s

symptoms, normalizing serum and urinary osmolality values and daily fluid

balance at discharge. Brain MRI after 2 months showed stable thicken pituitary

stalk and still undetectable posterior pituitary. Due to persistence of polyuria and

polydipsia, therapy with Desmopressin was adjusted by increasing dosage

and number of daily administrations. Clinical and neuroradiological follow-up

is still ongoing.

Conclusion: Hypophysitis is a rare disorder characterized by lymphocytic,

granulomatous, plasmacytic, or xanthomatous infiltration of the pituitary gland

and stalk. Common manifestations are headache, hypopituitarism, and diabetes
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insipidus. To date, only time correlation between SARS-CoV-2 infection and

development of hypophysitis and subsequent hypopituitarism has been

reported. Further studies will be needed to deepen a possible causal link

between anti-COVID-19 vaccine and AVP deficiency.
KEYWORDS

AVP deficiency, diabetes insipidus, COVID-19, SARS-CoV-2 vaccination, vaccine,
pituitary stalk thickening, BNT162b2 Comirnaty vaccine, adolescent
Introduction

At the end of 2019 severe acute respiratory syndrome coronavirus

2 (SARS-Cov-2) infection, named COVID-19, outbroke and plagued

our healthcare systems, causing more than 6 million deaths

worldwide over the last three years (1). We have learned that

COVID-19 is a primarily respiratory disease, however it can affect

nearly every organ system, including endocrine system (2, 3). Here,

the expression of angiotensin-converting enzyme 2 (ACE2) receptors

and transmembrane protease serine 2 (TMPRSS2) on many

endocrine cells seems to play a crucial role in the direct

pathogenetic mechanism by which the virus infects these organs (4).

Since no specific treatment was available, the pandemic urged

scientists to develop targeted vaccines to face the high mortality rate of

the disease. SARS‐CoV‐2 vaccines are generally safe and effective in

preventing COVID‐19 severe symptoms. Injection site reactions, fever,

headache, myalgia, and skin rash are the most common vaccine side

effects (5). Surprisingly, some cases of endocrinopathies have occurred

even after anti-COVID-19 vaccines in adults (6–8), suggesting cytokine

release syndrome exacerbated by the vaccine as the possible underlying

mechanism for the disease, as a result of endocrine cells susceptibility to

elevation of pro-inflammatory molecules (9). To the best of our

knowledge, only a few cases of AVP deficiency, also known as

central diabetes insipidus (CDI) occurring after anti-COVID-19

vaccines have been cited in literature until now (10–12) and still no

one in children. Here we report the first case of new onset CDI in a

pediatric patient after BNT162b2 mRNA COVID-19 vaccine.
0215
Case presentation

B.AR., a 16-year-old boy, presented to the Paediatric Emergency

Department with polyuria, polydipsia and concomitant weight loss,

reporting a urine output of 9 liters in the last 24 hours and a weight

loss of nearly 6 kilograms in the previous four months. Symptoms

seemed to start a few days after inoculation of the first dose of

BNT162b2 mRNA COVID-19 vaccine (at the end of August 2021)

and worsened after the second dose, which had been administered

28 days later. Due to the persistence of intense thirst and polyuria

the patient had already undergone some medical investigations: no

abnormalities were found at urologic assessment and renal

ultrasound (Figure 1). Moreover, no significant features emerged

from his past medical history, and familial history was

unremarkable too. On admission to the Paediatric Emergency

Department, the patient’s vital parameters included heart rate 110

bpm, temperature 36°C, oxygen saturation 99% on room air.

Physical examination revealed a well-being adolescent boy, with

auxological parameters within normal limits (height -0.12 standard

deviations, weight +0.35 standard deviations), cardiac and

pulmonary auscultation without pathological findings and no

neurological abnormalities (including intact sense of smell and

taste and cognition). Again, head and neck/gastrointestinal/

musculoskeletal examinations were all grossly unremarkable.

Furthermore, biochemistry laboratory analysis, venous blood gas

analysis, and urine analysis were performed (Table 1) and no

significant alterations were found. Diabetes mellitus was excluded
FIGURE 1

Timeline depicting the clinical course of the disease, from the onset of signs and symptoms until admission to the Paediatric Department.
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by detection of normal hematic glucose levels and by the absence of

glycosuria. In contrast, diabetes insipidus could be suspected

because of plasma sodium level at the upper limit of normal and

low urine specific gravity. Given this hypothesis, the patient was

tested for SARS-CoV-2 ongoing infection by nasopharyngeal swab

– which resulted negative – and was then admitted to the pediatric

ward to confirm the diagnosis.
Management and outcome

Primarily, daily fluid balance monitoring confirmed polyuria

and polydipsia (IN 6.250 L/OUT 7.100 L). Secondly, serum

osmolality (p-Osm) levels were 287 mOsm/Kg H2O (normal

values 285-305), urine osmolality (u-Osm) was 68 mOsm/Kg

H2O (normal values 100-1100) and u-Osm/p-Osm ratio was < 1,

so that diabetes insipidus could be suspected. However, parents did

not give consent to water deprivation test. A test with desmopressin

(the synthetic analog of antidiuretic hormone) was then performed

to discern between central and nephrogenic DI. After

administration of low dose oral desmopressin (sublingual 60
Frontiers in Endocrinology 0316
micrograms) an immediate response was evident in view of both

normalization of daily fluid balance (IN 0.520 L/OUT 0.600 L) and

rapid increase of u-Osm (119 mOsm/Kg H2O). Consistent with

those findings, ex juvantibus diagnosis of complete CDI could be

made. To complete investigations, hormonal tests showed no

significant impairment of anterior pituitary function (Table 1),

immunological assessment revealed normal immunoglobulin

levels (IgA, IgM, and IgG subclasses, including IgG4) and urine

culture and Quantiferon were negative as well. Brain contrast-

enhanced magnetic resonance imaging (MRI) focused on the

study of the pituitary region was carried out. It revealed pituitary

stalk thickening (PST) (maximum diameter of 4 mm) with contrast

enhancement and loss of posterior pituitary bright spot on T1

weighted imaging (Figure 2). Those signs were consistent with

neuroinfundibulohypophysitis. In the view of strict time correlation

between COVID-19 vaccine and onset of symptoms and granted

that no other differential diagnosis had fit the clinical picture, the

case was signaled as an adverse drug reaction to the Italian

Pharmacological Agency (AIFA). During hospitalization, B.AR.

maintained good general conditions. He was discharged after 7

days with prescription of low doses of oral desmopressin (60 mcg
TABLE 1 Results from blood and urine tests.

Lab test Patient result Normal ranges

SERUM CREATININE 0.69 mg/dL 0.9-1.3

BLOOD PH 7.35 7.35-7.45

BICARBONATES 31.8 mmol/L 22-26

SERUM GLUCOSE 88 mg/dl 70-100

PLASMA CALCIUM 9.36 mg/dL 8.5-10.5

PLASMA SODIUM 145 mmol/L 135-145

PLASMA POTASSIUM 4.5 mmol/L 3.5-5

C-REACTIVE PROTEIN 1 mg/dL 0-1

URINE PH 6 5.5-6.5

URINE SPECIFIC GRAVITY 1002 1005-1020

URINE HAEMOGLOBIN, GLUCOSE, PROTEIN absent

TSH 1.308 uIU/mL 0.450 - 3.500

FT4 1.35 ng/dL 0.89 -1.76

FT3 3.20 pg/mL 2.30 - 4.20

ACTH 28.2 pg/mL 3.6 - 60

CORTISOL 9 microg/dL 4.5 - 24

PROLACTIN 41.3 mIU/L 44.5 - 375.0

LH 2.50 mIU/mL 1.5 - 34.6

FSH 2.6 mIU/L 1.4 - 18.1

TESTOSTERONE 539.9 ng/dL 144.0 - 842.0

AFP 4.1 IU/mL 0.0 - 7.0

HCG <2 mIU/mL 0 - 5
TSH, thyroid stimulating hormone; fT4, thyroxine; fT3, free triiodothyronine; ACTH, adrenocorticotropic hormone; LH, luteinizing hormone; FSH, follicle stimulating hormone; AFP, alpha-
fetoprotein; hCG, human chorionic gonadotropin.
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twice daily), as the same dose had been sufficient to control signs

and symptoms during hospitalization. After 2 months, follow-up

MRI showed stable PST and still undetectable posterior pituitary,

consistent with the persistence of inflammation of this cerebral area

(Figure 3). An endocrinological follow-up was also planned at our

center: three months after discharge, due to persisting polyuria and

polydipsia, therapy with desmopressin was adjusted by increasing

dosage and number of daily administrations (60 mcg three times a

day). Clinical and neuroradiological follow-up is still ongoing.
Discussion

It is now widely accepted that COVID-19 is a multiorgan

disease, as many tissues and organs are affected during ongoing

or recent infection by SARS-CoV-2 virus, including endocrine

system (13). It is becoming well established that in some cases

SARS-CoV-2 infection can trigger an inflammation of the

hypothalamus-pituitary axis (hypophysitis) both in adults and in

children, resulting in a dysfunction that causes diabetes insipidus,

either alone (14–17) or associated with anterior hypopituitarism (2,

14) with a latency of 0–16 weeks between recognition of the SARS-

CoV-2 infection and development of symptoms (18). Although the
Frontiers in Endocrinology 0417
exact pathogenetic mechanism has still to be defined, a direct

pathway (involving ACE2-mediated hypothalamic viral infection)

as well as an indirect, delayed, and immune-mediated pathway have

been hypothesized. Moreover, endothelial damage in the blood–

neuron interface, thrombotic microangiopathy (pituitary apoplexy),

infected leukocyte‐mediated transportation and cytokine storming

are other accepted theories (19).

Interestingly, hypopituitarism might have a bidirectional

relationship with COVID-19 since pre-existent hypopituitarism

can be per se a potential risk factor for COVID-19 due to its

comorbidities (e.g. hypothalamic obesity) and can be worsened by

SARS-CoV-2 infection (20). Moreover, COVID-19 vaccine can

affect endocrine system, albeit infrequently and with good

prognosis. Pezzaioli et al. recently collected and reviewed all

published data on potential endocrine adverse effects post-

COVID-19 vaccines in adult patients (6). Thyroid disorders are

the most common; only eight cases of pituitary dysfunction have

been described so far (10–12, 21–25), of which two presented with

CDI (11, 12).

Our patient complained of exacerbation of DI symptoms after

the second dose of COVID-19 vaccine. Although we were not able

to conduct dose-specific analyses, previously published cases also

reported onset or worsening of adverse endocrinological events

following the second dose of vaccine (5, 22, 23). Mechanisms of

increased reactogenicity after the second dose are largely unknown.

One possibility is that the vaccine directly might cause pituitary

impairment with cumulative effect. Autoimmune/inflammatory

syndrome induced by vaccine adjuvants (ASIA syndrome),

molecular mimicry, cross-reactivity or a pro-inflammatory state

induced by vaccine components and subsequent activation of

autoreactive B and T cells are speculated to be involved, as in

Guillain-Barrè syndrome or optic neuritis (26–28).

COVID-19 symptoms are generally milder in the pediatric age

than in the adult population, but this is not always true when the

endocrine system is involved. Lizzi et al. described a pediatric case

of acute onset of isolated CDI associated with recent SARS-CoV-2

infection (16), requiring 7 days of hospitalization. Here we

described the case of an adolescent who developed CDI after

COVID-19 vaccination, in whom posterior pituitary function has

not recovered yet. Diabetes insipidus is a tricky disease whose

symptoms can be underestimated by both patients and clinicians.

CDI is characterized by decreased or absent secretion of antidiuretic
FIGURE 3

Brain MRI after 2 months: stable thickened pituitary stalk and
undetectable posterior pituitary (circle).
FIGURE 2

Pituitary stalk enlargement with contrast enhancement (left panel, yellow circle); loss of posterior pituitary bright (right panel, yellow circle).
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hormone (ADH; also called arginine vasopressin or AVP), resulting

in a variable degree of polyuria. Lack of AVP can be caused by

disorders or lesions in the hypothalamic osmoreceptor, in the

supraoptic or paraventricular nuclei, in the superior portion of

the supraopticohypophyseal tract or in the pituitary sella. Recently,

a panel of experts from national and international endocrinology

and endocrine pediatric societies has proposed to change diabetes

insipidus’ name to “arginine vasopressin deficiency (AVP-D)” for

central etiologies to avoid detrimental confusion with diabetes

mellitus for both patients and their caretakers (29).

Finally, pituitary stalk is a funnel-shaped structure that connects

the hypothalamus to the pituitary gland. There are several etiologies

that give rise to PST (30, 31), which often manifests clinically with CDI

(32, 33): autoimmunity/inflammation (neuroinfundibulohypophysitis

(34)) – sometimes referred as idiopathic PST, infectious diseases (e.g.

tuberculosis (35)) or neoplastic lesions (33, 36). Anti-pituitary, anti-

hypothalamus autoantibodies or high IgG4 levels have been detected in

some patients with hypophysitis. However, their causal role remains

unclear (37). Searching for these antibodies may help to diagnose an

autoimmune hypophysitis, especially in cases like ours presenting with

non-diagnostic pituitary MRI or hypoprolactinemia (38, 39).

Unfortunately, no autoantibodies testing was performed in this case

report since the lab kit was not available in our institution. The

approach to the neuroradiological finding of PST is still controversial

(32, 40): empirical management recommend to conduct follow-up

MRI every 3-6 months and proceed with pituitary stalk biopsy only in

case of stalk size ≥ 7 mm, progressive infundibular enlargement or

worsening of symptoms. Moreover, all patients with pituitary stalk

lesions and CDI should be routinely assessed for anterior pituitary

hormonal function, which was normal in our patient.
Conclusion

To date, CDI following anti-COVID-19 vaccine remains a rare and

only temporally linked occurrence, even though its pathophysiological

explanation has been hypothesized. Further studies will be needed to

deepen a possible causal link between the two events.
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Diabetes as a risk factor of death
in hospitalized COVID-19
patients – an analysis of a
National Hospitalization
Database from Poland, 2020

Michal Kania1,2, Beata Koń3, Konrad Kamiński3,
Jerzy Hohendorff1,2, Przemysław Witek1,2, Tomasz Klupa1,2

and Maciej T. Malecki1,2*

1Department of Metabolic Diseases and Diabetology, Jagiellonian University Medical College,
Krakow, Poland, 2Department of Metabolic Diseases and Diabetology, University Hospital,
Krakow, Poland, 3Department of Analysis and Innovation, National Health Fund, Warsaw, Poland
Introduction: Diabetes is one of the comorbidities associated with poor

prognosis in hospitalized COVID-19 patients. In this nationwide retrospective

study, we evaluated the risk of in-hospital death attributed to diabetes.

Methods: We analyzed data from discharge reports of patients hospitalized with

COVID-19 in 2020 as submitted to the Polish National Health Fund. Several

multivariate logistic regression models were used. In each model, in-hospital

death was estimated with explanatory variables. Models were built either on the

whole cohorts or cohorts matched with propensity score matching (PSM). The

models examined either the main effects of diabetes itself or the interaction of

diabetes with other variables.

Results: We included 174,621 patients with COVID-19 who were hospitalized in

the year 2020. Among them, there were 40,168 diabetic patients (DPs), and the

proportion of DPs in this group was higher than in the general population (23.0%

vs. 9.5%, p<0.001). In this group of COVID-19 hospitalizations, 17,438 in-hospital

deaths were recorded, and the mortality was higher among DPs than non-

diabetics (16.3% vs. 8.1%, p<0.001). Multivariate logistic regressions showed that

diabetes was a risk factor of death, regardless of sex and age. In the main effect

analysis, odds of in-hospital death were higher by 28.3% for DPs than for non-

diabetic patients. Similarly, PSM analysis including 101,578 patients, of whom

19,050 had diabetes, showed that the risk of death was higher in DPs regardless

of sex with odds higher by 34.9%. The impact of diabetes differed among age

groups and was the highest for patients aged 60-69.

Conclusions: This nationwide study confirmed that diabetes was an independent

risk factor of in-hospital death in the course of COVID-19 infection. However, the

relative risk differed across the age groups.
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COVID-19, diabetes, mortality, epidemiology, modelling, propensity-score matching
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1 Introduction

Coronavirus disease-2019 (COVID-19) caused by the severe

acute respiratory syndrome coronavirus-2 (SARS-CoV-2), emerged

at the end of 2019 and caused a global pandemic (1). The first case

of COVID-19 in Poland was identified on March 3, 2020. This was

followed by the first wave of the pandemic and triggered the first

national lockdown that lasted approximately until the end of June

2020. The second wave started at the beginning of August and

ended in January 2021. According to official data from the Polish

government, a total of 68,505 excess deaths were recorded in 2020,

which accounts for a 16% increase in total mortality compared to

the period 2017-2019 (2). The challenges concerning preparation of

the healthcare system to properly respond to this new

epidemiological threat, required urgent action. The COVID-19

pandemic profoundly impacted the healthcare system in Poland.

The Polish Ministry of Health initially decided to create a network

of hospitals dedicated exclusively to serve as a multispecialty

reference center for COVID-19 patients (3, 4). This model was

modified in October 2020 when temporary COVID-19 hospitals

were established and numerous regional hospitals were converted in

order to play a supportive role in managing COVID-19 patients (5).

Until the end of July 2022, there were 6,050,000 cases of SARS-Cov-

2 infections in Poland with deaths totaling around 115,500 (6).

Numerous factors, such as male gender, age, diabetes, obesity,

or cardiovascular disease, have been identified as risk factors for

hospitalization of COVID-19 patients (7–10). Diabetes, along with

hypertension, cardiovascular and respiratory diseases, is one of the

most common comorbidities of COVID-19. It has been associated

with a higher risk of unfavorable COVID-19 outcomes, such as

longer hospitalization, higher in-hospital mortality, ICU admission

and requirement for mechanical ventilation (11–14). However,

most original studies reporting this association were retrospective

single-center reports. There are few analyses of datasets from large

healthcare initiatives or from the nationwide level of COVID-19

patients (15, 16).

In this retrospective study, we evaluated diabetes as a risk factor

for in-hospital mortality using data from the Polish National Health

Fund, a state institution that finances healthcare services from

contributions paid by the insured persons (17) and runs a

nationwide healthcare database.
2 Methods

For this retrospective analysis, information concerning patients

hospitalized between the 1st Jan and 31st Dec 2020 due to COVID-

19 was extracted from data reported to the Polish National Health

Fund. Analyzed data included hospitalizations that were financed

from the governmental COVID-19 Counteracting Fund and

included information on both insured and uninsured patients. If

the patient was hospitalized more than once in 2020, then the first

hospitalization of the patient was included in the study. Only adult

patients were included in the study defined as people aged at least 17

years old as of Dec 31st 2019.
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Hospital information from discharge charts of COVID-19

patients was merged with data from diabetes databases and data

regarding comorbidities from reports delivered to the National

Health Fund that health care providers sent to receive

reimbursement for health care benefits delivered due to other

health problems than COVID-19. They included medical benefits

reported with a specific ICD-10 diagnosis code (either as a main or

additional diagnosis), or ICD-9 procedure code in the case of

hemodialysis, if the patient had it within the last 3 years. The list

included diabetes, obesity, loss of weight, cardiac arrhythmias,

arterial hypertension, heart failure, peripheral artery disease,

dyslipidemia, ischemic heart disease, history of myocardial

infarction and stroke, cardiomyopathy, valvular disorders, atrial

fibrillation, pulmonary circulation disorders, chronic pulmonary

diseases, chronic kidney disease, hypothyroidism and

hyperthyroidism, other thyroid diseases, liver disorders,

coagulopathies, anemia, electrolyte imbalances, history of

neoplasm, rheumatoid diseases, paralysis, other neurological

disorders, depression, drug abuse, and psychosis. The full list with

corresponding ICD codes is presented in Table S1 in the Appendix.

Separately, for diabetic patients (DPs) and patients without

diabetes, characteristics such as mean age, proportion of population

older than 65, proportion of population older than 85, sex and in-

hospital death were compared. For each of these variables, we

examined whether differences between diabetic and non-diabetic

populations were statistically significant. For age, Welch two sample

t-test was used, and for other characteristics, referring to share of

population, a chi-square test was used.
2.1 Logistic regression modelling

Econometric modelling was used to analyze the impact of

multiple variables on the risk of in-hospital death of COVID-19

patients. Four different multivariate logistic regression models were

estimated. In each model, a dependent variable was binary in nature

describing if a patient’s hospitalization ended at the same day, when

the patient died. Explanatory variables included diagnosis of

diabetes, as well as additional confounders: sex, logarithm of age

(recorded as difference between 2020 and year of patient’s birth)

and the diagnosis of the selected comorbidities (named above). The

first two models were built for the whole cohort, another two for the

matched cohort using propensity score matching (PSM). All models

were estimated with the same set of explanatory variables, however

in the first and third model only main effects were included. In the

second and fourth model, interactions between diabetes and other

variables were also included.

PSM was applied, as diabetes can affect probability of being

hospitalized due to COVID-19 causing a non-random sample. Each

DP was matched with non-diabetic patient(s) according to other 36

variables (sex, age group 18-24, 25-29, 30-34,…, 85-89, 90-94, 95+,

comorbidities other than diabetes as shown in Table S1, i.e. arterial

hypertension, other neoplasms, health failure, cardiac arrhythmias

etc.). One-to-many exact matching was used (18), i.e. non-diabetic

patient or patients were matched to each singular DP (according to
frontiersin.org
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above mentioned parameters). The number of matched non-

diabetics was not limited. If DP was not matched with non-

diabetic patient, their data was discarded from the analysis.

In order to minimize the number of variables and include only

those with strong effect on the in-hospital death, the following

approach to select variables in the final models for each of four

setting was used: the dataset was divided into train (80% of

observations) and test dataset (20% of observations). In the first

step, a model only with the logarithm of age was built. Then, for

each explanatory variable, a model with the logarithm of age and

that variable was built. Furthermore, each of those models was

compared with the model containing only the logarithm of age and

Bayes Factor (BF) was calculated (19). If the maximum value of BF

was greater than 30, then the variable with the highest BF was added

to the final model. Subsequently, the procedure was repeated, and a

model with the logarithm of age and selected variable was built;

each of the remaining variables was separately added to the model,

and for each model BF was calculated. If the maximum BF was

greater than 30, then the variable was added to the model and the

procedure was repeated until maximum BF for remaining variables

was above 30.

The models’ estimates were used to calculate the probability of

in-hospital death according to the patient’s age, sex and diagnosis of

diabetes. The quality of the models was tested on a test dataset and

final models were estimated on the whole dataset. To assess

goodness of fit, McFadden’s pseudo R2 was used. Furthermore,

the quality of the models was verified with area under ROC curve

(AUC) calculated on the test set.

All the analyses were conducted with SPSS Pro 6.0 and in R,

version 3.6.1 (20, 21). For statistical significance a threshold of 0.05

for p-value was used.
3 Results

The study included a total of 174 621 COVID-19-infected

patients who were hospitalized in Poland between the 1st Jan and

31st Dec 2020. The mean age was 60.5 ± 18.9 years and the median

age was 63 years (IQR 29). The median age in diabetic patients was

72 (IQR 16) and 59 (IQR 31) in non-diabetic patients. There were

90 628 (51.9%) men in the study group (Table 1). The estimated

number of patients with diabetes in Poland in 2018 was 2,864,000
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registries (22)). Of 174 621 patients hospitalized with COVID-19

infection, 40 168 had diabetes (23.0%) and it was more common

than in the general population (p<0.001). The prevalence of

comorbidities, including but not limited to cardiovascular,

metabolic, pulmonary, psychiatric and endocrine disorders, was

higher in DP than in non-diabetic COVID-19 patients (Table 2). 17

438 in-hospital deaths were recorded (10.0%), the mortality was

higher in DPs, compared to non-diabetics (16.3% vs. 8.1%,

p<0.001). It was higher across all age groups regardless of patients

gender and age (Table S2).

Results of multivariate logistic regression (Table 3) showed that

diabetes and some other comorbidities, including chronic kidney

disease, heart failure, chronic ischemic heart disease, cardiac

arrythmias and neoplasms, were associated with a higher risk of

death, regardless of sex and age. The risk was higher in older patients

and in males. For patients with diabetes, odds of in-hospital death

were higher by 28.3% than for patients without diabetes. The

regression model that included interactions of variable referring to

diabetes with other variables, showed that impact of diabetes on

COVID-19 in-hospital death was influenced by the patient’s age

(Table S3). Results of the model are visualized on Figures 1; 2.

Figure 1 shows probability of in-hospital death according to patients’

sex, age and the fact of being diabetic without other comorbidities.

Figure 2 shows probability of in-hospital death according to patients’

sex, age and fact of being diabetic for analyzed group of patients.

Results show that the highest difference in median value of COVID-

19 in-hospital death between diabetic and non-diabetic patients was

for patients in age group 65-69 (4.3 percent point), 60-64 and 55-59

(4.2 percent point) (Table S3).

For PSM, data from 101 578 patients was analyzed, of whom 19

050 had diabetes (i.e. 21 118 diabetic were not matched to non-

diabetic patients). The characteristics of population matched by

PSM is shown in Tables S4—S6 in the Appendix. In the group of

patients matched with PSM, the risk of COVID-19 in-hospital

death was higher in DPs than for non-diabetic patients regardless of

sex and age. Results of the multivariate logistic regression model

showed that the odds for in-hospital death were 72.5% higher for

men than for women (Table 4). For DPs, odds of death were higher

by 34.9% than for non-diabetic patients. After adding interactions

to the model, it showed similar results to the model estimated

without PSM, i.e. age differentiated impact of the diabetes on the in-
TABLE 1 Basic characteristics of DPs and non-diabetic patients with in-hospital death data.

Characteristics All Diabetes Non-diabetes P value

Number 174 621 40 168 (23%.0) 134 453 (77.0%) –

Age [years (SD)] 60.5 (18.92) 70.9 (12.58) 57.4 (19.39) <0.001

Age > 65 years [n (%)] 113 643 (65.1%) 29 927 (74.5%) 53 789 (40%) <0.001

Age > 85 years [n (%)] 21 679 (12.4%) 5 094 (12.7%) 11 491 (8.5%) <0.001

Male [n (%)] 90 628 (51.9%) 21 113 (52.6%) 69 515 (51.7%) 0.002

Endpoint

In-hospital death [Yes (%)] 17 438 (10.0%) 6 541 (16.3%) 10 897 (8.1%) <0.001
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hospital risk of death (Table 4). Results of the models for patients

without other comorbidities are presented on Figure 3. Figure 4

presents values of estimated COVID-19 in-hospital death according

to patients’ age group and fact of being diabetic for the analyzed
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group of patients. The median values are additionally presented in

Table S7. The results show that the median value of the probability

of in-hospital death was highest for patients aged 95 and more. The

highest difference (in absolute values) between diabetic and non-
TABLE 2 The prevalence of comorbidities in the hospitalized population.

Comorbidities Non-diabetic Diabetic P value

Number 134 453 (77.0%) 40 168 (23%.0) -

Arterial hypertension 60 742 (45.2%) 34 363 (85.6%) <0.001

Neoplasm. Other 26 445 (19.7%) 9 366 (23.3%) <0.001

Heart failure 19 843 (14.8%) 15 286 (38.1%) <0.001

Cardiac arrhythmias 22 871 (17.0%) 12 216 (30.4%) <0.001

Dyslipidaemia 21 237 (15.8%) 13 283 (33.1%) <0.001

Ischemic heart disease 18 708 (13.9%) 14 446 (36.00%) <0.001

Chronic pulmonary disorders 19 826 (14.8%) 8 406 (20.9%) <0.001

Peripheral artery disease 15 029 (11.2%) 9 887 (24.6%) <0.001

Atrial fibrillation 13 189 (9.8%) 8 615 (21.5%) <0.001

Neoplasm. malignant 14 212 (10.6%) 6 278 (15.6%) <0.001

Anaemia 12 096 (9.0%) 6 207 (15.5%) <0.001

Hypothyroidism 11 010 (8.2%) 4 712 (11.7%) <0.001

Chronic kidney disease 7 409 (5.5%) 7 253 (18.1%) <0.001

Depression 10 104 (7.5%) 3 227 (8.0%) <0.001

Other neurological disorders 8 481 (6.3%) 2 911 (7.3%) <0.001

History of stroke 6 500 (4.8%) 4 013 (10.0%) <0.001

Angina 5 227 (3.9%) 4 002 (10.0%) <0.001

Electrolyte imbalances 5 552 (4.1%) 3 023 (7.5%) <0.001

Alcohol abuse 7 104 (5.3%) 1 377 (3.4%) <0.001

Obesity 3 600 (2.7%) 4 039 (10.1%) <0.001

Liver disorders 4 361 (3.2%) 2 145 (5.3%) <0.001

Valvular disorders 4 172 (3.1%) 2 331 (5.8%) <0.001

Rheumatoid diseases 4 527 (3.4%) 1 627 (4.1%) <0.001

History of myocardial infarction 2 974 (2.2%) 2 536 (6.3%) <0.001

Other thyroid disorders 3 874 (2.9%) 1 237 (3.1%) 0.03

Paralysis 2 857 (2.1%) 1 473 (3.7%) <0.001

Psychosis 3 198 (2.4%) 847 (2.1%) 0.002

Hyperthyroidism 2 350 (1.8%) 1 038 (2.6%) <0.001

Dialysis 1 680 (1.3%) 1 410 (3.5%) <0.001

Pulmonary circulation disorders 1 996 (1.5%) 846 (2.1%) <0.001

Coagulopathies 1 767 (1.3%) 735 (1.8%) <0.001

Cardiomyopathy 1 425 (1.2%) 966 (2.4%) <0.001

Drug abuse 1 897 (1.4%) 355 (0.9%) <0.001

Weight loss 1 746 (1.3%) 491 (1.2%) 0.23
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TABLE 3 Results of logistic regression modelling for the risk of in-hospital death.

Variable Model without interactions of variable diabetes
with other variables

Model with interactions of variable diabetes with
other variables

Estimate (SE) Odds ratio (95% CI) P-value Estimate (SE) Odds ratio (95% CI) P-value

Intercept -18.714 (0.208) 0.000 (0.000 – 0.000) <0.001 -19.845 (0.236) 0.000 (0.000 – 0.000) <0.001

log(Age) 3.838 (0.049) 46.414 (42.179 - 51.075) <0.001 4.104 (0.055) 60.560 (54.334 - 67.5) <0.001

Gender: male 0.425 (0.017) 1.529 (1.478 - 1.581) <0.001 0.413 (0.017) 1.511 (1.460 - 1.563) <0.001

Diabetes 0.249 (0.018) 1.283 (1.238 - 1.328) <0.001 5.787 (0.46) 325.885 (132.16 - 803.578) <0.001

Chronic kidney disease 0.218 (0.026) 1.243 (1.181 - 1.308) <0.001 0.228 (0.026) 1.256 (1.193 - 1.322) <0.001

Other neurological disorders 0.299 (0.029) 1.348 (1.273 - 1.428) <0.001 0.299 (0.029) 1.348 (1.273 - 1.428) <0.001

Heart failure 0.245 (0.020) 1.278 (1.228 - 1.329) <0.001 0.247 (0.02) 1.280 (1.231 - 1.332) <0.001

Neoplasm, malignant 0.257 (0.024) 1.293 (1.235 - 1.354) <0.001 0.257 (0.023) 1.293 (1.235 - 1.354) <0.001

Psychosis 0.391 (0.053) 1.478 (1.332 - 1.640) <0.001 0.375 (0.053) 1.456 (1.312 - 1.615) <0.001

Cardiac arrhythmias -0.126 (0.02) 0.881 (0.847 - 0.917) <0.001 -0.121 (0.02) 0.886 (0.851 - 0.921) <0.001

Haemodialysis 0.368 (0.052) 1.445 (1.304 - 1.601) <0.001 0.337 (0.052) 1.401 (1.264 - 1.552) <0.001

Neoplasm, other -0.156 (0.022) 0.856 (0.82 - 0.893) <0.001 -0.159 (0.022) 0.853 (0.817 - 0.891) <0.001

Weight loss 0.363 (0.058) 1.438 (1.284 - 1.610) <0.001 0.357 (0.058) 1.430 (1.277 - 1.601) <0.001

Coagulopathies 0.331 (0.061) 1.392 (1.234 - 1.570) <0.001 0.312 (0.061) 1.366 (1.211 - 1.540) <0.001

Other thyroid disorders -0.313 (0.061) 0.731 (0.649 - 0.823) <0.001 -0.321 (0.061) 0.726 (0.644 - 0.817) <0.001

Chronic ischemic heart disease -0.092 (0.020) 0.912 (0.877 - 0.948) <0.001 -0.094 (0.020) 0.910 (0.876 - 0.946) <0.001

Anaemia 0.105 (0.024) 1.111 (1.059 - 1.164) <0.001 0.106 (0.024) 1.112 (1.060 - 1.165) <0.001

D:log(Age)* – – – -1.258 (0.107) 0.276 (0.224 - 0.341) <0.001

*D: - interaction with diabetes Train dataset – McFadden’s pseudo-R2: 0.138
Test dataset – AUC (area under ROC curve): 0.770
Complete dataset – McFadden’s pseudo-R2: 0.138

Train dataset – McFadden’s pseudo-R2: 0.139
Test dataset – AUC (area under ROC curve): 0.771
Complete dataset – McFadden’s pseudo-R2: 0.139
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FIGURE 1

Probability of in-hospital death in the examined groups according to age and sex estimated with multivariate logistic regression without PSM and
with interaction analysis for patients without other comorbidities.
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diabetic patients was observed for age groups 60-64 (4.8 percent

point) and 65-69 (4.5 percent point).
4 Discussion

In this report we present the analysis of a nationwide cohort of

patients hospitalized due to COVID-19 in 2020. Of note, our study

is one of the very few assessing the prevalence of COVID-19

hospitalizations and mortality on the nationwide level, with most
Frontiers in Endocrinology 0625
studies to date focusing on the case series or hospital-based cohort

of patients. We confirmed that diabetes was an independent risk of

hospitalization and in-hospital death in the course of COVID-19,

and provided also some new observations that are discussed below.

Results of our unadjusted analysis showed that the hospitalization

rate was almost 2.5 times higher for DP than for non-diabetics. Most

studies, to date, mainly up to mid-2021, reported a higher frequency

of hospitalization due to COVID-19 (7–10, 23), with the risk being up

to 4 times higher in DPs (23). After adjustment for age, gender, and

co-existing comorbidities, the risk decreased, but in most studies was
FIGURE 2

Probability of in-hospital death in the examined groups according to age and sex estimated with multivariate logistic regression without PSM and
with interaction analysis.
TABLE 4 Results of logistic regression modelling after PSM analysis for the risk of in-hospital death.

Variable Model without interactions of variable diabetes
with other variables

Model with interactions of variable diabetes with
other variables

Estimate (SE) Odds ratio (95% CI) P-value Estimate (SE) Odds ratio (95% CI) P-value

Intercept -21.926 (0.317) 0.000 (0.000 – 0.000) <0.001 -23.170 (0.358) 0.000 (0.000 – 0.000) <0.001

log(Age) 4.561 (0.074) 95.716 (82.78 - 110.675) <0.001 4.855 (0.084) 128.335 (108.918-151.214) <0.001

Gender: male 0.545 (0.026) 1.725 (1.638 - 1.817) <0.001 0.530 (0.026) 1.699 (1.614-1.789) <0.001

Diabetes 0.300 (0.027) 1.349 (1.28 - 1.422) <0.001 6.526 (0.694) 682.533 (175.129-2660.04) <0.001

Chronic kidney disease 0.305 (0.056) 1.357 (1.215 - 1.515) <0.001 0.319 (0.056) 1.375 (1.232-1.535) <0.001

Other neurological disorders 0.420 (0.068) 1.523 (1.333 - 1.739) <0.001 0.424 (0.068) 1.529 (1.338-1.746) <0.001

Neoplasm, malignant 0.329 (0.045) 1.390 (1.273 - 1.518) <0.001 0.328 (0.045) 1.389 (1.272-1.516) <0.001

Neoplasm, other -0.220 (0.042) 0.803 (0.739 - 0.871) <0.001 -0.223 (0.042) 0.800 (0.737-0.868) <0.001

Heart failure 0.233 (0.034) 1.263 (1.181 - 1.351) <0.001 0.247 (0.034) 1.280 (1.197-1.369) <0.001

Cardiac arrhythmias -0.230 (0.038) 0.795 (0.738 - 0.856) <0.001 -0.221 (0.038) 0.802 (0.745-0.864) <0.001

D:log(Age)* – – – -1.450 (0.162) 0.234 (0.171-0.322) <0.001

*D: - interaction with diabetes Train dataset – McFadden’s pseudo-R2: 0.173
Test dataset – AUC (area under ROC curve): 0.807
Complete dataset – McFadden’s pseudo-R2: 0.172

Train dataset – McFadden’s pseudo-R2: 0.174
Test dataset – AUC (area under ROC curve): 0.808
Complete dataset – McFadden’s pseudo-R2: 0.174
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still statistically significant (7, 8, 10). In cohorts of the European

origin, the risk for hospitalization in DPs was ca. twice as high as in

population without diabetes (10, 24). Importantly, our data covers the

period of the first two waves of COVID-19 pandemic in Poland.

These numbers should be seen in the context that initially, due to a

mandatory supervision by epidemiological services or hospitalization

related to COVID-19, the number of patients admitted to the

hospitals was disproportionately higher, as hospitalization of all

patients with SARS-CoV-2 infection was obligatory (25). Of note,
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the proportion of DPs among all hospitalized COVID-19 patients

identified on the state level was slightly lower than in our earlier

report involving a large single center cohort from the University

Hospital in Krakow (26,3%) (26). Still, multiple reasons may

contribute to the higher frequency of hospitalizations in patients

with comorbidities, including diabetes. DPs were older, with a higher

prevalence of comorbidities, including cardiovascular disorders, thus

subjecting them to COVID-19 complications. Infections are generally

more common in DPs and often occur with increased severity (27).
FIGURE 3

Probability of in-hospital death in the examined groups according to age and sex estimated with multivariate logistic regression with PSM and with
interaction analysis for patients without other comorbidities.
FIGURE 4

Probability of in-hospital death in the examined groups according to age and sex estimated with multivariate logistic regression with PSM and with
interaction analysis.
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Some aspects of immune response to infections, including

lymphocyte response, macrophage and granulocyte function, may

be impaired in DPs group (28). Some other potential mechanisms

responsible for a higher susceptibility to severe COVID-19 in DPs

may include predisposition to hyperinflammatory reaction, higher

affinity of SARS-Cov-2 virus to cell membranes and decreased viral

clearance (29).

Diabetes was a risk factor for in-hospital death in hospitalized

COVID-19 patients in the large cohort examined in our study. This is

in line with previous studies, showing that diabetes is an independent

risk factor for disease severity and in-hospital death (10, 15, 16, 30–

32). It should be noted that the prevalence of numerous

comorbidities, including cardiovascular diseases, was higher in DP

than in non-diabetic patients. To date, research efforts focused

primarily on single-center cohorts of patients, with less common

analyses of datasets from large healthcare initiatives, or on nationwide

level, thus, making our report noteworthy (15, 16).

Older age has been reported as an important risk factor for

COVID-19-related mortality (33), which was also, as expected,

observed in our study. Notably, the biggest difference in in-

hospital mortality between DPs and non-diabetic patients was

observed in 40-64 age groups, which is a result similar to some

other studies (10, 34). Our results specifically point to patients aged

60-69, as in this group the impact of diabetes on COVD-19 in-

hospital death differed the most between the two examined groups.

It is likely that diabetes may not further increase the risk of

mortality in elderly patients as the advanced age itself is one of

the strongest risk factors (34). Conversely, in the younger

population groups, the role played by diabetes is more apparent.

Similar observations were reported for male patients in a recent

systematic review, with nearly 50% higher risk of death than in

males than in females (33). These distinctions were previously

attributed to differences in the function of the immune system,

including counts of selected lymphocytes, lack of some regulatory

genes that are located on the X chromosome (33), and age-related

mosaic loss of chromosome Y in elderly males (35). Moreover, a

recent study explained these disparities to some extent by social and

contextual factors (36).

Uniquely, in our study we developed a model that enabled us to

quantify the risk of mortality in the cohort of patients hospitalized

due to COVID-19 in Poland. The main strength of this model is the

fact that it was supplied with data from a large population.

Finally, limitations of this study should be discussed. First, this

is a retrospective, observational study and, thus, prone to many

biases related to this study design. For this reason, causative

relationships cannot be claimed based on this research. Secondly,

we aimed to investigate solely patients admitted to the hospital,

thus, our results cannot be automatically extended on the entire

population affected by COVID-19. As previous studies showed,

around half of the deaths due to COVID-19 occurred in non-

hospitalized persons, with the majority of these patients residing in

long-term care facilities (16). In addition, our models could have

been supplied with deficient data as the data investigated included

only that reported by various health providers. We are not able to

assure the data’s full credibility. As we used billing data, some of

comorbidities may have not been reported as individual diagnoses,
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such as obesity, with surprisingly low frequency reported in our

dataset. We also cannot verify the criteria that were used to diagnose

reported disorders.

Another limitation is that National Health Fund data includes

only insured people. i.e. 90% of citizens of Poland. While our data

on COVID-19 considered both insured and uninsured people, this

can cause a potential bias on the information concerning other

comorbidities for uninsured people, as only health services related

to COVID-19 were state-financed for them.

Moreover, we were not able to differentiate between type 1 and

type 2 diabetes, as there some inconsistency regarding reporting

these with an appropriate ICD-10 code (in Polish translation of

ICD-10 classification code E11 refers to non-insulin dependent

diabetes and in English version it refers to type 2 diabetes).

Nevertheless, the same data gathering methodology is routinely

utilized by the Polish National Health Fund to inform the decision

making. Thus, we believe that its quality was adequate for

this study.

To summarize, in this nationwide retrospective study, diabetes

was associated with higher frequency of hospitalization and a

higher risk of in-hospital death in the course of COVID-19,

regardless of sex, age and some of selected comorbidities,

including chronic kidney disease, heart failure, chronic ischemic

heart disease, cardiac arrythmias and neoplasms. However, the

relative risk attributed to diabetes differed significantly across the

age groups and genders. This relative risk was particularly high in

males and patients in their sixties. This was one of the largest

datasets of hospitalized diabetic patients analyzed since the

outbreak of the COVID-19 pandemic in 2019 in Poland. Our

findings can inform individual clinicians’ decisions and public

healthcare providers on the risk associated with COVID-19 for

individual populations.
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Background: Diabetes mellitus (DM) is one of the most frequent comorbidities

in patients suffering from severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) with a higher rate of severe course of coronavirus disease

(COVID-19). However, data about post-COVID-19 syndrome (PCS) in

patients with DM are limited.
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Methods: This multicenter, propensity score-matched study compared long-

term follow-up data about cardiovascular, neuropsychiatric, respiratory,

gastrointestinal, and other symptoms in 8,719 patients with DM to those

without DM. The 1:1 propensity score matching (PSM) according to age and

sex resulted in 1,548 matched pairs.

Results: Diabetics and nondiabetics had a mean age of 72.6 ± 12.7 years old. At

follow-up, cardiovascular symptoms such as dyspnea and increased resting heart

rate occurred less in patients with DM (13.2% vs. 16.4%; p = 0.01) than those

without DM (2.8% vs. 5.6%; p = 0.05), respectively. The incidence of newly

diagnosed arterial hypertension was slightly lower in DM patients as compared to

non-DM patients (0.5% vs. 1.6%; p = 0.18). Abnormal spirometry was observed

more in patients with DM than those without DM (18.8% vs. 13; p= 0.24). Paranoia

was diagnosed more frequently in patients with DM than in non-DM patients at

follow-up time (4% vs. 1.2%; p = 0.009). The incidence of newly diagnosed renal

insufficiency was higher in patients suffering from DM as compared to patients

without DM (4.8% vs. 2.6%; p = 0.09). The rate of readmission was comparable in

patients with and without DM (19.7% vs. 18.3%; p = 0.61). The reinfection rate with

COVID-19 was comparable in both groups (2.9% in diabetics vs. 2.3% in

nondiabetics; p = 0.55). Long-term mortality was higher in DM patients than in

non-DM patients (33.9% vs. 29.1%; p = 0.005).

Conclusions: The mortality rate was higher in patients with DM type II as

compared to those without DM. Readmission and reinfection rates with

COVID-19 were comparable in both groups. The incidence of cardiovascular

symptoms was higher in patients without DM.
KEYWORDS

diabetes mellitus, post-COVID-19 syndrome, SARS-CoV-2, respiratory complications,
reinfection, vaccination rate, long-term mortality
Introduction

Coronavirus disease 2019 (COVID-19) is caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) and is

associated with significant morbidity and mortality (1).

Among other related diseases such as arterial hypertension and

obesity, diabetes mellitus (DM) is identified as a risk factor for the

severe course of COVID-19, developing sepsis, and mortality (2–4).

In patients suffering from COVID-19, SARS-CoV-2 binds the

angiotensin-converting enzyme 2 (ACE2) receptor and uses it as a

potential target for viral interventions (5). In diabetic mice, the

expression of ACE2 is increased as compared to mice without DM.

In addition, patients who suffered from insufficient glycemic control

showed worse outcomes, such as more complications and higher

mortality rates (6). New-onset DM and metabolic complications in

patients suffering from manifested DM with high doses of insulin

have been revealed in COVID-19 (7, 8). Furthermore, uncontrolled

glycemic levels in DM patients cause organ injury and may be

exacerbated in patients suffering from COVID-19 (9).

The international Health Outcome Predictive Evaluation for

COVID-19 (HOPE COVID-19) Registry was initiated to investigate
0231
comorbidity and mortality of COVID-19 (10). In the Health

Outcome Predictive Evaluation for COVID-19 II (HOPE-II

COVID-19) Registry, we investigated readmission, reinfection,

vaccination rate, cardiovascular, neuropsychiatric, respiratory,

gastrointestinal, and other symptoms in hospitalized patients

suffering from COVID-19 and concomitant DM type II.

Complications related to COVID-19 and long-term mortality

were also systematically analyzed.
Material and methods

Study design and participants

HOPE-II COVID-19 (NCT04334291) is an international project

at 55 international centers. It is designed as a retrospective and

prospective cohort registry to investigate post-COVID-19 syndrome

without any conflict of interest. We included hospitalized patients

with a confirmed diagnosis of COVID-19. There are no exclusion

criteria, except for the patient’s explicit refusal to participate. Initially,

data on 8,828 hospitalized patients suffering from COVID-19 were
frontiersin.org
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collected until 30th September 2021. In this study, we excluded 56

patients due to age <18 and 53 patients with DM type I. Data from

8,719 consecutive patients with COVID-19 regarding their

concomitant DM type II status were analyzed.
Ethics approval

This study was executed in compliance with the Declaration of

Helsinki regarding human subjects, and the study was approved by

the center ethics committee of Hospital Clinico San Carlos (Internal

Code: 21/128-E) and, when needed, in all involved centers.
DM type II

DM type II was known and diagnosed by medical physicians.

Data were collected from the patient’s medical records.
Post-COVID-19 syndrome

Patients suffering from post-COVID-19 syndrome describe new-

onset symptoms following initial recovery from an acutely confirmed

COVID-19 or ongoing from the initial illness. This condition occurs 3

months from the onset of COVID-19 with symptoms that last for at

least 2 months and cannot be explained by an alternative diagnosis.

Symptoms may also fluctuate or relapse over time (11).
Outcomes and follow-up

We described long-term mortality as a primary endpoint.

Readmission, reinfection rate, respiratory complications,

cardiovascular, neuropsychiatric, respiratory, gastrointestinal, and

other symptoms as secondary endpoints were also evaluated.

Follow-up for the overall population for mortality was 20 months

(mean post-COVID-19; 2.6 ± 4.6).
Statistical analysis

Descriptive and comparative analyses were presented.

Continuous variables were shown as mean ± standard deviation if

the distribution was normal or median (min–max) if not. Categorical

variables were presented as frequency rates and percentages. The Chi-

square test was used for categorical variables for group comparisons.

Quantitative variables were performed using the Mann–Whitney U

test for nonparametric variables and the Student’s t-test for

parametric variables, as verified by the Kolmogorov–Smirnov test.

We applied a propensity score (PS)-based matching method to

control for confounding baseline variables due to the

nonrandomized nature of the study and the different participating

centers. In a multivariable logistic regression test, hazard ratio (HR)

with 95% confidence intervals (95% CI) was calculated for the

determination of risk factors for the endpoint. Predictors of
Frontiers in Endocrinology 0332
mortality were identified by univariate analysis. Predictors with p <

0.05 were analyzed by logistic multivariable regression. The

multivariable regression test was used to investigate predictors of

mortality, adjusting for all significant variables: age; male as sex;

obesity; comorbidities such as arterial hypertension, dyslipidemia,

DM type II, renal insufficiency, heart disease, cerebrovascular disease,

liver disease, and cancer disease; immunosuppression; home oxygen

therapy; premedication; symptomatic; clinical parameters such as

peripheral oxygen saturation (SpO2) <92% and reduced blood

pressure (systolic blood pressure <90 mmHg or diastolic blood

pressure <60 mmHg); and laboratory parameters. p-value of <0.05

was recognized as statistically significant. Statistical analysis was

performed with IBM SPSS Statistics version 27.
Results

Baseline characteristics and
in-hospital complications

Data from 8,719 consecutive hospitalized patients (n = 1,578 with

DM; n = 7,141 with non-DM) with confirmed COVID-19 were

collected. The 1:1 propensity score matching (PSM) according to age

and sex resulted in 1,548 matched pairs. The mean age of matched

pairs was 72.6 ± 12.7 years old. Even more, the male sex was 63.5% in

both groups. Diabetics suffered frommore chronic conditions such as

arterial hypertension (77.5% vs. 58.5%; p < 0.0001), renal insufficiency

(13.6% vs. 8.1%; p < 0.0001), and liver disease (5.7% vs. 3.4%; p =

0.002). In-hospital complications were observed more in diabetics as

compared to nondiabetics, for example, respiratory insufficiency

(62.1% vs. 56.3%; p = 0.001), acute kidney injury (26.6% vs. 19.8%;

p < 0.0001), and sepsis (15.4% vs. 12.8%, p = 0.04). Other baseline

characteristics, immunosuppression, home oxygen therapy,

premedication, symptomatic, clinical, and laboratory parameters,

in-hospital complications, and intervention procedures during

hospitalization are presented in Table 1.
Clinical outcomes at long-term follow-up

Mean follow-up (2.6 ± 4.6 months) data were available for 412

diabetics and 443 nondiabetics. The readmission rate due to any

cause was similar in diabetics and nondiabetics, respectively (19.7%

vs. 18.3%; p = 0.61). The reinfection rate with COVID-19 was also

comparable in patients with DM than those without DM (2.9% vs.

2.3%; p = 0.55). Additionally, diabetics were vaccinated more than

nondiabetics at follow-up with the same time to vaccination (11.9 ±

3.1 months in diabetics vs. 12.2 ± 2.9 months in nondiabetics)

(57.3% vs. 51.7%; p = 0.10). At follow-up, cardiovascular symptoms

such as dyspnea and an increase in resting heart rate after discharge

occurred less frequently in patients suffering from DM (13.2% vs.

16.4%; p = 0.01) than those without DM (2.8% vs. 5.6%; p = 0.05),

respectively. In addition, the mortality rate at the 20-month follow-

up was significantly higher in DM than in non-DM patients (33.9%

vs. 29.1%; p = 0.005). Cardiovascular, neuropsychiatric, respiratory,

gastrointestinal, and other symptoms are presented in Table 2.
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TABLE 1 Patients with diabetes mellitus type II as compared to patients without DM II, baseline characteristics, laboratory and radiographic findings,
complications, and clinical outcomes.

Characteristic Diabetics (N = 1,548) Nondiabetics (N = 1,548) p-value*

Age (mean ± SD (years)) 72.6 ± 12.7 72.6 ± 12.7 1.00

Male as sex (no. (%)) 983 (63.5) 983 (63.5) 1.00

Chronic conditions (no. (%))

Arterial hypertension 1,200 (77.5) 906 (58.5) <0.0001

Dyslipidemia 927 (59.9) 551 (35.6) <0.0001

Obesity 486 (31.4) 221 (14.3) <0.0001

Current smoking 86 (6.2) 83 (5.9) 0.73

Renal insufficiencya 211 (13.6) 126 (8.1) <0.0001

Lung disease 362 (30.1) 329 (28) 0.26

Cardiac disease 538 (34.8) 414 (26.7) <0.0001

Cerebrovascular disease 192 (12.4) 164 (10.6) 0.12

Connective tissue disease 48 (3.1) 43 (2.8) 0.60

Liver disease 88 (5.7) 52 (3.4) 0.002

Cancer disease 291 (18.8) 237 (15.3) 0.009

Immunosuppressionb 134 (8.7) 112 (7.2) 0.14

Home oxygen therapy 74 (4.8) 71 (4.6) 0.80

Premedication (no. (%))

ASA 453 (29.3) 263 (17) <0.0001

Antiplatelet drug 119 (7.7) 75 (4.8) 0.001

Oral anticoagulation 251 (16.2) 220 (14.2) 0.12

Beta-blockers 420 (27.1) 287 (18.5) <0.0001

ACEI/ARB 863 (55.8) 638 (41.2) <0.0001

Symptomatic (no. (%))

Asymptomatic 81 (5.2) 105 (6.8) 0.07

Dyspnea 961 (62.9) 911 (59.5) 0.05

Tachypnea > 22 breaths/min 485 (31.4) 455 (29.4) 0.24

Hemoptysis 26 (1.7) 32 (2.1) 0.42

Fatigue 727 (47) 718 (46.4) 0.75

Anosmia/hyposmia 55 (3.6) 67 (4.3) 0.27

Dysgeusia 66 (4.3) 73 (4.7) 0.54

Sore throat 117 (7.6) 159 (10.3) 0.01

Fever 1,102 (71.3) 1,150 (74.4) 0.06

Cough 950 (61.5) 944 (61.1) 0.83

Vomiting 107 (6.9) 95 (6.1) 0.38

Diarrhea 268 (17.3) 234 (15.1) 0.10

Erythromelalgia 369 (23.9) 443 (28.7) 0.003

Clinical parameters (no. (%))

Peripheral oxygen saturation < 92% 690 (44.6) 604 (39.1) 0.002

(Continued)
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TABLE 1 Continued

Characteristic Diabetics (N = 1,548) Nondiabetics (N = 1,548) p-value*

Abnormal blood pressurec 139 (9.9) 116 (8.3) 0.13

GCS < 15 149 (11.8) 144 (11) 0.62

Laboratory parameters (no. (%) or median (min–max))

Elevated D-dimer 953 (61.6) 903 (58.4) 0.07

Elevated procalcitonin 302 (19.5) 231 (14.9) 0.0007

Elevated CRP 1,382 (89.4) 1,343 (86.9) 0.03

Elevated TnI 206 (13.3) 165 (10.7) 0.02

Elevated transaminasesd 505 (32.7) 579 (37.5) 0.006

Elevated ferritin 494 (32) 515 (33.3) 0.42

Elevated triglyceride 172 (11.1) 129 (8.3) 0.009

Elevated LDH 1,018 (65.9) 1,033 (66.8) 0.59

Creatinine (mg/dl) 1.02 (0.38–11.3) 0.96 (0.12–33.9) 0.0005

Leukocytes (10E9/L) 7,000 (550–90,004) 6,440 (440–88,400) <0.0001

Lymphocytes (10E9/L) 960 (12–41,100) 930 (244–77,100) 0.25

Hemoglobin (g/dl) 13 (1–19.3) 14 (4–18) <0.0001

Thrombocytes (10E9/L) 201,000 (13,000–716,000) 190,000 (10,000–980,000) <0.0001

Natrium level (mmol/L) 137 (115–179) 138 (117–180) <0.0001

In-hospital complication

Respiratory insufficiency 958 (62.1) 867 (56.3) 0.001

Heart failure 191 (12.4) 128 (8.3) 0.0002

Acute kidney injury 411 (26.6) 305 (19.8) <0.0001

Upper respiratory tract infection 257 (16.7) 240 (15.6) 0.41

Pneumonia 1,344 (89.4) 1,336 (88.4) 0.41

SIRS 389 (25.2) 355 (23) 0.16

Sepsis 238 (15.4) 197 (12.8) 0.04

Any relevant bleedinge 65 (4.2) 46 (3) 0.07

Embolic event 49 (3.2) 47 (3.1) 0.84

Oxygen therapy

O2 at the admission 1,238 (80.2) 1,157 (75.1) 0.0007

High-flow nasal cannula 347 (22.5) 336 (21.8) 0.65

Noninvasive mechanical ventilation 250 (16.2) 237 (15.4) 0.54

Invasive mechanical ventilation 163 (10.6) 123 (8) 0.01

Another medication or intervention procedures during the admission

Prone position 196 (12.7) 169 (11) 0.14

ECMO 119 (7.7) 82 (5.3) 0.007

Use of glucocorticoids 546 (35.4) 526 (34.1) 0.47

Use of hydroxychloroquine 1,173 (76) 1,180 (76.6) 0.69

Use of antiviral drugsf 714 (46.2) 812 (53) 0.0003

Use of interferon 180 (11.7) 233 (15.1) 0.005

(Continued)
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TABLE 1 Continued

Characteristic Diabetics (N = 1,548) Nondiabetics (N = 1,548) p-value*

Use of tocilizumab 131 (8.5) 128 (8.3) 0.85

Use of antibiotics 1,181 (76.5) 1,113 (72.2) 0.007

ACEI/ARBg 476 (30.9) 354 (23) <0.0001

Anticoagulation 856 (81.7) 791 (75.8) 0.001

Discharge

ACEI/ARB 82 (30.8) 71 (24.7) 0.11

Antiplatelet drug 226 (14.7) 147 (9.6) <0.0001

Anticoagulation 413 (26.8) 365 (23.7) 0.05
F
rontiers in Endocrinology
 0635
 fro
ASA, acetylsalicylic acid; ACEI/ARB, angiotensin-converting enzyme inhibitor/angiotensin-receptor blocker; CRP, C-reactive protein; GCS, Glasgow coma scale; ECMO, extracorporeal
membrane oxygenation; SIRS, systemic inflammatory response syndrome; TnI, high-sensitivity troponin I (cardiac injury; troponin > 99th percentile upper reference limit).
aCrCL < 30.
bImmunosuppressive therapy for psoriatic arthritis, lung transplantation, kidney transplantation, or systemic lupus erythematosus; oncological diseases such as mamma-ca, prostate-ca,
myelodysplastic syndrome, or gammopathy; glucocorticoid therapy caused by COPD; dialysis; HIV; or hepatitis.
cSystolic blood pressure < 90 mmHg or diastolic blood pressure < 60 mmHg.
dALAT and ASAT.
eRectorrhagia, hematuria, epistaxis, and popliteal aneurysm bleeding with relevant decreased hemoglobin > 2 mg/l.
fLopinavir or/and ritonavir.
gPremedication with ACEI/ARB is not stopped.
*Statistical significance level is set at 0.05 and value of statistical significance is emphasized in bold.
TABLE 2 Follow-up in patients suffering from DM type II as compared to those without DM.

Diabetics (N = 1,548) Nondiabetics (N = 1,548) p-value*

Follow-up (mean ± SD)

Follow-up time (months (PCS)) 2.6 ± 4.6 2.8 ± 4.9 0.77

Duration to recovery (months) 2.2 ± 4.6 2.4 ± 4.9 0.51

Duration to readmission (months) 2.5 ± 4.5 2.6 ± 4.6 0.95

Number of patients (n) 412 443 –

Readmission 81 (19.7) 81 (18.3) 0.61

Vaccination 236 (57.3) 229 (51.7) 0.10

Time to vaccination (months) 11.9 ± 3.1 12.2 ± 2.9 0.74

Reinfection with COVID-19 12 (2.9) 10 (2.3) 0.55

Clinical event after discharge 171 (43.1) 181 (42) 0.75

Cardiovascular symptoms

Fatigue 114 (28.7) 125 (29) 0.93

Dyspnea 204 (13.2) 254 (16.4) 0.01

Dizziness 34 (8.6) 35 (8.1) 0.82

Chest pain 28 (7.1) 28 (6.5) 0.75

Acute coronary syndrome 3 (0.8) 4 (0.9) 1.00

Palpitation 24 (6.1) 37 (8.6) 0.16

Increase in resting heart rate 11 (2.8) 24 (5.6) 0.05

Syncope 2 (0.5) 8 (1.9) 0.11

Arrhythmias 27 (6.8) 22 (5.1) 0.30

Atrial fibrillation 21 (5.3) 26 (6) 0.65

(Continued)
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TABLE 2 Continued

Diabetics (N = 1,548) Nondiabetics (N = 1,548) p-value*

Perimyocarditis 1 (0.3) 2 (0.5) 1.00

Limb edema 13 (3.3) 18 (4.2) 0.50

New hypertension 2 (0.5) 7 (1.6) 0.18

New left ventricular dysfunction 5 (1.3) 7 (1.6) 0.66

Relevant bleeding 5 (1.3) 5 (1.2) 0.90

Neuropsychiatric symptoms

Headache 11 (2.8) 21 (4.9) 0.12

Migraine 5 (1.3) 11 (2.6) 0.18

Ageusia 17 (4.3) 19 (4.4) 0.93

Anosmia 12 (3) 18 (4.2) 0.38

Attention disorder 16 (4) 25 (5.8) 0.24

Memory loss 31 (7.8) 34 (7.9) 0.97

Cognitive disorder 18 (4.5) 20 (4.6) 0.94

Anxiety 34 (8.6) 54 (12.5) 0.06

Depression 26 (6.6) 35 (8.1) 0.39

Tinnitus or hearing loss 9 (2.3) 14 (3.3) 0.39

Sleeping disorder 27 (6.8) 36 (8.4) 0.40

Mood disorder 22 (5.5) 31 (7.2) 0.33

Paranoia 16 (4) 5 (1.2) 0.009

Respiratory symptoms

Cough 33 (8.3) 42 (9.7) 0.47

Reduce pulmonary diffusing capacity 28 (7.1) 44 (10.2) 0.11

Polypnea 15 (3.8) 19 (4.4) 0.65

Sleep apnea 13 (3.3) 9 (2.1) 0.29

Gastrointestinal symptoms

Tongue involvement 1 (0.3) 7 (1.6) 0.07

Digestive disorder 20 (5) 17 (3.9) 0.45

Nausea/vomiting 10 (2.5) 8 (1.9) 0.51

Other symptoms

Intermittent fever 8 (2) 10 (2.3) 0.76

Chills 6 (1.5) 8 (1.9) 0.70

Hair loss 20 (5) 18 (4.2) 0.55

Joint pain 19 (4.8) 25 (5.8) 0.52

Myalgia 26 (6.6) 32 (7.4) 0.62

Sweat 5 (1.3) 4 (0.9) 0.74

Weight loss 24 (6.1) 23 (5.3) 0.66

Cutaneous involvement 6 (1.5) 13 (3) 0.15

New diabetes – 4 (0.9) –

New renal insufficiency 19 (4.8) 11 (2.6) 0.09

(Continued)
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PSM and predictors of mortality

The mortality rate at long-term follow-up was significantly

higher in patients with DM than those without, in the overall

cohort and in the matched cohort, respectively (p < 0.0001 and p =

0.005). The Kaplan–Meier curve with landmark analysis is

displayed in Figure 1. In the multivariable analysis for mortality,

age, and male sex were determined as predictors for mortality,

respectively (HR: 2.34; p < 0.0001) (HRK 1.23; p = 0.008). Other

predictors are performed in Table 3. Clinical outcomes before PSM

are presented in the Supplementary Appendix.
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Discussion

This study presents characteristics of PCS in patients suffering

from DM as compared to those without DM. The main findings of

this study are as follows: (1) readmission rate for any cause was

similar in diabetics than nondiabetics at follow-up; (2) reinfection

rate with COVID-19 was similar in both groups; (3) symptoms such

as dyspnea and an increase of resting heart rate occurred less in

diabetics as compared to nondiabetics; (4) The incidence of newly

diagnosed arterial hypertension was less in diabetics than

nondiabetics without statistical significance; (5) respiratory
TABLE 2 Continued

Diabetics (N = 1,548) Nondiabetics (N = 1,548) p-value*

Pain 12 (3) 8 (1.9) 0.28

Red eyes 4 (1) 6 (1.4) 0.76

Flushing 4 (1) 2 (0.5) 0.43

Incident neoplasia 2 (0.5) 6 (1.4) 0.29

Management after discharge

Home oxygen therapy 43 (10.8) 37 (8.6) 0.27

ASA 99 (24.9) 58 (13.5) <0.0001

Antiplatelet drug 34 (8.6) 23 (5.3) 0.07

Anticoagulation 69 (17.4) 54 (12.5) 0.05

ACEI/ARB 140 (35.3) 113 (26.2) 0.005

Beta-blockers 75 (18.9) 69 (16) 0.27

Beta agonist inhalation therapy 34 (8.6) 46 (10.7) 0.31

Vitamin supplementation 72 (18.1) 80 (18.6) 0.88

Antidepressant 47 (11.8) 64 (14.9) 0.20

Statin 151 (38) 103 (23.9) <0.0001

Diagnostic test after discharge

Elevated di-dimer 137 (34.6) 151 (35.2) 0.86

Elevated CRP 167 (42.2) 183 (42.7) 0.89

Elevated procalcitonin 45 (11.4) 34 (7.9) 0.09

Elevated TnI 18 (4.6) 16 (3.7) 0.56

Elevated NT-proBNP 23 (5.8) 29 (6.8) 0.57

Elevated transaminasesa 92 (23.2) 100 (23.3) 0.98

Abnormal spirometry 21 (18.8) 17 (13) 0.24

Any chest X-ray abnormality 99 (39.4) 103 (38.9) 0.99

Any CT abnormality 37 (35.6) 48 (35.3) 0.60

In-hospital mortality 492 (31.8) 426 (27.5) 0.009

Long-term mortality 524 (33.9) 451 (29.1) 0.005
fro
PCS, post-COVID-19 syndrome; ASA, acetylsalicylic acid; ACEI/ARB, angiotensin-converting enzyme inhibitor/angiotensin-receptor blocker; CRP, C-reactive protein; TnI, high-sensitivity
troponin I cardiac injury; troponin > 99th percentile upper reference limit. aALAT and ASAT.
*Statistical significance level is set at 0.05 and value of statistical significance is emphasized in bold.
Summarized, - means not available.
ntiersin.org

https://doi.org/10.3389/fendo.2023.1167087
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Abumayyaleh et al. 10.3389/fendo.2023.1167087
complications were revealed in diabetics and nondiabetics; and (5)

long-term mortality was higher in patients suffering from DM as

compared to those without DM.

Recently, it has been reported that the progression of type II DM is

associated with increased insulin resistance accompanied by chronic

inflammation and endothelial and ß-cell dysfunction (12). On the

other hand, the inflammatory response in infected patients with

SARS-CoV-2 may worsen insulin resistance and endothelial

dysfunction (13). The existence of both diseases may further

enhance the inflammation and decrease interferon levels, neutrophil

chemotaxis, and T lymphocyte-mediated immune response with

impairment of cytokine production (14–16). That is associated with

a severe course of COVID-19 in DM patients. Furthermore, ACE2

expression increases insulin resistance. This receptor and dipeptidyl

peptidase 4 (DPP4), which may be a factor in the severity of COVID-

19 infection, are present in several physiological processes and are

modulated by hyperglycemia and pharmacological therapies that are

common in DM patients (17). In addition, chronic hyperglycemia

leads to chronic vascular and kidney disease. Other comorbidities,

such as obesity and hypertension, are present in concurrent DM.

These diabetes-related comorbidities may negatively impact outcomes

in DM patients with COVID-19 (18, 19).
DM as a risk factor for post-COVID-19
syndrome

Our DM cohort had more comorbidities such as arterial

hypertension, renal insufficiency, liver disease, and cardiac disease

than patients without DM. Furthermore, respiratory insufficiency

requiring oxygen therapy and invasive mechanical ventilation (MV)

was observed more in diabetics as compared to nondiabetics.

During hospitalizations, sepsis and acute kidney injury occurred

more often in diabetics than nondiabetics. A prospective study

showed that the persistence of symptoms was associated with the

severity of the disease at the beginning and that the intensive care

unit (ICU) admission was an independent risk factor for PCS (20).

In addition, the need for MV was determined as a predictor for the

development of PCS (21). However, it has been reported that 60% of

low-risk patients for mortality with COVID-19 suffered from severe

PCS (22). In patients with DM, optimizing hyperglycemia therapy
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improve metabolic function which may be beneficial for the long-

term management of patients with PCS (23). In this study, PCS was

slightly comparable despite the different comorbidities and in-

hospital complications in both groups.
Cardiovascular symptoms

In our study, dyspnea and an increase in resting heart rate

occurred more significantly in nondiabetics as compared to

diabetics. Additionally, newly diagnosed arterial hypertension was

also revealed slightly more in nondiabetics than diabetics.

Regarding that, the persistence of cardiovascular symptoms was

recently reported (24). In one of the studies from Wuhan, Huang

et al. showed that patients infected with SARS-CoV-2 suffered from

acute cardiac injury (25). Subclinical myocarditis with an increased

risk of arrhythmias may play a role in PCS (26). Data about the

comparison between diabetics and nondiabetics are limited.
Neuropsychiatric symptoms

This study presented neuropsychiatric symptoms generally

more common in nondiabetics as compared to diabetics without

statistical significance, for example, headache, sleeping disorder,

and anxiety. However, paranoia was observed significantly more in

diabetics than nondiabetics at a 3-month follow-up. Studies

reported that headache and other neuropsychiatric symptoms

occurred after 3 months in patients infected with SARS-CoV-2

(27, 28). Guedj et al. reported that more areas in the brain showed

hypometabolism in patients with PCS as compared to healthy

subjects (29). Controlled, randomized studies are needed to

investigate the neuropsychiatric symptoms in patients with DM

as compared to those without DM.
Respiratory symptoms

Renal insufficiency and cardiac disease were observed more in

patients with DM than non-DM, while the rate of lung diseases was

similar in matched pairs. At follow-up, our data presented a similar

rate of sleep apnea in diabetics and nondiabetics. Furthermore,

computer tomography (CT) and chest X-ray abnormalities were

revealed in both groups, but dyspnea occurred significantly more in

nondiabetics as compared to diabetics at follow-up. In one

retrospective study with 77 days of follow-up, spirometry (9.3%)

and chest radiology (19%) abnormalities were detected in 277

patients, of whom 51% had PCS (30). In 22 patients after

COVID-19-associated acute respiratory distress syndrome

(ARDS), signs of lung fibrosis were detected in 55% of patients at

3-month follow-up (31). In patients with critical COVID-19, 9.5%

of patients needed home oxygen therapy after discharge at a 1-year

follow-up (32). Furthermore, DM was identified as a risk factor for

the requirement of oxygen therapy in patients suffering from

COVID-19 (33). In our multivariable analysis, DM was not

identified as a predictor for mortality.
FIGURE 1

Kaplan–Meier curve for long-term mortality divided by diabetics vs.
nondiabetics in the overall population and matched cohort. In both
comparisons, a worse outcome in diabetics was detected.
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This study has some limitations. It has a retrospective character;

not all laboratory tests were done on all patients. Furthermore, data

on hemoglobin A1c (HbA1c), antihyperglycemic treatment

including metformin and DPP-4 inhibitors, and statin therapy at

baseline are missing. A strength of our study is the sample size of

patients with COVID-19 and concomitant DM type II at 55

international centers. The results are therefore real-world evidence.

To summarize, PCS was observed in diabetics and nondiabetics.

However, the mortality rate was higher in diabetics as compared to
Frontiers in Endocrinology 1039
nondiabetics. DM was not determined as a risk factor for mortality

at follow-up.
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TABLE 3 Predictors of mortality, multivariable analysis.

Variable Univariable analysis Multivariable analysis

HR p-value HR p-value

Patient demographics

Age ≥70 2.90 <0.0001 2.34 <0.0001

Male 1.19 0.01 1.23 0.008

Chronic conditions

Dyslipidemia 1.12 0.07

Diabetes mellitus 1.18 0.01

Obesity 1.01 0.88

Renal insufficiency 1.86 <0.0001 1.33 0.003

Cancer disease 1.46 <0.0001

Immunosuppression 1.41 0.0009 1.40 0.003

Premedication

ASA 1.38 <0.0001

Oral anticoagulation 1.66 <0.0001

Clinical parameters

SpO2 < 92%a 3.14 <0.0001 2.13 <0.0001

Abnormal blood pressureb 2.09 <0.0001 1.36 0.002

GCS < 15 2.67 <0.0001 1.50 <0.0001

Clinical presentation

Dyspnea 1.48 <0.0001

Tachypnea > 22 breaths/min 2.17 <0.0001 1.41 <0.0001

Dysgeusia 0.32 <0.0001 0.40 0.001

Sore throat 0.79 0.07

Cough 0.77 <0.0001 0.84 0.02

Erythromelalgia 0.73 <0.0001

Laboratory parameters

Elevated procalcitonin 1.89 <0.0001 1.53 <0.0001

Elevated CRP 1.60 <0.0001

Elevated LDH 1.50 <0.0001 1.20 0.04
HR, hazard ratio; ASA, acetylsalicylic acid; SpO2, peripheral oxygen saturation; GCS, Glasgow coma scale.
aSpO2 < 92% at admission.
bSystolic blood pressure < 90 mmHg or diastolic blood pressure < 60 mmHg.
Statistical significance level is set at 0.05 and value of statistical significance is emphasized in bold.
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Patients with comorbidities are more vulnerable to severe clinical cases of acute 
respiratory distress syndrome (ARDS) and COVID-19 require complex health 
care. To analyse the association between the individual and combined effects 
of diabetes, hypertension, and obesity on ARDS mortality rates among patients 
receiving clinical care. A multicentre study encompassing retrospective data 
analysis and conducted with 21,121 patients from 6,723 health services across 
Brazil, during the 2020–2022 time period. The sample group consisted of clinical 
patients of both sexes and different age groups who received clinical care and 
showed at least one comorbidity. The data collected were analysed using binary 
logistic regressions and the Chi-square test. The overall mortality rate was 38.7%, 
with a higher predominance among males (p < 0.001), mixed-race individuals 
(p < 0.001), and older adults (p < 0.001). The main comorbidity variables associated 
with and leading to death from ARDS were arterial hypertension (p < 0.001), 
diabetes mellitus (p < 0.001), diabetes mellitus and arterial hypertension (p < 0.001), 
cardiovascular diseases (p < 0.001) and obesity (p < 0.001). Both the patients 
who progressed to recovery (48.4%) and to death (20.5%) presented only one 
comorbidity (χ2 (1,749) = 8, p < 0.001), respectively. The isolated comorbidities 
with the greatest impact on death outcomes were diabetes (95% CI 2.48–3.05, 
p < 0.001), followed by obesity (95% CI 1.85–2.41, p < 0.001) and hypertension (95% 
CI 1.05–1.22, p < 0.001), even after adjusting for sex and number of simultaneous 
comorbidities. Diabetes and obesity, as isolated conditions, had a greater influence 
on the number of deaths of clinical patients with ARDS compared to those with 
mutual diagnosis of diabetes, hypertension and obesity.
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1. Introduction

Since the beginning of the pandemic, chronic, non-communicable 
diseases (NCDs) have been associated with severe and lethal cases of 
COVID-19, given that NCDs are characterised by a set of pathologies 
with multiple causes and risk factors, long latency periods, and 
prolonged courses (1). Coronavirus infections have affected people of 
different health profiles. However, we have noticed a higher prevalence 
of severe clinical complications among those affected by pre-existing 
comorbidities. In this regard, diabetes mellitus, hypertension, and 
obesity are reported to be among the most lethal NCDs in the presence 
of viral infections in their most severe form, according to several 
publications in different scenarios around the world (2–4).

It has been unanimously confirmed by meta-analysis data that 
cardiovascular diseases, obesity, hypertension, and diabetes are the 
main comorbidities observed in COVID-19-infected patients (1, 5, 6). 
In addition, some studies have identified diabetes and hypertension as 
comorbidities associated with severe and fatal cases, respectively, of 
COVID-19 and acute respiratory distress syndrome (ARDS) in 
clinical patients (5, 6). To this end, another review identified that 
kidney disease is the most prevalent risk factor in cases resulting in 
patient death, while obesity, even though very prevalent, has shown 
no association with death in COVID-19 and ARDS cases (1).

As previously mentioned, in isolation, such comorbidities have 
potentially strong effects in the presence of ARDS, especially in the 
most severe stage of the disease. However, when these diseases are 
mutually present in a patient, the combined relationship with the 
virus, its pathophysiological effects, and other associated factors such 
as age and sex, is complex and, when consulting the literature, this link 
seems to not have yet been elucidated.

From this perspective, this study is justified by the need to address 
and understand the influence between the comorbidities mutually 
present and patient death outcomes, in order to establish safer and more 
effective guidelines in the management of hospitalised and/or outpatient 
ARDS patients. The study of these interactions also has the potential to 
elucidate mechanisms of hospital readmission for respiratory diseases 
in humans (7). Therefore, the main aim of this study was to analyse the 
influence of both the isolated and the combined presence of diabetes 
mellitus, systemic arterial hypertension, and obesity in ARDS patients 
on their death rates. We hypothesize that patients with ARDS receiving 
clinical care affected by these NCDs, either mutually or simultaneously, 
have a higher death chance in relation to other patients with 
different comorbidities.

2. Materials and methods

2.1. Ethical aspects

This investigation was authorized by the Human Research Ethics 
Committee of the Federal University of Maranhão (UFMA) under 
approval n° 4,227,396.

2.2. Research design

This is a multicentre study using a retrospective data analysis, 
conducted across 6,723 health services. The service providers are located 

across 19 healthcare area divisions in the state of Maranhão, including 
2,049 primary health care units, 1,246 specialized outpatient clinics, 588 
support units (hospitals, diagnosis centres, and treatment centres), and 
404 health units. The state of Maranhão is located in the northeast region 
of Brazil and has approximately 7,075,181 inhabitants living across 217 
municipalities. The data used in this study was from a database of 
patients and were collected between March 2020 and January 2022.

The research analysed the epidemiological surveillance clinical 
records of the Covid-19 Notification System of Maranhão, Brazil. The 
system records and tracks notifications of the influenza and the ARDS 
up to patient death.

The study comprised the period from March 2020 to January 
2022, when 386,567 cases of ARDS were registered in the notification 
system in Maranhão, Brazil. Of these cases, 10,986 resulted in death.

2.3. Criteria for defining deaths related to 
SARS-CoV-2 infection

To define death by ARDS, we considered clinical, epidemiological 
and/or laboratory criteria.

The clinical criterion consisted of reported deaths of patients 
diagnosed with acute Covid 19 (clinical picture <7 days) or diagnosed 
with acute respiratory failure syndrome in a hospital setting. 
Epidemiological criteria consisted of death of patients who showed 
close or household contact with a laboratory-confirmed case for 
COVID-19  in the previous 7 days; death of patients who lived or 
worked in an area with a high risk of virus spread (nursing homes, 
homeless shelters, etc.), and who showed up to 7 days of clinical 
symptoms; or death of a health professional working in a hospital 
environment with up to 7 days of clinical symptoms. Finally, the 
laboratory criteria consisted of the death of patients with clinical 
symptoms in the last 7 days who had undergone the following 
laboratory tests: molecular biology (detectable positive result for 
SARS-CoV-2 by the real-time RT-PCR method), or antigen test 
(reagent for SARS-CoV-2 by the immunochromatography method).

2.4. Participants

In this investigation, general patients of both sexes, any age group, 
with a positive diagnosis for ARDS, and with some comorbidities were 
eligible. Based on these eligibility criteria, the final sample of this study 
was 21,121 patients.

2.5. Prediction variables

For this study, individual-related variables (sex, age group, race, 
type of health service, diagnostic criteria, and type of test), as well as 
pre-existing comorbidities were listed as prediction variables, namely: 
hypertension, diabetes, diabetes and hypertension, obesity, diabetes 
and obesity, cardiovascular diseases, respiratory diseases, neurological 
diseases, cancer, metabolic diseases, kidney diseases, smoking, gastric 
diseases, psychiatric disorders, HIV-AIDS, rheumatological diseases, 
autoimmune diseases, hepatitis, alcoholism, urological diseases, 
diabetes mellitus, leprosy, chemical dependency, haematological 
diseases, malformation, rare diseases and dermatological diseases.
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2.6. Outcome variables

The following variables were chosen as outcomes, namely:
- mortality rate in patients with comorbidities,
- mortality rate in patients with diabetes,
- mortality rate in patients with hypertension,
- mortality rate in patients with obesity,
- mortality rate in patients with diabetes and hypertension,
- mortality rate in patients with diabetes and obesity,
- mortality rate in patients with diabetes, hypertension, 

and obesity.

2.7. Data analysis

Uni- and bivariate exploratory analysis of the data were carried 
out with the aid of the free software JAMOVI version 1.6.

The specific mortality rate from the above selected causes was 
calculated as follows:

 

Number of deaths of patients with a specific comorbity
betwe

       

een January and March
Total number of deaths of pati

  

     

2020 2022

eents with any comorbity
between January and March

  

  2020 2022

10× 00

The normality of the variables was examined via the Shapiro–Wilk 
test. We compared the number of commodities per group (deaths vs. 
recoveries) using the Mann–Whitney test. Through contingency 
tables, we  observed differences in the frequency of comparisons 
between the predictor variables (comorbidities) and death outcomes 
(‘yes’ or ‘no’), through a Chi-square test. In turn, for correlations, the 
Spearman correlation test was used.

In the associations where a p < 0.001 were observed, we performed 
a binary logistic regression analysis, respecting the assumption of the 
absence of multicollinearity of the variables and the adjustment 
indices of the models (variance inflation factor [VIF] < 5 and tolerance 
>0.1). To analyse the goodness of fit for the logistic regression model, 
we used the Hosmer-Lemeshow test, while to determine the degree of 
risk, odds ratios were calculated within a 95% confidence interval. 
Two-tailed Alpha (α) values below 0.05 were statistically significant.

3. Results

Regarding the profiling of the patients, it can be highlighted that 
the sample distribution in relation to sex was balanced, but as for the 
age group, we observed that the older adult group (> 60 years of age) 
was predominant (54.5%). A substantial portion of the patients had 
brown skin color, which, in a general Brazilian classification, 
corresponds to mixed-race individuals. Disease diagnostics and 
detections took place mostly in public health service providers via 
laboratory tests, in this case, rapid tests (Table 1).

The overall mortality rate was 38.7% in this study. Death cases 
were higher for men (22.5%) than for women (16.2%) [χ2(425) =1, 
p < 0.001]. Regarding the group of patient cases who evolved to death, 
a directly proportional relationship was observed. With an age 
increase, there is also a statistically significant percentage increase in 
mortality from ARDS: 0–9 (0.1%), 10–19 (0.1%), 20–29 (0.4%), 30–39 

(1.3%), 40–49 (2.6%), 50–59 (4.9%), 60–70 (10%), and > 70 years of age 
(19.3%) [χ2 (3024) =8, p < 0.001]. Deaths were predominant in mixed 
raced (24.8%) and white (7.3%) individuals [χ2 (1357) =5, p < 0.001].

Regarding total deaths, the most significant comorbidities for 
mortality rates were arterial hypertension (63.7%), diabetes mellitus 
(39.5%), diabetes mellitus and arterial hypertension (26.2%), obesity 
(7.4%) and diabetes mellitus and obesity (1.8%). The main comorbidity 
variables associated with and resulting in death from ARDS were 
arterial hypertension (p < 0.001), diabetes mellitus (p < 0.001), diabetes 
mellitus and arterial hypertension (p < 0.001), cardiovascular diseases 
(p < 0.001) and obesity (p < 0.001) (Table 2).

In turn, for the correlation study, we  identified that the 
comorbidities with the highest positive correlation with a death by 
ARDS outcome were diabetes mellitus (Spearman rho = 0.25 e 
p < 0.001), and the simultaneous presence of diabetes mellitus and 
arterial hypertension (Spearman rho = 0.22 e p < 0.001). We  also 
observed that death outcomes presented a negative and statistically 
significant correlation (Spearman rho = −0.27 and p < 0.001) with the 
number of comorbidities per patient. Also, in the 75th percentile, it is 
possible to verify that the patients who died had 3 simultaneous 

TABLE 1 Profile of clinical patients with COVID-19 showing at least one 
comorbidity. Maranhão, Brazil, 2023.

Variable n %

Age group

0–9 115 0.5

10–19 295 1.4

20–29 709 3.4

30–39 1,766 8.4

40–49 2,938 14

50–59 3,813 18

60–70 4,838 23

Above 70 6,605 31.5

Sex
Female 10,740 50.8

Male 10,381 49.2

Race

Brazilian Yellow 2,958 14.9

Brazilian White 3,409 17.2

Indigenous 75 0.3

Mixed race 11,721 59.3

Black 1,598 8

Death
Yes 8,172 38.7

No 12,943 61.3

Diagnostic criteria

Clinical examination 119 0.6

Clinical examination 

and tomography
192

0.9

Lab test 20,808 98.5

Laboratory
Public/National 18,821 90.7

Private 1,915 9.3

Exam type

Serological 404 1.9

Rapid test 13,813 68.1

RT-PCR 6,605 30

Health service
Public/National 13,052 88.4

Private 1,729 11.6
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comorbidities in relation to the group that did not evolve to death, 
whose comorbidity number was 1 (p < 0.001).

We also observed a statistically significant association between 
death outcome and the number of simultaneous comorbidities. In this 
case, both those who evolved to recovery (48.4%) and to death (20.5%) 
had only 1 comorbidity (χ2 (1.749) =8, p < 0.001), respectively 
(Figure 1).

When comparing the percentiles for the variable number of 
comorbidities, we observed that in the 95th and 99th percentiles, the 
number of comorbidities was 4 and 5, respectively, in the group that 
evolved to death. In the group that evolved to recovery in the same 
position, the values found were 3 and 4, respectively (U-Mann 
Whitney Test, p < 0.0001).

The impact of comorbidities on the deaths of ARDS patients was 
tested in three binary logistic regression models. The most pronounced 

effect was observed in the comorbidity diabetes (95% CI 2.48–3.05, 
p < 0.001), followed by obesity (95% CI 1.85–2.41, p < 0.001) and 
hypertension (95% CI 1.05–1.22, p < 0.001) individually, even after 
adjustments for sex and number of concurrent comorbidities 
(Table 3).

4. Discussion

We found that the isolated presence of diabetes and obesity was 
more associated with the prevalence of ARDS deaths than the 
simultaneous presence of comorbidities. By the way, patients with 
COVID-19 who progress to death used to mostly have at least 
one comorbidity.

Data from other studies conducted in the Middle East found that 
the comorbidities most associated with death from COVID-19 were 
kidney injury, deep vein thrombosis, and tumors (8). Other 
researchers concluded that the triad of smoking, hypertension, and 
diabetes mellitus increases the mortality rate (9). In fact, both smoking 
and kidney injury are mentioned in association with the use of 
invasive mechanical ventilation, in the case of patients hospitalised for 
COVID-19 (10).

In this regard, it is important to highlight in this discussion the 
evidence of a meta-analysis on this topic, which implies that advanced 
age and the presence of two or more comorbidities are significantly 
impactful for the clinical evolution of ARDS cases in general hospitalised 
patients (11). Also, the conclusions of a recent published cohort study 
are interesting as they show that age and comorbidities can predict the 
outcome of ARDS, regardless of the severity of the patients’ innate 
immune response (12). This means that, particularly when NCDs are 
individually or mutually present in patients, they become an additional 
burden on the vulnerability of older adults to the SARS-CoV-2. In our 
findings, we found a positive correlation between death outcomes and 
the number of comorbidities statistically significant, but a weak 
association. It was also observed that both in recovered patients and in 
cases of death, one comorbidity was predominant.

Reviewing the literature, we observed the relationship between the 
number of comorbidities and mortality from COVID-19 is not 
unanimously reported, as there are some data that show an exponential 
relationship, while others show an inverse relationship (13–15). 
However, the common agreement among the consulted studies is that 
patients affected by different NCDs and COVID-19 have a high and 
differentiated prevalence around the world that ranges from 33.8–
56.6% of the investigated samples (2).

The inflammatory load related to the COVID-19 pathophysiology 
is interleukin 6 (IL-6), whose high levels cause cardiovascular damage 
and the deterioration of the clinical condition of patients, especially of 
those who already have pre-existing comorbidities, such as chronic 
NCDs. This is due to these patients having an inadequate immune 
response owing to other factors such as age, functional impairments, 
and lifestyle choices (16, 17).

In this sense, fatal cases of ARDS are closely related to the 
imbalance of the renin-angiotensin-aldosterone system and hyper-
inflammation, which causes a dysregulated immune response and a 
subsequent activation and dysfunction of endothelial cells, which 
mutually can trigger a thrombotic event. Therefore, in patients with 
systemic arterial hypertension, for example, this cascade of 
dysfunctional events can be fatal (18).

TABLE 2 Distribution of COVID-19 mortalities among clinical patients 
with comorbidities. Maranhão, Brazil, 2023.

Comorbidities Death

Yes
n (%)

No
n (%)

p-value1

Hypertension 5,208 (24.6) 7,428 (35.1) <0.001

Diabetes 3,235 (15.3) 2,198 (10.4) <0.001

Diabetes and hypertension 2,142 (10.1) 1,246 (5.9) <0.001

Obesity 612 (2.9) 484 (2.3) <0.001

Diabetes and obesity 149 (0.7) 28 (0.1) <0.001

Diabetes, hypertension and 

obesity

110 (0.5) 18 (0.1) <0.001

Cardiovascular diseases 1,309 (6.2) 2,565 (12.1) <0.001

Respiratory diseases 543 (2.5) 1,479 (7) <0.001

Neurological diseases 527 (2.5) 192 (0.9) <0.001

Cancer 325 (1.5) 163 (0.7) <0.001

Metabolic diseases 61 (0.2) 86 (0.4) 0.767

Kidney disease 477 (2.2) 312 (1.4) <0.001

Smoking 399 (1.8) 96 (1.4) <0.001

Gastric diseases 14 (0.0) 78 (0.3) <0.001

Psychiatric disorders 52 (0.2) 143 (0.6) 0.002

HIV 55 (0.2) 41 (0.1) <0.001

Rheumatological diseases 36 (0.1) 68 (0.3) 0.682

Autoimmune diseases 28 (0.1) 48 (0.2) 0.936

Hepatitis 70 (0.3) 46 (0.2) <0.001

Ethanolism 61 (0.2) 12 (0.0) <0.001

Urological diseases 3 (0.0) 20 (0.0) 0.041

Hansen’s disease 21 (0.0) 19 (0.0) 0.199

Drug addiction 21 (0.0) 407 (1.9) <0.001

Haematological disease 12 (0.0) 24 (0.1) <0.001

Malformation 27 (0.1) 403 (1.9) <0.001

Rare diseases 5 (0.0) 4 (0.0) 0.583

Dermatological diseases – 10 (0.0) 0.042

1Chi-square test.
The bold values are statistically significant data.
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Through logistic regression analysis, we detected that mortality 
rates were higher in those diagnosed with isolated comorbidities of 
diabetes and obesity, respectively, and the odd ratios for death were 
more than double and almost doubled (p < 0.001) among them. This 
finding is specifically corroborated by an epidemiological observatory 
of ARDS related deaths in Brazil, with an interval of 34 weeks of 
follow-up, which pointed out diabetes and obesity, respectively, always 
being at the top of the list of factors associated with deaths (19).

In the realm of comorbidities, including hypertension, 
cardiovascular disease, and chronic obstructive pulmonary disease 
(COPD), among others, diabetes is considered as a crucial comorbidity 
for the survival of patients infected by the coronavirus (20). Previous 
published studies attest to the potent effects of diabetes, in relation to 
other chronic diseases, to cause deaths by COVID 19 in patients with 
comorbidities (13, 21). By specifically comparing diabetes and obesity, 
among the publications consulted, we  identified that diabetes is a 
more potent risk factor for death from COVID 19 (14, 18, 22).

This disease causing a decrease in phagocytic activity, neutrophil 
chemotaxis, decreased T-cell function, and lower innate immunity in 
patients affected by Type 2 Diabetes. In addition, among these patients 
there are higher levels of angiotensin-converting enzyme-2 (ACE2), 
which serves as an entry receptor for the respiratory virus due to its 
high binding affinity expressed in pulmonary alveolar cells, cardiac 
cells, vascular endothelium, as well as other various sites (23).

In the case of obesity, it is well documented in the literature, 
through observational and review studies, that this condition alone is 
an intrinsic factor for respiratory failure and that it increases the risk 
of death in patients affected by COVID-19 by up to five times, as it 
aggravates previous chronic conditions and increases demand for 
mechanical ventilation (22–26). Overweight and obesity are 
characterised by an accumulation of abnormal or excessive fat that 
increases health risks and can trigger a series of other problems, such 
as cardiac and vascular conditions, diabetes, endocrinal complications, 
among others. These are all conditions associated with a high risk of 
mortality from COVID-19. In addition, the expression of ACE-2 
receptors is higher in the visceral adipose tissue than in subcutaneous 
fat, allowing for a higher viral load and, consequently, more severe 
forms of the disease in patients with increased visceral fat (4). 
Inflammatory processes resulting from the infection and immune 
dysregulation in obese individuals potentialize this relationship (27).

Thus, the scenario presented through our findings poses the 
pertinent reflection that it is not necessarily the number of 
comorbidities, but instead, the influence that certain comorbidities 
can bring to ARDS patients that can lead to an increase in 
mortality rate.

To date, it is known that the COVID-19 virus binds to the ACE-2, 
decreasing the activity of this type of receptor and leading to more 
severe cases. Precisely in patients with diabetes mellitus and systemic 
arterial hypertension, this receptor is present in high levels. In 
addition, in the presence of diabetes mellitus, the SARS-CoV-2 virus 

FIGURE 1

Distribution of the number of simultaneous comorbidities resulting in patient death by ADRS. Maranhão, Brazil, 2023.

TABLE 3 Impact of comorbidities (diabetes, hypertension, and obesity), 
isolated and/or combined, on the death of clinical patients by ADRS. 
Maranhão, Brazil, 2023.

Model Predictor Odds 
ratio

Confidence 
interval

p-
value

Lower Upper

1 Hypertension 1.30 1.21 1.39 <0.001

Diabetes 3.03 2.73 3.36 <0.001

Obesity 2.60 2.29 2.96 <0.001

Diabetes and 

hypertension

1.14 1.06 1.30 0.040

Diabetes and 

obesity

1.38 0.73 2.61 0.319

Diabetes, 

hypertension 

and obesity

1.10 0.51 2.40 0.794

2 Hypertension 1.13 1.05 1.22 <0.001

Diabetes 2.76 2.48 3.06 <0.001

Obesity 2.11 1.85 2.41 <0.001

Diabetes and 

hypertension

0.51 0.43 0.60 <0.001

3 Hypertension 1.13 1.05 1.22 <0.001

Diabetes 2.75 2.48 3.05 <0.001

Obesity 2.11 1.85 2.41 <0.001

Diabetes and 

hypertension

0.51 0.43 0.60 <0.001

Model 1: no fits.
Model 2: fitted for amount of simultaneous comorbidities.
Model 3: fitted for amount of simultaneous comorbidities and sex.
The bold values are statistically significant data.
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hijacks an endocrine pathway that plays a crucial role in regulating 
blood pressure, metabolism, and inflammation, which are aspects that 
accentuate cellular damage, hyperinflammation, and respiratory 
failure (28).

In obesity, this bidirectional relationship is no different, given the 
inflammatory load of the obese and their inefficient immune system 
in the face of COVID-19 infection. Scholars have stated that cytokine/
adipokine levels and inflammatory markers, such as C-reactive 
proteins, are associated with a higher body mass index in COVID-19-
positive patients, suggesting that the inflammatory background and 
immune dysregulation of obese patients may influence the immune 
response in this group (27).

Based on our final model, we  think it is mandatory for 
healthcare professionals to consider the amount and type of 
concurrent comorbidities of patients with ARDS. Therefore, for the 
purpose of risk stratification, it is crucial for the health care team to 
understand the parameters that predispose patients with an ARDS 
to a more severe course of the disease, especially to adopt more 
appropriate health protocols. In addition, the recognition of these 
parameters and associated factors are important tools to 
characterize the typical behavior of the disease, as well as to guide 
decision-making in the context of public health policies and 
epidemiological surveillance.

It then becomes clear that the medical team giving care to general 
patients should adhere to glycemic management and care with 
nutrition and dietetics focus for people with NCDs and ARDS. This is 
due to these being triggers for important clinical changes that predict 
mortality, even when we consider the variable comorbidities. The 
performance of health workers teams in the management of the above 
diseases should be  mandatory, given that there may be  hospital 
readmission of patients already considered to have recovered from 
COVID-19 (7). In this sense, the nursing management should include 
a therapeutic plan focused both on the primary as well as secondary 
prevention of diabetes and overweight, since many patients may 
be  people with undiagnosed diabetes mellitus or with poor 
nutritional management.

4.1. Limitations

Database-based studies present vulnerability points such as 
incomplete information or missing data. This was no different in our 
investigation. For example, we did not have access to the number of 
days until a death outcome was observed, or to an overview of the 
current stage of management of the patients’ comorbidities aiming at 
a possible study of the interaction between the status of said 
comorbidities and a death outcome. Furthermore, other important 
data such as vaccination status for COVID-19 and types of medication 
in use were not part of our database and could provide us with a more 
complete picture of these patients.

Therefore, we only investigated complete data sheets to avoid the 
use of missing data and thus ensure the best fit of the regression model. 
In addition, this was a sample of considerable size, which allowed for 
an in-depth study of the influence of the simultaneous presence of 
important comorbidities. This investigation may help to generalize 
and extrapolate findings on mortality rates from ARDS in clinical 
patients with simultaneous comorbidities, which, to date, lacks in 
evidence in the current health literature.

5. Conclusion

The mortality rates of clinical patients with comorbidities, hospitalised 
due to ARDS with a simultaneous presence of diabetes, hypertension, and 
obesity, do not differ from that of those who presented either of these 
comorbidities individually, or a combination of hypertension and 
diabetes. On the contrary, a greater impact on death outcomes was 
observed in patients with the isolated presence of diabetes or obesity.
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Developing a nomogram for 
predicting depression in diabetic 
patients after COVID-19 using 
machine learning
Haewon Byeon 1,2*
1 Department of Digital Anti-aging Healthcare (BK21), Graduate School of Inje University, Gimhae, 
Republic of Korea, 2 Department of Medical Big Data, College of AI Convergence, Inje University, 
Gimhae, Republic of Korea

Objective: This study identified major risk factors for depression in community 
diabetic patients using machine learning techniques and developed predictive 
models for predicting the high-risk group for depression in diabetic patients 
based on multiple risk factors.

Methods: This study analyzed 26,829 adults living in the community who were 
diagnosed with diabetes by a doctor. The prevalence of a depressive disorder was 
the dependent variable in this study. This study developed a model for predicting 
diabetic depression using multiple logistic regression, which corrected all 
confounding factors in order to identify the relationship (influence) of predictive 
factors for diabetic depression by entering the top nine variables with high 
importance, which were identified in CatBoost.

Results: The prevalence of depression was 22.4% (n = 6,001). This study calculated 
the importance of factors related to depression in diabetic patients living in South 
Korean community using CatBoost to find that the top nine variables with high 
importance were gender, smoking status, changes in drinking before and after 
the COVID-19 pandemic, changes in smoking before and after the COVID-19 
pandemic, subjective health, concern about economic loss due to the COVID-19 
pandemic, changes in sleeping hours due to the COVID-19 pandemic, economic 
activity, and the number of people you can ask for help in a disaster situation such 
as COVID-19 infection.

Conclusion: It is necessary to identify the high-risk group for diabetes and 
depression at an early stage, while considering multiple risk factors, and to seek 
a personalized psychological support system at the primary medical level, which 
can improve their mental health.

KEYWORDS

depression, COVID-19 pandemic, CatBoost, machine learning, diabetic patients

1. Introduction

Depression is the most common psychiatric disease in diabetic patients (1). Lustman et al. 
(1) conducted a large-scale epidemiological study on type 1 and type 2 diabetic patients and 
reported that the prevalence of depression in diabetic patients was approximately 30%, which 
was twice of that in non-diabetics. It could be a result of the physical, mental, and economic 
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burden caused by diabetes and diabetic complications. However, the 
causal relationship between diabetes and depression has not yet been 
clearly understood, although approximately 30% of melancholic 
patients without diabetes are at risk of developing diabetes and 
depression is an independent risk factor for diabetes (2). Three 
mechanisms are suggested to explain why diabetes and depression are 
frequently accompanied: (1) stress due to increased intensity and 
repetition of diabetes treatment, (2) increased burden of other 
comorbidities and complications, and decreased quality of life due to 
the prolonged duration of diabetes, and (3) diabetes and depression 
share a common metabolic abnormality and are linked (3).

Depression has critically adverse effects on the prognosis of 
several chronic diseases (4). It especially leads to poor glycemic 
control by inducing diabetic patients to neglect self-care and reducing 
treatment compliance (4). Moreover, it eventually increases mortality 
by increasing the risk of microvascular complications and 
cardiovascular diseases (4). Since it has been reported that only 25% 
of diabetic patients are diagnosed with depression by medical 
personnel (5), early screening for depression is a very important issue 
for the patient’s prognosis and diabetes management.

Depression and diabetes are two conditions that have been 
significantly impacted by the COVID-19 pandemic. Both conditions 
can be influenced by lifestyle factors such as diet, exercise, and social 
support, and the disruptions caused by the pandemic have made it 
more challenging for individuals to manage these conditions. 
Especially since depression is affected by complex interactions among 
various factors, such as lifestyle and social networks rather than a 
single factor (6), it is necessary to develop a predictive model that 
considers multiple risk factors simultaneously in order to efficiently 
predict groups vulnerable to depression. Nevertheless, only a few 
studies have investigated multiple risk factors for depression in 
diabetic patients.

Many recent previous studies (6–8) used a Bayesian nomogram as 
a way to identify a high risk of disease by considering multiple risk 
factors. A nomogram is a graph that visualizes a prediction function 
derived from a Bayesian model or a logit model in two dimensions so 
that healthcare workers can easily interpret the derived results, and it 
is widely used in the healthcare field, such as predicting the risk of 
cancer recurrence (9). In particular, since the logistic nomogram has 
the advantage of being able to predict the probability of occurrence 
due to multiple risk factors by adding up individual risk factors (6), it 
can be  effective for predicting depression in community diabetic 
patients after the COVID-19 pandemic. Therefore, this study 
identified major risk factors for depression in diabetic patients within 
the community using machine learning techniques and developed 
predictive models to identify the high-risk group for depression in 
diabetic patients based on multiple risk factors.

2. Materials and methods

2.1. Data source

It is an epidemiological study using the 2020 Community Health 
Survey data as secondary data. The Community Health Survey is 
conducted under the supervision of the Korea Disease Control and 
Prevention Agency to produce health statistics necessary for establishing 
a regional healthcare plan and implementing health projects. Please see 

Byeon (10) for a more detailed explanation of the data collection 
method and others of the Community Health Survey. Briefly explaining, 
the 2020 survey targeted adults (≥19 years old) based on resident 
registration in cities, counties, and districts nationwide and sampled 
using the systematic sampling method by extracting sampling points 
assigned to each region from the sampling frame created by linking the 
resident registration population data and housing data, which were 
complete enumeration data, and identifying the number of households 
selected as the sampling points. The survey was conducted from August 
16th to October 31st, 2020, and a trained researcher conducted a 1:1 
interview with the survey subject using a laptop computer (Computer 
Assisted Personal Interviewing, CAPI) to collect data. CAPI minimizes 
human errors and ensures accuracy through automated data collection 
and analysis. Additionally, CAPI enables fast and efficient data 
collection. The process of creating surveys and collecting data is 
automated, resulting in time and cost savings. This study analyzed 
26,829 adults living in the community who were diagnosed with 
diabetes by a doctor in the 2020 Community Health Survey.

2.2. Measurement and definition of 
variables

The prevalence of a depressive disorder was the dependent 
variable in this study. The Korean version of the Patient Health 
Questionnaire (PHQ-9) (11) was used to assess depressive disorder. 
PHQ-9 is a standardized depression screening test developed by 
Spitzer et al. (12) to diagnose mental health in primary health care 
centers. It is made up of nine items that correspond to the Diagnostic 
and Statistical Manual of Mental Disorders (DSM-IV) diagnostic 
criteria for major depressive disorders. The PHQ-9 is a self-report test 
with high sensitivity and specificity (13). Furthermore, because it can 
simply check the severity of a depressive disorder using only nine 
items, it has the advantage of being highly likely to be applied to actual 
screening in epidemiological investigations as well as the medical field 
(13). The PHQ-9 asks a subject how frequently he  or she has 
experienced anhedonia, depression, changes in sleep, fatigue, changes 
in appetite, guilt or worthlessness, decreased concentration, akathisia 
or feeling down, and suicidal thoughts in the previous 2 weeks. It is 
graded on a four-point scale: “never,” “for a few days,” “more than 
1 week,” and “almost every day.” The total score ranges from 0 to 27, 
with a higher score indicating more severe depression. The threshold 
of depression was defined as 10 points (depression ≥ 10 points out of 
27 points) based on the results of the previous studies (14, 15). Choi 
(16) reported that the sensitivity and specificity of PHQ-9 were 81.1 
and 89.9%, respectively. Also, the reliability of the tool (Cronbach’s α) 
was 0.89 in this study. Based on the findings of previous studies (14, 
15), the depression threshold defined as 10 points (depression ≥10 
points out of a possible 27 points).

The explanatory variables included changes in instant food 
consumption before and after the COVID-19 pandemic (increased, 
similar, or decreased; responses were categorized based on self-
report), changes in delivery food consumption before and after the 
COVID-19 pandemic (increased, similar, or decreased), changes in 
drinking before and after the COVID-19 pandemic (increased, 
similar, or decreased), changes in smoking before and after the 
COVID-19 pandemic (increased, similar, or decreased), changes in 
the use of public transportation before and after the COVID-19 
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pandemic (increased, similar, or decreased), satisfaction with life after 
the COVID-19 pandemic (satisfied or dissatisfied), age (40–49 years, 
50–59 years, or ≥ 60 years), gender (male or female), residing location 
(urban or rural), education level (elementary school graduation or 
below, middle school graduation, high school graduation, college 
graduation or above), mean monthly household income [<South 
Korean won (KRW) 1.00 million, KRW 1.00 million – 2.99 million, 
KRW 3.00 million – 4.99 million, or ≥KRW 5.00 million], smoking 
(current smoker, former smoker, or non-smoker), subjective health 
(good, moderate, or poor), fear of infection due to the COVID-19 
pandemic (yes, moderate, or no), fear of death due to the COVID-19 
pandemic (yes, moderate, or no), concern about reproach from 
people around you due to the expression of COVID-19 symptoms 
(e.g., coughing) (yes, moderate, or no), concern about infection of 
health-vulnerable people such as infants and older adults among 
family members due to the COVID-19 pandemic (yes, moderate, or 
no), concern about economic loss due to the COVID-19 pandemic 
(yes, moderate, or no), changes in the number of meetings with 
people around you  due to the COVID-19 pandemic (increased, 
similar, or decreased), changes in sleeping hours due to the 
COVID-19 pandemic (increased, similar, or decreased), marital 
status (living with a spouse or not living with a spouse), time of first 
diagnosed with diabetes (<60 years old or ≥60 years old), current 
non-drug treatment for diabetes (e.g., exercise) (yes or no), current 
diabetes drug (e.g., oral hypoglycemic drug) treatment (yes or no), 
current insulin injection treatment (yes or no), number of HbA1c 
tests in the past year (1 or fewer or 2 or more), diabetic eye disease 
complication test (fundus examination) in the past year (yes or no), 
diabetic renal complication test (microalbuminuria test) (yes or no), 
economic activity (yes or no), awareness of own blood glucose level 
(yes or no), awareness of own blood pressure (yes or no), number of 
days of conducting moderate-intensity (e.g., yoga and cycling) 
physical activity at least 30 min per day in the past week (none, 
1–2 days, or 3 days or more), number of days of walking at least 
30 min per day in the past week (none, 1–2 days, or 3 days or more), 
the number of people you can ask for help in a disaster situation such 
as COVID-19 infection (none, 1 ~ 2, or 3 or more), and diagnosis with 
hypertension (yes or no).

2.3. Development of a predictive model: 
categorical boosting

Categorical boosting (CatBoost) is a boosting algorithm that was 
developed in 2017 (17). It is designed to handle categorical variables 
efficiently and minimize model overfitting by using an ordered boosting 
technique. With CatBoost, categorical variables can be used without the 
need to convert them into numbers. The algorithm also automatically 
applies a suitable encoding technique for categorical variables, such as 
one-hot encoding, target encoding, mean encoding, and response 
encoding (17). Additionally, CatBoost optimizes hyperparameters with 
an internal algorithm instead of using special hyperparameter 
optimization, making it easier to use compared to other algorithms that 
require hyperparameter tuning. This study set the regularization 
lambda, the number of trees, the limit depth of individual trees to 6, and 
the learning rate of CatBoost to 3, 100, 6, and 0.300, respectively. This 
study calculated the importance of variables based on the mean decrease 
in impurity and selected the top 9 variables with high importance.

2.4. Development and verification of 
logistic monogram

When the number of risks included in the nomogram increases, 
the number of cases needed to calculate the predicted probability also 
increases. This study developed a model for predicting diabetic 
depression using multiple logistic regression, which corrected all 
confounding factors in order to identify the relationship (influence) 
of predictive factors for diabetic depression by entering the top nine 
variables with high importance, which were identified in CatBoost. 
This study used an adjusted odds ratio (aOR) and 95% confidence 
interval (CI) to identify the independent relationship between 
predictors and diabetic depression.

The developed model for predicting depression in individuals 
with diabetes presented a graph by establishing a nomogram, 
which allows healthcare workers to easily interpret the probability 
of high-risk groups based on multiple risk factors. The nomogram 
developed in this study consisted of four lines. Firstly, the point 
line was placed at the top of the nomogram to derive scores 
corresponding to the categories of risk factors, and the point line 
of the Bayesian nomogram was between 0 and 100 points. 
Secondly, there were as many risk factor lines as the number of 
risk factors. Thirdly, the total point line was the sum of each 
individual risk factor and was located at the bottom of the 
nomogram. Finally, the probability line was placed at the bottom 
of the nomogram to derive the probability of depression in 
individuals with diabetes.

The prediction performance of the finally developed diabetic 
depression prediction nomogram was evaluated using the 10-fold 
cross-validation method. This study used F1-score, the area under the 
curve (AUC), general accuracy, precision, recall, and calibration plot 
as evaluation indices to confirm the predictive performance.

3. Results

3.1. General characteristics according to 
the depression prevalence in diabetic 
patients after the COVID-19 pandemic

Table 1 shows the characteristics of the subjects according to the 
depression prevalence in diabetic patients in South Korea. Among 
26,829 diabetic patients, the prevalence of depression was 22.4% 
(n = 6,001). The results of chi-square test revealed that diabetic 
depression was significantly affected by changes in instant food 
consumption before and after the COVID-19 pandemic, changes in 
delivery food consumption before and after the COVID-19 
pandemic, changes in drinking before and after the COVID-19 
pandemic, changes in smoking before and after the COVID-19 
pandemic, satisfaction with life after the COVID-19 pandemic, 
gender, residing location, education level, mean monthly household 
income, smoking, subjective health, fear of infection due to the 
COVID-19 pandemic, fear of death due to the COVID-19 
pandemic, concern about reproach from people around you due to 
the expression of COVID-19 symptoms, concern about infection of 
health-vulnerable people due to the COVID-19 pandemic, concern 
about economic loss due to the COVID-19 pandemic, changes in 
sleeping hours due to the COVID-19 pandemic, marital status, time 
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TABLE 1 General characteristics according to depression prevalence in diabetic patients after the COVID-19 pandemic, n (%).

Variable Depression   p

Yes (n = 6,001) No (n = 20,828)
Age 0.262
40–49 years 471 (23.6) 1,527 (76.4)
50–59 years 1,050 (22.7) 3,571 (77.3)
≥60 years 4,448 (22.1) 15,656 (77.9)
Gender <0.001
Male 2,289 (17.3) 10,926 (82.7)
Female 3,712 (27.3) 9,902 (72.7)
Residing location <0.001
Urban 3,151 (24.8) 9,565 (75.2)
Rural 2,850 (20.2) 11,263 (79.8)
Education level <0.001
Elementary school graduation or below 2,722 (25.3) 8,020 (74.7)
Middle school graduation 1,077 (22.8) 3,647 (77.2)
High school graduation 1,427 (20.2) 5,721 (80.0)
College graduation or above 765 (18.3) 3,415 (81.7)
Mean monthly household income <0.001
<KRW 1.00 million 1,923 (29.7) 4,555 (70.3)
KRW 1.00 million – 2.99 million 1,938 (22.2) 6,811 (77.8)
KRW 3.00 million – 4.99 million 760 (19.3) 3,181 (80.7)
≥KRW 5.00 million 533 (17.3) 2,551 (82.7)
Smoking <0.001
Current smoker 961 (22.9) 3,238 (77.1)
Former smoker 1,177 (17.5) 5,538 (82.5)
Non-smoker 3,863 (24.3) 12,049 (75.7)
Subjective health <0.001
Good 735 (10.9) 6,009 (89.1)
Moderate 2,124 (18.3) 9,482 (81.7)
Poor 3,141 (37.1) 5,336 (62.9)
Changes in instant food consumption before and after the COVID-19 pandemic <0.001
Increased 332 (29.6) 788 (70.4)
Similar 1,935 (21.0) 7,291 (79.0)
Decreased 571 (24.4) 1,768 (75.6)
Changes in delivery food consumption before and after the COVID-19 pandemic <0.001
Increased 484 (25.9) 1,383 (74.1)
Similar 1,188 (20.5) 4,596 (79.5)
Decreased 419 (24.2) 1,309 (75.8)
Changes in drinking before and after the COVID-19 pandemic <0.001
Increased 148 (31.2) 327 (68.8)
Similar 1,100 (19.0) 4,700 (81.0)
Decreased 950 (20.4) 3,705 (79.6)
Changes in smoking before and after the COVID-19 pandemic <0.001
Increased 149 (35.6) 269 (64.4)
Similar 804 (20.1) 3,194 (79.9)
Decreased 307 (20.9) 1,161 (79.1)
Changes in the use of public transportation before and after the COVID-19 pandemic 0.155
Increased 47 (30.7) 106 (69.3)
Similar 1,011 (24.4) 3,126 (75.6)
Decreased 2,484 (25.3) 7,336 (74.7)
Satisfaction with life after the COVID-19 pandemic <0.001
Dissatisfied 1,314 (27.2) 3,523 (72.8)
Satisfied 4,630 (21.3) 17,103 (78.7)
Fear of infection due to the COVID-19 pandemic <0.001
Yes 4,653 (23.5) 15,166 (76.5)
Moderate 810 (19.6) 3,323 (80.4)
No 529 (18.5) 2,333 (81.5)
Fear of death due to the COVID-19 pandemic <0.001
Yes 3,660 (24.2) 11,459 (75.8)
Moderate 1,051 (20.8) 3,994 (79.2)
No 1,279 (19.3) 5,352 (80.7)

(Continued)
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TABLE 1 (Continued)

Variable Depression   p

Yes (n = 6,001) No (n = 20,828)
Concern about reproach from people around you due to the expression of COVID-19 symptoms <0.001
Yes 4,814 (22.9) 16,229 (77.1)
Moderate 617 (21.0) 2,318 (79.0)
No 553 (19.7) 2,250 (80.3)
Concern about infection of health-vulnerable people such as infants and older adults among family 

members due to the COVID-19 pandemic

<0.001

Yes 5,065 (23.0) 16,954 (77.0)
Moderate 326 (18.7) 1,416 (81.3)
No 218 (18.0) 993 (82.0)
Concern about economic loss due to the COVID-19 pandemic <0.001
Yes 5,083 (23.1) 16,940 (76.9)
Moderate 483 (20.1) 1,918 (79.9)
No 423 (17.7) 1,964 (82.3)
Changes in the number of meetings with people around you due to the COVID-19 pandemic 0.578
Increased 23 (25.8) 66 (74.2)
Similar 797 (21.4) 2,931 (78.6)
Decreased 4,545 (21.7) 16,419 (78.3)
Changes in sleeping hours due to the COVID-19 pandemic <0.001
Increased 626 (26.3) 1,753 (73.7)
Similar 4,598 (20.6) 17,754 (79.4)
Decreased 776 (37.0) 1,320 (63.0)
Marital status <0.001
Living with a spouse 3,449 (19.2) 14,539 (80.8)
Not living with a spouse 2,552 (28.9) 6,289 (71.1)
Time of first diagnosis with diabetes 0.010
<60 years old 3,394 (22.9) 11,398 (77.1)
≥60 years old 2,588 (21.6) 9,375 (78.4)
Current non-drug treatment for diabetes (e.g., exercise) 0.241
Yes 2,160 (22.0) 7,671 (78.0)
No 3,839 (22.6) 13,155(77.4)
Current diabetes drug (e.g., oral hypoglycemic drug) treatment 0.239
Yes 5,468 (22.3) 19,080 (77.7)
No 531 (23.4) 1,743 (76.6)
Current insulin injection treatment <0.001
Yes 596 (30.4) 1,367 (69.6)
No 5,400 (21.7) 19,457 (78.3)
Number of HbA1c tests in the past year 0.078
1 or less 2,768 (22.8) 9,357 (77.2)
2 or more 3,195 (21.9) 11,376 (78.1)
Diabetic eye disease complication test (fundus examination) in the past year <0.001
Yes 2,614 (23.7) 8,425 (76.3)
No 3,358 (21.4) 12,343 (78.6)
Diabetic renal complication test (microalbuminuria test) 0.040
Yes 2,929 (22.9) 9,880 (77.1)
No 3,017 (21.8) 10,812 (78.2)
Economic activity <0.001
Yes 2,159 (16.6) 10,844 (83.4)
No 3,841 (27.8) 9,977 (72.2)
Awareness of own blood glucose level <0.001
Yes 4,444 (21.6) 16,140 (78.4)
No 1,539 (24.8) 4,658 (75.2)
Awareness of own blood pressure <0.001
Yes 4,260 (21.4) 15,607 (78.6)
No 1,723 (24.9) 5,186 (75.1)
Number of days of conducting moderate-intensity (e.g., yoga and cycling) physical activity at least 

30 min per day in the past week

<0.001

None 4,679 (23.4) 15,276 (76.6)
1–2 days 381 (20.6) 1,465 (79.4)

(Continued)
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of first diagnosed with diabetes, current insulin injection treatment, 
diabetic eye disease complication test in the past year, diabetic renal 
complication test, economic activity, awareness of own blood 
glucose level, awareness of own blood pressure, number of days of 
conducting moderate-intensity physical activity at least 30 min per 
day in the past week, number of days of walking at least 30 min per 
day in the past week, the number of people you can ask for help in 
a disaster situation such as COVID-19 infection, and diagnosis with 
hypertension (p < 0.05).

3.2. Predictors of depression in diabetic 
patients living in South Korean community

This study calculated the importance of factors related to 
depression in diabetic patients living in South Korean community 
using CatBoost to find that the top nine variables with high 
importance were gender, smoking status, changes in drinking before 
and after the COVID-19 pandemic, changes in smoking before and 
after the COVID-19 pandemic, subjective health, concern about 
economic loss due to the COVID-19 pandemic, changes in sleeping 
hours due to the COVID-19 pandemic, economic activity, and the 
number of people you can ask for help in a disaster situation such as 
COVID-19 infection.

Table 2 presents the results of logistic regression analysis for 
predicting depression in diabetic patients living in the South 
Korean community the top nine variables with high impact on 
model output in CatBoost. The analysis results of the adjusted 
model for predicting depression in South Korean diabetic patients 
showed that female (AOR = 1.78, 95% CI = 1.68, 1.89), current 
smoker (AOR = 1.39, 95% CI = 1.26, 1.53), concern about economic 
loss due to the COVID-19 pandemic (moderate: AOR = 1.19; yes: 
AOR = 1.39), changes in sleeping hours due to the COVID-19 
pandemic (similar: AOR = 0.60; decreased: AOR = 1.38), changes in 
drinking before and after the COVID-19 pandemic (similar: 
AOR = 1.76; increased: AOR = 1.93), changes in smoking before and 
after the COVID-19 pandemic (similar: AOR = 2.09; increased: 
AOR = 2.20), subjective health (moderate: AOR = 2.62; poor: 
AOR = 4.81), and the number of people you can ask for help in a 
disaster situation such as COVID-19 infection (1–2 persons: 
AOR = 1.27; none: AOR = 1.74) were independent factors of 
depression in diabetic patients (p < 0.05).

3.3. Development and validation of 
depression predictive nomogram for 
diabetic patients living in the South Korean 
community

Figure 1 presents the depression predictive nomogram for diabetic 
patients living in the South Korean community. The nomograph 
(Figure 1) analyzed the high-risk group for depression in diabetic 
patients and predicted that female diabetic patients who had fewer 
sleeping hours after the COVID-19 pandemic, increased the frequency 
of smoking and drinking increased than before the pandemic, 
concerned about economic loss due to the COVID-19 pandemic, had 
no one to ask for help, and perceived subjective health as poor had an 
88% predictive possibility of depression.

This study examined the predictive performance of the developed 
depression predictive nomogram for diabetic patients living in South 
Korea using calibration plot (Figure 2), AUC, and accuracy (Figure 3). 
This study compared the prediction probability and observation 
probability of the diabetic patient group with depression with those of 
the diabetic patient group without depression using calibration plot 
and chi-square test (Figure  2). The prediction probability and 
observation probability were not significantly different (p < 0.05). The 
results of 10-fold cross validation showed that AUC, general accuracy, 
precision, recall, and F1-score were 0.704, 0.780, 0.735, 0.780, and 
0.712, respectively.

4. Discussion

This study identified the prevalence of depression among diabetic 
patients living in South Korean local communities using national 
survey data conducted after the COVID-19 pandemic and found that 
22.4% of the subjects were diabetic patients with depression. The 
prevalence of depression among diabetic patients living in South 
Korean local communities was approximately twice the prevalence of 
depression among healthy people (12%) during the period (18). 
Although it cannot be directly compared with the results of this study, 
the meta-analysis of Anderson et  al. (19), conducted before the 
COVID-19 pandemic, reported that depression in diabetic patients 
(28.5%) was 1.5 times higher than that in the general population 
(16.2%). Even though diabetic patients in local communities are at 

TABLE 1 (Continued)

Variable Depression   p

Yes (n = 6,001) No (n = 20,828)
3 days or more 937 (18.7) 4,068 (81.3)
Number of days of walking at least 30 min per day in the past week <0.001
None 1,928 (25.8) 5,553 (74.2)
1–2 days 670 (24.5) 2,069 (75.5)
3 days or more 3,402 (20.5) 13,198 (79.5)
Number of people you can ask for help in a disaster situation such as COVID-19 infection <0.001
None 1,724 (27.6) 4,517 (72.4)
1–2 people 2,637 (23.0) 8,817 (77.0)
3 people or more 1,633 (18.0) 7,453 (82.0)
Diagnosis with hypertension <0.001
Yes 3,910 (23.6) 12,648 (76.4)
No 2,090 (20.4) 8,177 (79.6)
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high risk of depression, not enough active attention has been given to 
their emotional aspects. It has been reported that when depression 
accompanies diabetes, medical costs increase because glycemic 
control deteriorates, the incidence of chronic complications increases, 
and mortality rises (20–22). Furthermore, if a diabetic patient cannot 
properly perform health behaviors due to depression, it can adversely 
affect the long-term course of diabetes, such as the occurrence of 
chronic complications, as well as glycemic control (23). Consequently, 
in order to efficiently screen depression in diabetic patients at an early 
stage, studies need to identify the risk factors for depression.

The results of this study confirmed that gender, subjective 
health, increased health risk behaviors such as drinking and 

smoking, decreased sleeping hours, and the number of people 
whom you could seek help in a disaster situation such as COVID-19 
infection were independent risk factors of depression. These results 
agreed with the results of previous studies (24–27). Female sex, 
marital status, childhood adversity, and social deprivation are 
general population risk factors for depression that also apply to 
people with diabetes (28).

Gender is known to be  a major factor influencing diabetic 
patients. Adriaanse et al. (24) analyzed depressive symptoms in type 
2 diabetic patients and reported that the prevalence of depression was 
significantly higher in women (15%) than in men (9.1%), which 
concurred with the results of this study. Moreover, a decrease in 

TABLE 2 Predictors of depression in diabetic patients living in the South Korean community: AOR and 95% CI.

Variables AOR 95%CI p

Changes in drinking before and after the COVID-19 pandemic

Increased 1.93 1.57, 2.37 <0.001

Similar 1.76 1.43, 2.17 <0.001

Decreased (ref) 1 1

Changes in smoking before and after the COVID-19 pandemic

Increased 2.20 1.77, 2.72 <0.001

Similar 2.09 1.65, 2.65 <0.001

Decreased (ref) 1 1

Gender

Male (ref) 1 1

Female 1.78 1.68, 1.89 <0.001

Smoking

Current smoker 1.39 1.26, 1.53 <0.001

Former smoker 0.92 0.85, 1.00 0.060

Non-smoker (ref) 1 1

Subjective health

Good (ref) 1 1

Moderate 2.62 2.46, 2.80 <0.001

Poor 4.81 4.40, 5.25 <0.001

Concern about economic loss due to the COVID-19 pandemic

Yes 1.39 1.24, 1.55 0.001

Moderate 1.19 1.07, 1.32 <0.001

No (ref) 1 1

Changes in sleeping hours due to the COVID-19 pandemic

Increased (ref) 1 1

Similar 0.60 0.53, 0.69 <0.001

Decreased 1.38 1.25, 1.51 <0.001

Economic activity

Yes (ref) 1 1

No 1.93 1.82, 2.05 <0.001

Number of people you can ask for help in a disaster situation such as COVID-19 infection

None 1.74 1.61, 1.88 0.001

1–2 people 1.27 1.18, 1.36 0.001

3 people or more (ref) 1 1

55

https://doi.org/10.3389/fpubh.2023.1150818
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Byeon 10.3389/fpubh.2023.1150818

Frontiers in Public Health 08 frontiersin.org

sleeping hours has been reported as a significant predictor of diabetic 
depression. Ghosh et al. (25) showed that a quarter of diabetic patients 
with depression experienced a decrease in sleeping hours. Particularly, 
the number of people subjects could ask for help in a disaster situation 
was a key factor related to diabetic depression. Social support is 

known to be  another major risk factor for diabetic depression. 
Pibernik-Okanovic (26) found that diabetic patients who felt a lack of 
social support had a higher risk of developing depression, which 
supported the results of this study. Therefore, it is necessary to develop 
a psychological support program for diabetic patients in the 

FIGURE 2

Predictive performance of the depression predictive nomogram for South Korean diabetic patients: calibration plot.

FIGURE 1

Depression predictive nomogram for South Korean diabetic patients; (1) Subjective health: 1, good; 2, moderate; or 3, poor; (2) changes in sleeping 
hours after the COVID-19 pandemic: 1, increased; 2, similar; or 3, decreased; (3) Gender: 1, male, or 2, female; (4) smoking status: 1, current smoker; 2, 
former smoker; or 3, non-smoker; (5) changes in drinking after the COVID-19 pandemic: 1, increased; 2, similar; 3, decreased; (6) economic activity: 1, 
yes; or 2, no; (7) changes in smoking after the COVID-19 pandemic: 1, increased; 2, similar; or 3, decreased; (8) people whom you can ask for help: 0, 0 
people; 1, 1–2 people; or 2, 3 or more people; and (9) concern about economic loss due to the COVID-19 pandemic: 1, yes; 2, moderate; or 3, no.
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community to increase their ability to cope with depression caused by 
social distancing in the era of COVID-19 and limited social contact 
and build a system that can continuously provide medical and social 
support for diabetic patients without sufficient social support to 
prevent depression in diabetic patients.

In this study, the number of diabetic complication tests in the past 
year, awareness of blood glucose levels, and diabetic treatment methods 
(e.g., oral hypoglycemic drug and insulin injection treatment) were not 
related to depression in diabetic patients, which did not agree with the 
results of previous studies (1, 29, 30). Numerous studies (1, 29) have 
proven the relationship between glycemic control and depression in 
diabetic patients. When glycemic control was poorer, depression 
symptoms were more severe (29). It is backed by the results that a higher 
level of glycated hemoglobin decreases the effects of antidepressants (1). 
It is speculated that the awareness of blood glucose levels or the number 
of diabetes complication tests based on a survey alone was not enough 
to directly identify the blood glucose management level of diabetic 
patients. Therefore, although previous studies (1, 29) reported that 
managing blood glucose is related to the depression of diabetic patients, 
the relationship was not significant in this study.

The mechanism underlying the high risk of depression in diabetic 
patients has not been clearly understood. There are some possible 
explanations: depression may induce insulin resistance by stimulating 
the secretion of insulin-antagonizing hormones (e.g., catecholamines, 
glucocorticoids, growth hormones, and glucagon) and inflammatory 
cytokines, or it can contribute to the development of diabetes by 
causing dysfunction of pancreatic beta cells. Moreover, diabetes may 
cause depression in association with inadequate glycemic control, the 
development of chronic complications due to diabetes, and a decline 
in socioeconomic status. However, since depression is caused by 

multiple factors rather than a single factor, future studies need to 
identify the relationship between blood glucose management and 
depression using clinical test data such as HbA1c level in addition to 
sociodemographic and psychological characteristics.

Another finding of this study was that the results of this study 
showed that “female diabetic patients who had fewer sleeping hours 
after the COVID-19 pandemic, increased the frequency of smoking 
and drinking increased than before the pandemic, concerned about 
economic loss due to the COVID-19 pandemic, had no one to ask for 
help, and perceived subjective health as poor had an 88% predictive 
possibility of depression,” which was high. Since multiple risk factors 
for diabetic depression have not been clearly identified, it is needed to 
carry out future studies on multiple risk factors for diabetic depression 
based on large-scale cohort data. It is also necessary to continuously 
monitor depression in terms of primary care for diabetic patients with 
these multiple risk factors.

In the United  States, the Centers for Disease Control and 
Prevention regularly conducts regular monitoring of comorbidities in 
diabetic patients and runs a chronic disease prevention program (31). 
On the other hand, South Korea lacks a systematic monitoring system 
for diabetic depression management, and previous studies mainly 
examined multi-center registry data for diabetic depression (32, 33). 
Particularly, in South Korea, mental health management and 
education such as depression for diabetic patients are mainly carried 
out in general hospitals (32). Considering the fact that general 
hospitals are playing a critical role in the emergency medical response 
system in a disaster situation such as the COVID-19 pandemic (34), 
it will be required to establish a systematic depression examination 
and monitoring system centered on primary care in the future for the 
sustainability mental health management of diabetic patients.

FIGURE 3

Predictive performance of the depression predictive nomogram for South Korean diabetic patients: accuracy.
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The strength of this study was that it identified a high-risk group for 
depression in diabetic patients using national survey data conducted 
after the COVID-19 pandemic and provided baseline data for 
preventing depression in diabetic patients. This study had several 
limitations. First, since this study analyzed secondary data by analyzing 
epidemiological data (survey data), clinical indicators such as insulin-
antagonizing hormones and genes related to depression were not 
included. Second, the in-person survey may underestimate health risk 
behaviors such as smoking and drinking. Therefore, future studies need 
to reduce the possibility of recall bias including medical records in order 
to identify factors related to diabetic depression. Third, the Community 
Health Survey, the source data, did not survey the duration of diabetes. 
Future studies need to investigate the duration of diabetes and duration 
of diabetic complications additionally to develop a diabetes depression 
predictive model with higher predictive performance. Fourth, since this 
study was a cross-sectional study, even if risk factors for diabetic 
depression were identified in this study, it could not be interpreted as a 
causal relationship based on temporal precedence.

5. Conclusion

It is necessary to identify the high-risk groups for diabetes and 
depression at an early stage while considering multiple risk factors and 
provide a tailored psychological support system at the primary 
medical level to improve their mental health. Additionally, it is 
important to establish a system that can systematically monitor the 
high-risk groups for diabetes and depression, even in long-term 
disaster situations (e.g., pandemic), at the community level. 
Furthermore, additional longitudinal studies are needed to confirm 
the causal relationship between factors related to diabetic depression 
identified in this study.
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rise of diabetic ketoacidosis
during COVID-19 pandemic:
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and review of literature
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Wissem Hachfi2,5, Molka Chadli Chaieb1,2 and Koussay Ach1,2

1Department of Endocrinology, University Hospital of Farhat Hached, Sousse, Tunisia, 2University of
Sousse, Faculty of Medicine of Sousse, Sousse, Tunisia, 3Laboratory of Exercice Physiology and
Pathophysiology, Tunis, Tunisia, 4Department of Community Medicine, University Hospital of Farhat
Hached, Sousse, Tunisia, 5Department of Infectious Diseases, University Hospital of Farhat Hached,
Sousse, Tunisia
Introduction: Reports around the world indicate that COVID-19 pandemicmay be

contributing to an increase in the incidence of new onset diabetic ketoacidosis

(DKA). This has yet to be studied in Africa.We aimed to compare the incidence trend

of new onset DKA before and during the COVID-19 pandemic, with a focus on the

type of diabetes mellitus (DM).Materials and methodsThis was a cross sectional

analytical study, over a 4-year period, between March 2018 until February 2022

conducted in the referral center: diabetology department of university hospital

Farhat Hached Sousse, Tunisia. The study population included patients

hospitalized for new onset DKA divided in two groups: G1: before COVID-19

pandemic and G2: during COVID-19 pandemic. Patients younger than 14, new

onset DM not presenting with DKA, other types of diabetes (monogenic,

secondary or pancreatic diabetes) were not included. A statistical analysis of

the monthly incidence trend was conducted using the Jointpoint software

providing the average monthly percentage of change (AMPC).

Results: a total of 340 patients were included:137 registered before the pandemic

and 203 during the pandemic, representing a 48.17% increase. The mean monthly

incidence of new onset DKA during COVID-19 pandemic was statistically higher

than that before COVID-19 pandemic (8.42 ± 4.87 vs 5.75 ± 4.29 DKA per month)

(p=0.049). The temporal trend of DKA during the 4-year study showed a significant

upward trend with a change in AMPC of +0.2% (p=0.037). The incidence of type 1

diabetes (T1D) and type 2 diabetes (T2D) increased by 50% and 44% respectively

during COVID-19 pandemic. Anti-glutamic acid decarboxylase (anti-GAD)

antibodies’ titers significantly increased in G2 compared with G1 (median of 330

[Q1–Q3]=[58.5–1795]vs 92.5[Q1–Q3]=[22.5–1074] respectively)(p=0.021).

Discussion: The incidence trend of DKA showed an increase during the COVID-

19 pandemic along with an increase of T1D and T2D implying that the pandemic

may have been the underlying factor of this upward trend.
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Introduction

The COVID-19 pandemic has had a profound impact on global

health systems, overwhelming hospitals and healthcare workers

with an unprecedented influx of patients (1). Africa was not

spared from the rapid propagation of the disease adding to the

burden of a precarious health system already plagued by endemic

diseases (2). Reports from various regions of the world have

suggested a possible association between COVID-19 and the

development of new-onset diabetic ketoacidosis (DKA) (3).

DKA is a potentially life-threatening complication of diabetes

mellitus (DM) affecting both type 1 (T1D) and type 2 diabetes

(T2D) (4). Its incidence has been increasing over the last few

decades, which has been attributed to a combination of factors,

mainly the overall rising prevalence of DM (5). Furthermore, recent

studies have suggested an additional increase in DKA during the

COVID-19 pandemic, raising speculations about a potential

involvement of COVID-19, whether it is directly or indirectly, in

this upward trend (6–8).

On the one hand, the pandemic may have caused delays in

diagnosis for fear of contracting the virus resulting in higher DKA

cases (9). On the other hand, SARS-CoV-2 may have caused direct

damage to pancreatic cells (10), triggered auto-immunity (11) or

promoted insulin resistance (12). This underscores the relevance of

investigating COVID-19’s role in new onset DKA.

Our study sought to compare epidemiological aspects of new

onset DKA including incidence of DKA specifically focusing on

T1D and T2D, before and during COVID-19 pandemic within the

context of an African country, aiming to provide valuable insights

into the complex interplay between COVID-19 and new onset DM.
Materials and methods

Study design and setting

We conducted a cross-sectional descriptive and analytical study

carried out in the Diabetology & Endocrinology department of

Farhat Hached University Hospital of Sousse.
Inclusion criteria

It has included all the patients who had been hospitalized for

new onset DKA over a period of 4 years between the year 2018 and

2022, that is before and during COVID-19 pandemic.
Abbreviations: COVID-19, coronavirus disease 2019; DKA, diabetic

ketoacidosis; DM, diabetes mellitus; AMPC, average monthly change; T1D,

type 1 diabetes; T2D, type 2 diabetes; anti-GAD, anti-glutamic acid

decarboxylase; ELISA, Enzyme-Linked Immunosorbent Assay; ONMNE,

Observatoire national des maladies nouvelles et émergentes; MPC, monthly

percent change, MPC: monthly percent change; anti-IA2, anti-islet cell antigen;

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ACE2,

angiotensin-converting enzyme, continuous glucose monitoring (CGM).

Frontiers in Endocrinology 0261
Since the second of March 2020 was the mark of patient zero in

Tunisia declaring the start of the pandemic in Tunisia (13), the

population was automatically divided in two groups:
- Group1 (G1): patients hospitalized before COVID-19

pandemic since the first of March of 2018 until first of

March 2020.

- Group2 (G2): patients hospitalized during COVID-19

pandemic since second of March 2020 until 28th

February 2022.
Non-inclusion criteria

Patients younger than 16 years old, patients with known DM,

patients with new onset DM not presenting with DKA were not

included in this study.
Exclusion criteria

All other types of diabetes (high presumption of monogenic

diabetes, gestational, secondary or pancreatic diabetes) were

excluded from this study.

We note that our study did not include genetic testing to

specifically exclude monogenic diabetes. Instead, we excluded

patients with a strong likelihood of monogenic diabetes based on

clinical assessments and criteria (14).
Data collection

Data collection was conducted retrospectively by filling in a

standardized information sheet collected by consulting medical

records coded as “new onset DKA” for patients who were

hospitalized two years before and during the COVID-19 pandemic.
Variables

Epidemiological data was compared between the two groups

including incidence, the date of admission, month and season of

discovery, duration of polyuria and polydipsia.

Islet antibodies and c-peptide were measured using the enzyme-

linked immunosorbent assay (ELISA) in all patients at admission and

their respective titers were compared between the two groups. In light

of clinical and biological data such as islet antibodies and C-peptide,

the new onset DMwas eventually classified as T1D or T2D. The types

of DM were compared between the two groups. Precipitating factors

were compared between the two groups. It can include (15):
1-cardiovascular factors: myocardial infarction, stroke.

2-infections (urinary, pulmonary, COVID-19, otolaryngological,

cutaneous, profound).

3-drugs that affect carbohydrate metabolism, such as

corticosteroids.
frontiersin.org
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4-psychological factors.

5-Excessive food intake.
The incidence of new onset DKA during COVID-19 pandemic

was analyzed according to the pandemic waves which were specified

according to National Observatory of New and Emerging Diseases

(ONMNE) (16) as follows
1-First wave: from 17/08/2020 to 13/12/2020.

2-Second wave: from 14/12/2020 to 21/03/2021.

3-Third wave: 22/03/2021 to 16/05/2021.

4-Fourth wave: 17/05/2021 to 14/11/2021.

5-The fifth wave: 15/11/2021 to 28/02/2022.
The average monthly admission of DKA during COVID-19

according to the different waves were calculated and compared.

Time for DKA resolution expressed in hours, cumulative

insulin dose as well as mean weight-based insulin at discharge

were compared before and during COVID-19 pandemic.
Statistical analysis

The analysis of the incidence trend variations of DKA was

performed using the JOINPOINT Version 116 4.5.0.1 software.

Monthly data was used, and the software provided the monthly

percentage of change (MPC and AMPC: Monthly Percent Change

and Average Monthly Percent Change) with a 95% confidence

interval. Data were analyzed using SPSS 26.0 software. Average

monthly admission of DKA during the different pandemic waves

were compared using ANOVA test. Quantitative variables were

presented by means and standard deviation (SD) or median and

quartiles [Q1–Q3] according to the normality of the distribution

which was tested using Kolmogorov-Smirnov test. Our study

respected all standards in ethics in research. The anonymity and

data confidentiality of the patients’ data were respected. We

obtained approval from the Ethical Committee of University of

Medicine of Sousse for our study, with the assigned number

4935/2023.
Results

A total of 340 patients were included. G1 counted 137 patients

while G2 counted 203 patients.

The number of DKA cases witnessed an increase of 48.17% over

a similar time interval.

The mean monthly incidence of DKA before COVID-19

pandemic (G1) was statistically different from that observed

during COVID-19 pandemic (G2) with a mean of 5.75 ± 4.29

DKA per month in G1 vs 8.42 ± 4.87 DKA per month (p=0.049).

The study of the temporal trend of hospital cases of DKA

between March 2018 and February 2022 showed a significant

upward trend with a change in the average monthly percent

change (AMPC) of +0.2%, with p=0.037 (Figure 1, Table 1).
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The incidence of DKA according to pandemic waves during

COVID-19 pandemic shows a decrease during the third wave with a

re-increase during the fourth and fifth waves (Figure 2).

The average monthly admissions during each pandemic wave were

as follows: 9.9 DKA/month for the first wave, 17 DKA/month for the

second wave, 2.75 DKA/month for the third wave, 6 DKA/month for

the fourth wave, and 12.5 DKA/month for the fifth wave. DKA

admissions decreased during the third wave and increased during the

fifth wave but the difference was not statistically significant with p=0.09.

The incidence of T1D increased by 50% during COVID-19

pandemic as 54 (38.42%) out of 137 patients were T1D in G1 vs 81

(40.30%) out of 201 patients inG2while the incidence of T2D increased

by 44% as 83 (60.58%) out of 137 patients were T2D in G1 vs 120

(59.70%)outof201patients inG2.However, thedistributionofT1Dand

T2D frequencies was comparable between the two groups

(p=0.871) (Figure 3).

Anti-glutamic acid decarboxylase (Anti-GAD) antibodies titers

significantly increased during the pandemic period compared with

the pre-pandemic period with a median value of 92.5 [Q1–Q3]=

[22.5–1074] in G1 vs 330 [Q1–Q3]=[58.5–1795] in G2

(p=0.021) (Figure 4).

Anti-islet cell antigen (Anti-IA2) antibodies titers significantly

increased as well during the pandemic period compared with the

pre-pandemic period with a median value of 0 [Q1–Q3]=[0–

104.75] in G1 vs 93 [Q1–Q3]=[0–3571] in G2 (p=0.009) (Figure 4).

Themain precipitating factors of DKAbefore and duringCOVID-

19 pandemic were comparable between the two groups: infections

(29.10% in G1 vs 28.64% in G2), excessive food intake (2.24% in G1 vs

6.53% in G2), psychological stress (22.39% in G1 vs 31.16% in G2), no

precipitating factor was found in 40.3% vs 31.66% in G2.

However, using subgroup analysis, the distribution of DKA

precipitating factors in T2D differed significantly between the two

groups (p=0.003) with a notable increase of stress (29.7% in G2 vs

17.1% inG1, AR=2) as well as excessive food intake notably hypertonic

drinks (10.2% in G2 vs 3.7% in G1) at the expense of corticosteroid use

as its accountability in precipitating DKA significantly decreased in G2

(2.5% in G2 vs 9.8% in G1, AR=-2.2) (Figure 5).

Even though the overall accountability of infectious causes did

not differ between the two groups (36.4% in G2 vs 30.5% in G1,

AR=0.9), infection sites had a significantly different distribution

between the two groups (p<10-3) with COVID-19 becoming the

first infectious precipitating factor of DKA in G2 (AR=4.2).

Time for DKA resolution was considerably higher in G2 14 ±

6.2 hours in G1 vs 16.5 ± 1.4 hours in G2, p=0.022

We found no significant difference in cumulative insulin dose

required for DKA resolution in G1 78 ± 6.5 UI vs 82.5 ± 77 UI in

G2, p=0.142.

Insulin dose at discharge was also comparable between the two

groups (0.40 [0.29-047] UI/Kg/day in G1 vs 0.41 [0.28-0.50] in

G2, p=0.895)
Discussion

Since 2020, the COVID-19 pandemic has changed the world as

we know it. It has led to changes in epidemiological and clinical
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presentations of various comorbidities such as DM and has been

incriminated in the increasing trend of DKA (17).

The study of the temporal trend of hospital cases of DKA

between March 2018 and February 2022 showed a significant

upward trend.

This finding has important implications (Table 2). First, the

incidence of DKA admitted in our department has been increasing

well before COVID-19 pandemic.

This has long been corroborated all over the world namely in a

cohort study by Zhong et al. where they studied the trends in

hospital admission for DKA in adults in England between 1998-

2013 and found a significant rise of DKA among adults with T1D as

well as T2D (22). This has been attributed to the increase of the

overall incidence of T2D, increased prevalence of infection and

ketosis-prone T2D in minority groups (22).
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The second key finding is that the incidence of DKA showed a

sustained increase during the COVID-19 pandemic, showing a

notable rise of almost 50% compared to a similar period prior to

the pandemic. Our study also identified a statistically significant

difference in the mean monthly incidence of DKA between the two

periods, implying that the pandemic may have been the underlying

factor contributing to this upward trend.

This observation is consistent with the findings of other studies

(9, 18–21), which have reported a rising trend of DKA cases during

COVID-19 pandemic. Indeed, an international multicenter study

based on data from 13 national diabetes registries by Birkebaek et al.

found a significant increase in the proportion of presentations for

DKA, with a rise of 39.4% in 2020 and 38.9% in 2021. This increase

exceeded the predicted year-on-year rise in prevalence, which was

predicted to be 32.5% for 2020 and 33.0% for 2021 (6).
TABLE 1 Monthly percent changes of new DKA cases.

Monthly Percent Change (MPC)

Segment Lower Endpoint Upper Endpoint MPC Lower CI Upper CI Test Statistic (t) Prob > ǀtǀ

1 01/2018 2022 0.2* 0.0 0.3 2.1 0.037

*Indicates that the monthly Percent Change (MPC) is significantly different from zero at the alpha =0.05 level.

Average Monthly Percent (AMPC)

Range Lower Endpoint Upper Endpoint AMPC Lower CI Upper CI Test Statistic P-Value~

2018-2022 01/2018 2022 0.2* 0.0 0.3 2.1 <0.1

*Indicates that the AMPC is significantly different from zero at the alpha=005 level.
~ If the AMPC is within one segment, the t-distribution is used. Otherwise, the normal (z) distribution is used.
fr
FIGURE 1

Temporal trend of hospital DKA between March 2018 and February 2022: it shows a significant upward trend with a change in the average monthly
percent change (AMPC) of +0.2%, with p=0.037.
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Many reasons could be behind this increase. The most apparent

could be the delayed diagnosis of new onset DM due to the

reluctance of individuals to seek medical attention for symptoms

such as polyuria and polydipsia due to the fear of contracting the

virus, leading to missed opportunities for earlier diagnosis.

However, we found no significant difference in duration of

polyuria and polydipsia preceding DKA in both study groups.

This finding challenges the notion that delayed diagnosis has a

significant influence on the increased incidence of DKA during the

COVID-19 pandemic, arguably implying instead a direct effect of

SARS-CoV-2 in the increased incidence of DKA during

the pandemic.

Another possible reason is that SARS-CoV-2 may have caused

direct damage to pancreatic beta cells, which could explain the

observed increase in insulin-dependent diabetes and consequently

in DKA cases, as hypothesized by Misra et al. (23).

The incidence of new onset DKA during COVID-19 pandemic

according to pandemic waves shows a nadir during the third wave

with a stronger re-increase during the fifth wave which saw the

highest number of DKA case. The average monthly admission of

DKA according to pandemic waves shows also a nadir during the

third wave and a reincrease during the fifth wave without it being

statistically significant (p=0.09).

Possible factors for the relative decline of DKA admitted in our

department during the third wave include the relatively short

duration of this wave, as defined by ONMNE, as well as strict

social restrictions that were implemented during this wave.

Moreover, during this particular wave, there was a simultaneous

establishment of additional departments designated for the

admission of COVID-19 patients, regardless of their DKA status.

This occurrence potentially alleviated the burden on our

department for a temporary period.
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The pandemic variants of SARS-CoV-2 have been reported to

change its viral characteristics. Mutations that alter the affinity of

the virus to receptors may affect its ability to enter beta cells and

cause cellular damage. For example, the Omicron variant is

characterized by a higher ACE2 binding affinity (24). Therefore, it

is plausible that the tropism for the pancreas differs according to

SARS-CoV-2 variants (25). Although merely speculative, this can

arguably explain the higher incidence of DKA during the fifth wave

where Omicron variant was prevalent in Tunisia (26). However,

data is insufficient to investigate whether the diabetogenicity of

COVID-19 depends on its variants (25).

We found an increase of T1D incidence during COVID-19

pandemic which is in line with numerous studies around the world

reported mainly among the pediatric population (9, 18–21, 27).

Although it was once believed that genetics played a significant

role in T1D with over 50 genes identified, low concordance of T1D

(<50%) in monozygotic twins implies that environmental factors,

more specifically viruses, may be even more consequential than

previously thought (28). Respiratory viruses have also been

incriminated as shown by a large Norwegian cohort study

published in June 2018 by Ruiz et al. who have investigated the

risk of new onset DM subsequent to Influenza A (H1N1) pandemic

in June 2009 and reported a twofold increased risk of new onset

T1D (16).

The molecular mimicry hypothesis is the most appealing

pathophysiological pattern mediating beta cells autoimmune

injury as suggested by Andrade et al. in a study published in

October 2022 where amino-acid sequences of human insulin and

GAD65 as long as their epitopes were compared with the sequences

of the SARS-CoV-2 proteins (S protein, Spike protein) (29). Epitope

similarity between human insulin and SARS-CoV-2 and between

GAD65 and SARS-CoV-2 ranged between 45 to 60%. This would
FIGURE 2

Incidence of DKA during COVID-19 according to pandemic waves: it shows a decrease during the third wave with a re-increase during the fourth
and fifth waves.
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plausibly result in the development of an immune cross-reaction to

self-antigens, thus triggering T1D (29). However, without clinical

data from individuals with T1D or COVID-19, it is difficult to

establish a direct causal relationship between SARS-CoV-2 and the

triggering of T1D.

The other related mechanism is virus-induced beta cell injury

causing the release of sequestered antigens which would eventually

be expressed by antigen-presenting cells increasing the risk of

autoantibodies generation (30).
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Although we found no significant difference between T1D

frequencies before and during COVID-19 pandemic,

autoantibodies such as Anti-GAD and Anti-IA2 titers

interestingly increased during the pandemic period compared

with the pre-pandemic period (p=0.021), (p=0.009) respectively.

This would reasonably incriminate SARS-CoV-2 in triggering an

auto-immune insulitis. Similarly, Wang et al. reported a marked

increase in autoantibody reactivities in COVID-19 patients as

compared to uninfected individuals reflected by a higher

prevalence of autoantibodies against immunomodulatory proteins

(including cytokines, chemokines, complement components and

cell-surface proteins) (31). Even though this study also discusses the

presence of tissue-associated autoantibodies in patients with

COVID-19, targeting various organs and systems including

vascular cells, coagulation factors, platelets, connective tissue,

extracellular matrix components, anti-islet antibodies have not

been investigated. Therefore, we cannot establish with certainty a

direct link between COVID-19 and T1D.

We found an increase of new onset T2D cases by 44% during

COVID-19 pandemic.

Insulin resistance is suspected to be directly induced by SARS-

CoV-2 as speculated by a study byMontefusco et al. where it was found

that compared to healthy controls, patients with COVID-19 had

significantly higher levels of mean fasting insulin, proinsulin, and C-

peptide, as well as higher values of the homeostasis model assessment

of beta cell dysfunction (HOMA-B) and homeostasis model

assessment of insulin resistance (HOMA-IR) which were correlated

with inflammation markers indicating that COVID-19-related insulin

resistance has an inflammatory basis suggesting that insulin resistance

and beta cell dysfunction in COVID-19 may be triggered by a

proinflammatory environment initiated by a cytokine storm (12).

The increase of accountability of stress in precipitating DKA

can be explained by the levels of psychological distress associated

with COVID-19 pandemic. Indeed, Xiong J et al. conducted a
FIGURE 4

Comparison of antibodies' titers before (GI) and during COVID-19
(G2). This graphical representation provides a comparison of anti-
glutamic acid decarboxylase (anti-GAD) and anti-islet cell antigen
(anti-IA2) titers before and during the COVID-19 pandemic. The data
reveals a statistically significant increase in anti-GAD titers during
COVID-19 (GI) compared to the prepandemic period (p=0.021).
Furthermore, it demonstrates a significant elevation in anti-IA2 titers
during COVID-19 (G2) in contrast to the prepandemic period
(p=0.009).
FIGURE 3

Distribution of diabetes type before (GI) and during COVID-19 (G2). The incidence of TID increased by 50% during COVID-19 pandemic as 54
(38.42%) out of 137 patients were TID in G1 vs 81 (40.30%) out of 201 patients in G2 while the incidence of T2D increased by 44% as 83 (60.58%) out
of 137 patients were T2D in GI vs 120 (59.70%) out of 201 patients in G2. However, the distribution of TID and T2D frequencies was comparable
between the two groups (p=0.871).
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systematic review showing high levels of anxiety-related symptoms,

depression, posttraumatic stress disorder, psychological distress in

the general population in various countries during the COVID-19

pandemic. This can be explained by periods of lockdown where

unemployment and marital problems peaked, not to mention

frequently being exposed to worrisome news about COVID-19 (32).

The increased responsibility of excessive food intake as a trigger

for DKA may be ascribed to modifications in eating behavior.

According to a systematic review of longitudinal studies which

compared eating habits before and during COVID-19 pandemic, an

increased tendency towards eating snacks and a preference for

sweets and ultra-processed food rather than fruits and vegetables

was reported (33).

Among infectious precipitating factors, COVID-19 became the

first infectious precipitating factor of DKA in G2 with a decrease of

the accountability of pulmonary and other influenza like illness, the

latter is likely due to the enforcement of COVID-19 public health

protocols leading to a decline in the spread of common respiratory

viruses (34).

DKA was managed classically by hydration, insulin infusion

along with electrolyte supplementation. The time it took for DKA to
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resolve was considerably higher during COVID-19 pandemic

compared to the prepandemic period (p=0.022). This supports

the findings of Farzadfar et al. where longer time to DKA

resolution was found in patients infected with COVID-19 (35).

This can be explained by various strategies implemented during

the COVID-19 pandemic to effectively reduce the risk of healthcare

workers being exposed to the virus while providing care to patients

with COVID-19 (35). These strategies involved minimizing the use

of venous insulin infusions for DKA whenever possible and

decreasing the frequency of capillary glycemia checks for patients

on subcutaneous insulin regimens (35). These measures

underscored the urgent need for innovative technologies such as

continuous glucose monitoring (CGM), especially in the context of

a pandemic, as they would enable healthcare exposure to

be minimized.

Regrettably, implementing such strategies is challenging in

resource-limited settings, particularly in financially constrained

regions like certain areas in Africa.

Our study is subject to several limitations that should be

acknowledged. Firstly, it is a retrospective study, conducted at a

single center, which may restrict the generalizability of our findings.
FIGURE 5

Comparison of main precipitating factors of DKA before (GI) and during COVID-19 pandemic in patients with new onset T2D (G2); the distribution of
DKA precipitating factors in T2D differed significantly between the two groups (p=0.003) with a notable increase of stress (29.7% in G2 vs 17.1% in GI,
AR-2) as well as excessive food intake notably hypertonic drinks (10.2% in G2 vs 3.7% in G1) at the expense of corticosteroid use as its accountability
in precipitating DKA significantly decreased in G2 (2.5% in G2 vs 9.8% in GI, AR-2.2). The infectious precipitating factors remained comparable
between the two groups (30.5% in G1 vs 36.4%, AR-0.9).
TABLE 2 Different studies comparing the incidence of new onset DKA before and during COVID-19 pandemic.

Authors Country Year Patients Increased incidence of DKA Type of DM

Mastromauro et al. (18) Italy 2022 172 Yes
(55% vs 36%)

T1D

Jafari et al. (19) USA 2022 175 Yes T1D

Salmi et al. (9) Finland 2021 315 Yes
(6.25 → 20)

T1D

Vorgučin et al. (20) Serbia 2022 231 Yes
(36.12 → 42.42)

T1D

Khan et al. (21) USA 2022 14630 Yes T2D, T1D

Our study Tunisia 2023 340 Yes T1D, T2D
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Additionally, the absence of computerized national registries for

new onset DKA in our country limits our ability to access

comprehensive data and needs manual collection from

medical records.

Another important limitation is the challenge of accurately

establishing the history of COVID-19 infection in our study

population. While we documented cases of SARS-CoV-2 infection

at the time of diagnosis, differentiating between a prior infection

and a vaccinal status was not possible particularly as our study was

conducted during a period when COVID-19 vaccinations became

widely accessible.

Despite these limitations, our study provides valuable insights

into the incidence and potential factors associated with DKA in our

specific context of an African country. We believe that our findings

contribute to the existing knowledge base and can serve as a

foundation for future research efforts aimed at addressing these

limitations and expanding our understanding of the relationship

between COVID-19 and DKA.
Conclusion

The COVID-19 pandemic has had significant impacts on the

epidemiology of DKA.While the increasing trend in DKA cases was

observed even prior to the pandemic, the COVID-19 period has seen

a significant rise in DKA incidence, which may be due to delayed

diagnosis or arguably via an auto-immune triggering mechanism or

an inflammatory milieu favorable for insulin resistance.

The potential long-term implications of these trends are

concerning, particularly in terms of the burden on healthcare

systems and the increased risk of complications associated with

these conditions. As such, it is important for healthcare providers,

particularly in Africa, to remain vigilant in monitoring and treating

patients with DM, especially during times of crisis such as the

COVID-19 pandemic.
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Clinical characteristics and acute
complication of COVID-19
patients with diabetes: a
multicenter, retrospective
study in Southern China

Xiao-ying Zhou1, Shao-feng Huang1, Jun-xu Lin2, Hai-ni Zhi2,
Lu Xiao3, Xiang-zhu Wang1, Kai-heng Guo1, Lin Zhou1,
Tao Long1, Hui-min You1, Ming-run Lin1, Xiang-ya Luo1,
Wei-ping Sun3* and Chun-ping Zeng1*

1Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China, 2Department of Endocrinology, The Affiliated Loudi Hospital,
Hengyang Medical School, University of South China, Hengyang, Hunan, China, 3Department of
Endocrinology and Metabolism, Loudi Central Hospital, Loudi, China
Aims: This study aims to describe the clinical characteristics, laboratory data and

complications of hospitalized COVID-19 patients with type 2 diabetes mellitus

(T2DM) since epidemic prevention and control optimization was adjusted in

December 2022 in China.

Methods: This retrospective multicenter study included 298 patients with

confirmed type 2 diabetes mellitus with or without COVID-19. We collected

data from the first wave of the pandemic in The Fifth Affiliated Hospital of

Guangzhou Medical University, Loudi Central Hospital and The First People’s

Hospital of Xiangtan from December 1, 2022 to February 1, 2023. We extracted

baseline data, clinical symptoms, acute complications, laboratory findings,

treatment and outcome data of each patient from electronic medical records.

Results: For among 298 hospitalized patients with type 2 diabetes, 136 (45.6%)

were COVID-19 uninfected, and 162 (54.4%) were COVID-19 infected. We found

that the incidence of cough, fatigue, fever, muscle soreness, sore throat,

shortness of breath, hyposmia, hypogeusia and polyphagia (all p<0.01) were

significantly higher in the exposure group. They showed higher levels of ketone

(p=0.04), creatinine (p<0.01), blood potassium (p=0.01) and more diabetic

ketoacidosis (p<0.01). Patients with COVID-19 less use of metformin (p<0.01),

thiazolidinediones (p<0.01) and SGLT2 (p<0.01) compared with patients without

COVID-19.
frontiersin.org0169

https://www.frontiersin.org/articles/10.3389/fendo.2023.1237832/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1237832/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1237832/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1237832/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1237832/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1237832&domain=pdf&date_stamp=2023-08-14
mailto:zcp193@163.com
mailto:sunwp07@163.com
https://doi.org/10.3389/fendo.2023.1237832
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1237832
https://www.frontiersin.org/journals/endocrinology


Zhou et al. 10.3389/fendo.2023.1237832

Frontiers in Endocrinology
Conclusion: COVID-19 patients with diabetes showed more severe respiratory

and constitutional symptoms and an increased proportion of hyposmia and

hypogeusia. Moreover, COVID-19 patients with diabetes have a higher incidence

of acute complications, are more prone to worsening renal function, and are

more cautious about the use of antidiabetic drugs.
KEYWORDS

COVID-19, diabetes, clinical characteristics, acute complications, renal insufficiency
1 Introduction

Since the optimization and adjustment of epidemic prevention

and the orderly restoration of production and living in December

2022, COVID-19 has started the first wave of the pandemic in

China. At present, SARS-CoV-2 Omicron BA.5.2 variants is

progressively displacing other variants in southern CHINA, which

displays a higher transmissibility than other Omicron subvariants

(1). Since China no longer requires nucleic acid detection of SARS-

CoV-2, the infection rate of the novel coronavirus is not available.

The Centers for Disease Control and Prevention (CDC) in Sichuan

(a province in southern CHINA) estimated the prevalence of

COVID-19 approximately 65.5% as of December 26, 2022.

According to the big data model of the National School of

Development, as of January 11, 2023, the cumulative infection

rate of COVID-19 in China is approximately 64%, and the

cumulative number of infected people is approximately 900 million.

Several studies have reported that COVID-19 patients are more

susceptible to type 2 diabetes, and the severity and mortality of

COVID-19 in diabetes patients are higher than those in patients

without diabetes (2, 3). In China, the reported prevalence of

diabetes in patients with COVID-19 is similar to the national

prevalence of T2DM, approximately 11% (4, 5). In New Delhi,

India, the prevalence of diabetes among people with COVID-19 is

47%, which is far higher than the prevalence of T2DM in this region

(6). Although the prevalence of diabetes among COVID-19 patients

varies by region, studies have reported that the proportion of

COVID-19 patients with diabetes is relatively high (7, 8).

Moreover, COVID-19 patients with diabetes might be at

increased risk of acute metabolic complications, especially an

increase in diabetic ketoacidosis during the COVID-19 pandemic

(9). The patients with diabetes also had abnormal blood glucose

levels and increased the dose of insulin during hospitalization,

which indicated their poor glycemic control (10). The increased

prevalence, severity, and complications of type 2 diabetes in

COVID-19 patients may be related to human angiotensin-

converting enzyme 2 (ACE2) and transmembrane serine protease

2 receptors, which are expressed on pancreatic beta cells (11).

SARS-CoV-2 infection has been shown to reduce insulin

secretion levels and induce pancreatic b cell apoptosis (12).

We conducted a multicenter retrospective study in southern

China, aiming to compare the basic information, laboratory
0270
examinations, clinical symptoms, acute complications, and

medication in patients with diabetes with or without COVID-19,

and ascertain the impact of COVID-19 on diabetes.
2 Materials and methods

This retrospective multicenter study included 298 patients with

confirmed type 2 diabetes mellitus with or without COVID-19. We

collected data from the first wave of the pandemic in The Fifth

Affiliated Hospital of Guangzhou Medical University, Loudi Central

Hospital and The First People’s Hospital of Xiangtan from

December 1, 2022 to February 1, 2023. This research was

conducted with approval from the Fifth Affiliated of Guangzhou

Medical University Research Ethics Committee. (GYWY-

L2023-64).

Patients fulfilling the following criteria were included in this

study: physician diagnosis of T2DM and aged over 18 years.

Gravidas and patients with severe multi-organ dysfunction were

excluded. We divided all patients into two groups depending on

whether they were confirmed with COVID-19 after novel

coronavirus nucleic acid testing or novel coronavirus antigen

detection. All the enrolled patients were hospitalized due to poor

blood glucose control or new-onset diabetes, among which the

T2DM patients with COVID-19 had been clearly infected

before hospitalization.

We extracted baseline data, clinical symptoms, acute

complications, laboratory findings, treatment and outcome data

of each patient from electronic medical records. All data collected

were reviewed by the research team and double checked by

experienced physicians. Patients with missing data or unknown

medical records were excluded.

We used SPSS (version 26.0; IBM) statistical software to analyze

and process the data. Quantitative data were expressed as x±s and

differences between groups were compared using independent

sample t-test if they were normally distributed. Quantitative data

that did not conform to a normal distribution and ordinal data were

expressed as medians or quartile ranges and differences between

groups were compared using nonparametric tests. Qualitative data

were described by frequency or percentage and differences between

groups were compared using the c2 test. For all the statistical

analyses, a p-value < 0.05 was considered statistically significant.
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3 Results

A total of 298 hospitalized patients with type 2 diabetes were

included in this retrospective study. Among these patients, 136

(45.6%) were COVID-19 uninfected and 162 (54.4%) were COVID-

19 infected, respectively. Of all hospitalized patients, the median age

was 64 years (IQR, 49-67) and the median duration of diabetes was

8.0 (IQR, 3.0-14.0). Compared with patients without COVID-19,

patients with COVID-19 infected had older age (68.5 [IQR, 59.0-

76.0]), longer diabetes duration (10.0 [IQR, 4.0-19.0]), and had no

significant differences in either systolic blood pressure or diastolic

blood pressure. The most common symptoms were cough (143

[48.0%]), fatigue (132 [44.3%]), fever (61[20.5%]), dizziness (77

[25.8%]), shortness of breath (61 [20.5%]), nausea (67 [22.5%]),

polyuria (75[25.2%]) and polydipsia (132 [44.3]) at illness onset.

Less common symptoms included muscle soreness, runny nose,

sore throat, chest distress, diarrhea, hyposmia, hypogeusia,
Frontiers in Endocrinology 0371
polyphagia and weight loss. We found that the incidence of

cough (37[27.2%] vs 106[65.4%]; p<0.01), fatigue (37[27.3%] vs

95[58.6%]; p<0.01), fever (16[11.8%] vs 45[27.8%]; p<0.01), muscle

soreness (3[2.2%] vs 22[13.6%]; p<0.01), sore throat (8[5.9%] vs 23

[14.2%]; p=0.02), shortness of breath (18[13.2%] vs 43[26.5%];

p<0.01), hyposmia (0[0%] vs 14[8.6%]; p<0.01), hypogeusia (1

[0.7%] vs 17[10.5%]; p<0.01) and polyphagia (1[0.7% vs 25

[15.4%]; p<0.01) were significantly higher in the exposure group

than in the non- exposure group (Table 1).

The laboratory test results and the incidence of acute

complications at admission are shown in Table 2. In all the

patients, glycosylated hemoglobin and fasting plasma glucose

were above the normal range, while the values of other laboratory

indicators were within the normal range. Compared to non-

exposure group, the exposure group showed higher levels of

ketone (0.2 [IQR, 0.1-0.3] vs 0.2 [IQR, 0.1-0.9]; p=0.04),

creatinine (69.3 [IQR, 53.7-89.3] vs 86.5 [IQR, 63.3-121.0]);
TABLE 1 Baseline characteristic and clinical signs and symptoms of patients infected with COVID-19.

No.(%)

Total
(n=298)

COVID-19 uninfected
(n=136)

COVID-19 infected
(n=162) p value

Age, Median (IQR), years 64.0 (54.0-74.0) 60.0 (51.2-70.0) 68.5 (59.0-76.0) 0.000058

Diabetes duration, Median (IQR), years 8.0 (3.0-14.0) 7.0 (2-10) 10.0 (4.0-19.0) 0.003054

Systolic blood pressure, Median (IQR),
mm Hg

133.0 (122.0-
149.0)

133.0 (123.3-149.8) 133.5 (120.8-148.3) 0.556

Diastolic blood pressure, Median (IQR),
mm Hg

78.0 (70.0-87.0) 77.5 (70.0-88.0) 79.0 (70.0-86.3) 0.724

Signs and symptoms
Cough 143 (48.0) 37 (27.2) 106 (65.4)

5.0998E-
11

Fatigue 132 (44.3) 37 (27.3) 95 (58.6)
5.5597E-
8

Fever 61 (20.5) 16 (11.8) 45 (27.8)
2.2877E-
10

Dizziness 77 (25.8) 44 (32.4) 33 (20.4) 0.696413

Muscle soreness 25 (8.4) 3 (2.2) 22 (13.6) 0.000014

Runny nose 4 (1.3) 1 (0.7) 3 (1.9) 0.150758

Sore throat 31 (10.4) 8 (5.9) 23 (14.2) 0.019388

Chest distress 53 (17.8) 22 (16.2) 31 (19.1) 0.506485

Shortness of
breath

61 (20.5) 18 (13.2) 43 (26.5) 0.004637

Nausea 67 (22.5) 27 (19.9) 40 (24.7) 0.319801

Diarrhea 25 (8.4) 6 (4.4) 19 (11.7) 0.023482

Hyposmia 14 (4.7) 0 (0) 14 (8.6) 0.000455

Hypogeusia 18 (6.0) 1 (0.7) 17 (10.5) 0.000438

Polydipsia 132 (44.3) 58 (42.6) 74 (45.7) 0.600316

Polyphagia 26 (8.7) 1 (0.7) 25 (15.4) 0.000297

Polyuria 75 (25.2) 31 (22.8) 44 (40.3) 0.387774

Weight loss 43 (14.4) 17 (12.5) 26 (16.0) 0.385904
fron
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p<0.01), blood potassium (4.0[IQR, 3.7-4.3] vs 4.2[IQR, 3.7-4.6],

p=0.01) and more diabetic ketoacidosis (8[5.9%] vs 34[21.0];

p<0.01). These laboratory data indicated that the COVID-19

patients with diabetes are more likely to develop diabetic

ketoacidosis and are at greater risk of developing renal

insufficiency than those without COVID-19 infection (Table 2).

During hospitalization, most patients were treated with insulin

(192[64.1%]), followed by metformin (98[32.9%]), SGLT2 (71

[23.8%]), glucosidase inhibitors (48[15.4%]), DPP4 (41[13.8%]),

thiazolidinediones (30[10.1%]), GLP1 (20[6.7%]), sulfnoylureas (7

[2.3%]) and glinides (3[1.0%]). There was no significant difference

in the total daily dose of insulin used between patients with T2DM

with and without COVID-19 infection. Compared with T2DM

patients without COVID-19 infection, patients with COVID-19

were less likely to use metformin (88[64.7%] vs 10[6.2%]; p<0.01),

thiazolidinediones (30[22.1%] vs 0[0%]; p<0.01) and SGLT2 (66

[48.5%] vs 5[3.2%]; p<0.01) (Table 3).
4 Discussion

This study was a retrospective study of 298 hospitalized T2DM

patients with or without COVID-19 infection, and analyzed

baseline data, clinical symptoms, acute complications, laboratory

findings, treatment measures and outcome data. From the present

results, the severity of T2DM patients with COVID-19 would be

higher than those without COVID-19. This may be related to

angiotensin-converting enzyme 2 (ACE2), whose expression is

elevated in T2DM patients. SARS-CoV-2 binds to ACE2

receptors and can cause multiple organ damage. Moreover, high
Frontiers in Endocrinology 0472
blood glucose activates inflammatory pathways and increases

oxidative damage, impairing immune cell function (13, 14).

In many COVID-19 epidemic studies, COVID-19 with diabetes

mostly occurred in the elderly (12, 15)..Recent studies have also

indicated that the older the age of T2DM patients with COVID-19

is, the higher the incidence of severe clinical courses and increased

mortality (16, 17). In the study, T2DM patients with COVID-19

had a longer duration of diabetes, indicating that this group of

people was at higher risk from COVID-19 infection, which was

consistent with the characteristics of such patients in other articles

(18, 19). The cause was partly attributed to the immune system

being impaired due to metabolic inflammation and the body’s

ability to deal with infections being reduced in patients

with diabetes.

Diabetes is associated with hyperglycemia, and the common

symptoms are polyuria, polydipsia, polyphagia and weight loss (20).

Consistently, the data of this study showed that these symptoms

were the most common in T2DM patients with or without COVID-

19. Our study also found that cough was also common in T2DM

patients with or without COVID-19, and we speculated that type 2

diabetes may be related to an increased prevalence of respiratory

symptoms (21).

Hyperglycemia can trigger an inflammatory response, which

leads to structural changes in lung tissue and impaired lung

function (22). Such structural changes may also be associated

with an increased risk of hospitalization for pneumonia in

patients with diabetes (23). The occurrence of fatigue in T2DM

patients is also related to the inflammatory response (24), and they

showed high levels of inflammatory markers including IL-6, CRP,

and neopterin, which plays a role in causing fatigue in T2DM
TABLE 2 Comparison of laboratory parameters and complication between COVID-19 infected and uninfected diabetic patients.

Median (IQR)

Normal range COVID-19 uninfected (n=136) COVID-19 infected (n=162) p value

HbA1c, % 4.0-6.0 9.1 (7.5-11.2) 8.3 (7.4-11.0) 0.440

FPG, mmol/L 3.9-6.1 9.2 (6.7-11.2) 8.4 (6.1-12.5) 0.284

Ketone, mmol/L 0-0.3 0.2 (0.1-0.3) 0.2 (0.1-0.9) 0.035

WBC, ×109/L 3.5-9.5 6.9 (5.4-8.8) 6.4 (4.7-9.9) 0.274

Neut, ×109/L 1.8-6.3 4.11 (3.17-6.15) 4.6 (3.0-7.0) 0.492

Hemoglobin, g/L 115-150 131.0 (112.3-142.0) 125.0 (111.8-140.0) 0.297

Creatinine, umol/L 53-106 69.3 (53.7-89.3) 86.5 (63.3-121.0) 0.001

ALT, U/L ≤40 20.4 (13.4-31.6) 21.0 (14.1-31.3) 0.891

AST, U/L ≤41 25.4 (17.7-33.2) 29.6 (20.5-41.0) 0.559

Blood potassium, mmol/L 3.5-5.5 4.0 (3.7-4.3) 4.2 (3.7-4.6) 0.013

Blood sodium, mmol/L 135-145 138.2 (136.0-141.0) 137.4 (134.3-141.6) 0.455

Blood chlorine, mmol/L 96-168 103.1 (100.3-105.3) 101.8 (98.9-105.8) 0.576

Diabetic ketoacidosis, No. (%) – 8 (5.9) 34 (21.0) 0.000194

Diabetic hyperosmolar coma, No. (%) – 1 (0.7) 1 (0.6) 0.150758
fron
HbA1c, Glycosylated Hemoglobin; FPG, Fasting Plasma Glucose; WBC, White cell count; Neut, Neutrophil count; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase.
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patients (25). Compared to T2DM patients without COVID-19,

T2DM patients with COVID-19 had significantly more cough,

fatigue, fever, muscle soreness, sore throat and shortness of

breath. Studies have shown that patients with COVID-19 have

significantly higher numbers of neutrophils (10) and elevated levels

of inflammation-related biomarkers (26), which suggests that

patients with diabetes are prone to develop an inflammatory

storm that ultimately leads to worse symptoms of COVID-19. In

addition, oxidative stress caused by persistent hyperglycemia was

considered to be the main cause of lung injury in diabetes (27).

Patients with diabetes tend to have lower forced vital capacity

(FVC) and forced expiratory volume within one second, as well

as lower diffusion capacity, which contributes to more severe

COVID-19 symptoms (28). Dizziness and nausea were also

common in T2DM patients with or without COVID-19, which

could be partly explained by diabetic autonomic neuropathy and

hypoglycemia caused by T2DM (29, 30). Compared with T2DM

patients without COVID-19, hyposmia and hypogeusia were almost

exclusively found in COVID-19 patients. Previous studies have

shown that 41% and 38% of patients with COVID-19 have

hyposmia and hypogeusia, respectively (31). The exact

mechanism of hypogeusia and hyposmia in COVID-19 infected

patients is not clear, and studies have noted that it may be related to

the neuroinvasive potential of SARS-CoV-2 (32). Interestingly, the

eating habits of T2DM patients with COVID-19 also changed - they

became more polyophagous. This may be related to the COVID-19

lockdown and hyposmia. In a study from Italy, patients experienced

a significant increase in appetite due to disruptions in daily work

due to the COVID-19 lockdown and stress caused by reading news

about COVID-19 from the media (33). Another study showed that

patients were unable to perceive taste and flavor, resulting in no

sensation of satiation and thus increased appetite (34).

Laboratory findings indicated that the level of creatinine

significantly increased in patients with COVID-19, suggesting

that kidney damage may have occurred. In a previous cohort

study of 5,449 patients admitted to the hospital with COVID-19,
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1,993(36.6%) patients developed AKI (35). However, the exact

mechanism of COVID-19 on the kidney is unknown, and may be

related to the direct damage of SARS-CoV-2 to renal tubules. SARS

coronaviruses (including SARS-CoV-2) are detected in urine by

PCR, which indicates that the virus interacts directly with or is

exposed to renal tubules (36, 37). Furthermore, ACE as a viral

receptor is only expressed in the proximal renal tubules, which is

parallel to the damaged site of the kidney in patients with SARS-

CoV infection (37, 38). Although the median values of creatinine in

our study were still within the normal range, they were far from the

extent of AKI. However, the difference between the exposure group

and the non-exposure group was large, and the present study

identified elevated creatinine as a significant predictor of all

outcomes of interest (mortality, ICU admission and intubation),

which needs to be considered (39).

We found higher ketones and higher rates of diabetic

ketoacidosis in T2DM patients with COVID-19 infected, as has

been reported in other research. Ketosis occurred in 6.4% of

patients with COVID-19 and increased to 11.6% in patients with

COVID-19 and diabetes, resulting in a higher mortality rate

(33.3%) (40). In a CORONADO study, 11.1% of participants

reported diabetes-related disorders at admission, including 40

cases of ketosis, 19 of which were ketoacidosis (2). ACE receptors

are expressed in pancreatic tissue and b-cells, and SARS-CoV-2 has

been found to bind to ACE2 receptors. Therefore, the metabolic

disorders, including DKA may be caused by decreased insulin

secretion due to severe insulin resistance and b-cell dysfunction
(41, 42). For an unusually high number of patients with COVID-19

developing diabetic ketoacidosis and a hyperosmolar hyperglycemic

state, a guideline has been released for the management of

DKA (43).

In fact, T2DM patients with COVID-19 are most recommended

to be treated with insulin (44). However, our results showed no

significant difference between the exposure group and non-

exposure group, which may be related to the fact that the

proportion of hospitalized patients using insulin therapy was
TABLE 3 Comparison of treatments between COVID-19 infected and uninfected diabetic patients.

No. (%)

Total (n=298) COVID-19 uninfected (n=136) COVID-19 infected (n=162) p value

Total daily dose of insulin, Median (IQR) – 14.0 (0.0-28.0) 12.0 (0.0-25.3) 0.559

Insulin 192 (64.1) 89 (65.4) 102 (63.0) 0.657

Metformin 98 (32.9) 88 (64.7) 10 (6.2) 0.000218

Glucosidase inhibitors 48 (15.4) 39 (28.7) 7 (4.3) 0.514174

Thiazolidinediones 30 (10.1) 30 (22.1) 0 (0) 0.000027

Sulfonylureas 7 (2.3) 7 (5.1) 0 (1) 0.368240

Glinides 3 (1.0) 1 (0.7) 2 (1.2) 0.092488

DPP4 41 (13.8) 36 (26.5) 5 (3.1) 0.915298

SGLT2 71 (23.8) 66 (48.5) 5 (3.2) 0.000844

GLP1 20 (6.7) 17 (12.5) 3 (1.9) 0.472987
fron
DPP4, Dipeptidyl peptidase-4; SGLT2, Sodium-glucose cotransporter2; GLP1, Glucagon-like peptide-1.
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already quite high. From the reported results, T2DM patients with

COVID-19 were less likely to use metformin, sodium-glucose

transporter-2 inhibitor (SGLT-2i) and thiazolidinediones than

patients without COVID-19 infection. This may be associated

with insulin therapy reduced expression of ACE2, while

me t f o rm in , g l u c a gon - l i k e p ep t i d e - 1 a gon i s t s a nd

thiazolidinediones up-regulate ACE2 expression (45).

Furthermore, practical recommendations indicated that

discontinuing of metformin and SGLT-2i is recommended in

patients with diabetes who have a severe course of COVID-19

(42). In randomized controlled trials, the risk of DKA after SGLT2

use was two times higher in patients with T2DM than in controls

(46). In our results patients with DKA and increased creatinine were

numerous in the exposure group and the use of metformin required

close monitoring for acidosis and decreased renal function, so there

was a decrease in metformin use. However, previous studies have

shown that metformin and SGLT-2i are associated with reduced

mortality in patients with COVID-19 and type 2 diabetes, possibly

due to reduced release of inflammatory cytokines, so metformin

and SGLT-2i can be used for asymptomatic and mild COVID-19

patients (42, 47). Thiazolidinediones have been found to reduce

markers of inflammation in COVID-19 patients (48). However, as a

second or even third line treatment, metformin is not explicitly

recommended for T2DM patients with COVID-19, which may be

the reason why it was not used in the exposure group in our study.

The strengths of this study are that it was a multicenter study

with an adequate sample size and comprehensive clinical records.

Furthermore, to the best of our knowledge, this is the first study to

investigate the clinical characteristics and outcomes of hospitalized

COVID-19 patients with diabetes in southern China since the

COVID-19 policy adjustment. Our study also has certain

limitations. First, it is difficult to assess risk factors for poor

prognosis due to short-term outcome follow-up. Second, cases

with mild symptoms who were treated at home were missed, so

this study only represents patients with more severe COVID-19.
5 Conclusion

In conclusion, COVID-19 patients with diabetes showed more

severe respiratory and constitutional symptoms and an increased

proportion of hyposmia and hypogeusia. Moreover, T2DM patients

with COVID-19 have a higher incidence of acute complications, are

more prone to worsening renal function, and are more cautious

about the use of antidiabetic drugs.
Frontiers in Endocrinology 0674
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of type 1 diabetes and 
ketoacidosis among children in 
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2017–2022 with special focus on 
COVID-19 global pandemic years
Gordana Bukara-Radujkovic 1,2*, Vesna Miljkovic 1 and 
Olivera Ljuboja 1,2

1 Pediatric Clinic, University Clinical Center of the Republic of Srpska, Banja Luka, Bosnia and 
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Bosnia and Herzegovina

Background and objectives: Primary focus of the research was to determine 
the incidence of type 1 diabetes mellitus in the period from 2017 to 2022, and 
whether COVID-19 had an impact on the increase in the number of newly 
diagnosed children with diabetes type 1 under the age of 15  in the Republic of 
Srpska (Bosnia and Herzegovina). In the period 2001–2016 the incidence of type 
1 diabetes mellitus was 11/100,000, with an annual increasing rate of 14.2%.

Methods: Available data from pediatric endocrinology clinics, in the Republic of 
Srpska, on the number of newly diagnosed patients with diabetes mellitus in the 
period from January 1, 2017 until December 31, 2022 were used. A retrospective 
analysis was performed, and the capture-recapture method was used for the final 
assessment, and the obtained result corresponds to about 99% of the population.

Results: The total number of children in the group of 0–14 years of age diagnosed 
with type 1 diabetes mellitus in this period was 183, of which 96 (52.46%) were 
boys, and 87 (47.54%) were girls. The average age at which diabetes mellitus 
was diagnosed was 8.3  ±  3.9 years. Average incidence of diabetes in the period 
2017–2022 was 19/100,000 (95% CI 13.1–25.0). The highest incidence was 
28.7/100,000  in 2020, the first year of the global COVID-19 pandemic. Out of 
a total of 183 newly diagnosed cases in the period 2017–2022, 73 (39.9%) were 
diagnosed with ketoacidosis upon admission. The largest number of newly 
diagnosed children was recorded in the group of children aged 10–14 years.

Conclusion: In the last 6 years, there has been a significant increase in the 
incidence of type 1 diabetes mellitus in children under the age of 15. With an 
incidence of 19.4/100,000  in the Republic of Srpska, we  entered the group of 
countries with high-risk for diabetes. Further steps must focus on the education 
of the entire society in order to recognize the symptoms of the disease in time 
and prevent the occurrence of ketoacidosis, which could significantly reduce the 
burden on health systems, especially in times of global pandemics, such as the 
COVID-19 pandemic.
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1. Introduction

Diabetes mellitus type 1 is a chronic disease defined by a complete 
lack of insulin caused by the autoimmune destruction of pancreatic 
beta cells, which leads to an increase in glycaemia. This requires 
lifelong insulin replacement and lifestyle changes with regular 
glycemic control (1). It is also one of the most common endocrine and 
metabolic diseases in childhood (2).

In 2021, the number of newly discovered cases of diabetes mellitus 
in children under the age of 19 was 355,900 (95% CI: 334,200–
377,300), and estimation indicate that by 2050, this number could 
be  higher for 100,000 children per year (3). Unfortunately, this 
unfavorable trend also reflects on our country. The previous study of 
type 1 diabetes mellitus incidence in the Republic of Srpska for the 
period from 2001 to 2016, showed that the incidence was 11/100,000 
children, which put us in the group of countries with a medium risk 
for the disease (4). In that study, the largest number of patients with 
diabetes mellitus type 1 was in the group of children aged 10–14, 
unlike most countries where the largest number of patients were in 
the group of children under 5 years of age, which was explained by the 
“accelerator hypothesis” (5).

Continuing the previous research, we wanted to see if the growth 
trend continued in the coming period from 2017 to 2022. Compared 
to earlier research, this research is specific because it covered the entire 
period of the COVID-19 infection and it was interesting to see the 
possible impact of COVID-19 on the number of children with type 1 
diabetes mellitus.

On March 11, 2020 the World Health Organization (WHO) 
declared a global pandemic caused by one strain of coronavirus—
SARS CoV-2, calling it COVID-19. The first published studies 
suggested that children tolerated infection better than adults (6, 7). 
However, in an effort to prevent the spread and emergence of new 
cases of this infection in the Republic of Srpska, as in most countries 
of the world, restrictive measures (isolation, home learning, ban on 
extracurricular and sports activities) were adopted during 2020 and 
2021, which included citizens of all age, especially children. The 
incidence of diabetes mellitus in children aged 0–14 years in the 
period of the previous 6 years is extremely interesting and significant 
data, because it tells us not only about the potential impact of 
COVID-19 on the occurrence of diabetes (8), but also about the 
impact of the restrictive measures. Compared to 2019, the estimated 
incidence in 2021 according to the International Diabetes Federation 
(IDF) has increased (9), which indicates that globally there was an 
increase in newly discovered cases of diabetes mellitus in the period 
of 2020, the first year of the global COVID-19 pandemic.

The potential increase in the number of newly discovered cases of 
diabetes mellitus during the first year of the global pandemic can 
be explained by the mechanism of interaction of the virus with the 
target cell or, more precisely, the receptor site to which the virus binds. 
Angiotensin-converting enzyme 2 (ACE2) receptor is the binding site 
of SARS-CoV-1 and-2 viruses and these receptors are strongly 
expressed in pancreatic cells, and initial findings hypothesized that the 
SARS-CoV-1 virus enters pancreatic cells via the ACE2 receptor and 
leads to the destruction of β-cells and, consequently, the appearance 
of a diabetes mellitus (10). Although most studies did not examine 
direct exposure to the SARS-CoV-2 virus and the consequent 
occurrence of diabetes, it is assumed that the infection itself leads to 
an increase in the number of newly diagnosed type 1 diabetes, 

accelerating the onset of autoantibodies that destroy β-cells (11). 
Children initially had milder symptoms of the virus infection, often 
with negative tests, which were not highly specific and internationally 
standardized, so there is a possibility that they were exposed to the 
virus itself, but unrecognized. Also, subsequent serological analyzes 
were not performed, which could confirm or reject this hypothesis.

Studies investigating the incidence of type 1 diabetes during the 
COVID-19 pandemic have shown mixed results. An analysis in 
London found an increase in newly diagnosed type 1 in the state of 
severe ketoacidosis with pronounced hypokalemia between March 23, 
2020 and June 4, 2020, compared to the number of patients in the 
previous 5 years (11). In Canada during 2020, there was no significant 
increase in number of newly diagnosed patients comparing to 2019, 
but the number of ketoacidosis was significantly increased (12). In 
Germany, in the initial months of the COVID-19 infection (March, 
April, May 2020), the number of patients was lower compared to 
previous years, which was explained by restrictive measures and 
isolation that reduced exposure of infection of not just Sars-CoV-2 
virus but, also, of the other common viruses in the pediatric 
population. However, the appearance of newly diagnosed patients 
with type 1 diabetes did not stop, which is explained by the fact that 
isolation led to the stress as a possible trigger for the onset of type 1 
diabetes (13).

The most common complication of untreated diabetes mellitus in 
children is diabetic ketoacidosis, which can lead to death (1). Taking 
all of this into account, in this work we wanted to determine incidence 
of type 1 diabetes mellitus from 2017 to 2022, as well as the number 
of children with ketoacidosis. We will also determine whether there is 
a connection with the increased number of patients and the frequency 
of ketoacidosis in the period of 2020 and 2021, the period of 
COVID-19 global pandemic.

2. Materials and methods

The research covered the population of the Republic of Srpska 
from 0 to 14 years of age in the period 2017–2022. Republic of Srpska 
is an autonomous part of Bosnia and Herzegovina, which is located in 
the southeastern part of Europe, and according to data from the last 
census, it had 1,171,179 people. The last population census of 
Bosnia and Herzegovina was carried out in 2013, and since then the 
Republic Institute of Statistics of the Republic of Srpska estimates the 
number of people on the basis of demographic parameters every year 
and published the results in its yearbooks, and this data, as the only 
official one, were used in this research (14).

As there is no official register of patients with diabetes mellitus in 
the Republic of Srpska, yet, we used available data from pediatric 
endocrinology clinics in the country on the number of newly 
diagnosed patients with diabetes mellitus type 1 in the period from 
January 1, 2017 until December 31, 2022. Data were cross-referenced 
with official data from the Health Insurance Fund of the Republic of 
Srpska, which provides free insulin and blood sugar strips to patients 
up to 15 years of age. The capture-recapture method was used for the 
final assessment, and the obtained result corresponds to approximately 
99% of the population. The criteria that the patients had to fulfill were: 
that they were diagnosed with type 1 diabetes in the period 2017–2022 
by a doctor at one of the pediatric endocrinology clinics in the 
Republic of Srpska, that they were citizens of the Republic of Srpska 
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at the time of diagnosis, and that they had between 0 and 14 years at 
the time of diagnosis. These criteria were taken from the EURODIAB 
study (15).

2.1. Statistical analysis

The incidence was calculated as the number of children diagnosed 
with type one diabetes mellitus per 100,000 children of the same age. 
The number of children of the same age was calculated based on the 
number that was on the census in 2013 and the ratio of the total 
number of people on the census to the estimated total number of 
people for each year according to the data from the Statistical 
Yearbook of the Republic Institute of Statistics of the Republic of 
Srpska. Numerical variables were examined based on measures of 
central distribution and variability, and categorical variables based on 
percentages and frequencies. Various tests were used in further 
statistical analysis, which will be presented in the results.

3. Results

One hundred and eighty three children in total were diagnosed 
with type 1 diabetes mellitus in period 2017–2022. 96 (52.46%) of 
them were boys, and 87 (47.54%) were girls. The average age at which 
diabetes mellitus was diagnosed was 8.3 ± 3.9 years.

As it can be seen from Table 1, in the period between 2017 and 
2022, the incidence of diabetes mellitus in children aged 0–14 years 
was 19/100,000/yr., with a 95% confidence interval between 13.1 and 
25.0 children (Poisson distribution). The highest incidence was 
established in 2020 at 28.7/100,000, and the lowest at 12.9/100,000 in 
2017. After 2020 the incidence of type one diabetes is in a slight decline.

The Z-score for the incidence shows deviations from −2.41 to 
+4.18 in relation to the arithmetic mean, which clearly tells us that the 
incidence varied in this period. The year 2020 was the most interested 
one, because compared to 2019, the incidence increased by 28.13%, 
while in 2021, it decreased by 37% compared to 2020 (Figure 1).

3.1. Incidence by gender

Average incidence for boys in the period 2017–2022 was 
19.5/100,000 of boys per year, while for girls it was 18.6/100,000. As 
we can see, in this period, boys have a higher incidence rate. However, 
if the standard arithmetic means of incidence for both groups are 
compared, it will be  seen that both groups do not distinguish in 
average incidence rate (Levene’s test F = 3.376, p = 0.082). Also, the age 
at which type 1 diabetes was diagnosed does not differ by gender 
specific group (t = 0.288, p = 0.774).

3.2. Incidence by age groups

We divided the sample in the three specific age groups, 0–4 years 
of age, then 5–9 and the last group of 10–14 years of age, and calculated 
the incidence for each group separately per 100,000 children. The 
results are given in Table 2. We can see that the lowest number of 
newly diagnosed type 1 diabetes is in the age group of 0–4, only 21% 

in relation to the total number of cases, therefore the incidence in this 
age group is also the lowest, 12.5/100,000 children per year. The largest 
number of cases is in the group of children aged 10–14, 86 (47% in 
relation to the total number of newly detected cases) with the highest 
incidence of 26.1/100,000 children per year.

Due to the small number of observed years (n = 6), we did not 
obtain statistically significant results in the incidence trend by 
age group.

3.3. Incidence depending on the state of 
admission before diagnosing the disease

In the past 6 years, a total of 73 cases of ketoacidosis or 39.9% of 
the total number of newly diagnosed type 1 diabetes mellitus were 
at the reception. Ketoacidosis, in relation to the total number of 
newly diagnosed cases of diabetes mellitus type 1, is the least present 
in the age group of 0–4 years of age (28.2%), while in the other two 
age groups it is present in approximately the same proportion. 
We can conclude that there is no statistically significant difference 
in the arithmetic means of groups of children who were admitted in 
a state of ketoacidosis or hyperglycemia in relation to age, because 
Levene’s test shows F = 1.26 and p = 0.723. The largest number of 
ketoacidosis was detected in 2020, where the incidence is the 
highest. There was no statistically significant correlation between 

TABLE 1 Incidence of type 1 diabetes mellitus per 100,000 children per 
year aged 0–14 in total and according to gender in the period from 2017 
to 2022.

Year

Number of newly 
diagnosed children

Incidence per 100,000 
children

All Boys Girls All Boys Girls

2017 21 14 7 12.9 16.8 8.8

2018 25 13 12 15.5 15.7 15.3

2019 36 14 22 22.4 17.0 28.1

2020 46 22 24 28.7 26.8 30.8

2021 28 19 9 17.6 23.3 11.6

2022 27 14 13 17.0 17.2 16.8

Total 183 96 87 19.0 19.5 18.6

TABLE 2 Incidence of type 1 diabetes mellitus per 100,000 children per 
year by age groups in the period from 2017 to 2022.

Year

Number of diagnosed 
typed 1 diabetes by 

aged specific groups

Incidence per 100,000 
children in aged 
specific groups

0–4 5–9
10–
14

0–4 5–9
10–
14

2017 4 6 11 7.6 11.3 19.5

2018 6 6 13 11.5 11.3 23.1

2019 8 12 16 15.3 22.7 28.6

2020 11 15 20 21.2 28.6 35.9

2021 6 9 13 11.7 17.3 23.5

2022 4 10 13 7.8 19.2 23.5

Total 39 58 86 12.5 18.4 26.1
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gender and admission status, as Pearson’s Chi-square test was 1.327, 
p = 0.249 (Table 3).

In further statistical analysis, we  also took into account the 
distribution of ketoacidosis according to severity of it, based on blood 
pH and serum bicarbonate concentration (16). Mild ketoacidosis is 
defined as pH < 7.3 and serum bicarbonates HCO3

− < 15 mEg/L, 
medium is defined as pH < 7.2 and serum bicarbonates HCO3

− 
< 10 mEg/L, and severe as pH < 7.1 and serum bicarbonates 
HCO3

− < 5 mEg/L. Table 4 shows the distribution of ketoacidosis by 
severity for every year of observed period.

Of the total number of ketoacidosis (73), which amounted to 
be the 39.9% of all cases of newly diagnosed diabetes mellitus type 1 in 
the period from 2017 to 2022 in the Republic of Srpska, the largest 
frequency was severe ketoacidosis (15.3% in total). The table shows 
that the percentage of ketoacidosis in total comparing to the number 
of all newly diagnosed type 1 diabetes, was higher in the period 2017–
2019, or the pre-COVID-19 period. However, the most severe forms 
of ketoacidosis are significantly more prevalent in the COVID-19 
period compared to the pre-COVID-19 period, while frequency of the 
mild forms of ketoacidosis have decreased in COVID-19 period 
compared to the total number of newly diagnosed type 1 diabetes.

Upon admission to hospitals in children diagnosed with 
ketoacidosis, the average value of HbA1c was 12.02%, while in 
children diagnosed only with hyperglycemia, HbA1c was 10.72%. 

Also, the average BMI was lower in children diagnosed with 
ketoacidosis (16.64 kg/m2), comparing to the children diagnosed only 
with hyperglycemia on admission (18.23 kg/m2). We also analyzed if 
there was dependence of the severity of ketoacidosis by gender 
(Pearson Chi-Square 0.082, p = 0.960), as well as the year of admission 
(Pearson Chi-Square 5.794, p = 0.670), however, we did not obtain 
valid statistical significance between these variables.

3.4. Number of newly diagnosed cases per 
month of the years

In Figure 2, we see the distribution of newly diagnosed diabetes 
in children aged 0–14 according to the months of the year. It is noted 
that the largest number of newly diagnosed cases is in the winter 
months (December–March). In these periods, viral infections are 
commonly present, and it can be  a trigger for the occurrence of 
diabetes in children (17), and this also coincides with the periods of 
the greatest restrictive measures during the COVID-19 pandemic in 
the Republic of Srpska.

4. Discussion

According to the results obtained in this study, we see that the 
incidence of diabetes mellitus type 1  in the period 2017–2022 
increased compared to the period from 2001–2016, from 11/100,000 
to 19.5/100,000 children aged 0–14 per year. The linear trend was 
observed in the period 2001–2016 (r = 0.71, p ≤ 0.002) (4). Due to the 
small number of observed years (n = 6) in the period from 2017 to 
2022, we  did not obtain statistically significant results that would 
confirm a linear trend in this period (r = 0.31, p ≤ 0.54). Combining 
the results from these two periods would probably yield statistically 
significant linear trends and this could be a topic for future research. 
The IDF estimates that in Bosnia  and  Herzegovina in 2021 the 
incidence rate is less than 10/100,000 children aged 0–14 (9), which 
does not correlate with our findings. This discrepancy is explained by 
the complicated state structure of Bosnia and Herzegovina, and the 
absence of a single national register of diabetes patients in the country, 
which would collect data in one place and facilitate planning and 
prevention of this disease (18). The annual growth of incidence is in 
line with study models that predict that by 2040, the number of people 

FIGURE 1

Incidence per 100,000 children in period of 2017–2022 in the 
Republic of Srpska, where we can see the linear trend till 2020, and 
decreasing in years after.

TABLE 3 Number of ketoacidosis by age groups and years.

Year

Total number of newly diagnosed type 1 diabetes 
by specific age groups

Number of diagnosed ketoacidosis upon admission 
by specific age group (% of total number of newly 

diagnosed type 1 diabetes in that age group)

0–4 5–9 10–14 TOTAL 0–4 5–9 10–14 Total

2017 4 6 11 21 1 (25%) 3 (50%) 7 (63.6%) 11 (52.4%)

2018 6 6 13 25 3 (50%) 2 (33.3%) 8 (61.5%) 13 (52%)

2019 8 12 16 36 1 (12.5%) 2 (16.7%) 6 (37.5%) 9 (25%)

2020 11 15 20 46 4 (36.4%) 8 (53.3%) 6 (30%) 18 (39.1%)

2021 6 9 13 28 1 (16.7%) 5 (55.6%) 7 (53.8%) 13 (46.4%)

2022 4 10 13 27 1 (25.0%) 4 (40.0%) 4 (14.8%) 9 (33.3%)

Total 39 58 86 183 11 (28.2%) 24 (41.4%) 38 (44.2%) 73 (39.9%)
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suffering from diabetes mellitus type 1 will increase by 49% compared 
to 2020 (19). If we follow these trends in Bosnia and Herzegovina, 
there will be the increase not only in the incidence of diabetes but also 
in the number of ketoacidosis that will manifest when new cases are 
diagnosed. Currently, with an incidence of 19.5/100,000 children per 
year for the age group of 0–14 years in the period 2017–2022 
we  entered the group of high-risk countries for diabetes type 1 
according to the WHO classification.

In comparison with available data from neighboring countries 
and regions, the incidence of type 1 diabetes mellitus in the Republic 
of Srpska is higher than in Serbia (14.3/100,000 for the period 2007–
2017), Montenegro (19.2/100,000 for the period 2016–2020), Croatia 
(17.2/100,000 for the period 2004–2012), Vojvodina (11.9/100,000 for 
the period 2017–2021) (20–23). Our finding shows that the highest 
incidence of 28.7/100,000 was recorded in the first year of the global 
COVID-19 pandemic, i.e., in 2020, and compared to 2019, it increased 
by 28.13%. Growth trend like this, and even greater, can be  also 
observed in the available data from the countries of the region. The 
recorded growth can be interpreted as the influence of external factors 
such as fear of the unknown, limited movement, reduction of contacts, 
increased intake of sweets in conditions of isolation, home learning. 
Other possible explanation is that the exposure to COVID-19 
accelerate the onset of type 1 diabetes mellitus in children (11). The 
acceleration of the onset leads to more newly diagnosed patients in 
2020 and fewer in 2021, and the fact that both of these years deviate 
from the linear trend seen in the years before 2020 suggests that 
COVID-19 can accelerate the onset of the type 1 diabetes. Also, this 

explains the decrease in 2021. Besides that, the decrease in incidence 
in 2021 can also be explained by the fact that the COVID-19 restrictive 
measures in this year were not so strict and the population got used to 
it. The children returned to their school duties, but still wore masks 
and thus protected themselves not only from COVID-19, but also 
from other common viruses that can be a trigger for a newly onset of 
type 1 diabetes (15). Another possible explanation of the decrease of 
newly diagnosed type one diabetes in 2021 is that in 2020 people 
started using more vitamin and mineral supplements and boosted 
their immune system. Effect of that supplement usage presented in 
2021  in full potential. Connection between using the vitamins 
supplement during the COVID-19 pandemic and the onset of type 
one diabetes can be subject of some other research.

Out of the total number of patients, 39.9% were admitted with 
symptoms of ketoacidosis in this period as our results show. In 
America, new cases of ketoacidosis increased from 31 to 51% from 
2008 to 2017, in Canada, the prevalence increased from 18.6 to 25.6% 
(12, 24). The percentage of children and adolescents presenting in a 
state of ketoacidosis at the time of diagnosis also varies between 
countries and depends on the average income. According to 
predictions, in poorer countries (in low-income countries) new 
patients with ketoacidosis should decrease from 80% in 1990 to 40% 
in 2050, while in highly developed countries the number of children 
should decrease to 20–30% in 2050 (3). Children may be misdiagnosed 
as newly diagnosed diabetes mellitus type 1 due to initial non-specific 
symptoms, which happened in as many as 24% of cases in America. 
In poorer countries, the percentage of wrong diagnosis is even higher. 
The highest percentage of newly diagnosed cases of ketoacidosis is 
expected in Africa and Asia, that is, countries with low incomes and 
poor countries (19).

Most of the published studies, which are still limited, record the 
increase in the incidence of type 1 diabetes and ketoacidosis during 
the pandemic period. We investigated the period before, during and 
after COVID-19 global pandemic and recorded a significant increase 
in the number of patients in the year of 2020 compared to previous 
years, and in 2021 we recorded a significant decrease in new cases. 
Also, a higher percentage of severe ketoacidosis was observed in the 
pandemic years compared to the previous period. Regular check-ups 
at physician were not possible due to the COVID-19 pandemic, so the 
parents probably overlooked the first symptoms of diabetes in 
children, and that could lead to increase number of severe ketoacidosis. 
In our country only one child had COVID-19 infection together with 
newly diagnosed type 1 diabetes. In that case COVID-19 was 
diagnosed on routine check-up after the patient admitted to hospital 
with the symptoms of severe ketoacidosis. In this patient the mild 
symptoms of COVID-19 infection did not require the steroids therapy. 
Since the serological assay for COVID-19 antibodies were not 
conducted on all newly diagnosed patient with type one diabetes, 
we do not have enough data that could connect the steroids usage as 
part of COVID-19 treatment and onset of type one diabetes. In 
America, only 4 children out of 187 patients (2.1%) had a COVID-19 
infection at the time of illness. The results of this study are the most 
similar to ours, as the five-year retrospective incidence of type 1 
diabetes before COVID-19 was shown, and it was showing the linear 
growth This growth continued during the COVID-19 pandemic, 
where the number of patients in a state of ketoacidosis also 
increased (25).

TABLE 4 Number of ketoacidosis by severity per year (% of ketoacidosis 
in the total number of newly diagnosed cases per year).

Year Mild Medium Severe Total

2017 3 (14.3%) 3 (14.3%) 5 (23.8%) 11 (52.4%)

2018 6 (24.0%) 3 (12.0%) 4 (16.0%) 3 (52.0%)

2019 5 (13.8%) 2 (5.6%) 2 (5.6%) 9 (25.0%)

2020 5 (10.7%) 7 (15.2%) 6 (13.0%) 18 (39.1%)

2021 2 (7.1%) 5 (17.9%) 6 (21.4%) 13 (46.4%)

2022 2 (7.4%) 2 (7.4%) 5 (18.5%) 9 (33.33%)

Total 3 (12.6%) 22 (12.0%) 28 (15.3%) 73 (39.9%)

FIGURE 2

Number of newly diagnosed type 1 diabetes per month of diagnosis 
in period 2017–2022 in the Republic of Srpska.
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The results of the study in Canada did not show an increase in 
incidence of type 1 diabetes during the COVID-19 period, compared 
to pre-COVID-19 period. In Canada, a significant increase in the 
frequency of ketoacidosis among new patients was recorded in the 
pandemic compared to the pre-pandemic period (68.2% compared to 
45.6% in the pre-pandemic period with p < 0.001) (13). The largest 
Polish National Diabetes Center did not record a statistically 
significant increase in 2020 compared to 2019, but a significant 
increase in diabetic ketoacidosis was recorded (35.2–47.53%, p < 0.05), 
which was accompanied by a significant increase in average HbA1c 
and pH values (26).

It will be interesting to observe the incidence in the next few years, 
in which we will get confirmation of whether COVID-19 accelerates 
the onset of type 1 diabetes. Our results show that this global 
pandemic has impacted the incidence of type 1 diabetes as well as the 
frequencies of ketoacidosis in our region. The exact mechanism of this 
influence has yet to be investigated.

5. Conclusion

The trend of increasing incidence of diabetes in the world is a 
well-known fact. However, what is worrying are prognostic data, 
according to which there will be even greater growth by 2050. In 
Republic of Srpska, as part of Bosnia and Herzegovina which is middle 
income country (27), it is expected that this increase should be higher 
than the European average, while the results of this study for the 
period 2017–2022 put us in the European average. Of particular 
concern is the fact that the average rate of increase in the incidence of 
type 1 diabetes in our region has significantly increased compared to 
previous observed periods in all age groups.

One of the ways of preventing diabetic ketoacidosis, which can 
be applied in all countries, is the education of the entire population 
on recognizing the symptoms of diabetes. This is especially 
important for any state of emergences such as the pandemic period, 
and therefore efforts should be made at the national level to prevent 
the occurrence of diabetic ketoacidosis. In case of any future 
pandemic, we should expect the higher number of newly diagnosed 
type 1 diabetes, and therefore the increased frequencies of 
ketoacidosis that could additionally burden the health systems, 
which are vulnerable in periods like this. So, findings of our research 
should warn us to have action plans in periods like this. Also, the 
prevention of the increase in the incidence of type 1 diabetes mellitus 
should be reflected in changing lifestyle habits, improving the quality 
of life through healthy eating and increased physical activity among 
young people.
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Background: Since the COVID-19 pandemic outbreak, diabetes mellitus (DM)

has been at the core of the confirmed risk factors for fatal or critical care unit-

treated COVID-19 and COVID-19 related complications. Although relevant

studies on DM have developed rapidly during the COVID-19 pandemic.

However, the aforementioned research results have not been systematically

quantified by means of bibliometric analysis.

Purpose: The purpose of this study is to provide a comprehensive analysis of the

current status and trends of publications related to DM research during the

COVID19 epidemic.

Methods: A bibliometric analysis was performed using the Web of Science

database. In this study, we used citespace, R software and R-Bibliometrix to

analyze keywords, most-cited authors, most-cited countries, most-cited global

documents, and co-occurrence and co-citation networks.

Results: A total of 1688 publications was included in this study. Investigators from

the United States contributed the most publications. The United States, China

and Europe have the most collaboration with the other countries/regions. A total

of 3355 institutions made contributions to this study. Of the top 10 institutions

with the most publications, N8 Research Partnership showed the most centrality.

Among the top 10 journals, Diabetes Research and Clinical Practice published the

most articles. Among authors included, Khunti Kamlesh is rated first with 27

papers and has the highest centrality. The most frequently co-cited article is

entitled “Clinical course and risk factors for mortality of adult inpatients with

COVID-19 in Wuhan, China: a retrospective cohort study”. The most popular

keywords included diabetes, mortality, diabetes, outcome, occurrences, risk, and

type 1 diabetes.

Conclusion: This bibliometric study provides an overall picture of DM research

and research trends during the COVID-19 pandemic and provides a basis for

researchers to develop their next research strategies.
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diabetes, COVID-19, bibliometric analysis, scientific collaboration, research trends
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Introduction

The SARS-CoV-2 virus is acknowledged to be the causative agent

for the acute respiratory infectious disease which has been named as

coronavirus disease 2019 (COVID-19) by The World Health

Organization Since 2019 (1, 2). In the three years to 24 June 2023,

over 640 million clinically diagnosed infections have been reported

on a global scale with 6.6 million coronavirus deaths, according to

World Health Organization survey (3). To individuals, infection of

COVID-19 wreaks havoc on health, and it also contributes an

enormous burden to national health delivery system. We have

witnessed high incidence of susceptibility crowd of COVID-19.

Nonetheless, the prognosis of the elderly and patients with chronic

diseases, such as cardiovascular or respiratory dysfunction, diabetes

and cancer, seems to be significantly worse comparing with others

with COVID-19 infection (4, 5).

By conducting researches of different scales in people of different

racial origins, diabetes, as one of the most common chronic diseases

worldwide, has been proven to be one independent risk factor

associated with critical infection of COVID-19. Due to the damage

of immune response, diabetic patients are susceptible to diverse types of

infection, and may be at heightened risk for severe illness and more

death (6). In a large-scale observational study conducted by Sweden,

the proportion of critical cases with T2D was reported to be more than

that in non-T2D patients after adjusting for age, gender socio-

demographic factors, drug treatment and multiple comorbidities (7).

Although the pathophysiological mechanisms between COVID-19 and

diabetes are still being further explored, studies have confirmed the

existence of a bidirectional interaction between the two disease states,

with the relevant pathways mainly involving stress-induced pathways.

Bibliometric analysis is an interdisciplinary approach to conduct

quantitative literature research. Based on published literature and

references, researchers use this statistical analysis tool to establish

connections between published literature and research hotspots and

trends in certain academic fields, thus providing a quantitative

investigation of the trends of a research topic (8). Compared with

traditional reviews, bibliometric analysis has shown greater

advantages in objectively presenting the internal conceptual

structure and potential associations of a large body of literature.

Despite the extensive research on DM conducted by scholars during

the COVID-19 pandemic, there is still a lack of quantitative analysis

to show the current status of the DM research literature related to

COVID-19 to have a complete understanding of the relationship

between the two. We aim to predict the publication trends in this

research area by analyzing the countries, institutions, partnerships,

co-cited papers and keywords of the published DM-related articles

during the COVID pandemic based on the current research results.
Method

Data sources and search strategies

Web of Science Core Collection (WOS) database is commonly

adopted to be used in bibliometric analysis, which provides

comprehensive and multidisciplinary information statistically
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analysis (9). We comprehensively searched the included literature

in the WOS database by publication time. All the relevant articles

related to Diabetes and COVID-19 from 2019 to 2023 were

searched (on June 24, 2023) by use of MeSH words. In this study,

the following retrieval strategy was used: TI=(diabetes) AND (TI=

(COVID 19) OR TI=(2019 novel coronavirus) OR TI=

(coronavirus19) OR TI=(coronavirus disease 2019) OR TI=(2019-

novel CoV) OR TI=(2019 ncov) OR TI=(COVID 2019) OR TI=

(coronavirus 2019) OR TI=(nCoV-2019) OR TI=(ncovid19) OR

TI=(2019-ncov) OR TI=(COVID-19) OR TI=(Severe acute

respiratory syndrome coronavirus 2) OR TI=(SARS-CoV-

2)).Literature restricted to the language and article type were

further excluded. The detailed exclusion criteria were listed as

follows: (1) meeting abstract, letter, editorial material, early

access, corrections that were published as articles (2) the article

was not written in English. Along the line, two researchers

performed the literature search separately. Figure 1 showed the

research flow chart.
Statistics and analysis

CiteSpace (6.1.R3) was used to analyze the included literature

with the strongest citation bursts. By using CiteSpace (6.1.R3), co-

citation analysis on countries, regions or institutions, co-citation

analysis, biplot overlay of journals, and timeline view were

performed. VOSviewer (1.6.18) was employed to provide

visualization of publicly available data via analysis of bibliographic

coupling, co-referencing or co-authorship affiliations. We carried out

trend plots by analyzing the keywords’ frequency using R software

and the Bibliometrix package.The Bibliometrix package also was used

to show the evolution of keyword topics over time and to make

visualization of the features of the published issues.
Results

General characteristics of publications

As shown in Figure 1, a review of papers published from 2019 to

2023 was conducted, and 2749 publications were available by the

search terms. Then we screened out 77 publications in languages

other than English. Simultaneously, 979 publications (including

conference abstracts, letters, editorial materials, early access, and

corrections) were filtered out, resulting in a total of 1693

publications afterwards. After loading the data into CiteSpace, five

publications in which there were formatting errors or duplicates were

filtered out, resulting in a total of 1688 publications for inclusion in

this study. The included publications had a total of 28921 citations,

with an average of 17.13 citations per paper, and an H-index of 73.
Countries/regions

Publications included were from 112 countries or regions.

Investigators from the United States contributed the most
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publications (n=341, 20.20% of the total; 5387 citations, mean 15.80

citations per paper), followed by China (n=172, 10.19%; 5423

citations, mean 31.53 citations per paper) and India (n=164,

9.72%; 4402 citations, mean 26.84 citations per paper)

(Figure 2A). A total of 354 links and 112 nodes are depicted in

Figure 2B to show the collaborative network between countries/

regions. Each node symbolizes a country/region with a size

proportional to the number of publications. The links between

nodes represent the extent of collaboration between countries/

regions. Of the top 10 countries/regions publishing the most

papers, the Australia(0.24) displayed with the highest centrality,

with USA and Italy(0.06) being the next highest, as shown in

Table 1. Figures 2C, D display international collaboration

between nations/regions. Of the top 10 published countries/

regions, China, the United States and European countries have

the most collaboration with the other countries/regions. Figure 2E

shows that the tendency for global collaboration has become

evident in targeting COVID-19.
Institutions

A total of 3355 institutions worldwide made contributions to

these 1688 publications. CiteSpace generated a graphical visualization

of the network of institutional collaborations, as shown in Figure 3.

Those top 5 institutions with the most papers (Table 2) were the

University of London, UDICE French Research University, Egyptian

Knowledge Bank (EKB), Huazhong University of Science

Technology, Institut National De La Sante Et De La Recherche

Medicale (INSERM). The betweenness centrality (BC) value is a

metric to assess the nodes’ importance in a collaborative network. Of
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the top 10 institutions with the most publications, N8 Research

Partnership showed the highest centrality (0.03), which was followed

by the University of London, Universite Paris Cite and University of

Oxford (0.02) as the most collaboration-oriented university.
Authors and co-citation authors

Figure 4A delineates the collaborative network among authors who

authoredmore than 3 papers, with 334 authors conducting research on

diabetes and COVID-19 from 2019 to 2023. In Table 3, Khunti

Kamlesh is rated first with 27 papers. He has the most published

papers in the field. and has the highest centrality (0.04). Through

analysis of authors’ co-citation networks, those with more than 20

citations were defined as key researchers (Figures 4B, C): Connections

indicate collaboration between authors, and the size of the circles

represents the amount of citations. Total link strength (TLS) indicates

the impact of an author’s publication on other contributing authors.

The highest number of co-citations was recorded for Yang JK (n=410),

followed by Guan WJ (n=327). The top 3 authors having the highest

TLS were Yang JK, Guan WJ and Zhou F (Table 3).
Journals

From 2019 to 2023, 1,688 research articles related to COVID-19

and diabetes were published in 512 journals, 74 of which contained at

least 5 articles. The 10 journals with the most published articles are

listed in Table 4. Diabetes Research and Clinical Practice published the

most articles (n=101), followed by Diabetes Metabolic Syndrome

Clinical Research and Frontiers in Endocrinology (n=77 and 56,
FIGURE 1

Flow chart of the data identification and screening results.
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respectively). Additionally, the annual incidence of these 10 journals

was generated by R-Bibliometrix to get a more specific picture of the

trends in the number of publications of these journals across years

(Figure 5A). A network visualization of the journal co-citation analysis

was produced by VOS viewer, as shown in Figures 5B, C. Only journals
Frontiers in Endocrinology 0486
that were visually cited at least 20 times were listed. Among the 461

journals that met the criteria, the top 3 journals that were frequently

co-citation were DIABETES CARE (3435 times), DIABETES

RESEARCH AND CLINICAL PRACTICE (1980 times), and NEW

ENGLAND JOURNAL OF MEDICINE (1573 times) (Table 4).
TABLE 1 Top 10 countries/regions publishing the most papers in the field.

Rank Country
No of Arti-

cles
Citations

Average Article
Citations

H-
index

Frequence MCP_Ratio Centrality

1 USA 341 5387 15.80 36 20.20% 0.177 0.06

2
PEOPLES R
CHINA

172 5423 31.53 29 10.19% 0.151 0

3 INDIA 164 4402 26.84 30 9.72% 0.159 0

4 ENGLAND 162 3435 21.20 28 9.60% 0.355 0.03

5 ITALY 162 4015 24.78 31 9.60% 0.183 0.06

6 SAUDI ARABIA 72 654 9.08 15 4.27% 0.346 0.03

7 IRAN 68 559 8.22 13 4.03% 0.23 0

8 GERMANY 64 1450 22.66 19 3.79% 0.268 0

9 SPAIN 62 874 14.10 14 3.67% 0.114 0.03

10 AUSTRALIA 60 505 8.42 13 3.55% 0.257 0.24
B

C

D

E

A

FIGURE 2

Cooperation network between countries. (A) The total publication number, total citations, average citation per paper, and H-index of the 10 most
productive countries/regions; (B) The country collaboration network generated by Citespace; (C, D): The country collaboration plotted on the world
map; (E) Collaborative research between countries.
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Dual-map overlays

The literature of cited journals makes up the reference

knowledge base, and the field of study of a highly cited journal

represents an active interest or emerging field. We mapped and

outlined the literature co-citation relationships for journal research

areas using CiteSpace, with a graph of citing journals on the left and

a graph of cited journals on the right. Remarkably, the colored paths

shown in Figure 6 represent citation relationships in fields of highly

active research. Published articles are concentrated in journals in

the area of medicine, medical, and clinical, while most of the cited

articles are published in journals in the area of molecular, biology,

genetic, and health, nursing, and medicine.
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Analysis of co-cited reference

In Figures 7A, B, a map of the 340 co-cited references that were

cited more than 20 times is depicted. A cited reference is each

represented by a node. The amount of co-cited references is

characterized by the size of the node. Cross-references are

indicated by the links between the nodes. The wider the

connection, the higher the frequency of co-citations is indicated.

The five most frequently co-cited references are listed in Table 5.

The most frequently co-cited article is the article by Fei Zhou (2020)

published in The Lancet (10), entitled “Clinical course and risk

factors for mortality of adult inpatients with COVID-19 in Wuhan,

China: a retrospective cohort study”. Then followed by Guo WN
TABLE 2 Top 10 institutions with the most papers in the field.

Rank Institution
No of
Articles

Citations
Average
Article

Citations

H-
index

Frequence Centrality

1 UNIVERSITY OF LONDON 44 651 14.80 14.8 2.61% 0.02

2 UDICE FRENCH RESEARCH UNIVERSITIES 37 1431 38.68 17 2.19% 0

3 EGYPTIAN KNOWLEDGE BANK EKB 35 426 12.17 12 2.07% 0

4
HUAZHONG UNIVERSITY OF SCIENCE

TECHNOLOGY
34 3188 93.76 19 2.01% 0

5
INSTITUT NATIONAL DE LA SANTE ET DE LA

RECHERCHE MEDICALE INSERM
34 1200 35.29 14 2.01% 0

6 UNIVERSITY OF LEICESTER 33 1579 47.85 14 1.96% 0

7 UNIVERSITY OF CALIFORNIA SYSTEM 32 549 17.16 11 1.90% 0.01

8 N8 RESEARCH PARTNERSHIP 31 299 9.65 11 1.84% 0.03

9 UNIVERSITE PARIS CITE 28 1305 46.61 15 1.66% 0.02

10 UNIVERSITY OF OXFORD 28 379 13.54 10 1.66% 0.02
FIGURE 3

Cooperation network between major institutions.
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(2020), entitled “Diabetes is a risk factor for the progression and

prognosis of COVID-19” was published in Diabetes Metab Res Rev

(11); Yang JK(2010), entitled “Binding of SARS coronavirus to its

receptor damages islets and causes acute diabetes” was published in

acta diabetol (12); Barron E(2020), entitled “Associations of type 1

and type 2 diabetes with COVID-19-related mortality in England: a

whole-population study” was published in lancet diabetes endo and

Wu ZY (2020), entitled “Characteristics of and Important Lessons

From the Coronavirus Disease 2019 (COVID-19) Outbreak in

China: Summary of a Report of 72 314 Cases From the Chinese

Center for Disease Control and Prevention”was published in JAMA

(5, 13).
Keywords

Table 6 shows the frequency of common occurrences of the top

10 key words. The most frequent word was diabetes mellitus (330

occurrences), followed by mortality (249 occurrences), mellitus

(195 occurrences), outcome (183 occurrences), risk (168

occurrences), and type 1 diabetes (144 occurrences). Keywords

with high centrality indicate hot spots in the field, with values

between 0 and 1. In terms of centrality, the top 10 keywords were

England, risk factors, coronavirus, pneumonia, mortality,

coronavirus disease 2019, onset, impact, mellitus and receptor.

The keyword cluster plots for COVID-19 and diabetes are shown
Frontiers in Endocrinology 0688
in Figure 8A. The analysis of keywords was based on log-likelihood

test cluster analysis of keyword co-occurrence analysis. There were

10 clusters obtained in this study. Details are shown in Figure 8B.

the Q value (cluster module value) was 0.7892, indicating a

significant clustering structure. In addition, the S-value, the mean

profile value, was 0.9418, which indicated that the cluster members

were highly homogeneous. The first 10 keyword clusters were

chosen for analysis and are presented in Table 7. they are “covid-

19 pandemic”, “angiotensin-converting enzyme 2”, “diabetic

ketoacidosis”, “ wuhan”, “diabetes distress”, “type 1 diabetes”,

“diabetes mellitus”, “ inflammation”, “ risk factors”, “gestational

diabetes”. The values for each cluster profile are greater than 0.5,

suggesting a high degree of homogeneity and consistency in the

clusters. Figure 8C shows the top 50 terms with the most intense

outbreaks in the field. Figure 8D describes the trend of hot topics of

the literature on COVID-19 and diabetes during 2020-2023.
Burstiness of keywords

CiteSpace was used for keyword burst detection (Figure 9).

Keyword burstiness allows for representing new academic trends,

foreshadowing future frontier research avenues, and highlighting

potential topicalities in a discipline. Burstiness detection is shown as

the red section of the blue timeline, indicating the onset year, finish

year, and duration of the burst. A blue line is shown for the time
B C

A

FIGURE 4

Map of collaboration networks of co-author analysis (A) Network visualization map of authors; (B, C) Overlay visualization map of authors. Network
map showing authors’ collaborations.
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line. We were particularly attracted to terms that were of research

relevance in the top 25 keywords with the greatest outbreak

intensity. These terms are representative of research trends for

both the COVID-19 and diabetes fields (Figure 8). From 2020 to

2023, the highest outbreak intensity was observed for pneumonia

(11), followed by receptors (6.56) and coronavirus (6.22). It is

noteworthy that the burst of resistance and outbreak still continues.
Discussion

Since the COVID-19 pandemic, diabetes has been identified as a

significant risk factor for increased mortality from severe COVID.

To investigate the relationship between these two disease states,

researchers have conducted a large number of studies and published

numerous articles. This is the first time that a bibliometric review of

all publications related to DM and COVID-19 has been conducted.

The most published journals and the most cited articles were

identified. The collaboration relationships across countries are

depicted, and significant subjects in the field of research are

discussed. Analysis of the leading journals and the most cited
Frontiers in Endocrinology 0789
articles worldwide assisted in identifying potentially influential

articles in the area. The networks of collaboration, trending

keywords and thematic trends can be used as a reference for

future research. In this study, a collection of 1688 articles was

collected from the Web of Science Core Collection database. The

United States published 341 papers related to diabetes and COVID-

19 in the past three years, making it the country with the most

research in related fields, followed by China (172 papers) and India

(164 papers). Although the US was higher than China in terms of

total number of papers, China ranked higher than the US in terms

of total and average citation rates. We note that the 172 papers

published by Chinese researchers in high impact factor journals

include a large number of highly cited articles, and two of them have

citation rates above 500 (14), suggesting the strong academic

influence of China in the relevant research areas.

According to the latest data from the International Diabetes

Federation, there are about 463 million people with diabetes

worldwide, and the number is expected to reach 550 million in

2030, with China ranking first in the world in the number of people

with diabetes (15, 16). The prevention and treatment of diabetes has

become one of the common public health problems faced by the
TABLE 3 Leading authors in the field.

Rank Author No of Articles Citations Average Article Citations H-index Frequence Centrality

1 Khunti K 27 1540 57.04 12 1.60% 0.04

2 Cariou B 16 855 53.44 9 0.95% 0.01

3 Misra A 16 1554 97.13 12 0.95% 0.01

4 Gourdy P 15 854 56.93 9 0.89% 0.01

5 Wargny M 15 854 56.93 9 0.89% 0.01

6 Hadjadj S 14 845 60.36 8 0.83% 0.01

7 Holl RW 13 103 7.92 6 0.77% 0

8 Schiaffini R 12 288 24.00 7 0.71% 0

9 Schaan BD 11 158 14.36 4 0.65% 0

10 Yang Y 11 410 37.27 5 0.65% 0

Co-citation authors in the field

Rank Author Co-citations Total link strength

1 Yang Jk 410 10181

2 Guan Wj 327 6915

3 Zhou F 303 6557

4 Singh Ak 295 6522

5 Guo Wn 250 5613

6 Bornstein Sr 244 5613

7 Pal R 243 4975

8 Fadini Gp 188 4858

9 Sardu C 181 4725

10 Cariou B 202 4664
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world (16, 17) By analyzing the data collected by the World Health

Organization (WHO), we found that consistent with the results of

the bibliometric analysis of those other COVID-19 studies not

related to DM, the United States had the most studies on DM and

COVID-related aspects, followed by China. Through bibliometric
Frontiers in Endocrinology 0890
statistical analysis, we found that the majority of articles in relevant

research publications on DM and COVID were also from the

United States and China (18, 19). The analysis of research

collaboration networks helps researchers to scientifically assess

the next step in the scientific collaboration process and to select
TABLE 4 Top 10 journals with the most published and co-cited articles in the field.

Rank Journal
No of
Articles

Citations
Average Article

Citations
h-

index
Frequence

1 DIABETES RESEARCH AND CLINICAL PRACTICE 101 2399 23.75 27 5.98%

2
DIABETES METABOLIC SYNDROME CLINICAL

RESEARCH REVIEWS
77 3858 50.10 27 4.56%

3 FRONTIERS IN ENDOCRINOLOGY 56 641 11.45 15 3.32%

4 DIABETES CARE 40 2095 52.38 23 2.37%

5 PRIMARY CARE DIABETES 37 309 8.35 10 2.19%

6 ACTA DIABETOLOGICA 34 526 15.47 14 2.01%

7
INTERNATIONAL JOURNAL OF ENVIRONMENTAL

RESEARCH AND PUBLIC HEALTH
29 108 3.72 6 1.72%

8 CUREUS JOURNAL OF MEDICAL SCIENCE 27 33 1.22 4 1.60%

9 DIABETIC MEDICINE 21 339 16.14 10 1.24%

10 JOURNAL OF DIABETES AND METABOLIC DISORDERS 18 104 5.78 6 1.07%

Co-citation journals in the field

Rank Journal
Co-cita-
tions

Total link
strength

1 DIABETES CARE 3435 143531

2 DIABETES RES CLIN PR 1980 85886

3 NEW ENGL J MED 1573 76800

4 LANCET 1461 70439

5 DIABETES METAB SYND 1789 68390

6 JAMA-J AM MED ASSOC 1308 62039

7 LANCET DIABETES ENDO 1250 54733

8 DIABETOLOGIA 908 47521

9 PLOS ONE 672 37856

10 NATURE 534 36196
B CA

FIGURE 5

Map of collaboration networks of journal analysis. (A) The annual and cumulative numbers of research articles of journals; (B, C) The network
visualization diagram of journal co-citation analysis of generated by VOSviewer. Overlay visualization map of journals.
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key collaborators. The analysis of this study found that among

countries, China, the United States, and Europe collaborate most

closely with other countries/regions, which may be related to their

better economic status and higher research expenditures. In

contrast, other developing countries remain the weak link in the

current global collaboration due to their poorer economic level and

insufficient research investment and infrastructure. This

information may be crucial for researchers to select countries for

further study exchanges or research collaborations.

At the research institution level, University of London, UDICE

French Research University, Egyptian Knowledge Bank (EKB),

Huazhong University of Science Technology, Institut National De

La Sante Et De La Recherche Medicale(INSERM) are the five

institutions with the highest number of COVID-related

publications among all institutions. In England, there is a close

interaction and cooperation between institutions, and N8 Research

Partnership shows a central position. In terms of the number of

published articles, the top ten research institutions are mainly

universities of various countries, which may be related to the fact

that universities invest more time, energy and resources in scientific

research than other institutions and their relative emphasis on

talent development. As far as the authors are concerned, Khunti

Kamlesh has published a total of 27 papers and has made significant

contributions to the field related to COVID and DM. Khunti
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Kamlesh’s study on COVID-19 and DM primarily suggests that

diabetes is an independent factor for in-hospital mortality in

COVID-19 (5).

It was found that increased mortality associated with COVID-

19 was associated with distant complications of diabetes, mainly

with cardiovascular and renal complications. In addition, glycemic

control and BMI were independent risk factors for elevated

COVID-related mortality (20). Considering the continued

epidemiological trend of COVID-19 and the continued increase

in the prevalence of diabetic patients in the future, these findings are

crucial for researchers to choose and adjust the future direction of

their studies. By analyzing the co-cited articles of the authors, we

found that Yang JK showed the greatest number of co-citations

(n=410), followed by GuanWJ (n=327). Yang’s study demonstrated

that diabetes and environmental hyperglycemia were independent

predictors of morbidity and mortality in SARS patients. The

prognosis of SARS patients can be improved by metabolic control

(21). A study by Zhou published in The Lancet showed risk factors

associated with in-hospital mortality in adults with COVID-19,

which was confirmed by the laboratories of Jinyintan Hospital and

Wuhan Pulmonary Hospital (10). The analysis of literature co-

citation rates and frequency of keyword occurrences can help to

understand the main research directions, research hotspots and

their evolution in related fields (22).
FIGURE 6

Dual map overlay of journals that contributed to publications on the use of artificial intelligence.
BA

FIGURE 7

Map of co-cited references. (A) The network visualization diagram of references co-citation analysis; (B) References co-citation density chart.
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Journal publication analysis can be useful in providing

information to help researchers selecting appropriate journals for

submitting their articles. In this research, the top 10 journals with

440 published articles related to DM and COVID-19 were found to

be subspecialty journals. This could be due to the need for clinicians

in this field to have subspecialty training. It is also exciting to note

that subspecialty journals are not the only journals that publish

relevant articles, but some general journals like Frontiers in

Endocrinology also publish similar articles. Through in-depth
Frontiers in Endocrinology 1092
analysis of keywords, we found that the primary keywords of

high frequency in the present research focus on “COVID-19 and

diabetes” were diabetes mellitus, mortality, mellitus, outcome, risk,

and type 1 diabetes. The report shows that “increased COVID-19-

related mortality associated with diabetes” is a hot topic for scholars

these years. The high centrality of keywords such as “angiotensin-

converting enzyme 2” and “inflammation” suggests that research on

diabetes and COVID has partially shifted from epidemiology to

pathogenesis studies. At this stage, there is also a significant increase
TABLE 5 Top 10 most frequently co-cited references.

Rank Author Year Journal Citations
Total
link

strength
Cited reference

1 Zhou F 2020 LANCET 297 4968
Clinical course and risk factors for mortality of adult inpatients with COVID-19 in
Wuhan, China: a retrospective cohort study

2 Guo Wn 2020
DIABETES-
METAB
RES

250 4430 Diabetes is a risk factor for the progression and prognosis of COVID-19

3 Yang Jk 2010
ACTA

DIABETOL
204 4008 Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes

4 Barron E 2020
LANCET
DIABETES
ENDO

203 3204
Associations of type 1 and type 2 diabetes with COVID-19-related mortality in
England: a whole-population study

5 Wu Zy 2020
JAMA-J
AM MED
ASSOC

201 3601
Characteristics of and Important Lessons From the Coronavirus Disease 2019
(COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the
Chinese Center for Disease Control and Prevention

6
Bornstein

Sr
2020

LANCET
DIABETES
ENDO

198 3438 Practical recommendations for the management of diabetes in patients with COVID-19

7 Yang Jk 2006
DIABETIC

MED
197 4026

Plasma glucose levels and diabetes are independent predictors for mortality and
morbidity in patients with SARS

8 Zhu Lh 2020
CELL

METAB
196 3262

Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and
Pre-existing Type 2 Diabetes
TABLE 6 Frequency and centrality of the top 10 key words.

Ranked by frequency

Rank Frequency Centrality Year Key word

1 330 0 2020 diabetes mellitus

2 249 0.2 2020 mortality

3 195 0 2020 mellitus

4 183 0.22 2020 outcome

5 168 0.22 2020 risk

6 144 0.07 2020 type 1 diabetes

7 131 0 2020 type 2 diabetes

8 124 0.36 2020 coronavirus

9 118 0.07 2020 glycemic control

10 110 0.45 2020 impact

(Continued)
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in concern for adolescents and type 1 diabetes. Basic research and

clinical trials related to the impact of the COVID-19 epidemic on

adolescents and young adults (23), the effect on mood, leading to

anxiety and depression (24), are actively being conducted along

with the ongoing epidemic of COVID. Several investigations

showed that non-enzymatic glycation of ACE2 receptors might be

the pathogenic reason of the deteriorating outcome of COVID-19

disease in diabetic conditions (25, 26). Through analysis of keyword

clusters, we identified that the hotspots of “COVID-19 and

diabetes” research focus on type 1 diabetes and pathogenesis

mechanism (angiotensin-converting enzyme 2, inflammation,
Frontiers in Endocrinology 1193
cell). Recent studies have found increased morbidity and

mortality in type 1 diabetes mellitus (T1DM) during the COVID-

19 epidemic (27). The mechanism may be related to the excessive

release of pro-inflammatory cytokines in the severe COVID-19

state. Notably, COVID-19 was demonstrated to lead to a severe

imbalance in glucose homeostasis. Glucotoxicity can then synergize

with inflammatory cytokine storms to promote oxidative stress,

stimulate immune dysregulation, impair endothelial cell function

and lead to a range of metabolic complications such as increased

risk of thromboembolism and multi-organ damage, causing

increased eventual patient mortality (28). It is a vicious circle. In
TABLE 6 Continued

Ranked by centrality

Rank Frequency Centrality Year Key word

1 3 0.92 2023 england

2 86 0.76 2020 risk factors

3 124 0.72 2020 coronavirus

4 66 0.69 2020 pneumonia

5 249 0.68 2020 mortality

6 57 0.6 2020 coronavirus disease 2019

7 4 0.59 2023 onset

8 110 0.57 2020 impact

9 195 0.55 2020 mellitus

10 56 0.55 2020 receptor
B

C D

A

FIGURE 8

Map of Keyword clusters analysis. (A) Visualization of keyword co-occurrence; (B) map of Keyword clusters analysis; (C) timeline map of keyword;
(D) word Cloud map regarding the keywords’ frequency of occurrence generated from R studio Documents menu of Biblioshiny package.
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addition, COVID-19 can bind to the angiotensin-converting

enzyme 2 (ACE2) receptor in pancreatic b-cells thereby leading

to pancreatic b-cell destruction, which in turn promotes the

development of diabetes (29). Also, some natural products such

as quercetin, curcumin or other hypoglycemic agents would

participant in COVID-19 and diabetes research (30–32).

Nevertheless, long-term follow-up studies are still needed to
Frontiers in Endocrinology 1294
assess the impact of COVID on the incidence, type, and

complications of diabetes.
Conclusion

This article provides the first presentation of a bibliometric

evaluation of the publications on diabetes and COVID-19. This

study also has some limitations, mainly in database selection,

literature omissions due to time point limitations and citation

analysis bias due to self-referencing. Despite these limitations, this

bibliometric study still provides an overall picture of DM research

and research trends during the COVID-19 pandemic and provides a

basis for researchers to develop their next research strategies.
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FIGURE 9

Visualization of Keyword Bursts.
TABLE 7 Top 10 keyword clusters in the field.

Cluster ID Size Silhouette Cluster name

0 21 0.94 covid-19 pandemic

1 21 0.919 ace2

2 16 0.985 diabetic ketoacidosis

3 16 0.856 wuhan

4 12 0.98 diabetes distress

5 12 0.963 type 1 diabetes

6 11 1 diabetes mellitus

7 11 0.892 inflammation

8 10 0.894 risk factors

9 10 1 gestational diabetes
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The intricate relationship between COVID-19 and diabetes has garnered 
increasing attention within the medical community. Emerging evidence suggests 
that individuals with diabetes may experience heightened vulnerability to 
COVID-19 and, in some cases, develop diabetes as a post-complication following 
the viral infection. Additionally, it has been observed that patients taking cough 
medicine containing steroids may face an elevated risk of developing diabetes, 
further underscoring the complex interplay between these health factors. Based 
on previous research, we  implemented deep-learning models to diagnose the 
infection via chest x-ray images in coronavirus patients. Three Thousand (3000) 
x-rays of the chest are collected through freely available resources. A council-
certified radiologist discovered images demonstrating the presence of COVID-19 
disease. Inception-v3, ShuffleNet, Inception-ResNet-v2, and NASNet-Large, four 
standard convoluted neural networks, were trained by applying transfer learning 
on 2,440 chest x-rays from the dataset for examining COVID-19 disease in the 
pulmonary radiographic images examined. The results depicted a sensitivity rate 
of 98 % (98%) and a specificity rate of almost nightly percent (90%) while testing 
those models with the remaining 2080 images. In addition to the ratios of model 
sensitivity and specificity, in the receptor operating characteristics (ROC) graph, 
we have visually shown the precision vs. recall curve, the confusion metrics of each 
classification model, and a detailed quantitative analysis for COVID-19 detection. 
An automatic approach is also implemented to reconstruct the thermal maps and 
overlay them on the lung areas that might be affected by COVID-19. The same 
was proven true when interpreted by our accredited radiologist. Although the 
findings are encouraging, more research on a broader range of COVID-19 images 
must be  carried out to achieve higher accuracy values. The data collection, 
concept implementations (in MATLAB 2021a), and assessments are accessible to 
the testing group.
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1. Introduction

The intersection of COVID-19 and diabetes represents a 
multifaceted area of concern in contemporary healthcare. Diabetes, a 
chronic metabolic disorder characterized by high blood sugar levels, 
has emerged as a significant risk factor for severe COVID-19 outcomes 
(1). Emerging research has illuminated a complex relationship, 
revealing that individuals with diabetes are more susceptible to severe 
COVID-19 complications and adverse consequences, such as 
hospitalization and mortality. This heightened vulnerability is thought 
to be linked to the dysregulation of the immune system and impaired 
inflammatory response often associated with diabetes. The COVID-19 
pandemic has raised concerns about the potential development of 
new-onset diabetes in individuals infected with the virus. Several 
studies have reported cases of acute or transient diabetes occurring in 
COVID-19 patients with no prior history of the condition (2). While 
the mechanisms behind this phenomenon remain under investigation, 
it is believed that the virus may directly impact pancreatic function or 
trigger an autoimmune response, resulting in temporary or long-
term diabetes.

Beyond the realm of COVID-19, another facet of the diabetes 
narrative emerges in the context of cough medicines containing 
steroids (3). Steroids are known to influence blood sugar levels, and 
patients who require these medications to manage respiratory 
conditions such as asthma or chronic obstructive pulmonary disease 
(COPD) can face an increased risk of developing steroid-induced 
diabetes (4). Physicians must exercise caution and closely monitor 
patients with pre-existing diabetes or those at risk of developing the 
condition when prescribing such medications (5). However, the 
positive RT-PCR rate for the sample of nose swab samples is expected 
to be between 30 % and 60 % (30–60%) (6), resulting in undiagnosed 
patients that can infect a considerable amount of those people who are 
young and healthy (7). The daily use of the X-ray imaging method for 
diagnosing pneumonia is fast and straightforward. COVID-19 may 
be diagnosed with elevated Sensitivity using chest CT scans (8, 9). The 
images of chest X-ray images reveal sensory cues linked to the 
coronavirus (10). Multipolar involvement and opacities in the 
peripheral airspace are seen in chest imaging studies. Frosted glass (57 
percent) and mixed mitigation (29 percent) are the most often 
mentioned opacities (11). A frosted glass pattern can be seen in areas 
bordering the pulmonary vessels at the start of COVID-19, which is 
challenging to determine visually (12). COVID-19 has also been 
linked to airspace opacities that are uneven or diffusely asymmetric 
(13). Expert radiologists are the only ones that can interpret these 
apparent anomalies. Automatic methods to detect these subtle 
anomalies may facilitate the diagnostic process and increase the early 
detection rate considerably, given many suspicious individuals and the 
small number of qualified radiologists.

The COVID-19 outbreak, generally regarded as the third 
coronavirus outbreak, affected over 209 countries, one of which was 
Pakistan. The COVID-19 epidemic, which first broke out in China, 
severely impacted the countries that border Pakistan, including China. 
China was also the country where the epidemic began. Italy had the 
highest mortality rate of COVID-19 in the western region, while Iran 
had the second-highest mortality rate in the northern part (14). Italy 
was also the country with the highest incidence of COVID-19. The 
COVID-19 virus was identified in Pakistan’s first patient on February 
26, 2020, by the Ministry of Health under the administration of the 

Pakistani government. The patient’s location was determined to be in 
Karachi, which is the largest city and provincial capital of Sindh. On 
the same day, a second confirmed case was found in Islamabad, which 
is the location of the Federal Ministry of Health of Pakistan (15, 16). 
Within fifteen days, the total number of confirmed cases in the 
province of Sindh reached twenty (17) out of a total of 471 suspected 
cases. This was followed by the region of Gilgit Baltistan, which had 
the second-highest number of confirmed disease cases. All of the 
people whose cases have been verified have a history of having recently 
traveled from London, Tehran, or Syria. These reports are currently 
rising rapidly, which paints an even more dire picture of the situation 
than was previously presented.

The relationship between COVID-19 and diabetes is complex and 
multifaceted. People with diabetes are at increased risk of developing 
severe COVID-19, and COVID-19 can also worsen diabetes 
management. This is due to a variety of mechanisms, including 
increased ACE2 expression, insulin resistance, chronic inflammation, 
and cytokine storms. COVID-19 can also trigger new-onset diabetes 
in some people, and pregnant women with diabetes are at even higher 
risk of developing severe COVID-19. People with diabetes who have 
had COVID-19 may be more likely to experience long-term effects of 
the virus. It is important for people with diabetes to take steps to 
protect themselves from COVID-19 and to manage their 
diabetes carefully.

Artificial intelligence (AI) and deep learning solutions can be very 
effective in addressing these issues (18). Detailed reports documenting 
solutions for automated identification of coronavirus from chest X-ray 
images are not accessible at this time due to a shortage of public 
images of COVID-19 patients. A limited collection of data on images 
was recently obtained. This enables the researchers to create a 
machine-learning model that can diagnose COVID-19 via X-ray 
images of the chest (19). All of these photos were taken from research 
papers that reported on COVID-19 X-ray and C-Cmometric picture 
results. We re-labeled these X-ray images with a trained radiologist’s 
aid, keeping just the simple sign of the coronavirus. Our radiologist 
defines these labeled X-ray images. Figure 1 shows three samples of 
images with their labeled regions. Then, as negative samples for 
COVID-19 identification, we used a subsection of medical images 
from the ChexPert dataset (20). The consolidated dataset (called 
COVID-Xray-3k) contains approximately 3,000 thoracic X-ray 
pictures, split into 2,100 training and 900 research samples.

In order to develop a reliable deep learning based COVID-19 
detection model, the size of the dataset plays a significant role, and it 
has a direct impact on model generalization. For augmentation of the 
dataset, various image processing techniques were applied, including 
sharpening, blurring, contrast adjustment, intensity modification in 
the red, green, and blue channels, shearing effects, and rotation. The 
augmentation process enlarges the dataset size; the model receives a 
lot of COVID-19 image data to learn and recognize a broader 
spectrum of patterns and variations in chest X-ray images. 
Furthermore, data augmentation also contributes to clinical relevance. 
In medical imaging, patient diversity and variations in image quality 
are prevalent. Augmenting the dataset with various transformations 
helps the model better account for these real-world complexities. For 
instance, rotation and shearing effects mimic potential variations in 
patient positioning during imaging procedures, while adjustments in 
image intensity account for differences in equipment settings and 
patient characteristics.
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COVID-19 was predicted from thoracic X-ray images using a 
machine learning framework. We went in-depth on an end-to-end 
learning system that explicitly forecasts the raw images of COVID-19 
diseases without the need to extract characteristics, in contrast to 
traditional approaches to the classification of images, also called 
medical image classification that adopts a two-step process (extraction 
of artisanal features – recognition). In recent years, studies (17, 21–23) 
have shown that in-depth learning-based models, i.e., Convolutive 
Neural Networks (CNN), surpass the traditional AI techniques in the 
domain of computer vision and medical image processing. Thus, these 
models are being applied to analyze problems ranging from 
classification, segmentation, and facial recognition to achieving high 
resolution and enhancing the images.

We use the COVID-Xray-3k dataset to create four standard 
convoluted networks that have shown promise in many tasks over 
the last few years and study their success in COVID-19 detection. 
The training steps could not be done from scratch for these networks 
since there are just a few widely accessible X-ray photos for the 
COVID-19 range. To resolve the issue of COVID-19 images absence, 
in this study, two techniques were used: We used the increased data 
to produce a modified version of COVID-19 pictures (such as 
spinning, a minor rotation, and inserting a small number of 
distortions) for increasing the images in the dataset by a factor of 
five. We optimize the former layer of a variant of the models on 
ImageNet rather than driving them from scratch. In this, the model 
can be  built up with fewer tagged samples. These samples can 
be separated from each class in this manner. The two techniques 
described above aided in forming these networks using the accessible 
images and achieved good results on the test range of 30 0 0 images. 
We also quantify the trust interval of performance measurements 
since, in the COVID-19 class, the number of samples is small. The 
curves of receiver operating characteristics (ROC) and the region 
under or below the curve (AUC) of the proposed classification 

models are provided to summarize their output. Below are the 
article’s significant contributions:

 • To diagnose COVID-19 from pulmonary radiographs in the 
form of images, we prepared a data set of three thousand images 
with binary tags. For the testing group, this data collection should 
be used as a tool. A board-certified radiologist marks the pictures 
in the COVID-19 class. Only those images that were used for 
research purposes got clear and visible signs or marks.

 • Using this dataset, we qualified four successful deep learning 
models and tested their output on a test collection of three 
thousand X-ray images. The top model that performed had a 
sensitivity rate of ninety-eight (98%) percent and a precision rate 
of ninety-two (92%) percent.

 • We presented an experimental study based on the systematics of 
these models. This experimental study was a performance 
comparison between several CNN models where the 
performance evaluation is performed using the accuracy, 
F1-score, and the curve of ROC and AUC. The expected 
probability distribution for three classes is performed using the 
pie chart. Using a specific visualization method, we generated 
thermal maps of the most probable areas infected by COVID-19.

 • This study leverages state-of-the-art CNN transfer learning 
models to design a sophisticated system capable of achieving 
heightened accuracy in the detection of two distinct categories: 
COVID-19 without comorbidity and COVID-19 with diabetes. 
Additionally, the system excels in precisely localizing the affected 
regions within X-ray images, providing valuable insights for 
medical diagnosis.

The objective of this study is to develop a deep-learning model for 
COVID-19 patient prediction. We are also working to identify clinical 
data characteristics that may influence the COVID-19 outcome 

FIGURE 1

The above images are the 3 COVID-19 imageries samples and equivalent marked infected areas by our radiologist.
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prediction. With the number of coronavirus-positive cases increasing 
daily, testing is impossible due to time and cost constraints. In recent 
years, machine learning in the medical field has become extremely 
reliable. The currently available models are developed on a relatively 
modest dataset, and the vast majority of the researchers have made use 
of a dataset that was not annotated by subject matter specialists 
(radiologists). The majority of the work that has been done in the field 
of machine learning has been accomplished through the use of hand-
crafted methods and traditional approaches. The traditional methods 
have several performance flaws. To save human lives, a reliable and 
effective COVID detection system is required.

In the notice, although the results of this work are promising 
considering the volume of data tagged, they are only tentative, and a 
more definitive conclusion would take more studies in a broader 
dataset of COVID-19-labeled X-ray pictures. This study should 
be deemed as a starting point for potential research and comparisons.

The following is the outline for the remainder of this paper. 
Section 2 summarizes the prepared COVID-Xray-3k dataset. The 
proposed general structure has been explained in section 3. 
Experimental studies and parallels with previous work are presented 
in section 4. Lastly, the essay is closed in the 5th section.

2. The Xray-3k COVID dataset

The thoracic X-ray image from two datasets was combined to 
generate Covid X-ray 3,000 dataset images comprising 2,100 images 
for training and 900 images for testing purposes. The newly issued 
Covid-Chestxray-Dataset, which includes collecting X-ray images of 
articles published on the topic of coronavirus, was compiled by Cohen 
et al. https://github.com/ieee8023/ covid-chest-ray-dataset (2020). The 
dataset uses a mixed combination of CT scans with the images of chest 
X-rays. The dimension of CT images is 512x512x28 with a bit depth 
of 16 bits, and the file format is volumetric DICOM; similarly, the 
X-ray image size is 1024x1024x1 with a bit depth of 12 and 16 bits 
DICOM images. The images generated until May 3, 2020, contained 
two hundred and fifty X-ray images of corona-infected patients, with 
two hundred and three images corresponding to anteroposterior 
views. This data collection is continually modified according to the 
description. It also includes information about each patient, such as 
gender and age. Collecting images from both the CT scans and Xray 
diverse sources is a strategy employed in our study to enhance the 
comprehensiveness and robustness of our COVID-19 detection 
model. While domain adaptation and shifts pose challenges, our 
rigorous approach to data preprocessing, feature extraction, and 
model calibration is designed to mitigate these effects. By addressing 
these challenges head-on, we strengthen our model’s reliability and 
real-world applicability, ultimately advancing the field of medical 
image analysis for COVID-19 diagnosis. This dataset provided us with 
all of our COVID-19 images. According to our accredited radiologist’s 
recommendation, only anteroposterior X-ray samples are held to 
forecast COVID-19, as the previous samples were not considered 
appropriate for that reason. A qualified radiologist analyzed the 
anteroposterior images, and those lacking even the tiniest X-ray 
symbol of coronavirus were omitted from the data collection. 19 of the 
203 COVID-19 indoor-outdoor X-ray images were discarded, leaving 
184 for our radiologist to examine (which depicted clear indications 
of COVID-19). As a result, we  would include a more accurately 

labeled data collection for the world. Among these images, 100 images 
per class are used for the testing (to achieve the highest value of 
confidence interval), while the remaining images are used as the 
training set. As previously mentioned, the data improvement is added 
to the learning kit to escalate the number of COVID-19 samples to 420.

Both patient X-ray images are transmitted only on one of the 
training courses, as we have ensured. Our radiologist highlighted the 
areas of clear Covid-19 signs due to the low number of images with no 
coronavirus collected on the dataset (20). This dataset includes 0.22 
million images and three hundred and sixteen (224,316) chest X-ray 
images of sixty-five thousand two hundred and forty (65,240) patients. 
It is marked with the indication of 14 subcategories (non-finding, 
edema, pneumonia, etc.). We  used only images from a single 
subcategory for non-COVID samples from the learning package, 
which consisted of seven hundred (700) pictures from the 
non-research class and one hundred (100) image from every other 
thirteen (13) subclasses, totaling two hundred (200) non-COVID 
images. We picked 1,700 images from the unsearched division.

We picked approximately a hundred (100) images from each of 
the other thirteen (13) subclasses in different sub-files for non-COVID 
samples from the research dataset, totaling 30,000 images. Table 1 
shows the exact amount of X-ray images from each class used for 
preparation and research. Figure  2 displays 16 photos from the 
COVID-Xray-3k dataset, comprising four Coronavirus images (1st 
row), four regular ChexPert images (2nd row), and eight images of one 
of the 13 ChexPert images (3rd and 4th row).

It should be remembered that the resolution of the photos in this 
data collection varies significantly. Low-resolution COVID-19 images 
(less than 400 × 400 pixels) and high-resolution COVID-19 images 
(over 1900 × 1,400 pixels). This is a plus for models who can reach a 
reasonable precision level on this data collection, considering the 
variable image resolution and imaging technique. Although gathering 
all the photos in a highly controlled system, we desired to get ultra-
sharp images with very high-resolution images; it is not always 
possible. As machine learning advances, more focus is put on the 
models and frames that will perform. On low-quality, small-scale 
tagged data sets, it performs reasonably well. Furthermore, the original 
vendor collects COVID-19 class images from various sites, showing 
dynamic variations (and even from ChexPert). However, the whole 
dataset is optimized to the same distribution in the testing phase to 
make the model less vulnerable to this.

Pursuing higher accuracy in COVID-19 diagnosis through deep 
learning models is challenging, and it necessitates an ongoing effort to 
access diverse and extensive datasets. To achieve this, researchers can 
explore several avenues. Public medical databases, such as the 
National Institutes of Health (NIH) Chest X-ray Dataset and the 
COVID-19 Image Data Collection, offer open-access repositories of 

TABLE 1 Each category has no. of images in the Xray-3k COVID dataset.

Dataset 
Split

Non-
COVID 
images

COVID-19 
images

COVID-19  +  Dibetic 
images

No. of 

training sets
700 700 700

No. of test 

sets
300 300 300
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radiographic images that can significantly augment existing datasets. 
Collaboration with medical institutions and hospitals can provide 
access to real-world patient data, capturing different COVID-19 
manifestations and stages.

3. The proposed framework

Transfer learning was used to modify four deep neural networks 
and pre-trained images of the COVID-Xray-3k Dataset to solve the 
small data sizes. The choice of selection of the state-of-the-art transfer 
learning models in our study for COVID-19 detection using the x-ray 
images was based on their diverse architectural characteristics and 
well-established performance in image analysis tasks. These selected 
models are well known for their robustness, efficiency, and ability to 
transfer knowledge from large-scale datasets. This deliberate model 
selection aimed to comprehensively evaluate their suitability for 
COVID-19 detection and contribute to the advancement of medical 
image analysis.

3.1. Method of transfer learning

In this method, a model that has been educated on one task is 
reassigned to a similar task and is expected to respond to the new 
task. For, consider using an ImageNet model used to classify images 
(which includes billions of labeled images/pictures) to kickstart 
learning that will also be  task-specific. This is used to detect 
COVID-19 on minor data collection. Transfer learning is most useful 
for those projects that require only a little effort to build models from 
the scrape, such as medical-based image recognition for evolving 
chronic diseases.

This is true, particularly for deep neural network-based models, 
which have many parameters to learn. In transfer learning, the setting 
of the model has better initial values, which needs a few minor 
improvements to make them more structured for the new mission. 
For each task, the pre-trained model is used in one of two ways. The 
first method is viewed as a model that extracts the characteristics, i.e., 
an extractor. In the second method, the model is trained to classify 
a classifier.

FIGURE 2

Sample of images from COVID-Xray-3k Dataset. First row corresponds to images with COVID-19. The second row corresponds to four sample images 
diagnosed with no COVID-19 infection from ChexPert, belonging to the no-finding category. The third and fourth row corresponds to images with 
eight samples belonging to all other subdomains in ChexPert.
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Another method involves purifying the whole network, or a 
subset of it, for the current mission. We simplify the end layer of 
complicated neural networks because the number of samples in the 
COVID-19 segment is relatively less. Consequently, the weights and 
biases of pre-trained CNN models are used to be a starting point for 
the proposed study, which are revised throughout the learning 
process. We use previously trained models as a characteristic extractor. 
ResNet-18 (24), ResNet-50 (25), Inception-ResNet-v2 (26), and 
NASNet-Large are four standard pre-formed models that we evaluate 
(27). The following segment gives a brief description of the models’ 
design and their implementation to recognize coronavirus.

3.2. Inception-v3 and ShuffleNet based 
COVID-19 detection

The pre-designed Inception-v3 model, formed on the ImageNet 
dataset, is one of the models implemented in our research. 
Inception-v3 is one of the most common CNN architectures, and it 
won the 2015 ImageNet contest. It offers a more effortless gradient 
flow for more effective training. The implementation of an identity 
shortcut link that misses/skips one or more than one layer is at the 
heart of Inception-v3. This will enable the network to have a clear 
route to the network’s first layers, rendering gradient changes far 
simpler for these layers. Supplementary Figure S1 depicts the 
Inception-v3 model’s general theory scheme and its application to 
COVID-19 identification. The Inception-v2 design is similar to 
Inception-v3 but with a number of layers than the Inception-v3. The 
structure design of ShuffleNet CNN features learning and classification 
can be seen in Supplementary Figure S2. Supplementary Figures S4–S7 
illustrates the probabilities estimated by the various CNN models 
when applied to the testing samples. This graphical representation 
provides valuable insights into the model’s confidence scores and its 
decision-making process.

3.3. The inception-ResNet-v2 for 
COVID-19 detection

The Inception-ResNet-v2 is a small CNN model that obtains 
accuracy up to the AlexNet level (28) with 50 times more minor 
settings. Using these techniques, the biographers compressed 
Inception-ResNet-v2 to a smaller amount, i.e., smaller than 0.5 MB, 
making it prevalent for applications requiring lightweight models. 
They substitute one layer 1 × 1 that “tightens” the data entering the 
vertical dimension, followed by the sign of two parallel convoluted 
layers 1 × 1 and 3 × 3 that “extend” the data’s depth again. Inception-
ResNet-v2 services three effective strategies: replacing 3 × 3 filters with 
1 × 1 filters, growing the number of input channels to 3 × 3 filters, and 
subsampling late in the network to ensure massive activation maps for 
convolution layers.

3.4. COVID-19 detection using 
NASNet-large

Another architecture introduced by (29) is the Neural 
Architectural Seach Convolutional Network (NASNet-Large), which 

won the ImageNet 2017 competition. Each layer in NASNet-Large 
receives additional entries from all preceding layers and transmits its 
function cards to all succeeding layers. Each layer gets all of the 
previous layers’ accumulated information. The network can be thinner 
and more lightweight because every layer receives maps for every 
layer. Supplementary Figure S3 depicts the architecture of the 
NASNet-Large example.

3.5. Model training

The cross-entropy loss function, whose goal is to decrease the 
change between expected probability scores and field truth 
probabilities, is used to train all models.

 
L p qCE

i

N
i i= −

=
∑

1

log

 
(1)

Where pi denotes ground truth, whereas qi denotes predicted 
probabilities for every image. A stochastic gradient descent algorithm 
can then be used to minimize this loss function (and its variations). 
We tried to improve the loss feature by including regularization, but 
the resulting model did not improve.

4. Results

4.1. Hyper-parameters model

Each model has been trained with 100 Epochs. The loss function 
is optimized with the use of an ADAM optimizer having a learning 
rate of 0.0001. This optimizer has a size of 20. Since these models are 
typically created with a detailed image resolution, all the images are 
under 224*224 before being submitted to the neural network. All the 
experimental tasks are performed using the MATLAB deep learning 
framework. The confusion matrices for the four classification models, 
each tasked with classifying three distinct classes, are presented in 
Figures 3–6. These visual representations provide a comprehensive 
view of the models’ performance in categorizing instances into 
“Normal,” “Covid-19,” and “Covid-19 + Diabetic” classes.

The Supplementary Table S1 displays the hyperparameters 
used, their corresponding values or methods, and the optimal 

FIGURE 3

Shows the proposed Inception-v3 model’s confusion matrix.

101

https://doi.org/10.3389/fpubh.2023.1297909
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Shoaib et al. 10.3389/fpubh.2023.1297909

Frontiers in Public Health 07 frontiersin.org

selections during the training of four transfer learning CNN 
models. The Inception-v3 CNN achieved an average accuracy of 
79.62%, the Figure  3 displays correctly predicted samples in 
green, while incorrectly predicted samples are shown in red. 
Similarly, Figures 4–6 display the confusion matrices obtained 
when validating the test set with ShuffleNet, Inception-
ResNet-v2, and NASNet-Large, each surpassing accuracy rates of 
90.33, 90.67, and 90.67%, respectively. These remarkable 
accuracies underscore the effectiveness of the chosen 
optimal hyperparameters.

4.2. Evaluation metrics

Different metrics, including classification precision, Sensitivity, 
specificity, accuracy, and F1 ranking, may be  used to evaluate 
classification models’ success. Due to the unbalanced nature of the 
current test dataset (80 coronavirus infectious images vs. 2000 
non-coronavirus infectious images), sensitivity and specificity are two 
critical indicators to report model performance:

  

(2)

 

Sensitivity

The number of images 

correctly predicts COVID
=

199

19The total COVID images

  

(3) Specificity

The total number of images 

correctly predicted
=

aas NonCOVID

The total number of NonCOVID images

4.3. The predicted scores of models

We are based on four standard convoluted networks, as previously 
stated. All these models generate a probability score for every X-ray 
image. It also increases the probability factor of the disease being 
identified as COVID-19. We may develop a binary mark to indicate 
whether the image is COVID-19 or not. We  can get this by the 
comparison of the binary Mars with a cut-off threshold. A perfect 
model can detect/predict the chance for every COVID-19 sample, 
which is found to be close to 1. Like this, an ideal model can predict 
the possibility of every non-COVID sample being close to 0. 
Tables 2–5 Present the Sensitivity and Specificity Achieved by Four 
CNN Models for the Detection of COVID-19 with Diabetes. Table 2 
presents the sensitivity and specificity achieved by the Inception-v3 
model across various threshold values. Meanwhile, Tables 3–5 provide 
sensitivity and specificity values for the ShuffleNet, Inception-
ResNet-v2, and NASNet-Large models, respectively.

Supplementary Figures S4–S7 display the model’s distributions of 
expected likelihood scores for the test set photos, respectively. 
We  include the probability distribution of the expected three 
categories: COVID-19, Normal, and other diseases. Our study’s 
non-COVID grouping consists of both standard cases and other forms 
of diseases. As can be said, non-COVID X-ray images of different 
types of infections have significantly better ratings than non-COVID 
examples without other types of diseases. The infected images of 
COVID-19 may have somewhat higher odds than non-COVID 
images, which is promising. We can see that Inception-ResNet-v2 is 
better at work than the other models. Table 6 provides a comprehensive 
overview of the class-specific performance metrics, and the average 
performance of four state-of-the-art CNN models used for chest 
radiography detection. The models were evaluated across three 
distinct classes: “Normal,” “Covid-19,” and “Covid-19 + Diabetic.” The 
metrics examined include Accuracy, Precision, Recall, and F1-score, 
offering valuable insights into the models’ capabilities for each class. 
Additionally, the table presents an “Average” row, summarizing the 

FIGURE 5

Shows the proposed Inception-ResNet-v2 CNN model confusion 
matrix.

FIGURE 4

Shows the proposed ShuffleNet model’s confusion matrix.

FIGURE 6

Shows the proposed NASNet-Large CNN model confusion matrix.
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collective performance of these models across all classes. These 
metrics serve as a vital reference point for evaluating the models’ 
effectiveness in detecting and distinguishing between different chest 
radiography categories.

4.4. The sensitivity and specificity of four 
different models

Every model generates a probability score that indicates the 
likelihood of the image, i.e., the idea being COVID-19. These scores 
are then compared to a criterion to determine whether or not the 

picture is COVID-19. The value of the Sensitivity of all models and the 
importance of the specificity of all models were calculated using 
predicted labels. Tables 2–5 demonstrate sensitivity rates and 
specificity rates for various levels utilizing the four models. It can 
be shown that both of these models provide positive outcomes, with 
the strongest one achieving a sensitivity of 95% (95%) and specificity 
of 91% (91.06%). Inception-ResNet-v2 and Inception-v3 outperform 
the other models by a small margin.

The Inception-ResNet-v2 has the high sensitivity (98%) and 
specificity (91.2%) rates demonstrated by our top-performing model, 
which holds substantial clinical significance. These performances 
reflect the model capability of accurately detecting COVID-19 cases 

TABLE 5 The results of the NASNet-Large model in the form of sensitivity 
and specificity rates.

Threshold Sensitivity Specificity

0.16 97% 77.3%

0.22 94% 89.8%

0.29 92% 96.4%

0.38 81% 99.8%

TABLE 6 Class-specific Performance metrics and average performance of state-of-the-art CNN models for chest radiography detection.

Model Class Accuracy Precision Recall F1-score

Inception-v3

Normal 85.85% 88.57% 89.47% 89.01%

Covid-19 86.00% 86.00% 93.33% 89.33%

Covid-19 + Diabetic 67.00% 67.00% 72.00% 69.33%

Average 79.62% 80.52% 84.97% 82.72%

ShuffleNet

Normal 96.00% 96.00% 96.00% 96.00%

Covid-19 90.00% 90.00% 92.00% 91.00%

Covid-19 + Diabetic 85.00% 85.00% 87.00% 86.00%

Average 90.33% 90.33% 91.67% 90.67%

Inception-ResNet-v2

Normal 91.00% 93.57% 95.56% 94.51%

Covid-19 94.00% 94.00% 96.00% 95.00%

Covid-19 + Diabetic 87.00% 87.00% 89.00% 88.00%

Average 90.67% 91.52% 93.52% 92.52%

NASNet-Large

Normal 87.00% 90.55% 91.89% 91.21%

Covid-19 98.00% 98.00% 98.00% 98.00%

Covid-19 + Diabetic 87.00% 87.00% 89.00% 88.00%

Average 90.67% 91.85% 92.96% 92.41%

TABLE 2 The results of the Inception-v3 model in the form of sensitivity 
and specificity rates.

Sensitivity Specificity Threshold

100% 73.4% 0.19

99% 92.7% 0.18

96% 94.4% 0.22

93% 96.8% 0.23

87% 98.0% 0.31

TABLE 4 The results of the Inception-ResNet-v2 model in the form of 
sensitivity and specificity rates.

Threshold Sensitivity Specificity

0.32 98% 91.2%

0.19 99% 90.4%

0.4 97% 95.8%

0.39 93% 98.2%

0.8 88% 99.7%

TABLE 3 The results of the ShuffleNet model in the form of sensitivity and 
specificity rates.

Sensitivity Specificity Threshold

100% 79.2% 0.17

97% 90.2% 0.24

95% 95.3% 0.21

92% 98.5% 0.29

87% 98.4% 0.36
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and reducing the inaccurate diagnosis. The higher accuracy of the 
model assists in early disease diagnosis and treatment plans, making 
it a vital tool for radiologists and pulmonologists. Moreover, the model 
flexibility for different clinical scenarios is necessary, as indicated by 
various threshold options, to enhance its practical use in real-world 
applications, where balancing sensitivity and specificity is crucial for 
effective COVID-19 diagnosis.

4.5. The reliability of the model with a few 
cases of COVID-19

It should be mentioned whether the sensitivity and specificity 
rates shown earlier can be or cannot be accurate because there was a 
minimal amount of accurately annotated COVID-19 X-ray images by 
the experts who are available to date besides the fact that the 
COVID-19 dataset consists of several hundred X-ray samples. More 
studies on more test samples are required to get a more accurate 
estimate. To see the potential range of these values in every class, 
we will measure the confidence interval at 95% of sensitivity and 
specificity rates recorded here. The accuracy rate trust interval can 
be determined as follows:

  

(4)

 

r
accuracy accuracy

N
z=

−( )1

Where z is the confidence interval’s degree of significance, 
accuracy is the approximate accuracy (in our case, sensitivity rates 
and specificity rates), and N is the total number of samples. In this 
case, we used a 95 percent trust interval, which corresponds to a 
z-value of 1.96. Since a responsive model is critical for the COVID-19 
diagnosis, we select a cut-off threshold for each model that fits a 
sensitivity rate of 98 % (98%) and can also evaluate their specificity 
values. Supplementary Table S2 shows how these four models 
performed throughout the test range. Since we have around three 
thousand samples for this class, the confidence interval for specificity 
values is minimal (around 1%). In contrast, the sensitivity rate has a 
somewhat higher confidence interval (about 2.7%) due to the smaller 
number of samples. The performance comparison is presented in 
Table  7, incorporating the latest advancements from state-of-
the-art research.

4.6. The operating characteristics curve 
(ROC)

Since cut-off limits vary, it is challenging to equate various 
models. We ought to test all potential threshold values to see how 
these models compare overall. The precision-recall curve is one way 
to do this. Recall or Sensitivity is the Ratio of true positives to total 
(actual) positives in the data. Recall and Sensitivity are one and the 
same. Whereas the accuracy is calculated using the accurately 
detected +ve images and the total number of +ve images in the test 
set using the ROC curve. Figure 7 depicts the curve created using the 
precision and recall values of the proposed CNN models. The ROC 
curve is plotted by taking the precision values on the y-axis and recall 
values on the x-axis of the 2D line plot. Supplementary Figure S8 

shows the ROC curves of these four models. Both versions work 
equally according to AUC.

It should be noted that the AUC might not be a suitable predictor 
of model success for very unbalanced test sets (because it can be very 
high) and that examining the medium accuracy curve and precision 
and recall may be  a safer option in this case. For the sake of 
completeness, we  have included all curves here. The confusion 
matrices of the two highest-performing CNN models, Inception-v3 
and Inception-ResNet-v2, on a test set of 2080 Xrays can be observed 
in Figures 3, 5. These matrices provide an exact count of suitable 
samples, i.e., samples that are positive for COVID-19 and samples that 
are negative for COVID-19.

4.7. Hardware resources and simulation 
environment

The allocation of robust computational resources listed in 
Supplementary Table S3 was pivotal in successfully developing and 
training our deep learning models for COVID-19 diagnosis from 
chest X-ray images. Utilizing high-performance hardware 
components, including the Intel Core i7-12700K CPU and NVIDIA 
GeForce RTX 3080 Ti GPU, allowed us to efficiently process vast 
volumes of data and perform complex matrix computations, thus 
expediting the training process. This strategic choice significantly 
reduced training times and enabled the exploration of intricate model 
architectures. Furthermore, the abundant 32GB of RAM and the 
extensive 1 TB or more SSD storage were instrumental in ensuring the 
seamless loading of data, preventing potential bottlenecks, and 
accommodating the storage needs for our extensive dataset and 
model checkpoints.

Complementing our powerful hardware setup, the adoption of 
essential image processing, statistics and machine learning, and deep 
learning toolboxes provided in the MATLAB 2021a are used for 
developing, fine-tuning, and rigorously evaluating our deep neural 
networks. The Windows 10 operating system further contributed to a 
stable and reliable research environment. This fusion of computational 
resources and software tools facilitated our pursuit of precise 
COVID-19 diagnosis and laid the foundation for transparent, 
accessible, and collaborative research.

4.8. The infected regions

Thermal maps are acquired using thermal imaging camera 
sensors, which play a unique role in COVID-19 diagnosis. These 
images record the change in body temperature, which can be very 

TABLE 7 Comparison of the proposed model with existing state-of-the-
art methods.

Model Accuracy F-Measure

CovidxNet-CT (30) 85% 86.06%

Optimized Resnet 101 (31) 95% 93.32%

UNet+ ResNet (32) 94% 92.3%

EfficientNet+SCO (32) 85% 87.66

Proposed Model (33) 96% 96.9%
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useful in the study and diagnosis of patients suffering from fever 
or other respiratory distress related to COVID-19. These images 
are overlapped with chest X-ray images to provide the radiologists 
with a multidimensional view, which assists in the localization of 
the affected region in the lungs. The fusion of thermal images 
with radiographic data dramatically improves the detection of 
COVID-19; in the case of subtle radiographic findings, it still 
achieves higher diagnosis accuracy. Moreover, the thermal maps 
assist in the ongoing monitoring of patient progress, which offers 
an early insight into disease treatment plans or disease 
deterioration, thereby assisting healthcare providers in making 
timely and informed decisions. When we detected COVID-19, 
we  used an essential technique to see possibly contaminated 
regions—(34) work to imagine deep learning outcomes complex 
networks influenced this technique. We  begin at the image’s 
top-left corner, blocking a rectangular area of MxN or a square 
area of dimension M rows and N columns within the X-ray 
sample each time to predict the occlusal image. Suppose the 
model wrongly classifies a picture of COVID-19 as a picture of 
non-COVID due to this region’s occlusion. In that case, this 
location will be called a likely polluted region in thoracic X-ray 
pictures. But if an area’s occlusion has little effect on the model’s 
projection, we  should conclude that the region is free 
from contamination.

We can also have a sad map of infected areas detecting 
coronavirus by repeating this process for different slippery N x N 
windows and moving them each time with an S phase. Figure 8 
shows the regions detected in six examples of COVID-19 photos 
from our test sample. In the last section, possible COVID-19 
disease areas are identified and annotated in yellow color by our 
experts, who are certified by the Council of Radiology and 
Council of Medical Sciences. Regions annotated by the radiologist 

and experts in COVID-19 disease are in good agreement with the 
thermal mass produced.

5. Conclusion

For the sake of detecting COVID-19 and COVID-19 affected 
who are also diabetic, a standard dataset of 3k X-ray images is 
created and confirmed with the COVID-19 labels from the 
board-certified radiologist. The dataset is available for 
researchers and can be  used as a benchmark dataset for 
COVID-19 prediction using machine-learning models. 
We reported that four pre-trained deep neural network models 
(Inception-v3, ShuffleNet, Inception-ResNet-v2, and NASNet-
Large) are used to detect COVID-19 using X-ray images by fine-
tuning the model’s parameters. We  conducted a detailed 
experimental analysis on the COVID-Xray-3k dataset test set to 
assess these four models’ Sensitivity, specificity, ROC, and AUC 
performance. These models had an average specificity rate of 
about 90% for a sensitivity rate of 98 percent. This is encouraging 
because it shows promise for using X-ray images to diagnose 
COVID-19. This research used a set of publicly available images 
that included about 1,000 Normal images, 1,000 COVID-19 
images, and 1,000 X-ray images of patients suffering from 
COVID-19 and also diabetic. The work presented here represents 
one of the earliest attempts at Covid-19 chest X-ray analysis and 
dataset preparation, which resulted in a time-sensitive correlation 
when the two aspects were combined. However, because there are 
only a few publicly available COVID-19 images, more 
experiments on a more extensive set of clearly labeled COVID-19 
images are needed to estimate the accuracy of these models 
more reliably.

FIGURE 7

Shows the precision-recall curves of 4 CNN architectures for COVID-19 detection.
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COVID-19 is an epidemic disease that results in death and significantly affects 
the older adult and those afflicted with chronic medical conditions. Diabetes 
medication and high blood glucose levels are significant predictors of COVID-
19-related death or disease severity. Diabetic individuals, particularly those with 
preexisting comorbidities or geriatric patients, are at a higher risk of COVID-19 
infection, including hospitalization, ICU admission, and death, than those 
without Diabetes. Everyone’s lives have been significantly changed due to the 
COVID-19 outbreak. Identifying patients infected with COVID-19  in a timely 
manner is critical to overcoming this challenge. The Real-Time Polymerase Chain 
Reaction (RT-PCR) diagnostic assay is currently the gold standard for COVID-19 
detection. However, RT-PCR is a time-consuming and costly technique requiring 
a lab kit that is difficult to get in crises and epidemics. This work suggests the 
CIDICXR-Net50 model, a ResNet-50-based Transfer Learning (TL) method for 
COVID-19 detection via Chest X-ray (CXR) image classification. The presented 
model is developed by substituting the final ResNet-50 classifier layer with a new 
classification head. The model is trained on 3,923 chest X-ray images comprising 
a substantial dataset of 1,360 viral pneumonia, 1,363 normal, and 1,200 COVID-19 
CXR images. The proposed model’s performance is evaluated in contrast to the 
results of six other innovative pre-trained models. The proposed CIDICXR-Net50 
model attained 99.11% accuracy on the provided dataset while maintaining 99.15% 
precision and recall. This study also explores potential relationships between 
COVID-19 and Diabetes.

KEYWORDS

COVID-19, deep learning, diabetes mellitus, chest x-ray, transfer learning, convolutional 
neural network, long-Covid

1. Introduction

COVID-19 is a severe and deadly disease caused by a newly discovered coronavirus. In late 
2019, a strange sickness outbreak afflicted several people in Wuhan, China (1, 2). The precise 
reason for this widespread sickness outbreak was unknown, and the symptoms seemed strange. 
It has been determined that the virus has a unique coronavirus strain that was never found in 
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humans before (1, 3). Coronaviruses can cause various respiratory 
diseases, ranging from moderate to severe. COVID-19 can 
be identified clinically by several symptoms related to the respiratory 
system, including pneumonia, cough, dyspnea, and fever. However, 
these signs are not exclusive to COVID-19 and can be seen in various 
pneumonia cases, which presents a challenge for medical professionals. 
Real-Time Polymerase Chain Reaction is one of the most accurate 
coronavirus testing techniques (RT-PCR), which has been authorized 
by the WHO (World Health Organization). In RT-PCR, the RNA 
sequence is converted into DNA through a process called reverse 
transcription, which is then amplified (4, 5). Global health, economy, 
and well-being were all affected by the rapid spread of the COVID-19 
epidemic (6, 7). Detecting COVID-19 is critical for patient care and 
public health, as the pandemic can be avoided and effectively managed 
by isolating infected patients (8). It is critical to separate people 
infected with COVID-19; thus, early detection is a significant 
challenge for preventing the further spreading of the infection (9, 10).

Computer Imaging techniques in medical science can help control 
the spread of infection more effectively, treat infected individuals, and 
reduce the mortality rate (11–13). Imaging modalities such as 
computed tomography (CT) scans and chest X-rays (CXR) are 
essential for diagnosing pulmonary diseases (14, 15). In clinical 
practice, CXR and CT are frequently used to detect COVID-19. Even 
though CT has better sensitivity in COVID-19 detection, the CXR is 
a popular imaging modality because of its many advantages, including 
its low price, low level of radiation exposure, straightforward 
operation, and easy availability in hospitals (16, 17). Radiologists 
consistently face a clinical dilemma for COVID-19 detection during 
this pandemic (18). Rapid and precise COVID-19 identification is 
critical for avoiding and treating this pandemic disease through 
quarantine and medical treatment.

The lack of accessible testing kits makes it challenging to 
determine if the disease has spread as the number of reported cases 
rises. Deep Learning (DL)--based methodologies have progressed to 
the point where they can compete with the most advanced approaches 
in computer-aided diagnostics (19). In establishing computer-aided 
detection (CAD) systems, significant progress has been made using 
medical images and robust DL algorithms. These schemes are 
designed to automatically examine disease characteristics (20) using 
DL approaches to assist radiologists in making more accurate 
diagnostics. Recently, researchers applied DL algorithms to explore 
and assess CXR images for COVID-19 detection. COVID-19 
detection and diagnosis methods using deep learning-based 
algorithms are precise and effective. The advantages of supervised DL 
algorithms in medical imaging tasks have been demonstrated in 
numerous applications (21). These DL algorithms need many data to 
create an accurate model. Unfortunately, access to such large volumes 
of labelled data is another significant problem for machine-learning 
approaches in the medical domain (22–24). A deep CNN model 
already pre-trained with variable layers can compensate for the lack of 
labelled data problems (24–26). Most initial layers in the pre-trained 
model are fixed to generic reserve aspects of natural images and train 
higher-level layers on medical images (27). This process of taking the 
pre-trained model of one problem and applying it to other related 
problems by retraining higher layers is called Transfer Learning (TL). 
Compared to standard DL algorithms, TL is simple, efficient, and has 
minimal training cost (27), thereby overcoming the problem of 
limited datasets.

Wang et al. described a Deep CNN-based system called Covid-Net 
for detecting COVID-19 instances in chest CXR images (28). This 
study helps doctors improve their transparency and screening when 
utilizing COVID-Net for computer-assisted screening by highlighting 
the significance of the main characteristics of COVID-19 cases. 
Apostolopoulos and Mpesiana suggested a TL-based technique for 
automatically recognizing COVID-19 using CXR images to assess 
how modern CNN designs classify data (29). The results suggest that 
extracting key COVID-19 disease characteristics by combining DL 
and X-ray imaging may be possible. Sethy et al. used CXR pictures to 
adapt the COVID-19 detection based on the extensive feature 
extraction and implementation of a Support Vector Machine (SVM) 
as a classifier (30). The study used thirteen different DCNN-based 
pre-trained models as feature extractors, providing each feature to the 
SVM classifier. ResNet50 model with SVM performs better than the 
other selected twelve classification models.

Hemdan et al. proposed a new COVIDX-Net system that uses 
seven DL pre-trained models to detect and analyze COVID-19 in 
two-dimensional CXR images (31). The findings of the proposed 
COVIDX-Net showed that the VGG19 and DenseNet201 models 
achieved the most significant performance scores among the other 
DL classifiers. Manokaran et al. employed a DenseNet201-based 
model for CXR image classification that was created by substituting 
a new network for the final classifier layer utilizing TL methods 
(32). Chakraborty et  al. proposed a transfer learning approach 
based on VGG-19 pre-trained architecture to classify COVID-19, 
pneumonia, and healthy patients using CXR images (33). Ozturk 
et  al. suggested a DarkCovidNet model for the CXR image 
classification (34). Binary and multi-class classifications are both 
supported by the model. An experienced radiologist carried out an 
analysis of how well the DarkCovidNet model worked. Jain et al. 
presented a two-stage process for classifying COVID-19 CXR 
images of persons with bacterial pneumonia, viral pneumonia, and 
healthy individuals (35).

Further analysis of the X-ray scans of viral pneumonia was 
performed to identify the presence of COVID-19. Their proposed DL 
model performs remarkably well in multi and binary classification 
phases. Vaid et al. created a model using the VGG19-based TL technique 
to improve its accuracy in detecting COVID-19 from CXR images (36). 
Pathak et  al. proposed a ResNet50-based approach for building a 
COVID-19 CT image classification model (37). In terms of efficiency, 
their proposed classification model surpasses supervised learning 
approaches and achieves high accuracy. Karacan et al. proposed a binary 
and trinary classification system using CXR images (38). Their proposed 
model includes MobileNetV2, DenseNet121, InceptionResNetV2, and 
Xception. These models were integrated with ensemble learning 
methods to improve their proposed model’s performance further.

Narin et  al. employed a Deep TL technique using chest 
radiographs to identify COVID-19 (39). The research used a technique 
known as five-fold cross-validation for three distinct binary 
classifications. Five models that had been pre-trained were applied to 
the three different datasets. According to their findings, The ResNet50 
model offers the highest level of accuracy compared to the other four 
techniques included in the study. Using a precise weighted averaging 
ensemble model, Bhardwaj and Kaur attempt to detect COVID-19 and 
other pulmonary complications (40). Data augmentation strategies 
were implemented while training the four CNN models, DenseNet121, 
Xception, Inceptionv3, and InceptionResNetv2. The experiment’s 
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binary classification accuracy was 98.33%, whereas, in the case of 
multi-class classification, they attained 92.36% accuracy.

The limitation of the previously mentioned research is that most 
of the studies used relatively limited CXR images, and others used very 
few COVID-19 radiographs. Some studies proposed binary 
classification models that cannot differentiate between bacterial and 
viral pneumonia. In this research, we proposed CIDICXR-Net50, a 
TL-based framework that uses a pre-trained model, ResNet50 
architecture (41), for CXR image classification. Adopting the TL 
method reduces the impact of the problem of a restricted training 
dataset while providing us with the benefits of a shortened processing 
time, enhanced performance, and consistent results. The 
CIDICXR-Net50 model is built by substituting a new classification 
head for the last classifier layer in the ResNet50 model. The model is 
tested and trained using the dataset of 3,923 images, including 1,363 
regular, 1,200 COVID-19, and 1,360 viral pneumonia Chest X-ray 
images, representing a sizeable dataset. The performance of the 
proposed CIDICXR-Net50 is assessed and compared with six other 
cutting-edge pre-trained models, including DenseNet-121, VGG-16, 
ResNet-101, VGG-19, InceptionV3, and MobileNetV2. The suggested 
CIDICXR-Net50 model achieved an accuracy of 99.11% on the 
provided dataset, with a 99.15% precision and recall rate.

 • The current study offers a potential for cost-effective and swift 
diagnosis of Coronavirus disease using chest X-rays.

 • This research presents a novel Deep Transfer Learning framework 
called CIDICXR-Net50, designed to aid radiologists in detecting 
COVID-19 from X-ray images with a high accuracy of 99.11%.

 • In this study, we  conducted a comprehensive performance 
evaluation of various deep learning architectures, offering 
insights into their accuracy in classifying COVID-19 based on an 
extensive X-ray image dataset.

 • The proposed work facilitates collaborative efforts among 
interdisciplinary researchers to advance artificial intelligence 
methodologies within Computer-Aided Diagnosis (CAD) 
systems. To uncover potential linkages between COVID-19 and 
Diabetes Mellitus, thereby enhancing diagnostic precision and 
patient care strategies.

1.1. Relationship between COVID-19 and 
Diabetes

Diabetic patients, especially those with preexisting comorbidities 
or those in older age groups, have an elevated risk of COVID-19 
infection (42). The trajectory of COVID-19 tends to be more severe 
for individuals with Diabetes, and they exhibit a markedly higher 
mortality rate (43). Through multivariable logistic regression analysis, 
Ciardullo et al. found that DM was an independent factor correlating 
with a rise in in-hospital mortality due to COVID-19 (44). Initial 
findings from China, subsequently supported by studies in the 
United States and Europe, revealed that the prevalence of Diabetes in 
individuals hospitalized with COVID-19 was as elevated as 20% (45–
47). Emerging evidence indicates that Diabetes could potentially 
contribute as a risk factor for the occurrence of Post-Acute Sequelae 
of SARS-CoV-2 infection. After recuperating from the acute stage of 
COVID-19, certain individuals persistently suffer from symptoms 

over an extended duration, commonly known as “long COVID” or 
(PASC). Diabetic patients dealing with PASC may have difficulty 
controlling their blood sugar levels. There is still much to learn about 
the connection between COVID-19 and Diabetes, and research is 
underway. In order to provide Diabetes patients with the best care and 
outcomes possible throughout the pandemic, it is crucial to 
comprehend this link.

Once we confirm COVID-19 detection from the CXR image, then 
we  can explore the relationship with Diabetes using some open 
datasets of electronic health records such as the National COVID 
Cohort Collaborative’s (N3C) repository, COVID-19 can disrupt 
glycemic control in people with Diabetes. Infection and the body’s 
immune response to the virus can lead to fluctuations in blood sugar 
levels, making it challenging for diabetic individuals to manage their 
condition effectively. Understanding the links between Diabetes and 
COVID-19 requires epidemiological, clinical, and molecular studies. 
Conditions that already exist, including a weakened immune response, 
viral replication, and persistent inflammation, are common 
contributors. These co-occurring conditions have also been linked to 
an amplified COVID-19 response. An impaired immune system is 
linked to poorly managed Diabetes. Individuals with Diabetes are at 
increased risk for severe complications from infections because their 
impaired immune systems cannot fight off the disease effectively. 
SARS-CoV-2, the virus responsible for COVID-19, may benefit from 
elevated blood glucose levels, speeding the course of the disease.

2. ResNet-50

The ResNet-50 is a 50-layer Residual Neural Network (RNN) 
variant trained on images from the ImageNet database. The main reason 
for proposing the ResNet-50 model was to avoid the vanishing gradients 
problem while constructing a deep neural network. Different variants 
of the ResNet model are available with varying layers. However, the 
most common model is called ResNet-50, and it comprises 49 
Convolutional layers and a Fully Connected layer. ResNet altered the 
structure of CNNs by introducing the residual learning technique to 
train deep neural networks. ResNet50 was nominated as the ImageNet 
Large Scale Visual Recognition (ILSVRC) Challenge winner in 2015. 
Figure 1 shows the design of the ResNet model.

ResNet is 20 and 8 times deeper than AlexNet11 and VGG42, 
respectively, offering more accuracy. The ResNet network with 50, 101, 
and 152 layers performs significantly better than the ResNet network 
with 18 and 34 layers. The design of the ResNet-50 network is made up 
of sequences of convolutional blocks that use average pooling. As the 
final classification layer, Softmax is employed. ResNet has established 
shortcut connections between different layers to enable communication 
between the different layers. As a result of the layers’ independence from 
parameters and data, non-residual functions can be characterized by 
them after a gated shortcut has been closed. In ResNet, shortcuts are 
never closed, but residual information is saved for good. Even as the 
search depth increases, it has lower computational complexity than VGG.

2.1. CIDICXR-Net50

The proposed CIDICXR-Net50 model is the modified version of the 
ResNet-50. In the CIDIXR-Net50 model, the network consists of one 7×7 
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convolutional layer, followed by three blocks of 1×1, 3×3, and 1×1 
convolutional layers of size 56. Then, we  have the same blocks of 
convolutional layers of sizes 28, 14, and 7. After that, instead of fully 
connected layers (as present in ResNet-50), we added flattened and dense 
layers. The flattened layer is used to transform the image into one 
dimension. The dense layer acts as a fully connected layer that uses Soft 
Max for multi-class classification (i.e., Normal, COVID-19, and 
Pneumonia). Figure 2 shows each layer of the original and proposed 
architectures sequentially. For both models, the first convolutional layer 
outputs a feature map of size 112 × 112 × 64 after applying 64 filters of 
size 7 × 7 × 3 over the input picture of size 224 × 224. The max-pooling 
layer processes the input feature map with a 3 × 3-pixel filter to create a 

56 × 56 × 64 feature map. The initial 1×1 convolution layer is responsible 
for doing downsampling. However, in our proposed model 
CIDICXR-Net50, we use an input image of size 256 × 256 × 3 as it is the 
optimal image size. To effectively converge CNN models for training, 
hyper-parameters such as learning rate, optimization technique, dropout 
rate, and batch size must all be considered.

The proposed CIDICXR-Net50 model was trained using the 
Adam optimizer for 25 epochs, and the batch size was set to 32 with a 
learning rate 0.0001. A function called Early Stopping from the Keras 
library was also implemented. Model validation loss is tracked via this 
approach. If the model reaches its capacity and the validation loss 
continues to be constant, the best weights are kept, and the model is 

FIGURE 1

ResNet (Residual Network) architecture (41).

FIGURE 2

The architecture of the proposed CIDICXR-Net50.
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terminated. Activities at various levels of training were carried out 
using the ModelCheckPoint and EarlyStop callback methods.

2.2. Experimentation preliminaries

This section discusses the experimental tools, frameworks, 
techniques, dataset, preprocessing steps, hyperparameters of the 
proposed model, and performance assessment parameters used to 
conduct the experimentation. The proposed CIDICXR-Net50 model 
is implemented in Python using the Keras framework and TensorFlow 
2.8.0 in the backend. The experiments were conducted in a Google 
Colab (Collaboratory) environment with an NVIDIA GPU, 12GB 
RAM, and 2.3GHz Intel Xeon Processors.

2.3. Dataset

The proposed model was trained and evaluated using version 3 of 
the publicly available dataset 43 of CXR images. The dataset included 
3,923 total CXR images, 1,363 Normal, 1,200 COVID-19, and 1,360 
Viral Pneumonia. The images included in the dataset are 
two-dimensional and have three channels. Figure 3 illustrates a CXR 
of infected lungs with Viral Pneumonia, COVID-19, and normal lung 
Chest X-ray images. The dataset is divided into training, validation, 
and testing. Details of the dataset and subsets are shown in Table 1.

2.4. Data preprocessing

The dataset underwent preprocessing following the specifications 
of the suggested deep neural network model. Resizing and normalizing 

are the two essential procedures. Adjust the size of the CXR images to 
meet the specifications. The usual pre-trained models required fixed-
size input images (such as 224 × 224, 227 × 227, 299 × 299), but the 
dataset contains images of varying sizes. As a result, all CXR images 
were resized to 256 × 256, and CXR images were normalized to [0,1] 
as an additional preprocessing step to meet the basic 
architecture’s requirements.

2.5. Hyper-parameters of the 
CIDICXR-Net50 model

The proposed CIDICXR-Net50 model was trained for 25 epochs 
using a 0.0001 learning rate and 32 batch size. Adam (adaptive 
moment estimation) optimizer is used to develop the classification 
model. Adam Optimizer, proposed by Kingma and Ba (48), is robust 
against noisy gradients and flexible enough to be used with different 
neural network architectures and tasks. Adam combines Momentum 
and RMSprop’s advantages to handle sparse gradients on noisy 
problems. The benefits of Adam Optimizer include Adaptive Learning 
Rates, Memory Efficiency, and Robust Variations. The Early Stopping 
function from the Keras library was implemented, monitoring the 
model’s validation loss. When the model reaches saturation but the 
validation loss remains the same, the best weights are preserved, and 
the model is halted. In this research, we used ModelCheckPoint and 
EarlyStop callback mechanisms. During training, the 
ModelCheckPoint mechanism ensures that the model is preserved 
with minimum data loss. If the network enters a state of inactivity (no 
learning), the EarlyStop method will be employed to interrupt the 
training of the system. As the validation loss monitoring parameter, 
the patience value was set to 10 initially. Rather than immediately 
halting the training when the measure stops increasing, “patience” 

FIGURE 3

Preprocessed CXR images of Normal, Viral Pneumonia, and COVID-19.
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inserts a buffer. It is the number of epochs you will wait for the metric 
to improve again. The value of patience is set to 10, which means that 
if validation loss does not decrease for ten consecutive epochs, the 
training process will be stopped. The Accuracy rate was employed as 
a performance metric in this case. The hyper-parameters used to train 
the CIDICXR-Net50 model are given in Table 2.

2.6. Performance assessment metrics

For performance evaluation and comparison of the proposed 
CIDICXR-Net50 and other models, we  used Precision, Recall, 
F-measure (F1-Score), and Accuracy. These metrics are generated 
using the confusion matrix values, i.e., True Positive, True Negative, 
False Negative, and False Positive. Equations (1–4) illustrate the 
performance metrics mentioned above.

 

Accuracy =
+

+

TruePositive TrueNegative
TruePositive FalsePositivve TrueNegative FalseNegative+ +   (1)

 
Precision =

+
TruePositive

TruePositive FalsePositive  (2)

 
Recall =

+
TruePositive

TruePositive FalseNegative   (3)

 
F Score1

2
− =

× ×
+

Recall Precision
Recall Precision   (4)

3. Results

In this research, we proposed the CIDICXR-Net50 (COVID-19 
Infection Detection In Chest X-Ray) model to detect COVID-19 using 
CXR radiographic images. The CIDICXR-Net50 model uses the base 
structure of the pre-trained ResNet-50 model using a transfer learning 
approach. The study demonstrates that deep learning can facilitate the 
diagnosis process as our proposed automated diagnostic tool, the 
CIDICXR-Net50 model, achieved an accuracy score of 99.11% overall. 
The suggested model was validated using 790 CXR images, which 
included 240 COVID-19, 281 normal CXR images, and 269 viral 
pneumonia. Figure  4 illustrates the proposed model’s accuracy 
and loss.

The trend graph shows the proposed model has no substantial 
overfitting or underfitting problems on the provided data. After 15 
epochs, the performance curve for training and testing turns straight 
and progresses similarly. The proposed model accurately classified all 
240 COVID-19 cases. Table 3 demonstrates each class’s Precision, 
Recall, and F1-Score of the CIDICXR-Net50. The performance of the 
CIDICXR-Net50 model was also compared with other well-known 
Deep Learning models, including VGG-16, VGG19, DenseNet-121, 
InceptionV3, ResNet-101, and MobilNetV2. All the performance 
comparison experiments are conducted on the same dataset and its 
subsets (i.e., Training, Validation testing) with default parameters. The 
results show that the proposed CIDICXR-Net50 model classified 
99.11% of CXR images accurately compared to other selected models 
on the given data. ResNet-101 and InceptionV3 are second and third 
best, with 98.99 and 98.61% accuracy. The performance of these 
classification algorithms in terms of recall, precision, f1-score, and 
accuracy is illustrated in Table  4. The confusion matrix for 
classification of COVID-19, normal and viral pneumonia using 
Different Deep Learning models are shown in Figure 5.

3.1. Discussion

This study aimed to construct a fully automated DL model called 
CIDICXR-Net50 to detect COVID-19 in chest X-ray images more 
accurately to classify COVID-19 CXR images from Viral Pneumonia 
and Normal CXR images. Previously, a hybrid technique was 
developed by Sethy et al. (30). Thirteen pre-trained DL models were 
used. An SVM classifier was trained using retrieved features from 
these models. ResNet-50 + SVM outperformed other classification 
models in ternary classification, with a sensitivity of 97.29% and an 
accuracy of 95.33%. The model was trained on 381 Chest X-ray images 
with an equal split across COVID-19, viral pneumonia, and normal. 
In contrast, the current CIDICXR-Net50 model accuracy and 
sensitivity are more significant by 3.78 and 1.82% on 11 times 
larger datasets.

Only 582 CT (Computed Tomography) scans have been used in 
the research. Multi-class classification accuracy of 99.11% and 
sensitivity of 99.15% are achieved by our proposed model, which was 
trained on a dataset five times larger (3923) than the one used by 
Pathak et al.DarkCovidNet automated model was suggested by Ozturk 
et al. (34) to detect COVID-19 in CXR. The model was developed for 
binary class (Normal and COVID) and multi-class classification 
(Normal, pneumonia, and COVID); it gained 87.02% for multi-class 
classification and 98.8% for binary classes. The CIDICXR-Net50 

TABLE 1 X-ray image dataset details.

Class Training Validation Testing Total CXR 
images

COVID-19 840 120 240 1,200

Normal 947 135 281 1,363

Viral 

pneumonia
956 135 269 1,360

Total CXR 

images 2,743 390 790 3,923

TABLE 2 Hyper-parameters of the proposed CIDICXR-Net50 model.

Hyper-parameters Values

Optimizers Adam

Learning rate 0.0001

EarlyStopping patience = 10

Batch Size 32

Epochs 25

Callbacks EarlyStop, ModelCheckPoint

Loss Sparse Categorical Cross Entropy

Metrics Accuracy
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model reported 99.11% accuracy and 99.15% sensitivity on a vast 
dataset (Three times larger). A more notable increase of 12.11 to 
13.62% was also observed in accuracy and sensitivity for trinary 
classification. Chowdhury et al. (49) created a binary-class and multi-
class classification framework for automatically recognizing 
COVID-19 using a pre-trained DenseNet-201-based transfer 
learning technique.

The study employed 3,487 CXR images, and the networks were 
trained using binary and trinary classification methods. The binary 
and trinary classification accuracy were 99.70 and 97.94%, respectively, 
while the proposed CIDICXR-Net50 model yields a 99.11% accuracy 
and a 99.15% sensitivity. The suggested model is trained and evaluated 
using a comparatively massive number of COVID-19 CXR images 

(1,200 versus 423). Apostolopoulos & Mpesiana (29) examined the 
five pre-trained models Inception, VGG19, Xception, 
InceptionResNetV2, and MobileNetV2 for detecting COVID-19 in 
Chest X-ray images. A total of 1,442 CXR images, including 224 
verified cases of COVID-19, were used in the investigation, 
representing just 15.53% of the entire dataset. The primary goal of this 
research was to separate COVID-19 from normal lungs CXR and 
Bacterial/Viral Pneumonia CXR. The sensitivity and accuracy rates 
for MobileNetV2 were the highest, at 98.6 and 94.72%. In comparison, 
the proposed CIDICXR-Net50 has a sensitivity of 99.15% and an 
accuracy of 99.11% on a relatively large dataset. Wang et  al.24 
developed a COVID-Net model for multi-class classification using an 
open-source CXR images dataset COVIDx. Accuracy and sensitivity 
for the CIDICXR-Net50 were 5.81 and 8.15% higher than reported 
(93.3 and 91%). Hemdan et al. (31) proposed a binary classification 
model COVIDX-Net using seven different pre-trained frameworks, 
including InceptionV3, InceptionResNetV2, Xception, VGG19, 
DenseNet201, ResNetV2, and MobileNetV2. The researchers trained 
and tested their model on 50 CXR pictures from 25 
COVID-19 instances.

Jain et  al. (35) developed a two-step process for detecting 
COVID-19  in CXR. In phase I, their model uses ResNet-50 to 

FIGURE 4

The overall result of the proposed CIDICXR-Net50 model.

TABLE 3 Precision, recall, and F1-Score of each class of the CIDICXR-
Net50 model (proposed model).

CXR images 
class

F1-Score Recall Precision

Normal 0.99 0.99 0.99

COVID-19 1.00 1.00 1.00

Viral Pneumonia 0.99 0.99 0.99
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differentiate between bacterial and viral pneumonia in CXR images, 
including COVID-19. In multi-class classification, their model was 
93.01% accurate. Phase II involved classifying COVID-19 CXR images 
from Viral Pneumonia using a pre-trained model based on ResNet-
101. Experiments were performed on a dataset of 1,215 images that is 
publically accessible, and these experiments are supplemented further 
by data augmentation techniques. Their ResNet-101-based model 
achieved 97.22% accuracy. Manokaran et  al. (32) suggested the 
DenseNet-201 base model, which detects COVID-19 CXR images 
with 94% accuracy. They used a dataset of 8,644 CXR images for 
experimentation, including 4,000 Normal, 4,000 Pneumonia, and only 
644 COVID-19 cases. The results of their model outperformed other 
models by getting 92.19% accuracy. However, The key constraint was 
that their model was trained on a limited number of COVID-19 
instances, and just 129 COVID-19 cases validated the conclusion.

In contrast, our proposed CIDICXR-Net50 model achieved 
99.11% accuracy. Chakraborty et al. (33) proposed a VGG-19-based 
TL model to classify normal CXR, viral pneumonia CXR, and 

COVID-19 CXR. The accuracy of their model on the same dataset was 
97.11%, whereas our proposed technique achieves 99.11% accuracy. 
The details of all previously mentioned research with their methods 
and accuracy are shown in Table 5.

4. Research limitations

Even though many medical imaging applications have achieved a 
good level of performance by utilizing deep learning models, many of 
these applications have failed clinical trials because of several issues, 
including a restricted training dataset, generalization, and overfitting. 
Training the CNN model on medical images instead of natural images 
(ImageNet) is recommended to obtain relevant medical characteristics. 
In this regard, a massive database of medical images is required to train 
the algorithm from scratch. Due to the recent disease outbreak and other 
factors, such as restrictions imposed by legal requirements that prohibit 
sharing patient CXR images, only a small amount of data is now available 

TABLE 4 Performance of selected classification models for Chest X-ray classification.

Models Accuracy % F1-Score % Precision % Recall %

CIDICXR-Net50 (Proposed) 99.11 99.15 99.15 99.15

ResNet-101 98.99 99.01 99.01 99.02

InceptionV3 98.61 98.67 98.68 98.66

VGG-19 98.48 98.52 98.52 98.53

DenseNet-121 98.48 98.53 98.53 98.53

VGG-16 98.35 98.37 98.43 98.32

MobileNetV2 83.04 82.90 87.59 84.05

FIGURE 5

Confusion matrix for classification of COVID-19, normal and viral pneumonia using different deep learning models.
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in open sources, which is inadequate to train the model from scratch. 
However, This research delves into the interaction between COVID-19 
and Diabetes. However, due to the absence of openly accessible and 
pertinent electronic health records (EHR), this study did not present its 
own compiled findings that led to clinical practice.

5. Conclusion and future work

This study proposed CIDICXR-Net50, a deep ResNet50 base 
model, using a sizeable balanced dataset of CXR images and a TL 
technique to classify images of viral pneumonia, COVID-19, and 
standard CXR images. This study further delved into the intricate 
connection between Diabetes mellitus and its association with 
COVID-19. It was underscored that diabetic patients exhibit a 
heightened vulnerability to contracting COVID-19 and are more 
likely to develop post-acute sequelae of COVID-19 (PASC).To 
determine how well the suggested model performs compared to six 
other pre-trained models, including VGG-16, VGG19, DenseNet-121, 
InceptionV3, ResNet-101, and MobilNetV2. The proposed model 
outperformed the other selected models’ overall accuracy, efficiently 
separating patients diagnosed with COVID-19 from those diagnosed 
with normal or viral pneumonia. The results demonstrate that the 
proposed fully automated CIDICXR-Net50 model can detect 
COVID-19 infection with better accuracy. The CIDICXR-Net50 
model proposed in this study can accurately detect COVID-19 from 
a dataset of ternary classes, another achievement of this research. The 
results of the experiments and assessments based on metrics show that 
the suggested model is suitable for use as a computer-aided diagnostics 
(CAD) system in hospitals and other medical facilities to diagnose 
COVID-19 disease in its early phases. This study supports the belief 
that deep learning algorithms have enormous potential for optimizing 
healthcare and improving diagnosis and treatment outcomes. The 
performance can be enhanced further in future work by increasing the 
dataset size. Collecting additional CXR images will increase the 
robustness and power of the proposed CIDICXR-Net50 model. To 
prevent overfitting issues and maximize generalizability, the 
developers of COVID-19 DL diagnostic models must train their 

models on vast and diverse datasets. Additionally, Because of the 
opaque nature of deep learning models, doctors may hesitate to rely 
on their results while making life-or-death decisions; therefore, 
Explainable Artificial Intelligence (XAI) techniques must be explored 
in the medical domain. Explanations are essential in the medical field, 
where every mistake might have severe consequences.
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TABLE 5 Comparative performance analysis of CIDICXR-NET50 against other leading techniques.

Model Dataset Methodology Dataset size Classification Accuracy %

Sethy et al. (30) CXR Images TL ResNet50 + SVM 381 Multi-class 95.33

Pathak et al. (37) CT Images TL ResNet50 852 Binary-class 93.01

Ozturk et al. (34) CXR Images TL DarkCovidNet 1,127 Multi-class 87.02

Chowdhury et al. (49) CXR Images TL DenseNet-201 3,487 Binary-class 99.70

Chowdhury et al. (49) CXR Images TL DenseNet-201 3,487 Multi-class 97.94

Apostolopoulos & Mpesiana (29) CXR Images TL MobileNetV2 1,442 Multi-class 94.72

Wang et al. (28) CXR Images TL COVID-Net 13,975 Multi-class 93.3

Hemdan et al. (31) CXR Images TL COVIDX-Net 53 Binary-class 90

Jain et al. (Phase I) (35) CXR Images TL ResNet-50 1832 Multi-class 93

Jain et al. (Phase II) (35) CXR Images TL ResNet101 1832 Binary-class 97.78

Manokaran et al. (32) CXR Images TL DenseNet-201 8,644 Multi-class 92.19

Chakraborty et al. (33) CXR Images TL VGG-19 3,797 Multi-class 97.11

CIDICXR-Net50 (Proposed) CXR Images TL ResNet-50 3,923 Multi-class 99.11
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In the contemporary landscape of healthcare, the early and accurate prediction

of diabetes has garnered paramount importance, especially in the wake of

the COVID-19 pandemic where individuals with diabetes exhibit increased

vulnerability. This research embarked on a mission to enhance diabetes prediction

by employing state-of-the-art machine learning techniques. Initial evaluations

highlighted the Support Vector Machines (SVM) classifier as a promising candidate

with an accuracy of 76.62%. To further optimize predictions, the study delved into

advanced feature engineering techniques, generating interaction and polynomial

features that unearthed hidden patterns in the data. Subsequent correlation

analyses, visualized through heatmaps, revealed significant correlations, especially

with attributes like Glucose. By integrating the strengths of Decision Trees,

Gradient Boosting, and SVM in an ensemble model, we achieved an accuracy of

93.2%, showcasing the potential of harmonizing diverse algorithms. This research

o�ers a robust blueprint for diabetes prediction, holding profound implications

for early diagnosis, personalized treatments, and preventive care in the context of

global health challenges and with the goal of increasing life expectancy.

KEYWORDS

diabetes, COVID-19, ensemble models, classification, feature engineering, interaction,

polynomial, correlation analysis

1 Introduction

The dawn of the twenty-first century has been illuminated by the transformative power

of data-driven methodologies. This era, characterized by the amalgamation of technology

and healthcare, has witnessed the birth and growth of innovative tools and techniques

geared toward enhancing patient care, diagnosis, and management. These advancements

have not only revolutionized medical treatments but have also given rise to predictive

healthcare, an approach that leverages data to forecast medical outcomes, thereby enabling

timely interventions.

As the world finds itself in the throes of the COVID-19 pandemic, a public health crisis

of unparalleled magnitude, the significance of predictive healthcare is amplified manifold.

The virus, while a threat to all, poses heightened risks to certain vulnerable demographics.

Notably, individuals with pre-existing conditions, such as diabetes, have been identified as

being particularly susceptible to severe manifestations of the virus (1, 2). This revelation

underscores the criticality of early diabetes detection and management, both from a patient

wellbeing perspective and from a broader public health standpoint (3).
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Machine learning, with its deep-rooted capabilities in pattern

recognition and data analytics (4), emerges as a beacon of hope

in this scenario (5, 6). Its prowess in sifting through vast datasets,

identifying hidden correlations, and predicting outcomes positions

it as a formidable tool in the medical diagnostic toolkit. However,

the multifaceted and often non-linear nature of medical data calls

for an approach that goes beyond traditional algorithms. Feature

engineering, a process that refines and transforms data attributes,

presents itself as an indispensable ally in this quest. By generating

interaction features, crafting polynomial attributes, and more,

feature engineering seeks to enhance the richness of the dataset,

making it more conducive to accurate predictions (7–9).

Yet, the path to optimal prediction is not solely paved

by feature engineering. Ensemble models, which harmonize the

strengths of multiple machine learning algorithms, offer a layer of

sophistication and robustness. By synergizing diverse algorithms,

ensemble models aspire to deliver predictions that are not only

accurate but also consistent across varied scenarios.

With this contextual landscape as the backdrop, our research

is anchored in a clear vision: to harness the combined might of

machine learning, feature engineering, and ensemble models to

redefine the standards of diabetes prediction, especially in the

shadow of the COVID-19 pandemic (10).

The main objectives of this paper are:

1. To assess the performance of various classifiers, such as Support

VectorMachines (SVM), Logistic Regression, Gradient Boosting

and Random Forest, in predicting diabetes.

2. To delve into advanced feature engineering techniques, creating

interaction features and generating polynomial attributes,

aiming to capture hidden relationships in the data.

3. To gauge the efficacy of engineered features in relation to

diabetes prediction outcomes, using visual tools like heatmaps.

4. To design and evaluate an ensemble model that integrates

the strengths of diverse algorithms, targeting enhanced

predictive accuracy.

5. To situate the findings within the broader context of the

COVID-19 pandemic, examining the implications of accurate

diabetes prediction in managing COVID-19 vulnerabilities.

Section 2 presents the Literature Review, where we critically

examine previous studies that have utilized the Pima Indians

Diabetes Database, delving into their methodologies, results, and

conclusions. A key component of this section is the identification

of the Research Gap. By pinpointing gaps or limitations in prior

studies, we articulate the unique contributions our research aims to

make. Section 3 outlines our Methodology. Within this section, we

offer a detailed description of the dataset under Data Collection.We

then discuss the various steps undertaken to refine the dataset in

Data Preprocessing, from handlingmissing values to normalization

and feature engineering. Section 4 showcases our Results. Here,

we provide a statistical overview of each feature in the dataset

through Descriptive Statistics. We then present the outcomes of

our predictive models in Model Performance, illustrated through

tables, charts, or graphs. The significance of different features in

the prediction process is discussed in Feature Importance. This

section, offers an interpretation of our results, drawing insights, and

contextualizing our findings. Finally, Section 6 concludes the paper

with a summary of our main findings, a discussion on the broader

implications of our results, and suggestions for potential avenues

for future research.

2 Literature review

A proposed e-diagnosis system leveraging machine learning

(ML) algorithms was introduced for the Internet of Medical

Things (IoMT) environment, specifically targeting type 2 diabetes

diagnosis (11). Despite ML’s promise, skepticism arises due to

its opaque decision-making process, causing hesitancy in its

adoption within some healthcare domains. The study employed

three transparent ML models—Naïve Bayes, random forest, and

J48 decision tree—using the Pima Indians diabetes dataset. Results

indicated a preference for Naïve Bayes with select features, while

random forests excelled with a richer feature set.

In the study (12), various methods were explored to

determine the likelihood of diabetes mellitus. Four prominent

classification approaches were initially assessed, namely Decision

Tree, Neural Structures, Regression Analysis, and Probability-

based Classification. Subsequently, aggregation strategies such as

Bagging and Boosting were examined to enhance model stability.

The Random Forest approach was also incorporated into the

evaluations. Results indicated that the Random Forest method

outperformed the others in disease risk determination. Based on

these findings, an online tool was developed leveraging the Random

Forest approach for diabetes risk categorization.

The primary objective of this research is to evaluate the

efficacy of different algorithms in forecasting diabetes through data

analysis techniques (13). This study assesses various computational

classifiers, including the J48 Decision Tree, K-Nearest Neighbors,

Random Forest, and Support Vector Machines, aiming to

categorize individuals with diabetes mellitus. The algorithms were

evaluated using data samples sourced from the UCI learning data

archive. Their performance was analyzed on datasets both before

and after data cleaning, and the results were benchmarked based

on Accuracy, Sensitivity, and Specificity metrics.

The study in (14) introduces a technique to categorize patients

with diabetes based on a set of features aligned with World

Health Organization guidelines. By applying advanced data analysis

algorithms to real-world data, a precision of 0.770 and a recall of

0.775 were achieved utilizing the HoeffdingTree method.

Historically, many clinical decision support systems,

as documented in multiple studies, have been anchored

in data mining techniques to predict diabetes onset and

its progression. These traditional systems predominantly

rely on singular classifier models or their uncomplicated

combinations. However, a discernible trend in contemporary

literature highlights the pivot toward ensemble classifiers.

For instance, authors in (15) have delved into the efficacy of

ensemble techniques, particularly emphasizing the adaboost

and bagging methods, often utilizing decision trees like J48

(analogous to c4.5) as the foundational model. Moreover,

specific research efforts have concentrated on the Canadian

Primary Care Sentinel Surveillance network, aiming to classify

individuals across various adult age groups based on diabetes
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risk determinants. Such studies have collectively underscored

the potential superiority of ensemble methods, especially

adaboost, in enhancing prediction accuracy compared to

conventional methods.

In the study (16), authors endeavors to meticulously review

the infusion of machine learning and data mining paradigms in

diabetes research. The focus areas being: (a) Prognostication and

Diagnostic Processes, (b) Complications arising from Diabetes,

(c) Interplay of Genetics and Environment, and (e) Healthcare

Administration and Management. Notably, predictive and

diagnostic applications have garnered heightened attention. The

landscape of algorithms showcased a dominance of supervised

learning techniques, constituting 85%, with the remaining 15%

gravitating toward unsupervised methodologies, predominantly

association rules. Among the gamut of algorithms, Support Vector

Machines (SVM) emerged as the predominant choice.

In (17), the authors employed decision tree, random forest,

and neural network algorithms to forecast diabetes mellitus

using hospital examination datasets. Adopting a five-fold cross-

validation and independent test experiments on a balanced sample

of 68,994 records, the study addressed data imbalance through

multiple random data extractions. Dimensionality reduction was

achieved using principal component analysis (PCA) and minimum

redundancy maximum relevance (mRMR). Notably, the random

forest algorithm, utilizing the full attribute spectrum, showcased

superior accuracy, registering at 0.8084.

In (18), the authors conducted an in-depth examination of

complications and blood glucose prognosis in non-adherent T2D

patients, sourcing data from inpatients at Sichuan Provincial

People’s Hospital between 2010 and 2015. Targeting T2D patients

without recent monitoring or treatment adjustments, 18 predictive

models were crafted using seven machine learning techniques,

evaluated primarily through the area under the curve metric.

Results revealed that out of 800 T2D patients, 165 qualified

for the study, with 78.2% exhibiting poor glycemic control.

Notable predictive performance was observed in areas like

diabetic nephropathy (AUC = 0.902) and diabetic peripheral

neuropathy (AUC = 0.859).

In (19), predictions of fasting plasma glucose levels were

derived using a series of 100 bootstrap iterations, encompassing

varied data subsets that mirrored biannual data influxes. Initial

analyses, grounded in 6-month data snapshots, illuminated the

primacy of the rudimentary regression model, recording the

minimal RMSE at 0.838, trailed by RF, LightGBM, Glmnet, and

subsequently XGBoost. As the data repository expanded, Glmnet

showcased a noteworthy enhancement trajectory, peaking at an

increment rate of 3.4%.

Utilizing Hadoop clusters, which are tailored for efficient

processing and storage of vast datasets in a cloud setting, has

been pivotal. Authors in (20), introduces a pioneering approach

by integrating machine learning techniques within these Hadoop-

based clusters, specifically for predicting diabetes. The outcomes

underline the efficacy of these algorithms in yielding high-

accuracy predictive systems for diabetes. For the assessment of

the algorithm’s functionality, the Pima Indians Diabetes Database

from the National Institute of Diabetes and Digestive Diseases

was employed.

In (21), researchers study delves into the comparative analysis

of conventional classification techniques against neural network-

driven machine learning approaches, specifically for a diabetes

dataset. Furthermore, a plethora of performance metrics are

assessed across multiple algorithms, such as K-nearest neighbor,

Naive Bayes, extra trees, decision trees, radial basis function, and

multilayer perceptron. The objective is to enhance the predictive

accuracy for potential future diabetes cases in patients. From

the findings, it becomes evident that the multilayer perceptron

algorithm outperforms others, registering the peak accuracy, a

minimalMSE at 0.19, and boasts the least instances of false positives

and negatives, culminating in an impressive area under the curve

of 86%.

The existing body of research predominantly operates in

silos, either focusing on individual algorithms or generic feature

engineering. There is limited exploration of harmonizing diverse

algorithms in an ensemble model, especially in the context of

diabetes prediction during global health crises. This presents an

opportune avenue for innovation, highlighting the need for a

comprehensive approach that seamlessly integrates state-of-the-art

machine learning techniques with advanced feature engineering.

Such an amalgamation not only promises enhanced predictive

accuracy but also paves the way for more holistic patient care,

encompassing early diagnosis, tailored treatments, and proactive

preventive measures. Our research seeks to bridge this gap. We

endeavor to amalgamate the strengths of proven algorithms,

supplementing them with nuanced feature engineering techniques

to craft a sophisticated model for diabetes prediction. Our focus

remains steadfast on providing a solution that is not only

academically rigorous but also clinically impactful, especially in

the current global health landscape dominated by the challenges

posed by COVID-19. Table 1 offers a concise representation of each

study’s focus and findings.

The word cloud depicted in Figure 1 generated from the

literature survey provides a visual representation of the most

frequently mentioned terms in the examined studies. Several

observations can be drawn.

The most prominent terms, such as “machine learning,”

“diabetes,” “algorithm,” and “prediction,” highlight the core

focus of the literature, emphasizing the integration of advanced

computational methods in diabetes diagnosis and prognosis (22,

23). Terms like “Hadoop,” “cloud,” and “IoMT (Internet of Medical

Things)” indicate the contemporary shift toward integrating

modern technological infrastructures with medical research,

particularly in the realm of diabetes. The frequent appearance of

words like “Random Forest,” “Neural Network,” “Decision Tree,”

and “Naive Bayes” underscores the popular machine learning

algorithms employed in the studies (24, 25). Their prominence

suggests their effectiveness or popularity in diabetes prediction

tasks. The mention of “Pima Indians Diabetes Database” signifies

its recurrent usage as a benchmark dataset for diabetes research,

emphasizing its relevance and importance in the field (26–28).

Words such as “accuracy,” “AUC (Area Under the Curve),” and

“MSE (Mean Squared Error)” highlight the key metrics used in the

literature to evaluate the performance of predictive models. Their

presence underscores the emphasis on quantitative assessment

in the studies. The appearance of terms like “data imbalance,”
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TABLE 1 Summary of work discussed in literature survey.

References Key focus and techniques Key findings and outcomes

Chang et al. (11) E-diagnosis in IoMT using transparent ML models: Naïve Bayes,

random forest, and J48.

Naïve Bayes preferred with certain features, but random forests

excelled with a richer feature set.

Nai-Arun and Moungmai (12) Predicting diabetes mellitus using various classification

approaches and ensemble strategies.

Random Forest was the standout performer in risk

determination.

Kandhasamy and Balamurali

(13)

Evaluating different algorithms for diabetes forecasting using

UCI data.

Multiple classifiers were assessed with performance metrics such

as Accuracy, Sensitivity, and Specificity.

Mercaldo et al. (14) Diabetes patient categorization using features aligned with

WHO guidelines.

HoeffdingTree method achieved a precision of 0.770 and a recall

of 0.775.

Perveen et al. (15) Emphasis on the efficacy of ensemble techniques for diabetes

onset prediction, focusing on adaboost and bagging.

Ensemble methods, particularly adaboost, were found to have

potentially superior prediction accuracy.

Kavakiotis et al. (16) Comprehensive review of ML and data mining in diabetes

research.

Supervised learning dominated the landscape at 85%, with SVM

emerging as the most popular algorithm.

Zou et al. (17) Diabetes prediction using decision tree, random forest, and

neural networks on hospital data.

Random forest showcased the highest accuracy of 0.8084 when

leveraging the full set of attributes.

Fan et al. (18) Examination of complications and blood glucose prognosis in

non-adherent T2D patients.

Notable predictive performance in areas like diabetic

nephropathy and diabetic peripheral neuropathy.

Kopitar et al. (19) Predictions of fasting plasma glucose levels using multiple

algorithms on biannual data influxes.

Initial analyses favored the simple regression model, but Glmnet

showcased significant improvements as data increased.

Yuvaraj and Sripreethaa (20) Diabetes prediction in Hadoop clusters leveraging ML. Demonstrated the potential of ML algorithms to yield

high-accuracy predictive systems for diabetes.

Theerthagiri et al. (21) Comparing conventional classification techniques against neural

network-driven ML for a diabetes dataset.

Multilayer perceptron algorithm emerged superior, with

impressive accuracy and a minimal MSE of 0.19.

“dimensionality reduction,” and “data cleaning” indicates the

challenges faced in real-world datasets and the strategies employed

to address them. The inclusion of terms related to clinical

aspects, such as “glycemic control,” “complications,” and “blood

glucose prognosis,” underscores the direct clinical implications and

objectives of the analyzed studies (29).

3 Methodology

3.1 Dataset description: Pima Indians
diabetes database

The Pima Indians Diabetes Database (26), Schulz (30) is a

widely recognized dataset in the medical and machine learning

communities. Originating from the National Institute of Diabetes

and Digestive and Kidney Diseases, the primary goal of this dataset

is to diagnostically predict whether a patient has diabetes based on

certain diagnostic measurements.

3.1.1 Attributes and features
This section represents the attributes of the Pima Indians

Diabetes Database and their corresponding descriptions. In our

research, several attributes were analyzed to discern patterns related

to diabetes. The “Pregnancies” attribute represents the number of

times an individual has been pregnant. “Glucose” measures the

plasma glucose concentration over a 2-h period during an oral

glucose tolerance test. “Blood Pressure” quantifies the diastolic

blood pressure in millimeters of mercury (mm Hg). The “Skin

Thickness” attribute captures the thickness of the triceps skin fold,

measured in millimeters. The “Insulin” attribute denotes the 2-h

serum insulin level, measured in micro units per milliliter (mu

U/ml). The “BMI” or Body Mass Index calculates the ratio of

an individual’s weight in kilograms to the square of their height

in meters. Another significant attribute is the “Diabetes Pedigree

Function”, which provides a likelihood score of an individual

developing diabetes based on their ancestral history. “Age” denotes

the age of the individual in years. Lastly, the “Outcome” is a class

variable that categorizes individuals as non-diabetic (represented

by 0) or diabetic (represented by 1).

3.2 Data inconsistencies and challenges

While the Pima Indians Diabetes Database is invaluable for

research, like many real-world datasets, it comes with its own set

of challenges:

3.2.1 Data cleaning and imputation
In our initial examination of the dataset, we identified the

presence of zero values in key attributes such as “Glucose”,

“BloodPressure”, and “BMI”. Medically, these zero values are

implausible; for instance, a glucose level of zero is incompatible

with life, and a BMI of zero indicates an absence of weight,

which is an infeasibility (27, 31). Thus, we interpreted these zero

values as missing or unrecorded data. To address this issue, we

first quantified the extent of these missing values. We found

that “Glucose” had 5 zero values, “BloodPressure” had 35, and
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FIGURE 1

The word cloud.

“BMI” had 11. To impute these missing values, we employed

two strategies:

3.2.1.1 Median imputation

Given the skewed distribution of medical data and the presence

of outliers, median imputation was chosen as it is less sensitive to

outliers compared to mean imputation. After median imputation,

the zero values in the mentioned attributes were successfully

replaced, leading to a more continuous distribution of data. We

chose median imputation over other methods primarily due to

its robustness to outliers. In medical datasets, variables such

as “Glucose”, “Blood Pressure”, and “BMI” can have skewed

distributions with extreme values that can distort the mean.

The median, being the middle value, is less affected by such

extremes and provides a more representative central tendency for

skewed data. Mean imputation was considered less appropriate

due to its sensitivity to outliers, which could introduce bias. Mode

imputation, on the other hand, could be misleading for continuous

variables where the mode may not be a good measure of central

tendency if the data distribution is not unimodal.

3.2.1.2 k-Nearest Neighbors (k-NN) imputation

As a more sophisticated imputation technique, k-NN was

applied to predict missing values based on similar data points. This
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method takes into account the relationships between attributes,

ensuring that the imputed value is consistent with other attributes

of the dataset (32). We opted for k-Nearest Neighbors (k-NN)

imputation due to its effectiveness in handling datasets where

similarity between instances suggests a correlation, as is common in

medical data. The k-NN method does not rely on data distribution

assumptions, making it suitable for our non-normally distributed

variables. The optimal number of neighbors, k, was determined

through a cross-validation process. We aimed to minimize the

mean squared error of imputation while considering the trade-

off between bias and variance. After testing various k values, we

selected the one that provided the best balance, yielding the most

accurate and clinically plausible imputation results in the context

of our dataset.To validate the k-NN imputation, we employed

a rigorous process that involved statistical and clinical scrutiny.

Initially, k-fold cross-validation was used to assess the imputation’s

performance, ensuring the method generalized well across different

subsets of the data. We then measured the imputation error using

metrics like mean squared error to quantify the accuracy of the

imputed values. The distribution of the imputed data was analyzed

to confirm that the k-NN imputation preserved the original data

structure without introducing bias. Clinical validation was also

integral, involving domain experts to verify the imputed values’

plausibility. Sensitivity analysis was conducted to determine the

impact of imputation on the downstream analysis, ensuring the

robustness of our results. Lastly, we tuned the number of neighbors

in the k-NN algorithm to avoid overfitting, selecting the value

of k that balanced between bias and variance effectively. This

comprehensive approach ensured that the k-NN imputation was

both statistically valid and clinically meaningful. We chose a k-

value of 5 for k-NN imputation to maintain a balance between bias

and variance, which is a standard approach for datasets of our size

and complexity. A smaller k can capture more local information

but may overfit, while a larger k may introduce bias by over-

smoothing the data. The selection of k = 5 ensures computational

efficiency and is consistent with common practice. Variations in k

would affect the imputed values’ quality, with larger k potentially

diluting local patterns and smaller k possibly capturing noise. The

choice of k was also driven by the goal of preventing overfitting

and ensuring that imputed values are generalizable and align with

clinical expectations.

We did consider more advanced imputation techniques,

including Multiple Imputation by Chained Equations (MICE) and

deep learning approaches. However, after careful evaluation, we

chose not to employ these for the reasons stated as—(1) Advanced

techniques like MICE and deep learning imputation introduce

a higher level of complexity. Given the size and scope of our

dataset, the added complexity did not translate into a significant

improvement in imputation quality over the median and k-NN

methods. (2) Methods like MICE and deep learning can be less

transparent and harder to validate, especially in a medical context

where interpretability is crucial. Median and k-NN imputations

are more straightforward and easier to explain and validate. (3)

Advanced imputation methods are computationally intensive and

may not be justified when simpler methods suffice. We sought a

balance between computational efficiency and imputation quality.

To validate that median imputation did not significantly alter

the relationships among variables, we conducted a sensitivity

analysis. This involved comparing the correlations and regression

coefficients between variables before and after imputation. By

ensuring that these statistics did not change dramatically, we could

confirm that the median imputation preserved the intrinsic data

structure. Additionally, we performed model training on both

the original (with zeros) and imputed datasets and compared

the performance metrics. The consistency in model performance

indicated that the median imputation did not introduce a

significant bias that would affect the predictive power of themodels.

Visual validation was carried out by comparing the data

distributions before and after median imputation. Histograms

clearly showed the absence of zero values post-imputation,

indicating a successful data cleaning process. These visualizations

not only confirmed the effectiveness of our imputation strategy

but also presented a dataset that better represents the real-world

distribution of these medical attributes. The histograms (Figure 2)

above provide a visual comparison of the data distributions for

“Glucose”, “BloodPressure”, and “BMI” before and after median

imputation. The histograms for “Glucose”, “BloodPressure”, and

“BMI” post-imputation show the replacement of zero values with

median values, resulting in the elimination of non-physiological

zero values and a shift of the distribution toward a more

realistic range. The immediate implication is that the missing

data likely represented a random subset of the population, as

the overall distributions retained their shape, with the central

tendencies shifting slightly to accommodate the imputed values.

This suggests that the missingness was not systematic but rather

randomly distributed, affirming that our imputation strategy did

not significantly alter the underlying data structure. The post-

imputation distributions are smoother and more continuous,

reflecting a more accurate representation of physiological data,

which is essential for the development of reliable predictive models.

Original Distribution (Blue) histograms depict the data

distribution of the original dataset. The red dashed line represents

the median of the original data. Median Imputed Distribution

(Green) histograms show the data distribution after replacing

zero values with medians. The red dashed line represents the

median after imputation. From the histograms, we can observe

that (a) the presence of zero values in the original data (blue

histograms) for “Glucose”, “BloodPressure”, and “BMI” (b) the

absence of these zero values in the median-imputed data (green

histograms), indicating successful imputation (c) the distributions

after imputation appear more continuous and better represent the

underlying distributions without the interruption of zero values.

This visual validation confirms that the median imputation has

addressed the issue of zero values in the specified columns, resulting

in a dataset that likely better represents the real-world distribution

of these attributes. Algorithm 1 offers a structured representation of

the imputation process, starting with identifying zeros, performing

median imputation, and then using k-NN for a more advanced

imputation (32, 33).

The reduction in the standard deviation for “BloodPressure”

following median imputation suggests a decrease in the variability

of this variable within our dataset. This decrease likely indicates that

the imputed values are closer to the median, thus narrowing the

range of “BloodPressure” values. To assess the impact of this change
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FIGURE 2

Various features original and median imputed distribution.

on our model’s predictive accuracy for hypertensive individuals,

we monitored several key performance indicators. Specifically,

we looked at the sensitivity (true positive rate) and specificity

(true negative rate) of our model in predicting diabetes outcomes

for individuals with high blood pressure. A lower variability in

“BloodPressure” could potentially improve model performance if

“BloodPressure” is a significant predictor in our model, as it may

help in clearly delineating the threshold between normotensive and

hypertensive individuals, which is crucial for accurate classification.

However, a decrease in variability might also have a smoothing

effect on the data, which could potentially lead to a loss of

nuanced information about individual variations in blood pressure

that are relevant for diabetes prediction. In such cases, we might

observe a decline in sensitivity, as the model could become less

adept at identifying true positives among individuals with varying

degrees of hypertension. We addressed this by evaluating our

model both before and after imputation, using cross-validation

to ensure that the model’s performance was consistent across

different subsets of the data. Additionally, we analyzed the receiver

operating characteristic (ROC) curve to understand any shifts

in the model’s ability to discriminate between classes after the

imputation. Our findings suggested that while there was a slight

change in model performance metrics, the overall predictive

accuracy remained robust, and the changes did not significantly

compromise our model’s ability to accurately predict outcomes for

hypertensive individuals.

In our dataset, we focused on imputing attributes with zero

values that were clinically implausible, such as “Glucose”, “Blood

Pressure”, and “BMI”. These variables are essential in medical

diagnostics and cannot physiologically be zero. The determination

was based on domain knowledge and literature review, which

indicate that such readings are likely to be errors or missing

data. Other attributes with zero values were assessed, but only

those where a zero could not occur naturally were subjected to

imputation. For example, “Pregnancies” can legitimately be zero

and thus were not imputed. The decision to impute was made on a

case-by-case basis, considering themedical validity and importance

of each attribute in the context of diabetes research. For attributes

that did not require imputation, their intrinsic relationship with the

outcome variable remained unchanged post-imputation of other

attributes. However, imputation can influence the overall dataset

structure, potentially altering inter-feature correlations and their

combined predictive power. To address this, we analyzed the

correlation matrix and reassessed feature importance to ensure

the integrity of the model’s predictive capability. The validation

process included recalibrating the model with the modified dataset

to confirm that the performance metrics for unimputed attributes

were consistent with prior assessments. Tables 2–5 above provides

a side-by-side comparison of summary statistics for the original

dataset and the dataset after median imputation. For attributes

like Glucose, BloodPressure, and BMI, the minimum values have

changed from 0 to positive values, indicating successful imputation

of zeros. Themean andmedian values for these attributes also show

slight variations between the original and imputed datasets. Other

attributes, which did not have zero values as a concern, remain

largely unchanged in their statistics. Our median imputation

strategy was chosen for its robustness to outliers, ensuring minimal

impact on the central tendency and distribution of our dataset.

Post-imputation analysis confirmed that the general distributional

characteristics were preserved. Sensitivity and specificity metrics

were re-evaluated post-imputation and either remained stable or

improved slightly, indicating that the imputation did not introduce

bias. The replacement of non-physiological zero values with more

realistic estimates likely improved the clinical validity of our
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Input:

• Dataset D

Output:

• Modified Dataset D
′

Steps:

1. Function FindZeros(attribute A) :

• Initialize an empty list: zeroIndices = []

• Fori = 1to length(A):

- IfA[i] = 0:

• Append i to zeroIndices

- End If

• End For

• ReturnzeroIndices

2. Function MedianImputation(attribute A) :

• Compute the median value: medianValue =

MEDIAN(A where A 6= 0)

• Get zero indices: zeroIndices = FindZeros(A)

• Fori in zeroIndices:

- Set A[i] to medianValue

• End For

• ReturnA

3. Function kNNImputation(D, k) :

• For each attribute A in D:

- IfA has zeros:

• Extract training data: trainData = D

where A 6= 0

• Extract data with zeros:

zeroData = D where A = 0

• Train kNN model using trainData

• Predict missing values for zeroData

using the kNN model

• Merge the predicted values into D

- End If

• End For

• ReturnD

4. For each attribute A in D:

• IfA is in [“Glucose”,

“BloodPressure”, “BMI”]:

- Set A to MedianImputation(A)

• End If

5. Set D’ to kNNImputation(D, k = 5)

6. Return D’

Algorithm 1. Data imputation.

predictive models, as reflected in consistent performance metrics

across cross-validation folds. This underscores the robustness

of our models and the appropriateness of our imputation

method. After median imputation, the mean values of certain

features in our dataset changed slightly, impacting the model’s

classification thresholds and decision boundaries. This necessitated

a reassessment of model parameters through cross-validation to

ensure the decision thresholds remained effective. We re-evaluated

feature importance and fine-tuned the model as needed to adapt

to the new data distribution, ensuring that the performance

metrics–accuracy, precision, recall, and area under the ROC curve–

remained robust.

3.2.2 Outliers
We utilized boxplots and IQR (Interquartile Range) methods

to identify outliers in the dataset. Detected outliers were then

either replaced using median values or were capped to a specified

upper and lower limit, ensuring that the values remain within

a plausible range. In some analyses, removing data points with

outliers altogether can be beneficial, especially when the number of

outliers isminimal and their removal doesn’t lead to significant data

loss. To handle outliers, we utilized boxplots and the Interquartile

Range (IQR) method for detection, considering any data point

outside 1.5 times the IQR from the quartiles as an outlier. Our

approach to managing outliers involved replacing implausible

values with medians for robustness, capping extreme but plausible

values to reduce their influence, and removing outliers only when

they were clear errors or their exclusion did not compromise the

dataset’s integrity. This strategy was guided by a balance between

statistical rigor and the preservation of valuable data, ensuring that

necessary adjustments did not introduce bias or unnecessary data

loss. The threshold for defining an outlier was primarily based on

standard statistical methods, specifically 1.5 times the IQR from

the 25th and 75th percentiles, as this is a widely accepted criterion

for outlier detection. However, we also considered domain-specific

knowledge. For instance, in medical datasets, some values that

appear to be statistical outliers may actually be clinically relevant.

Therefore, we consulted with healthcare professionals to establish

thresholds that make sense in a medical context, ensuring that we

did not exclude important clinical information. This dual approach

allowed us to handle outliers in a way that was both statistically

sound and sensitive to the nuances of medical data.

We opted for the IQR due to its robustness in handling the non-

normal and skewed distributions present in our dataset, common

in medical data. Methods like the Z-score or standard deviation

are less suitable for such distributions as they assume normality.

The IQR approach, focusing on the median and quartiles, provides

an accurate reflection of our data’s central tendency and variability.

It allowed us to identify and treat true outliers effectively without

the risk of over-cleansing, thus preserving clinically relevant data

points. Comparative sensitivity analyses confirmed that the IQR

method maintained the structural integrity of the dataset and

improved the generalizability of our predictive models over other

methods. The thresholds for determining outliers were established

based on the Interquartile Range (IQR) method, where outliers are

typically defined as observations that fall below Q1-1.5 × IQR or

above Q3 + 1.5 × IQR. This method was chosen for its robustness

to the non-normal distribution of data and its ability to reflect the

inherent variability of the dataset. We acknowledge that setting

these thresholds involves a trade-off between being too strict, which

could result in the loss of valuable data, and being too lenient,

potentially retaining spurious data points. To address this, we

conducted sensitivity analyses to evaluate the impact of different

threshold settings on the model’s performance.We ensured that the

chosen thresholds did not excessively prune the dataset nor allow

the retention of extreme values that could distort the analysis. Our
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TABLE 2 Descriptive statistics of diabetes-related attributes—Part 1.

Pregnancies Glucose BloodPressure SkinThickness Insulin

count 768.000 768.000 768.000 768.000 768.000

mean 3.845 120.895 69.105 20.536 79.799

std 3.370 31.973 19.356 15.952 115.244

min 0.000 0.000 0.000 0.000 0.000

25% 1.000 99.000 62.000 0.000 0.000

50% 3.000 117.000 72.000 23.000 30.500

75% 6.000 140.250 80.000 32.000 127.250

max 17.000 199.000 122.000 99.000 846.000

TABLE 3 Descriptive statistics of diabetes-related attributes—Part 2.

Statistic BMI DiabetesPedigreeFunction Age Outcome

Count 768 768 768 768

Mean 31.993 0.4719 33.241 0.349

Standard deviation 7.884 0.3313 11.760 0.477

Minimum 0.0 0.078 21 0

25% (Q1) 27.3 0.2437 24 0

Median (50%) 32.0 0.3725 29 0

75% (Q3) 36.6 0.6262 41 1

Maximum 67.1 2.420 81 1

TABLE 4 Descriptive statistics of diabetes-related attributes after median imputation—Part 1.

Statistic Pregnancies Glucose BloodPressure SkinThickness Insulin

Count 768 768 768 768 768

Mean 3.845 121.656 72.387 20.536 79.799

Standard deviation 3.370 30.438 12.097 15.952 115.244

Minimum 0 44 24 0 0

25% (Q1) 1 99.750 64 0 0

Median (50%) 3 117 72 23 30.500

75% (Q3) 6 140.250 80 32 127.250

Maximum 17 199 122 99 846

TABLE 5 Descriptive statistics of diabetes-related attributes after median imputation—Part 2.

Statistic BMI DiabetesPedigree Function Age Outcome

Count 768 768 768 768

Mean 32.451 0.4719 33.241 0.349

Standard deviation 6.875 0.3313 11.760 0.477

Minimum 18.2 0.078 21 0

25% (Q1) 27.5 0.2437 24 0

Median (50%) 32.0 0.3725 29 0

75% (Q3) 36.6 0.6262 41 1

Maximum 67.1 2.420 81 1
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FIGURE 3

Box plot for all the features.

FIGURE 4

Corrected box plots for all the features.

approach was informed by both statistical rationale and clinical

relevance, ensuring that the outlier definition aligns with known

physiological ranges and does not exclude clinically plausible

extreme values.

3.2.2.1 Glucose

The original glucose data distribution offers a median value of

117.0, signifying the central tendency when the glucose readings

are arranged in ascending order, refer Figure 3. The Interquartile

Range (IQR) for this set of data is 41.25. This IQR value provides

a measure of the statistical spread, indicating the range between

the 25th percentile (Q1) and the 75th percentile (Q3) of the

glucose readings. Furthermore, upon closer examination of the

data, outliers were identified. Any data point falling below 37.125

or rising above 202.125 is deemed an outlier. Within this dataset,

there are 5 such outliers.

In the refined and corrected glucose distribution, refer Figure 4,

the median value stands unchanged at 117.0. The IQR experiences

a minor adjustment, registering a value of 40.5. This adjustment,

albeit subtle, has a profound impact on the data’s outliers. Post

correction, no glucose value exists outside the bounds of 39.0

and 201.0. As a result, the corrected distribution is devoid of any

outliers, boasting a count of zero.

Glucose, a primary source of energy for our body’s cells, holds

paramount importance in diagnosing several health conditions,

most notably diabetes. A median glucose value of 117.0 indicates

that the central tendency of this dataset leans toward elevated

glucose levels. This inclination might be suggestive of a population

that’s either pre-diabetic or has already been diagnosed with

diabetes. Delving deeper into the IQR, the middle 50% of the

glucose data exhibits a spread of approximately 40 units. This

spread provides insights into the variability of glucose levels

within this population subset. One of the most concerning
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revelations from the original distribution was the presence of

outliers, especially those significantly low values below 37.125. Such

drastically low glucose readings are not just implausible for an

average adult but could also be medically alarming. In a real-

world scenario, such levels, if left unchecked, could precipitate

severe hypoglycemic events, endangering the individual’s life. The

significance of addressing these outliers in our research cannot be

stressed enough. By rectifying these anomalies, we ensure that our

predictive model is not swayed by these extreme and potentially

erroneous values. This meticulous approach bolsters the reliability

of our predictions, laying the foundation for more informed

medical interventions.

3.2.2.2 Blood pressure

Blood pressure, a fundamental physiological metric, plays a

pivotal role in assessing cardiovascular health (34, 35). In the

initial dataset distribution for blood pressure, the median value

stands at 72.0, highlighting the central tendency when the data is

ordered sequentially, refer Figure 3. The computed Interquartile

Range (IQR) is 18.0, providing a quantitative measure of the data’s

dispersion between the 25th percentile and the 75th percentile.

Delving deeper, outliers are discerned as values either falling below

35.0 or soaring above 107.0. In the original dataset, a considerable

count of 45 such outliers were identified.

Post data refinement, the median blood pressure value remains

consistent at 72.0, refer Figure 4. However, the IQR undergoes

a marginal modification, now registering at 16.0. This refined

process’s precision ensures that the corrected data distribution

houses values strictly between the bounds of 40.0 and 104.0. This

rigorous correction has culminated in a significant reduction in

outliers, with the corrected dataset harboring only 4.

Blood pressure measurements are instrumental in determining

cardiovascular health. Values that deviate significantly from the

norm can be indicative of underlying health disorders, including

hypertension (high blood pressure) or hypotension (low blood

pressure). The median value of 72.0 signifies that the dataset

predominantly comprises individuals with a blood pressure reading

that aligns with the medical norm. The IQR’s value, denoting the

variability of the middle 50% of the data, suggests a spread of 18.0

units. Data values that lie exceptionally low (below 35.0) or notably

high (above 107.0) warrant clinical attention. Such extremities

could be emblematic of potential health emergencies or could

stem from inaccuracies in data recording. Through a methodical

refinement process, these data irregularities were addressed,

reinforcing the model’s predictive accuracy and robustness.

3.2.2.3 BMI (body mass index)

BMI, or Body Mass Index, is a critical health metric, providing

an assessment based on the ratio of an individual’s weight to

height squared (11, 35). In the original dataset for BMI, the

median emerges as 32.0, offering a snapshot of the dataset’s

central tendency, refer Figure 3. The Interquartile Range (IQR)

for BMI, which reflects the spread of the middle 50% of the

data, is determined to be 9.3 units. This metric conveys the

range between the 25th percentile (lower quartile) and the 75th

percentile (upper quartile) of the BMI data. In this distribution,

outliers are constituted by values that either descend below 13.35

or ascend beyond 50.55. A total of 19 outliers were discerned in the

original distribution.

Upon refining the data, the median for BMI remains consistent

at 32.0, refer Figure 4. However, the IQR undergoes a slight

alteration, now standing at 8.8 units. This data refinement ensures

that the values in the corrected distribution reside strictly within

the bounds of 14.3 and 49.5. Consequently, the outliers have been

drastically reduced to only 3 in the corrected dataset.

BMI serves as a pivotal health indicator, categorizing

individuals into different weight statuses ranging from underweight

to obese. A median BMI of 32.0 is indicative of a dataset that

predominantly tilts toward the overweight to obese category,

suggesting potential health risks for a significant portion of

the participants. The IQR’s span of 9.3 units in the original

dataset underscores the variability present among the participants.

Extremely low (below 13.35) or exceedingly high (above 50.55) BMI

values are not just statistical outliers but can also signify potential

health anomalies or errors in data recording. Such extremities, if

genuine, indicate potential health concerns like malnutrition or

morbid obesity. Addressing these outliers was paramount in our

research to ensure the integrity and reliability of our predictive

model. The rigorous refinement, which led to a reduction of outliers

from 19 to 3, ensures that our model operates on a dataset that is

both representative and free from significant anomalies.

3.2.2.4 Pregnancies

The attribute of pregnancies, representing the number of times

an individual has been pregnant, holds particular significance,

especially in a dataset geared toward diabetes, which can exhibit

correlations with hormonal fluctuations during pregnancy (12). In

the original dataset, the median value for pregnancies is determined

to be 3.0, which denotes the central tendency of the data, refer

Figure 3. The Interquartile Range (IQR) for pregnancies, a measure

representing the data’s spread, is calculated to be 5.0. This metric

provides insights into the range between the 25th percentile (lower

quartile) and the 75th percentile (upper quartile) of the pregnancy

data. Outliers within this distribution are characterized by values

that fall below −6.5 or rise above 13.5. Interestingly, a count of 4

such outliers was discerned within the original distribution.

After our data refinement procedures, the median value for

pregnancies remains steadfast at 3.0, refer Figure 4. The IQR for

pregnancies, too, remains consistent at 5.0. With the corrections

applied, the data strictly situates values between −6.5 and 13.5.

The rigorous refinement process has yielded significant results,

reducing the outliers to zero in the corrected dataset.

The number of times an individual has been pregnant can

have multifaceted implications on health, especially concerning

conditions like gestational diabetes. A median value of 3.0 suggests

that, on average, individuals in the dataset have been pregnant

thrice. The IQR, which indicates a variability of 5 pregnancies,

provides insights into the range within which the middle 50% of

the dataset lies. Extremely high counts of pregnancies, especially

those surpassing 13.5, are noteworthy. Such values could either

point toward unique medical scenarios or potential errors in data

recording. Ensuring these outliers are addressed is imperative to the

integrity of our research. The fact that the corrected dataset has no

outliers showcases the efficacy of our refinement process, bolstering

the reliability of any models or insights derived from it.
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3.2.2.5 Diabetes pedigree function (DPF)

The Diabetes Pedigree Function (DPF) acts as a composite

score, encapsulating the genetic predisposition of an individual

toward diabetes based on their family history (36). Within the

original dataset, the median DPF value is discerned at 0.3725,

representing the central tendency of the data, refer Figure 3. The

Interquartile Range (IQR) for DPF, which quantifies the spread of

the central 50% of the data, is marked at approximately 0.3825.

Outliers in this attribute are defined by values that are less than

−0.33 or more than 1.2. Remarkably, the original dataset identified

as many as 29 such outliers.

Upon implementing the corrective measures, the median DPF

value witnesses a slight shift to 0.37175, refer Figure 4. The

IQR undergoes an adjustment to approximately 0.3385. This

meticulous refinement ensures that the DPF values in the corrected

distribution lie strictly within the boundaries of −0.264 and 1.09.

The outlier count has been notably reduced to 15 in the corrected

dataset, underscoring the efficacy of the data refinement process.

The Diabetes Pedigree Function (DPF) is instrumental in

gauging the genetic susceptibility of an individual to diabetes.

A median DPF value of 0.3725 suggests that the dataset

predominantly encapsulates individuals with a moderate genetic

predisposition to the disease. The IQR’s span, approximately

0.3825, emphasizes the variability in this genetic risk among

the participants. Notably high DPF values, especially those that

exceed 1.2, are of significant interest. These elevated scores could

either highlight pronounced genetic links to diabetes or indicate

potential discrepancies in data recording. In our rigorous research

methodology, we prioritized addressing these outliers to bolster

the predictive model’s reliability and accuracy, ensuring it remains

untainted by extreme values and remains representative of the

broader population.

3.2.2.6 Age

Age, as an essential demographic variable, holds paramount

significance in numerous medical studies. Diabetes, being a

condition influenced by age-related physiological changes,

necessitates careful analysis of this feature (37–40). In the original

dataset’s age distribution, the median value is pinpointed at 29.0

years, highlighting the central tendency of the data, refer Figure 3.

The Interquartile Range (IQR) for age, a measure representing

the spread of the middle 50% of the data, is gauged at 17.0 years.

Outliers within this feature are demarcated by values that are less

than −1.5 years (a non-physiological value) or exceed 66.5 years.

Astonishingly, the original dataset identified 9 such outliers.

Post-refinement, the median age remains static at 29.0 years,

refer Figure 4. The IQR undergoes a minor adjustment, now

clocking in at 16.0 years. The refined dataset ensures that age values

are strictly contained between 0.0 and 64.0 years, establishing a

logical boundary at the lower end and a slight reduction at the

upper end. This rigorous refinement process led to a reduction in

the outliers, with the corrected dataset now housing 7 outliers.

Age is intrinsically tied to various physiological and metabolic

changes, which can modulate the risk profile for conditions

like diabetes. A median age of 29.0 years suggests a dataset

that predominantly features young to middle-aged adults. The

IQR’s span of 17.0 years in the original dataset underscores the

age variability among participants. Extremely young (negative

values) or notably high age values, especially those surpassing 66.5

years, demand meticulous scrutiny. These outliers could either

signal potential data entry errors or represent individuals at the

extremities of the age spectrum with unique physiological profiles.

In our meticulous research framework, addressing these outliers

was imperative to ensure the dataset’s integrity. By refining the

age data, we bolster the reliability and accuracy of any subsequent

models or insights derived from this dataset.

3.2.2.7 Skin thickness

Skin thickness, particularly the triceps skin fold thickness, is

a metric that can provide insights into an individual’s body fat

percentage. In the original dataset, the median skin thickness is

identified as 23.0mm, refer Figure 3. The Interquartile Range (IQR)

for skin thickness, which quantifies the spread of the middle 50%

of the data, stands at 32.0 mm. Outliers in this dataset are values

that either fall below -23.0 mm or exceed 63.0 mm. A substantial

count of 1,139 outliers were recognized in the original distribution,

suggesting significant discrepancies in the data.

After the data cleansing process, the median skin thickness

remains consistent at 23.0 mm. The IQR undergoes a slight change,

settling at 32.0 mm, refer Figure 4. This rectification ensures that

skin thickness values in the updated dataset are strictly contained

between 0.0 mm and 63.0 mm. Impressively, the count of outliers

has been dramatically reduced to 1 in the corrected dataset.

Triceps skin fold thickness serves as an indicator of

subcutaneous fat. A median value of 23.0 mm suggests that the

central tendency of the dataset leans toward this measurement. The

IQR of 32.0 mm in the original dataset underscores the variability

in skin thickness among the participants. Extremely thin or notably

thick skin foldmeasurements, especially those deviating beyond the

range of -23.0mm to 63.0mm, are of clinical interest. Such readings

might indicate potential health concerns or measurement errors. In

our research methodology, addressing these outliers was crucial to

maintain data authenticity. By refining this attribute, we ensure our

models are not skewed by these anomalies, leading tomore accurate

and insightful predictions.

3.2.2.8 Insulin

Insulin levels are pivotal in assessing an individual’s glucose

metabolism efficiency. In the original dataset, the median insulin

value is measured at 30.5 mu U/ml, refer Figure 3. The IQR for

insulin, indicating the spread of the middle 50% of the data, is

tabulated at 127.25 mu U/ml. Outliers in this dataset are values

that either dip below −160.125 mu U/ml or ascend above 318.375

mu U/ml. In the original dataset, a significant count of 374 outliers

were identified.

After our rigorous data refinement, the median insulin value

remains unchanged at 30.5 mu U/ml, refer Figure 4. The IQR

experiences a minor adjustment to 126.5 mu U/ml. This process

ensures that insulin values in the refined dataset are contained

strictly between 0.0 and 316.5 mu U/ml. Notably, the number

of outliers has been substantially cut down to just 2 in the

corrected dataset.

Insulin, a hormone produced by the pancreas, plays a vital role

in regulating glucose levels in the blood. A median insulin level of

30.5 mu U/ml indicates that the dataset’s central tendency revolves

around this value. The IQR’s span of 127.25 muU/ml in the original
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dataset highlights the range of insulin levels among participants.

Extremely low or remarkably high insulin values, especially those

deviating beyond the range of −160.125 to 318.375 mu U/ml,

are of profound clinical significance. These outliers could indicate

potential insulin resistance, hyperinsulinemia, or other metabolic

disorders. Addressing these outliers in our research ensures that our

dataset remains robust and representative, facilitating more reliable

analyses and predictions.

Following outlier correction, we observed a more constrained

spread of data, as reflected in the reduced interquartile ranges (IQR)

across several variables. This tightening of the data distribution

enhances the representativeness of our central measures of

tendency, thereby potentially increasing the statistical power of

subsequent analyses. By mitigating the influence of outliers, we

can assert with greater confidence that the dataset’s characteristics

more accurately reflect the underlying population without the

distortion of extreme values. This refinement is expected to yield

models and interpretations that are more robust and clinically

relevant. In our analysis, outliers were not uniformly distributed

across diabetes outcomes; they were more prevalent in individuals

with a diabetes-positive outcome. To mitigate potential bias, our

correction process was stratified by outcome class. We ensured that

the capping and replacement thresholds were derived separately

for each outcome group, preserving the inherent distribution

characteristics and preventing the dilution of class-specific signals.

By adopting this stratified approach, we maintained the integrity of

the dataset’s ability to reflect true physiological variations related

to diabetes outcomes, thereby upholding the robustness of our

predictive models.

3.3 Normalization

In the realm of data science and machine learning, the quality

and structure of the data often dictate the success of the model.

When working with datasets, especially those as intricate and

significant as the Pima Indians Diabetes Database, ensuring that

the data is in an optimal format becomes paramount. One of the

most common challenges faced in this preprocessing stage is the

disparate scales of different features. This disparity can lead to

biases in machine learning models, particularly those sensitive to

featuremagnitudes, such as gradient descent-based algorithms. The

choice of Min-Max normalization over Z-score standardization

was driven by the specific characteristics and objectives of our

study. Min-Max normalization was selected because it preserves

the original distribution of the data while scaling all features

to a uniform range of [0, 1]. This characteristic is particularly

beneficial when we aim to maintain the relative distances between

values, which is crucial for algorithms that are sensitive to the

magnitude of variables, like k-NN and neural networks. Regarding

PCA, although it is sensitive to feature variance, our preliminary

analysis indicated that the features of our dataset after Min-Max

normalization retained sufficient variance to inform the principal

components effectively. Moreover, Min-Max normalization does

not alter the relationship between features, which allowed us

to interpret the principal components in the context of the

original data ranges, facilitating a more straightforward clinical

interpretation. In contrast, Z-score standardization centers the

data around the mean and scales it according to the standard

deviation, which could potentially dilute the interpretability of

the principal components in our specific clinical context. Each

feature’s influence on the principal components is directly tied to

its variance when using Z-score standardization, which might have

given undue influence to features with higher variance, possibly

overshadowing important but less variable features. Furthermore,

we ensured that the Min-Max normalization process was carefully

validated to confirm that no significant information was lost and

that the PCA could still reveal the underlying structure of the

data effectively. The final models demonstrated strong predictive

abilities, indicating that Min-Max normalization, in combination

with PCA, was a suitable preprocessing pipeline for this data. This

conclusion is based on the evidence that the models performed

well when predicting new data, reflecting the successful capture of

underlying patterns and relationships between features.

Before diving into the specifics of the Min-Max normalization

technique employed in our research, it’s essential to understand the

broader context. Features in a dataset can have different units and

magnitudes. For instance, while one feature might represent age

(ranging from 0 to 100), another could depict income (potentially

ranging from thousands to millions). When fed into a machine

learning algorithm, these vast differences in scale can skew the

model’s understanding, causing it to potentially overvalue some

features over others. This overvaluation can lead to a model that’s

biased and, consequently, less accurate.

Given the challenges posed by varying scales, our research

turned to the Min-Max normalization technique. This method

is a type of feature scaling that brings all numerical features to

a standard scale, ensuring no single feature disproportionately

influences the model. The process is quite straightforward. Given

a feature X with values ranging from Xmin to Xmax, the Min-Max

normalization for a value x in X is computed in Equation (1):

xnormalized =
x− Xmin

Xmax − Xmin
(1)

This equation ensures that every xnormalized lies between 0 and 1. By

applying this transformation to all features, we achieve a uniform

scale across the dataset.

For the Pima Indians Diabetes Database, the need for

normalization was evident from the outset. Features like

“Glucose” and “Blood Pressure” had different scales, and without

normalization, any machine learning model would struggle

to find a balance between them. Upon applying the Min-Max

normalization, each feature was transformed. For instance, if

“Glucose” levels ranged from 50 to 200 mg/dL, post-normalization,

they would range from 0 to 1, with the original relative differences

between values maintained.

While Min-Max normalization offers several advantages, such

as simplicity and the preservation of relationships between values,

it’s not without its considerations. One of the primary benefits is its

ability to maintain the dataset’s mean and variance, ensuring that

the overall data distribution remains unchanged. In our study of the

Pima Indians Diabetes Database, we foundMin-Max normalization

to be apt. The nature of the missing values, combined with the

dataset’s distribution, made it a suitable choice, ensuring our
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models received data that was both balanced and representative.

Algorithm 2 explains the Min-Max normalization process.

Input:

• Dataset D with features having diverse

scales.

• List of features F in D requiring

normalization.

Output:

• Dataset D
′

with features normalized between

0 and 1.

Steps:

1. For each feature f in F do:

• Compute the minimum fmin and maximum fmax

values of f :f min = min(f )fmax = max(f )

2. For each value v in feature f do:

• Normalize v using the Min-Max

normalization formula:v normalized =
v−fmin

fmax−fmin

• Replace v in D with vnormalized to obtain D
′
.

3. End For

Return:D
′

Algorithm 2. Min-Max normalization process.

3.4 Feature engineering

Feature engineering is often considered both an art and a

science. It’s the process of transforming raw data into features that

better represent the underlying problem to the predictive models,

resulting in improved model accuracy on unseen data. In the

context of the Pima Indians Diabetes Database, this step was pivotal

to capture intricate patterns and relationships that might be latent

in the original dataset.

3.4.1 Interaction features
In the realm of data science and machine learning, individual

features often provide a wealth of information. However, the

combined effect of multiple features can sometimes offer even

deeper insights, especially when their interaction might be more

indicative of the outcome than their standalone values. This is

where interaction features come into play.

Let’s consider a practical scenario involving the Pima Indians

Diabetes Database. We have two primary features: Age and BMI

(Body Mass Index). Both these features are crucial indicators of

health. While BMI gives us an idea about an individual’s body

fat based on their weight and height, Age can be indicative of

metabolic changes, potential age-related health issues, and more.

Now, consider two individuals, both having a BMI of 28, which

falls in the “Overweight” category. One individual is 25 years old,

and the other is 60 years old. Even though they have the same BMI,

the associated diabetes risk might differ significantly. The older

individual might have a higher risk due to a combination of age-

related metabolic slowdown and the elevated BMI. This combined

effect can be more informative than considering Age or BMI in

isolation. This scenario underscores the importance of interaction

features. They help capture relationships and nuances that might

be missed when only looking at individual features. Algorithm 3

explains the process for generating interaction features.

Given two features A and B, their interaction is mathematically

represented in Equation (2):

Interaction A,B = A× B (2)

In the context of our dataset refer Equation (3):

Age_BMI_interaction = Age × BMI (3)

Input:

• Dataset D with features

• List of feature pairs P for which

interaction features are to be generated

Output:

• Dataset D
′

with added interaction features

Steps:

1. For each pair (A,B in P do):

• Compute the interaction feature for all

records in D:Interaction A,B = A× B

• Add InteractionA,B as a new feature to D

2. End For

3. Return D’

Algorithm 3. Generating interaction features.

3.4.2 Polynomial features
In the world of data analytics and machine learning, the

relationship between features and the target variable is not always

linear. Real-world phenomena often exhibit complex, non-linear

dynamics that can’t be captured by simple linear relationships. This

is where polynomial features come into play, allowing us to model

these non-linear relationships more effectively.

Consider a feature likeGlucose in our dataset.While it’s evident

that glucose levels play a significant role in determining diabetes

risk, the relationship might not be strictly linear. For instance,

there might be a threshold glucose level beyond which the risk of

diabetes increases sharply. Such non-linear patterns can be crucial

in predictive modeling but might be missed by models that only

consider linear relationships.

Polynomial features allow us to capture these non-linear

dynamics. By squaring, cubing, or otherwise creating polynomial

combinations of our features, we can introduce non-linearity

into our models, making them more flexible and potentially

more accurate.

For a given feature X, polynomial features are essentially its

powers. If we were to generate polynomial features up to degree

3 for Glucose, it would look something like this:

1. First-degree: X (Original feature)
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2. Second-degree: X2

3. Third-degree: X3

For our Glucose feature refer Equations (4) and (5):

Glucose_squared = Glucose2 (4)

Glucose_cubed = Glucose3 (5)

By introducing these polynomial features, we’re essentially allowing

our model to consider the effects of squared or cubed glucose

levels. This can be more predictive than just the linear glucose

level, especially if there are threshold effects or other non-linear

dynamics at play. Algorithm 4 explains the process for generating

polynomial features.

Input:

• Dataset D with features

• Feature X for which polynomial features are

to be generated

• Maximum degree n for polynomial features

Output:

• Dataset D
′

with added polynomial features

Steps:

1. For each degree d from 2 to n do:

• Compute the polynomial feature for all

records in D:X d = Xd

• Add Xd as a new feature to D

2. End For

3. Return D’

Algorithm 4. Generating polynomial features.

4 Results and discussions

In our analysis, we initially employed Principal Component

Analysis (PCA) as a means to reduce the dimensionality of the

dataset. Recognizing that PCA is inherently sensitive to feature

magnitudes, our first step was to standardize the dataset. This

practice ensures that all features have the same scale, providing a

robust foundation for the subsequent application of PCA. After

applying PCA on the standardized data, we examined the explained

variance associated with each principal component. This crucial

step assisted us in determining the optimal number of components

to retain, ensuring that we captured the maximum amount of

variance while minimizing the dimensionality. To further our

understanding and facilitate interpretation, we also visualized the

data within this new reduced-dimensional space. This visualization

not only offered insights into the underlying structure of the data

but also confirmed the efficacy of our dimensionality reduction

process. The data has been standardized, which means each feature

now has a mean of 0 and a standard deviation of 1. Next, we have

applied PCA to the standardized data and visualized the explained

variance by each principal component. This will help us decide how

many principal components to retain for our reduced-dimensional

representation. Figure 5 illustrates the explained variance by each

principal component. The bars represent the amount of variance

explained by each individual principal component. The step line

represents the cumulative explained variance. We determine the

number of principal components with following explanations.

• Explained Variance Ratio: We calculated the explained

variance ratio for each principal component. This ratio

indicates the proportion of the dataset’s total variance that is

captured by each principal component.

• Cumulative Explained Variance: We computed the

cumulative explained variance as we added more principal

components. For instance, if the first three components

explained 70% of the variance, and adding a fourth only

increased this to 72%, the marginal gain might be too small to

justify keeping the fourth component.

• Scree Plot: We created a scree plot, which is a line plot of the

explained variances by each principal component. The point

where the slope of the curve levels off—the “elbow”—often

indicates the optimal number of components to keep.

• Performance Metrics: We considered the impact of

dimensionality reduction on model performance. If the model

performance did not degrade significantly, we took this as

a confirmation that the retained components captured the

essential information.

By following these steps, we aimed to retain the principal

components that captured the most significant variance within the

dataset while discarding components that were likely to represent

noise. This balance helped to reduce the dataset to a more

manageable size, simplifying the model without a substantial loss

of information.

From the plot, it’s evident that the first few components capture

a significant portion of the variance in the data. As we move to the

right, each subsequent component explains less and less variance.

To decide on the number of components to retain, a common

approach is to look at the “elbow” in the cumulative explained

variance plot. The idea is to find a point where adding more

components doesn’t provide much additional explained variance.

In this case, it seems that the first 2 or 3 components might

be a good choice. Figure 5 presents a visualization of the dataset

in a reduced 2-dimensional space using the first two principal

components. The x-axis represents the first principal component.

The y-axis represents the second principal component. The color

represents the “Outcome” (whether a person has diabetes or not).

A gradient from yellow to purple indicates the transition from no

diabetes (0) to having diabetes (1). From the scatter plot, we can

observe some clustering based on the “Outcome”. While there’s

overlap between the two classes, the two principal components do a

decent job in capturing some of the underlying patterns in the data.

Now we will proceed with building a classification model using

the principal components as features to predict the “Outcome”.

In our study on diabetes diagnosis prediction, it was imperative

to ensure a robust model training and evaluation mechanism. To

this end, the dataset was partitioned into training and testing sets

using the train_test_split function from the renowned scikit-learn
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FIGURE 5

Cumulative and individual explained variance by di�erent principal components, 2D PCA of diabetes data, ROC curves and PR curves of four di�erent

classifiers—Logistic Regression, Random Forest, Gradient Boosting, and Support Vector Machines.

library. The function was configured such that X represents the

feature matrix encompassing all input variables, and y denotes the

target variable, indicating the diabetes outcome. A division ratio

was set with the parameter test_size=0.2, ensuring 20% of the

dataset was reserved for testing, while the remaining 80% was used

for training. To guarantee reproducibility in our experiments, a

fixed seed (random_state=42) was used for the random number

generator, ensuring that subsequent data splits would remain

consistent. This data partitioning approach was instrumental in

offering a comprehensive training regimen for our models while

also providing an accurate evaluation framework. By training on a

significant portion of the data, the models were exposed to diverse

examples, enhancing their robustness. Meanwhile, the testing set,

being distinct from the training data, offered insights into the

models’ real-world performance and generalization capabilities, a

critical aspect in predictive medical analytics.

The Receiver Operating Characteristic (ROC) curve is a

graphical representation that illustrates the diagnostic ability of a

binary classifier as its discrimination threshold varies. The ROC

curve plots the True Positive Rate (TPR) against the False Positive

Rate (FPR) for various threshold values. The area under the ROC

curve, termed as the Area Under Curve (AUC), provides a scalar

value of the overall performance of the classifier, where a value of 1

indicates perfect classification and a value of 0.5 indicates that the

classifier performs no better than random guessing.

4.1 Performance analysis of four di�erent
classifiers

In the provided Figure 5, the ROC curves of four different

classifiers—Logistic Regression, Random Forest, Gradient

Boosting, and Support Vector Machines—are depicted. Each

curve represents the TPR vs. FPR for its respective classifier across

different thresholds. Logistic Regression (LR) is represented by the

blue curve. Random Forest (RF) is depicted by the green curve.

Gradient Boosting (GB) is illustrated by the orange curve. Support

Vector Machines (SVM) is shown by the purple curve.

The diagonal dashed line represents a classifier that predicts

outcomes entirely by chance, without any learned insights from

the data. An effective classifier’s ROC curve will bow toward the

top-left corner of the plot, indicating higher true positive rates for
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lower false positive rates. The AUC values (provided in the legend)

reveal the overall performance of each classifier. Higher AUC values

indicate better classifier performance. The curves for the classifiers

are above the diagonal line, suggesting that all four classifiers

perform better than a random guess. Among the classifiers, Logistic

Regression and RandomForest have very similar performance, with

nearly identical AUC values. Gradient Boosting and Support Vector

Machines have slightly lower AUC values, but they still indicate

good classification performance.

Precision-Recall (PR) curves are a graphical representation

that showcases the trade-off between precision and recall for

different thresholds of a binary classifier, particularly useful when

classes are imbalanced. Precision measures the accuracy of positive

predictions, while recall (or sensitivity) measures the proportion

of actual positives that were correctly identified. In the provided

Figure 5, the PR curves of four different classifiers—Logistic

Regression, Random Forest, Gradient Boosting, and Support

Vector Machines—are presented. Each curve plots precision

against recall for its respective classifier across different thresholds.

Logistic Regression (LR) is represented by the blue curve. Random

Forest (RF) is depicted by the green curve. Gradient Boosting (GB)

is illustrated by the orange curve. Support Vector Machines (SVM)

is shown by the purple curve.

The Average Precision (AP) values, provided in the legend,

offer a summary measure of the PR curve, indicating the classifier’s

average precision value for all possible recall levels. All classifiers

exhibit curves that are significantly above the baseline, indicating

that they provide meaningful predictions beyond random guessing.

The curves for Logistic Regression and Random Forest are closer

to the top-right corner, suggesting that they might offer a better

balance between precision and recall for certain threshold values

compared to Gradient Boosting and Support Vector Machines.

The AP values suggest that the classifiers have comparable

performances, with Logistic Regression and Random Forest having

slightly higher AP values than Gradient Boosting and Support

Vector Machines. As expected, there’s an evident trade-off between

precision and recall. As recall increases, precision tends to decrease

and vice versa. This is a typical characteristic of classifiers, and

the optimal balance depends on the specific application and

its requirements.

The confusion matrix for the Logistic Regression classifier

shows a balanced prediction across both classes, refer Figure 6.

The number of True Positives suggests that this model has a

reasonable ability to correctly predict the positive class (patients

with diabetes). The True Negatives indicate that the model also

effectively identifies the negative class (patients without diabetes).

However, the presence of False Positives and False Negatives

means the model does make mistakes, especially in instances

where patients without diabetes are incorrectly classified as having

diabetes and vice versa.

Random Forest, an ensemble learning method, shows a

similar trend in its confusion matrix, refer Figure 6. The model

exhibits a robust performance in predicting both positive and

negative classes. Nevertheless, there are instances where the model

misclassifies, indicating areas for potential improvement, possibly

through hyperparameter tuning or feature engineering.

Gradient Boosting, another ensemble technique, has its

confusion matrix showcasing a different pattern, refer Figure 6.

While the model has a commendable number of True Positives,

there are noticeable False Negatives, suggesting that there are cases

where patients with diabetes are incorrectly predicted as not having

diabetes. This could be a cause for concern in a medical setting, as

missing a positive diagnosis can have significant repercussions.

Support Vector Machines, a powerful linear classifier, displays

a distinct pattern in its confusion matrix, refer Figure 6. The model

seems to have a conservative approach, with a higher number of

True Negatives. However, this also results in a considerable number

of False Negatives, indicating that while the model is cautious

about false alarms (FP), it might miss out on some actual positive

cases (FN).

Table 6 resents a comparative evaluation of four distinct

machine learning classifiers—Logistic Regression, Random Forest,

Gradient Boosting, and Support Vector Machines—employed for

diabetes prediction. Each classifier’s performance is quantified

using five pivotal metrics: Accuracy, Precision, Recall, F1-Score,

and ROC-AUC.

In our evaluation of various classifiers for diabetes prediction,

the Logistic Regression (LR) model exhibited an accuracy of

0.7468, implying it correctly predicts the diabetes outcome around

74.68% of the time, serving as a reflection of the model’s overall

correctness. Its precision of 0.6379 reveals that about 63.79%

of the diabetes-positive predictions were accurate, showcasing

the model’s exactness. With a recall value of 0.6727, the LR

model identified roughly 67.27% of all genuine diabetes-positive

instances, indicating its capability to capture positive cases. An

F1-Score of 0.6549, which represents the harmonic mean of

precision and recall, infers a balanced trade-off between these two

metrics. The ROC-AUC score for the LR model stands at 0.8125,

highlighting its proficient ability to differentiate between positive

and negative classes.

Moving on to the Random Forest (RF) model, it achieved

an accuracy of 0.7208, suggesting it accurately predicts in

approximately 72 out of every 100 instances. A precision of 0.6071

insinuates that nearly 60.71% of its positive predictions are correct.

It boasts a recall of 0.6182, which might be perceived as moderate,

capturing about 61.82% of actual positive cases. Its F1-Score of

0.6126 hints at a balanced model performance, with potential areas

for improvement in both precision and recall. With an ROC-AUC

of 0.8120, the RF model manifests a robust capacity to distinguish

between the classes.

Interestingly, the Gradient Boosting (GB) model displayed

metrics identical to the LR model. This parallelism is noteworthy,

suggesting that, given this dataset and its configuration, both LR

and GB offer similar performance dynamics.

Support Vector Machines (SVM) classifier registers the highest

accuracy among the evaluated models at 0.7662, translating to

nearly 76.62% correct predictions. It also leads in precision with

a score of 0.7209, making its positive predictions considerably

reliable. However, its recall is the least at 0.5636, pointing

to potential misses in actual positive cases. The F1-Score of

0.6327 insinuates a tilt toward precision, possibly at the cost of

recall. While its ROC-AUC score of 0.8066 is marginally lower

than the others, it still represents a commendable capability in

class separation.

The SVM classifier displays the highest accuracy, making it

potentially the most reliable in general predictions. SVM prioritizes
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FIGURE 6

Confusion matrix for the classifiers used in this work.

TABLE 6 Performance metrics of various classifiers for diabetes prediction.

Classifier Accuracy Precision Recall F1-Score ROC-AUC

Logistic regression 0.7468 0.6379 0.6727 0.6549 0.8125

Random forest 0.7208 0.6071 0.6182 0.6126 0.8120

Gradient boosting 0.7468 0.6379 0.6727 0.6549 0.8092

Support vector machines 0.7662 0.7209 0.5636 0.6327 0.8066

precision over recall, making its predictions more trustworthy but

possibly missing out on some true positive cases. In contrast,

Logistic Regression and Gradient Boosting offer a more balanced

trade-off. All classifiers exhibit AUC scores above 0.8, suggesting

that each of them has a strong capability to differentiate between

positive and negative classes.

4.2 Feature engineering and correlation
analysis

This section offers a comprehensive account of the feature

engineering and correlation analysis conducted in the study.

In the quest to enhance the predictive prowess of our model,

we delved into advanced feature engineering techniques.

These techniques aimed to unearth hidden relationships

and patterns in the data that might be pivotal for accurate

diabetes prediction.

4.2.1 Interaction features
One of the salient techniques employed was the creation of

interaction features. These features represent interactions between

pairs of existing attributes, capturing the combined effect of

two variables on the outcome. A quintessential example from

our dataset is the interaction between “Pregnancies” and “Age”.

The rationale behind such interactions is that the combined

effect of two variables might be different from the sum of their

individual effects.
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4.2.2 Polynomial features
To unravel non-linear relationships inherent in the data, we

ventured into polynomial feature generation. By squaring or cubing

attributes, we aimed to encapsulate intricate patterns that linear

terms might overlook. Notable instances from our dataset include

squared terms for “Glucose” and “BMI”.

Post this rigorous feature engineering, our dataset was enriched

with both interaction and polynomial features, amplifying its

information content.

Table 7 lists the original features alongside their

correspondingsquared (polynomial) and interaction feature

names. The table provides a comprehensive overview of the

transformed features in the dataset, allowing for a clearer

understanding of their nature and potential utility in modeling.

We generated a heatmap to visualize the correlation of all

transformed features with the “Outcome” variable as depicted

in Figure 7. This will help us see which features have the

strongest relationship with the target. The heatmap visualizes the

correlation of the top 10 and bottom 10 transformed features (based

on their absolute correlation with the “Outcome” variable). In

addressing multicollinearity within our highly correlated features,

we set a correlation threshold at 0.85, above which we evaluated

the need for feature removal through the Variance Inflation

Factor (VIF), with a cut-off value of 10 indicating significant

multicollinearity. Concurrently, we analyzed feature importance

and assessed the impact on model performance to ensure that any

exclusion would not compromise predictive accuracy. Clinically

significant features were retained or adjusted based on domain

knowledge, with a careful balance between model complexity

and interpretability. When necessary, dimensionality reduction

techniques like PCAwere employed to condense correlated features

into principal components, maintaining robustness without losing

essential information.

The colors range from blue (negative correlation) to red

(positive correlation). The strength and direction of the correlation

between pairs of variables are represented by the color intensity

and the annotated values. The diagonal line (from the top left to

the bottom right) represents each feature’s correlation with itself,

which is always 1. The first row/column represents the correlation

of each feature with the “Outcome” variable. The features at the top

have the highest positive correlation with the outcome, while those

at the bottom have the lowest (or highest negative).

Some features, like “Glucose”, Glucose2 Glucose2, and “Glucose

× Age”, have a strong positive correlation with the “Outcome”.

This suggests that as these feature values increase, the likelihood

of having diabetes (Outcome = 1) also increases. We can also

observe the correlation between features. For example, “Glucose”

and Glucose2Glucose2 are highly correlated, which is expected.

Using this heatmap, we can prioritize features based on their

correlation with the target variable.

4.3 Performance of ensemble model

Given the intricacies of predicting diabetes outcomes based

on physiological measurements, we opted for a complex ensemble

model, combining the strengths of various machine learning

TABLE 7 Transformed features, along with their classification as either

“Polynomial” or “Interaction”.

Transformed features Feature type

Pregnancies^2 Polynomial

Glucose^2 Polynomial

BloodPressure^2 Polynomial

SkinThickness^2 Polynomial

Insulin^2 Polynomial

BMI^2 Polynomial

DiabetesPedigreeFunction^2 Polynomial

Age^2 Polynomial

Pregnancies× Glucose Interaction

Pregnancies× BloodPressure Interaction

Pregnancies× SkinThickness Interaction

Pregnancies× Insulin Interaction

Pregnancies× BMI Interaction

Pregnancies× DiabetesPedigreeFunction Interaction

Pregnancies× Age Interaction

Glucose× BloodPressure Interaction

Glucose× SkinThickness Interaction

Glucose× Insulin Interaction

Glucose× BMI Interaction

Glucose× DiabetesPedigreeFunction Interaction

Glucose× Age Interaction

BloodPressure× SkinThickness Interaction

BloodPressure× Insulin Interaction

BloodPressure× BMI Interaction

BloodPressure× DiabetesPedigreeFunction Interaction

BloodPressure× Age Interaction

SkinThickness× Insulin Interaction

SkinThickness× BMI Interaction

SkinThickness× DiabetesPedigreeFunction Interaction

SkinThickness× Age Interaction

Insulin× BMI Interaction

Insulin× DiabetesPedigreeFunction Interaction

Insulin× Age Interaction

BMI× DiabetesPedigreeFunction Interaction

BMI× Age Interaction

DiabetesPedigreeFunction× Age Interaction

algorithms. This model integrates decision trees, gradient

boosting, and support vector machines to harness their collective

predictive power.

Recognizing the inherent relationships between physiological

parameters, we employed polynomial and interaction feature
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FIGURE 7

Correlation matrix.

engineering. This approach allowed the model to capture non-

linear relationships and interactions that might be lost in simpler

models. For instance, interactions between “Pregnancies” and

“Age” or polynomial features like “Glucose^2” were introduced to

better represent the underlying complexities of diabetes onset.

Due to the class imbalance evident in our dataset, we used a

stratified sampling approach, ensuring each training batch had a

representative mix of both diabetes outcomes. Additionally, the

model was trained using a five-fold cross-validation strategy to

ensure robustness and minimize overfitting. Although a higher

number of folds could offer a marginally more stable performance

estimate, we found that five-fold cross-validation provided a

sufficient reduction in variance while maintaining low bias, without

imposing excessive computational demands. This choice aligns

with common practices in the literature, ensuring comparability

across studies. Our analyses indicated that the variance in

performance metrics was acceptably low across the folds, leading us

to conclude that the benefits of additional folds would be minimal

relative to the increased computational cost. The complex ensemble

model, trained on the enhanced dataset, achieved an accuracy of

over 93%.

This high accuracy, although promising, was scrutinized

further using other metrics like precision, recall, and the F1-score.

The model outperformed simpler classifiers and showed significant

predictive power, especially when compared to models trained

without the engineered features.

Figure 8 provides a holistic view of the model’s performance.

While accuracy gives an overall sense of correctness, precision

and recall focus on the model’s performance concerning each

class. The F1-score is the harmonic mean of precision and

recall, offering a balance between the two. The Area Under the

Receiver Operating Characteristic curve (AUC-ROC) evaluates the

model’s ability to differentiate between the classes. The Matthews

Correlation Coefficient (MCC) provides a balanced measure even

when the classes are of very different sizes. Class 1 refers

to individuals diagnosed with diabetes, and Class 0 refers to

individuals without diabetes.

While accuracy provides a quick snapshot of overall

correctness, it’s vital to recognize its limitations, especially in

datasets with class imbalances. Our dataset had a more significant

number of non-diabetic individuals, which could bias the accuracy

metric. Therefore, to truly appreciate the model’s efficacy,

we considered other metrics. Precision for Class 1 (diabetic

individuals) stood at 91.0%, indicating that of all individuals the

model labeled as diabetic, 91.0% were correctly classified. However,

recall, which measures the model’s ability to correctly identify all
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FIGURE 8

Visual representation of the model’s performance across various metrics, trade-o� between precision and recall at various thresholds and receiver

operating characteristic (ROC) curve provides insights into the model’s ability to discriminate between the classes.

diabetic individuals, was 88.5%. This difference underscores the

classic precision-recall trade-off, refer Figure 8. For Class 0 (non-

diabetic individuals), both precision (94.8%) and recall (96.3%)

were high, affirming the model’s prowess in correctly classifying

non-diabetic individuals. Striking a balance between precision and

recall, the F1-scores for Class 1 and Class 0 were 89.7% and 95.5%

respectively. This harmonic mean provides a more holistic view of

the model’s performance, emphasizing its capability to maintain

a balance between false positives and false negatives. The high

AUC-ROC value, i.e., 97.1% signifies the model’s strong ability to

differentiate between diabetic and non-diabetic individuals, further

reinforcing its diagnostic potential, refer Figure 8.

MCC, which takes values between −1 and 1, offers a balanced

measure of binary classification, especially for imbalanced datasets.

Our model’s MCC of 0.87 indicates a strong correlation between

the observed and predicted classifications, showcasing the model’s

reliability. Our research underscores the significance of feature

engineering and complex ensemblemodeling in enhancing diabetes

prediction. In our work, we rigorously validated the impact of

feature engineering onmodel performance by employing the paired

t-test, a statistical method appropriate for comparing the means of

two related groups. This test was particularly suited for our analysis

as it allowed us to assess the significance of performance changes

before and after the introduction of engineered features, using the

same dataset. A p-value was computed from the t-statistic, with a

threshold of 0.05 to determine statistical significance. Our analysis

yielded a p-value well below this threshold, firmly establishing that

the enhancements in performance metrics attributable to feature

engineering were statistically significant and not merely a product

of random variation.

5 Conclusion

In the contemporary healthcare landscape, accentuated by

the pressing challenges of the COVID-19 pandemic, rapid and

accurate diagnostics have never been more pivotal. One such

critical area of focus is diabetes, a condition that has been

identified as a significant vulnerability in the face of the virus.

Our research, set against this global backdrop, embarked on

a mission to enhance diabetes prediction using state-of-the-art

machine learning techniques. Initially, we evaluated a gamut of

classifiers to serve as our baseline. The SVM classifier emerged

as the frontrunner in terms of accuracy, boasting a commendable
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rate of 76.62%. While its precision was also the highest among

peers, its recall hinted at potential misses, possibly overlooking

some true positive cases. In contrast, both Logistic Regression and

Gradient Boosting classifiers offered a more balanced performance

dynamic, with metrics almost mirroring each other. Random

Forest, while robust, showcased areas of potential enhancement,

especially when juxtaposed against its peers. Collectively, these

evaluations provided a foundational understanding, setting the

stage for further enhancements. Our next endeavor led us to the

realms of advanced feature engineering. By creating interaction

features and generating polynomial attributes, we sought to capture

hidden patterns and intricate relationships pivotal for prediction

accuracy. This intensive process enriched our dataset, amplifying

its informational depth and breadth. Subsequently, correlation

analysis, depicted through heatmaps, shed light on the relationships

between the engineered features and the outcome. It reaffirmed the

significance of attributes like Glucose and highlighted the potential

of newly generated features. Incorporating the insights from our

initial evaluations and the subsequent feature engineering, we

proposed an ensemble model that integrated the strengths of

Decision Trees, Gradient Boosting, and Support Vector Machines.

This model, with an accuracy of 93.2%, showcases the potential of

harmonizing diverse algorithms.
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In past decades the prevalence of overweight and obesity had grown rapidly. 
There are numerous factors contributing to this unfavorable change in people’s 
health. This review article investigates the environmental factors which may play 
a role in the prevalence of overweight and obesity and additionally the novel 
factors which appeared after the beginning of the COVID-19 pandemic, which 
caused the increase in BMI during the lockdown period. Most of the studies 
reveal that the COVID-19 pandemic and lockdown contributed to the growth 
of BMI in numerous countries and, eventually the prevalence of overweight 
and obesity increased. Studies suggest that the physical activity was decreased 
while sleep time and screen time were increased and the amount of food 
consumed increased, additionally more processed food with long shelf life was 
consumed. The diverse environmental factors may have an impact on obesity 
and overweight development taking into account policy and local school policy 
issues, socioeconomic status, lifestyle including physical activity, diet habits, and 
amongst others, more trivial causes such as uninteresting neighborhoods, lack of 
sense of security outside the place of residence or a long distance from shops. 
Still, this is the object of debate if air pollution is an environmental risk factor 
influencing the unfavorable trends towards increasing body weight.

KEYWORDS

obesity, overweight, COVID-19 pandemic, environmental factors, eating habits, 
pollution

Introduction

Nowadays, overweight and obesity are serious healthcare problems in most countries. The 
prevalence of overweight and obesity has been increasing globally continuously for several 
decades (1) and it seems that this trend will not change soon. Overweight is usually recognized 
when the BMI of an adult person is in the range of 25.0–29.9 while obesity is recognized when 
BMI is equal to 30 or it is higher. It is worth noting that the localization of adipose tissue is often 
overlooked in statistics. Central obesity, also known as visceral obesity may be in such cases 
neglected and, because of that, metabolically obese normal-weight people are not included in 
statistics, so the real prevalence of obesity might be higher. Also in some Asian countries the 
norms of weight BMI should be lower than it is accepted in Western countries (1, 2). Normal 
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BMI in Asian populations is accepted as 18.0–22.9, the overweight 
range is 23–24.9 and obesity is when BMI is equal to or higher 
than 25 (2).

Prior to the COVID pandemic nearly 1 in 3 people worldwide was 
classified as overweight or obese (1). The number of people with too 
high body weight was rising rapidly. The prevalence of overweight and 
obesity doubled in the years 1980–2015. The rise in prevalence was 
most intense in the years 1992–2002. Obesity was more frequently 
affecting women and older people. In wealthy countries it affected 
mostly people with low socioeconomic status while in poor countries 
it affected mostly middle-aged people living in wealthy urban 
environments (3). Before the age of 45 women are less often obese 
than men but after that age women were more often obese than men. 
It might be linked to menopause. The main causes of obesity were 
identified as diet, lifestyle and socioeconomic status (4). The significant 
changes in mean adults’ BMI in different regions of the world in the 
years from 1975 to 2016 according to WHO’s Global Health 
Observatory (5) are presented in Figure 1.

Numerous factors may increase the risk of development of 
overweight and obesity including genetic, environmental, behavioral, 
biological, social and psychogenic ones (2). Among those, the most 
significant factors are physical activity, alcohol consumption and 
socioeconomic status. Moreover, the interplay of genes and 
environment further increases the risk of the development of 
overweight or obesity (6).

In late 2019 the SARS-CoV-2 virus responsible for the disease 
called COVID-19 was recognized in China. It spread rapidly to other 
countries and became a danger worldwide. As a result, on the day 11 
March 2020, COVID-19 was declared a pandemic by WHO. To slow 
down the rate at which the virus spreads the governments of many 
countries declared a lockdown and encouraged people to stay at home 
and to keep a social distance. In most countries the lockdown had been 
expected to last a few weeks only, but then it was extended several 
times, which, eventually, enforced a change in people’s habits. It 
affected various daily routines including eating behaviors and physical 
activity. In addition, remote education was introduced in public 
schools and remote work became more common. It is possible that this 
change of behaviors affected people’s weight all over the world and, as 
a result, it could also contribute to the increase in the prevalence of 
overweight and obesity, which are conditions related to a higher risk 
of cardiovascular diseases, cancers and diabetes mellitus – the leading 
death causes worldwide (7, 8). Furthermore, both overweight and 
obesity also contribute to a more severe course of other diseases 
including COVID-19. Several studies confirmed that most of the 
patients admitted to Intensive Care Units in the pandemic era were 
overweight or obese and it had been found that both conditions 
increase the risk of respiratory failure in COVID-19 patients (9).

The goal of this study is to investigate the up-to-date knowledge 
on environmental risk factors of obesity and overweight, especially 
considering the influence of the COVID-19 pandemic.

FIGURE 1

Mean BMI in WHO regions based on WHO’s Global Health Observatory data (5).
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Methods

The non-systematic literature review was conducted using the 
following databases: PubMed, Cochrane Library, Embase and Google 
Scholar. Articles published between 1st January 2003 and 30th June 
2023 were included. Different types of articles were included: 
systematic reviews, meta-analyses, reviews, clinical trials, randomized 
controlled trials, books and documents. A special focus was placed on 
systematic reviews and meta-analyses published since 2018 as these 
articles contain up-to-date information and they have the highest level 
of evidence.

In the search conducted in the databases we used a combination of 
groups of phrases to find publications related to the subject investigated 
by us. The first group of phrases included: “overweight,” “obesity,” “body 
weight,” “weight gain” and “food consumption.” The second group of 
phrases included: “environmental factors,” “environment,” “risk factors,” 
“epidemiology,” “pandemic,” “COVID-19,” “SARS-CoV-2,” “lockdown,” 
“coronavirus,” “air pollution,” “water pollution,” “pollution,” “pollutants,” 
“smoking,” “e-cigarettes,” “work,” “shift work,” “night work,” “circadian 
rhythm,” “eating habits,” “transport,” “rural area,” “urban area,” “climate,” 
“global warming,” “daylight hours,” “depression,” and “stress.” We used 
the conjunction “AND” in databases search boxes to connect both 
groups of phrases. We connected one phrase from the first group and 
one or more phrases from the second group in a single search. The 
duplicates were removed.

In the next step articles’ titles and abstracts were screened to 
qualify them to full-text reading. The inclusion criteria were: (a) 
studies related to the investigated subject, (b) English or Polish 
language, (c) studies published in peer-reviewed journals, (d) human 
studies. The exclusion criteria were: (a) animal studies, (b) abstracts 
without full-text article, (c) conference proceedings. We  made an 
exception to one study (10) investigating the effect of nanocolloids in 
drinking water on obesity in mice due to the lack of similar studies 
performed on the human population.

We obtained the full text of articles that initially met our criteria 
and during the full text read articles that not met all inclusion criteria 
or met any of the exclusion criteria in the full text were removed and 
finally 58 articles were included in this review. Types of articles and 
the number of articles of a given type included in this review are 
presented in Table 1.

The entire process of selection of articles was presented in 
Figure 2.

Environmental risk factors of obesity 
and overweight

General features

In the last century, various changes including the industrialization 
of food production (2) have been introduced, which made the world 
a more obesogenic place. There are some types of overweight and 
obesity risk factors. The prevalence of overweight and obesity is 
influenced by age, sex, race, and socioeconomic status (11). The 
environment in which people live has many components that 
increase the risk of developing these conditions. The environmental 
risk factors include geography, food availability, work environment 
and transport-related factors. The prevalence of obesity is higher in 

some regions than in others. Even regions of the same country may 
have different rates of obesity (12). In the United States the rate of 
obesity is higher in rural areas than in urban areas (12, 13), which 
may be an astonishing fact. However, the influencing factors include 
access to healthy foods and, paradoxically, fewer opportunities to 
be physically active (13). Moreover, it may be caused by differences 
in education level and income of residents of these areas and by the 
local infrastructure (11). Food availability is determined by how 
easily people can get a certain type of food. When healthy food is not 
easily accessible it might contribute to the growth of obesity 
prevalence (14). Difficult accessibility may be related to both prices 
and distance to the store being the source of food (11). It has been 
found that decreasing the distance to the shop by opening a new one 
in a nearer area positively affects people’s diet (15). Furthermore, 
when unhealthy food is easily accessible, for example in a nearby 
fast-food restaurant, it may also increase the risk of obesity 
development (16).

Advertising of fast food and calorie-rich food is another factor 
that increases caloric intake, and it especially affects children (17). 
Children are a vulnerable group that can be manipulated easily into 
buying certain products so many advertisements are aimed at them. 
Advertisements may shape their needs and preferences. It results in 
children buying products that have unfavorable effects on their health, 
eating more snacks and if that repeats, what is one of the aims of 
advertisements, they may carry harmful dietary habits to adult life or 
even develop overweight or obesity (18). Moreover, they may reduce 
the consumption of healthy food (19).

Work environment

The development of technology caused changes in the work 
environment. Physical labor is less common than it was in the past and 
work-related screen time increased. Simultaneously, people do not 
need to expend that much energy during work time and eventually it 
is associated with increasing body weight (20).

The popularization of shift work was another change that 
increased the risk of developing overweight and obesity, especially 
abdominal obesity (2, 21, 22). The most adverse effect was observed 
in people working permanently on night shifts. Mechanisms proposed 
to explain body weight gain are circadian rhythm disorders associated 
with the inability to adapt to working at night and sleeping during the 
day and sleep deprivation (21, 22). Other mechanisms included more 
opportunities to eat during night shifts, hormonal disturbances and 
fatigue, which promotes eating more and reduces physical activity 
(22). Bonham et al.’s study found that the energy intake in the groups 
of shift workers and day workers was similar so the weight gain may 

TABLE 1 Qualitative list of articles included in the current review.

Type of the article Number of articles of a given type

Systematic review 8

Meta-analysis 11

Original research 24

Review 13

Editorial 1

Comment 1
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be caused by meal timing, the type of consumed food and circadian 
rhythm disturbance (23).

Natural vs. built environment and transport

The means of transport also affect the prevalence of obesity (11). In 
areas in which people are more willing to walk the overweight and 
obesity rates are lower (24). People prefer to walk in areas with a good 
landscape, which have good pedestrian infrastructure including 
sidewalks and paths and which have parks and recreational facilities (25). 
However, people are more reluctant to be physically active in places that 
are dangerous because of high crime rates (26) and traffic-related risks 
(27). Because of that people living in well-kept locations with extensive 
pedestrian infrastructure are less likely to be overweight and obese while 
people living in areas that are neglected or have high crime rates or huge 
traffic are more likely to develop obesity. It is also known that 
environmental factors interact with the individual factors of a person 
(11). A study conducted in Nigeria found that people living in developing 
countries in Africa are affected by similar overweight and obesity risk 

factors to those in developed countries. The neighborhood which was 
inviting to go out was linked to lower overweight and obesity rates while 
poor and dangerous areas were associated with higher overweight 
prevalence. The presence of garbage, unpleasant smell, crime and long 
distance to shops were factors linked to being overweight. There were 
also other factors that were significant but only to males or only to 
females. Lack of good pedestrian infrastructure and low residential 
density increased the overweight rate in males. Meanwhile, heavy traffic 
and the lack of interesting surroundings in the neighborhood were 
associated with higher overweight prevalence in females. Other factors 
that might contribute to the occurrence of overweight in developing 
countries are bad transport infrastructure, lower income and the status 
of being married. It was estimated that environmental factors increased 
the risk of being overweight by 40 to 60% (27).

Leisure time

In other studies authors suggest that numerous other factors 
might be associated with the prevalence of obesity (28). The lack of 
recreational facilities may increase the chance of obesity in younger 
children by 68% (29). People who spend 3 h daily watching TV have 
two times greater prevalence of overweight than people who do not 
watch TV (28). These people are also more likely to be obese. Spending 
much time using smartphones and playing video games is even more 
likely to contribute to developing obesity because during these 
activities people often eat junk food which contains many obesogenic 
ingredients (28).

Smoking and eating habits

It has been found that smoking before and during pregnancy 
increases two times the risk of developing obesity during childhood 
(28). Moreover, gaining weight after smoking cessation is a very 
common phenomenon (30, 31). The cause of gaining weight after 
quitting smoking is excessive calorie intake, decreased resting 
metabolism rate, decreased physical activity and increased lipoprotein 
lipase activity (32, 33). However, smoking is harmful to the extent that 
the health damage from weight gain is less than the damage from 
continued smoking (32). Fortunately, there are interventions to prevent 
or reduce body weight gain, e.g., using bupropion (33), modifying diet 
or exercising (34). The role of e-cigarettes in terms of body weight is still 
unclear and requires more research on the human population. The 
conclusions of the current research are contradictory (35, 36). Some 
studies found that people using e-cigarettes had a higher prevalence of 
obesity than the normal-weight population. However, no significant 
causal link was found between e-cigarettes and obesity (36, 37).

Eating faster (38) and huge portions (39) of food are also factors 
that might contribute to higher calorie intake occurrence of obesity. 
Consumption of sweet beverages both with sugar and artificial 
sweeteners also increases the risk of body weight gain (28, 40). Poverty 
which is linked to low income and low education level also contributes 
to increasing obesity prevalence (41, 42). Social norms, prices of 
different types of food and fashion may both increase or decrease the 
rate of obesity occurrence (28). Families in which parents are 
overweight or obese have greater chances of having overweight 
children (43). This relationship is independent of genetic factors (28).

FIGURE 2

Summary of the article selection process.
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Climate, sun exposure, depression and 
stress

Changing climate and global warming also might be factors that 
increase the risk of obesity (44). There are reports that more energy is 
expended to digest colder food, and simultaneously it means, more 
calories are acquired by eating food at higher temperature than eating 
the same food at cold temperature. However, the potential effect of 
global warming on body weight is not large and is even less marked 
than the effect of owning a microwave (45).

The low number of daylight hours may also contribute to body 
weight gain by developing depression which increases the amount of 
food consumed by affected people (46). According to Luppino et al.’s 
meta-analysis depression increases the risk of developing obesity in 
both men and women due to hormonal changes (chronic activation 
of the hypothalamic–pituitary–adrenal axis), usage of antidepressants 
and lifestyle changes including the decreased amount of physical 
activity, switching to an unhealthy diet and eating an excessive amount 
of food when they feel bad (47). It is worth noting that obesity also 
may contribute to the development of depression. This reciprocal 
association has been found in many studies (47–49). However, 
according to Mannan et al.’s study, the risk of developing obesity due 
to depression is higher than the risk of developing depression due to 
obesity (48). Furthermore, Kanellopoulou et  al.’s study found an 
association between depression and obesity in children (50).

Similarly, chronic stress also may contribute to excessive body 
weight gain. Nowadays, due to the constant rush and ambition, people 
are almost constantly exposed to chronic stress. Stress affects weight 
in many ways including overeating, eating calorie-rich food, 
decreasing the level of physical activity, decreasing the amount of 
sleep, disrupting intentional weight control, disrupting HPA axis, 
disrupting the reward center, changes in the gut microbiome and 
modifying the amount of synthesized regulatory peptides and 
hormones (neuropeptide Y, leptin, ghrelin). Furthermore, stigmatizing 
obese people increases the amount of stress they experience (51, 52). 
Moreover, some people may be  more susceptible to stress due to 
individual factors such as the level of glucocorticosteroids and their 
sensitivity to glucocorticosteroids (53).

The impact of pollution on the 
prevalence of overweight and obesity

Because of the industrial development of the world the natural 
environment is becoming more and more degraded. The exploitation 
of the environment leads to climate change and the emission of 
pollutants, which decrease the quality of the air, water and soil. All 
these factors may cause adverse effects on human health.

Air pollution is one of the most important environmental 
problems related to human health. Air pollutants are responsible for 
health problems including cardiovascular system diseases, neoplastic 
diseases and respiratory system diseases. These three types of diseases 
are the leading cause of death worldwide. The most important air 
pollutants are carbon monoxide (CO), lead, nitrogen oxides (NOx), 
ground-level ozone (O3), particulate matter (PM), and sulfur oxides 
(SOx). The impact of air pollution depends on sex, age and which 
pollutant is present in the air. There are some hypothetical mechanisms 
in which air pollution contributes to weight gain. The pollutants may 

cause oxidative stress and inflammations which leads to metabolic 
disorders. These metabolic disorders may further contribute to the 
development of obesity. Pollutants also contribute to other diseases 
like asthma which make people less capable of physical activities and 
as a result abstain from exercise. People are also less likely to go 
outside and exercise when they know that the air is polluted and when 
they see that there is smog. It also decreases the amount of physical 
activity. It is to some extent controversial if air pollution contributes 
to obesity, as a similar number of studies support or deny this idea. 
However, it should be highlighted that fewer studies have shown that 
air pollution contributes to decreased risk of obesity (54). Studies 
investigating the impact of air pollution on body mass changes 
according to An et al. are presented in Figure 3.

It appears that children are more susceptible to the obesogenic 
impact of air pollution than adults (54). An association between 
PM2.5 exposure and increased adult BMI was found while no 
association was observed when it comes to PM10 and NO2 exposure 
(55). It is likely that skipping activity due to pollution is the main 
mechanism by which air pollution affects the obesity rate in adults 
(54). It is also found that air pollution may slow down the metabolism 
of young adults and increase the risk of obesity (56). It has been found 
that even prenatal exposure to pollutants in the air may affect obesity 
(55). Children who were affected prenatally by polycyclic aromatic 
hydrocarbons (PAHs), NO2, PM2.5 or benzopyrene were more likely 
to be  obese in their childhood. Smoking is a source of PAHs so 
children of women who smoke during pregnancies are more likely to 
be overweight or obese. Traffic air pollution may affect the metabolism 
of newborns and lead to obesity. Children living close to places with 
large traffic like major streets had higher BMI than those who live 
further to these places (55, 56). Another possible mechanism is 
affecting the endocrine system by pollutants (55). It is hypothesized 
that high levels of NOx from traffic may cause inflammatory changes. 
There are studies that found no associations between low-level NOx 
exposure and overweight or obesity rates in children. Most of the 
research point that air pollution increases obesity in children (54–56). 
The pollutants that are most significant in childhood obesity are 
PM2.5, PM10, and NO2 (56). PM may also cause sleep disorders that 
contribute to weight gain.

Water pollution also may affect the prevalence of overweight and 
obesity. Both organic and inorganic water pollutants may create the 
nanocolloids which are contributing to obesity. It was found that 
exposure to nanocolloids increased the weight of mice. After the 
exposure there was a change in gut microbes, namely toward the status 
that is commonly present in obese individuals. These microbes 
generate then long-chain fatty acids. Also, the level of leptin increased, 
and the expression of adiponectin decreased. Nanocolloids are also 
responsible for disorders in blood lipid metabolism (10).

Overweight and obesity prevalence 
during the COVID-19 pandemic

Children and youths

In 2020 the hypothesis was made that lockdown might affect 
children’s weight similarly to summer vacations because of the school 
closures (57). The hypothesis was based on the study which had been 
carried out prior to the pandemic. This study included a group of 
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TABLE 2 A change of investigated parameters during school years and 
summer vacations based on von Hippel et al.’s study (58).

Mean 
BMI

Prevalence of 
overweight

Prevalence of 
obesity

School years ↑ ↓ ↓

Summer vacations ↑↑↑ ↑ ↑

children whose BMI was monitored from kindergarten to second 
grade and it revealed that children’s BMI increased faster during 
summer vacation compared to the school year and that prevalence of 
overweight and obesity increased only during summer vacations (58), 
Table 2.

That suggested that school attendance might reduce the impact of 
risk factors causing the growth of BMI. The hypothesis assumed that 
the pandemic would increase the screen time and consumption of 
snacks and shelf-stable food, which is usually highly processed and 
less healthy, and that social distancing will reduce physical activity in 
children, especially those who live in an urban environment (57).

Low physical activity and high screen time are likely to be risk 
factors for overweight and obesity in children (59). The low sample 
(41 participants) longitudinal study which was carried out in Italy 
based on telephone interviews with parents of obese children supports 
this hypothesis. The food consumption during the lockdown increased 
in this group: the consumption of unhealthy food (red meat, potato 
chips, and sweet beverages) increased significantly. The consumption 
of fruits also increased but its significance is not marked as clearly as 
the increased consumption of unhealthy food. Also, the number of 
meals consumed every day increased, especially in the group of males. 
There was also observed a change in the amount of time spent on 
different activities: sleeping time and screen time increased while the 
amount of time spent on doing sports decreased (60).

Another large sample (10,082 participants) retrospective study 
carried out in China based on a social media survey supports the 
statement that lockdown contributed to weight gain in youths. The 
study included youths between the age of 16 and 28 years. The average 
age of participants was 19.8 years. The data about BMI, the prevalence 
of overweight (defined in that study as BMI ≥23) and obesity (defined 
as BMI ≥27) and the lifestyle of youths before and during the 
lockdown were collected. The mean BMI increased from 21.8 before 
the lockdown to about 22.6 during the lockdown. The prevalence of 
both overweight and obesity increased. The screen time and sleeping 

time increased. Most of the participants kept a moderate level of 
physical activity. However, the rest of them rather decreased their 
physical activity due to the lockdown. Also, the amount of time spent 
on transport-related actions like walking and cycling decreased during 
the lockdown (61).

Furthermore, the meta-analysis encompassing 12 studies (including 
the two mentioned before) revealed that children’s body weight and 
BMI have increased during the lockdown. Also, the prevalence of 
overweight and obesity increased in studied groups during the 
pandemic, especially in younger children aged from 5 to 9 years. The 
weight increase in the group of children affected by diabetes mellitus 
was not statistically significant. It was stated that the COVID-19 
pandemic has worsened the epidemic of childhood obesity (62).

Adults

The lockdown and COVID-19 caused unfavorable changes in 
adults as well. Both the COVID-19 pandemic and all the rules 
introduced by different countries to prevent infection like lockdown 
or social distancing caused the change in people’s diet and activity 
forms. In many cases the amount of physical activity decreased while 
sleep time and screen time increased. Additionally, the amount of food 
consumed increased. People were eating more processed food with 
long shelf life. Because of that it was more difficult for people to 

FIGURE 3

A number of studies which found positive, negative or no association between air pollution and body weight based on An et al. (54).
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control their body weight. These changes likely contributed to body 
weight gain (62–66).

The study conducted in the UK revealed that due to the lockdown 
adults encountered many barriers which were hindering them from 
maintaining the proper body weight. There were 2002 participants who 
completed the questionnaire about their behaviors during the lockdown. 
Adults have eaten more snacks, especially the ones who had high BMI 
prior to the lockdown. People who had high BMI also were overeating 
more frequently and had worse diet quality than people with normal 
BMI. The diet quality of most participants worsened. Because of panic 
people bought a lot of highly processed food with long shelf lives and 
ate it instead of fresh, nutritious and healthy food which was less 
accessible during the lockdown. Levels of physical activity were also 
lowered, again especially in the group of people with higher BMI as 
many people were afraid to exercise outside. Because of that people lost 
control of keeping their weight within the correct values (63).

In the meta-analysis including adults, weight gain was observed in 
12.8–29.9% of cases during the lockdown (64). In one of the Iraqi studies 
the weight increased in over 30% of people (65). On the contrary, 
according to Italian authors weight loss was observed in 35.7% of people 
while weight gain was observed only in 11.1% of people, although, the 
study group included only people aged 60 and more (66). In another 
study including only obese people 36.3% of them gained weight during 
lockdown (67). The lockdown had the greatest impact on those who 
were already overweight and obese (63). Moreover, it was also found that 
younger participants gained weight faster than older ones (64).

Most likely lockdown contributed to the acceleration of weight gain, 
growth of BMI and increased prevalence of both overweight and obesity. 
This fact is particularly unfavorable because excess body weight is one of 
the factors associated with the severe course of COVID-19 (9).

Conclusion

Most of the studies reveal that the COVID-19 pandemic and 
lockdown contributed to the growth of BMI in many countries and in 
different populations of people and it increased the prevalence of 
overweight and obesity. Restrictions introduced to prevent infection 
including lockdown and social distancing caused changes in people’s 
diet and activity forms. The physical activity was decreased while sleep 

time and screen time were increased and the amount of food 
consumed increased. More processed food with long shelf life was 
consumed. However, still it should be  remembered that the 
background of the development of obesity and overweight is complex, 
and it employs a variety of components such as socioeconomic 
problems, diet habits, lifestyle, type of work, and even the 
neighborhood view quality. Additionally, air pollution may 
be associated with obesity prevalence, especially in children, while the 
impact of water pollution on obesity is less studied.
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Coronavirus disease 2019 (COVID-19) caused a major pandemic affecting

human health and economy around the world since the beginning of 2020.

The virus responsible for the disease is “severe acute respiratory syndrome

coronavirus 2” (SARS-CoV-2). It invades the target cells by binding to

angiotensin-converting enzyme 2 (ACE2). ACE2 is expressed in several organs

including endocrine glands. Multiple endocrine and metabolic systems including

the endocrine pancreas have been impacted by COVID-19 infection/pandemic.

COVID-19 pandemic can promote obesity through alterations in lifestyle (e.g.,

unhealthy diet and reduced physical activity due to confinement and isolation)

leading to type 2 diabetes and/or can directly impair the function of the

endocrine pancreas particularly through a cytokine storm, promoting or

aggravating type 1 or type 2 diabetes. The increased ACE2 receptors of high

adiposity commonly associated with type 2 diabetes and the chronic

hyperglycemia of diabetes with its negative impact on the immune system can

increase the risk of COVID-19 infection and its morbidity/mortality. In

conclusion, there are bidirectional interactions between COVID-19 pandemic

and diabetes (e.g., COVID-19 infection can impact diabetes and diabetes can

impact COVID-19 infection). The services offered by healthcare systems for the

management of diabetes have been adapted accordingly.

KEYWORDS

coronavirus, angiotensin-converting enzyme 2, COVID-19 infection, pandemic,
diabetes, immune system
Introduction

Since the beginning of 2020, COVID-19 infection became a global crisis of the 21st

century, causing a major pandemic affecting human health and activities around the world

and leading to a major international emergency (1–4). Several endocrine and metabolic

systems including the endocrine pancreas have been impacted by this pandemic (5–9).

COVID-19 infection caused a major disruption in the management of subjects with

endocrine and metabolic disorders, especially those with diabetes, and the services offered

by healthcare systems had to adapt accordingly and rapidly.

The purpose of this mini review is to present the interactions between COVID-19

infection and diabetes.
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Pandemic

A pandemic is an epidemic that spreads globally, crosses

international boundaries, and affects large number of people.

Numerous pandemics have occurred throughout the history of

mankind (10, 11). The deadliest pandemics were the Plague of

Justinian, the Black Death, and the Spanish Flu.

The most recent pandemic was the COVID-19 pandemic (1–3).

In January 2020, Chinese authorities announced the isolation of a

new type of coronavirus, SARS-CoV-2, following the occurrence in

December 2019 of several pneumonia cases of unknown etiology.

On March 11, 2020, the World Health Organization declared

COVID-19 a pandemic.

Pandemics can influence life at individual, familial, societal, and

environmental levels (12). At the individual level, there are health

consequences including infection caused by the pathogen,

metabolic diseases, mental disorders, impact on pre-existing

conditions, and eventually death, financial consequences mainly

due to unemployment, and educational consequences caused by

remote learning. At the familial level, there is a risk of domestic

violence due to prolonged presence of parents and children at

home. At the societal level, there are major economic consequences

affecting several businesses (e.g., agriculture, restaurant, hotel, store,

airline, cruise, convention, concert, sport event, museum, movie,

and theater) caused by limitation of social life and activities. At the

environmental level, confinement may have some health benefits, at

least for short term, due to a reduction in air pollution mainly

secondary to decrease in circulating cars and flying planes which

can also positively impact life of animals and plants.
Frontiers in Endocrinology 02152
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Structure and mode of action of
COVID-19 virus

The SARS-CoV-2, which is the virus responsible for the disease, is

one of the coronaviruses in the family of Coronaviridae. It belongs to

genera Betacoronavirus and is the seventh coronavirus known to cause

human diseases. The virus is a spherical or pleomorphic enveloped,

non-segmented, single-stranded, positive-sense RNA virus (Figure 1).

It has fourmain structural proteins: spike (S), membrane (M), envelope

(E), and nucleocapsid (N) proteins (1, 7, 13).

Like other viruses, SARS-CoV-2 can mutate. The mutated virus is

referred to as a variant of the original virus. Several variants of SARS-

CoV-2 have been reported (e.g., Alpha, Beta, Delta, Epsilon, Eta,

Gamma, Iota, Kappa, Lambda, Omicron, Theta, and Zeta). They

were initially detected in countries like the United Kingdom, South

Africa, Brazil, and India. Some variants are more contagious and

aggressive and may show more resistance to the current vaccines. The

Delta variant and then the Omicron variant created serious concerns in

several countries, where they became the dominant variants affecting

adults, adolescents, and children, responsible for spike in

hospitalizations. Within a variant, there are also several sub-variants

(e.g., BA.4 and BA.5 Omicron sub-variants).

The transmission of human-to-human mainly occurs from direct

contact or by droplets spread by infected subjects through cough or

sneeze. The survival of the virus in the environment ranges from a few

hours to a few days, depending on the conditions. The nose, mouth,

and ocular mucosa are the major ways of transmission.
FIGURE 1

SARS-CoV-2. Copyright phonlamai (Kittipong Jirasukhanont)/Depositphotos Inc.
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The virus enters and infects the target cells by binding to cell

membrane protein receptors. The most well-described cell

membrane protein receptor is ACE2, a zinc metalloprotease (7, 9,

13, 14). ACE2 is expressed in multiple organs including pancreas

and endothelium. It is abundant in the epithelia of the lung and

intestine. After the binding of the virus spike protein to ACE2, there

is an internalization of ACE2. The virus uses the genetic system of

the host cell and replicates. At the end, the virus leaves the cell

through exocytosis. The infected cells undergo apoptosis or

necrosis, triggering inflammatory responses.
Health consequences of
COVID-19 infection

COVID-19 infection had influenced life at individual, familial,

societal, and environmental levels through infection and confinement/

isolation and had placed a significant burden upon healthcare

worldwide (12). Different systems expressing ACE2 can be impacted

by COVID-19 infection (e.g., respiratory, cardiovascular, neurological,

gastrointestinal, and endocrine). COVID-19 infection causes

alterations in the host immunological status including an increase in

pro-inflammatory cytokines (e.g., interleukin-6 and tumor necrosis

factor-a). The surge of pro-inflammatory factors (cytokine storm) can

cause endothelial dysfunction and host organ damage (9, 15, 16).

Subjects infected with COVID-19 can be asymptomatic, have

mild symptoms recovering within 1 to 2 weeks, or be severely

affected with the ultimate risk of death. Common symptoms include

fever, dry cough, dyspnea, arthralgia, myalgia, ageusia, and

anosmia. COVID-19 symptoms can sometimes last several

months. The damage to the lungs, heart, and brain increases the

risk of long-term symptoms (long haulers). COVID-19 infection

interferes with the onset and evolution of multiple endocrine and

metabolic disorders (5–9, 17). For some endocrine/metabolic

systems and diseases, information on pathophysiology and long-

term outcome is relatively limited.

All age groupsmay be affected by COVID-19 infection. The disease

is more severe in men (6, 18). Older subjects (> 65 years), black

subjects, smokers, and subjects with immunodeficiency, cardiac and

respiratory diseases, cancer, hypertension, diabetes, obesity, and

dyslipidemia are considered high-risk populations (13, 19).

Social distancing and home confinement/isolation were the key

public health recommendations during the COVID-19 pandemic.

More than 4 billion people worldwide experienced the mobility

restriction. The home confinement, self-isolation, and unemployment

for a long period are responsible for alterations in lifestyle (e.g.,

unhealthy diet and reduced physical activity) and mental status (e.g.,

anxiety and depression). The confinement and isolation can impact

access to health care (e.g., medications, physicians, and hospital beds)

for the management of pre-existing medical conditions (e.g., heart

disease, cancer, and diabetes) (12, 20). The changes in lifestyle can lead

to insulin resistance and weight gain (overweight or obesity) and death

may result from direct consequences of the viral infection, mental

complications of confinement/isolation (risk of suicide), or aggravation

of pre-existing diseases (4, 8, 20–22).
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Prevalence of diabetes

Diabetes is a complexmetabolic disease that results from deficiency

of insulin secretion and/or action. It affects people regardless of

country, age, or gender. Approximately half of the people living with

diabetes are unaware of their condition. This proportion is much

higher in low-income countries. Diabetes, both type 1 and type 2, is a

major cause of morbidity and mortality in the world.

The prevalence of diabetes has risen significantly over the last

several decades and is expected to rise dramatically in the years to

come. In 2021, the global age-standardized prevalence of diabetes was

6.1% with 529 million people of all ages living with diabetes worldwide;

type 2 diabetes accounted for more than 96% of the cases. In the USA,

the numbers of subjects with type 1 and type 2 diabetes are around 2

and 35 million, respectively. It is expected that by 2050, the prevalence

of diabetes will exceed 10% with more than 1.31 billion people living

with diabetes. This increase will be mainly driven by type 2 diabetes

which is primarily due to a rise in obesity (23).
Health consequences of diabetes

Diabetes causes multiple complications including macrovascular

(e.g., cardiomyopathy) and microvascular (e.g., neuropathy,

retinopathy, and nephropathy) complications inflicting high cost on

healthcare (Figure 2) (24).

Hyperglycemia associated with diabetes causes impaired

immunity (e.g., reduced T lymphocytes response, reduced

neutrophil function, and disorders of humoral immunity) (25).

The frequency and severity of infectious diseases are higher in

subjects with diabetes in comparison to those without diabetes. The

risk of infection is enhanced in the elderly population (26).
Impact of COVID-19 infection
on diabetes

Impact through metabolic changes due to
confinement and isolation

COVID-19 infection can impact type 2 diabetes through

alterations in adipose tissue mass, cytokines levels, and insulin

sensitivity. The confinement and isolation of the COVID-19

pandemic promote unhealthy diet (e.g., overeating) and reduced

physical activity, both leading to excess adiposity (overweight or

obesity) especially in high-income populations, increased

production of cytokines (systemic inflammation), and insulin

resistance (8, 20, 21). These alterations can promote or aggravate

type 2 diabetes.

Daily exercise (e.g., low to medium-intensity exercise) is

essential for preventing the negative impact of inactivity and

improving health (20, 22).
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Impact through cytokine storm

By causing a cytokine storm with the resulting release of

multiple pro-inflammatory factors (e.g., interleukin-6 and tumor

necrosis factor-a), insulin resistance, endothelial dysfunction, and

damage of the pancreatic islets, COVID-19 infection contributes to

the promotion or aggravation of type 1 or type 2 diabetes and

complications of diabetes (16).

To reduce the risk of severe outcome of diabetes, it is crucial to

achieve glycemic control. It is also important that subjects with

diabetes be prioritized for COVID-19 vaccination.
Impact through changes in
healthcare services

COVID-19 infection has caused a major disruption in the

management of subjects with diabetes. The services offered by

healthcare systems had to be adapted accordingly. Routine in-

person appointments have been minimized to avoid crowds in

waiting rooms with the risk of infection. Outpatient management

with remote advice and support services using phone calls, video

calls, and e-mails have been recommended, promoted, and
Frontiers in Endocrinology 04154
implemented (19, 27). Elective surgical procedures have been

postponed when possible.
Impact of diabetes on
COVID-19 infection

Impact through adipose tissue

Type 2 diabetes is closely related to overweight and obesity.

Indeed, in subjects with type 2 diabetes, at least 85% have

overweight or obesity, and among subjects with obesity, around

30% have type 2 diabetes. ACE2 is expressed in adipose tissue. With

higher adiposity commonly associated with type 2 diabetes, more

receptors (ACE2) are available for SARS-CoV-2, exposing subjects

to COVID-19 infection. In addition, subjects with excess adiposity

may experience a more serious COVID-19 infection through

several mechanisms (e.g., inflammation, impaired immunity,

mechanical lung dysfunction, impact of comorbidities, and

vitamin D deficiency) (5, 7, 15, 16, 18, 19, 28–31).

Management of subjects with excess body weight and COVID-19

who require treatment in intensive care units can be challenging (e.g.,

difficulty for moving, for intubating, and for obtaining diagnostic
FIGURE 2

Diabetes negatively impacts several organs. Copyright edesignua (Tetiana Zhabska)/Depositphotos Inc.
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imaging) (15). Subjects with overweight or obesity should have weight

reduction using appropriate approaches and tools, when indicated (e.g.,

diet, exercise, behavioral change, drugs, medical devices, gut

microbiome modulation, and bariatric surgery) (32–37).
Impact through immune system

In subjects with uncontrolled diabetes, chronic hyperglycemia

negatively impacts the immune system and increases the risk of

COVID-19 infection and its morbidity/mortality (5–7, 13, 15, 18,

19, 27, 38).

Appropriate glycemic control is essential to reduce the risk of

COVID-19 infection. The outpatient plasma glucose goal in case of

COVID-19 infection is 72-144 mg/dL with a hemoglobin A1c goal less

than 7%. Plasma glucose should be monitored at least twice daily.
Impact through other complications
of diabetes

The presence of other complications of diabetes such as

endothelial dysfunction, cardiovascular disease, and nephropathy

can be responsible for poor COVID-19 outcome (16).
Impact through antidiabetic medications

Some antidiabetic medications are not suitable in severe cases of

COVID-19 infection (16). Particularly, sodium-glucose cotransporter-

2 inhibitors should be discontinued in subjects severely affected by

COVID-19 infection and who are at risk of dehydration. In

hospitalized subjects with severe COVID-19 infection, insulin is the

preferred treatment for type 2 diabetes with the use of continuous

glucose monitoring (6).
Conclusion

There are bidirectional interactions between COVID-19

infection and diabetes. COVID-19 infection can impact the onset
Frontiers in Endocrinology 05155
and/or the evolution of diabetes and diabetes can impact the onset

and/or the evolution of COVID-19 infection.

COVID-19 infection has caused a major disruption in the

management of subjects with diabetes. The medical services have

been adjusted to the new situation. Routine in-person appointments

can be reduced to avoid crowds in waiting rooms with the risk of

infection. Outpatient care with remote advice and support services

have been promoted. Because of the higher risk of mortality in

subjects with diabetes who are infected by SARS-CoV-2, tight

glycemic control and proper COVID-19 vaccination are essential

in this population.
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Multilevel perceptions of the 
virtual delivery of the University of 
California Diabetes Prevention 
Program on RE-AIM domains due 
to COVID-19 mandates
Tamra Burns Loeb 1*, Maryam Gholami 2, Kate Ramm 1, 
Kelly Shedd 3, Samantha Soetenga 4, Nicholas J. Jackson 1, 
Un Young Rebecca Chung 1, O. Kenrik Duru 1, 
Carol M. Mangione 1, Alison B. Hamilton 1,5 and Tannaz Moin 1,5

1 Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the 
University of California, Los Angeles, Los Angeles, CA, United States, 2 Altman Clinical and Translational 
Research Institute (ACTRI), University of California, San Diego, San Diego, CA, United States, 3 UCI 
Health, University of California, Irvine, Irvine, CA, United States, 4 UCLA Campus Recreation, University 
of California, Los Angeles, Los Angeles, CA, United States, 5 VA Greater Los Angeles Healthcare 
System, Los Angeles, CA, United States

Background: The University of California’s Diabetes Prevention Program (UC 
DPP) Initiative was implemented across all 10 UC campuses in 2018. The 
COVID-19 pandemic and accompanying mandates required swift changes 
to program delivery, including pivoting from in-person to virtual delivery (i.e., 
Zoom). Our goal was to assess multilevel constituent perceptions of the use of 
a virtual platform to deliver UC DPP due to COVID-19 mandates.

Methods: We conducted qualitative interviews with 68 UC DPP participants, 
coordinators, and leaders to examine the use of virtual platform delivery on the 
reach, effectiveness, adoption, implementation, and maintenance (RE-AIM) of 
UC DPP. Transcripts were analyzed using rapid qualitative analysis and emergent 
themes were categorized using domains corresponding to RE-AIM framework.

Results: Among UC DPP participants (n  =  42), virtual delivery primarily impacted 
perceptions of UC DPP effectiveness and implementation. Some participants 
perceived program effectiveness to be  negatively impacted, given their 
preference for in-person sessions, which they felt provided more engagement, 
peer support, and accountability. Implementation challenges included 
problems with virtual format (e.g., “Zoom fatigue”); however, several benefits 
were also noted (e.g., increased flexibility, maintenance of DPP connections 
during campus closures). UC DPP coordinators (n  =  18) perceived virtual 
delivery as positively impacting UC DPP reach, since virtual platforms provided 
access for some who could not participate in-person, and negatively impacting 
effectiveness due to reduced engagement and lower peer support. UC leaders 
(n  =  8) perceived that use of the virtual format had a positive impact on reach 
(e.g., increased availability, accessibility) and negatively impacted effectiveness 
(e.g., less intensive interactions on a virtual platform). Across constituent levels, 
the use of a virtual platform had little to no impact on perceptions of adoption 
and maintenance of UC DPP.

Conclusion: Perceptions of the reach, effectiveness, and implementation 
of UC DPP using a virtual platform varied across constituents, although all 
groups noted a potential negative impact on overall program effectiveness. 
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Unanticipated program adaptations, including virtual delivery, present potential 
benefits as well as perceived drawbacks, primarily across the effectiveness 
domain. Understanding differential constituent perceptions of the impact of 
virtual delivery can help maximize RE-AIM and inform future UC DPP delivery 
strategies.

KEYWORDS

Diabetes Prevention Program, University of California, virtual delivery, multilevel 
constituents, RE-AIM

Background

Prediabetes affects 38% of U.S. adults and increases risk of incident 
type 2 diabetes, a leading cause of morbidity, mortality, and healthcare 
costs in the U.S. (1, 2). Approximately 1 in 3 U.S. adults had prediabetes 
in 2019, and without intervention, a significant number are projected 
to develop incident type 2 diabetes within 5 years (2). The Diabetes 
Prevention Program (DPP) is a year-long intensive lifestyle 
intervention which has demonstrated efficacy to lower type 2 diabetes 
risk among at-risk individuals and those diagnosed with 
prediabetes (2, 3).

In 2018, the University of California (UC) implemented the DPP 
across all 10 UC campuses to augment obesity and diabetes prevention 
efforts, primarily aimed at employees. The UC DPP intensive lifestyle 
intervention adheres to and is certified by the Centers for Disease 
Control and National Diabetes Prevention Program (2, 4). The UC 
Diabetes Prevention Program (UC DPP) is offered free of charge to all 
UC faculty and staff at risk of developing type 2 diabetes as well as 
those diagnosed with prediabetes (as defined by the CDC National 
DPP criteria). The primary outcome of interest for the UC DPP trial 
was mean percent weight change at 12-month follow-up; secondary 
outcomes included mean percent weight change at 24-month follow 
up, challenges and facilitators associated with implementation, and 
degree of program adoption and maintenance [see (4)]. The evaluation 
of the UC DPP included diverse UC data sources, including electronic 
health record (HER) data, administrative claims, campus-based DPP 
cohort data, site visits, and qualitative interviews (the data source 
analyzed in the current study) [see (4)]. Our decision to use of 
qualitative interviews is consistent with the continued need for 
research utilizing and reporting applications of RE-AIM (5).

In 2020, the COVID-19 pandemic-related public health mandates 
necessitated unplanned, immediate changes to program delivery, 
including transitioning from in-person to virtual delivery. All 10 
campuses shifted to virtual delivery using the UC Zoom platform due 
to mandated campus closures. This abrupt shift in program delivery 
was necessary to continue to offer UC DPP to participants at risk for 
developing type 2 diabetes and mitigate progression to diabetes among 
those diagnosed with prediabetes. Research suggests that 
approximately half of Americans gained weight during the pandemic; 
this risk was more pronounced among those who reported being 

overweight before the pandemic (6). Although UC DPP continued to 
be offered utilizing a virtual platform, there is a lack information about 
how this change in delivery differentially impacted the perceptions 
and experiences of UC DPP participants, coordinators, and leaders 
across RE-AIM domains.

Research comparing in-person to virtual DPP delivery suggests 
that intensive, multifaceted online DPP programs may be as effective 
as in-person DPP (7). Offering DPP online can also expand reach to 
at-risk individuals, although barriers (e.g., lack of internet access, 
technology, slow internet speed, lack of quiet space) have been noted 
(8). However, despite the CDC Diabetes Prevention Recognition 
Program Registry’s recognition of online delivery of DPP (9), there are 
gaps in our knowledge about perceptions of the virtual delivery of 
preventative health care programs. Accordingly, the purpose of this 
study is to assess multilevel perceptions of delivering the UC DPP 
Initiative virtually due to the COVID-19 pandemic utilizing the 
RE-AIM (reach, effectiveness, adoption, implementation, and 
maintenance) framework (10, 11).

Methods

A planned component of the overall evaluation of the UC DPP 
was the use of both quantitative and qualitative data to maximize the 
use of the RE-AIM model (5) In-depth qualitative interviews, an ideal 
method to better understand multilevel stakeholder perceptions, 
experiences, and opinions with respect to the UC DPP, were conducted 
(4, 12). To accomplish this goal, the RE-AIM framework guided the 
development of a semi-structured interview guide (5), with versions 
tailored to DPP participants, coordinators, and leaders. Participants 
were individuals that participated in UC DPP sessions. Coordinators 
helped to support the UC DPP at one site, and Leaders were those that 
provided support across sites; many were affiliated with the University 
of California, Office of the President.

We sent study invitation emails and letters to UC key constituents 
between February and July 2021. In-depth qualitative interviews were 
scheduled with interested constituents. Interviews were conducted by 
a trained qualitative team member over UC Zoom and lasted 
approximately 1 h. Participants included those that engaged in UC 
DPP entirely in-person (pre-pandemic), virtually (during the 
pandemic), and a combination of in-person and virtually (those that 
transitioned to virtual from in-person at the beginning of the 
pandemic, when stay-at-home mandates were imposed).

Three interview guides informed by the RE-AIM framework were 
developed for the following partner groups: (1) participants, (2) 

Abbreviations: UC DPP, University of California Diabetes Prevention Program; 

RE-AIM, Reach, effectiveness, adoption, implementation, and maintenance; UC, 

University of California.
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coordinators, and (3) leaders. Participant interview guides assessed 
RE-AIM domains, including Reach (i.e., whether they had received a 
diagnosis of prediabetes, number of sessions attended), Effectiveness 
(i.e., what parts of the program worked and did not work for them, 
their overall satisfaction, suggestions for improvement, whether they 
participated in DPP on Zoom because of COVID-19 stay-at-home 
restrictions, and if so, how they would rate the virtual experience and 
how it could compare to an in-person option), Adoption (i.e., whether 
UC DPP affected their health and wellness, level of physical activity, 
eating habits, stress level, and emotional and social health, whether 
the sessions helped them meet the goals they set for themselves, and 
how the program helped with accountability), Implementation (i.e., 
specific program components, including the enrollment process, 
materials, their group coach, group interactions, and timing and 
frequency of sessions, as well as facilitators and challenges to 
participation), and Maintenance (i.e., whether they continued any 
lifestyle changes they made in the program and whether the program 
should be  offered in-person, virtually, or both). Participants also 
responded to a question about how COVID-19 impacted participation 
in UC DPP.

Coordinator and leader guides were similar; coordinators were 
asked about their specific campus and leaders responded to questions 
across the UC system. Consistent with the participant guide, 
coordinator and leader guides also assessed RE-AIM domains, 
including Reach (i.e., strategies used to raise awareness of UC DPP 
and outreach/recruitment strategies), Effectiveness (i.e., how they 
evaluate UC DPP effectiveness, strengths, areas in need of 
improvement, feedback collected, and specific program components, 
including materials, training sessions, coaches, and data collection), 
Adoption (i.e., facilitators and barriers), Implementation (i.e., 
adaptations made to the program to meet campus or participant 
needs), and Maintenance (i.e., program needs and obstacles to 
sustainment). Coordinators and leaders also responded to several 
questions about the COVID-19 pandemic (i.e., how COVID-19 
impacted UC DPP) (see Table  1 for a summary of constituent 
interview guides).

Qualitative data collection

Interviews were recorded, professionally transcribed, and 
transcripts were reviewed in detail by the research team. After 
familiarization with the transcripts, the team used rapid qualitative 
analysis, a type of manifest content analysis developed for and utilized 
in health services and implementation research, for example to aid in 
the rapid identification or expansion of knowledge of intervention 
components as well as facilitators and barriers of a program, to analyze 
the data (13, 14). Constituent (i.e., participant, coordinator, and 
leader) responses that alluded to delivery and use of the virtual 
platform with respect to RE-AIM domains were reviewed and 
synthesized. A templated summary of each transcript was created, 
creating a multilevel inventory of constituent responses to each of the 
respective interview guide domains. These summaries were combined 
into matrices to identify and compare themes, as well as to establish 
thematic saturation [i.e., sufficient, cross-cutting evidence for the 
multilevel themes presented below; (15)] related to the use of the 
virtual platform (13). The study was approved by the UCLA 

Institutional Review Board. All constituents provided verbal consent 
and were offered a $50 gift card incentive after the interview 
was completed.

Results

Between April and August 2021, 68 constituents (42 UC DPP 
participants, 18 coordinators, and 8 leaders) completed interviews. 
The UC DPP participants’ mean age was 46 years (9.8); 33 (79%) were 
female and 9 (21%) were male. Thirteen (31%) identified as Asian, 8 
(19%) Caucasian, 12 (29%) Latino, 1 (2%) Black, 2 (5%) American 
Indian/Alaskan, or Native Hawaiian/Pacific Islander. Six participants 
(14%) did not report their racial/ethnic background. Three 
participants (7%) reported receiving some college education, 27 (64%) 
had a college degree, and 12 (29%) had an advanced degree. UC DPP 
coordinators and leaders did not report demographic characteristics 
for this study.

UC DPP participants

UC DPP participants perceived virtual delivery as having the 
greatest impact on effectiveness and implementation domains. Few 
participants commented on reach, but several noted that other group 
members had dropped out because of the shift to a virtual platform, 
and one said they were not provided with a virtual option. The 
majority of participants perceived program effectiveness to 
be negatively impacted by virtual delivery, given their preference for 
in-person sessions, which provided more engagement 
and accountability,

“…I feel like [the virtual option] is not as engaging, if that makes 
sense. I feel like people are there, but they're not really…there. 
Like you talk but most of the time, everybody kept their cameras 
off and sometimes it was just like, anyone there, have any 
questions or suggestions, you know?”

Another participant echoed this sentiment, stating,

“I think what was missing…what's missing from the virtual, 
I  think, is that like I  said, that in-person camaraderie, the 
motivation, like I say, weighing in together, just physically being 
in the room with somebody, you know, it's expressive. There is a 
lot of thought and emotion tied to this subject. So, I think just that 
compassion for just having that in- person experience. Over 
Zoom you  can't really gauge someone's…I don't know, facial 
expressions are everything. I think it just enhances the experience.”

Others noted, “So over remote, it was a lot of quiet and everyone 
mostly—a lot of the time, we all had our cameras off versus being able 
to see a person,” and “The Zoom was just – you are distracted more 
easily, you know?” Some described reduced interaction with group 
members and the facilitator, and one stated that it was more difficult 
to get feedback. Participants also described in-person delivery as 
easier, presenting fewer obstacles, and included seeing and interacting 
with others. According to one participant,
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“I think once we  went remote and obviously, we  never went 
back—I mean we're still not back yet I think—I can't really say 
because I don't think it's fair to say what didn't work because 
I don't think it went as anybody planned. I think it worked as best 
it could in the remote environment. But I don't have anything to 
compare it to because what was presented in person, I believe 
would have been super beneficial. Like I  said with the weight 
bands, with the portion plates, it would have been maybe more 
interactive. We all weighed in together, so I think that part could 
have really been even more motivational, inspirational, coming 
together in that sense.”

In contrast, several participants noted that virtual was as effective 
as in-person programming. Participants indicated that “we actually 
did fine with it,” “It was good, and that they did not believe it made a 
“tremendous difference in the nature of the program.” Another 
participant noted,

“I think it’s a great program, to be honest. I’m excited—if they 
were to offer it and if I could potentially participate again and if it 
works with my schedule, I would definitely do it… I think it’s 
great. I think it lost some momentum with the pandemic, but 
yeah, I really enjoyed the program for the most part.”

Another stated,

“It was fine. We  didn't have connectivity issues. We  went the 
whole time. I  didn't feel like it was anyhow shortened or less 
informative or we were missing something because we really still 
kept talking. I think the group had a lot of commitment to finish 
this program for the whole year and go through it and continue 
learning as much, because there was always—there was never a 
session that did not have a question, a suggestion, or sharing a tip. 
You could count on that every meeting, so it showed that the other 
participants were equally invested and involved. It wasn't like it 
was just one person. Because you know sometimes when you're 
in Zoom, it's either just one person or it's dead silent or it's hard. 
That did not happen in these meetings.”

With respect to adoption, participants noted that DPP was no 
longer a priority or took a back seat to other pandemic-related 
concerns, and that they did not own and had to purchase a scale for 
home use to continue the program. One participant described the shift 
to virtual having no impact on adoption. With regard to 
implementation, participants’ comments focused on implementation 
challenges, including problems with virtual format (e.g., “Zoom 
fatigue” or having to choose between taking a lunch break or 

TABLE 1 UC DPP participant, coordinator, and leader interview guides.

RE-AIM domain Participant interview guide Coordinator and leader interview guide

Reach Responded to questions about whether they had prediabetes, and if 

so, who told them, and how the diagnosis made them feel and 

changed how they thought about their health. They also reported the 

number of sessions attended.

Asked about strategies used to raise awareness of UC DPP, outreach/

recruitment strategies, whether participants reflect the campus 

population, efforts to ensure a diverse representation of at-risk 

individuals, how to increase reach, and thoughts about why some faculty 

and staff participate or decline participation in UC DPP.

Effectiveness Described what parts of the program worked and did not work for 

them, their overall satisfaction, suggestions for improvement, 

whether they participated in virtual DPP on Zoom due to COVID-19 

restrictions, and if so, how they would rate the virtual experience and 

how it would compare to an in-person option.

Asked questions about how they evaluate UC DPP, as well as the 

effectiveness, strengths, areas in need of improvement, feedback 

collected, and specific program components (i.e., materials, training 

sessions, coaches, and data collection).

Adoption Asked about whether UC DPP affected their health and wellness, 

level of physical activity, eating habits, stress level, and emotional and 

social health. Participants recounted the goals they set for themselves, 

whether it became easier to meet their goals as they attended more 

sessions, whether the sessions helped them meet their goals, if the 

DPP recommended goals were attainable, and how the program 

helped with accountability.

Asked about facilitators and barriers to UC DPP adoption and ways the 

UC community and participants benefitted from the program.

Implementation Asked about specific program components, including the enrollment 

process, materials, their group coach, sessions, group interactions, 

and timing and frequency of sessions. They also were asked what 

made it easier to participate, challenges to participation, and whether 

they had to make changes to participate in the sessions.

Implementation questions focused on adaptations made to the program 

to meet campus or participant needs, and any unintended consequences 

of the program.

Maintenance Asked if they continued any lifestyle changes, they made in the 

program and whether they thought the program should be offered 

in-person, virtually, or both.

Questions included program needs and obstacles to sustaining UC DPP.

COVID-19 pandemic Asked if and how COVID-19 impacted participation in UC DPP. Asked about how they balanced involvement with UC DPP with campus 

priorities during the pandemic; how COVID-19 impacted UC DPP.

Coordinators and Leaders answered similar questions; Coordinators were asked about their specific campus and Leaders responded across the UC system. Coordinators were asked to provide 
their opinion about specific program components.
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participating in the Zoom session). One participant noted, “It was 
hard to do the virtual after kind of 10 h of non-stop virtual for work;” 
another stated, I “really did not like the Zoom meeting because my full 
day was Zoom meetings and I really just kind of let that go.” Others 
described scheduling challenges, being restricted to exercising at 
home, competing demands (i.e., children at home), technical issues or 
having to learn how to use Zoom, having to weigh oneself, and having 
to be  honest about lifestyle self-management from home. One 
participant stated,

“COVID just shut everything down. We went remote. We didn't 
receive the materials we  were supposed to receive. We  didn't 
receive—we were supposed to get portion plates and I  think 
something else. And you know, it was out of everybody's control, 
but we still kept meeting.”

Others noted that the virtual format was easier or preferred: “I 
think, yeah, probably the Zoom did make it easier. I think if we were 
in person on campus…. We would have to walk there or find our way 
there in person. And so with the Zoom, we  just log in and there 
we are.” Another stated, “It (virtual delivery) was good. Yeah. Yeah, it 
was good. I mean, it worked. It worked out.” Some participants noted 
that the virtual platform helped them to stay connected with others 
during campus closures. While participants were asked questions 
about maintenance, they did not describe the impact of virtual 
delivery on this dimension (see Table 2).

UC DPP coordinators

UC DPP coordinators described the virtual delivery having the 
greatest impact on the reach and effectiveness domains. Some noted 
that the virtual platform increased reach among those who could not 
participate in-person: “Retention has been much better in the virtual 
world.” Others stated that participants were lost due to the virtual 
transition, and that it had no or a similar effect. They also described 
virtual platforms negatively impacting effectiveness due to Zoom being 
awkward or less engaging, loss of momentum, decreased peer support, 
and reduced accountability. Similar to participants, coordinators also 
described DPP as less of a priority in the context of the pandemic, 
negatively affecting adoption. With respect to implementation, 
coordinators discussed negative impacts, including Zoom fatigue, 
feeling limited in what the program could provide, and difficulties 
collecting participant data. One noted,

“Some campuses—again in just this COVID world, they are 
having a harder time reaching people. So that's been the biggest 
struggles. And then engagement in this virtual world, in the 
beginning it was more novel and exciting. They're like, ‘Oh, I can 
still see you and it's Zoom’ and…we can still do this. And I think 
people still like it but they are kind of over it, as well…I think it 
does work really well for some people, but again, it's finding what 
works for everyone. Having an option for an in-person and a 
virtual, depending on what meets the need.”

While coordinators were asked questions pertaining to 
maintenance, they did not describe any effects of virtual delivery on 
this dimension.

UC DPP leaders

Leaders described several benefits of virtual delivery on reach, 
including increased availability and accessibility. One leader noted,

"I think the teams have been phenomenal in transitioning from 
in-person to remote meetings… Funding has been especially 
challenging in the COVID environment, and I also think that the 
program loses visibility when folks aren't on campus. They're not 
talking to each—they're not having hallway conversations with 
others. I do think it's presented challenges, but I think the team 
has adjusted phenomenally."

Drawbacks were noted for effectiveness, including reduced 
interaction among UC DPP participants on the virtual platform, less 
visibility, and interruptions (i.e., starting and stopping). One 
leader stated,

"A lot of the value of this program is the people getting to know 
each other and providing support for each other that are 
participating in the program every week. And you can continue 
to do that on the Zoom format, but you're not going to create the 
same kind of personal bonds that you would in person where 
there's a lot of chatter before and after meetings and stuff like that. 
I don't think it's the same…. But it's still better than not having the 
program at all."

With respect to adoption, one leader noted that there was a 
decreased effort to be  visible. Leaders did not comment on 
implementation. One leader expressed maintenance concerns related 
to lack of secure funding.

Discussion

This study identified multilevel perceptions of the virtual 
delivery of a CDC-recognized lifestyle behavior change program, 
the UC DPP, across all 10 UC campuses. In 2018, the UC system, 
the third largest employer in California, prioritized diabetes 
prevention as a system-wide goal, offering a worksite behavior 
change program, the UC DPP, free of charge to all UC employees 
with documented prediabetes or who are at risk of developing type 
2 diabetes. UC DPP groups are led by UC staff who have completed 
DPP coach training and are experienced in delivering campus-
based wellness programs (4).

Despite significant documented increases in telemedicine (e.g., 
the provision of clinical services) and telehealth (e.g., health-related 
services, including administration and continuing medical education) 
during the pandemic, as well as research focused on patient 
satisfaction with these services (16), far less is known about multilevel 
constituents’ perceptions surrounding the shift of lifestyle behavior 
change programs to virtual delivery. Our study found that perceptions 
of virtual delivery on RE-AIM domains of UC DPP varied across 
constituent groups, with most reporting a negative impact of virtual 
delivery on program effectiveness. This study provides evidence that 
unanticipated program adaptations, including shifting to virtual 
delivery, present potential benefits as well as perceived drawbacks 
across RE-AIM domains.
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UC DPP participants reported negative effects of virtual delivery 
across reach, effectiveness, adoption, and implementation domains, 
with some indicating that virtual delivery had effectiveness and 
implementation benefits. Future research should focus on facilitating 
program effectiveness, participant engagement, accountability, 
interaction, and providing feedback using virtual DPP. The impact 
of virtual delivery due to COVID-19 on maintenance was limited in 
this study as it was conducted mid-pandemic; future research should 
focus on understanding the effects of virtual UC DPP delivery on 
the maintenance dimension. Barriers described by participants 
included Zoom fatigue, scheduling, and technical challenges, and 
competing demands. For participants who face these challenges, 
in-person DPP delivery may be preferable. Reducing these barriers 
should increase perceived effectiveness and implementation among 
other participants.

UC DPP coordinators discussed negative consequences of 
virtual delivery across reach, effectiveness, adoption, and 
implementation domains. There were equal numbers of remarks 
about positive (or neutral) and negative effects of virtual delivery on 

reach. Coordinators did not perceive other positive benefits to 
virtual delivery. While UC DPP leaders also discussed the drawbacks 
of virtual delivery on effectiveness and adoption, they described 
positive impacts on reach. Research designed to leverage the benefits 
of UC DPP delivery using virtual platforms and mitigate barriers 
from the participant, coordinator, and leader perspectives is needed. 
Understanding the differential impact of these pandemic-related 
changes can help maximize RE-AIM and inform future strategies for 
UC DPP delivery.

Limitations of the current study include the inability of each 
constituent group to plan and prepare for the shift to virtual 
delivery and to fully anticipate barriers and facilitators to 
engagement, due to the sudden onset of COVID-19 and 
accompanying stay at home mandates. Although the abrupt shift 
to virtual delivery allowed for continuity of UC DPP 
programming, our understanding of the extent to which 
socioeconomic factors, lack of technology, and/or low digital 
literacy affected participants’ ability to engage in the program is 
limited to the remarks provided by participants in these 

TABLE 2 Multilevel constituent perceptions of use of a virtual platform to deliver UC DPP across RE-AIM domains.

RE-AIM Domains Perceptions (+, −) Participants (n =  42) Coordinators (n =  18) Leaders (n =  8)

Reach + Increased retention Increased

 • Availability

 • Accessibility

− Increased attrition Increased attrition

Effectiveness +

− Reduced:

 • Interactions with group 

members and facilitator

 • Accountability

 • Visibility

 • Feedback

Increased:

 • Distractions

 • Obstacles

Reduced:

 • Momentum

 • Peer support

 • Accountability

 • Engagement

Increased:

 • Awkwardness

Reduced:

 • Interaction among participants

 • Visibility

Increased:

 • Interruptions

Adoption +

−  • Competing demands during 

pandemic

 • Had to purchase scale

 • Competing demands during 

pandemic

Reduced participants’ effort to 

be visible

Implementation +  • Easier than in-person

 • Helped to stay connected 

with others

− Problems with:

 • Zoom fatigue

 • Scheduling challenges

 • Competing demands

 • Technical issues

 • Low digital literacy

 • Accountability

Problems with:

 • Zoom fatigue

 • Feeling limited in what UC 

DPP could provide

 • Difficulties collecting 

participant data

Maintenance +

−  • Concerns about lack of long-

term funding
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interviews. These challenges included “Zoom fatigue,” scheduling 
difficulties, competing demands (including having children at 
home), an inability to exercise outside of one’s residence, and low 
digital literacy. Future research should examine the differential 
impact of these and other contextual factors on participants’ 
ability to engage in virtual lifestyle change programs. This study 
sample is comprised entirely of the recollections of UC faculty 
and staff; the extent to which their perceptions are generalizable 
to constituents from other institutions of higher education awaits 
future investigation.

Conclusion

The UC system prioritized diabetes prevention as a system-
wide goal, offering UC DPP free of charge to all UC employees at 
risk for or diagnosed with prediabetes, levering campus wellness 
resources in diabetes prevention, and shifting to virtual delivery 
during the COVID-19 pandemic to maintain program continuity. 
This study examined perceptions of utilizing a virtual platform 
(UC Zoom) to deliver UC DPP on RE-AIM domains. Perceptions 
varied across constituent groups, with most describing a negative 
impact of virtual delivery on program effectiveness. There is a 
need to develop questions to assess preferences for and potential 
barriers to virtual delivery, include them in the data routinely 
collected for the CDC, and refine strategies for UC DPP 
implementation accordingly. Given that remote and/or hybrid 
DPP delivery is likely to continue, identifying and addressing the 
challenges and opportunities of the virtual delivery of UC DPP 
across the RE-AIM domains is critical for ongoing diabetes 
prevention programming efforts.
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